]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memcontrol.c
Documentation: Add documentation for Processor MMIO Stale Data
[mirror_ubuntu-jammy-kernel.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/file.h>
62 #include <linux/tracehook.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include "slab.h"
69
70 #include <linux/uaccess.h>
71
72 #include <trace/events/vmscan.h>
73
74 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75 EXPORT_SYMBOL(memory_cgrp_subsys);
76
77 struct mem_cgroup *root_mem_cgroup __read_mostly;
78
79 /* Active memory cgroup to use from an interrupt context */
80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
82
83 /* Socket memory accounting disabled? */
84 static bool cgroup_memory_nosocket __ro_after_init;
85
86 /* Kernel memory accounting disabled? */
87 bool cgroup_memory_nokmem __ro_after_init;
88
89 /* Whether the swap controller is active */
90 #ifdef CONFIG_MEMCG_SWAP
91 bool cgroup_memory_noswap __ro_after_init;
92 #else
93 #define cgroup_memory_noswap 1
94 #endif
95
96 #ifdef CONFIG_CGROUP_WRITEBACK
97 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98 #endif
99
100 /* Whether legacy memory+swap accounting is active */
101 static bool do_memsw_account(void)
102 {
103 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
104 }
105
106 #define THRESHOLDS_EVENTS_TARGET 128
107 #define SOFTLIMIT_EVENTS_TARGET 1024
108
109 /*
110 * Cgroups above their limits are maintained in a RB-Tree, independent of
111 * their hierarchy representation
112 */
113
114 struct mem_cgroup_tree_per_node {
115 struct rb_root rb_root;
116 struct rb_node *rb_rightmost;
117 spinlock_t lock;
118 };
119
120 struct mem_cgroup_tree {
121 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
122 };
123
124 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
125
126 /* for OOM */
127 struct mem_cgroup_eventfd_list {
128 struct list_head list;
129 struct eventfd_ctx *eventfd;
130 };
131
132 /*
133 * cgroup_event represents events which userspace want to receive.
134 */
135 struct mem_cgroup_event {
136 /*
137 * memcg which the event belongs to.
138 */
139 struct mem_cgroup *memcg;
140 /*
141 * eventfd to signal userspace about the event.
142 */
143 struct eventfd_ctx *eventfd;
144 /*
145 * Each of these stored in a list by the cgroup.
146 */
147 struct list_head list;
148 /*
149 * register_event() callback will be used to add new userspace
150 * waiter for changes related to this event. Use eventfd_signal()
151 * on eventfd to send notification to userspace.
152 */
153 int (*register_event)(struct mem_cgroup *memcg,
154 struct eventfd_ctx *eventfd, const char *args);
155 /*
156 * unregister_event() callback will be called when userspace closes
157 * the eventfd or on cgroup removing. This callback must be set,
158 * if you want provide notification functionality.
159 */
160 void (*unregister_event)(struct mem_cgroup *memcg,
161 struct eventfd_ctx *eventfd);
162 /*
163 * All fields below needed to unregister event when
164 * userspace closes eventfd.
165 */
166 poll_table pt;
167 wait_queue_head_t *wqh;
168 wait_queue_entry_t wait;
169 struct work_struct remove;
170 };
171
172 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
173 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
174
175 /* Stuffs for move charges at task migration. */
176 /*
177 * Types of charges to be moved.
178 */
179 #define MOVE_ANON 0x1U
180 #define MOVE_FILE 0x2U
181 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
182
183 /* "mc" and its members are protected by cgroup_mutex */
184 static struct move_charge_struct {
185 spinlock_t lock; /* for from, to */
186 struct mm_struct *mm;
187 struct mem_cgroup *from;
188 struct mem_cgroup *to;
189 unsigned long flags;
190 unsigned long precharge;
191 unsigned long moved_charge;
192 unsigned long moved_swap;
193 struct task_struct *moving_task; /* a task moving charges */
194 wait_queue_head_t waitq; /* a waitq for other context */
195 } mc = {
196 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
197 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
198 };
199
200 /*
201 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
202 * limit reclaim to prevent infinite loops, if they ever occur.
203 */
204 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
205 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
206
207 /* for encoding cft->private value on file */
208 enum res_type {
209 _MEM,
210 _MEMSWAP,
211 _OOM_TYPE,
212 _KMEM,
213 _TCP,
214 };
215
216 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
217 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
218 #define MEMFILE_ATTR(val) ((val) & 0xffff)
219 /* Used for OOM notifier */
220 #define OOM_CONTROL (0)
221
222 /*
223 * Iteration constructs for visiting all cgroups (under a tree). If
224 * loops are exited prematurely (break), mem_cgroup_iter_break() must
225 * be used for reference counting.
226 */
227 #define for_each_mem_cgroup_tree(iter, root) \
228 for (iter = mem_cgroup_iter(root, NULL, NULL); \
229 iter != NULL; \
230 iter = mem_cgroup_iter(root, iter, NULL))
231
232 #define for_each_mem_cgroup(iter) \
233 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
234 iter != NULL; \
235 iter = mem_cgroup_iter(NULL, iter, NULL))
236
237 static inline bool task_is_dying(void)
238 {
239 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
240 (current->flags & PF_EXITING);
241 }
242
243 /* Some nice accessors for the vmpressure. */
244 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
245 {
246 if (!memcg)
247 memcg = root_mem_cgroup;
248 return &memcg->vmpressure;
249 }
250
251 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
252 {
253 return container_of(vmpr, struct mem_cgroup, vmpressure);
254 }
255
256 #ifdef CONFIG_MEMCG_KMEM
257 static DEFINE_SPINLOCK(objcg_lock);
258
259 bool mem_cgroup_kmem_disabled(void)
260 {
261 return cgroup_memory_nokmem;
262 }
263
264 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
265 unsigned int nr_pages);
266
267 static void obj_cgroup_release(struct percpu_ref *ref)
268 {
269 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
270 unsigned int nr_bytes;
271 unsigned int nr_pages;
272 unsigned long flags;
273
274 /*
275 * At this point all allocated objects are freed, and
276 * objcg->nr_charged_bytes can't have an arbitrary byte value.
277 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
278 *
279 * The following sequence can lead to it:
280 * 1) CPU0: objcg == stock->cached_objcg
281 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
282 * PAGE_SIZE bytes are charged
283 * 3) CPU1: a process from another memcg is allocating something,
284 * the stock if flushed,
285 * objcg->nr_charged_bytes = PAGE_SIZE - 92
286 * 5) CPU0: we do release this object,
287 * 92 bytes are added to stock->nr_bytes
288 * 6) CPU0: stock is flushed,
289 * 92 bytes are added to objcg->nr_charged_bytes
290 *
291 * In the result, nr_charged_bytes == PAGE_SIZE.
292 * This page will be uncharged in obj_cgroup_release().
293 */
294 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
295 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
296 nr_pages = nr_bytes >> PAGE_SHIFT;
297
298 if (nr_pages)
299 obj_cgroup_uncharge_pages(objcg, nr_pages);
300
301 spin_lock_irqsave(&objcg_lock, flags);
302 list_del(&objcg->list);
303 spin_unlock_irqrestore(&objcg_lock, flags);
304
305 percpu_ref_exit(ref);
306 kfree_rcu(objcg, rcu);
307 }
308
309 static struct obj_cgroup *obj_cgroup_alloc(void)
310 {
311 struct obj_cgroup *objcg;
312 int ret;
313
314 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
315 if (!objcg)
316 return NULL;
317
318 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
319 GFP_KERNEL);
320 if (ret) {
321 kfree(objcg);
322 return NULL;
323 }
324 INIT_LIST_HEAD(&objcg->list);
325 return objcg;
326 }
327
328 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
329 struct mem_cgroup *parent)
330 {
331 struct obj_cgroup *objcg, *iter;
332
333 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
334
335 spin_lock_irq(&objcg_lock);
336
337 /* 1) Ready to reparent active objcg. */
338 list_add(&objcg->list, &memcg->objcg_list);
339 /* 2) Reparent active objcg and already reparented objcgs to parent. */
340 list_for_each_entry(iter, &memcg->objcg_list, list)
341 WRITE_ONCE(iter->memcg, parent);
342 /* 3) Move already reparented objcgs to the parent's list */
343 list_splice(&memcg->objcg_list, &parent->objcg_list);
344
345 spin_unlock_irq(&objcg_lock);
346
347 percpu_ref_kill(&objcg->refcnt);
348 }
349
350 /*
351 * This will be used as a shrinker list's index.
352 * The main reason for not using cgroup id for this:
353 * this works better in sparse environments, where we have a lot of memcgs,
354 * but only a few kmem-limited. Or also, if we have, for instance, 200
355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
356 * 200 entry array for that.
357 *
358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
359 * will double each time we have to increase it.
360 */
361 static DEFINE_IDA(memcg_cache_ida);
362 int memcg_nr_cache_ids;
363
364 /* Protects memcg_nr_cache_ids */
365 static DECLARE_RWSEM(memcg_cache_ids_sem);
366
367 void memcg_get_cache_ids(void)
368 {
369 down_read(&memcg_cache_ids_sem);
370 }
371
372 void memcg_put_cache_ids(void)
373 {
374 up_read(&memcg_cache_ids_sem);
375 }
376
377 /*
378 * MIN_SIZE is different than 1, because we would like to avoid going through
379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
380 * cgroups is a reasonable guess. In the future, it could be a parameter or
381 * tunable, but that is strictly not necessary.
382 *
383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384 * this constant directly from cgroup, but it is understandable that this is
385 * better kept as an internal representation in cgroup.c. In any case, the
386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
387 * increase ours as well if it increases.
388 */
389 #define MEMCG_CACHES_MIN_SIZE 4
390 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391
392 /*
393 * A lot of the calls to the cache allocation functions are expected to be
394 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
395 * conditional to this static branch, we'll have to allow modules that does
396 * kmem_cache_alloc and the such to see this symbol as well
397 */
398 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
399 EXPORT_SYMBOL(memcg_kmem_enabled_key);
400 #endif
401
402 /**
403 * mem_cgroup_css_from_page - css of the memcg associated with a page
404 * @page: page of interest
405 *
406 * If memcg is bound to the default hierarchy, css of the memcg associated
407 * with @page is returned. The returned css remains associated with @page
408 * until it is released.
409 *
410 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
411 * is returned.
412 */
413 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
414 {
415 struct mem_cgroup *memcg;
416
417 memcg = page_memcg(page);
418
419 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
420 memcg = root_mem_cgroup;
421
422 return &memcg->css;
423 }
424
425 /**
426 * page_cgroup_ino - return inode number of the memcg a page is charged to
427 * @page: the page
428 *
429 * Look up the closest online ancestor of the memory cgroup @page is charged to
430 * and return its inode number or 0 if @page is not charged to any cgroup. It
431 * is safe to call this function without holding a reference to @page.
432 *
433 * Note, this function is inherently racy, because there is nothing to prevent
434 * the cgroup inode from getting torn down and potentially reallocated a moment
435 * after page_cgroup_ino() returns, so it only should be used by callers that
436 * do not care (such as procfs interfaces).
437 */
438 ino_t page_cgroup_ino(struct page *page)
439 {
440 struct mem_cgroup *memcg;
441 unsigned long ino = 0;
442
443 rcu_read_lock();
444 memcg = page_memcg_check(page);
445
446 while (memcg && !(memcg->css.flags & CSS_ONLINE))
447 memcg = parent_mem_cgroup(memcg);
448 if (memcg)
449 ino = cgroup_ino(memcg->css.cgroup);
450 rcu_read_unlock();
451 return ino;
452 }
453
454 static struct mem_cgroup_per_node *
455 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
456 {
457 int nid = page_to_nid(page);
458
459 return memcg->nodeinfo[nid];
460 }
461
462 static struct mem_cgroup_tree_per_node *
463 soft_limit_tree_node(int nid)
464 {
465 return soft_limit_tree.rb_tree_per_node[nid];
466 }
467
468 static struct mem_cgroup_tree_per_node *
469 soft_limit_tree_from_page(struct page *page)
470 {
471 int nid = page_to_nid(page);
472
473 return soft_limit_tree.rb_tree_per_node[nid];
474 }
475
476 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
477 struct mem_cgroup_tree_per_node *mctz,
478 unsigned long new_usage_in_excess)
479 {
480 struct rb_node **p = &mctz->rb_root.rb_node;
481 struct rb_node *parent = NULL;
482 struct mem_cgroup_per_node *mz_node;
483 bool rightmost = true;
484
485 if (mz->on_tree)
486 return;
487
488 mz->usage_in_excess = new_usage_in_excess;
489 if (!mz->usage_in_excess)
490 return;
491 while (*p) {
492 parent = *p;
493 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
494 tree_node);
495 if (mz->usage_in_excess < mz_node->usage_in_excess) {
496 p = &(*p)->rb_left;
497 rightmost = false;
498 } else {
499 p = &(*p)->rb_right;
500 }
501 }
502
503 if (rightmost)
504 mctz->rb_rightmost = &mz->tree_node;
505
506 rb_link_node(&mz->tree_node, parent, p);
507 rb_insert_color(&mz->tree_node, &mctz->rb_root);
508 mz->on_tree = true;
509 }
510
511 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
512 struct mem_cgroup_tree_per_node *mctz)
513 {
514 if (!mz->on_tree)
515 return;
516
517 if (&mz->tree_node == mctz->rb_rightmost)
518 mctz->rb_rightmost = rb_prev(&mz->tree_node);
519
520 rb_erase(&mz->tree_node, &mctz->rb_root);
521 mz->on_tree = false;
522 }
523
524 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
525 struct mem_cgroup_tree_per_node *mctz)
526 {
527 unsigned long flags;
528
529 spin_lock_irqsave(&mctz->lock, flags);
530 __mem_cgroup_remove_exceeded(mz, mctz);
531 spin_unlock_irqrestore(&mctz->lock, flags);
532 }
533
534 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
535 {
536 unsigned long nr_pages = page_counter_read(&memcg->memory);
537 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
538 unsigned long excess = 0;
539
540 if (nr_pages > soft_limit)
541 excess = nr_pages - soft_limit;
542
543 return excess;
544 }
545
546 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
547 {
548 unsigned long excess;
549 struct mem_cgroup_per_node *mz;
550 struct mem_cgroup_tree_per_node *mctz;
551
552 mctz = soft_limit_tree_from_page(page);
553 if (!mctz)
554 return;
555 /*
556 * Necessary to update all ancestors when hierarchy is used.
557 * because their event counter is not touched.
558 */
559 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
560 mz = mem_cgroup_page_nodeinfo(memcg, page);
561 excess = soft_limit_excess(memcg);
562 /*
563 * We have to update the tree if mz is on RB-tree or
564 * mem is over its softlimit.
565 */
566 if (excess || mz->on_tree) {
567 unsigned long flags;
568
569 spin_lock_irqsave(&mctz->lock, flags);
570 /* if on-tree, remove it */
571 if (mz->on_tree)
572 __mem_cgroup_remove_exceeded(mz, mctz);
573 /*
574 * Insert again. mz->usage_in_excess will be updated.
575 * If excess is 0, no tree ops.
576 */
577 __mem_cgroup_insert_exceeded(mz, mctz, excess);
578 spin_unlock_irqrestore(&mctz->lock, flags);
579 }
580 }
581 }
582
583 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
584 {
585 struct mem_cgroup_tree_per_node *mctz;
586 struct mem_cgroup_per_node *mz;
587 int nid;
588
589 for_each_node(nid) {
590 mz = memcg->nodeinfo[nid];
591 mctz = soft_limit_tree_node(nid);
592 if (mctz)
593 mem_cgroup_remove_exceeded(mz, mctz);
594 }
595 }
596
597 static struct mem_cgroup_per_node *
598 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
599 {
600 struct mem_cgroup_per_node *mz;
601
602 retry:
603 mz = NULL;
604 if (!mctz->rb_rightmost)
605 goto done; /* Nothing to reclaim from */
606
607 mz = rb_entry(mctz->rb_rightmost,
608 struct mem_cgroup_per_node, tree_node);
609 /*
610 * Remove the node now but someone else can add it back,
611 * we will to add it back at the end of reclaim to its correct
612 * position in the tree.
613 */
614 __mem_cgroup_remove_exceeded(mz, mctz);
615 if (!soft_limit_excess(mz->memcg) ||
616 !css_tryget(&mz->memcg->css))
617 goto retry;
618 done:
619 return mz;
620 }
621
622 static struct mem_cgroup_per_node *
623 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
624 {
625 struct mem_cgroup_per_node *mz;
626
627 spin_lock_irq(&mctz->lock);
628 mz = __mem_cgroup_largest_soft_limit_node(mctz);
629 spin_unlock_irq(&mctz->lock);
630 return mz;
631 }
632
633 /*
634 * memcg and lruvec stats flushing
635 *
636 * Many codepaths leading to stats update or read are performance sensitive and
637 * adding stats flushing in such codepaths is not desirable. So, to optimize the
638 * flushing the kernel does:
639 *
640 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
641 * rstat update tree grow unbounded.
642 *
643 * 2) Flush the stats synchronously on reader side only when there are more than
644 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
645 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
646 * only for 2 seconds due to (1).
647 */
648 static void flush_memcg_stats_dwork(struct work_struct *w);
649 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
650 static DEFINE_SPINLOCK(stats_flush_lock);
651 static DEFINE_PER_CPU(unsigned int, stats_updates);
652 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
653
654 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
655 {
656 unsigned int x;
657
658 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
659
660 x = __this_cpu_add_return(stats_updates, abs(val));
661 if (x > MEMCG_CHARGE_BATCH) {
662 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
663 __this_cpu_write(stats_updates, 0);
664 }
665 }
666
667 static void __mem_cgroup_flush_stats(void)
668 {
669 unsigned long flag;
670
671 if (!spin_trylock_irqsave(&stats_flush_lock, flag))
672 return;
673
674 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
675 atomic_set(&stats_flush_threshold, 0);
676 spin_unlock_irqrestore(&stats_flush_lock, flag);
677 }
678
679 void mem_cgroup_flush_stats(void)
680 {
681 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
682 __mem_cgroup_flush_stats();
683 }
684
685 static void flush_memcg_stats_dwork(struct work_struct *w)
686 {
687 __mem_cgroup_flush_stats();
688 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 2UL*HZ);
689 }
690
691 /**
692 * __mod_memcg_state - update cgroup memory statistics
693 * @memcg: the memory cgroup
694 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
695 * @val: delta to add to the counter, can be negative
696 */
697 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
698 {
699 if (mem_cgroup_disabled())
700 return;
701
702 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
703 memcg_rstat_updated(memcg, val);
704 }
705
706 /* idx can be of type enum memcg_stat_item or node_stat_item. */
707 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
708 {
709 long x = 0;
710 int cpu;
711
712 for_each_possible_cpu(cpu)
713 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
714 #ifdef CONFIG_SMP
715 if (x < 0)
716 x = 0;
717 #endif
718 return x;
719 }
720
721 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
722 int val)
723 {
724 struct mem_cgroup_per_node *pn;
725 struct mem_cgroup *memcg;
726
727 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
728 memcg = pn->memcg;
729
730 /* Update memcg */
731 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
732
733 /* Update lruvec */
734 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
735
736 memcg_rstat_updated(memcg, val);
737 }
738
739 /**
740 * __mod_lruvec_state - update lruvec memory statistics
741 * @lruvec: the lruvec
742 * @idx: the stat item
743 * @val: delta to add to the counter, can be negative
744 *
745 * The lruvec is the intersection of the NUMA node and a cgroup. This
746 * function updates the all three counters that are affected by a
747 * change of state at this level: per-node, per-cgroup, per-lruvec.
748 */
749 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
750 int val)
751 {
752 /* Update node */
753 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
754
755 /* Update memcg and lruvec */
756 if (!mem_cgroup_disabled())
757 __mod_memcg_lruvec_state(lruvec, idx, val);
758 }
759
760 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
761 int val)
762 {
763 struct page *head = compound_head(page); /* rmap on tail pages */
764 struct mem_cgroup *memcg;
765 pg_data_t *pgdat = page_pgdat(page);
766 struct lruvec *lruvec;
767
768 rcu_read_lock();
769 memcg = page_memcg(head);
770 /* Untracked pages have no memcg, no lruvec. Update only the node */
771 if (!memcg) {
772 rcu_read_unlock();
773 __mod_node_page_state(pgdat, idx, val);
774 return;
775 }
776
777 lruvec = mem_cgroup_lruvec(memcg, pgdat);
778 __mod_lruvec_state(lruvec, idx, val);
779 rcu_read_unlock();
780 }
781 EXPORT_SYMBOL(__mod_lruvec_page_state);
782
783 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
784 {
785 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
786 struct mem_cgroup *memcg;
787 struct lruvec *lruvec;
788
789 rcu_read_lock();
790 memcg = mem_cgroup_from_obj(p);
791
792 /*
793 * Untracked pages have no memcg, no lruvec. Update only the
794 * node. If we reparent the slab objects to the root memcg,
795 * when we free the slab object, we need to update the per-memcg
796 * vmstats to keep it correct for the root memcg.
797 */
798 if (!memcg) {
799 __mod_node_page_state(pgdat, idx, val);
800 } else {
801 lruvec = mem_cgroup_lruvec(memcg, pgdat);
802 __mod_lruvec_state(lruvec, idx, val);
803 }
804 rcu_read_unlock();
805 }
806
807 /*
808 * mod_objcg_mlstate() may be called with irq enabled, so
809 * mod_memcg_lruvec_state() should be used.
810 */
811 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
812 struct pglist_data *pgdat,
813 enum node_stat_item idx, int nr)
814 {
815 struct mem_cgroup *memcg;
816 struct lruvec *lruvec;
817
818 rcu_read_lock();
819 memcg = obj_cgroup_memcg(objcg);
820 lruvec = mem_cgroup_lruvec(memcg, pgdat);
821 mod_memcg_lruvec_state(lruvec, idx, nr);
822 rcu_read_unlock();
823 }
824
825 /**
826 * __count_memcg_events - account VM events in a cgroup
827 * @memcg: the memory cgroup
828 * @idx: the event item
829 * @count: the number of events that occurred
830 */
831 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
832 unsigned long count)
833 {
834 if (mem_cgroup_disabled())
835 return;
836
837 __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
838 memcg_rstat_updated(memcg, count);
839 }
840
841 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
842 {
843 return READ_ONCE(memcg->vmstats.events[event]);
844 }
845
846 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
847 {
848 long x = 0;
849 int cpu;
850
851 for_each_possible_cpu(cpu)
852 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
853 return x;
854 }
855
856 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
857 struct page *page,
858 int nr_pages)
859 {
860 /* pagein of a big page is an event. So, ignore page size */
861 if (nr_pages > 0)
862 __count_memcg_events(memcg, PGPGIN, 1);
863 else {
864 __count_memcg_events(memcg, PGPGOUT, 1);
865 nr_pages = -nr_pages; /* for event */
866 }
867
868 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
869 }
870
871 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
872 enum mem_cgroup_events_target target)
873 {
874 unsigned long val, next;
875
876 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
877 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
878 /* from time_after() in jiffies.h */
879 if ((long)(next - val) < 0) {
880 switch (target) {
881 case MEM_CGROUP_TARGET_THRESH:
882 next = val + THRESHOLDS_EVENTS_TARGET;
883 break;
884 case MEM_CGROUP_TARGET_SOFTLIMIT:
885 next = val + SOFTLIMIT_EVENTS_TARGET;
886 break;
887 default:
888 break;
889 }
890 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
891 return true;
892 }
893 return false;
894 }
895
896 /*
897 * Check events in order.
898 *
899 */
900 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
901 {
902 /* threshold event is triggered in finer grain than soft limit */
903 if (unlikely(mem_cgroup_event_ratelimit(memcg,
904 MEM_CGROUP_TARGET_THRESH))) {
905 bool do_softlimit;
906
907 do_softlimit = mem_cgroup_event_ratelimit(memcg,
908 MEM_CGROUP_TARGET_SOFTLIMIT);
909 mem_cgroup_threshold(memcg);
910 if (unlikely(do_softlimit))
911 mem_cgroup_update_tree(memcg, page);
912 }
913 }
914
915 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
916 {
917 /*
918 * mm_update_next_owner() may clear mm->owner to NULL
919 * if it races with swapoff, page migration, etc.
920 * So this can be called with p == NULL.
921 */
922 if (unlikely(!p))
923 return NULL;
924
925 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
926 }
927 EXPORT_SYMBOL(mem_cgroup_from_task);
928
929 static __always_inline struct mem_cgroup *active_memcg(void)
930 {
931 if (!in_task())
932 return this_cpu_read(int_active_memcg);
933 else
934 return current->active_memcg;
935 }
936
937 /**
938 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
939 * @mm: mm from which memcg should be extracted. It can be NULL.
940 *
941 * Obtain a reference on mm->memcg and returns it if successful. If mm
942 * is NULL, then the memcg is chosen as follows:
943 * 1) The active memcg, if set.
944 * 2) current->mm->memcg, if available
945 * 3) root memcg
946 * If mem_cgroup is disabled, NULL is returned.
947 */
948 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
949 {
950 struct mem_cgroup *memcg;
951
952 if (mem_cgroup_disabled())
953 return NULL;
954
955 /*
956 * Page cache insertions can happen without an
957 * actual mm context, e.g. during disk probing
958 * on boot, loopback IO, acct() writes etc.
959 *
960 * No need to css_get on root memcg as the reference
961 * counting is disabled on the root level in the
962 * cgroup core. See CSS_NO_REF.
963 */
964 if (unlikely(!mm)) {
965 memcg = active_memcg();
966 if (unlikely(memcg)) {
967 /* remote memcg must hold a ref */
968 css_get(&memcg->css);
969 return memcg;
970 }
971 mm = current->mm;
972 if (unlikely(!mm))
973 return root_mem_cgroup;
974 }
975
976 rcu_read_lock();
977 do {
978 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
979 if (unlikely(!memcg))
980 memcg = root_mem_cgroup;
981 } while (!css_tryget(&memcg->css));
982 rcu_read_unlock();
983 return memcg;
984 }
985 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
986
987 static __always_inline bool memcg_kmem_bypass(void)
988 {
989 /* Allow remote memcg charging from any context. */
990 if (unlikely(active_memcg()))
991 return false;
992
993 /* Memcg to charge can't be determined. */
994 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
995 return true;
996
997 return false;
998 }
999
1000 /**
1001 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1002 * @root: hierarchy root
1003 * @prev: previously returned memcg, NULL on first invocation
1004 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1005 *
1006 * Returns references to children of the hierarchy below @root, or
1007 * @root itself, or %NULL after a full round-trip.
1008 *
1009 * Caller must pass the return value in @prev on subsequent
1010 * invocations for reference counting, or use mem_cgroup_iter_break()
1011 * to cancel a hierarchy walk before the round-trip is complete.
1012 *
1013 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1014 * in the hierarchy among all concurrent reclaimers operating on the
1015 * same node.
1016 */
1017 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1018 struct mem_cgroup *prev,
1019 struct mem_cgroup_reclaim_cookie *reclaim)
1020 {
1021 struct mem_cgroup_reclaim_iter *iter;
1022 struct cgroup_subsys_state *css = NULL;
1023 struct mem_cgroup *memcg = NULL;
1024 struct mem_cgroup *pos = NULL;
1025
1026 if (mem_cgroup_disabled())
1027 return NULL;
1028
1029 if (!root)
1030 root = root_mem_cgroup;
1031
1032 if (prev && !reclaim)
1033 pos = prev;
1034
1035 rcu_read_lock();
1036
1037 if (reclaim) {
1038 struct mem_cgroup_per_node *mz;
1039
1040 mz = root->nodeinfo[reclaim->pgdat->node_id];
1041 iter = &mz->iter;
1042
1043 if (prev && reclaim->generation != iter->generation)
1044 goto out_unlock;
1045
1046 while (1) {
1047 pos = READ_ONCE(iter->position);
1048 if (!pos || css_tryget(&pos->css))
1049 break;
1050 /*
1051 * css reference reached zero, so iter->position will
1052 * be cleared by ->css_released. However, we should not
1053 * rely on this happening soon, because ->css_released
1054 * is called from a work queue, and by busy-waiting we
1055 * might block it. So we clear iter->position right
1056 * away.
1057 */
1058 (void)cmpxchg(&iter->position, pos, NULL);
1059 }
1060 }
1061
1062 if (pos)
1063 css = &pos->css;
1064
1065 for (;;) {
1066 css = css_next_descendant_pre(css, &root->css);
1067 if (!css) {
1068 /*
1069 * Reclaimers share the hierarchy walk, and a
1070 * new one might jump in right at the end of
1071 * the hierarchy - make sure they see at least
1072 * one group and restart from the beginning.
1073 */
1074 if (!prev)
1075 continue;
1076 break;
1077 }
1078
1079 /*
1080 * Verify the css and acquire a reference. The root
1081 * is provided by the caller, so we know it's alive
1082 * and kicking, and don't take an extra reference.
1083 */
1084 memcg = mem_cgroup_from_css(css);
1085
1086 if (css == &root->css)
1087 break;
1088
1089 if (css_tryget(css))
1090 break;
1091
1092 memcg = NULL;
1093 }
1094
1095 if (reclaim) {
1096 /*
1097 * The position could have already been updated by a competing
1098 * thread, so check that the value hasn't changed since we read
1099 * it to avoid reclaiming from the same cgroup twice.
1100 */
1101 (void)cmpxchg(&iter->position, pos, memcg);
1102
1103 if (pos)
1104 css_put(&pos->css);
1105
1106 if (!memcg)
1107 iter->generation++;
1108 else if (!prev)
1109 reclaim->generation = iter->generation;
1110 }
1111
1112 out_unlock:
1113 rcu_read_unlock();
1114 if (prev && prev != root)
1115 css_put(&prev->css);
1116
1117 return memcg;
1118 }
1119
1120 /**
1121 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1122 * @root: hierarchy root
1123 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1124 */
1125 void mem_cgroup_iter_break(struct mem_cgroup *root,
1126 struct mem_cgroup *prev)
1127 {
1128 if (!root)
1129 root = root_mem_cgroup;
1130 if (prev && prev != root)
1131 css_put(&prev->css);
1132 }
1133
1134 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1135 struct mem_cgroup *dead_memcg)
1136 {
1137 struct mem_cgroup_reclaim_iter *iter;
1138 struct mem_cgroup_per_node *mz;
1139 int nid;
1140
1141 for_each_node(nid) {
1142 mz = from->nodeinfo[nid];
1143 iter = &mz->iter;
1144 cmpxchg(&iter->position, dead_memcg, NULL);
1145 }
1146 }
1147
1148 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1149 {
1150 struct mem_cgroup *memcg = dead_memcg;
1151 struct mem_cgroup *last;
1152
1153 do {
1154 __invalidate_reclaim_iterators(memcg, dead_memcg);
1155 last = memcg;
1156 } while ((memcg = parent_mem_cgroup(memcg)));
1157
1158 /*
1159 * When cgruop1 non-hierarchy mode is used,
1160 * parent_mem_cgroup() does not walk all the way up to the
1161 * cgroup root (root_mem_cgroup). So we have to handle
1162 * dead_memcg from cgroup root separately.
1163 */
1164 if (last != root_mem_cgroup)
1165 __invalidate_reclaim_iterators(root_mem_cgroup,
1166 dead_memcg);
1167 }
1168
1169 /**
1170 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1171 * @memcg: hierarchy root
1172 * @fn: function to call for each task
1173 * @arg: argument passed to @fn
1174 *
1175 * This function iterates over tasks attached to @memcg or to any of its
1176 * descendants and calls @fn for each task. If @fn returns a non-zero
1177 * value, the function breaks the iteration loop and returns the value.
1178 * Otherwise, it will iterate over all tasks and return 0.
1179 *
1180 * This function must not be called for the root memory cgroup.
1181 */
1182 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1183 int (*fn)(struct task_struct *, void *), void *arg)
1184 {
1185 struct mem_cgroup *iter;
1186 int ret = 0;
1187
1188 BUG_ON(memcg == root_mem_cgroup);
1189
1190 for_each_mem_cgroup_tree(iter, memcg) {
1191 struct css_task_iter it;
1192 struct task_struct *task;
1193
1194 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1195 while (!ret && (task = css_task_iter_next(&it)))
1196 ret = fn(task, arg);
1197 css_task_iter_end(&it);
1198 if (ret) {
1199 mem_cgroup_iter_break(memcg, iter);
1200 break;
1201 }
1202 }
1203 return ret;
1204 }
1205
1206 #ifdef CONFIG_DEBUG_VM
1207 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1208 {
1209 struct mem_cgroup *memcg;
1210
1211 if (mem_cgroup_disabled())
1212 return;
1213
1214 memcg = page_memcg(page);
1215
1216 if (!memcg)
1217 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1218 else
1219 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1220 }
1221 #endif
1222
1223 /**
1224 * lock_page_lruvec - lock and return lruvec for a given page.
1225 * @page: the page
1226 *
1227 * These functions are safe to use under any of the following conditions:
1228 * - page locked
1229 * - PageLRU cleared
1230 * - lock_page_memcg()
1231 * - page->_refcount is zero
1232 */
1233 struct lruvec *lock_page_lruvec(struct page *page)
1234 {
1235 struct lruvec *lruvec;
1236
1237 lruvec = mem_cgroup_page_lruvec(page);
1238 spin_lock(&lruvec->lru_lock);
1239
1240 lruvec_memcg_debug(lruvec, page);
1241
1242 return lruvec;
1243 }
1244
1245 struct lruvec *lock_page_lruvec_irq(struct page *page)
1246 {
1247 struct lruvec *lruvec;
1248
1249 lruvec = mem_cgroup_page_lruvec(page);
1250 spin_lock_irq(&lruvec->lru_lock);
1251
1252 lruvec_memcg_debug(lruvec, page);
1253
1254 return lruvec;
1255 }
1256
1257 struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1258 {
1259 struct lruvec *lruvec;
1260
1261 lruvec = mem_cgroup_page_lruvec(page);
1262 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1263
1264 lruvec_memcg_debug(lruvec, page);
1265
1266 return lruvec;
1267 }
1268
1269 /**
1270 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1271 * @lruvec: mem_cgroup per zone lru vector
1272 * @lru: index of lru list the page is sitting on
1273 * @zid: zone id of the accounted pages
1274 * @nr_pages: positive when adding or negative when removing
1275 *
1276 * This function must be called under lru_lock, just before a page is added
1277 * to or just after a page is removed from an lru list (that ordering being
1278 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1279 */
1280 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1281 int zid, int nr_pages)
1282 {
1283 struct mem_cgroup_per_node *mz;
1284 unsigned long *lru_size;
1285 long size;
1286
1287 if (mem_cgroup_disabled())
1288 return;
1289
1290 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1291 lru_size = &mz->lru_zone_size[zid][lru];
1292
1293 if (nr_pages < 0)
1294 *lru_size += nr_pages;
1295
1296 size = *lru_size;
1297 if (WARN_ONCE(size < 0,
1298 "%s(%p, %d, %d): lru_size %ld\n",
1299 __func__, lruvec, lru, nr_pages, size)) {
1300 VM_BUG_ON(1);
1301 *lru_size = 0;
1302 }
1303
1304 if (nr_pages > 0)
1305 *lru_size += nr_pages;
1306 }
1307
1308 /**
1309 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1310 * @memcg: the memory cgroup
1311 *
1312 * Returns the maximum amount of memory @mem can be charged with, in
1313 * pages.
1314 */
1315 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1316 {
1317 unsigned long margin = 0;
1318 unsigned long count;
1319 unsigned long limit;
1320
1321 count = page_counter_read(&memcg->memory);
1322 limit = READ_ONCE(memcg->memory.max);
1323 if (count < limit)
1324 margin = limit - count;
1325
1326 if (do_memsw_account()) {
1327 count = page_counter_read(&memcg->memsw);
1328 limit = READ_ONCE(memcg->memsw.max);
1329 if (count < limit)
1330 margin = min(margin, limit - count);
1331 else
1332 margin = 0;
1333 }
1334
1335 return margin;
1336 }
1337
1338 /*
1339 * A routine for checking "mem" is under move_account() or not.
1340 *
1341 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1342 * moving cgroups. This is for waiting at high-memory pressure
1343 * caused by "move".
1344 */
1345 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1346 {
1347 struct mem_cgroup *from;
1348 struct mem_cgroup *to;
1349 bool ret = false;
1350 /*
1351 * Unlike task_move routines, we access mc.to, mc.from not under
1352 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1353 */
1354 spin_lock(&mc.lock);
1355 from = mc.from;
1356 to = mc.to;
1357 if (!from)
1358 goto unlock;
1359
1360 ret = mem_cgroup_is_descendant(from, memcg) ||
1361 mem_cgroup_is_descendant(to, memcg);
1362 unlock:
1363 spin_unlock(&mc.lock);
1364 return ret;
1365 }
1366
1367 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1368 {
1369 if (mc.moving_task && current != mc.moving_task) {
1370 if (mem_cgroup_under_move(memcg)) {
1371 DEFINE_WAIT(wait);
1372 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1373 /* moving charge context might have finished. */
1374 if (mc.moving_task)
1375 schedule();
1376 finish_wait(&mc.waitq, &wait);
1377 return true;
1378 }
1379 }
1380 return false;
1381 }
1382
1383 struct memory_stat {
1384 const char *name;
1385 unsigned int idx;
1386 };
1387
1388 static const struct memory_stat memory_stats[] = {
1389 { "anon", NR_ANON_MAPPED },
1390 { "file", NR_FILE_PAGES },
1391 { "kernel_stack", NR_KERNEL_STACK_KB },
1392 { "pagetables", NR_PAGETABLE },
1393 { "percpu", MEMCG_PERCPU_B },
1394 { "sock", MEMCG_SOCK },
1395 { "shmem", NR_SHMEM },
1396 { "file_mapped", NR_FILE_MAPPED },
1397 { "file_dirty", NR_FILE_DIRTY },
1398 { "file_writeback", NR_WRITEBACK },
1399 #ifdef CONFIG_SWAP
1400 { "swapcached", NR_SWAPCACHE },
1401 #endif
1402 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1403 { "anon_thp", NR_ANON_THPS },
1404 { "file_thp", NR_FILE_THPS },
1405 { "shmem_thp", NR_SHMEM_THPS },
1406 #endif
1407 { "inactive_anon", NR_INACTIVE_ANON },
1408 { "active_anon", NR_ACTIVE_ANON },
1409 { "inactive_file", NR_INACTIVE_FILE },
1410 { "active_file", NR_ACTIVE_FILE },
1411 { "unevictable", NR_UNEVICTABLE },
1412 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1413 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1414
1415 /* The memory events */
1416 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1417 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1418 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1419 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1420 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1421 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1422 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1423 };
1424
1425 /* Translate stat items to the correct unit for memory.stat output */
1426 static int memcg_page_state_unit(int item)
1427 {
1428 switch (item) {
1429 case MEMCG_PERCPU_B:
1430 case NR_SLAB_RECLAIMABLE_B:
1431 case NR_SLAB_UNRECLAIMABLE_B:
1432 case WORKINGSET_REFAULT_ANON:
1433 case WORKINGSET_REFAULT_FILE:
1434 case WORKINGSET_ACTIVATE_ANON:
1435 case WORKINGSET_ACTIVATE_FILE:
1436 case WORKINGSET_RESTORE_ANON:
1437 case WORKINGSET_RESTORE_FILE:
1438 case WORKINGSET_NODERECLAIM:
1439 return 1;
1440 case NR_KERNEL_STACK_KB:
1441 return SZ_1K;
1442 default:
1443 return PAGE_SIZE;
1444 }
1445 }
1446
1447 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1448 int item)
1449 {
1450 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1451 }
1452
1453 static char *memory_stat_format(struct mem_cgroup *memcg)
1454 {
1455 struct seq_buf s;
1456 int i;
1457
1458 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1459 if (!s.buffer)
1460 return NULL;
1461
1462 /*
1463 * Provide statistics on the state of the memory subsystem as
1464 * well as cumulative event counters that show past behavior.
1465 *
1466 * This list is ordered following a combination of these gradients:
1467 * 1) generic big picture -> specifics and details
1468 * 2) reflecting userspace activity -> reflecting kernel heuristics
1469 *
1470 * Current memory state:
1471 */
1472 mem_cgroup_flush_stats();
1473
1474 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1475 u64 size;
1476
1477 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1478 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1479
1480 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1481 size += memcg_page_state_output(memcg,
1482 NR_SLAB_RECLAIMABLE_B);
1483 seq_buf_printf(&s, "slab %llu\n", size);
1484 }
1485 }
1486
1487 /* Accumulated memory events */
1488
1489 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1490 memcg_events(memcg, PGFAULT));
1491 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1492 memcg_events(memcg, PGMAJFAULT));
1493 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1494 memcg_events(memcg, PGREFILL));
1495 seq_buf_printf(&s, "pgscan %lu\n",
1496 memcg_events(memcg, PGSCAN_KSWAPD) +
1497 memcg_events(memcg, PGSCAN_DIRECT));
1498 seq_buf_printf(&s, "pgsteal %lu\n",
1499 memcg_events(memcg, PGSTEAL_KSWAPD) +
1500 memcg_events(memcg, PGSTEAL_DIRECT));
1501 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1502 memcg_events(memcg, PGACTIVATE));
1503 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1504 memcg_events(memcg, PGDEACTIVATE));
1505 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1506 memcg_events(memcg, PGLAZYFREE));
1507 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1508 memcg_events(memcg, PGLAZYFREED));
1509
1510 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1511 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1512 memcg_events(memcg, THP_FAULT_ALLOC));
1513 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1514 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1515 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1516
1517 /* The above should easily fit into one page */
1518 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1519
1520 return s.buffer;
1521 }
1522
1523 #define K(x) ((x) << (PAGE_SHIFT-10))
1524 /**
1525 * mem_cgroup_print_oom_context: Print OOM information relevant to
1526 * memory controller.
1527 * @memcg: The memory cgroup that went over limit
1528 * @p: Task that is going to be killed
1529 *
1530 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1531 * enabled
1532 */
1533 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1534 {
1535 rcu_read_lock();
1536
1537 if (memcg) {
1538 pr_cont(",oom_memcg=");
1539 pr_cont_cgroup_path(memcg->css.cgroup);
1540 } else
1541 pr_cont(",global_oom");
1542 if (p) {
1543 pr_cont(",task_memcg=");
1544 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1545 }
1546 rcu_read_unlock();
1547 }
1548
1549 /**
1550 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1551 * memory controller.
1552 * @memcg: The memory cgroup that went over limit
1553 */
1554 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1555 {
1556 char *buf;
1557
1558 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1559 K((u64)page_counter_read(&memcg->memory)),
1560 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1561 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1562 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1563 K((u64)page_counter_read(&memcg->swap)),
1564 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1565 else {
1566 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1567 K((u64)page_counter_read(&memcg->memsw)),
1568 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1569 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1570 K((u64)page_counter_read(&memcg->kmem)),
1571 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1572 }
1573
1574 pr_info("Memory cgroup stats for ");
1575 pr_cont_cgroup_path(memcg->css.cgroup);
1576 pr_cont(":");
1577 buf = memory_stat_format(memcg);
1578 if (!buf)
1579 return;
1580 pr_info("%s", buf);
1581 kfree(buf);
1582 }
1583
1584 /*
1585 * Return the memory (and swap, if configured) limit for a memcg.
1586 */
1587 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1588 {
1589 unsigned long max = READ_ONCE(memcg->memory.max);
1590
1591 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1592 if (mem_cgroup_swappiness(memcg))
1593 max += min(READ_ONCE(memcg->swap.max),
1594 (unsigned long)total_swap_pages);
1595 } else { /* v1 */
1596 if (mem_cgroup_swappiness(memcg)) {
1597 /* Calculate swap excess capacity from memsw limit */
1598 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1599
1600 max += min(swap, (unsigned long)total_swap_pages);
1601 }
1602 }
1603 return max;
1604 }
1605
1606 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1607 {
1608 return page_counter_read(&memcg->memory);
1609 }
1610
1611 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1612 int order)
1613 {
1614 struct oom_control oc = {
1615 .zonelist = NULL,
1616 .nodemask = NULL,
1617 .memcg = memcg,
1618 .gfp_mask = gfp_mask,
1619 .order = order,
1620 };
1621 bool ret = true;
1622
1623 if (mutex_lock_killable(&oom_lock))
1624 return true;
1625
1626 if (mem_cgroup_margin(memcg) >= (1 << order))
1627 goto unlock;
1628
1629 /*
1630 * A few threads which were not waiting at mutex_lock_killable() can
1631 * fail to bail out. Therefore, check again after holding oom_lock.
1632 */
1633 ret = task_is_dying() || out_of_memory(&oc);
1634
1635 unlock:
1636 mutex_unlock(&oom_lock);
1637 return ret;
1638 }
1639
1640 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1641 pg_data_t *pgdat,
1642 gfp_t gfp_mask,
1643 unsigned long *total_scanned)
1644 {
1645 struct mem_cgroup *victim = NULL;
1646 int total = 0;
1647 int loop = 0;
1648 unsigned long excess;
1649 unsigned long nr_scanned;
1650 struct mem_cgroup_reclaim_cookie reclaim = {
1651 .pgdat = pgdat,
1652 };
1653
1654 excess = soft_limit_excess(root_memcg);
1655
1656 while (1) {
1657 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1658 if (!victim) {
1659 loop++;
1660 if (loop >= 2) {
1661 /*
1662 * If we have not been able to reclaim
1663 * anything, it might because there are
1664 * no reclaimable pages under this hierarchy
1665 */
1666 if (!total)
1667 break;
1668 /*
1669 * We want to do more targeted reclaim.
1670 * excess >> 2 is not to excessive so as to
1671 * reclaim too much, nor too less that we keep
1672 * coming back to reclaim from this cgroup
1673 */
1674 if (total >= (excess >> 2) ||
1675 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1676 break;
1677 }
1678 continue;
1679 }
1680 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1681 pgdat, &nr_scanned);
1682 *total_scanned += nr_scanned;
1683 if (!soft_limit_excess(root_memcg))
1684 break;
1685 }
1686 mem_cgroup_iter_break(root_memcg, victim);
1687 return total;
1688 }
1689
1690 #ifdef CONFIG_LOCKDEP
1691 static struct lockdep_map memcg_oom_lock_dep_map = {
1692 .name = "memcg_oom_lock",
1693 };
1694 #endif
1695
1696 static DEFINE_SPINLOCK(memcg_oom_lock);
1697
1698 /*
1699 * Check OOM-Killer is already running under our hierarchy.
1700 * If someone is running, return false.
1701 */
1702 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1703 {
1704 struct mem_cgroup *iter, *failed = NULL;
1705
1706 spin_lock(&memcg_oom_lock);
1707
1708 for_each_mem_cgroup_tree(iter, memcg) {
1709 if (iter->oom_lock) {
1710 /*
1711 * this subtree of our hierarchy is already locked
1712 * so we cannot give a lock.
1713 */
1714 failed = iter;
1715 mem_cgroup_iter_break(memcg, iter);
1716 break;
1717 } else
1718 iter->oom_lock = true;
1719 }
1720
1721 if (failed) {
1722 /*
1723 * OK, we failed to lock the whole subtree so we have
1724 * to clean up what we set up to the failing subtree
1725 */
1726 for_each_mem_cgroup_tree(iter, memcg) {
1727 if (iter == failed) {
1728 mem_cgroup_iter_break(memcg, iter);
1729 break;
1730 }
1731 iter->oom_lock = false;
1732 }
1733 } else
1734 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1735
1736 spin_unlock(&memcg_oom_lock);
1737
1738 return !failed;
1739 }
1740
1741 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1742 {
1743 struct mem_cgroup *iter;
1744
1745 spin_lock(&memcg_oom_lock);
1746 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1747 for_each_mem_cgroup_tree(iter, memcg)
1748 iter->oom_lock = false;
1749 spin_unlock(&memcg_oom_lock);
1750 }
1751
1752 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1753 {
1754 struct mem_cgroup *iter;
1755
1756 spin_lock(&memcg_oom_lock);
1757 for_each_mem_cgroup_tree(iter, memcg)
1758 iter->under_oom++;
1759 spin_unlock(&memcg_oom_lock);
1760 }
1761
1762 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1763 {
1764 struct mem_cgroup *iter;
1765
1766 /*
1767 * Be careful about under_oom underflows because a child memcg
1768 * could have been added after mem_cgroup_mark_under_oom.
1769 */
1770 spin_lock(&memcg_oom_lock);
1771 for_each_mem_cgroup_tree(iter, memcg)
1772 if (iter->under_oom > 0)
1773 iter->under_oom--;
1774 spin_unlock(&memcg_oom_lock);
1775 }
1776
1777 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1778
1779 struct oom_wait_info {
1780 struct mem_cgroup *memcg;
1781 wait_queue_entry_t wait;
1782 };
1783
1784 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1785 unsigned mode, int sync, void *arg)
1786 {
1787 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1788 struct mem_cgroup *oom_wait_memcg;
1789 struct oom_wait_info *oom_wait_info;
1790
1791 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1792 oom_wait_memcg = oom_wait_info->memcg;
1793
1794 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1795 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1796 return 0;
1797 return autoremove_wake_function(wait, mode, sync, arg);
1798 }
1799
1800 static void memcg_oom_recover(struct mem_cgroup *memcg)
1801 {
1802 /*
1803 * For the following lockless ->under_oom test, the only required
1804 * guarantee is that it must see the state asserted by an OOM when
1805 * this function is called as a result of userland actions
1806 * triggered by the notification of the OOM. This is trivially
1807 * achieved by invoking mem_cgroup_mark_under_oom() before
1808 * triggering notification.
1809 */
1810 if (memcg && memcg->under_oom)
1811 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1812 }
1813
1814 enum oom_status {
1815 OOM_SUCCESS,
1816 OOM_FAILED,
1817 OOM_ASYNC,
1818 OOM_SKIPPED
1819 };
1820
1821 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1822 {
1823 enum oom_status ret;
1824 bool locked;
1825
1826 if (order > PAGE_ALLOC_COSTLY_ORDER)
1827 return OOM_SKIPPED;
1828
1829 memcg_memory_event(memcg, MEMCG_OOM);
1830
1831 /*
1832 * We are in the middle of the charge context here, so we
1833 * don't want to block when potentially sitting on a callstack
1834 * that holds all kinds of filesystem and mm locks.
1835 *
1836 * cgroup1 allows disabling the OOM killer and waiting for outside
1837 * handling until the charge can succeed; remember the context and put
1838 * the task to sleep at the end of the page fault when all locks are
1839 * released.
1840 *
1841 * On the other hand, in-kernel OOM killer allows for an async victim
1842 * memory reclaim (oom_reaper) and that means that we are not solely
1843 * relying on the oom victim to make a forward progress and we can
1844 * invoke the oom killer here.
1845 *
1846 * Please note that mem_cgroup_out_of_memory might fail to find a
1847 * victim and then we have to bail out from the charge path.
1848 */
1849 if (memcg->oom_kill_disable) {
1850 if (!current->in_user_fault)
1851 return OOM_SKIPPED;
1852 css_get(&memcg->css);
1853 current->memcg_in_oom = memcg;
1854 current->memcg_oom_gfp_mask = mask;
1855 current->memcg_oom_order = order;
1856
1857 return OOM_ASYNC;
1858 }
1859
1860 mem_cgroup_mark_under_oom(memcg);
1861
1862 locked = mem_cgroup_oom_trylock(memcg);
1863
1864 if (locked)
1865 mem_cgroup_oom_notify(memcg);
1866
1867 mem_cgroup_unmark_under_oom(memcg);
1868 if (mem_cgroup_out_of_memory(memcg, mask, order))
1869 ret = OOM_SUCCESS;
1870 else
1871 ret = OOM_FAILED;
1872
1873 if (locked)
1874 mem_cgroup_oom_unlock(memcg);
1875
1876 return ret;
1877 }
1878
1879 /**
1880 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1881 * @handle: actually kill/wait or just clean up the OOM state
1882 *
1883 * This has to be called at the end of a page fault if the memcg OOM
1884 * handler was enabled.
1885 *
1886 * Memcg supports userspace OOM handling where failed allocations must
1887 * sleep on a waitqueue until the userspace task resolves the
1888 * situation. Sleeping directly in the charge context with all kinds
1889 * of locks held is not a good idea, instead we remember an OOM state
1890 * in the task and mem_cgroup_oom_synchronize() has to be called at
1891 * the end of the page fault to complete the OOM handling.
1892 *
1893 * Returns %true if an ongoing memcg OOM situation was detected and
1894 * completed, %false otherwise.
1895 */
1896 bool mem_cgroup_oom_synchronize(bool handle)
1897 {
1898 struct mem_cgroup *memcg = current->memcg_in_oom;
1899 struct oom_wait_info owait;
1900 bool locked;
1901
1902 /* OOM is global, do not handle */
1903 if (!memcg)
1904 return false;
1905
1906 if (!handle)
1907 goto cleanup;
1908
1909 owait.memcg = memcg;
1910 owait.wait.flags = 0;
1911 owait.wait.func = memcg_oom_wake_function;
1912 owait.wait.private = current;
1913 INIT_LIST_HEAD(&owait.wait.entry);
1914
1915 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1916 mem_cgroup_mark_under_oom(memcg);
1917
1918 locked = mem_cgroup_oom_trylock(memcg);
1919
1920 if (locked)
1921 mem_cgroup_oom_notify(memcg);
1922
1923 if (locked && !memcg->oom_kill_disable) {
1924 mem_cgroup_unmark_under_oom(memcg);
1925 finish_wait(&memcg_oom_waitq, &owait.wait);
1926 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1927 current->memcg_oom_order);
1928 } else {
1929 schedule();
1930 mem_cgroup_unmark_under_oom(memcg);
1931 finish_wait(&memcg_oom_waitq, &owait.wait);
1932 }
1933
1934 if (locked) {
1935 mem_cgroup_oom_unlock(memcg);
1936 /*
1937 * There is no guarantee that an OOM-lock contender
1938 * sees the wakeups triggered by the OOM kill
1939 * uncharges. Wake any sleepers explicitly.
1940 */
1941 memcg_oom_recover(memcg);
1942 }
1943 cleanup:
1944 current->memcg_in_oom = NULL;
1945 css_put(&memcg->css);
1946 return true;
1947 }
1948
1949 /**
1950 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1951 * @victim: task to be killed by the OOM killer
1952 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1953 *
1954 * Returns a pointer to a memory cgroup, which has to be cleaned up
1955 * by killing all belonging OOM-killable tasks.
1956 *
1957 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1958 */
1959 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1960 struct mem_cgroup *oom_domain)
1961 {
1962 struct mem_cgroup *oom_group = NULL;
1963 struct mem_cgroup *memcg;
1964
1965 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1966 return NULL;
1967
1968 if (!oom_domain)
1969 oom_domain = root_mem_cgroup;
1970
1971 rcu_read_lock();
1972
1973 memcg = mem_cgroup_from_task(victim);
1974 if (memcg == root_mem_cgroup)
1975 goto out;
1976
1977 /*
1978 * If the victim task has been asynchronously moved to a different
1979 * memory cgroup, we might end up killing tasks outside oom_domain.
1980 * In this case it's better to ignore memory.group.oom.
1981 */
1982 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1983 goto out;
1984
1985 /*
1986 * Traverse the memory cgroup hierarchy from the victim task's
1987 * cgroup up to the OOMing cgroup (or root) to find the
1988 * highest-level memory cgroup with oom.group set.
1989 */
1990 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1991 if (memcg->oom_group)
1992 oom_group = memcg;
1993
1994 if (memcg == oom_domain)
1995 break;
1996 }
1997
1998 if (oom_group)
1999 css_get(&oom_group->css);
2000 out:
2001 rcu_read_unlock();
2002
2003 return oom_group;
2004 }
2005
2006 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2007 {
2008 pr_info("Tasks in ");
2009 pr_cont_cgroup_path(memcg->css.cgroup);
2010 pr_cont(" are going to be killed due to memory.oom.group set\n");
2011 }
2012
2013 /**
2014 * lock_page_memcg - lock a page and memcg binding
2015 * @page: the page
2016 *
2017 * This function protects unlocked LRU pages from being moved to
2018 * another cgroup.
2019 *
2020 * It ensures lifetime of the locked memcg. Caller is responsible
2021 * for the lifetime of the page.
2022 */
2023 void lock_page_memcg(struct page *page)
2024 {
2025 struct page *head = compound_head(page); /* rmap on tail pages */
2026 struct mem_cgroup *memcg;
2027 unsigned long flags;
2028
2029 /*
2030 * The RCU lock is held throughout the transaction. The fast
2031 * path can get away without acquiring the memcg->move_lock
2032 * because page moving starts with an RCU grace period.
2033 */
2034 rcu_read_lock();
2035
2036 if (mem_cgroup_disabled())
2037 return;
2038 again:
2039 memcg = page_memcg(head);
2040 if (unlikely(!memcg))
2041 return;
2042
2043 #ifdef CONFIG_PROVE_LOCKING
2044 local_irq_save(flags);
2045 might_lock(&memcg->move_lock);
2046 local_irq_restore(flags);
2047 #endif
2048
2049 if (atomic_read(&memcg->moving_account) <= 0)
2050 return;
2051
2052 spin_lock_irqsave(&memcg->move_lock, flags);
2053 if (memcg != page_memcg(head)) {
2054 spin_unlock_irqrestore(&memcg->move_lock, flags);
2055 goto again;
2056 }
2057
2058 /*
2059 * When charge migration first begins, we can have multiple
2060 * critical sections holding the fast-path RCU lock and one
2061 * holding the slowpath move_lock. Track the task who has the
2062 * move_lock for unlock_page_memcg().
2063 */
2064 memcg->move_lock_task = current;
2065 memcg->move_lock_flags = flags;
2066 }
2067 EXPORT_SYMBOL(lock_page_memcg);
2068
2069 static void __unlock_page_memcg(struct mem_cgroup *memcg)
2070 {
2071 if (memcg && memcg->move_lock_task == current) {
2072 unsigned long flags = memcg->move_lock_flags;
2073
2074 memcg->move_lock_task = NULL;
2075 memcg->move_lock_flags = 0;
2076
2077 spin_unlock_irqrestore(&memcg->move_lock, flags);
2078 }
2079
2080 rcu_read_unlock();
2081 }
2082
2083 /**
2084 * unlock_page_memcg - unlock a page and memcg binding
2085 * @page: the page
2086 */
2087 void unlock_page_memcg(struct page *page)
2088 {
2089 struct page *head = compound_head(page);
2090
2091 __unlock_page_memcg(page_memcg(head));
2092 }
2093 EXPORT_SYMBOL(unlock_page_memcg);
2094
2095 struct obj_stock {
2096 #ifdef CONFIG_MEMCG_KMEM
2097 struct obj_cgroup *cached_objcg;
2098 struct pglist_data *cached_pgdat;
2099 unsigned int nr_bytes;
2100 int nr_slab_reclaimable_b;
2101 int nr_slab_unreclaimable_b;
2102 #else
2103 int dummy[0];
2104 #endif
2105 };
2106
2107 struct memcg_stock_pcp {
2108 struct mem_cgroup *cached; /* this never be root cgroup */
2109 unsigned int nr_pages;
2110 struct obj_stock task_obj;
2111 struct obj_stock irq_obj;
2112
2113 struct work_struct work;
2114 unsigned long flags;
2115 #define FLUSHING_CACHED_CHARGE 0
2116 };
2117 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2118 static DEFINE_MUTEX(percpu_charge_mutex);
2119
2120 #ifdef CONFIG_MEMCG_KMEM
2121 static void drain_obj_stock(struct obj_stock *stock);
2122 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2123 struct mem_cgroup *root_memcg);
2124
2125 #else
2126 static inline void drain_obj_stock(struct obj_stock *stock)
2127 {
2128 }
2129 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2130 struct mem_cgroup *root_memcg)
2131 {
2132 return false;
2133 }
2134 #endif
2135
2136 /*
2137 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2138 * sequence used in this case to access content from object stock is slow.
2139 * To optimize for user context access, there are now two object stocks for
2140 * task context and interrupt context access respectively.
2141 *
2142 * The task context object stock can be accessed by disabling preemption only
2143 * which is cheap in non-preempt kernel. The interrupt context object stock
2144 * can only be accessed after disabling interrupt. User context code can
2145 * access interrupt object stock, but not vice versa.
2146 */
2147 static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2148 {
2149 struct memcg_stock_pcp *stock;
2150
2151 if (likely(in_task())) {
2152 *pflags = 0UL;
2153 preempt_disable();
2154 stock = this_cpu_ptr(&memcg_stock);
2155 return &stock->task_obj;
2156 }
2157
2158 local_irq_save(*pflags);
2159 stock = this_cpu_ptr(&memcg_stock);
2160 return &stock->irq_obj;
2161 }
2162
2163 static inline void put_obj_stock(unsigned long flags)
2164 {
2165 if (likely(in_task()))
2166 preempt_enable();
2167 else
2168 local_irq_restore(flags);
2169 }
2170
2171 /**
2172 * consume_stock: Try to consume stocked charge on this cpu.
2173 * @memcg: memcg to consume from.
2174 * @nr_pages: how many pages to charge.
2175 *
2176 * The charges will only happen if @memcg matches the current cpu's memcg
2177 * stock, and at least @nr_pages are available in that stock. Failure to
2178 * service an allocation will refill the stock.
2179 *
2180 * returns true if successful, false otherwise.
2181 */
2182 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2183 {
2184 struct memcg_stock_pcp *stock;
2185 unsigned long flags;
2186 bool ret = false;
2187
2188 if (nr_pages > MEMCG_CHARGE_BATCH)
2189 return ret;
2190
2191 local_irq_save(flags);
2192
2193 stock = this_cpu_ptr(&memcg_stock);
2194 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2195 stock->nr_pages -= nr_pages;
2196 ret = true;
2197 }
2198
2199 local_irq_restore(flags);
2200
2201 return ret;
2202 }
2203
2204 /*
2205 * Returns stocks cached in percpu and reset cached information.
2206 */
2207 static void drain_stock(struct memcg_stock_pcp *stock)
2208 {
2209 struct mem_cgroup *old = stock->cached;
2210
2211 if (!old)
2212 return;
2213
2214 if (stock->nr_pages) {
2215 page_counter_uncharge(&old->memory, stock->nr_pages);
2216 if (do_memsw_account())
2217 page_counter_uncharge(&old->memsw, stock->nr_pages);
2218 stock->nr_pages = 0;
2219 }
2220
2221 css_put(&old->css);
2222 stock->cached = NULL;
2223 }
2224
2225 static void drain_local_stock(struct work_struct *dummy)
2226 {
2227 struct memcg_stock_pcp *stock;
2228 unsigned long flags;
2229
2230 /*
2231 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2232 * drain_stock races is that we always operate on local CPU stock
2233 * here with IRQ disabled
2234 */
2235 local_irq_save(flags);
2236
2237 stock = this_cpu_ptr(&memcg_stock);
2238 drain_obj_stock(&stock->irq_obj);
2239 if (in_task())
2240 drain_obj_stock(&stock->task_obj);
2241 drain_stock(stock);
2242 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2243
2244 local_irq_restore(flags);
2245 }
2246
2247 /*
2248 * Cache charges(val) to local per_cpu area.
2249 * This will be consumed by consume_stock() function, later.
2250 */
2251 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2252 {
2253 struct memcg_stock_pcp *stock;
2254 unsigned long flags;
2255
2256 local_irq_save(flags);
2257
2258 stock = this_cpu_ptr(&memcg_stock);
2259 if (stock->cached != memcg) { /* reset if necessary */
2260 drain_stock(stock);
2261 css_get(&memcg->css);
2262 stock->cached = memcg;
2263 }
2264 stock->nr_pages += nr_pages;
2265
2266 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2267 drain_stock(stock);
2268
2269 local_irq_restore(flags);
2270 }
2271
2272 /*
2273 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2274 * of the hierarchy under it.
2275 */
2276 static void drain_all_stock(struct mem_cgroup *root_memcg)
2277 {
2278 int cpu, curcpu;
2279
2280 /* If someone's already draining, avoid adding running more workers. */
2281 if (!mutex_trylock(&percpu_charge_mutex))
2282 return;
2283 /*
2284 * Notify other cpus that system-wide "drain" is running
2285 * We do not care about races with the cpu hotplug because cpu down
2286 * as well as workers from this path always operate on the local
2287 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2288 */
2289 curcpu = get_cpu();
2290 for_each_online_cpu(cpu) {
2291 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2292 struct mem_cgroup *memcg;
2293 bool flush = false;
2294
2295 rcu_read_lock();
2296 memcg = stock->cached;
2297 if (memcg && stock->nr_pages &&
2298 mem_cgroup_is_descendant(memcg, root_memcg))
2299 flush = true;
2300 else if (obj_stock_flush_required(stock, root_memcg))
2301 flush = true;
2302 rcu_read_unlock();
2303
2304 if (flush &&
2305 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2306 if (cpu == curcpu)
2307 drain_local_stock(&stock->work);
2308 else
2309 schedule_work_on(cpu, &stock->work);
2310 }
2311 }
2312 put_cpu();
2313 mutex_unlock(&percpu_charge_mutex);
2314 }
2315
2316 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2317 {
2318 struct memcg_stock_pcp *stock;
2319
2320 stock = &per_cpu(memcg_stock, cpu);
2321 drain_stock(stock);
2322
2323 return 0;
2324 }
2325
2326 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2327 unsigned int nr_pages,
2328 gfp_t gfp_mask)
2329 {
2330 unsigned long nr_reclaimed = 0;
2331
2332 do {
2333 unsigned long pflags;
2334
2335 if (page_counter_read(&memcg->memory) <=
2336 READ_ONCE(memcg->memory.high))
2337 continue;
2338
2339 memcg_memory_event(memcg, MEMCG_HIGH);
2340
2341 psi_memstall_enter(&pflags);
2342 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2343 gfp_mask, true);
2344 psi_memstall_leave(&pflags);
2345 } while ((memcg = parent_mem_cgroup(memcg)) &&
2346 !mem_cgroup_is_root(memcg));
2347
2348 return nr_reclaimed;
2349 }
2350
2351 static void high_work_func(struct work_struct *work)
2352 {
2353 struct mem_cgroup *memcg;
2354
2355 memcg = container_of(work, struct mem_cgroup, high_work);
2356 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2357 }
2358
2359 /*
2360 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2361 * enough to still cause a significant slowdown in most cases, while still
2362 * allowing diagnostics and tracing to proceed without becoming stuck.
2363 */
2364 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2365
2366 /*
2367 * When calculating the delay, we use these either side of the exponentiation to
2368 * maintain precision and scale to a reasonable number of jiffies (see the table
2369 * below.
2370 *
2371 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2372 * overage ratio to a delay.
2373 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2374 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2375 * to produce a reasonable delay curve.
2376 *
2377 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2378 * reasonable delay curve compared to precision-adjusted overage, not
2379 * penalising heavily at first, but still making sure that growth beyond the
2380 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2381 * example, with a high of 100 megabytes:
2382 *
2383 * +-------+------------------------+
2384 * | usage | time to allocate in ms |
2385 * +-------+------------------------+
2386 * | 100M | 0 |
2387 * | 101M | 6 |
2388 * | 102M | 25 |
2389 * | 103M | 57 |
2390 * | 104M | 102 |
2391 * | 105M | 159 |
2392 * | 106M | 230 |
2393 * | 107M | 313 |
2394 * | 108M | 409 |
2395 * | 109M | 518 |
2396 * | 110M | 639 |
2397 * | 111M | 774 |
2398 * | 112M | 921 |
2399 * | 113M | 1081 |
2400 * | 114M | 1254 |
2401 * | 115M | 1439 |
2402 * | 116M | 1638 |
2403 * | 117M | 1849 |
2404 * | 118M | 2000 |
2405 * | 119M | 2000 |
2406 * | 120M | 2000 |
2407 * +-------+------------------------+
2408 */
2409 #define MEMCG_DELAY_PRECISION_SHIFT 20
2410 #define MEMCG_DELAY_SCALING_SHIFT 14
2411
2412 static u64 calculate_overage(unsigned long usage, unsigned long high)
2413 {
2414 u64 overage;
2415
2416 if (usage <= high)
2417 return 0;
2418
2419 /*
2420 * Prevent division by 0 in overage calculation by acting as if
2421 * it was a threshold of 1 page
2422 */
2423 high = max(high, 1UL);
2424
2425 overage = usage - high;
2426 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2427 return div64_u64(overage, high);
2428 }
2429
2430 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2431 {
2432 u64 overage, max_overage = 0;
2433
2434 do {
2435 overage = calculate_overage(page_counter_read(&memcg->memory),
2436 READ_ONCE(memcg->memory.high));
2437 max_overage = max(overage, max_overage);
2438 } while ((memcg = parent_mem_cgroup(memcg)) &&
2439 !mem_cgroup_is_root(memcg));
2440
2441 return max_overage;
2442 }
2443
2444 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2445 {
2446 u64 overage, max_overage = 0;
2447
2448 do {
2449 overage = calculate_overage(page_counter_read(&memcg->swap),
2450 READ_ONCE(memcg->swap.high));
2451 if (overage)
2452 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2453 max_overage = max(overage, max_overage);
2454 } while ((memcg = parent_mem_cgroup(memcg)) &&
2455 !mem_cgroup_is_root(memcg));
2456
2457 return max_overage;
2458 }
2459
2460 /*
2461 * Get the number of jiffies that we should penalise a mischievous cgroup which
2462 * is exceeding its memory.high by checking both it and its ancestors.
2463 */
2464 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2465 unsigned int nr_pages,
2466 u64 max_overage)
2467 {
2468 unsigned long penalty_jiffies;
2469
2470 if (!max_overage)
2471 return 0;
2472
2473 /*
2474 * We use overage compared to memory.high to calculate the number of
2475 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2476 * fairly lenient on small overages, and increasingly harsh when the
2477 * memcg in question makes it clear that it has no intention of stopping
2478 * its crazy behaviour, so we exponentially increase the delay based on
2479 * overage amount.
2480 */
2481 penalty_jiffies = max_overage * max_overage * HZ;
2482 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2483 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2484
2485 /*
2486 * Factor in the task's own contribution to the overage, such that four
2487 * N-sized allocations are throttled approximately the same as one
2488 * 4N-sized allocation.
2489 *
2490 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2491 * larger the current charge patch is than that.
2492 */
2493 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2494 }
2495
2496 /*
2497 * Scheduled by try_charge() to be executed from the userland return path
2498 * and reclaims memory over the high limit.
2499 */
2500 void mem_cgroup_handle_over_high(void)
2501 {
2502 unsigned long penalty_jiffies;
2503 unsigned long pflags;
2504 unsigned long nr_reclaimed;
2505 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2506 int nr_retries = MAX_RECLAIM_RETRIES;
2507 struct mem_cgroup *memcg;
2508 bool in_retry = false;
2509
2510 if (likely(!nr_pages))
2511 return;
2512
2513 memcg = get_mem_cgroup_from_mm(current->mm);
2514 current->memcg_nr_pages_over_high = 0;
2515
2516 retry_reclaim:
2517 /*
2518 * The allocating task should reclaim at least the batch size, but for
2519 * subsequent retries we only want to do what's necessary to prevent oom
2520 * or breaching resource isolation.
2521 *
2522 * This is distinct from memory.max or page allocator behaviour because
2523 * memory.high is currently batched, whereas memory.max and the page
2524 * allocator run every time an allocation is made.
2525 */
2526 nr_reclaimed = reclaim_high(memcg,
2527 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2528 GFP_KERNEL);
2529
2530 /*
2531 * memory.high is breached and reclaim is unable to keep up. Throttle
2532 * allocators proactively to slow down excessive growth.
2533 */
2534 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2535 mem_find_max_overage(memcg));
2536
2537 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2538 swap_find_max_overage(memcg));
2539
2540 /*
2541 * Clamp the max delay per usermode return so as to still keep the
2542 * application moving forwards and also permit diagnostics, albeit
2543 * extremely slowly.
2544 */
2545 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2546
2547 /*
2548 * Don't sleep if the amount of jiffies this memcg owes us is so low
2549 * that it's not even worth doing, in an attempt to be nice to those who
2550 * go only a small amount over their memory.high value and maybe haven't
2551 * been aggressively reclaimed enough yet.
2552 */
2553 if (penalty_jiffies <= HZ / 100)
2554 goto out;
2555
2556 /*
2557 * If reclaim is making forward progress but we're still over
2558 * memory.high, we want to encourage that rather than doing allocator
2559 * throttling.
2560 */
2561 if (nr_reclaimed || nr_retries--) {
2562 in_retry = true;
2563 goto retry_reclaim;
2564 }
2565
2566 /*
2567 * If we exit early, we're guaranteed to die (since
2568 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2569 * need to account for any ill-begotten jiffies to pay them off later.
2570 */
2571 psi_memstall_enter(&pflags);
2572 schedule_timeout_killable(penalty_jiffies);
2573 psi_memstall_leave(&pflags);
2574
2575 out:
2576 css_put(&memcg->css);
2577 }
2578
2579 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2580 unsigned int nr_pages)
2581 {
2582 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2583 int nr_retries = MAX_RECLAIM_RETRIES;
2584 struct mem_cgroup *mem_over_limit;
2585 struct page_counter *counter;
2586 enum oom_status oom_status;
2587 unsigned long nr_reclaimed;
2588 bool passed_oom = false;
2589 bool may_swap = true;
2590 bool drained = false;
2591 unsigned long pflags;
2592
2593 retry:
2594 if (consume_stock(memcg, nr_pages))
2595 return 0;
2596
2597 if (!do_memsw_account() ||
2598 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2599 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2600 goto done_restock;
2601 if (do_memsw_account())
2602 page_counter_uncharge(&memcg->memsw, batch);
2603 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2604 } else {
2605 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2606 may_swap = false;
2607 }
2608
2609 if (batch > nr_pages) {
2610 batch = nr_pages;
2611 goto retry;
2612 }
2613
2614 /*
2615 * Memcg doesn't have a dedicated reserve for atomic
2616 * allocations. But like the global atomic pool, we need to
2617 * put the burden of reclaim on regular allocation requests
2618 * and let these go through as privileged allocations.
2619 */
2620 if (gfp_mask & __GFP_ATOMIC)
2621 goto force;
2622
2623 /*
2624 * Prevent unbounded recursion when reclaim operations need to
2625 * allocate memory. This might exceed the limits temporarily,
2626 * but we prefer facilitating memory reclaim and getting back
2627 * under the limit over triggering OOM kills in these cases.
2628 */
2629 if (unlikely(current->flags & PF_MEMALLOC))
2630 goto force;
2631
2632 if (unlikely(task_in_memcg_oom(current)))
2633 goto nomem;
2634
2635 if (!gfpflags_allow_blocking(gfp_mask))
2636 goto nomem;
2637
2638 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2639
2640 psi_memstall_enter(&pflags);
2641 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2642 gfp_mask, may_swap);
2643 psi_memstall_leave(&pflags);
2644
2645 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2646 goto retry;
2647
2648 if (!drained) {
2649 drain_all_stock(mem_over_limit);
2650 drained = true;
2651 goto retry;
2652 }
2653
2654 if (gfp_mask & __GFP_NORETRY)
2655 goto nomem;
2656 /*
2657 * Even though the limit is exceeded at this point, reclaim
2658 * may have been able to free some pages. Retry the charge
2659 * before killing the task.
2660 *
2661 * Only for regular pages, though: huge pages are rather
2662 * unlikely to succeed so close to the limit, and we fall back
2663 * to regular pages anyway in case of failure.
2664 */
2665 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2666 goto retry;
2667 /*
2668 * At task move, charge accounts can be doubly counted. So, it's
2669 * better to wait until the end of task_move if something is going on.
2670 */
2671 if (mem_cgroup_wait_acct_move(mem_over_limit))
2672 goto retry;
2673
2674 if (nr_retries--)
2675 goto retry;
2676
2677 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2678 goto nomem;
2679
2680 /* Avoid endless loop for tasks bypassed by the oom killer */
2681 if (passed_oom && task_is_dying())
2682 goto nomem;
2683
2684 /*
2685 * keep retrying as long as the memcg oom killer is able to make
2686 * a forward progress or bypass the charge if the oom killer
2687 * couldn't make any progress.
2688 */
2689 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2690 get_order(nr_pages * PAGE_SIZE));
2691 if (oom_status == OOM_SUCCESS) {
2692 passed_oom = true;
2693 nr_retries = MAX_RECLAIM_RETRIES;
2694 goto retry;
2695 }
2696 nomem:
2697 if (!(gfp_mask & __GFP_NOFAIL))
2698 return -ENOMEM;
2699 force:
2700 /*
2701 * The allocation either can't fail or will lead to more memory
2702 * being freed very soon. Allow memory usage go over the limit
2703 * temporarily by force charging it.
2704 */
2705 page_counter_charge(&memcg->memory, nr_pages);
2706 if (do_memsw_account())
2707 page_counter_charge(&memcg->memsw, nr_pages);
2708
2709 return 0;
2710
2711 done_restock:
2712 if (batch > nr_pages)
2713 refill_stock(memcg, batch - nr_pages);
2714
2715 /*
2716 * If the hierarchy is above the normal consumption range, schedule
2717 * reclaim on returning to userland. We can perform reclaim here
2718 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2719 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2720 * not recorded as it most likely matches current's and won't
2721 * change in the meantime. As high limit is checked again before
2722 * reclaim, the cost of mismatch is negligible.
2723 */
2724 do {
2725 bool mem_high, swap_high;
2726
2727 mem_high = page_counter_read(&memcg->memory) >
2728 READ_ONCE(memcg->memory.high);
2729 swap_high = page_counter_read(&memcg->swap) >
2730 READ_ONCE(memcg->swap.high);
2731
2732 /* Don't bother a random interrupted task */
2733 if (in_interrupt()) {
2734 if (mem_high) {
2735 schedule_work(&memcg->high_work);
2736 break;
2737 }
2738 continue;
2739 }
2740
2741 if (mem_high || swap_high) {
2742 /*
2743 * The allocating tasks in this cgroup will need to do
2744 * reclaim or be throttled to prevent further growth
2745 * of the memory or swap footprints.
2746 *
2747 * Target some best-effort fairness between the tasks,
2748 * and distribute reclaim work and delay penalties
2749 * based on how much each task is actually allocating.
2750 */
2751 current->memcg_nr_pages_over_high += batch;
2752 set_notify_resume(current);
2753 break;
2754 }
2755 } while ((memcg = parent_mem_cgroup(memcg)));
2756
2757 return 0;
2758 }
2759
2760 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2761 unsigned int nr_pages)
2762 {
2763 if (mem_cgroup_is_root(memcg))
2764 return 0;
2765
2766 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2767 }
2768
2769 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2770 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2771 {
2772 if (mem_cgroup_is_root(memcg))
2773 return;
2774
2775 page_counter_uncharge(&memcg->memory, nr_pages);
2776 if (do_memsw_account())
2777 page_counter_uncharge(&memcg->memsw, nr_pages);
2778 }
2779 #endif
2780
2781 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2782 {
2783 VM_BUG_ON_PAGE(page_memcg(page), page);
2784 /*
2785 * Any of the following ensures page's memcg stability:
2786 *
2787 * - the page lock
2788 * - LRU isolation
2789 * - lock_page_memcg()
2790 * - exclusive reference
2791 */
2792 page->memcg_data = (unsigned long)memcg;
2793 }
2794
2795 static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2796 {
2797 struct mem_cgroup *memcg;
2798
2799 rcu_read_lock();
2800 retry:
2801 memcg = obj_cgroup_memcg(objcg);
2802 if (unlikely(!css_tryget(&memcg->css)))
2803 goto retry;
2804 rcu_read_unlock();
2805
2806 return memcg;
2807 }
2808
2809 #ifdef CONFIG_MEMCG_KMEM
2810 /*
2811 * The allocated objcg pointers array is not accounted directly.
2812 * Moreover, it should not come from DMA buffer and is not readily
2813 * reclaimable. So those GFP bits should be masked off.
2814 */
2815 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2816
2817 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2818 gfp_t gfp, bool new_page)
2819 {
2820 unsigned int objects = objs_per_slab_page(s, page);
2821 unsigned long memcg_data;
2822 void *vec;
2823
2824 gfp &= ~OBJCGS_CLEAR_MASK;
2825 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2826 page_to_nid(page));
2827 if (!vec)
2828 return -ENOMEM;
2829
2830 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2831 if (new_page) {
2832 /*
2833 * If the slab page is brand new and nobody can yet access
2834 * it's memcg_data, no synchronization is required and
2835 * memcg_data can be simply assigned.
2836 */
2837 page->memcg_data = memcg_data;
2838 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2839 /*
2840 * If the slab page is already in use, somebody can allocate
2841 * and assign obj_cgroups in parallel. In this case the existing
2842 * objcg vector should be reused.
2843 */
2844 kfree(vec);
2845 return 0;
2846 }
2847
2848 kmemleak_not_leak(vec);
2849 return 0;
2850 }
2851
2852 /*
2853 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2854 *
2855 * A passed kernel object can be a slab object or a generic kernel page, so
2856 * different mechanisms for getting the memory cgroup pointer should be used.
2857 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2858 * can not know for sure how the kernel object is implemented.
2859 * mem_cgroup_from_obj() can be safely used in such cases.
2860 *
2861 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2862 * cgroup_mutex, etc.
2863 */
2864 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2865 {
2866 struct page *page;
2867
2868 if (mem_cgroup_disabled())
2869 return NULL;
2870
2871 page = virt_to_head_page(p);
2872
2873 /*
2874 * Slab objects are accounted individually, not per-page.
2875 * Memcg membership data for each individual object is saved in
2876 * the page->obj_cgroups.
2877 */
2878 if (page_objcgs_check(page)) {
2879 struct obj_cgroup *objcg;
2880 unsigned int off;
2881
2882 off = obj_to_index(page->slab_cache, page, p);
2883 objcg = page_objcgs(page)[off];
2884 if (objcg)
2885 return obj_cgroup_memcg(objcg);
2886
2887 return NULL;
2888 }
2889
2890 /*
2891 * page_memcg_check() is used here, because page_has_obj_cgroups()
2892 * check above could fail because the object cgroups vector wasn't set
2893 * at that moment, but it can be set concurrently.
2894 * page_memcg_check(page) will guarantee that a proper memory
2895 * cgroup pointer or NULL will be returned.
2896 */
2897 return page_memcg_check(page);
2898 }
2899
2900 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2901 {
2902 struct obj_cgroup *objcg = NULL;
2903 struct mem_cgroup *memcg;
2904
2905 if (memcg_kmem_bypass())
2906 return NULL;
2907
2908 rcu_read_lock();
2909 if (unlikely(active_memcg()))
2910 memcg = active_memcg();
2911 else
2912 memcg = mem_cgroup_from_task(current);
2913
2914 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2915 objcg = rcu_dereference(memcg->objcg);
2916 if (objcg && obj_cgroup_tryget(objcg))
2917 break;
2918 objcg = NULL;
2919 }
2920 rcu_read_unlock();
2921
2922 return objcg;
2923 }
2924
2925 static int memcg_alloc_cache_id(void)
2926 {
2927 int id, size;
2928 int err;
2929
2930 id = ida_simple_get(&memcg_cache_ida,
2931 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2932 if (id < 0)
2933 return id;
2934
2935 if (id < memcg_nr_cache_ids)
2936 return id;
2937
2938 /*
2939 * There's no space for the new id in memcg_caches arrays,
2940 * so we have to grow them.
2941 */
2942 down_write(&memcg_cache_ids_sem);
2943
2944 size = 2 * (id + 1);
2945 if (size < MEMCG_CACHES_MIN_SIZE)
2946 size = MEMCG_CACHES_MIN_SIZE;
2947 else if (size > MEMCG_CACHES_MAX_SIZE)
2948 size = MEMCG_CACHES_MAX_SIZE;
2949
2950 err = memcg_update_all_list_lrus(size);
2951 if (!err)
2952 memcg_nr_cache_ids = size;
2953
2954 up_write(&memcg_cache_ids_sem);
2955
2956 if (err) {
2957 ida_simple_remove(&memcg_cache_ida, id);
2958 return err;
2959 }
2960 return id;
2961 }
2962
2963 static void memcg_free_cache_id(int id)
2964 {
2965 ida_simple_remove(&memcg_cache_ida, id);
2966 }
2967
2968 /*
2969 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2970 * @objcg: object cgroup to uncharge
2971 * @nr_pages: number of pages to uncharge
2972 */
2973 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2974 unsigned int nr_pages)
2975 {
2976 struct mem_cgroup *memcg;
2977
2978 memcg = get_mem_cgroup_from_objcg(objcg);
2979
2980 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2981 page_counter_uncharge(&memcg->kmem, nr_pages);
2982 refill_stock(memcg, nr_pages);
2983
2984 css_put(&memcg->css);
2985 }
2986
2987 /*
2988 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2989 * @objcg: object cgroup to charge
2990 * @gfp: reclaim mode
2991 * @nr_pages: number of pages to charge
2992 *
2993 * Returns 0 on success, an error code on failure.
2994 */
2995 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2996 unsigned int nr_pages)
2997 {
2998 struct page_counter *counter;
2999 struct mem_cgroup *memcg;
3000 int ret;
3001
3002 memcg = get_mem_cgroup_from_objcg(objcg);
3003
3004 ret = try_charge_memcg(memcg, gfp, nr_pages);
3005 if (ret)
3006 goto out;
3007
3008 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3009 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3010
3011 /*
3012 * Enforce __GFP_NOFAIL allocation because callers are not
3013 * prepared to see failures and likely do not have any failure
3014 * handling code.
3015 */
3016 if (gfp & __GFP_NOFAIL) {
3017 page_counter_charge(&memcg->kmem, nr_pages);
3018 goto out;
3019 }
3020 cancel_charge(memcg, nr_pages);
3021 ret = -ENOMEM;
3022 }
3023 out:
3024 css_put(&memcg->css);
3025
3026 return ret;
3027 }
3028
3029 /**
3030 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3031 * @page: page to charge
3032 * @gfp: reclaim mode
3033 * @order: allocation order
3034 *
3035 * Returns 0 on success, an error code on failure.
3036 */
3037 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3038 {
3039 struct obj_cgroup *objcg;
3040 int ret = 0;
3041
3042 objcg = get_obj_cgroup_from_current();
3043 if (objcg) {
3044 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3045 if (!ret) {
3046 page->memcg_data = (unsigned long)objcg |
3047 MEMCG_DATA_KMEM;
3048 return 0;
3049 }
3050 obj_cgroup_put(objcg);
3051 }
3052 return ret;
3053 }
3054
3055 /**
3056 * __memcg_kmem_uncharge_page: uncharge a kmem page
3057 * @page: page to uncharge
3058 * @order: allocation order
3059 */
3060 void __memcg_kmem_uncharge_page(struct page *page, int order)
3061 {
3062 struct obj_cgroup *objcg;
3063 unsigned int nr_pages = 1 << order;
3064
3065 if (!PageMemcgKmem(page))
3066 return;
3067
3068 objcg = __page_objcg(page);
3069 obj_cgroup_uncharge_pages(objcg, nr_pages);
3070 page->memcg_data = 0;
3071 obj_cgroup_put(objcg);
3072 }
3073
3074 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3075 enum node_stat_item idx, int nr)
3076 {
3077 unsigned long flags;
3078 struct obj_stock *stock = get_obj_stock(&flags);
3079 int *bytes;
3080
3081 /*
3082 * Save vmstat data in stock and skip vmstat array update unless
3083 * accumulating over a page of vmstat data or when pgdat or idx
3084 * changes.
3085 */
3086 if (stock->cached_objcg != objcg) {
3087 drain_obj_stock(stock);
3088 obj_cgroup_get(objcg);
3089 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3090 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3091 stock->cached_objcg = objcg;
3092 stock->cached_pgdat = pgdat;
3093 } else if (stock->cached_pgdat != pgdat) {
3094 /* Flush the existing cached vmstat data */
3095 struct pglist_data *oldpg = stock->cached_pgdat;
3096
3097 if (stock->nr_slab_reclaimable_b) {
3098 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3099 stock->nr_slab_reclaimable_b);
3100 stock->nr_slab_reclaimable_b = 0;
3101 }
3102 if (stock->nr_slab_unreclaimable_b) {
3103 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3104 stock->nr_slab_unreclaimable_b);
3105 stock->nr_slab_unreclaimable_b = 0;
3106 }
3107 stock->cached_pgdat = pgdat;
3108 }
3109
3110 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3111 : &stock->nr_slab_unreclaimable_b;
3112 /*
3113 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3114 * cached locally at least once before pushing it out.
3115 */
3116 if (!*bytes) {
3117 *bytes = nr;
3118 nr = 0;
3119 } else {
3120 *bytes += nr;
3121 if (abs(*bytes) > PAGE_SIZE) {
3122 nr = *bytes;
3123 *bytes = 0;
3124 } else {
3125 nr = 0;
3126 }
3127 }
3128 if (nr)
3129 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3130
3131 put_obj_stock(flags);
3132 }
3133
3134 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3135 {
3136 unsigned long flags;
3137 struct obj_stock *stock = get_obj_stock(&flags);
3138 bool ret = false;
3139
3140 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3141 stock->nr_bytes -= nr_bytes;
3142 ret = true;
3143 }
3144
3145 put_obj_stock(flags);
3146
3147 return ret;
3148 }
3149
3150 static void drain_obj_stock(struct obj_stock *stock)
3151 {
3152 struct obj_cgroup *old = stock->cached_objcg;
3153
3154 if (!old)
3155 return;
3156
3157 if (stock->nr_bytes) {
3158 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3159 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3160
3161 if (nr_pages)
3162 obj_cgroup_uncharge_pages(old, nr_pages);
3163
3164 /*
3165 * The leftover is flushed to the centralized per-memcg value.
3166 * On the next attempt to refill obj stock it will be moved
3167 * to a per-cpu stock (probably, on an other CPU), see
3168 * refill_obj_stock().
3169 *
3170 * How often it's flushed is a trade-off between the memory
3171 * limit enforcement accuracy and potential CPU contention,
3172 * so it might be changed in the future.
3173 */
3174 atomic_add(nr_bytes, &old->nr_charged_bytes);
3175 stock->nr_bytes = 0;
3176 }
3177
3178 /*
3179 * Flush the vmstat data in current stock
3180 */
3181 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3182 if (stock->nr_slab_reclaimable_b) {
3183 mod_objcg_mlstate(old, stock->cached_pgdat,
3184 NR_SLAB_RECLAIMABLE_B,
3185 stock->nr_slab_reclaimable_b);
3186 stock->nr_slab_reclaimable_b = 0;
3187 }
3188 if (stock->nr_slab_unreclaimable_b) {
3189 mod_objcg_mlstate(old, stock->cached_pgdat,
3190 NR_SLAB_UNRECLAIMABLE_B,
3191 stock->nr_slab_unreclaimable_b);
3192 stock->nr_slab_unreclaimable_b = 0;
3193 }
3194 stock->cached_pgdat = NULL;
3195 }
3196
3197 obj_cgroup_put(old);
3198 stock->cached_objcg = NULL;
3199 }
3200
3201 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3202 struct mem_cgroup *root_memcg)
3203 {
3204 struct mem_cgroup *memcg;
3205
3206 if (in_task() && stock->task_obj.cached_objcg) {
3207 memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3208 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3209 return true;
3210 }
3211 if (stock->irq_obj.cached_objcg) {
3212 memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
3213 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3214 return true;
3215 }
3216
3217 return false;
3218 }
3219
3220 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3221 bool allow_uncharge)
3222 {
3223 unsigned long flags;
3224 struct obj_stock *stock = get_obj_stock(&flags);
3225 unsigned int nr_pages = 0;
3226
3227 if (stock->cached_objcg != objcg) { /* reset if necessary */
3228 drain_obj_stock(stock);
3229 obj_cgroup_get(objcg);
3230 stock->cached_objcg = objcg;
3231 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3232 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3233 allow_uncharge = true; /* Allow uncharge when objcg changes */
3234 }
3235 stock->nr_bytes += nr_bytes;
3236
3237 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3238 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3239 stock->nr_bytes &= (PAGE_SIZE - 1);
3240 }
3241
3242 put_obj_stock(flags);
3243
3244 if (nr_pages)
3245 obj_cgroup_uncharge_pages(objcg, nr_pages);
3246 }
3247
3248 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3249 {
3250 unsigned int nr_pages, nr_bytes;
3251 int ret;
3252
3253 if (consume_obj_stock(objcg, size))
3254 return 0;
3255
3256 /*
3257 * In theory, objcg->nr_charged_bytes can have enough
3258 * pre-charged bytes to satisfy the allocation. However,
3259 * flushing objcg->nr_charged_bytes requires two atomic
3260 * operations, and objcg->nr_charged_bytes can't be big.
3261 * The shared objcg->nr_charged_bytes can also become a
3262 * performance bottleneck if all tasks of the same memcg are
3263 * trying to update it. So it's better to ignore it and try
3264 * grab some new pages. The stock's nr_bytes will be flushed to
3265 * objcg->nr_charged_bytes later on when objcg changes.
3266 *
3267 * The stock's nr_bytes may contain enough pre-charged bytes
3268 * to allow one less page from being charged, but we can't rely
3269 * on the pre-charged bytes not being changed outside of
3270 * consume_obj_stock() or refill_obj_stock(). So ignore those
3271 * pre-charged bytes as well when charging pages. To avoid a
3272 * page uncharge right after a page charge, we set the
3273 * allow_uncharge flag to false when calling refill_obj_stock()
3274 * to temporarily allow the pre-charged bytes to exceed the page
3275 * size limit. The maximum reachable value of the pre-charged
3276 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3277 * race.
3278 */
3279 nr_pages = size >> PAGE_SHIFT;
3280 nr_bytes = size & (PAGE_SIZE - 1);
3281
3282 if (nr_bytes)
3283 nr_pages += 1;
3284
3285 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3286 if (!ret && nr_bytes)
3287 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3288
3289 return ret;
3290 }
3291
3292 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3293 {
3294 refill_obj_stock(objcg, size, true);
3295 }
3296
3297 #endif /* CONFIG_MEMCG_KMEM */
3298
3299 /*
3300 * Because page_memcg(head) is not set on tails, set it now.
3301 */
3302 void split_page_memcg(struct page *head, unsigned int nr)
3303 {
3304 struct mem_cgroup *memcg = page_memcg(head);
3305 int i;
3306
3307 if (mem_cgroup_disabled() || !memcg)
3308 return;
3309
3310 for (i = 1; i < nr; i++)
3311 head[i].memcg_data = head->memcg_data;
3312
3313 if (PageMemcgKmem(head))
3314 obj_cgroup_get_many(__page_objcg(head), nr - 1);
3315 else
3316 css_get_many(&memcg->css, nr - 1);
3317 }
3318
3319 #ifdef CONFIG_MEMCG_SWAP
3320 /**
3321 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3322 * @entry: swap entry to be moved
3323 * @from: mem_cgroup which the entry is moved from
3324 * @to: mem_cgroup which the entry is moved to
3325 *
3326 * It succeeds only when the swap_cgroup's record for this entry is the same
3327 * as the mem_cgroup's id of @from.
3328 *
3329 * Returns 0 on success, -EINVAL on failure.
3330 *
3331 * The caller must have charged to @to, IOW, called page_counter_charge() about
3332 * both res and memsw, and called css_get().
3333 */
3334 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3335 struct mem_cgroup *from, struct mem_cgroup *to)
3336 {
3337 unsigned short old_id, new_id;
3338
3339 old_id = mem_cgroup_id(from);
3340 new_id = mem_cgroup_id(to);
3341
3342 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3343 mod_memcg_state(from, MEMCG_SWAP, -1);
3344 mod_memcg_state(to, MEMCG_SWAP, 1);
3345 return 0;
3346 }
3347 return -EINVAL;
3348 }
3349 #else
3350 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3351 struct mem_cgroup *from, struct mem_cgroup *to)
3352 {
3353 return -EINVAL;
3354 }
3355 #endif
3356
3357 static DEFINE_MUTEX(memcg_max_mutex);
3358
3359 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3360 unsigned long max, bool memsw)
3361 {
3362 bool enlarge = false;
3363 bool drained = false;
3364 int ret;
3365 bool limits_invariant;
3366 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3367
3368 do {
3369 if (signal_pending(current)) {
3370 ret = -EINTR;
3371 break;
3372 }
3373
3374 mutex_lock(&memcg_max_mutex);
3375 /*
3376 * Make sure that the new limit (memsw or memory limit) doesn't
3377 * break our basic invariant rule memory.max <= memsw.max.
3378 */
3379 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3380 max <= memcg->memsw.max;
3381 if (!limits_invariant) {
3382 mutex_unlock(&memcg_max_mutex);
3383 ret = -EINVAL;
3384 break;
3385 }
3386 if (max > counter->max)
3387 enlarge = true;
3388 ret = page_counter_set_max(counter, max);
3389 mutex_unlock(&memcg_max_mutex);
3390
3391 if (!ret)
3392 break;
3393
3394 if (!drained) {
3395 drain_all_stock(memcg);
3396 drained = true;
3397 continue;
3398 }
3399
3400 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3401 GFP_KERNEL, !memsw)) {
3402 ret = -EBUSY;
3403 break;
3404 }
3405 } while (true);
3406
3407 if (!ret && enlarge)
3408 memcg_oom_recover(memcg);
3409
3410 return ret;
3411 }
3412
3413 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3414 gfp_t gfp_mask,
3415 unsigned long *total_scanned)
3416 {
3417 unsigned long nr_reclaimed = 0;
3418 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3419 unsigned long reclaimed;
3420 int loop = 0;
3421 struct mem_cgroup_tree_per_node *mctz;
3422 unsigned long excess;
3423 unsigned long nr_scanned;
3424
3425 if (order > 0)
3426 return 0;
3427
3428 mctz = soft_limit_tree_node(pgdat->node_id);
3429
3430 /*
3431 * Do not even bother to check the largest node if the root
3432 * is empty. Do it lockless to prevent lock bouncing. Races
3433 * are acceptable as soft limit is best effort anyway.
3434 */
3435 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3436 return 0;
3437
3438 /*
3439 * This loop can run a while, specially if mem_cgroup's continuously
3440 * keep exceeding their soft limit and putting the system under
3441 * pressure
3442 */
3443 do {
3444 if (next_mz)
3445 mz = next_mz;
3446 else
3447 mz = mem_cgroup_largest_soft_limit_node(mctz);
3448 if (!mz)
3449 break;
3450
3451 nr_scanned = 0;
3452 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3453 gfp_mask, &nr_scanned);
3454 nr_reclaimed += reclaimed;
3455 *total_scanned += nr_scanned;
3456 spin_lock_irq(&mctz->lock);
3457 __mem_cgroup_remove_exceeded(mz, mctz);
3458
3459 /*
3460 * If we failed to reclaim anything from this memory cgroup
3461 * it is time to move on to the next cgroup
3462 */
3463 next_mz = NULL;
3464 if (!reclaimed)
3465 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3466
3467 excess = soft_limit_excess(mz->memcg);
3468 /*
3469 * One school of thought says that we should not add
3470 * back the node to the tree if reclaim returns 0.
3471 * But our reclaim could return 0, simply because due
3472 * to priority we are exposing a smaller subset of
3473 * memory to reclaim from. Consider this as a longer
3474 * term TODO.
3475 */
3476 /* If excess == 0, no tree ops */
3477 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3478 spin_unlock_irq(&mctz->lock);
3479 css_put(&mz->memcg->css);
3480 loop++;
3481 /*
3482 * Could not reclaim anything and there are no more
3483 * mem cgroups to try or we seem to be looping without
3484 * reclaiming anything.
3485 */
3486 if (!nr_reclaimed &&
3487 (next_mz == NULL ||
3488 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3489 break;
3490 } while (!nr_reclaimed);
3491 if (next_mz)
3492 css_put(&next_mz->memcg->css);
3493 return nr_reclaimed;
3494 }
3495
3496 /*
3497 * Reclaims as many pages from the given memcg as possible.
3498 *
3499 * Caller is responsible for holding css reference for memcg.
3500 */
3501 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3502 {
3503 int nr_retries = MAX_RECLAIM_RETRIES;
3504
3505 /* we call try-to-free pages for make this cgroup empty */
3506 lru_add_drain_all();
3507
3508 drain_all_stock(memcg);
3509
3510 /* try to free all pages in this cgroup */
3511 while (nr_retries && page_counter_read(&memcg->memory)) {
3512 int progress;
3513
3514 if (signal_pending(current))
3515 return -EINTR;
3516
3517 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3518 GFP_KERNEL, true);
3519 if (!progress) {
3520 nr_retries--;
3521 /* maybe some writeback is necessary */
3522 congestion_wait(BLK_RW_ASYNC, HZ/10);
3523 }
3524
3525 }
3526
3527 return 0;
3528 }
3529
3530 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3531 char *buf, size_t nbytes,
3532 loff_t off)
3533 {
3534 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3535
3536 if (mem_cgroup_is_root(memcg))
3537 return -EINVAL;
3538 return mem_cgroup_force_empty(memcg) ?: nbytes;
3539 }
3540
3541 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3542 struct cftype *cft)
3543 {
3544 return 1;
3545 }
3546
3547 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3548 struct cftype *cft, u64 val)
3549 {
3550 if (val == 1)
3551 return 0;
3552
3553 pr_warn_once("Non-hierarchical mode is deprecated. "
3554 "Please report your usecase to linux-mm@kvack.org if you "
3555 "depend on this functionality.\n");
3556
3557 return -EINVAL;
3558 }
3559
3560 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3561 {
3562 unsigned long val;
3563
3564 if (mem_cgroup_is_root(memcg)) {
3565 mem_cgroup_flush_stats();
3566 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3567 memcg_page_state(memcg, NR_ANON_MAPPED);
3568 if (swap)
3569 val += memcg_page_state(memcg, MEMCG_SWAP);
3570 } else {
3571 if (!swap)
3572 val = page_counter_read(&memcg->memory);
3573 else
3574 val = page_counter_read(&memcg->memsw);
3575 }
3576 return val;
3577 }
3578
3579 enum {
3580 RES_USAGE,
3581 RES_LIMIT,
3582 RES_MAX_USAGE,
3583 RES_FAILCNT,
3584 RES_SOFT_LIMIT,
3585 };
3586
3587 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3588 struct cftype *cft)
3589 {
3590 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3591 struct page_counter *counter;
3592
3593 switch (MEMFILE_TYPE(cft->private)) {
3594 case _MEM:
3595 counter = &memcg->memory;
3596 break;
3597 case _MEMSWAP:
3598 counter = &memcg->memsw;
3599 break;
3600 case _KMEM:
3601 counter = &memcg->kmem;
3602 break;
3603 case _TCP:
3604 counter = &memcg->tcpmem;
3605 break;
3606 default:
3607 BUG();
3608 }
3609
3610 switch (MEMFILE_ATTR(cft->private)) {
3611 case RES_USAGE:
3612 if (counter == &memcg->memory)
3613 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3614 if (counter == &memcg->memsw)
3615 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3616 return (u64)page_counter_read(counter) * PAGE_SIZE;
3617 case RES_LIMIT:
3618 return (u64)counter->max * PAGE_SIZE;
3619 case RES_MAX_USAGE:
3620 return (u64)counter->watermark * PAGE_SIZE;
3621 case RES_FAILCNT:
3622 return counter->failcnt;
3623 case RES_SOFT_LIMIT:
3624 return (u64)memcg->soft_limit * PAGE_SIZE;
3625 default:
3626 BUG();
3627 }
3628 }
3629
3630 #ifdef CONFIG_MEMCG_KMEM
3631 static int memcg_online_kmem(struct mem_cgroup *memcg)
3632 {
3633 struct obj_cgroup *objcg;
3634 int memcg_id;
3635
3636 if (cgroup_memory_nokmem)
3637 return 0;
3638
3639 BUG_ON(memcg->kmemcg_id >= 0);
3640 BUG_ON(memcg->kmem_state);
3641
3642 memcg_id = memcg_alloc_cache_id();
3643 if (memcg_id < 0)
3644 return memcg_id;
3645
3646 objcg = obj_cgroup_alloc();
3647 if (!objcg) {
3648 memcg_free_cache_id(memcg_id);
3649 return -ENOMEM;
3650 }
3651 objcg->memcg = memcg;
3652 rcu_assign_pointer(memcg->objcg, objcg);
3653
3654 static_branch_enable(&memcg_kmem_enabled_key);
3655
3656 memcg->kmemcg_id = memcg_id;
3657 memcg->kmem_state = KMEM_ONLINE;
3658
3659 return 0;
3660 }
3661
3662 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3663 {
3664 struct cgroup_subsys_state *css;
3665 struct mem_cgroup *parent, *child;
3666 int kmemcg_id;
3667
3668 if (memcg->kmem_state != KMEM_ONLINE)
3669 return;
3670
3671 memcg->kmem_state = KMEM_ALLOCATED;
3672
3673 parent = parent_mem_cgroup(memcg);
3674 if (!parent)
3675 parent = root_mem_cgroup;
3676
3677 memcg_reparent_objcgs(memcg, parent);
3678
3679 kmemcg_id = memcg->kmemcg_id;
3680 BUG_ON(kmemcg_id < 0);
3681
3682 /*
3683 * Change kmemcg_id of this cgroup and all its descendants to the
3684 * parent's id, and then move all entries from this cgroup's list_lrus
3685 * to ones of the parent. After we have finished, all list_lrus
3686 * corresponding to this cgroup are guaranteed to remain empty. The
3687 * ordering is imposed by list_lru_node->lock taken by
3688 * memcg_drain_all_list_lrus().
3689 */
3690 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3691 css_for_each_descendant_pre(css, &memcg->css) {
3692 child = mem_cgroup_from_css(css);
3693 BUG_ON(child->kmemcg_id != kmemcg_id);
3694 child->kmemcg_id = parent->kmemcg_id;
3695 }
3696 rcu_read_unlock();
3697
3698 memcg_drain_all_list_lrus(kmemcg_id, parent);
3699
3700 memcg_free_cache_id(kmemcg_id);
3701 }
3702
3703 static void memcg_free_kmem(struct mem_cgroup *memcg)
3704 {
3705 /* css_alloc() failed, offlining didn't happen */
3706 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3707 memcg_offline_kmem(memcg);
3708 }
3709 #else
3710 static int memcg_online_kmem(struct mem_cgroup *memcg)
3711 {
3712 return 0;
3713 }
3714 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3715 {
3716 }
3717 static void memcg_free_kmem(struct mem_cgroup *memcg)
3718 {
3719 }
3720 #endif /* CONFIG_MEMCG_KMEM */
3721
3722 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3723 unsigned long max)
3724 {
3725 int ret;
3726
3727 mutex_lock(&memcg_max_mutex);
3728 ret = page_counter_set_max(&memcg->kmem, max);
3729 mutex_unlock(&memcg_max_mutex);
3730 return ret;
3731 }
3732
3733 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3734 {
3735 int ret;
3736
3737 mutex_lock(&memcg_max_mutex);
3738
3739 ret = page_counter_set_max(&memcg->tcpmem, max);
3740 if (ret)
3741 goto out;
3742
3743 if (!memcg->tcpmem_active) {
3744 /*
3745 * The active flag needs to be written after the static_key
3746 * update. This is what guarantees that the socket activation
3747 * function is the last one to run. See mem_cgroup_sk_alloc()
3748 * for details, and note that we don't mark any socket as
3749 * belonging to this memcg until that flag is up.
3750 *
3751 * We need to do this, because static_keys will span multiple
3752 * sites, but we can't control their order. If we mark a socket
3753 * as accounted, but the accounting functions are not patched in
3754 * yet, we'll lose accounting.
3755 *
3756 * We never race with the readers in mem_cgroup_sk_alloc(),
3757 * because when this value change, the code to process it is not
3758 * patched in yet.
3759 */
3760 static_branch_inc(&memcg_sockets_enabled_key);
3761 memcg->tcpmem_active = true;
3762 }
3763 out:
3764 mutex_unlock(&memcg_max_mutex);
3765 return ret;
3766 }
3767
3768 /*
3769 * The user of this function is...
3770 * RES_LIMIT.
3771 */
3772 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3773 char *buf, size_t nbytes, loff_t off)
3774 {
3775 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3776 unsigned long nr_pages;
3777 int ret;
3778
3779 buf = strstrip(buf);
3780 ret = page_counter_memparse(buf, "-1", &nr_pages);
3781 if (ret)
3782 return ret;
3783
3784 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3785 case RES_LIMIT:
3786 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3787 ret = -EINVAL;
3788 break;
3789 }
3790 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3791 case _MEM:
3792 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3793 break;
3794 case _MEMSWAP:
3795 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3796 break;
3797 case _KMEM:
3798 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3799 "Please report your usecase to linux-mm@kvack.org if you "
3800 "depend on this functionality.\n");
3801 ret = memcg_update_kmem_max(memcg, nr_pages);
3802 break;
3803 case _TCP:
3804 ret = memcg_update_tcp_max(memcg, nr_pages);
3805 break;
3806 }
3807 break;
3808 case RES_SOFT_LIMIT:
3809 memcg->soft_limit = nr_pages;
3810 ret = 0;
3811 break;
3812 }
3813 return ret ?: nbytes;
3814 }
3815
3816 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3817 size_t nbytes, loff_t off)
3818 {
3819 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3820 struct page_counter *counter;
3821
3822 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3823 case _MEM:
3824 counter = &memcg->memory;
3825 break;
3826 case _MEMSWAP:
3827 counter = &memcg->memsw;
3828 break;
3829 case _KMEM:
3830 counter = &memcg->kmem;
3831 break;
3832 case _TCP:
3833 counter = &memcg->tcpmem;
3834 break;
3835 default:
3836 BUG();
3837 }
3838
3839 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3840 case RES_MAX_USAGE:
3841 page_counter_reset_watermark(counter);
3842 break;
3843 case RES_FAILCNT:
3844 counter->failcnt = 0;
3845 break;
3846 default:
3847 BUG();
3848 }
3849
3850 return nbytes;
3851 }
3852
3853 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3854 struct cftype *cft)
3855 {
3856 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3857 }
3858
3859 #ifdef CONFIG_MMU
3860 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3861 struct cftype *cft, u64 val)
3862 {
3863 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3864
3865 if (val & ~MOVE_MASK)
3866 return -EINVAL;
3867
3868 /*
3869 * No kind of locking is needed in here, because ->can_attach() will
3870 * check this value once in the beginning of the process, and then carry
3871 * on with stale data. This means that changes to this value will only
3872 * affect task migrations starting after the change.
3873 */
3874 memcg->move_charge_at_immigrate = val;
3875 return 0;
3876 }
3877 #else
3878 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3879 struct cftype *cft, u64 val)
3880 {
3881 return -ENOSYS;
3882 }
3883 #endif
3884
3885 #ifdef CONFIG_NUMA
3886
3887 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3888 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3889 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3890
3891 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3892 int nid, unsigned int lru_mask, bool tree)
3893 {
3894 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3895 unsigned long nr = 0;
3896 enum lru_list lru;
3897
3898 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3899
3900 for_each_lru(lru) {
3901 if (!(BIT(lru) & lru_mask))
3902 continue;
3903 if (tree)
3904 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3905 else
3906 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3907 }
3908 return nr;
3909 }
3910
3911 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3912 unsigned int lru_mask,
3913 bool tree)
3914 {
3915 unsigned long nr = 0;
3916 enum lru_list lru;
3917
3918 for_each_lru(lru) {
3919 if (!(BIT(lru) & lru_mask))
3920 continue;
3921 if (tree)
3922 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3923 else
3924 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3925 }
3926 return nr;
3927 }
3928
3929 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3930 {
3931 struct numa_stat {
3932 const char *name;
3933 unsigned int lru_mask;
3934 };
3935
3936 static const struct numa_stat stats[] = {
3937 { "total", LRU_ALL },
3938 { "file", LRU_ALL_FILE },
3939 { "anon", LRU_ALL_ANON },
3940 { "unevictable", BIT(LRU_UNEVICTABLE) },
3941 };
3942 const struct numa_stat *stat;
3943 int nid;
3944 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3945
3946 mem_cgroup_flush_stats();
3947
3948 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3949 seq_printf(m, "%s=%lu", stat->name,
3950 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3951 false));
3952 for_each_node_state(nid, N_MEMORY)
3953 seq_printf(m, " N%d=%lu", nid,
3954 mem_cgroup_node_nr_lru_pages(memcg, nid,
3955 stat->lru_mask, false));
3956 seq_putc(m, '\n');
3957 }
3958
3959 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3960
3961 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3962 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3963 true));
3964 for_each_node_state(nid, N_MEMORY)
3965 seq_printf(m, " N%d=%lu", nid,
3966 mem_cgroup_node_nr_lru_pages(memcg, nid,
3967 stat->lru_mask, true));
3968 seq_putc(m, '\n');
3969 }
3970
3971 return 0;
3972 }
3973 #endif /* CONFIG_NUMA */
3974
3975 static const unsigned int memcg1_stats[] = {
3976 NR_FILE_PAGES,
3977 NR_ANON_MAPPED,
3978 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3979 NR_ANON_THPS,
3980 #endif
3981 NR_SHMEM,
3982 NR_FILE_MAPPED,
3983 NR_FILE_DIRTY,
3984 NR_WRITEBACK,
3985 MEMCG_SWAP,
3986 };
3987
3988 static const char *const memcg1_stat_names[] = {
3989 "cache",
3990 "rss",
3991 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3992 "rss_huge",
3993 #endif
3994 "shmem",
3995 "mapped_file",
3996 "dirty",
3997 "writeback",
3998 "swap",
3999 };
4000
4001 /* Universal VM events cgroup1 shows, original sort order */
4002 static const unsigned int memcg1_events[] = {
4003 PGPGIN,
4004 PGPGOUT,
4005 PGFAULT,
4006 PGMAJFAULT,
4007 };
4008
4009 static int memcg_stat_show(struct seq_file *m, void *v)
4010 {
4011 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4012 unsigned long memory, memsw;
4013 struct mem_cgroup *mi;
4014 unsigned int i;
4015
4016 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4017
4018 mem_cgroup_flush_stats();
4019
4020 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4021 unsigned long nr;
4022
4023 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4024 continue;
4025 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4026 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4027 }
4028
4029 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4030 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4031 memcg_events_local(memcg, memcg1_events[i]));
4032
4033 for (i = 0; i < NR_LRU_LISTS; i++)
4034 seq_printf(m, "%s %lu\n", lru_list_name(i),
4035 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4036 PAGE_SIZE);
4037
4038 /* Hierarchical information */
4039 memory = memsw = PAGE_COUNTER_MAX;
4040 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4041 memory = min(memory, READ_ONCE(mi->memory.max));
4042 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4043 }
4044 seq_printf(m, "hierarchical_memory_limit %llu\n",
4045 (u64)memory * PAGE_SIZE);
4046 if (do_memsw_account())
4047 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4048 (u64)memsw * PAGE_SIZE);
4049
4050 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4051 unsigned long nr;
4052
4053 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4054 continue;
4055 nr = memcg_page_state(memcg, memcg1_stats[i]);
4056 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4057 (u64)nr * PAGE_SIZE);
4058 }
4059
4060 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4061 seq_printf(m, "total_%s %llu\n",
4062 vm_event_name(memcg1_events[i]),
4063 (u64)memcg_events(memcg, memcg1_events[i]));
4064
4065 for (i = 0; i < NR_LRU_LISTS; i++)
4066 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4067 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4068 PAGE_SIZE);
4069
4070 #ifdef CONFIG_DEBUG_VM
4071 {
4072 pg_data_t *pgdat;
4073 struct mem_cgroup_per_node *mz;
4074 unsigned long anon_cost = 0;
4075 unsigned long file_cost = 0;
4076
4077 for_each_online_pgdat(pgdat) {
4078 mz = memcg->nodeinfo[pgdat->node_id];
4079
4080 anon_cost += mz->lruvec.anon_cost;
4081 file_cost += mz->lruvec.file_cost;
4082 }
4083 seq_printf(m, "anon_cost %lu\n", anon_cost);
4084 seq_printf(m, "file_cost %lu\n", file_cost);
4085 }
4086 #endif
4087
4088 return 0;
4089 }
4090
4091 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4092 struct cftype *cft)
4093 {
4094 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4095
4096 return mem_cgroup_swappiness(memcg);
4097 }
4098
4099 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4100 struct cftype *cft, u64 val)
4101 {
4102 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4103
4104 if (val > 200)
4105 return -EINVAL;
4106
4107 if (!mem_cgroup_is_root(memcg))
4108 memcg->swappiness = val;
4109 else
4110 vm_swappiness = val;
4111
4112 return 0;
4113 }
4114
4115 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4116 {
4117 struct mem_cgroup_threshold_ary *t;
4118 unsigned long usage;
4119 int i;
4120
4121 rcu_read_lock();
4122 if (!swap)
4123 t = rcu_dereference(memcg->thresholds.primary);
4124 else
4125 t = rcu_dereference(memcg->memsw_thresholds.primary);
4126
4127 if (!t)
4128 goto unlock;
4129
4130 usage = mem_cgroup_usage(memcg, swap);
4131
4132 /*
4133 * current_threshold points to threshold just below or equal to usage.
4134 * If it's not true, a threshold was crossed after last
4135 * call of __mem_cgroup_threshold().
4136 */
4137 i = t->current_threshold;
4138
4139 /*
4140 * Iterate backward over array of thresholds starting from
4141 * current_threshold and check if a threshold is crossed.
4142 * If none of thresholds below usage is crossed, we read
4143 * only one element of the array here.
4144 */
4145 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4146 eventfd_signal(t->entries[i].eventfd, 1);
4147
4148 /* i = current_threshold + 1 */
4149 i++;
4150
4151 /*
4152 * Iterate forward over array of thresholds starting from
4153 * current_threshold+1 and check if a threshold is crossed.
4154 * If none of thresholds above usage is crossed, we read
4155 * only one element of the array here.
4156 */
4157 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4158 eventfd_signal(t->entries[i].eventfd, 1);
4159
4160 /* Update current_threshold */
4161 t->current_threshold = i - 1;
4162 unlock:
4163 rcu_read_unlock();
4164 }
4165
4166 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4167 {
4168 while (memcg) {
4169 __mem_cgroup_threshold(memcg, false);
4170 if (do_memsw_account())
4171 __mem_cgroup_threshold(memcg, true);
4172
4173 memcg = parent_mem_cgroup(memcg);
4174 }
4175 }
4176
4177 static int compare_thresholds(const void *a, const void *b)
4178 {
4179 const struct mem_cgroup_threshold *_a = a;
4180 const struct mem_cgroup_threshold *_b = b;
4181
4182 if (_a->threshold > _b->threshold)
4183 return 1;
4184
4185 if (_a->threshold < _b->threshold)
4186 return -1;
4187
4188 return 0;
4189 }
4190
4191 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4192 {
4193 struct mem_cgroup_eventfd_list *ev;
4194
4195 spin_lock(&memcg_oom_lock);
4196
4197 list_for_each_entry(ev, &memcg->oom_notify, list)
4198 eventfd_signal(ev->eventfd, 1);
4199
4200 spin_unlock(&memcg_oom_lock);
4201 return 0;
4202 }
4203
4204 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4205 {
4206 struct mem_cgroup *iter;
4207
4208 for_each_mem_cgroup_tree(iter, memcg)
4209 mem_cgroup_oom_notify_cb(iter);
4210 }
4211
4212 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4213 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4214 {
4215 struct mem_cgroup_thresholds *thresholds;
4216 struct mem_cgroup_threshold_ary *new;
4217 unsigned long threshold;
4218 unsigned long usage;
4219 int i, size, ret;
4220
4221 ret = page_counter_memparse(args, "-1", &threshold);
4222 if (ret)
4223 return ret;
4224
4225 mutex_lock(&memcg->thresholds_lock);
4226
4227 if (type == _MEM) {
4228 thresholds = &memcg->thresholds;
4229 usage = mem_cgroup_usage(memcg, false);
4230 } else if (type == _MEMSWAP) {
4231 thresholds = &memcg->memsw_thresholds;
4232 usage = mem_cgroup_usage(memcg, true);
4233 } else
4234 BUG();
4235
4236 /* Check if a threshold crossed before adding a new one */
4237 if (thresholds->primary)
4238 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4239
4240 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4241
4242 /* Allocate memory for new array of thresholds */
4243 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4244 if (!new) {
4245 ret = -ENOMEM;
4246 goto unlock;
4247 }
4248 new->size = size;
4249
4250 /* Copy thresholds (if any) to new array */
4251 if (thresholds->primary)
4252 memcpy(new->entries, thresholds->primary->entries,
4253 flex_array_size(new, entries, size - 1));
4254
4255 /* Add new threshold */
4256 new->entries[size - 1].eventfd = eventfd;
4257 new->entries[size - 1].threshold = threshold;
4258
4259 /* Sort thresholds. Registering of new threshold isn't time-critical */
4260 sort(new->entries, size, sizeof(*new->entries),
4261 compare_thresholds, NULL);
4262
4263 /* Find current threshold */
4264 new->current_threshold = -1;
4265 for (i = 0; i < size; i++) {
4266 if (new->entries[i].threshold <= usage) {
4267 /*
4268 * new->current_threshold will not be used until
4269 * rcu_assign_pointer(), so it's safe to increment
4270 * it here.
4271 */
4272 ++new->current_threshold;
4273 } else
4274 break;
4275 }
4276
4277 /* Free old spare buffer and save old primary buffer as spare */
4278 kfree(thresholds->spare);
4279 thresholds->spare = thresholds->primary;
4280
4281 rcu_assign_pointer(thresholds->primary, new);
4282
4283 /* To be sure that nobody uses thresholds */
4284 synchronize_rcu();
4285
4286 unlock:
4287 mutex_unlock(&memcg->thresholds_lock);
4288
4289 return ret;
4290 }
4291
4292 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4293 struct eventfd_ctx *eventfd, const char *args)
4294 {
4295 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4296 }
4297
4298 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4299 struct eventfd_ctx *eventfd, const char *args)
4300 {
4301 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4302 }
4303
4304 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4305 struct eventfd_ctx *eventfd, enum res_type type)
4306 {
4307 struct mem_cgroup_thresholds *thresholds;
4308 struct mem_cgroup_threshold_ary *new;
4309 unsigned long usage;
4310 int i, j, size, entries;
4311
4312 mutex_lock(&memcg->thresholds_lock);
4313
4314 if (type == _MEM) {
4315 thresholds = &memcg->thresholds;
4316 usage = mem_cgroup_usage(memcg, false);
4317 } else if (type == _MEMSWAP) {
4318 thresholds = &memcg->memsw_thresholds;
4319 usage = mem_cgroup_usage(memcg, true);
4320 } else
4321 BUG();
4322
4323 if (!thresholds->primary)
4324 goto unlock;
4325
4326 /* Check if a threshold crossed before removing */
4327 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4328
4329 /* Calculate new number of threshold */
4330 size = entries = 0;
4331 for (i = 0; i < thresholds->primary->size; i++) {
4332 if (thresholds->primary->entries[i].eventfd != eventfd)
4333 size++;
4334 else
4335 entries++;
4336 }
4337
4338 new = thresholds->spare;
4339
4340 /* If no items related to eventfd have been cleared, nothing to do */
4341 if (!entries)
4342 goto unlock;
4343
4344 /* Set thresholds array to NULL if we don't have thresholds */
4345 if (!size) {
4346 kfree(new);
4347 new = NULL;
4348 goto swap_buffers;
4349 }
4350
4351 new->size = size;
4352
4353 /* Copy thresholds and find current threshold */
4354 new->current_threshold = -1;
4355 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4356 if (thresholds->primary->entries[i].eventfd == eventfd)
4357 continue;
4358
4359 new->entries[j] = thresholds->primary->entries[i];
4360 if (new->entries[j].threshold <= usage) {
4361 /*
4362 * new->current_threshold will not be used
4363 * until rcu_assign_pointer(), so it's safe to increment
4364 * it here.
4365 */
4366 ++new->current_threshold;
4367 }
4368 j++;
4369 }
4370
4371 swap_buffers:
4372 /* Swap primary and spare array */
4373 thresholds->spare = thresholds->primary;
4374
4375 rcu_assign_pointer(thresholds->primary, new);
4376
4377 /* To be sure that nobody uses thresholds */
4378 synchronize_rcu();
4379
4380 /* If all events are unregistered, free the spare array */
4381 if (!new) {
4382 kfree(thresholds->spare);
4383 thresholds->spare = NULL;
4384 }
4385 unlock:
4386 mutex_unlock(&memcg->thresholds_lock);
4387 }
4388
4389 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4390 struct eventfd_ctx *eventfd)
4391 {
4392 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4393 }
4394
4395 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4396 struct eventfd_ctx *eventfd)
4397 {
4398 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4399 }
4400
4401 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4402 struct eventfd_ctx *eventfd, const char *args)
4403 {
4404 struct mem_cgroup_eventfd_list *event;
4405
4406 event = kmalloc(sizeof(*event), GFP_KERNEL);
4407 if (!event)
4408 return -ENOMEM;
4409
4410 spin_lock(&memcg_oom_lock);
4411
4412 event->eventfd = eventfd;
4413 list_add(&event->list, &memcg->oom_notify);
4414
4415 /* already in OOM ? */
4416 if (memcg->under_oom)
4417 eventfd_signal(eventfd, 1);
4418 spin_unlock(&memcg_oom_lock);
4419
4420 return 0;
4421 }
4422
4423 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4424 struct eventfd_ctx *eventfd)
4425 {
4426 struct mem_cgroup_eventfd_list *ev, *tmp;
4427
4428 spin_lock(&memcg_oom_lock);
4429
4430 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4431 if (ev->eventfd == eventfd) {
4432 list_del(&ev->list);
4433 kfree(ev);
4434 }
4435 }
4436
4437 spin_unlock(&memcg_oom_lock);
4438 }
4439
4440 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4441 {
4442 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4443
4444 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4445 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4446 seq_printf(sf, "oom_kill %lu\n",
4447 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4448 return 0;
4449 }
4450
4451 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4452 struct cftype *cft, u64 val)
4453 {
4454 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4455
4456 /* cannot set to root cgroup and only 0 and 1 are allowed */
4457 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4458 return -EINVAL;
4459
4460 memcg->oom_kill_disable = val;
4461 if (!val)
4462 memcg_oom_recover(memcg);
4463
4464 return 0;
4465 }
4466
4467 #ifdef CONFIG_CGROUP_WRITEBACK
4468
4469 #include <trace/events/writeback.h>
4470
4471 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4472 {
4473 return wb_domain_init(&memcg->cgwb_domain, gfp);
4474 }
4475
4476 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4477 {
4478 wb_domain_exit(&memcg->cgwb_domain);
4479 }
4480
4481 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4482 {
4483 wb_domain_size_changed(&memcg->cgwb_domain);
4484 }
4485
4486 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4487 {
4488 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4489
4490 if (!memcg->css.parent)
4491 return NULL;
4492
4493 return &memcg->cgwb_domain;
4494 }
4495
4496 /**
4497 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4498 * @wb: bdi_writeback in question
4499 * @pfilepages: out parameter for number of file pages
4500 * @pheadroom: out parameter for number of allocatable pages according to memcg
4501 * @pdirty: out parameter for number of dirty pages
4502 * @pwriteback: out parameter for number of pages under writeback
4503 *
4504 * Determine the numbers of file, headroom, dirty, and writeback pages in
4505 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4506 * is a bit more involved.
4507 *
4508 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4509 * headroom is calculated as the lowest headroom of itself and the
4510 * ancestors. Note that this doesn't consider the actual amount of
4511 * available memory in the system. The caller should further cap
4512 * *@pheadroom accordingly.
4513 */
4514 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4515 unsigned long *pheadroom, unsigned long *pdirty,
4516 unsigned long *pwriteback)
4517 {
4518 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4519 struct mem_cgroup *parent;
4520
4521 mem_cgroup_flush_stats();
4522
4523 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4524 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4525 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4526 memcg_page_state(memcg, NR_ACTIVE_FILE);
4527
4528 *pheadroom = PAGE_COUNTER_MAX;
4529 while ((parent = parent_mem_cgroup(memcg))) {
4530 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4531 READ_ONCE(memcg->memory.high));
4532 unsigned long used = page_counter_read(&memcg->memory);
4533
4534 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4535 memcg = parent;
4536 }
4537 }
4538
4539 /*
4540 * Foreign dirty flushing
4541 *
4542 * There's an inherent mismatch between memcg and writeback. The former
4543 * tracks ownership per-page while the latter per-inode. This was a
4544 * deliberate design decision because honoring per-page ownership in the
4545 * writeback path is complicated, may lead to higher CPU and IO overheads
4546 * and deemed unnecessary given that write-sharing an inode across
4547 * different cgroups isn't a common use-case.
4548 *
4549 * Combined with inode majority-writer ownership switching, this works well
4550 * enough in most cases but there are some pathological cases. For
4551 * example, let's say there are two cgroups A and B which keep writing to
4552 * different but confined parts of the same inode. B owns the inode and
4553 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4554 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4555 * triggering background writeback. A will be slowed down without a way to
4556 * make writeback of the dirty pages happen.
4557 *
4558 * Conditions like the above can lead to a cgroup getting repeatedly and
4559 * severely throttled after making some progress after each
4560 * dirty_expire_interval while the underlying IO device is almost
4561 * completely idle.
4562 *
4563 * Solving this problem completely requires matching the ownership tracking
4564 * granularities between memcg and writeback in either direction. However,
4565 * the more egregious behaviors can be avoided by simply remembering the
4566 * most recent foreign dirtying events and initiating remote flushes on
4567 * them when local writeback isn't enough to keep the memory clean enough.
4568 *
4569 * The following two functions implement such mechanism. When a foreign
4570 * page - a page whose memcg and writeback ownerships don't match - is
4571 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4572 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4573 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4574 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4575 * foreign bdi_writebacks which haven't expired. Both the numbers of
4576 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4577 * limited to MEMCG_CGWB_FRN_CNT.
4578 *
4579 * The mechanism only remembers IDs and doesn't hold any object references.
4580 * As being wrong occasionally doesn't matter, updates and accesses to the
4581 * records are lockless and racy.
4582 */
4583 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4584 struct bdi_writeback *wb)
4585 {
4586 struct mem_cgroup *memcg = page_memcg(page);
4587 struct memcg_cgwb_frn *frn;
4588 u64 now = get_jiffies_64();
4589 u64 oldest_at = now;
4590 int oldest = -1;
4591 int i;
4592
4593 trace_track_foreign_dirty(page, wb);
4594
4595 /*
4596 * Pick the slot to use. If there is already a slot for @wb, keep
4597 * using it. If not replace the oldest one which isn't being
4598 * written out.
4599 */
4600 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4601 frn = &memcg->cgwb_frn[i];
4602 if (frn->bdi_id == wb->bdi->id &&
4603 frn->memcg_id == wb->memcg_css->id)
4604 break;
4605 if (time_before64(frn->at, oldest_at) &&
4606 atomic_read(&frn->done.cnt) == 1) {
4607 oldest = i;
4608 oldest_at = frn->at;
4609 }
4610 }
4611
4612 if (i < MEMCG_CGWB_FRN_CNT) {
4613 /*
4614 * Re-using an existing one. Update timestamp lazily to
4615 * avoid making the cacheline hot. We want them to be
4616 * reasonably up-to-date and significantly shorter than
4617 * dirty_expire_interval as that's what expires the record.
4618 * Use the shorter of 1s and dirty_expire_interval / 8.
4619 */
4620 unsigned long update_intv =
4621 min_t(unsigned long, HZ,
4622 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4623
4624 if (time_before64(frn->at, now - update_intv))
4625 frn->at = now;
4626 } else if (oldest >= 0) {
4627 /* replace the oldest free one */
4628 frn = &memcg->cgwb_frn[oldest];
4629 frn->bdi_id = wb->bdi->id;
4630 frn->memcg_id = wb->memcg_css->id;
4631 frn->at = now;
4632 }
4633 }
4634
4635 /* issue foreign writeback flushes for recorded foreign dirtying events */
4636 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4637 {
4638 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4639 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4640 u64 now = jiffies_64;
4641 int i;
4642
4643 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4644 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4645
4646 /*
4647 * If the record is older than dirty_expire_interval,
4648 * writeback on it has already started. No need to kick it
4649 * off again. Also, don't start a new one if there's
4650 * already one in flight.
4651 */
4652 if (time_after64(frn->at, now - intv) &&
4653 atomic_read(&frn->done.cnt) == 1) {
4654 frn->at = 0;
4655 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4656 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4657 WB_REASON_FOREIGN_FLUSH,
4658 &frn->done);
4659 }
4660 }
4661 }
4662
4663 #else /* CONFIG_CGROUP_WRITEBACK */
4664
4665 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4666 {
4667 return 0;
4668 }
4669
4670 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4671 {
4672 }
4673
4674 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4675 {
4676 }
4677
4678 #endif /* CONFIG_CGROUP_WRITEBACK */
4679
4680 /*
4681 * DO NOT USE IN NEW FILES.
4682 *
4683 * "cgroup.event_control" implementation.
4684 *
4685 * This is way over-engineered. It tries to support fully configurable
4686 * events for each user. Such level of flexibility is completely
4687 * unnecessary especially in the light of the planned unified hierarchy.
4688 *
4689 * Please deprecate this and replace with something simpler if at all
4690 * possible.
4691 */
4692
4693 /*
4694 * Unregister event and free resources.
4695 *
4696 * Gets called from workqueue.
4697 */
4698 static void memcg_event_remove(struct work_struct *work)
4699 {
4700 struct mem_cgroup_event *event =
4701 container_of(work, struct mem_cgroup_event, remove);
4702 struct mem_cgroup *memcg = event->memcg;
4703
4704 remove_wait_queue(event->wqh, &event->wait);
4705
4706 event->unregister_event(memcg, event->eventfd);
4707
4708 /* Notify userspace the event is going away. */
4709 eventfd_signal(event->eventfd, 1);
4710
4711 eventfd_ctx_put(event->eventfd);
4712 kfree(event);
4713 css_put(&memcg->css);
4714 }
4715
4716 /*
4717 * Gets called on EPOLLHUP on eventfd when user closes it.
4718 *
4719 * Called with wqh->lock held and interrupts disabled.
4720 */
4721 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4722 int sync, void *key)
4723 {
4724 struct mem_cgroup_event *event =
4725 container_of(wait, struct mem_cgroup_event, wait);
4726 struct mem_cgroup *memcg = event->memcg;
4727 __poll_t flags = key_to_poll(key);
4728
4729 if (flags & EPOLLHUP) {
4730 /*
4731 * If the event has been detached at cgroup removal, we
4732 * can simply return knowing the other side will cleanup
4733 * for us.
4734 *
4735 * We can't race against event freeing since the other
4736 * side will require wqh->lock via remove_wait_queue(),
4737 * which we hold.
4738 */
4739 spin_lock(&memcg->event_list_lock);
4740 if (!list_empty(&event->list)) {
4741 list_del_init(&event->list);
4742 /*
4743 * We are in atomic context, but cgroup_event_remove()
4744 * may sleep, so we have to call it in workqueue.
4745 */
4746 schedule_work(&event->remove);
4747 }
4748 spin_unlock(&memcg->event_list_lock);
4749 }
4750
4751 return 0;
4752 }
4753
4754 static void memcg_event_ptable_queue_proc(struct file *file,
4755 wait_queue_head_t *wqh, poll_table *pt)
4756 {
4757 struct mem_cgroup_event *event =
4758 container_of(pt, struct mem_cgroup_event, pt);
4759
4760 event->wqh = wqh;
4761 add_wait_queue(wqh, &event->wait);
4762 }
4763
4764 /*
4765 * DO NOT USE IN NEW FILES.
4766 *
4767 * Parse input and register new cgroup event handler.
4768 *
4769 * Input must be in format '<event_fd> <control_fd> <args>'.
4770 * Interpretation of args is defined by control file implementation.
4771 */
4772 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4773 char *buf, size_t nbytes, loff_t off)
4774 {
4775 struct cgroup_subsys_state *css = of_css(of);
4776 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4777 struct mem_cgroup_event *event;
4778 struct cgroup_subsys_state *cfile_css;
4779 unsigned int efd, cfd;
4780 struct fd efile;
4781 struct fd cfile;
4782 const char *name;
4783 char *endp;
4784 int ret;
4785
4786 buf = strstrip(buf);
4787
4788 efd = simple_strtoul(buf, &endp, 10);
4789 if (*endp != ' ')
4790 return -EINVAL;
4791 buf = endp + 1;
4792
4793 cfd = simple_strtoul(buf, &endp, 10);
4794 if ((*endp != ' ') && (*endp != '\0'))
4795 return -EINVAL;
4796 buf = endp + 1;
4797
4798 event = kzalloc(sizeof(*event), GFP_KERNEL);
4799 if (!event)
4800 return -ENOMEM;
4801
4802 event->memcg = memcg;
4803 INIT_LIST_HEAD(&event->list);
4804 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4805 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4806 INIT_WORK(&event->remove, memcg_event_remove);
4807
4808 efile = fdget(efd);
4809 if (!efile.file) {
4810 ret = -EBADF;
4811 goto out_kfree;
4812 }
4813
4814 event->eventfd = eventfd_ctx_fileget(efile.file);
4815 if (IS_ERR(event->eventfd)) {
4816 ret = PTR_ERR(event->eventfd);
4817 goto out_put_efile;
4818 }
4819
4820 cfile = fdget(cfd);
4821 if (!cfile.file) {
4822 ret = -EBADF;
4823 goto out_put_eventfd;
4824 }
4825
4826 /* the process need read permission on control file */
4827 /* AV: shouldn't we check that it's been opened for read instead? */
4828 ret = file_permission(cfile.file, MAY_READ);
4829 if (ret < 0)
4830 goto out_put_cfile;
4831
4832 /*
4833 * Determine the event callbacks and set them in @event. This used
4834 * to be done via struct cftype but cgroup core no longer knows
4835 * about these events. The following is crude but the whole thing
4836 * is for compatibility anyway.
4837 *
4838 * DO NOT ADD NEW FILES.
4839 */
4840 name = cfile.file->f_path.dentry->d_name.name;
4841
4842 if (!strcmp(name, "memory.usage_in_bytes")) {
4843 event->register_event = mem_cgroup_usage_register_event;
4844 event->unregister_event = mem_cgroup_usage_unregister_event;
4845 } else if (!strcmp(name, "memory.oom_control")) {
4846 event->register_event = mem_cgroup_oom_register_event;
4847 event->unregister_event = mem_cgroup_oom_unregister_event;
4848 } else if (!strcmp(name, "memory.pressure_level")) {
4849 event->register_event = vmpressure_register_event;
4850 event->unregister_event = vmpressure_unregister_event;
4851 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4852 event->register_event = memsw_cgroup_usage_register_event;
4853 event->unregister_event = memsw_cgroup_usage_unregister_event;
4854 } else {
4855 ret = -EINVAL;
4856 goto out_put_cfile;
4857 }
4858
4859 /*
4860 * Verify @cfile should belong to @css. Also, remaining events are
4861 * automatically removed on cgroup destruction but the removal is
4862 * asynchronous, so take an extra ref on @css.
4863 */
4864 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4865 &memory_cgrp_subsys);
4866 ret = -EINVAL;
4867 if (IS_ERR(cfile_css))
4868 goto out_put_cfile;
4869 if (cfile_css != css) {
4870 css_put(cfile_css);
4871 goto out_put_cfile;
4872 }
4873
4874 ret = event->register_event(memcg, event->eventfd, buf);
4875 if (ret)
4876 goto out_put_css;
4877
4878 vfs_poll(efile.file, &event->pt);
4879
4880 spin_lock_irq(&memcg->event_list_lock);
4881 list_add(&event->list, &memcg->event_list);
4882 spin_unlock_irq(&memcg->event_list_lock);
4883
4884 fdput(cfile);
4885 fdput(efile);
4886
4887 return nbytes;
4888
4889 out_put_css:
4890 css_put(css);
4891 out_put_cfile:
4892 fdput(cfile);
4893 out_put_eventfd:
4894 eventfd_ctx_put(event->eventfd);
4895 out_put_efile:
4896 fdput(efile);
4897 out_kfree:
4898 kfree(event);
4899
4900 return ret;
4901 }
4902
4903 static struct cftype mem_cgroup_legacy_files[] = {
4904 {
4905 .name = "usage_in_bytes",
4906 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4907 .read_u64 = mem_cgroup_read_u64,
4908 },
4909 {
4910 .name = "max_usage_in_bytes",
4911 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4912 .write = mem_cgroup_reset,
4913 .read_u64 = mem_cgroup_read_u64,
4914 },
4915 {
4916 .name = "limit_in_bytes",
4917 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4918 .write = mem_cgroup_write,
4919 .read_u64 = mem_cgroup_read_u64,
4920 },
4921 {
4922 .name = "soft_limit_in_bytes",
4923 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4924 .write = mem_cgroup_write,
4925 .read_u64 = mem_cgroup_read_u64,
4926 },
4927 {
4928 .name = "failcnt",
4929 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4930 .write = mem_cgroup_reset,
4931 .read_u64 = mem_cgroup_read_u64,
4932 },
4933 {
4934 .name = "stat",
4935 .seq_show = memcg_stat_show,
4936 },
4937 {
4938 .name = "force_empty",
4939 .write = mem_cgroup_force_empty_write,
4940 },
4941 {
4942 .name = "use_hierarchy",
4943 .write_u64 = mem_cgroup_hierarchy_write,
4944 .read_u64 = mem_cgroup_hierarchy_read,
4945 },
4946 {
4947 .name = "cgroup.event_control", /* XXX: for compat */
4948 .write = memcg_write_event_control,
4949 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4950 },
4951 {
4952 .name = "swappiness",
4953 .read_u64 = mem_cgroup_swappiness_read,
4954 .write_u64 = mem_cgroup_swappiness_write,
4955 },
4956 {
4957 .name = "move_charge_at_immigrate",
4958 .read_u64 = mem_cgroup_move_charge_read,
4959 .write_u64 = mem_cgroup_move_charge_write,
4960 },
4961 {
4962 .name = "oom_control",
4963 .seq_show = mem_cgroup_oom_control_read,
4964 .write_u64 = mem_cgroup_oom_control_write,
4965 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4966 },
4967 {
4968 .name = "pressure_level",
4969 },
4970 #ifdef CONFIG_NUMA
4971 {
4972 .name = "numa_stat",
4973 .seq_show = memcg_numa_stat_show,
4974 },
4975 #endif
4976 {
4977 .name = "kmem.limit_in_bytes",
4978 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4979 .write = mem_cgroup_write,
4980 .read_u64 = mem_cgroup_read_u64,
4981 },
4982 {
4983 .name = "kmem.usage_in_bytes",
4984 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4985 .read_u64 = mem_cgroup_read_u64,
4986 },
4987 {
4988 .name = "kmem.failcnt",
4989 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4990 .write = mem_cgroup_reset,
4991 .read_u64 = mem_cgroup_read_u64,
4992 },
4993 {
4994 .name = "kmem.max_usage_in_bytes",
4995 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4996 .write = mem_cgroup_reset,
4997 .read_u64 = mem_cgroup_read_u64,
4998 },
4999 #if defined(CONFIG_MEMCG_KMEM) && \
5000 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5001 {
5002 .name = "kmem.slabinfo",
5003 .seq_show = memcg_slab_show,
5004 },
5005 #endif
5006 {
5007 .name = "kmem.tcp.limit_in_bytes",
5008 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5009 .write = mem_cgroup_write,
5010 .read_u64 = mem_cgroup_read_u64,
5011 },
5012 {
5013 .name = "kmem.tcp.usage_in_bytes",
5014 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5015 .read_u64 = mem_cgroup_read_u64,
5016 },
5017 {
5018 .name = "kmem.tcp.failcnt",
5019 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5020 .write = mem_cgroup_reset,
5021 .read_u64 = mem_cgroup_read_u64,
5022 },
5023 {
5024 .name = "kmem.tcp.max_usage_in_bytes",
5025 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5026 .write = mem_cgroup_reset,
5027 .read_u64 = mem_cgroup_read_u64,
5028 },
5029 { }, /* terminate */
5030 };
5031
5032 /*
5033 * Private memory cgroup IDR
5034 *
5035 * Swap-out records and page cache shadow entries need to store memcg
5036 * references in constrained space, so we maintain an ID space that is
5037 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5038 * memory-controlled cgroups to 64k.
5039 *
5040 * However, there usually are many references to the offline CSS after
5041 * the cgroup has been destroyed, such as page cache or reclaimable
5042 * slab objects, that don't need to hang on to the ID. We want to keep
5043 * those dead CSS from occupying IDs, or we might quickly exhaust the
5044 * relatively small ID space and prevent the creation of new cgroups
5045 * even when there are much fewer than 64k cgroups - possibly none.
5046 *
5047 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5048 * be freed and recycled when it's no longer needed, which is usually
5049 * when the CSS is offlined.
5050 *
5051 * The only exception to that are records of swapped out tmpfs/shmem
5052 * pages that need to be attributed to live ancestors on swapin. But
5053 * those references are manageable from userspace.
5054 */
5055
5056 static DEFINE_IDR(mem_cgroup_idr);
5057
5058 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5059 {
5060 if (memcg->id.id > 0) {
5061 idr_remove(&mem_cgroup_idr, memcg->id.id);
5062 memcg->id.id = 0;
5063 }
5064 }
5065
5066 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5067 unsigned int n)
5068 {
5069 refcount_add(n, &memcg->id.ref);
5070 }
5071
5072 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5073 {
5074 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5075 mem_cgroup_id_remove(memcg);
5076
5077 /* Memcg ID pins CSS */
5078 css_put(&memcg->css);
5079 }
5080 }
5081
5082 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5083 {
5084 mem_cgroup_id_put_many(memcg, 1);
5085 }
5086
5087 /**
5088 * mem_cgroup_from_id - look up a memcg from a memcg id
5089 * @id: the memcg id to look up
5090 *
5091 * Caller must hold rcu_read_lock().
5092 */
5093 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5094 {
5095 WARN_ON_ONCE(!rcu_read_lock_held());
5096 return idr_find(&mem_cgroup_idr, id);
5097 }
5098
5099 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5100 {
5101 struct mem_cgroup_per_node *pn;
5102 int tmp = node;
5103 /*
5104 * This routine is called against possible nodes.
5105 * But it's BUG to call kmalloc() against offline node.
5106 *
5107 * TODO: this routine can waste much memory for nodes which will
5108 * never be onlined. It's better to use memory hotplug callback
5109 * function.
5110 */
5111 if (!node_state(node, N_NORMAL_MEMORY))
5112 tmp = -1;
5113 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5114 if (!pn)
5115 return 1;
5116
5117 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5118 GFP_KERNEL_ACCOUNT);
5119 if (!pn->lruvec_stats_percpu) {
5120 kfree(pn);
5121 return 1;
5122 }
5123
5124 lruvec_init(&pn->lruvec);
5125 pn->usage_in_excess = 0;
5126 pn->on_tree = false;
5127 pn->memcg = memcg;
5128
5129 memcg->nodeinfo[node] = pn;
5130 return 0;
5131 }
5132
5133 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5134 {
5135 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5136
5137 if (!pn)
5138 return;
5139
5140 free_percpu(pn->lruvec_stats_percpu);
5141 kfree(pn);
5142 }
5143
5144 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5145 {
5146 int node;
5147
5148 for_each_node(node)
5149 free_mem_cgroup_per_node_info(memcg, node);
5150 free_percpu(memcg->vmstats_percpu);
5151 kfree(memcg);
5152 }
5153
5154 static void mem_cgroup_free(struct mem_cgroup *memcg)
5155 {
5156 memcg_wb_domain_exit(memcg);
5157 __mem_cgroup_free(memcg);
5158 }
5159
5160 static struct mem_cgroup *mem_cgroup_alloc(void)
5161 {
5162 struct mem_cgroup *memcg;
5163 unsigned int size;
5164 int node;
5165 int __maybe_unused i;
5166 long error = -ENOMEM;
5167
5168 size = sizeof(struct mem_cgroup);
5169 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5170
5171 memcg = kzalloc(size, GFP_KERNEL);
5172 if (!memcg)
5173 return ERR_PTR(error);
5174
5175 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5176 1, MEM_CGROUP_ID_MAX,
5177 GFP_KERNEL);
5178 if (memcg->id.id < 0) {
5179 error = memcg->id.id;
5180 goto fail;
5181 }
5182
5183 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5184 GFP_KERNEL_ACCOUNT);
5185 if (!memcg->vmstats_percpu)
5186 goto fail;
5187
5188 for_each_node(node)
5189 if (alloc_mem_cgroup_per_node_info(memcg, node))
5190 goto fail;
5191
5192 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5193 goto fail;
5194
5195 INIT_WORK(&memcg->high_work, high_work_func);
5196 INIT_LIST_HEAD(&memcg->oom_notify);
5197 mutex_init(&memcg->thresholds_lock);
5198 spin_lock_init(&memcg->move_lock);
5199 vmpressure_init(&memcg->vmpressure);
5200 INIT_LIST_HEAD(&memcg->event_list);
5201 spin_lock_init(&memcg->event_list_lock);
5202 memcg->socket_pressure = jiffies;
5203 #ifdef CONFIG_MEMCG_KMEM
5204 memcg->kmemcg_id = -1;
5205 INIT_LIST_HEAD(&memcg->objcg_list);
5206 #endif
5207 #ifdef CONFIG_CGROUP_WRITEBACK
5208 INIT_LIST_HEAD(&memcg->cgwb_list);
5209 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5210 memcg->cgwb_frn[i].done =
5211 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5212 #endif
5213 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5214 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5215 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5216 memcg->deferred_split_queue.split_queue_len = 0;
5217 #endif
5218 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5219 return memcg;
5220 fail:
5221 mem_cgroup_id_remove(memcg);
5222 __mem_cgroup_free(memcg);
5223 return ERR_PTR(error);
5224 }
5225
5226 static struct cgroup_subsys_state * __ref
5227 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5228 {
5229 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5230 struct mem_cgroup *memcg, *old_memcg;
5231 long error = -ENOMEM;
5232
5233 old_memcg = set_active_memcg(parent);
5234 memcg = mem_cgroup_alloc();
5235 set_active_memcg(old_memcg);
5236 if (IS_ERR(memcg))
5237 return ERR_CAST(memcg);
5238
5239 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5240 memcg->soft_limit = PAGE_COUNTER_MAX;
5241 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5242 if (parent) {
5243 memcg->swappiness = mem_cgroup_swappiness(parent);
5244 memcg->oom_kill_disable = parent->oom_kill_disable;
5245
5246 page_counter_init(&memcg->memory, &parent->memory);
5247 page_counter_init(&memcg->swap, &parent->swap);
5248 page_counter_init(&memcg->kmem, &parent->kmem);
5249 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5250 } else {
5251 page_counter_init(&memcg->memory, NULL);
5252 page_counter_init(&memcg->swap, NULL);
5253 page_counter_init(&memcg->kmem, NULL);
5254 page_counter_init(&memcg->tcpmem, NULL);
5255
5256 root_mem_cgroup = memcg;
5257 return &memcg->css;
5258 }
5259
5260 /* The following stuff does not apply to the root */
5261 error = memcg_online_kmem(memcg);
5262 if (error)
5263 goto fail;
5264
5265 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5266 static_branch_inc(&memcg_sockets_enabled_key);
5267
5268 return &memcg->css;
5269 fail:
5270 mem_cgroup_id_remove(memcg);
5271 mem_cgroup_free(memcg);
5272 return ERR_PTR(error);
5273 }
5274
5275 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5276 {
5277 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5278
5279 /*
5280 * A memcg must be visible for expand_shrinker_info()
5281 * by the time the maps are allocated. So, we allocate maps
5282 * here, when for_each_mem_cgroup() can't skip it.
5283 */
5284 if (alloc_shrinker_info(memcg)) {
5285 mem_cgroup_id_remove(memcg);
5286 return -ENOMEM;
5287 }
5288
5289 /* Online state pins memcg ID, memcg ID pins CSS */
5290 refcount_set(&memcg->id.ref, 1);
5291 css_get(css);
5292
5293 if (unlikely(mem_cgroup_is_root(memcg)))
5294 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5295 2UL*HZ);
5296 return 0;
5297 }
5298
5299 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5300 {
5301 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5302 struct mem_cgroup_event *event, *tmp;
5303
5304 /*
5305 * Unregister events and notify userspace.
5306 * Notify userspace about cgroup removing only after rmdir of cgroup
5307 * directory to avoid race between userspace and kernelspace.
5308 */
5309 spin_lock_irq(&memcg->event_list_lock);
5310 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5311 list_del_init(&event->list);
5312 schedule_work(&event->remove);
5313 }
5314 spin_unlock_irq(&memcg->event_list_lock);
5315
5316 page_counter_set_min(&memcg->memory, 0);
5317 page_counter_set_low(&memcg->memory, 0);
5318
5319 memcg_offline_kmem(memcg);
5320 reparent_shrinker_deferred(memcg);
5321 wb_memcg_offline(memcg);
5322
5323 drain_all_stock(memcg);
5324
5325 mem_cgroup_id_put(memcg);
5326 }
5327
5328 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5329 {
5330 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5331
5332 invalidate_reclaim_iterators(memcg);
5333 }
5334
5335 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5336 {
5337 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5338 int __maybe_unused i;
5339
5340 #ifdef CONFIG_CGROUP_WRITEBACK
5341 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5342 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5343 #endif
5344 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5345 static_branch_dec(&memcg_sockets_enabled_key);
5346
5347 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5348 static_branch_dec(&memcg_sockets_enabled_key);
5349
5350 vmpressure_cleanup(&memcg->vmpressure);
5351 cancel_work_sync(&memcg->high_work);
5352 mem_cgroup_remove_from_trees(memcg);
5353 free_shrinker_info(memcg);
5354 memcg_free_kmem(memcg);
5355 mem_cgroup_free(memcg);
5356 }
5357
5358 /**
5359 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5360 * @css: the target css
5361 *
5362 * Reset the states of the mem_cgroup associated with @css. This is
5363 * invoked when the userland requests disabling on the default hierarchy
5364 * but the memcg is pinned through dependency. The memcg should stop
5365 * applying policies and should revert to the vanilla state as it may be
5366 * made visible again.
5367 *
5368 * The current implementation only resets the essential configurations.
5369 * This needs to be expanded to cover all the visible parts.
5370 */
5371 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5372 {
5373 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5374
5375 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5376 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5377 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5378 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5379 page_counter_set_min(&memcg->memory, 0);
5380 page_counter_set_low(&memcg->memory, 0);
5381 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5382 memcg->soft_limit = PAGE_COUNTER_MAX;
5383 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5384 memcg_wb_domain_size_changed(memcg);
5385 }
5386
5387 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5388 {
5389 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5390 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5391 struct memcg_vmstats_percpu *statc;
5392 long delta, v;
5393 int i, nid;
5394
5395 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5396
5397 for (i = 0; i < MEMCG_NR_STAT; i++) {
5398 /*
5399 * Collect the aggregated propagation counts of groups
5400 * below us. We're in a per-cpu loop here and this is
5401 * a global counter, so the first cycle will get them.
5402 */
5403 delta = memcg->vmstats.state_pending[i];
5404 if (delta)
5405 memcg->vmstats.state_pending[i] = 0;
5406
5407 /* Add CPU changes on this level since the last flush */
5408 v = READ_ONCE(statc->state[i]);
5409 if (v != statc->state_prev[i]) {
5410 delta += v - statc->state_prev[i];
5411 statc->state_prev[i] = v;
5412 }
5413
5414 if (!delta)
5415 continue;
5416
5417 /* Aggregate counts on this level and propagate upwards */
5418 memcg->vmstats.state[i] += delta;
5419 if (parent)
5420 parent->vmstats.state_pending[i] += delta;
5421 }
5422
5423 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5424 delta = memcg->vmstats.events_pending[i];
5425 if (delta)
5426 memcg->vmstats.events_pending[i] = 0;
5427
5428 v = READ_ONCE(statc->events[i]);
5429 if (v != statc->events_prev[i]) {
5430 delta += v - statc->events_prev[i];
5431 statc->events_prev[i] = v;
5432 }
5433
5434 if (!delta)
5435 continue;
5436
5437 memcg->vmstats.events[i] += delta;
5438 if (parent)
5439 parent->vmstats.events_pending[i] += delta;
5440 }
5441
5442 for_each_node_state(nid, N_MEMORY) {
5443 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5444 struct mem_cgroup_per_node *ppn = NULL;
5445 struct lruvec_stats_percpu *lstatc;
5446
5447 if (parent)
5448 ppn = parent->nodeinfo[nid];
5449
5450 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5451
5452 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5453 delta = pn->lruvec_stats.state_pending[i];
5454 if (delta)
5455 pn->lruvec_stats.state_pending[i] = 0;
5456
5457 v = READ_ONCE(lstatc->state[i]);
5458 if (v != lstatc->state_prev[i]) {
5459 delta += v - lstatc->state_prev[i];
5460 lstatc->state_prev[i] = v;
5461 }
5462
5463 if (!delta)
5464 continue;
5465
5466 pn->lruvec_stats.state[i] += delta;
5467 if (ppn)
5468 ppn->lruvec_stats.state_pending[i] += delta;
5469 }
5470 }
5471 }
5472
5473 #ifdef CONFIG_MMU
5474 /* Handlers for move charge at task migration. */
5475 static int mem_cgroup_do_precharge(unsigned long count)
5476 {
5477 int ret;
5478
5479 /* Try a single bulk charge without reclaim first, kswapd may wake */
5480 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5481 if (!ret) {
5482 mc.precharge += count;
5483 return ret;
5484 }
5485
5486 /* Try charges one by one with reclaim, but do not retry */
5487 while (count--) {
5488 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5489 if (ret)
5490 return ret;
5491 mc.precharge++;
5492 cond_resched();
5493 }
5494 return 0;
5495 }
5496
5497 union mc_target {
5498 struct page *page;
5499 swp_entry_t ent;
5500 };
5501
5502 enum mc_target_type {
5503 MC_TARGET_NONE = 0,
5504 MC_TARGET_PAGE,
5505 MC_TARGET_SWAP,
5506 MC_TARGET_DEVICE,
5507 };
5508
5509 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5510 unsigned long addr, pte_t ptent)
5511 {
5512 struct page *page = vm_normal_page(vma, addr, ptent);
5513
5514 if (!page || !page_mapped(page))
5515 return NULL;
5516 if (PageAnon(page)) {
5517 if (!(mc.flags & MOVE_ANON))
5518 return NULL;
5519 } else {
5520 if (!(mc.flags & MOVE_FILE))
5521 return NULL;
5522 }
5523 if (!get_page_unless_zero(page))
5524 return NULL;
5525
5526 return page;
5527 }
5528
5529 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5530 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5531 pte_t ptent, swp_entry_t *entry)
5532 {
5533 struct page *page = NULL;
5534 swp_entry_t ent = pte_to_swp_entry(ptent);
5535
5536 if (!(mc.flags & MOVE_ANON))
5537 return NULL;
5538
5539 /*
5540 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5541 * a device and because they are not accessible by CPU they are store
5542 * as special swap entry in the CPU page table.
5543 */
5544 if (is_device_private_entry(ent)) {
5545 page = pfn_swap_entry_to_page(ent);
5546 /*
5547 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5548 * a refcount of 1 when free (unlike normal page)
5549 */
5550 if (!page_ref_add_unless(page, 1, 1))
5551 return NULL;
5552 return page;
5553 }
5554
5555 if (non_swap_entry(ent))
5556 return NULL;
5557
5558 /*
5559 * Because lookup_swap_cache() updates some statistics counter,
5560 * we call find_get_page() with swapper_space directly.
5561 */
5562 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5563 entry->val = ent.val;
5564
5565 return page;
5566 }
5567 #else
5568 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5569 pte_t ptent, swp_entry_t *entry)
5570 {
5571 return NULL;
5572 }
5573 #endif
5574
5575 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5576 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5577 {
5578 if (!vma->vm_file) /* anonymous vma */
5579 return NULL;
5580 if (!(mc.flags & MOVE_FILE))
5581 return NULL;
5582
5583 /* page is moved even if it's not RSS of this task(page-faulted). */
5584 /* shmem/tmpfs may report page out on swap: account for that too. */
5585 return find_get_incore_page(vma->vm_file->f_mapping,
5586 linear_page_index(vma, addr));
5587 }
5588
5589 /**
5590 * mem_cgroup_move_account - move account of the page
5591 * @page: the page
5592 * @compound: charge the page as compound or small page
5593 * @from: mem_cgroup which the page is moved from.
5594 * @to: mem_cgroup which the page is moved to. @from != @to.
5595 *
5596 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5597 *
5598 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5599 * from old cgroup.
5600 */
5601 static int mem_cgroup_move_account(struct page *page,
5602 bool compound,
5603 struct mem_cgroup *from,
5604 struct mem_cgroup *to)
5605 {
5606 struct lruvec *from_vec, *to_vec;
5607 struct pglist_data *pgdat;
5608 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5609 int ret;
5610
5611 VM_BUG_ON(from == to);
5612 VM_BUG_ON_PAGE(PageLRU(page), page);
5613 VM_BUG_ON(compound && !PageTransHuge(page));
5614
5615 /*
5616 * Prevent mem_cgroup_migrate() from looking at
5617 * page's memory cgroup of its source page while we change it.
5618 */
5619 ret = -EBUSY;
5620 if (!trylock_page(page))
5621 goto out;
5622
5623 ret = -EINVAL;
5624 if (page_memcg(page) != from)
5625 goto out_unlock;
5626
5627 pgdat = page_pgdat(page);
5628 from_vec = mem_cgroup_lruvec(from, pgdat);
5629 to_vec = mem_cgroup_lruvec(to, pgdat);
5630
5631 lock_page_memcg(page);
5632
5633 if (PageAnon(page)) {
5634 if (page_mapped(page)) {
5635 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5636 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5637 if (PageTransHuge(page)) {
5638 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5639 -nr_pages);
5640 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5641 nr_pages);
5642 }
5643 }
5644 } else {
5645 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5646 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5647
5648 if (PageSwapBacked(page)) {
5649 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5650 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5651 }
5652
5653 if (page_mapped(page)) {
5654 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5655 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5656 }
5657
5658 if (PageDirty(page)) {
5659 struct address_space *mapping = page_mapping(page);
5660
5661 if (mapping_can_writeback(mapping)) {
5662 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5663 -nr_pages);
5664 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5665 nr_pages);
5666 }
5667 }
5668 }
5669
5670 if (PageWriteback(page)) {
5671 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5672 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5673 }
5674
5675 /*
5676 * All state has been migrated, let's switch to the new memcg.
5677 *
5678 * It is safe to change page's memcg here because the page
5679 * is referenced, charged, isolated, and locked: we can't race
5680 * with (un)charging, migration, LRU putback, or anything else
5681 * that would rely on a stable page's memory cgroup.
5682 *
5683 * Note that lock_page_memcg is a memcg lock, not a page lock,
5684 * to save space. As soon as we switch page's memory cgroup to a
5685 * new memcg that isn't locked, the above state can change
5686 * concurrently again. Make sure we're truly done with it.
5687 */
5688 smp_mb();
5689
5690 css_get(&to->css);
5691 css_put(&from->css);
5692
5693 page->memcg_data = (unsigned long)to;
5694
5695 __unlock_page_memcg(from);
5696
5697 ret = 0;
5698
5699 local_irq_disable();
5700 mem_cgroup_charge_statistics(to, page, nr_pages);
5701 memcg_check_events(to, page);
5702 mem_cgroup_charge_statistics(from, page, -nr_pages);
5703 memcg_check_events(from, page);
5704 local_irq_enable();
5705 out_unlock:
5706 unlock_page(page);
5707 out:
5708 return ret;
5709 }
5710
5711 /**
5712 * get_mctgt_type - get target type of moving charge
5713 * @vma: the vma the pte to be checked belongs
5714 * @addr: the address corresponding to the pte to be checked
5715 * @ptent: the pte to be checked
5716 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5717 *
5718 * Returns
5719 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5720 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5721 * move charge. if @target is not NULL, the page is stored in target->page
5722 * with extra refcnt got(Callers should handle it).
5723 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5724 * target for charge migration. if @target is not NULL, the entry is stored
5725 * in target->ent.
5726 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5727 * (so ZONE_DEVICE page and thus not on the lru).
5728 * For now we such page is charge like a regular page would be as for all
5729 * intent and purposes it is just special memory taking the place of a
5730 * regular page.
5731 *
5732 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5733 *
5734 * Called with pte lock held.
5735 */
5736
5737 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5738 unsigned long addr, pte_t ptent, union mc_target *target)
5739 {
5740 struct page *page = NULL;
5741 enum mc_target_type ret = MC_TARGET_NONE;
5742 swp_entry_t ent = { .val = 0 };
5743
5744 if (pte_present(ptent))
5745 page = mc_handle_present_pte(vma, addr, ptent);
5746 else if (is_swap_pte(ptent))
5747 page = mc_handle_swap_pte(vma, ptent, &ent);
5748 else if (pte_none(ptent))
5749 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5750
5751 if (!page && !ent.val)
5752 return ret;
5753 if (page) {
5754 /*
5755 * Do only loose check w/o serialization.
5756 * mem_cgroup_move_account() checks the page is valid or
5757 * not under LRU exclusion.
5758 */
5759 if (page_memcg(page) == mc.from) {
5760 ret = MC_TARGET_PAGE;
5761 if (is_device_private_page(page))
5762 ret = MC_TARGET_DEVICE;
5763 if (target)
5764 target->page = page;
5765 }
5766 if (!ret || !target)
5767 put_page(page);
5768 }
5769 /*
5770 * There is a swap entry and a page doesn't exist or isn't charged.
5771 * But we cannot move a tail-page in a THP.
5772 */
5773 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5774 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5775 ret = MC_TARGET_SWAP;
5776 if (target)
5777 target->ent = ent;
5778 }
5779 return ret;
5780 }
5781
5782 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5783 /*
5784 * We don't consider PMD mapped swapping or file mapped pages because THP does
5785 * not support them for now.
5786 * Caller should make sure that pmd_trans_huge(pmd) is true.
5787 */
5788 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5789 unsigned long addr, pmd_t pmd, union mc_target *target)
5790 {
5791 struct page *page = NULL;
5792 enum mc_target_type ret = MC_TARGET_NONE;
5793
5794 if (unlikely(is_swap_pmd(pmd))) {
5795 VM_BUG_ON(thp_migration_supported() &&
5796 !is_pmd_migration_entry(pmd));
5797 return ret;
5798 }
5799 page = pmd_page(pmd);
5800 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5801 if (!(mc.flags & MOVE_ANON))
5802 return ret;
5803 if (page_memcg(page) == mc.from) {
5804 ret = MC_TARGET_PAGE;
5805 if (target) {
5806 get_page(page);
5807 target->page = page;
5808 }
5809 }
5810 return ret;
5811 }
5812 #else
5813 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5814 unsigned long addr, pmd_t pmd, union mc_target *target)
5815 {
5816 return MC_TARGET_NONE;
5817 }
5818 #endif
5819
5820 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5821 unsigned long addr, unsigned long end,
5822 struct mm_walk *walk)
5823 {
5824 struct vm_area_struct *vma = walk->vma;
5825 pte_t *pte;
5826 spinlock_t *ptl;
5827
5828 ptl = pmd_trans_huge_lock(pmd, vma);
5829 if (ptl) {
5830 /*
5831 * Note their can not be MC_TARGET_DEVICE for now as we do not
5832 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5833 * this might change.
5834 */
5835 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5836 mc.precharge += HPAGE_PMD_NR;
5837 spin_unlock(ptl);
5838 return 0;
5839 }
5840
5841 if (pmd_trans_unstable(pmd))
5842 return 0;
5843 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5844 for (; addr != end; pte++, addr += PAGE_SIZE)
5845 if (get_mctgt_type(vma, addr, *pte, NULL))
5846 mc.precharge++; /* increment precharge temporarily */
5847 pte_unmap_unlock(pte - 1, ptl);
5848 cond_resched();
5849
5850 return 0;
5851 }
5852
5853 static const struct mm_walk_ops precharge_walk_ops = {
5854 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5855 };
5856
5857 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5858 {
5859 unsigned long precharge;
5860
5861 mmap_read_lock(mm);
5862 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5863 mmap_read_unlock(mm);
5864
5865 precharge = mc.precharge;
5866 mc.precharge = 0;
5867
5868 return precharge;
5869 }
5870
5871 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5872 {
5873 unsigned long precharge = mem_cgroup_count_precharge(mm);
5874
5875 VM_BUG_ON(mc.moving_task);
5876 mc.moving_task = current;
5877 return mem_cgroup_do_precharge(precharge);
5878 }
5879
5880 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5881 static void __mem_cgroup_clear_mc(void)
5882 {
5883 struct mem_cgroup *from = mc.from;
5884 struct mem_cgroup *to = mc.to;
5885
5886 /* we must uncharge all the leftover precharges from mc.to */
5887 if (mc.precharge) {
5888 cancel_charge(mc.to, mc.precharge);
5889 mc.precharge = 0;
5890 }
5891 /*
5892 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5893 * we must uncharge here.
5894 */
5895 if (mc.moved_charge) {
5896 cancel_charge(mc.from, mc.moved_charge);
5897 mc.moved_charge = 0;
5898 }
5899 /* we must fixup refcnts and charges */
5900 if (mc.moved_swap) {
5901 /* uncharge swap account from the old cgroup */
5902 if (!mem_cgroup_is_root(mc.from))
5903 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5904
5905 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5906
5907 /*
5908 * we charged both to->memory and to->memsw, so we
5909 * should uncharge to->memory.
5910 */
5911 if (!mem_cgroup_is_root(mc.to))
5912 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5913
5914 mc.moved_swap = 0;
5915 }
5916 memcg_oom_recover(from);
5917 memcg_oom_recover(to);
5918 wake_up_all(&mc.waitq);
5919 }
5920
5921 static void mem_cgroup_clear_mc(void)
5922 {
5923 struct mm_struct *mm = mc.mm;
5924
5925 /*
5926 * we must clear moving_task before waking up waiters at the end of
5927 * task migration.
5928 */
5929 mc.moving_task = NULL;
5930 __mem_cgroup_clear_mc();
5931 spin_lock(&mc.lock);
5932 mc.from = NULL;
5933 mc.to = NULL;
5934 mc.mm = NULL;
5935 spin_unlock(&mc.lock);
5936
5937 mmput(mm);
5938 }
5939
5940 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5941 {
5942 struct cgroup_subsys_state *css;
5943 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5944 struct mem_cgroup *from;
5945 struct task_struct *leader, *p;
5946 struct mm_struct *mm;
5947 unsigned long move_flags;
5948 int ret = 0;
5949
5950 /* charge immigration isn't supported on the default hierarchy */
5951 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5952 return 0;
5953
5954 /*
5955 * Multi-process migrations only happen on the default hierarchy
5956 * where charge immigration is not used. Perform charge
5957 * immigration if @tset contains a leader and whine if there are
5958 * multiple.
5959 */
5960 p = NULL;
5961 cgroup_taskset_for_each_leader(leader, css, tset) {
5962 WARN_ON_ONCE(p);
5963 p = leader;
5964 memcg = mem_cgroup_from_css(css);
5965 }
5966 if (!p)
5967 return 0;
5968
5969 /*
5970 * We are now committed to this value whatever it is. Changes in this
5971 * tunable will only affect upcoming migrations, not the current one.
5972 * So we need to save it, and keep it going.
5973 */
5974 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5975 if (!move_flags)
5976 return 0;
5977
5978 from = mem_cgroup_from_task(p);
5979
5980 VM_BUG_ON(from == memcg);
5981
5982 mm = get_task_mm(p);
5983 if (!mm)
5984 return 0;
5985 /* We move charges only when we move a owner of the mm */
5986 if (mm->owner == p) {
5987 VM_BUG_ON(mc.from);
5988 VM_BUG_ON(mc.to);
5989 VM_BUG_ON(mc.precharge);
5990 VM_BUG_ON(mc.moved_charge);
5991 VM_BUG_ON(mc.moved_swap);
5992
5993 spin_lock(&mc.lock);
5994 mc.mm = mm;
5995 mc.from = from;
5996 mc.to = memcg;
5997 mc.flags = move_flags;
5998 spin_unlock(&mc.lock);
5999 /* We set mc.moving_task later */
6000
6001 ret = mem_cgroup_precharge_mc(mm);
6002 if (ret)
6003 mem_cgroup_clear_mc();
6004 } else {
6005 mmput(mm);
6006 }
6007 return ret;
6008 }
6009
6010 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6011 {
6012 if (mc.to)
6013 mem_cgroup_clear_mc();
6014 }
6015
6016 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6017 unsigned long addr, unsigned long end,
6018 struct mm_walk *walk)
6019 {
6020 int ret = 0;
6021 struct vm_area_struct *vma = walk->vma;
6022 pte_t *pte;
6023 spinlock_t *ptl;
6024 enum mc_target_type target_type;
6025 union mc_target target;
6026 struct page *page;
6027
6028 ptl = pmd_trans_huge_lock(pmd, vma);
6029 if (ptl) {
6030 if (mc.precharge < HPAGE_PMD_NR) {
6031 spin_unlock(ptl);
6032 return 0;
6033 }
6034 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6035 if (target_type == MC_TARGET_PAGE) {
6036 page = target.page;
6037 if (!isolate_lru_page(page)) {
6038 if (!mem_cgroup_move_account(page, true,
6039 mc.from, mc.to)) {
6040 mc.precharge -= HPAGE_PMD_NR;
6041 mc.moved_charge += HPAGE_PMD_NR;
6042 }
6043 putback_lru_page(page);
6044 }
6045 put_page(page);
6046 } else if (target_type == MC_TARGET_DEVICE) {
6047 page = target.page;
6048 if (!mem_cgroup_move_account(page, true,
6049 mc.from, mc.to)) {
6050 mc.precharge -= HPAGE_PMD_NR;
6051 mc.moved_charge += HPAGE_PMD_NR;
6052 }
6053 put_page(page);
6054 }
6055 spin_unlock(ptl);
6056 return 0;
6057 }
6058
6059 if (pmd_trans_unstable(pmd))
6060 return 0;
6061 retry:
6062 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6063 for (; addr != end; addr += PAGE_SIZE) {
6064 pte_t ptent = *(pte++);
6065 bool device = false;
6066 swp_entry_t ent;
6067
6068 if (!mc.precharge)
6069 break;
6070
6071 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6072 case MC_TARGET_DEVICE:
6073 device = true;
6074 fallthrough;
6075 case MC_TARGET_PAGE:
6076 page = target.page;
6077 /*
6078 * We can have a part of the split pmd here. Moving it
6079 * can be done but it would be too convoluted so simply
6080 * ignore such a partial THP and keep it in original
6081 * memcg. There should be somebody mapping the head.
6082 */
6083 if (PageTransCompound(page))
6084 goto put;
6085 if (!device && isolate_lru_page(page))
6086 goto put;
6087 if (!mem_cgroup_move_account(page, false,
6088 mc.from, mc.to)) {
6089 mc.precharge--;
6090 /* we uncharge from mc.from later. */
6091 mc.moved_charge++;
6092 }
6093 if (!device)
6094 putback_lru_page(page);
6095 put: /* get_mctgt_type() gets the page */
6096 put_page(page);
6097 break;
6098 case MC_TARGET_SWAP:
6099 ent = target.ent;
6100 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6101 mc.precharge--;
6102 mem_cgroup_id_get_many(mc.to, 1);
6103 /* we fixup other refcnts and charges later. */
6104 mc.moved_swap++;
6105 }
6106 break;
6107 default:
6108 break;
6109 }
6110 }
6111 pte_unmap_unlock(pte - 1, ptl);
6112 cond_resched();
6113
6114 if (addr != end) {
6115 /*
6116 * We have consumed all precharges we got in can_attach().
6117 * We try charge one by one, but don't do any additional
6118 * charges to mc.to if we have failed in charge once in attach()
6119 * phase.
6120 */
6121 ret = mem_cgroup_do_precharge(1);
6122 if (!ret)
6123 goto retry;
6124 }
6125
6126 return ret;
6127 }
6128
6129 static const struct mm_walk_ops charge_walk_ops = {
6130 .pmd_entry = mem_cgroup_move_charge_pte_range,
6131 };
6132
6133 static void mem_cgroup_move_charge(void)
6134 {
6135 lru_add_drain_all();
6136 /*
6137 * Signal lock_page_memcg() to take the memcg's move_lock
6138 * while we're moving its pages to another memcg. Then wait
6139 * for already started RCU-only updates to finish.
6140 */
6141 atomic_inc(&mc.from->moving_account);
6142 synchronize_rcu();
6143 retry:
6144 if (unlikely(!mmap_read_trylock(mc.mm))) {
6145 /*
6146 * Someone who are holding the mmap_lock might be waiting in
6147 * waitq. So we cancel all extra charges, wake up all waiters,
6148 * and retry. Because we cancel precharges, we might not be able
6149 * to move enough charges, but moving charge is a best-effort
6150 * feature anyway, so it wouldn't be a big problem.
6151 */
6152 __mem_cgroup_clear_mc();
6153 cond_resched();
6154 goto retry;
6155 }
6156 /*
6157 * When we have consumed all precharges and failed in doing
6158 * additional charge, the page walk just aborts.
6159 */
6160 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6161 NULL);
6162
6163 mmap_read_unlock(mc.mm);
6164 atomic_dec(&mc.from->moving_account);
6165 }
6166
6167 static void mem_cgroup_move_task(void)
6168 {
6169 if (mc.to) {
6170 mem_cgroup_move_charge();
6171 mem_cgroup_clear_mc();
6172 }
6173 }
6174 #else /* !CONFIG_MMU */
6175 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6176 {
6177 return 0;
6178 }
6179 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6180 {
6181 }
6182 static void mem_cgroup_move_task(void)
6183 {
6184 }
6185 #endif
6186
6187 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6188 {
6189 if (value == PAGE_COUNTER_MAX)
6190 seq_puts(m, "max\n");
6191 else
6192 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6193
6194 return 0;
6195 }
6196
6197 static u64 memory_current_read(struct cgroup_subsys_state *css,
6198 struct cftype *cft)
6199 {
6200 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6201
6202 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6203 }
6204
6205 static int memory_min_show(struct seq_file *m, void *v)
6206 {
6207 return seq_puts_memcg_tunable(m,
6208 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6209 }
6210
6211 static ssize_t memory_min_write(struct kernfs_open_file *of,
6212 char *buf, size_t nbytes, loff_t off)
6213 {
6214 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6215 unsigned long min;
6216 int err;
6217
6218 buf = strstrip(buf);
6219 err = page_counter_memparse(buf, "max", &min);
6220 if (err)
6221 return err;
6222
6223 page_counter_set_min(&memcg->memory, min);
6224
6225 return nbytes;
6226 }
6227
6228 static int memory_low_show(struct seq_file *m, void *v)
6229 {
6230 return seq_puts_memcg_tunable(m,
6231 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6232 }
6233
6234 static ssize_t memory_low_write(struct kernfs_open_file *of,
6235 char *buf, size_t nbytes, loff_t off)
6236 {
6237 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6238 unsigned long low;
6239 int err;
6240
6241 buf = strstrip(buf);
6242 err = page_counter_memparse(buf, "max", &low);
6243 if (err)
6244 return err;
6245
6246 page_counter_set_low(&memcg->memory, low);
6247
6248 return nbytes;
6249 }
6250
6251 static int memory_high_show(struct seq_file *m, void *v)
6252 {
6253 return seq_puts_memcg_tunable(m,
6254 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6255 }
6256
6257 static ssize_t memory_high_write(struct kernfs_open_file *of,
6258 char *buf, size_t nbytes, loff_t off)
6259 {
6260 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6261 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6262 bool drained = false;
6263 unsigned long high;
6264 int err;
6265
6266 buf = strstrip(buf);
6267 err = page_counter_memparse(buf, "max", &high);
6268 if (err)
6269 return err;
6270
6271 page_counter_set_high(&memcg->memory, high);
6272
6273 for (;;) {
6274 unsigned long nr_pages = page_counter_read(&memcg->memory);
6275 unsigned long reclaimed;
6276
6277 if (nr_pages <= high)
6278 break;
6279
6280 if (signal_pending(current))
6281 break;
6282
6283 if (!drained) {
6284 drain_all_stock(memcg);
6285 drained = true;
6286 continue;
6287 }
6288
6289 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6290 GFP_KERNEL, true);
6291
6292 if (!reclaimed && !nr_retries--)
6293 break;
6294 }
6295
6296 memcg_wb_domain_size_changed(memcg);
6297 return nbytes;
6298 }
6299
6300 static int memory_max_show(struct seq_file *m, void *v)
6301 {
6302 return seq_puts_memcg_tunable(m,
6303 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6304 }
6305
6306 static ssize_t memory_max_write(struct kernfs_open_file *of,
6307 char *buf, size_t nbytes, loff_t off)
6308 {
6309 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6310 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6311 bool drained = false;
6312 unsigned long max;
6313 int err;
6314
6315 buf = strstrip(buf);
6316 err = page_counter_memparse(buf, "max", &max);
6317 if (err)
6318 return err;
6319
6320 xchg(&memcg->memory.max, max);
6321
6322 for (;;) {
6323 unsigned long nr_pages = page_counter_read(&memcg->memory);
6324
6325 if (nr_pages <= max)
6326 break;
6327
6328 if (signal_pending(current))
6329 break;
6330
6331 if (!drained) {
6332 drain_all_stock(memcg);
6333 drained = true;
6334 continue;
6335 }
6336
6337 if (nr_reclaims) {
6338 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6339 GFP_KERNEL, true))
6340 nr_reclaims--;
6341 continue;
6342 }
6343
6344 memcg_memory_event(memcg, MEMCG_OOM);
6345 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6346 break;
6347 }
6348
6349 memcg_wb_domain_size_changed(memcg);
6350 return nbytes;
6351 }
6352
6353 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6354 {
6355 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6356 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6357 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6358 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6359 seq_printf(m, "oom_kill %lu\n",
6360 atomic_long_read(&events[MEMCG_OOM_KILL]));
6361 }
6362
6363 static int memory_events_show(struct seq_file *m, void *v)
6364 {
6365 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6366
6367 __memory_events_show(m, memcg->memory_events);
6368 return 0;
6369 }
6370
6371 static int memory_events_local_show(struct seq_file *m, void *v)
6372 {
6373 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6374
6375 __memory_events_show(m, memcg->memory_events_local);
6376 return 0;
6377 }
6378
6379 static int memory_stat_show(struct seq_file *m, void *v)
6380 {
6381 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6382 char *buf;
6383
6384 buf = memory_stat_format(memcg);
6385 if (!buf)
6386 return -ENOMEM;
6387 seq_puts(m, buf);
6388 kfree(buf);
6389 return 0;
6390 }
6391
6392 #ifdef CONFIG_NUMA
6393 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6394 int item)
6395 {
6396 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6397 }
6398
6399 static int memory_numa_stat_show(struct seq_file *m, void *v)
6400 {
6401 int i;
6402 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6403
6404 mem_cgroup_flush_stats();
6405
6406 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6407 int nid;
6408
6409 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6410 continue;
6411
6412 seq_printf(m, "%s", memory_stats[i].name);
6413 for_each_node_state(nid, N_MEMORY) {
6414 u64 size;
6415 struct lruvec *lruvec;
6416
6417 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6418 size = lruvec_page_state_output(lruvec,
6419 memory_stats[i].idx);
6420 seq_printf(m, " N%d=%llu", nid, size);
6421 }
6422 seq_putc(m, '\n');
6423 }
6424
6425 return 0;
6426 }
6427 #endif
6428
6429 static int memory_oom_group_show(struct seq_file *m, void *v)
6430 {
6431 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6432
6433 seq_printf(m, "%d\n", memcg->oom_group);
6434
6435 return 0;
6436 }
6437
6438 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6439 char *buf, size_t nbytes, loff_t off)
6440 {
6441 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6442 int ret, oom_group;
6443
6444 buf = strstrip(buf);
6445 if (!buf)
6446 return -EINVAL;
6447
6448 ret = kstrtoint(buf, 0, &oom_group);
6449 if (ret)
6450 return ret;
6451
6452 if (oom_group != 0 && oom_group != 1)
6453 return -EINVAL;
6454
6455 memcg->oom_group = oom_group;
6456
6457 return nbytes;
6458 }
6459
6460 static struct cftype memory_files[] = {
6461 {
6462 .name = "current",
6463 .flags = CFTYPE_NOT_ON_ROOT,
6464 .read_u64 = memory_current_read,
6465 },
6466 {
6467 .name = "min",
6468 .flags = CFTYPE_NOT_ON_ROOT,
6469 .seq_show = memory_min_show,
6470 .write = memory_min_write,
6471 },
6472 {
6473 .name = "low",
6474 .flags = CFTYPE_NOT_ON_ROOT,
6475 .seq_show = memory_low_show,
6476 .write = memory_low_write,
6477 },
6478 {
6479 .name = "high",
6480 .flags = CFTYPE_NOT_ON_ROOT,
6481 .seq_show = memory_high_show,
6482 .write = memory_high_write,
6483 },
6484 {
6485 .name = "max",
6486 .flags = CFTYPE_NOT_ON_ROOT,
6487 .seq_show = memory_max_show,
6488 .write = memory_max_write,
6489 },
6490 {
6491 .name = "events",
6492 .flags = CFTYPE_NOT_ON_ROOT,
6493 .file_offset = offsetof(struct mem_cgroup, events_file),
6494 .seq_show = memory_events_show,
6495 },
6496 {
6497 .name = "events.local",
6498 .flags = CFTYPE_NOT_ON_ROOT,
6499 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6500 .seq_show = memory_events_local_show,
6501 },
6502 {
6503 .name = "stat",
6504 .seq_show = memory_stat_show,
6505 },
6506 #ifdef CONFIG_NUMA
6507 {
6508 .name = "numa_stat",
6509 .seq_show = memory_numa_stat_show,
6510 },
6511 #endif
6512 {
6513 .name = "oom.group",
6514 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6515 .seq_show = memory_oom_group_show,
6516 .write = memory_oom_group_write,
6517 },
6518 { } /* terminate */
6519 };
6520
6521 struct cgroup_subsys memory_cgrp_subsys = {
6522 .css_alloc = mem_cgroup_css_alloc,
6523 .css_online = mem_cgroup_css_online,
6524 .css_offline = mem_cgroup_css_offline,
6525 .css_released = mem_cgroup_css_released,
6526 .css_free = mem_cgroup_css_free,
6527 .css_reset = mem_cgroup_css_reset,
6528 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6529 .can_attach = mem_cgroup_can_attach,
6530 .cancel_attach = mem_cgroup_cancel_attach,
6531 .post_attach = mem_cgroup_move_task,
6532 .dfl_cftypes = memory_files,
6533 .legacy_cftypes = mem_cgroup_legacy_files,
6534 .early_init = 0,
6535 };
6536
6537 /*
6538 * This function calculates an individual cgroup's effective
6539 * protection which is derived from its own memory.min/low, its
6540 * parent's and siblings' settings, as well as the actual memory
6541 * distribution in the tree.
6542 *
6543 * The following rules apply to the effective protection values:
6544 *
6545 * 1. At the first level of reclaim, effective protection is equal to
6546 * the declared protection in memory.min and memory.low.
6547 *
6548 * 2. To enable safe delegation of the protection configuration, at
6549 * subsequent levels the effective protection is capped to the
6550 * parent's effective protection.
6551 *
6552 * 3. To make complex and dynamic subtrees easier to configure, the
6553 * user is allowed to overcommit the declared protection at a given
6554 * level. If that is the case, the parent's effective protection is
6555 * distributed to the children in proportion to how much protection
6556 * they have declared and how much of it they are utilizing.
6557 *
6558 * This makes distribution proportional, but also work-conserving:
6559 * if one cgroup claims much more protection than it uses memory,
6560 * the unused remainder is available to its siblings.
6561 *
6562 * 4. Conversely, when the declared protection is undercommitted at a
6563 * given level, the distribution of the larger parental protection
6564 * budget is NOT proportional. A cgroup's protection from a sibling
6565 * is capped to its own memory.min/low setting.
6566 *
6567 * 5. However, to allow protecting recursive subtrees from each other
6568 * without having to declare each individual cgroup's fixed share
6569 * of the ancestor's claim to protection, any unutilized -
6570 * "floating" - protection from up the tree is distributed in
6571 * proportion to each cgroup's *usage*. This makes the protection
6572 * neutral wrt sibling cgroups and lets them compete freely over
6573 * the shared parental protection budget, but it protects the
6574 * subtree as a whole from neighboring subtrees.
6575 *
6576 * Note that 4. and 5. are not in conflict: 4. is about protecting
6577 * against immediate siblings whereas 5. is about protecting against
6578 * neighboring subtrees.
6579 */
6580 static unsigned long effective_protection(unsigned long usage,
6581 unsigned long parent_usage,
6582 unsigned long setting,
6583 unsigned long parent_effective,
6584 unsigned long siblings_protected)
6585 {
6586 unsigned long protected;
6587 unsigned long ep;
6588
6589 protected = min(usage, setting);
6590 /*
6591 * If all cgroups at this level combined claim and use more
6592 * protection then what the parent affords them, distribute
6593 * shares in proportion to utilization.
6594 *
6595 * We are using actual utilization rather than the statically
6596 * claimed protection in order to be work-conserving: claimed
6597 * but unused protection is available to siblings that would
6598 * otherwise get a smaller chunk than what they claimed.
6599 */
6600 if (siblings_protected > parent_effective)
6601 return protected * parent_effective / siblings_protected;
6602
6603 /*
6604 * Ok, utilized protection of all children is within what the
6605 * parent affords them, so we know whatever this child claims
6606 * and utilizes is effectively protected.
6607 *
6608 * If there is unprotected usage beyond this value, reclaim
6609 * will apply pressure in proportion to that amount.
6610 *
6611 * If there is unutilized protection, the cgroup will be fully
6612 * shielded from reclaim, but we do return a smaller value for
6613 * protection than what the group could enjoy in theory. This
6614 * is okay. With the overcommit distribution above, effective
6615 * protection is always dependent on how memory is actually
6616 * consumed among the siblings anyway.
6617 */
6618 ep = protected;
6619
6620 /*
6621 * If the children aren't claiming (all of) the protection
6622 * afforded to them by the parent, distribute the remainder in
6623 * proportion to the (unprotected) memory of each cgroup. That
6624 * way, cgroups that aren't explicitly prioritized wrt each
6625 * other compete freely over the allowance, but they are
6626 * collectively protected from neighboring trees.
6627 *
6628 * We're using unprotected memory for the weight so that if
6629 * some cgroups DO claim explicit protection, we don't protect
6630 * the same bytes twice.
6631 *
6632 * Check both usage and parent_usage against the respective
6633 * protected values. One should imply the other, but they
6634 * aren't read atomically - make sure the division is sane.
6635 */
6636 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6637 return ep;
6638 if (parent_effective > siblings_protected &&
6639 parent_usage > siblings_protected &&
6640 usage > protected) {
6641 unsigned long unclaimed;
6642
6643 unclaimed = parent_effective - siblings_protected;
6644 unclaimed *= usage - protected;
6645 unclaimed /= parent_usage - siblings_protected;
6646
6647 ep += unclaimed;
6648 }
6649
6650 return ep;
6651 }
6652
6653 /**
6654 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6655 * @root: the top ancestor of the sub-tree being checked
6656 * @memcg: the memory cgroup to check
6657 *
6658 * WARNING: This function is not stateless! It can only be used as part
6659 * of a top-down tree iteration, not for isolated queries.
6660 */
6661 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6662 struct mem_cgroup *memcg)
6663 {
6664 unsigned long usage, parent_usage;
6665 struct mem_cgroup *parent;
6666
6667 if (mem_cgroup_disabled())
6668 return;
6669
6670 if (!root)
6671 root = root_mem_cgroup;
6672
6673 /*
6674 * Effective values of the reclaim targets are ignored so they
6675 * can be stale. Have a look at mem_cgroup_protection for more
6676 * details.
6677 * TODO: calculation should be more robust so that we do not need
6678 * that special casing.
6679 */
6680 if (memcg == root)
6681 return;
6682
6683 usage = page_counter_read(&memcg->memory);
6684 if (!usage)
6685 return;
6686
6687 parent = parent_mem_cgroup(memcg);
6688 /* No parent means a non-hierarchical mode on v1 memcg */
6689 if (!parent)
6690 return;
6691
6692 if (parent == root) {
6693 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6694 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6695 return;
6696 }
6697
6698 parent_usage = page_counter_read(&parent->memory);
6699
6700 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6701 READ_ONCE(memcg->memory.min),
6702 READ_ONCE(parent->memory.emin),
6703 atomic_long_read(&parent->memory.children_min_usage)));
6704
6705 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6706 READ_ONCE(memcg->memory.low),
6707 READ_ONCE(parent->memory.elow),
6708 atomic_long_read(&parent->memory.children_low_usage)));
6709 }
6710
6711 static int charge_memcg(struct page *page, struct mem_cgroup *memcg, gfp_t gfp)
6712 {
6713 unsigned int nr_pages = thp_nr_pages(page);
6714 int ret;
6715
6716 ret = try_charge(memcg, gfp, nr_pages);
6717 if (ret)
6718 goto out;
6719
6720 css_get(&memcg->css);
6721 commit_charge(page, memcg);
6722
6723 local_irq_disable();
6724 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6725 memcg_check_events(memcg, page);
6726 local_irq_enable();
6727 out:
6728 return ret;
6729 }
6730
6731 /**
6732 * __mem_cgroup_charge - charge a newly allocated page to a cgroup
6733 * @page: page to charge
6734 * @mm: mm context of the victim
6735 * @gfp_mask: reclaim mode
6736 *
6737 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6738 * pages according to @gfp_mask if necessary. if @mm is NULL, try to
6739 * charge to the active memcg.
6740 *
6741 * Do not use this for pages allocated for swapin.
6742 *
6743 * Returns 0 on success. Otherwise, an error code is returned.
6744 */
6745 int __mem_cgroup_charge(struct page *page, struct mm_struct *mm,
6746 gfp_t gfp_mask)
6747 {
6748 struct mem_cgroup *memcg;
6749 int ret;
6750
6751 memcg = get_mem_cgroup_from_mm(mm);
6752 ret = charge_memcg(page, memcg, gfp_mask);
6753 css_put(&memcg->css);
6754
6755 return ret;
6756 }
6757
6758 /**
6759 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6760 * @page: page to charge
6761 * @mm: mm context of the victim
6762 * @gfp: reclaim mode
6763 * @entry: swap entry for which the page is allocated
6764 *
6765 * This function charges a page allocated for swapin. Please call this before
6766 * adding the page to the swapcache.
6767 *
6768 * Returns 0 on success. Otherwise, an error code is returned.
6769 */
6770 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6771 gfp_t gfp, swp_entry_t entry)
6772 {
6773 struct mem_cgroup *memcg;
6774 unsigned short id;
6775 int ret;
6776
6777 if (mem_cgroup_disabled())
6778 return 0;
6779
6780 id = lookup_swap_cgroup_id(entry);
6781 rcu_read_lock();
6782 memcg = mem_cgroup_from_id(id);
6783 if (!memcg || !css_tryget_online(&memcg->css))
6784 memcg = get_mem_cgroup_from_mm(mm);
6785 rcu_read_unlock();
6786
6787 ret = charge_memcg(page, memcg, gfp);
6788
6789 css_put(&memcg->css);
6790 return ret;
6791 }
6792
6793 /*
6794 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6795 * @entry: swap entry for which the page is charged
6796 *
6797 * Call this function after successfully adding the charged page to swapcache.
6798 *
6799 * Note: This function assumes the page for which swap slot is being uncharged
6800 * is order 0 page.
6801 */
6802 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6803 {
6804 /*
6805 * Cgroup1's unified memory+swap counter has been charged with the
6806 * new swapcache page, finish the transfer by uncharging the swap
6807 * slot. The swap slot would also get uncharged when it dies, but
6808 * it can stick around indefinitely and we'd count the page twice
6809 * the entire time.
6810 *
6811 * Cgroup2 has separate resource counters for memory and swap,
6812 * so this is a non-issue here. Memory and swap charge lifetimes
6813 * correspond 1:1 to page and swap slot lifetimes: we charge the
6814 * page to memory here, and uncharge swap when the slot is freed.
6815 */
6816 if (!mem_cgroup_disabled() && do_memsw_account()) {
6817 /*
6818 * The swap entry might not get freed for a long time,
6819 * let's not wait for it. The page already received a
6820 * memory+swap charge, drop the swap entry duplicate.
6821 */
6822 mem_cgroup_uncharge_swap(entry, 1);
6823 }
6824 }
6825
6826 struct uncharge_gather {
6827 struct mem_cgroup *memcg;
6828 unsigned long nr_memory;
6829 unsigned long pgpgout;
6830 unsigned long nr_kmem;
6831 struct page *dummy_page;
6832 };
6833
6834 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6835 {
6836 memset(ug, 0, sizeof(*ug));
6837 }
6838
6839 static void uncharge_batch(const struct uncharge_gather *ug)
6840 {
6841 unsigned long flags;
6842
6843 if (ug->nr_memory) {
6844 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6845 if (do_memsw_account())
6846 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6847 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6848 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6849 memcg_oom_recover(ug->memcg);
6850 }
6851
6852 local_irq_save(flags);
6853 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6854 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6855 memcg_check_events(ug->memcg, ug->dummy_page);
6856 local_irq_restore(flags);
6857
6858 /* drop reference from uncharge_page */
6859 css_put(&ug->memcg->css);
6860 }
6861
6862 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6863 {
6864 unsigned long nr_pages;
6865 struct mem_cgroup *memcg;
6866 struct obj_cgroup *objcg;
6867 bool use_objcg = PageMemcgKmem(page);
6868
6869 VM_BUG_ON_PAGE(PageLRU(page), page);
6870
6871 /*
6872 * Nobody should be changing or seriously looking at
6873 * page memcg or objcg at this point, we have fully
6874 * exclusive access to the page.
6875 */
6876 if (use_objcg) {
6877 objcg = __page_objcg(page);
6878 /*
6879 * This get matches the put at the end of the function and
6880 * kmem pages do not hold memcg references anymore.
6881 */
6882 memcg = get_mem_cgroup_from_objcg(objcg);
6883 } else {
6884 memcg = __page_memcg(page);
6885 }
6886
6887 if (!memcg)
6888 return;
6889
6890 if (ug->memcg != memcg) {
6891 if (ug->memcg) {
6892 uncharge_batch(ug);
6893 uncharge_gather_clear(ug);
6894 }
6895 ug->memcg = memcg;
6896 ug->dummy_page = page;
6897
6898 /* pairs with css_put in uncharge_batch */
6899 css_get(&memcg->css);
6900 }
6901
6902 nr_pages = compound_nr(page);
6903
6904 if (use_objcg) {
6905 ug->nr_memory += nr_pages;
6906 ug->nr_kmem += nr_pages;
6907
6908 page->memcg_data = 0;
6909 obj_cgroup_put(objcg);
6910 } else {
6911 /* LRU pages aren't accounted at the root level */
6912 if (!mem_cgroup_is_root(memcg))
6913 ug->nr_memory += nr_pages;
6914 ug->pgpgout++;
6915
6916 page->memcg_data = 0;
6917 }
6918
6919 css_put(&memcg->css);
6920 }
6921
6922 /**
6923 * __mem_cgroup_uncharge - uncharge a page
6924 * @page: page to uncharge
6925 *
6926 * Uncharge a page previously charged with __mem_cgroup_charge().
6927 */
6928 void __mem_cgroup_uncharge(struct page *page)
6929 {
6930 struct uncharge_gather ug;
6931
6932 /* Don't touch page->lru of any random page, pre-check: */
6933 if (!page_memcg(page))
6934 return;
6935
6936 uncharge_gather_clear(&ug);
6937 uncharge_page(page, &ug);
6938 uncharge_batch(&ug);
6939 }
6940
6941 /**
6942 * __mem_cgroup_uncharge_list - uncharge a list of page
6943 * @page_list: list of pages to uncharge
6944 *
6945 * Uncharge a list of pages previously charged with
6946 * __mem_cgroup_charge().
6947 */
6948 void __mem_cgroup_uncharge_list(struct list_head *page_list)
6949 {
6950 struct uncharge_gather ug;
6951 struct page *page;
6952
6953 uncharge_gather_clear(&ug);
6954 list_for_each_entry(page, page_list, lru)
6955 uncharge_page(page, &ug);
6956 if (ug.memcg)
6957 uncharge_batch(&ug);
6958 }
6959
6960 /**
6961 * mem_cgroup_migrate - charge a page's replacement
6962 * @oldpage: currently circulating page
6963 * @newpage: replacement page
6964 *
6965 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6966 * be uncharged upon free.
6967 *
6968 * Both pages must be locked, @newpage->mapping must be set up.
6969 */
6970 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6971 {
6972 struct mem_cgroup *memcg;
6973 unsigned int nr_pages;
6974 unsigned long flags;
6975
6976 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6977 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6978 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6979 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6980 newpage);
6981
6982 if (mem_cgroup_disabled())
6983 return;
6984
6985 /* Page cache replacement: new page already charged? */
6986 if (page_memcg(newpage))
6987 return;
6988
6989 memcg = page_memcg(oldpage);
6990 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6991 if (!memcg)
6992 return;
6993
6994 /* Force-charge the new page. The old one will be freed soon */
6995 nr_pages = thp_nr_pages(newpage);
6996
6997 if (!mem_cgroup_is_root(memcg)) {
6998 page_counter_charge(&memcg->memory, nr_pages);
6999 if (do_memsw_account())
7000 page_counter_charge(&memcg->memsw, nr_pages);
7001 }
7002
7003 css_get(&memcg->css);
7004 commit_charge(newpage, memcg);
7005
7006 local_irq_save(flags);
7007 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7008 memcg_check_events(memcg, newpage);
7009 local_irq_restore(flags);
7010 }
7011
7012 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7013 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7014
7015 void mem_cgroup_sk_alloc(struct sock *sk)
7016 {
7017 struct mem_cgroup *memcg;
7018
7019 if (!mem_cgroup_sockets_enabled)
7020 return;
7021
7022 /* Do not associate the sock with unrelated interrupted task's memcg. */
7023 if (in_interrupt())
7024 return;
7025
7026 rcu_read_lock();
7027 memcg = mem_cgroup_from_task(current);
7028 if (memcg == root_mem_cgroup)
7029 goto out;
7030 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7031 goto out;
7032 if (css_tryget(&memcg->css))
7033 sk->sk_memcg = memcg;
7034 out:
7035 rcu_read_unlock();
7036 }
7037
7038 void mem_cgroup_sk_free(struct sock *sk)
7039 {
7040 if (sk->sk_memcg)
7041 css_put(&sk->sk_memcg->css);
7042 }
7043
7044 /**
7045 * mem_cgroup_charge_skmem - charge socket memory
7046 * @memcg: memcg to charge
7047 * @nr_pages: number of pages to charge
7048 * @gfp_mask: reclaim mode
7049 *
7050 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7051 * @memcg's configured limit, %false if it doesn't.
7052 */
7053 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7054 gfp_t gfp_mask)
7055 {
7056 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7057 struct page_counter *fail;
7058
7059 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7060 memcg->tcpmem_pressure = 0;
7061 return true;
7062 }
7063 memcg->tcpmem_pressure = 1;
7064 if (gfp_mask & __GFP_NOFAIL) {
7065 page_counter_charge(&memcg->tcpmem, nr_pages);
7066 return true;
7067 }
7068 return false;
7069 }
7070
7071 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7072 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7073 return true;
7074 }
7075
7076 return false;
7077 }
7078
7079 /**
7080 * mem_cgroup_uncharge_skmem - uncharge socket memory
7081 * @memcg: memcg to uncharge
7082 * @nr_pages: number of pages to uncharge
7083 */
7084 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7085 {
7086 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7087 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7088 return;
7089 }
7090
7091 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7092
7093 refill_stock(memcg, nr_pages);
7094 }
7095
7096 static int __init cgroup_memory(char *s)
7097 {
7098 char *token;
7099
7100 while ((token = strsep(&s, ",")) != NULL) {
7101 if (!*token)
7102 continue;
7103 if (!strcmp(token, "nosocket"))
7104 cgroup_memory_nosocket = true;
7105 if (!strcmp(token, "nokmem"))
7106 cgroup_memory_nokmem = true;
7107 }
7108 return 1;
7109 }
7110 __setup("cgroup.memory=", cgroup_memory);
7111
7112 /*
7113 * subsys_initcall() for memory controller.
7114 *
7115 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7116 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7117 * basically everything that doesn't depend on a specific mem_cgroup structure
7118 * should be initialized from here.
7119 */
7120 static int __init mem_cgroup_init(void)
7121 {
7122 int cpu, node;
7123
7124 /*
7125 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7126 * used for per-memcg-per-cpu caching of per-node statistics. In order
7127 * to work fine, we should make sure that the overfill threshold can't
7128 * exceed S32_MAX / PAGE_SIZE.
7129 */
7130 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7131
7132 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7133 memcg_hotplug_cpu_dead);
7134
7135 for_each_possible_cpu(cpu)
7136 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7137 drain_local_stock);
7138
7139 for_each_node(node) {
7140 struct mem_cgroup_tree_per_node *rtpn;
7141
7142 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7143 node_online(node) ? node : NUMA_NO_NODE);
7144
7145 rtpn->rb_root = RB_ROOT;
7146 rtpn->rb_rightmost = NULL;
7147 spin_lock_init(&rtpn->lock);
7148 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7149 }
7150
7151 return 0;
7152 }
7153 subsys_initcall(mem_cgroup_init);
7154
7155 #ifdef CONFIG_MEMCG_SWAP
7156 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7157 {
7158 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7159 /*
7160 * The root cgroup cannot be destroyed, so it's refcount must
7161 * always be >= 1.
7162 */
7163 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7164 VM_BUG_ON(1);
7165 break;
7166 }
7167 memcg = parent_mem_cgroup(memcg);
7168 if (!memcg)
7169 memcg = root_mem_cgroup;
7170 }
7171 return memcg;
7172 }
7173
7174 /**
7175 * mem_cgroup_swapout - transfer a memsw charge to swap
7176 * @page: page whose memsw charge to transfer
7177 * @entry: swap entry to move the charge to
7178 *
7179 * Transfer the memsw charge of @page to @entry.
7180 */
7181 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7182 {
7183 struct mem_cgroup *memcg, *swap_memcg;
7184 unsigned int nr_entries;
7185 unsigned short oldid;
7186
7187 VM_BUG_ON_PAGE(PageLRU(page), page);
7188 VM_BUG_ON_PAGE(page_count(page), page);
7189
7190 if (mem_cgroup_disabled())
7191 return;
7192
7193 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7194 return;
7195
7196 memcg = page_memcg(page);
7197
7198 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7199 if (!memcg)
7200 return;
7201
7202 /*
7203 * In case the memcg owning these pages has been offlined and doesn't
7204 * have an ID allocated to it anymore, charge the closest online
7205 * ancestor for the swap instead and transfer the memory+swap charge.
7206 */
7207 swap_memcg = mem_cgroup_id_get_online(memcg);
7208 nr_entries = thp_nr_pages(page);
7209 /* Get references for the tail pages, too */
7210 if (nr_entries > 1)
7211 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7212 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7213 nr_entries);
7214 VM_BUG_ON_PAGE(oldid, page);
7215 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7216
7217 page->memcg_data = 0;
7218
7219 if (!mem_cgroup_is_root(memcg))
7220 page_counter_uncharge(&memcg->memory, nr_entries);
7221
7222 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7223 if (!mem_cgroup_is_root(swap_memcg))
7224 page_counter_charge(&swap_memcg->memsw, nr_entries);
7225 page_counter_uncharge(&memcg->memsw, nr_entries);
7226 }
7227
7228 /*
7229 * Interrupts should be disabled here because the caller holds the
7230 * i_pages lock which is taken with interrupts-off. It is
7231 * important here to have the interrupts disabled because it is the
7232 * only synchronisation we have for updating the per-CPU variables.
7233 */
7234 VM_BUG_ON(!irqs_disabled());
7235 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7236 memcg_check_events(memcg, page);
7237
7238 css_put(&memcg->css);
7239 }
7240
7241 /**
7242 * __mem_cgroup_try_charge_swap - try charging swap space for a page
7243 * @page: page being added to swap
7244 * @entry: swap entry to charge
7245 *
7246 * Try to charge @page's memcg for the swap space at @entry.
7247 *
7248 * Returns 0 on success, -ENOMEM on failure.
7249 */
7250 int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7251 {
7252 unsigned int nr_pages = thp_nr_pages(page);
7253 struct page_counter *counter;
7254 struct mem_cgroup *memcg;
7255 unsigned short oldid;
7256
7257 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7258 return 0;
7259
7260 memcg = page_memcg(page);
7261
7262 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7263 if (!memcg)
7264 return 0;
7265
7266 if (!entry.val) {
7267 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7268 return 0;
7269 }
7270
7271 memcg = mem_cgroup_id_get_online(memcg);
7272
7273 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7274 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7275 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7276 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7277 mem_cgroup_id_put(memcg);
7278 return -ENOMEM;
7279 }
7280
7281 /* Get references for the tail pages, too */
7282 if (nr_pages > 1)
7283 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7284 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7285 VM_BUG_ON_PAGE(oldid, page);
7286 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7287
7288 return 0;
7289 }
7290
7291 /**
7292 * __mem_cgroup_uncharge_swap - uncharge swap space
7293 * @entry: swap entry to uncharge
7294 * @nr_pages: the amount of swap space to uncharge
7295 */
7296 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7297 {
7298 struct mem_cgroup *memcg;
7299 unsigned short id;
7300
7301 id = swap_cgroup_record(entry, 0, nr_pages);
7302 rcu_read_lock();
7303 memcg = mem_cgroup_from_id(id);
7304 if (memcg) {
7305 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7306 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7307 page_counter_uncharge(&memcg->swap, nr_pages);
7308 else
7309 page_counter_uncharge(&memcg->memsw, nr_pages);
7310 }
7311 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7312 mem_cgroup_id_put_many(memcg, nr_pages);
7313 }
7314 rcu_read_unlock();
7315 }
7316
7317 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7318 {
7319 long nr_swap_pages = get_nr_swap_pages();
7320
7321 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7322 return nr_swap_pages;
7323 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7324 nr_swap_pages = min_t(long, nr_swap_pages,
7325 READ_ONCE(memcg->swap.max) -
7326 page_counter_read(&memcg->swap));
7327 return nr_swap_pages;
7328 }
7329
7330 bool mem_cgroup_swap_full(struct page *page)
7331 {
7332 struct mem_cgroup *memcg;
7333
7334 VM_BUG_ON_PAGE(!PageLocked(page), page);
7335
7336 if (vm_swap_full())
7337 return true;
7338 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7339 return false;
7340
7341 memcg = page_memcg(page);
7342 if (!memcg)
7343 return false;
7344
7345 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7346 unsigned long usage = page_counter_read(&memcg->swap);
7347
7348 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7349 usage * 2 >= READ_ONCE(memcg->swap.max))
7350 return true;
7351 }
7352
7353 return false;
7354 }
7355
7356 static int __init setup_swap_account(char *s)
7357 {
7358 if (!strcmp(s, "1"))
7359 cgroup_memory_noswap = false;
7360 else if (!strcmp(s, "0"))
7361 cgroup_memory_noswap = true;
7362 return 1;
7363 }
7364 __setup("swapaccount=", setup_swap_account);
7365
7366 static u64 swap_current_read(struct cgroup_subsys_state *css,
7367 struct cftype *cft)
7368 {
7369 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7370
7371 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7372 }
7373
7374 static int swap_high_show(struct seq_file *m, void *v)
7375 {
7376 return seq_puts_memcg_tunable(m,
7377 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7378 }
7379
7380 static ssize_t swap_high_write(struct kernfs_open_file *of,
7381 char *buf, size_t nbytes, loff_t off)
7382 {
7383 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7384 unsigned long high;
7385 int err;
7386
7387 buf = strstrip(buf);
7388 err = page_counter_memparse(buf, "max", &high);
7389 if (err)
7390 return err;
7391
7392 page_counter_set_high(&memcg->swap, high);
7393
7394 return nbytes;
7395 }
7396
7397 static int swap_max_show(struct seq_file *m, void *v)
7398 {
7399 return seq_puts_memcg_tunable(m,
7400 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7401 }
7402
7403 static ssize_t swap_max_write(struct kernfs_open_file *of,
7404 char *buf, size_t nbytes, loff_t off)
7405 {
7406 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7407 unsigned long max;
7408 int err;
7409
7410 buf = strstrip(buf);
7411 err = page_counter_memparse(buf, "max", &max);
7412 if (err)
7413 return err;
7414
7415 xchg(&memcg->swap.max, max);
7416
7417 return nbytes;
7418 }
7419
7420 static int swap_events_show(struct seq_file *m, void *v)
7421 {
7422 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7423
7424 seq_printf(m, "high %lu\n",
7425 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7426 seq_printf(m, "max %lu\n",
7427 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7428 seq_printf(m, "fail %lu\n",
7429 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7430
7431 return 0;
7432 }
7433
7434 static struct cftype swap_files[] = {
7435 {
7436 .name = "swap.current",
7437 .flags = CFTYPE_NOT_ON_ROOT,
7438 .read_u64 = swap_current_read,
7439 },
7440 {
7441 .name = "swap.high",
7442 .flags = CFTYPE_NOT_ON_ROOT,
7443 .seq_show = swap_high_show,
7444 .write = swap_high_write,
7445 },
7446 {
7447 .name = "swap.max",
7448 .flags = CFTYPE_NOT_ON_ROOT,
7449 .seq_show = swap_max_show,
7450 .write = swap_max_write,
7451 },
7452 {
7453 .name = "swap.events",
7454 .flags = CFTYPE_NOT_ON_ROOT,
7455 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7456 .seq_show = swap_events_show,
7457 },
7458 { } /* terminate */
7459 };
7460
7461 static struct cftype memsw_files[] = {
7462 {
7463 .name = "memsw.usage_in_bytes",
7464 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7465 .read_u64 = mem_cgroup_read_u64,
7466 },
7467 {
7468 .name = "memsw.max_usage_in_bytes",
7469 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7470 .write = mem_cgroup_reset,
7471 .read_u64 = mem_cgroup_read_u64,
7472 },
7473 {
7474 .name = "memsw.limit_in_bytes",
7475 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7476 .write = mem_cgroup_write,
7477 .read_u64 = mem_cgroup_read_u64,
7478 },
7479 {
7480 .name = "memsw.failcnt",
7481 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7482 .write = mem_cgroup_reset,
7483 .read_u64 = mem_cgroup_read_u64,
7484 },
7485 { }, /* terminate */
7486 };
7487
7488 /*
7489 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7490 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7491 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7492 * boot parameter. This may result in premature OOPS inside
7493 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7494 */
7495 static int __init mem_cgroup_swap_init(void)
7496 {
7497 /* No memory control -> no swap control */
7498 if (mem_cgroup_disabled())
7499 cgroup_memory_noswap = true;
7500
7501 if (cgroup_memory_noswap)
7502 return 0;
7503
7504 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7505 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7506
7507 return 0;
7508 }
7509 core_initcall(mem_cgroup_swap_init);
7510
7511 #endif /* CONFIG_MEMCG_SWAP */