]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memcontrol.c
8d9ceea7fe4d09fb4b3f348457b73c680815037a
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66
67 #include <linux/uaccess.h>
68
69 #include <trace/events/vmscan.h>
70
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75
76 /* Socket memory accounting disabled? */
77 static bool cgroup_memory_nosocket;
78
79 /* Kernel memory accounting disabled? */
80 static bool cgroup_memory_nokmem;
81
82 /* Whether the swap controller is active */
83 #ifdef CONFIG_MEMCG_SWAP
84 bool cgroup_memory_noswap __read_mostly;
85 #else
86 #define cgroup_memory_noswap 1
87 #endif
88
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
91 #endif
92
93 /* Whether legacy memory+swap accounting is active */
94 static bool do_memsw_account(void)
95 {
96 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
97 }
98
99 #define THRESHOLDS_EVENTS_TARGET 128
100 #define SOFTLIMIT_EVENTS_TARGET 1024
101
102 /*
103 * Cgroups above their limits are maintained in a RB-Tree, independent of
104 * their hierarchy representation
105 */
106
107 struct mem_cgroup_tree_per_node {
108 struct rb_root rb_root;
109 struct rb_node *rb_rightmost;
110 spinlock_t lock;
111 };
112
113 struct mem_cgroup_tree {
114 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
115 };
116
117 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
118
119 /* for OOM */
120 struct mem_cgroup_eventfd_list {
121 struct list_head list;
122 struct eventfd_ctx *eventfd;
123 };
124
125 /*
126 * cgroup_event represents events which userspace want to receive.
127 */
128 struct mem_cgroup_event {
129 /*
130 * memcg which the event belongs to.
131 */
132 struct mem_cgroup *memcg;
133 /*
134 * eventfd to signal userspace about the event.
135 */
136 struct eventfd_ctx *eventfd;
137 /*
138 * Each of these stored in a list by the cgroup.
139 */
140 struct list_head list;
141 /*
142 * register_event() callback will be used to add new userspace
143 * waiter for changes related to this event. Use eventfd_signal()
144 * on eventfd to send notification to userspace.
145 */
146 int (*register_event)(struct mem_cgroup *memcg,
147 struct eventfd_ctx *eventfd, const char *args);
148 /*
149 * unregister_event() callback will be called when userspace closes
150 * the eventfd or on cgroup removing. This callback must be set,
151 * if you want provide notification functionality.
152 */
153 void (*unregister_event)(struct mem_cgroup *memcg,
154 struct eventfd_ctx *eventfd);
155 /*
156 * All fields below needed to unregister event when
157 * userspace closes eventfd.
158 */
159 poll_table pt;
160 wait_queue_head_t *wqh;
161 wait_queue_entry_t wait;
162 struct work_struct remove;
163 };
164
165 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
166 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
167
168 /* Stuffs for move charges at task migration. */
169 /*
170 * Types of charges to be moved.
171 */
172 #define MOVE_ANON 0x1U
173 #define MOVE_FILE 0x2U
174 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
175
176 /* "mc" and its members are protected by cgroup_mutex */
177 static struct move_charge_struct {
178 spinlock_t lock; /* for from, to */
179 struct mm_struct *mm;
180 struct mem_cgroup *from;
181 struct mem_cgroup *to;
182 unsigned long flags;
183 unsigned long precharge;
184 unsigned long moved_charge;
185 unsigned long moved_swap;
186 struct task_struct *moving_task; /* a task moving charges */
187 wait_queue_head_t waitq; /* a waitq for other context */
188 } mc = {
189 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
190 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
191 };
192
193 /*
194 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
195 * limit reclaim to prevent infinite loops, if they ever occur.
196 */
197 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
198 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
199
200 enum charge_type {
201 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
202 MEM_CGROUP_CHARGE_TYPE_ANON,
203 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
204 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
205 NR_CHARGE_TYPE,
206 };
207
208 /* for encoding cft->private value on file */
209 enum res_type {
210 _MEM,
211 _MEMSWAP,
212 _OOM_TYPE,
213 _KMEM,
214 _TCP,
215 };
216
217 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
218 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
219 #define MEMFILE_ATTR(val) ((val) & 0xffff)
220 /* Used for OOM nofiier */
221 #define OOM_CONTROL (0)
222
223 /*
224 * Iteration constructs for visiting all cgroups (under a tree). If
225 * loops are exited prematurely (break), mem_cgroup_iter_break() must
226 * be used for reference counting.
227 */
228 #define for_each_mem_cgroup_tree(iter, root) \
229 for (iter = mem_cgroup_iter(root, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(root, iter, NULL))
232
233 #define for_each_mem_cgroup(iter) \
234 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
235 iter != NULL; \
236 iter = mem_cgroup_iter(NULL, iter, NULL))
237
238 static inline bool should_force_charge(void)
239 {
240 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
241 (current->flags & PF_EXITING);
242 }
243
244 /* Some nice accessors for the vmpressure. */
245 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
246 {
247 if (!memcg)
248 memcg = root_mem_cgroup;
249 return &memcg->vmpressure;
250 }
251
252 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
253 {
254 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
255 }
256
257 #ifdef CONFIG_MEMCG_KMEM
258 extern spinlock_t css_set_lock;
259
260 static void obj_cgroup_release(struct percpu_ref *ref)
261 {
262 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
263 struct mem_cgroup *memcg;
264 unsigned int nr_bytes;
265 unsigned int nr_pages;
266 unsigned long flags;
267
268 /*
269 * At this point all allocated objects are freed, and
270 * objcg->nr_charged_bytes can't have an arbitrary byte value.
271 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
272 *
273 * The following sequence can lead to it:
274 * 1) CPU0: objcg == stock->cached_objcg
275 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
276 * PAGE_SIZE bytes are charged
277 * 3) CPU1: a process from another memcg is allocating something,
278 * the stock if flushed,
279 * objcg->nr_charged_bytes = PAGE_SIZE - 92
280 * 5) CPU0: we do release this object,
281 * 92 bytes are added to stock->nr_bytes
282 * 6) CPU0: stock is flushed,
283 * 92 bytes are added to objcg->nr_charged_bytes
284 *
285 * In the result, nr_charged_bytes == PAGE_SIZE.
286 * This page will be uncharged in obj_cgroup_release().
287 */
288 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
289 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
290 nr_pages = nr_bytes >> PAGE_SHIFT;
291
292 spin_lock_irqsave(&css_set_lock, flags);
293 memcg = obj_cgroup_memcg(objcg);
294 if (nr_pages)
295 __memcg_kmem_uncharge(memcg, nr_pages);
296 list_del(&objcg->list);
297 mem_cgroup_put(memcg);
298 spin_unlock_irqrestore(&css_set_lock, flags);
299
300 percpu_ref_exit(ref);
301 kfree_rcu(objcg, rcu);
302 }
303
304 static struct obj_cgroup *obj_cgroup_alloc(void)
305 {
306 struct obj_cgroup *objcg;
307 int ret;
308
309 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
310 if (!objcg)
311 return NULL;
312
313 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
314 GFP_KERNEL);
315 if (ret) {
316 kfree(objcg);
317 return NULL;
318 }
319 INIT_LIST_HEAD(&objcg->list);
320 return objcg;
321 }
322
323 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
324 struct mem_cgroup *parent)
325 {
326 struct obj_cgroup *objcg, *iter;
327
328 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
329
330 spin_lock_irq(&css_set_lock);
331
332 /* Move active objcg to the parent's list */
333 xchg(&objcg->memcg, parent);
334 css_get(&parent->css);
335 list_add(&objcg->list, &parent->objcg_list);
336
337 /* Move already reparented objcgs to the parent's list */
338 list_for_each_entry(iter, &memcg->objcg_list, list) {
339 css_get(&parent->css);
340 xchg(&iter->memcg, parent);
341 css_put(&memcg->css);
342 }
343 list_splice(&memcg->objcg_list, &parent->objcg_list);
344
345 spin_unlock_irq(&css_set_lock);
346
347 percpu_ref_kill(&objcg->refcnt);
348 }
349
350 /*
351 * This will be used as a shrinker list's index.
352 * The main reason for not using cgroup id for this:
353 * this works better in sparse environments, where we have a lot of memcgs,
354 * but only a few kmem-limited. Or also, if we have, for instance, 200
355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
356 * 200 entry array for that.
357 *
358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
359 * will double each time we have to increase it.
360 */
361 static DEFINE_IDA(memcg_cache_ida);
362 int memcg_nr_cache_ids;
363
364 /* Protects memcg_nr_cache_ids */
365 static DECLARE_RWSEM(memcg_cache_ids_sem);
366
367 void memcg_get_cache_ids(void)
368 {
369 down_read(&memcg_cache_ids_sem);
370 }
371
372 void memcg_put_cache_ids(void)
373 {
374 up_read(&memcg_cache_ids_sem);
375 }
376
377 /*
378 * MIN_SIZE is different than 1, because we would like to avoid going through
379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
380 * cgroups is a reasonable guess. In the future, it could be a parameter or
381 * tunable, but that is strictly not necessary.
382 *
383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384 * this constant directly from cgroup, but it is understandable that this is
385 * better kept as an internal representation in cgroup.c. In any case, the
386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
387 * increase ours as well if it increases.
388 */
389 #define MEMCG_CACHES_MIN_SIZE 4
390 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391
392 /*
393 * A lot of the calls to the cache allocation functions are expected to be
394 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
395 * conditional to this static branch, we'll have to allow modules that does
396 * kmem_cache_alloc and the such to see this symbol as well
397 */
398 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
399 EXPORT_SYMBOL(memcg_kmem_enabled_key);
400 #endif
401
402 static int memcg_shrinker_map_size;
403 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
404
405 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
406 {
407 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
408 }
409
410 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
411 int size, int old_size)
412 {
413 struct memcg_shrinker_map *new, *old;
414 int nid;
415
416 lockdep_assert_held(&memcg_shrinker_map_mutex);
417
418 for_each_node(nid) {
419 old = rcu_dereference_protected(
420 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
421 /* Not yet online memcg */
422 if (!old)
423 return 0;
424
425 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
426 if (!new)
427 return -ENOMEM;
428
429 /* Set all old bits, clear all new bits */
430 memset(new->map, (int)0xff, old_size);
431 memset((void *)new->map + old_size, 0, size - old_size);
432
433 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
434 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
435 }
436
437 return 0;
438 }
439
440 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
441 {
442 struct mem_cgroup_per_node *pn;
443 struct memcg_shrinker_map *map;
444 int nid;
445
446 if (mem_cgroup_is_root(memcg))
447 return;
448
449 for_each_node(nid) {
450 pn = mem_cgroup_nodeinfo(memcg, nid);
451 map = rcu_dereference_protected(pn->shrinker_map, true);
452 if (map)
453 kvfree(map);
454 rcu_assign_pointer(pn->shrinker_map, NULL);
455 }
456 }
457
458 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
459 {
460 struct memcg_shrinker_map *map;
461 int nid, size, ret = 0;
462
463 if (mem_cgroup_is_root(memcg))
464 return 0;
465
466 mutex_lock(&memcg_shrinker_map_mutex);
467 size = memcg_shrinker_map_size;
468 for_each_node(nid) {
469 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
470 if (!map) {
471 memcg_free_shrinker_maps(memcg);
472 ret = -ENOMEM;
473 break;
474 }
475 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
476 }
477 mutex_unlock(&memcg_shrinker_map_mutex);
478
479 return ret;
480 }
481
482 int memcg_expand_shrinker_maps(int new_id)
483 {
484 int size, old_size, ret = 0;
485 struct mem_cgroup *memcg;
486
487 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
488 old_size = memcg_shrinker_map_size;
489 if (size <= old_size)
490 return 0;
491
492 mutex_lock(&memcg_shrinker_map_mutex);
493 if (!root_mem_cgroup)
494 goto unlock;
495
496 for_each_mem_cgroup(memcg) {
497 if (mem_cgroup_is_root(memcg))
498 continue;
499 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
500 if (ret) {
501 mem_cgroup_iter_break(NULL, memcg);
502 goto unlock;
503 }
504 }
505 unlock:
506 if (!ret)
507 memcg_shrinker_map_size = size;
508 mutex_unlock(&memcg_shrinker_map_mutex);
509 return ret;
510 }
511
512 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
513 {
514 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
515 struct memcg_shrinker_map *map;
516
517 rcu_read_lock();
518 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
519 /* Pairs with smp mb in shrink_slab() */
520 smp_mb__before_atomic();
521 set_bit(shrinker_id, map->map);
522 rcu_read_unlock();
523 }
524 }
525
526 /**
527 * mem_cgroup_css_from_page - css of the memcg associated with a page
528 * @page: page of interest
529 *
530 * If memcg is bound to the default hierarchy, css of the memcg associated
531 * with @page is returned. The returned css remains associated with @page
532 * until it is released.
533 *
534 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
535 * is returned.
536 */
537 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
538 {
539 struct mem_cgroup *memcg;
540
541 memcg = page->mem_cgroup;
542
543 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
544 memcg = root_mem_cgroup;
545
546 return &memcg->css;
547 }
548
549 /**
550 * page_cgroup_ino - return inode number of the memcg a page is charged to
551 * @page: the page
552 *
553 * Look up the closest online ancestor of the memory cgroup @page is charged to
554 * and return its inode number or 0 if @page is not charged to any cgroup. It
555 * is safe to call this function without holding a reference to @page.
556 *
557 * Note, this function is inherently racy, because there is nothing to prevent
558 * the cgroup inode from getting torn down and potentially reallocated a moment
559 * after page_cgroup_ino() returns, so it only should be used by callers that
560 * do not care (such as procfs interfaces).
561 */
562 ino_t page_cgroup_ino(struct page *page)
563 {
564 struct mem_cgroup *memcg;
565 unsigned long ino = 0;
566
567 rcu_read_lock();
568 memcg = page->mem_cgroup;
569
570 /*
571 * The lowest bit set means that memcg isn't a valid
572 * memcg pointer, but a obj_cgroups pointer.
573 * In this case the page is shared and doesn't belong
574 * to any specific memory cgroup.
575 */
576 if ((unsigned long) memcg & 0x1UL)
577 memcg = NULL;
578
579 while (memcg && !(memcg->css.flags & CSS_ONLINE))
580 memcg = parent_mem_cgroup(memcg);
581 if (memcg)
582 ino = cgroup_ino(memcg->css.cgroup);
583 rcu_read_unlock();
584 return ino;
585 }
586
587 static struct mem_cgroup_per_node *
588 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
589 {
590 int nid = page_to_nid(page);
591
592 return memcg->nodeinfo[nid];
593 }
594
595 static struct mem_cgroup_tree_per_node *
596 soft_limit_tree_node(int nid)
597 {
598 return soft_limit_tree.rb_tree_per_node[nid];
599 }
600
601 static struct mem_cgroup_tree_per_node *
602 soft_limit_tree_from_page(struct page *page)
603 {
604 int nid = page_to_nid(page);
605
606 return soft_limit_tree.rb_tree_per_node[nid];
607 }
608
609 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
610 struct mem_cgroup_tree_per_node *mctz,
611 unsigned long new_usage_in_excess)
612 {
613 struct rb_node **p = &mctz->rb_root.rb_node;
614 struct rb_node *parent = NULL;
615 struct mem_cgroup_per_node *mz_node;
616 bool rightmost = true;
617
618 if (mz->on_tree)
619 return;
620
621 mz->usage_in_excess = new_usage_in_excess;
622 if (!mz->usage_in_excess)
623 return;
624 while (*p) {
625 parent = *p;
626 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
627 tree_node);
628 if (mz->usage_in_excess < mz_node->usage_in_excess) {
629 p = &(*p)->rb_left;
630 rightmost = false;
631 }
632
633 /*
634 * We can't avoid mem cgroups that are over their soft
635 * limit by the same amount
636 */
637 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
638 p = &(*p)->rb_right;
639 }
640
641 if (rightmost)
642 mctz->rb_rightmost = &mz->tree_node;
643
644 rb_link_node(&mz->tree_node, parent, p);
645 rb_insert_color(&mz->tree_node, &mctz->rb_root);
646 mz->on_tree = true;
647 }
648
649 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
650 struct mem_cgroup_tree_per_node *mctz)
651 {
652 if (!mz->on_tree)
653 return;
654
655 if (&mz->tree_node == mctz->rb_rightmost)
656 mctz->rb_rightmost = rb_prev(&mz->tree_node);
657
658 rb_erase(&mz->tree_node, &mctz->rb_root);
659 mz->on_tree = false;
660 }
661
662 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
663 struct mem_cgroup_tree_per_node *mctz)
664 {
665 unsigned long flags;
666
667 spin_lock_irqsave(&mctz->lock, flags);
668 __mem_cgroup_remove_exceeded(mz, mctz);
669 spin_unlock_irqrestore(&mctz->lock, flags);
670 }
671
672 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
673 {
674 unsigned long nr_pages = page_counter_read(&memcg->memory);
675 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
676 unsigned long excess = 0;
677
678 if (nr_pages > soft_limit)
679 excess = nr_pages - soft_limit;
680
681 return excess;
682 }
683
684 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
685 {
686 unsigned long excess;
687 struct mem_cgroup_per_node *mz;
688 struct mem_cgroup_tree_per_node *mctz;
689
690 mctz = soft_limit_tree_from_page(page);
691 if (!mctz)
692 return;
693 /*
694 * Necessary to update all ancestors when hierarchy is used.
695 * because their event counter is not touched.
696 */
697 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
698 mz = mem_cgroup_page_nodeinfo(memcg, page);
699 excess = soft_limit_excess(memcg);
700 /*
701 * We have to update the tree if mz is on RB-tree or
702 * mem is over its softlimit.
703 */
704 if (excess || mz->on_tree) {
705 unsigned long flags;
706
707 spin_lock_irqsave(&mctz->lock, flags);
708 /* if on-tree, remove it */
709 if (mz->on_tree)
710 __mem_cgroup_remove_exceeded(mz, mctz);
711 /*
712 * Insert again. mz->usage_in_excess will be updated.
713 * If excess is 0, no tree ops.
714 */
715 __mem_cgroup_insert_exceeded(mz, mctz, excess);
716 spin_unlock_irqrestore(&mctz->lock, flags);
717 }
718 }
719 }
720
721 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
722 {
723 struct mem_cgroup_tree_per_node *mctz;
724 struct mem_cgroup_per_node *mz;
725 int nid;
726
727 for_each_node(nid) {
728 mz = mem_cgroup_nodeinfo(memcg, nid);
729 mctz = soft_limit_tree_node(nid);
730 if (mctz)
731 mem_cgroup_remove_exceeded(mz, mctz);
732 }
733 }
734
735 static struct mem_cgroup_per_node *
736 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
737 {
738 struct mem_cgroup_per_node *mz;
739
740 retry:
741 mz = NULL;
742 if (!mctz->rb_rightmost)
743 goto done; /* Nothing to reclaim from */
744
745 mz = rb_entry(mctz->rb_rightmost,
746 struct mem_cgroup_per_node, tree_node);
747 /*
748 * Remove the node now but someone else can add it back,
749 * we will to add it back at the end of reclaim to its correct
750 * position in the tree.
751 */
752 __mem_cgroup_remove_exceeded(mz, mctz);
753 if (!soft_limit_excess(mz->memcg) ||
754 !css_tryget(&mz->memcg->css))
755 goto retry;
756 done:
757 return mz;
758 }
759
760 static struct mem_cgroup_per_node *
761 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
762 {
763 struct mem_cgroup_per_node *mz;
764
765 spin_lock_irq(&mctz->lock);
766 mz = __mem_cgroup_largest_soft_limit_node(mctz);
767 spin_unlock_irq(&mctz->lock);
768 return mz;
769 }
770
771 /**
772 * __mod_memcg_state - update cgroup memory statistics
773 * @memcg: the memory cgroup
774 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
775 * @val: delta to add to the counter, can be negative
776 */
777 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
778 {
779 long x, threshold = MEMCG_CHARGE_BATCH;
780
781 if (mem_cgroup_disabled())
782 return;
783
784 if (vmstat_item_in_bytes(idx))
785 threshold <<= PAGE_SHIFT;
786
787 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
788 if (unlikely(abs(x) > threshold)) {
789 struct mem_cgroup *mi;
790
791 /*
792 * Batch local counters to keep them in sync with
793 * the hierarchical ones.
794 */
795 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
796 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
797 atomic_long_add(x, &mi->vmstats[idx]);
798 x = 0;
799 }
800 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
801 }
802
803 static struct mem_cgroup_per_node *
804 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
805 {
806 struct mem_cgroup *parent;
807
808 parent = parent_mem_cgroup(pn->memcg);
809 if (!parent)
810 return NULL;
811 return mem_cgroup_nodeinfo(parent, nid);
812 }
813
814 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
815 int val)
816 {
817 struct mem_cgroup_per_node *pn;
818 struct mem_cgroup *memcg;
819 long x, threshold = MEMCG_CHARGE_BATCH;
820
821 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
822 memcg = pn->memcg;
823
824 /* Update memcg */
825 __mod_memcg_state(memcg, idx, val);
826
827 /* Update lruvec */
828 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
829
830 if (vmstat_item_in_bytes(idx))
831 threshold <<= PAGE_SHIFT;
832
833 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
834 if (unlikely(abs(x) > threshold)) {
835 pg_data_t *pgdat = lruvec_pgdat(lruvec);
836 struct mem_cgroup_per_node *pi;
837
838 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
839 atomic_long_add(x, &pi->lruvec_stat[idx]);
840 x = 0;
841 }
842 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
843 }
844
845 /**
846 * __mod_lruvec_state - update lruvec memory statistics
847 * @lruvec: the lruvec
848 * @idx: the stat item
849 * @val: delta to add to the counter, can be negative
850 *
851 * The lruvec is the intersection of the NUMA node and a cgroup. This
852 * function updates the all three counters that are affected by a
853 * change of state at this level: per-node, per-cgroup, per-lruvec.
854 */
855 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
856 int val)
857 {
858 /* Update node */
859 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
860
861 /* Update memcg and lruvec */
862 if (!mem_cgroup_disabled())
863 __mod_memcg_lruvec_state(lruvec, idx, val);
864 }
865
866 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
867 {
868 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
869 struct mem_cgroup *memcg;
870 struct lruvec *lruvec;
871
872 rcu_read_lock();
873 memcg = mem_cgroup_from_obj(p);
874
875 /* Untracked pages have no memcg, no lruvec. Update only the node */
876 if (!memcg || memcg == root_mem_cgroup) {
877 __mod_node_page_state(pgdat, idx, val);
878 } else {
879 lruvec = mem_cgroup_lruvec(memcg, pgdat);
880 __mod_lruvec_state(lruvec, idx, val);
881 }
882 rcu_read_unlock();
883 }
884
885 void mod_memcg_obj_state(void *p, int idx, int val)
886 {
887 struct mem_cgroup *memcg;
888
889 rcu_read_lock();
890 memcg = mem_cgroup_from_obj(p);
891 if (memcg)
892 mod_memcg_state(memcg, idx, val);
893 rcu_read_unlock();
894 }
895
896 /**
897 * __count_memcg_events - account VM events in a cgroup
898 * @memcg: the memory cgroup
899 * @idx: the event item
900 * @count: the number of events that occured
901 */
902 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
903 unsigned long count)
904 {
905 unsigned long x;
906
907 if (mem_cgroup_disabled())
908 return;
909
910 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
911 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
912 struct mem_cgroup *mi;
913
914 /*
915 * Batch local counters to keep them in sync with
916 * the hierarchical ones.
917 */
918 __this_cpu_add(memcg->vmstats_local->events[idx], x);
919 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
920 atomic_long_add(x, &mi->vmevents[idx]);
921 x = 0;
922 }
923 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
924 }
925
926 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
927 {
928 return atomic_long_read(&memcg->vmevents[event]);
929 }
930
931 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
932 {
933 long x = 0;
934 int cpu;
935
936 for_each_possible_cpu(cpu)
937 x += per_cpu(memcg->vmstats_local->events[event], cpu);
938 return x;
939 }
940
941 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
942 struct page *page,
943 int nr_pages)
944 {
945 /* pagein of a big page is an event. So, ignore page size */
946 if (nr_pages > 0)
947 __count_memcg_events(memcg, PGPGIN, 1);
948 else {
949 __count_memcg_events(memcg, PGPGOUT, 1);
950 nr_pages = -nr_pages; /* for event */
951 }
952
953 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
954 }
955
956 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
957 enum mem_cgroup_events_target target)
958 {
959 unsigned long val, next;
960
961 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
962 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
963 /* from time_after() in jiffies.h */
964 if ((long)(next - val) < 0) {
965 switch (target) {
966 case MEM_CGROUP_TARGET_THRESH:
967 next = val + THRESHOLDS_EVENTS_TARGET;
968 break;
969 case MEM_CGROUP_TARGET_SOFTLIMIT:
970 next = val + SOFTLIMIT_EVENTS_TARGET;
971 break;
972 default:
973 break;
974 }
975 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
976 return true;
977 }
978 return false;
979 }
980
981 /*
982 * Check events in order.
983 *
984 */
985 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
986 {
987 /* threshold event is triggered in finer grain than soft limit */
988 if (unlikely(mem_cgroup_event_ratelimit(memcg,
989 MEM_CGROUP_TARGET_THRESH))) {
990 bool do_softlimit;
991
992 do_softlimit = mem_cgroup_event_ratelimit(memcg,
993 MEM_CGROUP_TARGET_SOFTLIMIT);
994 mem_cgroup_threshold(memcg);
995 if (unlikely(do_softlimit))
996 mem_cgroup_update_tree(memcg, page);
997 }
998 }
999
1000 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1001 {
1002 /*
1003 * mm_update_next_owner() may clear mm->owner to NULL
1004 * if it races with swapoff, page migration, etc.
1005 * So this can be called with p == NULL.
1006 */
1007 if (unlikely(!p))
1008 return NULL;
1009
1010 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1011 }
1012 EXPORT_SYMBOL(mem_cgroup_from_task);
1013
1014 /**
1015 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1016 * @mm: mm from which memcg should be extracted. It can be NULL.
1017 *
1018 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1019 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1020 * returned.
1021 */
1022 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1023 {
1024 struct mem_cgroup *memcg;
1025
1026 if (mem_cgroup_disabled())
1027 return NULL;
1028
1029 rcu_read_lock();
1030 do {
1031 /*
1032 * Page cache insertions can happen withou an
1033 * actual mm context, e.g. during disk probing
1034 * on boot, loopback IO, acct() writes etc.
1035 */
1036 if (unlikely(!mm))
1037 memcg = root_mem_cgroup;
1038 else {
1039 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1040 if (unlikely(!memcg))
1041 memcg = root_mem_cgroup;
1042 }
1043 } while (!css_tryget(&memcg->css));
1044 rcu_read_unlock();
1045 return memcg;
1046 }
1047 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1048
1049 /**
1050 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1051 * @page: page from which memcg should be extracted.
1052 *
1053 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1054 * root_mem_cgroup is returned.
1055 */
1056 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1057 {
1058 struct mem_cgroup *memcg = page->mem_cgroup;
1059
1060 if (mem_cgroup_disabled())
1061 return NULL;
1062
1063 rcu_read_lock();
1064 /* Page should not get uncharged and freed memcg under us. */
1065 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1066 memcg = root_mem_cgroup;
1067 rcu_read_unlock();
1068 return memcg;
1069 }
1070 EXPORT_SYMBOL(get_mem_cgroup_from_page);
1071
1072 /**
1073 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
1074 */
1075 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1076 {
1077 if (unlikely(current->active_memcg)) {
1078 struct mem_cgroup *memcg;
1079
1080 rcu_read_lock();
1081 /* current->active_memcg must hold a ref. */
1082 if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
1083 memcg = root_mem_cgroup;
1084 else
1085 memcg = current->active_memcg;
1086 rcu_read_unlock();
1087 return memcg;
1088 }
1089 return get_mem_cgroup_from_mm(current->mm);
1090 }
1091
1092 /**
1093 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1094 * @root: hierarchy root
1095 * @prev: previously returned memcg, NULL on first invocation
1096 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1097 *
1098 * Returns references to children of the hierarchy below @root, or
1099 * @root itself, or %NULL after a full round-trip.
1100 *
1101 * Caller must pass the return value in @prev on subsequent
1102 * invocations for reference counting, or use mem_cgroup_iter_break()
1103 * to cancel a hierarchy walk before the round-trip is complete.
1104 *
1105 * Reclaimers can specify a node and a priority level in @reclaim to
1106 * divide up the memcgs in the hierarchy among all concurrent
1107 * reclaimers operating on the same node and priority.
1108 */
1109 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1110 struct mem_cgroup *prev,
1111 struct mem_cgroup_reclaim_cookie *reclaim)
1112 {
1113 struct mem_cgroup_reclaim_iter *iter;
1114 struct cgroup_subsys_state *css = NULL;
1115 struct mem_cgroup *memcg = NULL;
1116 struct mem_cgroup *pos = NULL;
1117
1118 if (mem_cgroup_disabled())
1119 return NULL;
1120
1121 if (!root)
1122 root = root_mem_cgroup;
1123
1124 if (prev && !reclaim)
1125 pos = prev;
1126
1127 if (!root->use_hierarchy && root != root_mem_cgroup) {
1128 if (prev)
1129 goto out;
1130 return root;
1131 }
1132
1133 rcu_read_lock();
1134
1135 if (reclaim) {
1136 struct mem_cgroup_per_node *mz;
1137
1138 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1139 iter = &mz->iter;
1140
1141 if (prev && reclaim->generation != iter->generation)
1142 goto out_unlock;
1143
1144 while (1) {
1145 pos = READ_ONCE(iter->position);
1146 if (!pos || css_tryget(&pos->css))
1147 break;
1148 /*
1149 * css reference reached zero, so iter->position will
1150 * be cleared by ->css_released. However, we should not
1151 * rely on this happening soon, because ->css_released
1152 * is called from a work queue, and by busy-waiting we
1153 * might block it. So we clear iter->position right
1154 * away.
1155 */
1156 (void)cmpxchg(&iter->position, pos, NULL);
1157 }
1158 }
1159
1160 if (pos)
1161 css = &pos->css;
1162
1163 for (;;) {
1164 css = css_next_descendant_pre(css, &root->css);
1165 if (!css) {
1166 /*
1167 * Reclaimers share the hierarchy walk, and a
1168 * new one might jump in right at the end of
1169 * the hierarchy - make sure they see at least
1170 * one group and restart from the beginning.
1171 */
1172 if (!prev)
1173 continue;
1174 break;
1175 }
1176
1177 /*
1178 * Verify the css and acquire a reference. The root
1179 * is provided by the caller, so we know it's alive
1180 * and kicking, and don't take an extra reference.
1181 */
1182 memcg = mem_cgroup_from_css(css);
1183
1184 if (css == &root->css)
1185 break;
1186
1187 if (css_tryget(css))
1188 break;
1189
1190 memcg = NULL;
1191 }
1192
1193 if (reclaim) {
1194 /*
1195 * The position could have already been updated by a competing
1196 * thread, so check that the value hasn't changed since we read
1197 * it to avoid reclaiming from the same cgroup twice.
1198 */
1199 (void)cmpxchg(&iter->position, pos, memcg);
1200
1201 if (pos)
1202 css_put(&pos->css);
1203
1204 if (!memcg)
1205 iter->generation++;
1206 else if (!prev)
1207 reclaim->generation = iter->generation;
1208 }
1209
1210 out_unlock:
1211 rcu_read_unlock();
1212 out:
1213 if (prev && prev != root)
1214 css_put(&prev->css);
1215
1216 return memcg;
1217 }
1218
1219 /**
1220 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1221 * @root: hierarchy root
1222 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1223 */
1224 void mem_cgroup_iter_break(struct mem_cgroup *root,
1225 struct mem_cgroup *prev)
1226 {
1227 if (!root)
1228 root = root_mem_cgroup;
1229 if (prev && prev != root)
1230 css_put(&prev->css);
1231 }
1232
1233 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1234 struct mem_cgroup *dead_memcg)
1235 {
1236 struct mem_cgroup_reclaim_iter *iter;
1237 struct mem_cgroup_per_node *mz;
1238 int nid;
1239
1240 for_each_node(nid) {
1241 mz = mem_cgroup_nodeinfo(from, nid);
1242 iter = &mz->iter;
1243 cmpxchg(&iter->position, dead_memcg, NULL);
1244 }
1245 }
1246
1247 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1248 {
1249 struct mem_cgroup *memcg = dead_memcg;
1250 struct mem_cgroup *last;
1251
1252 do {
1253 __invalidate_reclaim_iterators(memcg, dead_memcg);
1254 last = memcg;
1255 } while ((memcg = parent_mem_cgroup(memcg)));
1256
1257 /*
1258 * When cgruop1 non-hierarchy mode is used,
1259 * parent_mem_cgroup() does not walk all the way up to the
1260 * cgroup root (root_mem_cgroup). So we have to handle
1261 * dead_memcg from cgroup root separately.
1262 */
1263 if (last != root_mem_cgroup)
1264 __invalidate_reclaim_iterators(root_mem_cgroup,
1265 dead_memcg);
1266 }
1267
1268 /**
1269 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1270 * @memcg: hierarchy root
1271 * @fn: function to call for each task
1272 * @arg: argument passed to @fn
1273 *
1274 * This function iterates over tasks attached to @memcg or to any of its
1275 * descendants and calls @fn for each task. If @fn returns a non-zero
1276 * value, the function breaks the iteration loop and returns the value.
1277 * Otherwise, it will iterate over all tasks and return 0.
1278 *
1279 * This function must not be called for the root memory cgroup.
1280 */
1281 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1282 int (*fn)(struct task_struct *, void *), void *arg)
1283 {
1284 struct mem_cgroup *iter;
1285 int ret = 0;
1286
1287 BUG_ON(memcg == root_mem_cgroup);
1288
1289 for_each_mem_cgroup_tree(iter, memcg) {
1290 struct css_task_iter it;
1291 struct task_struct *task;
1292
1293 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1294 while (!ret && (task = css_task_iter_next(&it)))
1295 ret = fn(task, arg);
1296 css_task_iter_end(&it);
1297 if (ret) {
1298 mem_cgroup_iter_break(memcg, iter);
1299 break;
1300 }
1301 }
1302 return ret;
1303 }
1304
1305 /**
1306 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1307 * @page: the page
1308 * @pgdat: pgdat of the page
1309 *
1310 * This function relies on page->mem_cgroup being stable - see the
1311 * access rules in commit_charge().
1312 */
1313 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1314 {
1315 struct mem_cgroup_per_node *mz;
1316 struct mem_cgroup *memcg;
1317 struct lruvec *lruvec;
1318
1319 if (mem_cgroup_disabled()) {
1320 lruvec = &pgdat->__lruvec;
1321 goto out;
1322 }
1323
1324 memcg = page->mem_cgroup;
1325 /*
1326 * Swapcache readahead pages are added to the LRU - and
1327 * possibly migrated - before they are charged.
1328 */
1329 if (!memcg)
1330 memcg = root_mem_cgroup;
1331
1332 mz = mem_cgroup_page_nodeinfo(memcg, page);
1333 lruvec = &mz->lruvec;
1334 out:
1335 /*
1336 * Since a node can be onlined after the mem_cgroup was created,
1337 * we have to be prepared to initialize lruvec->zone here;
1338 * and if offlined then reonlined, we need to reinitialize it.
1339 */
1340 if (unlikely(lruvec->pgdat != pgdat))
1341 lruvec->pgdat = pgdat;
1342 return lruvec;
1343 }
1344
1345 /**
1346 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1347 * @lruvec: mem_cgroup per zone lru vector
1348 * @lru: index of lru list the page is sitting on
1349 * @zid: zone id of the accounted pages
1350 * @nr_pages: positive when adding or negative when removing
1351 *
1352 * This function must be called under lru_lock, just before a page is added
1353 * to or just after a page is removed from an lru list (that ordering being
1354 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1355 */
1356 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1357 int zid, int nr_pages)
1358 {
1359 struct mem_cgroup_per_node *mz;
1360 unsigned long *lru_size;
1361 long size;
1362
1363 if (mem_cgroup_disabled())
1364 return;
1365
1366 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1367 lru_size = &mz->lru_zone_size[zid][lru];
1368
1369 if (nr_pages < 0)
1370 *lru_size += nr_pages;
1371
1372 size = *lru_size;
1373 if (WARN_ONCE(size < 0,
1374 "%s(%p, %d, %d): lru_size %ld\n",
1375 __func__, lruvec, lru, nr_pages, size)) {
1376 VM_BUG_ON(1);
1377 *lru_size = 0;
1378 }
1379
1380 if (nr_pages > 0)
1381 *lru_size += nr_pages;
1382 }
1383
1384 /**
1385 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1386 * @memcg: the memory cgroup
1387 *
1388 * Returns the maximum amount of memory @mem can be charged with, in
1389 * pages.
1390 */
1391 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1392 {
1393 unsigned long margin = 0;
1394 unsigned long count;
1395 unsigned long limit;
1396
1397 count = page_counter_read(&memcg->memory);
1398 limit = READ_ONCE(memcg->memory.max);
1399 if (count < limit)
1400 margin = limit - count;
1401
1402 if (do_memsw_account()) {
1403 count = page_counter_read(&memcg->memsw);
1404 limit = READ_ONCE(memcg->memsw.max);
1405 if (count < limit)
1406 margin = min(margin, limit - count);
1407 else
1408 margin = 0;
1409 }
1410
1411 return margin;
1412 }
1413
1414 /*
1415 * A routine for checking "mem" is under move_account() or not.
1416 *
1417 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1418 * moving cgroups. This is for waiting at high-memory pressure
1419 * caused by "move".
1420 */
1421 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1422 {
1423 struct mem_cgroup *from;
1424 struct mem_cgroup *to;
1425 bool ret = false;
1426 /*
1427 * Unlike task_move routines, we access mc.to, mc.from not under
1428 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1429 */
1430 spin_lock(&mc.lock);
1431 from = mc.from;
1432 to = mc.to;
1433 if (!from)
1434 goto unlock;
1435
1436 ret = mem_cgroup_is_descendant(from, memcg) ||
1437 mem_cgroup_is_descendant(to, memcg);
1438 unlock:
1439 spin_unlock(&mc.lock);
1440 return ret;
1441 }
1442
1443 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1444 {
1445 if (mc.moving_task && current != mc.moving_task) {
1446 if (mem_cgroup_under_move(memcg)) {
1447 DEFINE_WAIT(wait);
1448 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1449 /* moving charge context might have finished. */
1450 if (mc.moving_task)
1451 schedule();
1452 finish_wait(&mc.waitq, &wait);
1453 return true;
1454 }
1455 }
1456 return false;
1457 }
1458
1459 static char *memory_stat_format(struct mem_cgroup *memcg)
1460 {
1461 struct seq_buf s;
1462 int i;
1463
1464 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1465 if (!s.buffer)
1466 return NULL;
1467
1468 /*
1469 * Provide statistics on the state of the memory subsystem as
1470 * well as cumulative event counters that show past behavior.
1471 *
1472 * This list is ordered following a combination of these gradients:
1473 * 1) generic big picture -> specifics and details
1474 * 2) reflecting userspace activity -> reflecting kernel heuristics
1475 *
1476 * Current memory state:
1477 */
1478
1479 seq_buf_printf(&s, "anon %llu\n",
1480 (u64)memcg_page_state(memcg, NR_ANON_MAPPED) *
1481 PAGE_SIZE);
1482 seq_buf_printf(&s, "file %llu\n",
1483 (u64)memcg_page_state(memcg, NR_FILE_PAGES) *
1484 PAGE_SIZE);
1485 seq_buf_printf(&s, "kernel_stack %llu\n",
1486 (u64)memcg_page_state(memcg, NR_KERNEL_STACK_KB) *
1487 1024);
1488 seq_buf_printf(&s, "slab %llu\n",
1489 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1490 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B)));
1491 seq_buf_printf(&s, "sock %llu\n",
1492 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1493 PAGE_SIZE);
1494
1495 seq_buf_printf(&s, "shmem %llu\n",
1496 (u64)memcg_page_state(memcg, NR_SHMEM) *
1497 PAGE_SIZE);
1498 seq_buf_printf(&s, "file_mapped %llu\n",
1499 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1500 PAGE_SIZE);
1501 seq_buf_printf(&s, "file_dirty %llu\n",
1502 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1503 PAGE_SIZE);
1504 seq_buf_printf(&s, "file_writeback %llu\n",
1505 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1506 PAGE_SIZE);
1507
1508 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1509 seq_buf_printf(&s, "anon_thp %llu\n",
1510 (u64)memcg_page_state(memcg, NR_ANON_THPS) *
1511 HPAGE_PMD_SIZE);
1512 #endif
1513
1514 for (i = 0; i < NR_LRU_LISTS; i++)
1515 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1516 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1517 PAGE_SIZE);
1518
1519 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1520 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B));
1521 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1522 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B));
1523
1524 /* Accumulated memory events */
1525
1526 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1527 memcg_events(memcg, PGFAULT));
1528 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1529 memcg_events(memcg, PGMAJFAULT));
1530
1531 seq_buf_printf(&s, "workingset_refault %lu\n",
1532 memcg_page_state(memcg, WORKINGSET_REFAULT));
1533 seq_buf_printf(&s, "workingset_activate %lu\n",
1534 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1535 seq_buf_printf(&s, "workingset_restore %lu\n",
1536 memcg_page_state(memcg, WORKINGSET_RESTORE));
1537 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1538 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1539
1540 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1541 memcg_events(memcg, PGREFILL));
1542 seq_buf_printf(&s, "pgscan %lu\n",
1543 memcg_events(memcg, PGSCAN_KSWAPD) +
1544 memcg_events(memcg, PGSCAN_DIRECT));
1545 seq_buf_printf(&s, "pgsteal %lu\n",
1546 memcg_events(memcg, PGSTEAL_KSWAPD) +
1547 memcg_events(memcg, PGSTEAL_DIRECT));
1548 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1549 memcg_events(memcg, PGACTIVATE));
1550 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1551 memcg_events(memcg, PGDEACTIVATE));
1552 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1553 memcg_events(memcg, PGLAZYFREE));
1554 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1555 memcg_events(memcg, PGLAZYFREED));
1556
1557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1558 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1559 memcg_events(memcg, THP_FAULT_ALLOC));
1560 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1561 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1562 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1563
1564 /* The above should easily fit into one page */
1565 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1566
1567 return s.buffer;
1568 }
1569
1570 #define K(x) ((x) << (PAGE_SHIFT-10))
1571 /**
1572 * mem_cgroup_print_oom_context: Print OOM information relevant to
1573 * memory controller.
1574 * @memcg: The memory cgroup that went over limit
1575 * @p: Task that is going to be killed
1576 *
1577 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1578 * enabled
1579 */
1580 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1581 {
1582 rcu_read_lock();
1583
1584 if (memcg) {
1585 pr_cont(",oom_memcg=");
1586 pr_cont_cgroup_path(memcg->css.cgroup);
1587 } else
1588 pr_cont(",global_oom");
1589 if (p) {
1590 pr_cont(",task_memcg=");
1591 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1592 }
1593 rcu_read_unlock();
1594 }
1595
1596 /**
1597 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1598 * memory controller.
1599 * @memcg: The memory cgroup that went over limit
1600 */
1601 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1602 {
1603 char *buf;
1604
1605 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1606 K((u64)page_counter_read(&memcg->memory)),
1607 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1608 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1609 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1610 K((u64)page_counter_read(&memcg->swap)),
1611 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1612 else {
1613 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1614 K((u64)page_counter_read(&memcg->memsw)),
1615 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1616 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1617 K((u64)page_counter_read(&memcg->kmem)),
1618 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1619 }
1620
1621 pr_info("Memory cgroup stats for ");
1622 pr_cont_cgroup_path(memcg->css.cgroup);
1623 pr_cont(":");
1624 buf = memory_stat_format(memcg);
1625 if (!buf)
1626 return;
1627 pr_info("%s", buf);
1628 kfree(buf);
1629 }
1630
1631 /*
1632 * Return the memory (and swap, if configured) limit for a memcg.
1633 */
1634 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1635 {
1636 unsigned long max;
1637
1638 max = READ_ONCE(memcg->memory.max);
1639 if (mem_cgroup_swappiness(memcg)) {
1640 unsigned long memsw_max;
1641 unsigned long swap_max;
1642
1643 memsw_max = memcg->memsw.max;
1644 swap_max = READ_ONCE(memcg->swap.max);
1645 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1646 max = min(max + swap_max, memsw_max);
1647 }
1648 return max;
1649 }
1650
1651 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1652 {
1653 return page_counter_read(&memcg->memory);
1654 }
1655
1656 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1657 int order)
1658 {
1659 struct oom_control oc = {
1660 .zonelist = NULL,
1661 .nodemask = NULL,
1662 .memcg = memcg,
1663 .gfp_mask = gfp_mask,
1664 .order = order,
1665 };
1666 bool ret = true;
1667
1668 if (mutex_lock_killable(&oom_lock))
1669 return true;
1670
1671 if (mem_cgroup_margin(memcg) >= (1 << order))
1672 goto unlock;
1673
1674 /*
1675 * A few threads which were not waiting at mutex_lock_killable() can
1676 * fail to bail out. Therefore, check again after holding oom_lock.
1677 */
1678 ret = should_force_charge() || out_of_memory(&oc);
1679
1680 unlock:
1681 mutex_unlock(&oom_lock);
1682 return ret;
1683 }
1684
1685 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1686 pg_data_t *pgdat,
1687 gfp_t gfp_mask,
1688 unsigned long *total_scanned)
1689 {
1690 struct mem_cgroup *victim = NULL;
1691 int total = 0;
1692 int loop = 0;
1693 unsigned long excess;
1694 unsigned long nr_scanned;
1695 struct mem_cgroup_reclaim_cookie reclaim = {
1696 .pgdat = pgdat,
1697 };
1698
1699 excess = soft_limit_excess(root_memcg);
1700
1701 while (1) {
1702 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1703 if (!victim) {
1704 loop++;
1705 if (loop >= 2) {
1706 /*
1707 * If we have not been able to reclaim
1708 * anything, it might because there are
1709 * no reclaimable pages under this hierarchy
1710 */
1711 if (!total)
1712 break;
1713 /*
1714 * We want to do more targeted reclaim.
1715 * excess >> 2 is not to excessive so as to
1716 * reclaim too much, nor too less that we keep
1717 * coming back to reclaim from this cgroup
1718 */
1719 if (total >= (excess >> 2) ||
1720 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1721 break;
1722 }
1723 continue;
1724 }
1725 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1726 pgdat, &nr_scanned);
1727 *total_scanned += nr_scanned;
1728 if (!soft_limit_excess(root_memcg))
1729 break;
1730 }
1731 mem_cgroup_iter_break(root_memcg, victim);
1732 return total;
1733 }
1734
1735 #ifdef CONFIG_LOCKDEP
1736 static struct lockdep_map memcg_oom_lock_dep_map = {
1737 .name = "memcg_oom_lock",
1738 };
1739 #endif
1740
1741 static DEFINE_SPINLOCK(memcg_oom_lock);
1742
1743 /*
1744 * Check OOM-Killer is already running under our hierarchy.
1745 * If someone is running, return false.
1746 */
1747 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1748 {
1749 struct mem_cgroup *iter, *failed = NULL;
1750
1751 spin_lock(&memcg_oom_lock);
1752
1753 for_each_mem_cgroup_tree(iter, memcg) {
1754 if (iter->oom_lock) {
1755 /*
1756 * this subtree of our hierarchy is already locked
1757 * so we cannot give a lock.
1758 */
1759 failed = iter;
1760 mem_cgroup_iter_break(memcg, iter);
1761 break;
1762 } else
1763 iter->oom_lock = true;
1764 }
1765
1766 if (failed) {
1767 /*
1768 * OK, we failed to lock the whole subtree so we have
1769 * to clean up what we set up to the failing subtree
1770 */
1771 for_each_mem_cgroup_tree(iter, memcg) {
1772 if (iter == failed) {
1773 mem_cgroup_iter_break(memcg, iter);
1774 break;
1775 }
1776 iter->oom_lock = false;
1777 }
1778 } else
1779 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1780
1781 spin_unlock(&memcg_oom_lock);
1782
1783 return !failed;
1784 }
1785
1786 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1787 {
1788 struct mem_cgroup *iter;
1789
1790 spin_lock(&memcg_oom_lock);
1791 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1792 for_each_mem_cgroup_tree(iter, memcg)
1793 iter->oom_lock = false;
1794 spin_unlock(&memcg_oom_lock);
1795 }
1796
1797 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1798 {
1799 struct mem_cgroup *iter;
1800
1801 spin_lock(&memcg_oom_lock);
1802 for_each_mem_cgroup_tree(iter, memcg)
1803 iter->under_oom++;
1804 spin_unlock(&memcg_oom_lock);
1805 }
1806
1807 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1808 {
1809 struct mem_cgroup *iter;
1810
1811 /*
1812 * When a new child is created while the hierarchy is under oom,
1813 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1814 */
1815 spin_lock(&memcg_oom_lock);
1816 for_each_mem_cgroup_tree(iter, memcg)
1817 if (iter->under_oom > 0)
1818 iter->under_oom--;
1819 spin_unlock(&memcg_oom_lock);
1820 }
1821
1822 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1823
1824 struct oom_wait_info {
1825 struct mem_cgroup *memcg;
1826 wait_queue_entry_t wait;
1827 };
1828
1829 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1830 unsigned mode, int sync, void *arg)
1831 {
1832 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1833 struct mem_cgroup *oom_wait_memcg;
1834 struct oom_wait_info *oom_wait_info;
1835
1836 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1837 oom_wait_memcg = oom_wait_info->memcg;
1838
1839 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1840 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1841 return 0;
1842 return autoremove_wake_function(wait, mode, sync, arg);
1843 }
1844
1845 static void memcg_oom_recover(struct mem_cgroup *memcg)
1846 {
1847 /*
1848 * For the following lockless ->under_oom test, the only required
1849 * guarantee is that it must see the state asserted by an OOM when
1850 * this function is called as a result of userland actions
1851 * triggered by the notification of the OOM. This is trivially
1852 * achieved by invoking mem_cgroup_mark_under_oom() before
1853 * triggering notification.
1854 */
1855 if (memcg && memcg->under_oom)
1856 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1857 }
1858
1859 enum oom_status {
1860 OOM_SUCCESS,
1861 OOM_FAILED,
1862 OOM_ASYNC,
1863 OOM_SKIPPED
1864 };
1865
1866 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1867 {
1868 enum oom_status ret;
1869 bool locked;
1870
1871 if (order > PAGE_ALLOC_COSTLY_ORDER)
1872 return OOM_SKIPPED;
1873
1874 memcg_memory_event(memcg, MEMCG_OOM);
1875
1876 /*
1877 * We are in the middle of the charge context here, so we
1878 * don't want to block when potentially sitting on a callstack
1879 * that holds all kinds of filesystem and mm locks.
1880 *
1881 * cgroup1 allows disabling the OOM killer and waiting for outside
1882 * handling until the charge can succeed; remember the context and put
1883 * the task to sleep at the end of the page fault when all locks are
1884 * released.
1885 *
1886 * On the other hand, in-kernel OOM killer allows for an async victim
1887 * memory reclaim (oom_reaper) and that means that we are not solely
1888 * relying on the oom victim to make a forward progress and we can
1889 * invoke the oom killer here.
1890 *
1891 * Please note that mem_cgroup_out_of_memory might fail to find a
1892 * victim and then we have to bail out from the charge path.
1893 */
1894 if (memcg->oom_kill_disable) {
1895 if (!current->in_user_fault)
1896 return OOM_SKIPPED;
1897 css_get(&memcg->css);
1898 current->memcg_in_oom = memcg;
1899 current->memcg_oom_gfp_mask = mask;
1900 current->memcg_oom_order = order;
1901
1902 return OOM_ASYNC;
1903 }
1904
1905 mem_cgroup_mark_under_oom(memcg);
1906
1907 locked = mem_cgroup_oom_trylock(memcg);
1908
1909 if (locked)
1910 mem_cgroup_oom_notify(memcg);
1911
1912 mem_cgroup_unmark_under_oom(memcg);
1913 if (mem_cgroup_out_of_memory(memcg, mask, order))
1914 ret = OOM_SUCCESS;
1915 else
1916 ret = OOM_FAILED;
1917
1918 if (locked)
1919 mem_cgroup_oom_unlock(memcg);
1920
1921 return ret;
1922 }
1923
1924 /**
1925 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1926 * @handle: actually kill/wait or just clean up the OOM state
1927 *
1928 * This has to be called at the end of a page fault if the memcg OOM
1929 * handler was enabled.
1930 *
1931 * Memcg supports userspace OOM handling where failed allocations must
1932 * sleep on a waitqueue until the userspace task resolves the
1933 * situation. Sleeping directly in the charge context with all kinds
1934 * of locks held is not a good idea, instead we remember an OOM state
1935 * in the task and mem_cgroup_oom_synchronize() has to be called at
1936 * the end of the page fault to complete the OOM handling.
1937 *
1938 * Returns %true if an ongoing memcg OOM situation was detected and
1939 * completed, %false otherwise.
1940 */
1941 bool mem_cgroup_oom_synchronize(bool handle)
1942 {
1943 struct mem_cgroup *memcg = current->memcg_in_oom;
1944 struct oom_wait_info owait;
1945 bool locked;
1946
1947 /* OOM is global, do not handle */
1948 if (!memcg)
1949 return false;
1950
1951 if (!handle)
1952 goto cleanup;
1953
1954 owait.memcg = memcg;
1955 owait.wait.flags = 0;
1956 owait.wait.func = memcg_oom_wake_function;
1957 owait.wait.private = current;
1958 INIT_LIST_HEAD(&owait.wait.entry);
1959
1960 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1961 mem_cgroup_mark_under_oom(memcg);
1962
1963 locked = mem_cgroup_oom_trylock(memcg);
1964
1965 if (locked)
1966 mem_cgroup_oom_notify(memcg);
1967
1968 if (locked && !memcg->oom_kill_disable) {
1969 mem_cgroup_unmark_under_oom(memcg);
1970 finish_wait(&memcg_oom_waitq, &owait.wait);
1971 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1972 current->memcg_oom_order);
1973 } else {
1974 schedule();
1975 mem_cgroup_unmark_under_oom(memcg);
1976 finish_wait(&memcg_oom_waitq, &owait.wait);
1977 }
1978
1979 if (locked) {
1980 mem_cgroup_oom_unlock(memcg);
1981 /*
1982 * There is no guarantee that an OOM-lock contender
1983 * sees the wakeups triggered by the OOM kill
1984 * uncharges. Wake any sleepers explicitely.
1985 */
1986 memcg_oom_recover(memcg);
1987 }
1988 cleanup:
1989 current->memcg_in_oom = NULL;
1990 css_put(&memcg->css);
1991 return true;
1992 }
1993
1994 /**
1995 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1996 * @victim: task to be killed by the OOM killer
1997 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1998 *
1999 * Returns a pointer to a memory cgroup, which has to be cleaned up
2000 * by killing all belonging OOM-killable tasks.
2001 *
2002 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2003 */
2004 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2005 struct mem_cgroup *oom_domain)
2006 {
2007 struct mem_cgroup *oom_group = NULL;
2008 struct mem_cgroup *memcg;
2009
2010 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2011 return NULL;
2012
2013 if (!oom_domain)
2014 oom_domain = root_mem_cgroup;
2015
2016 rcu_read_lock();
2017
2018 memcg = mem_cgroup_from_task(victim);
2019 if (memcg == root_mem_cgroup)
2020 goto out;
2021
2022 /*
2023 * If the victim task has been asynchronously moved to a different
2024 * memory cgroup, we might end up killing tasks outside oom_domain.
2025 * In this case it's better to ignore memory.group.oom.
2026 */
2027 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2028 goto out;
2029
2030 /*
2031 * Traverse the memory cgroup hierarchy from the victim task's
2032 * cgroup up to the OOMing cgroup (or root) to find the
2033 * highest-level memory cgroup with oom.group set.
2034 */
2035 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2036 if (memcg->oom_group)
2037 oom_group = memcg;
2038
2039 if (memcg == oom_domain)
2040 break;
2041 }
2042
2043 if (oom_group)
2044 css_get(&oom_group->css);
2045 out:
2046 rcu_read_unlock();
2047
2048 return oom_group;
2049 }
2050
2051 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2052 {
2053 pr_info("Tasks in ");
2054 pr_cont_cgroup_path(memcg->css.cgroup);
2055 pr_cont(" are going to be killed due to memory.oom.group set\n");
2056 }
2057
2058 /**
2059 * lock_page_memcg - lock a page->mem_cgroup binding
2060 * @page: the page
2061 *
2062 * This function protects unlocked LRU pages from being moved to
2063 * another cgroup.
2064 *
2065 * It ensures lifetime of the returned memcg. Caller is responsible
2066 * for the lifetime of the page; __unlock_page_memcg() is available
2067 * when @page might get freed inside the locked section.
2068 */
2069 struct mem_cgroup *lock_page_memcg(struct page *page)
2070 {
2071 struct page *head = compound_head(page); /* rmap on tail pages */
2072 struct mem_cgroup *memcg;
2073 unsigned long flags;
2074
2075 /*
2076 * The RCU lock is held throughout the transaction. The fast
2077 * path can get away without acquiring the memcg->move_lock
2078 * because page moving starts with an RCU grace period.
2079 *
2080 * The RCU lock also protects the memcg from being freed when
2081 * the page state that is going to change is the only thing
2082 * preventing the page itself from being freed. E.g. writeback
2083 * doesn't hold a page reference and relies on PG_writeback to
2084 * keep off truncation, migration and so forth.
2085 */
2086 rcu_read_lock();
2087
2088 if (mem_cgroup_disabled())
2089 return NULL;
2090 again:
2091 memcg = head->mem_cgroup;
2092 if (unlikely(!memcg))
2093 return NULL;
2094
2095 if (atomic_read(&memcg->moving_account) <= 0)
2096 return memcg;
2097
2098 spin_lock_irqsave(&memcg->move_lock, flags);
2099 if (memcg != head->mem_cgroup) {
2100 spin_unlock_irqrestore(&memcg->move_lock, flags);
2101 goto again;
2102 }
2103
2104 /*
2105 * When charge migration first begins, we can have locked and
2106 * unlocked page stat updates happening concurrently. Track
2107 * the task who has the lock for unlock_page_memcg().
2108 */
2109 memcg->move_lock_task = current;
2110 memcg->move_lock_flags = flags;
2111
2112 return memcg;
2113 }
2114 EXPORT_SYMBOL(lock_page_memcg);
2115
2116 /**
2117 * __unlock_page_memcg - unlock and unpin a memcg
2118 * @memcg: the memcg
2119 *
2120 * Unlock and unpin a memcg returned by lock_page_memcg().
2121 */
2122 void __unlock_page_memcg(struct mem_cgroup *memcg)
2123 {
2124 if (memcg && memcg->move_lock_task == current) {
2125 unsigned long flags = memcg->move_lock_flags;
2126
2127 memcg->move_lock_task = NULL;
2128 memcg->move_lock_flags = 0;
2129
2130 spin_unlock_irqrestore(&memcg->move_lock, flags);
2131 }
2132
2133 rcu_read_unlock();
2134 }
2135
2136 /**
2137 * unlock_page_memcg - unlock a page->mem_cgroup binding
2138 * @page: the page
2139 */
2140 void unlock_page_memcg(struct page *page)
2141 {
2142 struct page *head = compound_head(page);
2143
2144 __unlock_page_memcg(head->mem_cgroup);
2145 }
2146 EXPORT_SYMBOL(unlock_page_memcg);
2147
2148 struct memcg_stock_pcp {
2149 struct mem_cgroup *cached; /* this never be root cgroup */
2150 unsigned int nr_pages;
2151
2152 #ifdef CONFIG_MEMCG_KMEM
2153 struct obj_cgroup *cached_objcg;
2154 unsigned int nr_bytes;
2155 #endif
2156
2157 struct work_struct work;
2158 unsigned long flags;
2159 #define FLUSHING_CACHED_CHARGE 0
2160 };
2161 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2162 static DEFINE_MUTEX(percpu_charge_mutex);
2163
2164 #ifdef CONFIG_MEMCG_KMEM
2165 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2166 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2167 struct mem_cgroup *root_memcg);
2168
2169 #else
2170 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2171 {
2172 }
2173 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2174 struct mem_cgroup *root_memcg)
2175 {
2176 return false;
2177 }
2178 #endif
2179
2180 /**
2181 * consume_stock: Try to consume stocked charge on this cpu.
2182 * @memcg: memcg to consume from.
2183 * @nr_pages: how many pages to charge.
2184 *
2185 * The charges will only happen if @memcg matches the current cpu's memcg
2186 * stock, and at least @nr_pages are available in that stock. Failure to
2187 * service an allocation will refill the stock.
2188 *
2189 * returns true if successful, false otherwise.
2190 */
2191 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2192 {
2193 struct memcg_stock_pcp *stock;
2194 unsigned long flags;
2195 bool ret = false;
2196
2197 if (nr_pages > MEMCG_CHARGE_BATCH)
2198 return ret;
2199
2200 local_irq_save(flags);
2201
2202 stock = this_cpu_ptr(&memcg_stock);
2203 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2204 stock->nr_pages -= nr_pages;
2205 ret = true;
2206 }
2207
2208 local_irq_restore(flags);
2209
2210 return ret;
2211 }
2212
2213 /*
2214 * Returns stocks cached in percpu and reset cached information.
2215 */
2216 static void drain_stock(struct memcg_stock_pcp *stock)
2217 {
2218 struct mem_cgroup *old = stock->cached;
2219
2220 if (!old)
2221 return;
2222
2223 if (stock->nr_pages) {
2224 page_counter_uncharge(&old->memory, stock->nr_pages);
2225 if (do_memsw_account())
2226 page_counter_uncharge(&old->memsw, stock->nr_pages);
2227 stock->nr_pages = 0;
2228 }
2229
2230 css_put(&old->css);
2231 stock->cached = NULL;
2232 }
2233
2234 static void drain_local_stock(struct work_struct *dummy)
2235 {
2236 struct memcg_stock_pcp *stock;
2237 unsigned long flags;
2238
2239 /*
2240 * The only protection from memory hotplug vs. drain_stock races is
2241 * that we always operate on local CPU stock here with IRQ disabled
2242 */
2243 local_irq_save(flags);
2244
2245 stock = this_cpu_ptr(&memcg_stock);
2246 drain_obj_stock(stock);
2247 drain_stock(stock);
2248 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2249
2250 local_irq_restore(flags);
2251 }
2252
2253 /*
2254 * Cache charges(val) to local per_cpu area.
2255 * This will be consumed by consume_stock() function, later.
2256 */
2257 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2258 {
2259 struct memcg_stock_pcp *stock;
2260 unsigned long flags;
2261
2262 local_irq_save(flags);
2263
2264 stock = this_cpu_ptr(&memcg_stock);
2265 if (stock->cached != memcg) { /* reset if necessary */
2266 drain_stock(stock);
2267 css_get(&memcg->css);
2268 stock->cached = memcg;
2269 }
2270 stock->nr_pages += nr_pages;
2271
2272 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2273 drain_stock(stock);
2274
2275 local_irq_restore(flags);
2276 }
2277
2278 /*
2279 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2280 * of the hierarchy under it.
2281 */
2282 static void drain_all_stock(struct mem_cgroup *root_memcg)
2283 {
2284 int cpu, curcpu;
2285
2286 /* If someone's already draining, avoid adding running more workers. */
2287 if (!mutex_trylock(&percpu_charge_mutex))
2288 return;
2289 /*
2290 * Notify other cpus that system-wide "drain" is running
2291 * We do not care about races with the cpu hotplug because cpu down
2292 * as well as workers from this path always operate on the local
2293 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2294 */
2295 curcpu = get_cpu();
2296 for_each_online_cpu(cpu) {
2297 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2298 struct mem_cgroup *memcg;
2299 bool flush = false;
2300
2301 rcu_read_lock();
2302 memcg = stock->cached;
2303 if (memcg && stock->nr_pages &&
2304 mem_cgroup_is_descendant(memcg, root_memcg))
2305 flush = true;
2306 if (obj_stock_flush_required(stock, root_memcg))
2307 flush = true;
2308 rcu_read_unlock();
2309
2310 if (flush &&
2311 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2312 if (cpu == curcpu)
2313 drain_local_stock(&stock->work);
2314 else
2315 schedule_work_on(cpu, &stock->work);
2316 }
2317 }
2318 put_cpu();
2319 mutex_unlock(&percpu_charge_mutex);
2320 }
2321
2322 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2323 {
2324 struct memcg_stock_pcp *stock;
2325 struct mem_cgroup *memcg, *mi;
2326
2327 stock = &per_cpu(memcg_stock, cpu);
2328 drain_stock(stock);
2329
2330 for_each_mem_cgroup(memcg) {
2331 int i;
2332
2333 for (i = 0; i < MEMCG_NR_STAT; i++) {
2334 int nid;
2335 long x;
2336
2337 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2338 if (x)
2339 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2340 atomic_long_add(x, &memcg->vmstats[i]);
2341
2342 if (i >= NR_VM_NODE_STAT_ITEMS)
2343 continue;
2344
2345 for_each_node(nid) {
2346 struct mem_cgroup_per_node *pn;
2347
2348 pn = mem_cgroup_nodeinfo(memcg, nid);
2349 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2350 if (x)
2351 do {
2352 atomic_long_add(x, &pn->lruvec_stat[i]);
2353 } while ((pn = parent_nodeinfo(pn, nid)));
2354 }
2355 }
2356
2357 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2358 long x;
2359
2360 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2361 if (x)
2362 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2363 atomic_long_add(x, &memcg->vmevents[i]);
2364 }
2365 }
2366
2367 return 0;
2368 }
2369
2370 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2371 unsigned int nr_pages,
2372 gfp_t gfp_mask)
2373 {
2374 unsigned long nr_reclaimed = 0;
2375
2376 do {
2377 unsigned long pflags;
2378
2379 if (page_counter_read(&memcg->memory) <=
2380 READ_ONCE(memcg->memory.high))
2381 continue;
2382
2383 memcg_memory_event(memcg, MEMCG_HIGH);
2384
2385 psi_memstall_enter(&pflags);
2386 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2387 gfp_mask, true);
2388 psi_memstall_leave(&pflags);
2389 } while ((memcg = parent_mem_cgroup(memcg)) &&
2390 !mem_cgroup_is_root(memcg));
2391
2392 return nr_reclaimed;
2393 }
2394
2395 static void high_work_func(struct work_struct *work)
2396 {
2397 struct mem_cgroup *memcg;
2398
2399 memcg = container_of(work, struct mem_cgroup, high_work);
2400 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2401 }
2402
2403 /*
2404 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2405 * enough to still cause a significant slowdown in most cases, while still
2406 * allowing diagnostics and tracing to proceed without becoming stuck.
2407 */
2408 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2409
2410 /*
2411 * When calculating the delay, we use these either side of the exponentiation to
2412 * maintain precision and scale to a reasonable number of jiffies (see the table
2413 * below.
2414 *
2415 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2416 * overage ratio to a delay.
2417 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2418 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2419 * to produce a reasonable delay curve.
2420 *
2421 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2422 * reasonable delay curve compared to precision-adjusted overage, not
2423 * penalising heavily at first, but still making sure that growth beyond the
2424 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2425 * example, with a high of 100 megabytes:
2426 *
2427 * +-------+------------------------+
2428 * | usage | time to allocate in ms |
2429 * +-------+------------------------+
2430 * | 100M | 0 |
2431 * | 101M | 6 |
2432 * | 102M | 25 |
2433 * | 103M | 57 |
2434 * | 104M | 102 |
2435 * | 105M | 159 |
2436 * | 106M | 230 |
2437 * | 107M | 313 |
2438 * | 108M | 409 |
2439 * | 109M | 518 |
2440 * | 110M | 639 |
2441 * | 111M | 774 |
2442 * | 112M | 921 |
2443 * | 113M | 1081 |
2444 * | 114M | 1254 |
2445 * | 115M | 1439 |
2446 * | 116M | 1638 |
2447 * | 117M | 1849 |
2448 * | 118M | 2000 |
2449 * | 119M | 2000 |
2450 * | 120M | 2000 |
2451 * +-------+------------------------+
2452 */
2453 #define MEMCG_DELAY_PRECISION_SHIFT 20
2454 #define MEMCG_DELAY_SCALING_SHIFT 14
2455
2456 static u64 calculate_overage(unsigned long usage, unsigned long high)
2457 {
2458 u64 overage;
2459
2460 if (usage <= high)
2461 return 0;
2462
2463 /*
2464 * Prevent division by 0 in overage calculation by acting as if
2465 * it was a threshold of 1 page
2466 */
2467 high = max(high, 1UL);
2468
2469 overage = usage - high;
2470 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2471 return div64_u64(overage, high);
2472 }
2473
2474 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2475 {
2476 u64 overage, max_overage = 0;
2477
2478 do {
2479 overage = calculate_overage(page_counter_read(&memcg->memory),
2480 READ_ONCE(memcg->memory.high));
2481 max_overage = max(overage, max_overage);
2482 } while ((memcg = parent_mem_cgroup(memcg)) &&
2483 !mem_cgroup_is_root(memcg));
2484
2485 return max_overage;
2486 }
2487
2488 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2489 {
2490 u64 overage, max_overage = 0;
2491
2492 do {
2493 overage = calculate_overage(page_counter_read(&memcg->swap),
2494 READ_ONCE(memcg->swap.high));
2495 if (overage)
2496 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2497 max_overage = max(overage, max_overage);
2498 } while ((memcg = parent_mem_cgroup(memcg)) &&
2499 !mem_cgroup_is_root(memcg));
2500
2501 return max_overage;
2502 }
2503
2504 /*
2505 * Get the number of jiffies that we should penalise a mischievous cgroup which
2506 * is exceeding its memory.high by checking both it and its ancestors.
2507 */
2508 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2509 unsigned int nr_pages,
2510 u64 max_overage)
2511 {
2512 unsigned long penalty_jiffies;
2513
2514 if (!max_overage)
2515 return 0;
2516
2517 /*
2518 * We use overage compared to memory.high to calculate the number of
2519 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2520 * fairly lenient on small overages, and increasingly harsh when the
2521 * memcg in question makes it clear that it has no intention of stopping
2522 * its crazy behaviour, so we exponentially increase the delay based on
2523 * overage amount.
2524 */
2525 penalty_jiffies = max_overage * max_overage * HZ;
2526 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2527 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2528
2529 /*
2530 * Factor in the task's own contribution to the overage, such that four
2531 * N-sized allocations are throttled approximately the same as one
2532 * 4N-sized allocation.
2533 *
2534 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2535 * larger the current charge patch is than that.
2536 */
2537 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2538 }
2539
2540 /*
2541 * Scheduled by try_charge() to be executed from the userland return path
2542 * and reclaims memory over the high limit.
2543 */
2544 void mem_cgroup_handle_over_high(void)
2545 {
2546 unsigned long penalty_jiffies;
2547 unsigned long pflags;
2548 unsigned long nr_reclaimed;
2549 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2550 int nr_retries = MAX_RECLAIM_RETRIES;
2551 struct mem_cgroup *memcg;
2552 bool in_retry = false;
2553
2554 if (likely(!nr_pages))
2555 return;
2556
2557 memcg = get_mem_cgroup_from_mm(current->mm);
2558 current->memcg_nr_pages_over_high = 0;
2559
2560 retry_reclaim:
2561 /*
2562 * The allocating task should reclaim at least the batch size, but for
2563 * subsequent retries we only want to do what's necessary to prevent oom
2564 * or breaching resource isolation.
2565 *
2566 * This is distinct from memory.max or page allocator behaviour because
2567 * memory.high is currently batched, whereas memory.max and the page
2568 * allocator run every time an allocation is made.
2569 */
2570 nr_reclaimed = reclaim_high(memcg,
2571 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2572 GFP_KERNEL);
2573
2574 /*
2575 * memory.high is breached and reclaim is unable to keep up. Throttle
2576 * allocators proactively to slow down excessive growth.
2577 */
2578 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2579 mem_find_max_overage(memcg));
2580
2581 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2582 swap_find_max_overage(memcg));
2583
2584 /*
2585 * Clamp the max delay per usermode return so as to still keep the
2586 * application moving forwards and also permit diagnostics, albeit
2587 * extremely slowly.
2588 */
2589 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2590
2591 /*
2592 * Don't sleep if the amount of jiffies this memcg owes us is so low
2593 * that it's not even worth doing, in an attempt to be nice to those who
2594 * go only a small amount over their memory.high value and maybe haven't
2595 * been aggressively reclaimed enough yet.
2596 */
2597 if (penalty_jiffies <= HZ / 100)
2598 goto out;
2599
2600 /*
2601 * If reclaim is making forward progress but we're still over
2602 * memory.high, we want to encourage that rather than doing allocator
2603 * throttling.
2604 */
2605 if (nr_reclaimed || nr_retries--) {
2606 in_retry = true;
2607 goto retry_reclaim;
2608 }
2609
2610 /*
2611 * If we exit early, we're guaranteed to die (since
2612 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2613 * need to account for any ill-begotten jiffies to pay them off later.
2614 */
2615 psi_memstall_enter(&pflags);
2616 schedule_timeout_killable(penalty_jiffies);
2617 psi_memstall_leave(&pflags);
2618
2619 out:
2620 css_put(&memcg->css);
2621 }
2622
2623 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2624 unsigned int nr_pages)
2625 {
2626 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2627 int nr_retries = MAX_RECLAIM_RETRIES;
2628 struct mem_cgroup *mem_over_limit;
2629 struct page_counter *counter;
2630 enum oom_status oom_status;
2631 unsigned long nr_reclaimed;
2632 bool may_swap = true;
2633 bool drained = false;
2634 unsigned long pflags;
2635
2636 if (mem_cgroup_is_root(memcg))
2637 return 0;
2638 retry:
2639 if (consume_stock(memcg, nr_pages))
2640 return 0;
2641
2642 if (!do_memsw_account() ||
2643 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2644 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2645 goto done_restock;
2646 if (do_memsw_account())
2647 page_counter_uncharge(&memcg->memsw, batch);
2648 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2649 } else {
2650 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2651 may_swap = false;
2652 }
2653
2654 if (batch > nr_pages) {
2655 batch = nr_pages;
2656 goto retry;
2657 }
2658
2659 /*
2660 * Memcg doesn't have a dedicated reserve for atomic
2661 * allocations. But like the global atomic pool, we need to
2662 * put the burden of reclaim on regular allocation requests
2663 * and let these go through as privileged allocations.
2664 */
2665 if (gfp_mask & __GFP_ATOMIC)
2666 goto force;
2667
2668 /*
2669 * Unlike in global OOM situations, memcg is not in a physical
2670 * memory shortage. Allow dying and OOM-killed tasks to
2671 * bypass the last charges so that they can exit quickly and
2672 * free their memory.
2673 */
2674 if (unlikely(should_force_charge()))
2675 goto force;
2676
2677 /*
2678 * Prevent unbounded recursion when reclaim operations need to
2679 * allocate memory. This might exceed the limits temporarily,
2680 * but we prefer facilitating memory reclaim and getting back
2681 * under the limit over triggering OOM kills in these cases.
2682 */
2683 if (unlikely(current->flags & PF_MEMALLOC))
2684 goto force;
2685
2686 if (unlikely(task_in_memcg_oom(current)))
2687 goto nomem;
2688
2689 if (!gfpflags_allow_blocking(gfp_mask))
2690 goto nomem;
2691
2692 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2693
2694 psi_memstall_enter(&pflags);
2695 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2696 gfp_mask, may_swap);
2697 psi_memstall_leave(&pflags);
2698
2699 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2700 goto retry;
2701
2702 if (!drained) {
2703 drain_all_stock(mem_over_limit);
2704 drained = true;
2705 goto retry;
2706 }
2707
2708 if (gfp_mask & __GFP_NORETRY)
2709 goto nomem;
2710 /*
2711 * Even though the limit is exceeded at this point, reclaim
2712 * may have been able to free some pages. Retry the charge
2713 * before killing the task.
2714 *
2715 * Only for regular pages, though: huge pages are rather
2716 * unlikely to succeed so close to the limit, and we fall back
2717 * to regular pages anyway in case of failure.
2718 */
2719 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2720 goto retry;
2721 /*
2722 * At task move, charge accounts can be doubly counted. So, it's
2723 * better to wait until the end of task_move if something is going on.
2724 */
2725 if (mem_cgroup_wait_acct_move(mem_over_limit))
2726 goto retry;
2727
2728 if (nr_retries--)
2729 goto retry;
2730
2731 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2732 goto nomem;
2733
2734 if (gfp_mask & __GFP_NOFAIL)
2735 goto force;
2736
2737 if (fatal_signal_pending(current))
2738 goto force;
2739
2740 /*
2741 * keep retrying as long as the memcg oom killer is able to make
2742 * a forward progress or bypass the charge if the oom killer
2743 * couldn't make any progress.
2744 */
2745 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2746 get_order(nr_pages * PAGE_SIZE));
2747 switch (oom_status) {
2748 case OOM_SUCCESS:
2749 nr_retries = MAX_RECLAIM_RETRIES;
2750 goto retry;
2751 case OOM_FAILED:
2752 goto force;
2753 default:
2754 goto nomem;
2755 }
2756 nomem:
2757 if (!(gfp_mask & __GFP_NOFAIL))
2758 return -ENOMEM;
2759 force:
2760 /*
2761 * The allocation either can't fail or will lead to more memory
2762 * being freed very soon. Allow memory usage go over the limit
2763 * temporarily by force charging it.
2764 */
2765 page_counter_charge(&memcg->memory, nr_pages);
2766 if (do_memsw_account())
2767 page_counter_charge(&memcg->memsw, nr_pages);
2768
2769 return 0;
2770
2771 done_restock:
2772 if (batch > nr_pages)
2773 refill_stock(memcg, batch - nr_pages);
2774
2775 /*
2776 * If the hierarchy is above the normal consumption range, schedule
2777 * reclaim on returning to userland. We can perform reclaim here
2778 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2779 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2780 * not recorded as it most likely matches current's and won't
2781 * change in the meantime. As high limit is checked again before
2782 * reclaim, the cost of mismatch is negligible.
2783 */
2784 do {
2785 bool mem_high, swap_high;
2786
2787 mem_high = page_counter_read(&memcg->memory) >
2788 READ_ONCE(memcg->memory.high);
2789 swap_high = page_counter_read(&memcg->swap) >
2790 READ_ONCE(memcg->swap.high);
2791
2792 /* Don't bother a random interrupted task */
2793 if (in_interrupt()) {
2794 if (mem_high) {
2795 schedule_work(&memcg->high_work);
2796 break;
2797 }
2798 continue;
2799 }
2800
2801 if (mem_high || swap_high) {
2802 /*
2803 * The allocating tasks in this cgroup will need to do
2804 * reclaim or be throttled to prevent further growth
2805 * of the memory or swap footprints.
2806 *
2807 * Target some best-effort fairness between the tasks,
2808 * and distribute reclaim work and delay penalties
2809 * based on how much each task is actually allocating.
2810 */
2811 current->memcg_nr_pages_over_high += batch;
2812 set_notify_resume(current);
2813 break;
2814 }
2815 } while ((memcg = parent_mem_cgroup(memcg)));
2816
2817 return 0;
2818 }
2819
2820 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2821 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2822 {
2823 if (mem_cgroup_is_root(memcg))
2824 return;
2825
2826 page_counter_uncharge(&memcg->memory, nr_pages);
2827 if (do_memsw_account())
2828 page_counter_uncharge(&memcg->memsw, nr_pages);
2829 }
2830 #endif
2831
2832 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2833 {
2834 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2835 /*
2836 * Any of the following ensures page->mem_cgroup stability:
2837 *
2838 * - the page lock
2839 * - LRU isolation
2840 * - lock_page_memcg()
2841 * - exclusive reference
2842 */
2843 page->mem_cgroup = memcg;
2844 }
2845
2846 #ifdef CONFIG_MEMCG_KMEM
2847 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2848 gfp_t gfp)
2849 {
2850 unsigned int objects = objs_per_slab_page(s, page);
2851 void *vec;
2852
2853 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2854 page_to_nid(page));
2855 if (!vec)
2856 return -ENOMEM;
2857
2858 if (cmpxchg(&page->obj_cgroups, NULL,
2859 (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
2860 kfree(vec);
2861 else
2862 kmemleak_not_leak(vec);
2863
2864 return 0;
2865 }
2866
2867 /*
2868 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2869 *
2870 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2871 * cgroup_mutex, etc.
2872 */
2873 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2874 {
2875 struct page *page;
2876
2877 if (mem_cgroup_disabled())
2878 return NULL;
2879
2880 page = virt_to_head_page(p);
2881
2882 /*
2883 * Slab objects are accounted individually, not per-page.
2884 * Memcg membership data for each individual object is saved in
2885 * the page->obj_cgroups.
2886 */
2887 if (page_has_obj_cgroups(page)) {
2888 struct obj_cgroup *objcg;
2889 unsigned int off;
2890
2891 off = obj_to_index(page->slab_cache, page, p);
2892 objcg = page_obj_cgroups(page)[off];
2893 if (objcg)
2894 return obj_cgroup_memcg(objcg);
2895
2896 return NULL;
2897 }
2898
2899 /* All other pages use page->mem_cgroup */
2900 return page->mem_cgroup;
2901 }
2902
2903 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2904 {
2905 struct obj_cgroup *objcg = NULL;
2906 struct mem_cgroup *memcg;
2907
2908 if (unlikely(!current->mm && !current->active_memcg))
2909 return NULL;
2910
2911 rcu_read_lock();
2912 if (unlikely(current->active_memcg))
2913 memcg = rcu_dereference(current->active_memcg);
2914 else
2915 memcg = mem_cgroup_from_task(current);
2916
2917 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2918 objcg = rcu_dereference(memcg->objcg);
2919 if (objcg && obj_cgroup_tryget(objcg))
2920 break;
2921 }
2922 rcu_read_unlock();
2923
2924 return objcg;
2925 }
2926
2927 static int memcg_alloc_cache_id(void)
2928 {
2929 int id, size;
2930 int err;
2931
2932 id = ida_simple_get(&memcg_cache_ida,
2933 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2934 if (id < 0)
2935 return id;
2936
2937 if (id < memcg_nr_cache_ids)
2938 return id;
2939
2940 /*
2941 * There's no space for the new id in memcg_caches arrays,
2942 * so we have to grow them.
2943 */
2944 down_write(&memcg_cache_ids_sem);
2945
2946 size = 2 * (id + 1);
2947 if (size < MEMCG_CACHES_MIN_SIZE)
2948 size = MEMCG_CACHES_MIN_SIZE;
2949 else if (size > MEMCG_CACHES_MAX_SIZE)
2950 size = MEMCG_CACHES_MAX_SIZE;
2951
2952 err = memcg_update_all_list_lrus(size);
2953 if (!err)
2954 memcg_nr_cache_ids = size;
2955
2956 up_write(&memcg_cache_ids_sem);
2957
2958 if (err) {
2959 ida_simple_remove(&memcg_cache_ida, id);
2960 return err;
2961 }
2962 return id;
2963 }
2964
2965 static void memcg_free_cache_id(int id)
2966 {
2967 ida_simple_remove(&memcg_cache_ida, id);
2968 }
2969
2970 /**
2971 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
2972 * @memcg: memory cgroup to charge
2973 * @gfp: reclaim mode
2974 * @nr_pages: number of pages to charge
2975 *
2976 * Returns 0 on success, an error code on failure.
2977 */
2978 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
2979 unsigned int nr_pages)
2980 {
2981 struct page_counter *counter;
2982 int ret;
2983
2984 ret = try_charge(memcg, gfp, nr_pages);
2985 if (ret)
2986 return ret;
2987
2988 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2989 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2990
2991 /*
2992 * Enforce __GFP_NOFAIL allocation because callers are not
2993 * prepared to see failures and likely do not have any failure
2994 * handling code.
2995 */
2996 if (gfp & __GFP_NOFAIL) {
2997 page_counter_charge(&memcg->kmem, nr_pages);
2998 return 0;
2999 }
3000 cancel_charge(memcg, nr_pages);
3001 return -ENOMEM;
3002 }
3003 return 0;
3004 }
3005
3006 /**
3007 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3008 * @memcg: memcg to uncharge
3009 * @nr_pages: number of pages to uncharge
3010 */
3011 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3012 {
3013 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3014 page_counter_uncharge(&memcg->kmem, nr_pages);
3015
3016 page_counter_uncharge(&memcg->memory, nr_pages);
3017 if (do_memsw_account())
3018 page_counter_uncharge(&memcg->memsw, nr_pages);
3019 }
3020
3021 /**
3022 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3023 * @page: page to charge
3024 * @gfp: reclaim mode
3025 * @order: allocation order
3026 *
3027 * Returns 0 on success, an error code on failure.
3028 */
3029 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3030 {
3031 struct mem_cgroup *memcg;
3032 int ret = 0;
3033
3034 if (memcg_kmem_bypass())
3035 return 0;
3036
3037 memcg = get_mem_cgroup_from_current();
3038 if (!mem_cgroup_is_root(memcg)) {
3039 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3040 if (!ret) {
3041 page->mem_cgroup = memcg;
3042 __SetPageKmemcg(page);
3043 return 0;
3044 }
3045 }
3046 css_put(&memcg->css);
3047 return ret;
3048 }
3049
3050 /**
3051 * __memcg_kmem_uncharge_page: uncharge a kmem page
3052 * @page: page to uncharge
3053 * @order: allocation order
3054 */
3055 void __memcg_kmem_uncharge_page(struct page *page, int order)
3056 {
3057 struct mem_cgroup *memcg = page->mem_cgroup;
3058 unsigned int nr_pages = 1 << order;
3059
3060 if (!memcg)
3061 return;
3062
3063 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3064 __memcg_kmem_uncharge(memcg, nr_pages);
3065 page->mem_cgroup = NULL;
3066 css_put(&memcg->css);
3067
3068 /* slab pages do not have PageKmemcg flag set */
3069 if (PageKmemcg(page))
3070 __ClearPageKmemcg(page);
3071 }
3072
3073 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3074 {
3075 struct memcg_stock_pcp *stock;
3076 unsigned long flags;
3077 bool ret = false;
3078
3079 local_irq_save(flags);
3080
3081 stock = this_cpu_ptr(&memcg_stock);
3082 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3083 stock->nr_bytes -= nr_bytes;
3084 ret = true;
3085 }
3086
3087 local_irq_restore(flags);
3088
3089 return ret;
3090 }
3091
3092 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3093 {
3094 struct obj_cgroup *old = stock->cached_objcg;
3095
3096 if (!old)
3097 return;
3098
3099 if (stock->nr_bytes) {
3100 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3101 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3102
3103 if (nr_pages) {
3104 rcu_read_lock();
3105 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3106 rcu_read_unlock();
3107 }
3108
3109 /*
3110 * The leftover is flushed to the centralized per-memcg value.
3111 * On the next attempt to refill obj stock it will be moved
3112 * to a per-cpu stock (probably, on an other CPU), see
3113 * refill_obj_stock().
3114 *
3115 * How often it's flushed is a trade-off between the memory
3116 * limit enforcement accuracy and potential CPU contention,
3117 * so it might be changed in the future.
3118 */
3119 atomic_add(nr_bytes, &old->nr_charged_bytes);
3120 stock->nr_bytes = 0;
3121 }
3122
3123 obj_cgroup_put(old);
3124 stock->cached_objcg = NULL;
3125 }
3126
3127 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3128 struct mem_cgroup *root_memcg)
3129 {
3130 struct mem_cgroup *memcg;
3131
3132 if (stock->cached_objcg) {
3133 memcg = obj_cgroup_memcg(stock->cached_objcg);
3134 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3135 return true;
3136 }
3137
3138 return false;
3139 }
3140
3141 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3142 {
3143 struct memcg_stock_pcp *stock;
3144 unsigned long flags;
3145
3146 local_irq_save(flags);
3147
3148 stock = this_cpu_ptr(&memcg_stock);
3149 if (stock->cached_objcg != objcg) { /* reset if necessary */
3150 drain_obj_stock(stock);
3151 obj_cgroup_get(objcg);
3152 stock->cached_objcg = objcg;
3153 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3154 }
3155 stock->nr_bytes += nr_bytes;
3156
3157 if (stock->nr_bytes > PAGE_SIZE)
3158 drain_obj_stock(stock);
3159
3160 local_irq_restore(flags);
3161 }
3162
3163 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3164 {
3165 struct mem_cgroup *memcg;
3166 unsigned int nr_pages, nr_bytes;
3167 int ret;
3168
3169 if (consume_obj_stock(objcg, size))
3170 return 0;
3171
3172 /*
3173 * In theory, memcg->nr_charged_bytes can have enough
3174 * pre-charged bytes to satisfy the allocation. However,
3175 * flushing memcg->nr_charged_bytes requires two atomic
3176 * operations, and memcg->nr_charged_bytes can't be big,
3177 * so it's better to ignore it and try grab some new pages.
3178 * memcg->nr_charged_bytes will be flushed in
3179 * refill_obj_stock(), called from this function or
3180 * independently later.
3181 */
3182 rcu_read_lock();
3183 memcg = obj_cgroup_memcg(objcg);
3184 css_get(&memcg->css);
3185 rcu_read_unlock();
3186
3187 nr_pages = size >> PAGE_SHIFT;
3188 nr_bytes = size & (PAGE_SIZE - 1);
3189
3190 if (nr_bytes)
3191 nr_pages += 1;
3192
3193 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3194 if (!ret && nr_bytes)
3195 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3196
3197 css_put(&memcg->css);
3198 return ret;
3199 }
3200
3201 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3202 {
3203 refill_obj_stock(objcg, size);
3204 }
3205
3206 #endif /* CONFIG_MEMCG_KMEM */
3207
3208 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3209
3210 /*
3211 * Because tail pages are not marked as "used", set it. We're under
3212 * pgdat->lru_lock and migration entries setup in all page mappings.
3213 */
3214 void mem_cgroup_split_huge_fixup(struct page *head)
3215 {
3216 struct mem_cgroup *memcg = head->mem_cgroup;
3217 int i;
3218
3219 if (mem_cgroup_disabled())
3220 return;
3221
3222 for (i = 1; i < HPAGE_PMD_NR; i++) {
3223 css_get(&memcg->css);
3224 head[i].mem_cgroup = memcg;
3225 }
3226 }
3227 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3228
3229 #ifdef CONFIG_MEMCG_SWAP
3230 /**
3231 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3232 * @entry: swap entry to be moved
3233 * @from: mem_cgroup which the entry is moved from
3234 * @to: mem_cgroup which the entry is moved to
3235 *
3236 * It succeeds only when the swap_cgroup's record for this entry is the same
3237 * as the mem_cgroup's id of @from.
3238 *
3239 * Returns 0 on success, -EINVAL on failure.
3240 *
3241 * The caller must have charged to @to, IOW, called page_counter_charge() about
3242 * both res and memsw, and called css_get().
3243 */
3244 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3245 struct mem_cgroup *from, struct mem_cgroup *to)
3246 {
3247 unsigned short old_id, new_id;
3248
3249 old_id = mem_cgroup_id(from);
3250 new_id = mem_cgroup_id(to);
3251
3252 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3253 mod_memcg_state(from, MEMCG_SWAP, -1);
3254 mod_memcg_state(to, MEMCG_SWAP, 1);
3255 return 0;
3256 }
3257 return -EINVAL;
3258 }
3259 #else
3260 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3261 struct mem_cgroup *from, struct mem_cgroup *to)
3262 {
3263 return -EINVAL;
3264 }
3265 #endif
3266
3267 static DEFINE_MUTEX(memcg_max_mutex);
3268
3269 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3270 unsigned long max, bool memsw)
3271 {
3272 bool enlarge = false;
3273 bool drained = false;
3274 int ret;
3275 bool limits_invariant;
3276 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3277
3278 do {
3279 if (signal_pending(current)) {
3280 ret = -EINTR;
3281 break;
3282 }
3283
3284 mutex_lock(&memcg_max_mutex);
3285 /*
3286 * Make sure that the new limit (memsw or memory limit) doesn't
3287 * break our basic invariant rule memory.max <= memsw.max.
3288 */
3289 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3290 max <= memcg->memsw.max;
3291 if (!limits_invariant) {
3292 mutex_unlock(&memcg_max_mutex);
3293 ret = -EINVAL;
3294 break;
3295 }
3296 if (max > counter->max)
3297 enlarge = true;
3298 ret = page_counter_set_max(counter, max);
3299 mutex_unlock(&memcg_max_mutex);
3300
3301 if (!ret)
3302 break;
3303
3304 if (!drained) {
3305 drain_all_stock(memcg);
3306 drained = true;
3307 continue;
3308 }
3309
3310 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3311 GFP_KERNEL, !memsw)) {
3312 ret = -EBUSY;
3313 break;
3314 }
3315 } while (true);
3316
3317 if (!ret && enlarge)
3318 memcg_oom_recover(memcg);
3319
3320 return ret;
3321 }
3322
3323 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3324 gfp_t gfp_mask,
3325 unsigned long *total_scanned)
3326 {
3327 unsigned long nr_reclaimed = 0;
3328 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3329 unsigned long reclaimed;
3330 int loop = 0;
3331 struct mem_cgroup_tree_per_node *mctz;
3332 unsigned long excess;
3333 unsigned long nr_scanned;
3334
3335 if (order > 0)
3336 return 0;
3337
3338 mctz = soft_limit_tree_node(pgdat->node_id);
3339
3340 /*
3341 * Do not even bother to check the largest node if the root
3342 * is empty. Do it lockless to prevent lock bouncing. Races
3343 * are acceptable as soft limit is best effort anyway.
3344 */
3345 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3346 return 0;
3347
3348 /*
3349 * This loop can run a while, specially if mem_cgroup's continuously
3350 * keep exceeding their soft limit and putting the system under
3351 * pressure
3352 */
3353 do {
3354 if (next_mz)
3355 mz = next_mz;
3356 else
3357 mz = mem_cgroup_largest_soft_limit_node(mctz);
3358 if (!mz)
3359 break;
3360
3361 nr_scanned = 0;
3362 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3363 gfp_mask, &nr_scanned);
3364 nr_reclaimed += reclaimed;
3365 *total_scanned += nr_scanned;
3366 spin_lock_irq(&mctz->lock);
3367 __mem_cgroup_remove_exceeded(mz, mctz);
3368
3369 /*
3370 * If we failed to reclaim anything from this memory cgroup
3371 * it is time to move on to the next cgroup
3372 */
3373 next_mz = NULL;
3374 if (!reclaimed)
3375 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3376
3377 excess = soft_limit_excess(mz->memcg);
3378 /*
3379 * One school of thought says that we should not add
3380 * back the node to the tree if reclaim returns 0.
3381 * But our reclaim could return 0, simply because due
3382 * to priority we are exposing a smaller subset of
3383 * memory to reclaim from. Consider this as a longer
3384 * term TODO.
3385 */
3386 /* If excess == 0, no tree ops */
3387 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3388 spin_unlock_irq(&mctz->lock);
3389 css_put(&mz->memcg->css);
3390 loop++;
3391 /*
3392 * Could not reclaim anything and there are no more
3393 * mem cgroups to try or we seem to be looping without
3394 * reclaiming anything.
3395 */
3396 if (!nr_reclaimed &&
3397 (next_mz == NULL ||
3398 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3399 break;
3400 } while (!nr_reclaimed);
3401 if (next_mz)
3402 css_put(&next_mz->memcg->css);
3403 return nr_reclaimed;
3404 }
3405
3406 /*
3407 * Test whether @memcg has children, dead or alive. Note that this
3408 * function doesn't care whether @memcg has use_hierarchy enabled and
3409 * returns %true if there are child csses according to the cgroup
3410 * hierarchy. Testing use_hierarchy is the caller's responsibility.
3411 */
3412 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3413 {
3414 bool ret;
3415
3416 rcu_read_lock();
3417 ret = css_next_child(NULL, &memcg->css);
3418 rcu_read_unlock();
3419 return ret;
3420 }
3421
3422 /*
3423 * Reclaims as many pages from the given memcg as possible.
3424 *
3425 * Caller is responsible for holding css reference for memcg.
3426 */
3427 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3428 {
3429 int nr_retries = MAX_RECLAIM_RETRIES;
3430
3431 /* we call try-to-free pages for make this cgroup empty */
3432 lru_add_drain_all();
3433
3434 drain_all_stock(memcg);
3435
3436 /* try to free all pages in this cgroup */
3437 while (nr_retries && page_counter_read(&memcg->memory)) {
3438 int progress;
3439
3440 if (signal_pending(current))
3441 return -EINTR;
3442
3443 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3444 GFP_KERNEL, true);
3445 if (!progress) {
3446 nr_retries--;
3447 /* maybe some writeback is necessary */
3448 congestion_wait(BLK_RW_ASYNC, HZ/10);
3449 }
3450
3451 }
3452
3453 return 0;
3454 }
3455
3456 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3457 char *buf, size_t nbytes,
3458 loff_t off)
3459 {
3460 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3461
3462 if (mem_cgroup_is_root(memcg))
3463 return -EINVAL;
3464 return mem_cgroup_force_empty(memcg) ?: nbytes;
3465 }
3466
3467 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3468 struct cftype *cft)
3469 {
3470 return mem_cgroup_from_css(css)->use_hierarchy;
3471 }
3472
3473 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3474 struct cftype *cft, u64 val)
3475 {
3476 int retval = 0;
3477 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3478 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3479
3480 if (memcg->use_hierarchy == val)
3481 return 0;
3482
3483 /*
3484 * If parent's use_hierarchy is set, we can't make any modifications
3485 * in the child subtrees. If it is unset, then the change can
3486 * occur, provided the current cgroup has no children.
3487 *
3488 * For the root cgroup, parent_mem is NULL, we allow value to be
3489 * set if there are no children.
3490 */
3491 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3492 (val == 1 || val == 0)) {
3493 if (!memcg_has_children(memcg))
3494 memcg->use_hierarchy = val;
3495 else
3496 retval = -EBUSY;
3497 } else
3498 retval = -EINVAL;
3499
3500 return retval;
3501 }
3502
3503 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3504 {
3505 unsigned long val;
3506
3507 if (mem_cgroup_is_root(memcg)) {
3508 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3509 memcg_page_state(memcg, NR_ANON_MAPPED);
3510 if (swap)
3511 val += memcg_page_state(memcg, MEMCG_SWAP);
3512 } else {
3513 if (!swap)
3514 val = page_counter_read(&memcg->memory);
3515 else
3516 val = page_counter_read(&memcg->memsw);
3517 }
3518 return val;
3519 }
3520
3521 enum {
3522 RES_USAGE,
3523 RES_LIMIT,
3524 RES_MAX_USAGE,
3525 RES_FAILCNT,
3526 RES_SOFT_LIMIT,
3527 };
3528
3529 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3530 struct cftype *cft)
3531 {
3532 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3533 struct page_counter *counter;
3534
3535 switch (MEMFILE_TYPE(cft->private)) {
3536 case _MEM:
3537 counter = &memcg->memory;
3538 break;
3539 case _MEMSWAP:
3540 counter = &memcg->memsw;
3541 break;
3542 case _KMEM:
3543 counter = &memcg->kmem;
3544 break;
3545 case _TCP:
3546 counter = &memcg->tcpmem;
3547 break;
3548 default:
3549 BUG();
3550 }
3551
3552 switch (MEMFILE_ATTR(cft->private)) {
3553 case RES_USAGE:
3554 if (counter == &memcg->memory)
3555 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3556 if (counter == &memcg->memsw)
3557 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3558 return (u64)page_counter_read(counter) * PAGE_SIZE;
3559 case RES_LIMIT:
3560 return (u64)counter->max * PAGE_SIZE;
3561 case RES_MAX_USAGE:
3562 return (u64)counter->watermark * PAGE_SIZE;
3563 case RES_FAILCNT:
3564 return counter->failcnt;
3565 case RES_SOFT_LIMIT:
3566 return (u64)memcg->soft_limit * PAGE_SIZE;
3567 default:
3568 BUG();
3569 }
3570 }
3571
3572 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3573 {
3574 unsigned long stat[MEMCG_NR_STAT] = {0};
3575 struct mem_cgroup *mi;
3576 int node, cpu, i;
3577
3578 for_each_online_cpu(cpu)
3579 for (i = 0; i < MEMCG_NR_STAT; i++)
3580 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3581
3582 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3583 for (i = 0; i < MEMCG_NR_STAT; i++)
3584 atomic_long_add(stat[i], &mi->vmstats[i]);
3585
3586 for_each_node(node) {
3587 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3588 struct mem_cgroup_per_node *pi;
3589
3590 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3591 stat[i] = 0;
3592
3593 for_each_online_cpu(cpu)
3594 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3595 stat[i] += per_cpu(
3596 pn->lruvec_stat_cpu->count[i], cpu);
3597
3598 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3599 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3600 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3601 }
3602 }
3603
3604 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3605 {
3606 unsigned long events[NR_VM_EVENT_ITEMS];
3607 struct mem_cgroup *mi;
3608 int cpu, i;
3609
3610 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3611 events[i] = 0;
3612
3613 for_each_online_cpu(cpu)
3614 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3615 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3616 cpu);
3617
3618 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3619 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3620 atomic_long_add(events[i], &mi->vmevents[i]);
3621 }
3622
3623 #ifdef CONFIG_MEMCG_KMEM
3624 static int memcg_online_kmem(struct mem_cgroup *memcg)
3625 {
3626 struct obj_cgroup *objcg;
3627 int memcg_id;
3628
3629 if (cgroup_memory_nokmem)
3630 return 0;
3631
3632 BUG_ON(memcg->kmemcg_id >= 0);
3633 BUG_ON(memcg->kmem_state);
3634
3635 memcg_id = memcg_alloc_cache_id();
3636 if (memcg_id < 0)
3637 return memcg_id;
3638
3639 objcg = obj_cgroup_alloc();
3640 if (!objcg) {
3641 memcg_free_cache_id(memcg_id);
3642 return -ENOMEM;
3643 }
3644 objcg->memcg = memcg;
3645 rcu_assign_pointer(memcg->objcg, objcg);
3646
3647 static_branch_enable(&memcg_kmem_enabled_key);
3648
3649 /*
3650 * A memory cgroup is considered kmem-online as soon as it gets
3651 * kmemcg_id. Setting the id after enabling static branching will
3652 * guarantee no one starts accounting before all call sites are
3653 * patched.
3654 */
3655 memcg->kmemcg_id = memcg_id;
3656 memcg->kmem_state = KMEM_ONLINE;
3657
3658 return 0;
3659 }
3660
3661 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3662 {
3663 struct cgroup_subsys_state *css;
3664 struct mem_cgroup *parent, *child;
3665 int kmemcg_id;
3666
3667 if (memcg->kmem_state != KMEM_ONLINE)
3668 return;
3669
3670 memcg->kmem_state = KMEM_ALLOCATED;
3671
3672 parent = parent_mem_cgroup(memcg);
3673 if (!parent)
3674 parent = root_mem_cgroup;
3675
3676 memcg_reparent_objcgs(memcg, parent);
3677
3678 kmemcg_id = memcg->kmemcg_id;
3679 BUG_ON(kmemcg_id < 0);
3680
3681 /*
3682 * Change kmemcg_id of this cgroup and all its descendants to the
3683 * parent's id, and then move all entries from this cgroup's list_lrus
3684 * to ones of the parent. After we have finished, all list_lrus
3685 * corresponding to this cgroup are guaranteed to remain empty. The
3686 * ordering is imposed by list_lru_node->lock taken by
3687 * memcg_drain_all_list_lrus().
3688 */
3689 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3690 css_for_each_descendant_pre(css, &memcg->css) {
3691 child = mem_cgroup_from_css(css);
3692 BUG_ON(child->kmemcg_id != kmemcg_id);
3693 child->kmemcg_id = parent->kmemcg_id;
3694 if (!memcg->use_hierarchy)
3695 break;
3696 }
3697 rcu_read_unlock();
3698
3699 memcg_drain_all_list_lrus(kmemcg_id, parent);
3700
3701 memcg_free_cache_id(kmemcg_id);
3702 }
3703
3704 static void memcg_free_kmem(struct mem_cgroup *memcg)
3705 {
3706 /* css_alloc() failed, offlining didn't happen */
3707 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3708 memcg_offline_kmem(memcg);
3709 }
3710 #else
3711 static int memcg_online_kmem(struct mem_cgroup *memcg)
3712 {
3713 return 0;
3714 }
3715 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3716 {
3717 }
3718 static void memcg_free_kmem(struct mem_cgroup *memcg)
3719 {
3720 }
3721 #endif /* CONFIG_MEMCG_KMEM */
3722
3723 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3724 unsigned long max)
3725 {
3726 int ret;
3727
3728 mutex_lock(&memcg_max_mutex);
3729 ret = page_counter_set_max(&memcg->kmem, max);
3730 mutex_unlock(&memcg_max_mutex);
3731 return ret;
3732 }
3733
3734 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3735 {
3736 int ret;
3737
3738 mutex_lock(&memcg_max_mutex);
3739
3740 ret = page_counter_set_max(&memcg->tcpmem, max);
3741 if (ret)
3742 goto out;
3743
3744 if (!memcg->tcpmem_active) {
3745 /*
3746 * The active flag needs to be written after the static_key
3747 * update. This is what guarantees that the socket activation
3748 * function is the last one to run. See mem_cgroup_sk_alloc()
3749 * for details, and note that we don't mark any socket as
3750 * belonging to this memcg until that flag is up.
3751 *
3752 * We need to do this, because static_keys will span multiple
3753 * sites, but we can't control their order. If we mark a socket
3754 * as accounted, but the accounting functions are not patched in
3755 * yet, we'll lose accounting.
3756 *
3757 * We never race with the readers in mem_cgroup_sk_alloc(),
3758 * because when this value change, the code to process it is not
3759 * patched in yet.
3760 */
3761 static_branch_inc(&memcg_sockets_enabled_key);
3762 memcg->tcpmem_active = true;
3763 }
3764 out:
3765 mutex_unlock(&memcg_max_mutex);
3766 return ret;
3767 }
3768
3769 /*
3770 * The user of this function is...
3771 * RES_LIMIT.
3772 */
3773 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3774 char *buf, size_t nbytes, loff_t off)
3775 {
3776 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3777 unsigned long nr_pages;
3778 int ret;
3779
3780 buf = strstrip(buf);
3781 ret = page_counter_memparse(buf, "-1", &nr_pages);
3782 if (ret)
3783 return ret;
3784
3785 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3786 case RES_LIMIT:
3787 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3788 ret = -EINVAL;
3789 break;
3790 }
3791 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3792 case _MEM:
3793 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3794 break;
3795 case _MEMSWAP:
3796 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3797 break;
3798 case _KMEM:
3799 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3800 "Please report your usecase to linux-mm@kvack.org if you "
3801 "depend on this functionality.\n");
3802 ret = memcg_update_kmem_max(memcg, nr_pages);
3803 break;
3804 case _TCP:
3805 ret = memcg_update_tcp_max(memcg, nr_pages);
3806 break;
3807 }
3808 break;
3809 case RES_SOFT_LIMIT:
3810 memcg->soft_limit = nr_pages;
3811 ret = 0;
3812 break;
3813 }
3814 return ret ?: nbytes;
3815 }
3816
3817 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3818 size_t nbytes, loff_t off)
3819 {
3820 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3821 struct page_counter *counter;
3822
3823 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3824 case _MEM:
3825 counter = &memcg->memory;
3826 break;
3827 case _MEMSWAP:
3828 counter = &memcg->memsw;
3829 break;
3830 case _KMEM:
3831 counter = &memcg->kmem;
3832 break;
3833 case _TCP:
3834 counter = &memcg->tcpmem;
3835 break;
3836 default:
3837 BUG();
3838 }
3839
3840 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3841 case RES_MAX_USAGE:
3842 page_counter_reset_watermark(counter);
3843 break;
3844 case RES_FAILCNT:
3845 counter->failcnt = 0;
3846 break;
3847 default:
3848 BUG();
3849 }
3850
3851 return nbytes;
3852 }
3853
3854 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3855 struct cftype *cft)
3856 {
3857 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3858 }
3859
3860 #ifdef CONFIG_MMU
3861 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3862 struct cftype *cft, u64 val)
3863 {
3864 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3865
3866 if (val & ~MOVE_MASK)
3867 return -EINVAL;
3868
3869 /*
3870 * No kind of locking is needed in here, because ->can_attach() will
3871 * check this value once in the beginning of the process, and then carry
3872 * on with stale data. This means that changes to this value will only
3873 * affect task migrations starting after the change.
3874 */
3875 memcg->move_charge_at_immigrate = val;
3876 return 0;
3877 }
3878 #else
3879 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3880 struct cftype *cft, u64 val)
3881 {
3882 return -ENOSYS;
3883 }
3884 #endif
3885
3886 #ifdef CONFIG_NUMA
3887
3888 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3889 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3890 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3891
3892 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3893 int nid, unsigned int lru_mask, bool tree)
3894 {
3895 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3896 unsigned long nr = 0;
3897 enum lru_list lru;
3898
3899 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3900
3901 for_each_lru(lru) {
3902 if (!(BIT(lru) & lru_mask))
3903 continue;
3904 if (tree)
3905 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3906 else
3907 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3908 }
3909 return nr;
3910 }
3911
3912 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3913 unsigned int lru_mask,
3914 bool tree)
3915 {
3916 unsigned long nr = 0;
3917 enum lru_list lru;
3918
3919 for_each_lru(lru) {
3920 if (!(BIT(lru) & lru_mask))
3921 continue;
3922 if (tree)
3923 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3924 else
3925 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3926 }
3927 return nr;
3928 }
3929
3930 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3931 {
3932 struct numa_stat {
3933 const char *name;
3934 unsigned int lru_mask;
3935 };
3936
3937 static const struct numa_stat stats[] = {
3938 { "total", LRU_ALL },
3939 { "file", LRU_ALL_FILE },
3940 { "anon", LRU_ALL_ANON },
3941 { "unevictable", BIT(LRU_UNEVICTABLE) },
3942 };
3943 const struct numa_stat *stat;
3944 int nid;
3945 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3946
3947 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3948 seq_printf(m, "%s=%lu", stat->name,
3949 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3950 false));
3951 for_each_node_state(nid, N_MEMORY)
3952 seq_printf(m, " N%d=%lu", nid,
3953 mem_cgroup_node_nr_lru_pages(memcg, nid,
3954 stat->lru_mask, false));
3955 seq_putc(m, '\n');
3956 }
3957
3958 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3959
3960 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3961 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3962 true));
3963 for_each_node_state(nid, N_MEMORY)
3964 seq_printf(m, " N%d=%lu", nid,
3965 mem_cgroup_node_nr_lru_pages(memcg, nid,
3966 stat->lru_mask, true));
3967 seq_putc(m, '\n');
3968 }
3969
3970 return 0;
3971 }
3972 #endif /* CONFIG_NUMA */
3973
3974 static const unsigned int memcg1_stats[] = {
3975 NR_FILE_PAGES,
3976 NR_ANON_MAPPED,
3977 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3978 NR_ANON_THPS,
3979 #endif
3980 NR_SHMEM,
3981 NR_FILE_MAPPED,
3982 NR_FILE_DIRTY,
3983 NR_WRITEBACK,
3984 MEMCG_SWAP,
3985 };
3986
3987 static const char *const memcg1_stat_names[] = {
3988 "cache",
3989 "rss",
3990 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3991 "rss_huge",
3992 #endif
3993 "shmem",
3994 "mapped_file",
3995 "dirty",
3996 "writeback",
3997 "swap",
3998 };
3999
4000 /* Universal VM events cgroup1 shows, original sort order */
4001 static const unsigned int memcg1_events[] = {
4002 PGPGIN,
4003 PGPGOUT,
4004 PGFAULT,
4005 PGMAJFAULT,
4006 };
4007
4008 static int memcg_stat_show(struct seq_file *m, void *v)
4009 {
4010 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4011 unsigned long memory, memsw;
4012 struct mem_cgroup *mi;
4013 unsigned int i;
4014
4015 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4016
4017 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4018 unsigned long nr;
4019
4020 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4021 continue;
4022 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4023 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4024 if (memcg1_stats[i] == NR_ANON_THPS)
4025 nr *= HPAGE_PMD_NR;
4026 #endif
4027 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4028 }
4029
4030 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4031 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4032 memcg_events_local(memcg, memcg1_events[i]));
4033
4034 for (i = 0; i < NR_LRU_LISTS; i++)
4035 seq_printf(m, "%s %lu\n", lru_list_name(i),
4036 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4037 PAGE_SIZE);
4038
4039 /* Hierarchical information */
4040 memory = memsw = PAGE_COUNTER_MAX;
4041 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4042 memory = min(memory, READ_ONCE(mi->memory.max));
4043 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4044 }
4045 seq_printf(m, "hierarchical_memory_limit %llu\n",
4046 (u64)memory * PAGE_SIZE);
4047 if (do_memsw_account())
4048 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4049 (u64)memsw * PAGE_SIZE);
4050
4051 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4052 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4053 continue;
4054 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4055 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
4056 PAGE_SIZE);
4057 }
4058
4059 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4060 seq_printf(m, "total_%s %llu\n",
4061 vm_event_name(memcg1_events[i]),
4062 (u64)memcg_events(memcg, memcg1_events[i]));
4063
4064 for (i = 0; i < NR_LRU_LISTS; i++)
4065 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4066 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4067 PAGE_SIZE);
4068
4069 #ifdef CONFIG_DEBUG_VM
4070 {
4071 pg_data_t *pgdat;
4072 struct mem_cgroup_per_node *mz;
4073 unsigned long anon_cost = 0;
4074 unsigned long file_cost = 0;
4075
4076 for_each_online_pgdat(pgdat) {
4077 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4078
4079 anon_cost += mz->lruvec.anon_cost;
4080 file_cost += mz->lruvec.file_cost;
4081 }
4082 seq_printf(m, "anon_cost %lu\n", anon_cost);
4083 seq_printf(m, "file_cost %lu\n", file_cost);
4084 }
4085 #endif
4086
4087 return 0;
4088 }
4089
4090 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4091 struct cftype *cft)
4092 {
4093 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4094
4095 return mem_cgroup_swappiness(memcg);
4096 }
4097
4098 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4099 struct cftype *cft, u64 val)
4100 {
4101 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4102
4103 if (val > 100)
4104 return -EINVAL;
4105
4106 if (css->parent)
4107 memcg->swappiness = val;
4108 else
4109 vm_swappiness = val;
4110
4111 return 0;
4112 }
4113
4114 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4115 {
4116 struct mem_cgroup_threshold_ary *t;
4117 unsigned long usage;
4118 int i;
4119
4120 rcu_read_lock();
4121 if (!swap)
4122 t = rcu_dereference(memcg->thresholds.primary);
4123 else
4124 t = rcu_dereference(memcg->memsw_thresholds.primary);
4125
4126 if (!t)
4127 goto unlock;
4128
4129 usage = mem_cgroup_usage(memcg, swap);
4130
4131 /*
4132 * current_threshold points to threshold just below or equal to usage.
4133 * If it's not true, a threshold was crossed after last
4134 * call of __mem_cgroup_threshold().
4135 */
4136 i = t->current_threshold;
4137
4138 /*
4139 * Iterate backward over array of thresholds starting from
4140 * current_threshold and check if a threshold is crossed.
4141 * If none of thresholds below usage is crossed, we read
4142 * only one element of the array here.
4143 */
4144 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4145 eventfd_signal(t->entries[i].eventfd, 1);
4146
4147 /* i = current_threshold + 1 */
4148 i++;
4149
4150 /*
4151 * Iterate forward over array of thresholds starting from
4152 * current_threshold+1 and check if a threshold is crossed.
4153 * If none of thresholds above usage is crossed, we read
4154 * only one element of the array here.
4155 */
4156 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4157 eventfd_signal(t->entries[i].eventfd, 1);
4158
4159 /* Update current_threshold */
4160 t->current_threshold = i - 1;
4161 unlock:
4162 rcu_read_unlock();
4163 }
4164
4165 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4166 {
4167 while (memcg) {
4168 __mem_cgroup_threshold(memcg, false);
4169 if (do_memsw_account())
4170 __mem_cgroup_threshold(memcg, true);
4171
4172 memcg = parent_mem_cgroup(memcg);
4173 }
4174 }
4175
4176 static int compare_thresholds(const void *a, const void *b)
4177 {
4178 const struct mem_cgroup_threshold *_a = a;
4179 const struct mem_cgroup_threshold *_b = b;
4180
4181 if (_a->threshold > _b->threshold)
4182 return 1;
4183
4184 if (_a->threshold < _b->threshold)
4185 return -1;
4186
4187 return 0;
4188 }
4189
4190 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4191 {
4192 struct mem_cgroup_eventfd_list *ev;
4193
4194 spin_lock(&memcg_oom_lock);
4195
4196 list_for_each_entry(ev, &memcg->oom_notify, list)
4197 eventfd_signal(ev->eventfd, 1);
4198
4199 spin_unlock(&memcg_oom_lock);
4200 return 0;
4201 }
4202
4203 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4204 {
4205 struct mem_cgroup *iter;
4206
4207 for_each_mem_cgroup_tree(iter, memcg)
4208 mem_cgroup_oom_notify_cb(iter);
4209 }
4210
4211 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4212 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4213 {
4214 struct mem_cgroup_thresholds *thresholds;
4215 struct mem_cgroup_threshold_ary *new;
4216 unsigned long threshold;
4217 unsigned long usage;
4218 int i, size, ret;
4219
4220 ret = page_counter_memparse(args, "-1", &threshold);
4221 if (ret)
4222 return ret;
4223
4224 mutex_lock(&memcg->thresholds_lock);
4225
4226 if (type == _MEM) {
4227 thresholds = &memcg->thresholds;
4228 usage = mem_cgroup_usage(memcg, false);
4229 } else if (type == _MEMSWAP) {
4230 thresholds = &memcg->memsw_thresholds;
4231 usage = mem_cgroup_usage(memcg, true);
4232 } else
4233 BUG();
4234
4235 /* Check if a threshold crossed before adding a new one */
4236 if (thresholds->primary)
4237 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4238
4239 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4240
4241 /* Allocate memory for new array of thresholds */
4242 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4243 if (!new) {
4244 ret = -ENOMEM;
4245 goto unlock;
4246 }
4247 new->size = size;
4248
4249 /* Copy thresholds (if any) to new array */
4250 if (thresholds->primary) {
4251 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4252 sizeof(struct mem_cgroup_threshold));
4253 }
4254
4255 /* Add new threshold */
4256 new->entries[size - 1].eventfd = eventfd;
4257 new->entries[size - 1].threshold = threshold;
4258
4259 /* Sort thresholds. Registering of new threshold isn't time-critical */
4260 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4261 compare_thresholds, NULL);
4262
4263 /* Find current threshold */
4264 new->current_threshold = -1;
4265 for (i = 0; i < size; i++) {
4266 if (new->entries[i].threshold <= usage) {
4267 /*
4268 * new->current_threshold will not be used until
4269 * rcu_assign_pointer(), so it's safe to increment
4270 * it here.
4271 */
4272 ++new->current_threshold;
4273 } else
4274 break;
4275 }
4276
4277 /* Free old spare buffer and save old primary buffer as spare */
4278 kfree(thresholds->spare);
4279 thresholds->spare = thresholds->primary;
4280
4281 rcu_assign_pointer(thresholds->primary, new);
4282
4283 /* To be sure that nobody uses thresholds */
4284 synchronize_rcu();
4285
4286 unlock:
4287 mutex_unlock(&memcg->thresholds_lock);
4288
4289 return ret;
4290 }
4291
4292 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4293 struct eventfd_ctx *eventfd, const char *args)
4294 {
4295 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4296 }
4297
4298 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4299 struct eventfd_ctx *eventfd, const char *args)
4300 {
4301 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4302 }
4303
4304 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4305 struct eventfd_ctx *eventfd, enum res_type type)
4306 {
4307 struct mem_cgroup_thresholds *thresholds;
4308 struct mem_cgroup_threshold_ary *new;
4309 unsigned long usage;
4310 int i, j, size, entries;
4311
4312 mutex_lock(&memcg->thresholds_lock);
4313
4314 if (type == _MEM) {
4315 thresholds = &memcg->thresholds;
4316 usage = mem_cgroup_usage(memcg, false);
4317 } else if (type == _MEMSWAP) {
4318 thresholds = &memcg->memsw_thresholds;
4319 usage = mem_cgroup_usage(memcg, true);
4320 } else
4321 BUG();
4322
4323 if (!thresholds->primary)
4324 goto unlock;
4325
4326 /* Check if a threshold crossed before removing */
4327 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4328
4329 /* Calculate new number of threshold */
4330 size = entries = 0;
4331 for (i = 0; i < thresholds->primary->size; i++) {
4332 if (thresholds->primary->entries[i].eventfd != eventfd)
4333 size++;
4334 else
4335 entries++;
4336 }
4337
4338 new = thresholds->spare;
4339
4340 /* If no items related to eventfd have been cleared, nothing to do */
4341 if (!entries)
4342 goto unlock;
4343
4344 /* Set thresholds array to NULL if we don't have thresholds */
4345 if (!size) {
4346 kfree(new);
4347 new = NULL;
4348 goto swap_buffers;
4349 }
4350
4351 new->size = size;
4352
4353 /* Copy thresholds and find current threshold */
4354 new->current_threshold = -1;
4355 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4356 if (thresholds->primary->entries[i].eventfd == eventfd)
4357 continue;
4358
4359 new->entries[j] = thresholds->primary->entries[i];
4360 if (new->entries[j].threshold <= usage) {
4361 /*
4362 * new->current_threshold will not be used
4363 * until rcu_assign_pointer(), so it's safe to increment
4364 * it here.
4365 */
4366 ++new->current_threshold;
4367 }
4368 j++;
4369 }
4370
4371 swap_buffers:
4372 /* Swap primary and spare array */
4373 thresholds->spare = thresholds->primary;
4374
4375 rcu_assign_pointer(thresholds->primary, new);
4376
4377 /* To be sure that nobody uses thresholds */
4378 synchronize_rcu();
4379
4380 /* If all events are unregistered, free the spare array */
4381 if (!new) {
4382 kfree(thresholds->spare);
4383 thresholds->spare = NULL;
4384 }
4385 unlock:
4386 mutex_unlock(&memcg->thresholds_lock);
4387 }
4388
4389 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4390 struct eventfd_ctx *eventfd)
4391 {
4392 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4393 }
4394
4395 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4396 struct eventfd_ctx *eventfd)
4397 {
4398 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4399 }
4400
4401 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4402 struct eventfd_ctx *eventfd, const char *args)
4403 {
4404 struct mem_cgroup_eventfd_list *event;
4405
4406 event = kmalloc(sizeof(*event), GFP_KERNEL);
4407 if (!event)
4408 return -ENOMEM;
4409
4410 spin_lock(&memcg_oom_lock);
4411
4412 event->eventfd = eventfd;
4413 list_add(&event->list, &memcg->oom_notify);
4414
4415 /* already in OOM ? */
4416 if (memcg->under_oom)
4417 eventfd_signal(eventfd, 1);
4418 spin_unlock(&memcg_oom_lock);
4419
4420 return 0;
4421 }
4422
4423 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4424 struct eventfd_ctx *eventfd)
4425 {
4426 struct mem_cgroup_eventfd_list *ev, *tmp;
4427
4428 spin_lock(&memcg_oom_lock);
4429
4430 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4431 if (ev->eventfd == eventfd) {
4432 list_del(&ev->list);
4433 kfree(ev);
4434 }
4435 }
4436
4437 spin_unlock(&memcg_oom_lock);
4438 }
4439
4440 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4441 {
4442 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4443
4444 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4445 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4446 seq_printf(sf, "oom_kill %lu\n",
4447 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4448 return 0;
4449 }
4450
4451 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4452 struct cftype *cft, u64 val)
4453 {
4454 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4455
4456 /* cannot set to root cgroup and only 0 and 1 are allowed */
4457 if (!css->parent || !((val == 0) || (val == 1)))
4458 return -EINVAL;
4459
4460 memcg->oom_kill_disable = val;
4461 if (!val)
4462 memcg_oom_recover(memcg);
4463
4464 return 0;
4465 }
4466
4467 #ifdef CONFIG_CGROUP_WRITEBACK
4468
4469 #include <trace/events/writeback.h>
4470
4471 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4472 {
4473 return wb_domain_init(&memcg->cgwb_domain, gfp);
4474 }
4475
4476 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4477 {
4478 wb_domain_exit(&memcg->cgwb_domain);
4479 }
4480
4481 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4482 {
4483 wb_domain_size_changed(&memcg->cgwb_domain);
4484 }
4485
4486 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4487 {
4488 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4489
4490 if (!memcg->css.parent)
4491 return NULL;
4492
4493 return &memcg->cgwb_domain;
4494 }
4495
4496 /*
4497 * idx can be of type enum memcg_stat_item or node_stat_item.
4498 * Keep in sync with memcg_exact_page().
4499 */
4500 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4501 {
4502 long x = atomic_long_read(&memcg->vmstats[idx]);
4503 int cpu;
4504
4505 for_each_online_cpu(cpu)
4506 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4507 if (x < 0)
4508 x = 0;
4509 return x;
4510 }
4511
4512 /**
4513 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4514 * @wb: bdi_writeback in question
4515 * @pfilepages: out parameter for number of file pages
4516 * @pheadroom: out parameter for number of allocatable pages according to memcg
4517 * @pdirty: out parameter for number of dirty pages
4518 * @pwriteback: out parameter for number of pages under writeback
4519 *
4520 * Determine the numbers of file, headroom, dirty, and writeback pages in
4521 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4522 * is a bit more involved.
4523 *
4524 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4525 * headroom is calculated as the lowest headroom of itself and the
4526 * ancestors. Note that this doesn't consider the actual amount of
4527 * available memory in the system. The caller should further cap
4528 * *@pheadroom accordingly.
4529 */
4530 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4531 unsigned long *pheadroom, unsigned long *pdirty,
4532 unsigned long *pwriteback)
4533 {
4534 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4535 struct mem_cgroup *parent;
4536
4537 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4538
4539 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4540 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4541 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4542 *pheadroom = PAGE_COUNTER_MAX;
4543
4544 while ((parent = parent_mem_cgroup(memcg))) {
4545 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4546 READ_ONCE(memcg->memory.high));
4547 unsigned long used = page_counter_read(&memcg->memory);
4548
4549 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4550 memcg = parent;
4551 }
4552 }
4553
4554 /*
4555 * Foreign dirty flushing
4556 *
4557 * There's an inherent mismatch between memcg and writeback. The former
4558 * trackes ownership per-page while the latter per-inode. This was a
4559 * deliberate design decision because honoring per-page ownership in the
4560 * writeback path is complicated, may lead to higher CPU and IO overheads
4561 * and deemed unnecessary given that write-sharing an inode across
4562 * different cgroups isn't a common use-case.
4563 *
4564 * Combined with inode majority-writer ownership switching, this works well
4565 * enough in most cases but there are some pathological cases. For
4566 * example, let's say there are two cgroups A and B which keep writing to
4567 * different but confined parts of the same inode. B owns the inode and
4568 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4569 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4570 * triggering background writeback. A will be slowed down without a way to
4571 * make writeback of the dirty pages happen.
4572 *
4573 * Conditions like the above can lead to a cgroup getting repatedly and
4574 * severely throttled after making some progress after each
4575 * dirty_expire_interval while the underyling IO device is almost
4576 * completely idle.
4577 *
4578 * Solving this problem completely requires matching the ownership tracking
4579 * granularities between memcg and writeback in either direction. However,
4580 * the more egregious behaviors can be avoided by simply remembering the
4581 * most recent foreign dirtying events and initiating remote flushes on
4582 * them when local writeback isn't enough to keep the memory clean enough.
4583 *
4584 * The following two functions implement such mechanism. When a foreign
4585 * page - a page whose memcg and writeback ownerships don't match - is
4586 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4587 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4588 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4589 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4590 * foreign bdi_writebacks which haven't expired. Both the numbers of
4591 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4592 * limited to MEMCG_CGWB_FRN_CNT.
4593 *
4594 * The mechanism only remembers IDs and doesn't hold any object references.
4595 * As being wrong occasionally doesn't matter, updates and accesses to the
4596 * records are lockless and racy.
4597 */
4598 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4599 struct bdi_writeback *wb)
4600 {
4601 struct mem_cgroup *memcg = page->mem_cgroup;
4602 struct memcg_cgwb_frn *frn;
4603 u64 now = get_jiffies_64();
4604 u64 oldest_at = now;
4605 int oldest = -1;
4606 int i;
4607
4608 trace_track_foreign_dirty(page, wb);
4609
4610 /*
4611 * Pick the slot to use. If there is already a slot for @wb, keep
4612 * using it. If not replace the oldest one which isn't being
4613 * written out.
4614 */
4615 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4616 frn = &memcg->cgwb_frn[i];
4617 if (frn->bdi_id == wb->bdi->id &&
4618 frn->memcg_id == wb->memcg_css->id)
4619 break;
4620 if (time_before64(frn->at, oldest_at) &&
4621 atomic_read(&frn->done.cnt) == 1) {
4622 oldest = i;
4623 oldest_at = frn->at;
4624 }
4625 }
4626
4627 if (i < MEMCG_CGWB_FRN_CNT) {
4628 /*
4629 * Re-using an existing one. Update timestamp lazily to
4630 * avoid making the cacheline hot. We want them to be
4631 * reasonably up-to-date and significantly shorter than
4632 * dirty_expire_interval as that's what expires the record.
4633 * Use the shorter of 1s and dirty_expire_interval / 8.
4634 */
4635 unsigned long update_intv =
4636 min_t(unsigned long, HZ,
4637 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4638
4639 if (time_before64(frn->at, now - update_intv))
4640 frn->at = now;
4641 } else if (oldest >= 0) {
4642 /* replace the oldest free one */
4643 frn = &memcg->cgwb_frn[oldest];
4644 frn->bdi_id = wb->bdi->id;
4645 frn->memcg_id = wb->memcg_css->id;
4646 frn->at = now;
4647 }
4648 }
4649
4650 /* issue foreign writeback flushes for recorded foreign dirtying events */
4651 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4652 {
4653 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4654 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4655 u64 now = jiffies_64;
4656 int i;
4657
4658 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4659 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4660
4661 /*
4662 * If the record is older than dirty_expire_interval,
4663 * writeback on it has already started. No need to kick it
4664 * off again. Also, don't start a new one if there's
4665 * already one in flight.
4666 */
4667 if (time_after64(frn->at, now - intv) &&
4668 atomic_read(&frn->done.cnt) == 1) {
4669 frn->at = 0;
4670 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4671 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4672 WB_REASON_FOREIGN_FLUSH,
4673 &frn->done);
4674 }
4675 }
4676 }
4677
4678 #else /* CONFIG_CGROUP_WRITEBACK */
4679
4680 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4681 {
4682 return 0;
4683 }
4684
4685 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4686 {
4687 }
4688
4689 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4690 {
4691 }
4692
4693 #endif /* CONFIG_CGROUP_WRITEBACK */
4694
4695 /*
4696 * DO NOT USE IN NEW FILES.
4697 *
4698 * "cgroup.event_control" implementation.
4699 *
4700 * This is way over-engineered. It tries to support fully configurable
4701 * events for each user. Such level of flexibility is completely
4702 * unnecessary especially in the light of the planned unified hierarchy.
4703 *
4704 * Please deprecate this and replace with something simpler if at all
4705 * possible.
4706 */
4707
4708 /*
4709 * Unregister event and free resources.
4710 *
4711 * Gets called from workqueue.
4712 */
4713 static void memcg_event_remove(struct work_struct *work)
4714 {
4715 struct mem_cgroup_event *event =
4716 container_of(work, struct mem_cgroup_event, remove);
4717 struct mem_cgroup *memcg = event->memcg;
4718
4719 remove_wait_queue(event->wqh, &event->wait);
4720
4721 event->unregister_event(memcg, event->eventfd);
4722
4723 /* Notify userspace the event is going away. */
4724 eventfd_signal(event->eventfd, 1);
4725
4726 eventfd_ctx_put(event->eventfd);
4727 kfree(event);
4728 css_put(&memcg->css);
4729 }
4730
4731 /*
4732 * Gets called on EPOLLHUP on eventfd when user closes it.
4733 *
4734 * Called with wqh->lock held and interrupts disabled.
4735 */
4736 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4737 int sync, void *key)
4738 {
4739 struct mem_cgroup_event *event =
4740 container_of(wait, struct mem_cgroup_event, wait);
4741 struct mem_cgroup *memcg = event->memcg;
4742 __poll_t flags = key_to_poll(key);
4743
4744 if (flags & EPOLLHUP) {
4745 /*
4746 * If the event has been detached at cgroup removal, we
4747 * can simply return knowing the other side will cleanup
4748 * for us.
4749 *
4750 * We can't race against event freeing since the other
4751 * side will require wqh->lock via remove_wait_queue(),
4752 * which we hold.
4753 */
4754 spin_lock(&memcg->event_list_lock);
4755 if (!list_empty(&event->list)) {
4756 list_del_init(&event->list);
4757 /*
4758 * We are in atomic context, but cgroup_event_remove()
4759 * may sleep, so we have to call it in workqueue.
4760 */
4761 schedule_work(&event->remove);
4762 }
4763 spin_unlock(&memcg->event_list_lock);
4764 }
4765
4766 return 0;
4767 }
4768
4769 static void memcg_event_ptable_queue_proc(struct file *file,
4770 wait_queue_head_t *wqh, poll_table *pt)
4771 {
4772 struct mem_cgroup_event *event =
4773 container_of(pt, struct mem_cgroup_event, pt);
4774
4775 event->wqh = wqh;
4776 add_wait_queue(wqh, &event->wait);
4777 }
4778
4779 /*
4780 * DO NOT USE IN NEW FILES.
4781 *
4782 * Parse input and register new cgroup event handler.
4783 *
4784 * Input must be in format '<event_fd> <control_fd> <args>'.
4785 * Interpretation of args is defined by control file implementation.
4786 */
4787 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4788 char *buf, size_t nbytes, loff_t off)
4789 {
4790 struct cgroup_subsys_state *css = of_css(of);
4791 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4792 struct mem_cgroup_event *event;
4793 struct cgroup_subsys_state *cfile_css;
4794 unsigned int efd, cfd;
4795 struct fd efile;
4796 struct fd cfile;
4797 const char *name;
4798 char *endp;
4799 int ret;
4800
4801 buf = strstrip(buf);
4802
4803 efd = simple_strtoul(buf, &endp, 10);
4804 if (*endp != ' ')
4805 return -EINVAL;
4806 buf = endp + 1;
4807
4808 cfd = simple_strtoul(buf, &endp, 10);
4809 if ((*endp != ' ') && (*endp != '\0'))
4810 return -EINVAL;
4811 buf = endp + 1;
4812
4813 event = kzalloc(sizeof(*event), GFP_KERNEL);
4814 if (!event)
4815 return -ENOMEM;
4816
4817 event->memcg = memcg;
4818 INIT_LIST_HEAD(&event->list);
4819 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4820 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4821 INIT_WORK(&event->remove, memcg_event_remove);
4822
4823 efile = fdget(efd);
4824 if (!efile.file) {
4825 ret = -EBADF;
4826 goto out_kfree;
4827 }
4828
4829 event->eventfd = eventfd_ctx_fileget(efile.file);
4830 if (IS_ERR(event->eventfd)) {
4831 ret = PTR_ERR(event->eventfd);
4832 goto out_put_efile;
4833 }
4834
4835 cfile = fdget(cfd);
4836 if (!cfile.file) {
4837 ret = -EBADF;
4838 goto out_put_eventfd;
4839 }
4840
4841 /* the process need read permission on control file */
4842 /* AV: shouldn't we check that it's been opened for read instead? */
4843 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4844 if (ret < 0)
4845 goto out_put_cfile;
4846
4847 /*
4848 * Determine the event callbacks and set them in @event. This used
4849 * to be done via struct cftype but cgroup core no longer knows
4850 * about these events. The following is crude but the whole thing
4851 * is for compatibility anyway.
4852 *
4853 * DO NOT ADD NEW FILES.
4854 */
4855 name = cfile.file->f_path.dentry->d_name.name;
4856
4857 if (!strcmp(name, "memory.usage_in_bytes")) {
4858 event->register_event = mem_cgroup_usage_register_event;
4859 event->unregister_event = mem_cgroup_usage_unregister_event;
4860 } else if (!strcmp(name, "memory.oom_control")) {
4861 event->register_event = mem_cgroup_oom_register_event;
4862 event->unregister_event = mem_cgroup_oom_unregister_event;
4863 } else if (!strcmp(name, "memory.pressure_level")) {
4864 event->register_event = vmpressure_register_event;
4865 event->unregister_event = vmpressure_unregister_event;
4866 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4867 event->register_event = memsw_cgroup_usage_register_event;
4868 event->unregister_event = memsw_cgroup_usage_unregister_event;
4869 } else {
4870 ret = -EINVAL;
4871 goto out_put_cfile;
4872 }
4873
4874 /*
4875 * Verify @cfile should belong to @css. Also, remaining events are
4876 * automatically removed on cgroup destruction but the removal is
4877 * asynchronous, so take an extra ref on @css.
4878 */
4879 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4880 &memory_cgrp_subsys);
4881 ret = -EINVAL;
4882 if (IS_ERR(cfile_css))
4883 goto out_put_cfile;
4884 if (cfile_css != css) {
4885 css_put(cfile_css);
4886 goto out_put_cfile;
4887 }
4888
4889 ret = event->register_event(memcg, event->eventfd, buf);
4890 if (ret)
4891 goto out_put_css;
4892
4893 vfs_poll(efile.file, &event->pt);
4894
4895 spin_lock(&memcg->event_list_lock);
4896 list_add(&event->list, &memcg->event_list);
4897 spin_unlock(&memcg->event_list_lock);
4898
4899 fdput(cfile);
4900 fdput(efile);
4901
4902 return nbytes;
4903
4904 out_put_css:
4905 css_put(css);
4906 out_put_cfile:
4907 fdput(cfile);
4908 out_put_eventfd:
4909 eventfd_ctx_put(event->eventfd);
4910 out_put_efile:
4911 fdput(efile);
4912 out_kfree:
4913 kfree(event);
4914
4915 return ret;
4916 }
4917
4918 static struct cftype mem_cgroup_legacy_files[] = {
4919 {
4920 .name = "usage_in_bytes",
4921 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4922 .read_u64 = mem_cgroup_read_u64,
4923 },
4924 {
4925 .name = "max_usage_in_bytes",
4926 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4927 .write = mem_cgroup_reset,
4928 .read_u64 = mem_cgroup_read_u64,
4929 },
4930 {
4931 .name = "limit_in_bytes",
4932 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4933 .write = mem_cgroup_write,
4934 .read_u64 = mem_cgroup_read_u64,
4935 },
4936 {
4937 .name = "soft_limit_in_bytes",
4938 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4939 .write = mem_cgroup_write,
4940 .read_u64 = mem_cgroup_read_u64,
4941 },
4942 {
4943 .name = "failcnt",
4944 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4945 .write = mem_cgroup_reset,
4946 .read_u64 = mem_cgroup_read_u64,
4947 },
4948 {
4949 .name = "stat",
4950 .seq_show = memcg_stat_show,
4951 },
4952 {
4953 .name = "force_empty",
4954 .write = mem_cgroup_force_empty_write,
4955 },
4956 {
4957 .name = "use_hierarchy",
4958 .write_u64 = mem_cgroup_hierarchy_write,
4959 .read_u64 = mem_cgroup_hierarchy_read,
4960 },
4961 {
4962 .name = "cgroup.event_control", /* XXX: for compat */
4963 .write = memcg_write_event_control,
4964 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4965 },
4966 {
4967 .name = "swappiness",
4968 .read_u64 = mem_cgroup_swappiness_read,
4969 .write_u64 = mem_cgroup_swappiness_write,
4970 },
4971 {
4972 .name = "move_charge_at_immigrate",
4973 .read_u64 = mem_cgroup_move_charge_read,
4974 .write_u64 = mem_cgroup_move_charge_write,
4975 },
4976 {
4977 .name = "oom_control",
4978 .seq_show = mem_cgroup_oom_control_read,
4979 .write_u64 = mem_cgroup_oom_control_write,
4980 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4981 },
4982 {
4983 .name = "pressure_level",
4984 },
4985 #ifdef CONFIG_NUMA
4986 {
4987 .name = "numa_stat",
4988 .seq_show = memcg_numa_stat_show,
4989 },
4990 #endif
4991 {
4992 .name = "kmem.limit_in_bytes",
4993 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4994 .write = mem_cgroup_write,
4995 .read_u64 = mem_cgroup_read_u64,
4996 },
4997 {
4998 .name = "kmem.usage_in_bytes",
4999 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5000 .read_u64 = mem_cgroup_read_u64,
5001 },
5002 {
5003 .name = "kmem.failcnt",
5004 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5005 .write = mem_cgroup_reset,
5006 .read_u64 = mem_cgroup_read_u64,
5007 },
5008 {
5009 .name = "kmem.max_usage_in_bytes",
5010 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5011 .write = mem_cgroup_reset,
5012 .read_u64 = mem_cgroup_read_u64,
5013 },
5014 #if defined(CONFIG_MEMCG_KMEM) && \
5015 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5016 {
5017 .name = "kmem.slabinfo",
5018 .seq_show = memcg_slab_show,
5019 },
5020 #endif
5021 {
5022 .name = "kmem.tcp.limit_in_bytes",
5023 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5024 .write = mem_cgroup_write,
5025 .read_u64 = mem_cgroup_read_u64,
5026 },
5027 {
5028 .name = "kmem.tcp.usage_in_bytes",
5029 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5030 .read_u64 = mem_cgroup_read_u64,
5031 },
5032 {
5033 .name = "kmem.tcp.failcnt",
5034 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5035 .write = mem_cgroup_reset,
5036 .read_u64 = mem_cgroup_read_u64,
5037 },
5038 {
5039 .name = "kmem.tcp.max_usage_in_bytes",
5040 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5041 .write = mem_cgroup_reset,
5042 .read_u64 = mem_cgroup_read_u64,
5043 },
5044 { }, /* terminate */
5045 };
5046
5047 /*
5048 * Private memory cgroup IDR
5049 *
5050 * Swap-out records and page cache shadow entries need to store memcg
5051 * references in constrained space, so we maintain an ID space that is
5052 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5053 * memory-controlled cgroups to 64k.
5054 *
5055 * However, there usually are many references to the offline CSS after
5056 * the cgroup has been destroyed, such as page cache or reclaimable
5057 * slab objects, that don't need to hang on to the ID. We want to keep
5058 * those dead CSS from occupying IDs, or we might quickly exhaust the
5059 * relatively small ID space and prevent the creation of new cgroups
5060 * even when there are much fewer than 64k cgroups - possibly none.
5061 *
5062 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5063 * be freed and recycled when it's no longer needed, which is usually
5064 * when the CSS is offlined.
5065 *
5066 * The only exception to that are records of swapped out tmpfs/shmem
5067 * pages that need to be attributed to live ancestors on swapin. But
5068 * those references are manageable from userspace.
5069 */
5070
5071 static DEFINE_IDR(mem_cgroup_idr);
5072
5073 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5074 {
5075 if (memcg->id.id > 0) {
5076 idr_remove(&mem_cgroup_idr, memcg->id.id);
5077 memcg->id.id = 0;
5078 }
5079 }
5080
5081 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5082 unsigned int n)
5083 {
5084 refcount_add(n, &memcg->id.ref);
5085 }
5086
5087 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5088 {
5089 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5090 mem_cgroup_id_remove(memcg);
5091
5092 /* Memcg ID pins CSS */
5093 css_put(&memcg->css);
5094 }
5095 }
5096
5097 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5098 {
5099 mem_cgroup_id_put_many(memcg, 1);
5100 }
5101
5102 /**
5103 * mem_cgroup_from_id - look up a memcg from a memcg id
5104 * @id: the memcg id to look up
5105 *
5106 * Caller must hold rcu_read_lock().
5107 */
5108 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5109 {
5110 WARN_ON_ONCE(!rcu_read_lock_held());
5111 return idr_find(&mem_cgroup_idr, id);
5112 }
5113
5114 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5115 {
5116 struct mem_cgroup_per_node *pn;
5117 int tmp = node;
5118 /*
5119 * This routine is called against possible nodes.
5120 * But it's BUG to call kmalloc() against offline node.
5121 *
5122 * TODO: this routine can waste much memory for nodes which will
5123 * never be onlined. It's better to use memory hotplug callback
5124 * function.
5125 */
5126 if (!node_state(node, N_NORMAL_MEMORY))
5127 tmp = -1;
5128 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5129 if (!pn)
5130 return 1;
5131
5132 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
5133 if (!pn->lruvec_stat_local) {
5134 kfree(pn);
5135 return 1;
5136 }
5137
5138 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
5139 if (!pn->lruvec_stat_cpu) {
5140 free_percpu(pn->lruvec_stat_local);
5141 kfree(pn);
5142 return 1;
5143 }
5144
5145 lruvec_init(&pn->lruvec);
5146 pn->usage_in_excess = 0;
5147 pn->on_tree = false;
5148 pn->memcg = memcg;
5149
5150 memcg->nodeinfo[node] = pn;
5151 return 0;
5152 }
5153
5154 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5155 {
5156 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5157
5158 if (!pn)
5159 return;
5160
5161 free_percpu(pn->lruvec_stat_cpu);
5162 free_percpu(pn->lruvec_stat_local);
5163 kfree(pn);
5164 }
5165
5166 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5167 {
5168 int node;
5169
5170 for_each_node(node)
5171 free_mem_cgroup_per_node_info(memcg, node);
5172 free_percpu(memcg->vmstats_percpu);
5173 free_percpu(memcg->vmstats_local);
5174 kfree(memcg);
5175 }
5176
5177 static void mem_cgroup_free(struct mem_cgroup *memcg)
5178 {
5179 memcg_wb_domain_exit(memcg);
5180 /*
5181 * Flush percpu vmstats and vmevents to guarantee the value correctness
5182 * on parent's and all ancestor levels.
5183 */
5184 memcg_flush_percpu_vmstats(memcg);
5185 memcg_flush_percpu_vmevents(memcg);
5186 __mem_cgroup_free(memcg);
5187 }
5188
5189 static struct mem_cgroup *mem_cgroup_alloc(void)
5190 {
5191 struct mem_cgroup *memcg;
5192 unsigned int size;
5193 int node;
5194 int __maybe_unused i;
5195 long error = -ENOMEM;
5196
5197 size = sizeof(struct mem_cgroup);
5198 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5199
5200 memcg = kzalloc(size, GFP_KERNEL);
5201 if (!memcg)
5202 return ERR_PTR(error);
5203
5204 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5205 1, MEM_CGROUP_ID_MAX,
5206 GFP_KERNEL);
5207 if (memcg->id.id < 0) {
5208 error = memcg->id.id;
5209 goto fail;
5210 }
5211
5212 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5213 if (!memcg->vmstats_local)
5214 goto fail;
5215
5216 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5217 if (!memcg->vmstats_percpu)
5218 goto fail;
5219
5220 for_each_node(node)
5221 if (alloc_mem_cgroup_per_node_info(memcg, node))
5222 goto fail;
5223
5224 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5225 goto fail;
5226
5227 INIT_WORK(&memcg->high_work, high_work_func);
5228 INIT_LIST_HEAD(&memcg->oom_notify);
5229 mutex_init(&memcg->thresholds_lock);
5230 spin_lock_init(&memcg->move_lock);
5231 vmpressure_init(&memcg->vmpressure);
5232 INIT_LIST_HEAD(&memcg->event_list);
5233 spin_lock_init(&memcg->event_list_lock);
5234 memcg->socket_pressure = jiffies;
5235 #ifdef CONFIG_MEMCG_KMEM
5236 memcg->kmemcg_id = -1;
5237 INIT_LIST_HEAD(&memcg->objcg_list);
5238 #endif
5239 #ifdef CONFIG_CGROUP_WRITEBACK
5240 INIT_LIST_HEAD(&memcg->cgwb_list);
5241 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5242 memcg->cgwb_frn[i].done =
5243 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5244 #endif
5245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5246 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5247 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5248 memcg->deferred_split_queue.split_queue_len = 0;
5249 #endif
5250 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5251 return memcg;
5252 fail:
5253 mem_cgroup_id_remove(memcg);
5254 __mem_cgroup_free(memcg);
5255 return ERR_PTR(error);
5256 }
5257
5258 static struct cgroup_subsys_state * __ref
5259 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5260 {
5261 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5262 struct mem_cgroup *memcg;
5263 long error = -ENOMEM;
5264
5265 memcg = mem_cgroup_alloc();
5266 if (IS_ERR(memcg))
5267 return ERR_CAST(memcg);
5268
5269 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5270 memcg->soft_limit = PAGE_COUNTER_MAX;
5271 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5272 if (parent) {
5273 memcg->swappiness = mem_cgroup_swappiness(parent);
5274 memcg->oom_kill_disable = parent->oom_kill_disable;
5275 }
5276 if (parent && parent->use_hierarchy) {
5277 memcg->use_hierarchy = true;
5278 page_counter_init(&memcg->memory, &parent->memory);
5279 page_counter_init(&memcg->swap, &parent->swap);
5280 page_counter_init(&memcg->memsw, &parent->memsw);
5281 page_counter_init(&memcg->kmem, &parent->kmem);
5282 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5283 } else {
5284 page_counter_init(&memcg->memory, NULL);
5285 page_counter_init(&memcg->swap, NULL);
5286 page_counter_init(&memcg->memsw, NULL);
5287 page_counter_init(&memcg->kmem, NULL);
5288 page_counter_init(&memcg->tcpmem, NULL);
5289 /*
5290 * Deeper hierachy with use_hierarchy == false doesn't make
5291 * much sense so let cgroup subsystem know about this
5292 * unfortunate state in our controller.
5293 */
5294 if (parent != root_mem_cgroup)
5295 memory_cgrp_subsys.broken_hierarchy = true;
5296 }
5297
5298 /* The following stuff does not apply to the root */
5299 if (!parent) {
5300 root_mem_cgroup = memcg;
5301 return &memcg->css;
5302 }
5303
5304 error = memcg_online_kmem(memcg);
5305 if (error)
5306 goto fail;
5307
5308 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5309 static_branch_inc(&memcg_sockets_enabled_key);
5310
5311 return &memcg->css;
5312 fail:
5313 mem_cgroup_id_remove(memcg);
5314 mem_cgroup_free(memcg);
5315 return ERR_PTR(error);
5316 }
5317
5318 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5319 {
5320 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5321
5322 /*
5323 * A memcg must be visible for memcg_expand_shrinker_maps()
5324 * by the time the maps are allocated. So, we allocate maps
5325 * here, when for_each_mem_cgroup() can't skip it.
5326 */
5327 if (memcg_alloc_shrinker_maps(memcg)) {
5328 mem_cgroup_id_remove(memcg);
5329 return -ENOMEM;
5330 }
5331
5332 /* Online state pins memcg ID, memcg ID pins CSS */
5333 refcount_set(&memcg->id.ref, 1);
5334 css_get(css);
5335 return 0;
5336 }
5337
5338 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5339 {
5340 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5341 struct mem_cgroup_event *event, *tmp;
5342
5343 /*
5344 * Unregister events and notify userspace.
5345 * Notify userspace about cgroup removing only after rmdir of cgroup
5346 * directory to avoid race between userspace and kernelspace.
5347 */
5348 spin_lock(&memcg->event_list_lock);
5349 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5350 list_del_init(&event->list);
5351 schedule_work(&event->remove);
5352 }
5353 spin_unlock(&memcg->event_list_lock);
5354
5355 page_counter_set_min(&memcg->memory, 0);
5356 page_counter_set_low(&memcg->memory, 0);
5357
5358 memcg_offline_kmem(memcg);
5359 wb_memcg_offline(memcg);
5360
5361 drain_all_stock(memcg);
5362
5363 mem_cgroup_id_put(memcg);
5364 }
5365
5366 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5367 {
5368 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5369
5370 invalidate_reclaim_iterators(memcg);
5371 }
5372
5373 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5374 {
5375 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5376 int __maybe_unused i;
5377
5378 #ifdef CONFIG_CGROUP_WRITEBACK
5379 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5380 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5381 #endif
5382 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5383 static_branch_dec(&memcg_sockets_enabled_key);
5384
5385 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5386 static_branch_dec(&memcg_sockets_enabled_key);
5387
5388 vmpressure_cleanup(&memcg->vmpressure);
5389 cancel_work_sync(&memcg->high_work);
5390 mem_cgroup_remove_from_trees(memcg);
5391 memcg_free_shrinker_maps(memcg);
5392 memcg_free_kmem(memcg);
5393 mem_cgroup_free(memcg);
5394 }
5395
5396 /**
5397 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5398 * @css: the target css
5399 *
5400 * Reset the states of the mem_cgroup associated with @css. This is
5401 * invoked when the userland requests disabling on the default hierarchy
5402 * but the memcg is pinned through dependency. The memcg should stop
5403 * applying policies and should revert to the vanilla state as it may be
5404 * made visible again.
5405 *
5406 * The current implementation only resets the essential configurations.
5407 * This needs to be expanded to cover all the visible parts.
5408 */
5409 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5410 {
5411 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5412
5413 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5414 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5415 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5416 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5417 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5418 page_counter_set_min(&memcg->memory, 0);
5419 page_counter_set_low(&memcg->memory, 0);
5420 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5421 memcg->soft_limit = PAGE_COUNTER_MAX;
5422 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5423 memcg_wb_domain_size_changed(memcg);
5424 }
5425
5426 #ifdef CONFIG_MMU
5427 /* Handlers for move charge at task migration. */
5428 static int mem_cgroup_do_precharge(unsigned long count)
5429 {
5430 int ret;
5431
5432 /* Try a single bulk charge without reclaim first, kswapd may wake */
5433 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5434 if (!ret) {
5435 mc.precharge += count;
5436 return ret;
5437 }
5438
5439 /* Try charges one by one with reclaim, but do not retry */
5440 while (count--) {
5441 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5442 if (ret)
5443 return ret;
5444 mc.precharge++;
5445 cond_resched();
5446 }
5447 return 0;
5448 }
5449
5450 union mc_target {
5451 struct page *page;
5452 swp_entry_t ent;
5453 };
5454
5455 enum mc_target_type {
5456 MC_TARGET_NONE = 0,
5457 MC_TARGET_PAGE,
5458 MC_TARGET_SWAP,
5459 MC_TARGET_DEVICE,
5460 };
5461
5462 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5463 unsigned long addr, pte_t ptent)
5464 {
5465 struct page *page = vm_normal_page(vma, addr, ptent);
5466
5467 if (!page || !page_mapped(page))
5468 return NULL;
5469 if (PageAnon(page)) {
5470 if (!(mc.flags & MOVE_ANON))
5471 return NULL;
5472 } else {
5473 if (!(mc.flags & MOVE_FILE))
5474 return NULL;
5475 }
5476 if (!get_page_unless_zero(page))
5477 return NULL;
5478
5479 return page;
5480 }
5481
5482 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5483 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5484 pte_t ptent, swp_entry_t *entry)
5485 {
5486 struct page *page = NULL;
5487 swp_entry_t ent = pte_to_swp_entry(ptent);
5488
5489 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5490 return NULL;
5491
5492 /*
5493 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5494 * a device and because they are not accessible by CPU they are store
5495 * as special swap entry in the CPU page table.
5496 */
5497 if (is_device_private_entry(ent)) {
5498 page = device_private_entry_to_page(ent);
5499 /*
5500 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5501 * a refcount of 1 when free (unlike normal page)
5502 */
5503 if (!page_ref_add_unless(page, 1, 1))
5504 return NULL;
5505 return page;
5506 }
5507
5508 /*
5509 * Because lookup_swap_cache() updates some statistics counter,
5510 * we call find_get_page() with swapper_space directly.
5511 */
5512 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5513 entry->val = ent.val;
5514
5515 return page;
5516 }
5517 #else
5518 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5519 pte_t ptent, swp_entry_t *entry)
5520 {
5521 return NULL;
5522 }
5523 #endif
5524
5525 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5526 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5527 {
5528 struct page *page = NULL;
5529 struct address_space *mapping;
5530 pgoff_t pgoff;
5531
5532 if (!vma->vm_file) /* anonymous vma */
5533 return NULL;
5534 if (!(mc.flags & MOVE_FILE))
5535 return NULL;
5536
5537 mapping = vma->vm_file->f_mapping;
5538 pgoff = linear_page_index(vma, addr);
5539
5540 /* page is moved even if it's not RSS of this task(page-faulted). */
5541 #ifdef CONFIG_SWAP
5542 /* shmem/tmpfs may report page out on swap: account for that too. */
5543 if (shmem_mapping(mapping)) {
5544 page = find_get_entry(mapping, pgoff);
5545 if (xa_is_value(page)) {
5546 swp_entry_t swp = radix_to_swp_entry(page);
5547 *entry = swp;
5548 page = find_get_page(swap_address_space(swp),
5549 swp_offset(swp));
5550 }
5551 } else
5552 page = find_get_page(mapping, pgoff);
5553 #else
5554 page = find_get_page(mapping, pgoff);
5555 #endif
5556 return page;
5557 }
5558
5559 /**
5560 * mem_cgroup_move_account - move account of the page
5561 * @page: the page
5562 * @compound: charge the page as compound or small page
5563 * @from: mem_cgroup which the page is moved from.
5564 * @to: mem_cgroup which the page is moved to. @from != @to.
5565 *
5566 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5567 *
5568 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5569 * from old cgroup.
5570 */
5571 static int mem_cgroup_move_account(struct page *page,
5572 bool compound,
5573 struct mem_cgroup *from,
5574 struct mem_cgroup *to)
5575 {
5576 struct lruvec *from_vec, *to_vec;
5577 struct pglist_data *pgdat;
5578 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5579 int ret;
5580
5581 VM_BUG_ON(from == to);
5582 VM_BUG_ON_PAGE(PageLRU(page), page);
5583 VM_BUG_ON(compound && !PageTransHuge(page));
5584
5585 /*
5586 * Prevent mem_cgroup_migrate() from looking at
5587 * page->mem_cgroup of its source page while we change it.
5588 */
5589 ret = -EBUSY;
5590 if (!trylock_page(page))
5591 goto out;
5592
5593 ret = -EINVAL;
5594 if (page->mem_cgroup != from)
5595 goto out_unlock;
5596
5597 pgdat = page_pgdat(page);
5598 from_vec = mem_cgroup_lruvec(from, pgdat);
5599 to_vec = mem_cgroup_lruvec(to, pgdat);
5600
5601 lock_page_memcg(page);
5602
5603 if (PageAnon(page)) {
5604 if (page_mapped(page)) {
5605 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5606 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5607 if (PageTransHuge(page)) {
5608 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5609 -nr_pages);
5610 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5611 nr_pages);
5612 }
5613
5614 }
5615 } else {
5616 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5617 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5618
5619 if (PageSwapBacked(page)) {
5620 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5621 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5622 }
5623
5624 if (page_mapped(page)) {
5625 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5626 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5627 }
5628
5629 if (PageDirty(page)) {
5630 struct address_space *mapping = page_mapping(page);
5631
5632 if (mapping_cap_account_dirty(mapping)) {
5633 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5634 -nr_pages);
5635 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5636 nr_pages);
5637 }
5638 }
5639 }
5640
5641 if (PageWriteback(page)) {
5642 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5643 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5644 }
5645
5646 /*
5647 * All state has been migrated, let's switch to the new memcg.
5648 *
5649 * It is safe to change page->mem_cgroup here because the page
5650 * is referenced, charged, isolated, and locked: we can't race
5651 * with (un)charging, migration, LRU putback, or anything else
5652 * that would rely on a stable page->mem_cgroup.
5653 *
5654 * Note that lock_page_memcg is a memcg lock, not a page lock,
5655 * to save space. As soon as we switch page->mem_cgroup to a
5656 * new memcg that isn't locked, the above state can change
5657 * concurrently again. Make sure we're truly done with it.
5658 */
5659 smp_mb();
5660
5661 css_get(&to->css);
5662 css_put(&from->css);
5663
5664 page->mem_cgroup = to;
5665
5666 __unlock_page_memcg(from);
5667
5668 ret = 0;
5669
5670 local_irq_disable();
5671 mem_cgroup_charge_statistics(to, page, nr_pages);
5672 memcg_check_events(to, page);
5673 mem_cgroup_charge_statistics(from, page, -nr_pages);
5674 memcg_check_events(from, page);
5675 local_irq_enable();
5676 out_unlock:
5677 unlock_page(page);
5678 out:
5679 return ret;
5680 }
5681
5682 /**
5683 * get_mctgt_type - get target type of moving charge
5684 * @vma: the vma the pte to be checked belongs
5685 * @addr: the address corresponding to the pte to be checked
5686 * @ptent: the pte to be checked
5687 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5688 *
5689 * Returns
5690 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5691 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5692 * move charge. if @target is not NULL, the page is stored in target->page
5693 * with extra refcnt got(Callers should handle it).
5694 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5695 * target for charge migration. if @target is not NULL, the entry is stored
5696 * in target->ent.
5697 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5698 * (so ZONE_DEVICE page and thus not on the lru).
5699 * For now we such page is charge like a regular page would be as for all
5700 * intent and purposes it is just special memory taking the place of a
5701 * regular page.
5702 *
5703 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5704 *
5705 * Called with pte lock held.
5706 */
5707
5708 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5709 unsigned long addr, pte_t ptent, union mc_target *target)
5710 {
5711 struct page *page = NULL;
5712 enum mc_target_type ret = MC_TARGET_NONE;
5713 swp_entry_t ent = { .val = 0 };
5714
5715 if (pte_present(ptent))
5716 page = mc_handle_present_pte(vma, addr, ptent);
5717 else if (is_swap_pte(ptent))
5718 page = mc_handle_swap_pte(vma, ptent, &ent);
5719 else if (pte_none(ptent))
5720 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5721
5722 if (!page && !ent.val)
5723 return ret;
5724 if (page) {
5725 /*
5726 * Do only loose check w/o serialization.
5727 * mem_cgroup_move_account() checks the page is valid or
5728 * not under LRU exclusion.
5729 */
5730 if (page->mem_cgroup == mc.from) {
5731 ret = MC_TARGET_PAGE;
5732 if (is_device_private_page(page))
5733 ret = MC_TARGET_DEVICE;
5734 if (target)
5735 target->page = page;
5736 }
5737 if (!ret || !target)
5738 put_page(page);
5739 }
5740 /*
5741 * There is a swap entry and a page doesn't exist or isn't charged.
5742 * But we cannot move a tail-page in a THP.
5743 */
5744 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5745 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5746 ret = MC_TARGET_SWAP;
5747 if (target)
5748 target->ent = ent;
5749 }
5750 return ret;
5751 }
5752
5753 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5754 /*
5755 * We don't consider PMD mapped swapping or file mapped pages because THP does
5756 * not support them for now.
5757 * Caller should make sure that pmd_trans_huge(pmd) is true.
5758 */
5759 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5760 unsigned long addr, pmd_t pmd, union mc_target *target)
5761 {
5762 struct page *page = NULL;
5763 enum mc_target_type ret = MC_TARGET_NONE;
5764
5765 if (unlikely(is_swap_pmd(pmd))) {
5766 VM_BUG_ON(thp_migration_supported() &&
5767 !is_pmd_migration_entry(pmd));
5768 return ret;
5769 }
5770 page = pmd_page(pmd);
5771 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5772 if (!(mc.flags & MOVE_ANON))
5773 return ret;
5774 if (page->mem_cgroup == mc.from) {
5775 ret = MC_TARGET_PAGE;
5776 if (target) {
5777 get_page(page);
5778 target->page = page;
5779 }
5780 }
5781 return ret;
5782 }
5783 #else
5784 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5785 unsigned long addr, pmd_t pmd, union mc_target *target)
5786 {
5787 return MC_TARGET_NONE;
5788 }
5789 #endif
5790
5791 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5792 unsigned long addr, unsigned long end,
5793 struct mm_walk *walk)
5794 {
5795 struct vm_area_struct *vma = walk->vma;
5796 pte_t *pte;
5797 spinlock_t *ptl;
5798
5799 ptl = pmd_trans_huge_lock(pmd, vma);
5800 if (ptl) {
5801 /*
5802 * Note their can not be MC_TARGET_DEVICE for now as we do not
5803 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5804 * this might change.
5805 */
5806 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5807 mc.precharge += HPAGE_PMD_NR;
5808 spin_unlock(ptl);
5809 return 0;
5810 }
5811
5812 if (pmd_trans_unstable(pmd))
5813 return 0;
5814 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5815 for (; addr != end; pte++, addr += PAGE_SIZE)
5816 if (get_mctgt_type(vma, addr, *pte, NULL))
5817 mc.precharge++; /* increment precharge temporarily */
5818 pte_unmap_unlock(pte - 1, ptl);
5819 cond_resched();
5820
5821 return 0;
5822 }
5823
5824 static const struct mm_walk_ops precharge_walk_ops = {
5825 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5826 };
5827
5828 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5829 {
5830 unsigned long precharge;
5831
5832 mmap_read_lock(mm);
5833 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5834 mmap_read_unlock(mm);
5835
5836 precharge = mc.precharge;
5837 mc.precharge = 0;
5838
5839 return precharge;
5840 }
5841
5842 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5843 {
5844 unsigned long precharge = mem_cgroup_count_precharge(mm);
5845
5846 VM_BUG_ON(mc.moving_task);
5847 mc.moving_task = current;
5848 return mem_cgroup_do_precharge(precharge);
5849 }
5850
5851 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5852 static void __mem_cgroup_clear_mc(void)
5853 {
5854 struct mem_cgroup *from = mc.from;
5855 struct mem_cgroup *to = mc.to;
5856
5857 /* we must uncharge all the leftover precharges from mc.to */
5858 if (mc.precharge) {
5859 cancel_charge(mc.to, mc.precharge);
5860 mc.precharge = 0;
5861 }
5862 /*
5863 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5864 * we must uncharge here.
5865 */
5866 if (mc.moved_charge) {
5867 cancel_charge(mc.from, mc.moved_charge);
5868 mc.moved_charge = 0;
5869 }
5870 /* we must fixup refcnts and charges */
5871 if (mc.moved_swap) {
5872 /* uncharge swap account from the old cgroup */
5873 if (!mem_cgroup_is_root(mc.from))
5874 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5875
5876 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5877
5878 /*
5879 * we charged both to->memory and to->memsw, so we
5880 * should uncharge to->memory.
5881 */
5882 if (!mem_cgroup_is_root(mc.to))
5883 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5884
5885 mc.moved_swap = 0;
5886 }
5887 memcg_oom_recover(from);
5888 memcg_oom_recover(to);
5889 wake_up_all(&mc.waitq);
5890 }
5891
5892 static void mem_cgroup_clear_mc(void)
5893 {
5894 struct mm_struct *mm = mc.mm;
5895
5896 /*
5897 * we must clear moving_task before waking up waiters at the end of
5898 * task migration.
5899 */
5900 mc.moving_task = NULL;
5901 __mem_cgroup_clear_mc();
5902 spin_lock(&mc.lock);
5903 mc.from = NULL;
5904 mc.to = NULL;
5905 mc.mm = NULL;
5906 spin_unlock(&mc.lock);
5907
5908 mmput(mm);
5909 }
5910
5911 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5912 {
5913 struct cgroup_subsys_state *css;
5914 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5915 struct mem_cgroup *from;
5916 struct task_struct *leader, *p;
5917 struct mm_struct *mm;
5918 unsigned long move_flags;
5919 int ret = 0;
5920
5921 /* charge immigration isn't supported on the default hierarchy */
5922 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5923 return 0;
5924
5925 /*
5926 * Multi-process migrations only happen on the default hierarchy
5927 * where charge immigration is not used. Perform charge
5928 * immigration if @tset contains a leader and whine if there are
5929 * multiple.
5930 */
5931 p = NULL;
5932 cgroup_taskset_for_each_leader(leader, css, tset) {
5933 WARN_ON_ONCE(p);
5934 p = leader;
5935 memcg = mem_cgroup_from_css(css);
5936 }
5937 if (!p)
5938 return 0;
5939
5940 /*
5941 * We are now commited to this value whatever it is. Changes in this
5942 * tunable will only affect upcoming migrations, not the current one.
5943 * So we need to save it, and keep it going.
5944 */
5945 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5946 if (!move_flags)
5947 return 0;
5948
5949 from = mem_cgroup_from_task(p);
5950
5951 VM_BUG_ON(from == memcg);
5952
5953 mm = get_task_mm(p);
5954 if (!mm)
5955 return 0;
5956 /* We move charges only when we move a owner of the mm */
5957 if (mm->owner == p) {
5958 VM_BUG_ON(mc.from);
5959 VM_BUG_ON(mc.to);
5960 VM_BUG_ON(mc.precharge);
5961 VM_BUG_ON(mc.moved_charge);
5962 VM_BUG_ON(mc.moved_swap);
5963
5964 spin_lock(&mc.lock);
5965 mc.mm = mm;
5966 mc.from = from;
5967 mc.to = memcg;
5968 mc.flags = move_flags;
5969 spin_unlock(&mc.lock);
5970 /* We set mc.moving_task later */
5971
5972 ret = mem_cgroup_precharge_mc(mm);
5973 if (ret)
5974 mem_cgroup_clear_mc();
5975 } else {
5976 mmput(mm);
5977 }
5978 return ret;
5979 }
5980
5981 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5982 {
5983 if (mc.to)
5984 mem_cgroup_clear_mc();
5985 }
5986
5987 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5988 unsigned long addr, unsigned long end,
5989 struct mm_walk *walk)
5990 {
5991 int ret = 0;
5992 struct vm_area_struct *vma = walk->vma;
5993 pte_t *pte;
5994 spinlock_t *ptl;
5995 enum mc_target_type target_type;
5996 union mc_target target;
5997 struct page *page;
5998
5999 ptl = pmd_trans_huge_lock(pmd, vma);
6000 if (ptl) {
6001 if (mc.precharge < HPAGE_PMD_NR) {
6002 spin_unlock(ptl);
6003 return 0;
6004 }
6005 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6006 if (target_type == MC_TARGET_PAGE) {
6007 page = target.page;
6008 if (!isolate_lru_page(page)) {
6009 if (!mem_cgroup_move_account(page, true,
6010 mc.from, mc.to)) {
6011 mc.precharge -= HPAGE_PMD_NR;
6012 mc.moved_charge += HPAGE_PMD_NR;
6013 }
6014 putback_lru_page(page);
6015 }
6016 put_page(page);
6017 } else if (target_type == MC_TARGET_DEVICE) {
6018 page = target.page;
6019 if (!mem_cgroup_move_account(page, true,
6020 mc.from, mc.to)) {
6021 mc.precharge -= HPAGE_PMD_NR;
6022 mc.moved_charge += HPAGE_PMD_NR;
6023 }
6024 put_page(page);
6025 }
6026 spin_unlock(ptl);
6027 return 0;
6028 }
6029
6030 if (pmd_trans_unstable(pmd))
6031 return 0;
6032 retry:
6033 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6034 for (; addr != end; addr += PAGE_SIZE) {
6035 pte_t ptent = *(pte++);
6036 bool device = false;
6037 swp_entry_t ent;
6038
6039 if (!mc.precharge)
6040 break;
6041
6042 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6043 case MC_TARGET_DEVICE:
6044 device = true;
6045 fallthrough;
6046 case MC_TARGET_PAGE:
6047 page = target.page;
6048 /*
6049 * We can have a part of the split pmd here. Moving it
6050 * can be done but it would be too convoluted so simply
6051 * ignore such a partial THP and keep it in original
6052 * memcg. There should be somebody mapping the head.
6053 */
6054 if (PageTransCompound(page))
6055 goto put;
6056 if (!device && isolate_lru_page(page))
6057 goto put;
6058 if (!mem_cgroup_move_account(page, false,
6059 mc.from, mc.to)) {
6060 mc.precharge--;
6061 /* we uncharge from mc.from later. */
6062 mc.moved_charge++;
6063 }
6064 if (!device)
6065 putback_lru_page(page);
6066 put: /* get_mctgt_type() gets the page */
6067 put_page(page);
6068 break;
6069 case MC_TARGET_SWAP:
6070 ent = target.ent;
6071 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6072 mc.precharge--;
6073 mem_cgroup_id_get_many(mc.to, 1);
6074 /* we fixup other refcnts and charges later. */
6075 mc.moved_swap++;
6076 }
6077 break;
6078 default:
6079 break;
6080 }
6081 }
6082 pte_unmap_unlock(pte - 1, ptl);
6083 cond_resched();
6084
6085 if (addr != end) {
6086 /*
6087 * We have consumed all precharges we got in can_attach().
6088 * We try charge one by one, but don't do any additional
6089 * charges to mc.to if we have failed in charge once in attach()
6090 * phase.
6091 */
6092 ret = mem_cgroup_do_precharge(1);
6093 if (!ret)
6094 goto retry;
6095 }
6096
6097 return ret;
6098 }
6099
6100 static const struct mm_walk_ops charge_walk_ops = {
6101 .pmd_entry = mem_cgroup_move_charge_pte_range,
6102 };
6103
6104 static void mem_cgroup_move_charge(void)
6105 {
6106 lru_add_drain_all();
6107 /*
6108 * Signal lock_page_memcg() to take the memcg's move_lock
6109 * while we're moving its pages to another memcg. Then wait
6110 * for already started RCU-only updates to finish.
6111 */
6112 atomic_inc(&mc.from->moving_account);
6113 synchronize_rcu();
6114 retry:
6115 if (unlikely(!mmap_read_trylock(mc.mm))) {
6116 /*
6117 * Someone who are holding the mmap_lock might be waiting in
6118 * waitq. So we cancel all extra charges, wake up all waiters,
6119 * and retry. Because we cancel precharges, we might not be able
6120 * to move enough charges, but moving charge is a best-effort
6121 * feature anyway, so it wouldn't be a big problem.
6122 */
6123 __mem_cgroup_clear_mc();
6124 cond_resched();
6125 goto retry;
6126 }
6127 /*
6128 * When we have consumed all precharges and failed in doing
6129 * additional charge, the page walk just aborts.
6130 */
6131 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6132 NULL);
6133
6134 mmap_read_unlock(mc.mm);
6135 atomic_dec(&mc.from->moving_account);
6136 }
6137
6138 static void mem_cgroup_move_task(void)
6139 {
6140 if (mc.to) {
6141 mem_cgroup_move_charge();
6142 mem_cgroup_clear_mc();
6143 }
6144 }
6145 #else /* !CONFIG_MMU */
6146 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6147 {
6148 return 0;
6149 }
6150 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6151 {
6152 }
6153 static void mem_cgroup_move_task(void)
6154 {
6155 }
6156 #endif
6157
6158 /*
6159 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6160 * to verify whether we're attached to the default hierarchy on each mount
6161 * attempt.
6162 */
6163 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6164 {
6165 /*
6166 * use_hierarchy is forced on the default hierarchy. cgroup core
6167 * guarantees that @root doesn't have any children, so turning it
6168 * on for the root memcg is enough.
6169 */
6170 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6171 root_mem_cgroup->use_hierarchy = true;
6172 else
6173 root_mem_cgroup->use_hierarchy = false;
6174 }
6175
6176 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6177 {
6178 if (value == PAGE_COUNTER_MAX)
6179 seq_puts(m, "max\n");
6180 else
6181 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6182
6183 return 0;
6184 }
6185
6186 static u64 memory_current_read(struct cgroup_subsys_state *css,
6187 struct cftype *cft)
6188 {
6189 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6190
6191 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6192 }
6193
6194 static int memory_min_show(struct seq_file *m, void *v)
6195 {
6196 return seq_puts_memcg_tunable(m,
6197 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6198 }
6199
6200 static ssize_t memory_min_write(struct kernfs_open_file *of,
6201 char *buf, size_t nbytes, loff_t off)
6202 {
6203 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6204 unsigned long min;
6205 int err;
6206
6207 buf = strstrip(buf);
6208 err = page_counter_memparse(buf, "max", &min);
6209 if (err)
6210 return err;
6211
6212 page_counter_set_min(&memcg->memory, min);
6213
6214 return nbytes;
6215 }
6216
6217 static int memory_low_show(struct seq_file *m, void *v)
6218 {
6219 return seq_puts_memcg_tunable(m,
6220 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6221 }
6222
6223 static ssize_t memory_low_write(struct kernfs_open_file *of,
6224 char *buf, size_t nbytes, loff_t off)
6225 {
6226 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6227 unsigned long low;
6228 int err;
6229
6230 buf = strstrip(buf);
6231 err = page_counter_memparse(buf, "max", &low);
6232 if (err)
6233 return err;
6234
6235 page_counter_set_low(&memcg->memory, low);
6236
6237 return nbytes;
6238 }
6239
6240 static int memory_high_show(struct seq_file *m, void *v)
6241 {
6242 return seq_puts_memcg_tunable(m,
6243 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6244 }
6245
6246 static ssize_t memory_high_write(struct kernfs_open_file *of,
6247 char *buf, size_t nbytes, loff_t off)
6248 {
6249 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6250 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6251 bool drained = false;
6252 unsigned long high;
6253 int err;
6254
6255 buf = strstrip(buf);
6256 err = page_counter_memparse(buf, "max", &high);
6257 if (err)
6258 return err;
6259
6260 for (;;) {
6261 unsigned long nr_pages = page_counter_read(&memcg->memory);
6262 unsigned long reclaimed;
6263
6264 if (nr_pages <= high)
6265 break;
6266
6267 if (signal_pending(current))
6268 break;
6269
6270 if (!drained) {
6271 drain_all_stock(memcg);
6272 drained = true;
6273 continue;
6274 }
6275
6276 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6277 GFP_KERNEL, true);
6278
6279 if (!reclaimed && !nr_retries--)
6280 break;
6281 }
6282
6283 page_counter_set_high(&memcg->memory, high);
6284
6285 memcg_wb_domain_size_changed(memcg);
6286
6287 return nbytes;
6288 }
6289
6290 static int memory_max_show(struct seq_file *m, void *v)
6291 {
6292 return seq_puts_memcg_tunable(m,
6293 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6294 }
6295
6296 static ssize_t memory_max_write(struct kernfs_open_file *of,
6297 char *buf, size_t nbytes, loff_t off)
6298 {
6299 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6300 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6301 bool drained = false;
6302 unsigned long max;
6303 int err;
6304
6305 buf = strstrip(buf);
6306 err = page_counter_memparse(buf, "max", &max);
6307 if (err)
6308 return err;
6309
6310 xchg(&memcg->memory.max, max);
6311
6312 for (;;) {
6313 unsigned long nr_pages = page_counter_read(&memcg->memory);
6314
6315 if (nr_pages <= max)
6316 break;
6317
6318 if (signal_pending(current))
6319 break;
6320
6321 if (!drained) {
6322 drain_all_stock(memcg);
6323 drained = true;
6324 continue;
6325 }
6326
6327 if (nr_reclaims) {
6328 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6329 GFP_KERNEL, true))
6330 nr_reclaims--;
6331 continue;
6332 }
6333
6334 memcg_memory_event(memcg, MEMCG_OOM);
6335 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6336 break;
6337 }
6338
6339 memcg_wb_domain_size_changed(memcg);
6340 return nbytes;
6341 }
6342
6343 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6344 {
6345 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6346 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6347 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6348 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6349 seq_printf(m, "oom_kill %lu\n",
6350 atomic_long_read(&events[MEMCG_OOM_KILL]));
6351 }
6352
6353 static int memory_events_show(struct seq_file *m, void *v)
6354 {
6355 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6356
6357 __memory_events_show(m, memcg->memory_events);
6358 return 0;
6359 }
6360
6361 static int memory_events_local_show(struct seq_file *m, void *v)
6362 {
6363 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6364
6365 __memory_events_show(m, memcg->memory_events_local);
6366 return 0;
6367 }
6368
6369 static int memory_stat_show(struct seq_file *m, void *v)
6370 {
6371 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6372 char *buf;
6373
6374 buf = memory_stat_format(memcg);
6375 if (!buf)
6376 return -ENOMEM;
6377 seq_puts(m, buf);
6378 kfree(buf);
6379 return 0;
6380 }
6381
6382 static int memory_oom_group_show(struct seq_file *m, void *v)
6383 {
6384 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6385
6386 seq_printf(m, "%d\n", memcg->oom_group);
6387
6388 return 0;
6389 }
6390
6391 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6392 char *buf, size_t nbytes, loff_t off)
6393 {
6394 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6395 int ret, oom_group;
6396
6397 buf = strstrip(buf);
6398 if (!buf)
6399 return -EINVAL;
6400
6401 ret = kstrtoint(buf, 0, &oom_group);
6402 if (ret)
6403 return ret;
6404
6405 if (oom_group != 0 && oom_group != 1)
6406 return -EINVAL;
6407
6408 memcg->oom_group = oom_group;
6409
6410 return nbytes;
6411 }
6412
6413 static struct cftype memory_files[] = {
6414 {
6415 .name = "current",
6416 .flags = CFTYPE_NOT_ON_ROOT,
6417 .read_u64 = memory_current_read,
6418 },
6419 {
6420 .name = "min",
6421 .flags = CFTYPE_NOT_ON_ROOT,
6422 .seq_show = memory_min_show,
6423 .write = memory_min_write,
6424 },
6425 {
6426 .name = "low",
6427 .flags = CFTYPE_NOT_ON_ROOT,
6428 .seq_show = memory_low_show,
6429 .write = memory_low_write,
6430 },
6431 {
6432 .name = "high",
6433 .flags = CFTYPE_NOT_ON_ROOT,
6434 .seq_show = memory_high_show,
6435 .write = memory_high_write,
6436 },
6437 {
6438 .name = "max",
6439 .flags = CFTYPE_NOT_ON_ROOT,
6440 .seq_show = memory_max_show,
6441 .write = memory_max_write,
6442 },
6443 {
6444 .name = "events",
6445 .flags = CFTYPE_NOT_ON_ROOT,
6446 .file_offset = offsetof(struct mem_cgroup, events_file),
6447 .seq_show = memory_events_show,
6448 },
6449 {
6450 .name = "events.local",
6451 .flags = CFTYPE_NOT_ON_ROOT,
6452 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6453 .seq_show = memory_events_local_show,
6454 },
6455 {
6456 .name = "stat",
6457 .seq_show = memory_stat_show,
6458 },
6459 {
6460 .name = "oom.group",
6461 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6462 .seq_show = memory_oom_group_show,
6463 .write = memory_oom_group_write,
6464 },
6465 { } /* terminate */
6466 };
6467
6468 struct cgroup_subsys memory_cgrp_subsys = {
6469 .css_alloc = mem_cgroup_css_alloc,
6470 .css_online = mem_cgroup_css_online,
6471 .css_offline = mem_cgroup_css_offline,
6472 .css_released = mem_cgroup_css_released,
6473 .css_free = mem_cgroup_css_free,
6474 .css_reset = mem_cgroup_css_reset,
6475 .can_attach = mem_cgroup_can_attach,
6476 .cancel_attach = mem_cgroup_cancel_attach,
6477 .post_attach = mem_cgroup_move_task,
6478 .bind = mem_cgroup_bind,
6479 .dfl_cftypes = memory_files,
6480 .legacy_cftypes = mem_cgroup_legacy_files,
6481 .early_init = 0,
6482 };
6483
6484 /*
6485 * This function calculates an individual cgroup's effective
6486 * protection which is derived from its own memory.min/low, its
6487 * parent's and siblings' settings, as well as the actual memory
6488 * distribution in the tree.
6489 *
6490 * The following rules apply to the effective protection values:
6491 *
6492 * 1. At the first level of reclaim, effective protection is equal to
6493 * the declared protection in memory.min and memory.low.
6494 *
6495 * 2. To enable safe delegation of the protection configuration, at
6496 * subsequent levels the effective protection is capped to the
6497 * parent's effective protection.
6498 *
6499 * 3. To make complex and dynamic subtrees easier to configure, the
6500 * user is allowed to overcommit the declared protection at a given
6501 * level. If that is the case, the parent's effective protection is
6502 * distributed to the children in proportion to how much protection
6503 * they have declared and how much of it they are utilizing.
6504 *
6505 * This makes distribution proportional, but also work-conserving:
6506 * if one cgroup claims much more protection than it uses memory,
6507 * the unused remainder is available to its siblings.
6508 *
6509 * 4. Conversely, when the declared protection is undercommitted at a
6510 * given level, the distribution of the larger parental protection
6511 * budget is NOT proportional. A cgroup's protection from a sibling
6512 * is capped to its own memory.min/low setting.
6513 *
6514 * 5. However, to allow protecting recursive subtrees from each other
6515 * without having to declare each individual cgroup's fixed share
6516 * of the ancestor's claim to protection, any unutilized -
6517 * "floating" - protection from up the tree is distributed in
6518 * proportion to each cgroup's *usage*. This makes the protection
6519 * neutral wrt sibling cgroups and lets them compete freely over
6520 * the shared parental protection budget, but it protects the
6521 * subtree as a whole from neighboring subtrees.
6522 *
6523 * Note that 4. and 5. are not in conflict: 4. is about protecting
6524 * against immediate siblings whereas 5. is about protecting against
6525 * neighboring subtrees.
6526 */
6527 static unsigned long effective_protection(unsigned long usage,
6528 unsigned long parent_usage,
6529 unsigned long setting,
6530 unsigned long parent_effective,
6531 unsigned long siblings_protected)
6532 {
6533 unsigned long protected;
6534 unsigned long ep;
6535
6536 protected = min(usage, setting);
6537 /*
6538 * If all cgroups at this level combined claim and use more
6539 * protection then what the parent affords them, distribute
6540 * shares in proportion to utilization.
6541 *
6542 * We are using actual utilization rather than the statically
6543 * claimed protection in order to be work-conserving: claimed
6544 * but unused protection is available to siblings that would
6545 * otherwise get a smaller chunk than what they claimed.
6546 */
6547 if (siblings_protected > parent_effective)
6548 return protected * parent_effective / siblings_protected;
6549
6550 /*
6551 * Ok, utilized protection of all children is within what the
6552 * parent affords them, so we know whatever this child claims
6553 * and utilizes is effectively protected.
6554 *
6555 * If there is unprotected usage beyond this value, reclaim
6556 * will apply pressure in proportion to that amount.
6557 *
6558 * If there is unutilized protection, the cgroup will be fully
6559 * shielded from reclaim, but we do return a smaller value for
6560 * protection than what the group could enjoy in theory. This
6561 * is okay. With the overcommit distribution above, effective
6562 * protection is always dependent on how memory is actually
6563 * consumed among the siblings anyway.
6564 */
6565 ep = protected;
6566
6567 /*
6568 * If the children aren't claiming (all of) the protection
6569 * afforded to them by the parent, distribute the remainder in
6570 * proportion to the (unprotected) memory of each cgroup. That
6571 * way, cgroups that aren't explicitly prioritized wrt each
6572 * other compete freely over the allowance, but they are
6573 * collectively protected from neighboring trees.
6574 *
6575 * We're using unprotected memory for the weight so that if
6576 * some cgroups DO claim explicit protection, we don't protect
6577 * the same bytes twice.
6578 *
6579 * Check both usage and parent_usage against the respective
6580 * protected values. One should imply the other, but they
6581 * aren't read atomically - make sure the division is sane.
6582 */
6583 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6584 return ep;
6585 if (parent_effective > siblings_protected &&
6586 parent_usage > siblings_protected &&
6587 usage > protected) {
6588 unsigned long unclaimed;
6589
6590 unclaimed = parent_effective - siblings_protected;
6591 unclaimed *= usage - protected;
6592 unclaimed /= parent_usage - siblings_protected;
6593
6594 ep += unclaimed;
6595 }
6596
6597 return ep;
6598 }
6599
6600 /**
6601 * mem_cgroup_protected - check if memory consumption is in the normal range
6602 * @root: the top ancestor of the sub-tree being checked
6603 * @memcg: the memory cgroup to check
6604 *
6605 * WARNING: This function is not stateless! It can only be used as part
6606 * of a top-down tree iteration, not for isolated queries.
6607 */
6608 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6609 struct mem_cgroup *memcg)
6610 {
6611 unsigned long usage, parent_usage;
6612 struct mem_cgroup *parent;
6613
6614 if (mem_cgroup_disabled())
6615 return;
6616
6617 if (!root)
6618 root = root_mem_cgroup;
6619
6620 /*
6621 * Effective values of the reclaim targets are ignored so they
6622 * can be stale. Have a look at mem_cgroup_protection for more
6623 * details.
6624 * TODO: calculation should be more robust so that we do not need
6625 * that special casing.
6626 */
6627 if (memcg == root)
6628 return;
6629
6630 usage = page_counter_read(&memcg->memory);
6631 if (!usage)
6632 return;
6633
6634 parent = parent_mem_cgroup(memcg);
6635 /* No parent means a non-hierarchical mode on v1 memcg */
6636 if (!parent)
6637 return;
6638
6639 if (parent == root) {
6640 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6641 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6642 return;
6643 }
6644
6645 parent_usage = page_counter_read(&parent->memory);
6646
6647 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6648 READ_ONCE(memcg->memory.min),
6649 READ_ONCE(parent->memory.emin),
6650 atomic_long_read(&parent->memory.children_min_usage)));
6651
6652 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6653 READ_ONCE(memcg->memory.low),
6654 READ_ONCE(parent->memory.elow),
6655 atomic_long_read(&parent->memory.children_low_usage)));
6656 }
6657
6658 /**
6659 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6660 * @page: page to charge
6661 * @mm: mm context of the victim
6662 * @gfp_mask: reclaim mode
6663 *
6664 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6665 * pages according to @gfp_mask if necessary.
6666 *
6667 * Returns 0 on success. Otherwise, an error code is returned.
6668 */
6669 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6670 {
6671 unsigned int nr_pages = hpage_nr_pages(page);
6672 struct mem_cgroup *memcg = NULL;
6673 int ret = 0;
6674
6675 if (mem_cgroup_disabled())
6676 goto out;
6677
6678 if (PageSwapCache(page)) {
6679 swp_entry_t ent = { .val = page_private(page), };
6680 unsigned short id;
6681
6682 /*
6683 * Every swap fault against a single page tries to charge the
6684 * page, bail as early as possible. shmem_unuse() encounters
6685 * already charged pages, too. page->mem_cgroup is protected
6686 * by the page lock, which serializes swap cache removal, which
6687 * in turn serializes uncharging.
6688 */
6689 VM_BUG_ON_PAGE(!PageLocked(page), page);
6690 if (compound_head(page)->mem_cgroup)
6691 goto out;
6692
6693 id = lookup_swap_cgroup_id(ent);
6694 rcu_read_lock();
6695 memcg = mem_cgroup_from_id(id);
6696 if (memcg && !css_tryget_online(&memcg->css))
6697 memcg = NULL;
6698 rcu_read_unlock();
6699 }
6700
6701 if (!memcg)
6702 memcg = get_mem_cgroup_from_mm(mm);
6703
6704 ret = try_charge(memcg, gfp_mask, nr_pages);
6705 if (ret)
6706 goto out_put;
6707
6708 css_get(&memcg->css);
6709 commit_charge(page, memcg);
6710
6711 local_irq_disable();
6712 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6713 memcg_check_events(memcg, page);
6714 local_irq_enable();
6715
6716 if (PageSwapCache(page)) {
6717 swp_entry_t entry = { .val = page_private(page) };
6718 /*
6719 * The swap entry might not get freed for a long time,
6720 * let's not wait for it. The page already received a
6721 * memory+swap charge, drop the swap entry duplicate.
6722 */
6723 mem_cgroup_uncharge_swap(entry, nr_pages);
6724 }
6725
6726 out_put:
6727 css_put(&memcg->css);
6728 out:
6729 return ret;
6730 }
6731
6732 struct uncharge_gather {
6733 struct mem_cgroup *memcg;
6734 unsigned long nr_pages;
6735 unsigned long pgpgout;
6736 unsigned long nr_kmem;
6737 struct page *dummy_page;
6738 };
6739
6740 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6741 {
6742 memset(ug, 0, sizeof(*ug));
6743 }
6744
6745 static void uncharge_batch(const struct uncharge_gather *ug)
6746 {
6747 unsigned long flags;
6748
6749 if (!mem_cgroup_is_root(ug->memcg)) {
6750 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6751 if (do_memsw_account())
6752 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6753 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6754 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6755 memcg_oom_recover(ug->memcg);
6756 }
6757
6758 local_irq_save(flags);
6759 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6760 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6761 memcg_check_events(ug->memcg, ug->dummy_page);
6762 local_irq_restore(flags);
6763 }
6764
6765 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6766 {
6767 unsigned long nr_pages;
6768
6769 VM_BUG_ON_PAGE(PageLRU(page), page);
6770
6771 if (!page->mem_cgroup)
6772 return;
6773
6774 /*
6775 * Nobody should be changing or seriously looking at
6776 * page->mem_cgroup at this point, we have fully
6777 * exclusive access to the page.
6778 */
6779
6780 if (ug->memcg != page->mem_cgroup) {
6781 if (ug->memcg) {
6782 uncharge_batch(ug);
6783 uncharge_gather_clear(ug);
6784 }
6785 ug->memcg = page->mem_cgroup;
6786 }
6787
6788 nr_pages = compound_nr(page);
6789 ug->nr_pages += nr_pages;
6790
6791 if (!PageKmemcg(page)) {
6792 ug->pgpgout++;
6793 } else {
6794 ug->nr_kmem += nr_pages;
6795 __ClearPageKmemcg(page);
6796 }
6797
6798 ug->dummy_page = page;
6799 page->mem_cgroup = NULL;
6800 css_put(&ug->memcg->css);
6801 }
6802
6803 static void uncharge_list(struct list_head *page_list)
6804 {
6805 struct uncharge_gather ug;
6806 struct list_head *next;
6807
6808 uncharge_gather_clear(&ug);
6809
6810 /*
6811 * Note that the list can be a single page->lru; hence the
6812 * do-while loop instead of a simple list_for_each_entry().
6813 */
6814 next = page_list->next;
6815 do {
6816 struct page *page;
6817
6818 page = list_entry(next, struct page, lru);
6819 next = page->lru.next;
6820
6821 uncharge_page(page, &ug);
6822 } while (next != page_list);
6823
6824 if (ug.memcg)
6825 uncharge_batch(&ug);
6826 }
6827
6828 /**
6829 * mem_cgroup_uncharge - uncharge a page
6830 * @page: page to uncharge
6831 *
6832 * Uncharge a page previously charged with mem_cgroup_charge().
6833 */
6834 void mem_cgroup_uncharge(struct page *page)
6835 {
6836 struct uncharge_gather ug;
6837
6838 if (mem_cgroup_disabled())
6839 return;
6840
6841 /* Don't touch page->lru of any random page, pre-check: */
6842 if (!page->mem_cgroup)
6843 return;
6844
6845 uncharge_gather_clear(&ug);
6846 uncharge_page(page, &ug);
6847 uncharge_batch(&ug);
6848 }
6849
6850 /**
6851 * mem_cgroup_uncharge_list - uncharge a list of page
6852 * @page_list: list of pages to uncharge
6853 *
6854 * Uncharge a list of pages previously charged with
6855 * mem_cgroup_charge().
6856 */
6857 void mem_cgroup_uncharge_list(struct list_head *page_list)
6858 {
6859 if (mem_cgroup_disabled())
6860 return;
6861
6862 if (!list_empty(page_list))
6863 uncharge_list(page_list);
6864 }
6865
6866 /**
6867 * mem_cgroup_migrate - charge a page's replacement
6868 * @oldpage: currently circulating page
6869 * @newpage: replacement page
6870 *
6871 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6872 * be uncharged upon free.
6873 *
6874 * Both pages must be locked, @newpage->mapping must be set up.
6875 */
6876 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6877 {
6878 struct mem_cgroup *memcg;
6879 unsigned int nr_pages;
6880 unsigned long flags;
6881
6882 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6883 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6884 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6885 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6886 newpage);
6887
6888 if (mem_cgroup_disabled())
6889 return;
6890
6891 /* Page cache replacement: new page already charged? */
6892 if (newpage->mem_cgroup)
6893 return;
6894
6895 /* Swapcache readahead pages can get replaced before being charged */
6896 memcg = oldpage->mem_cgroup;
6897 if (!memcg)
6898 return;
6899
6900 /* Force-charge the new page. The old one will be freed soon */
6901 nr_pages = hpage_nr_pages(newpage);
6902
6903 page_counter_charge(&memcg->memory, nr_pages);
6904 if (do_memsw_account())
6905 page_counter_charge(&memcg->memsw, nr_pages);
6906
6907 css_get(&memcg->css);
6908 commit_charge(newpage, memcg);
6909
6910 local_irq_save(flags);
6911 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6912 memcg_check_events(memcg, newpage);
6913 local_irq_restore(flags);
6914 }
6915
6916 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6917 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6918
6919 void mem_cgroup_sk_alloc(struct sock *sk)
6920 {
6921 struct mem_cgroup *memcg;
6922
6923 if (!mem_cgroup_sockets_enabled)
6924 return;
6925
6926 /* Do not associate the sock with unrelated interrupted task's memcg. */
6927 if (in_interrupt())
6928 return;
6929
6930 rcu_read_lock();
6931 memcg = mem_cgroup_from_task(current);
6932 if (memcg == root_mem_cgroup)
6933 goto out;
6934 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6935 goto out;
6936 if (css_tryget(&memcg->css))
6937 sk->sk_memcg = memcg;
6938 out:
6939 rcu_read_unlock();
6940 }
6941
6942 void mem_cgroup_sk_free(struct sock *sk)
6943 {
6944 if (sk->sk_memcg)
6945 css_put(&sk->sk_memcg->css);
6946 }
6947
6948 /**
6949 * mem_cgroup_charge_skmem - charge socket memory
6950 * @memcg: memcg to charge
6951 * @nr_pages: number of pages to charge
6952 *
6953 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6954 * @memcg's configured limit, %false if the charge had to be forced.
6955 */
6956 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6957 {
6958 gfp_t gfp_mask = GFP_KERNEL;
6959
6960 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6961 struct page_counter *fail;
6962
6963 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6964 memcg->tcpmem_pressure = 0;
6965 return true;
6966 }
6967 page_counter_charge(&memcg->tcpmem, nr_pages);
6968 memcg->tcpmem_pressure = 1;
6969 return false;
6970 }
6971
6972 /* Don't block in the packet receive path */
6973 if (in_softirq())
6974 gfp_mask = GFP_NOWAIT;
6975
6976 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6977
6978 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6979 return true;
6980
6981 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6982 return false;
6983 }
6984
6985 /**
6986 * mem_cgroup_uncharge_skmem - uncharge socket memory
6987 * @memcg: memcg to uncharge
6988 * @nr_pages: number of pages to uncharge
6989 */
6990 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6991 {
6992 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6993 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6994 return;
6995 }
6996
6997 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6998
6999 refill_stock(memcg, nr_pages);
7000 }
7001
7002 static int __init cgroup_memory(char *s)
7003 {
7004 char *token;
7005
7006 while ((token = strsep(&s, ",")) != NULL) {
7007 if (!*token)
7008 continue;
7009 if (!strcmp(token, "nosocket"))
7010 cgroup_memory_nosocket = true;
7011 if (!strcmp(token, "nokmem"))
7012 cgroup_memory_nokmem = true;
7013 }
7014 return 0;
7015 }
7016 __setup("cgroup.memory=", cgroup_memory);
7017
7018 /*
7019 * subsys_initcall() for memory controller.
7020 *
7021 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7022 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7023 * basically everything that doesn't depend on a specific mem_cgroup structure
7024 * should be initialized from here.
7025 */
7026 static int __init mem_cgroup_init(void)
7027 {
7028 int cpu, node;
7029
7030 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7031 memcg_hotplug_cpu_dead);
7032
7033 for_each_possible_cpu(cpu)
7034 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7035 drain_local_stock);
7036
7037 for_each_node(node) {
7038 struct mem_cgroup_tree_per_node *rtpn;
7039
7040 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7041 node_online(node) ? node : NUMA_NO_NODE);
7042
7043 rtpn->rb_root = RB_ROOT;
7044 rtpn->rb_rightmost = NULL;
7045 spin_lock_init(&rtpn->lock);
7046 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7047 }
7048
7049 return 0;
7050 }
7051 subsys_initcall(mem_cgroup_init);
7052
7053 #ifdef CONFIG_MEMCG_SWAP
7054 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7055 {
7056 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7057 /*
7058 * The root cgroup cannot be destroyed, so it's refcount must
7059 * always be >= 1.
7060 */
7061 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7062 VM_BUG_ON(1);
7063 break;
7064 }
7065 memcg = parent_mem_cgroup(memcg);
7066 if (!memcg)
7067 memcg = root_mem_cgroup;
7068 }
7069 return memcg;
7070 }
7071
7072 /**
7073 * mem_cgroup_swapout - transfer a memsw charge to swap
7074 * @page: page whose memsw charge to transfer
7075 * @entry: swap entry to move the charge to
7076 *
7077 * Transfer the memsw charge of @page to @entry.
7078 */
7079 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7080 {
7081 struct mem_cgroup *memcg, *swap_memcg;
7082 unsigned int nr_entries;
7083 unsigned short oldid;
7084
7085 VM_BUG_ON_PAGE(PageLRU(page), page);
7086 VM_BUG_ON_PAGE(page_count(page), page);
7087
7088 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7089 return;
7090
7091 memcg = page->mem_cgroup;
7092
7093 /* Readahead page, never charged */
7094 if (!memcg)
7095 return;
7096
7097 /*
7098 * In case the memcg owning these pages has been offlined and doesn't
7099 * have an ID allocated to it anymore, charge the closest online
7100 * ancestor for the swap instead and transfer the memory+swap charge.
7101 */
7102 swap_memcg = mem_cgroup_id_get_online(memcg);
7103 nr_entries = hpage_nr_pages(page);
7104 /* Get references for the tail pages, too */
7105 if (nr_entries > 1)
7106 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7107 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7108 nr_entries);
7109 VM_BUG_ON_PAGE(oldid, page);
7110 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7111
7112 page->mem_cgroup = NULL;
7113
7114 if (!mem_cgroup_is_root(memcg))
7115 page_counter_uncharge(&memcg->memory, nr_entries);
7116
7117 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7118 if (!mem_cgroup_is_root(swap_memcg))
7119 page_counter_charge(&swap_memcg->memsw, nr_entries);
7120 page_counter_uncharge(&memcg->memsw, nr_entries);
7121 }
7122
7123 /*
7124 * Interrupts should be disabled here because the caller holds the
7125 * i_pages lock which is taken with interrupts-off. It is
7126 * important here to have the interrupts disabled because it is the
7127 * only synchronisation we have for updating the per-CPU variables.
7128 */
7129 VM_BUG_ON(!irqs_disabled());
7130 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7131 memcg_check_events(memcg, page);
7132
7133 css_put(&memcg->css);
7134 }
7135
7136 /**
7137 * mem_cgroup_try_charge_swap - try charging swap space for a page
7138 * @page: page being added to swap
7139 * @entry: swap entry to charge
7140 *
7141 * Try to charge @page's memcg for the swap space at @entry.
7142 *
7143 * Returns 0 on success, -ENOMEM on failure.
7144 */
7145 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7146 {
7147 unsigned int nr_pages = hpage_nr_pages(page);
7148 struct page_counter *counter;
7149 struct mem_cgroup *memcg;
7150 unsigned short oldid;
7151
7152 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7153 return 0;
7154
7155 memcg = page->mem_cgroup;
7156
7157 /* Readahead page, never charged */
7158 if (!memcg)
7159 return 0;
7160
7161 if (!entry.val) {
7162 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7163 return 0;
7164 }
7165
7166 memcg = mem_cgroup_id_get_online(memcg);
7167
7168 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7169 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7170 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7171 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7172 mem_cgroup_id_put(memcg);
7173 return -ENOMEM;
7174 }
7175
7176 /* Get references for the tail pages, too */
7177 if (nr_pages > 1)
7178 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7179 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7180 VM_BUG_ON_PAGE(oldid, page);
7181 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7182
7183 return 0;
7184 }
7185
7186 /**
7187 * mem_cgroup_uncharge_swap - uncharge swap space
7188 * @entry: swap entry to uncharge
7189 * @nr_pages: the amount of swap space to uncharge
7190 */
7191 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7192 {
7193 struct mem_cgroup *memcg;
7194 unsigned short id;
7195
7196 id = swap_cgroup_record(entry, 0, nr_pages);
7197 rcu_read_lock();
7198 memcg = mem_cgroup_from_id(id);
7199 if (memcg) {
7200 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7201 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7202 page_counter_uncharge(&memcg->swap, nr_pages);
7203 else
7204 page_counter_uncharge(&memcg->memsw, nr_pages);
7205 }
7206 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7207 mem_cgroup_id_put_many(memcg, nr_pages);
7208 }
7209 rcu_read_unlock();
7210 }
7211
7212 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7213 {
7214 long nr_swap_pages = get_nr_swap_pages();
7215
7216 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7217 return nr_swap_pages;
7218 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7219 nr_swap_pages = min_t(long, nr_swap_pages,
7220 READ_ONCE(memcg->swap.max) -
7221 page_counter_read(&memcg->swap));
7222 return nr_swap_pages;
7223 }
7224
7225 bool mem_cgroup_swap_full(struct page *page)
7226 {
7227 struct mem_cgroup *memcg;
7228
7229 VM_BUG_ON_PAGE(!PageLocked(page), page);
7230
7231 if (vm_swap_full())
7232 return true;
7233 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7234 return false;
7235
7236 memcg = page->mem_cgroup;
7237 if (!memcg)
7238 return false;
7239
7240 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7241 unsigned long usage = page_counter_read(&memcg->swap);
7242
7243 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7244 usage * 2 >= READ_ONCE(memcg->swap.max))
7245 return true;
7246 }
7247
7248 return false;
7249 }
7250
7251 static int __init setup_swap_account(char *s)
7252 {
7253 if (!strcmp(s, "1"))
7254 cgroup_memory_noswap = 0;
7255 else if (!strcmp(s, "0"))
7256 cgroup_memory_noswap = 1;
7257 return 1;
7258 }
7259 __setup("swapaccount=", setup_swap_account);
7260
7261 static u64 swap_current_read(struct cgroup_subsys_state *css,
7262 struct cftype *cft)
7263 {
7264 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7265
7266 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7267 }
7268
7269 static int swap_high_show(struct seq_file *m, void *v)
7270 {
7271 return seq_puts_memcg_tunable(m,
7272 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7273 }
7274
7275 static ssize_t swap_high_write(struct kernfs_open_file *of,
7276 char *buf, size_t nbytes, loff_t off)
7277 {
7278 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7279 unsigned long high;
7280 int err;
7281
7282 buf = strstrip(buf);
7283 err = page_counter_memparse(buf, "max", &high);
7284 if (err)
7285 return err;
7286
7287 page_counter_set_high(&memcg->swap, high);
7288
7289 return nbytes;
7290 }
7291
7292 static int swap_max_show(struct seq_file *m, void *v)
7293 {
7294 return seq_puts_memcg_tunable(m,
7295 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7296 }
7297
7298 static ssize_t swap_max_write(struct kernfs_open_file *of,
7299 char *buf, size_t nbytes, loff_t off)
7300 {
7301 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7302 unsigned long max;
7303 int err;
7304
7305 buf = strstrip(buf);
7306 err = page_counter_memparse(buf, "max", &max);
7307 if (err)
7308 return err;
7309
7310 xchg(&memcg->swap.max, max);
7311
7312 return nbytes;
7313 }
7314
7315 static int swap_events_show(struct seq_file *m, void *v)
7316 {
7317 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7318
7319 seq_printf(m, "high %lu\n",
7320 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7321 seq_printf(m, "max %lu\n",
7322 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7323 seq_printf(m, "fail %lu\n",
7324 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7325
7326 return 0;
7327 }
7328
7329 static struct cftype swap_files[] = {
7330 {
7331 .name = "swap.current",
7332 .flags = CFTYPE_NOT_ON_ROOT,
7333 .read_u64 = swap_current_read,
7334 },
7335 {
7336 .name = "swap.high",
7337 .flags = CFTYPE_NOT_ON_ROOT,
7338 .seq_show = swap_high_show,
7339 .write = swap_high_write,
7340 },
7341 {
7342 .name = "swap.max",
7343 .flags = CFTYPE_NOT_ON_ROOT,
7344 .seq_show = swap_max_show,
7345 .write = swap_max_write,
7346 },
7347 {
7348 .name = "swap.events",
7349 .flags = CFTYPE_NOT_ON_ROOT,
7350 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7351 .seq_show = swap_events_show,
7352 },
7353 { } /* terminate */
7354 };
7355
7356 static struct cftype memsw_files[] = {
7357 {
7358 .name = "memsw.usage_in_bytes",
7359 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7360 .read_u64 = mem_cgroup_read_u64,
7361 },
7362 {
7363 .name = "memsw.max_usage_in_bytes",
7364 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7365 .write = mem_cgroup_reset,
7366 .read_u64 = mem_cgroup_read_u64,
7367 },
7368 {
7369 .name = "memsw.limit_in_bytes",
7370 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7371 .write = mem_cgroup_write,
7372 .read_u64 = mem_cgroup_read_u64,
7373 },
7374 {
7375 .name = "memsw.failcnt",
7376 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7377 .write = mem_cgroup_reset,
7378 .read_u64 = mem_cgroup_read_u64,
7379 },
7380 { }, /* terminate */
7381 };
7382
7383 /*
7384 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7385 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7386 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7387 * boot parameter. This may result in premature OOPS inside
7388 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7389 */
7390 static int __init mem_cgroup_swap_init(void)
7391 {
7392 /* No memory control -> no swap control */
7393 if (mem_cgroup_disabled())
7394 cgroup_memory_noswap = true;
7395
7396 if (cgroup_memory_noswap)
7397 return 0;
7398
7399 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7400 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7401
7402 return 0;
7403 }
7404 core_initcall(mem_cgroup_swap_init);
7405
7406 #endif /* CONFIG_MEMCG_SWAP */