]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memcontrol.c
memcg: prevent changes to move_charge_at_immigrate during task attach
[mirror_ubuntu-bionic-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/mm_inline.h>
53 #include <linux/page_cgroup.h>
54 #include <linux/cpu.h>
55 #include <linux/oom.h>
56 #include "internal.h"
57 #include <net/sock.h>
58 #include <net/ip.h>
59 #include <net/tcp_memcontrol.h>
60
61 #include <asm/uaccess.h>
62
63 #include <trace/events/vmscan.h>
64
65 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 EXPORT_SYMBOL(mem_cgroup_subsys);
67
68 #define MEM_CGROUP_RECLAIM_RETRIES 5
69 static struct mem_cgroup *root_mem_cgroup __read_mostly;
70
71 #ifdef CONFIG_MEMCG_SWAP
72 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73 int do_swap_account __read_mostly;
74
75 /* for remember boot option*/
76 #ifdef CONFIG_MEMCG_SWAP_ENABLED
77 static int really_do_swap_account __initdata = 1;
78 #else
79 static int really_do_swap_account __initdata = 0;
80 #endif
81
82 #else
83 #define do_swap_account 0
84 #endif
85
86
87 /*
88 * Statistics for memory cgroup.
89 */
90 enum mem_cgroup_stat_index {
91 /*
92 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
93 */
94 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
95 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
96 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
97 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
98 MEM_CGROUP_STAT_NSTATS,
99 };
100
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "mapped_file",
105 "swap",
106 };
107
108 enum mem_cgroup_events_index {
109 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
110 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
111 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
112 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
113 MEM_CGROUP_EVENTS_NSTATS,
114 };
115
116 static const char * const mem_cgroup_events_names[] = {
117 "pgpgin",
118 "pgpgout",
119 "pgfault",
120 "pgmajfault",
121 };
122
123 static const char * const mem_cgroup_lru_names[] = {
124 "inactive_anon",
125 "active_anon",
126 "inactive_file",
127 "active_file",
128 "unevictable",
129 };
130
131 /*
132 * Per memcg event counter is incremented at every pagein/pageout. With THP,
133 * it will be incremated by the number of pages. This counter is used for
134 * for trigger some periodic events. This is straightforward and better
135 * than using jiffies etc. to handle periodic memcg event.
136 */
137 enum mem_cgroup_events_target {
138 MEM_CGROUP_TARGET_THRESH,
139 MEM_CGROUP_TARGET_SOFTLIMIT,
140 MEM_CGROUP_TARGET_NUMAINFO,
141 MEM_CGROUP_NTARGETS,
142 };
143 #define THRESHOLDS_EVENTS_TARGET 128
144 #define SOFTLIMIT_EVENTS_TARGET 1024
145 #define NUMAINFO_EVENTS_TARGET 1024
146
147 struct mem_cgroup_stat_cpu {
148 long count[MEM_CGROUP_STAT_NSTATS];
149 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
150 unsigned long nr_page_events;
151 unsigned long targets[MEM_CGROUP_NTARGETS];
152 };
153
154 struct mem_cgroup_reclaim_iter {
155 /* css_id of the last scanned hierarchy member */
156 int position;
157 /* scan generation, increased every round-trip */
158 unsigned int generation;
159 };
160
161 /*
162 * per-zone information in memory controller.
163 */
164 struct mem_cgroup_per_zone {
165 struct lruvec lruvec;
166 unsigned long lru_size[NR_LRU_LISTS];
167
168 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
169
170 struct rb_node tree_node; /* RB tree node */
171 unsigned long long usage_in_excess;/* Set to the value by which */
172 /* the soft limit is exceeded*/
173 bool on_tree;
174 struct mem_cgroup *memcg; /* Back pointer, we cannot */
175 /* use container_of */
176 };
177
178 struct mem_cgroup_per_node {
179 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
180 };
181
182 struct mem_cgroup_lru_info {
183 struct mem_cgroup_per_node *nodeinfo[0];
184 };
185
186 /*
187 * Cgroups above their limits are maintained in a RB-Tree, independent of
188 * their hierarchy representation
189 */
190
191 struct mem_cgroup_tree_per_zone {
192 struct rb_root rb_root;
193 spinlock_t lock;
194 };
195
196 struct mem_cgroup_tree_per_node {
197 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
198 };
199
200 struct mem_cgroup_tree {
201 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
202 };
203
204 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
205
206 struct mem_cgroup_threshold {
207 struct eventfd_ctx *eventfd;
208 u64 threshold;
209 };
210
211 /* For threshold */
212 struct mem_cgroup_threshold_ary {
213 /* An array index points to threshold just below or equal to usage. */
214 int current_threshold;
215 /* Size of entries[] */
216 unsigned int size;
217 /* Array of thresholds */
218 struct mem_cgroup_threshold entries[0];
219 };
220
221 struct mem_cgroup_thresholds {
222 /* Primary thresholds array */
223 struct mem_cgroup_threshold_ary *primary;
224 /*
225 * Spare threshold array.
226 * This is needed to make mem_cgroup_unregister_event() "never fail".
227 * It must be able to store at least primary->size - 1 entries.
228 */
229 struct mem_cgroup_threshold_ary *spare;
230 };
231
232 /* for OOM */
233 struct mem_cgroup_eventfd_list {
234 struct list_head list;
235 struct eventfd_ctx *eventfd;
236 };
237
238 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
239 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
240
241 /*
242 * The memory controller data structure. The memory controller controls both
243 * page cache and RSS per cgroup. We would eventually like to provide
244 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
245 * to help the administrator determine what knobs to tune.
246 *
247 * TODO: Add a water mark for the memory controller. Reclaim will begin when
248 * we hit the water mark. May be even add a low water mark, such that
249 * no reclaim occurs from a cgroup at it's low water mark, this is
250 * a feature that will be implemented much later in the future.
251 */
252 struct mem_cgroup {
253 struct cgroup_subsys_state css;
254 /*
255 * the counter to account for memory usage
256 */
257 struct res_counter res;
258
259 union {
260 /*
261 * the counter to account for mem+swap usage.
262 */
263 struct res_counter memsw;
264
265 /*
266 * rcu_freeing is used only when freeing struct mem_cgroup,
267 * so put it into a union to avoid wasting more memory.
268 * It must be disjoint from the css field. It could be
269 * in a union with the res field, but res plays a much
270 * larger part in mem_cgroup life than memsw, and might
271 * be of interest, even at time of free, when debugging.
272 * So share rcu_head with the less interesting memsw.
273 */
274 struct rcu_head rcu_freeing;
275 /*
276 * We also need some space for a worker in deferred freeing.
277 * By the time we call it, rcu_freeing is no longer in use.
278 */
279 struct work_struct work_freeing;
280 };
281
282 /*
283 * the counter to account for kernel memory usage.
284 */
285 struct res_counter kmem;
286 /*
287 * Should the accounting and control be hierarchical, per subtree?
288 */
289 bool use_hierarchy;
290 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
291
292 bool oom_lock;
293 atomic_t under_oom;
294
295 atomic_t refcnt;
296
297 int swappiness;
298 /* OOM-Killer disable */
299 int oom_kill_disable;
300
301 /* set when res.limit == memsw.limit */
302 bool memsw_is_minimum;
303
304 /* protect arrays of thresholds */
305 struct mutex thresholds_lock;
306
307 /* thresholds for memory usage. RCU-protected */
308 struct mem_cgroup_thresholds thresholds;
309
310 /* thresholds for mem+swap usage. RCU-protected */
311 struct mem_cgroup_thresholds memsw_thresholds;
312
313 /* For oom notifier event fd */
314 struct list_head oom_notify;
315
316 /*
317 * Should we move charges of a task when a task is moved into this
318 * mem_cgroup ? And what type of charges should we move ?
319 */
320 unsigned long move_charge_at_immigrate;
321 /*
322 * set > 0 if pages under this cgroup are moving to other cgroup.
323 */
324 atomic_t moving_account;
325 /* taken only while moving_account > 0 */
326 spinlock_t move_lock;
327 /*
328 * percpu counter.
329 */
330 struct mem_cgroup_stat_cpu __percpu *stat;
331 /*
332 * used when a cpu is offlined or other synchronizations
333 * See mem_cgroup_read_stat().
334 */
335 struct mem_cgroup_stat_cpu nocpu_base;
336 spinlock_t pcp_counter_lock;
337
338 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
339 struct tcp_memcontrol tcp_mem;
340 #endif
341 #if defined(CONFIG_MEMCG_KMEM)
342 /* analogous to slab_common's slab_caches list. per-memcg */
343 struct list_head memcg_slab_caches;
344 /* Not a spinlock, we can take a lot of time walking the list */
345 struct mutex slab_caches_mutex;
346 /* Index in the kmem_cache->memcg_params->memcg_caches array */
347 int kmemcg_id;
348 #endif
349
350 int last_scanned_node;
351 #if MAX_NUMNODES > 1
352 nodemask_t scan_nodes;
353 atomic_t numainfo_events;
354 atomic_t numainfo_updating;
355 #endif
356 /*
357 * Per cgroup active and inactive list, similar to the
358 * per zone LRU lists.
359 *
360 * WARNING: This has to be the last element of the struct. Don't
361 * add new fields after this point.
362 */
363 struct mem_cgroup_lru_info info;
364 };
365
366 static size_t memcg_size(void)
367 {
368 return sizeof(struct mem_cgroup) +
369 nr_node_ids * sizeof(struct mem_cgroup_per_node);
370 }
371
372 /* internal only representation about the status of kmem accounting. */
373 enum {
374 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
375 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
376 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
377 };
378
379 /* We account when limit is on, but only after call sites are patched */
380 #define KMEM_ACCOUNTED_MASK \
381 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
382
383 #ifdef CONFIG_MEMCG_KMEM
384 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
385 {
386 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
387 }
388
389 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
390 {
391 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
392 }
393
394 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
395 {
396 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
397 }
398
399 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
400 {
401 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
402 }
403
404 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
405 {
406 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
407 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
408 }
409
410 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
411 {
412 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
413 &memcg->kmem_account_flags);
414 }
415 #endif
416
417 /* Stuffs for move charges at task migration. */
418 /*
419 * Types of charges to be moved. "move_charge_at_immitgrate" and
420 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
421 */
422 enum move_type {
423 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
424 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
425 NR_MOVE_TYPE,
426 };
427
428 /* "mc" and its members are protected by cgroup_mutex */
429 static struct move_charge_struct {
430 spinlock_t lock; /* for from, to */
431 struct mem_cgroup *from;
432 struct mem_cgroup *to;
433 unsigned long immigrate_flags;
434 unsigned long precharge;
435 unsigned long moved_charge;
436 unsigned long moved_swap;
437 struct task_struct *moving_task; /* a task moving charges */
438 wait_queue_head_t waitq; /* a waitq for other context */
439 } mc = {
440 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
441 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
442 };
443
444 static bool move_anon(void)
445 {
446 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
447 }
448
449 static bool move_file(void)
450 {
451 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
452 }
453
454 /*
455 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
456 * limit reclaim to prevent infinite loops, if they ever occur.
457 */
458 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
459 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
460
461 enum charge_type {
462 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
463 MEM_CGROUP_CHARGE_TYPE_ANON,
464 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
465 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
466 NR_CHARGE_TYPE,
467 };
468
469 /* for encoding cft->private value on file */
470 enum res_type {
471 _MEM,
472 _MEMSWAP,
473 _OOM_TYPE,
474 _KMEM,
475 };
476
477 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
478 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
479 #define MEMFILE_ATTR(val) ((val) & 0xffff)
480 /* Used for OOM nofiier */
481 #define OOM_CONTROL (0)
482
483 /*
484 * Reclaim flags for mem_cgroup_hierarchical_reclaim
485 */
486 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
487 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
488 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
489 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
490
491 static void mem_cgroup_get(struct mem_cgroup *memcg);
492 static void mem_cgroup_put(struct mem_cgroup *memcg);
493
494 static inline
495 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
496 {
497 return container_of(s, struct mem_cgroup, css);
498 }
499
500 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
501 {
502 return (memcg == root_mem_cgroup);
503 }
504
505 /* Writing them here to avoid exposing memcg's inner layout */
506 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
507
508 void sock_update_memcg(struct sock *sk)
509 {
510 if (mem_cgroup_sockets_enabled) {
511 struct mem_cgroup *memcg;
512 struct cg_proto *cg_proto;
513
514 BUG_ON(!sk->sk_prot->proto_cgroup);
515
516 /* Socket cloning can throw us here with sk_cgrp already
517 * filled. It won't however, necessarily happen from
518 * process context. So the test for root memcg given
519 * the current task's memcg won't help us in this case.
520 *
521 * Respecting the original socket's memcg is a better
522 * decision in this case.
523 */
524 if (sk->sk_cgrp) {
525 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
526 mem_cgroup_get(sk->sk_cgrp->memcg);
527 return;
528 }
529
530 rcu_read_lock();
531 memcg = mem_cgroup_from_task(current);
532 cg_proto = sk->sk_prot->proto_cgroup(memcg);
533 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
534 mem_cgroup_get(memcg);
535 sk->sk_cgrp = cg_proto;
536 }
537 rcu_read_unlock();
538 }
539 }
540 EXPORT_SYMBOL(sock_update_memcg);
541
542 void sock_release_memcg(struct sock *sk)
543 {
544 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
545 struct mem_cgroup *memcg;
546 WARN_ON(!sk->sk_cgrp->memcg);
547 memcg = sk->sk_cgrp->memcg;
548 mem_cgroup_put(memcg);
549 }
550 }
551
552 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
553 {
554 if (!memcg || mem_cgroup_is_root(memcg))
555 return NULL;
556
557 return &memcg->tcp_mem.cg_proto;
558 }
559 EXPORT_SYMBOL(tcp_proto_cgroup);
560
561 static void disarm_sock_keys(struct mem_cgroup *memcg)
562 {
563 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
564 return;
565 static_key_slow_dec(&memcg_socket_limit_enabled);
566 }
567 #else
568 static void disarm_sock_keys(struct mem_cgroup *memcg)
569 {
570 }
571 #endif
572
573 #ifdef CONFIG_MEMCG_KMEM
574 /*
575 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
576 * There are two main reasons for not using the css_id for this:
577 * 1) this works better in sparse environments, where we have a lot of memcgs,
578 * but only a few kmem-limited. Or also, if we have, for instance, 200
579 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
580 * 200 entry array for that.
581 *
582 * 2) In order not to violate the cgroup API, we would like to do all memory
583 * allocation in ->create(). At that point, we haven't yet allocated the
584 * css_id. Having a separate index prevents us from messing with the cgroup
585 * core for this
586 *
587 * The current size of the caches array is stored in
588 * memcg_limited_groups_array_size. It will double each time we have to
589 * increase it.
590 */
591 static DEFINE_IDA(kmem_limited_groups);
592 int memcg_limited_groups_array_size;
593
594 /*
595 * MIN_SIZE is different than 1, because we would like to avoid going through
596 * the alloc/free process all the time. In a small machine, 4 kmem-limited
597 * cgroups is a reasonable guess. In the future, it could be a parameter or
598 * tunable, but that is strictly not necessary.
599 *
600 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
601 * this constant directly from cgroup, but it is understandable that this is
602 * better kept as an internal representation in cgroup.c. In any case, the
603 * css_id space is not getting any smaller, and we don't have to necessarily
604 * increase ours as well if it increases.
605 */
606 #define MEMCG_CACHES_MIN_SIZE 4
607 #define MEMCG_CACHES_MAX_SIZE 65535
608
609 /*
610 * A lot of the calls to the cache allocation functions are expected to be
611 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
612 * conditional to this static branch, we'll have to allow modules that does
613 * kmem_cache_alloc and the such to see this symbol as well
614 */
615 struct static_key memcg_kmem_enabled_key;
616 EXPORT_SYMBOL(memcg_kmem_enabled_key);
617
618 static void disarm_kmem_keys(struct mem_cgroup *memcg)
619 {
620 if (memcg_kmem_is_active(memcg)) {
621 static_key_slow_dec(&memcg_kmem_enabled_key);
622 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
623 }
624 /*
625 * This check can't live in kmem destruction function,
626 * since the charges will outlive the cgroup
627 */
628 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
629 }
630 #else
631 static void disarm_kmem_keys(struct mem_cgroup *memcg)
632 {
633 }
634 #endif /* CONFIG_MEMCG_KMEM */
635
636 static void disarm_static_keys(struct mem_cgroup *memcg)
637 {
638 disarm_sock_keys(memcg);
639 disarm_kmem_keys(memcg);
640 }
641
642 static void drain_all_stock_async(struct mem_cgroup *memcg);
643
644 static struct mem_cgroup_per_zone *
645 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
646 {
647 VM_BUG_ON((unsigned)nid >= nr_node_ids);
648 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
649 }
650
651 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
652 {
653 return &memcg->css;
654 }
655
656 static struct mem_cgroup_per_zone *
657 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
658 {
659 int nid = page_to_nid(page);
660 int zid = page_zonenum(page);
661
662 return mem_cgroup_zoneinfo(memcg, nid, zid);
663 }
664
665 static struct mem_cgroup_tree_per_zone *
666 soft_limit_tree_node_zone(int nid, int zid)
667 {
668 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
669 }
670
671 static struct mem_cgroup_tree_per_zone *
672 soft_limit_tree_from_page(struct page *page)
673 {
674 int nid = page_to_nid(page);
675 int zid = page_zonenum(page);
676
677 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
678 }
679
680 static void
681 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
682 struct mem_cgroup_per_zone *mz,
683 struct mem_cgroup_tree_per_zone *mctz,
684 unsigned long long new_usage_in_excess)
685 {
686 struct rb_node **p = &mctz->rb_root.rb_node;
687 struct rb_node *parent = NULL;
688 struct mem_cgroup_per_zone *mz_node;
689
690 if (mz->on_tree)
691 return;
692
693 mz->usage_in_excess = new_usage_in_excess;
694 if (!mz->usage_in_excess)
695 return;
696 while (*p) {
697 parent = *p;
698 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
699 tree_node);
700 if (mz->usage_in_excess < mz_node->usage_in_excess)
701 p = &(*p)->rb_left;
702 /*
703 * We can't avoid mem cgroups that are over their soft
704 * limit by the same amount
705 */
706 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
707 p = &(*p)->rb_right;
708 }
709 rb_link_node(&mz->tree_node, parent, p);
710 rb_insert_color(&mz->tree_node, &mctz->rb_root);
711 mz->on_tree = true;
712 }
713
714 static void
715 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
716 struct mem_cgroup_per_zone *mz,
717 struct mem_cgroup_tree_per_zone *mctz)
718 {
719 if (!mz->on_tree)
720 return;
721 rb_erase(&mz->tree_node, &mctz->rb_root);
722 mz->on_tree = false;
723 }
724
725 static void
726 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
727 struct mem_cgroup_per_zone *mz,
728 struct mem_cgroup_tree_per_zone *mctz)
729 {
730 spin_lock(&mctz->lock);
731 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
732 spin_unlock(&mctz->lock);
733 }
734
735
736 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
737 {
738 unsigned long long excess;
739 struct mem_cgroup_per_zone *mz;
740 struct mem_cgroup_tree_per_zone *mctz;
741 int nid = page_to_nid(page);
742 int zid = page_zonenum(page);
743 mctz = soft_limit_tree_from_page(page);
744
745 /*
746 * Necessary to update all ancestors when hierarchy is used.
747 * because their event counter is not touched.
748 */
749 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
750 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
751 excess = res_counter_soft_limit_excess(&memcg->res);
752 /*
753 * We have to update the tree if mz is on RB-tree or
754 * mem is over its softlimit.
755 */
756 if (excess || mz->on_tree) {
757 spin_lock(&mctz->lock);
758 /* if on-tree, remove it */
759 if (mz->on_tree)
760 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
761 /*
762 * Insert again. mz->usage_in_excess will be updated.
763 * If excess is 0, no tree ops.
764 */
765 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
766 spin_unlock(&mctz->lock);
767 }
768 }
769 }
770
771 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
772 {
773 int node, zone;
774 struct mem_cgroup_per_zone *mz;
775 struct mem_cgroup_tree_per_zone *mctz;
776
777 for_each_node(node) {
778 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
779 mz = mem_cgroup_zoneinfo(memcg, node, zone);
780 mctz = soft_limit_tree_node_zone(node, zone);
781 mem_cgroup_remove_exceeded(memcg, mz, mctz);
782 }
783 }
784 }
785
786 static struct mem_cgroup_per_zone *
787 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
788 {
789 struct rb_node *rightmost = NULL;
790 struct mem_cgroup_per_zone *mz;
791
792 retry:
793 mz = NULL;
794 rightmost = rb_last(&mctz->rb_root);
795 if (!rightmost)
796 goto done; /* Nothing to reclaim from */
797
798 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
799 /*
800 * Remove the node now but someone else can add it back,
801 * we will to add it back at the end of reclaim to its correct
802 * position in the tree.
803 */
804 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
805 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
806 !css_tryget(&mz->memcg->css))
807 goto retry;
808 done:
809 return mz;
810 }
811
812 static struct mem_cgroup_per_zone *
813 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
814 {
815 struct mem_cgroup_per_zone *mz;
816
817 spin_lock(&mctz->lock);
818 mz = __mem_cgroup_largest_soft_limit_node(mctz);
819 spin_unlock(&mctz->lock);
820 return mz;
821 }
822
823 /*
824 * Implementation Note: reading percpu statistics for memcg.
825 *
826 * Both of vmstat[] and percpu_counter has threshold and do periodic
827 * synchronization to implement "quick" read. There are trade-off between
828 * reading cost and precision of value. Then, we may have a chance to implement
829 * a periodic synchronizion of counter in memcg's counter.
830 *
831 * But this _read() function is used for user interface now. The user accounts
832 * memory usage by memory cgroup and he _always_ requires exact value because
833 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
834 * have to visit all online cpus and make sum. So, for now, unnecessary
835 * synchronization is not implemented. (just implemented for cpu hotplug)
836 *
837 * If there are kernel internal actions which can make use of some not-exact
838 * value, and reading all cpu value can be performance bottleneck in some
839 * common workload, threashold and synchonization as vmstat[] should be
840 * implemented.
841 */
842 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
843 enum mem_cgroup_stat_index idx)
844 {
845 long val = 0;
846 int cpu;
847
848 get_online_cpus();
849 for_each_online_cpu(cpu)
850 val += per_cpu(memcg->stat->count[idx], cpu);
851 #ifdef CONFIG_HOTPLUG_CPU
852 spin_lock(&memcg->pcp_counter_lock);
853 val += memcg->nocpu_base.count[idx];
854 spin_unlock(&memcg->pcp_counter_lock);
855 #endif
856 put_online_cpus();
857 return val;
858 }
859
860 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
861 bool charge)
862 {
863 int val = (charge) ? 1 : -1;
864 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
865 }
866
867 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
868 enum mem_cgroup_events_index idx)
869 {
870 unsigned long val = 0;
871 int cpu;
872
873 for_each_online_cpu(cpu)
874 val += per_cpu(memcg->stat->events[idx], cpu);
875 #ifdef CONFIG_HOTPLUG_CPU
876 spin_lock(&memcg->pcp_counter_lock);
877 val += memcg->nocpu_base.events[idx];
878 spin_unlock(&memcg->pcp_counter_lock);
879 #endif
880 return val;
881 }
882
883 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
884 bool anon, int nr_pages)
885 {
886 preempt_disable();
887
888 /*
889 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
890 * counted as CACHE even if it's on ANON LRU.
891 */
892 if (anon)
893 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
894 nr_pages);
895 else
896 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
897 nr_pages);
898
899 /* pagein of a big page is an event. So, ignore page size */
900 if (nr_pages > 0)
901 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
902 else {
903 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
904 nr_pages = -nr_pages; /* for event */
905 }
906
907 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
908
909 preempt_enable();
910 }
911
912 unsigned long
913 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
914 {
915 struct mem_cgroup_per_zone *mz;
916
917 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
918 return mz->lru_size[lru];
919 }
920
921 static unsigned long
922 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
923 unsigned int lru_mask)
924 {
925 struct mem_cgroup_per_zone *mz;
926 enum lru_list lru;
927 unsigned long ret = 0;
928
929 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
930
931 for_each_lru(lru) {
932 if (BIT(lru) & lru_mask)
933 ret += mz->lru_size[lru];
934 }
935 return ret;
936 }
937
938 static unsigned long
939 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
940 int nid, unsigned int lru_mask)
941 {
942 u64 total = 0;
943 int zid;
944
945 for (zid = 0; zid < MAX_NR_ZONES; zid++)
946 total += mem_cgroup_zone_nr_lru_pages(memcg,
947 nid, zid, lru_mask);
948
949 return total;
950 }
951
952 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
953 unsigned int lru_mask)
954 {
955 int nid;
956 u64 total = 0;
957
958 for_each_node_state(nid, N_MEMORY)
959 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
960 return total;
961 }
962
963 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
964 enum mem_cgroup_events_target target)
965 {
966 unsigned long val, next;
967
968 val = __this_cpu_read(memcg->stat->nr_page_events);
969 next = __this_cpu_read(memcg->stat->targets[target]);
970 /* from time_after() in jiffies.h */
971 if ((long)next - (long)val < 0) {
972 switch (target) {
973 case MEM_CGROUP_TARGET_THRESH:
974 next = val + THRESHOLDS_EVENTS_TARGET;
975 break;
976 case MEM_CGROUP_TARGET_SOFTLIMIT:
977 next = val + SOFTLIMIT_EVENTS_TARGET;
978 break;
979 case MEM_CGROUP_TARGET_NUMAINFO:
980 next = val + NUMAINFO_EVENTS_TARGET;
981 break;
982 default:
983 break;
984 }
985 __this_cpu_write(memcg->stat->targets[target], next);
986 return true;
987 }
988 return false;
989 }
990
991 /*
992 * Check events in order.
993 *
994 */
995 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
996 {
997 preempt_disable();
998 /* threshold event is triggered in finer grain than soft limit */
999 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1000 MEM_CGROUP_TARGET_THRESH))) {
1001 bool do_softlimit;
1002 bool do_numainfo __maybe_unused;
1003
1004 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1005 MEM_CGROUP_TARGET_SOFTLIMIT);
1006 #if MAX_NUMNODES > 1
1007 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1008 MEM_CGROUP_TARGET_NUMAINFO);
1009 #endif
1010 preempt_enable();
1011
1012 mem_cgroup_threshold(memcg);
1013 if (unlikely(do_softlimit))
1014 mem_cgroup_update_tree(memcg, page);
1015 #if MAX_NUMNODES > 1
1016 if (unlikely(do_numainfo))
1017 atomic_inc(&memcg->numainfo_events);
1018 #endif
1019 } else
1020 preempt_enable();
1021 }
1022
1023 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
1024 {
1025 return mem_cgroup_from_css(
1026 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
1027 }
1028
1029 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1030 {
1031 /*
1032 * mm_update_next_owner() may clear mm->owner to NULL
1033 * if it races with swapoff, page migration, etc.
1034 * So this can be called with p == NULL.
1035 */
1036 if (unlikely(!p))
1037 return NULL;
1038
1039 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1040 }
1041
1042 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1043 {
1044 struct mem_cgroup *memcg = NULL;
1045
1046 if (!mm)
1047 return NULL;
1048 /*
1049 * Because we have no locks, mm->owner's may be being moved to other
1050 * cgroup. We use css_tryget() here even if this looks
1051 * pessimistic (rather than adding locks here).
1052 */
1053 rcu_read_lock();
1054 do {
1055 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1056 if (unlikely(!memcg))
1057 break;
1058 } while (!css_tryget(&memcg->css));
1059 rcu_read_unlock();
1060 return memcg;
1061 }
1062
1063 /**
1064 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1065 * @root: hierarchy root
1066 * @prev: previously returned memcg, NULL on first invocation
1067 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1068 *
1069 * Returns references to children of the hierarchy below @root, or
1070 * @root itself, or %NULL after a full round-trip.
1071 *
1072 * Caller must pass the return value in @prev on subsequent
1073 * invocations for reference counting, or use mem_cgroup_iter_break()
1074 * to cancel a hierarchy walk before the round-trip is complete.
1075 *
1076 * Reclaimers can specify a zone and a priority level in @reclaim to
1077 * divide up the memcgs in the hierarchy among all concurrent
1078 * reclaimers operating on the same zone and priority.
1079 */
1080 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1081 struct mem_cgroup *prev,
1082 struct mem_cgroup_reclaim_cookie *reclaim)
1083 {
1084 struct mem_cgroup *memcg = NULL;
1085 int id = 0;
1086
1087 if (mem_cgroup_disabled())
1088 return NULL;
1089
1090 if (!root)
1091 root = root_mem_cgroup;
1092
1093 if (prev && !reclaim)
1094 id = css_id(&prev->css);
1095
1096 if (prev && prev != root)
1097 css_put(&prev->css);
1098
1099 if (!root->use_hierarchy && root != root_mem_cgroup) {
1100 if (prev)
1101 return NULL;
1102 return root;
1103 }
1104
1105 while (!memcg) {
1106 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1107 struct cgroup_subsys_state *css;
1108
1109 if (reclaim) {
1110 int nid = zone_to_nid(reclaim->zone);
1111 int zid = zone_idx(reclaim->zone);
1112 struct mem_cgroup_per_zone *mz;
1113
1114 mz = mem_cgroup_zoneinfo(root, nid, zid);
1115 iter = &mz->reclaim_iter[reclaim->priority];
1116 if (prev && reclaim->generation != iter->generation)
1117 return NULL;
1118 id = iter->position;
1119 }
1120
1121 rcu_read_lock();
1122 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
1123 if (css) {
1124 if (css == &root->css || css_tryget(css))
1125 memcg = mem_cgroup_from_css(css);
1126 } else
1127 id = 0;
1128 rcu_read_unlock();
1129
1130 if (reclaim) {
1131 iter->position = id;
1132 if (!css)
1133 iter->generation++;
1134 else if (!prev && memcg)
1135 reclaim->generation = iter->generation;
1136 }
1137
1138 if (prev && !css)
1139 return NULL;
1140 }
1141 return memcg;
1142 }
1143
1144 /**
1145 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1146 * @root: hierarchy root
1147 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1148 */
1149 void mem_cgroup_iter_break(struct mem_cgroup *root,
1150 struct mem_cgroup *prev)
1151 {
1152 if (!root)
1153 root = root_mem_cgroup;
1154 if (prev && prev != root)
1155 css_put(&prev->css);
1156 }
1157
1158 /*
1159 * Iteration constructs for visiting all cgroups (under a tree). If
1160 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1161 * be used for reference counting.
1162 */
1163 #define for_each_mem_cgroup_tree(iter, root) \
1164 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1165 iter != NULL; \
1166 iter = mem_cgroup_iter(root, iter, NULL))
1167
1168 #define for_each_mem_cgroup(iter) \
1169 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1170 iter != NULL; \
1171 iter = mem_cgroup_iter(NULL, iter, NULL))
1172
1173 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1174 {
1175 struct mem_cgroup *memcg;
1176
1177 rcu_read_lock();
1178 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1179 if (unlikely(!memcg))
1180 goto out;
1181
1182 switch (idx) {
1183 case PGFAULT:
1184 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1185 break;
1186 case PGMAJFAULT:
1187 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1188 break;
1189 default:
1190 BUG();
1191 }
1192 out:
1193 rcu_read_unlock();
1194 }
1195 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1196
1197 /**
1198 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1199 * @zone: zone of the wanted lruvec
1200 * @memcg: memcg of the wanted lruvec
1201 *
1202 * Returns the lru list vector holding pages for the given @zone and
1203 * @mem. This can be the global zone lruvec, if the memory controller
1204 * is disabled.
1205 */
1206 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1207 struct mem_cgroup *memcg)
1208 {
1209 struct mem_cgroup_per_zone *mz;
1210 struct lruvec *lruvec;
1211
1212 if (mem_cgroup_disabled()) {
1213 lruvec = &zone->lruvec;
1214 goto out;
1215 }
1216
1217 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1218 lruvec = &mz->lruvec;
1219 out:
1220 /*
1221 * Since a node can be onlined after the mem_cgroup was created,
1222 * we have to be prepared to initialize lruvec->zone here;
1223 * and if offlined then reonlined, we need to reinitialize it.
1224 */
1225 if (unlikely(lruvec->zone != zone))
1226 lruvec->zone = zone;
1227 return lruvec;
1228 }
1229
1230 /*
1231 * Following LRU functions are allowed to be used without PCG_LOCK.
1232 * Operations are called by routine of global LRU independently from memcg.
1233 * What we have to take care of here is validness of pc->mem_cgroup.
1234 *
1235 * Changes to pc->mem_cgroup happens when
1236 * 1. charge
1237 * 2. moving account
1238 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1239 * It is added to LRU before charge.
1240 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1241 * When moving account, the page is not on LRU. It's isolated.
1242 */
1243
1244 /**
1245 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1246 * @page: the page
1247 * @zone: zone of the page
1248 */
1249 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1250 {
1251 struct mem_cgroup_per_zone *mz;
1252 struct mem_cgroup *memcg;
1253 struct page_cgroup *pc;
1254 struct lruvec *lruvec;
1255
1256 if (mem_cgroup_disabled()) {
1257 lruvec = &zone->lruvec;
1258 goto out;
1259 }
1260
1261 pc = lookup_page_cgroup(page);
1262 memcg = pc->mem_cgroup;
1263
1264 /*
1265 * Surreptitiously switch any uncharged offlist page to root:
1266 * an uncharged page off lru does nothing to secure
1267 * its former mem_cgroup from sudden removal.
1268 *
1269 * Our caller holds lru_lock, and PageCgroupUsed is updated
1270 * under page_cgroup lock: between them, they make all uses
1271 * of pc->mem_cgroup safe.
1272 */
1273 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1274 pc->mem_cgroup = memcg = root_mem_cgroup;
1275
1276 mz = page_cgroup_zoneinfo(memcg, page);
1277 lruvec = &mz->lruvec;
1278 out:
1279 /*
1280 * Since a node can be onlined after the mem_cgroup was created,
1281 * we have to be prepared to initialize lruvec->zone here;
1282 * and if offlined then reonlined, we need to reinitialize it.
1283 */
1284 if (unlikely(lruvec->zone != zone))
1285 lruvec->zone = zone;
1286 return lruvec;
1287 }
1288
1289 /**
1290 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1291 * @lruvec: mem_cgroup per zone lru vector
1292 * @lru: index of lru list the page is sitting on
1293 * @nr_pages: positive when adding or negative when removing
1294 *
1295 * This function must be called when a page is added to or removed from an
1296 * lru list.
1297 */
1298 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1299 int nr_pages)
1300 {
1301 struct mem_cgroup_per_zone *mz;
1302 unsigned long *lru_size;
1303
1304 if (mem_cgroup_disabled())
1305 return;
1306
1307 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1308 lru_size = mz->lru_size + lru;
1309 *lru_size += nr_pages;
1310 VM_BUG_ON((long)(*lru_size) < 0);
1311 }
1312
1313 /*
1314 * Checks whether given mem is same or in the root_mem_cgroup's
1315 * hierarchy subtree
1316 */
1317 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1318 struct mem_cgroup *memcg)
1319 {
1320 if (root_memcg == memcg)
1321 return true;
1322 if (!root_memcg->use_hierarchy || !memcg)
1323 return false;
1324 return css_is_ancestor(&memcg->css, &root_memcg->css);
1325 }
1326
1327 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1328 struct mem_cgroup *memcg)
1329 {
1330 bool ret;
1331
1332 rcu_read_lock();
1333 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1334 rcu_read_unlock();
1335 return ret;
1336 }
1337
1338 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1339 {
1340 int ret;
1341 struct mem_cgroup *curr = NULL;
1342 struct task_struct *p;
1343
1344 p = find_lock_task_mm(task);
1345 if (p) {
1346 curr = try_get_mem_cgroup_from_mm(p->mm);
1347 task_unlock(p);
1348 } else {
1349 /*
1350 * All threads may have already detached their mm's, but the oom
1351 * killer still needs to detect if they have already been oom
1352 * killed to prevent needlessly killing additional tasks.
1353 */
1354 task_lock(task);
1355 curr = mem_cgroup_from_task(task);
1356 if (curr)
1357 css_get(&curr->css);
1358 task_unlock(task);
1359 }
1360 if (!curr)
1361 return 0;
1362 /*
1363 * We should check use_hierarchy of "memcg" not "curr". Because checking
1364 * use_hierarchy of "curr" here make this function true if hierarchy is
1365 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1366 * hierarchy(even if use_hierarchy is disabled in "memcg").
1367 */
1368 ret = mem_cgroup_same_or_subtree(memcg, curr);
1369 css_put(&curr->css);
1370 return ret;
1371 }
1372
1373 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1374 {
1375 unsigned long inactive_ratio;
1376 unsigned long inactive;
1377 unsigned long active;
1378 unsigned long gb;
1379
1380 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1381 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1382
1383 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1384 if (gb)
1385 inactive_ratio = int_sqrt(10 * gb);
1386 else
1387 inactive_ratio = 1;
1388
1389 return inactive * inactive_ratio < active;
1390 }
1391
1392 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1393 {
1394 unsigned long active;
1395 unsigned long inactive;
1396
1397 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1398 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1399
1400 return (active > inactive);
1401 }
1402
1403 #define mem_cgroup_from_res_counter(counter, member) \
1404 container_of(counter, struct mem_cgroup, member)
1405
1406 /**
1407 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1408 * @memcg: the memory cgroup
1409 *
1410 * Returns the maximum amount of memory @mem can be charged with, in
1411 * pages.
1412 */
1413 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1414 {
1415 unsigned long long margin;
1416
1417 margin = res_counter_margin(&memcg->res);
1418 if (do_swap_account)
1419 margin = min(margin, res_counter_margin(&memcg->memsw));
1420 return margin >> PAGE_SHIFT;
1421 }
1422
1423 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1424 {
1425 struct cgroup *cgrp = memcg->css.cgroup;
1426
1427 /* root ? */
1428 if (cgrp->parent == NULL)
1429 return vm_swappiness;
1430
1431 return memcg->swappiness;
1432 }
1433
1434 /*
1435 * memcg->moving_account is used for checking possibility that some thread is
1436 * calling move_account(). When a thread on CPU-A starts moving pages under
1437 * a memcg, other threads should check memcg->moving_account under
1438 * rcu_read_lock(), like this:
1439 *
1440 * CPU-A CPU-B
1441 * rcu_read_lock()
1442 * memcg->moving_account+1 if (memcg->mocing_account)
1443 * take heavy locks.
1444 * synchronize_rcu() update something.
1445 * rcu_read_unlock()
1446 * start move here.
1447 */
1448
1449 /* for quick checking without looking up memcg */
1450 atomic_t memcg_moving __read_mostly;
1451
1452 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1453 {
1454 atomic_inc(&memcg_moving);
1455 atomic_inc(&memcg->moving_account);
1456 synchronize_rcu();
1457 }
1458
1459 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1460 {
1461 /*
1462 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1463 * We check NULL in callee rather than caller.
1464 */
1465 if (memcg) {
1466 atomic_dec(&memcg_moving);
1467 atomic_dec(&memcg->moving_account);
1468 }
1469 }
1470
1471 /*
1472 * 2 routines for checking "mem" is under move_account() or not.
1473 *
1474 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1475 * is used for avoiding races in accounting. If true,
1476 * pc->mem_cgroup may be overwritten.
1477 *
1478 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1479 * under hierarchy of moving cgroups. This is for
1480 * waiting at hith-memory prressure caused by "move".
1481 */
1482
1483 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1484 {
1485 VM_BUG_ON(!rcu_read_lock_held());
1486 return atomic_read(&memcg->moving_account) > 0;
1487 }
1488
1489 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1490 {
1491 struct mem_cgroup *from;
1492 struct mem_cgroup *to;
1493 bool ret = false;
1494 /*
1495 * Unlike task_move routines, we access mc.to, mc.from not under
1496 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1497 */
1498 spin_lock(&mc.lock);
1499 from = mc.from;
1500 to = mc.to;
1501 if (!from)
1502 goto unlock;
1503
1504 ret = mem_cgroup_same_or_subtree(memcg, from)
1505 || mem_cgroup_same_or_subtree(memcg, to);
1506 unlock:
1507 spin_unlock(&mc.lock);
1508 return ret;
1509 }
1510
1511 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1512 {
1513 if (mc.moving_task && current != mc.moving_task) {
1514 if (mem_cgroup_under_move(memcg)) {
1515 DEFINE_WAIT(wait);
1516 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1517 /* moving charge context might have finished. */
1518 if (mc.moving_task)
1519 schedule();
1520 finish_wait(&mc.waitq, &wait);
1521 return true;
1522 }
1523 }
1524 return false;
1525 }
1526
1527 /*
1528 * Take this lock when
1529 * - a code tries to modify page's memcg while it's USED.
1530 * - a code tries to modify page state accounting in a memcg.
1531 * see mem_cgroup_stolen(), too.
1532 */
1533 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1534 unsigned long *flags)
1535 {
1536 spin_lock_irqsave(&memcg->move_lock, *flags);
1537 }
1538
1539 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1540 unsigned long *flags)
1541 {
1542 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1543 }
1544
1545 #define K(x) ((x) << (PAGE_SHIFT-10))
1546 /**
1547 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1548 * @memcg: The memory cgroup that went over limit
1549 * @p: Task that is going to be killed
1550 *
1551 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1552 * enabled
1553 */
1554 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1555 {
1556 struct cgroup *task_cgrp;
1557 struct cgroup *mem_cgrp;
1558 /*
1559 * Need a buffer in BSS, can't rely on allocations. The code relies
1560 * on the assumption that OOM is serialized for memory controller.
1561 * If this assumption is broken, revisit this code.
1562 */
1563 static char memcg_name[PATH_MAX];
1564 int ret;
1565 struct mem_cgroup *iter;
1566 unsigned int i;
1567
1568 if (!p)
1569 return;
1570
1571 rcu_read_lock();
1572
1573 mem_cgrp = memcg->css.cgroup;
1574 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1575
1576 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1577 if (ret < 0) {
1578 /*
1579 * Unfortunately, we are unable to convert to a useful name
1580 * But we'll still print out the usage information
1581 */
1582 rcu_read_unlock();
1583 goto done;
1584 }
1585 rcu_read_unlock();
1586
1587 pr_info("Task in %s killed", memcg_name);
1588
1589 rcu_read_lock();
1590 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1591 if (ret < 0) {
1592 rcu_read_unlock();
1593 goto done;
1594 }
1595 rcu_read_unlock();
1596
1597 /*
1598 * Continues from above, so we don't need an KERN_ level
1599 */
1600 pr_cont(" as a result of limit of %s\n", memcg_name);
1601 done:
1602
1603 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1604 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1605 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1606 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1607 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1608 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1609 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1610 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1611 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1612 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1613 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1614 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1615
1616 for_each_mem_cgroup_tree(iter, memcg) {
1617 pr_info("Memory cgroup stats");
1618
1619 rcu_read_lock();
1620 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1621 if (!ret)
1622 pr_cont(" for %s", memcg_name);
1623 rcu_read_unlock();
1624 pr_cont(":");
1625
1626 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1627 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1628 continue;
1629 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1630 K(mem_cgroup_read_stat(iter, i)));
1631 }
1632
1633 for (i = 0; i < NR_LRU_LISTS; i++)
1634 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1635 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1636
1637 pr_cont("\n");
1638 }
1639 }
1640
1641 /*
1642 * This function returns the number of memcg under hierarchy tree. Returns
1643 * 1(self count) if no children.
1644 */
1645 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1646 {
1647 int num = 0;
1648 struct mem_cgroup *iter;
1649
1650 for_each_mem_cgroup_tree(iter, memcg)
1651 num++;
1652 return num;
1653 }
1654
1655 /*
1656 * Return the memory (and swap, if configured) limit for a memcg.
1657 */
1658 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1659 {
1660 u64 limit;
1661
1662 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1663
1664 /*
1665 * Do not consider swap space if we cannot swap due to swappiness
1666 */
1667 if (mem_cgroup_swappiness(memcg)) {
1668 u64 memsw;
1669
1670 limit += total_swap_pages << PAGE_SHIFT;
1671 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1672
1673 /*
1674 * If memsw is finite and limits the amount of swap space
1675 * available to this memcg, return that limit.
1676 */
1677 limit = min(limit, memsw);
1678 }
1679
1680 return limit;
1681 }
1682
1683 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1684 int order)
1685 {
1686 struct mem_cgroup *iter;
1687 unsigned long chosen_points = 0;
1688 unsigned long totalpages;
1689 unsigned int points = 0;
1690 struct task_struct *chosen = NULL;
1691
1692 /*
1693 * If current has a pending SIGKILL, then automatically select it. The
1694 * goal is to allow it to allocate so that it may quickly exit and free
1695 * its memory.
1696 */
1697 if (fatal_signal_pending(current)) {
1698 set_thread_flag(TIF_MEMDIE);
1699 return;
1700 }
1701
1702 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1703 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1704 for_each_mem_cgroup_tree(iter, memcg) {
1705 struct cgroup *cgroup = iter->css.cgroup;
1706 struct cgroup_iter it;
1707 struct task_struct *task;
1708
1709 cgroup_iter_start(cgroup, &it);
1710 while ((task = cgroup_iter_next(cgroup, &it))) {
1711 switch (oom_scan_process_thread(task, totalpages, NULL,
1712 false)) {
1713 case OOM_SCAN_SELECT:
1714 if (chosen)
1715 put_task_struct(chosen);
1716 chosen = task;
1717 chosen_points = ULONG_MAX;
1718 get_task_struct(chosen);
1719 /* fall through */
1720 case OOM_SCAN_CONTINUE:
1721 continue;
1722 case OOM_SCAN_ABORT:
1723 cgroup_iter_end(cgroup, &it);
1724 mem_cgroup_iter_break(memcg, iter);
1725 if (chosen)
1726 put_task_struct(chosen);
1727 return;
1728 case OOM_SCAN_OK:
1729 break;
1730 };
1731 points = oom_badness(task, memcg, NULL, totalpages);
1732 if (points > chosen_points) {
1733 if (chosen)
1734 put_task_struct(chosen);
1735 chosen = task;
1736 chosen_points = points;
1737 get_task_struct(chosen);
1738 }
1739 }
1740 cgroup_iter_end(cgroup, &it);
1741 }
1742
1743 if (!chosen)
1744 return;
1745 points = chosen_points * 1000 / totalpages;
1746 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1747 NULL, "Memory cgroup out of memory");
1748 }
1749
1750 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1751 gfp_t gfp_mask,
1752 unsigned long flags)
1753 {
1754 unsigned long total = 0;
1755 bool noswap = false;
1756 int loop;
1757
1758 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1759 noswap = true;
1760 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1761 noswap = true;
1762
1763 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1764 if (loop)
1765 drain_all_stock_async(memcg);
1766 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1767 /*
1768 * Allow limit shrinkers, which are triggered directly
1769 * by userspace, to catch signals and stop reclaim
1770 * after minimal progress, regardless of the margin.
1771 */
1772 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1773 break;
1774 if (mem_cgroup_margin(memcg))
1775 break;
1776 /*
1777 * If nothing was reclaimed after two attempts, there
1778 * may be no reclaimable pages in this hierarchy.
1779 */
1780 if (loop && !total)
1781 break;
1782 }
1783 return total;
1784 }
1785
1786 /**
1787 * test_mem_cgroup_node_reclaimable
1788 * @memcg: the target memcg
1789 * @nid: the node ID to be checked.
1790 * @noswap : specify true here if the user wants flle only information.
1791 *
1792 * This function returns whether the specified memcg contains any
1793 * reclaimable pages on a node. Returns true if there are any reclaimable
1794 * pages in the node.
1795 */
1796 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1797 int nid, bool noswap)
1798 {
1799 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1800 return true;
1801 if (noswap || !total_swap_pages)
1802 return false;
1803 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1804 return true;
1805 return false;
1806
1807 }
1808 #if MAX_NUMNODES > 1
1809
1810 /*
1811 * Always updating the nodemask is not very good - even if we have an empty
1812 * list or the wrong list here, we can start from some node and traverse all
1813 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1814 *
1815 */
1816 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1817 {
1818 int nid;
1819 /*
1820 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1821 * pagein/pageout changes since the last update.
1822 */
1823 if (!atomic_read(&memcg->numainfo_events))
1824 return;
1825 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1826 return;
1827
1828 /* make a nodemask where this memcg uses memory from */
1829 memcg->scan_nodes = node_states[N_MEMORY];
1830
1831 for_each_node_mask(nid, node_states[N_MEMORY]) {
1832
1833 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1834 node_clear(nid, memcg->scan_nodes);
1835 }
1836
1837 atomic_set(&memcg->numainfo_events, 0);
1838 atomic_set(&memcg->numainfo_updating, 0);
1839 }
1840
1841 /*
1842 * Selecting a node where we start reclaim from. Because what we need is just
1843 * reducing usage counter, start from anywhere is O,K. Considering
1844 * memory reclaim from current node, there are pros. and cons.
1845 *
1846 * Freeing memory from current node means freeing memory from a node which
1847 * we'll use or we've used. So, it may make LRU bad. And if several threads
1848 * hit limits, it will see a contention on a node. But freeing from remote
1849 * node means more costs for memory reclaim because of memory latency.
1850 *
1851 * Now, we use round-robin. Better algorithm is welcomed.
1852 */
1853 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1854 {
1855 int node;
1856
1857 mem_cgroup_may_update_nodemask(memcg);
1858 node = memcg->last_scanned_node;
1859
1860 node = next_node(node, memcg->scan_nodes);
1861 if (node == MAX_NUMNODES)
1862 node = first_node(memcg->scan_nodes);
1863 /*
1864 * We call this when we hit limit, not when pages are added to LRU.
1865 * No LRU may hold pages because all pages are UNEVICTABLE or
1866 * memcg is too small and all pages are not on LRU. In that case,
1867 * we use curret node.
1868 */
1869 if (unlikely(node == MAX_NUMNODES))
1870 node = numa_node_id();
1871
1872 memcg->last_scanned_node = node;
1873 return node;
1874 }
1875
1876 /*
1877 * Check all nodes whether it contains reclaimable pages or not.
1878 * For quick scan, we make use of scan_nodes. This will allow us to skip
1879 * unused nodes. But scan_nodes is lazily updated and may not cotain
1880 * enough new information. We need to do double check.
1881 */
1882 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1883 {
1884 int nid;
1885
1886 /*
1887 * quick check...making use of scan_node.
1888 * We can skip unused nodes.
1889 */
1890 if (!nodes_empty(memcg->scan_nodes)) {
1891 for (nid = first_node(memcg->scan_nodes);
1892 nid < MAX_NUMNODES;
1893 nid = next_node(nid, memcg->scan_nodes)) {
1894
1895 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1896 return true;
1897 }
1898 }
1899 /*
1900 * Check rest of nodes.
1901 */
1902 for_each_node_state(nid, N_MEMORY) {
1903 if (node_isset(nid, memcg->scan_nodes))
1904 continue;
1905 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1906 return true;
1907 }
1908 return false;
1909 }
1910
1911 #else
1912 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1913 {
1914 return 0;
1915 }
1916
1917 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1918 {
1919 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1920 }
1921 #endif
1922
1923 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1924 struct zone *zone,
1925 gfp_t gfp_mask,
1926 unsigned long *total_scanned)
1927 {
1928 struct mem_cgroup *victim = NULL;
1929 int total = 0;
1930 int loop = 0;
1931 unsigned long excess;
1932 unsigned long nr_scanned;
1933 struct mem_cgroup_reclaim_cookie reclaim = {
1934 .zone = zone,
1935 .priority = 0,
1936 };
1937
1938 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1939
1940 while (1) {
1941 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1942 if (!victim) {
1943 loop++;
1944 if (loop >= 2) {
1945 /*
1946 * If we have not been able to reclaim
1947 * anything, it might because there are
1948 * no reclaimable pages under this hierarchy
1949 */
1950 if (!total)
1951 break;
1952 /*
1953 * We want to do more targeted reclaim.
1954 * excess >> 2 is not to excessive so as to
1955 * reclaim too much, nor too less that we keep
1956 * coming back to reclaim from this cgroup
1957 */
1958 if (total >= (excess >> 2) ||
1959 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1960 break;
1961 }
1962 continue;
1963 }
1964 if (!mem_cgroup_reclaimable(victim, false))
1965 continue;
1966 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1967 zone, &nr_scanned);
1968 *total_scanned += nr_scanned;
1969 if (!res_counter_soft_limit_excess(&root_memcg->res))
1970 break;
1971 }
1972 mem_cgroup_iter_break(root_memcg, victim);
1973 return total;
1974 }
1975
1976 /*
1977 * Check OOM-Killer is already running under our hierarchy.
1978 * If someone is running, return false.
1979 * Has to be called with memcg_oom_lock
1980 */
1981 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1982 {
1983 struct mem_cgroup *iter, *failed = NULL;
1984
1985 for_each_mem_cgroup_tree(iter, memcg) {
1986 if (iter->oom_lock) {
1987 /*
1988 * this subtree of our hierarchy is already locked
1989 * so we cannot give a lock.
1990 */
1991 failed = iter;
1992 mem_cgroup_iter_break(memcg, iter);
1993 break;
1994 } else
1995 iter->oom_lock = true;
1996 }
1997
1998 if (!failed)
1999 return true;
2000
2001 /*
2002 * OK, we failed to lock the whole subtree so we have to clean up
2003 * what we set up to the failing subtree
2004 */
2005 for_each_mem_cgroup_tree(iter, memcg) {
2006 if (iter == failed) {
2007 mem_cgroup_iter_break(memcg, iter);
2008 break;
2009 }
2010 iter->oom_lock = false;
2011 }
2012 return false;
2013 }
2014
2015 /*
2016 * Has to be called with memcg_oom_lock
2017 */
2018 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2019 {
2020 struct mem_cgroup *iter;
2021
2022 for_each_mem_cgroup_tree(iter, memcg)
2023 iter->oom_lock = false;
2024 return 0;
2025 }
2026
2027 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2028 {
2029 struct mem_cgroup *iter;
2030
2031 for_each_mem_cgroup_tree(iter, memcg)
2032 atomic_inc(&iter->under_oom);
2033 }
2034
2035 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2036 {
2037 struct mem_cgroup *iter;
2038
2039 /*
2040 * When a new child is created while the hierarchy is under oom,
2041 * mem_cgroup_oom_lock() may not be called. We have to use
2042 * atomic_add_unless() here.
2043 */
2044 for_each_mem_cgroup_tree(iter, memcg)
2045 atomic_add_unless(&iter->under_oom, -1, 0);
2046 }
2047
2048 static DEFINE_SPINLOCK(memcg_oom_lock);
2049 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2050
2051 struct oom_wait_info {
2052 struct mem_cgroup *memcg;
2053 wait_queue_t wait;
2054 };
2055
2056 static int memcg_oom_wake_function(wait_queue_t *wait,
2057 unsigned mode, int sync, void *arg)
2058 {
2059 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2060 struct mem_cgroup *oom_wait_memcg;
2061 struct oom_wait_info *oom_wait_info;
2062
2063 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2064 oom_wait_memcg = oom_wait_info->memcg;
2065
2066 /*
2067 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2068 * Then we can use css_is_ancestor without taking care of RCU.
2069 */
2070 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2071 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2072 return 0;
2073 return autoremove_wake_function(wait, mode, sync, arg);
2074 }
2075
2076 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2077 {
2078 /* for filtering, pass "memcg" as argument. */
2079 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2080 }
2081
2082 static void memcg_oom_recover(struct mem_cgroup *memcg)
2083 {
2084 if (memcg && atomic_read(&memcg->under_oom))
2085 memcg_wakeup_oom(memcg);
2086 }
2087
2088 /*
2089 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2090 */
2091 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2092 int order)
2093 {
2094 struct oom_wait_info owait;
2095 bool locked, need_to_kill;
2096
2097 owait.memcg = memcg;
2098 owait.wait.flags = 0;
2099 owait.wait.func = memcg_oom_wake_function;
2100 owait.wait.private = current;
2101 INIT_LIST_HEAD(&owait.wait.task_list);
2102 need_to_kill = true;
2103 mem_cgroup_mark_under_oom(memcg);
2104
2105 /* At first, try to OOM lock hierarchy under memcg.*/
2106 spin_lock(&memcg_oom_lock);
2107 locked = mem_cgroup_oom_lock(memcg);
2108 /*
2109 * Even if signal_pending(), we can't quit charge() loop without
2110 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2111 * under OOM is always welcomed, use TASK_KILLABLE here.
2112 */
2113 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2114 if (!locked || memcg->oom_kill_disable)
2115 need_to_kill = false;
2116 if (locked)
2117 mem_cgroup_oom_notify(memcg);
2118 spin_unlock(&memcg_oom_lock);
2119
2120 if (need_to_kill) {
2121 finish_wait(&memcg_oom_waitq, &owait.wait);
2122 mem_cgroup_out_of_memory(memcg, mask, order);
2123 } else {
2124 schedule();
2125 finish_wait(&memcg_oom_waitq, &owait.wait);
2126 }
2127 spin_lock(&memcg_oom_lock);
2128 if (locked)
2129 mem_cgroup_oom_unlock(memcg);
2130 memcg_wakeup_oom(memcg);
2131 spin_unlock(&memcg_oom_lock);
2132
2133 mem_cgroup_unmark_under_oom(memcg);
2134
2135 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2136 return false;
2137 /* Give chance to dying process */
2138 schedule_timeout_uninterruptible(1);
2139 return true;
2140 }
2141
2142 /*
2143 * Currently used to update mapped file statistics, but the routine can be
2144 * generalized to update other statistics as well.
2145 *
2146 * Notes: Race condition
2147 *
2148 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2149 * it tends to be costly. But considering some conditions, we doesn't need
2150 * to do so _always_.
2151 *
2152 * Considering "charge", lock_page_cgroup() is not required because all
2153 * file-stat operations happen after a page is attached to radix-tree. There
2154 * are no race with "charge".
2155 *
2156 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2157 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2158 * if there are race with "uncharge". Statistics itself is properly handled
2159 * by flags.
2160 *
2161 * Considering "move", this is an only case we see a race. To make the race
2162 * small, we check mm->moving_account and detect there are possibility of race
2163 * If there is, we take a lock.
2164 */
2165
2166 void __mem_cgroup_begin_update_page_stat(struct page *page,
2167 bool *locked, unsigned long *flags)
2168 {
2169 struct mem_cgroup *memcg;
2170 struct page_cgroup *pc;
2171
2172 pc = lookup_page_cgroup(page);
2173 again:
2174 memcg = pc->mem_cgroup;
2175 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2176 return;
2177 /*
2178 * If this memory cgroup is not under account moving, we don't
2179 * need to take move_lock_mem_cgroup(). Because we already hold
2180 * rcu_read_lock(), any calls to move_account will be delayed until
2181 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2182 */
2183 if (!mem_cgroup_stolen(memcg))
2184 return;
2185
2186 move_lock_mem_cgroup(memcg, flags);
2187 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2188 move_unlock_mem_cgroup(memcg, flags);
2189 goto again;
2190 }
2191 *locked = true;
2192 }
2193
2194 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2195 {
2196 struct page_cgroup *pc = lookup_page_cgroup(page);
2197
2198 /*
2199 * It's guaranteed that pc->mem_cgroup never changes while
2200 * lock is held because a routine modifies pc->mem_cgroup
2201 * should take move_lock_mem_cgroup().
2202 */
2203 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2204 }
2205
2206 void mem_cgroup_update_page_stat(struct page *page,
2207 enum mem_cgroup_page_stat_item idx, int val)
2208 {
2209 struct mem_cgroup *memcg;
2210 struct page_cgroup *pc = lookup_page_cgroup(page);
2211 unsigned long uninitialized_var(flags);
2212
2213 if (mem_cgroup_disabled())
2214 return;
2215
2216 memcg = pc->mem_cgroup;
2217 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2218 return;
2219
2220 switch (idx) {
2221 case MEMCG_NR_FILE_MAPPED:
2222 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2223 break;
2224 default:
2225 BUG();
2226 }
2227
2228 this_cpu_add(memcg->stat->count[idx], val);
2229 }
2230
2231 /*
2232 * size of first charge trial. "32" comes from vmscan.c's magic value.
2233 * TODO: maybe necessary to use big numbers in big irons.
2234 */
2235 #define CHARGE_BATCH 32U
2236 struct memcg_stock_pcp {
2237 struct mem_cgroup *cached; /* this never be root cgroup */
2238 unsigned int nr_pages;
2239 struct work_struct work;
2240 unsigned long flags;
2241 #define FLUSHING_CACHED_CHARGE 0
2242 };
2243 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2244 static DEFINE_MUTEX(percpu_charge_mutex);
2245
2246 /**
2247 * consume_stock: Try to consume stocked charge on this cpu.
2248 * @memcg: memcg to consume from.
2249 * @nr_pages: how many pages to charge.
2250 *
2251 * The charges will only happen if @memcg matches the current cpu's memcg
2252 * stock, and at least @nr_pages are available in that stock. Failure to
2253 * service an allocation will refill the stock.
2254 *
2255 * returns true if successful, false otherwise.
2256 */
2257 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2258 {
2259 struct memcg_stock_pcp *stock;
2260 bool ret = true;
2261
2262 if (nr_pages > CHARGE_BATCH)
2263 return false;
2264
2265 stock = &get_cpu_var(memcg_stock);
2266 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2267 stock->nr_pages -= nr_pages;
2268 else /* need to call res_counter_charge */
2269 ret = false;
2270 put_cpu_var(memcg_stock);
2271 return ret;
2272 }
2273
2274 /*
2275 * Returns stocks cached in percpu to res_counter and reset cached information.
2276 */
2277 static void drain_stock(struct memcg_stock_pcp *stock)
2278 {
2279 struct mem_cgroup *old = stock->cached;
2280
2281 if (stock->nr_pages) {
2282 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2283
2284 res_counter_uncharge(&old->res, bytes);
2285 if (do_swap_account)
2286 res_counter_uncharge(&old->memsw, bytes);
2287 stock->nr_pages = 0;
2288 }
2289 stock->cached = NULL;
2290 }
2291
2292 /*
2293 * This must be called under preempt disabled or must be called by
2294 * a thread which is pinned to local cpu.
2295 */
2296 static void drain_local_stock(struct work_struct *dummy)
2297 {
2298 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2299 drain_stock(stock);
2300 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2301 }
2302
2303 /*
2304 * Cache charges(val) which is from res_counter, to local per_cpu area.
2305 * This will be consumed by consume_stock() function, later.
2306 */
2307 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2308 {
2309 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2310
2311 if (stock->cached != memcg) { /* reset if necessary */
2312 drain_stock(stock);
2313 stock->cached = memcg;
2314 }
2315 stock->nr_pages += nr_pages;
2316 put_cpu_var(memcg_stock);
2317 }
2318
2319 /*
2320 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2321 * of the hierarchy under it. sync flag says whether we should block
2322 * until the work is done.
2323 */
2324 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2325 {
2326 int cpu, curcpu;
2327
2328 /* Notify other cpus that system-wide "drain" is running */
2329 get_online_cpus();
2330 curcpu = get_cpu();
2331 for_each_online_cpu(cpu) {
2332 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2333 struct mem_cgroup *memcg;
2334
2335 memcg = stock->cached;
2336 if (!memcg || !stock->nr_pages)
2337 continue;
2338 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2339 continue;
2340 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2341 if (cpu == curcpu)
2342 drain_local_stock(&stock->work);
2343 else
2344 schedule_work_on(cpu, &stock->work);
2345 }
2346 }
2347 put_cpu();
2348
2349 if (!sync)
2350 goto out;
2351
2352 for_each_online_cpu(cpu) {
2353 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2354 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2355 flush_work(&stock->work);
2356 }
2357 out:
2358 put_online_cpus();
2359 }
2360
2361 /*
2362 * Tries to drain stocked charges in other cpus. This function is asynchronous
2363 * and just put a work per cpu for draining localy on each cpu. Caller can
2364 * expects some charges will be back to res_counter later but cannot wait for
2365 * it.
2366 */
2367 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2368 {
2369 /*
2370 * If someone calls draining, avoid adding more kworker runs.
2371 */
2372 if (!mutex_trylock(&percpu_charge_mutex))
2373 return;
2374 drain_all_stock(root_memcg, false);
2375 mutex_unlock(&percpu_charge_mutex);
2376 }
2377
2378 /* This is a synchronous drain interface. */
2379 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2380 {
2381 /* called when force_empty is called */
2382 mutex_lock(&percpu_charge_mutex);
2383 drain_all_stock(root_memcg, true);
2384 mutex_unlock(&percpu_charge_mutex);
2385 }
2386
2387 /*
2388 * This function drains percpu counter value from DEAD cpu and
2389 * move it to local cpu. Note that this function can be preempted.
2390 */
2391 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2392 {
2393 int i;
2394
2395 spin_lock(&memcg->pcp_counter_lock);
2396 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2397 long x = per_cpu(memcg->stat->count[i], cpu);
2398
2399 per_cpu(memcg->stat->count[i], cpu) = 0;
2400 memcg->nocpu_base.count[i] += x;
2401 }
2402 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2403 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2404
2405 per_cpu(memcg->stat->events[i], cpu) = 0;
2406 memcg->nocpu_base.events[i] += x;
2407 }
2408 spin_unlock(&memcg->pcp_counter_lock);
2409 }
2410
2411 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2412 unsigned long action,
2413 void *hcpu)
2414 {
2415 int cpu = (unsigned long)hcpu;
2416 struct memcg_stock_pcp *stock;
2417 struct mem_cgroup *iter;
2418
2419 if (action == CPU_ONLINE)
2420 return NOTIFY_OK;
2421
2422 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2423 return NOTIFY_OK;
2424
2425 for_each_mem_cgroup(iter)
2426 mem_cgroup_drain_pcp_counter(iter, cpu);
2427
2428 stock = &per_cpu(memcg_stock, cpu);
2429 drain_stock(stock);
2430 return NOTIFY_OK;
2431 }
2432
2433
2434 /* See __mem_cgroup_try_charge() for details */
2435 enum {
2436 CHARGE_OK, /* success */
2437 CHARGE_RETRY, /* need to retry but retry is not bad */
2438 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2439 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2440 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2441 };
2442
2443 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2444 unsigned int nr_pages, unsigned int min_pages,
2445 bool oom_check)
2446 {
2447 unsigned long csize = nr_pages * PAGE_SIZE;
2448 struct mem_cgroup *mem_over_limit;
2449 struct res_counter *fail_res;
2450 unsigned long flags = 0;
2451 int ret;
2452
2453 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2454
2455 if (likely(!ret)) {
2456 if (!do_swap_account)
2457 return CHARGE_OK;
2458 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2459 if (likely(!ret))
2460 return CHARGE_OK;
2461
2462 res_counter_uncharge(&memcg->res, csize);
2463 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2464 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2465 } else
2466 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2467 /*
2468 * Never reclaim on behalf of optional batching, retry with a
2469 * single page instead.
2470 */
2471 if (nr_pages > min_pages)
2472 return CHARGE_RETRY;
2473
2474 if (!(gfp_mask & __GFP_WAIT))
2475 return CHARGE_WOULDBLOCK;
2476
2477 if (gfp_mask & __GFP_NORETRY)
2478 return CHARGE_NOMEM;
2479
2480 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2481 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2482 return CHARGE_RETRY;
2483 /*
2484 * Even though the limit is exceeded at this point, reclaim
2485 * may have been able to free some pages. Retry the charge
2486 * before killing the task.
2487 *
2488 * Only for regular pages, though: huge pages are rather
2489 * unlikely to succeed so close to the limit, and we fall back
2490 * to regular pages anyway in case of failure.
2491 */
2492 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2493 return CHARGE_RETRY;
2494
2495 /*
2496 * At task move, charge accounts can be doubly counted. So, it's
2497 * better to wait until the end of task_move if something is going on.
2498 */
2499 if (mem_cgroup_wait_acct_move(mem_over_limit))
2500 return CHARGE_RETRY;
2501
2502 /* If we don't need to call oom-killer at el, return immediately */
2503 if (!oom_check)
2504 return CHARGE_NOMEM;
2505 /* check OOM */
2506 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2507 return CHARGE_OOM_DIE;
2508
2509 return CHARGE_RETRY;
2510 }
2511
2512 /*
2513 * __mem_cgroup_try_charge() does
2514 * 1. detect memcg to be charged against from passed *mm and *ptr,
2515 * 2. update res_counter
2516 * 3. call memory reclaim if necessary.
2517 *
2518 * In some special case, if the task is fatal, fatal_signal_pending() or
2519 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2520 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2521 * as possible without any hazards. 2: all pages should have a valid
2522 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2523 * pointer, that is treated as a charge to root_mem_cgroup.
2524 *
2525 * So __mem_cgroup_try_charge() will return
2526 * 0 ... on success, filling *ptr with a valid memcg pointer.
2527 * -ENOMEM ... charge failure because of resource limits.
2528 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2529 *
2530 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2531 * the oom-killer can be invoked.
2532 */
2533 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2534 gfp_t gfp_mask,
2535 unsigned int nr_pages,
2536 struct mem_cgroup **ptr,
2537 bool oom)
2538 {
2539 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2540 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2541 struct mem_cgroup *memcg = NULL;
2542 int ret;
2543
2544 /*
2545 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2546 * in system level. So, allow to go ahead dying process in addition to
2547 * MEMDIE process.
2548 */
2549 if (unlikely(test_thread_flag(TIF_MEMDIE)
2550 || fatal_signal_pending(current)))
2551 goto bypass;
2552
2553 /*
2554 * We always charge the cgroup the mm_struct belongs to.
2555 * The mm_struct's mem_cgroup changes on task migration if the
2556 * thread group leader migrates. It's possible that mm is not
2557 * set, if so charge the root memcg (happens for pagecache usage).
2558 */
2559 if (!*ptr && !mm)
2560 *ptr = root_mem_cgroup;
2561 again:
2562 if (*ptr) { /* css should be a valid one */
2563 memcg = *ptr;
2564 if (mem_cgroup_is_root(memcg))
2565 goto done;
2566 if (consume_stock(memcg, nr_pages))
2567 goto done;
2568 css_get(&memcg->css);
2569 } else {
2570 struct task_struct *p;
2571
2572 rcu_read_lock();
2573 p = rcu_dereference(mm->owner);
2574 /*
2575 * Because we don't have task_lock(), "p" can exit.
2576 * In that case, "memcg" can point to root or p can be NULL with
2577 * race with swapoff. Then, we have small risk of mis-accouning.
2578 * But such kind of mis-account by race always happens because
2579 * we don't have cgroup_mutex(). It's overkill and we allo that
2580 * small race, here.
2581 * (*) swapoff at el will charge against mm-struct not against
2582 * task-struct. So, mm->owner can be NULL.
2583 */
2584 memcg = mem_cgroup_from_task(p);
2585 if (!memcg)
2586 memcg = root_mem_cgroup;
2587 if (mem_cgroup_is_root(memcg)) {
2588 rcu_read_unlock();
2589 goto done;
2590 }
2591 if (consume_stock(memcg, nr_pages)) {
2592 /*
2593 * It seems dagerous to access memcg without css_get().
2594 * But considering how consume_stok works, it's not
2595 * necessary. If consume_stock success, some charges
2596 * from this memcg are cached on this cpu. So, we
2597 * don't need to call css_get()/css_tryget() before
2598 * calling consume_stock().
2599 */
2600 rcu_read_unlock();
2601 goto done;
2602 }
2603 /* after here, we may be blocked. we need to get refcnt */
2604 if (!css_tryget(&memcg->css)) {
2605 rcu_read_unlock();
2606 goto again;
2607 }
2608 rcu_read_unlock();
2609 }
2610
2611 do {
2612 bool oom_check;
2613
2614 /* If killed, bypass charge */
2615 if (fatal_signal_pending(current)) {
2616 css_put(&memcg->css);
2617 goto bypass;
2618 }
2619
2620 oom_check = false;
2621 if (oom && !nr_oom_retries) {
2622 oom_check = true;
2623 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2624 }
2625
2626 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2627 oom_check);
2628 switch (ret) {
2629 case CHARGE_OK:
2630 break;
2631 case CHARGE_RETRY: /* not in OOM situation but retry */
2632 batch = nr_pages;
2633 css_put(&memcg->css);
2634 memcg = NULL;
2635 goto again;
2636 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2637 css_put(&memcg->css);
2638 goto nomem;
2639 case CHARGE_NOMEM: /* OOM routine works */
2640 if (!oom) {
2641 css_put(&memcg->css);
2642 goto nomem;
2643 }
2644 /* If oom, we never return -ENOMEM */
2645 nr_oom_retries--;
2646 break;
2647 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2648 css_put(&memcg->css);
2649 goto bypass;
2650 }
2651 } while (ret != CHARGE_OK);
2652
2653 if (batch > nr_pages)
2654 refill_stock(memcg, batch - nr_pages);
2655 css_put(&memcg->css);
2656 done:
2657 *ptr = memcg;
2658 return 0;
2659 nomem:
2660 *ptr = NULL;
2661 return -ENOMEM;
2662 bypass:
2663 *ptr = root_mem_cgroup;
2664 return -EINTR;
2665 }
2666
2667 /*
2668 * Somemtimes we have to undo a charge we got by try_charge().
2669 * This function is for that and do uncharge, put css's refcnt.
2670 * gotten by try_charge().
2671 */
2672 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2673 unsigned int nr_pages)
2674 {
2675 if (!mem_cgroup_is_root(memcg)) {
2676 unsigned long bytes = nr_pages * PAGE_SIZE;
2677
2678 res_counter_uncharge(&memcg->res, bytes);
2679 if (do_swap_account)
2680 res_counter_uncharge(&memcg->memsw, bytes);
2681 }
2682 }
2683
2684 /*
2685 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2686 * This is useful when moving usage to parent cgroup.
2687 */
2688 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2689 unsigned int nr_pages)
2690 {
2691 unsigned long bytes = nr_pages * PAGE_SIZE;
2692
2693 if (mem_cgroup_is_root(memcg))
2694 return;
2695
2696 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2697 if (do_swap_account)
2698 res_counter_uncharge_until(&memcg->memsw,
2699 memcg->memsw.parent, bytes);
2700 }
2701
2702 /*
2703 * A helper function to get mem_cgroup from ID. must be called under
2704 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2705 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2706 * called against removed memcg.)
2707 */
2708 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2709 {
2710 struct cgroup_subsys_state *css;
2711
2712 /* ID 0 is unused ID */
2713 if (!id)
2714 return NULL;
2715 css = css_lookup(&mem_cgroup_subsys, id);
2716 if (!css)
2717 return NULL;
2718 return mem_cgroup_from_css(css);
2719 }
2720
2721 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2722 {
2723 struct mem_cgroup *memcg = NULL;
2724 struct page_cgroup *pc;
2725 unsigned short id;
2726 swp_entry_t ent;
2727
2728 VM_BUG_ON(!PageLocked(page));
2729
2730 pc = lookup_page_cgroup(page);
2731 lock_page_cgroup(pc);
2732 if (PageCgroupUsed(pc)) {
2733 memcg = pc->mem_cgroup;
2734 if (memcg && !css_tryget(&memcg->css))
2735 memcg = NULL;
2736 } else if (PageSwapCache(page)) {
2737 ent.val = page_private(page);
2738 id = lookup_swap_cgroup_id(ent);
2739 rcu_read_lock();
2740 memcg = mem_cgroup_lookup(id);
2741 if (memcg && !css_tryget(&memcg->css))
2742 memcg = NULL;
2743 rcu_read_unlock();
2744 }
2745 unlock_page_cgroup(pc);
2746 return memcg;
2747 }
2748
2749 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2750 struct page *page,
2751 unsigned int nr_pages,
2752 enum charge_type ctype,
2753 bool lrucare)
2754 {
2755 struct page_cgroup *pc = lookup_page_cgroup(page);
2756 struct zone *uninitialized_var(zone);
2757 struct lruvec *lruvec;
2758 bool was_on_lru = false;
2759 bool anon;
2760
2761 lock_page_cgroup(pc);
2762 VM_BUG_ON(PageCgroupUsed(pc));
2763 /*
2764 * we don't need page_cgroup_lock about tail pages, becase they are not
2765 * accessed by any other context at this point.
2766 */
2767
2768 /*
2769 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2770 * may already be on some other mem_cgroup's LRU. Take care of it.
2771 */
2772 if (lrucare) {
2773 zone = page_zone(page);
2774 spin_lock_irq(&zone->lru_lock);
2775 if (PageLRU(page)) {
2776 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2777 ClearPageLRU(page);
2778 del_page_from_lru_list(page, lruvec, page_lru(page));
2779 was_on_lru = true;
2780 }
2781 }
2782
2783 pc->mem_cgroup = memcg;
2784 /*
2785 * We access a page_cgroup asynchronously without lock_page_cgroup().
2786 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2787 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2788 * before USED bit, we need memory barrier here.
2789 * See mem_cgroup_add_lru_list(), etc.
2790 */
2791 smp_wmb();
2792 SetPageCgroupUsed(pc);
2793
2794 if (lrucare) {
2795 if (was_on_lru) {
2796 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2797 VM_BUG_ON(PageLRU(page));
2798 SetPageLRU(page);
2799 add_page_to_lru_list(page, lruvec, page_lru(page));
2800 }
2801 spin_unlock_irq(&zone->lru_lock);
2802 }
2803
2804 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2805 anon = true;
2806 else
2807 anon = false;
2808
2809 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2810 unlock_page_cgroup(pc);
2811
2812 /*
2813 * "charge_statistics" updated event counter. Then, check it.
2814 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2815 * if they exceeds softlimit.
2816 */
2817 memcg_check_events(memcg, page);
2818 }
2819
2820 static DEFINE_MUTEX(set_limit_mutex);
2821
2822 #ifdef CONFIG_MEMCG_KMEM
2823 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2824 {
2825 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2826 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2827 }
2828
2829 /*
2830 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2831 * in the memcg_cache_params struct.
2832 */
2833 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2834 {
2835 struct kmem_cache *cachep;
2836
2837 VM_BUG_ON(p->is_root_cache);
2838 cachep = p->root_cache;
2839 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2840 }
2841
2842 #ifdef CONFIG_SLABINFO
2843 static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2844 struct seq_file *m)
2845 {
2846 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2847 struct memcg_cache_params *params;
2848
2849 if (!memcg_can_account_kmem(memcg))
2850 return -EIO;
2851
2852 print_slabinfo_header(m);
2853
2854 mutex_lock(&memcg->slab_caches_mutex);
2855 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2856 cache_show(memcg_params_to_cache(params), m);
2857 mutex_unlock(&memcg->slab_caches_mutex);
2858
2859 return 0;
2860 }
2861 #endif
2862
2863 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2864 {
2865 struct res_counter *fail_res;
2866 struct mem_cgroup *_memcg;
2867 int ret = 0;
2868 bool may_oom;
2869
2870 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2871 if (ret)
2872 return ret;
2873
2874 /*
2875 * Conditions under which we can wait for the oom_killer. Those are
2876 * the same conditions tested by the core page allocator
2877 */
2878 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2879
2880 _memcg = memcg;
2881 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2882 &_memcg, may_oom);
2883
2884 if (ret == -EINTR) {
2885 /*
2886 * __mem_cgroup_try_charge() chosed to bypass to root due to
2887 * OOM kill or fatal signal. Since our only options are to
2888 * either fail the allocation or charge it to this cgroup, do
2889 * it as a temporary condition. But we can't fail. From a
2890 * kmem/slab perspective, the cache has already been selected,
2891 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2892 * our minds.
2893 *
2894 * This condition will only trigger if the task entered
2895 * memcg_charge_kmem in a sane state, but was OOM-killed during
2896 * __mem_cgroup_try_charge() above. Tasks that were already
2897 * dying when the allocation triggers should have been already
2898 * directed to the root cgroup in memcontrol.h
2899 */
2900 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2901 if (do_swap_account)
2902 res_counter_charge_nofail(&memcg->memsw, size,
2903 &fail_res);
2904 ret = 0;
2905 } else if (ret)
2906 res_counter_uncharge(&memcg->kmem, size);
2907
2908 return ret;
2909 }
2910
2911 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2912 {
2913 res_counter_uncharge(&memcg->res, size);
2914 if (do_swap_account)
2915 res_counter_uncharge(&memcg->memsw, size);
2916
2917 /* Not down to 0 */
2918 if (res_counter_uncharge(&memcg->kmem, size))
2919 return;
2920
2921 if (memcg_kmem_test_and_clear_dead(memcg))
2922 mem_cgroup_put(memcg);
2923 }
2924
2925 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
2926 {
2927 if (!memcg)
2928 return;
2929
2930 mutex_lock(&memcg->slab_caches_mutex);
2931 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2932 mutex_unlock(&memcg->slab_caches_mutex);
2933 }
2934
2935 /*
2936 * helper for acessing a memcg's index. It will be used as an index in the
2937 * child cache array in kmem_cache, and also to derive its name. This function
2938 * will return -1 when this is not a kmem-limited memcg.
2939 */
2940 int memcg_cache_id(struct mem_cgroup *memcg)
2941 {
2942 return memcg ? memcg->kmemcg_id : -1;
2943 }
2944
2945 /*
2946 * This ends up being protected by the set_limit mutex, during normal
2947 * operation, because that is its main call site.
2948 *
2949 * But when we create a new cache, we can call this as well if its parent
2950 * is kmem-limited. That will have to hold set_limit_mutex as well.
2951 */
2952 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
2953 {
2954 int num, ret;
2955
2956 num = ida_simple_get(&kmem_limited_groups,
2957 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2958 if (num < 0)
2959 return num;
2960 /*
2961 * After this point, kmem_accounted (that we test atomically in
2962 * the beginning of this conditional), is no longer 0. This
2963 * guarantees only one process will set the following boolean
2964 * to true. We don't need test_and_set because we're protected
2965 * by the set_limit_mutex anyway.
2966 */
2967 memcg_kmem_set_activated(memcg);
2968
2969 ret = memcg_update_all_caches(num+1);
2970 if (ret) {
2971 ida_simple_remove(&kmem_limited_groups, num);
2972 memcg_kmem_clear_activated(memcg);
2973 return ret;
2974 }
2975
2976 memcg->kmemcg_id = num;
2977 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
2978 mutex_init(&memcg->slab_caches_mutex);
2979 return 0;
2980 }
2981
2982 static size_t memcg_caches_array_size(int num_groups)
2983 {
2984 ssize_t size;
2985 if (num_groups <= 0)
2986 return 0;
2987
2988 size = 2 * num_groups;
2989 if (size < MEMCG_CACHES_MIN_SIZE)
2990 size = MEMCG_CACHES_MIN_SIZE;
2991 else if (size > MEMCG_CACHES_MAX_SIZE)
2992 size = MEMCG_CACHES_MAX_SIZE;
2993
2994 return size;
2995 }
2996
2997 /*
2998 * We should update the current array size iff all caches updates succeed. This
2999 * can only be done from the slab side. The slab mutex needs to be held when
3000 * calling this.
3001 */
3002 void memcg_update_array_size(int num)
3003 {
3004 if (num > memcg_limited_groups_array_size)
3005 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3006 }
3007
3008 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3009 {
3010 struct memcg_cache_params *cur_params = s->memcg_params;
3011
3012 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3013
3014 if (num_groups > memcg_limited_groups_array_size) {
3015 int i;
3016 ssize_t size = memcg_caches_array_size(num_groups);
3017
3018 size *= sizeof(void *);
3019 size += sizeof(struct memcg_cache_params);
3020
3021 s->memcg_params = kzalloc(size, GFP_KERNEL);
3022 if (!s->memcg_params) {
3023 s->memcg_params = cur_params;
3024 return -ENOMEM;
3025 }
3026
3027 s->memcg_params->is_root_cache = true;
3028
3029 /*
3030 * There is the chance it will be bigger than
3031 * memcg_limited_groups_array_size, if we failed an allocation
3032 * in a cache, in which case all caches updated before it, will
3033 * have a bigger array.
3034 *
3035 * But if that is the case, the data after
3036 * memcg_limited_groups_array_size is certainly unused
3037 */
3038 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3039 if (!cur_params->memcg_caches[i])
3040 continue;
3041 s->memcg_params->memcg_caches[i] =
3042 cur_params->memcg_caches[i];
3043 }
3044
3045 /*
3046 * Ideally, we would wait until all caches succeed, and only
3047 * then free the old one. But this is not worth the extra
3048 * pointer per-cache we'd have to have for this.
3049 *
3050 * It is not a big deal if some caches are left with a size
3051 * bigger than the others. And all updates will reset this
3052 * anyway.
3053 */
3054 kfree(cur_params);
3055 }
3056 return 0;
3057 }
3058
3059 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3060 struct kmem_cache *root_cache)
3061 {
3062 size_t size = sizeof(struct memcg_cache_params);
3063
3064 if (!memcg_kmem_enabled())
3065 return 0;
3066
3067 if (!memcg)
3068 size += memcg_limited_groups_array_size * sizeof(void *);
3069
3070 s->memcg_params = kzalloc(size, GFP_KERNEL);
3071 if (!s->memcg_params)
3072 return -ENOMEM;
3073
3074 if (memcg) {
3075 s->memcg_params->memcg = memcg;
3076 s->memcg_params->root_cache = root_cache;
3077 } else
3078 s->memcg_params->is_root_cache = true;
3079
3080 return 0;
3081 }
3082
3083 void memcg_release_cache(struct kmem_cache *s)
3084 {
3085 struct kmem_cache *root;
3086 struct mem_cgroup *memcg;
3087 int id;
3088
3089 /*
3090 * This happens, for instance, when a root cache goes away before we
3091 * add any memcg.
3092 */
3093 if (!s->memcg_params)
3094 return;
3095
3096 if (s->memcg_params->is_root_cache)
3097 goto out;
3098
3099 memcg = s->memcg_params->memcg;
3100 id = memcg_cache_id(memcg);
3101
3102 root = s->memcg_params->root_cache;
3103 root->memcg_params->memcg_caches[id] = NULL;
3104 mem_cgroup_put(memcg);
3105
3106 mutex_lock(&memcg->slab_caches_mutex);
3107 list_del(&s->memcg_params->list);
3108 mutex_unlock(&memcg->slab_caches_mutex);
3109
3110 out:
3111 kfree(s->memcg_params);
3112 }
3113
3114 /*
3115 * During the creation a new cache, we need to disable our accounting mechanism
3116 * altogether. This is true even if we are not creating, but rather just
3117 * enqueing new caches to be created.
3118 *
3119 * This is because that process will trigger allocations; some visible, like
3120 * explicit kmallocs to auxiliary data structures, name strings and internal
3121 * cache structures; some well concealed, like INIT_WORK() that can allocate
3122 * objects during debug.
3123 *
3124 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3125 * to it. This may not be a bounded recursion: since the first cache creation
3126 * failed to complete (waiting on the allocation), we'll just try to create the
3127 * cache again, failing at the same point.
3128 *
3129 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3130 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3131 * inside the following two functions.
3132 */
3133 static inline void memcg_stop_kmem_account(void)
3134 {
3135 VM_BUG_ON(!current->mm);
3136 current->memcg_kmem_skip_account++;
3137 }
3138
3139 static inline void memcg_resume_kmem_account(void)
3140 {
3141 VM_BUG_ON(!current->mm);
3142 current->memcg_kmem_skip_account--;
3143 }
3144
3145 static void kmem_cache_destroy_work_func(struct work_struct *w)
3146 {
3147 struct kmem_cache *cachep;
3148 struct memcg_cache_params *p;
3149
3150 p = container_of(w, struct memcg_cache_params, destroy);
3151
3152 cachep = memcg_params_to_cache(p);
3153
3154 /*
3155 * If we get down to 0 after shrink, we could delete right away.
3156 * However, memcg_release_pages() already puts us back in the workqueue
3157 * in that case. If we proceed deleting, we'll get a dangling
3158 * reference, and removing the object from the workqueue in that case
3159 * is unnecessary complication. We are not a fast path.
3160 *
3161 * Note that this case is fundamentally different from racing with
3162 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3163 * kmem_cache_shrink, not only we would be reinserting a dead cache
3164 * into the queue, but doing so from inside the worker racing to
3165 * destroy it.
3166 *
3167 * So if we aren't down to zero, we'll just schedule a worker and try
3168 * again
3169 */
3170 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3171 kmem_cache_shrink(cachep);
3172 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3173 return;
3174 } else
3175 kmem_cache_destroy(cachep);
3176 }
3177
3178 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3179 {
3180 if (!cachep->memcg_params->dead)
3181 return;
3182
3183 /*
3184 * There are many ways in which we can get here.
3185 *
3186 * We can get to a memory-pressure situation while the delayed work is
3187 * still pending to run. The vmscan shrinkers can then release all
3188 * cache memory and get us to destruction. If this is the case, we'll
3189 * be executed twice, which is a bug (the second time will execute over
3190 * bogus data). In this case, cancelling the work should be fine.
3191 *
3192 * But we can also get here from the worker itself, if
3193 * kmem_cache_shrink is enough to shake all the remaining objects and
3194 * get the page count to 0. In this case, we'll deadlock if we try to
3195 * cancel the work (the worker runs with an internal lock held, which
3196 * is the same lock we would hold for cancel_work_sync().)
3197 *
3198 * Since we can't possibly know who got us here, just refrain from
3199 * running if there is already work pending
3200 */
3201 if (work_pending(&cachep->memcg_params->destroy))
3202 return;
3203 /*
3204 * We have to defer the actual destroying to a workqueue, because
3205 * we might currently be in a context that cannot sleep.
3206 */
3207 schedule_work(&cachep->memcg_params->destroy);
3208 }
3209
3210 static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s)
3211 {
3212 char *name;
3213 struct dentry *dentry;
3214
3215 rcu_read_lock();
3216 dentry = rcu_dereference(memcg->css.cgroup->dentry);
3217 rcu_read_unlock();
3218
3219 BUG_ON(dentry == NULL);
3220
3221 name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name,
3222 memcg_cache_id(memcg), dentry->d_name.name);
3223
3224 return name;
3225 }
3226
3227 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3228 struct kmem_cache *s)
3229 {
3230 char *name;
3231 struct kmem_cache *new;
3232
3233 name = memcg_cache_name(memcg, s);
3234 if (!name)
3235 return NULL;
3236
3237 new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align,
3238 (s->flags & ~SLAB_PANIC), s->ctor, s);
3239
3240 if (new)
3241 new->allocflags |= __GFP_KMEMCG;
3242
3243 kfree(name);
3244 return new;
3245 }
3246
3247 /*
3248 * This lock protects updaters, not readers. We want readers to be as fast as
3249 * they can, and they will either see NULL or a valid cache value. Our model
3250 * allow them to see NULL, in which case the root memcg will be selected.
3251 *
3252 * We need this lock because multiple allocations to the same cache from a non
3253 * will span more than one worker. Only one of them can create the cache.
3254 */
3255 static DEFINE_MUTEX(memcg_cache_mutex);
3256 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3257 struct kmem_cache *cachep)
3258 {
3259 struct kmem_cache *new_cachep;
3260 int idx;
3261
3262 BUG_ON(!memcg_can_account_kmem(memcg));
3263
3264 idx = memcg_cache_id(memcg);
3265
3266 mutex_lock(&memcg_cache_mutex);
3267 new_cachep = cachep->memcg_params->memcg_caches[idx];
3268 if (new_cachep)
3269 goto out;
3270
3271 new_cachep = kmem_cache_dup(memcg, cachep);
3272 if (new_cachep == NULL) {
3273 new_cachep = cachep;
3274 goto out;
3275 }
3276
3277 mem_cgroup_get(memcg);
3278 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3279
3280 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3281 /*
3282 * the readers won't lock, make sure everybody sees the updated value,
3283 * so they won't put stuff in the queue again for no reason
3284 */
3285 wmb();
3286 out:
3287 mutex_unlock(&memcg_cache_mutex);
3288 return new_cachep;
3289 }
3290
3291 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3292 {
3293 struct kmem_cache *c;
3294 int i;
3295
3296 if (!s->memcg_params)
3297 return;
3298 if (!s->memcg_params->is_root_cache)
3299 return;
3300
3301 /*
3302 * If the cache is being destroyed, we trust that there is no one else
3303 * requesting objects from it. Even if there are, the sanity checks in
3304 * kmem_cache_destroy should caught this ill-case.
3305 *
3306 * Still, we don't want anyone else freeing memcg_caches under our
3307 * noses, which can happen if a new memcg comes to life. As usual,
3308 * we'll take the set_limit_mutex to protect ourselves against this.
3309 */
3310 mutex_lock(&set_limit_mutex);
3311 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3312 c = s->memcg_params->memcg_caches[i];
3313 if (!c)
3314 continue;
3315
3316 /*
3317 * We will now manually delete the caches, so to avoid races
3318 * we need to cancel all pending destruction workers and
3319 * proceed with destruction ourselves.
3320 *
3321 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3322 * and that could spawn the workers again: it is likely that
3323 * the cache still have active pages until this very moment.
3324 * This would lead us back to mem_cgroup_destroy_cache.
3325 *
3326 * But that will not execute at all if the "dead" flag is not
3327 * set, so flip it down to guarantee we are in control.
3328 */
3329 c->memcg_params->dead = false;
3330 cancel_work_sync(&c->memcg_params->destroy);
3331 kmem_cache_destroy(c);
3332 }
3333 mutex_unlock(&set_limit_mutex);
3334 }
3335
3336 struct create_work {
3337 struct mem_cgroup *memcg;
3338 struct kmem_cache *cachep;
3339 struct work_struct work;
3340 };
3341
3342 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3343 {
3344 struct kmem_cache *cachep;
3345 struct memcg_cache_params *params;
3346
3347 if (!memcg_kmem_is_active(memcg))
3348 return;
3349
3350 mutex_lock(&memcg->slab_caches_mutex);
3351 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3352 cachep = memcg_params_to_cache(params);
3353 cachep->memcg_params->dead = true;
3354 INIT_WORK(&cachep->memcg_params->destroy,
3355 kmem_cache_destroy_work_func);
3356 schedule_work(&cachep->memcg_params->destroy);
3357 }
3358 mutex_unlock(&memcg->slab_caches_mutex);
3359 }
3360
3361 static void memcg_create_cache_work_func(struct work_struct *w)
3362 {
3363 struct create_work *cw;
3364
3365 cw = container_of(w, struct create_work, work);
3366 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3367 /* Drop the reference gotten when we enqueued. */
3368 css_put(&cw->memcg->css);
3369 kfree(cw);
3370 }
3371
3372 /*
3373 * Enqueue the creation of a per-memcg kmem_cache.
3374 * Called with rcu_read_lock.
3375 */
3376 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3377 struct kmem_cache *cachep)
3378 {
3379 struct create_work *cw;
3380
3381 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3382 if (cw == NULL)
3383 return;
3384
3385 /* The corresponding put will be done in the workqueue. */
3386 if (!css_tryget(&memcg->css)) {
3387 kfree(cw);
3388 return;
3389 }
3390
3391 cw->memcg = memcg;
3392 cw->cachep = cachep;
3393
3394 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3395 schedule_work(&cw->work);
3396 }
3397
3398 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3399 struct kmem_cache *cachep)
3400 {
3401 /*
3402 * We need to stop accounting when we kmalloc, because if the
3403 * corresponding kmalloc cache is not yet created, the first allocation
3404 * in __memcg_create_cache_enqueue will recurse.
3405 *
3406 * However, it is better to enclose the whole function. Depending on
3407 * the debugging options enabled, INIT_WORK(), for instance, can
3408 * trigger an allocation. This too, will make us recurse. Because at
3409 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3410 * the safest choice is to do it like this, wrapping the whole function.
3411 */
3412 memcg_stop_kmem_account();
3413 __memcg_create_cache_enqueue(memcg, cachep);
3414 memcg_resume_kmem_account();
3415 }
3416 /*
3417 * Return the kmem_cache we're supposed to use for a slab allocation.
3418 * We try to use the current memcg's version of the cache.
3419 *
3420 * If the cache does not exist yet, if we are the first user of it,
3421 * we either create it immediately, if possible, or create it asynchronously
3422 * in a workqueue.
3423 * In the latter case, we will let the current allocation go through with
3424 * the original cache.
3425 *
3426 * Can't be called in interrupt context or from kernel threads.
3427 * This function needs to be called with rcu_read_lock() held.
3428 */
3429 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3430 gfp_t gfp)
3431 {
3432 struct mem_cgroup *memcg;
3433 int idx;
3434
3435 VM_BUG_ON(!cachep->memcg_params);
3436 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3437
3438 if (!current->mm || current->memcg_kmem_skip_account)
3439 return cachep;
3440
3441 rcu_read_lock();
3442 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3443 rcu_read_unlock();
3444
3445 if (!memcg_can_account_kmem(memcg))
3446 return cachep;
3447
3448 idx = memcg_cache_id(memcg);
3449
3450 /*
3451 * barrier to mare sure we're always seeing the up to date value. The
3452 * code updating memcg_caches will issue a write barrier to match this.
3453 */
3454 read_barrier_depends();
3455 if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) {
3456 /*
3457 * If we are in a safe context (can wait, and not in interrupt
3458 * context), we could be be predictable and return right away.
3459 * This would guarantee that the allocation being performed
3460 * already belongs in the new cache.
3461 *
3462 * However, there are some clashes that can arrive from locking.
3463 * For instance, because we acquire the slab_mutex while doing
3464 * kmem_cache_dup, this means no further allocation could happen
3465 * with the slab_mutex held.
3466 *
3467 * Also, because cache creation issue get_online_cpus(), this
3468 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3469 * that ends up reversed during cpu hotplug. (cpuset allocates
3470 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3471 * better to defer everything.
3472 */
3473 memcg_create_cache_enqueue(memcg, cachep);
3474 return cachep;
3475 }
3476
3477 return cachep->memcg_params->memcg_caches[idx];
3478 }
3479 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3480
3481 /*
3482 * We need to verify if the allocation against current->mm->owner's memcg is
3483 * possible for the given order. But the page is not allocated yet, so we'll
3484 * need a further commit step to do the final arrangements.
3485 *
3486 * It is possible for the task to switch cgroups in this mean time, so at
3487 * commit time, we can't rely on task conversion any longer. We'll then use
3488 * the handle argument to return to the caller which cgroup we should commit
3489 * against. We could also return the memcg directly and avoid the pointer
3490 * passing, but a boolean return value gives better semantics considering
3491 * the compiled-out case as well.
3492 *
3493 * Returning true means the allocation is possible.
3494 */
3495 bool
3496 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3497 {
3498 struct mem_cgroup *memcg;
3499 int ret;
3500
3501 *_memcg = NULL;
3502 memcg = try_get_mem_cgroup_from_mm(current->mm);
3503
3504 /*
3505 * very rare case described in mem_cgroup_from_task. Unfortunately there
3506 * isn't much we can do without complicating this too much, and it would
3507 * be gfp-dependent anyway. Just let it go
3508 */
3509 if (unlikely(!memcg))
3510 return true;
3511
3512 if (!memcg_can_account_kmem(memcg)) {
3513 css_put(&memcg->css);
3514 return true;
3515 }
3516
3517 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3518 if (!ret)
3519 *_memcg = memcg;
3520
3521 css_put(&memcg->css);
3522 return (ret == 0);
3523 }
3524
3525 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3526 int order)
3527 {
3528 struct page_cgroup *pc;
3529
3530 VM_BUG_ON(mem_cgroup_is_root(memcg));
3531
3532 /* The page allocation failed. Revert */
3533 if (!page) {
3534 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3535 return;
3536 }
3537
3538 pc = lookup_page_cgroup(page);
3539 lock_page_cgroup(pc);
3540 pc->mem_cgroup = memcg;
3541 SetPageCgroupUsed(pc);
3542 unlock_page_cgroup(pc);
3543 }
3544
3545 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3546 {
3547 struct mem_cgroup *memcg = NULL;
3548 struct page_cgroup *pc;
3549
3550
3551 pc = lookup_page_cgroup(page);
3552 /*
3553 * Fast unlocked return. Theoretically might have changed, have to
3554 * check again after locking.
3555 */
3556 if (!PageCgroupUsed(pc))
3557 return;
3558
3559 lock_page_cgroup(pc);
3560 if (PageCgroupUsed(pc)) {
3561 memcg = pc->mem_cgroup;
3562 ClearPageCgroupUsed(pc);
3563 }
3564 unlock_page_cgroup(pc);
3565
3566 /*
3567 * We trust that only if there is a memcg associated with the page, it
3568 * is a valid allocation
3569 */
3570 if (!memcg)
3571 return;
3572
3573 VM_BUG_ON(mem_cgroup_is_root(memcg));
3574 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3575 }
3576 #else
3577 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3578 {
3579 }
3580 #endif /* CONFIG_MEMCG_KMEM */
3581
3582 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3583
3584 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3585 /*
3586 * Because tail pages are not marked as "used", set it. We're under
3587 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3588 * charge/uncharge will be never happen and move_account() is done under
3589 * compound_lock(), so we don't have to take care of races.
3590 */
3591 void mem_cgroup_split_huge_fixup(struct page *head)
3592 {
3593 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3594 struct page_cgroup *pc;
3595 int i;
3596
3597 if (mem_cgroup_disabled())
3598 return;
3599 for (i = 1; i < HPAGE_PMD_NR; i++) {
3600 pc = head_pc + i;
3601 pc->mem_cgroup = head_pc->mem_cgroup;
3602 smp_wmb();/* see __commit_charge() */
3603 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3604 }
3605 }
3606 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3607
3608 /**
3609 * mem_cgroup_move_account - move account of the page
3610 * @page: the page
3611 * @nr_pages: number of regular pages (>1 for huge pages)
3612 * @pc: page_cgroup of the page.
3613 * @from: mem_cgroup which the page is moved from.
3614 * @to: mem_cgroup which the page is moved to. @from != @to.
3615 *
3616 * The caller must confirm following.
3617 * - page is not on LRU (isolate_page() is useful.)
3618 * - compound_lock is held when nr_pages > 1
3619 *
3620 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3621 * from old cgroup.
3622 */
3623 static int mem_cgroup_move_account(struct page *page,
3624 unsigned int nr_pages,
3625 struct page_cgroup *pc,
3626 struct mem_cgroup *from,
3627 struct mem_cgroup *to)
3628 {
3629 unsigned long flags;
3630 int ret;
3631 bool anon = PageAnon(page);
3632
3633 VM_BUG_ON(from == to);
3634 VM_BUG_ON(PageLRU(page));
3635 /*
3636 * The page is isolated from LRU. So, collapse function
3637 * will not handle this page. But page splitting can happen.
3638 * Do this check under compound_page_lock(). The caller should
3639 * hold it.
3640 */
3641 ret = -EBUSY;
3642 if (nr_pages > 1 && !PageTransHuge(page))
3643 goto out;
3644
3645 lock_page_cgroup(pc);
3646
3647 ret = -EINVAL;
3648 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3649 goto unlock;
3650
3651 move_lock_mem_cgroup(from, &flags);
3652
3653 if (!anon && page_mapped(page)) {
3654 /* Update mapped_file data for mem_cgroup */
3655 preempt_disable();
3656 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3657 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3658 preempt_enable();
3659 }
3660 mem_cgroup_charge_statistics(from, anon, -nr_pages);
3661
3662 /* caller should have done css_get */
3663 pc->mem_cgroup = to;
3664 mem_cgroup_charge_statistics(to, anon, nr_pages);
3665 move_unlock_mem_cgroup(from, &flags);
3666 ret = 0;
3667 unlock:
3668 unlock_page_cgroup(pc);
3669 /*
3670 * check events
3671 */
3672 memcg_check_events(to, page);
3673 memcg_check_events(from, page);
3674 out:
3675 return ret;
3676 }
3677
3678 /**
3679 * mem_cgroup_move_parent - moves page to the parent group
3680 * @page: the page to move
3681 * @pc: page_cgroup of the page
3682 * @child: page's cgroup
3683 *
3684 * move charges to its parent or the root cgroup if the group has no
3685 * parent (aka use_hierarchy==0).
3686 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3687 * mem_cgroup_move_account fails) the failure is always temporary and
3688 * it signals a race with a page removal/uncharge or migration. In the
3689 * first case the page is on the way out and it will vanish from the LRU
3690 * on the next attempt and the call should be retried later.
3691 * Isolation from the LRU fails only if page has been isolated from
3692 * the LRU since we looked at it and that usually means either global
3693 * reclaim or migration going on. The page will either get back to the
3694 * LRU or vanish.
3695 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3696 * (!PageCgroupUsed) or moved to a different group. The page will
3697 * disappear in the next attempt.
3698 */
3699 static int mem_cgroup_move_parent(struct page *page,
3700 struct page_cgroup *pc,
3701 struct mem_cgroup *child)
3702 {
3703 struct mem_cgroup *parent;
3704 unsigned int nr_pages;
3705 unsigned long uninitialized_var(flags);
3706 int ret;
3707
3708 VM_BUG_ON(mem_cgroup_is_root(child));
3709
3710 ret = -EBUSY;
3711 if (!get_page_unless_zero(page))
3712 goto out;
3713 if (isolate_lru_page(page))
3714 goto put;
3715
3716 nr_pages = hpage_nr_pages(page);
3717
3718 parent = parent_mem_cgroup(child);
3719 /*
3720 * If no parent, move charges to root cgroup.
3721 */
3722 if (!parent)
3723 parent = root_mem_cgroup;
3724
3725 if (nr_pages > 1) {
3726 VM_BUG_ON(!PageTransHuge(page));
3727 flags = compound_lock_irqsave(page);
3728 }
3729
3730 ret = mem_cgroup_move_account(page, nr_pages,
3731 pc, child, parent);
3732 if (!ret)
3733 __mem_cgroup_cancel_local_charge(child, nr_pages);
3734
3735 if (nr_pages > 1)
3736 compound_unlock_irqrestore(page, flags);
3737 putback_lru_page(page);
3738 put:
3739 put_page(page);
3740 out:
3741 return ret;
3742 }
3743
3744 /*
3745 * Charge the memory controller for page usage.
3746 * Return
3747 * 0 if the charge was successful
3748 * < 0 if the cgroup is over its limit
3749 */
3750 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3751 gfp_t gfp_mask, enum charge_type ctype)
3752 {
3753 struct mem_cgroup *memcg = NULL;
3754 unsigned int nr_pages = 1;
3755 bool oom = true;
3756 int ret;
3757
3758 if (PageTransHuge(page)) {
3759 nr_pages <<= compound_order(page);
3760 VM_BUG_ON(!PageTransHuge(page));
3761 /*
3762 * Never OOM-kill a process for a huge page. The
3763 * fault handler will fall back to regular pages.
3764 */
3765 oom = false;
3766 }
3767
3768 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3769 if (ret == -ENOMEM)
3770 return ret;
3771 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3772 return 0;
3773 }
3774
3775 int mem_cgroup_newpage_charge(struct page *page,
3776 struct mm_struct *mm, gfp_t gfp_mask)
3777 {
3778 if (mem_cgroup_disabled())
3779 return 0;
3780 VM_BUG_ON(page_mapped(page));
3781 VM_BUG_ON(page->mapping && !PageAnon(page));
3782 VM_BUG_ON(!mm);
3783 return mem_cgroup_charge_common(page, mm, gfp_mask,
3784 MEM_CGROUP_CHARGE_TYPE_ANON);
3785 }
3786
3787 /*
3788 * While swap-in, try_charge -> commit or cancel, the page is locked.
3789 * And when try_charge() successfully returns, one refcnt to memcg without
3790 * struct page_cgroup is acquired. This refcnt will be consumed by
3791 * "commit()" or removed by "cancel()"
3792 */
3793 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3794 struct page *page,
3795 gfp_t mask,
3796 struct mem_cgroup **memcgp)
3797 {
3798 struct mem_cgroup *memcg;
3799 struct page_cgroup *pc;
3800 int ret;
3801
3802 pc = lookup_page_cgroup(page);
3803 /*
3804 * Every swap fault against a single page tries to charge the
3805 * page, bail as early as possible. shmem_unuse() encounters
3806 * already charged pages, too. The USED bit is protected by
3807 * the page lock, which serializes swap cache removal, which
3808 * in turn serializes uncharging.
3809 */
3810 if (PageCgroupUsed(pc))
3811 return 0;
3812 if (!do_swap_account)
3813 goto charge_cur_mm;
3814 memcg = try_get_mem_cgroup_from_page(page);
3815 if (!memcg)
3816 goto charge_cur_mm;
3817 *memcgp = memcg;
3818 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3819 css_put(&memcg->css);
3820 if (ret == -EINTR)
3821 ret = 0;
3822 return ret;
3823 charge_cur_mm:
3824 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3825 if (ret == -EINTR)
3826 ret = 0;
3827 return ret;
3828 }
3829
3830 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3831 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3832 {
3833 *memcgp = NULL;
3834 if (mem_cgroup_disabled())
3835 return 0;
3836 /*
3837 * A racing thread's fault, or swapoff, may have already
3838 * updated the pte, and even removed page from swap cache: in
3839 * those cases unuse_pte()'s pte_same() test will fail; but
3840 * there's also a KSM case which does need to charge the page.
3841 */
3842 if (!PageSwapCache(page)) {
3843 int ret;
3844
3845 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3846 if (ret == -EINTR)
3847 ret = 0;
3848 return ret;
3849 }
3850 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3851 }
3852
3853 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3854 {
3855 if (mem_cgroup_disabled())
3856 return;
3857 if (!memcg)
3858 return;
3859 __mem_cgroup_cancel_charge(memcg, 1);
3860 }
3861
3862 static void
3863 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3864 enum charge_type ctype)
3865 {
3866 if (mem_cgroup_disabled())
3867 return;
3868 if (!memcg)
3869 return;
3870
3871 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3872 /*
3873 * Now swap is on-memory. This means this page may be
3874 * counted both as mem and swap....double count.
3875 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3876 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3877 * may call delete_from_swap_cache() before reach here.
3878 */
3879 if (do_swap_account && PageSwapCache(page)) {
3880 swp_entry_t ent = {.val = page_private(page)};
3881 mem_cgroup_uncharge_swap(ent);
3882 }
3883 }
3884
3885 void mem_cgroup_commit_charge_swapin(struct page *page,
3886 struct mem_cgroup *memcg)
3887 {
3888 __mem_cgroup_commit_charge_swapin(page, memcg,
3889 MEM_CGROUP_CHARGE_TYPE_ANON);
3890 }
3891
3892 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
3893 gfp_t gfp_mask)
3894 {
3895 struct mem_cgroup *memcg = NULL;
3896 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3897 int ret;
3898
3899 if (mem_cgroup_disabled())
3900 return 0;
3901 if (PageCompound(page))
3902 return 0;
3903
3904 if (!PageSwapCache(page))
3905 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
3906 else { /* page is swapcache/shmem */
3907 ret = __mem_cgroup_try_charge_swapin(mm, page,
3908 gfp_mask, &memcg);
3909 if (!ret)
3910 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3911 }
3912 return ret;
3913 }
3914
3915 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3916 unsigned int nr_pages,
3917 const enum charge_type ctype)
3918 {
3919 struct memcg_batch_info *batch = NULL;
3920 bool uncharge_memsw = true;
3921
3922 /* If swapout, usage of swap doesn't decrease */
3923 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3924 uncharge_memsw = false;
3925
3926 batch = &current->memcg_batch;
3927 /*
3928 * In usual, we do css_get() when we remember memcg pointer.
3929 * But in this case, we keep res->usage until end of a series of
3930 * uncharges. Then, it's ok to ignore memcg's refcnt.
3931 */
3932 if (!batch->memcg)
3933 batch->memcg = memcg;
3934 /*
3935 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3936 * In those cases, all pages freed continuously can be expected to be in
3937 * the same cgroup and we have chance to coalesce uncharges.
3938 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3939 * because we want to do uncharge as soon as possible.
3940 */
3941
3942 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3943 goto direct_uncharge;
3944
3945 if (nr_pages > 1)
3946 goto direct_uncharge;
3947
3948 /*
3949 * In typical case, batch->memcg == mem. This means we can
3950 * merge a series of uncharges to an uncharge of res_counter.
3951 * If not, we uncharge res_counter ony by one.
3952 */
3953 if (batch->memcg != memcg)
3954 goto direct_uncharge;
3955 /* remember freed charge and uncharge it later */
3956 batch->nr_pages++;
3957 if (uncharge_memsw)
3958 batch->memsw_nr_pages++;
3959 return;
3960 direct_uncharge:
3961 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3962 if (uncharge_memsw)
3963 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3964 if (unlikely(batch->memcg != memcg))
3965 memcg_oom_recover(memcg);
3966 }
3967
3968 /*
3969 * uncharge if !page_mapped(page)
3970 */
3971 static struct mem_cgroup *
3972 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3973 bool end_migration)
3974 {
3975 struct mem_cgroup *memcg = NULL;
3976 unsigned int nr_pages = 1;
3977 struct page_cgroup *pc;
3978 bool anon;
3979
3980 if (mem_cgroup_disabled())
3981 return NULL;
3982
3983 VM_BUG_ON(PageSwapCache(page));
3984
3985 if (PageTransHuge(page)) {
3986 nr_pages <<= compound_order(page);
3987 VM_BUG_ON(!PageTransHuge(page));
3988 }
3989 /*
3990 * Check if our page_cgroup is valid
3991 */
3992 pc = lookup_page_cgroup(page);
3993 if (unlikely(!PageCgroupUsed(pc)))
3994 return NULL;
3995
3996 lock_page_cgroup(pc);
3997
3998 memcg = pc->mem_cgroup;
3999
4000 if (!PageCgroupUsed(pc))
4001 goto unlock_out;
4002
4003 anon = PageAnon(page);
4004
4005 switch (ctype) {
4006 case MEM_CGROUP_CHARGE_TYPE_ANON:
4007 /*
4008 * Generally PageAnon tells if it's the anon statistics to be
4009 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4010 * used before page reached the stage of being marked PageAnon.
4011 */
4012 anon = true;
4013 /* fallthrough */
4014 case MEM_CGROUP_CHARGE_TYPE_DROP:
4015 /* See mem_cgroup_prepare_migration() */
4016 if (page_mapped(page))
4017 goto unlock_out;
4018 /*
4019 * Pages under migration may not be uncharged. But
4020 * end_migration() /must/ be the one uncharging the
4021 * unused post-migration page and so it has to call
4022 * here with the migration bit still set. See the
4023 * res_counter handling below.
4024 */
4025 if (!end_migration && PageCgroupMigration(pc))
4026 goto unlock_out;
4027 break;
4028 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4029 if (!PageAnon(page)) { /* Shared memory */
4030 if (page->mapping && !page_is_file_cache(page))
4031 goto unlock_out;
4032 } else if (page_mapped(page)) /* Anon */
4033 goto unlock_out;
4034 break;
4035 default:
4036 break;
4037 }
4038
4039 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
4040
4041 ClearPageCgroupUsed(pc);
4042 /*
4043 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4044 * freed from LRU. This is safe because uncharged page is expected not
4045 * to be reused (freed soon). Exception is SwapCache, it's handled by
4046 * special functions.
4047 */
4048
4049 unlock_page_cgroup(pc);
4050 /*
4051 * even after unlock, we have memcg->res.usage here and this memcg
4052 * will never be freed.
4053 */
4054 memcg_check_events(memcg, page);
4055 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4056 mem_cgroup_swap_statistics(memcg, true);
4057 mem_cgroup_get(memcg);
4058 }
4059 /*
4060 * Migration does not charge the res_counter for the
4061 * replacement page, so leave it alone when phasing out the
4062 * page that is unused after the migration.
4063 */
4064 if (!end_migration && !mem_cgroup_is_root(memcg))
4065 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4066
4067 return memcg;
4068
4069 unlock_out:
4070 unlock_page_cgroup(pc);
4071 return NULL;
4072 }
4073
4074 void mem_cgroup_uncharge_page(struct page *page)
4075 {
4076 /* early check. */
4077 if (page_mapped(page))
4078 return;
4079 VM_BUG_ON(page->mapping && !PageAnon(page));
4080 if (PageSwapCache(page))
4081 return;
4082 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4083 }
4084
4085 void mem_cgroup_uncharge_cache_page(struct page *page)
4086 {
4087 VM_BUG_ON(page_mapped(page));
4088 VM_BUG_ON(page->mapping);
4089 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4090 }
4091
4092 /*
4093 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4094 * In that cases, pages are freed continuously and we can expect pages
4095 * are in the same memcg. All these calls itself limits the number of
4096 * pages freed at once, then uncharge_start/end() is called properly.
4097 * This may be called prural(2) times in a context,
4098 */
4099
4100 void mem_cgroup_uncharge_start(void)
4101 {
4102 current->memcg_batch.do_batch++;
4103 /* We can do nest. */
4104 if (current->memcg_batch.do_batch == 1) {
4105 current->memcg_batch.memcg = NULL;
4106 current->memcg_batch.nr_pages = 0;
4107 current->memcg_batch.memsw_nr_pages = 0;
4108 }
4109 }
4110
4111 void mem_cgroup_uncharge_end(void)
4112 {
4113 struct memcg_batch_info *batch = &current->memcg_batch;
4114
4115 if (!batch->do_batch)
4116 return;
4117
4118 batch->do_batch--;
4119 if (batch->do_batch) /* If stacked, do nothing. */
4120 return;
4121
4122 if (!batch->memcg)
4123 return;
4124 /*
4125 * This "batch->memcg" is valid without any css_get/put etc...
4126 * bacause we hide charges behind us.
4127 */
4128 if (batch->nr_pages)
4129 res_counter_uncharge(&batch->memcg->res,
4130 batch->nr_pages * PAGE_SIZE);
4131 if (batch->memsw_nr_pages)
4132 res_counter_uncharge(&batch->memcg->memsw,
4133 batch->memsw_nr_pages * PAGE_SIZE);
4134 memcg_oom_recover(batch->memcg);
4135 /* forget this pointer (for sanity check) */
4136 batch->memcg = NULL;
4137 }
4138
4139 #ifdef CONFIG_SWAP
4140 /*
4141 * called after __delete_from_swap_cache() and drop "page" account.
4142 * memcg information is recorded to swap_cgroup of "ent"
4143 */
4144 void
4145 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4146 {
4147 struct mem_cgroup *memcg;
4148 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4149
4150 if (!swapout) /* this was a swap cache but the swap is unused ! */
4151 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4152
4153 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4154
4155 /*
4156 * record memcg information, if swapout && memcg != NULL,
4157 * mem_cgroup_get() was called in uncharge().
4158 */
4159 if (do_swap_account && swapout && memcg)
4160 swap_cgroup_record(ent, css_id(&memcg->css));
4161 }
4162 #endif
4163
4164 #ifdef CONFIG_MEMCG_SWAP
4165 /*
4166 * called from swap_entry_free(). remove record in swap_cgroup and
4167 * uncharge "memsw" account.
4168 */
4169 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4170 {
4171 struct mem_cgroup *memcg;
4172 unsigned short id;
4173
4174 if (!do_swap_account)
4175 return;
4176
4177 id = swap_cgroup_record(ent, 0);
4178 rcu_read_lock();
4179 memcg = mem_cgroup_lookup(id);
4180 if (memcg) {
4181 /*
4182 * We uncharge this because swap is freed.
4183 * This memcg can be obsolete one. We avoid calling css_tryget
4184 */
4185 if (!mem_cgroup_is_root(memcg))
4186 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4187 mem_cgroup_swap_statistics(memcg, false);
4188 mem_cgroup_put(memcg);
4189 }
4190 rcu_read_unlock();
4191 }
4192
4193 /**
4194 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4195 * @entry: swap entry to be moved
4196 * @from: mem_cgroup which the entry is moved from
4197 * @to: mem_cgroup which the entry is moved to
4198 *
4199 * It succeeds only when the swap_cgroup's record for this entry is the same
4200 * as the mem_cgroup's id of @from.
4201 *
4202 * Returns 0 on success, -EINVAL on failure.
4203 *
4204 * The caller must have charged to @to, IOW, called res_counter_charge() about
4205 * both res and memsw, and called css_get().
4206 */
4207 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4208 struct mem_cgroup *from, struct mem_cgroup *to)
4209 {
4210 unsigned short old_id, new_id;
4211
4212 old_id = css_id(&from->css);
4213 new_id = css_id(&to->css);
4214
4215 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4216 mem_cgroup_swap_statistics(from, false);
4217 mem_cgroup_swap_statistics(to, true);
4218 /*
4219 * This function is only called from task migration context now.
4220 * It postpones res_counter and refcount handling till the end
4221 * of task migration(mem_cgroup_clear_mc()) for performance
4222 * improvement. But we cannot postpone mem_cgroup_get(to)
4223 * because if the process that has been moved to @to does
4224 * swap-in, the refcount of @to might be decreased to 0.
4225 */
4226 mem_cgroup_get(to);
4227 return 0;
4228 }
4229 return -EINVAL;
4230 }
4231 #else
4232 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4233 struct mem_cgroup *from, struct mem_cgroup *to)
4234 {
4235 return -EINVAL;
4236 }
4237 #endif
4238
4239 /*
4240 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4241 * page belongs to.
4242 */
4243 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4244 struct mem_cgroup **memcgp)
4245 {
4246 struct mem_cgroup *memcg = NULL;
4247 unsigned int nr_pages = 1;
4248 struct page_cgroup *pc;
4249 enum charge_type ctype;
4250
4251 *memcgp = NULL;
4252
4253 if (mem_cgroup_disabled())
4254 return;
4255
4256 if (PageTransHuge(page))
4257 nr_pages <<= compound_order(page);
4258
4259 pc = lookup_page_cgroup(page);
4260 lock_page_cgroup(pc);
4261 if (PageCgroupUsed(pc)) {
4262 memcg = pc->mem_cgroup;
4263 css_get(&memcg->css);
4264 /*
4265 * At migrating an anonymous page, its mapcount goes down
4266 * to 0 and uncharge() will be called. But, even if it's fully
4267 * unmapped, migration may fail and this page has to be
4268 * charged again. We set MIGRATION flag here and delay uncharge
4269 * until end_migration() is called
4270 *
4271 * Corner Case Thinking
4272 * A)
4273 * When the old page was mapped as Anon and it's unmap-and-freed
4274 * while migration was ongoing.
4275 * If unmap finds the old page, uncharge() of it will be delayed
4276 * until end_migration(). If unmap finds a new page, it's
4277 * uncharged when it make mapcount to be 1->0. If unmap code
4278 * finds swap_migration_entry, the new page will not be mapped
4279 * and end_migration() will find it(mapcount==0).
4280 *
4281 * B)
4282 * When the old page was mapped but migraion fails, the kernel
4283 * remaps it. A charge for it is kept by MIGRATION flag even
4284 * if mapcount goes down to 0. We can do remap successfully
4285 * without charging it again.
4286 *
4287 * C)
4288 * The "old" page is under lock_page() until the end of
4289 * migration, so, the old page itself will not be swapped-out.
4290 * If the new page is swapped out before end_migraton, our
4291 * hook to usual swap-out path will catch the event.
4292 */
4293 if (PageAnon(page))
4294 SetPageCgroupMigration(pc);
4295 }
4296 unlock_page_cgroup(pc);
4297 /*
4298 * If the page is not charged at this point,
4299 * we return here.
4300 */
4301 if (!memcg)
4302 return;
4303
4304 *memcgp = memcg;
4305 /*
4306 * We charge new page before it's used/mapped. So, even if unlock_page()
4307 * is called before end_migration, we can catch all events on this new
4308 * page. In the case new page is migrated but not remapped, new page's
4309 * mapcount will be finally 0 and we call uncharge in end_migration().
4310 */
4311 if (PageAnon(page))
4312 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4313 else
4314 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4315 /*
4316 * The page is committed to the memcg, but it's not actually
4317 * charged to the res_counter since we plan on replacing the
4318 * old one and only one page is going to be left afterwards.
4319 */
4320 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4321 }
4322
4323 /* remove redundant charge if migration failed*/
4324 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4325 struct page *oldpage, struct page *newpage, bool migration_ok)
4326 {
4327 struct page *used, *unused;
4328 struct page_cgroup *pc;
4329 bool anon;
4330
4331 if (!memcg)
4332 return;
4333
4334 if (!migration_ok) {
4335 used = oldpage;
4336 unused = newpage;
4337 } else {
4338 used = newpage;
4339 unused = oldpage;
4340 }
4341 anon = PageAnon(used);
4342 __mem_cgroup_uncharge_common(unused,
4343 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4344 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4345 true);
4346 css_put(&memcg->css);
4347 /*
4348 * We disallowed uncharge of pages under migration because mapcount
4349 * of the page goes down to zero, temporarly.
4350 * Clear the flag and check the page should be charged.
4351 */
4352 pc = lookup_page_cgroup(oldpage);
4353 lock_page_cgroup(pc);
4354 ClearPageCgroupMigration(pc);
4355 unlock_page_cgroup(pc);
4356
4357 /*
4358 * If a page is a file cache, radix-tree replacement is very atomic
4359 * and we can skip this check. When it was an Anon page, its mapcount
4360 * goes down to 0. But because we added MIGRATION flage, it's not
4361 * uncharged yet. There are several case but page->mapcount check
4362 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4363 * check. (see prepare_charge() also)
4364 */
4365 if (anon)
4366 mem_cgroup_uncharge_page(used);
4367 }
4368
4369 /*
4370 * At replace page cache, newpage is not under any memcg but it's on
4371 * LRU. So, this function doesn't touch res_counter but handles LRU
4372 * in correct way. Both pages are locked so we cannot race with uncharge.
4373 */
4374 void mem_cgroup_replace_page_cache(struct page *oldpage,
4375 struct page *newpage)
4376 {
4377 struct mem_cgroup *memcg = NULL;
4378 struct page_cgroup *pc;
4379 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4380
4381 if (mem_cgroup_disabled())
4382 return;
4383
4384 pc = lookup_page_cgroup(oldpage);
4385 /* fix accounting on old pages */
4386 lock_page_cgroup(pc);
4387 if (PageCgroupUsed(pc)) {
4388 memcg = pc->mem_cgroup;
4389 mem_cgroup_charge_statistics(memcg, false, -1);
4390 ClearPageCgroupUsed(pc);
4391 }
4392 unlock_page_cgroup(pc);
4393
4394 /*
4395 * When called from shmem_replace_page(), in some cases the
4396 * oldpage has already been charged, and in some cases not.
4397 */
4398 if (!memcg)
4399 return;
4400 /*
4401 * Even if newpage->mapping was NULL before starting replacement,
4402 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4403 * LRU while we overwrite pc->mem_cgroup.
4404 */
4405 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4406 }
4407
4408 #ifdef CONFIG_DEBUG_VM
4409 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4410 {
4411 struct page_cgroup *pc;
4412
4413 pc = lookup_page_cgroup(page);
4414 /*
4415 * Can be NULL while feeding pages into the page allocator for
4416 * the first time, i.e. during boot or memory hotplug;
4417 * or when mem_cgroup_disabled().
4418 */
4419 if (likely(pc) && PageCgroupUsed(pc))
4420 return pc;
4421 return NULL;
4422 }
4423
4424 bool mem_cgroup_bad_page_check(struct page *page)
4425 {
4426 if (mem_cgroup_disabled())
4427 return false;
4428
4429 return lookup_page_cgroup_used(page) != NULL;
4430 }
4431
4432 void mem_cgroup_print_bad_page(struct page *page)
4433 {
4434 struct page_cgroup *pc;
4435
4436 pc = lookup_page_cgroup_used(page);
4437 if (pc) {
4438 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4439 pc, pc->flags, pc->mem_cgroup);
4440 }
4441 }
4442 #endif
4443
4444 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4445 unsigned long long val)
4446 {
4447 int retry_count;
4448 u64 memswlimit, memlimit;
4449 int ret = 0;
4450 int children = mem_cgroup_count_children(memcg);
4451 u64 curusage, oldusage;
4452 int enlarge;
4453
4454 /*
4455 * For keeping hierarchical_reclaim simple, how long we should retry
4456 * is depends on callers. We set our retry-count to be function
4457 * of # of children which we should visit in this loop.
4458 */
4459 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4460
4461 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4462
4463 enlarge = 0;
4464 while (retry_count) {
4465 if (signal_pending(current)) {
4466 ret = -EINTR;
4467 break;
4468 }
4469 /*
4470 * Rather than hide all in some function, I do this in
4471 * open coded manner. You see what this really does.
4472 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4473 */
4474 mutex_lock(&set_limit_mutex);
4475 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4476 if (memswlimit < val) {
4477 ret = -EINVAL;
4478 mutex_unlock(&set_limit_mutex);
4479 break;
4480 }
4481
4482 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4483 if (memlimit < val)
4484 enlarge = 1;
4485
4486 ret = res_counter_set_limit(&memcg->res, val);
4487 if (!ret) {
4488 if (memswlimit == val)
4489 memcg->memsw_is_minimum = true;
4490 else
4491 memcg->memsw_is_minimum = false;
4492 }
4493 mutex_unlock(&set_limit_mutex);
4494
4495 if (!ret)
4496 break;
4497
4498 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4499 MEM_CGROUP_RECLAIM_SHRINK);
4500 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4501 /* Usage is reduced ? */
4502 if (curusage >= oldusage)
4503 retry_count--;
4504 else
4505 oldusage = curusage;
4506 }
4507 if (!ret && enlarge)
4508 memcg_oom_recover(memcg);
4509
4510 return ret;
4511 }
4512
4513 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4514 unsigned long long val)
4515 {
4516 int retry_count;
4517 u64 memlimit, memswlimit, oldusage, curusage;
4518 int children = mem_cgroup_count_children(memcg);
4519 int ret = -EBUSY;
4520 int enlarge = 0;
4521
4522 /* see mem_cgroup_resize_res_limit */
4523 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4524 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4525 while (retry_count) {
4526 if (signal_pending(current)) {
4527 ret = -EINTR;
4528 break;
4529 }
4530 /*
4531 * Rather than hide all in some function, I do this in
4532 * open coded manner. You see what this really does.
4533 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4534 */
4535 mutex_lock(&set_limit_mutex);
4536 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4537 if (memlimit > val) {
4538 ret = -EINVAL;
4539 mutex_unlock(&set_limit_mutex);
4540 break;
4541 }
4542 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4543 if (memswlimit < val)
4544 enlarge = 1;
4545 ret = res_counter_set_limit(&memcg->memsw, val);
4546 if (!ret) {
4547 if (memlimit == val)
4548 memcg->memsw_is_minimum = true;
4549 else
4550 memcg->memsw_is_minimum = false;
4551 }
4552 mutex_unlock(&set_limit_mutex);
4553
4554 if (!ret)
4555 break;
4556
4557 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4558 MEM_CGROUP_RECLAIM_NOSWAP |
4559 MEM_CGROUP_RECLAIM_SHRINK);
4560 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4561 /* Usage is reduced ? */
4562 if (curusage >= oldusage)
4563 retry_count--;
4564 else
4565 oldusage = curusage;
4566 }
4567 if (!ret && enlarge)
4568 memcg_oom_recover(memcg);
4569 return ret;
4570 }
4571
4572 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4573 gfp_t gfp_mask,
4574 unsigned long *total_scanned)
4575 {
4576 unsigned long nr_reclaimed = 0;
4577 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4578 unsigned long reclaimed;
4579 int loop = 0;
4580 struct mem_cgroup_tree_per_zone *mctz;
4581 unsigned long long excess;
4582 unsigned long nr_scanned;
4583
4584 if (order > 0)
4585 return 0;
4586
4587 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4588 /*
4589 * This loop can run a while, specially if mem_cgroup's continuously
4590 * keep exceeding their soft limit and putting the system under
4591 * pressure
4592 */
4593 do {
4594 if (next_mz)
4595 mz = next_mz;
4596 else
4597 mz = mem_cgroup_largest_soft_limit_node(mctz);
4598 if (!mz)
4599 break;
4600
4601 nr_scanned = 0;
4602 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4603 gfp_mask, &nr_scanned);
4604 nr_reclaimed += reclaimed;
4605 *total_scanned += nr_scanned;
4606 spin_lock(&mctz->lock);
4607
4608 /*
4609 * If we failed to reclaim anything from this memory cgroup
4610 * it is time to move on to the next cgroup
4611 */
4612 next_mz = NULL;
4613 if (!reclaimed) {
4614 do {
4615 /*
4616 * Loop until we find yet another one.
4617 *
4618 * By the time we get the soft_limit lock
4619 * again, someone might have aded the
4620 * group back on the RB tree. Iterate to
4621 * make sure we get a different mem.
4622 * mem_cgroup_largest_soft_limit_node returns
4623 * NULL if no other cgroup is present on
4624 * the tree
4625 */
4626 next_mz =
4627 __mem_cgroup_largest_soft_limit_node(mctz);
4628 if (next_mz == mz)
4629 css_put(&next_mz->memcg->css);
4630 else /* next_mz == NULL or other memcg */
4631 break;
4632 } while (1);
4633 }
4634 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4635 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4636 /*
4637 * One school of thought says that we should not add
4638 * back the node to the tree if reclaim returns 0.
4639 * But our reclaim could return 0, simply because due
4640 * to priority we are exposing a smaller subset of
4641 * memory to reclaim from. Consider this as a longer
4642 * term TODO.
4643 */
4644 /* If excess == 0, no tree ops */
4645 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4646 spin_unlock(&mctz->lock);
4647 css_put(&mz->memcg->css);
4648 loop++;
4649 /*
4650 * Could not reclaim anything and there are no more
4651 * mem cgroups to try or we seem to be looping without
4652 * reclaiming anything.
4653 */
4654 if (!nr_reclaimed &&
4655 (next_mz == NULL ||
4656 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4657 break;
4658 } while (!nr_reclaimed);
4659 if (next_mz)
4660 css_put(&next_mz->memcg->css);
4661 return nr_reclaimed;
4662 }
4663
4664 /**
4665 * mem_cgroup_force_empty_list - clears LRU of a group
4666 * @memcg: group to clear
4667 * @node: NUMA node
4668 * @zid: zone id
4669 * @lru: lru to to clear
4670 *
4671 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4672 * reclaim the pages page themselves - pages are moved to the parent (or root)
4673 * group.
4674 */
4675 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4676 int node, int zid, enum lru_list lru)
4677 {
4678 struct lruvec *lruvec;
4679 unsigned long flags;
4680 struct list_head *list;
4681 struct page *busy;
4682 struct zone *zone;
4683
4684 zone = &NODE_DATA(node)->node_zones[zid];
4685 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4686 list = &lruvec->lists[lru];
4687
4688 busy = NULL;
4689 do {
4690 struct page_cgroup *pc;
4691 struct page *page;
4692
4693 spin_lock_irqsave(&zone->lru_lock, flags);
4694 if (list_empty(list)) {
4695 spin_unlock_irqrestore(&zone->lru_lock, flags);
4696 break;
4697 }
4698 page = list_entry(list->prev, struct page, lru);
4699 if (busy == page) {
4700 list_move(&page->lru, list);
4701 busy = NULL;
4702 spin_unlock_irqrestore(&zone->lru_lock, flags);
4703 continue;
4704 }
4705 spin_unlock_irqrestore(&zone->lru_lock, flags);
4706
4707 pc = lookup_page_cgroup(page);
4708
4709 if (mem_cgroup_move_parent(page, pc, memcg)) {
4710 /* found lock contention or "pc" is obsolete. */
4711 busy = page;
4712 cond_resched();
4713 } else
4714 busy = NULL;
4715 } while (!list_empty(list));
4716 }
4717
4718 /*
4719 * make mem_cgroup's charge to be 0 if there is no task by moving
4720 * all the charges and pages to the parent.
4721 * This enables deleting this mem_cgroup.
4722 *
4723 * Caller is responsible for holding css reference on the memcg.
4724 */
4725 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4726 {
4727 int node, zid;
4728 u64 usage;
4729
4730 do {
4731 /* This is for making all *used* pages to be on LRU. */
4732 lru_add_drain_all();
4733 drain_all_stock_sync(memcg);
4734 mem_cgroup_start_move(memcg);
4735 for_each_node_state(node, N_MEMORY) {
4736 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4737 enum lru_list lru;
4738 for_each_lru(lru) {
4739 mem_cgroup_force_empty_list(memcg,
4740 node, zid, lru);
4741 }
4742 }
4743 }
4744 mem_cgroup_end_move(memcg);
4745 memcg_oom_recover(memcg);
4746 cond_resched();
4747
4748 /*
4749 * Kernel memory may not necessarily be trackable to a specific
4750 * process. So they are not migrated, and therefore we can't
4751 * expect their value to drop to 0 here.
4752 * Having res filled up with kmem only is enough.
4753 *
4754 * This is a safety check because mem_cgroup_force_empty_list
4755 * could have raced with mem_cgroup_replace_page_cache callers
4756 * so the lru seemed empty but the page could have been added
4757 * right after the check. RES_USAGE should be safe as we always
4758 * charge before adding to the LRU.
4759 */
4760 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4761 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4762 } while (usage > 0);
4763 }
4764
4765 /*
4766 * Reclaims as many pages from the given memcg as possible and moves
4767 * the rest to the parent.
4768 *
4769 * Caller is responsible for holding css reference for memcg.
4770 */
4771 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4772 {
4773 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4774 struct cgroup *cgrp = memcg->css.cgroup;
4775
4776 /* returns EBUSY if there is a task or if we come here twice. */
4777 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4778 return -EBUSY;
4779
4780 /* we call try-to-free pages for make this cgroup empty */
4781 lru_add_drain_all();
4782 /* try to free all pages in this cgroup */
4783 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4784 int progress;
4785
4786 if (signal_pending(current))
4787 return -EINTR;
4788
4789 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4790 false);
4791 if (!progress) {
4792 nr_retries--;
4793 /* maybe some writeback is necessary */
4794 congestion_wait(BLK_RW_ASYNC, HZ/10);
4795 }
4796
4797 }
4798 lru_add_drain();
4799 mem_cgroup_reparent_charges(memcg);
4800
4801 return 0;
4802 }
4803
4804 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4805 {
4806 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4807 int ret;
4808
4809 if (mem_cgroup_is_root(memcg))
4810 return -EINVAL;
4811 css_get(&memcg->css);
4812 ret = mem_cgroup_force_empty(memcg);
4813 css_put(&memcg->css);
4814
4815 return ret;
4816 }
4817
4818
4819 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
4820 {
4821 return mem_cgroup_from_cont(cont)->use_hierarchy;
4822 }
4823
4824 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
4825 u64 val)
4826 {
4827 int retval = 0;
4828 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4829 struct cgroup *parent = cont->parent;
4830 struct mem_cgroup *parent_memcg = NULL;
4831
4832 if (parent)
4833 parent_memcg = mem_cgroup_from_cont(parent);
4834
4835 cgroup_lock();
4836
4837 if (memcg->use_hierarchy == val)
4838 goto out;
4839
4840 /*
4841 * If parent's use_hierarchy is set, we can't make any modifications
4842 * in the child subtrees. If it is unset, then the change can
4843 * occur, provided the current cgroup has no children.
4844 *
4845 * For the root cgroup, parent_mem is NULL, we allow value to be
4846 * set if there are no children.
4847 */
4848 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4849 (val == 1 || val == 0)) {
4850 if (list_empty(&cont->children))
4851 memcg->use_hierarchy = val;
4852 else
4853 retval = -EBUSY;
4854 } else
4855 retval = -EINVAL;
4856
4857 out:
4858 cgroup_unlock();
4859
4860 return retval;
4861 }
4862
4863
4864 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4865 enum mem_cgroup_stat_index idx)
4866 {
4867 struct mem_cgroup *iter;
4868 long val = 0;
4869
4870 /* Per-cpu values can be negative, use a signed accumulator */
4871 for_each_mem_cgroup_tree(iter, memcg)
4872 val += mem_cgroup_read_stat(iter, idx);
4873
4874 if (val < 0) /* race ? */
4875 val = 0;
4876 return val;
4877 }
4878
4879 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4880 {
4881 u64 val;
4882
4883 if (!mem_cgroup_is_root(memcg)) {
4884 if (!swap)
4885 return res_counter_read_u64(&memcg->res, RES_USAGE);
4886 else
4887 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4888 }
4889
4890 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4891 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4892
4893 if (swap)
4894 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4895
4896 return val << PAGE_SHIFT;
4897 }
4898
4899 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
4900 struct file *file, char __user *buf,
4901 size_t nbytes, loff_t *ppos)
4902 {
4903 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4904 char str[64];
4905 u64 val;
4906 int name, len;
4907 enum res_type type;
4908
4909 type = MEMFILE_TYPE(cft->private);
4910 name = MEMFILE_ATTR(cft->private);
4911
4912 if (!do_swap_account && type == _MEMSWAP)
4913 return -EOPNOTSUPP;
4914
4915 switch (type) {
4916 case _MEM:
4917 if (name == RES_USAGE)
4918 val = mem_cgroup_usage(memcg, false);
4919 else
4920 val = res_counter_read_u64(&memcg->res, name);
4921 break;
4922 case _MEMSWAP:
4923 if (name == RES_USAGE)
4924 val = mem_cgroup_usage(memcg, true);
4925 else
4926 val = res_counter_read_u64(&memcg->memsw, name);
4927 break;
4928 case _KMEM:
4929 val = res_counter_read_u64(&memcg->kmem, name);
4930 break;
4931 default:
4932 BUG();
4933 }
4934
4935 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
4936 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
4937 }
4938
4939 static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
4940 {
4941 int ret = -EINVAL;
4942 #ifdef CONFIG_MEMCG_KMEM
4943 bool must_inc_static_branch = false;
4944
4945 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4946 /*
4947 * For simplicity, we won't allow this to be disabled. It also can't
4948 * be changed if the cgroup has children already, or if tasks had
4949 * already joined.
4950 *
4951 * If tasks join before we set the limit, a person looking at
4952 * kmem.usage_in_bytes will have no way to determine when it took
4953 * place, which makes the value quite meaningless.
4954 *
4955 * After it first became limited, changes in the value of the limit are
4956 * of course permitted.
4957 *
4958 * Taking the cgroup_lock is really offensive, but it is so far the only
4959 * way to guarantee that no children will appear. There are plenty of
4960 * other offenders, and they should all go away. Fine grained locking
4961 * is probably the way to go here. When we are fully hierarchical, we
4962 * can also get rid of the use_hierarchy check.
4963 */
4964 cgroup_lock();
4965 mutex_lock(&set_limit_mutex);
4966 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
4967 if (cgroup_task_count(cont) || (memcg->use_hierarchy &&
4968 !list_empty(&cont->children))) {
4969 ret = -EBUSY;
4970 goto out;
4971 }
4972 ret = res_counter_set_limit(&memcg->kmem, val);
4973 VM_BUG_ON(ret);
4974
4975 ret = memcg_update_cache_sizes(memcg);
4976 if (ret) {
4977 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
4978 goto out;
4979 }
4980 must_inc_static_branch = true;
4981 /*
4982 * kmem charges can outlive the cgroup. In the case of slab
4983 * pages, for instance, a page contain objects from various
4984 * processes, so it is unfeasible to migrate them away. We
4985 * need to reference count the memcg because of that.
4986 */
4987 mem_cgroup_get(memcg);
4988 } else
4989 ret = res_counter_set_limit(&memcg->kmem, val);
4990 out:
4991 mutex_unlock(&set_limit_mutex);
4992 cgroup_unlock();
4993
4994 /*
4995 * We are by now familiar with the fact that we can't inc the static
4996 * branch inside cgroup_lock. See disarm functions for details. A
4997 * worker here is overkill, but also wrong: After the limit is set, we
4998 * must start accounting right away. Since this operation can't fail,
4999 * we can safely defer it to here - no rollback will be needed.
5000 *
5001 * The boolean used to control this is also safe, because
5002 * KMEM_ACCOUNTED_ACTIVATED guarantees that only one process will be
5003 * able to set it to true;
5004 */
5005 if (must_inc_static_branch) {
5006 static_key_slow_inc(&memcg_kmem_enabled_key);
5007 /*
5008 * setting the active bit after the inc will guarantee no one
5009 * starts accounting before all call sites are patched
5010 */
5011 memcg_kmem_set_active(memcg);
5012 }
5013
5014 #endif
5015 return ret;
5016 }
5017
5018 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5019 {
5020 int ret = 0;
5021 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5022 if (!parent)
5023 goto out;
5024
5025 memcg->kmem_account_flags = parent->kmem_account_flags;
5026 #ifdef CONFIG_MEMCG_KMEM
5027 /*
5028 * When that happen, we need to disable the static branch only on those
5029 * memcgs that enabled it. To achieve this, we would be forced to
5030 * complicate the code by keeping track of which memcgs were the ones
5031 * that actually enabled limits, and which ones got it from its
5032 * parents.
5033 *
5034 * It is a lot simpler just to do static_key_slow_inc() on every child
5035 * that is accounted.
5036 */
5037 if (!memcg_kmem_is_active(memcg))
5038 goto out;
5039
5040 /*
5041 * destroy(), called if we fail, will issue static_key_slow_inc() and
5042 * mem_cgroup_put() if kmem is enabled. We have to either call them
5043 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
5044 * this more consistent, since it always leads to the same destroy path
5045 */
5046 mem_cgroup_get(memcg);
5047 static_key_slow_inc(&memcg_kmem_enabled_key);
5048
5049 mutex_lock(&set_limit_mutex);
5050 ret = memcg_update_cache_sizes(memcg);
5051 mutex_unlock(&set_limit_mutex);
5052 #endif
5053 out:
5054 return ret;
5055 }
5056
5057 /*
5058 * The user of this function is...
5059 * RES_LIMIT.
5060 */
5061 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5062 const char *buffer)
5063 {
5064 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5065 enum res_type type;
5066 int name;
5067 unsigned long long val;
5068 int ret;
5069
5070 type = MEMFILE_TYPE(cft->private);
5071 name = MEMFILE_ATTR(cft->private);
5072
5073 if (!do_swap_account && type == _MEMSWAP)
5074 return -EOPNOTSUPP;
5075
5076 switch (name) {
5077 case RES_LIMIT:
5078 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5079 ret = -EINVAL;
5080 break;
5081 }
5082 /* This function does all necessary parse...reuse it */
5083 ret = res_counter_memparse_write_strategy(buffer, &val);
5084 if (ret)
5085 break;
5086 if (type == _MEM)
5087 ret = mem_cgroup_resize_limit(memcg, val);
5088 else if (type == _MEMSWAP)
5089 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5090 else if (type == _KMEM)
5091 ret = memcg_update_kmem_limit(cont, val);
5092 else
5093 return -EINVAL;
5094 break;
5095 case RES_SOFT_LIMIT:
5096 ret = res_counter_memparse_write_strategy(buffer, &val);
5097 if (ret)
5098 break;
5099 /*
5100 * For memsw, soft limits are hard to implement in terms
5101 * of semantics, for now, we support soft limits for
5102 * control without swap
5103 */
5104 if (type == _MEM)
5105 ret = res_counter_set_soft_limit(&memcg->res, val);
5106 else
5107 ret = -EINVAL;
5108 break;
5109 default:
5110 ret = -EINVAL; /* should be BUG() ? */
5111 break;
5112 }
5113 return ret;
5114 }
5115
5116 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5117 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5118 {
5119 struct cgroup *cgroup;
5120 unsigned long long min_limit, min_memsw_limit, tmp;
5121
5122 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5123 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5124 cgroup = memcg->css.cgroup;
5125 if (!memcg->use_hierarchy)
5126 goto out;
5127
5128 while (cgroup->parent) {
5129 cgroup = cgroup->parent;
5130 memcg = mem_cgroup_from_cont(cgroup);
5131 if (!memcg->use_hierarchy)
5132 break;
5133 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5134 min_limit = min(min_limit, tmp);
5135 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5136 min_memsw_limit = min(min_memsw_limit, tmp);
5137 }
5138 out:
5139 *mem_limit = min_limit;
5140 *memsw_limit = min_memsw_limit;
5141 }
5142
5143 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5144 {
5145 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5146 int name;
5147 enum res_type type;
5148
5149 type = MEMFILE_TYPE(event);
5150 name = MEMFILE_ATTR(event);
5151
5152 if (!do_swap_account && type == _MEMSWAP)
5153 return -EOPNOTSUPP;
5154
5155 switch (name) {
5156 case RES_MAX_USAGE:
5157 if (type == _MEM)
5158 res_counter_reset_max(&memcg->res);
5159 else if (type == _MEMSWAP)
5160 res_counter_reset_max(&memcg->memsw);
5161 else if (type == _KMEM)
5162 res_counter_reset_max(&memcg->kmem);
5163 else
5164 return -EINVAL;
5165 break;
5166 case RES_FAILCNT:
5167 if (type == _MEM)
5168 res_counter_reset_failcnt(&memcg->res);
5169 else if (type == _MEMSWAP)
5170 res_counter_reset_failcnt(&memcg->memsw);
5171 else if (type == _KMEM)
5172 res_counter_reset_failcnt(&memcg->kmem);
5173 else
5174 return -EINVAL;
5175 break;
5176 }
5177
5178 return 0;
5179 }
5180
5181 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5182 struct cftype *cft)
5183 {
5184 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5185 }
5186
5187 #ifdef CONFIG_MMU
5188 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5189 struct cftype *cft, u64 val)
5190 {
5191 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5192
5193 if (val >= (1 << NR_MOVE_TYPE))
5194 return -EINVAL;
5195
5196 /*
5197 * No kind of locking is needed in here, because ->can_attach() will
5198 * check this value once in the beginning of the process, and then carry
5199 * on with stale data. This means that changes to this value will only
5200 * affect task migrations starting after the change.
5201 */
5202 memcg->move_charge_at_immigrate = val;
5203 return 0;
5204 }
5205 #else
5206 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5207 struct cftype *cft, u64 val)
5208 {
5209 return -ENOSYS;
5210 }
5211 #endif
5212
5213 #ifdef CONFIG_NUMA
5214 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5215 struct seq_file *m)
5216 {
5217 int nid;
5218 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5219 unsigned long node_nr;
5220 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5221
5222 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5223 seq_printf(m, "total=%lu", total_nr);
5224 for_each_node_state(nid, N_MEMORY) {
5225 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5226 seq_printf(m, " N%d=%lu", nid, node_nr);
5227 }
5228 seq_putc(m, '\n');
5229
5230 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5231 seq_printf(m, "file=%lu", file_nr);
5232 for_each_node_state(nid, N_MEMORY) {
5233 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5234 LRU_ALL_FILE);
5235 seq_printf(m, " N%d=%lu", nid, node_nr);
5236 }
5237 seq_putc(m, '\n');
5238
5239 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5240 seq_printf(m, "anon=%lu", anon_nr);
5241 for_each_node_state(nid, N_MEMORY) {
5242 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5243 LRU_ALL_ANON);
5244 seq_printf(m, " N%d=%lu", nid, node_nr);
5245 }
5246 seq_putc(m, '\n');
5247
5248 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5249 seq_printf(m, "unevictable=%lu", unevictable_nr);
5250 for_each_node_state(nid, N_MEMORY) {
5251 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5252 BIT(LRU_UNEVICTABLE));
5253 seq_printf(m, " N%d=%lu", nid, node_nr);
5254 }
5255 seq_putc(m, '\n');
5256 return 0;
5257 }
5258 #endif /* CONFIG_NUMA */
5259
5260 static inline void mem_cgroup_lru_names_not_uptodate(void)
5261 {
5262 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5263 }
5264
5265 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5266 struct seq_file *m)
5267 {
5268 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5269 struct mem_cgroup *mi;
5270 unsigned int i;
5271
5272 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5273 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5274 continue;
5275 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5276 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5277 }
5278
5279 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5280 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5281 mem_cgroup_read_events(memcg, i));
5282
5283 for (i = 0; i < NR_LRU_LISTS; i++)
5284 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5285 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5286
5287 /* Hierarchical information */
5288 {
5289 unsigned long long limit, memsw_limit;
5290 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5291 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5292 if (do_swap_account)
5293 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5294 memsw_limit);
5295 }
5296
5297 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5298 long long val = 0;
5299
5300 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5301 continue;
5302 for_each_mem_cgroup_tree(mi, memcg)
5303 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5304 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5305 }
5306
5307 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5308 unsigned long long val = 0;
5309
5310 for_each_mem_cgroup_tree(mi, memcg)
5311 val += mem_cgroup_read_events(mi, i);
5312 seq_printf(m, "total_%s %llu\n",
5313 mem_cgroup_events_names[i], val);
5314 }
5315
5316 for (i = 0; i < NR_LRU_LISTS; i++) {
5317 unsigned long long val = 0;
5318
5319 for_each_mem_cgroup_tree(mi, memcg)
5320 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5321 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5322 }
5323
5324 #ifdef CONFIG_DEBUG_VM
5325 {
5326 int nid, zid;
5327 struct mem_cgroup_per_zone *mz;
5328 struct zone_reclaim_stat *rstat;
5329 unsigned long recent_rotated[2] = {0, 0};
5330 unsigned long recent_scanned[2] = {0, 0};
5331
5332 for_each_online_node(nid)
5333 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5334 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5335 rstat = &mz->lruvec.reclaim_stat;
5336
5337 recent_rotated[0] += rstat->recent_rotated[0];
5338 recent_rotated[1] += rstat->recent_rotated[1];
5339 recent_scanned[0] += rstat->recent_scanned[0];
5340 recent_scanned[1] += rstat->recent_scanned[1];
5341 }
5342 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5343 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5344 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5345 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5346 }
5347 #endif
5348
5349 return 0;
5350 }
5351
5352 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5353 {
5354 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5355
5356 return mem_cgroup_swappiness(memcg);
5357 }
5358
5359 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5360 u64 val)
5361 {
5362 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5363 struct mem_cgroup *parent;
5364
5365 if (val > 100)
5366 return -EINVAL;
5367
5368 if (cgrp->parent == NULL)
5369 return -EINVAL;
5370
5371 parent = mem_cgroup_from_cont(cgrp->parent);
5372
5373 cgroup_lock();
5374
5375 /* If under hierarchy, only empty-root can set this value */
5376 if ((parent->use_hierarchy) ||
5377 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
5378 cgroup_unlock();
5379 return -EINVAL;
5380 }
5381
5382 memcg->swappiness = val;
5383
5384 cgroup_unlock();
5385
5386 return 0;
5387 }
5388
5389 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5390 {
5391 struct mem_cgroup_threshold_ary *t;
5392 u64 usage;
5393 int i;
5394
5395 rcu_read_lock();
5396 if (!swap)
5397 t = rcu_dereference(memcg->thresholds.primary);
5398 else
5399 t = rcu_dereference(memcg->memsw_thresholds.primary);
5400
5401 if (!t)
5402 goto unlock;
5403
5404 usage = mem_cgroup_usage(memcg, swap);
5405
5406 /*
5407 * current_threshold points to threshold just below or equal to usage.
5408 * If it's not true, a threshold was crossed after last
5409 * call of __mem_cgroup_threshold().
5410 */
5411 i = t->current_threshold;
5412
5413 /*
5414 * Iterate backward over array of thresholds starting from
5415 * current_threshold and check if a threshold is crossed.
5416 * If none of thresholds below usage is crossed, we read
5417 * only one element of the array here.
5418 */
5419 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5420 eventfd_signal(t->entries[i].eventfd, 1);
5421
5422 /* i = current_threshold + 1 */
5423 i++;
5424
5425 /*
5426 * Iterate forward over array of thresholds starting from
5427 * current_threshold+1 and check if a threshold is crossed.
5428 * If none of thresholds above usage is crossed, we read
5429 * only one element of the array here.
5430 */
5431 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5432 eventfd_signal(t->entries[i].eventfd, 1);
5433
5434 /* Update current_threshold */
5435 t->current_threshold = i - 1;
5436 unlock:
5437 rcu_read_unlock();
5438 }
5439
5440 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5441 {
5442 while (memcg) {
5443 __mem_cgroup_threshold(memcg, false);
5444 if (do_swap_account)
5445 __mem_cgroup_threshold(memcg, true);
5446
5447 memcg = parent_mem_cgroup(memcg);
5448 }
5449 }
5450
5451 static int compare_thresholds(const void *a, const void *b)
5452 {
5453 const struct mem_cgroup_threshold *_a = a;
5454 const struct mem_cgroup_threshold *_b = b;
5455
5456 return _a->threshold - _b->threshold;
5457 }
5458
5459 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5460 {
5461 struct mem_cgroup_eventfd_list *ev;
5462
5463 list_for_each_entry(ev, &memcg->oom_notify, list)
5464 eventfd_signal(ev->eventfd, 1);
5465 return 0;
5466 }
5467
5468 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5469 {
5470 struct mem_cgroup *iter;
5471
5472 for_each_mem_cgroup_tree(iter, memcg)
5473 mem_cgroup_oom_notify_cb(iter);
5474 }
5475
5476 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5477 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5478 {
5479 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5480 struct mem_cgroup_thresholds *thresholds;
5481 struct mem_cgroup_threshold_ary *new;
5482 enum res_type type = MEMFILE_TYPE(cft->private);
5483 u64 threshold, usage;
5484 int i, size, ret;
5485
5486 ret = res_counter_memparse_write_strategy(args, &threshold);
5487 if (ret)
5488 return ret;
5489
5490 mutex_lock(&memcg->thresholds_lock);
5491
5492 if (type == _MEM)
5493 thresholds = &memcg->thresholds;
5494 else if (type == _MEMSWAP)
5495 thresholds = &memcg->memsw_thresholds;
5496 else
5497 BUG();
5498
5499 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5500
5501 /* Check if a threshold crossed before adding a new one */
5502 if (thresholds->primary)
5503 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5504
5505 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5506
5507 /* Allocate memory for new array of thresholds */
5508 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5509 GFP_KERNEL);
5510 if (!new) {
5511 ret = -ENOMEM;
5512 goto unlock;
5513 }
5514 new->size = size;
5515
5516 /* Copy thresholds (if any) to new array */
5517 if (thresholds->primary) {
5518 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5519 sizeof(struct mem_cgroup_threshold));
5520 }
5521
5522 /* Add new threshold */
5523 new->entries[size - 1].eventfd = eventfd;
5524 new->entries[size - 1].threshold = threshold;
5525
5526 /* Sort thresholds. Registering of new threshold isn't time-critical */
5527 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5528 compare_thresholds, NULL);
5529
5530 /* Find current threshold */
5531 new->current_threshold = -1;
5532 for (i = 0; i < size; i++) {
5533 if (new->entries[i].threshold <= usage) {
5534 /*
5535 * new->current_threshold will not be used until
5536 * rcu_assign_pointer(), so it's safe to increment
5537 * it here.
5538 */
5539 ++new->current_threshold;
5540 } else
5541 break;
5542 }
5543
5544 /* Free old spare buffer and save old primary buffer as spare */
5545 kfree(thresholds->spare);
5546 thresholds->spare = thresholds->primary;
5547
5548 rcu_assign_pointer(thresholds->primary, new);
5549
5550 /* To be sure that nobody uses thresholds */
5551 synchronize_rcu();
5552
5553 unlock:
5554 mutex_unlock(&memcg->thresholds_lock);
5555
5556 return ret;
5557 }
5558
5559 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
5560 struct cftype *cft, struct eventfd_ctx *eventfd)
5561 {
5562 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5563 struct mem_cgroup_thresholds *thresholds;
5564 struct mem_cgroup_threshold_ary *new;
5565 enum res_type type = MEMFILE_TYPE(cft->private);
5566 u64 usage;
5567 int i, j, size;
5568
5569 mutex_lock(&memcg->thresholds_lock);
5570 if (type == _MEM)
5571 thresholds = &memcg->thresholds;
5572 else if (type == _MEMSWAP)
5573 thresholds = &memcg->memsw_thresholds;
5574 else
5575 BUG();
5576
5577 if (!thresholds->primary)
5578 goto unlock;
5579
5580 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5581
5582 /* Check if a threshold crossed before removing */
5583 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5584
5585 /* Calculate new number of threshold */
5586 size = 0;
5587 for (i = 0; i < thresholds->primary->size; i++) {
5588 if (thresholds->primary->entries[i].eventfd != eventfd)
5589 size++;
5590 }
5591
5592 new = thresholds->spare;
5593
5594 /* Set thresholds array to NULL if we don't have thresholds */
5595 if (!size) {
5596 kfree(new);
5597 new = NULL;
5598 goto swap_buffers;
5599 }
5600
5601 new->size = size;
5602
5603 /* Copy thresholds and find current threshold */
5604 new->current_threshold = -1;
5605 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5606 if (thresholds->primary->entries[i].eventfd == eventfd)
5607 continue;
5608
5609 new->entries[j] = thresholds->primary->entries[i];
5610 if (new->entries[j].threshold <= usage) {
5611 /*
5612 * new->current_threshold will not be used
5613 * until rcu_assign_pointer(), so it's safe to increment
5614 * it here.
5615 */
5616 ++new->current_threshold;
5617 }
5618 j++;
5619 }
5620
5621 swap_buffers:
5622 /* Swap primary and spare array */
5623 thresholds->spare = thresholds->primary;
5624 /* If all events are unregistered, free the spare array */
5625 if (!new) {
5626 kfree(thresholds->spare);
5627 thresholds->spare = NULL;
5628 }
5629
5630 rcu_assign_pointer(thresholds->primary, new);
5631
5632 /* To be sure that nobody uses thresholds */
5633 synchronize_rcu();
5634 unlock:
5635 mutex_unlock(&memcg->thresholds_lock);
5636 }
5637
5638 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5639 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5640 {
5641 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5642 struct mem_cgroup_eventfd_list *event;
5643 enum res_type type = MEMFILE_TYPE(cft->private);
5644
5645 BUG_ON(type != _OOM_TYPE);
5646 event = kmalloc(sizeof(*event), GFP_KERNEL);
5647 if (!event)
5648 return -ENOMEM;
5649
5650 spin_lock(&memcg_oom_lock);
5651
5652 event->eventfd = eventfd;
5653 list_add(&event->list, &memcg->oom_notify);
5654
5655 /* already in OOM ? */
5656 if (atomic_read(&memcg->under_oom))
5657 eventfd_signal(eventfd, 1);
5658 spin_unlock(&memcg_oom_lock);
5659
5660 return 0;
5661 }
5662
5663 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
5664 struct cftype *cft, struct eventfd_ctx *eventfd)
5665 {
5666 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5667 struct mem_cgroup_eventfd_list *ev, *tmp;
5668 enum res_type type = MEMFILE_TYPE(cft->private);
5669
5670 BUG_ON(type != _OOM_TYPE);
5671
5672 spin_lock(&memcg_oom_lock);
5673
5674 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5675 if (ev->eventfd == eventfd) {
5676 list_del(&ev->list);
5677 kfree(ev);
5678 }
5679 }
5680
5681 spin_unlock(&memcg_oom_lock);
5682 }
5683
5684 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5685 struct cftype *cft, struct cgroup_map_cb *cb)
5686 {
5687 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5688
5689 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5690
5691 if (atomic_read(&memcg->under_oom))
5692 cb->fill(cb, "under_oom", 1);
5693 else
5694 cb->fill(cb, "under_oom", 0);
5695 return 0;
5696 }
5697
5698 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5699 struct cftype *cft, u64 val)
5700 {
5701 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5702 struct mem_cgroup *parent;
5703
5704 /* cannot set to root cgroup and only 0 and 1 are allowed */
5705 if (!cgrp->parent || !((val == 0) || (val == 1)))
5706 return -EINVAL;
5707
5708 parent = mem_cgroup_from_cont(cgrp->parent);
5709
5710 cgroup_lock();
5711 /* oom-kill-disable is a flag for subhierarchy. */
5712 if ((parent->use_hierarchy) ||
5713 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
5714 cgroup_unlock();
5715 return -EINVAL;
5716 }
5717 memcg->oom_kill_disable = val;
5718 if (!val)
5719 memcg_oom_recover(memcg);
5720 cgroup_unlock();
5721 return 0;
5722 }
5723
5724 #ifdef CONFIG_MEMCG_KMEM
5725 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5726 {
5727 int ret;
5728
5729 memcg->kmemcg_id = -1;
5730 ret = memcg_propagate_kmem(memcg);
5731 if (ret)
5732 return ret;
5733
5734 return mem_cgroup_sockets_init(memcg, ss);
5735 };
5736
5737 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5738 {
5739 mem_cgroup_sockets_destroy(memcg);
5740
5741 memcg_kmem_mark_dead(memcg);
5742
5743 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5744 return;
5745
5746 /*
5747 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5748 * path here, being careful not to race with memcg_uncharge_kmem: it is
5749 * possible that the charges went down to 0 between mark_dead and the
5750 * res_counter read, so in that case, we don't need the put
5751 */
5752 if (memcg_kmem_test_and_clear_dead(memcg))
5753 mem_cgroup_put(memcg);
5754 }
5755 #else
5756 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5757 {
5758 return 0;
5759 }
5760
5761 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5762 {
5763 }
5764 #endif
5765
5766 static struct cftype mem_cgroup_files[] = {
5767 {
5768 .name = "usage_in_bytes",
5769 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5770 .read = mem_cgroup_read,
5771 .register_event = mem_cgroup_usage_register_event,
5772 .unregister_event = mem_cgroup_usage_unregister_event,
5773 },
5774 {
5775 .name = "max_usage_in_bytes",
5776 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5777 .trigger = mem_cgroup_reset,
5778 .read = mem_cgroup_read,
5779 },
5780 {
5781 .name = "limit_in_bytes",
5782 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5783 .write_string = mem_cgroup_write,
5784 .read = mem_cgroup_read,
5785 },
5786 {
5787 .name = "soft_limit_in_bytes",
5788 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5789 .write_string = mem_cgroup_write,
5790 .read = mem_cgroup_read,
5791 },
5792 {
5793 .name = "failcnt",
5794 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5795 .trigger = mem_cgroup_reset,
5796 .read = mem_cgroup_read,
5797 },
5798 {
5799 .name = "stat",
5800 .read_seq_string = memcg_stat_show,
5801 },
5802 {
5803 .name = "force_empty",
5804 .trigger = mem_cgroup_force_empty_write,
5805 },
5806 {
5807 .name = "use_hierarchy",
5808 .write_u64 = mem_cgroup_hierarchy_write,
5809 .read_u64 = mem_cgroup_hierarchy_read,
5810 },
5811 {
5812 .name = "swappiness",
5813 .read_u64 = mem_cgroup_swappiness_read,
5814 .write_u64 = mem_cgroup_swappiness_write,
5815 },
5816 {
5817 .name = "move_charge_at_immigrate",
5818 .read_u64 = mem_cgroup_move_charge_read,
5819 .write_u64 = mem_cgroup_move_charge_write,
5820 },
5821 {
5822 .name = "oom_control",
5823 .read_map = mem_cgroup_oom_control_read,
5824 .write_u64 = mem_cgroup_oom_control_write,
5825 .register_event = mem_cgroup_oom_register_event,
5826 .unregister_event = mem_cgroup_oom_unregister_event,
5827 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5828 },
5829 #ifdef CONFIG_NUMA
5830 {
5831 .name = "numa_stat",
5832 .read_seq_string = memcg_numa_stat_show,
5833 },
5834 #endif
5835 #ifdef CONFIG_MEMCG_KMEM
5836 {
5837 .name = "kmem.limit_in_bytes",
5838 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5839 .write_string = mem_cgroup_write,
5840 .read = mem_cgroup_read,
5841 },
5842 {
5843 .name = "kmem.usage_in_bytes",
5844 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5845 .read = mem_cgroup_read,
5846 },
5847 {
5848 .name = "kmem.failcnt",
5849 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5850 .trigger = mem_cgroup_reset,
5851 .read = mem_cgroup_read,
5852 },
5853 {
5854 .name = "kmem.max_usage_in_bytes",
5855 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5856 .trigger = mem_cgroup_reset,
5857 .read = mem_cgroup_read,
5858 },
5859 #ifdef CONFIG_SLABINFO
5860 {
5861 .name = "kmem.slabinfo",
5862 .read_seq_string = mem_cgroup_slabinfo_read,
5863 },
5864 #endif
5865 #endif
5866 { }, /* terminate */
5867 };
5868
5869 #ifdef CONFIG_MEMCG_SWAP
5870 static struct cftype memsw_cgroup_files[] = {
5871 {
5872 .name = "memsw.usage_in_bytes",
5873 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5874 .read = mem_cgroup_read,
5875 .register_event = mem_cgroup_usage_register_event,
5876 .unregister_event = mem_cgroup_usage_unregister_event,
5877 },
5878 {
5879 .name = "memsw.max_usage_in_bytes",
5880 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5881 .trigger = mem_cgroup_reset,
5882 .read = mem_cgroup_read,
5883 },
5884 {
5885 .name = "memsw.limit_in_bytes",
5886 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5887 .write_string = mem_cgroup_write,
5888 .read = mem_cgroup_read,
5889 },
5890 {
5891 .name = "memsw.failcnt",
5892 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5893 .trigger = mem_cgroup_reset,
5894 .read = mem_cgroup_read,
5895 },
5896 { }, /* terminate */
5897 };
5898 #endif
5899 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5900 {
5901 struct mem_cgroup_per_node *pn;
5902 struct mem_cgroup_per_zone *mz;
5903 int zone, tmp = node;
5904 /*
5905 * This routine is called against possible nodes.
5906 * But it's BUG to call kmalloc() against offline node.
5907 *
5908 * TODO: this routine can waste much memory for nodes which will
5909 * never be onlined. It's better to use memory hotplug callback
5910 * function.
5911 */
5912 if (!node_state(node, N_NORMAL_MEMORY))
5913 tmp = -1;
5914 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5915 if (!pn)
5916 return 1;
5917
5918 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5919 mz = &pn->zoneinfo[zone];
5920 lruvec_init(&mz->lruvec);
5921 mz->usage_in_excess = 0;
5922 mz->on_tree = false;
5923 mz->memcg = memcg;
5924 }
5925 memcg->info.nodeinfo[node] = pn;
5926 return 0;
5927 }
5928
5929 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5930 {
5931 kfree(memcg->info.nodeinfo[node]);
5932 }
5933
5934 static struct mem_cgroup *mem_cgroup_alloc(void)
5935 {
5936 struct mem_cgroup *memcg;
5937 size_t size = memcg_size();
5938
5939 /* Can be very big if nr_node_ids is very big */
5940 if (size < PAGE_SIZE)
5941 memcg = kzalloc(size, GFP_KERNEL);
5942 else
5943 memcg = vzalloc(size);
5944
5945 if (!memcg)
5946 return NULL;
5947
5948 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5949 if (!memcg->stat)
5950 goto out_free;
5951 spin_lock_init(&memcg->pcp_counter_lock);
5952 return memcg;
5953
5954 out_free:
5955 if (size < PAGE_SIZE)
5956 kfree(memcg);
5957 else
5958 vfree(memcg);
5959 return NULL;
5960 }
5961
5962 /*
5963 * At destroying mem_cgroup, references from swap_cgroup can remain.
5964 * (scanning all at force_empty is too costly...)
5965 *
5966 * Instead of clearing all references at force_empty, we remember
5967 * the number of reference from swap_cgroup and free mem_cgroup when
5968 * it goes down to 0.
5969 *
5970 * Removal of cgroup itself succeeds regardless of refs from swap.
5971 */
5972
5973 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5974 {
5975 int node;
5976 size_t size = memcg_size();
5977
5978 mem_cgroup_remove_from_trees(memcg);
5979 free_css_id(&mem_cgroup_subsys, &memcg->css);
5980
5981 for_each_node(node)
5982 free_mem_cgroup_per_zone_info(memcg, node);
5983
5984 free_percpu(memcg->stat);
5985
5986 /*
5987 * We need to make sure that (at least for now), the jump label
5988 * destruction code runs outside of the cgroup lock. This is because
5989 * get_online_cpus(), which is called from the static_branch update,
5990 * can't be called inside the cgroup_lock. cpusets are the ones
5991 * enforcing this dependency, so if they ever change, we might as well.
5992 *
5993 * schedule_work() will guarantee this happens. Be careful if you need
5994 * to move this code around, and make sure it is outside
5995 * the cgroup_lock.
5996 */
5997 disarm_static_keys(memcg);
5998 if (size < PAGE_SIZE)
5999 kfree(memcg);
6000 else
6001 vfree(memcg);
6002 }
6003
6004
6005 /*
6006 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
6007 * but in process context. The work_freeing structure is overlaid
6008 * on the rcu_freeing structure, which itself is overlaid on memsw.
6009 */
6010 static void free_work(struct work_struct *work)
6011 {
6012 struct mem_cgroup *memcg;
6013
6014 memcg = container_of(work, struct mem_cgroup, work_freeing);
6015 __mem_cgroup_free(memcg);
6016 }
6017
6018 static void free_rcu(struct rcu_head *rcu_head)
6019 {
6020 struct mem_cgroup *memcg;
6021
6022 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
6023 INIT_WORK(&memcg->work_freeing, free_work);
6024 schedule_work(&memcg->work_freeing);
6025 }
6026
6027 static void mem_cgroup_get(struct mem_cgroup *memcg)
6028 {
6029 atomic_inc(&memcg->refcnt);
6030 }
6031
6032 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6033 {
6034 if (atomic_sub_and_test(count, &memcg->refcnt)) {
6035 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6036 call_rcu(&memcg->rcu_freeing, free_rcu);
6037 if (parent)
6038 mem_cgroup_put(parent);
6039 }
6040 }
6041
6042 static void mem_cgroup_put(struct mem_cgroup *memcg)
6043 {
6044 __mem_cgroup_put(memcg, 1);
6045 }
6046
6047 /*
6048 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6049 */
6050 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6051 {
6052 if (!memcg->res.parent)
6053 return NULL;
6054 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6055 }
6056 EXPORT_SYMBOL(parent_mem_cgroup);
6057
6058 static int mem_cgroup_soft_limit_tree_init(void)
6059 {
6060 struct mem_cgroup_tree_per_node *rtpn;
6061 struct mem_cgroup_tree_per_zone *rtpz;
6062 int tmp, node, zone;
6063
6064 for_each_node(node) {
6065 tmp = node;
6066 if (!node_state(node, N_NORMAL_MEMORY))
6067 tmp = -1;
6068 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6069 if (!rtpn)
6070 goto err_cleanup;
6071
6072 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6073
6074 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6075 rtpz = &rtpn->rb_tree_per_zone[zone];
6076 rtpz->rb_root = RB_ROOT;
6077 spin_lock_init(&rtpz->lock);
6078 }
6079 }
6080 return 0;
6081
6082 err_cleanup:
6083 for_each_node(node) {
6084 if (!soft_limit_tree.rb_tree_per_node[node])
6085 break;
6086 kfree(soft_limit_tree.rb_tree_per_node[node]);
6087 soft_limit_tree.rb_tree_per_node[node] = NULL;
6088 }
6089 return 1;
6090
6091 }
6092
6093 static struct cgroup_subsys_state * __ref
6094 mem_cgroup_css_alloc(struct cgroup *cont)
6095 {
6096 struct mem_cgroup *memcg, *parent;
6097 long error = -ENOMEM;
6098 int node;
6099
6100 memcg = mem_cgroup_alloc();
6101 if (!memcg)
6102 return ERR_PTR(error);
6103
6104 for_each_node(node)
6105 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6106 goto free_out;
6107
6108 /* root ? */
6109 if (cont->parent == NULL) {
6110 int cpu;
6111 parent = NULL;
6112 if (mem_cgroup_soft_limit_tree_init())
6113 goto free_out;
6114 root_mem_cgroup = memcg;
6115 for_each_possible_cpu(cpu) {
6116 struct memcg_stock_pcp *stock =
6117 &per_cpu(memcg_stock, cpu);
6118 INIT_WORK(&stock->work, drain_local_stock);
6119 }
6120 } else {
6121 parent = mem_cgroup_from_cont(cont->parent);
6122 memcg->use_hierarchy = parent->use_hierarchy;
6123 memcg->oom_kill_disable = parent->oom_kill_disable;
6124 }
6125
6126 if (parent && parent->use_hierarchy) {
6127 res_counter_init(&memcg->res, &parent->res);
6128 res_counter_init(&memcg->memsw, &parent->memsw);
6129 res_counter_init(&memcg->kmem, &parent->kmem);
6130
6131 /*
6132 * We increment refcnt of the parent to ensure that we can
6133 * safely access it on res_counter_charge/uncharge.
6134 * This refcnt will be decremented when freeing this
6135 * mem_cgroup(see mem_cgroup_put).
6136 */
6137 mem_cgroup_get(parent);
6138 } else {
6139 res_counter_init(&memcg->res, NULL);
6140 res_counter_init(&memcg->memsw, NULL);
6141 res_counter_init(&memcg->kmem, NULL);
6142 /*
6143 * Deeper hierachy with use_hierarchy == false doesn't make
6144 * much sense so let cgroup subsystem know about this
6145 * unfortunate state in our controller.
6146 */
6147 if (parent && parent != root_mem_cgroup)
6148 mem_cgroup_subsys.broken_hierarchy = true;
6149 }
6150 memcg->last_scanned_node = MAX_NUMNODES;
6151 INIT_LIST_HEAD(&memcg->oom_notify);
6152
6153 if (parent)
6154 memcg->swappiness = mem_cgroup_swappiness(parent);
6155 atomic_set(&memcg->refcnt, 1);
6156 memcg->move_charge_at_immigrate = 0;
6157 mutex_init(&memcg->thresholds_lock);
6158 spin_lock_init(&memcg->move_lock);
6159
6160 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6161 if (error) {
6162 /*
6163 * We call put now because our (and parent's) refcnts
6164 * are already in place. mem_cgroup_put() will internally
6165 * call __mem_cgroup_free, so return directly
6166 */
6167 mem_cgroup_put(memcg);
6168 return ERR_PTR(error);
6169 }
6170 return &memcg->css;
6171 free_out:
6172 __mem_cgroup_free(memcg);
6173 return ERR_PTR(error);
6174 }
6175
6176 static void mem_cgroup_css_offline(struct cgroup *cont)
6177 {
6178 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6179
6180 mem_cgroup_reparent_charges(memcg);
6181 mem_cgroup_destroy_all_caches(memcg);
6182 }
6183
6184 static void mem_cgroup_css_free(struct cgroup *cont)
6185 {
6186 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6187
6188 kmem_cgroup_destroy(memcg);
6189
6190 mem_cgroup_put(memcg);
6191 }
6192
6193 #ifdef CONFIG_MMU
6194 /* Handlers for move charge at task migration. */
6195 #define PRECHARGE_COUNT_AT_ONCE 256
6196 static int mem_cgroup_do_precharge(unsigned long count)
6197 {
6198 int ret = 0;
6199 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6200 struct mem_cgroup *memcg = mc.to;
6201
6202 if (mem_cgroup_is_root(memcg)) {
6203 mc.precharge += count;
6204 /* we don't need css_get for root */
6205 return ret;
6206 }
6207 /* try to charge at once */
6208 if (count > 1) {
6209 struct res_counter *dummy;
6210 /*
6211 * "memcg" cannot be under rmdir() because we've already checked
6212 * by cgroup_lock_live_cgroup() that it is not removed and we
6213 * are still under the same cgroup_mutex. So we can postpone
6214 * css_get().
6215 */
6216 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6217 goto one_by_one;
6218 if (do_swap_account && res_counter_charge(&memcg->memsw,
6219 PAGE_SIZE * count, &dummy)) {
6220 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6221 goto one_by_one;
6222 }
6223 mc.precharge += count;
6224 return ret;
6225 }
6226 one_by_one:
6227 /* fall back to one by one charge */
6228 while (count--) {
6229 if (signal_pending(current)) {
6230 ret = -EINTR;
6231 break;
6232 }
6233 if (!batch_count--) {
6234 batch_count = PRECHARGE_COUNT_AT_ONCE;
6235 cond_resched();
6236 }
6237 ret = __mem_cgroup_try_charge(NULL,
6238 GFP_KERNEL, 1, &memcg, false);
6239 if (ret)
6240 /* mem_cgroup_clear_mc() will do uncharge later */
6241 return ret;
6242 mc.precharge++;
6243 }
6244 return ret;
6245 }
6246
6247 /**
6248 * get_mctgt_type - get target type of moving charge
6249 * @vma: the vma the pte to be checked belongs
6250 * @addr: the address corresponding to the pte to be checked
6251 * @ptent: the pte to be checked
6252 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6253 *
6254 * Returns
6255 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6256 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6257 * move charge. if @target is not NULL, the page is stored in target->page
6258 * with extra refcnt got(Callers should handle it).
6259 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6260 * target for charge migration. if @target is not NULL, the entry is stored
6261 * in target->ent.
6262 *
6263 * Called with pte lock held.
6264 */
6265 union mc_target {
6266 struct page *page;
6267 swp_entry_t ent;
6268 };
6269
6270 enum mc_target_type {
6271 MC_TARGET_NONE = 0,
6272 MC_TARGET_PAGE,
6273 MC_TARGET_SWAP,
6274 };
6275
6276 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6277 unsigned long addr, pte_t ptent)
6278 {
6279 struct page *page = vm_normal_page(vma, addr, ptent);
6280
6281 if (!page || !page_mapped(page))
6282 return NULL;
6283 if (PageAnon(page)) {
6284 /* we don't move shared anon */
6285 if (!move_anon())
6286 return NULL;
6287 } else if (!move_file())
6288 /* we ignore mapcount for file pages */
6289 return NULL;
6290 if (!get_page_unless_zero(page))
6291 return NULL;
6292
6293 return page;
6294 }
6295
6296 #ifdef CONFIG_SWAP
6297 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6298 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6299 {
6300 struct page *page = NULL;
6301 swp_entry_t ent = pte_to_swp_entry(ptent);
6302
6303 if (!move_anon() || non_swap_entry(ent))
6304 return NULL;
6305 /*
6306 * Because lookup_swap_cache() updates some statistics counter,
6307 * we call find_get_page() with swapper_space directly.
6308 */
6309 page = find_get_page(swap_address_space(ent), ent.val);
6310 if (do_swap_account)
6311 entry->val = ent.val;
6312
6313 return page;
6314 }
6315 #else
6316 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6317 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6318 {
6319 return NULL;
6320 }
6321 #endif
6322
6323 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6324 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6325 {
6326 struct page *page = NULL;
6327 struct address_space *mapping;
6328 pgoff_t pgoff;
6329
6330 if (!vma->vm_file) /* anonymous vma */
6331 return NULL;
6332 if (!move_file())
6333 return NULL;
6334
6335 mapping = vma->vm_file->f_mapping;
6336 if (pte_none(ptent))
6337 pgoff = linear_page_index(vma, addr);
6338 else /* pte_file(ptent) is true */
6339 pgoff = pte_to_pgoff(ptent);
6340
6341 /* page is moved even if it's not RSS of this task(page-faulted). */
6342 page = find_get_page(mapping, pgoff);
6343
6344 #ifdef CONFIG_SWAP
6345 /* shmem/tmpfs may report page out on swap: account for that too. */
6346 if (radix_tree_exceptional_entry(page)) {
6347 swp_entry_t swap = radix_to_swp_entry(page);
6348 if (do_swap_account)
6349 *entry = swap;
6350 page = find_get_page(swap_address_space(swap), swap.val);
6351 }
6352 #endif
6353 return page;
6354 }
6355
6356 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6357 unsigned long addr, pte_t ptent, union mc_target *target)
6358 {
6359 struct page *page = NULL;
6360 struct page_cgroup *pc;
6361 enum mc_target_type ret = MC_TARGET_NONE;
6362 swp_entry_t ent = { .val = 0 };
6363
6364 if (pte_present(ptent))
6365 page = mc_handle_present_pte(vma, addr, ptent);
6366 else if (is_swap_pte(ptent))
6367 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6368 else if (pte_none(ptent) || pte_file(ptent))
6369 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6370
6371 if (!page && !ent.val)
6372 return ret;
6373 if (page) {
6374 pc = lookup_page_cgroup(page);
6375 /*
6376 * Do only loose check w/o page_cgroup lock.
6377 * mem_cgroup_move_account() checks the pc is valid or not under
6378 * the lock.
6379 */
6380 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6381 ret = MC_TARGET_PAGE;
6382 if (target)
6383 target->page = page;
6384 }
6385 if (!ret || !target)
6386 put_page(page);
6387 }
6388 /* There is a swap entry and a page doesn't exist or isn't charged */
6389 if (ent.val && !ret &&
6390 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6391 ret = MC_TARGET_SWAP;
6392 if (target)
6393 target->ent = ent;
6394 }
6395 return ret;
6396 }
6397
6398 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6399 /*
6400 * We don't consider swapping or file mapped pages because THP does not
6401 * support them for now.
6402 * Caller should make sure that pmd_trans_huge(pmd) is true.
6403 */
6404 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6405 unsigned long addr, pmd_t pmd, union mc_target *target)
6406 {
6407 struct page *page = NULL;
6408 struct page_cgroup *pc;
6409 enum mc_target_type ret = MC_TARGET_NONE;
6410
6411 page = pmd_page(pmd);
6412 VM_BUG_ON(!page || !PageHead(page));
6413 if (!move_anon())
6414 return ret;
6415 pc = lookup_page_cgroup(page);
6416 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6417 ret = MC_TARGET_PAGE;
6418 if (target) {
6419 get_page(page);
6420 target->page = page;
6421 }
6422 }
6423 return ret;
6424 }
6425 #else
6426 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6427 unsigned long addr, pmd_t pmd, union mc_target *target)
6428 {
6429 return MC_TARGET_NONE;
6430 }
6431 #endif
6432
6433 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6434 unsigned long addr, unsigned long end,
6435 struct mm_walk *walk)
6436 {
6437 struct vm_area_struct *vma = walk->private;
6438 pte_t *pte;
6439 spinlock_t *ptl;
6440
6441 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6442 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6443 mc.precharge += HPAGE_PMD_NR;
6444 spin_unlock(&vma->vm_mm->page_table_lock);
6445 return 0;
6446 }
6447
6448 if (pmd_trans_unstable(pmd))
6449 return 0;
6450 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6451 for (; addr != end; pte++, addr += PAGE_SIZE)
6452 if (get_mctgt_type(vma, addr, *pte, NULL))
6453 mc.precharge++; /* increment precharge temporarily */
6454 pte_unmap_unlock(pte - 1, ptl);
6455 cond_resched();
6456
6457 return 0;
6458 }
6459
6460 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6461 {
6462 unsigned long precharge;
6463 struct vm_area_struct *vma;
6464
6465 down_read(&mm->mmap_sem);
6466 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6467 struct mm_walk mem_cgroup_count_precharge_walk = {
6468 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6469 .mm = mm,
6470 .private = vma,
6471 };
6472 if (is_vm_hugetlb_page(vma))
6473 continue;
6474 walk_page_range(vma->vm_start, vma->vm_end,
6475 &mem_cgroup_count_precharge_walk);
6476 }
6477 up_read(&mm->mmap_sem);
6478
6479 precharge = mc.precharge;
6480 mc.precharge = 0;
6481
6482 return precharge;
6483 }
6484
6485 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6486 {
6487 unsigned long precharge = mem_cgroup_count_precharge(mm);
6488
6489 VM_BUG_ON(mc.moving_task);
6490 mc.moving_task = current;
6491 return mem_cgroup_do_precharge(precharge);
6492 }
6493
6494 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6495 static void __mem_cgroup_clear_mc(void)
6496 {
6497 struct mem_cgroup *from = mc.from;
6498 struct mem_cgroup *to = mc.to;
6499
6500 /* we must uncharge all the leftover precharges from mc.to */
6501 if (mc.precharge) {
6502 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6503 mc.precharge = 0;
6504 }
6505 /*
6506 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6507 * we must uncharge here.
6508 */
6509 if (mc.moved_charge) {
6510 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6511 mc.moved_charge = 0;
6512 }
6513 /* we must fixup refcnts and charges */
6514 if (mc.moved_swap) {
6515 /* uncharge swap account from the old cgroup */
6516 if (!mem_cgroup_is_root(mc.from))
6517 res_counter_uncharge(&mc.from->memsw,
6518 PAGE_SIZE * mc.moved_swap);
6519 __mem_cgroup_put(mc.from, mc.moved_swap);
6520
6521 if (!mem_cgroup_is_root(mc.to)) {
6522 /*
6523 * we charged both to->res and to->memsw, so we should
6524 * uncharge to->res.
6525 */
6526 res_counter_uncharge(&mc.to->res,
6527 PAGE_SIZE * mc.moved_swap);
6528 }
6529 /* we've already done mem_cgroup_get(mc.to) */
6530 mc.moved_swap = 0;
6531 }
6532 memcg_oom_recover(from);
6533 memcg_oom_recover(to);
6534 wake_up_all(&mc.waitq);
6535 }
6536
6537 static void mem_cgroup_clear_mc(void)
6538 {
6539 struct mem_cgroup *from = mc.from;
6540
6541 /*
6542 * we must clear moving_task before waking up waiters at the end of
6543 * task migration.
6544 */
6545 mc.moving_task = NULL;
6546 __mem_cgroup_clear_mc();
6547 spin_lock(&mc.lock);
6548 mc.from = NULL;
6549 mc.to = NULL;
6550 spin_unlock(&mc.lock);
6551 mem_cgroup_end_move(from);
6552 }
6553
6554 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6555 struct cgroup_taskset *tset)
6556 {
6557 struct task_struct *p = cgroup_taskset_first(tset);
6558 int ret = 0;
6559 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6560 unsigned long move_charge_at_immigrate;
6561
6562 /*
6563 * We are now commited to this value whatever it is. Changes in this
6564 * tunable will only affect upcoming migrations, not the current one.
6565 * So we need to save it, and keep it going.
6566 */
6567 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6568 if (move_charge_at_immigrate) {
6569 struct mm_struct *mm;
6570 struct mem_cgroup *from = mem_cgroup_from_task(p);
6571
6572 VM_BUG_ON(from == memcg);
6573
6574 mm = get_task_mm(p);
6575 if (!mm)
6576 return 0;
6577 /* We move charges only when we move a owner of the mm */
6578 if (mm->owner == p) {
6579 VM_BUG_ON(mc.from);
6580 VM_BUG_ON(mc.to);
6581 VM_BUG_ON(mc.precharge);
6582 VM_BUG_ON(mc.moved_charge);
6583 VM_BUG_ON(mc.moved_swap);
6584 mem_cgroup_start_move(from);
6585 spin_lock(&mc.lock);
6586 mc.from = from;
6587 mc.to = memcg;
6588 mc.immigrate_flags = move_charge_at_immigrate;
6589 spin_unlock(&mc.lock);
6590 /* We set mc.moving_task later */
6591
6592 ret = mem_cgroup_precharge_mc(mm);
6593 if (ret)
6594 mem_cgroup_clear_mc();
6595 }
6596 mmput(mm);
6597 }
6598 return ret;
6599 }
6600
6601 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6602 struct cgroup_taskset *tset)
6603 {
6604 mem_cgroup_clear_mc();
6605 }
6606
6607 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6608 unsigned long addr, unsigned long end,
6609 struct mm_walk *walk)
6610 {
6611 int ret = 0;
6612 struct vm_area_struct *vma = walk->private;
6613 pte_t *pte;
6614 spinlock_t *ptl;
6615 enum mc_target_type target_type;
6616 union mc_target target;
6617 struct page *page;
6618 struct page_cgroup *pc;
6619
6620 /*
6621 * We don't take compound_lock() here but no race with splitting thp
6622 * happens because:
6623 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6624 * under splitting, which means there's no concurrent thp split,
6625 * - if another thread runs into split_huge_page() just after we
6626 * entered this if-block, the thread must wait for page table lock
6627 * to be unlocked in __split_huge_page_splitting(), where the main
6628 * part of thp split is not executed yet.
6629 */
6630 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6631 if (mc.precharge < HPAGE_PMD_NR) {
6632 spin_unlock(&vma->vm_mm->page_table_lock);
6633 return 0;
6634 }
6635 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6636 if (target_type == MC_TARGET_PAGE) {
6637 page = target.page;
6638 if (!isolate_lru_page(page)) {
6639 pc = lookup_page_cgroup(page);
6640 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6641 pc, mc.from, mc.to)) {
6642 mc.precharge -= HPAGE_PMD_NR;
6643 mc.moved_charge += HPAGE_PMD_NR;
6644 }
6645 putback_lru_page(page);
6646 }
6647 put_page(page);
6648 }
6649 spin_unlock(&vma->vm_mm->page_table_lock);
6650 return 0;
6651 }
6652
6653 if (pmd_trans_unstable(pmd))
6654 return 0;
6655 retry:
6656 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6657 for (; addr != end; addr += PAGE_SIZE) {
6658 pte_t ptent = *(pte++);
6659 swp_entry_t ent;
6660
6661 if (!mc.precharge)
6662 break;
6663
6664 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6665 case MC_TARGET_PAGE:
6666 page = target.page;
6667 if (isolate_lru_page(page))
6668 goto put;
6669 pc = lookup_page_cgroup(page);
6670 if (!mem_cgroup_move_account(page, 1, pc,
6671 mc.from, mc.to)) {
6672 mc.precharge--;
6673 /* we uncharge from mc.from later. */
6674 mc.moved_charge++;
6675 }
6676 putback_lru_page(page);
6677 put: /* get_mctgt_type() gets the page */
6678 put_page(page);
6679 break;
6680 case MC_TARGET_SWAP:
6681 ent = target.ent;
6682 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6683 mc.precharge--;
6684 /* we fixup refcnts and charges later. */
6685 mc.moved_swap++;
6686 }
6687 break;
6688 default:
6689 break;
6690 }
6691 }
6692 pte_unmap_unlock(pte - 1, ptl);
6693 cond_resched();
6694
6695 if (addr != end) {
6696 /*
6697 * We have consumed all precharges we got in can_attach().
6698 * We try charge one by one, but don't do any additional
6699 * charges to mc.to if we have failed in charge once in attach()
6700 * phase.
6701 */
6702 ret = mem_cgroup_do_precharge(1);
6703 if (!ret)
6704 goto retry;
6705 }
6706
6707 return ret;
6708 }
6709
6710 static void mem_cgroup_move_charge(struct mm_struct *mm)
6711 {
6712 struct vm_area_struct *vma;
6713
6714 lru_add_drain_all();
6715 retry:
6716 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6717 /*
6718 * Someone who are holding the mmap_sem might be waiting in
6719 * waitq. So we cancel all extra charges, wake up all waiters,
6720 * and retry. Because we cancel precharges, we might not be able
6721 * to move enough charges, but moving charge is a best-effort
6722 * feature anyway, so it wouldn't be a big problem.
6723 */
6724 __mem_cgroup_clear_mc();
6725 cond_resched();
6726 goto retry;
6727 }
6728 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6729 int ret;
6730 struct mm_walk mem_cgroup_move_charge_walk = {
6731 .pmd_entry = mem_cgroup_move_charge_pte_range,
6732 .mm = mm,
6733 .private = vma,
6734 };
6735 if (is_vm_hugetlb_page(vma))
6736 continue;
6737 ret = walk_page_range(vma->vm_start, vma->vm_end,
6738 &mem_cgroup_move_charge_walk);
6739 if (ret)
6740 /*
6741 * means we have consumed all precharges and failed in
6742 * doing additional charge. Just abandon here.
6743 */
6744 break;
6745 }
6746 up_read(&mm->mmap_sem);
6747 }
6748
6749 static void mem_cgroup_move_task(struct cgroup *cont,
6750 struct cgroup_taskset *tset)
6751 {
6752 struct task_struct *p = cgroup_taskset_first(tset);
6753 struct mm_struct *mm = get_task_mm(p);
6754
6755 if (mm) {
6756 if (mc.to)
6757 mem_cgroup_move_charge(mm);
6758 mmput(mm);
6759 }
6760 if (mc.to)
6761 mem_cgroup_clear_mc();
6762 }
6763 #else /* !CONFIG_MMU */
6764 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6765 struct cgroup_taskset *tset)
6766 {
6767 return 0;
6768 }
6769 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6770 struct cgroup_taskset *tset)
6771 {
6772 }
6773 static void mem_cgroup_move_task(struct cgroup *cont,
6774 struct cgroup_taskset *tset)
6775 {
6776 }
6777 #endif
6778
6779 struct cgroup_subsys mem_cgroup_subsys = {
6780 .name = "memory",
6781 .subsys_id = mem_cgroup_subsys_id,
6782 .css_alloc = mem_cgroup_css_alloc,
6783 .css_offline = mem_cgroup_css_offline,
6784 .css_free = mem_cgroup_css_free,
6785 .can_attach = mem_cgroup_can_attach,
6786 .cancel_attach = mem_cgroup_cancel_attach,
6787 .attach = mem_cgroup_move_task,
6788 .base_cftypes = mem_cgroup_files,
6789 .early_init = 0,
6790 .use_id = 1,
6791 };
6792
6793 #ifdef CONFIG_MEMCG_SWAP
6794 static int __init enable_swap_account(char *s)
6795 {
6796 /* consider enabled if no parameter or 1 is given */
6797 if (!strcmp(s, "1"))
6798 really_do_swap_account = 1;
6799 else if (!strcmp(s, "0"))
6800 really_do_swap_account = 0;
6801 return 1;
6802 }
6803 __setup("swapaccount=", enable_swap_account);
6804
6805 static void __init memsw_file_init(void)
6806 {
6807 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6808 }
6809
6810 static void __init enable_swap_cgroup(void)
6811 {
6812 if (!mem_cgroup_disabled() && really_do_swap_account) {
6813 do_swap_account = 1;
6814 memsw_file_init();
6815 }
6816 }
6817
6818 #else
6819 static void __init enable_swap_cgroup(void)
6820 {
6821 }
6822 #endif
6823
6824 /*
6825 * The rest of init is performed during ->css_alloc() for root css which
6826 * happens before initcalls. hotcpu_notifier() can't be done together as
6827 * it would introduce circular locking by adding cgroup_lock -> cpu hotplug
6828 * dependency. Do it from a subsys_initcall().
6829 */
6830 static int __init mem_cgroup_init(void)
6831 {
6832 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6833 enable_swap_cgroup();
6834 return 0;
6835 }
6836 subsys_initcall(mem_cgroup_init);