]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/memcontrol.c
tuntap: add sanity checks about msg_controllen in sendmsg
[mirror_ubuntu-focal-kernel.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66
67 #include <linux/uaccess.h>
68
69 #include <trace/events/vmscan.h>
70
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75
76 #define MEM_CGROUP_RECLAIM_RETRIES 5
77
78 /* Socket memory accounting disabled? */
79 static bool cgroup_memory_nosocket;
80
81 /* Kernel memory accounting disabled? */
82 static bool cgroup_memory_nokmem;
83
84 /* Whether the swap controller is active */
85 #ifdef CONFIG_MEMCG_SWAP
86 int do_swap_account __read_mostly;
87 #else
88 #define do_swap_account 0
89 #endif
90
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char *const mem_cgroup_lru_names[] = {
102 "inactive_anon",
103 "active_anon",
104 "inactive_file",
105 "active_file",
106 "unevictable",
107 };
108
109 #define THRESHOLDS_EVENTS_TARGET 128
110 #define SOFTLIMIT_EVENTS_TARGET 1024
111 #define NUMAINFO_EVENTS_TARGET 1024
112
113 /*
114 * Cgroups above their limits are maintained in a RB-Tree, independent of
115 * their hierarchy representation
116 */
117
118 struct mem_cgroup_tree_per_node {
119 struct rb_root rb_root;
120 struct rb_node *rb_rightmost;
121 spinlock_t lock;
122 };
123
124 struct mem_cgroup_tree {
125 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
126 };
127
128 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
129
130 /* for OOM */
131 struct mem_cgroup_eventfd_list {
132 struct list_head list;
133 struct eventfd_ctx *eventfd;
134 };
135
136 /*
137 * cgroup_event represents events which userspace want to receive.
138 */
139 struct mem_cgroup_event {
140 /*
141 * memcg which the event belongs to.
142 */
143 struct mem_cgroup *memcg;
144 /*
145 * eventfd to signal userspace about the event.
146 */
147 struct eventfd_ctx *eventfd;
148 /*
149 * Each of these stored in a list by the cgroup.
150 */
151 struct list_head list;
152 /*
153 * register_event() callback will be used to add new userspace
154 * waiter for changes related to this event. Use eventfd_signal()
155 * on eventfd to send notification to userspace.
156 */
157 int (*register_event)(struct mem_cgroup *memcg,
158 struct eventfd_ctx *eventfd, const char *args);
159 /*
160 * unregister_event() callback will be called when userspace closes
161 * the eventfd or on cgroup removing. This callback must be set,
162 * if you want provide notification functionality.
163 */
164 void (*unregister_event)(struct mem_cgroup *memcg,
165 struct eventfd_ctx *eventfd);
166 /*
167 * All fields below needed to unregister event when
168 * userspace closes eventfd.
169 */
170 poll_table pt;
171 wait_queue_head_t *wqh;
172 wait_queue_entry_t wait;
173 struct work_struct remove;
174 };
175
176 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
177 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
178
179 /* Stuffs for move charges at task migration. */
180 /*
181 * Types of charges to be moved.
182 */
183 #define MOVE_ANON 0x1U
184 #define MOVE_FILE 0x2U
185 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
186
187 /* "mc" and its members are protected by cgroup_mutex */
188 static struct move_charge_struct {
189 spinlock_t lock; /* for from, to */
190 struct mm_struct *mm;
191 struct mem_cgroup *from;
192 struct mem_cgroup *to;
193 unsigned long flags;
194 unsigned long precharge;
195 unsigned long moved_charge;
196 unsigned long moved_swap;
197 struct task_struct *moving_task; /* a task moving charges */
198 wait_queue_head_t waitq; /* a waitq for other context */
199 } mc = {
200 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
201 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
202 };
203
204 /*
205 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
206 * limit reclaim to prevent infinite loops, if they ever occur.
207 */
208 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
209 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
210
211 enum charge_type {
212 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
213 MEM_CGROUP_CHARGE_TYPE_ANON,
214 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
215 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
216 NR_CHARGE_TYPE,
217 };
218
219 /* for encoding cft->private value on file */
220 enum res_type {
221 _MEM,
222 _MEMSWAP,
223 _OOM_TYPE,
224 _KMEM,
225 _TCP,
226 };
227
228 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
229 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
230 #define MEMFILE_ATTR(val) ((val) & 0xffff)
231 /* Used for OOM nofiier */
232 #define OOM_CONTROL (0)
233
234 /*
235 * Iteration constructs for visiting all cgroups (under a tree). If
236 * loops are exited prematurely (break), mem_cgroup_iter_break() must
237 * be used for reference counting.
238 */
239 #define for_each_mem_cgroup_tree(iter, root) \
240 for (iter = mem_cgroup_iter(root, NULL, NULL); \
241 iter != NULL; \
242 iter = mem_cgroup_iter(root, iter, NULL))
243
244 #define for_each_mem_cgroup(iter) \
245 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
246 iter != NULL; \
247 iter = mem_cgroup_iter(NULL, iter, NULL))
248
249 static inline bool should_force_charge(void)
250 {
251 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
252 (current->flags & PF_EXITING);
253 }
254
255 /* Some nice accessors for the vmpressure. */
256 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
257 {
258 if (!memcg)
259 memcg = root_mem_cgroup;
260 return &memcg->vmpressure;
261 }
262
263 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
264 {
265 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
266 }
267
268 #ifdef CONFIG_MEMCG_KMEM
269 /*
270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
271 * The main reason for not using cgroup id for this:
272 * this works better in sparse environments, where we have a lot of memcgs,
273 * but only a few kmem-limited. Or also, if we have, for instance, 200
274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
275 * 200 entry array for that.
276 *
277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
278 * will double each time we have to increase it.
279 */
280 static DEFINE_IDA(memcg_cache_ida);
281 int memcg_nr_cache_ids;
282
283 /* Protects memcg_nr_cache_ids */
284 static DECLARE_RWSEM(memcg_cache_ids_sem);
285
286 void memcg_get_cache_ids(void)
287 {
288 down_read(&memcg_cache_ids_sem);
289 }
290
291 void memcg_put_cache_ids(void)
292 {
293 up_read(&memcg_cache_ids_sem);
294 }
295
296 /*
297 * MIN_SIZE is different than 1, because we would like to avoid going through
298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
299 * cgroups is a reasonable guess. In the future, it could be a parameter or
300 * tunable, but that is strictly not necessary.
301 *
302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303 * this constant directly from cgroup, but it is understandable that this is
304 * better kept as an internal representation in cgroup.c. In any case, the
305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
306 * increase ours as well if it increases.
307 */
308 #define MEMCG_CACHES_MIN_SIZE 4
309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
310
311 /*
312 * A lot of the calls to the cache allocation functions are expected to be
313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314 * conditional to this static branch, we'll have to allow modules that does
315 * kmem_cache_alloc and the such to see this symbol as well
316 */
317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318 EXPORT_SYMBOL(memcg_kmem_enabled_key);
319
320 struct workqueue_struct *memcg_kmem_cache_wq;
321 #endif
322
323 static int memcg_shrinker_map_size;
324 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
325
326 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
327 {
328 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
329 }
330
331 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
332 int size, int old_size)
333 {
334 struct memcg_shrinker_map *new, *old;
335 int nid;
336
337 lockdep_assert_held(&memcg_shrinker_map_mutex);
338
339 for_each_node(nid) {
340 old = rcu_dereference_protected(
341 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
342 /* Not yet online memcg */
343 if (!old)
344 return 0;
345
346 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
347 if (!new)
348 return -ENOMEM;
349
350 /* Set all old bits, clear all new bits */
351 memset(new->map, (int)0xff, old_size);
352 memset((void *)new->map + old_size, 0, size - old_size);
353
354 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
355 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
356 }
357
358 return 0;
359 }
360
361 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
362 {
363 struct mem_cgroup_per_node *pn;
364 struct memcg_shrinker_map *map;
365 int nid;
366
367 if (mem_cgroup_is_root(memcg))
368 return;
369
370 for_each_node(nid) {
371 pn = mem_cgroup_nodeinfo(memcg, nid);
372 map = rcu_dereference_protected(pn->shrinker_map, true);
373 if (map)
374 kvfree(map);
375 rcu_assign_pointer(pn->shrinker_map, NULL);
376 }
377 }
378
379 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
380 {
381 struct memcg_shrinker_map *map;
382 int nid, size, ret = 0;
383
384 if (mem_cgroup_is_root(memcg))
385 return 0;
386
387 mutex_lock(&memcg_shrinker_map_mutex);
388 size = memcg_shrinker_map_size;
389 for_each_node(nid) {
390 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
391 if (!map) {
392 memcg_free_shrinker_maps(memcg);
393 ret = -ENOMEM;
394 break;
395 }
396 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
397 }
398 mutex_unlock(&memcg_shrinker_map_mutex);
399
400 return ret;
401 }
402
403 int memcg_expand_shrinker_maps(int new_id)
404 {
405 int size, old_size, ret = 0;
406 struct mem_cgroup *memcg;
407
408 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
409 old_size = memcg_shrinker_map_size;
410 if (size <= old_size)
411 return 0;
412
413 mutex_lock(&memcg_shrinker_map_mutex);
414 if (!root_mem_cgroup)
415 goto unlock;
416
417 for_each_mem_cgroup(memcg) {
418 if (mem_cgroup_is_root(memcg))
419 continue;
420 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
421 if (ret) {
422 mem_cgroup_iter_break(NULL, memcg);
423 goto unlock;
424 }
425 }
426 unlock:
427 if (!ret)
428 memcg_shrinker_map_size = size;
429 mutex_unlock(&memcg_shrinker_map_mutex);
430 return ret;
431 }
432
433 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
434 {
435 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
436 struct memcg_shrinker_map *map;
437
438 rcu_read_lock();
439 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
440 /* Pairs with smp mb in shrink_slab() */
441 smp_mb__before_atomic();
442 set_bit(shrinker_id, map->map);
443 rcu_read_unlock();
444 }
445 }
446
447 /**
448 * mem_cgroup_css_from_page - css of the memcg associated with a page
449 * @page: page of interest
450 *
451 * If memcg is bound to the default hierarchy, css of the memcg associated
452 * with @page is returned. The returned css remains associated with @page
453 * until it is released.
454 *
455 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
456 * is returned.
457 */
458 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
459 {
460 struct mem_cgroup *memcg;
461
462 memcg = page->mem_cgroup;
463
464 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
465 memcg = root_mem_cgroup;
466
467 return &memcg->css;
468 }
469
470 /**
471 * page_cgroup_ino - return inode number of the memcg a page is charged to
472 * @page: the page
473 *
474 * Look up the closest online ancestor of the memory cgroup @page is charged to
475 * and return its inode number or 0 if @page is not charged to any cgroup. It
476 * is safe to call this function without holding a reference to @page.
477 *
478 * Note, this function is inherently racy, because there is nothing to prevent
479 * the cgroup inode from getting torn down and potentially reallocated a moment
480 * after page_cgroup_ino() returns, so it only should be used by callers that
481 * do not care (such as procfs interfaces).
482 */
483 ino_t page_cgroup_ino(struct page *page)
484 {
485 struct mem_cgroup *memcg;
486 unsigned long ino = 0;
487
488 rcu_read_lock();
489 if (PageSlab(page) && !PageTail(page))
490 memcg = memcg_from_slab_page(page);
491 else
492 memcg = READ_ONCE(page->mem_cgroup);
493 while (memcg && !(memcg->css.flags & CSS_ONLINE))
494 memcg = parent_mem_cgroup(memcg);
495 if (memcg)
496 ino = cgroup_ino(memcg->css.cgroup);
497 rcu_read_unlock();
498 return ino;
499 }
500
501 static struct mem_cgroup_per_node *
502 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
503 {
504 int nid = page_to_nid(page);
505
506 return memcg->nodeinfo[nid];
507 }
508
509 static struct mem_cgroup_tree_per_node *
510 soft_limit_tree_node(int nid)
511 {
512 return soft_limit_tree.rb_tree_per_node[nid];
513 }
514
515 static struct mem_cgroup_tree_per_node *
516 soft_limit_tree_from_page(struct page *page)
517 {
518 int nid = page_to_nid(page);
519
520 return soft_limit_tree.rb_tree_per_node[nid];
521 }
522
523 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
524 struct mem_cgroup_tree_per_node *mctz,
525 unsigned long new_usage_in_excess)
526 {
527 struct rb_node **p = &mctz->rb_root.rb_node;
528 struct rb_node *parent = NULL;
529 struct mem_cgroup_per_node *mz_node;
530 bool rightmost = true;
531
532 if (mz->on_tree)
533 return;
534
535 mz->usage_in_excess = new_usage_in_excess;
536 if (!mz->usage_in_excess)
537 return;
538 while (*p) {
539 parent = *p;
540 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
541 tree_node);
542 if (mz->usage_in_excess < mz_node->usage_in_excess) {
543 p = &(*p)->rb_left;
544 rightmost = false;
545 }
546
547 /*
548 * We can't avoid mem cgroups that are over their soft
549 * limit by the same amount
550 */
551 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
552 p = &(*p)->rb_right;
553 }
554
555 if (rightmost)
556 mctz->rb_rightmost = &mz->tree_node;
557
558 rb_link_node(&mz->tree_node, parent, p);
559 rb_insert_color(&mz->tree_node, &mctz->rb_root);
560 mz->on_tree = true;
561 }
562
563 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
564 struct mem_cgroup_tree_per_node *mctz)
565 {
566 if (!mz->on_tree)
567 return;
568
569 if (&mz->tree_node == mctz->rb_rightmost)
570 mctz->rb_rightmost = rb_prev(&mz->tree_node);
571
572 rb_erase(&mz->tree_node, &mctz->rb_root);
573 mz->on_tree = false;
574 }
575
576 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
577 struct mem_cgroup_tree_per_node *mctz)
578 {
579 unsigned long flags;
580
581 spin_lock_irqsave(&mctz->lock, flags);
582 __mem_cgroup_remove_exceeded(mz, mctz);
583 spin_unlock_irqrestore(&mctz->lock, flags);
584 }
585
586 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
587 {
588 unsigned long nr_pages = page_counter_read(&memcg->memory);
589 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
590 unsigned long excess = 0;
591
592 if (nr_pages > soft_limit)
593 excess = nr_pages - soft_limit;
594
595 return excess;
596 }
597
598 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
599 {
600 unsigned long excess;
601 struct mem_cgroup_per_node *mz;
602 struct mem_cgroup_tree_per_node *mctz;
603
604 mctz = soft_limit_tree_from_page(page);
605 if (!mctz)
606 return;
607 /*
608 * Necessary to update all ancestors when hierarchy is used.
609 * because their event counter is not touched.
610 */
611 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
612 mz = mem_cgroup_page_nodeinfo(memcg, page);
613 excess = soft_limit_excess(memcg);
614 /*
615 * We have to update the tree if mz is on RB-tree or
616 * mem is over its softlimit.
617 */
618 if (excess || mz->on_tree) {
619 unsigned long flags;
620
621 spin_lock_irqsave(&mctz->lock, flags);
622 /* if on-tree, remove it */
623 if (mz->on_tree)
624 __mem_cgroup_remove_exceeded(mz, mctz);
625 /*
626 * Insert again. mz->usage_in_excess will be updated.
627 * If excess is 0, no tree ops.
628 */
629 __mem_cgroup_insert_exceeded(mz, mctz, excess);
630 spin_unlock_irqrestore(&mctz->lock, flags);
631 }
632 }
633 }
634
635 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
636 {
637 struct mem_cgroup_tree_per_node *mctz;
638 struct mem_cgroup_per_node *mz;
639 int nid;
640
641 for_each_node(nid) {
642 mz = mem_cgroup_nodeinfo(memcg, nid);
643 mctz = soft_limit_tree_node(nid);
644 if (mctz)
645 mem_cgroup_remove_exceeded(mz, mctz);
646 }
647 }
648
649 static struct mem_cgroup_per_node *
650 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
651 {
652 struct mem_cgroup_per_node *mz;
653
654 retry:
655 mz = NULL;
656 if (!mctz->rb_rightmost)
657 goto done; /* Nothing to reclaim from */
658
659 mz = rb_entry(mctz->rb_rightmost,
660 struct mem_cgroup_per_node, tree_node);
661 /*
662 * Remove the node now but someone else can add it back,
663 * we will to add it back at the end of reclaim to its correct
664 * position in the tree.
665 */
666 __mem_cgroup_remove_exceeded(mz, mctz);
667 if (!soft_limit_excess(mz->memcg) ||
668 !css_tryget_online(&mz->memcg->css))
669 goto retry;
670 done:
671 return mz;
672 }
673
674 static struct mem_cgroup_per_node *
675 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
676 {
677 struct mem_cgroup_per_node *mz;
678
679 spin_lock_irq(&mctz->lock);
680 mz = __mem_cgroup_largest_soft_limit_node(mctz);
681 spin_unlock_irq(&mctz->lock);
682 return mz;
683 }
684
685 /**
686 * __mod_memcg_state - update cgroup memory statistics
687 * @memcg: the memory cgroup
688 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
689 * @val: delta to add to the counter, can be negative
690 */
691 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
692 {
693 long x;
694
695 if (mem_cgroup_disabled())
696 return;
697
698 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
699 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
700 struct mem_cgroup *mi;
701
702 /*
703 * Batch local counters to keep them in sync with
704 * the hierarchical ones.
705 */
706 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
707 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
708 atomic_long_add(x, &mi->vmstats[idx]);
709 x = 0;
710 }
711 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
712 }
713
714 static struct mem_cgroup_per_node *
715 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
716 {
717 struct mem_cgroup *parent;
718
719 parent = parent_mem_cgroup(pn->memcg);
720 if (!parent)
721 return NULL;
722 return mem_cgroup_nodeinfo(parent, nid);
723 }
724
725 /**
726 * __mod_lruvec_state - update lruvec memory statistics
727 * @lruvec: the lruvec
728 * @idx: the stat item
729 * @val: delta to add to the counter, can be negative
730 *
731 * The lruvec is the intersection of the NUMA node and a cgroup. This
732 * function updates the all three counters that are affected by a
733 * change of state at this level: per-node, per-cgroup, per-lruvec.
734 */
735 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
736 int val)
737 {
738 pg_data_t *pgdat = lruvec_pgdat(lruvec);
739 struct mem_cgroup_per_node *pn;
740 struct mem_cgroup *memcg;
741 long x;
742
743 /* Update node */
744 __mod_node_page_state(pgdat, idx, val);
745
746 if (mem_cgroup_disabled())
747 return;
748
749 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
750 memcg = pn->memcg;
751
752 /* Update memcg */
753 __mod_memcg_state(memcg, idx, val);
754
755 /* Update lruvec */
756 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
757
758 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
759 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
760 struct mem_cgroup_per_node *pi;
761
762 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
763 atomic_long_add(x, &pi->lruvec_stat[idx]);
764 x = 0;
765 }
766 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
767 }
768
769 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
770 {
771 struct page *page = virt_to_head_page(p);
772 pg_data_t *pgdat = page_pgdat(page);
773 struct mem_cgroup *memcg;
774 struct lruvec *lruvec;
775
776 rcu_read_lock();
777 memcg = memcg_from_slab_page(page);
778
779 /*
780 * Untracked pages have no memcg, no lruvec. Update only the
781 * node. If we reparent the slab objects to the root memcg,
782 * when we free the slab object, we need to update the per-memcg
783 * vmstats to keep it correct for the root memcg.
784 */
785 if (!memcg) {
786 __mod_node_page_state(pgdat, idx, val);
787 } else {
788 lruvec = mem_cgroup_lruvec(pgdat, memcg);
789 __mod_lruvec_state(lruvec, idx, val);
790 }
791 rcu_read_unlock();
792 }
793
794 void mod_memcg_obj_state(void *p, int idx, int val)
795 {
796 struct mem_cgroup *memcg;
797
798 rcu_read_lock();
799 memcg = mem_cgroup_from_obj(p);
800 if (memcg)
801 mod_memcg_state(memcg, idx, val);
802 rcu_read_unlock();
803 }
804
805 /**
806 * __count_memcg_events - account VM events in a cgroup
807 * @memcg: the memory cgroup
808 * @idx: the event item
809 * @count: the number of events that occured
810 */
811 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
812 unsigned long count)
813 {
814 unsigned long x;
815
816 if (mem_cgroup_disabled())
817 return;
818
819 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
820 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
821 struct mem_cgroup *mi;
822
823 /*
824 * Batch local counters to keep them in sync with
825 * the hierarchical ones.
826 */
827 __this_cpu_add(memcg->vmstats_local->events[idx], x);
828 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
829 atomic_long_add(x, &mi->vmevents[idx]);
830 x = 0;
831 }
832 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
833 }
834
835 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
836 {
837 return atomic_long_read(&memcg->vmevents[event]);
838 }
839
840 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
841 {
842 long x = 0;
843 int cpu;
844
845 for_each_possible_cpu(cpu)
846 x += per_cpu(memcg->vmstats_local->events[event], cpu);
847 return x;
848 }
849
850 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
851 struct page *page,
852 bool compound, int nr_pages)
853 {
854 /*
855 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
856 * counted as CACHE even if it's on ANON LRU.
857 */
858 if (PageAnon(page))
859 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
860 else {
861 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
862 if (PageSwapBacked(page))
863 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
864 }
865
866 if (compound) {
867 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
868 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
869 }
870
871 /* pagein of a big page is an event. So, ignore page size */
872 if (nr_pages > 0)
873 __count_memcg_events(memcg, PGPGIN, 1);
874 else {
875 __count_memcg_events(memcg, PGPGOUT, 1);
876 nr_pages = -nr_pages; /* for event */
877 }
878
879 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
880 }
881
882 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
883 enum mem_cgroup_events_target target)
884 {
885 unsigned long val, next;
886
887 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
888 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
889 /* from time_after() in jiffies.h */
890 if ((long)(next - val) < 0) {
891 switch (target) {
892 case MEM_CGROUP_TARGET_THRESH:
893 next = val + THRESHOLDS_EVENTS_TARGET;
894 break;
895 case MEM_CGROUP_TARGET_SOFTLIMIT:
896 next = val + SOFTLIMIT_EVENTS_TARGET;
897 break;
898 case MEM_CGROUP_TARGET_NUMAINFO:
899 next = val + NUMAINFO_EVENTS_TARGET;
900 break;
901 default:
902 break;
903 }
904 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
905 return true;
906 }
907 return false;
908 }
909
910 /*
911 * Check events in order.
912 *
913 */
914 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
915 {
916 /* threshold event is triggered in finer grain than soft limit */
917 if (unlikely(mem_cgroup_event_ratelimit(memcg,
918 MEM_CGROUP_TARGET_THRESH))) {
919 bool do_softlimit;
920 bool do_numainfo __maybe_unused;
921
922 do_softlimit = mem_cgroup_event_ratelimit(memcg,
923 MEM_CGROUP_TARGET_SOFTLIMIT);
924 #if MAX_NUMNODES > 1
925 do_numainfo = mem_cgroup_event_ratelimit(memcg,
926 MEM_CGROUP_TARGET_NUMAINFO);
927 #endif
928 mem_cgroup_threshold(memcg);
929 if (unlikely(do_softlimit))
930 mem_cgroup_update_tree(memcg, page);
931 #if MAX_NUMNODES > 1
932 if (unlikely(do_numainfo))
933 atomic_inc(&memcg->numainfo_events);
934 #endif
935 }
936 }
937
938 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
939 {
940 /*
941 * mm_update_next_owner() may clear mm->owner to NULL
942 * if it races with swapoff, page migration, etc.
943 * So this can be called with p == NULL.
944 */
945 if (unlikely(!p))
946 return NULL;
947
948 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
949 }
950 EXPORT_SYMBOL(mem_cgroup_from_task);
951
952 /**
953 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
954 * @mm: mm from which memcg should be extracted. It can be NULL.
955 *
956 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
957 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
958 * returned.
959 */
960 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
961 {
962 struct mem_cgroup *memcg;
963
964 if (mem_cgroup_disabled())
965 return NULL;
966
967 rcu_read_lock();
968 do {
969 /*
970 * Page cache insertions can happen withou an
971 * actual mm context, e.g. during disk probing
972 * on boot, loopback IO, acct() writes etc.
973 */
974 if (unlikely(!mm))
975 memcg = root_mem_cgroup;
976 else {
977 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
978 if (unlikely(!memcg))
979 memcg = root_mem_cgroup;
980 }
981 } while (!css_tryget(&memcg->css));
982 rcu_read_unlock();
983 return memcg;
984 }
985 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
986
987 /**
988 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
989 * @page: page from which memcg should be extracted.
990 *
991 * Obtain a reference on page->memcg and returns it if successful. Otherwise
992 * root_mem_cgroup is returned.
993 */
994 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
995 {
996 struct mem_cgroup *memcg = page->mem_cgroup;
997
998 if (mem_cgroup_disabled())
999 return NULL;
1000
1001 rcu_read_lock();
1002 if (!memcg || !css_tryget_online(&memcg->css))
1003 memcg = root_mem_cgroup;
1004 rcu_read_unlock();
1005 return memcg;
1006 }
1007 EXPORT_SYMBOL(get_mem_cgroup_from_page);
1008
1009 /**
1010 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
1011 */
1012 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1013 {
1014 if (unlikely(current->active_memcg)) {
1015 struct mem_cgroup *memcg = root_mem_cgroup;
1016
1017 rcu_read_lock();
1018 if (css_tryget_online(&current->active_memcg->css))
1019 memcg = current->active_memcg;
1020 rcu_read_unlock();
1021 return memcg;
1022 }
1023 return get_mem_cgroup_from_mm(current->mm);
1024 }
1025
1026 /**
1027 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1028 * @root: hierarchy root
1029 * @prev: previously returned memcg, NULL on first invocation
1030 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1031 *
1032 * Returns references to children of the hierarchy below @root, or
1033 * @root itself, or %NULL after a full round-trip.
1034 *
1035 * Caller must pass the return value in @prev on subsequent
1036 * invocations for reference counting, or use mem_cgroup_iter_break()
1037 * to cancel a hierarchy walk before the round-trip is complete.
1038 *
1039 * Reclaimers can specify a node and a priority level in @reclaim to
1040 * divide up the memcgs in the hierarchy among all concurrent
1041 * reclaimers operating on the same node and priority.
1042 */
1043 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1044 struct mem_cgroup *prev,
1045 struct mem_cgroup_reclaim_cookie *reclaim)
1046 {
1047 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1048 struct cgroup_subsys_state *css = NULL;
1049 struct mem_cgroup *memcg = NULL;
1050 struct mem_cgroup *pos = NULL;
1051
1052 if (mem_cgroup_disabled())
1053 return NULL;
1054
1055 if (!root)
1056 root = root_mem_cgroup;
1057
1058 if (prev && !reclaim)
1059 pos = prev;
1060
1061 if (!root->use_hierarchy && root != root_mem_cgroup) {
1062 if (prev)
1063 goto out;
1064 return root;
1065 }
1066
1067 rcu_read_lock();
1068
1069 if (reclaim) {
1070 struct mem_cgroup_per_node *mz;
1071
1072 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1073 iter = &mz->iter[reclaim->priority];
1074
1075 if (prev && reclaim->generation != iter->generation)
1076 goto out_unlock;
1077
1078 while (1) {
1079 pos = READ_ONCE(iter->position);
1080 if (!pos || css_tryget(&pos->css))
1081 break;
1082 /*
1083 * css reference reached zero, so iter->position will
1084 * be cleared by ->css_released. However, we should not
1085 * rely on this happening soon, because ->css_released
1086 * is called from a work queue, and by busy-waiting we
1087 * might block it. So we clear iter->position right
1088 * away.
1089 */
1090 (void)cmpxchg(&iter->position, pos, NULL);
1091 }
1092 }
1093
1094 if (pos)
1095 css = &pos->css;
1096
1097 for (;;) {
1098 css = css_next_descendant_pre(css, &root->css);
1099 if (!css) {
1100 /*
1101 * Reclaimers share the hierarchy walk, and a
1102 * new one might jump in right at the end of
1103 * the hierarchy - make sure they see at least
1104 * one group and restart from the beginning.
1105 */
1106 if (!prev)
1107 continue;
1108 break;
1109 }
1110
1111 /*
1112 * Verify the css and acquire a reference. The root
1113 * is provided by the caller, so we know it's alive
1114 * and kicking, and don't take an extra reference.
1115 */
1116 memcg = mem_cgroup_from_css(css);
1117
1118 if (css == &root->css)
1119 break;
1120
1121 if (css_tryget(css))
1122 break;
1123
1124 memcg = NULL;
1125 }
1126
1127 if (reclaim) {
1128 /*
1129 * The position could have already been updated by a competing
1130 * thread, so check that the value hasn't changed since we read
1131 * it to avoid reclaiming from the same cgroup twice.
1132 */
1133 (void)cmpxchg(&iter->position, pos, memcg);
1134
1135 if (pos)
1136 css_put(&pos->css);
1137
1138 if (!memcg)
1139 iter->generation++;
1140 else if (!prev)
1141 reclaim->generation = iter->generation;
1142 }
1143
1144 out_unlock:
1145 rcu_read_unlock();
1146 out:
1147 if (prev && prev != root)
1148 css_put(&prev->css);
1149
1150 return memcg;
1151 }
1152
1153 /**
1154 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1155 * @root: hierarchy root
1156 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1157 */
1158 void mem_cgroup_iter_break(struct mem_cgroup *root,
1159 struct mem_cgroup *prev)
1160 {
1161 if (!root)
1162 root = root_mem_cgroup;
1163 if (prev && prev != root)
1164 css_put(&prev->css);
1165 }
1166
1167 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1168 struct mem_cgroup *dead_memcg)
1169 {
1170 struct mem_cgroup_reclaim_iter *iter;
1171 struct mem_cgroup_per_node *mz;
1172 int nid;
1173 int i;
1174
1175 for_each_node(nid) {
1176 mz = mem_cgroup_nodeinfo(from, nid);
1177 for (i = 0; i <= DEF_PRIORITY; i++) {
1178 iter = &mz->iter[i];
1179 cmpxchg(&iter->position,
1180 dead_memcg, NULL);
1181 }
1182 }
1183 }
1184
1185 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1186 {
1187 struct mem_cgroup *memcg = dead_memcg;
1188 struct mem_cgroup *last;
1189
1190 do {
1191 __invalidate_reclaim_iterators(memcg, dead_memcg);
1192 last = memcg;
1193 } while ((memcg = parent_mem_cgroup(memcg)));
1194
1195 /*
1196 * When cgruop1 non-hierarchy mode is used,
1197 * parent_mem_cgroup() does not walk all the way up to the
1198 * cgroup root (root_mem_cgroup). So we have to handle
1199 * dead_memcg from cgroup root separately.
1200 */
1201 if (last != root_mem_cgroup)
1202 __invalidate_reclaim_iterators(root_mem_cgroup,
1203 dead_memcg);
1204 }
1205
1206 /**
1207 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1208 * @memcg: hierarchy root
1209 * @fn: function to call for each task
1210 * @arg: argument passed to @fn
1211 *
1212 * This function iterates over tasks attached to @memcg or to any of its
1213 * descendants and calls @fn for each task. If @fn returns a non-zero
1214 * value, the function breaks the iteration loop and returns the value.
1215 * Otherwise, it will iterate over all tasks and return 0.
1216 *
1217 * This function must not be called for the root memory cgroup.
1218 */
1219 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1220 int (*fn)(struct task_struct *, void *), void *arg)
1221 {
1222 struct mem_cgroup *iter;
1223 int ret = 0;
1224
1225 BUG_ON(memcg == root_mem_cgroup);
1226
1227 for_each_mem_cgroup_tree(iter, memcg) {
1228 struct css_task_iter it;
1229 struct task_struct *task;
1230
1231 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1232 while (!ret && (task = css_task_iter_next(&it)))
1233 ret = fn(task, arg);
1234 css_task_iter_end(&it);
1235 if (ret) {
1236 mem_cgroup_iter_break(memcg, iter);
1237 break;
1238 }
1239 }
1240 return ret;
1241 }
1242
1243 /**
1244 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1245 * @page: the page
1246 * @pgdat: pgdat of the page
1247 *
1248 * This function is only safe when following the LRU page isolation
1249 * and putback protocol: the LRU lock must be held, and the page must
1250 * either be PageLRU() or the caller must have isolated/allocated it.
1251 */
1252 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1253 {
1254 struct mem_cgroup_per_node *mz;
1255 struct mem_cgroup *memcg;
1256 struct lruvec *lruvec;
1257
1258 if (mem_cgroup_disabled()) {
1259 lruvec = &pgdat->lruvec;
1260 goto out;
1261 }
1262
1263 memcg = page->mem_cgroup;
1264 /*
1265 * Swapcache readahead pages are added to the LRU - and
1266 * possibly migrated - before they are charged.
1267 */
1268 if (!memcg)
1269 memcg = root_mem_cgroup;
1270
1271 mz = mem_cgroup_page_nodeinfo(memcg, page);
1272 lruvec = &mz->lruvec;
1273 out:
1274 /*
1275 * Since a node can be onlined after the mem_cgroup was created,
1276 * we have to be prepared to initialize lruvec->zone here;
1277 * and if offlined then reonlined, we need to reinitialize it.
1278 */
1279 if (unlikely(lruvec->pgdat != pgdat))
1280 lruvec->pgdat = pgdat;
1281 return lruvec;
1282 }
1283
1284 /**
1285 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1286 * @lruvec: mem_cgroup per zone lru vector
1287 * @lru: index of lru list the page is sitting on
1288 * @zid: zone id of the accounted pages
1289 * @nr_pages: positive when adding or negative when removing
1290 *
1291 * This function must be called under lru_lock, just before a page is added
1292 * to or just after a page is removed from an lru list (that ordering being
1293 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1294 */
1295 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1296 int zid, int nr_pages)
1297 {
1298 struct mem_cgroup_per_node *mz;
1299 unsigned long *lru_size;
1300 long size;
1301
1302 if (mem_cgroup_disabled())
1303 return;
1304
1305 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1306 lru_size = &mz->lru_zone_size[zid][lru];
1307
1308 if (nr_pages < 0)
1309 *lru_size += nr_pages;
1310
1311 size = *lru_size;
1312 if (WARN_ONCE(size < 0,
1313 "%s(%p, %d, %d): lru_size %ld\n",
1314 __func__, lruvec, lru, nr_pages, size)) {
1315 VM_BUG_ON(1);
1316 *lru_size = 0;
1317 }
1318
1319 if (nr_pages > 0)
1320 *lru_size += nr_pages;
1321 }
1322
1323 /**
1324 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1325 * @memcg: the memory cgroup
1326 *
1327 * Returns the maximum amount of memory @mem can be charged with, in
1328 * pages.
1329 */
1330 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1331 {
1332 unsigned long margin = 0;
1333 unsigned long count;
1334 unsigned long limit;
1335
1336 count = page_counter_read(&memcg->memory);
1337 limit = READ_ONCE(memcg->memory.max);
1338 if (count < limit)
1339 margin = limit - count;
1340
1341 if (do_memsw_account()) {
1342 count = page_counter_read(&memcg->memsw);
1343 limit = READ_ONCE(memcg->memsw.max);
1344 if (count <= limit)
1345 margin = min(margin, limit - count);
1346 else
1347 margin = 0;
1348 }
1349
1350 return margin;
1351 }
1352
1353 /*
1354 * A routine for checking "mem" is under move_account() or not.
1355 *
1356 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1357 * moving cgroups. This is for waiting at high-memory pressure
1358 * caused by "move".
1359 */
1360 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1361 {
1362 struct mem_cgroup *from;
1363 struct mem_cgroup *to;
1364 bool ret = false;
1365 /*
1366 * Unlike task_move routines, we access mc.to, mc.from not under
1367 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1368 */
1369 spin_lock(&mc.lock);
1370 from = mc.from;
1371 to = mc.to;
1372 if (!from)
1373 goto unlock;
1374
1375 ret = mem_cgroup_is_descendant(from, memcg) ||
1376 mem_cgroup_is_descendant(to, memcg);
1377 unlock:
1378 spin_unlock(&mc.lock);
1379 return ret;
1380 }
1381
1382 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1383 {
1384 if (mc.moving_task && current != mc.moving_task) {
1385 if (mem_cgroup_under_move(memcg)) {
1386 DEFINE_WAIT(wait);
1387 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1388 /* moving charge context might have finished. */
1389 if (mc.moving_task)
1390 schedule();
1391 finish_wait(&mc.waitq, &wait);
1392 return true;
1393 }
1394 }
1395 return false;
1396 }
1397
1398 static char *memory_stat_format(struct mem_cgroup *memcg)
1399 {
1400 struct seq_buf s;
1401 int i;
1402
1403 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1404 if (!s.buffer)
1405 return NULL;
1406
1407 /*
1408 * Provide statistics on the state of the memory subsystem as
1409 * well as cumulative event counters that show past behavior.
1410 *
1411 * This list is ordered following a combination of these gradients:
1412 * 1) generic big picture -> specifics and details
1413 * 2) reflecting userspace activity -> reflecting kernel heuristics
1414 *
1415 * Current memory state:
1416 */
1417
1418 seq_buf_printf(&s, "anon %llu\n",
1419 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1420 PAGE_SIZE);
1421 seq_buf_printf(&s, "file %llu\n",
1422 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1423 PAGE_SIZE);
1424 seq_buf_printf(&s, "kernel_stack %llu\n",
1425 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1426 1024);
1427 seq_buf_printf(&s, "slab %llu\n",
1428 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1429 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1430 PAGE_SIZE);
1431 seq_buf_printf(&s, "sock %llu\n",
1432 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1433 PAGE_SIZE);
1434
1435 seq_buf_printf(&s, "shmem %llu\n",
1436 (u64)memcg_page_state(memcg, NR_SHMEM) *
1437 PAGE_SIZE);
1438 seq_buf_printf(&s, "file_mapped %llu\n",
1439 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1440 PAGE_SIZE);
1441 seq_buf_printf(&s, "file_dirty %llu\n",
1442 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1443 PAGE_SIZE);
1444 seq_buf_printf(&s, "file_writeback %llu\n",
1445 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1446 PAGE_SIZE);
1447
1448 /*
1449 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1450 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1451 * arse because it requires migrating the work out of rmap to a place
1452 * where the page->mem_cgroup is set up and stable.
1453 */
1454 seq_buf_printf(&s, "anon_thp %llu\n",
1455 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1456 PAGE_SIZE);
1457
1458 for (i = 0; i < NR_LRU_LISTS; i++)
1459 seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
1460 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1461 PAGE_SIZE);
1462
1463 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1464 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1465 PAGE_SIZE);
1466 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1467 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1468 PAGE_SIZE);
1469
1470 /* Accumulated memory events */
1471
1472 seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
1473 seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
1474
1475 seq_buf_printf(&s, "workingset_refault %lu\n",
1476 memcg_page_state(memcg, WORKINGSET_REFAULT));
1477 seq_buf_printf(&s, "workingset_activate %lu\n",
1478 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1479 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1480 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1481
1482 seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
1483 seq_buf_printf(&s, "pgscan %lu\n",
1484 memcg_events(memcg, PGSCAN_KSWAPD) +
1485 memcg_events(memcg, PGSCAN_DIRECT));
1486 seq_buf_printf(&s, "pgsteal %lu\n",
1487 memcg_events(memcg, PGSTEAL_KSWAPD) +
1488 memcg_events(memcg, PGSTEAL_DIRECT));
1489 seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
1490 seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
1491 seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
1492 seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
1493
1494 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1495 seq_buf_printf(&s, "thp_fault_alloc %lu\n",
1496 memcg_events(memcg, THP_FAULT_ALLOC));
1497 seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
1498 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1499 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1500
1501 /* The above should easily fit into one page */
1502 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1503
1504 return s.buffer;
1505 }
1506
1507 #define K(x) ((x) << (PAGE_SHIFT-10))
1508 /**
1509 * mem_cgroup_print_oom_context: Print OOM information relevant to
1510 * memory controller.
1511 * @memcg: The memory cgroup that went over limit
1512 * @p: Task that is going to be killed
1513 *
1514 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1515 * enabled
1516 */
1517 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1518 {
1519 rcu_read_lock();
1520
1521 if (memcg) {
1522 pr_cont(",oom_memcg=");
1523 pr_cont_cgroup_path(memcg->css.cgroup);
1524 } else
1525 pr_cont(",global_oom");
1526 if (p) {
1527 pr_cont(",task_memcg=");
1528 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1529 }
1530 rcu_read_unlock();
1531 }
1532
1533 /**
1534 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1535 * memory controller.
1536 * @memcg: The memory cgroup that went over limit
1537 */
1538 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1539 {
1540 char *buf;
1541
1542 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1543 K((u64)page_counter_read(&memcg->memory)),
1544 K((u64)memcg->memory.max), memcg->memory.failcnt);
1545 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1546 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1547 K((u64)page_counter_read(&memcg->swap)),
1548 K((u64)memcg->swap.max), memcg->swap.failcnt);
1549 else {
1550 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1551 K((u64)page_counter_read(&memcg->memsw)),
1552 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1553 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1554 K((u64)page_counter_read(&memcg->kmem)),
1555 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1556 }
1557
1558 pr_info("Memory cgroup stats for ");
1559 pr_cont_cgroup_path(memcg->css.cgroup);
1560 pr_cont(":");
1561 buf = memory_stat_format(memcg);
1562 if (!buf)
1563 return;
1564 pr_info("%s", buf);
1565 kfree(buf);
1566 }
1567
1568 /*
1569 * Return the memory (and swap, if configured) limit for a memcg.
1570 */
1571 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1572 {
1573 unsigned long max;
1574
1575 max = memcg->memory.max;
1576 if (mem_cgroup_swappiness(memcg)) {
1577 unsigned long memsw_max;
1578 unsigned long swap_max;
1579
1580 memsw_max = memcg->memsw.max;
1581 swap_max = memcg->swap.max;
1582 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1583 max = min(max + swap_max, memsw_max);
1584 }
1585 return max;
1586 }
1587
1588 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1589 {
1590 return page_counter_read(&memcg->memory);
1591 }
1592
1593 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1594 int order)
1595 {
1596 struct oom_control oc = {
1597 .zonelist = NULL,
1598 .nodemask = NULL,
1599 .memcg = memcg,
1600 .gfp_mask = gfp_mask,
1601 .order = order,
1602 };
1603 bool ret;
1604
1605 if (mutex_lock_killable(&oom_lock))
1606 return true;
1607 /*
1608 * A few threads which were not waiting at mutex_lock_killable() can
1609 * fail to bail out. Therefore, check again after holding oom_lock.
1610 */
1611 ret = should_force_charge() || out_of_memory(&oc);
1612 mutex_unlock(&oom_lock);
1613 return ret;
1614 }
1615
1616 #if MAX_NUMNODES > 1
1617
1618 /**
1619 * test_mem_cgroup_node_reclaimable
1620 * @memcg: the target memcg
1621 * @nid: the node ID to be checked.
1622 * @noswap : specify true here if the user wants flle only information.
1623 *
1624 * This function returns whether the specified memcg contains any
1625 * reclaimable pages on a node. Returns true if there are any reclaimable
1626 * pages in the node.
1627 */
1628 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1629 int nid, bool noswap)
1630 {
1631 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1632
1633 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1634 lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1635 return true;
1636 if (noswap || !total_swap_pages)
1637 return false;
1638 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1639 lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1640 return true;
1641 return false;
1642
1643 }
1644
1645 /*
1646 * Always updating the nodemask is not very good - even if we have an empty
1647 * list or the wrong list here, we can start from some node and traverse all
1648 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1649 *
1650 */
1651 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1652 {
1653 int nid;
1654 /*
1655 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1656 * pagein/pageout changes since the last update.
1657 */
1658 if (!atomic_read(&memcg->numainfo_events))
1659 return;
1660 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1661 return;
1662
1663 /* make a nodemask where this memcg uses memory from */
1664 memcg->scan_nodes = node_states[N_MEMORY];
1665
1666 for_each_node_mask(nid, node_states[N_MEMORY]) {
1667
1668 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1669 node_clear(nid, memcg->scan_nodes);
1670 }
1671
1672 atomic_set(&memcg->numainfo_events, 0);
1673 atomic_set(&memcg->numainfo_updating, 0);
1674 }
1675
1676 /*
1677 * Selecting a node where we start reclaim from. Because what we need is just
1678 * reducing usage counter, start from anywhere is O,K. Considering
1679 * memory reclaim from current node, there are pros. and cons.
1680 *
1681 * Freeing memory from current node means freeing memory from a node which
1682 * we'll use or we've used. So, it may make LRU bad. And if several threads
1683 * hit limits, it will see a contention on a node. But freeing from remote
1684 * node means more costs for memory reclaim because of memory latency.
1685 *
1686 * Now, we use round-robin. Better algorithm is welcomed.
1687 */
1688 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1689 {
1690 int node;
1691
1692 mem_cgroup_may_update_nodemask(memcg);
1693 node = memcg->last_scanned_node;
1694
1695 node = next_node_in(node, memcg->scan_nodes);
1696 /*
1697 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1698 * last time it really checked all the LRUs due to rate limiting.
1699 * Fallback to the current node in that case for simplicity.
1700 */
1701 if (unlikely(node == MAX_NUMNODES))
1702 node = numa_node_id();
1703
1704 memcg->last_scanned_node = node;
1705 return node;
1706 }
1707 #else
1708 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1709 {
1710 return 0;
1711 }
1712 #endif
1713
1714 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1715 pg_data_t *pgdat,
1716 gfp_t gfp_mask,
1717 unsigned long *total_scanned)
1718 {
1719 struct mem_cgroup *victim = NULL;
1720 int total = 0;
1721 int loop = 0;
1722 unsigned long excess;
1723 unsigned long nr_scanned;
1724 struct mem_cgroup_reclaim_cookie reclaim = {
1725 .pgdat = pgdat,
1726 .priority = 0,
1727 };
1728
1729 excess = soft_limit_excess(root_memcg);
1730
1731 while (1) {
1732 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1733 if (!victim) {
1734 loop++;
1735 if (loop >= 2) {
1736 /*
1737 * If we have not been able to reclaim
1738 * anything, it might because there are
1739 * no reclaimable pages under this hierarchy
1740 */
1741 if (!total)
1742 break;
1743 /*
1744 * We want to do more targeted reclaim.
1745 * excess >> 2 is not to excessive so as to
1746 * reclaim too much, nor too less that we keep
1747 * coming back to reclaim from this cgroup
1748 */
1749 if (total >= (excess >> 2) ||
1750 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1751 break;
1752 }
1753 continue;
1754 }
1755 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1756 pgdat, &nr_scanned);
1757 *total_scanned += nr_scanned;
1758 if (!soft_limit_excess(root_memcg))
1759 break;
1760 }
1761 mem_cgroup_iter_break(root_memcg, victim);
1762 return total;
1763 }
1764
1765 #ifdef CONFIG_LOCKDEP
1766 static struct lockdep_map memcg_oom_lock_dep_map = {
1767 .name = "memcg_oom_lock",
1768 };
1769 #endif
1770
1771 static DEFINE_SPINLOCK(memcg_oom_lock);
1772
1773 /*
1774 * Check OOM-Killer is already running under our hierarchy.
1775 * If someone is running, return false.
1776 */
1777 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1778 {
1779 struct mem_cgroup *iter, *failed = NULL;
1780
1781 spin_lock(&memcg_oom_lock);
1782
1783 for_each_mem_cgroup_tree(iter, memcg) {
1784 if (iter->oom_lock) {
1785 /*
1786 * this subtree of our hierarchy is already locked
1787 * so we cannot give a lock.
1788 */
1789 failed = iter;
1790 mem_cgroup_iter_break(memcg, iter);
1791 break;
1792 } else
1793 iter->oom_lock = true;
1794 }
1795
1796 if (failed) {
1797 /*
1798 * OK, we failed to lock the whole subtree so we have
1799 * to clean up what we set up to the failing subtree
1800 */
1801 for_each_mem_cgroup_tree(iter, memcg) {
1802 if (iter == failed) {
1803 mem_cgroup_iter_break(memcg, iter);
1804 break;
1805 }
1806 iter->oom_lock = false;
1807 }
1808 } else
1809 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1810
1811 spin_unlock(&memcg_oom_lock);
1812
1813 return !failed;
1814 }
1815
1816 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1817 {
1818 struct mem_cgroup *iter;
1819
1820 spin_lock(&memcg_oom_lock);
1821 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1822 for_each_mem_cgroup_tree(iter, memcg)
1823 iter->oom_lock = false;
1824 spin_unlock(&memcg_oom_lock);
1825 }
1826
1827 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1828 {
1829 struct mem_cgroup *iter;
1830
1831 spin_lock(&memcg_oom_lock);
1832 for_each_mem_cgroup_tree(iter, memcg)
1833 iter->under_oom++;
1834 spin_unlock(&memcg_oom_lock);
1835 }
1836
1837 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1838 {
1839 struct mem_cgroup *iter;
1840
1841 /*
1842 * When a new child is created while the hierarchy is under oom,
1843 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1844 */
1845 spin_lock(&memcg_oom_lock);
1846 for_each_mem_cgroup_tree(iter, memcg)
1847 if (iter->under_oom > 0)
1848 iter->under_oom--;
1849 spin_unlock(&memcg_oom_lock);
1850 }
1851
1852 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1853
1854 struct oom_wait_info {
1855 struct mem_cgroup *memcg;
1856 wait_queue_entry_t wait;
1857 };
1858
1859 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1860 unsigned mode, int sync, void *arg)
1861 {
1862 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1863 struct mem_cgroup *oom_wait_memcg;
1864 struct oom_wait_info *oom_wait_info;
1865
1866 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1867 oom_wait_memcg = oom_wait_info->memcg;
1868
1869 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1870 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1871 return 0;
1872 return autoremove_wake_function(wait, mode, sync, arg);
1873 }
1874
1875 static void memcg_oom_recover(struct mem_cgroup *memcg)
1876 {
1877 /*
1878 * For the following lockless ->under_oom test, the only required
1879 * guarantee is that it must see the state asserted by an OOM when
1880 * this function is called as a result of userland actions
1881 * triggered by the notification of the OOM. This is trivially
1882 * achieved by invoking mem_cgroup_mark_under_oom() before
1883 * triggering notification.
1884 */
1885 if (memcg && memcg->under_oom)
1886 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1887 }
1888
1889 enum oom_status {
1890 OOM_SUCCESS,
1891 OOM_FAILED,
1892 OOM_ASYNC,
1893 OOM_SKIPPED
1894 };
1895
1896 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1897 {
1898 enum oom_status ret;
1899 bool locked;
1900
1901 if (order > PAGE_ALLOC_COSTLY_ORDER)
1902 return OOM_SKIPPED;
1903
1904 memcg_memory_event(memcg, MEMCG_OOM);
1905
1906 /*
1907 * We are in the middle of the charge context here, so we
1908 * don't want to block when potentially sitting on a callstack
1909 * that holds all kinds of filesystem and mm locks.
1910 *
1911 * cgroup1 allows disabling the OOM killer and waiting for outside
1912 * handling until the charge can succeed; remember the context and put
1913 * the task to sleep at the end of the page fault when all locks are
1914 * released.
1915 *
1916 * On the other hand, in-kernel OOM killer allows for an async victim
1917 * memory reclaim (oom_reaper) and that means that we are not solely
1918 * relying on the oom victim to make a forward progress and we can
1919 * invoke the oom killer here.
1920 *
1921 * Please note that mem_cgroup_out_of_memory might fail to find a
1922 * victim and then we have to bail out from the charge path.
1923 */
1924 if (memcg->oom_kill_disable) {
1925 if (!current->in_user_fault)
1926 return OOM_SKIPPED;
1927 css_get(&memcg->css);
1928 current->memcg_in_oom = memcg;
1929 current->memcg_oom_gfp_mask = mask;
1930 current->memcg_oom_order = order;
1931
1932 return OOM_ASYNC;
1933 }
1934
1935 mem_cgroup_mark_under_oom(memcg);
1936
1937 locked = mem_cgroup_oom_trylock(memcg);
1938
1939 if (locked)
1940 mem_cgroup_oom_notify(memcg);
1941
1942 mem_cgroup_unmark_under_oom(memcg);
1943 if (mem_cgroup_out_of_memory(memcg, mask, order))
1944 ret = OOM_SUCCESS;
1945 else
1946 ret = OOM_FAILED;
1947
1948 if (locked)
1949 mem_cgroup_oom_unlock(memcg);
1950
1951 return ret;
1952 }
1953
1954 /**
1955 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1956 * @handle: actually kill/wait or just clean up the OOM state
1957 *
1958 * This has to be called at the end of a page fault if the memcg OOM
1959 * handler was enabled.
1960 *
1961 * Memcg supports userspace OOM handling where failed allocations must
1962 * sleep on a waitqueue until the userspace task resolves the
1963 * situation. Sleeping directly in the charge context with all kinds
1964 * of locks held is not a good idea, instead we remember an OOM state
1965 * in the task and mem_cgroup_oom_synchronize() has to be called at
1966 * the end of the page fault to complete the OOM handling.
1967 *
1968 * Returns %true if an ongoing memcg OOM situation was detected and
1969 * completed, %false otherwise.
1970 */
1971 bool mem_cgroup_oom_synchronize(bool handle)
1972 {
1973 struct mem_cgroup *memcg = current->memcg_in_oom;
1974 struct oom_wait_info owait;
1975 bool locked;
1976
1977 /* OOM is global, do not handle */
1978 if (!memcg)
1979 return false;
1980
1981 if (!handle)
1982 goto cleanup;
1983
1984 owait.memcg = memcg;
1985 owait.wait.flags = 0;
1986 owait.wait.func = memcg_oom_wake_function;
1987 owait.wait.private = current;
1988 INIT_LIST_HEAD(&owait.wait.entry);
1989
1990 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1991 mem_cgroup_mark_under_oom(memcg);
1992
1993 locked = mem_cgroup_oom_trylock(memcg);
1994
1995 if (locked)
1996 mem_cgroup_oom_notify(memcg);
1997
1998 if (locked && !memcg->oom_kill_disable) {
1999 mem_cgroup_unmark_under_oom(memcg);
2000 finish_wait(&memcg_oom_waitq, &owait.wait);
2001 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2002 current->memcg_oom_order);
2003 } else {
2004 schedule();
2005 mem_cgroup_unmark_under_oom(memcg);
2006 finish_wait(&memcg_oom_waitq, &owait.wait);
2007 }
2008
2009 if (locked) {
2010 mem_cgroup_oom_unlock(memcg);
2011 /*
2012 * There is no guarantee that an OOM-lock contender
2013 * sees the wakeups triggered by the OOM kill
2014 * uncharges. Wake any sleepers explicitely.
2015 */
2016 memcg_oom_recover(memcg);
2017 }
2018 cleanup:
2019 current->memcg_in_oom = NULL;
2020 css_put(&memcg->css);
2021 return true;
2022 }
2023
2024 /**
2025 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2026 * @victim: task to be killed by the OOM killer
2027 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2028 *
2029 * Returns a pointer to a memory cgroup, which has to be cleaned up
2030 * by killing all belonging OOM-killable tasks.
2031 *
2032 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2033 */
2034 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2035 struct mem_cgroup *oom_domain)
2036 {
2037 struct mem_cgroup *oom_group = NULL;
2038 struct mem_cgroup *memcg;
2039
2040 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2041 return NULL;
2042
2043 if (!oom_domain)
2044 oom_domain = root_mem_cgroup;
2045
2046 rcu_read_lock();
2047
2048 memcg = mem_cgroup_from_task(victim);
2049 if (memcg == root_mem_cgroup)
2050 goto out;
2051
2052 /*
2053 * Traverse the memory cgroup hierarchy from the victim task's
2054 * cgroup up to the OOMing cgroup (or root) to find the
2055 * highest-level memory cgroup with oom.group set.
2056 */
2057 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2058 if (memcg->oom_group)
2059 oom_group = memcg;
2060
2061 if (memcg == oom_domain)
2062 break;
2063 }
2064
2065 if (oom_group)
2066 css_get(&oom_group->css);
2067 out:
2068 rcu_read_unlock();
2069
2070 return oom_group;
2071 }
2072
2073 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2074 {
2075 pr_info("Tasks in ");
2076 pr_cont_cgroup_path(memcg->css.cgroup);
2077 pr_cont(" are going to be killed due to memory.oom.group set\n");
2078 }
2079
2080 /**
2081 * lock_page_memcg - lock a page->mem_cgroup binding
2082 * @page: the page
2083 *
2084 * This function protects unlocked LRU pages from being moved to
2085 * another cgroup.
2086 *
2087 * It ensures lifetime of the returned memcg. Caller is responsible
2088 * for the lifetime of the page; __unlock_page_memcg() is available
2089 * when @page might get freed inside the locked section.
2090 */
2091 struct mem_cgroup *lock_page_memcg(struct page *page)
2092 {
2093 struct mem_cgroup *memcg;
2094 unsigned long flags;
2095
2096 /*
2097 * The RCU lock is held throughout the transaction. The fast
2098 * path can get away without acquiring the memcg->move_lock
2099 * because page moving starts with an RCU grace period.
2100 *
2101 * The RCU lock also protects the memcg from being freed when
2102 * the page state that is going to change is the only thing
2103 * preventing the page itself from being freed. E.g. writeback
2104 * doesn't hold a page reference and relies on PG_writeback to
2105 * keep off truncation, migration and so forth.
2106 */
2107 rcu_read_lock();
2108
2109 if (mem_cgroup_disabled())
2110 return NULL;
2111 again:
2112 memcg = page->mem_cgroup;
2113 if (unlikely(!memcg))
2114 return NULL;
2115
2116 if (atomic_read(&memcg->moving_account) <= 0)
2117 return memcg;
2118
2119 spin_lock_irqsave(&memcg->move_lock, flags);
2120 if (memcg != page->mem_cgroup) {
2121 spin_unlock_irqrestore(&memcg->move_lock, flags);
2122 goto again;
2123 }
2124
2125 /*
2126 * When charge migration first begins, we can have locked and
2127 * unlocked page stat updates happening concurrently. Track
2128 * the task who has the lock for unlock_page_memcg().
2129 */
2130 memcg->move_lock_task = current;
2131 memcg->move_lock_flags = flags;
2132
2133 return memcg;
2134 }
2135 EXPORT_SYMBOL(lock_page_memcg);
2136
2137 /**
2138 * __unlock_page_memcg - unlock and unpin a memcg
2139 * @memcg: the memcg
2140 *
2141 * Unlock and unpin a memcg returned by lock_page_memcg().
2142 */
2143 void __unlock_page_memcg(struct mem_cgroup *memcg)
2144 {
2145 if (memcg && memcg->move_lock_task == current) {
2146 unsigned long flags = memcg->move_lock_flags;
2147
2148 memcg->move_lock_task = NULL;
2149 memcg->move_lock_flags = 0;
2150
2151 spin_unlock_irqrestore(&memcg->move_lock, flags);
2152 }
2153
2154 rcu_read_unlock();
2155 }
2156
2157 /**
2158 * unlock_page_memcg - unlock a page->mem_cgroup binding
2159 * @page: the page
2160 */
2161 void unlock_page_memcg(struct page *page)
2162 {
2163 __unlock_page_memcg(page->mem_cgroup);
2164 }
2165 EXPORT_SYMBOL(unlock_page_memcg);
2166
2167 struct memcg_stock_pcp {
2168 struct mem_cgroup *cached; /* this never be root cgroup */
2169 unsigned int nr_pages;
2170 struct work_struct work;
2171 unsigned long flags;
2172 #define FLUSHING_CACHED_CHARGE 0
2173 };
2174 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2175 static DEFINE_MUTEX(percpu_charge_mutex);
2176
2177 /**
2178 * consume_stock: Try to consume stocked charge on this cpu.
2179 * @memcg: memcg to consume from.
2180 * @nr_pages: how many pages to charge.
2181 *
2182 * The charges will only happen if @memcg matches the current cpu's memcg
2183 * stock, and at least @nr_pages are available in that stock. Failure to
2184 * service an allocation will refill the stock.
2185 *
2186 * returns true if successful, false otherwise.
2187 */
2188 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2189 {
2190 struct memcg_stock_pcp *stock;
2191 unsigned long flags;
2192 bool ret = false;
2193
2194 if (nr_pages > MEMCG_CHARGE_BATCH)
2195 return ret;
2196
2197 local_irq_save(flags);
2198
2199 stock = this_cpu_ptr(&memcg_stock);
2200 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2201 stock->nr_pages -= nr_pages;
2202 ret = true;
2203 }
2204
2205 local_irq_restore(flags);
2206
2207 return ret;
2208 }
2209
2210 /*
2211 * Returns stocks cached in percpu and reset cached information.
2212 */
2213 static void drain_stock(struct memcg_stock_pcp *stock)
2214 {
2215 struct mem_cgroup *old = stock->cached;
2216
2217 if (stock->nr_pages) {
2218 page_counter_uncharge(&old->memory, stock->nr_pages);
2219 if (do_memsw_account())
2220 page_counter_uncharge(&old->memsw, stock->nr_pages);
2221 css_put_many(&old->css, stock->nr_pages);
2222 stock->nr_pages = 0;
2223 }
2224 stock->cached = NULL;
2225 }
2226
2227 static void drain_local_stock(struct work_struct *dummy)
2228 {
2229 struct memcg_stock_pcp *stock;
2230 unsigned long flags;
2231
2232 /*
2233 * The only protection from memory hotplug vs. drain_stock races is
2234 * that we always operate on local CPU stock here with IRQ disabled
2235 */
2236 local_irq_save(flags);
2237
2238 stock = this_cpu_ptr(&memcg_stock);
2239 drain_stock(stock);
2240 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2241
2242 local_irq_restore(flags);
2243 }
2244
2245 /*
2246 * Cache charges(val) to local per_cpu area.
2247 * This will be consumed by consume_stock() function, later.
2248 */
2249 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2250 {
2251 struct memcg_stock_pcp *stock;
2252 unsigned long flags;
2253
2254 local_irq_save(flags);
2255
2256 stock = this_cpu_ptr(&memcg_stock);
2257 if (stock->cached != memcg) { /* reset if necessary */
2258 drain_stock(stock);
2259 stock->cached = memcg;
2260 }
2261 stock->nr_pages += nr_pages;
2262
2263 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2264 drain_stock(stock);
2265
2266 local_irq_restore(flags);
2267 }
2268
2269 /*
2270 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2271 * of the hierarchy under it.
2272 */
2273 static void drain_all_stock(struct mem_cgroup *root_memcg)
2274 {
2275 int cpu, curcpu;
2276
2277 /* If someone's already draining, avoid adding running more workers. */
2278 if (!mutex_trylock(&percpu_charge_mutex))
2279 return;
2280 /*
2281 * Notify other cpus that system-wide "drain" is running
2282 * We do not care about races with the cpu hotplug because cpu down
2283 * as well as workers from this path always operate on the local
2284 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2285 */
2286 curcpu = get_cpu();
2287 for_each_online_cpu(cpu) {
2288 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2289 struct mem_cgroup *memcg;
2290 bool flush = false;
2291
2292 rcu_read_lock();
2293 memcg = stock->cached;
2294 if (memcg && stock->nr_pages &&
2295 mem_cgroup_is_descendant(memcg, root_memcg))
2296 flush = true;
2297 rcu_read_unlock();
2298
2299 if (flush &&
2300 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2301 if (cpu == curcpu)
2302 drain_local_stock(&stock->work);
2303 else
2304 schedule_work_on(cpu, &stock->work);
2305 }
2306 }
2307 put_cpu();
2308 mutex_unlock(&percpu_charge_mutex);
2309 }
2310
2311 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2312 {
2313 struct memcg_stock_pcp *stock;
2314 struct mem_cgroup *memcg, *mi;
2315
2316 stock = &per_cpu(memcg_stock, cpu);
2317 drain_stock(stock);
2318
2319 for_each_mem_cgroup(memcg) {
2320 int i;
2321
2322 for (i = 0; i < MEMCG_NR_STAT; i++) {
2323 int nid;
2324 long x;
2325
2326 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2327 if (x)
2328 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2329 atomic_long_add(x, &memcg->vmstats[i]);
2330
2331 if (i >= NR_VM_NODE_STAT_ITEMS)
2332 continue;
2333
2334 for_each_node(nid) {
2335 struct mem_cgroup_per_node *pn;
2336
2337 pn = mem_cgroup_nodeinfo(memcg, nid);
2338 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2339 if (x)
2340 do {
2341 atomic_long_add(x, &pn->lruvec_stat[i]);
2342 } while ((pn = parent_nodeinfo(pn, nid)));
2343 }
2344 }
2345
2346 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2347 long x;
2348
2349 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2350 if (x)
2351 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2352 atomic_long_add(x, &memcg->vmevents[i]);
2353 }
2354 }
2355
2356 return 0;
2357 }
2358
2359 static void reclaim_high(struct mem_cgroup *memcg,
2360 unsigned int nr_pages,
2361 gfp_t gfp_mask)
2362 {
2363 do {
2364 if (page_counter_read(&memcg->memory) <= memcg->high)
2365 continue;
2366 memcg_memory_event(memcg, MEMCG_HIGH);
2367 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2368 } while ((memcg = parent_mem_cgroup(memcg)));
2369 }
2370
2371 static void high_work_func(struct work_struct *work)
2372 {
2373 struct mem_cgroup *memcg;
2374
2375 memcg = container_of(work, struct mem_cgroup, high_work);
2376 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2377 }
2378
2379 /*
2380 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2381 * enough to still cause a significant slowdown in most cases, while still
2382 * allowing diagnostics and tracing to proceed without becoming stuck.
2383 */
2384 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2385
2386 /*
2387 * When calculating the delay, we use these either side of the exponentiation to
2388 * maintain precision and scale to a reasonable number of jiffies (see the table
2389 * below.
2390 *
2391 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2392 * overage ratio to a delay.
2393 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2394 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2395 * to produce a reasonable delay curve.
2396 *
2397 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2398 * reasonable delay curve compared to precision-adjusted overage, not
2399 * penalising heavily at first, but still making sure that growth beyond the
2400 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2401 * example, with a high of 100 megabytes:
2402 *
2403 * +-------+------------------------+
2404 * | usage | time to allocate in ms |
2405 * +-------+------------------------+
2406 * | 100M | 0 |
2407 * | 101M | 6 |
2408 * | 102M | 25 |
2409 * | 103M | 57 |
2410 * | 104M | 102 |
2411 * | 105M | 159 |
2412 * | 106M | 230 |
2413 * | 107M | 313 |
2414 * | 108M | 409 |
2415 * | 109M | 518 |
2416 * | 110M | 639 |
2417 * | 111M | 774 |
2418 * | 112M | 921 |
2419 * | 113M | 1081 |
2420 * | 114M | 1254 |
2421 * | 115M | 1439 |
2422 * | 116M | 1638 |
2423 * | 117M | 1849 |
2424 * | 118M | 2000 |
2425 * | 119M | 2000 |
2426 * | 120M | 2000 |
2427 * +-------+------------------------+
2428 */
2429 #define MEMCG_DELAY_PRECISION_SHIFT 20
2430 #define MEMCG_DELAY_SCALING_SHIFT 14
2431
2432 /*
2433 * Get the number of jiffies that we should penalise a mischievous cgroup which
2434 * is exceeding its memory.high by checking both it and its ancestors.
2435 */
2436 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2437 unsigned int nr_pages)
2438 {
2439 unsigned long penalty_jiffies;
2440 u64 max_overage = 0;
2441
2442 do {
2443 unsigned long usage, high;
2444 u64 overage;
2445
2446 usage = page_counter_read(&memcg->memory);
2447 high = READ_ONCE(memcg->high);
2448
2449 if (usage <= high)
2450 continue;
2451
2452 /*
2453 * Prevent division by 0 in overage calculation by acting as if
2454 * it was a threshold of 1 page
2455 */
2456 high = max(high, 1UL);
2457
2458 overage = usage - high;
2459 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2460 overage = div64_u64(overage, high);
2461
2462 if (overage > max_overage)
2463 max_overage = overage;
2464 } while ((memcg = parent_mem_cgroup(memcg)) &&
2465 !mem_cgroup_is_root(memcg));
2466
2467 if (!max_overage)
2468 return 0;
2469
2470 /*
2471 * We use overage compared to memory.high to calculate the number of
2472 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2473 * fairly lenient on small overages, and increasingly harsh when the
2474 * memcg in question makes it clear that it has no intention of stopping
2475 * its crazy behaviour, so we exponentially increase the delay based on
2476 * overage amount.
2477 */
2478 penalty_jiffies = max_overage * max_overage * HZ;
2479 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2480 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2481
2482 /*
2483 * Factor in the task's own contribution to the overage, such that four
2484 * N-sized allocations are throttled approximately the same as one
2485 * 4N-sized allocation.
2486 *
2487 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2488 * larger the current charge patch is than that.
2489 */
2490 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2491
2492 /*
2493 * Clamp the max delay per usermode return so as to still keep the
2494 * application moving forwards and also permit diagnostics, albeit
2495 * extremely slowly.
2496 */
2497 return min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2498 }
2499
2500 /*
2501 * Scheduled by try_charge() to be executed from the userland return path
2502 * and reclaims memory over the high limit.
2503 */
2504 void mem_cgroup_handle_over_high(void)
2505 {
2506 unsigned long penalty_jiffies;
2507 unsigned long pflags;
2508 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2509 struct mem_cgroup *memcg;
2510
2511 if (likely(!nr_pages))
2512 return;
2513
2514 memcg = get_mem_cgroup_from_mm(current->mm);
2515 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2516 current->memcg_nr_pages_over_high = 0;
2517
2518 /*
2519 * memory.high is breached and reclaim is unable to keep up. Throttle
2520 * allocators proactively to slow down excessive growth.
2521 */
2522 penalty_jiffies = calculate_high_delay(memcg, nr_pages);
2523
2524 /*
2525 * Don't sleep if the amount of jiffies this memcg owes us is so low
2526 * that it's not even worth doing, in an attempt to be nice to those who
2527 * go only a small amount over their memory.high value and maybe haven't
2528 * been aggressively reclaimed enough yet.
2529 */
2530 if (penalty_jiffies <= HZ / 100)
2531 goto out;
2532
2533 /*
2534 * If we exit early, we're guaranteed to die (since
2535 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2536 * need to account for any ill-begotten jiffies to pay them off later.
2537 */
2538 psi_memstall_enter(&pflags);
2539 schedule_timeout_killable(penalty_jiffies);
2540 psi_memstall_leave(&pflags);
2541
2542 out:
2543 css_put(&memcg->css);
2544 }
2545
2546 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2547 unsigned int nr_pages)
2548 {
2549 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2550 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2551 struct mem_cgroup *mem_over_limit;
2552 struct page_counter *counter;
2553 unsigned long nr_reclaimed;
2554 bool may_swap = true;
2555 bool drained = false;
2556 enum oom_status oom_status;
2557
2558 if (mem_cgroup_is_root(memcg))
2559 return 0;
2560 retry:
2561 if (consume_stock(memcg, nr_pages))
2562 return 0;
2563
2564 if (!do_memsw_account() ||
2565 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2566 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2567 goto done_restock;
2568 if (do_memsw_account())
2569 page_counter_uncharge(&memcg->memsw, batch);
2570 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2571 } else {
2572 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2573 may_swap = false;
2574 }
2575
2576 if (batch > nr_pages) {
2577 batch = nr_pages;
2578 goto retry;
2579 }
2580
2581 /*
2582 * Memcg doesn't have a dedicated reserve for atomic
2583 * allocations. But like the global atomic pool, we need to
2584 * put the burden of reclaim on regular allocation requests
2585 * and let these go through as privileged allocations.
2586 */
2587 if (gfp_mask & __GFP_ATOMIC)
2588 goto force;
2589
2590 /*
2591 * Unlike in global OOM situations, memcg is not in a physical
2592 * memory shortage. Allow dying and OOM-killed tasks to
2593 * bypass the last charges so that they can exit quickly and
2594 * free their memory.
2595 */
2596 if (unlikely(should_force_charge()))
2597 goto force;
2598
2599 /*
2600 * Prevent unbounded recursion when reclaim operations need to
2601 * allocate memory. This might exceed the limits temporarily,
2602 * but we prefer facilitating memory reclaim and getting back
2603 * under the limit over triggering OOM kills in these cases.
2604 */
2605 if (unlikely(current->flags & PF_MEMALLOC))
2606 goto force;
2607
2608 if (unlikely(task_in_memcg_oom(current)))
2609 goto nomem;
2610
2611 if (!gfpflags_allow_blocking(gfp_mask))
2612 goto nomem;
2613
2614 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2615
2616 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2617 gfp_mask, may_swap);
2618
2619 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2620 goto retry;
2621
2622 if (!drained) {
2623 drain_all_stock(mem_over_limit);
2624 drained = true;
2625 goto retry;
2626 }
2627
2628 if (gfp_mask & __GFP_NORETRY)
2629 goto nomem;
2630 /*
2631 * Even though the limit is exceeded at this point, reclaim
2632 * may have been able to free some pages. Retry the charge
2633 * before killing the task.
2634 *
2635 * Only for regular pages, though: huge pages are rather
2636 * unlikely to succeed so close to the limit, and we fall back
2637 * to regular pages anyway in case of failure.
2638 */
2639 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2640 goto retry;
2641 /*
2642 * At task move, charge accounts can be doubly counted. So, it's
2643 * better to wait until the end of task_move if something is going on.
2644 */
2645 if (mem_cgroup_wait_acct_move(mem_over_limit))
2646 goto retry;
2647
2648 if (nr_retries--)
2649 goto retry;
2650
2651 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2652 goto nomem;
2653
2654 if (gfp_mask & __GFP_NOFAIL)
2655 goto force;
2656
2657 if (fatal_signal_pending(current))
2658 goto force;
2659
2660 /*
2661 * keep retrying as long as the memcg oom killer is able to make
2662 * a forward progress or bypass the charge if the oom killer
2663 * couldn't make any progress.
2664 */
2665 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2666 get_order(nr_pages * PAGE_SIZE));
2667 switch (oom_status) {
2668 case OOM_SUCCESS:
2669 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2670 goto retry;
2671 case OOM_FAILED:
2672 goto force;
2673 default:
2674 goto nomem;
2675 }
2676 nomem:
2677 if (!(gfp_mask & __GFP_NOFAIL))
2678 return -ENOMEM;
2679 force:
2680 /*
2681 * The allocation either can't fail or will lead to more memory
2682 * being freed very soon. Allow memory usage go over the limit
2683 * temporarily by force charging it.
2684 */
2685 page_counter_charge(&memcg->memory, nr_pages);
2686 if (do_memsw_account())
2687 page_counter_charge(&memcg->memsw, nr_pages);
2688 css_get_many(&memcg->css, nr_pages);
2689
2690 return 0;
2691
2692 done_restock:
2693 css_get_many(&memcg->css, batch);
2694 if (batch > nr_pages)
2695 refill_stock(memcg, batch - nr_pages);
2696
2697 /*
2698 * If the hierarchy is above the normal consumption range, schedule
2699 * reclaim on returning to userland. We can perform reclaim here
2700 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2701 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2702 * not recorded as it most likely matches current's and won't
2703 * change in the meantime. As high limit is checked again before
2704 * reclaim, the cost of mismatch is negligible.
2705 */
2706 do {
2707 if (page_counter_read(&memcg->memory) > memcg->high) {
2708 /* Don't bother a random interrupted task */
2709 if (in_interrupt()) {
2710 schedule_work(&memcg->high_work);
2711 break;
2712 }
2713 current->memcg_nr_pages_over_high += batch;
2714 set_notify_resume(current);
2715 break;
2716 }
2717 } while ((memcg = parent_mem_cgroup(memcg)));
2718
2719 return 0;
2720 }
2721
2722 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2723 {
2724 if (mem_cgroup_is_root(memcg))
2725 return;
2726
2727 page_counter_uncharge(&memcg->memory, nr_pages);
2728 if (do_memsw_account())
2729 page_counter_uncharge(&memcg->memsw, nr_pages);
2730
2731 css_put_many(&memcg->css, nr_pages);
2732 }
2733
2734 static void lock_page_lru(struct page *page, int *isolated)
2735 {
2736 pg_data_t *pgdat = page_pgdat(page);
2737
2738 spin_lock_irq(&pgdat->lru_lock);
2739 if (PageLRU(page)) {
2740 struct lruvec *lruvec;
2741
2742 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2743 ClearPageLRU(page);
2744 del_page_from_lru_list(page, lruvec, page_lru(page));
2745 *isolated = 1;
2746 } else
2747 *isolated = 0;
2748 }
2749
2750 static void unlock_page_lru(struct page *page, int isolated)
2751 {
2752 pg_data_t *pgdat = page_pgdat(page);
2753
2754 if (isolated) {
2755 struct lruvec *lruvec;
2756
2757 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2758 VM_BUG_ON_PAGE(PageLRU(page), page);
2759 SetPageLRU(page);
2760 add_page_to_lru_list(page, lruvec, page_lru(page));
2761 }
2762 spin_unlock_irq(&pgdat->lru_lock);
2763 }
2764
2765 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2766 bool lrucare)
2767 {
2768 int isolated;
2769
2770 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2771
2772 /*
2773 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2774 * may already be on some other mem_cgroup's LRU. Take care of it.
2775 */
2776 if (lrucare)
2777 lock_page_lru(page, &isolated);
2778
2779 /*
2780 * Nobody should be changing or seriously looking at
2781 * page->mem_cgroup at this point:
2782 *
2783 * - the page is uncharged
2784 *
2785 * - the page is off-LRU
2786 *
2787 * - an anonymous fault has exclusive page access, except for
2788 * a locked page table
2789 *
2790 * - a page cache insertion, a swapin fault, or a migration
2791 * have the page locked
2792 */
2793 page->mem_cgroup = memcg;
2794
2795 if (lrucare)
2796 unlock_page_lru(page, isolated);
2797 }
2798
2799 #ifdef CONFIG_MEMCG_KMEM
2800 /*
2801 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2802 *
2803 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2804 * cgroup_mutex, etc.
2805 */
2806 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2807 {
2808 struct page *page;
2809
2810 if (mem_cgroup_disabled())
2811 return NULL;
2812
2813 page = virt_to_head_page(p);
2814
2815 /*
2816 * Slab pages don't have page->mem_cgroup set because corresponding
2817 * kmem caches can be reparented during the lifetime. That's why
2818 * memcg_from_slab_page() should be used instead.
2819 */
2820 if (PageSlab(page))
2821 return memcg_from_slab_page(page);
2822
2823 /* All other pages use page->mem_cgroup */
2824 return page->mem_cgroup;
2825 }
2826
2827 static int memcg_alloc_cache_id(void)
2828 {
2829 int id, size;
2830 int err;
2831
2832 id = ida_simple_get(&memcg_cache_ida,
2833 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2834 if (id < 0)
2835 return id;
2836
2837 if (id < memcg_nr_cache_ids)
2838 return id;
2839
2840 /*
2841 * There's no space for the new id in memcg_caches arrays,
2842 * so we have to grow them.
2843 */
2844 down_write(&memcg_cache_ids_sem);
2845
2846 size = 2 * (id + 1);
2847 if (size < MEMCG_CACHES_MIN_SIZE)
2848 size = MEMCG_CACHES_MIN_SIZE;
2849 else if (size > MEMCG_CACHES_MAX_SIZE)
2850 size = MEMCG_CACHES_MAX_SIZE;
2851
2852 err = memcg_update_all_caches(size);
2853 if (!err)
2854 err = memcg_update_all_list_lrus(size);
2855 if (!err)
2856 memcg_nr_cache_ids = size;
2857
2858 up_write(&memcg_cache_ids_sem);
2859
2860 if (err) {
2861 ida_simple_remove(&memcg_cache_ida, id);
2862 return err;
2863 }
2864 return id;
2865 }
2866
2867 static void memcg_free_cache_id(int id)
2868 {
2869 ida_simple_remove(&memcg_cache_ida, id);
2870 }
2871
2872 struct memcg_kmem_cache_create_work {
2873 struct mem_cgroup *memcg;
2874 struct kmem_cache *cachep;
2875 struct work_struct work;
2876 };
2877
2878 static void memcg_kmem_cache_create_func(struct work_struct *w)
2879 {
2880 struct memcg_kmem_cache_create_work *cw =
2881 container_of(w, struct memcg_kmem_cache_create_work, work);
2882 struct mem_cgroup *memcg = cw->memcg;
2883 struct kmem_cache *cachep = cw->cachep;
2884
2885 memcg_create_kmem_cache(memcg, cachep);
2886
2887 css_put(&memcg->css);
2888 kfree(cw);
2889 }
2890
2891 /*
2892 * Enqueue the creation of a per-memcg kmem_cache.
2893 */
2894 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2895 struct kmem_cache *cachep)
2896 {
2897 struct memcg_kmem_cache_create_work *cw;
2898
2899 if (!css_tryget_online(&memcg->css))
2900 return;
2901
2902 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2903 if (!cw) {
2904 css_put(&memcg->css);
2905 return;
2906 }
2907
2908 cw->memcg = memcg;
2909 cw->cachep = cachep;
2910 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2911
2912 queue_work(memcg_kmem_cache_wq, &cw->work);
2913 }
2914
2915 static inline bool memcg_kmem_bypass(void)
2916 {
2917 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2918 return true;
2919 return false;
2920 }
2921
2922 /**
2923 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2924 * @cachep: the original global kmem cache
2925 *
2926 * Return the kmem_cache we're supposed to use for a slab allocation.
2927 * We try to use the current memcg's version of the cache.
2928 *
2929 * If the cache does not exist yet, if we are the first user of it, we
2930 * create it asynchronously in a workqueue and let the current allocation
2931 * go through with the original cache.
2932 *
2933 * This function takes a reference to the cache it returns to assure it
2934 * won't get destroyed while we are working with it. Once the caller is
2935 * done with it, memcg_kmem_put_cache() must be called to release the
2936 * reference.
2937 */
2938 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2939 {
2940 struct mem_cgroup *memcg;
2941 struct kmem_cache *memcg_cachep;
2942 struct memcg_cache_array *arr;
2943 int kmemcg_id;
2944
2945 VM_BUG_ON(!is_root_cache(cachep));
2946
2947 if (memcg_kmem_bypass())
2948 return cachep;
2949
2950 rcu_read_lock();
2951
2952 if (unlikely(current->active_memcg))
2953 memcg = current->active_memcg;
2954 else
2955 memcg = mem_cgroup_from_task(current);
2956
2957 if (!memcg || memcg == root_mem_cgroup)
2958 goto out_unlock;
2959
2960 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2961 if (kmemcg_id < 0)
2962 goto out_unlock;
2963
2964 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2965
2966 /*
2967 * Make sure we will access the up-to-date value. The code updating
2968 * memcg_caches issues a write barrier to match the data dependency
2969 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2970 */
2971 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2972
2973 /*
2974 * If we are in a safe context (can wait, and not in interrupt
2975 * context), we could be be predictable and return right away.
2976 * This would guarantee that the allocation being performed
2977 * already belongs in the new cache.
2978 *
2979 * However, there are some clashes that can arrive from locking.
2980 * For instance, because we acquire the slab_mutex while doing
2981 * memcg_create_kmem_cache, this means no further allocation
2982 * could happen with the slab_mutex held. So it's better to
2983 * defer everything.
2984 *
2985 * If the memcg is dying or memcg_cache is about to be released,
2986 * don't bother creating new kmem_caches. Because memcg_cachep
2987 * is ZEROed as the fist step of kmem offlining, we don't need
2988 * percpu_ref_tryget_live() here. css_tryget_online() check in
2989 * memcg_schedule_kmem_cache_create() will prevent us from
2990 * creation of a new kmem_cache.
2991 */
2992 if (unlikely(!memcg_cachep))
2993 memcg_schedule_kmem_cache_create(memcg, cachep);
2994 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2995 cachep = memcg_cachep;
2996 out_unlock:
2997 rcu_read_unlock();
2998 return cachep;
2999 }
3000
3001 /**
3002 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
3003 * @cachep: the cache returned by memcg_kmem_get_cache
3004 */
3005 void memcg_kmem_put_cache(struct kmem_cache *cachep)
3006 {
3007 if (!is_root_cache(cachep))
3008 percpu_ref_put(&cachep->memcg_params.refcnt);
3009 }
3010
3011 /**
3012 * __memcg_kmem_charge_memcg: charge a kmem page
3013 * @page: page to charge
3014 * @gfp: reclaim mode
3015 * @order: allocation order
3016 * @memcg: memory cgroup to charge
3017 *
3018 * Returns 0 on success, an error code on failure.
3019 */
3020 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
3021 struct mem_cgroup *memcg)
3022 {
3023 unsigned int nr_pages = 1 << order;
3024 struct page_counter *counter;
3025 int ret;
3026
3027 ret = try_charge(memcg, gfp, nr_pages);
3028 if (ret)
3029 return ret;
3030
3031 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3032 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3033
3034 /*
3035 * Enforce __GFP_NOFAIL allocation because callers are not
3036 * prepared to see failures and likely do not have any failure
3037 * handling code.
3038 */
3039 if (gfp & __GFP_NOFAIL) {
3040 page_counter_charge(&memcg->kmem, nr_pages);
3041 return 0;
3042 }
3043 cancel_charge(memcg, nr_pages);
3044 return -ENOMEM;
3045 }
3046 return 0;
3047 }
3048
3049 /**
3050 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
3051 * @page: page to charge
3052 * @gfp: reclaim mode
3053 * @order: allocation order
3054 *
3055 * Returns 0 on success, an error code on failure.
3056 */
3057 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
3058 {
3059 struct mem_cgroup *memcg;
3060 int ret = 0;
3061
3062 if (memcg_kmem_bypass())
3063 return 0;
3064
3065 memcg = get_mem_cgroup_from_current();
3066 if (!mem_cgroup_is_root(memcg)) {
3067 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
3068 if (!ret) {
3069 page->mem_cgroup = memcg;
3070 __SetPageKmemcg(page);
3071 }
3072 }
3073 css_put(&memcg->css);
3074 return ret;
3075 }
3076
3077 /**
3078 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
3079 * @memcg: memcg to uncharge
3080 * @nr_pages: number of pages to uncharge
3081 */
3082 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
3083 unsigned int nr_pages)
3084 {
3085 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3086 page_counter_uncharge(&memcg->kmem, nr_pages);
3087
3088 page_counter_uncharge(&memcg->memory, nr_pages);
3089 if (do_memsw_account())
3090 page_counter_uncharge(&memcg->memsw, nr_pages);
3091 }
3092 /**
3093 * __memcg_kmem_uncharge: uncharge a kmem page
3094 * @page: page to uncharge
3095 * @order: allocation order
3096 */
3097 void __memcg_kmem_uncharge(struct page *page, int order)
3098 {
3099 struct mem_cgroup *memcg = page->mem_cgroup;
3100 unsigned int nr_pages = 1 << order;
3101
3102 if (!memcg)
3103 return;
3104
3105 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3106 __memcg_kmem_uncharge_memcg(memcg, nr_pages);
3107 page->mem_cgroup = NULL;
3108
3109 /* slab pages do not have PageKmemcg flag set */
3110 if (PageKmemcg(page))
3111 __ClearPageKmemcg(page);
3112
3113 css_put_many(&memcg->css, nr_pages);
3114 }
3115 #endif /* CONFIG_MEMCG_KMEM */
3116
3117 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3118
3119 /*
3120 * Because tail pages are not marked as "used", set it. We're under
3121 * pgdat->lru_lock and migration entries setup in all page mappings.
3122 */
3123 void mem_cgroup_split_huge_fixup(struct page *head)
3124 {
3125 int i;
3126
3127 if (mem_cgroup_disabled())
3128 return;
3129
3130 for (i = 1; i < HPAGE_PMD_NR; i++)
3131 head[i].mem_cgroup = head->mem_cgroup;
3132
3133 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
3134 }
3135 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3136
3137 #ifdef CONFIG_MEMCG_SWAP
3138 /**
3139 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3140 * @entry: swap entry to be moved
3141 * @from: mem_cgroup which the entry is moved from
3142 * @to: mem_cgroup which the entry is moved to
3143 *
3144 * It succeeds only when the swap_cgroup's record for this entry is the same
3145 * as the mem_cgroup's id of @from.
3146 *
3147 * Returns 0 on success, -EINVAL on failure.
3148 *
3149 * The caller must have charged to @to, IOW, called page_counter_charge() about
3150 * both res and memsw, and called css_get().
3151 */
3152 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3153 struct mem_cgroup *from, struct mem_cgroup *to)
3154 {
3155 unsigned short old_id, new_id;
3156
3157 old_id = mem_cgroup_id(from);
3158 new_id = mem_cgroup_id(to);
3159
3160 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3161 mod_memcg_state(from, MEMCG_SWAP, -1);
3162 mod_memcg_state(to, MEMCG_SWAP, 1);
3163 return 0;
3164 }
3165 return -EINVAL;
3166 }
3167 #else
3168 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3169 struct mem_cgroup *from, struct mem_cgroup *to)
3170 {
3171 return -EINVAL;
3172 }
3173 #endif
3174
3175 static DEFINE_MUTEX(memcg_max_mutex);
3176
3177 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3178 unsigned long max, bool memsw)
3179 {
3180 bool enlarge = false;
3181 bool drained = false;
3182 int ret;
3183 bool limits_invariant;
3184 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3185
3186 do {
3187 if (signal_pending(current)) {
3188 ret = -EINTR;
3189 break;
3190 }
3191
3192 mutex_lock(&memcg_max_mutex);
3193 /*
3194 * Make sure that the new limit (memsw or memory limit) doesn't
3195 * break our basic invariant rule memory.max <= memsw.max.
3196 */
3197 limits_invariant = memsw ? max >= memcg->memory.max :
3198 max <= memcg->memsw.max;
3199 if (!limits_invariant) {
3200 mutex_unlock(&memcg_max_mutex);
3201 ret = -EINVAL;
3202 break;
3203 }
3204 if (max > counter->max)
3205 enlarge = true;
3206 ret = page_counter_set_max(counter, max);
3207 mutex_unlock(&memcg_max_mutex);
3208
3209 if (!ret)
3210 break;
3211
3212 if (!drained) {
3213 drain_all_stock(memcg);
3214 drained = true;
3215 continue;
3216 }
3217
3218 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3219 GFP_KERNEL, !memsw)) {
3220 ret = -EBUSY;
3221 break;
3222 }
3223 } while (true);
3224
3225 if (!ret && enlarge)
3226 memcg_oom_recover(memcg);
3227
3228 return ret;
3229 }
3230
3231 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3232 gfp_t gfp_mask,
3233 unsigned long *total_scanned)
3234 {
3235 unsigned long nr_reclaimed = 0;
3236 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3237 unsigned long reclaimed;
3238 int loop = 0;
3239 struct mem_cgroup_tree_per_node *mctz;
3240 unsigned long excess;
3241 unsigned long nr_scanned;
3242
3243 if (order > 0)
3244 return 0;
3245
3246 mctz = soft_limit_tree_node(pgdat->node_id);
3247
3248 /*
3249 * Do not even bother to check the largest node if the root
3250 * is empty. Do it lockless to prevent lock bouncing. Races
3251 * are acceptable as soft limit is best effort anyway.
3252 */
3253 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3254 return 0;
3255
3256 /*
3257 * This loop can run a while, specially if mem_cgroup's continuously
3258 * keep exceeding their soft limit and putting the system under
3259 * pressure
3260 */
3261 do {
3262 if (next_mz)
3263 mz = next_mz;
3264 else
3265 mz = mem_cgroup_largest_soft_limit_node(mctz);
3266 if (!mz)
3267 break;
3268
3269 nr_scanned = 0;
3270 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3271 gfp_mask, &nr_scanned);
3272 nr_reclaimed += reclaimed;
3273 *total_scanned += nr_scanned;
3274 spin_lock_irq(&mctz->lock);
3275 __mem_cgroup_remove_exceeded(mz, mctz);
3276
3277 /*
3278 * If we failed to reclaim anything from this memory cgroup
3279 * it is time to move on to the next cgroup
3280 */
3281 next_mz = NULL;
3282 if (!reclaimed)
3283 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3284
3285 excess = soft_limit_excess(mz->memcg);
3286 /*
3287 * One school of thought says that we should not add
3288 * back the node to the tree if reclaim returns 0.
3289 * But our reclaim could return 0, simply because due
3290 * to priority we are exposing a smaller subset of
3291 * memory to reclaim from. Consider this as a longer
3292 * term TODO.
3293 */
3294 /* If excess == 0, no tree ops */
3295 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3296 spin_unlock_irq(&mctz->lock);
3297 css_put(&mz->memcg->css);
3298 loop++;
3299 /*
3300 * Could not reclaim anything and there are no more
3301 * mem cgroups to try or we seem to be looping without
3302 * reclaiming anything.
3303 */
3304 if (!nr_reclaimed &&
3305 (next_mz == NULL ||
3306 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3307 break;
3308 } while (!nr_reclaimed);
3309 if (next_mz)
3310 css_put(&next_mz->memcg->css);
3311 return nr_reclaimed;
3312 }
3313
3314 /*
3315 * Test whether @memcg has children, dead or alive. Note that this
3316 * function doesn't care whether @memcg has use_hierarchy enabled and
3317 * returns %true if there are child csses according to the cgroup
3318 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3319 */
3320 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3321 {
3322 bool ret;
3323
3324 rcu_read_lock();
3325 ret = css_next_child(NULL, &memcg->css);
3326 rcu_read_unlock();
3327 return ret;
3328 }
3329
3330 /*
3331 * Reclaims as many pages from the given memcg as possible.
3332 *
3333 * Caller is responsible for holding css reference for memcg.
3334 */
3335 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3336 {
3337 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3338
3339 /* we call try-to-free pages for make this cgroup empty */
3340 lru_add_drain_all();
3341
3342 drain_all_stock(memcg);
3343
3344 /* try to free all pages in this cgroup */
3345 while (nr_retries && page_counter_read(&memcg->memory)) {
3346 int progress;
3347
3348 if (signal_pending(current))
3349 return -EINTR;
3350
3351 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3352 GFP_KERNEL, true);
3353 if (!progress) {
3354 nr_retries--;
3355 /* maybe some writeback is necessary */
3356 congestion_wait(BLK_RW_ASYNC, HZ/10);
3357 }
3358
3359 }
3360
3361 return 0;
3362 }
3363
3364 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3365 char *buf, size_t nbytes,
3366 loff_t off)
3367 {
3368 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3369
3370 if (mem_cgroup_is_root(memcg))
3371 return -EINVAL;
3372 return mem_cgroup_force_empty(memcg) ?: nbytes;
3373 }
3374
3375 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3376 struct cftype *cft)
3377 {
3378 return mem_cgroup_from_css(css)->use_hierarchy;
3379 }
3380
3381 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3382 struct cftype *cft, u64 val)
3383 {
3384 int retval = 0;
3385 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3386 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3387
3388 if (memcg->use_hierarchy == val)
3389 return 0;
3390
3391 /*
3392 * If parent's use_hierarchy is set, we can't make any modifications
3393 * in the child subtrees. If it is unset, then the change can
3394 * occur, provided the current cgroup has no children.
3395 *
3396 * For the root cgroup, parent_mem is NULL, we allow value to be
3397 * set if there are no children.
3398 */
3399 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3400 (val == 1 || val == 0)) {
3401 if (!memcg_has_children(memcg))
3402 memcg->use_hierarchy = val;
3403 else
3404 retval = -EBUSY;
3405 } else
3406 retval = -EINVAL;
3407
3408 return retval;
3409 }
3410
3411 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3412 {
3413 unsigned long val;
3414
3415 if (mem_cgroup_is_root(memcg)) {
3416 val = memcg_page_state(memcg, MEMCG_CACHE) +
3417 memcg_page_state(memcg, MEMCG_RSS);
3418 if (swap)
3419 val += memcg_page_state(memcg, MEMCG_SWAP);
3420 } else {
3421 if (!swap)
3422 val = page_counter_read(&memcg->memory);
3423 else
3424 val = page_counter_read(&memcg->memsw);
3425 }
3426 return val;
3427 }
3428
3429 enum {
3430 RES_USAGE,
3431 RES_LIMIT,
3432 RES_MAX_USAGE,
3433 RES_FAILCNT,
3434 RES_SOFT_LIMIT,
3435 };
3436
3437 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3438 struct cftype *cft)
3439 {
3440 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3441 struct page_counter *counter;
3442
3443 switch (MEMFILE_TYPE(cft->private)) {
3444 case _MEM:
3445 counter = &memcg->memory;
3446 break;
3447 case _MEMSWAP:
3448 counter = &memcg->memsw;
3449 break;
3450 case _KMEM:
3451 counter = &memcg->kmem;
3452 break;
3453 case _TCP:
3454 counter = &memcg->tcpmem;
3455 break;
3456 default:
3457 BUG();
3458 }
3459
3460 switch (MEMFILE_ATTR(cft->private)) {
3461 case RES_USAGE:
3462 if (counter == &memcg->memory)
3463 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3464 if (counter == &memcg->memsw)
3465 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3466 return (u64)page_counter_read(counter) * PAGE_SIZE;
3467 case RES_LIMIT:
3468 return (u64)counter->max * PAGE_SIZE;
3469 case RES_MAX_USAGE:
3470 return (u64)counter->watermark * PAGE_SIZE;
3471 case RES_FAILCNT:
3472 return counter->failcnt;
3473 case RES_SOFT_LIMIT:
3474 return (u64)memcg->soft_limit * PAGE_SIZE;
3475 default:
3476 BUG();
3477 }
3478 }
3479
3480 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3481 {
3482 unsigned long stat[MEMCG_NR_STAT] = {0};
3483 struct mem_cgroup *mi;
3484 int node, cpu, i;
3485
3486 for_each_online_cpu(cpu)
3487 for (i = 0; i < MEMCG_NR_STAT; i++)
3488 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3489
3490 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3491 for (i = 0; i < MEMCG_NR_STAT; i++)
3492 atomic_long_add(stat[i], &mi->vmstats[i]);
3493
3494 for_each_node(node) {
3495 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3496 struct mem_cgroup_per_node *pi;
3497
3498 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3499 stat[i] = 0;
3500
3501 for_each_online_cpu(cpu)
3502 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3503 stat[i] += per_cpu(
3504 pn->lruvec_stat_cpu->count[i], cpu);
3505
3506 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3507 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3508 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3509 }
3510 }
3511
3512 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3513 {
3514 unsigned long events[NR_VM_EVENT_ITEMS];
3515 struct mem_cgroup *mi;
3516 int cpu, i;
3517
3518 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3519 events[i] = 0;
3520
3521 for_each_online_cpu(cpu)
3522 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3523 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3524 cpu);
3525
3526 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3527 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3528 atomic_long_add(events[i], &mi->vmevents[i]);
3529 }
3530
3531 #ifdef CONFIG_MEMCG_KMEM
3532 static int memcg_online_kmem(struct mem_cgroup *memcg)
3533 {
3534 int memcg_id;
3535
3536 if (cgroup_memory_nokmem)
3537 return 0;
3538
3539 BUG_ON(memcg->kmemcg_id >= 0);
3540 BUG_ON(memcg->kmem_state);
3541
3542 memcg_id = memcg_alloc_cache_id();
3543 if (memcg_id < 0)
3544 return memcg_id;
3545
3546 static_branch_inc(&memcg_kmem_enabled_key);
3547 /*
3548 * A memory cgroup is considered kmem-online as soon as it gets
3549 * kmemcg_id. Setting the id after enabling static branching will
3550 * guarantee no one starts accounting before all call sites are
3551 * patched.
3552 */
3553 memcg->kmemcg_id = memcg_id;
3554 memcg->kmem_state = KMEM_ONLINE;
3555 INIT_LIST_HEAD(&memcg->kmem_caches);
3556
3557 return 0;
3558 }
3559
3560 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3561 {
3562 struct cgroup_subsys_state *css;
3563 struct mem_cgroup *parent, *child;
3564 int kmemcg_id;
3565
3566 if (memcg->kmem_state != KMEM_ONLINE)
3567 return;
3568 /*
3569 * Clear the online state before clearing memcg_caches array
3570 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3571 * guarantees that no cache will be created for this cgroup
3572 * after we are done (see memcg_create_kmem_cache()).
3573 */
3574 memcg->kmem_state = KMEM_ALLOCATED;
3575
3576 parent = parent_mem_cgroup(memcg);
3577 if (!parent)
3578 parent = root_mem_cgroup;
3579
3580 /*
3581 * Deactivate and reparent kmem_caches.
3582 */
3583 memcg_deactivate_kmem_caches(memcg, parent);
3584
3585 kmemcg_id = memcg->kmemcg_id;
3586 BUG_ON(kmemcg_id < 0);
3587
3588 /*
3589 * Change kmemcg_id of this cgroup and all its descendants to the
3590 * parent's id, and then move all entries from this cgroup's list_lrus
3591 * to ones of the parent. After we have finished, all list_lrus
3592 * corresponding to this cgroup are guaranteed to remain empty. The
3593 * ordering is imposed by list_lru_node->lock taken by
3594 * memcg_drain_all_list_lrus().
3595 */
3596 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3597 css_for_each_descendant_pre(css, &memcg->css) {
3598 child = mem_cgroup_from_css(css);
3599 BUG_ON(child->kmemcg_id != kmemcg_id);
3600 child->kmemcg_id = parent->kmemcg_id;
3601 if (!memcg->use_hierarchy)
3602 break;
3603 }
3604 rcu_read_unlock();
3605
3606 memcg_drain_all_list_lrus(kmemcg_id, parent);
3607
3608 memcg_free_cache_id(kmemcg_id);
3609 }
3610
3611 static void memcg_free_kmem(struct mem_cgroup *memcg)
3612 {
3613 /* css_alloc() failed, offlining didn't happen */
3614 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3615 memcg_offline_kmem(memcg);
3616
3617 if (memcg->kmem_state == KMEM_ALLOCATED) {
3618 WARN_ON(!list_empty(&memcg->kmem_caches));
3619 static_branch_dec(&memcg_kmem_enabled_key);
3620 }
3621 }
3622 #else
3623 static int memcg_online_kmem(struct mem_cgroup *memcg)
3624 {
3625 return 0;
3626 }
3627 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3628 {
3629 }
3630 static void memcg_free_kmem(struct mem_cgroup *memcg)
3631 {
3632 }
3633 #endif /* CONFIG_MEMCG_KMEM */
3634
3635 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3636 unsigned long max)
3637 {
3638 int ret;
3639
3640 mutex_lock(&memcg_max_mutex);
3641 ret = page_counter_set_max(&memcg->kmem, max);
3642 mutex_unlock(&memcg_max_mutex);
3643 return ret;
3644 }
3645
3646 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3647 {
3648 int ret;
3649
3650 mutex_lock(&memcg_max_mutex);
3651
3652 ret = page_counter_set_max(&memcg->tcpmem, max);
3653 if (ret)
3654 goto out;
3655
3656 if (!memcg->tcpmem_active) {
3657 /*
3658 * The active flag needs to be written after the static_key
3659 * update. This is what guarantees that the socket activation
3660 * function is the last one to run. See mem_cgroup_sk_alloc()
3661 * for details, and note that we don't mark any socket as
3662 * belonging to this memcg until that flag is up.
3663 *
3664 * We need to do this, because static_keys will span multiple
3665 * sites, but we can't control their order. If we mark a socket
3666 * as accounted, but the accounting functions are not patched in
3667 * yet, we'll lose accounting.
3668 *
3669 * We never race with the readers in mem_cgroup_sk_alloc(),
3670 * because when this value change, the code to process it is not
3671 * patched in yet.
3672 */
3673 static_branch_inc(&memcg_sockets_enabled_key);
3674 memcg->tcpmem_active = true;
3675 }
3676 out:
3677 mutex_unlock(&memcg_max_mutex);
3678 return ret;
3679 }
3680
3681 /*
3682 * The user of this function is...
3683 * RES_LIMIT.
3684 */
3685 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3686 char *buf, size_t nbytes, loff_t off)
3687 {
3688 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3689 unsigned long nr_pages;
3690 int ret;
3691
3692 buf = strstrip(buf);
3693 ret = page_counter_memparse(buf, "-1", &nr_pages);
3694 if (ret)
3695 return ret;
3696
3697 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3698 case RES_LIMIT:
3699 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3700 ret = -EINVAL;
3701 break;
3702 }
3703 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3704 case _MEM:
3705 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3706 break;
3707 case _MEMSWAP:
3708 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3709 break;
3710 case _KMEM:
3711 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3712 "Please report your usecase to linux-mm@kvack.org if you "
3713 "depend on this functionality.\n");
3714 ret = memcg_update_kmem_max(memcg, nr_pages);
3715 break;
3716 case _TCP:
3717 ret = memcg_update_tcp_max(memcg, nr_pages);
3718 break;
3719 }
3720 break;
3721 case RES_SOFT_LIMIT:
3722 memcg->soft_limit = nr_pages;
3723 ret = 0;
3724 break;
3725 }
3726 return ret ?: nbytes;
3727 }
3728
3729 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3730 size_t nbytes, loff_t off)
3731 {
3732 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3733 struct page_counter *counter;
3734
3735 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3736 case _MEM:
3737 counter = &memcg->memory;
3738 break;
3739 case _MEMSWAP:
3740 counter = &memcg->memsw;
3741 break;
3742 case _KMEM:
3743 counter = &memcg->kmem;
3744 break;
3745 case _TCP:
3746 counter = &memcg->tcpmem;
3747 break;
3748 default:
3749 BUG();
3750 }
3751
3752 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3753 case RES_MAX_USAGE:
3754 page_counter_reset_watermark(counter);
3755 break;
3756 case RES_FAILCNT:
3757 counter->failcnt = 0;
3758 break;
3759 default:
3760 BUG();
3761 }
3762
3763 return nbytes;
3764 }
3765
3766 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3767 struct cftype *cft)
3768 {
3769 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3770 }
3771
3772 #ifdef CONFIG_MMU
3773 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3774 struct cftype *cft, u64 val)
3775 {
3776 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3777
3778 if (val & ~MOVE_MASK)
3779 return -EINVAL;
3780
3781 /*
3782 * No kind of locking is needed in here, because ->can_attach() will
3783 * check this value once in the beginning of the process, and then carry
3784 * on with stale data. This means that changes to this value will only
3785 * affect task migrations starting after the change.
3786 */
3787 memcg->move_charge_at_immigrate = val;
3788 return 0;
3789 }
3790 #else
3791 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3792 struct cftype *cft, u64 val)
3793 {
3794 return -ENOSYS;
3795 }
3796 #endif
3797
3798 #ifdef CONFIG_NUMA
3799
3800 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3801 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3802 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3803
3804 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3805 int nid, unsigned int lru_mask)
3806 {
3807 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3808 unsigned long nr = 0;
3809 enum lru_list lru;
3810
3811 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3812
3813 for_each_lru(lru) {
3814 if (!(BIT(lru) & lru_mask))
3815 continue;
3816 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3817 }
3818 return nr;
3819 }
3820
3821 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3822 unsigned int lru_mask)
3823 {
3824 unsigned long nr = 0;
3825 enum lru_list lru;
3826
3827 for_each_lru(lru) {
3828 if (!(BIT(lru) & lru_mask))
3829 continue;
3830 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3831 }
3832 return nr;
3833 }
3834
3835 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3836 {
3837 struct numa_stat {
3838 const char *name;
3839 unsigned int lru_mask;
3840 };
3841
3842 static const struct numa_stat stats[] = {
3843 { "total", LRU_ALL },
3844 { "file", LRU_ALL_FILE },
3845 { "anon", LRU_ALL_ANON },
3846 { "unevictable", BIT(LRU_UNEVICTABLE) },
3847 };
3848 const struct numa_stat *stat;
3849 int nid;
3850 unsigned long nr;
3851 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3852
3853 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3854 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3855 seq_printf(m, "%s=%lu", stat->name, nr);
3856 for_each_node_state(nid, N_MEMORY) {
3857 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3858 stat->lru_mask);
3859 seq_printf(m, " N%d=%lu", nid, nr);
3860 }
3861 seq_putc(m, '\n');
3862 }
3863
3864 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3865 struct mem_cgroup *iter;
3866
3867 nr = 0;
3868 for_each_mem_cgroup_tree(iter, memcg)
3869 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3870 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3871 for_each_node_state(nid, N_MEMORY) {
3872 nr = 0;
3873 for_each_mem_cgroup_tree(iter, memcg)
3874 nr += mem_cgroup_node_nr_lru_pages(
3875 iter, nid, stat->lru_mask);
3876 seq_printf(m, " N%d=%lu", nid, nr);
3877 }
3878 seq_putc(m, '\n');
3879 }
3880
3881 return 0;
3882 }
3883 #endif /* CONFIG_NUMA */
3884
3885 static const unsigned int memcg1_stats[] = {
3886 MEMCG_CACHE,
3887 MEMCG_RSS,
3888 MEMCG_RSS_HUGE,
3889 NR_SHMEM,
3890 NR_FILE_MAPPED,
3891 NR_FILE_DIRTY,
3892 NR_WRITEBACK,
3893 MEMCG_SWAP,
3894 };
3895
3896 static const char *const memcg1_stat_names[] = {
3897 "cache",
3898 "rss",
3899 "rss_huge",
3900 "shmem",
3901 "mapped_file",
3902 "dirty",
3903 "writeback",
3904 "swap",
3905 };
3906
3907 /* Universal VM events cgroup1 shows, original sort order */
3908 static const unsigned int memcg1_events[] = {
3909 PGPGIN,
3910 PGPGOUT,
3911 PGFAULT,
3912 PGMAJFAULT,
3913 };
3914
3915 static const char *const memcg1_event_names[] = {
3916 "pgpgin",
3917 "pgpgout",
3918 "pgfault",
3919 "pgmajfault",
3920 };
3921
3922 static int memcg_stat_show(struct seq_file *m, void *v)
3923 {
3924 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3925 unsigned long memory, memsw;
3926 struct mem_cgroup *mi;
3927 unsigned int i;
3928
3929 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3930 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3931
3932 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3933 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3934 continue;
3935 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3936 memcg_page_state_local(memcg, memcg1_stats[i]) *
3937 PAGE_SIZE);
3938 }
3939
3940 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3941 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3942 memcg_events_local(memcg, memcg1_events[i]));
3943
3944 for (i = 0; i < NR_LRU_LISTS; i++)
3945 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3946 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3947 PAGE_SIZE);
3948
3949 /* Hierarchical information */
3950 memory = memsw = PAGE_COUNTER_MAX;
3951 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3952 memory = min(memory, mi->memory.max);
3953 memsw = min(memsw, mi->memsw.max);
3954 }
3955 seq_printf(m, "hierarchical_memory_limit %llu\n",
3956 (u64)memory * PAGE_SIZE);
3957 if (do_memsw_account())
3958 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3959 (u64)memsw * PAGE_SIZE);
3960
3961 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3962 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3963 continue;
3964 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3965 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3966 PAGE_SIZE);
3967 }
3968
3969 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3970 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3971 (u64)memcg_events(memcg, memcg1_events[i]));
3972
3973 for (i = 0; i < NR_LRU_LISTS; i++)
3974 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3975 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3976 PAGE_SIZE);
3977
3978 #ifdef CONFIG_DEBUG_VM
3979 {
3980 pg_data_t *pgdat;
3981 struct mem_cgroup_per_node *mz;
3982 struct zone_reclaim_stat *rstat;
3983 unsigned long recent_rotated[2] = {0, 0};
3984 unsigned long recent_scanned[2] = {0, 0};
3985
3986 for_each_online_pgdat(pgdat) {
3987 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3988 rstat = &mz->lruvec.reclaim_stat;
3989
3990 recent_rotated[0] += rstat->recent_rotated[0];
3991 recent_rotated[1] += rstat->recent_rotated[1];
3992 recent_scanned[0] += rstat->recent_scanned[0];
3993 recent_scanned[1] += rstat->recent_scanned[1];
3994 }
3995 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3996 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3997 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3998 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3999 }
4000 #endif
4001
4002 return 0;
4003 }
4004
4005 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4006 struct cftype *cft)
4007 {
4008 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4009
4010 return mem_cgroup_swappiness(memcg);
4011 }
4012
4013 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4014 struct cftype *cft, u64 val)
4015 {
4016 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4017
4018 if (val > 100)
4019 return -EINVAL;
4020
4021 if (css->parent)
4022 memcg->swappiness = val;
4023 else
4024 vm_swappiness = val;
4025
4026 return 0;
4027 }
4028
4029 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4030 {
4031 struct mem_cgroup_threshold_ary *t;
4032 unsigned long usage;
4033 int i;
4034
4035 rcu_read_lock();
4036 if (!swap)
4037 t = rcu_dereference(memcg->thresholds.primary);
4038 else
4039 t = rcu_dereference(memcg->memsw_thresholds.primary);
4040
4041 if (!t)
4042 goto unlock;
4043
4044 usage = mem_cgroup_usage(memcg, swap);
4045
4046 /*
4047 * current_threshold points to threshold just below or equal to usage.
4048 * If it's not true, a threshold was crossed after last
4049 * call of __mem_cgroup_threshold().
4050 */
4051 i = t->current_threshold;
4052
4053 /*
4054 * Iterate backward over array of thresholds starting from
4055 * current_threshold and check if a threshold is crossed.
4056 * If none of thresholds below usage is crossed, we read
4057 * only one element of the array here.
4058 */
4059 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4060 eventfd_signal(t->entries[i].eventfd, 1);
4061
4062 /* i = current_threshold + 1 */
4063 i++;
4064
4065 /*
4066 * Iterate forward over array of thresholds starting from
4067 * current_threshold+1 and check if a threshold is crossed.
4068 * If none of thresholds above usage is crossed, we read
4069 * only one element of the array here.
4070 */
4071 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4072 eventfd_signal(t->entries[i].eventfd, 1);
4073
4074 /* Update current_threshold */
4075 t->current_threshold = i - 1;
4076 unlock:
4077 rcu_read_unlock();
4078 }
4079
4080 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4081 {
4082 while (memcg) {
4083 __mem_cgroup_threshold(memcg, false);
4084 if (do_memsw_account())
4085 __mem_cgroup_threshold(memcg, true);
4086
4087 memcg = parent_mem_cgroup(memcg);
4088 }
4089 }
4090
4091 static int compare_thresholds(const void *a, const void *b)
4092 {
4093 const struct mem_cgroup_threshold *_a = a;
4094 const struct mem_cgroup_threshold *_b = b;
4095
4096 if (_a->threshold > _b->threshold)
4097 return 1;
4098
4099 if (_a->threshold < _b->threshold)
4100 return -1;
4101
4102 return 0;
4103 }
4104
4105 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4106 {
4107 struct mem_cgroup_eventfd_list *ev;
4108
4109 spin_lock(&memcg_oom_lock);
4110
4111 list_for_each_entry(ev, &memcg->oom_notify, list)
4112 eventfd_signal(ev->eventfd, 1);
4113
4114 spin_unlock(&memcg_oom_lock);
4115 return 0;
4116 }
4117
4118 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4119 {
4120 struct mem_cgroup *iter;
4121
4122 for_each_mem_cgroup_tree(iter, memcg)
4123 mem_cgroup_oom_notify_cb(iter);
4124 }
4125
4126 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4127 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4128 {
4129 struct mem_cgroup_thresholds *thresholds;
4130 struct mem_cgroup_threshold_ary *new;
4131 unsigned long threshold;
4132 unsigned long usage;
4133 int i, size, ret;
4134
4135 ret = page_counter_memparse(args, "-1", &threshold);
4136 if (ret)
4137 return ret;
4138
4139 mutex_lock(&memcg->thresholds_lock);
4140
4141 if (type == _MEM) {
4142 thresholds = &memcg->thresholds;
4143 usage = mem_cgroup_usage(memcg, false);
4144 } else if (type == _MEMSWAP) {
4145 thresholds = &memcg->memsw_thresholds;
4146 usage = mem_cgroup_usage(memcg, true);
4147 } else
4148 BUG();
4149
4150 /* Check if a threshold crossed before adding a new one */
4151 if (thresholds->primary)
4152 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4153
4154 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4155
4156 /* Allocate memory for new array of thresholds */
4157 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4158 if (!new) {
4159 ret = -ENOMEM;
4160 goto unlock;
4161 }
4162 new->size = size;
4163
4164 /* Copy thresholds (if any) to new array */
4165 if (thresholds->primary) {
4166 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4167 sizeof(struct mem_cgroup_threshold));
4168 }
4169
4170 /* Add new threshold */
4171 new->entries[size - 1].eventfd = eventfd;
4172 new->entries[size - 1].threshold = threshold;
4173
4174 /* Sort thresholds. Registering of new threshold isn't time-critical */
4175 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4176 compare_thresholds, NULL);
4177
4178 /* Find current threshold */
4179 new->current_threshold = -1;
4180 for (i = 0; i < size; i++) {
4181 if (new->entries[i].threshold <= usage) {
4182 /*
4183 * new->current_threshold will not be used until
4184 * rcu_assign_pointer(), so it's safe to increment
4185 * it here.
4186 */
4187 ++new->current_threshold;
4188 } else
4189 break;
4190 }
4191
4192 /* Free old spare buffer and save old primary buffer as spare */
4193 kfree(thresholds->spare);
4194 thresholds->spare = thresholds->primary;
4195
4196 rcu_assign_pointer(thresholds->primary, new);
4197
4198 /* To be sure that nobody uses thresholds */
4199 synchronize_rcu();
4200
4201 unlock:
4202 mutex_unlock(&memcg->thresholds_lock);
4203
4204 return ret;
4205 }
4206
4207 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4208 struct eventfd_ctx *eventfd, const char *args)
4209 {
4210 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4211 }
4212
4213 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4214 struct eventfd_ctx *eventfd, const char *args)
4215 {
4216 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4217 }
4218
4219 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4220 struct eventfd_ctx *eventfd, enum res_type type)
4221 {
4222 struct mem_cgroup_thresholds *thresholds;
4223 struct mem_cgroup_threshold_ary *new;
4224 unsigned long usage;
4225 int i, j, size, entries;
4226
4227 mutex_lock(&memcg->thresholds_lock);
4228
4229 if (type == _MEM) {
4230 thresholds = &memcg->thresholds;
4231 usage = mem_cgroup_usage(memcg, false);
4232 } else if (type == _MEMSWAP) {
4233 thresholds = &memcg->memsw_thresholds;
4234 usage = mem_cgroup_usage(memcg, true);
4235 } else
4236 BUG();
4237
4238 if (!thresholds->primary)
4239 goto unlock;
4240
4241 /* Check if a threshold crossed before removing */
4242 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4243
4244 /* Calculate new number of threshold */
4245 size = entries = 0;
4246 for (i = 0; i < thresholds->primary->size; i++) {
4247 if (thresholds->primary->entries[i].eventfd != eventfd)
4248 size++;
4249 else
4250 entries++;
4251 }
4252
4253 new = thresholds->spare;
4254
4255 /* If no items related to eventfd have been cleared, nothing to do */
4256 if (!entries)
4257 goto unlock;
4258
4259 /* Set thresholds array to NULL if we don't have thresholds */
4260 if (!size) {
4261 kfree(new);
4262 new = NULL;
4263 goto swap_buffers;
4264 }
4265
4266 new->size = size;
4267
4268 /* Copy thresholds and find current threshold */
4269 new->current_threshold = -1;
4270 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4271 if (thresholds->primary->entries[i].eventfd == eventfd)
4272 continue;
4273
4274 new->entries[j] = thresholds->primary->entries[i];
4275 if (new->entries[j].threshold <= usage) {
4276 /*
4277 * new->current_threshold will not be used
4278 * until rcu_assign_pointer(), so it's safe to increment
4279 * it here.
4280 */
4281 ++new->current_threshold;
4282 }
4283 j++;
4284 }
4285
4286 swap_buffers:
4287 /* Swap primary and spare array */
4288 thresholds->spare = thresholds->primary;
4289
4290 rcu_assign_pointer(thresholds->primary, new);
4291
4292 /* To be sure that nobody uses thresholds */
4293 synchronize_rcu();
4294
4295 /* If all events are unregistered, free the spare array */
4296 if (!new) {
4297 kfree(thresholds->spare);
4298 thresholds->spare = NULL;
4299 }
4300 unlock:
4301 mutex_unlock(&memcg->thresholds_lock);
4302 }
4303
4304 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4305 struct eventfd_ctx *eventfd)
4306 {
4307 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4308 }
4309
4310 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4311 struct eventfd_ctx *eventfd)
4312 {
4313 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4314 }
4315
4316 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4317 struct eventfd_ctx *eventfd, const char *args)
4318 {
4319 struct mem_cgroup_eventfd_list *event;
4320
4321 event = kmalloc(sizeof(*event), GFP_KERNEL);
4322 if (!event)
4323 return -ENOMEM;
4324
4325 spin_lock(&memcg_oom_lock);
4326
4327 event->eventfd = eventfd;
4328 list_add(&event->list, &memcg->oom_notify);
4329
4330 /* already in OOM ? */
4331 if (memcg->under_oom)
4332 eventfd_signal(eventfd, 1);
4333 spin_unlock(&memcg_oom_lock);
4334
4335 return 0;
4336 }
4337
4338 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4339 struct eventfd_ctx *eventfd)
4340 {
4341 struct mem_cgroup_eventfd_list *ev, *tmp;
4342
4343 spin_lock(&memcg_oom_lock);
4344
4345 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4346 if (ev->eventfd == eventfd) {
4347 list_del(&ev->list);
4348 kfree(ev);
4349 }
4350 }
4351
4352 spin_unlock(&memcg_oom_lock);
4353 }
4354
4355 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4356 {
4357 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4358
4359 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4360 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4361 seq_printf(sf, "oom_kill %lu\n",
4362 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4363 return 0;
4364 }
4365
4366 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4367 struct cftype *cft, u64 val)
4368 {
4369 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4370
4371 /* cannot set to root cgroup and only 0 and 1 are allowed */
4372 if (!css->parent || !((val == 0) || (val == 1)))
4373 return -EINVAL;
4374
4375 memcg->oom_kill_disable = val;
4376 if (!val)
4377 memcg_oom_recover(memcg);
4378
4379 return 0;
4380 }
4381
4382 #ifdef CONFIG_CGROUP_WRITEBACK
4383
4384 #include <trace/events/writeback.h>
4385
4386 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4387 {
4388 return wb_domain_init(&memcg->cgwb_domain, gfp);
4389 }
4390
4391 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4392 {
4393 wb_domain_exit(&memcg->cgwb_domain);
4394 }
4395
4396 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4397 {
4398 wb_domain_size_changed(&memcg->cgwb_domain);
4399 }
4400
4401 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4402 {
4403 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4404
4405 if (!memcg->css.parent)
4406 return NULL;
4407
4408 return &memcg->cgwb_domain;
4409 }
4410
4411 /*
4412 * idx can be of type enum memcg_stat_item or node_stat_item.
4413 * Keep in sync with memcg_exact_page().
4414 */
4415 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4416 {
4417 long x = atomic_long_read(&memcg->vmstats[idx]);
4418 int cpu;
4419
4420 for_each_online_cpu(cpu)
4421 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4422 if (x < 0)
4423 x = 0;
4424 return x;
4425 }
4426
4427 /**
4428 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4429 * @wb: bdi_writeback in question
4430 * @pfilepages: out parameter for number of file pages
4431 * @pheadroom: out parameter for number of allocatable pages according to memcg
4432 * @pdirty: out parameter for number of dirty pages
4433 * @pwriteback: out parameter for number of pages under writeback
4434 *
4435 * Determine the numbers of file, headroom, dirty, and writeback pages in
4436 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4437 * is a bit more involved.
4438 *
4439 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4440 * headroom is calculated as the lowest headroom of itself and the
4441 * ancestors. Note that this doesn't consider the actual amount of
4442 * available memory in the system. The caller should further cap
4443 * *@pheadroom accordingly.
4444 */
4445 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4446 unsigned long *pheadroom, unsigned long *pdirty,
4447 unsigned long *pwriteback)
4448 {
4449 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4450 struct mem_cgroup *parent;
4451
4452 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4453
4454 /* this should eventually include NR_UNSTABLE_NFS */
4455 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4456 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4457 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4458 *pheadroom = PAGE_COUNTER_MAX;
4459
4460 while ((parent = parent_mem_cgroup(memcg))) {
4461 unsigned long ceiling = min(memcg->memory.max, memcg->high);
4462 unsigned long used = page_counter_read(&memcg->memory);
4463
4464 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4465 memcg = parent;
4466 }
4467 }
4468
4469 /*
4470 * Foreign dirty flushing
4471 *
4472 * There's an inherent mismatch between memcg and writeback. The former
4473 * trackes ownership per-page while the latter per-inode. This was a
4474 * deliberate design decision because honoring per-page ownership in the
4475 * writeback path is complicated, may lead to higher CPU and IO overheads
4476 * and deemed unnecessary given that write-sharing an inode across
4477 * different cgroups isn't a common use-case.
4478 *
4479 * Combined with inode majority-writer ownership switching, this works well
4480 * enough in most cases but there are some pathological cases. For
4481 * example, let's say there are two cgroups A and B which keep writing to
4482 * different but confined parts of the same inode. B owns the inode and
4483 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4484 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4485 * triggering background writeback. A will be slowed down without a way to
4486 * make writeback of the dirty pages happen.
4487 *
4488 * Conditions like the above can lead to a cgroup getting repatedly and
4489 * severely throttled after making some progress after each
4490 * dirty_expire_interval while the underyling IO device is almost
4491 * completely idle.
4492 *
4493 * Solving this problem completely requires matching the ownership tracking
4494 * granularities between memcg and writeback in either direction. However,
4495 * the more egregious behaviors can be avoided by simply remembering the
4496 * most recent foreign dirtying events and initiating remote flushes on
4497 * them when local writeback isn't enough to keep the memory clean enough.
4498 *
4499 * The following two functions implement such mechanism. When a foreign
4500 * page - a page whose memcg and writeback ownerships don't match - is
4501 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4502 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4503 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4504 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4505 * foreign bdi_writebacks which haven't expired. Both the numbers of
4506 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4507 * limited to MEMCG_CGWB_FRN_CNT.
4508 *
4509 * The mechanism only remembers IDs and doesn't hold any object references.
4510 * As being wrong occasionally doesn't matter, updates and accesses to the
4511 * records are lockless and racy.
4512 */
4513 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4514 struct bdi_writeback *wb)
4515 {
4516 struct mem_cgroup *memcg = page->mem_cgroup;
4517 struct memcg_cgwb_frn *frn;
4518 u64 now = get_jiffies_64();
4519 u64 oldest_at = now;
4520 int oldest = -1;
4521 int i;
4522
4523 trace_track_foreign_dirty(page, wb);
4524
4525 /*
4526 * Pick the slot to use. If there is already a slot for @wb, keep
4527 * using it. If not replace the oldest one which isn't being
4528 * written out.
4529 */
4530 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4531 frn = &memcg->cgwb_frn[i];
4532 if (frn->bdi_id == wb->bdi->id &&
4533 frn->memcg_id == wb->memcg_css->id)
4534 break;
4535 if (time_before64(frn->at, oldest_at) &&
4536 atomic_read(&frn->done.cnt) == 1) {
4537 oldest = i;
4538 oldest_at = frn->at;
4539 }
4540 }
4541
4542 if (i < MEMCG_CGWB_FRN_CNT) {
4543 /*
4544 * Re-using an existing one. Update timestamp lazily to
4545 * avoid making the cacheline hot. We want them to be
4546 * reasonably up-to-date and significantly shorter than
4547 * dirty_expire_interval as that's what expires the record.
4548 * Use the shorter of 1s and dirty_expire_interval / 8.
4549 */
4550 unsigned long update_intv =
4551 min_t(unsigned long, HZ,
4552 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4553
4554 if (time_before64(frn->at, now - update_intv))
4555 frn->at = now;
4556 } else if (oldest >= 0) {
4557 /* replace the oldest free one */
4558 frn = &memcg->cgwb_frn[oldest];
4559 frn->bdi_id = wb->bdi->id;
4560 frn->memcg_id = wb->memcg_css->id;
4561 frn->at = now;
4562 }
4563 }
4564
4565 /* issue foreign writeback flushes for recorded foreign dirtying events */
4566 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4567 {
4568 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4569 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4570 u64 now = jiffies_64;
4571 int i;
4572
4573 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4574 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4575
4576 /*
4577 * If the record is older than dirty_expire_interval,
4578 * writeback on it has already started. No need to kick it
4579 * off again. Also, don't start a new one if there's
4580 * already one in flight.
4581 */
4582 if (time_after64(frn->at, now - intv) &&
4583 atomic_read(&frn->done.cnt) == 1) {
4584 frn->at = 0;
4585 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4586 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4587 WB_REASON_FOREIGN_FLUSH,
4588 &frn->done);
4589 }
4590 }
4591 }
4592
4593 #else /* CONFIG_CGROUP_WRITEBACK */
4594
4595 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4596 {
4597 return 0;
4598 }
4599
4600 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4601 {
4602 }
4603
4604 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4605 {
4606 }
4607
4608 #endif /* CONFIG_CGROUP_WRITEBACK */
4609
4610 /*
4611 * DO NOT USE IN NEW FILES.
4612 *
4613 * "cgroup.event_control" implementation.
4614 *
4615 * This is way over-engineered. It tries to support fully configurable
4616 * events for each user. Such level of flexibility is completely
4617 * unnecessary especially in the light of the planned unified hierarchy.
4618 *
4619 * Please deprecate this and replace with something simpler if at all
4620 * possible.
4621 */
4622
4623 /*
4624 * Unregister event and free resources.
4625 *
4626 * Gets called from workqueue.
4627 */
4628 static void memcg_event_remove(struct work_struct *work)
4629 {
4630 struct mem_cgroup_event *event =
4631 container_of(work, struct mem_cgroup_event, remove);
4632 struct mem_cgroup *memcg = event->memcg;
4633
4634 remove_wait_queue(event->wqh, &event->wait);
4635
4636 event->unregister_event(memcg, event->eventfd);
4637
4638 /* Notify userspace the event is going away. */
4639 eventfd_signal(event->eventfd, 1);
4640
4641 eventfd_ctx_put(event->eventfd);
4642 kfree(event);
4643 css_put(&memcg->css);
4644 }
4645
4646 /*
4647 * Gets called on EPOLLHUP on eventfd when user closes it.
4648 *
4649 * Called with wqh->lock held and interrupts disabled.
4650 */
4651 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4652 int sync, void *key)
4653 {
4654 struct mem_cgroup_event *event =
4655 container_of(wait, struct mem_cgroup_event, wait);
4656 struct mem_cgroup *memcg = event->memcg;
4657 __poll_t flags = key_to_poll(key);
4658
4659 if (flags & EPOLLHUP) {
4660 /*
4661 * If the event has been detached at cgroup removal, we
4662 * can simply return knowing the other side will cleanup
4663 * for us.
4664 *
4665 * We can't race against event freeing since the other
4666 * side will require wqh->lock via remove_wait_queue(),
4667 * which we hold.
4668 */
4669 spin_lock(&memcg->event_list_lock);
4670 if (!list_empty(&event->list)) {
4671 list_del_init(&event->list);
4672 /*
4673 * We are in atomic context, but cgroup_event_remove()
4674 * may sleep, so we have to call it in workqueue.
4675 */
4676 schedule_work(&event->remove);
4677 }
4678 spin_unlock(&memcg->event_list_lock);
4679 }
4680
4681 return 0;
4682 }
4683
4684 static void memcg_event_ptable_queue_proc(struct file *file,
4685 wait_queue_head_t *wqh, poll_table *pt)
4686 {
4687 struct mem_cgroup_event *event =
4688 container_of(pt, struct mem_cgroup_event, pt);
4689
4690 event->wqh = wqh;
4691 add_wait_queue(wqh, &event->wait);
4692 }
4693
4694 /*
4695 * DO NOT USE IN NEW FILES.
4696 *
4697 * Parse input and register new cgroup event handler.
4698 *
4699 * Input must be in format '<event_fd> <control_fd> <args>'.
4700 * Interpretation of args is defined by control file implementation.
4701 */
4702 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4703 char *buf, size_t nbytes, loff_t off)
4704 {
4705 struct cgroup_subsys_state *css = of_css(of);
4706 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4707 struct mem_cgroup_event *event;
4708 struct cgroup_subsys_state *cfile_css;
4709 unsigned int efd, cfd;
4710 struct fd efile;
4711 struct fd cfile;
4712 const char *name;
4713 char *endp;
4714 int ret;
4715
4716 buf = strstrip(buf);
4717
4718 efd = simple_strtoul(buf, &endp, 10);
4719 if (*endp != ' ')
4720 return -EINVAL;
4721 buf = endp + 1;
4722
4723 cfd = simple_strtoul(buf, &endp, 10);
4724 if ((*endp != ' ') && (*endp != '\0'))
4725 return -EINVAL;
4726 buf = endp + 1;
4727
4728 event = kzalloc(sizeof(*event), GFP_KERNEL);
4729 if (!event)
4730 return -ENOMEM;
4731
4732 event->memcg = memcg;
4733 INIT_LIST_HEAD(&event->list);
4734 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4735 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4736 INIT_WORK(&event->remove, memcg_event_remove);
4737
4738 efile = fdget(efd);
4739 if (!efile.file) {
4740 ret = -EBADF;
4741 goto out_kfree;
4742 }
4743
4744 event->eventfd = eventfd_ctx_fileget(efile.file);
4745 if (IS_ERR(event->eventfd)) {
4746 ret = PTR_ERR(event->eventfd);
4747 goto out_put_efile;
4748 }
4749
4750 cfile = fdget(cfd);
4751 if (!cfile.file) {
4752 ret = -EBADF;
4753 goto out_put_eventfd;
4754 }
4755
4756 /* the process need read permission on control file */
4757 /* AV: shouldn't we check that it's been opened for read instead? */
4758 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4759 if (ret < 0)
4760 goto out_put_cfile;
4761
4762 /*
4763 * Determine the event callbacks and set them in @event. This used
4764 * to be done via struct cftype but cgroup core no longer knows
4765 * about these events. The following is crude but the whole thing
4766 * is for compatibility anyway.
4767 *
4768 * DO NOT ADD NEW FILES.
4769 */
4770 name = cfile.file->f_path.dentry->d_name.name;
4771
4772 if (!strcmp(name, "memory.usage_in_bytes")) {
4773 event->register_event = mem_cgroup_usage_register_event;
4774 event->unregister_event = mem_cgroup_usage_unregister_event;
4775 } else if (!strcmp(name, "memory.oom_control")) {
4776 event->register_event = mem_cgroup_oom_register_event;
4777 event->unregister_event = mem_cgroup_oom_unregister_event;
4778 } else if (!strcmp(name, "memory.pressure_level")) {
4779 event->register_event = vmpressure_register_event;
4780 event->unregister_event = vmpressure_unregister_event;
4781 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4782 event->register_event = memsw_cgroup_usage_register_event;
4783 event->unregister_event = memsw_cgroup_usage_unregister_event;
4784 } else {
4785 ret = -EINVAL;
4786 goto out_put_cfile;
4787 }
4788
4789 /*
4790 * Verify @cfile should belong to @css. Also, remaining events are
4791 * automatically removed on cgroup destruction but the removal is
4792 * asynchronous, so take an extra ref on @css.
4793 */
4794 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4795 &memory_cgrp_subsys);
4796 ret = -EINVAL;
4797 if (IS_ERR(cfile_css))
4798 goto out_put_cfile;
4799 if (cfile_css != css) {
4800 css_put(cfile_css);
4801 goto out_put_cfile;
4802 }
4803
4804 ret = event->register_event(memcg, event->eventfd, buf);
4805 if (ret)
4806 goto out_put_css;
4807
4808 vfs_poll(efile.file, &event->pt);
4809
4810 spin_lock(&memcg->event_list_lock);
4811 list_add(&event->list, &memcg->event_list);
4812 spin_unlock(&memcg->event_list_lock);
4813
4814 fdput(cfile);
4815 fdput(efile);
4816
4817 return nbytes;
4818
4819 out_put_css:
4820 css_put(css);
4821 out_put_cfile:
4822 fdput(cfile);
4823 out_put_eventfd:
4824 eventfd_ctx_put(event->eventfd);
4825 out_put_efile:
4826 fdput(efile);
4827 out_kfree:
4828 kfree(event);
4829
4830 return ret;
4831 }
4832
4833 static struct cftype mem_cgroup_legacy_files[] = {
4834 {
4835 .name = "usage_in_bytes",
4836 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4837 .read_u64 = mem_cgroup_read_u64,
4838 },
4839 {
4840 .name = "max_usage_in_bytes",
4841 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4842 .write = mem_cgroup_reset,
4843 .read_u64 = mem_cgroup_read_u64,
4844 },
4845 {
4846 .name = "limit_in_bytes",
4847 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4848 .write = mem_cgroup_write,
4849 .read_u64 = mem_cgroup_read_u64,
4850 },
4851 {
4852 .name = "soft_limit_in_bytes",
4853 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4854 .write = mem_cgroup_write,
4855 .read_u64 = mem_cgroup_read_u64,
4856 },
4857 {
4858 .name = "failcnt",
4859 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4860 .write = mem_cgroup_reset,
4861 .read_u64 = mem_cgroup_read_u64,
4862 },
4863 {
4864 .name = "stat",
4865 .seq_show = memcg_stat_show,
4866 },
4867 {
4868 .name = "force_empty",
4869 .write = mem_cgroup_force_empty_write,
4870 },
4871 {
4872 .name = "use_hierarchy",
4873 .write_u64 = mem_cgroup_hierarchy_write,
4874 .read_u64 = mem_cgroup_hierarchy_read,
4875 },
4876 {
4877 .name = "cgroup.event_control", /* XXX: for compat */
4878 .write = memcg_write_event_control,
4879 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4880 },
4881 {
4882 .name = "swappiness",
4883 .read_u64 = mem_cgroup_swappiness_read,
4884 .write_u64 = mem_cgroup_swappiness_write,
4885 },
4886 {
4887 .name = "move_charge_at_immigrate",
4888 .read_u64 = mem_cgroup_move_charge_read,
4889 .write_u64 = mem_cgroup_move_charge_write,
4890 },
4891 {
4892 .name = "oom_control",
4893 .seq_show = mem_cgroup_oom_control_read,
4894 .write_u64 = mem_cgroup_oom_control_write,
4895 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4896 },
4897 {
4898 .name = "pressure_level",
4899 },
4900 #ifdef CONFIG_NUMA
4901 {
4902 .name = "numa_stat",
4903 .seq_show = memcg_numa_stat_show,
4904 },
4905 #endif
4906 {
4907 .name = "kmem.limit_in_bytes",
4908 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4909 .write = mem_cgroup_write,
4910 .read_u64 = mem_cgroup_read_u64,
4911 },
4912 {
4913 .name = "kmem.usage_in_bytes",
4914 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4915 .read_u64 = mem_cgroup_read_u64,
4916 },
4917 {
4918 .name = "kmem.failcnt",
4919 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4920 .write = mem_cgroup_reset,
4921 .read_u64 = mem_cgroup_read_u64,
4922 },
4923 {
4924 .name = "kmem.max_usage_in_bytes",
4925 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4926 .write = mem_cgroup_reset,
4927 .read_u64 = mem_cgroup_read_u64,
4928 },
4929 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4930 {
4931 .name = "kmem.slabinfo",
4932 .seq_start = memcg_slab_start,
4933 .seq_next = memcg_slab_next,
4934 .seq_stop = memcg_slab_stop,
4935 .seq_show = memcg_slab_show,
4936 },
4937 #endif
4938 {
4939 .name = "kmem.tcp.limit_in_bytes",
4940 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4941 .write = mem_cgroup_write,
4942 .read_u64 = mem_cgroup_read_u64,
4943 },
4944 {
4945 .name = "kmem.tcp.usage_in_bytes",
4946 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4947 .read_u64 = mem_cgroup_read_u64,
4948 },
4949 {
4950 .name = "kmem.tcp.failcnt",
4951 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4952 .write = mem_cgroup_reset,
4953 .read_u64 = mem_cgroup_read_u64,
4954 },
4955 {
4956 .name = "kmem.tcp.max_usage_in_bytes",
4957 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4958 .write = mem_cgroup_reset,
4959 .read_u64 = mem_cgroup_read_u64,
4960 },
4961 { }, /* terminate */
4962 };
4963
4964 /*
4965 * Private memory cgroup IDR
4966 *
4967 * Swap-out records and page cache shadow entries need to store memcg
4968 * references in constrained space, so we maintain an ID space that is
4969 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4970 * memory-controlled cgroups to 64k.
4971 *
4972 * However, there usually are many references to the oflline CSS after
4973 * the cgroup has been destroyed, such as page cache or reclaimable
4974 * slab objects, that don't need to hang on to the ID. We want to keep
4975 * those dead CSS from occupying IDs, or we might quickly exhaust the
4976 * relatively small ID space and prevent the creation of new cgroups
4977 * even when there are much fewer than 64k cgroups - possibly none.
4978 *
4979 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4980 * be freed and recycled when it's no longer needed, which is usually
4981 * when the CSS is offlined.
4982 *
4983 * The only exception to that are records of swapped out tmpfs/shmem
4984 * pages that need to be attributed to live ancestors on swapin. But
4985 * those references are manageable from userspace.
4986 */
4987
4988 static DEFINE_IDR(mem_cgroup_idr);
4989
4990 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4991 {
4992 if (memcg->id.id > 0) {
4993 idr_remove(&mem_cgroup_idr, memcg->id.id);
4994 memcg->id.id = 0;
4995 }
4996 }
4997
4998 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4999 {
5000 refcount_add(n, &memcg->id.ref);
5001 }
5002
5003 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5004 {
5005 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5006 mem_cgroup_id_remove(memcg);
5007
5008 /* Memcg ID pins CSS */
5009 css_put(&memcg->css);
5010 }
5011 }
5012
5013 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5014 {
5015 mem_cgroup_id_put_many(memcg, 1);
5016 }
5017
5018 /**
5019 * mem_cgroup_from_id - look up a memcg from a memcg id
5020 * @id: the memcg id to look up
5021 *
5022 * Caller must hold rcu_read_lock().
5023 */
5024 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5025 {
5026 WARN_ON_ONCE(!rcu_read_lock_held());
5027 return idr_find(&mem_cgroup_idr, id);
5028 }
5029
5030 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5031 {
5032 struct mem_cgroup_per_node *pn;
5033 int tmp = node;
5034 /*
5035 * This routine is called against possible nodes.
5036 * But it's BUG to call kmalloc() against offline node.
5037 *
5038 * TODO: this routine can waste much memory for nodes which will
5039 * never be onlined. It's better to use memory hotplug callback
5040 * function.
5041 */
5042 if (!node_state(node, N_NORMAL_MEMORY))
5043 tmp = -1;
5044 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5045 if (!pn)
5046 return 1;
5047
5048 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
5049 if (!pn->lruvec_stat_local) {
5050 kfree(pn);
5051 return 1;
5052 }
5053
5054 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
5055 if (!pn->lruvec_stat_cpu) {
5056 free_percpu(pn->lruvec_stat_local);
5057 kfree(pn);
5058 return 1;
5059 }
5060
5061 lruvec_init(&pn->lruvec);
5062 pn->usage_in_excess = 0;
5063 pn->on_tree = false;
5064 pn->memcg = memcg;
5065
5066 memcg->nodeinfo[node] = pn;
5067 return 0;
5068 }
5069
5070 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5071 {
5072 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5073
5074 if (!pn)
5075 return;
5076
5077 free_percpu(pn->lruvec_stat_cpu);
5078 free_percpu(pn->lruvec_stat_local);
5079 kfree(pn);
5080 }
5081
5082 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5083 {
5084 int node;
5085
5086 for_each_node(node)
5087 free_mem_cgroup_per_node_info(memcg, node);
5088 free_percpu(memcg->vmstats_percpu);
5089 free_percpu(memcg->vmstats_local);
5090 kfree(memcg);
5091 }
5092
5093 static void mem_cgroup_free(struct mem_cgroup *memcg)
5094 {
5095 memcg_wb_domain_exit(memcg);
5096 /*
5097 * Flush percpu vmstats and vmevents to guarantee the value correctness
5098 * on parent's and all ancestor levels.
5099 */
5100 memcg_flush_percpu_vmstats(memcg);
5101 memcg_flush_percpu_vmevents(memcg);
5102 __mem_cgroup_free(memcg);
5103 }
5104
5105 static struct mem_cgroup *mem_cgroup_alloc(void)
5106 {
5107 struct mem_cgroup *memcg;
5108 unsigned int size;
5109 int node;
5110 int __maybe_unused i;
5111 long error = -ENOMEM;
5112
5113 size = sizeof(struct mem_cgroup);
5114 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5115
5116 memcg = kzalloc(size, GFP_KERNEL);
5117 if (!memcg)
5118 return ERR_PTR(error);
5119
5120 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5121 1, MEM_CGROUP_ID_MAX,
5122 GFP_KERNEL);
5123 if (memcg->id.id < 0) {
5124 error = memcg->id.id;
5125 goto fail;
5126 }
5127
5128 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5129 if (!memcg->vmstats_local)
5130 goto fail;
5131
5132 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5133 if (!memcg->vmstats_percpu)
5134 goto fail;
5135
5136 for_each_node(node)
5137 if (alloc_mem_cgroup_per_node_info(memcg, node))
5138 goto fail;
5139
5140 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5141 goto fail;
5142
5143 INIT_WORK(&memcg->high_work, high_work_func);
5144 memcg->last_scanned_node = MAX_NUMNODES;
5145 INIT_LIST_HEAD(&memcg->oom_notify);
5146 mutex_init(&memcg->thresholds_lock);
5147 spin_lock_init(&memcg->move_lock);
5148 vmpressure_init(&memcg->vmpressure);
5149 INIT_LIST_HEAD(&memcg->event_list);
5150 spin_lock_init(&memcg->event_list_lock);
5151 memcg->socket_pressure = jiffies;
5152 #ifdef CONFIG_MEMCG_KMEM
5153 memcg->kmemcg_id = -1;
5154 #endif
5155 #ifdef CONFIG_CGROUP_WRITEBACK
5156 INIT_LIST_HEAD(&memcg->cgwb_list);
5157 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5158 memcg->cgwb_frn[i].done =
5159 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5160 #endif
5161 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5162 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5163 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5164 memcg->deferred_split_queue.split_queue_len = 0;
5165 #endif
5166 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5167 return memcg;
5168 fail:
5169 mem_cgroup_id_remove(memcg);
5170 __mem_cgroup_free(memcg);
5171 return ERR_PTR(error);
5172 }
5173
5174 static struct cgroup_subsys_state * __ref
5175 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5176 {
5177 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5178 struct mem_cgroup *memcg;
5179 long error = -ENOMEM;
5180
5181 memcg = mem_cgroup_alloc();
5182 if (IS_ERR(memcg))
5183 return ERR_CAST(memcg);
5184
5185 memcg->high = PAGE_COUNTER_MAX;
5186 memcg->soft_limit = PAGE_COUNTER_MAX;
5187 if (parent) {
5188 memcg->swappiness = mem_cgroup_swappiness(parent);
5189 memcg->oom_kill_disable = parent->oom_kill_disable;
5190 }
5191 if (parent && parent->use_hierarchy) {
5192 memcg->use_hierarchy = true;
5193 page_counter_init(&memcg->memory, &parent->memory);
5194 page_counter_init(&memcg->swap, &parent->swap);
5195 page_counter_init(&memcg->memsw, &parent->memsw);
5196 page_counter_init(&memcg->kmem, &parent->kmem);
5197 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5198 } else {
5199 page_counter_init(&memcg->memory, NULL);
5200 page_counter_init(&memcg->swap, NULL);
5201 page_counter_init(&memcg->memsw, NULL);
5202 page_counter_init(&memcg->kmem, NULL);
5203 page_counter_init(&memcg->tcpmem, NULL);
5204 /*
5205 * Deeper hierachy with use_hierarchy == false doesn't make
5206 * much sense so let cgroup subsystem know about this
5207 * unfortunate state in our controller.
5208 */
5209 if (parent != root_mem_cgroup)
5210 memory_cgrp_subsys.broken_hierarchy = true;
5211 }
5212
5213 /* The following stuff does not apply to the root */
5214 if (!parent) {
5215 #ifdef CONFIG_MEMCG_KMEM
5216 INIT_LIST_HEAD(&memcg->kmem_caches);
5217 #endif
5218 root_mem_cgroup = memcg;
5219 return &memcg->css;
5220 }
5221
5222 error = memcg_online_kmem(memcg);
5223 if (error)
5224 goto fail;
5225
5226 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5227 static_branch_inc(&memcg_sockets_enabled_key);
5228
5229 return &memcg->css;
5230 fail:
5231 mem_cgroup_id_remove(memcg);
5232 mem_cgroup_free(memcg);
5233 return ERR_PTR(error);
5234 }
5235
5236 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5237 {
5238 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5239
5240 /*
5241 * A memcg must be visible for memcg_expand_shrinker_maps()
5242 * by the time the maps are allocated. So, we allocate maps
5243 * here, when for_each_mem_cgroup() can't skip it.
5244 */
5245 if (memcg_alloc_shrinker_maps(memcg)) {
5246 mem_cgroup_id_remove(memcg);
5247 return -ENOMEM;
5248 }
5249
5250 /* Online state pins memcg ID, memcg ID pins CSS */
5251 refcount_set(&memcg->id.ref, 1);
5252 css_get(css);
5253 return 0;
5254 }
5255
5256 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5257 {
5258 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5259 struct mem_cgroup_event *event, *tmp;
5260
5261 /*
5262 * Unregister events and notify userspace.
5263 * Notify userspace about cgroup removing only after rmdir of cgroup
5264 * directory to avoid race between userspace and kernelspace.
5265 */
5266 spin_lock(&memcg->event_list_lock);
5267 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5268 list_del_init(&event->list);
5269 schedule_work(&event->remove);
5270 }
5271 spin_unlock(&memcg->event_list_lock);
5272
5273 page_counter_set_min(&memcg->memory, 0);
5274 page_counter_set_low(&memcg->memory, 0);
5275
5276 memcg_offline_kmem(memcg);
5277 wb_memcg_offline(memcg);
5278
5279 drain_all_stock(memcg);
5280
5281 mem_cgroup_id_put(memcg);
5282 }
5283
5284 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5285 {
5286 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5287
5288 invalidate_reclaim_iterators(memcg);
5289 }
5290
5291 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5292 {
5293 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5294 int __maybe_unused i;
5295
5296 #ifdef CONFIG_CGROUP_WRITEBACK
5297 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5298 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5299 #endif
5300 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5301 static_branch_dec(&memcg_sockets_enabled_key);
5302
5303 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5304 static_branch_dec(&memcg_sockets_enabled_key);
5305
5306 vmpressure_cleanup(&memcg->vmpressure);
5307 cancel_work_sync(&memcg->high_work);
5308 mem_cgroup_remove_from_trees(memcg);
5309 memcg_free_shrinker_maps(memcg);
5310 memcg_free_kmem(memcg);
5311 mem_cgroup_free(memcg);
5312 }
5313
5314 /**
5315 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5316 * @css: the target css
5317 *
5318 * Reset the states of the mem_cgroup associated with @css. This is
5319 * invoked when the userland requests disabling on the default hierarchy
5320 * but the memcg is pinned through dependency. The memcg should stop
5321 * applying policies and should revert to the vanilla state as it may be
5322 * made visible again.
5323 *
5324 * The current implementation only resets the essential configurations.
5325 * This needs to be expanded to cover all the visible parts.
5326 */
5327 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5328 {
5329 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5330
5331 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5332 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5333 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5334 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5335 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5336 page_counter_set_min(&memcg->memory, 0);
5337 page_counter_set_low(&memcg->memory, 0);
5338 memcg->high = PAGE_COUNTER_MAX;
5339 memcg->soft_limit = PAGE_COUNTER_MAX;
5340 memcg_wb_domain_size_changed(memcg);
5341 }
5342
5343 #ifdef CONFIG_MMU
5344 /* Handlers for move charge at task migration. */
5345 static int mem_cgroup_do_precharge(unsigned long count)
5346 {
5347 int ret;
5348
5349 /* Try a single bulk charge without reclaim first, kswapd may wake */
5350 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5351 if (!ret) {
5352 mc.precharge += count;
5353 return ret;
5354 }
5355
5356 /* Try charges one by one with reclaim, but do not retry */
5357 while (count--) {
5358 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5359 if (ret)
5360 return ret;
5361 mc.precharge++;
5362 cond_resched();
5363 }
5364 return 0;
5365 }
5366
5367 union mc_target {
5368 struct page *page;
5369 swp_entry_t ent;
5370 };
5371
5372 enum mc_target_type {
5373 MC_TARGET_NONE = 0,
5374 MC_TARGET_PAGE,
5375 MC_TARGET_SWAP,
5376 MC_TARGET_DEVICE,
5377 };
5378
5379 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5380 unsigned long addr, pte_t ptent)
5381 {
5382 struct page *page = vm_normal_page(vma, addr, ptent);
5383
5384 if (!page || !page_mapped(page))
5385 return NULL;
5386 if (PageAnon(page)) {
5387 if (!(mc.flags & MOVE_ANON))
5388 return NULL;
5389 } else {
5390 if (!(mc.flags & MOVE_FILE))
5391 return NULL;
5392 }
5393 if (!get_page_unless_zero(page))
5394 return NULL;
5395
5396 return page;
5397 }
5398
5399 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5400 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5401 pte_t ptent, swp_entry_t *entry)
5402 {
5403 struct page *page = NULL;
5404 swp_entry_t ent = pte_to_swp_entry(ptent);
5405
5406 if (!(mc.flags & MOVE_ANON))
5407 return NULL;
5408
5409 /*
5410 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5411 * a device and because they are not accessible by CPU they are store
5412 * as special swap entry in the CPU page table.
5413 */
5414 if (is_device_private_entry(ent)) {
5415 page = device_private_entry_to_page(ent);
5416 /*
5417 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5418 * a refcount of 1 when free (unlike normal page)
5419 */
5420 if (!page_ref_add_unless(page, 1, 1))
5421 return NULL;
5422 return page;
5423 }
5424
5425 if (non_swap_entry(ent))
5426 return NULL;
5427
5428 /*
5429 * Because lookup_swap_cache() updates some statistics counter,
5430 * we call find_get_page() with swapper_space directly.
5431 */
5432 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5433 if (do_memsw_account())
5434 entry->val = ent.val;
5435
5436 return page;
5437 }
5438 #else
5439 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5440 pte_t ptent, swp_entry_t *entry)
5441 {
5442 return NULL;
5443 }
5444 #endif
5445
5446 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5447 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5448 {
5449 struct page *page = NULL;
5450 struct address_space *mapping;
5451 pgoff_t pgoff;
5452
5453 if (!vma->vm_file) /* anonymous vma */
5454 return NULL;
5455 if (!(mc.flags & MOVE_FILE))
5456 return NULL;
5457
5458 mapping = vma->vm_file->f_mapping;
5459 pgoff = linear_page_index(vma, addr);
5460
5461 /* page is moved even if it's not RSS of this task(page-faulted). */
5462 #ifdef CONFIG_SWAP
5463 /* shmem/tmpfs may report page out on swap: account for that too. */
5464 if (shmem_mapping(mapping)) {
5465 page = find_get_entry(mapping, pgoff);
5466 if (xa_is_value(page)) {
5467 swp_entry_t swp = radix_to_swp_entry(page);
5468 if (do_memsw_account())
5469 *entry = swp;
5470 page = find_get_page(swap_address_space(swp),
5471 swp_offset(swp));
5472 }
5473 } else
5474 page = find_get_page(mapping, pgoff);
5475 #else
5476 page = find_get_page(mapping, pgoff);
5477 #endif
5478 return page;
5479 }
5480
5481 /**
5482 * mem_cgroup_move_account - move account of the page
5483 * @page: the page
5484 * @compound: charge the page as compound or small page
5485 * @from: mem_cgroup which the page is moved from.
5486 * @to: mem_cgroup which the page is moved to. @from != @to.
5487 *
5488 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5489 *
5490 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5491 * from old cgroup.
5492 */
5493 static int mem_cgroup_move_account(struct page *page,
5494 bool compound,
5495 struct mem_cgroup *from,
5496 struct mem_cgroup *to)
5497 {
5498 struct lruvec *from_vec, *to_vec;
5499 struct pglist_data *pgdat;
5500 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5501 int ret;
5502 bool anon;
5503
5504 VM_BUG_ON(from == to);
5505 VM_BUG_ON_PAGE(PageLRU(page), page);
5506 VM_BUG_ON(compound && !PageTransHuge(page));
5507
5508 /*
5509 * Prevent mem_cgroup_migrate() from looking at
5510 * page->mem_cgroup of its source page while we change it.
5511 */
5512 ret = -EBUSY;
5513 if (!trylock_page(page))
5514 goto out;
5515
5516 ret = -EINVAL;
5517 if (page->mem_cgroup != from)
5518 goto out_unlock;
5519
5520 anon = PageAnon(page);
5521
5522 pgdat = page_pgdat(page);
5523 from_vec = mem_cgroup_lruvec(pgdat, from);
5524 to_vec = mem_cgroup_lruvec(pgdat, to);
5525
5526 lock_page_memcg(page);
5527
5528 if (!anon && page_mapped(page)) {
5529 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5530 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5531 }
5532
5533 if (!anon && PageDirty(page)) {
5534 struct address_space *mapping = page_mapping(page);
5535
5536 if (mapping_cap_account_dirty(mapping)) {
5537 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5538 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
5539 }
5540 }
5541
5542 if (PageWriteback(page)) {
5543 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5544 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5545 }
5546
5547 /*
5548 * All state has been migrated, let's switch to the new memcg.
5549 *
5550 * It is safe to change page->mem_cgroup here because the page
5551 * is referenced, charged, isolated, and locked: we can't race
5552 * with (un)charging, migration, LRU putback, or anything else
5553 * that would rely on a stable page->mem_cgroup.
5554 *
5555 * Note that lock_page_memcg is a memcg lock, not a page lock,
5556 * to save space. As soon as we switch page->mem_cgroup to a
5557 * new memcg that isn't locked, the above state can change
5558 * concurrently again. Make sure we're truly done with it.
5559 */
5560 smp_mb();
5561
5562 page->mem_cgroup = to; /* caller should have done css_get */
5563
5564 __unlock_page_memcg(from);
5565
5566 ret = 0;
5567
5568 local_irq_disable();
5569 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5570 memcg_check_events(to, page);
5571 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5572 memcg_check_events(from, page);
5573 local_irq_enable();
5574 out_unlock:
5575 unlock_page(page);
5576 out:
5577 return ret;
5578 }
5579
5580 /**
5581 * get_mctgt_type - get target type of moving charge
5582 * @vma: the vma the pte to be checked belongs
5583 * @addr: the address corresponding to the pte to be checked
5584 * @ptent: the pte to be checked
5585 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5586 *
5587 * Returns
5588 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5589 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5590 * move charge. if @target is not NULL, the page is stored in target->page
5591 * with extra refcnt got(Callers should handle it).
5592 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5593 * target for charge migration. if @target is not NULL, the entry is stored
5594 * in target->ent.
5595 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5596 * (so ZONE_DEVICE page and thus not on the lru).
5597 * For now we such page is charge like a regular page would be as for all
5598 * intent and purposes it is just special memory taking the place of a
5599 * regular page.
5600 *
5601 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5602 *
5603 * Called with pte lock held.
5604 */
5605
5606 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5607 unsigned long addr, pte_t ptent, union mc_target *target)
5608 {
5609 struct page *page = NULL;
5610 enum mc_target_type ret = MC_TARGET_NONE;
5611 swp_entry_t ent = { .val = 0 };
5612
5613 if (pte_present(ptent))
5614 page = mc_handle_present_pte(vma, addr, ptent);
5615 else if (is_swap_pte(ptent))
5616 page = mc_handle_swap_pte(vma, ptent, &ent);
5617 else if (pte_none(ptent))
5618 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5619
5620 if (!page && !ent.val)
5621 return ret;
5622 if (page) {
5623 /*
5624 * Do only loose check w/o serialization.
5625 * mem_cgroup_move_account() checks the page is valid or
5626 * not under LRU exclusion.
5627 */
5628 if (page->mem_cgroup == mc.from) {
5629 ret = MC_TARGET_PAGE;
5630 if (is_device_private_page(page))
5631 ret = MC_TARGET_DEVICE;
5632 if (target)
5633 target->page = page;
5634 }
5635 if (!ret || !target)
5636 put_page(page);
5637 }
5638 /*
5639 * There is a swap entry and a page doesn't exist or isn't charged.
5640 * But we cannot move a tail-page in a THP.
5641 */
5642 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5643 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5644 ret = MC_TARGET_SWAP;
5645 if (target)
5646 target->ent = ent;
5647 }
5648 return ret;
5649 }
5650
5651 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5652 /*
5653 * We don't consider PMD mapped swapping or file mapped pages because THP does
5654 * not support them for now.
5655 * Caller should make sure that pmd_trans_huge(pmd) is true.
5656 */
5657 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5658 unsigned long addr, pmd_t pmd, union mc_target *target)
5659 {
5660 struct page *page = NULL;
5661 enum mc_target_type ret = MC_TARGET_NONE;
5662
5663 if (unlikely(is_swap_pmd(pmd))) {
5664 VM_BUG_ON(thp_migration_supported() &&
5665 !is_pmd_migration_entry(pmd));
5666 return ret;
5667 }
5668 page = pmd_page(pmd);
5669 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5670 if (!(mc.flags & MOVE_ANON))
5671 return ret;
5672 if (page->mem_cgroup == mc.from) {
5673 ret = MC_TARGET_PAGE;
5674 if (target) {
5675 get_page(page);
5676 target->page = page;
5677 }
5678 }
5679 return ret;
5680 }
5681 #else
5682 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5683 unsigned long addr, pmd_t pmd, union mc_target *target)
5684 {
5685 return MC_TARGET_NONE;
5686 }
5687 #endif
5688
5689 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5690 unsigned long addr, unsigned long end,
5691 struct mm_walk *walk)
5692 {
5693 struct vm_area_struct *vma = walk->vma;
5694 pte_t *pte;
5695 spinlock_t *ptl;
5696
5697 ptl = pmd_trans_huge_lock(pmd, vma);
5698 if (ptl) {
5699 /*
5700 * Note their can not be MC_TARGET_DEVICE for now as we do not
5701 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5702 * this might change.
5703 */
5704 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5705 mc.precharge += HPAGE_PMD_NR;
5706 spin_unlock(ptl);
5707 return 0;
5708 }
5709
5710 if (pmd_trans_unstable(pmd))
5711 return 0;
5712 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5713 for (; addr != end; pte++, addr += PAGE_SIZE)
5714 if (get_mctgt_type(vma, addr, *pte, NULL))
5715 mc.precharge++; /* increment precharge temporarily */
5716 pte_unmap_unlock(pte - 1, ptl);
5717 cond_resched();
5718
5719 return 0;
5720 }
5721
5722 static const struct mm_walk_ops precharge_walk_ops = {
5723 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5724 };
5725
5726 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5727 {
5728 unsigned long precharge;
5729
5730 down_read(&mm->mmap_sem);
5731 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5732 up_read(&mm->mmap_sem);
5733
5734 precharge = mc.precharge;
5735 mc.precharge = 0;
5736
5737 return precharge;
5738 }
5739
5740 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5741 {
5742 unsigned long precharge = mem_cgroup_count_precharge(mm);
5743
5744 VM_BUG_ON(mc.moving_task);
5745 mc.moving_task = current;
5746 return mem_cgroup_do_precharge(precharge);
5747 }
5748
5749 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5750 static void __mem_cgroup_clear_mc(void)
5751 {
5752 struct mem_cgroup *from = mc.from;
5753 struct mem_cgroup *to = mc.to;
5754
5755 /* we must uncharge all the leftover precharges from mc.to */
5756 if (mc.precharge) {
5757 cancel_charge(mc.to, mc.precharge);
5758 mc.precharge = 0;
5759 }
5760 /*
5761 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5762 * we must uncharge here.
5763 */
5764 if (mc.moved_charge) {
5765 cancel_charge(mc.from, mc.moved_charge);
5766 mc.moved_charge = 0;
5767 }
5768 /* we must fixup refcnts and charges */
5769 if (mc.moved_swap) {
5770 /* uncharge swap account from the old cgroup */
5771 if (!mem_cgroup_is_root(mc.from))
5772 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5773
5774 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5775
5776 /*
5777 * we charged both to->memory and to->memsw, so we
5778 * should uncharge to->memory.
5779 */
5780 if (!mem_cgroup_is_root(mc.to))
5781 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5782
5783 css_put_many(&mc.to->css, mc.moved_swap);
5784
5785 mc.moved_swap = 0;
5786 }
5787 memcg_oom_recover(from);
5788 memcg_oom_recover(to);
5789 wake_up_all(&mc.waitq);
5790 }
5791
5792 static void mem_cgroup_clear_mc(void)
5793 {
5794 struct mm_struct *mm = mc.mm;
5795
5796 /*
5797 * we must clear moving_task before waking up waiters at the end of
5798 * task migration.
5799 */
5800 mc.moving_task = NULL;
5801 __mem_cgroup_clear_mc();
5802 spin_lock(&mc.lock);
5803 mc.from = NULL;
5804 mc.to = NULL;
5805 mc.mm = NULL;
5806 spin_unlock(&mc.lock);
5807
5808 mmput(mm);
5809 }
5810
5811 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5812 {
5813 struct cgroup_subsys_state *css;
5814 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5815 struct mem_cgroup *from;
5816 struct task_struct *leader, *p;
5817 struct mm_struct *mm;
5818 unsigned long move_flags;
5819 int ret = 0;
5820
5821 /* charge immigration isn't supported on the default hierarchy */
5822 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5823 return 0;
5824
5825 /*
5826 * Multi-process migrations only happen on the default hierarchy
5827 * where charge immigration is not used. Perform charge
5828 * immigration if @tset contains a leader and whine if there are
5829 * multiple.
5830 */
5831 p = NULL;
5832 cgroup_taskset_for_each_leader(leader, css, tset) {
5833 WARN_ON_ONCE(p);
5834 p = leader;
5835 memcg = mem_cgroup_from_css(css);
5836 }
5837 if (!p)
5838 return 0;
5839
5840 /*
5841 * We are now commited to this value whatever it is. Changes in this
5842 * tunable will only affect upcoming migrations, not the current one.
5843 * So we need to save it, and keep it going.
5844 */
5845 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5846 if (!move_flags)
5847 return 0;
5848
5849 from = mem_cgroup_from_task(p);
5850
5851 VM_BUG_ON(from == memcg);
5852
5853 mm = get_task_mm(p);
5854 if (!mm)
5855 return 0;
5856 /* We move charges only when we move a owner of the mm */
5857 if (mm->owner == p) {
5858 VM_BUG_ON(mc.from);
5859 VM_BUG_ON(mc.to);
5860 VM_BUG_ON(mc.precharge);
5861 VM_BUG_ON(mc.moved_charge);
5862 VM_BUG_ON(mc.moved_swap);
5863
5864 spin_lock(&mc.lock);
5865 mc.mm = mm;
5866 mc.from = from;
5867 mc.to = memcg;
5868 mc.flags = move_flags;
5869 spin_unlock(&mc.lock);
5870 /* We set mc.moving_task later */
5871
5872 ret = mem_cgroup_precharge_mc(mm);
5873 if (ret)
5874 mem_cgroup_clear_mc();
5875 } else {
5876 mmput(mm);
5877 }
5878 return ret;
5879 }
5880
5881 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5882 {
5883 if (mc.to)
5884 mem_cgroup_clear_mc();
5885 }
5886
5887 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5888 unsigned long addr, unsigned long end,
5889 struct mm_walk *walk)
5890 {
5891 int ret = 0;
5892 struct vm_area_struct *vma = walk->vma;
5893 pte_t *pte;
5894 spinlock_t *ptl;
5895 enum mc_target_type target_type;
5896 union mc_target target;
5897 struct page *page;
5898
5899 ptl = pmd_trans_huge_lock(pmd, vma);
5900 if (ptl) {
5901 if (mc.precharge < HPAGE_PMD_NR) {
5902 spin_unlock(ptl);
5903 return 0;
5904 }
5905 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5906 if (target_type == MC_TARGET_PAGE) {
5907 page = target.page;
5908 if (!isolate_lru_page(page)) {
5909 if (!mem_cgroup_move_account(page, true,
5910 mc.from, mc.to)) {
5911 mc.precharge -= HPAGE_PMD_NR;
5912 mc.moved_charge += HPAGE_PMD_NR;
5913 }
5914 putback_lru_page(page);
5915 }
5916 put_page(page);
5917 } else if (target_type == MC_TARGET_DEVICE) {
5918 page = target.page;
5919 if (!mem_cgroup_move_account(page, true,
5920 mc.from, mc.to)) {
5921 mc.precharge -= HPAGE_PMD_NR;
5922 mc.moved_charge += HPAGE_PMD_NR;
5923 }
5924 put_page(page);
5925 }
5926 spin_unlock(ptl);
5927 return 0;
5928 }
5929
5930 if (pmd_trans_unstable(pmd))
5931 return 0;
5932 retry:
5933 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5934 for (; addr != end; addr += PAGE_SIZE) {
5935 pte_t ptent = *(pte++);
5936 bool device = false;
5937 swp_entry_t ent;
5938
5939 if (!mc.precharge)
5940 break;
5941
5942 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5943 case MC_TARGET_DEVICE:
5944 device = true;
5945 /* fall through */
5946 case MC_TARGET_PAGE:
5947 page = target.page;
5948 /*
5949 * We can have a part of the split pmd here. Moving it
5950 * can be done but it would be too convoluted so simply
5951 * ignore such a partial THP and keep it in original
5952 * memcg. There should be somebody mapping the head.
5953 */
5954 if (PageTransCompound(page))
5955 goto put;
5956 if (!device && isolate_lru_page(page))
5957 goto put;
5958 if (!mem_cgroup_move_account(page, false,
5959 mc.from, mc.to)) {
5960 mc.precharge--;
5961 /* we uncharge from mc.from later. */
5962 mc.moved_charge++;
5963 }
5964 if (!device)
5965 putback_lru_page(page);
5966 put: /* get_mctgt_type() gets the page */
5967 put_page(page);
5968 break;
5969 case MC_TARGET_SWAP:
5970 ent = target.ent;
5971 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5972 mc.precharge--;
5973 mem_cgroup_id_get_many(mc.to, 1);
5974 /* we fixup other refcnts and charges later. */
5975 mc.moved_swap++;
5976 }
5977 break;
5978 default:
5979 break;
5980 }
5981 }
5982 pte_unmap_unlock(pte - 1, ptl);
5983 cond_resched();
5984
5985 if (addr != end) {
5986 /*
5987 * We have consumed all precharges we got in can_attach().
5988 * We try charge one by one, but don't do any additional
5989 * charges to mc.to if we have failed in charge once in attach()
5990 * phase.
5991 */
5992 ret = mem_cgroup_do_precharge(1);
5993 if (!ret)
5994 goto retry;
5995 }
5996
5997 return ret;
5998 }
5999
6000 static const struct mm_walk_ops charge_walk_ops = {
6001 .pmd_entry = mem_cgroup_move_charge_pte_range,
6002 };
6003
6004 static void mem_cgroup_move_charge(void)
6005 {
6006 lru_add_drain_all();
6007 /*
6008 * Signal lock_page_memcg() to take the memcg's move_lock
6009 * while we're moving its pages to another memcg. Then wait
6010 * for already started RCU-only updates to finish.
6011 */
6012 atomic_inc(&mc.from->moving_account);
6013 synchronize_rcu();
6014 retry:
6015 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
6016 /*
6017 * Someone who are holding the mmap_sem might be waiting in
6018 * waitq. So we cancel all extra charges, wake up all waiters,
6019 * and retry. Because we cancel precharges, we might not be able
6020 * to move enough charges, but moving charge is a best-effort
6021 * feature anyway, so it wouldn't be a big problem.
6022 */
6023 __mem_cgroup_clear_mc();
6024 cond_resched();
6025 goto retry;
6026 }
6027 /*
6028 * When we have consumed all precharges and failed in doing
6029 * additional charge, the page walk just aborts.
6030 */
6031 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6032 NULL);
6033
6034 up_read(&mc.mm->mmap_sem);
6035 atomic_dec(&mc.from->moving_account);
6036 }
6037
6038 static void mem_cgroup_move_task(void)
6039 {
6040 if (mc.to) {
6041 mem_cgroup_move_charge();
6042 mem_cgroup_clear_mc();
6043 }
6044 }
6045 #else /* !CONFIG_MMU */
6046 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6047 {
6048 return 0;
6049 }
6050 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6051 {
6052 }
6053 static void mem_cgroup_move_task(void)
6054 {
6055 }
6056 #endif
6057
6058 /*
6059 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6060 * to verify whether we're attached to the default hierarchy on each mount
6061 * attempt.
6062 */
6063 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6064 {
6065 /*
6066 * use_hierarchy is forced on the default hierarchy. cgroup core
6067 * guarantees that @root doesn't have any children, so turning it
6068 * on for the root memcg is enough.
6069 */
6070 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6071 root_mem_cgroup->use_hierarchy = true;
6072 else
6073 root_mem_cgroup->use_hierarchy = false;
6074 }
6075
6076 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6077 {
6078 if (value == PAGE_COUNTER_MAX)
6079 seq_puts(m, "max\n");
6080 else
6081 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6082
6083 return 0;
6084 }
6085
6086 static u64 memory_current_read(struct cgroup_subsys_state *css,
6087 struct cftype *cft)
6088 {
6089 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6090
6091 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6092 }
6093
6094 static int memory_min_show(struct seq_file *m, void *v)
6095 {
6096 return seq_puts_memcg_tunable(m,
6097 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6098 }
6099
6100 static ssize_t memory_min_write(struct kernfs_open_file *of,
6101 char *buf, size_t nbytes, loff_t off)
6102 {
6103 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6104 unsigned long min;
6105 int err;
6106
6107 buf = strstrip(buf);
6108 err = page_counter_memparse(buf, "max", &min);
6109 if (err)
6110 return err;
6111
6112 page_counter_set_min(&memcg->memory, min);
6113
6114 return nbytes;
6115 }
6116
6117 static int memory_low_show(struct seq_file *m, void *v)
6118 {
6119 return seq_puts_memcg_tunable(m,
6120 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6121 }
6122
6123 static ssize_t memory_low_write(struct kernfs_open_file *of,
6124 char *buf, size_t nbytes, loff_t off)
6125 {
6126 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6127 unsigned long low;
6128 int err;
6129
6130 buf = strstrip(buf);
6131 err = page_counter_memparse(buf, "max", &low);
6132 if (err)
6133 return err;
6134
6135 page_counter_set_low(&memcg->memory, low);
6136
6137 return nbytes;
6138 }
6139
6140 static int memory_high_show(struct seq_file *m, void *v)
6141 {
6142 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
6143 }
6144
6145 static ssize_t memory_high_write(struct kernfs_open_file *of,
6146 char *buf, size_t nbytes, loff_t off)
6147 {
6148 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6149 unsigned long nr_pages;
6150 unsigned long high;
6151 int err;
6152
6153 buf = strstrip(buf);
6154 err = page_counter_memparse(buf, "max", &high);
6155 if (err)
6156 return err;
6157
6158 memcg->high = high;
6159
6160 nr_pages = page_counter_read(&memcg->memory);
6161 if (nr_pages > high)
6162 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6163 GFP_KERNEL, true);
6164
6165 memcg_wb_domain_size_changed(memcg);
6166 return nbytes;
6167 }
6168
6169 static int memory_max_show(struct seq_file *m, void *v)
6170 {
6171 return seq_puts_memcg_tunable(m,
6172 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6173 }
6174
6175 static ssize_t memory_max_write(struct kernfs_open_file *of,
6176 char *buf, size_t nbytes, loff_t off)
6177 {
6178 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6179 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6180 bool drained = false;
6181 unsigned long max;
6182 int err;
6183
6184 buf = strstrip(buf);
6185 err = page_counter_memparse(buf, "max", &max);
6186 if (err)
6187 return err;
6188
6189 xchg(&memcg->memory.max, max);
6190
6191 for (;;) {
6192 unsigned long nr_pages = page_counter_read(&memcg->memory);
6193
6194 if (nr_pages <= max)
6195 break;
6196
6197 if (signal_pending(current)) {
6198 err = -EINTR;
6199 break;
6200 }
6201
6202 if (!drained) {
6203 drain_all_stock(memcg);
6204 drained = true;
6205 continue;
6206 }
6207
6208 if (nr_reclaims) {
6209 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6210 GFP_KERNEL, true))
6211 nr_reclaims--;
6212 continue;
6213 }
6214
6215 memcg_memory_event(memcg, MEMCG_OOM);
6216 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6217 break;
6218 }
6219
6220 memcg_wb_domain_size_changed(memcg);
6221 return nbytes;
6222 }
6223
6224 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6225 {
6226 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6227 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6228 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6229 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6230 seq_printf(m, "oom_kill %lu\n",
6231 atomic_long_read(&events[MEMCG_OOM_KILL]));
6232 }
6233
6234 static int memory_events_show(struct seq_file *m, void *v)
6235 {
6236 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6237
6238 __memory_events_show(m, memcg->memory_events);
6239 return 0;
6240 }
6241
6242 static int memory_events_local_show(struct seq_file *m, void *v)
6243 {
6244 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6245
6246 __memory_events_show(m, memcg->memory_events_local);
6247 return 0;
6248 }
6249
6250 static int memory_stat_show(struct seq_file *m, void *v)
6251 {
6252 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6253 char *buf;
6254
6255 buf = memory_stat_format(memcg);
6256 if (!buf)
6257 return -ENOMEM;
6258 seq_puts(m, buf);
6259 kfree(buf);
6260 return 0;
6261 }
6262
6263 static int memory_oom_group_show(struct seq_file *m, void *v)
6264 {
6265 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6266
6267 seq_printf(m, "%d\n", memcg->oom_group);
6268
6269 return 0;
6270 }
6271
6272 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6273 char *buf, size_t nbytes, loff_t off)
6274 {
6275 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6276 int ret, oom_group;
6277
6278 buf = strstrip(buf);
6279 if (!buf)
6280 return -EINVAL;
6281
6282 ret = kstrtoint(buf, 0, &oom_group);
6283 if (ret)
6284 return ret;
6285
6286 if (oom_group != 0 && oom_group != 1)
6287 return -EINVAL;
6288
6289 memcg->oom_group = oom_group;
6290
6291 return nbytes;
6292 }
6293
6294 static struct cftype memory_files[] = {
6295 {
6296 .name = "current",
6297 .flags = CFTYPE_NOT_ON_ROOT,
6298 .read_u64 = memory_current_read,
6299 },
6300 {
6301 .name = "min",
6302 .flags = CFTYPE_NOT_ON_ROOT,
6303 .seq_show = memory_min_show,
6304 .write = memory_min_write,
6305 },
6306 {
6307 .name = "low",
6308 .flags = CFTYPE_NOT_ON_ROOT,
6309 .seq_show = memory_low_show,
6310 .write = memory_low_write,
6311 },
6312 {
6313 .name = "high",
6314 .flags = CFTYPE_NOT_ON_ROOT,
6315 .seq_show = memory_high_show,
6316 .write = memory_high_write,
6317 },
6318 {
6319 .name = "max",
6320 .flags = CFTYPE_NOT_ON_ROOT,
6321 .seq_show = memory_max_show,
6322 .write = memory_max_write,
6323 },
6324 {
6325 .name = "events",
6326 .flags = CFTYPE_NOT_ON_ROOT,
6327 .file_offset = offsetof(struct mem_cgroup, events_file),
6328 .seq_show = memory_events_show,
6329 },
6330 {
6331 .name = "events.local",
6332 .flags = CFTYPE_NOT_ON_ROOT,
6333 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6334 .seq_show = memory_events_local_show,
6335 },
6336 {
6337 .name = "stat",
6338 .flags = CFTYPE_NOT_ON_ROOT,
6339 .seq_show = memory_stat_show,
6340 },
6341 {
6342 .name = "oom.group",
6343 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6344 .seq_show = memory_oom_group_show,
6345 .write = memory_oom_group_write,
6346 },
6347 { } /* terminate */
6348 };
6349
6350 struct cgroup_subsys memory_cgrp_subsys = {
6351 .css_alloc = mem_cgroup_css_alloc,
6352 .css_online = mem_cgroup_css_online,
6353 .css_offline = mem_cgroup_css_offline,
6354 .css_released = mem_cgroup_css_released,
6355 .css_free = mem_cgroup_css_free,
6356 .css_reset = mem_cgroup_css_reset,
6357 .can_attach = mem_cgroup_can_attach,
6358 .cancel_attach = mem_cgroup_cancel_attach,
6359 .post_attach = mem_cgroup_move_task,
6360 .bind = mem_cgroup_bind,
6361 .dfl_cftypes = memory_files,
6362 .legacy_cftypes = mem_cgroup_legacy_files,
6363 .early_init = 0,
6364 };
6365
6366 /**
6367 * mem_cgroup_protected - check if memory consumption is in the normal range
6368 * @root: the top ancestor of the sub-tree being checked
6369 * @memcg: the memory cgroup to check
6370 *
6371 * WARNING: This function is not stateless! It can only be used as part
6372 * of a top-down tree iteration, not for isolated queries.
6373 *
6374 * Returns one of the following:
6375 * MEMCG_PROT_NONE: cgroup memory is not protected
6376 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6377 * an unprotected supply of reclaimable memory from other cgroups.
6378 * MEMCG_PROT_MIN: cgroup memory is protected
6379 *
6380 * @root is exclusive; it is never protected when looked at directly
6381 *
6382 * To provide a proper hierarchical behavior, effective memory.min/low values
6383 * are used. Below is the description of how effective memory.low is calculated.
6384 * Effective memory.min values is calculated in the same way.
6385 *
6386 * Effective memory.low is always equal or less than the original memory.low.
6387 * If there is no memory.low overcommittment (which is always true for
6388 * top-level memory cgroups), these two values are equal.
6389 * Otherwise, it's a part of parent's effective memory.low,
6390 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6391 * memory.low usages, where memory.low usage is the size of actually
6392 * protected memory.
6393 *
6394 * low_usage
6395 * elow = min( memory.low, parent->elow * ------------------ ),
6396 * siblings_low_usage
6397 *
6398 * | memory.current, if memory.current < memory.low
6399 * low_usage = |
6400 * | 0, otherwise.
6401 *
6402 *
6403 * Such definition of the effective memory.low provides the expected
6404 * hierarchical behavior: parent's memory.low value is limiting
6405 * children, unprotected memory is reclaimed first and cgroups,
6406 * which are not using their guarantee do not affect actual memory
6407 * distribution.
6408 *
6409 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6410 *
6411 * A A/memory.low = 2G, A/memory.current = 6G
6412 * //\\
6413 * BC DE B/memory.low = 3G B/memory.current = 2G
6414 * C/memory.low = 1G C/memory.current = 2G
6415 * D/memory.low = 0 D/memory.current = 2G
6416 * E/memory.low = 10G E/memory.current = 0
6417 *
6418 * and the memory pressure is applied, the following memory distribution
6419 * is expected (approximately):
6420 *
6421 * A/memory.current = 2G
6422 *
6423 * B/memory.current = 1.3G
6424 * C/memory.current = 0.6G
6425 * D/memory.current = 0
6426 * E/memory.current = 0
6427 *
6428 * These calculations require constant tracking of the actual low usages
6429 * (see propagate_protected_usage()), as well as recursive calculation of
6430 * effective memory.low values. But as we do call mem_cgroup_protected()
6431 * path for each memory cgroup top-down from the reclaim,
6432 * it's possible to optimize this part, and save calculated elow
6433 * for next usage. This part is intentionally racy, but it's ok,
6434 * as memory.low is a best-effort mechanism.
6435 */
6436 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6437 struct mem_cgroup *memcg)
6438 {
6439 struct mem_cgroup *parent;
6440 unsigned long emin, parent_emin;
6441 unsigned long elow, parent_elow;
6442 unsigned long usage;
6443
6444 if (mem_cgroup_disabled())
6445 return MEMCG_PROT_NONE;
6446
6447 if (!root)
6448 root = root_mem_cgroup;
6449
6450 /*
6451 * Effective values of the reclaim targets are ignored so they
6452 * can be stale. Have a look at mem_cgroup_protection for more
6453 * details.
6454 * TODO: calculation should be more robust so that we do not need
6455 * that special casing.
6456 */
6457 if (memcg == root)
6458 return MEMCG_PROT_NONE;
6459
6460 usage = page_counter_read(&memcg->memory);
6461 if (!usage)
6462 return MEMCG_PROT_NONE;
6463
6464 emin = memcg->memory.min;
6465 elow = memcg->memory.low;
6466
6467 parent = parent_mem_cgroup(memcg);
6468 /* No parent means a non-hierarchical mode on v1 memcg */
6469 if (!parent)
6470 return MEMCG_PROT_NONE;
6471
6472 if (parent == root)
6473 goto exit;
6474
6475 parent_emin = READ_ONCE(parent->memory.emin);
6476 emin = min(emin, parent_emin);
6477 if (emin && parent_emin) {
6478 unsigned long min_usage, siblings_min_usage;
6479
6480 min_usage = min(usage, memcg->memory.min);
6481 siblings_min_usage = atomic_long_read(
6482 &parent->memory.children_min_usage);
6483
6484 if (min_usage && siblings_min_usage)
6485 emin = min(emin, parent_emin * min_usage /
6486 siblings_min_usage);
6487 }
6488
6489 parent_elow = READ_ONCE(parent->memory.elow);
6490 elow = min(elow, parent_elow);
6491 if (elow && parent_elow) {
6492 unsigned long low_usage, siblings_low_usage;
6493
6494 low_usage = min(usage, memcg->memory.low);
6495 siblings_low_usage = atomic_long_read(
6496 &parent->memory.children_low_usage);
6497
6498 if (low_usage && siblings_low_usage)
6499 elow = min(elow, parent_elow * low_usage /
6500 siblings_low_usage);
6501 }
6502
6503 exit:
6504 memcg->memory.emin = emin;
6505 memcg->memory.elow = elow;
6506
6507 if (usage <= emin)
6508 return MEMCG_PROT_MIN;
6509 else if (usage <= elow)
6510 return MEMCG_PROT_LOW;
6511 else
6512 return MEMCG_PROT_NONE;
6513 }
6514
6515 /**
6516 * mem_cgroup_try_charge - try charging a page
6517 * @page: page to charge
6518 * @mm: mm context of the victim
6519 * @gfp_mask: reclaim mode
6520 * @memcgp: charged memcg return
6521 * @compound: charge the page as compound or small page
6522 *
6523 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6524 * pages according to @gfp_mask if necessary.
6525 *
6526 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6527 * Otherwise, an error code is returned.
6528 *
6529 * After page->mapping has been set up, the caller must finalize the
6530 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6531 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6532 */
6533 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6534 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6535 bool compound)
6536 {
6537 struct mem_cgroup *memcg = NULL;
6538 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6539 int ret = 0;
6540
6541 if (mem_cgroup_disabled())
6542 goto out;
6543
6544 if (PageSwapCache(page)) {
6545 /*
6546 * Every swap fault against a single page tries to charge the
6547 * page, bail as early as possible. shmem_unuse() encounters
6548 * already charged pages, too. The USED bit is protected by
6549 * the page lock, which serializes swap cache removal, which
6550 * in turn serializes uncharging.
6551 */
6552 VM_BUG_ON_PAGE(!PageLocked(page), page);
6553 if (compound_head(page)->mem_cgroup)
6554 goto out;
6555
6556 if (do_swap_account) {
6557 swp_entry_t ent = { .val = page_private(page), };
6558 unsigned short id = lookup_swap_cgroup_id(ent);
6559
6560 rcu_read_lock();
6561 memcg = mem_cgroup_from_id(id);
6562 if (memcg && !css_tryget_online(&memcg->css))
6563 memcg = NULL;
6564 rcu_read_unlock();
6565 }
6566 }
6567
6568 if (!memcg)
6569 memcg = get_mem_cgroup_from_mm(mm);
6570
6571 ret = try_charge(memcg, gfp_mask, nr_pages);
6572
6573 css_put(&memcg->css);
6574 out:
6575 *memcgp = memcg;
6576 return ret;
6577 }
6578
6579 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6580 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6581 bool compound)
6582 {
6583 struct mem_cgroup *memcg;
6584 int ret;
6585
6586 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6587 memcg = *memcgp;
6588 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6589 return ret;
6590 }
6591
6592 /**
6593 * mem_cgroup_commit_charge - commit a page charge
6594 * @page: page to charge
6595 * @memcg: memcg to charge the page to
6596 * @lrucare: page might be on LRU already
6597 * @compound: charge the page as compound or small page
6598 *
6599 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6600 * after page->mapping has been set up. This must happen atomically
6601 * as part of the page instantiation, i.e. under the page table lock
6602 * for anonymous pages, under the page lock for page and swap cache.
6603 *
6604 * In addition, the page must not be on the LRU during the commit, to
6605 * prevent racing with task migration. If it might be, use @lrucare.
6606 *
6607 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6608 */
6609 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6610 bool lrucare, bool compound)
6611 {
6612 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6613
6614 VM_BUG_ON_PAGE(!page->mapping, page);
6615 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6616
6617 if (mem_cgroup_disabled())
6618 return;
6619 /*
6620 * Swap faults will attempt to charge the same page multiple
6621 * times. But reuse_swap_page() might have removed the page
6622 * from swapcache already, so we can't check PageSwapCache().
6623 */
6624 if (!memcg)
6625 return;
6626
6627 commit_charge(page, memcg, lrucare);
6628
6629 local_irq_disable();
6630 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6631 memcg_check_events(memcg, page);
6632 local_irq_enable();
6633
6634 if (do_memsw_account() && PageSwapCache(page)) {
6635 swp_entry_t entry = { .val = page_private(page) };
6636 /*
6637 * The swap entry might not get freed for a long time,
6638 * let's not wait for it. The page already received a
6639 * memory+swap charge, drop the swap entry duplicate.
6640 */
6641 mem_cgroup_uncharge_swap(entry, nr_pages);
6642 }
6643 }
6644
6645 /**
6646 * mem_cgroup_cancel_charge - cancel a page charge
6647 * @page: page to charge
6648 * @memcg: memcg to charge the page to
6649 * @compound: charge the page as compound or small page
6650 *
6651 * Cancel a charge transaction started by mem_cgroup_try_charge().
6652 */
6653 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6654 bool compound)
6655 {
6656 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6657
6658 if (mem_cgroup_disabled())
6659 return;
6660 /*
6661 * Swap faults will attempt to charge the same page multiple
6662 * times. But reuse_swap_page() might have removed the page
6663 * from swapcache already, so we can't check PageSwapCache().
6664 */
6665 if (!memcg)
6666 return;
6667
6668 cancel_charge(memcg, nr_pages);
6669 }
6670
6671 struct uncharge_gather {
6672 struct mem_cgroup *memcg;
6673 unsigned long pgpgout;
6674 unsigned long nr_anon;
6675 unsigned long nr_file;
6676 unsigned long nr_kmem;
6677 unsigned long nr_huge;
6678 unsigned long nr_shmem;
6679 struct page *dummy_page;
6680 };
6681
6682 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6683 {
6684 memset(ug, 0, sizeof(*ug));
6685 }
6686
6687 static void uncharge_batch(const struct uncharge_gather *ug)
6688 {
6689 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6690 unsigned long flags;
6691
6692 if (!mem_cgroup_is_root(ug->memcg)) {
6693 page_counter_uncharge(&ug->memcg->memory, nr_pages);
6694 if (do_memsw_account())
6695 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6696 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6697 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6698 memcg_oom_recover(ug->memcg);
6699 }
6700
6701 local_irq_save(flags);
6702 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6703 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6704 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6705 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6706 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6707 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6708 memcg_check_events(ug->memcg, ug->dummy_page);
6709 local_irq_restore(flags);
6710
6711 if (!mem_cgroup_is_root(ug->memcg))
6712 css_put_many(&ug->memcg->css, nr_pages);
6713 }
6714
6715 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6716 {
6717 VM_BUG_ON_PAGE(PageLRU(page), page);
6718 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6719 !PageHWPoison(page) , page);
6720
6721 if (!page->mem_cgroup)
6722 return;
6723
6724 /*
6725 * Nobody should be changing or seriously looking at
6726 * page->mem_cgroup at this point, we have fully
6727 * exclusive access to the page.
6728 */
6729
6730 if (ug->memcg != page->mem_cgroup) {
6731 if (ug->memcg) {
6732 uncharge_batch(ug);
6733 uncharge_gather_clear(ug);
6734 }
6735 ug->memcg = page->mem_cgroup;
6736 }
6737
6738 if (!PageKmemcg(page)) {
6739 unsigned int nr_pages = 1;
6740
6741 if (PageTransHuge(page)) {
6742 nr_pages = compound_nr(page);
6743 ug->nr_huge += nr_pages;
6744 }
6745 if (PageAnon(page))
6746 ug->nr_anon += nr_pages;
6747 else {
6748 ug->nr_file += nr_pages;
6749 if (PageSwapBacked(page))
6750 ug->nr_shmem += nr_pages;
6751 }
6752 ug->pgpgout++;
6753 } else {
6754 ug->nr_kmem += compound_nr(page);
6755 __ClearPageKmemcg(page);
6756 }
6757
6758 ug->dummy_page = page;
6759 page->mem_cgroup = NULL;
6760 }
6761
6762 static void uncharge_list(struct list_head *page_list)
6763 {
6764 struct uncharge_gather ug;
6765 struct list_head *next;
6766
6767 uncharge_gather_clear(&ug);
6768
6769 /*
6770 * Note that the list can be a single page->lru; hence the
6771 * do-while loop instead of a simple list_for_each_entry().
6772 */
6773 next = page_list->next;
6774 do {
6775 struct page *page;
6776
6777 page = list_entry(next, struct page, lru);
6778 next = page->lru.next;
6779
6780 uncharge_page(page, &ug);
6781 } while (next != page_list);
6782
6783 if (ug.memcg)
6784 uncharge_batch(&ug);
6785 }
6786
6787 /**
6788 * mem_cgroup_uncharge - uncharge a page
6789 * @page: page to uncharge
6790 *
6791 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6792 * mem_cgroup_commit_charge().
6793 */
6794 void mem_cgroup_uncharge(struct page *page)
6795 {
6796 struct uncharge_gather ug;
6797
6798 if (mem_cgroup_disabled())
6799 return;
6800
6801 /* Don't touch page->lru of any random page, pre-check: */
6802 if (!page->mem_cgroup)
6803 return;
6804
6805 uncharge_gather_clear(&ug);
6806 uncharge_page(page, &ug);
6807 uncharge_batch(&ug);
6808 }
6809
6810 /**
6811 * mem_cgroup_uncharge_list - uncharge a list of page
6812 * @page_list: list of pages to uncharge
6813 *
6814 * Uncharge a list of pages previously charged with
6815 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6816 */
6817 void mem_cgroup_uncharge_list(struct list_head *page_list)
6818 {
6819 if (mem_cgroup_disabled())
6820 return;
6821
6822 if (!list_empty(page_list))
6823 uncharge_list(page_list);
6824 }
6825
6826 /**
6827 * mem_cgroup_migrate - charge a page's replacement
6828 * @oldpage: currently circulating page
6829 * @newpage: replacement page
6830 *
6831 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6832 * be uncharged upon free.
6833 *
6834 * Both pages must be locked, @newpage->mapping must be set up.
6835 */
6836 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6837 {
6838 struct mem_cgroup *memcg;
6839 unsigned int nr_pages;
6840 bool compound;
6841 unsigned long flags;
6842
6843 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6844 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6845 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6846 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6847 newpage);
6848
6849 if (mem_cgroup_disabled())
6850 return;
6851
6852 /* Page cache replacement: new page already charged? */
6853 if (newpage->mem_cgroup)
6854 return;
6855
6856 /* Swapcache readahead pages can get replaced before being charged */
6857 memcg = oldpage->mem_cgroup;
6858 if (!memcg)
6859 return;
6860
6861 /* Force-charge the new page. The old one will be freed soon */
6862 compound = PageTransHuge(newpage);
6863 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6864
6865 page_counter_charge(&memcg->memory, nr_pages);
6866 if (do_memsw_account())
6867 page_counter_charge(&memcg->memsw, nr_pages);
6868 css_get_many(&memcg->css, nr_pages);
6869
6870 commit_charge(newpage, memcg, false);
6871
6872 local_irq_save(flags);
6873 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6874 memcg_check_events(memcg, newpage);
6875 local_irq_restore(flags);
6876 }
6877
6878 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6879 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6880
6881 void mem_cgroup_sk_alloc(struct sock *sk)
6882 {
6883 struct mem_cgroup *memcg;
6884
6885 if (!mem_cgroup_sockets_enabled)
6886 return;
6887
6888 /* Do not associate the sock with unrelated interrupted task's memcg. */
6889 if (in_interrupt())
6890 return;
6891
6892 rcu_read_lock();
6893 memcg = mem_cgroup_from_task(current);
6894 if (memcg == root_mem_cgroup)
6895 goto out;
6896 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6897 goto out;
6898 if (css_tryget_online(&memcg->css))
6899 sk->sk_memcg = memcg;
6900 out:
6901 rcu_read_unlock();
6902 }
6903
6904 void mem_cgroup_sk_free(struct sock *sk)
6905 {
6906 if (sk->sk_memcg)
6907 css_put(&sk->sk_memcg->css);
6908 }
6909
6910 /**
6911 * mem_cgroup_charge_skmem - charge socket memory
6912 * @memcg: memcg to charge
6913 * @nr_pages: number of pages to charge
6914 *
6915 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6916 * @memcg's configured limit, %false if the charge had to be forced.
6917 */
6918 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6919 {
6920 gfp_t gfp_mask = GFP_KERNEL;
6921
6922 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6923 struct page_counter *fail;
6924
6925 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6926 memcg->tcpmem_pressure = 0;
6927 return true;
6928 }
6929 page_counter_charge(&memcg->tcpmem, nr_pages);
6930 memcg->tcpmem_pressure = 1;
6931 return false;
6932 }
6933
6934 /* Don't block in the packet receive path */
6935 if (in_softirq())
6936 gfp_mask = GFP_NOWAIT;
6937
6938 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6939
6940 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6941 return true;
6942
6943 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6944 return false;
6945 }
6946
6947 /**
6948 * mem_cgroup_uncharge_skmem - uncharge socket memory
6949 * @memcg: memcg to uncharge
6950 * @nr_pages: number of pages to uncharge
6951 */
6952 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6953 {
6954 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6955 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6956 return;
6957 }
6958
6959 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6960
6961 refill_stock(memcg, nr_pages);
6962 }
6963
6964 static int __init cgroup_memory(char *s)
6965 {
6966 char *token;
6967
6968 while ((token = strsep(&s, ",")) != NULL) {
6969 if (!*token)
6970 continue;
6971 if (!strcmp(token, "nosocket"))
6972 cgroup_memory_nosocket = true;
6973 if (!strcmp(token, "nokmem"))
6974 cgroup_memory_nokmem = true;
6975 }
6976 return 1;
6977 }
6978 __setup("cgroup.memory=", cgroup_memory);
6979
6980 /*
6981 * subsys_initcall() for memory controller.
6982 *
6983 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6984 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6985 * basically everything that doesn't depend on a specific mem_cgroup structure
6986 * should be initialized from here.
6987 */
6988 static int __init mem_cgroup_init(void)
6989 {
6990 int cpu, node;
6991
6992 #ifdef CONFIG_MEMCG_KMEM
6993 /*
6994 * Kmem cache creation is mostly done with the slab_mutex held,
6995 * so use a workqueue with limited concurrency to avoid stalling
6996 * all worker threads in case lots of cgroups are created and
6997 * destroyed simultaneously.
6998 */
6999 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
7000 BUG_ON(!memcg_kmem_cache_wq);
7001 #endif
7002
7003 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7004 memcg_hotplug_cpu_dead);
7005
7006 for_each_possible_cpu(cpu)
7007 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7008 drain_local_stock);
7009
7010 for_each_node(node) {
7011 struct mem_cgroup_tree_per_node *rtpn;
7012
7013 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7014 node_online(node) ? node : NUMA_NO_NODE);
7015
7016 rtpn->rb_root = RB_ROOT;
7017 rtpn->rb_rightmost = NULL;
7018 spin_lock_init(&rtpn->lock);
7019 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7020 }
7021
7022 return 0;
7023 }
7024 subsys_initcall(mem_cgroup_init);
7025
7026 #ifdef CONFIG_MEMCG_SWAP
7027 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7028 {
7029 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7030 /*
7031 * The root cgroup cannot be destroyed, so it's refcount must
7032 * always be >= 1.
7033 */
7034 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7035 VM_BUG_ON(1);
7036 break;
7037 }
7038 memcg = parent_mem_cgroup(memcg);
7039 if (!memcg)
7040 memcg = root_mem_cgroup;
7041 }
7042 return memcg;
7043 }
7044
7045 /**
7046 * mem_cgroup_swapout - transfer a memsw charge to swap
7047 * @page: page whose memsw charge to transfer
7048 * @entry: swap entry to move the charge to
7049 *
7050 * Transfer the memsw charge of @page to @entry.
7051 */
7052 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7053 {
7054 struct mem_cgroup *memcg, *swap_memcg;
7055 unsigned int nr_entries;
7056 unsigned short oldid;
7057
7058 VM_BUG_ON_PAGE(PageLRU(page), page);
7059 VM_BUG_ON_PAGE(page_count(page), page);
7060
7061 if (!do_memsw_account())
7062 return;
7063
7064 memcg = page->mem_cgroup;
7065
7066 /* Readahead page, never charged */
7067 if (!memcg)
7068 return;
7069
7070 /*
7071 * In case the memcg owning these pages has been offlined and doesn't
7072 * have an ID allocated to it anymore, charge the closest online
7073 * ancestor for the swap instead and transfer the memory+swap charge.
7074 */
7075 swap_memcg = mem_cgroup_id_get_online(memcg);
7076 nr_entries = hpage_nr_pages(page);
7077 /* Get references for the tail pages, too */
7078 if (nr_entries > 1)
7079 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7080 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7081 nr_entries);
7082 VM_BUG_ON_PAGE(oldid, page);
7083 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7084
7085 page->mem_cgroup = NULL;
7086
7087 if (!mem_cgroup_is_root(memcg))
7088 page_counter_uncharge(&memcg->memory, nr_entries);
7089
7090 if (memcg != swap_memcg) {
7091 if (!mem_cgroup_is_root(swap_memcg))
7092 page_counter_charge(&swap_memcg->memsw, nr_entries);
7093 page_counter_uncharge(&memcg->memsw, nr_entries);
7094 }
7095
7096 /*
7097 * Interrupts should be disabled here because the caller holds the
7098 * i_pages lock which is taken with interrupts-off. It is
7099 * important here to have the interrupts disabled because it is the
7100 * only synchronisation we have for updating the per-CPU variables.
7101 */
7102 VM_BUG_ON(!irqs_disabled());
7103 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
7104 -nr_entries);
7105 memcg_check_events(memcg, page);
7106
7107 if (!mem_cgroup_is_root(memcg))
7108 css_put_many(&memcg->css, nr_entries);
7109 }
7110
7111 /**
7112 * mem_cgroup_try_charge_swap - try charging swap space for a page
7113 * @page: page being added to swap
7114 * @entry: swap entry to charge
7115 *
7116 * Try to charge @page's memcg for the swap space at @entry.
7117 *
7118 * Returns 0 on success, -ENOMEM on failure.
7119 */
7120 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7121 {
7122 unsigned int nr_pages = hpage_nr_pages(page);
7123 struct page_counter *counter;
7124 struct mem_cgroup *memcg;
7125 unsigned short oldid;
7126
7127 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
7128 return 0;
7129
7130 memcg = page->mem_cgroup;
7131
7132 /* Readahead page, never charged */
7133 if (!memcg)
7134 return 0;
7135
7136 if (!entry.val) {
7137 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7138 return 0;
7139 }
7140
7141 memcg = mem_cgroup_id_get_online(memcg);
7142
7143 if (!mem_cgroup_is_root(memcg) &&
7144 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7145 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7146 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7147 mem_cgroup_id_put(memcg);
7148 return -ENOMEM;
7149 }
7150
7151 /* Get references for the tail pages, too */
7152 if (nr_pages > 1)
7153 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7154 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7155 VM_BUG_ON_PAGE(oldid, page);
7156 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7157
7158 return 0;
7159 }
7160
7161 /**
7162 * mem_cgroup_uncharge_swap - uncharge swap space
7163 * @entry: swap entry to uncharge
7164 * @nr_pages: the amount of swap space to uncharge
7165 */
7166 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7167 {
7168 struct mem_cgroup *memcg;
7169 unsigned short id;
7170
7171 if (!do_swap_account)
7172 return;
7173
7174 id = swap_cgroup_record(entry, 0, nr_pages);
7175 rcu_read_lock();
7176 memcg = mem_cgroup_from_id(id);
7177 if (memcg) {
7178 if (!mem_cgroup_is_root(memcg)) {
7179 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7180 page_counter_uncharge(&memcg->swap, nr_pages);
7181 else
7182 page_counter_uncharge(&memcg->memsw, nr_pages);
7183 }
7184 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7185 mem_cgroup_id_put_many(memcg, nr_pages);
7186 }
7187 rcu_read_unlock();
7188 }
7189
7190 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7191 {
7192 long nr_swap_pages = get_nr_swap_pages();
7193
7194 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7195 return nr_swap_pages;
7196 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7197 nr_swap_pages = min_t(long, nr_swap_pages,
7198 READ_ONCE(memcg->swap.max) -
7199 page_counter_read(&memcg->swap));
7200 return nr_swap_pages;
7201 }
7202
7203 bool mem_cgroup_swap_full(struct page *page)
7204 {
7205 struct mem_cgroup *memcg;
7206
7207 VM_BUG_ON_PAGE(!PageLocked(page), page);
7208
7209 if (vm_swap_full())
7210 return true;
7211 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7212 return false;
7213
7214 memcg = page->mem_cgroup;
7215 if (!memcg)
7216 return false;
7217
7218 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7219 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
7220 return true;
7221
7222 return false;
7223 }
7224
7225 /* for remember boot option*/
7226 #ifdef CONFIG_MEMCG_SWAP_ENABLED
7227 static int really_do_swap_account __initdata = 1;
7228 #else
7229 static int really_do_swap_account __initdata;
7230 #endif
7231
7232 static int __init enable_swap_account(char *s)
7233 {
7234 if (!strcmp(s, "1"))
7235 really_do_swap_account = 1;
7236 else if (!strcmp(s, "0"))
7237 really_do_swap_account = 0;
7238 return 1;
7239 }
7240 __setup("swapaccount=", enable_swap_account);
7241
7242 static u64 swap_current_read(struct cgroup_subsys_state *css,
7243 struct cftype *cft)
7244 {
7245 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7246
7247 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7248 }
7249
7250 static int swap_max_show(struct seq_file *m, void *v)
7251 {
7252 return seq_puts_memcg_tunable(m,
7253 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7254 }
7255
7256 static ssize_t swap_max_write(struct kernfs_open_file *of,
7257 char *buf, size_t nbytes, loff_t off)
7258 {
7259 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7260 unsigned long max;
7261 int err;
7262
7263 buf = strstrip(buf);
7264 err = page_counter_memparse(buf, "max", &max);
7265 if (err)
7266 return err;
7267
7268 xchg(&memcg->swap.max, max);
7269
7270 return nbytes;
7271 }
7272
7273 static int swap_events_show(struct seq_file *m, void *v)
7274 {
7275 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7276
7277 seq_printf(m, "max %lu\n",
7278 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7279 seq_printf(m, "fail %lu\n",
7280 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7281
7282 return 0;
7283 }
7284
7285 static struct cftype swap_files[] = {
7286 {
7287 .name = "swap.current",
7288 .flags = CFTYPE_NOT_ON_ROOT,
7289 .read_u64 = swap_current_read,
7290 },
7291 {
7292 .name = "swap.max",
7293 .flags = CFTYPE_NOT_ON_ROOT,
7294 .seq_show = swap_max_show,
7295 .write = swap_max_write,
7296 },
7297 {
7298 .name = "swap.events",
7299 .flags = CFTYPE_NOT_ON_ROOT,
7300 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7301 .seq_show = swap_events_show,
7302 },
7303 { } /* terminate */
7304 };
7305
7306 static struct cftype memsw_cgroup_files[] = {
7307 {
7308 .name = "memsw.usage_in_bytes",
7309 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7310 .read_u64 = mem_cgroup_read_u64,
7311 },
7312 {
7313 .name = "memsw.max_usage_in_bytes",
7314 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7315 .write = mem_cgroup_reset,
7316 .read_u64 = mem_cgroup_read_u64,
7317 },
7318 {
7319 .name = "memsw.limit_in_bytes",
7320 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7321 .write = mem_cgroup_write,
7322 .read_u64 = mem_cgroup_read_u64,
7323 },
7324 {
7325 .name = "memsw.failcnt",
7326 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7327 .write = mem_cgroup_reset,
7328 .read_u64 = mem_cgroup_read_u64,
7329 },
7330 { }, /* terminate */
7331 };
7332
7333 static int __init mem_cgroup_swap_init(void)
7334 {
7335 if (!mem_cgroup_disabled() && really_do_swap_account) {
7336 do_swap_account = 1;
7337 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7338 swap_files));
7339 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7340 memsw_cgroup_files));
7341 }
7342 return 0;
7343 }
7344 subsys_initcall(mem_cgroup_swap_init);
7345
7346 #endif /* CONFIG_MEMCG_SWAP */