]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memcontrol.c
m68k/defconfig: Update defconfigs for v4.7-rc2
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account 0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
129
130 /*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135 struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143
144 struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154 };
155
156 /*
157 * cgroup_event represents events which userspace want to receive.
158 */
159 struct mem_cgroup_event {
160 /*
161 * memcg which the event belongs to.
162 */
163 struct mem_cgroup *memcg;
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
177 int (*register_event)(struct mem_cgroup *memcg,
178 struct eventfd_ctx *eventfd, const char *args);
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
184 void (*unregister_event)(struct mem_cgroup *memcg,
185 struct eventfd_ctx *eventfd);
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194 };
195
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199 /* Stuffs for move charges at task migration. */
200 /*
201 * Types of charges to be moved.
202 */
203 #define MOVE_ANON 0x1U
204 #define MOVE_FILE 0x2U
205 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
206
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209 spinlock_t lock; /* for from, to */
210 struct mm_struct *mm;
211 struct mem_cgroup *from;
212 struct mem_cgroup *to;
213 unsigned long flags;
214 unsigned long precharge;
215 unsigned long moved_charge;
216 unsigned long moved_swap;
217 struct task_struct *moving_task; /* a task moving charges */
218 wait_queue_head_t waitq; /* a waitq for other context */
219 } mc = {
220 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222 };
223
224 /*
225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226 * limit reclaim to prevent infinite loops, if they ever occur.
227 */
228 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
229 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
230
231 enum charge_type {
232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233 MEM_CGROUP_CHARGE_TYPE_ANON,
234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
235 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
236 NR_CHARGE_TYPE,
237 };
238
239 /* for encoding cft->private value on file */
240 enum res_type {
241 _MEM,
242 _MEMSWAP,
243 _OOM_TYPE,
244 _KMEM,
245 _TCP,
246 };
247
248 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
250 #define MEMFILE_ATTR(val) ((val) & 0xffff)
251 /* Used for OOM nofiier */
252 #define OOM_CONTROL (0)
253
254 /* Some nice accessors for the vmpressure. */
255 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256 {
257 if (!memcg)
258 memcg = root_mem_cgroup;
259 return &memcg->vmpressure;
260 }
261
262 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263 {
264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265 }
266
267 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268 {
269 return (memcg == root_mem_cgroup);
270 }
271
272 #ifndef CONFIG_SLOB
273 /*
274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
275 * The main reason for not using cgroup id for this:
276 * this works better in sparse environments, where we have a lot of memcgs,
277 * but only a few kmem-limited. Or also, if we have, for instance, 200
278 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
279 * 200 entry array for that.
280 *
281 * The current size of the caches array is stored in memcg_nr_cache_ids. It
282 * will double each time we have to increase it.
283 */
284 static DEFINE_IDA(memcg_cache_ida);
285 int memcg_nr_cache_ids;
286
287 /* Protects memcg_nr_cache_ids */
288 static DECLARE_RWSEM(memcg_cache_ids_sem);
289
290 void memcg_get_cache_ids(void)
291 {
292 down_read(&memcg_cache_ids_sem);
293 }
294
295 void memcg_put_cache_ids(void)
296 {
297 up_read(&memcg_cache_ids_sem);
298 }
299
300 /*
301 * MIN_SIZE is different than 1, because we would like to avoid going through
302 * the alloc/free process all the time. In a small machine, 4 kmem-limited
303 * cgroups is a reasonable guess. In the future, it could be a parameter or
304 * tunable, but that is strictly not necessary.
305 *
306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307 * this constant directly from cgroup, but it is understandable that this is
308 * better kept as an internal representation in cgroup.c. In any case, the
309 * cgrp_id space is not getting any smaller, and we don't have to necessarily
310 * increase ours as well if it increases.
311 */
312 #define MEMCG_CACHES_MIN_SIZE 4
313 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314
315 /*
316 * A lot of the calls to the cache allocation functions are expected to be
317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318 * conditional to this static branch, we'll have to allow modules that does
319 * kmem_cache_alloc and the such to see this symbol as well
320 */
321 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322 EXPORT_SYMBOL(memcg_kmem_enabled_key);
323
324 #endif /* !CONFIG_SLOB */
325
326 static struct mem_cgroup_per_zone *
327 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
328 {
329 int nid = zone_to_nid(zone);
330 int zid = zone_idx(zone);
331
332 return &memcg->nodeinfo[nid]->zoneinfo[zid];
333 }
334
335 /**
336 * mem_cgroup_css_from_page - css of the memcg associated with a page
337 * @page: page of interest
338 *
339 * If memcg is bound to the default hierarchy, css of the memcg associated
340 * with @page is returned. The returned css remains associated with @page
341 * until it is released.
342 *
343 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344 * is returned.
345 */
346 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
347 {
348 struct mem_cgroup *memcg;
349
350 memcg = page->mem_cgroup;
351
352 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353 memcg = root_mem_cgroup;
354
355 return &memcg->css;
356 }
357
358 /**
359 * page_cgroup_ino - return inode number of the memcg a page is charged to
360 * @page: the page
361 *
362 * Look up the closest online ancestor of the memory cgroup @page is charged to
363 * and return its inode number or 0 if @page is not charged to any cgroup. It
364 * is safe to call this function without holding a reference to @page.
365 *
366 * Note, this function is inherently racy, because there is nothing to prevent
367 * the cgroup inode from getting torn down and potentially reallocated a moment
368 * after page_cgroup_ino() returns, so it only should be used by callers that
369 * do not care (such as procfs interfaces).
370 */
371 ino_t page_cgroup_ino(struct page *page)
372 {
373 struct mem_cgroup *memcg;
374 unsigned long ino = 0;
375
376 rcu_read_lock();
377 memcg = READ_ONCE(page->mem_cgroup);
378 while (memcg && !(memcg->css.flags & CSS_ONLINE))
379 memcg = parent_mem_cgroup(memcg);
380 if (memcg)
381 ino = cgroup_ino(memcg->css.cgroup);
382 rcu_read_unlock();
383 return ino;
384 }
385
386 static struct mem_cgroup_per_zone *
387 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
388 {
389 int nid = page_to_nid(page);
390 int zid = page_zonenum(page);
391
392 return &memcg->nodeinfo[nid]->zoneinfo[zid];
393 }
394
395 static struct mem_cgroup_tree_per_zone *
396 soft_limit_tree_node_zone(int nid, int zid)
397 {
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399 }
400
401 static struct mem_cgroup_tree_per_zone *
402 soft_limit_tree_from_page(struct page *page)
403 {
404 int nid = page_to_nid(page);
405 int zid = page_zonenum(page);
406
407 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
408 }
409
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411 struct mem_cgroup_tree_per_zone *mctz,
412 unsigned long new_usage_in_excess)
413 {
414 struct rb_node **p = &mctz->rb_root.rb_node;
415 struct rb_node *parent = NULL;
416 struct mem_cgroup_per_zone *mz_node;
417
418 if (mz->on_tree)
419 return;
420
421 mz->usage_in_excess = new_usage_in_excess;
422 if (!mz->usage_in_excess)
423 return;
424 while (*p) {
425 parent = *p;
426 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427 tree_node);
428 if (mz->usage_in_excess < mz_node->usage_in_excess)
429 p = &(*p)->rb_left;
430 /*
431 * We can't avoid mem cgroups that are over their soft
432 * limit by the same amount
433 */
434 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435 p = &(*p)->rb_right;
436 }
437 rb_link_node(&mz->tree_node, parent, p);
438 rb_insert_color(&mz->tree_node, &mctz->rb_root);
439 mz->on_tree = true;
440 }
441
442 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443 struct mem_cgroup_tree_per_zone *mctz)
444 {
445 if (!mz->on_tree)
446 return;
447 rb_erase(&mz->tree_node, &mctz->rb_root);
448 mz->on_tree = false;
449 }
450
451 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452 struct mem_cgroup_tree_per_zone *mctz)
453 {
454 unsigned long flags;
455
456 spin_lock_irqsave(&mctz->lock, flags);
457 __mem_cgroup_remove_exceeded(mz, mctz);
458 spin_unlock_irqrestore(&mctz->lock, flags);
459 }
460
461 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
462 {
463 unsigned long nr_pages = page_counter_read(&memcg->memory);
464 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465 unsigned long excess = 0;
466
467 if (nr_pages > soft_limit)
468 excess = nr_pages - soft_limit;
469
470 return excess;
471 }
472
473 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
474 {
475 unsigned long excess;
476 struct mem_cgroup_per_zone *mz;
477 struct mem_cgroup_tree_per_zone *mctz;
478
479 mctz = soft_limit_tree_from_page(page);
480 /*
481 * Necessary to update all ancestors when hierarchy is used.
482 * because their event counter is not touched.
483 */
484 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485 mz = mem_cgroup_page_zoneinfo(memcg, page);
486 excess = soft_limit_excess(memcg);
487 /*
488 * We have to update the tree if mz is on RB-tree or
489 * mem is over its softlimit.
490 */
491 if (excess || mz->on_tree) {
492 unsigned long flags;
493
494 spin_lock_irqsave(&mctz->lock, flags);
495 /* if on-tree, remove it */
496 if (mz->on_tree)
497 __mem_cgroup_remove_exceeded(mz, mctz);
498 /*
499 * Insert again. mz->usage_in_excess will be updated.
500 * If excess is 0, no tree ops.
501 */
502 __mem_cgroup_insert_exceeded(mz, mctz, excess);
503 spin_unlock_irqrestore(&mctz->lock, flags);
504 }
505 }
506 }
507
508 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
509 {
510 struct mem_cgroup_tree_per_zone *mctz;
511 struct mem_cgroup_per_zone *mz;
512 int nid, zid;
513
514 for_each_node(nid) {
515 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517 mctz = soft_limit_tree_node_zone(nid, zid);
518 mem_cgroup_remove_exceeded(mz, mctz);
519 }
520 }
521 }
522
523 static struct mem_cgroup_per_zone *
524 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525 {
526 struct rb_node *rightmost = NULL;
527 struct mem_cgroup_per_zone *mz;
528
529 retry:
530 mz = NULL;
531 rightmost = rb_last(&mctz->rb_root);
532 if (!rightmost)
533 goto done; /* Nothing to reclaim from */
534
535 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
536 /*
537 * Remove the node now but someone else can add it back,
538 * we will to add it back at the end of reclaim to its correct
539 * position in the tree.
540 */
541 __mem_cgroup_remove_exceeded(mz, mctz);
542 if (!soft_limit_excess(mz->memcg) ||
543 !css_tryget_online(&mz->memcg->css))
544 goto retry;
545 done:
546 return mz;
547 }
548
549 static struct mem_cgroup_per_zone *
550 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
551 {
552 struct mem_cgroup_per_zone *mz;
553
554 spin_lock_irq(&mctz->lock);
555 mz = __mem_cgroup_largest_soft_limit_node(mctz);
556 spin_unlock_irq(&mctz->lock);
557 return mz;
558 }
559
560 /*
561 * Return page count for single (non recursive) @memcg.
562 *
563 * Implementation Note: reading percpu statistics for memcg.
564 *
565 * Both of vmstat[] and percpu_counter has threshold and do periodic
566 * synchronization to implement "quick" read. There are trade-off between
567 * reading cost and precision of value. Then, we may have a chance to implement
568 * a periodic synchronization of counter in memcg's counter.
569 *
570 * But this _read() function is used for user interface now. The user accounts
571 * memory usage by memory cgroup and he _always_ requires exact value because
572 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573 * have to visit all online cpus and make sum. So, for now, unnecessary
574 * synchronization is not implemented. (just implemented for cpu hotplug)
575 *
576 * If there are kernel internal actions which can make use of some not-exact
577 * value, and reading all cpu value can be performance bottleneck in some
578 * common workload, threshold and synchronization as vmstat[] should be
579 * implemented.
580 */
581 static unsigned long
582 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
583 {
584 long val = 0;
585 int cpu;
586
587 /* Per-cpu values can be negative, use a signed accumulator */
588 for_each_possible_cpu(cpu)
589 val += per_cpu(memcg->stat->count[idx], cpu);
590 /*
591 * Summing races with updates, so val may be negative. Avoid exposing
592 * transient negative values.
593 */
594 if (val < 0)
595 val = 0;
596 return val;
597 }
598
599 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600 enum mem_cgroup_events_index idx)
601 {
602 unsigned long val = 0;
603 int cpu;
604
605 for_each_possible_cpu(cpu)
606 val += per_cpu(memcg->stat->events[idx], cpu);
607 return val;
608 }
609
610 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611 struct page *page,
612 bool compound, int nr_pages)
613 {
614 /*
615 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616 * counted as CACHE even if it's on ANON LRU.
617 */
618 if (PageAnon(page))
619 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620 nr_pages);
621 else
622 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623 nr_pages);
624
625 if (compound) {
626 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628 nr_pages);
629 }
630
631 /* pagein of a big page is an event. So, ignore page size */
632 if (nr_pages > 0)
633 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634 else {
635 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636 nr_pages = -nr_pages; /* for event */
637 }
638
639 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
640 }
641
642 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643 int nid, unsigned int lru_mask)
644 {
645 unsigned long nr = 0;
646 int zid;
647
648 VM_BUG_ON((unsigned)nid >= nr_node_ids);
649
650 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 struct mem_cgroup_per_zone *mz;
652 enum lru_list lru;
653
654 for_each_lru(lru) {
655 if (!(BIT(lru) & lru_mask))
656 continue;
657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 nr += mz->lru_size[lru];
659 }
660 }
661 return nr;
662 }
663
664 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665 unsigned int lru_mask)
666 {
667 unsigned long nr = 0;
668 int nid;
669
670 for_each_node_state(nid, N_MEMORY)
671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 return nr;
673 }
674
675 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 enum mem_cgroup_events_target target)
677 {
678 unsigned long val, next;
679
680 val = __this_cpu_read(memcg->stat->nr_page_events);
681 next = __this_cpu_read(memcg->stat->targets[target]);
682 /* from time_after() in jiffies.h */
683 if ((long)next - (long)val < 0) {
684 switch (target) {
685 case MEM_CGROUP_TARGET_THRESH:
686 next = val + THRESHOLDS_EVENTS_TARGET;
687 break;
688 case MEM_CGROUP_TARGET_SOFTLIMIT:
689 next = val + SOFTLIMIT_EVENTS_TARGET;
690 break;
691 case MEM_CGROUP_TARGET_NUMAINFO:
692 next = val + NUMAINFO_EVENTS_TARGET;
693 break;
694 default:
695 break;
696 }
697 __this_cpu_write(memcg->stat->targets[target], next);
698 return true;
699 }
700 return false;
701 }
702
703 /*
704 * Check events in order.
705 *
706 */
707 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708 {
709 /* threshold event is triggered in finer grain than soft limit */
710 if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 MEM_CGROUP_TARGET_THRESH))) {
712 bool do_softlimit;
713 bool do_numainfo __maybe_unused;
714
715 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 MEM_CGROUP_TARGET_SOFTLIMIT);
717 #if MAX_NUMNODES > 1
718 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 MEM_CGROUP_TARGET_NUMAINFO);
720 #endif
721 mem_cgroup_threshold(memcg);
722 if (unlikely(do_softlimit))
723 mem_cgroup_update_tree(memcg, page);
724 #if MAX_NUMNODES > 1
725 if (unlikely(do_numainfo))
726 atomic_inc(&memcg->numainfo_events);
727 #endif
728 }
729 }
730
731 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732 {
733 /*
734 * mm_update_next_owner() may clear mm->owner to NULL
735 * if it races with swapoff, page migration, etc.
736 * So this can be called with p == NULL.
737 */
738 if (unlikely(!p))
739 return NULL;
740
741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742 }
743 EXPORT_SYMBOL(mem_cgroup_from_task);
744
745 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746 {
747 struct mem_cgroup *memcg = NULL;
748
749 rcu_read_lock();
750 do {
751 /*
752 * Page cache insertions can happen withou an
753 * actual mm context, e.g. during disk probing
754 * on boot, loopback IO, acct() writes etc.
755 */
756 if (unlikely(!mm))
757 memcg = root_mem_cgroup;
758 else {
759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 if (unlikely(!memcg))
761 memcg = root_mem_cgroup;
762 }
763 } while (!css_tryget_online(&memcg->css));
764 rcu_read_unlock();
765 return memcg;
766 }
767
768 /**
769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
770 * @root: hierarchy root
771 * @prev: previously returned memcg, NULL on first invocation
772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
773 *
774 * Returns references to children of the hierarchy below @root, or
775 * @root itself, or %NULL after a full round-trip.
776 *
777 * Caller must pass the return value in @prev on subsequent
778 * invocations for reference counting, or use mem_cgroup_iter_break()
779 * to cancel a hierarchy walk before the round-trip is complete.
780 *
781 * Reclaimers can specify a zone and a priority level in @reclaim to
782 * divide up the memcgs in the hierarchy among all concurrent
783 * reclaimers operating on the same zone and priority.
784 */
785 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786 struct mem_cgroup *prev,
787 struct mem_cgroup_reclaim_cookie *reclaim)
788 {
789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790 struct cgroup_subsys_state *css = NULL;
791 struct mem_cgroup *memcg = NULL;
792 struct mem_cgroup *pos = NULL;
793
794 if (mem_cgroup_disabled())
795 return NULL;
796
797 if (!root)
798 root = root_mem_cgroup;
799
800 if (prev && !reclaim)
801 pos = prev;
802
803 if (!root->use_hierarchy && root != root_mem_cgroup) {
804 if (prev)
805 goto out;
806 return root;
807 }
808
809 rcu_read_lock();
810
811 if (reclaim) {
812 struct mem_cgroup_per_zone *mz;
813
814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 iter = &mz->iter[reclaim->priority];
816
817 if (prev && reclaim->generation != iter->generation)
818 goto out_unlock;
819
820 while (1) {
821 pos = READ_ONCE(iter->position);
822 if (!pos || css_tryget(&pos->css))
823 break;
824 /*
825 * css reference reached zero, so iter->position will
826 * be cleared by ->css_released. However, we should not
827 * rely on this happening soon, because ->css_released
828 * is called from a work queue, and by busy-waiting we
829 * might block it. So we clear iter->position right
830 * away.
831 */
832 (void)cmpxchg(&iter->position, pos, NULL);
833 }
834 }
835
836 if (pos)
837 css = &pos->css;
838
839 for (;;) {
840 css = css_next_descendant_pre(css, &root->css);
841 if (!css) {
842 /*
843 * Reclaimers share the hierarchy walk, and a
844 * new one might jump in right at the end of
845 * the hierarchy - make sure they see at least
846 * one group and restart from the beginning.
847 */
848 if (!prev)
849 continue;
850 break;
851 }
852
853 /*
854 * Verify the css and acquire a reference. The root
855 * is provided by the caller, so we know it's alive
856 * and kicking, and don't take an extra reference.
857 */
858 memcg = mem_cgroup_from_css(css);
859
860 if (css == &root->css)
861 break;
862
863 if (css_tryget(css))
864 break;
865
866 memcg = NULL;
867 }
868
869 if (reclaim) {
870 /*
871 * The position could have already been updated by a competing
872 * thread, so check that the value hasn't changed since we read
873 * it to avoid reclaiming from the same cgroup twice.
874 */
875 (void)cmpxchg(&iter->position, pos, memcg);
876
877 if (pos)
878 css_put(&pos->css);
879
880 if (!memcg)
881 iter->generation++;
882 else if (!prev)
883 reclaim->generation = iter->generation;
884 }
885
886 out_unlock:
887 rcu_read_unlock();
888 out:
889 if (prev && prev != root)
890 css_put(&prev->css);
891
892 return memcg;
893 }
894
895 /**
896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897 * @root: hierarchy root
898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899 */
900 void mem_cgroup_iter_break(struct mem_cgroup *root,
901 struct mem_cgroup *prev)
902 {
903 if (!root)
904 root = root_mem_cgroup;
905 if (prev && prev != root)
906 css_put(&prev->css);
907 }
908
909 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910 {
911 struct mem_cgroup *memcg = dead_memcg;
912 struct mem_cgroup_reclaim_iter *iter;
913 struct mem_cgroup_per_zone *mz;
914 int nid, zid;
915 int i;
916
917 while ((memcg = parent_mem_cgroup(memcg))) {
918 for_each_node(nid) {
919 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 for (i = 0; i <= DEF_PRIORITY; i++) {
922 iter = &mz->iter[i];
923 cmpxchg(&iter->position,
924 dead_memcg, NULL);
925 }
926 }
927 }
928 }
929 }
930
931 /*
932 * Iteration constructs for visiting all cgroups (under a tree). If
933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
934 * be used for reference counting.
935 */
936 #define for_each_mem_cgroup_tree(iter, root) \
937 for (iter = mem_cgroup_iter(root, NULL, NULL); \
938 iter != NULL; \
939 iter = mem_cgroup_iter(root, iter, NULL))
940
941 #define for_each_mem_cgroup(iter) \
942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
943 iter != NULL; \
944 iter = mem_cgroup_iter(NULL, iter, NULL))
945
946 /**
947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948 * @zone: zone of the wanted lruvec
949 * @memcg: memcg of the wanted lruvec
950 *
951 * Returns the lru list vector holding pages for the given @zone and
952 * @mem. This can be the global zone lruvec, if the memory controller
953 * is disabled.
954 */
955 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 struct mem_cgroup *memcg)
957 {
958 struct mem_cgroup_per_zone *mz;
959 struct lruvec *lruvec;
960
961 if (mem_cgroup_disabled()) {
962 lruvec = &zone->lruvec;
963 goto out;
964 }
965
966 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 lruvec = &mz->lruvec;
968 out:
969 /*
970 * Since a node can be onlined after the mem_cgroup was created,
971 * we have to be prepared to initialize lruvec->zone here;
972 * and if offlined then reonlined, we need to reinitialize it.
973 */
974 if (unlikely(lruvec->zone != zone))
975 lruvec->zone = zone;
976 return lruvec;
977 }
978
979 /**
980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981 * @page: the page
982 * @zone: zone of the page
983 *
984 * This function is only safe when following the LRU page isolation
985 * and putback protocol: the LRU lock must be held, and the page must
986 * either be PageLRU() or the caller must have isolated/allocated it.
987 */
988 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
989 {
990 struct mem_cgroup_per_zone *mz;
991 struct mem_cgroup *memcg;
992 struct lruvec *lruvec;
993
994 if (mem_cgroup_disabled()) {
995 lruvec = &zone->lruvec;
996 goto out;
997 }
998
999 memcg = page->mem_cgroup;
1000 /*
1001 * Swapcache readahead pages are added to the LRU - and
1002 * possibly migrated - before they are charged.
1003 */
1004 if (!memcg)
1005 memcg = root_mem_cgroup;
1006
1007 mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 lruvec = &mz->lruvec;
1009 out:
1010 /*
1011 * Since a node can be onlined after the mem_cgroup was created,
1012 * we have to be prepared to initialize lruvec->zone here;
1013 * and if offlined then reonlined, we need to reinitialize it.
1014 */
1015 if (unlikely(lruvec->zone != zone))
1016 lruvec->zone = zone;
1017 return lruvec;
1018 }
1019
1020 /**
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
1025 *
1026 * This function must be called under lru_lock, just before a page is added
1027 * to or just after a page is removed from an lru list (that ordering being
1028 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1029 */
1030 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1031 int nr_pages)
1032 {
1033 struct mem_cgroup_per_zone *mz;
1034 unsigned long *lru_size;
1035 long size;
1036 bool empty;
1037
1038 __update_lru_size(lruvec, lru, nr_pages);
1039
1040 if (mem_cgroup_disabled())
1041 return;
1042
1043 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1044 lru_size = mz->lru_size + lru;
1045 empty = list_empty(lruvec->lists + lru);
1046
1047 if (nr_pages < 0)
1048 *lru_size += nr_pages;
1049
1050 size = *lru_size;
1051 if (WARN_ONCE(size < 0 || empty != !size,
1052 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
1053 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1054 VM_BUG_ON(1);
1055 *lru_size = 0;
1056 }
1057
1058 if (nr_pages > 0)
1059 *lru_size += nr_pages;
1060 }
1061
1062 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1063 {
1064 struct mem_cgroup *task_memcg;
1065 struct task_struct *p;
1066 bool ret;
1067
1068 p = find_lock_task_mm(task);
1069 if (p) {
1070 task_memcg = get_mem_cgroup_from_mm(p->mm);
1071 task_unlock(p);
1072 } else {
1073 /*
1074 * All threads may have already detached their mm's, but the oom
1075 * killer still needs to detect if they have already been oom
1076 * killed to prevent needlessly killing additional tasks.
1077 */
1078 rcu_read_lock();
1079 task_memcg = mem_cgroup_from_task(task);
1080 css_get(&task_memcg->css);
1081 rcu_read_unlock();
1082 }
1083 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1084 css_put(&task_memcg->css);
1085 return ret;
1086 }
1087
1088 /**
1089 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1090 * @memcg: the memory cgroup
1091 *
1092 * Returns the maximum amount of memory @mem can be charged with, in
1093 * pages.
1094 */
1095 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1096 {
1097 unsigned long margin = 0;
1098 unsigned long count;
1099 unsigned long limit;
1100
1101 count = page_counter_read(&memcg->memory);
1102 limit = READ_ONCE(memcg->memory.limit);
1103 if (count < limit)
1104 margin = limit - count;
1105
1106 if (do_memsw_account()) {
1107 count = page_counter_read(&memcg->memsw);
1108 limit = READ_ONCE(memcg->memsw.limit);
1109 if (count <= limit)
1110 margin = min(margin, limit - count);
1111 else
1112 margin = 0;
1113 }
1114
1115 return margin;
1116 }
1117
1118 /*
1119 * A routine for checking "mem" is under move_account() or not.
1120 *
1121 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1122 * moving cgroups. This is for waiting at high-memory pressure
1123 * caused by "move".
1124 */
1125 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1126 {
1127 struct mem_cgroup *from;
1128 struct mem_cgroup *to;
1129 bool ret = false;
1130 /*
1131 * Unlike task_move routines, we access mc.to, mc.from not under
1132 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1133 */
1134 spin_lock(&mc.lock);
1135 from = mc.from;
1136 to = mc.to;
1137 if (!from)
1138 goto unlock;
1139
1140 ret = mem_cgroup_is_descendant(from, memcg) ||
1141 mem_cgroup_is_descendant(to, memcg);
1142 unlock:
1143 spin_unlock(&mc.lock);
1144 return ret;
1145 }
1146
1147 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1148 {
1149 if (mc.moving_task && current != mc.moving_task) {
1150 if (mem_cgroup_under_move(memcg)) {
1151 DEFINE_WAIT(wait);
1152 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1153 /* moving charge context might have finished. */
1154 if (mc.moving_task)
1155 schedule();
1156 finish_wait(&mc.waitq, &wait);
1157 return true;
1158 }
1159 }
1160 return false;
1161 }
1162
1163 #define K(x) ((x) << (PAGE_SHIFT-10))
1164 /**
1165 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1166 * @memcg: The memory cgroup that went over limit
1167 * @p: Task that is going to be killed
1168 *
1169 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1170 * enabled
1171 */
1172 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1173 {
1174 struct mem_cgroup *iter;
1175 unsigned int i;
1176
1177 rcu_read_lock();
1178
1179 if (p) {
1180 pr_info("Task in ");
1181 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1182 pr_cont(" killed as a result of limit of ");
1183 } else {
1184 pr_info("Memory limit reached of cgroup ");
1185 }
1186
1187 pr_cont_cgroup_path(memcg->css.cgroup);
1188 pr_cont("\n");
1189
1190 rcu_read_unlock();
1191
1192 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1193 K((u64)page_counter_read(&memcg->memory)),
1194 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1195 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1196 K((u64)page_counter_read(&memcg->memsw)),
1197 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1198 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1199 K((u64)page_counter_read(&memcg->kmem)),
1200 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1201
1202 for_each_mem_cgroup_tree(iter, memcg) {
1203 pr_info("Memory cgroup stats for ");
1204 pr_cont_cgroup_path(iter->css.cgroup);
1205 pr_cont(":");
1206
1207 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1208 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1209 continue;
1210 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1211 K(mem_cgroup_read_stat(iter, i)));
1212 }
1213
1214 for (i = 0; i < NR_LRU_LISTS; i++)
1215 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1216 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1217
1218 pr_cont("\n");
1219 }
1220 }
1221
1222 /*
1223 * This function returns the number of memcg under hierarchy tree. Returns
1224 * 1(self count) if no children.
1225 */
1226 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1227 {
1228 int num = 0;
1229 struct mem_cgroup *iter;
1230
1231 for_each_mem_cgroup_tree(iter, memcg)
1232 num++;
1233 return num;
1234 }
1235
1236 /*
1237 * Return the memory (and swap, if configured) limit for a memcg.
1238 */
1239 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1240 {
1241 unsigned long limit;
1242
1243 limit = memcg->memory.limit;
1244 if (mem_cgroup_swappiness(memcg)) {
1245 unsigned long memsw_limit;
1246 unsigned long swap_limit;
1247
1248 memsw_limit = memcg->memsw.limit;
1249 swap_limit = memcg->swap.limit;
1250 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1251 limit = min(limit + swap_limit, memsw_limit);
1252 }
1253 return limit;
1254 }
1255
1256 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1257 int order)
1258 {
1259 struct oom_control oc = {
1260 .zonelist = NULL,
1261 .nodemask = NULL,
1262 .gfp_mask = gfp_mask,
1263 .order = order,
1264 };
1265 struct mem_cgroup *iter;
1266 unsigned long chosen_points = 0;
1267 unsigned long totalpages;
1268 unsigned int points = 0;
1269 struct task_struct *chosen = NULL;
1270
1271 mutex_lock(&oom_lock);
1272
1273 /*
1274 * If current has a pending SIGKILL or is exiting, then automatically
1275 * select it. The goal is to allow it to allocate so that it may
1276 * quickly exit and free its memory.
1277 */
1278 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1279 mark_oom_victim(current);
1280 try_oom_reaper(current);
1281 goto unlock;
1282 }
1283
1284 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1285 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1286 for_each_mem_cgroup_tree(iter, memcg) {
1287 struct css_task_iter it;
1288 struct task_struct *task;
1289
1290 css_task_iter_start(&iter->css, &it);
1291 while ((task = css_task_iter_next(&it))) {
1292 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1293 case OOM_SCAN_SELECT:
1294 if (chosen)
1295 put_task_struct(chosen);
1296 chosen = task;
1297 chosen_points = ULONG_MAX;
1298 get_task_struct(chosen);
1299 /* fall through */
1300 case OOM_SCAN_CONTINUE:
1301 continue;
1302 case OOM_SCAN_ABORT:
1303 css_task_iter_end(&it);
1304 mem_cgroup_iter_break(memcg, iter);
1305 if (chosen)
1306 put_task_struct(chosen);
1307 /* Set a dummy value to return "true". */
1308 chosen = (void *) 1;
1309 goto unlock;
1310 case OOM_SCAN_OK:
1311 break;
1312 };
1313 points = oom_badness(task, memcg, NULL, totalpages);
1314 if (!points || points < chosen_points)
1315 continue;
1316 /* Prefer thread group leaders for display purposes */
1317 if (points == chosen_points &&
1318 thread_group_leader(chosen))
1319 continue;
1320
1321 if (chosen)
1322 put_task_struct(chosen);
1323 chosen = task;
1324 chosen_points = points;
1325 get_task_struct(chosen);
1326 }
1327 css_task_iter_end(&it);
1328 }
1329
1330 if (chosen) {
1331 points = chosen_points * 1000 / totalpages;
1332 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1333 "Memory cgroup out of memory");
1334 }
1335 unlock:
1336 mutex_unlock(&oom_lock);
1337 return chosen;
1338 }
1339
1340 #if MAX_NUMNODES > 1
1341
1342 /**
1343 * test_mem_cgroup_node_reclaimable
1344 * @memcg: the target memcg
1345 * @nid: the node ID to be checked.
1346 * @noswap : specify true here if the user wants flle only information.
1347 *
1348 * This function returns whether the specified memcg contains any
1349 * reclaimable pages on a node. Returns true if there are any reclaimable
1350 * pages in the node.
1351 */
1352 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1353 int nid, bool noswap)
1354 {
1355 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1356 return true;
1357 if (noswap || !total_swap_pages)
1358 return false;
1359 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1360 return true;
1361 return false;
1362
1363 }
1364
1365 /*
1366 * Always updating the nodemask is not very good - even if we have an empty
1367 * list or the wrong list here, we can start from some node and traverse all
1368 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1369 *
1370 */
1371 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1372 {
1373 int nid;
1374 /*
1375 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1376 * pagein/pageout changes since the last update.
1377 */
1378 if (!atomic_read(&memcg->numainfo_events))
1379 return;
1380 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1381 return;
1382
1383 /* make a nodemask where this memcg uses memory from */
1384 memcg->scan_nodes = node_states[N_MEMORY];
1385
1386 for_each_node_mask(nid, node_states[N_MEMORY]) {
1387
1388 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1389 node_clear(nid, memcg->scan_nodes);
1390 }
1391
1392 atomic_set(&memcg->numainfo_events, 0);
1393 atomic_set(&memcg->numainfo_updating, 0);
1394 }
1395
1396 /*
1397 * Selecting a node where we start reclaim from. Because what we need is just
1398 * reducing usage counter, start from anywhere is O,K. Considering
1399 * memory reclaim from current node, there are pros. and cons.
1400 *
1401 * Freeing memory from current node means freeing memory from a node which
1402 * we'll use or we've used. So, it may make LRU bad. And if several threads
1403 * hit limits, it will see a contention on a node. But freeing from remote
1404 * node means more costs for memory reclaim because of memory latency.
1405 *
1406 * Now, we use round-robin. Better algorithm is welcomed.
1407 */
1408 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1409 {
1410 int node;
1411
1412 mem_cgroup_may_update_nodemask(memcg);
1413 node = memcg->last_scanned_node;
1414
1415 node = next_node_in(node, memcg->scan_nodes);
1416 /*
1417 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1418 * last time it really checked all the LRUs due to rate limiting.
1419 * Fallback to the current node in that case for simplicity.
1420 */
1421 if (unlikely(node == MAX_NUMNODES))
1422 node = numa_node_id();
1423
1424 memcg->last_scanned_node = node;
1425 return node;
1426 }
1427 #else
1428 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1429 {
1430 return 0;
1431 }
1432 #endif
1433
1434 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1435 struct zone *zone,
1436 gfp_t gfp_mask,
1437 unsigned long *total_scanned)
1438 {
1439 struct mem_cgroup *victim = NULL;
1440 int total = 0;
1441 int loop = 0;
1442 unsigned long excess;
1443 unsigned long nr_scanned;
1444 struct mem_cgroup_reclaim_cookie reclaim = {
1445 .zone = zone,
1446 .priority = 0,
1447 };
1448
1449 excess = soft_limit_excess(root_memcg);
1450
1451 while (1) {
1452 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1453 if (!victim) {
1454 loop++;
1455 if (loop >= 2) {
1456 /*
1457 * If we have not been able to reclaim
1458 * anything, it might because there are
1459 * no reclaimable pages under this hierarchy
1460 */
1461 if (!total)
1462 break;
1463 /*
1464 * We want to do more targeted reclaim.
1465 * excess >> 2 is not to excessive so as to
1466 * reclaim too much, nor too less that we keep
1467 * coming back to reclaim from this cgroup
1468 */
1469 if (total >= (excess >> 2) ||
1470 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1471 break;
1472 }
1473 continue;
1474 }
1475 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1476 zone, &nr_scanned);
1477 *total_scanned += nr_scanned;
1478 if (!soft_limit_excess(root_memcg))
1479 break;
1480 }
1481 mem_cgroup_iter_break(root_memcg, victim);
1482 return total;
1483 }
1484
1485 #ifdef CONFIG_LOCKDEP
1486 static struct lockdep_map memcg_oom_lock_dep_map = {
1487 .name = "memcg_oom_lock",
1488 };
1489 #endif
1490
1491 static DEFINE_SPINLOCK(memcg_oom_lock);
1492
1493 /*
1494 * Check OOM-Killer is already running under our hierarchy.
1495 * If someone is running, return false.
1496 */
1497 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1498 {
1499 struct mem_cgroup *iter, *failed = NULL;
1500
1501 spin_lock(&memcg_oom_lock);
1502
1503 for_each_mem_cgroup_tree(iter, memcg) {
1504 if (iter->oom_lock) {
1505 /*
1506 * this subtree of our hierarchy is already locked
1507 * so we cannot give a lock.
1508 */
1509 failed = iter;
1510 mem_cgroup_iter_break(memcg, iter);
1511 break;
1512 } else
1513 iter->oom_lock = true;
1514 }
1515
1516 if (failed) {
1517 /*
1518 * OK, we failed to lock the whole subtree so we have
1519 * to clean up what we set up to the failing subtree
1520 */
1521 for_each_mem_cgroup_tree(iter, memcg) {
1522 if (iter == failed) {
1523 mem_cgroup_iter_break(memcg, iter);
1524 break;
1525 }
1526 iter->oom_lock = false;
1527 }
1528 } else
1529 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1530
1531 spin_unlock(&memcg_oom_lock);
1532
1533 return !failed;
1534 }
1535
1536 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1537 {
1538 struct mem_cgroup *iter;
1539
1540 spin_lock(&memcg_oom_lock);
1541 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1542 for_each_mem_cgroup_tree(iter, memcg)
1543 iter->oom_lock = false;
1544 spin_unlock(&memcg_oom_lock);
1545 }
1546
1547 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1548 {
1549 struct mem_cgroup *iter;
1550
1551 spin_lock(&memcg_oom_lock);
1552 for_each_mem_cgroup_tree(iter, memcg)
1553 iter->under_oom++;
1554 spin_unlock(&memcg_oom_lock);
1555 }
1556
1557 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1558 {
1559 struct mem_cgroup *iter;
1560
1561 /*
1562 * When a new child is created while the hierarchy is under oom,
1563 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1564 */
1565 spin_lock(&memcg_oom_lock);
1566 for_each_mem_cgroup_tree(iter, memcg)
1567 if (iter->under_oom > 0)
1568 iter->under_oom--;
1569 spin_unlock(&memcg_oom_lock);
1570 }
1571
1572 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1573
1574 struct oom_wait_info {
1575 struct mem_cgroup *memcg;
1576 wait_queue_t wait;
1577 };
1578
1579 static int memcg_oom_wake_function(wait_queue_t *wait,
1580 unsigned mode, int sync, void *arg)
1581 {
1582 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1583 struct mem_cgroup *oom_wait_memcg;
1584 struct oom_wait_info *oom_wait_info;
1585
1586 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1587 oom_wait_memcg = oom_wait_info->memcg;
1588
1589 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1590 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1591 return 0;
1592 return autoremove_wake_function(wait, mode, sync, arg);
1593 }
1594
1595 static void memcg_oom_recover(struct mem_cgroup *memcg)
1596 {
1597 /*
1598 * For the following lockless ->under_oom test, the only required
1599 * guarantee is that it must see the state asserted by an OOM when
1600 * this function is called as a result of userland actions
1601 * triggered by the notification of the OOM. This is trivially
1602 * achieved by invoking mem_cgroup_mark_under_oom() before
1603 * triggering notification.
1604 */
1605 if (memcg && memcg->under_oom)
1606 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1607 }
1608
1609 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1610 {
1611 if (!current->memcg_may_oom || current->memcg_in_oom)
1612 return;
1613 /*
1614 * We are in the middle of the charge context here, so we
1615 * don't want to block when potentially sitting on a callstack
1616 * that holds all kinds of filesystem and mm locks.
1617 *
1618 * Also, the caller may handle a failed allocation gracefully
1619 * (like optional page cache readahead) and so an OOM killer
1620 * invocation might not even be necessary.
1621 *
1622 * That's why we don't do anything here except remember the
1623 * OOM context and then deal with it at the end of the page
1624 * fault when the stack is unwound, the locks are released,
1625 * and when we know whether the fault was overall successful.
1626 */
1627 css_get(&memcg->css);
1628 current->memcg_in_oom = memcg;
1629 current->memcg_oom_gfp_mask = mask;
1630 current->memcg_oom_order = order;
1631 }
1632
1633 /**
1634 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1635 * @handle: actually kill/wait or just clean up the OOM state
1636 *
1637 * This has to be called at the end of a page fault if the memcg OOM
1638 * handler was enabled.
1639 *
1640 * Memcg supports userspace OOM handling where failed allocations must
1641 * sleep on a waitqueue until the userspace task resolves the
1642 * situation. Sleeping directly in the charge context with all kinds
1643 * of locks held is not a good idea, instead we remember an OOM state
1644 * in the task and mem_cgroup_oom_synchronize() has to be called at
1645 * the end of the page fault to complete the OOM handling.
1646 *
1647 * Returns %true if an ongoing memcg OOM situation was detected and
1648 * completed, %false otherwise.
1649 */
1650 bool mem_cgroup_oom_synchronize(bool handle)
1651 {
1652 struct mem_cgroup *memcg = current->memcg_in_oom;
1653 struct oom_wait_info owait;
1654 bool locked;
1655
1656 /* OOM is global, do not handle */
1657 if (!memcg)
1658 return false;
1659
1660 if (!handle || oom_killer_disabled)
1661 goto cleanup;
1662
1663 owait.memcg = memcg;
1664 owait.wait.flags = 0;
1665 owait.wait.func = memcg_oom_wake_function;
1666 owait.wait.private = current;
1667 INIT_LIST_HEAD(&owait.wait.task_list);
1668
1669 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1670 mem_cgroup_mark_under_oom(memcg);
1671
1672 locked = mem_cgroup_oom_trylock(memcg);
1673
1674 if (locked)
1675 mem_cgroup_oom_notify(memcg);
1676
1677 if (locked && !memcg->oom_kill_disable) {
1678 mem_cgroup_unmark_under_oom(memcg);
1679 finish_wait(&memcg_oom_waitq, &owait.wait);
1680 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1681 current->memcg_oom_order);
1682 } else {
1683 schedule();
1684 mem_cgroup_unmark_under_oom(memcg);
1685 finish_wait(&memcg_oom_waitq, &owait.wait);
1686 }
1687
1688 if (locked) {
1689 mem_cgroup_oom_unlock(memcg);
1690 /*
1691 * There is no guarantee that an OOM-lock contender
1692 * sees the wakeups triggered by the OOM kill
1693 * uncharges. Wake any sleepers explicitely.
1694 */
1695 memcg_oom_recover(memcg);
1696 }
1697 cleanup:
1698 current->memcg_in_oom = NULL;
1699 css_put(&memcg->css);
1700 return true;
1701 }
1702
1703 /**
1704 * lock_page_memcg - lock a page->mem_cgroup binding
1705 * @page: the page
1706 *
1707 * This function protects unlocked LRU pages from being moved to
1708 * another cgroup and stabilizes their page->mem_cgroup binding.
1709 */
1710 void lock_page_memcg(struct page *page)
1711 {
1712 struct mem_cgroup *memcg;
1713 unsigned long flags;
1714
1715 /*
1716 * The RCU lock is held throughout the transaction. The fast
1717 * path can get away without acquiring the memcg->move_lock
1718 * because page moving starts with an RCU grace period.
1719 */
1720 rcu_read_lock();
1721
1722 if (mem_cgroup_disabled())
1723 return;
1724 again:
1725 memcg = page->mem_cgroup;
1726 if (unlikely(!memcg))
1727 return;
1728
1729 if (atomic_read(&memcg->moving_account) <= 0)
1730 return;
1731
1732 spin_lock_irqsave(&memcg->move_lock, flags);
1733 if (memcg != page->mem_cgroup) {
1734 spin_unlock_irqrestore(&memcg->move_lock, flags);
1735 goto again;
1736 }
1737
1738 /*
1739 * When charge migration first begins, we can have locked and
1740 * unlocked page stat updates happening concurrently. Track
1741 * the task who has the lock for unlock_page_memcg().
1742 */
1743 memcg->move_lock_task = current;
1744 memcg->move_lock_flags = flags;
1745
1746 return;
1747 }
1748 EXPORT_SYMBOL(lock_page_memcg);
1749
1750 /**
1751 * unlock_page_memcg - unlock a page->mem_cgroup binding
1752 * @page: the page
1753 */
1754 void unlock_page_memcg(struct page *page)
1755 {
1756 struct mem_cgroup *memcg = page->mem_cgroup;
1757
1758 if (memcg && memcg->move_lock_task == current) {
1759 unsigned long flags = memcg->move_lock_flags;
1760
1761 memcg->move_lock_task = NULL;
1762 memcg->move_lock_flags = 0;
1763
1764 spin_unlock_irqrestore(&memcg->move_lock, flags);
1765 }
1766
1767 rcu_read_unlock();
1768 }
1769 EXPORT_SYMBOL(unlock_page_memcg);
1770
1771 /*
1772 * size of first charge trial. "32" comes from vmscan.c's magic value.
1773 * TODO: maybe necessary to use big numbers in big irons.
1774 */
1775 #define CHARGE_BATCH 32U
1776 struct memcg_stock_pcp {
1777 struct mem_cgroup *cached; /* this never be root cgroup */
1778 unsigned int nr_pages;
1779 struct work_struct work;
1780 unsigned long flags;
1781 #define FLUSHING_CACHED_CHARGE 0
1782 };
1783 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1784 static DEFINE_MUTEX(percpu_charge_mutex);
1785
1786 /**
1787 * consume_stock: Try to consume stocked charge on this cpu.
1788 * @memcg: memcg to consume from.
1789 * @nr_pages: how many pages to charge.
1790 *
1791 * The charges will only happen if @memcg matches the current cpu's memcg
1792 * stock, and at least @nr_pages are available in that stock. Failure to
1793 * service an allocation will refill the stock.
1794 *
1795 * returns true if successful, false otherwise.
1796 */
1797 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1798 {
1799 struct memcg_stock_pcp *stock;
1800 bool ret = false;
1801
1802 if (nr_pages > CHARGE_BATCH)
1803 return ret;
1804
1805 stock = &get_cpu_var(memcg_stock);
1806 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1807 stock->nr_pages -= nr_pages;
1808 ret = true;
1809 }
1810 put_cpu_var(memcg_stock);
1811 return ret;
1812 }
1813
1814 /*
1815 * Returns stocks cached in percpu and reset cached information.
1816 */
1817 static void drain_stock(struct memcg_stock_pcp *stock)
1818 {
1819 struct mem_cgroup *old = stock->cached;
1820
1821 if (stock->nr_pages) {
1822 page_counter_uncharge(&old->memory, stock->nr_pages);
1823 if (do_memsw_account())
1824 page_counter_uncharge(&old->memsw, stock->nr_pages);
1825 css_put_many(&old->css, stock->nr_pages);
1826 stock->nr_pages = 0;
1827 }
1828 stock->cached = NULL;
1829 }
1830
1831 /*
1832 * This must be called under preempt disabled or must be called by
1833 * a thread which is pinned to local cpu.
1834 */
1835 static void drain_local_stock(struct work_struct *dummy)
1836 {
1837 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1838 drain_stock(stock);
1839 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1840 }
1841
1842 /*
1843 * Cache charges(val) to local per_cpu area.
1844 * This will be consumed by consume_stock() function, later.
1845 */
1846 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1847 {
1848 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1849
1850 if (stock->cached != memcg) { /* reset if necessary */
1851 drain_stock(stock);
1852 stock->cached = memcg;
1853 }
1854 stock->nr_pages += nr_pages;
1855 put_cpu_var(memcg_stock);
1856 }
1857
1858 /*
1859 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1860 * of the hierarchy under it.
1861 */
1862 static void drain_all_stock(struct mem_cgroup *root_memcg)
1863 {
1864 int cpu, curcpu;
1865
1866 /* If someone's already draining, avoid adding running more workers. */
1867 if (!mutex_trylock(&percpu_charge_mutex))
1868 return;
1869 /* Notify other cpus that system-wide "drain" is running */
1870 get_online_cpus();
1871 curcpu = get_cpu();
1872 for_each_online_cpu(cpu) {
1873 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1874 struct mem_cgroup *memcg;
1875
1876 memcg = stock->cached;
1877 if (!memcg || !stock->nr_pages)
1878 continue;
1879 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1880 continue;
1881 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1882 if (cpu == curcpu)
1883 drain_local_stock(&stock->work);
1884 else
1885 schedule_work_on(cpu, &stock->work);
1886 }
1887 }
1888 put_cpu();
1889 put_online_cpus();
1890 mutex_unlock(&percpu_charge_mutex);
1891 }
1892
1893 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1894 unsigned long action,
1895 void *hcpu)
1896 {
1897 int cpu = (unsigned long)hcpu;
1898 struct memcg_stock_pcp *stock;
1899
1900 if (action == CPU_ONLINE)
1901 return NOTIFY_OK;
1902
1903 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1904 return NOTIFY_OK;
1905
1906 stock = &per_cpu(memcg_stock, cpu);
1907 drain_stock(stock);
1908 return NOTIFY_OK;
1909 }
1910
1911 static void reclaim_high(struct mem_cgroup *memcg,
1912 unsigned int nr_pages,
1913 gfp_t gfp_mask)
1914 {
1915 do {
1916 if (page_counter_read(&memcg->memory) <= memcg->high)
1917 continue;
1918 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1919 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1920 } while ((memcg = parent_mem_cgroup(memcg)));
1921 }
1922
1923 static void high_work_func(struct work_struct *work)
1924 {
1925 struct mem_cgroup *memcg;
1926
1927 memcg = container_of(work, struct mem_cgroup, high_work);
1928 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1929 }
1930
1931 /*
1932 * Scheduled by try_charge() to be executed from the userland return path
1933 * and reclaims memory over the high limit.
1934 */
1935 void mem_cgroup_handle_over_high(void)
1936 {
1937 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1938 struct mem_cgroup *memcg;
1939
1940 if (likely(!nr_pages))
1941 return;
1942
1943 memcg = get_mem_cgroup_from_mm(current->mm);
1944 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1945 css_put(&memcg->css);
1946 current->memcg_nr_pages_over_high = 0;
1947 }
1948
1949 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1950 unsigned int nr_pages)
1951 {
1952 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1953 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1954 struct mem_cgroup *mem_over_limit;
1955 struct page_counter *counter;
1956 unsigned long nr_reclaimed;
1957 bool may_swap = true;
1958 bool drained = false;
1959
1960 if (mem_cgroup_is_root(memcg))
1961 return 0;
1962 retry:
1963 if (consume_stock(memcg, nr_pages))
1964 return 0;
1965
1966 if (!do_memsw_account() ||
1967 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1968 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1969 goto done_restock;
1970 if (do_memsw_account())
1971 page_counter_uncharge(&memcg->memsw, batch);
1972 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1973 } else {
1974 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1975 may_swap = false;
1976 }
1977
1978 if (batch > nr_pages) {
1979 batch = nr_pages;
1980 goto retry;
1981 }
1982
1983 /*
1984 * Unlike in global OOM situations, memcg is not in a physical
1985 * memory shortage. Allow dying and OOM-killed tasks to
1986 * bypass the last charges so that they can exit quickly and
1987 * free their memory.
1988 */
1989 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1990 fatal_signal_pending(current) ||
1991 current->flags & PF_EXITING))
1992 goto force;
1993
1994 if (unlikely(task_in_memcg_oom(current)))
1995 goto nomem;
1996
1997 if (!gfpflags_allow_blocking(gfp_mask))
1998 goto nomem;
1999
2000 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2001
2002 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2003 gfp_mask, may_swap);
2004
2005 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2006 goto retry;
2007
2008 if (!drained) {
2009 drain_all_stock(mem_over_limit);
2010 drained = true;
2011 goto retry;
2012 }
2013
2014 if (gfp_mask & __GFP_NORETRY)
2015 goto nomem;
2016 /*
2017 * Even though the limit is exceeded at this point, reclaim
2018 * may have been able to free some pages. Retry the charge
2019 * before killing the task.
2020 *
2021 * Only for regular pages, though: huge pages are rather
2022 * unlikely to succeed so close to the limit, and we fall back
2023 * to regular pages anyway in case of failure.
2024 */
2025 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2026 goto retry;
2027 /*
2028 * At task move, charge accounts can be doubly counted. So, it's
2029 * better to wait until the end of task_move if something is going on.
2030 */
2031 if (mem_cgroup_wait_acct_move(mem_over_limit))
2032 goto retry;
2033
2034 if (nr_retries--)
2035 goto retry;
2036
2037 if (gfp_mask & __GFP_NOFAIL)
2038 goto force;
2039
2040 if (fatal_signal_pending(current))
2041 goto force;
2042
2043 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2044
2045 mem_cgroup_oom(mem_over_limit, gfp_mask,
2046 get_order(nr_pages * PAGE_SIZE));
2047 nomem:
2048 if (!(gfp_mask & __GFP_NOFAIL))
2049 return -ENOMEM;
2050 force:
2051 /*
2052 * The allocation either can't fail or will lead to more memory
2053 * being freed very soon. Allow memory usage go over the limit
2054 * temporarily by force charging it.
2055 */
2056 page_counter_charge(&memcg->memory, nr_pages);
2057 if (do_memsw_account())
2058 page_counter_charge(&memcg->memsw, nr_pages);
2059 css_get_many(&memcg->css, nr_pages);
2060
2061 return 0;
2062
2063 done_restock:
2064 css_get_many(&memcg->css, batch);
2065 if (batch > nr_pages)
2066 refill_stock(memcg, batch - nr_pages);
2067
2068 /*
2069 * If the hierarchy is above the normal consumption range, schedule
2070 * reclaim on returning to userland. We can perform reclaim here
2071 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2072 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2073 * not recorded as it most likely matches current's and won't
2074 * change in the meantime. As high limit is checked again before
2075 * reclaim, the cost of mismatch is negligible.
2076 */
2077 do {
2078 if (page_counter_read(&memcg->memory) > memcg->high) {
2079 /* Don't bother a random interrupted task */
2080 if (in_interrupt()) {
2081 schedule_work(&memcg->high_work);
2082 break;
2083 }
2084 current->memcg_nr_pages_over_high += batch;
2085 set_notify_resume(current);
2086 break;
2087 }
2088 } while ((memcg = parent_mem_cgroup(memcg)));
2089
2090 return 0;
2091 }
2092
2093 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2094 {
2095 if (mem_cgroup_is_root(memcg))
2096 return;
2097
2098 page_counter_uncharge(&memcg->memory, nr_pages);
2099 if (do_memsw_account())
2100 page_counter_uncharge(&memcg->memsw, nr_pages);
2101
2102 css_put_many(&memcg->css, nr_pages);
2103 }
2104
2105 static void lock_page_lru(struct page *page, int *isolated)
2106 {
2107 struct zone *zone = page_zone(page);
2108
2109 spin_lock_irq(&zone->lru_lock);
2110 if (PageLRU(page)) {
2111 struct lruvec *lruvec;
2112
2113 lruvec = mem_cgroup_page_lruvec(page, zone);
2114 ClearPageLRU(page);
2115 del_page_from_lru_list(page, lruvec, page_lru(page));
2116 *isolated = 1;
2117 } else
2118 *isolated = 0;
2119 }
2120
2121 static void unlock_page_lru(struct page *page, int isolated)
2122 {
2123 struct zone *zone = page_zone(page);
2124
2125 if (isolated) {
2126 struct lruvec *lruvec;
2127
2128 lruvec = mem_cgroup_page_lruvec(page, zone);
2129 VM_BUG_ON_PAGE(PageLRU(page), page);
2130 SetPageLRU(page);
2131 add_page_to_lru_list(page, lruvec, page_lru(page));
2132 }
2133 spin_unlock_irq(&zone->lru_lock);
2134 }
2135
2136 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2137 bool lrucare)
2138 {
2139 int isolated;
2140
2141 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2142
2143 /*
2144 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2145 * may already be on some other mem_cgroup's LRU. Take care of it.
2146 */
2147 if (lrucare)
2148 lock_page_lru(page, &isolated);
2149
2150 /*
2151 * Nobody should be changing or seriously looking at
2152 * page->mem_cgroup at this point:
2153 *
2154 * - the page is uncharged
2155 *
2156 * - the page is off-LRU
2157 *
2158 * - an anonymous fault has exclusive page access, except for
2159 * a locked page table
2160 *
2161 * - a page cache insertion, a swapin fault, or a migration
2162 * have the page locked
2163 */
2164 page->mem_cgroup = memcg;
2165
2166 if (lrucare)
2167 unlock_page_lru(page, isolated);
2168 }
2169
2170 #ifndef CONFIG_SLOB
2171 static int memcg_alloc_cache_id(void)
2172 {
2173 int id, size;
2174 int err;
2175
2176 id = ida_simple_get(&memcg_cache_ida,
2177 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2178 if (id < 0)
2179 return id;
2180
2181 if (id < memcg_nr_cache_ids)
2182 return id;
2183
2184 /*
2185 * There's no space for the new id in memcg_caches arrays,
2186 * so we have to grow them.
2187 */
2188 down_write(&memcg_cache_ids_sem);
2189
2190 size = 2 * (id + 1);
2191 if (size < MEMCG_CACHES_MIN_SIZE)
2192 size = MEMCG_CACHES_MIN_SIZE;
2193 else if (size > MEMCG_CACHES_MAX_SIZE)
2194 size = MEMCG_CACHES_MAX_SIZE;
2195
2196 err = memcg_update_all_caches(size);
2197 if (!err)
2198 err = memcg_update_all_list_lrus(size);
2199 if (!err)
2200 memcg_nr_cache_ids = size;
2201
2202 up_write(&memcg_cache_ids_sem);
2203
2204 if (err) {
2205 ida_simple_remove(&memcg_cache_ida, id);
2206 return err;
2207 }
2208 return id;
2209 }
2210
2211 static void memcg_free_cache_id(int id)
2212 {
2213 ida_simple_remove(&memcg_cache_ida, id);
2214 }
2215
2216 struct memcg_kmem_cache_create_work {
2217 struct mem_cgroup *memcg;
2218 struct kmem_cache *cachep;
2219 struct work_struct work;
2220 };
2221
2222 static void memcg_kmem_cache_create_func(struct work_struct *w)
2223 {
2224 struct memcg_kmem_cache_create_work *cw =
2225 container_of(w, struct memcg_kmem_cache_create_work, work);
2226 struct mem_cgroup *memcg = cw->memcg;
2227 struct kmem_cache *cachep = cw->cachep;
2228
2229 memcg_create_kmem_cache(memcg, cachep);
2230
2231 css_put(&memcg->css);
2232 kfree(cw);
2233 }
2234
2235 /*
2236 * Enqueue the creation of a per-memcg kmem_cache.
2237 */
2238 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2239 struct kmem_cache *cachep)
2240 {
2241 struct memcg_kmem_cache_create_work *cw;
2242
2243 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2244 if (!cw)
2245 return;
2246
2247 css_get(&memcg->css);
2248
2249 cw->memcg = memcg;
2250 cw->cachep = cachep;
2251 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2252
2253 schedule_work(&cw->work);
2254 }
2255
2256 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2257 struct kmem_cache *cachep)
2258 {
2259 /*
2260 * We need to stop accounting when we kmalloc, because if the
2261 * corresponding kmalloc cache is not yet created, the first allocation
2262 * in __memcg_schedule_kmem_cache_create will recurse.
2263 *
2264 * However, it is better to enclose the whole function. Depending on
2265 * the debugging options enabled, INIT_WORK(), for instance, can
2266 * trigger an allocation. This too, will make us recurse. Because at
2267 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2268 * the safest choice is to do it like this, wrapping the whole function.
2269 */
2270 current->memcg_kmem_skip_account = 1;
2271 __memcg_schedule_kmem_cache_create(memcg, cachep);
2272 current->memcg_kmem_skip_account = 0;
2273 }
2274
2275 /*
2276 * Return the kmem_cache we're supposed to use for a slab allocation.
2277 * We try to use the current memcg's version of the cache.
2278 *
2279 * If the cache does not exist yet, if we are the first user of it,
2280 * we either create it immediately, if possible, or create it asynchronously
2281 * in a workqueue.
2282 * In the latter case, we will let the current allocation go through with
2283 * the original cache.
2284 *
2285 * Can't be called in interrupt context or from kernel threads.
2286 * This function needs to be called with rcu_read_lock() held.
2287 */
2288 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2289 {
2290 struct mem_cgroup *memcg;
2291 struct kmem_cache *memcg_cachep;
2292 int kmemcg_id;
2293
2294 VM_BUG_ON(!is_root_cache(cachep));
2295
2296 if (cachep->flags & SLAB_ACCOUNT)
2297 gfp |= __GFP_ACCOUNT;
2298
2299 if (!(gfp & __GFP_ACCOUNT))
2300 return cachep;
2301
2302 if (current->memcg_kmem_skip_account)
2303 return cachep;
2304
2305 memcg = get_mem_cgroup_from_mm(current->mm);
2306 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2307 if (kmemcg_id < 0)
2308 goto out;
2309
2310 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2311 if (likely(memcg_cachep))
2312 return memcg_cachep;
2313
2314 /*
2315 * If we are in a safe context (can wait, and not in interrupt
2316 * context), we could be be predictable and return right away.
2317 * This would guarantee that the allocation being performed
2318 * already belongs in the new cache.
2319 *
2320 * However, there are some clashes that can arrive from locking.
2321 * For instance, because we acquire the slab_mutex while doing
2322 * memcg_create_kmem_cache, this means no further allocation
2323 * could happen with the slab_mutex held. So it's better to
2324 * defer everything.
2325 */
2326 memcg_schedule_kmem_cache_create(memcg, cachep);
2327 out:
2328 css_put(&memcg->css);
2329 return cachep;
2330 }
2331
2332 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2333 {
2334 if (!is_root_cache(cachep))
2335 css_put(&cachep->memcg_params.memcg->css);
2336 }
2337
2338 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2339 struct mem_cgroup *memcg)
2340 {
2341 unsigned int nr_pages = 1 << order;
2342 struct page_counter *counter;
2343 int ret;
2344
2345 ret = try_charge(memcg, gfp, nr_pages);
2346 if (ret)
2347 return ret;
2348
2349 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2350 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2351 cancel_charge(memcg, nr_pages);
2352 return -ENOMEM;
2353 }
2354
2355 page->mem_cgroup = memcg;
2356
2357 return 0;
2358 }
2359
2360 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2361 {
2362 struct mem_cgroup *memcg;
2363 int ret = 0;
2364
2365 memcg = get_mem_cgroup_from_mm(current->mm);
2366 if (!mem_cgroup_is_root(memcg))
2367 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2368 css_put(&memcg->css);
2369 return ret;
2370 }
2371
2372 void __memcg_kmem_uncharge(struct page *page, int order)
2373 {
2374 struct mem_cgroup *memcg = page->mem_cgroup;
2375 unsigned int nr_pages = 1 << order;
2376
2377 if (!memcg)
2378 return;
2379
2380 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2381
2382 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2383 page_counter_uncharge(&memcg->kmem, nr_pages);
2384
2385 page_counter_uncharge(&memcg->memory, nr_pages);
2386 if (do_memsw_account())
2387 page_counter_uncharge(&memcg->memsw, nr_pages);
2388
2389 page->mem_cgroup = NULL;
2390 css_put_many(&memcg->css, nr_pages);
2391 }
2392 #endif /* !CONFIG_SLOB */
2393
2394 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2395
2396 /*
2397 * Because tail pages are not marked as "used", set it. We're under
2398 * zone->lru_lock and migration entries setup in all page mappings.
2399 */
2400 void mem_cgroup_split_huge_fixup(struct page *head)
2401 {
2402 int i;
2403
2404 if (mem_cgroup_disabled())
2405 return;
2406
2407 for (i = 1; i < HPAGE_PMD_NR; i++)
2408 head[i].mem_cgroup = head->mem_cgroup;
2409
2410 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2411 HPAGE_PMD_NR);
2412 }
2413 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2414
2415 #ifdef CONFIG_MEMCG_SWAP
2416 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2417 bool charge)
2418 {
2419 int val = (charge) ? 1 : -1;
2420 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2421 }
2422
2423 /**
2424 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2425 * @entry: swap entry to be moved
2426 * @from: mem_cgroup which the entry is moved from
2427 * @to: mem_cgroup which the entry is moved to
2428 *
2429 * It succeeds only when the swap_cgroup's record for this entry is the same
2430 * as the mem_cgroup's id of @from.
2431 *
2432 * Returns 0 on success, -EINVAL on failure.
2433 *
2434 * The caller must have charged to @to, IOW, called page_counter_charge() about
2435 * both res and memsw, and called css_get().
2436 */
2437 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2438 struct mem_cgroup *from, struct mem_cgroup *to)
2439 {
2440 unsigned short old_id, new_id;
2441
2442 old_id = mem_cgroup_id(from);
2443 new_id = mem_cgroup_id(to);
2444
2445 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2446 mem_cgroup_swap_statistics(from, false);
2447 mem_cgroup_swap_statistics(to, true);
2448 return 0;
2449 }
2450 return -EINVAL;
2451 }
2452 #else
2453 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2454 struct mem_cgroup *from, struct mem_cgroup *to)
2455 {
2456 return -EINVAL;
2457 }
2458 #endif
2459
2460 static DEFINE_MUTEX(memcg_limit_mutex);
2461
2462 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2463 unsigned long limit)
2464 {
2465 unsigned long curusage;
2466 unsigned long oldusage;
2467 bool enlarge = false;
2468 int retry_count;
2469 int ret;
2470
2471 /*
2472 * For keeping hierarchical_reclaim simple, how long we should retry
2473 * is depends on callers. We set our retry-count to be function
2474 * of # of children which we should visit in this loop.
2475 */
2476 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2477 mem_cgroup_count_children(memcg);
2478
2479 oldusage = page_counter_read(&memcg->memory);
2480
2481 do {
2482 if (signal_pending(current)) {
2483 ret = -EINTR;
2484 break;
2485 }
2486
2487 mutex_lock(&memcg_limit_mutex);
2488 if (limit > memcg->memsw.limit) {
2489 mutex_unlock(&memcg_limit_mutex);
2490 ret = -EINVAL;
2491 break;
2492 }
2493 if (limit > memcg->memory.limit)
2494 enlarge = true;
2495 ret = page_counter_limit(&memcg->memory, limit);
2496 mutex_unlock(&memcg_limit_mutex);
2497
2498 if (!ret)
2499 break;
2500
2501 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2502
2503 curusage = page_counter_read(&memcg->memory);
2504 /* Usage is reduced ? */
2505 if (curusage >= oldusage)
2506 retry_count--;
2507 else
2508 oldusage = curusage;
2509 } while (retry_count);
2510
2511 if (!ret && enlarge)
2512 memcg_oom_recover(memcg);
2513
2514 return ret;
2515 }
2516
2517 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2518 unsigned long limit)
2519 {
2520 unsigned long curusage;
2521 unsigned long oldusage;
2522 bool enlarge = false;
2523 int retry_count;
2524 int ret;
2525
2526 /* see mem_cgroup_resize_res_limit */
2527 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2528 mem_cgroup_count_children(memcg);
2529
2530 oldusage = page_counter_read(&memcg->memsw);
2531
2532 do {
2533 if (signal_pending(current)) {
2534 ret = -EINTR;
2535 break;
2536 }
2537
2538 mutex_lock(&memcg_limit_mutex);
2539 if (limit < memcg->memory.limit) {
2540 mutex_unlock(&memcg_limit_mutex);
2541 ret = -EINVAL;
2542 break;
2543 }
2544 if (limit > memcg->memsw.limit)
2545 enlarge = true;
2546 ret = page_counter_limit(&memcg->memsw, limit);
2547 mutex_unlock(&memcg_limit_mutex);
2548
2549 if (!ret)
2550 break;
2551
2552 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2553
2554 curusage = page_counter_read(&memcg->memsw);
2555 /* Usage is reduced ? */
2556 if (curusage >= oldusage)
2557 retry_count--;
2558 else
2559 oldusage = curusage;
2560 } while (retry_count);
2561
2562 if (!ret && enlarge)
2563 memcg_oom_recover(memcg);
2564
2565 return ret;
2566 }
2567
2568 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2569 gfp_t gfp_mask,
2570 unsigned long *total_scanned)
2571 {
2572 unsigned long nr_reclaimed = 0;
2573 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2574 unsigned long reclaimed;
2575 int loop = 0;
2576 struct mem_cgroup_tree_per_zone *mctz;
2577 unsigned long excess;
2578 unsigned long nr_scanned;
2579
2580 if (order > 0)
2581 return 0;
2582
2583 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2584 /*
2585 * This loop can run a while, specially if mem_cgroup's continuously
2586 * keep exceeding their soft limit and putting the system under
2587 * pressure
2588 */
2589 do {
2590 if (next_mz)
2591 mz = next_mz;
2592 else
2593 mz = mem_cgroup_largest_soft_limit_node(mctz);
2594 if (!mz)
2595 break;
2596
2597 nr_scanned = 0;
2598 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2599 gfp_mask, &nr_scanned);
2600 nr_reclaimed += reclaimed;
2601 *total_scanned += nr_scanned;
2602 spin_lock_irq(&mctz->lock);
2603 __mem_cgroup_remove_exceeded(mz, mctz);
2604
2605 /*
2606 * If we failed to reclaim anything from this memory cgroup
2607 * it is time to move on to the next cgroup
2608 */
2609 next_mz = NULL;
2610 if (!reclaimed)
2611 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2612
2613 excess = soft_limit_excess(mz->memcg);
2614 /*
2615 * One school of thought says that we should not add
2616 * back the node to the tree if reclaim returns 0.
2617 * But our reclaim could return 0, simply because due
2618 * to priority we are exposing a smaller subset of
2619 * memory to reclaim from. Consider this as a longer
2620 * term TODO.
2621 */
2622 /* If excess == 0, no tree ops */
2623 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2624 spin_unlock_irq(&mctz->lock);
2625 css_put(&mz->memcg->css);
2626 loop++;
2627 /*
2628 * Could not reclaim anything and there are no more
2629 * mem cgroups to try or we seem to be looping without
2630 * reclaiming anything.
2631 */
2632 if (!nr_reclaimed &&
2633 (next_mz == NULL ||
2634 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2635 break;
2636 } while (!nr_reclaimed);
2637 if (next_mz)
2638 css_put(&next_mz->memcg->css);
2639 return nr_reclaimed;
2640 }
2641
2642 /*
2643 * Test whether @memcg has children, dead or alive. Note that this
2644 * function doesn't care whether @memcg has use_hierarchy enabled and
2645 * returns %true if there are child csses according to the cgroup
2646 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2647 */
2648 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2649 {
2650 bool ret;
2651
2652 rcu_read_lock();
2653 ret = css_next_child(NULL, &memcg->css);
2654 rcu_read_unlock();
2655 return ret;
2656 }
2657
2658 /*
2659 * Reclaims as many pages from the given memcg as possible.
2660 *
2661 * Caller is responsible for holding css reference for memcg.
2662 */
2663 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2664 {
2665 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2666
2667 /* we call try-to-free pages for make this cgroup empty */
2668 lru_add_drain_all();
2669 /* try to free all pages in this cgroup */
2670 while (nr_retries && page_counter_read(&memcg->memory)) {
2671 int progress;
2672
2673 if (signal_pending(current))
2674 return -EINTR;
2675
2676 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2677 GFP_KERNEL, true);
2678 if (!progress) {
2679 nr_retries--;
2680 /* maybe some writeback is necessary */
2681 congestion_wait(BLK_RW_ASYNC, HZ/10);
2682 }
2683
2684 }
2685
2686 return 0;
2687 }
2688
2689 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2690 char *buf, size_t nbytes,
2691 loff_t off)
2692 {
2693 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2694
2695 if (mem_cgroup_is_root(memcg))
2696 return -EINVAL;
2697 return mem_cgroup_force_empty(memcg) ?: nbytes;
2698 }
2699
2700 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2701 struct cftype *cft)
2702 {
2703 return mem_cgroup_from_css(css)->use_hierarchy;
2704 }
2705
2706 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2707 struct cftype *cft, u64 val)
2708 {
2709 int retval = 0;
2710 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2711 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2712
2713 if (memcg->use_hierarchy == val)
2714 return 0;
2715
2716 /*
2717 * If parent's use_hierarchy is set, we can't make any modifications
2718 * in the child subtrees. If it is unset, then the change can
2719 * occur, provided the current cgroup has no children.
2720 *
2721 * For the root cgroup, parent_mem is NULL, we allow value to be
2722 * set if there are no children.
2723 */
2724 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2725 (val == 1 || val == 0)) {
2726 if (!memcg_has_children(memcg))
2727 memcg->use_hierarchy = val;
2728 else
2729 retval = -EBUSY;
2730 } else
2731 retval = -EINVAL;
2732
2733 return retval;
2734 }
2735
2736 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2737 {
2738 struct mem_cgroup *iter;
2739 int i;
2740
2741 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2742
2743 for_each_mem_cgroup_tree(iter, memcg) {
2744 for (i = 0; i < MEMCG_NR_STAT; i++)
2745 stat[i] += mem_cgroup_read_stat(iter, i);
2746 }
2747 }
2748
2749 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2750 {
2751 struct mem_cgroup *iter;
2752 int i;
2753
2754 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2755
2756 for_each_mem_cgroup_tree(iter, memcg) {
2757 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2758 events[i] += mem_cgroup_read_events(iter, i);
2759 }
2760 }
2761
2762 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2763 {
2764 unsigned long val = 0;
2765
2766 if (mem_cgroup_is_root(memcg)) {
2767 struct mem_cgroup *iter;
2768
2769 for_each_mem_cgroup_tree(iter, memcg) {
2770 val += mem_cgroup_read_stat(iter,
2771 MEM_CGROUP_STAT_CACHE);
2772 val += mem_cgroup_read_stat(iter,
2773 MEM_CGROUP_STAT_RSS);
2774 if (swap)
2775 val += mem_cgroup_read_stat(iter,
2776 MEM_CGROUP_STAT_SWAP);
2777 }
2778 } else {
2779 if (!swap)
2780 val = page_counter_read(&memcg->memory);
2781 else
2782 val = page_counter_read(&memcg->memsw);
2783 }
2784 return val;
2785 }
2786
2787 enum {
2788 RES_USAGE,
2789 RES_LIMIT,
2790 RES_MAX_USAGE,
2791 RES_FAILCNT,
2792 RES_SOFT_LIMIT,
2793 };
2794
2795 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2796 struct cftype *cft)
2797 {
2798 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2799 struct page_counter *counter;
2800
2801 switch (MEMFILE_TYPE(cft->private)) {
2802 case _MEM:
2803 counter = &memcg->memory;
2804 break;
2805 case _MEMSWAP:
2806 counter = &memcg->memsw;
2807 break;
2808 case _KMEM:
2809 counter = &memcg->kmem;
2810 break;
2811 case _TCP:
2812 counter = &memcg->tcpmem;
2813 break;
2814 default:
2815 BUG();
2816 }
2817
2818 switch (MEMFILE_ATTR(cft->private)) {
2819 case RES_USAGE:
2820 if (counter == &memcg->memory)
2821 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2822 if (counter == &memcg->memsw)
2823 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2824 return (u64)page_counter_read(counter) * PAGE_SIZE;
2825 case RES_LIMIT:
2826 return (u64)counter->limit * PAGE_SIZE;
2827 case RES_MAX_USAGE:
2828 return (u64)counter->watermark * PAGE_SIZE;
2829 case RES_FAILCNT:
2830 return counter->failcnt;
2831 case RES_SOFT_LIMIT:
2832 return (u64)memcg->soft_limit * PAGE_SIZE;
2833 default:
2834 BUG();
2835 }
2836 }
2837
2838 #ifndef CONFIG_SLOB
2839 static int memcg_online_kmem(struct mem_cgroup *memcg)
2840 {
2841 int memcg_id;
2842
2843 if (cgroup_memory_nokmem)
2844 return 0;
2845
2846 BUG_ON(memcg->kmemcg_id >= 0);
2847 BUG_ON(memcg->kmem_state);
2848
2849 memcg_id = memcg_alloc_cache_id();
2850 if (memcg_id < 0)
2851 return memcg_id;
2852
2853 static_branch_inc(&memcg_kmem_enabled_key);
2854 /*
2855 * A memory cgroup is considered kmem-online as soon as it gets
2856 * kmemcg_id. Setting the id after enabling static branching will
2857 * guarantee no one starts accounting before all call sites are
2858 * patched.
2859 */
2860 memcg->kmemcg_id = memcg_id;
2861 memcg->kmem_state = KMEM_ONLINE;
2862
2863 return 0;
2864 }
2865
2866 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2867 {
2868 struct cgroup_subsys_state *css;
2869 struct mem_cgroup *parent, *child;
2870 int kmemcg_id;
2871
2872 if (memcg->kmem_state != KMEM_ONLINE)
2873 return;
2874 /*
2875 * Clear the online state before clearing memcg_caches array
2876 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2877 * guarantees that no cache will be created for this cgroup
2878 * after we are done (see memcg_create_kmem_cache()).
2879 */
2880 memcg->kmem_state = KMEM_ALLOCATED;
2881
2882 memcg_deactivate_kmem_caches(memcg);
2883
2884 kmemcg_id = memcg->kmemcg_id;
2885 BUG_ON(kmemcg_id < 0);
2886
2887 parent = parent_mem_cgroup(memcg);
2888 if (!parent)
2889 parent = root_mem_cgroup;
2890
2891 /*
2892 * Change kmemcg_id of this cgroup and all its descendants to the
2893 * parent's id, and then move all entries from this cgroup's list_lrus
2894 * to ones of the parent. After we have finished, all list_lrus
2895 * corresponding to this cgroup are guaranteed to remain empty. The
2896 * ordering is imposed by list_lru_node->lock taken by
2897 * memcg_drain_all_list_lrus().
2898 */
2899 css_for_each_descendant_pre(css, &memcg->css) {
2900 child = mem_cgroup_from_css(css);
2901 BUG_ON(child->kmemcg_id != kmemcg_id);
2902 child->kmemcg_id = parent->kmemcg_id;
2903 if (!memcg->use_hierarchy)
2904 break;
2905 }
2906 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2907
2908 memcg_free_cache_id(kmemcg_id);
2909 }
2910
2911 static void memcg_free_kmem(struct mem_cgroup *memcg)
2912 {
2913 /* css_alloc() failed, offlining didn't happen */
2914 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2915 memcg_offline_kmem(memcg);
2916
2917 if (memcg->kmem_state == KMEM_ALLOCATED) {
2918 memcg_destroy_kmem_caches(memcg);
2919 static_branch_dec(&memcg_kmem_enabled_key);
2920 WARN_ON(page_counter_read(&memcg->kmem));
2921 }
2922 }
2923 #else
2924 static int memcg_online_kmem(struct mem_cgroup *memcg)
2925 {
2926 return 0;
2927 }
2928 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2929 {
2930 }
2931 static void memcg_free_kmem(struct mem_cgroup *memcg)
2932 {
2933 }
2934 #endif /* !CONFIG_SLOB */
2935
2936 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2937 unsigned long limit)
2938 {
2939 int ret;
2940
2941 mutex_lock(&memcg_limit_mutex);
2942 ret = page_counter_limit(&memcg->kmem, limit);
2943 mutex_unlock(&memcg_limit_mutex);
2944 return ret;
2945 }
2946
2947 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2948 {
2949 int ret;
2950
2951 mutex_lock(&memcg_limit_mutex);
2952
2953 ret = page_counter_limit(&memcg->tcpmem, limit);
2954 if (ret)
2955 goto out;
2956
2957 if (!memcg->tcpmem_active) {
2958 /*
2959 * The active flag needs to be written after the static_key
2960 * update. This is what guarantees that the socket activation
2961 * function is the last one to run. See sock_update_memcg() for
2962 * details, and note that we don't mark any socket as belonging
2963 * to this memcg until that flag is up.
2964 *
2965 * We need to do this, because static_keys will span multiple
2966 * sites, but we can't control their order. If we mark a socket
2967 * as accounted, but the accounting functions are not patched in
2968 * yet, we'll lose accounting.
2969 *
2970 * We never race with the readers in sock_update_memcg(),
2971 * because when this value change, the code to process it is not
2972 * patched in yet.
2973 */
2974 static_branch_inc(&memcg_sockets_enabled_key);
2975 memcg->tcpmem_active = true;
2976 }
2977 out:
2978 mutex_unlock(&memcg_limit_mutex);
2979 return ret;
2980 }
2981
2982 /*
2983 * The user of this function is...
2984 * RES_LIMIT.
2985 */
2986 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2987 char *buf, size_t nbytes, loff_t off)
2988 {
2989 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2990 unsigned long nr_pages;
2991 int ret;
2992
2993 buf = strstrip(buf);
2994 ret = page_counter_memparse(buf, "-1", &nr_pages);
2995 if (ret)
2996 return ret;
2997
2998 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2999 case RES_LIMIT:
3000 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3001 ret = -EINVAL;
3002 break;
3003 }
3004 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3005 case _MEM:
3006 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3007 break;
3008 case _MEMSWAP:
3009 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3010 break;
3011 case _KMEM:
3012 ret = memcg_update_kmem_limit(memcg, nr_pages);
3013 break;
3014 case _TCP:
3015 ret = memcg_update_tcp_limit(memcg, nr_pages);
3016 break;
3017 }
3018 break;
3019 case RES_SOFT_LIMIT:
3020 memcg->soft_limit = nr_pages;
3021 ret = 0;
3022 break;
3023 }
3024 return ret ?: nbytes;
3025 }
3026
3027 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3028 size_t nbytes, loff_t off)
3029 {
3030 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3031 struct page_counter *counter;
3032
3033 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3034 case _MEM:
3035 counter = &memcg->memory;
3036 break;
3037 case _MEMSWAP:
3038 counter = &memcg->memsw;
3039 break;
3040 case _KMEM:
3041 counter = &memcg->kmem;
3042 break;
3043 case _TCP:
3044 counter = &memcg->tcpmem;
3045 break;
3046 default:
3047 BUG();
3048 }
3049
3050 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3051 case RES_MAX_USAGE:
3052 page_counter_reset_watermark(counter);
3053 break;
3054 case RES_FAILCNT:
3055 counter->failcnt = 0;
3056 break;
3057 default:
3058 BUG();
3059 }
3060
3061 return nbytes;
3062 }
3063
3064 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3065 struct cftype *cft)
3066 {
3067 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3068 }
3069
3070 #ifdef CONFIG_MMU
3071 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3072 struct cftype *cft, u64 val)
3073 {
3074 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3075
3076 if (val & ~MOVE_MASK)
3077 return -EINVAL;
3078
3079 /*
3080 * No kind of locking is needed in here, because ->can_attach() will
3081 * check this value once in the beginning of the process, and then carry
3082 * on with stale data. This means that changes to this value will only
3083 * affect task migrations starting after the change.
3084 */
3085 memcg->move_charge_at_immigrate = val;
3086 return 0;
3087 }
3088 #else
3089 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3090 struct cftype *cft, u64 val)
3091 {
3092 return -ENOSYS;
3093 }
3094 #endif
3095
3096 #ifdef CONFIG_NUMA
3097 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3098 {
3099 struct numa_stat {
3100 const char *name;
3101 unsigned int lru_mask;
3102 };
3103
3104 static const struct numa_stat stats[] = {
3105 { "total", LRU_ALL },
3106 { "file", LRU_ALL_FILE },
3107 { "anon", LRU_ALL_ANON },
3108 { "unevictable", BIT(LRU_UNEVICTABLE) },
3109 };
3110 const struct numa_stat *stat;
3111 int nid;
3112 unsigned long nr;
3113 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3114
3115 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3116 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3117 seq_printf(m, "%s=%lu", stat->name, nr);
3118 for_each_node_state(nid, N_MEMORY) {
3119 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3120 stat->lru_mask);
3121 seq_printf(m, " N%d=%lu", nid, nr);
3122 }
3123 seq_putc(m, '\n');
3124 }
3125
3126 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3127 struct mem_cgroup *iter;
3128
3129 nr = 0;
3130 for_each_mem_cgroup_tree(iter, memcg)
3131 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3132 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3133 for_each_node_state(nid, N_MEMORY) {
3134 nr = 0;
3135 for_each_mem_cgroup_tree(iter, memcg)
3136 nr += mem_cgroup_node_nr_lru_pages(
3137 iter, nid, stat->lru_mask);
3138 seq_printf(m, " N%d=%lu", nid, nr);
3139 }
3140 seq_putc(m, '\n');
3141 }
3142
3143 return 0;
3144 }
3145 #endif /* CONFIG_NUMA */
3146
3147 static int memcg_stat_show(struct seq_file *m, void *v)
3148 {
3149 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3150 unsigned long memory, memsw;
3151 struct mem_cgroup *mi;
3152 unsigned int i;
3153
3154 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3155 MEM_CGROUP_STAT_NSTATS);
3156 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3157 MEM_CGROUP_EVENTS_NSTATS);
3158 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3159
3160 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3161 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3162 continue;
3163 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3164 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3165 }
3166
3167 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3168 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3169 mem_cgroup_read_events(memcg, i));
3170
3171 for (i = 0; i < NR_LRU_LISTS; i++)
3172 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3173 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3174
3175 /* Hierarchical information */
3176 memory = memsw = PAGE_COUNTER_MAX;
3177 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3178 memory = min(memory, mi->memory.limit);
3179 memsw = min(memsw, mi->memsw.limit);
3180 }
3181 seq_printf(m, "hierarchical_memory_limit %llu\n",
3182 (u64)memory * PAGE_SIZE);
3183 if (do_memsw_account())
3184 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3185 (u64)memsw * PAGE_SIZE);
3186
3187 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3188 unsigned long long val = 0;
3189
3190 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3191 continue;
3192 for_each_mem_cgroup_tree(mi, memcg)
3193 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3194 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3195 }
3196
3197 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3198 unsigned long long val = 0;
3199
3200 for_each_mem_cgroup_tree(mi, memcg)
3201 val += mem_cgroup_read_events(mi, i);
3202 seq_printf(m, "total_%s %llu\n",
3203 mem_cgroup_events_names[i], val);
3204 }
3205
3206 for (i = 0; i < NR_LRU_LISTS; i++) {
3207 unsigned long long val = 0;
3208
3209 for_each_mem_cgroup_tree(mi, memcg)
3210 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3211 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3212 }
3213
3214 #ifdef CONFIG_DEBUG_VM
3215 {
3216 int nid, zid;
3217 struct mem_cgroup_per_zone *mz;
3218 struct zone_reclaim_stat *rstat;
3219 unsigned long recent_rotated[2] = {0, 0};
3220 unsigned long recent_scanned[2] = {0, 0};
3221
3222 for_each_online_node(nid)
3223 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3224 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3225 rstat = &mz->lruvec.reclaim_stat;
3226
3227 recent_rotated[0] += rstat->recent_rotated[0];
3228 recent_rotated[1] += rstat->recent_rotated[1];
3229 recent_scanned[0] += rstat->recent_scanned[0];
3230 recent_scanned[1] += rstat->recent_scanned[1];
3231 }
3232 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3233 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3234 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3235 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3236 }
3237 #endif
3238
3239 return 0;
3240 }
3241
3242 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3243 struct cftype *cft)
3244 {
3245 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3246
3247 return mem_cgroup_swappiness(memcg);
3248 }
3249
3250 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3251 struct cftype *cft, u64 val)
3252 {
3253 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3254
3255 if (val > 100)
3256 return -EINVAL;
3257
3258 if (css->parent)
3259 memcg->swappiness = val;
3260 else
3261 vm_swappiness = val;
3262
3263 return 0;
3264 }
3265
3266 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3267 {
3268 struct mem_cgroup_threshold_ary *t;
3269 unsigned long usage;
3270 int i;
3271
3272 rcu_read_lock();
3273 if (!swap)
3274 t = rcu_dereference(memcg->thresholds.primary);
3275 else
3276 t = rcu_dereference(memcg->memsw_thresholds.primary);
3277
3278 if (!t)
3279 goto unlock;
3280
3281 usage = mem_cgroup_usage(memcg, swap);
3282
3283 /*
3284 * current_threshold points to threshold just below or equal to usage.
3285 * If it's not true, a threshold was crossed after last
3286 * call of __mem_cgroup_threshold().
3287 */
3288 i = t->current_threshold;
3289
3290 /*
3291 * Iterate backward over array of thresholds starting from
3292 * current_threshold and check if a threshold is crossed.
3293 * If none of thresholds below usage is crossed, we read
3294 * only one element of the array here.
3295 */
3296 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3297 eventfd_signal(t->entries[i].eventfd, 1);
3298
3299 /* i = current_threshold + 1 */
3300 i++;
3301
3302 /*
3303 * Iterate forward over array of thresholds starting from
3304 * current_threshold+1 and check if a threshold is crossed.
3305 * If none of thresholds above usage is crossed, we read
3306 * only one element of the array here.
3307 */
3308 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3309 eventfd_signal(t->entries[i].eventfd, 1);
3310
3311 /* Update current_threshold */
3312 t->current_threshold = i - 1;
3313 unlock:
3314 rcu_read_unlock();
3315 }
3316
3317 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3318 {
3319 while (memcg) {
3320 __mem_cgroup_threshold(memcg, false);
3321 if (do_memsw_account())
3322 __mem_cgroup_threshold(memcg, true);
3323
3324 memcg = parent_mem_cgroup(memcg);
3325 }
3326 }
3327
3328 static int compare_thresholds(const void *a, const void *b)
3329 {
3330 const struct mem_cgroup_threshold *_a = a;
3331 const struct mem_cgroup_threshold *_b = b;
3332
3333 if (_a->threshold > _b->threshold)
3334 return 1;
3335
3336 if (_a->threshold < _b->threshold)
3337 return -1;
3338
3339 return 0;
3340 }
3341
3342 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3343 {
3344 struct mem_cgroup_eventfd_list *ev;
3345
3346 spin_lock(&memcg_oom_lock);
3347
3348 list_for_each_entry(ev, &memcg->oom_notify, list)
3349 eventfd_signal(ev->eventfd, 1);
3350
3351 spin_unlock(&memcg_oom_lock);
3352 return 0;
3353 }
3354
3355 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3356 {
3357 struct mem_cgroup *iter;
3358
3359 for_each_mem_cgroup_tree(iter, memcg)
3360 mem_cgroup_oom_notify_cb(iter);
3361 }
3362
3363 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3364 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3365 {
3366 struct mem_cgroup_thresholds *thresholds;
3367 struct mem_cgroup_threshold_ary *new;
3368 unsigned long threshold;
3369 unsigned long usage;
3370 int i, size, ret;
3371
3372 ret = page_counter_memparse(args, "-1", &threshold);
3373 if (ret)
3374 return ret;
3375
3376 mutex_lock(&memcg->thresholds_lock);
3377
3378 if (type == _MEM) {
3379 thresholds = &memcg->thresholds;
3380 usage = mem_cgroup_usage(memcg, false);
3381 } else if (type == _MEMSWAP) {
3382 thresholds = &memcg->memsw_thresholds;
3383 usage = mem_cgroup_usage(memcg, true);
3384 } else
3385 BUG();
3386
3387 /* Check if a threshold crossed before adding a new one */
3388 if (thresholds->primary)
3389 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3390
3391 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3392
3393 /* Allocate memory for new array of thresholds */
3394 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3395 GFP_KERNEL);
3396 if (!new) {
3397 ret = -ENOMEM;
3398 goto unlock;
3399 }
3400 new->size = size;
3401
3402 /* Copy thresholds (if any) to new array */
3403 if (thresholds->primary) {
3404 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3405 sizeof(struct mem_cgroup_threshold));
3406 }
3407
3408 /* Add new threshold */
3409 new->entries[size - 1].eventfd = eventfd;
3410 new->entries[size - 1].threshold = threshold;
3411
3412 /* Sort thresholds. Registering of new threshold isn't time-critical */
3413 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3414 compare_thresholds, NULL);
3415
3416 /* Find current threshold */
3417 new->current_threshold = -1;
3418 for (i = 0; i < size; i++) {
3419 if (new->entries[i].threshold <= usage) {
3420 /*
3421 * new->current_threshold will not be used until
3422 * rcu_assign_pointer(), so it's safe to increment
3423 * it here.
3424 */
3425 ++new->current_threshold;
3426 } else
3427 break;
3428 }
3429
3430 /* Free old spare buffer and save old primary buffer as spare */
3431 kfree(thresholds->spare);
3432 thresholds->spare = thresholds->primary;
3433
3434 rcu_assign_pointer(thresholds->primary, new);
3435
3436 /* To be sure that nobody uses thresholds */
3437 synchronize_rcu();
3438
3439 unlock:
3440 mutex_unlock(&memcg->thresholds_lock);
3441
3442 return ret;
3443 }
3444
3445 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3446 struct eventfd_ctx *eventfd, const char *args)
3447 {
3448 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3449 }
3450
3451 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3452 struct eventfd_ctx *eventfd, const char *args)
3453 {
3454 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3455 }
3456
3457 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3458 struct eventfd_ctx *eventfd, enum res_type type)
3459 {
3460 struct mem_cgroup_thresholds *thresholds;
3461 struct mem_cgroup_threshold_ary *new;
3462 unsigned long usage;
3463 int i, j, size;
3464
3465 mutex_lock(&memcg->thresholds_lock);
3466
3467 if (type == _MEM) {
3468 thresholds = &memcg->thresholds;
3469 usage = mem_cgroup_usage(memcg, false);
3470 } else if (type == _MEMSWAP) {
3471 thresholds = &memcg->memsw_thresholds;
3472 usage = mem_cgroup_usage(memcg, true);
3473 } else
3474 BUG();
3475
3476 if (!thresholds->primary)
3477 goto unlock;
3478
3479 /* Check if a threshold crossed before removing */
3480 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3481
3482 /* Calculate new number of threshold */
3483 size = 0;
3484 for (i = 0; i < thresholds->primary->size; i++) {
3485 if (thresholds->primary->entries[i].eventfd != eventfd)
3486 size++;
3487 }
3488
3489 new = thresholds->spare;
3490
3491 /* Set thresholds array to NULL if we don't have thresholds */
3492 if (!size) {
3493 kfree(new);
3494 new = NULL;
3495 goto swap_buffers;
3496 }
3497
3498 new->size = size;
3499
3500 /* Copy thresholds and find current threshold */
3501 new->current_threshold = -1;
3502 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3503 if (thresholds->primary->entries[i].eventfd == eventfd)
3504 continue;
3505
3506 new->entries[j] = thresholds->primary->entries[i];
3507 if (new->entries[j].threshold <= usage) {
3508 /*
3509 * new->current_threshold will not be used
3510 * until rcu_assign_pointer(), so it's safe to increment
3511 * it here.
3512 */
3513 ++new->current_threshold;
3514 }
3515 j++;
3516 }
3517
3518 swap_buffers:
3519 /* Swap primary and spare array */
3520 thresholds->spare = thresholds->primary;
3521
3522 rcu_assign_pointer(thresholds->primary, new);
3523
3524 /* To be sure that nobody uses thresholds */
3525 synchronize_rcu();
3526
3527 /* If all events are unregistered, free the spare array */
3528 if (!new) {
3529 kfree(thresholds->spare);
3530 thresholds->spare = NULL;
3531 }
3532 unlock:
3533 mutex_unlock(&memcg->thresholds_lock);
3534 }
3535
3536 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3537 struct eventfd_ctx *eventfd)
3538 {
3539 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3540 }
3541
3542 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3543 struct eventfd_ctx *eventfd)
3544 {
3545 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3546 }
3547
3548 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3549 struct eventfd_ctx *eventfd, const char *args)
3550 {
3551 struct mem_cgroup_eventfd_list *event;
3552
3553 event = kmalloc(sizeof(*event), GFP_KERNEL);
3554 if (!event)
3555 return -ENOMEM;
3556
3557 spin_lock(&memcg_oom_lock);
3558
3559 event->eventfd = eventfd;
3560 list_add(&event->list, &memcg->oom_notify);
3561
3562 /* already in OOM ? */
3563 if (memcg->under_oom)
3564 eventfd_signal(eventfd, 1);
3565 spin_unlock(&memcg_oom_lock);
3566
3567 return 0;
3568 }
3569
3570 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3571 struct eventfd_ctx *eventfd)
3572 {
3573 struct mem_cgroup_eventfd_list *ev, *tmp;
3574
3575 spin_lock(&memcg_oom_lock);
3576
3577 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3578 if (ev->eventfd == eventfd) {
3579 list_del(&ev->list);
3580 kfree(ev);
3581 }
3582 }
3583
3584 spin_unlock(&memcg_oom_lock);
3585 }
3586
3587 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3588 {
3589 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3590
3591 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3592 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3593 return 0;
3594 }
3595
3596 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3597 struct cftype *cft, u64 val)
3598 {
3599 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3600
3601 /* cannot set to root cgroup and only 0 and 1 are allowed */
3602 if (!css->parent || !((val == 0) || (val == 1)))
3603 return -EINVAL;
3604
3605 memcg->oom_kill_disable = val;
3606 if (!val)
3607 memcg_oom_recover(memcg);
3608
3609 return 0;
3610 }
3611
3612 #ifdef CONFIG_CGROUP_WRITEBACK
3613
3614 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3615 {
3616 return &memcg->cgwb_list;
3617 }
3618
3619 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3620 {
3621 return wb_domain_init(&memcg->cgwb_domain, gfp);
3622 }
3623
3624 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3625 {
3626 wb_domain_exit(&memcg->cgwb_domain);
3627 }
3628
3629 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3630 {
3631 wb_domain_size_changed(&memcg->cgwb_domain);
3632 }
3633
3634 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3635 {
3636 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3637
3638 if (!memcg->css.parent)
3639 return NULL;
3640
3641 return &memcg->cgwb_domain;
3642 }
3643
3644 /**
3645 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3646 * @wb: bdi_writeback in question
3647 * @pfilepages: out parameter for number of file pages
3648 * @pheadroom: out parameter for number of allocatable pages according to memcg
3649 * @pdirty: out parameter for number of dirty pages
3650 * @pwriteback: out parameter for number of pages under writeback
3651 *
3652 * Determine the numbers of file, headroom, dirty, and writeback pages in
3653 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3654 * is a bit more involved.
3655 *
3656 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3657 * headroom is calculated as the lowest headroom of itself and the
3658 * ancestors. Note that this doesn't consider the actual amount of
3659 * available memory in the system. The caller should further cap
3660 * *@pheadroom accordingly.
3661 */
3662 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3663 unsigned long *pheadroom, unsigned long *pdirty,
3664 unsigned long *pwriteback)
3665 {
3666 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3667 struct mem_cgroup *parent;
3668
3669 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3670
3671 /* this should eventually include NR_UNSTABLE_NFS */
3672 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3673 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3674 (1 << LRU_ACTIVE_FILE));
3675 *pheadroom = PAGE_COUNTER_MAX;
3676
3677 while ((parent = parent_mem_cgroup(memcg))) {
3678 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3679 unsigned long used = page_counter_read(&memcg->memory);
3680
3681 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3682 memcg = parent;
3683 }
3684 }
3685
3686 #else /* CONFIG_CGROUP_WRITEBACK */
3687
3688 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3689 {
3690 return 0;
3691 }
3692
3693 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3694 {
3695 }
3696
3697 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3698 {
3699 }
3700
3701 #endif /* CONFIG_CGROUP_WRITEBACK */
3702
3703 /*
3704 * DO NOT USE IN NEW FILES.
3705 *
3706 * "cgroup.event_control" implementation.
3707 *
3708 * This is way over-engineered. It tries to support fully configurable
3709 * events for each user. Such level of flexibility is completely
3710 * unnecessary especially in the light of the planned unified hierarchy.
3711 *
3712 * Please deprecate this and replace with something simpler if at all
3713 * possible.
3714 */
3715
3716 /*
3717 * Unregister event and free resources.
3718 *
3719 * Gets called from workqueue.
3720 */
3721 static void memcg_event_remove(struct work_struct *work)
3722 {
3723 struct mem_cgroup_event *event =
3724 container_of(work, struct mem_cgroup_event, remove);
3725 struct mem_cgroup *memcg = event->memcg;
3726
3727 remove_wait_queue(event->wqh, &event->wait);
3728
3729 event->unregister_event(memcg, event->eventfd);
3730
3731 /* Notify userspace the event is going away. */
3732 eventfd_signal(event->eventfd, 1);
3733
3734 eventfd_ctx_put(event->eventfd);
3735 kfree(event);
3736 css_put(&memcg->css);
3737 }
3738
3739 /*
3740 * Gets called on POLLHUP on eventfd when user closes it.
3741 *
3742 * Called with wqh->lock held and interrupts disabled.
3743 */
3744 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3745 int sync, void *key)
3746 {
3747 struct mem_cgroup_event *event =
3748 container_of(wait, struct mem_cgroup_event, wait);
3749 struct mem_cgroup *memcg = event->memcg;
3750 unsigned long flags = (unsigned long)key;
3751
3752 if (flags & POLLHUP) {
3753 /*
3754 * If the event has been detached at cgroup removal, we
3755 * can simply return knowing the other side will cleanup
3756 * for us.
3757 *
3758 * We can't race against event freeing since the other
3759 * side will require wqh->lock via remove_wait_queue(),
3760 * which we hold.
3761 */
3762 spin_lock(&memcg->event_list_lock);
3763 if (!list_empty(&event->list)) {
3764 list_del_init(&event->list);
3765 /*
3766 * We are in atomic context, but cgroup_event_remove()
3767 * may sleep, so we have to call it in workqueue.
3768 */
3769 schedule_work(&event->remove);
3770 }
3771 spin_unlock(&memcg->event_list_lock);
3772 }
3773
3774 return 0;
3775 }
3776
3777 static void memcg_event_ptable_queue_proc(struct file *file,
3778 wait_queue_head_t *wqh, poll_table *pt)
3779 {
3780 struct mem_cgroup_event *event =
3781 container_of(pt, struct mem_cgroup_event, pt);
3782
3783 event->wqh = wqh;
3784 add_wait_queue(wqh, &event->wait);
3785 }
3786
3787 /*
3788 * DO NOT USE IN NEW FILES.
3789 *
3790 * Parse input and register new cgroup event handler.
3791 *
3792 * Input must be in format '<event_fd> <control_fd> <args>'.
3793 * Interpretation of args is defined by control file implementation.
3794 */
3795 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3796 char *buf, size_t nbytes, loff_t off)
3797 {
3798 struct cgroup_subsys_state *css = of_css(of);
3799 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3800 struct mem_cgroup_event *event;
3801 struct cgroup_subsys_state *cfile_css;
3802 unsigned int efd, cfd;
3803 struct fd efile;
3804 struct fd cfile;
3805 const char *name;
3806 char *endp;
3807 int ret;
3808
3809 buf = strstrip(buf);
3810
3811 efd = simple_strtoul(buf, &endp, 10);
3812 if (*endp != ' ')
3813 return -EINVAL;
3814 buf = endp + 1;
3815
3816 cfd = simple_strtoul(buf, &endp, 10);
3817 if ((*endp != ' ') && (*endp != '\0'))
3818 return -EINVAL;
3819 buf = endp + 1;
3820
3821 event = kzalloc(sizeof(*event), GFP_KERNEL);
3822 if (!event)
3823 return -ENOMEM;
3824
3825 event->memcg = memcg;
3826 INIT_LIST_HEAD(&event->list);
3827 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3828 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3829 INIT_WORK(&event->remove, memcg_event_remove);
3830
3831 efile = fdget(efd);
3832 if (!efile.file) {
3833 ret = -EBADF;
3834 goto out_kfree;
3835 }
3836
3837 event->eventfd = eventfd_ctx_fileget(efile.file);
3838 if (IS_ERR(event->eventfd)) {
3839 ret = PTR_ERR(event->eventfd);
3840 goto out_put_efile;
3841 }
3842
3843 cfile = fdget(cfd);
3844 if (!cfile.file) {
3845 ret = -EBADF;
3846 goto out_put_eventfd;
3847 }
3848
3849 /* the process need read permission on control file */
3850 /* AV: shouldn't we check that it's been opened for read instead? */
3851 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3852 if (ret < 0)
3853 goto out_put_cfile;
3854
3855 /*
3856 * Determine the event callbacks and set them in @event. This used
3857 * to be done via struct cftype but cgroup core no longer knows
3858 * about these events. The following is crude but the whole thing
3859 * is for compatibility anyway.
3860 *
3861 * DO NOT ADD NEW FILES.
3862 */
3863 name = cfile.file->f_path.dentry->d_name.name;
3864
3865 if (!strcmp(name, "memory.usage_in_bytes")) {
3866 event->register_event = mem_cgroup_usage_register_event;
3867 event->unregister_event = mem_cgroup_usage_unregister_event;
3868 } else if (!strcmp(name, "memory.oom_control")) {
3869 event->register_event = mem_cgroup_oom_register_event;
3870 event->unregister_event = mem_cgroup_oom_unregister_event;
3871 } else if (!strcmp(name, "memory.pressure_level")) {
3872 event->register_event = vmpressure_register_event;
3873 event->unregister_event = vmpressure_unregister_event;
3874 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3875 event->register_event = memsw_cgroup_usage_register_event;
3876 event->unregister_event = memsw_cgroup_usage_unregister_event;
3877 } else {
3878 ret = -EINVAL;
3879 goto out_put_cfile;
3880 }
3881
3882 /*
3883 * Verify @cfile should belong to @css. Also, remaining events are
3884 * automatically removed on cgroup destruction but the removal is
3885 * asynchronous, so take an extra ref on @css.
3886 */
3887 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3888 &memory_cgrp_subsys);
3889 ret = -EINVAL;
3890 if (IS_ERR(cfile_css))
3891 goto out_put_cfile;
3892 if (cfile_css != css) {
3893 css_put(cfile_css);
3894 goto out_put_cfile;
3895 }
3896
3897 ret = event->register_event(memcg, event->eventfd, buf);
3898 if (ret)
3899 goto out_put_css;
3900
3901 efile.file->f_op->poll(efile.file, &event->pt);
3902
3903 spin_lock(&memcg->event_list_lock);
3904 list_add(&event->list, &memcg->event_list);
3905 spin_unlock(&memcg->event_list_lock);
3906
3907 fdput(cfile);
3908 fdput(efile);
3909
3910 return nbytes;
3911
3912 out_put_css:
3913 css_put(css);
3914 out_put_cfile:
3915 fdput(cfile);
3916 out_put_eventfd:
3917 eventfd_ctx_put(event->eventfd);
3918 out_put_efile:
3919 fdput(efile);
3920 out_kfree:
3921 kfree(event);
3922
3923 return ret;
3924 }
3925
3926 static struct cftype mem_cgroup_legacy_files[] = {
3927 {
3928 .name = "usage_in_bytes",
3929 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3930 .read_u64 = mem_cgroup_read_u64,
3931 },
3932 {
3933 .name = "max_usage_in_bytes",
3934 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3935 .write = mem_cgroup_reset,
3936 .read_u64 = mem_cgroup_read_u64,
3937 },
3938 {
3939 .name = "limit_in_bytes",
3940 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3941 .write = mem_cgroup_write,
3942 .read_u64 = mem_cgroup_read_u64,
3943 },
3944 {
3945 .name = "soft_limit_in_bytes",
3946 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3947 .write = mem_cgroup_write,
3948 .read_u64 = mem_cgroup_read_u64,
3949 },
3950 {
3951 .name = "failcnt",
3952 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3953 .write = mem_cgroup_reset,
3954 .read_u64 = mem_cgroup_read_u64,
3955 },
3956 {
3957 .name = "stat",
3958 .seq_show = memcg_stat_show,
3959 },
3960 {
3961 .name = "force_empty",
3962 .write = mem_cgroup_force_empty_write,
3963 },
3964 {
3965 .name = "use_hierarchy",
3966 .write_u64 = mem_cgroup_hierarchy_write,
3967 .read_u64 = mem_cgroup_hierarchy_read,
3968 },
3969 {
3970 .name = "cgroup.event_control", /* XXX: for compat */
3971 .write = memcg_write_event_control,
3972 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3973 },
3974 {
3975 .name = "swappiness",
3976 .read_u64 = mem_cgroup_swappiness_read,
3977 .write_u64 = mem_cgroup_swappiness_write,
3978 },
3979 {
3980 .name = "move_charge_at_immigrate",
3981 .read_u64 = mem_cgroup_move_charge_read,
3982 .write_u64 = mem_cgroup_move_charge_write,
3983 },
3984 {
3985 .name = "oom_control",
3986 .seq_show = mem_cgroup_oom_control_read,
3987 .write_u64 = mem_cgroup_oom_control_write,
3988 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3989 },
3990 {
3991 .name = "pressure_level",
3992 },
3993 #ifdef CONFIG_NUMA
3994 {
3995 .name = "numa_stat",
3996 .seq_show = memcg_numa_stat_show,
3997 },
3998 #endif
3999 {
4000 .name = "kmem.limit_in_bytes",
4001 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4002 .write = mem_cgroup_write,
4003 .read_u64 = mem_cgroup_read_u64,
4004 },
4005 {
4006 .name = "kmem.usage_in_bytes",
4007 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4008 .read_u64 = mem_cgroup_read_u64,
4009 },
4010 {
4011 .name = "kmem.failcnt",
4012 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4013 .write = mem_cgroup_reset,
4014 .read_u64 = mem_cgroup_read_u64,
4015 },
4016 {
4017 .name = "kmem.max_usage_in_bytes",
4018 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4019 .write = mem_cgroup_reset,
4020 .read_u64 = mem_cgroup_read_u64,
4021 },
4022 #ifdef CONFIG_SLABINFO
4023 {
4024 .name = "kmem.slabinfo",
4025 .seq_start = slab_start,
4026 .seq_next = slab_next,
4027 .seq_stop = slab_stop,
4028 .seq_show = memcg_slab_show,
4029 },
4030 #endif
4031 {
4032 .name = "kmem.tcp.limit_in_bytes",
4033 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4034 .write = mem_cgroup_write,
4035 .read_u64 = mem_cgroup_read_u64,
4036 },
4037 {
4038 .name = "kmem.tcp.usage_in_bytes",
4039 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4040 .read_u64 = mem_cgroup_read_u64,
4041 },
4042 {
4043 .name = "kmem.tcp.failcnt",
4044 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4045 .write = mem_cgroup_reset,
4046 .read_u64 = mem_cgroup_read_u64,
4047 },
4048 {
4049 .name = "kmem.tcp.max_usage_in_bytes",
4050 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4051 .write = mem_cgroup_reset,
4052 .read_u64 = mem_cgroup_read_u64,
4053 },
4054 { }, /* terminate */
4055 };
4056
4057 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4058 {
4059 struct mem_cgroup_per_node *pn;
4060 struct mem_cgroup_per_zone *mz;
4061 int zone, tmp = node;
4062 /*
4063 * This routine is called against possible nodes.
4064 * But it's BUG to call kmalloc() against offline node.
4065 *
4066 * TODO: this routine can waste much memory for nodes which will
4067 * never be onlined. It's better to use memory hotplug callback
4068 * function.
4069 */
4070 if (!node_state(node, N_NORMAL_MEMORY))
4071 tmp = -1;
4072 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4073 if (!pn)
4074 return 1;
4075
4076 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4077 mz = &pn->zoneinfo[zone];
4078 lruvec_init(&mz->lruvec);
4079 mz->usage_in_excess = 0;
4080 mz->on_tree = false;
4081 mz->memcg = memcg;
4082 }
4083 memcg->nodeinfo[node] = pn;
4084 return 0;
4085 }
4086
4087 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4088 {
4089 kfree(memcg->nodeinfo[node]);
4090 }
4091
4092 static void mem_cgroup_free(struct mem_cgroup *memcg)
4093 {
4094 int node;
4095
4096 memcg_wb_domain_exit(memcg);
4097 for_each_node(node)
4098 free_mem_cgroup_per_zone_info(memcg, node);
4099 free_percpu(memcg->stat);
4100 kfree(memcg);
4101 }
4102
4103 static struct mem_cgroup *mem_cgroup_alloc(void)
4104 {
4105 struct mem_cgroup *memcg;
4106 size_t size;
4107 int node;
4108
4109 size = sizeof(struct mem_cgroup);
4110 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4111
4112 memcg = kzalloc(size, GFP_KERNEL);
4113 if (!memcg)
4114 return NULL;
4115
4116 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4117 if (!memcg->stat)
4118 goto fail;
4119
4120 for_each_node(node)
4121 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4122 goto fail;
4123
4124 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4125 goto fail;
4126
4127 INIT_WORK(&memcg->high_work, high_work_func);
4128 memcg->last_scanned_node = MAX_NUMNODES;
4129 INIT_LIST_HEAD(&memcg->oom_notify);
4130 mutex_init(&memcg->thresholds_lock);
4131 spin_lock_init(&memcg->move_lock);
4132 vmpressure_init(&memcg->vmpressure);
4133 INIT_LIST_HEAD(&memcg->event_list);
4134 spin_lock_init(&memcg->event_list_lock);
4135 memcg->socket_pressure = jiffies;
4136 #ifndef CONFIG_SLOB
4137 memcg->kmemcg_id = -1;
4138 #endif
4139 #ifdef CONFIG_CGROUP_WRITEBACK
4140 INIT_LIST_HEAD(&memcg->cgwb_list);
4141 #endif
4142 return memcg;
4143 fail:
4144 mem_cgroup_free(memcg);
4145 return NULL;
4146 }
4147
4148 static struct cgroup_subsys_state * __ref
4149 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4150 {
4151 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4152 struct mem_cgroup *memcg;
4153 long error = -ENOMEM;
4154
4155 memcg = mem_cgroup_alloc();
4156 if (!memcg)
4157 return ERR_PTR(error);
4158
4159 memcg->high = PAGE_COUNTER_MAX;
4160 memcg->soft_limit = PAGE_COUNTER_MAX;
4161 if (parent) {
4162 memcg->swappiness = mem_cgroup_swappiness(parent);
4163 memcg->oom_kill_disable = parent->oom_kill_disable;
4164 }
4165 if (parent && parent->use_hierarchy) {
4166 memcg->use_hierarchy = true;
4167 page_counter_init(&memcg->memory, &parent->memory);
4168 page_counter_init(&memcg->swap, &parent->swap);
4169 page_counter_init(&memcg->memsw, &parent->memsw);
4170 page_counter_init(&memcg->kmem, &parent->kmem);
4171 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4172 } else {
4173 page_counter_init(&memcg->memory, NULL);
4174 page_counter_init(&memcg->swap, NULL);
4175 page_counter_init(&memcg->memsw, NULL);
4176 page_counter_init(&memcg->kmem, NULL);
4177 page_counter_init(&memcg->tcpmem, NULL);
4178 /*
4179 * Deeper hierachy with use_hierarchy == false doesn't make
4180 * much sense so let cgroup subsystem know about this
4181 * unfortunate state in our controller.
4182 */
4183 if (parent != root_mem_cgroup)
4184 memory_cgrp_subsys.broken_hierarchy = true;
4185 }
4186
4187 /* The following stuff does not apply to the root */
4188 if (!parent) {
4189 root_mem_cgroup = memcg;
4190 return &memcg->css;
4191 }
4192
4193 error = memcg_online_kmem(memcg);
4194 if (error)
4195 goto fail;
4196
4197 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4198 static_branch_inc(&memcg_sockets_enabled_key);
4199
4200 return &memcg->css;
4201 fail:
4202 mem_cgroup_free(memcg);
4203 return NULL;
4204 }
4205
4206 static int
4207 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4208 {
4209 if (css->id > MEM_CGROUP_ID_MAX)
4210 return -ENOSPC;
4211
4212 return 0;
4213 }
4214
4215 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4216 {
4217 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4218 struct mem_cgroup_event *event, *tmp;
4219
4220 /*
4221 * Unregister events and notify userspace.
4222 * Notify userspace about cgroup removing only after rmdir of cgroup
4223 * directory to avoid race between userspace and kernelspace.
4224 */
4225 spin_lock(&memcg->event_list_lock);
4226 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4227 list_del_init(&event->list);
4228 schedule_work(&event->remove);
4229 }
4230 spin_unlock(&memcg->event_list_lock);
4231
4232 memcg_offline_kmem(memcg);
4233 wb_memcg_offline(memcg);
4234 }
4235
4236 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4237 {
4238 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4239
4240 invalidate_reclaim_iterators(memcg);
4241 }
4242
4243 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4244 {
4245 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4246
4247 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4248 static_branch_dec(&memcg_sockets_enabled_key);
4249
4250 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4251 static_branch_dec(&memcg_sockets_enabled_key);
4252
4253 vmpressure_cleanup(&memcg->vmpressure);
4254 cancel_work_sync(&memcg->high_work);
4255 mem_cgroup_remove_from_trees(memcg);
4256 memcg_free_kmem(memcg);
4257 mem_cgroup_free(memcg);
4258 }
4259
4260 /**
4261 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4262 * @css: the target css
4263 *
4264 * Reset the states of the mem_cgroup associated with @css. This is
4265 * invoked when the userland requests disabling on the default hierarchy
4266 * but the memcg is pinned through dependency. The memcg should stop
4267 * applying policies and should revert to the vanilla state as it may be
4268 * made visible again.
4269 *
4270 * The current implementation only resets the essential configurations.
4271 * This needs to be expanded to cover all the visible parts.
4272 */
4273 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4274 {
4275 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4276
4277 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4278 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4279 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4280 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4281 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4282 memcg->low = 0;
4283 memcg->high = PAGE_COUNTER_MAX;
4284 memcg->soft_limit = PAGE_COUNTER_MAX;
4285 memcg_wb_domain_size_changed(memcg);
4286 }
4287
4288 #ifdef CONFIG_MMU
4289 /* Handlers for move charge at task migration. */
4290 static int mem_cgroup_do_precharge(unsigned long count)
4291 {
4292 int ret;
4293
4294 /* Try a single bulk charge without reclaim first, kswapd may wake */
4295 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4296 if (!ret) {
4297 mc.precharge += count;
4298 return ret;
4299 }
4300
4301 /* Try charges one by one with reclaim */
4302 while (count--) {
4303 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4304 if (ret)
4305 return ret;
4306 mc.precharge++;
4307 cond_resched();
4308 }
4309 return 0;
4310 }
4311
4312 union mc_target {
4313 struct page *page;
4314 swp_entry_t ent;
4315 };
4316
4317 enum mc_target_type {
4318 MC_TARGET_NONE = 0,
4319 MC_TARGET_PAGE,
4320 MC_TARGET_SWAP,
4321 };
4322
4323 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4324 unsigned long addr, pte_t ptent)
4325 {
4326 struct page *page = vm_normal_page(vma, addr, ptent);
4327
4328 if (!page || !page_mapped(page))
4329 return NULL;
4330 if (PageAnon(page)) {
4331 if (!(mc.flags & MOVE_ANON))
4332 return NULL;
4333 } else {
4334 if (!(mc.flags & MOVE_FILE))
4335 return NULL;
4336 }
4337 if (!get_page_unless_zero(page))
4338 return NULL;
4339
4340 return page;
4341 }
4342
4343 #ifdef CONFIG_SWAP
4344 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4345 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4346 {
4347 struct page *page = NULL;
4348 swp_entry_t ent = pte_to_swp_entry(ptent);
4349
4350 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4351 return NULL;
4352 /*
4353 * Because lookup_swap_cache() updates some statistics counter,
4354 * we call find_get_page() with swapper_space directly.
4355 */
4356 page = find_get_page(swap_address_space(ent), ent.val);
4357 if (do_memsw_account())
4358 entry->val = ent.val;
4359
4360 return page;
4361 }
4362 #else
4363 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4364 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4365 {
4366 return NULL;
4367 }
4368 #endif
4369
4370 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4371 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4372 {
4373 struct page *page = NULL;
4374 struct address_space *mapping;
4375 pgoff_t pgoff;
4376
4377 if (!vma->vm_file) /* anonymous vma */
4378 return NULL;
4379 if (!(mc.flags & MOVE_FILE))
4380 return NULL;
4381
4382 mapping = vma->vm_file->f_mapping;
4383 pgoff = linear_page_index(vma, addr);
4384
4385 /* page is moved even if it's not RSS of this task(page-faulted). */
4386 #ifdef CONFIG_SWAP
4387 /* shmem/tmpfs may report page out on swap: account for that too. */
4388 if (shmem_mapping(mapping)) {
4389 page = find_get_entry(mapping, pgoff);
4390 if (radix_tree_exceptional_entry(page)) {
4391 swp_entry_t swp = radix_to_swp_entry(page);
4392 if (do_memsw_account())
4393 *entry = swp;
4394 page = find_get_page(swap_address_space(swp), swp.val);
4395 }
4396 } else
4397 page = find_get_page(mapping, pgoff);
4398 #else
4399 page = find_get_page(mapping, pgoff);
4400 #endif
4401 return page;
4402 }
4403
4404 /**
4405 * mem_cgroup_move_account - move account of the page
4406 * @page: the page
4407 * @nr_pages: number of regular pages (>1 for huge pages)
4408 * @from: mem_cgroup which the page is moved from.
4409 * @to: mem_cgroup which the page is moved to. @from != @to.
4410 *
4411 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4412 *
4413 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4414 * from old cgroup.
4415 */
4416 static int mem_cgroup_move_account(struct page *page,
4417 bool compound,
4418 struct mem_cgroup *from,
4419 struct mem_cgroup *to)
4420 {
4421 unsigned long flags;
4422 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4423 int ret;
4424 bool anon;
4425
4426 VM_BUG_ON(from == to);
4427 VM_BUG_ON_PAGE(PageLRU(page), page);
4428 VM_BUG_ON(compound && !PageTransHuge(page));
4429
4430 /*
4431 * Prevent mem_cgroup_migrate() from looking at
4432 * page->mem_cgroup of its source page while we change it.
4433 */
4434 ret = -EBUSY;
4435 if (!trylock_page(page))
4436 goto out;
4437
4438 ret = -EINVAL;
4439 if (page->mem_cgroup != from)
4440 goto out_unlock;
4441
4442 anon = PageAnon(page);
4443
4444 spin_lock_irqsave(&from->move_lock, flags);
4445
4446 if (!anon && page_mapped(page)) {
4447 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4448 nr_pages);
4449 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4450 nr_pages);
4451 }
4452
4453 /*
4454 * move_lock grabbed above and caller set from->moving_account, so
4455 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4456 * So mapping should be stable for dirty pages.
4457 */
4458 if (!anon && PageDirty(page)) {
4459 struct address_space *mapping = page_mapping(page);
4460
4461 if (mapping_cap_account_dirty(mapping)) {
4462 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4463 nr_pages);
4464 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4465 nr_pages);
4466 }
4467 }
4468
4469 if (PageWriteback(page)) {
4470 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4471 nr_pages);
4472 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4473 nr_pages);
4474 }
4475
4476 /*
4477 * It is safe to change page->mem_cgroup here because the page
4478 * is referenced, charged, and isolated - we can't race with
4479 * uncharging, charging, migration, or LRU putback.
4480 */
4481
4482 /* caller should have done css_get */
4483 page->mem_cgroup = to;
4484 spin_unlock_irqrestore(&from->move_lock, flags);
4485
4486 ret = 0;
4487
4488 local_irq_disable();
4489 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4490 memcg_check_events(to, page);
4491 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4492 memcg_check_events(from, page);
4493 local_irq_enable();
4494 out_unlock:
4495 unlock_page(page);
4496 out:
4497 return ret;
4498 }
4499
4500 /**
4501 * get_mctgt_type - get target type of moving charge
4502 * @vma: the vma the pte to be checked belongs
4503 * @addr: the address corresponding to the pte to be checked
4504 * @ptent: the pte to be checked
4505 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4506 *
4507 * Returns
4508 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4509 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4510 * move charge. if @target is not NULL, the page is stored in target->page
4511 * with extra refcnt got(Callers should handle it).
4512 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4513 * target for charge migration. if @target is not NULL, the entry is stored
4514 * in target->ent.
4515 *
4516 * Called with pte lock held.
4517 */
4518
4519 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4520 unsigned long addr, pte_t ptent, union mc_target *target)
4521 {
4522 struct page *page = NULL;
4523 enum mc_target_type ret = MC_TARGET_NONE;
4524 swp_entry_t ent = { .val = 0 };
4525
4526 if (pte_present(ptent))
4527 page = mc_handle_present_pte(vma, addr, ptent);
4528 else if (is_swap_pte(ptent))
4529 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4530 else if (pte_none(ptent))
4531 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4532
4533 if (!page && !ent.val)
4534 return ret;
4535 if (page) {
4536 /*
4537 * Do only loose check w/o serialization.
4538 * mem_cgroup_move_account() checks the page is valid or
4539 * not under LRU exclusion.
4540 */
4541 if (page->mem_cgroup == mc.from) {
4542 ret = MC_TARGET_PAGE;
4543 if (target)
4544 target->page = page;
4545 }
4546 if (!ret || !target)
4547 put_page(page);
4548 }
4549 /* There is a swap entry and a page doesn't exist or isn't charged */
4550 if (ent.val && !ret &&
4551 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4552 ret = MC_TARGET_SWAP;
4553 if (target)
4554 target->ent = ent;
4555 }
4556 return ret;
4557 }
4558
4559 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4560 /*
4561 * We don't consider swapping or file mapped pages because THP does not
4562 * support them for now.
4563 * Caller should make sure that pmd_trans_huge(pmd) is true.
4564 */
4565 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4566 unsigned long addr, pmd_t pmd, union mc_target *target)
4567 {
4568 struct page *page = NULL;
4569 enum mc_target_type ret = MC_TARGET_NONE;
4570
4571 page = pmd_page(pmd);
4572 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4573 if (!(mc.flags & MOVE_ANON))
4574 return ret;
4575 if (page->mem_cgroup == mc.from) {
4576 ret = MC_TARGET_PAGE;
4577 if (target) {
4578 get_page(page);
4579 target->page = page;
4580 }
4581 }
4582 return ret;
4583 }
4584 #else
4585 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4586 unsigned long addr, pmd_t pmd, union mc_target *target)
4587 {
4588 return MC_TARGET_NONE;
4589 }
4590 #endif
4591
4592 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4593 unsigned long addr, unsigned long end,
4594 struct mm_walk *walk)
4595 {
4596 struct vm_area_struct *vma = walk->vma;
4597 pte_t *pte;
4598 spinlock_t *ptl;
4599
4600 ptl = pmd_trans_huge_lock(pmd, vma);
4601 if (ptl) {
4602 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4603 mc.precharge += HPAGE_PMD_NR;
4604 spin_unlock(ptl);
4605 return 0;
4606 }
4607
4608 if (pmd_trans_unstable(pmd))
4609 return 0;
4610 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4611 for (; addr != end; pte++, addr += PAGE_SIZE)
4612 if (get_mctgt_type(vma, addr, *pte, NULL))
4613 mc.precharge++; /* increment precharge temporarily */
4614 pte_unmap_unlock(pte - 1, ptl);
4615 cond_resched();
4616
4617 return 0;
4618 }
4619
4620 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4621 {
4622 unsigned long precharge;
4623
4624 struct mm_walk mem_cgroup_count_precharge_walk = {
4625 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4626 .mm = mm,
4627 };
4628 down_read(&mm->mmap_sem);
4629 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4630 up_read(&mm->mmap_sem);
4631
4632 precharge = mc.precharge;
4633 mc.precharge = 0;
4634
4635 return precharge;
4636 }
4637
4638 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4639 {
4640 unsigned long precharge = mem_cgroup_count_precharge(mm);
4641
4642 VM_BUG_ON(mc.moving_task);
4643 mc.moving_task = current;
4644 return mem_cgroup_do_precharge(precharge);
4645 }
4646
4647 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4648 static void __mem_cgroup_clear_mc(void)
4649 {
4650 struct mem_cgroup *from = mc.from;
4651 struct mem_cgroup *to = mc.to;
4652
4653 /* we must uncharge all the leftover precharges from mc.to */
4654 if (mc.precharge) {
4655 cancel_charge(mc.to, mc.precharge);
4656 mc.precharge = 0;
4657 }
4658 /*
4659 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4660 * we must uncharge here.
4661 */
4662 if (mc.moved_charge) {
4663 cancel_charge(mc.from, mc.moved_charge);
4664 mc.moved_charge = 0;
4665 }
4666 /* we must fixup refcnts and charges */
4667 if (mc.moved_swap) {
4668 /* uncharge swap account from the old cgroup */
4669 if (!mem_cgroup_is_root(mc.from))
4670 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4671
4672 /*
4673 * we charged both to->memory and to->memsw, so we
4674 * should uncharge to->memory.
4675 */
4676 if (!mem_cgroup_is_root(mc.to))
4677 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4678
4679 css_put_many(&mc.from->css, mc.moved_swap);
4680
4681 /* we've already done css_get(mc.to) */
4682 mc.moved_swap = 0;
4683 }
4684 memcg_oom_recover(from);
4685 memcg_oom_recover(to);
4686 wake_up_all(&mc.waitq);
4687 }
4688
4689 static void mem_cgroup_clear_mc(void)
4690 {
4691 struct mm_struct *mm = mc.mm;
4692
4693 /*
4694 * we must clear moving_task before waking up waiters at the end of
4695 * task migration.
4696 */
4697 mc.moving_task = NULL;
4698 __mem_cgroup_clear_mc();
4699 spin_lock(&mc.lock);
4700 mc.from = NULL;
4701 mc.to = NULL;
4702 mc.mm = NULL;
4703 spin_unlock(&mc.lock);
4704
4705 mmput(mm);
4706 }
4707
4708 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4709 {
4710 struct cgroup_subsys_state *css;
4711 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4712 struct mem_cgroup *from;
4713 struct task_struct *leader, *p;
4714 struct mm_struct *mm;
4715 unsigned long move_flags;
4716 int ret = 0;
4717
4718 /* charge immigration isn't supported on the default hierarchy */
4719 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4720 return 0;
4721
4722 /*
4723 * Multi-process migrations only happen on the default hierarchy
4724 * where charge immigration is not used. Perform charge
4725 * immigration if @tset contains a leader and whine if there are
4726 * multiple.
4727 */
4728 p = NULL;
4729 cgroup_taskset_for_each_leader(leader, css, tset) {
4730 WARN_ON_ONCE(p);
4731 p = leader;
4732 memcg = mem_cgroup_from_css(css);
4733 }
4734 if (!p)
4735 return 0;
4736
4737 /*
4738 * We are now commited to this value whatever it is. Changes in this
4739 * tunable will only affect upcoming migrations, not the current one.
4740 * So we need to save it, and keep it going.
4741 */
4742 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4743 if (!move_flags)
4744 return 0;
4745
4746 from = mem_cgroup_from_task(p);
4747
4748 VM_BUG_ON(from == memcg);
4749
4750 mm = get_task_mm(p);
4751 if (!mm)
4752 return 0;
4753 /* We move charges only when we move a owner of the mm */
4754 if (mm->owner == p) {
4755 VM_BUG_ON(mc.from);
4756 VM_BUG_ON(mc.to);
4757 VM_BUG_ON(mc.precharge);
4758 VM_BUG_ON(mc.moved_charge);
4759 VM_BUG_ON(mc.moved_swap);
4760
4761 spin_lock(&mc.lock);
4762 mc.mm = mm;
4763 mc.from = from;
4764 mc.to = memcg;
4765 mc.flags = move_flags;
4766 spin_unlock(&mc.lock);
4767 /* We set mc.moving_task later */
4768
4769 ret = mem_cgroup_precharge_mc(mm);
4770 if (ret)
4771 mem_cgroup_clear_mc();
4772 } else {
4773 mmput(mm);
4774 }
4775 return ret;
4776 }
4777
4778 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4779 {
4780 if (mc.to)
4781 mem_cgroup_clear_mc();
4782 }
4783
4784 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4785 unsigned long addr, unsigned long end,
4786 struct mm_walk *walk)
4787 {
4788 int ret = 0;
4789 struct vm_area_struct *vma = walk->vma;
4790 pte_t *pte;
4791 spinlock_t *ptl;
4792 enum mc_target_type target_type;
4793 union mc_target target;
4794 struct page *page;
4795
4796 ptl = pmd_trans_huge_lock(pmd, vma);
4797 if (ptl) {
4798 if (mc.precharge < HPAGE_PMD_NR) {
4799 spin_unlock(ptl);
4800 return 0;
4801 }
4802 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4803 if (target_type == MC_TARGET_PAGE) {
4804 page = target.page;
4805 if (!isolate_lru_page(page)) {
4806 if (!mem_cgroup_move_account(page, true,
4807 mc.from, mc.to)) {
4808 mc.precharge -= HPAGE_PMD_NR;
4809 mc.moved_charge += HPAGE_PMD_NR;
4810 }
4811 putback_lru_page(page);
4812 }
4813 put_page(page);
4814 }
4815 spin_unlock(ptl);
4816 return 0;
4817 }
4818
4819 if (pmd_trans_unstable(pmd))
4820 return 0;
4821 retry:
4822 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4823 for (; addr != end; addr += PAGE_SIZE) {
4824 pte_t ptent = *(pte++);
4825 swp_entry_t ent;
4826
4827 if (!mc.precharge)
4828 break;
4829
4830 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4831 case MC_TARGET_PAGE:
4832 page = target.page;
4833 /*
4834 * We can have a part of the split pmd here. Moving it
4835 * can be done but it would be too convoluted so simply
4836 * ignore such a partial THP and keep it in original
4837 * memcg. There should be somebody mapping the head.
4838 */
4839 if (PageTransCompound(page))
4840 goto put;
4841 if (isolate_lru_page(page))
4842 goto put;
4843 if (!mem_cgroup_move_account(page, false,
4844 mc.from, mc.to)) {
4845 mc.precharge--;
4846 /* we uncharge from mc.from later. */
4847 mc.moved_charge++;
4848 }
4849 putback_lru_page(page);
4850 put: /* get_mctgt_type() gets the page */
4851 put_page(page);
4852 break;
4853 case MC_TARGET_SWAP:
4854 ent = target.ent;
4855 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4856 mc.precharge--;
4857 /* we fixup refcnts and charges later. */
4858 mc.moved_swap++;
4859 }
4860 break;
4861 default:
4862 break;
4863 }
4864 }
4865 pte_unmap_unlock(pte - 1, ptl);
4866 cond_resched();
4867
4868 if (addr != end) {
4869 /*
4870 * We have consumed all precharges we got in can_attach().
4871 * We try charge one by one, but don't do any additional
4872 * charges to mc.to if we have failed in charge once in attach()
4873 * phase.
4874 */
4875 ret = mem_cgroup_do_precharge(1);
4876 if (!ret)
4877 goto retry;
4878 }
4879
4880 return ret;
4881 }
4882
4883 static void mem_cgroup_move_charge(void)
4884 {
4885 struct mm_walk mem_cgroup_move_charge_walk = {
4886 .pmd_entry = mem_cgroup_move_charge_pte_range,
4887 .mm = mc.mm,
4888 };
4889
4890 lru_add_drain_all();
4891 /*
4892 * Signal lock_page_memcg() to take the memcg's move_lock
4893 * while we're moving its pages to another memcg. Then wait
4894 * for already started RCU-only updates to finish.
4895 */
4896 atomic_inc(&mc.from->moving_account);
4897 synchronize_rcu();
4898 retry:
4899 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4900 /*
4901 * Someone who are holding the mmap_sem might be waiting in
4902 * waitq. So we cancel all extra charges, wake up all waiters,
4903 * and retry. Because we cancel precharges, we might not be able
4904 * to move enough charges, but moving charge is a best-effort
4905 * feature anyway, so it wouldn't be a big problem.
4906 */
4907 __mem_cgroup_clear_mc();
4908 cond_resched();
4909 goto retry;
4910 }
4911 /*
4912 * When we have consumed all precharges and failed in doing
4913 * additional charge, the page walk just aborts.
4914 */
4915 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4916 up_read(&mc.mm->mmap_sem);
4917 atomic_dec(&mc.from->moving_account);
4918 }
4919
4920 static void mem_cgroup_move_task(void)
4921 {
4922 if (mc.to) {
4923 mem_cgroup_move_charge();
4924 mem_cgroup_clear_mc();
4925 }
4926 }
4927 #else /* !CONFIG_MMU */
4928 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4929 {
4930 return 0;
4931 }
4932 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4933 {
4934 }
4935 static void mem_cgroup_move_task(void)
4936 {
4937 }
4938 #endif
4939
4940 /*
4941 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4942 * to verify whether we're attached to the default hierarchy on each mount
4943 * attempt.
4944 */
4945 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4946 {
4947 /*
4948 * use_hierarchy is forced on the default hierarchy. cgroup core
4949 * guarantees that @root doesn't have any children, so turning it
4950 * on for the root memcg is enough.
4951 */
4952 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4953 root_mem_cgroup->use_hierarchy = true;
4954 else
4955 root_mem_cgroup->use_hierarchy = false;
4956 }
4957
4958 static u64 memory_current_read(struct cgroup_subsys_state *css,
4959 struct cftype *cft)
4960 {
4961 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4962
4963 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4964 }
4965
4966 static int memory_low_show(struct seq_file *m, void *v)
4967 {
4968 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4969 unsigned long low = READ_ONCE(memcg->low);
4970
4971 if (low == PAGE_COUNTER_MAX)
4972 seq_puts(m, "max\n");
4973 else
4974 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4975
4976 return 0;
4977 }
4978
4979 static ssize_t memory_low_write(struct kernfs_open_file *of,
4980 char *buf, size_t nbytes, loff_t off)
4981 {
4982 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4983 unsigned long low;
4984 int err;
4985
4986 buf = strstrip(buf);
4987 err = page_counter_memparse(buf, "max", &low);
4988 if (err)
4989 return err;
4990
4991 memcg->low = low;
4992
4993 return nbytes;
4994 }
4995
4996 static int memory_high_show(struct seq_file *m, void *v)
4997 {
4998 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4999 unsigned long high = READ_ONCE(memcg->high);
5000
5001 if (high == PAGE_COUNTER_MAX)
5002 seq_puts(m, "max\n");
5003 else
5004 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5005
5006 return 0;
5007 }
5008
5009 static ssize_t memory_high_write(struct kernfs_open_file *of,
5010 char *buf, size_t nbytes, loff_t off)
5011 {
5012 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5013 unsigned long nr_pages;
5014 unsigned long high;
5015 int err;
5016
5017 buf = strstrip(buf);
5018 err = page_counter_memparse(buf, "max", &high);
5019 if (err)
5020 return err;
5021
5022 memcg->high = high;
5023
5024 nr_pages = page_counter_read(&memcg->memory);
5025 if (nr_pages > high)
5026 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5027 GFP_KERNEL, true);
5028
5029 memcg_wb_domain_size_changed(memcg);
5030 return nbytes;
5031 }
5032
5033 static int memory_max_show(struct seq_file *m, void *v)
5034 {
5035 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5036 unsigned long max = READ_ONCE(memcg->memory.limit);
5037
5038 if (max == PAGE_COUNTER_MAX)
5039 seq_puts(m, "max\n");
5040 else
5041 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5042
5043 return 0;
5044 }
5045
5046 static ssize_t memory_max_write(struct kernfs_open_file *of,
5047 char *buf, size_t nbytes, loff_t off)
5048 {
5049 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5050 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5051 bool drained = false;
5052 unsigned long max;
5053 int err;
5054
5055 buf = strstrip(buf);
5056 err = page_counter_memparse(buf, "max", &max);
5057 if (err)
5058 return err;
5059
5060 xchg(&memcg->memory.limit, max);
5061
5062 for (;;) {
5063 unsigned long nr_pages = page_counter_read(&memcg->memory);
5064
5065 if (nr_pages <= max)
5066 break;
5067
5068 if (signal_pending(current)) {
5069 err = -EINTR;
5070 break;
5071 }
5072
5073 if (!drained) {
5074 drain_all_stock(memcg);
5075 drained = true;
5076 continue;
5077 }
5078
5079 if (nr_reclaims) {
5080 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5081 GFP_KERNEL, true))
5082 nr_reclaims--;
5083 continue;
5084 }
5085
5086 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5087 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5088 break;
5089 }
5090
5091 memcg_wb_domain_size_changed(memcg);
5092 return nbytes;
5093 }
5094
5095 static int memory_events_show(struct seq_file *m, void *v)
5096 {
5097 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5098
5099 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5100 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5101 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5102 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5103
5104 return 0;
5105 }
5106
5107 static int memory_stat_show(struct seq_file *m, void *v)
5108 {
5109 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5110 unsigned long stat[MEMCG_NR_STAT];
5111 unsigned long events[MEMCG_NR_EVENTS];
5112 int i;
5113
5114 /*
5115 * Provide statistics on the state of the memory subsystem as
5116 * well as cumulative event counters that show past behavior.
5117 *
5118 * This list is ordered following a combination of these gradients:
5119 * 1) generic big picture -> specifics and details
5120 * 2) reflecting userspace activity -> reflecting kernel heuristics
5121 *
5122 * Current memory state:
5123 */
5124
5125 tree_stat(memcg, stat);
5126 tree_events(memcg, events);
5127
5128 seq_printf(m, "anon %llu\n",
5129 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5130 seq_printf(m, "file %llu\n",
5131 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5132 seq_printf(m, "kernel_stack %llu\n",
5133 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5134 seq_printf(m, "slab %llu\n",
5135 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5136 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5137 seq_printf(m, "sock %llu\n",
5138 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5139
5140 seq_printf(m, "file_mapped %llu\n",
5141 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5142 seq_printf(m, "file_dirty %llu\n",
5143 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5144 seq_printf(m, "file_writeback %llu\n",
5145 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5146
5147 for (i = 0; i < NR_LRU_LISTS; i++) {
5148 struct mem_cgroup *mi;
5149 unsigned long val = 0;
5150
5151 for_each_mem_cgroup_tree(mi, memcg)
5152 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5153 seq_printf(m, "%s %llu\n",
5154 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5155 }
5156
5157 seq_printf(m, "slab_reclaimable %llu\n",
5158 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5159 seq_printf(m, "slab_unreclaimable %llu\n",
5160 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5161
5162 /* Accumulated memory events */
5163
5164 seq_printf(m, "pgfault %lu\n",
5165 events[MEM_CGROUP_EVENTS_PGFAULT]);
5166 seq_printf(m, "pgmajfault %lu\n",
5167 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5168
5169 return 0;
5170 }
5171
5172 static struct cftype memory_files[] = {
5173 {
5174 .name = "current",
5175 .flags = CFTYPE_NOT_ON_ROOT,
5176 .read_u64 = memory_current_read,
5177 },
5178 {
5179 .name = "low",
5180 .flags = CFTYPE_NOT_ON_ROOT,
5181 .seq_show = memory_low_show,
5182 .write = memory_low_write,
5183 },
5184 {
5185 .name = "high",
5186 .flags = CFTYPE_NOT_ON_ROOT,
5187 .seq_show = memory_high_show,
5188 .write = memory_high_write,
5189 },
5190 {
5191 .name = "max",
5192 .flags = CFTYPE_NOT_ON_ROOT,
5193 .seq_show = memory_max_show,
5194 .write = memory_max_write,
5195 },
5196 {
5197 .name = "events",
5198 .flags = CFTYPE_NOT_ON_ROOT,
5199 .file_offset = offsetof(struct mem_cgroup, events_file),
5200 .seq_show = memory_events_show,
5201 },
5202 {
5203 .name = "stat",
5204 .flags = CFTYPE_NOT_ON_ROOT,
5205 .seq_show = memory_stat_show,
5206 },
5207 { } /* terminate */
5208 };
5209
5210 struct cgroup_subsys memory_cgrp_subsys = {
5211 .css_alloc = mem_cgroup_css_alloc,
5212 .css_online = mem_cgroup_css_online,
5213 .css_offline = mem_cgroup_css_offline,
5214 .css_released = mem_cgroup_css_released,
5215 .css_free = mem_cgroup_css_free,
5216 .css_reset = mem_cgroup_css_reset,
5217 .can_attach = mem_cgroup_can_attach,
5218 .cancel_attach = mem_cgroup_cancel_attach,
5219 .post_attach = mem_cgroup_move_task,
5220 .bind = mem_cgroup_bind,
5221 .dfl_cftypes = memory_files,
5222 .legacy_cftypes = mem_cgroup_legacy_files,
5223 .early_init = 0,
5224 };
5225
5226 /**
5227 * mem_cgroup_low - check if memory consumption is below the normal range
5228 * @root: the highest ancestor to consider
5229 * @memcg: the memory cgroup to check
5230 *
5231 * Returns %true if memory consumption of @memcg, and that of all
5232 * configurable ancestors up to @root, is below the normal range.
5233 */
5234 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5235 {
5236 if (mem_cgroup_disabled())
5237 return false;
5238
5239 /*
5240 * The toplevel group doesn't have a configurable range, so
5241 * it's never low when looked at directly, and it is not
5242 * considered an ancestor when assessing the hierarchy.
5243 */
5244
5245 if (memcg == root_mem_cgroup)
5246 return false;
5247
5248 if (page_counter_read(&memcg->memory) >= memcg->low)
5249 return false;
5250
5251 while (memcg != root) {
5252 memcg = parent_mem_cgroup(memcg);
5253
5254 if (memcg == root_mem_cgroup)
5255 break;
5256
5257 if (page_counter_read(&memcg->memory) >= memcg->low)
5258 return false;
5259 }
5260 return true;
5261 }
5262
5263 /**
5264 * mem_cgroup_try_charge - try charging a page
5265 * @page: page to charge
5266 * @mm: mm context of the victim
5267 * @gfp_mask: reclaim mode
5268 * @memcgp: charged memcg return
5269 *
5270 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5271 * pages according to @gfp_mask if necessary.
5272 *
5273 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5274 * Otherwise, an error code is returned.
5275 *
5276 * After page->mapping has been set up, the caller must finalize the
5277 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5278 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5279 */
5280 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5281 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5282 bool compound)
5283 {
5284 struct mem_cgroup *memcg = NULL;
5285 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5286 int ret = 0;
5287
5288 if (mem_cgroup_disabled())
5289 goto out;
5290
5291 if (PageSwapCache(page)) {
5292 /*
5293 * Every swap fault against a single page tries to charge the
5294 * page, bail as early as possible. shmem_unuse() encounters
5295 * already charged pages, too. The USED bit is protected by
5296 * the page lock, which serializes swap cache removal, which
5297 * in turn serializes uncharging.
5298 */
5299 VM_BUG_ON_PAGE(!PageLocked(page), page);
5300 if (page->mem_cgroup)
5301 goto out;
5302
5303 if (do_swap_account) {
5304 swp_entry_t ent = { .val = page_private(page), };
5305 unsigned short id = lookup_swap_cgroup_id(ent);
5306
5307 rcu_read_lock();
5308 memcg = mem_cgroup_from_id(id);
5309 if (memcg && !css_tryget_online(&memcg->css))
5310 memcg = NULL;
5311 rcu_read_unlock();
5312 }
5313 }
5314
5315 if (!memcg)
5316 memcg = get_mem_cgroup_from_mm(mm);
5317
5318 ret = try_charge(memcg, gfp_mask, nr_pages);
5319
5320 css_put(&memcg->css);
5321 out:
5322 *memcgp = memcg;
5323 return ret;
5324 }
5325
5326 /**
5327 * mem_cgroup_commit_charge - commit a page charge
5328 * @page: page to charge
5329 * @memcg: memcg to charge the page to
5330 * @lrucare: page might be on LRU already
5331 *
5332 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5333 * after page->mapping has been set up. This must happen atomically
5334 * as part of the page instantiation, i.e. under the page table lock
5335 * for anonymous pages, under the page lock for page and swap cache.
5336 *
5337 * In addition, the page must not be on the LRU during the commit, to
5338 * prevent racing with task migration. If it might be, use @lrucare.
5339 *
5340 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5341 */
5342 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5343 bool lrucare, bool compound)
5344 {
5345 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5346
5347 VM_BUG_ON_PAGE(!page->mapping, page);
5348 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5349
5350 if (mem_cgroup_disabled())
5351 return;
5352 /*
5353 * Swap faults will attempt to charge the same page multiple
5354 * times. But reuse_swap_page() might have removed the page
5355 * from swapcache already, so we can't check PageSwapCache().
5356 */
5357 if (!memcg)
5358 return;
5359
5360 commit_charge(page, memcg, lrucare);
5361
5362 local_irq_disable();
5363 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5364 memcg_check_events(memcg, page);
5365 local_irq_enable();
5366
5367 if (do_memsw_account() && PageSwapCache(page)) {
5368 swp_entry_t entry = { .val = page_private(page) };
5369 /*
5370 * The swap entry might not get freed for a long time,
5371 * let's not wait for it. The page already received a
5372 * memory+swap charge, drop the swap entry duplicate.
5373 */
5374 mem_cgroup_uncharge_swap(entry);
5375 }
5376 }
5377
5378 /**
5379 * mem_cgroup_cancel_charge - cancel a page charge
5380 * @page: page to charge
5381 * @memcg: memcg to charge the page to
5382 *
5383 * Cancel a charge transaction started by mem_cgroup_try_charge().
5384 */
5385 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5386 bool compound)
5387 {
5388 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5389
5390 if (mem_cgroup_disabled())
5391 return;
5392 /*
5393 * Swap faults will attempt to charge the same page multiple
5394 * times. But reuse_swap_page() might have removed the page
5395 * from swapcache already, so we can't check PageSwapCache().
5396 */
5397 if (!memcg)
5398 return;
5399
5400 cancel_charge(memcg, nr_pages);
5401 }
5402
5403 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5404 unsigned long nr_anon, unsigned long nr_file,
5405 unsigned long nr_huge, struct page *dummy_page)
5406 {
5407 unsigned long nr_pages = nr_anon + nr_file;
5408 unsigned long flags;
5409
5410 if (!mem_cgroup_is_root(memcg)) {
5411 page_counter_uncharge(&memcg->memory, nr_pages);
5412 if (do_memsw_account())
5413 page_counter_uncharge(&memcg->memsw, nr_pages);
5414 memcg_oom_recover(memcg);
5415 }
5416
5417 local_irq_save(flags);
5418 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5419 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5420 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5421 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5422 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5423 memcg_check_events(memcg, dummy_page);
5424 local_irq_restore(flags);
5425
5426 if (!mem_cgroup_is_root(memcg))
5427 css_put_many(&memcg->css, nr_pages);
5428 }
5429
5430 static void uncharge_list(struct list_head *page_list)
5431 {
5432 struct mem_cgroup *memcg = NULL;
5433 unsigned long nr_anon = 0;
5434 unsigned long nr_file = 0;
5435 unsigned long nr_huge = 0;
5436 unsigned long pgpgout = 0;
5437 struct list_head *next;
5438 struct page *page;
5439
5440 /*
5441 * Note that the list can be a single page->lru; hence the
5442 * do-while loop instead of a simple list_for_each_entry().
5443 */
5444 next = page_list->next;
5445 do {
5446 unsigned int nr_pages = 1;
5447
5448 page = list_entry(next, struct page, lru);
5449 next = page->lru.next;
5450
5451 VM_BUG_ON_PAGE(PageLRU(page), page);
5452 VM_BUG_ON_PAGE(page_count(page), page);
5453
5454 if (!page->mem_cgroup)
5455 continue;
5456
5457 /*
5458 * Nobody should be changing or seriously looking at
5459 * page->mem_cgroup at this point, we have fully
5460 * exclusive access to the page.
5461 */
5462
5463 if (memcg != page->mem_cgroup) {
5464 if (memcg) {
5465 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5466 nr_huge, page);
5467 pgpgout = nr_anon = nr_file = nr_huge = 0;
5468 }
5469 memcg = page->mem_cgroup;
5470 }
5471
5472 if (PageTransHuge(page)) {
5473 nr_pages <<= compound_order(page);
5474 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5475 nr_huge += nr_pages;
5476 }
5477
5478 if (PageAnon(page))
5479 nr_anon += nr_pages;
5480 else
5481 nr_file += nr_pages;
5482
5483 page->mem_cgroup = NULL;
5484
5485 pgpgout++;
5486 } while (next != page_list);
5487
5488 if (memcg)
5489 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5490 nr_huge, page);
5491 }
5492
5493 /**
5494 * mem_cgroup_uncharge - uncharge a page
5495 * @page: page to uncharge
5496 *
5497 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5498 * mem_cgroup_commit_charge().
5499 */
5500 void mem_cgroup_uncharge(struct page *page)
5501 {
5502 if (mem_cgroup_disabled())
5503 return;
5504
5505 /* Don't touch page->lru of any random page, pre-check: */
5506 if (!page->mem_cgroup)
5507 return;
5508
5509 INIT_LIST_HEAD(&page->lru);
5510 uncharge_list(&page->lru);
5511 }
5512
5513 /**
5514 * mem_cgroup_uncharge_list - uncharge a list of page
5515 * @page_list: list of pages to uncharge
5516 *
5517 * Uncharge a list of pages previously charged with
5518 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5519 */
5520 void mem_cgroup_uncharge_list(struct list_head *page_list)
5521 {
5522 if (mem_cgroup_disabled())
5523 return;
5524
5525 if (!list_empty(page_list))
5526 uncharge_list(page_list);
5527 }
5528
5529 /**
5530 * mem_cgroup_migrate - charge a page's replacement
5531 * @oldpage: currently circulating page
5532 * @newpage: replacement page
5533 *
5534 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5535 * be uncharged upon free.
5536 *
5537 * Both pages must be locked, @newpage->mapping must be set up.
5538 */
5539 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5540 {
5541 struct mem_cgroup *memcg;
5542 unsigned int nr_pages;
5543 bool compound;
5544
5545 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5546 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5547 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5548 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5549 newpage);
5550
5551 if (mem_cgroup_disabled())
5552 return;
5553
5554 /* Page cache replacement: new page already charged? */
5555 if (newpage->mem_cgroup)
5556 return;
5557
5558 /* Swapcache readahead pages can get replaced before being charged */
5559 memcg = oldpage->mem_cgroup;
5560 if (!memcg)
5561 return;
5562
5563 /* Force-charge the new page. The old one will be freed soon */
5564 compound = PageTransHuge(newpage);
5565 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5566
5567 page_counter_charge(&memcg->memory, nr_pages);
5568 if (do_memsw_account())
5569 page_counter_charge(&memcg->memsw, nr_pages);
5570 css_get_many(&memcg->css, nr_pages);
5571
5572 commit_charge(newpage, memcg, false);
5573
5574 local_irq_disable();
5575 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5576 memcg_check_events(memcg, newpage);
5577 local_irq_enable();
5578 }
5579
5580 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5581 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5582
5583 void sock_update_memcg(struct sock *sk)
5584 {
5585 struct mem_cgroup *memcg;
5586
5587 /* Socket cloning can throw us here with sk_cgrp already
5588 * filled. It won't however, necessarily happen from
5589 * process context. So the test for root memcg given
5590 * the current task's memcg won't help us in this case.
5591 *
5592 * Respecting the original socket's memcg is a better
5593 * decision in this case.
5594 */
5595 if (sk->sk_memcg) {
5596 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5597 css_get(&sk->sk_memcg->css);
5598 return;
5599 }
5600
5601 rcu_read_lock();
5602 memcg = mem_cgroup_from_task(current);
5603 if (memcg == root_mem_cgroup)
5604 goto out;
5605 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5606 goto out;
5607 if (css_tryget_online(&memcg->css))
5608 sk->sk_memcg = memcg;
5609 out:
5610 rcu_read_unlock();
5611 }
5612 EXPORT_SYMBOL(sock_update_memcg);
5613
5614 void sock_release_memcg(struct sock *sk)
5615 {
5616 WARN_ON(!sk->sk_memcg);
5617 css_put(&sk->sk_memcg->css);
5618 }
5619
5620 /**
5621 * mem_cgroup_charge_skmem - charge socket memory
5622 * @memcg: memcg to charge
5623 * @nr_pages: number of pages to charge
5624 *
5625 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5626 * @memcg's configured limit, %false if the charge had to be forced.
5627 */
5628 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5629 {
5630 gfp_t gfp_mask = GFP_KERNEL;
5631
5632 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5633 struct page_counter *fail;
5634
5635 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5636 memcg->tcpmem_pressure = 0;
5637 return true;
5638 }
5639 page_counter_charge(&memcg->tcpmem, nr_pages);
5640 memcg->tcpmem_pressure = 1;
5641 return false;
5642 }
5643
5644 /* Don't block in the packet receive path */
5645 if (in_softirq())
5646 gfp_mask = GFP_NOWAIT;
5647
5648 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5649
5650 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5651 return true;
5652
5653 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5654 return false;
5655 }
5656
5657 /**
5658 * mem_cgroup_uncharge_skmem - uncharge socket memory
5659 * @memcg - memcg to uncharge
5660 * @nr_pages - number of pages to uncharge
5661 */
5662 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5663 {
5664 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5665 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5666 return;
5667 }
5668
5669 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5670
5671 page_counter_uncharge(&memcg->memory, nr_pages);
5672 css_put_many(&memcg->css, nr_pages);
5673 }
5674
5675 static int __init cgroup_memory(char *s)
5676 {
5677 char *token;
5678
5679 while ((token = strsep(&s, ",")) != NULL) {
5680 if (!*token)
5681 continue;
5682 if (!strcmp(token, "nosocket"))
5683 cgroup_memory_nosocket = true;
5684 if (!strcmp(token, "nokmem"))
5685 cgroup_memory_nokmem = true;
5686 }
5687 return 0;
5688 }
5689 __setup("cgroup.memory=", cgroup_memory);
5690
5691 /*
5692 * subsys_initcall() for memory controller.
5693 *
5694 * Some parts like hotcpu_notifier() have to be initialized from this context
5695 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5696 * everything that doesn't depend on a specific mem_cgroup structure should
5697 * be initialized from here.
5698 */
5699 static int __init mem_cgroup_init(void)
5700 {
5701 int cpu, node;
5702
5703 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5704
5705 for_each_possible_cpu(cpu)
5706 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5707 drain_local_stock);
5708
5709 for_each_node(node) {
5710 struct mem_cgroup_tree_per_node *rtpn;
5711 int zone;
5712
5713 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5714 node_online(node) ? node : NUMA_NO_NODE);
5715
5716 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5717 struct mem_cgroup_tree_per_zone *rtpz;
5718
5719 rtpz = &rtpn->rb_tree_per_zone[zone];
5720 rtpz->rb_root = RB_ROOT;
5721 spin_lock_init(&rtpz->lock);
5722 }
5723 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5724 }
5725
5726 return 0;
5727 }
5728 subsys_initcall(mem_cgroup_init);
5729
5730 #ifdef CONFIG_MEMCG_SWAP
5731 /**
5732 * mem_cgroup_swapout - transfer a memsw charge to swap
5733 * @page: page whose memsw charge to transfer
5734 * @entry: swap entry to move the charge to
5735 *
5736 * Transfer the memsw charge of @page to @entry.
5737 */
5738 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5739 {
5740 struct mem_cgroup *memcg;
5741 unsigned short oldid;
5742
5743 VM_BUG_ON_PAGE(PageLRU(page), page);
5744 VM_BUG_ON_PAGE(page_count(page), page);
5745
5746 if (!do_memsw_account())
5747 return;
5748
5749 memcg = page->mem_cgroup;
5750
5751 /* Readahead page, never charged */
5752 if (!memcg)
5753 return;
5754
5755 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5756 VM_BUG_ON_PAGE(oldid, page);
5757 mem_cgroup_swap_statistics(memcg, true);
5758
5759 page->mem_cgroup = NULL;
5760
5761 if (!mem_cgroup_is_root(memcg))
5762 page_counter_uncharge(&memcg->memory, 1);
5763
5764 /*
5765 * Interrupts should be disabled here because the caller holds the
5766 * mapping->tree_lock lock which is taken with interrupts-off. It is
5767 * important here to have the interrupts disabled because it is the
5768 * only synchronisation we have for udpating the per-CPU variables.
5769 */
5770 VM_BUG_ON(!irqs_disabled());
5771 mem_cgroup_charge_statistics(memcg, page, false, -1);
5772 memcg_check_events(memcg, page);
5773 }
5774
5775 /*
5776 * mem_cgroup_try_charge_swap - try charging a swap entry
5777 * @page: page being added to swap
5778 * @entry: swap entry to charge
5779 *
5780 * Try to charge @entry to the memcg that @page belongs to.
5781 *
5782 * Returns 0 on success, -ENOMEM on failure.
5783 */
5784 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5785 {
5786 struct mem_cgroup *memcg;
5787 struct page_counter *counter;
5788 unsigned short oldid;
5789
5790 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5791 return 0;
5792
5793 memcg = page->mem_cgroup;
5794
5795 /* Readahead page, never charged */
5796 if (!memcg)
5797 return 0;
5798
5799 if (!mem_cgroup_is_root(memcg) &&
5800 !page_counter_try_charge(&memcg->swap, 1, &counter))
5801 return -ENOMEM;
5802
5803 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5804 VM_BUG_ON_PAGE(oldid, page);
5805 mem_cgroup_swap_statistics(memcg, true);
5806
5807 css_get(&memcg->css);
5808 return 0;
5809 }
5810
5811 /**
5812 * mem_cgroup_uncharge_swap - uncharge a swap entry
5813 * @entry: swap entry to uncharge
5814 *
5815 * Drop the swap charge associated with @entry.
5816 */
5817 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5818 {
5819 struct mem_cgroup *memcg;
5820 unsigned short id;
5821
5822 if (!do_swap_account)
5823 return;
5824
5825 id = swap_cgroup_record(entry, 0);
5826 rcu_read_lock();
5827 memcg = mem_cgroup_from_id(id);
5828 if (memcg) {
5829 if (!mem_cgroup_is_root(memcg)) {
5830 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5831 page_counter_uncharge(&memcg->swap, 1);
5832 else
5833 page_counter_uncharge(&memcg->memsw, 1);
5834 }
5835 mem_cgroup_swap_statistics(memcg, false);
5836 css_put(&memcg->css);
5837 }
5838 rcu_read_unlock();
5839 }
5840
5841 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5842 {
5843 long nr_swap_pages = get_nr_swap_pages();
5844
5845 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5846 return nr_swap_pages;
5847 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5848 nr_swap_pages = min_t(long, nr_swap_pages,
5849 READ_ONCE(memcg->swap.limit) -
5850 page_counter_read(&memcg->swap));
5851 return nr_swap_pages;
5852 }
5853
5854 bool mem_cgroup_swap_full(struct page *page)
5855 {
5856 struct mem_cgroup *memcg;
5857
5858 VM_BUG_ON_PAGE(!PageLocked(page), page);
5859
5860 if (vm_swap_full())
5861 return true;
5862 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5863 return false;
5864
5865 memcg = page->mem_cgroup;
5866 if (!memcg)
5867 return false;
5868
5869 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5870 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5871 return true;
5872
5873 return false;
5874 }
5875
5876 /* for remember boot option*/
5877 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5878 static int really_do_swap_account __initdata = 1;
5879 #else
5880 static int really_do_swap_account __initdata;
5881 #endif
5882
5883 static int __init enable_swap_account(char *s)
5884 {
5885 if (!strcmp(s, "1"))
5886 really_do_swap_account = 1;
5887 else if (!strcmp(s, "0"))
5888 really_do_swap_account = 0;
5889 return 1;
5890 }
5891 __setup("swapaccount=", enable_swap_account);
5892
5893 static u64 swap_current_read(struct cgroup_subsys_state *css,
5894 struct cftype *cft)
5895 {
5896 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5897
5898 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5899 }
5900
5901 static int swap_max_show(struct seq_file *m, void *v)
5902 {
5903 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5904 unsigned long max = READ_ONCE(memcg->swap.limit);
5905
5906 if (max == PAGE_COUNTER_MAX)
5907 seq_puts(m, "max\n");
5908 else
5909 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5910
5911 return 0;
5912 }
5913
5914 static ssize_t swap_max_write(struct kernfs_open_file *of,
5915 char *buf, size_t nbytes, loff_t off)
5916 {
5917 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5918 unsigned long max;
5919 int err;
5920
5921 buf = strstrip(buf);
5922 err = page_counter_memparse(buf, "max", &max);
5923 if (err)
5924 return err;
5925
5926 mutex_lock(&memcg_limit_mutex);
5927 err = page_counter_limit(&memcg->swap, max);
5928 mutex_unlock(&memcg_limit_mutex);
5929 if (err)
5930 return err;
5931
5932 return nbytes;
5933 }
5934
5935 static struct cftype swap_files[] = {
5936 {
5937 .name = "swap.current",
5938 .flags = CFTYPE_NOT_ON_ROOT,
5939 .read_u64 = swap_current_read,
5940 },
5941 {
5942 .name = "swap.max",
5943 .flags = CFTYPE_NOT_ON_ROOT,
5944 .seq_show = swap_max_show,
5945 .write = swap_max_write,
5946 },
5947 { } /* terminate */
5948 };
5949
5950 static struct cftype memsw_cgroup_files[] = {
5951 {
5952 .name = "memsw.usage_in_bytes",
5953 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5954 .read_u64 = mem_cgroup_read_u64,
5955 },
5956 {
5957 .name = "memsw.max_usage_in_bytes",
5958 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5959 .write = mem_cgroup_reset,
5960 .read_u64 = mem_cgroup_read_u64,
5961 },
5962 {
5963 .name = "memsw.limit_in_bytes",
5964 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5965 .write = mem_cgroup_write,
5966 .read_u64 = mem_cgroup_read_u64,
5967 },
5968 {
5969 .name = "memsw.failcnt",
5970 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5971 .write = mem_cgroup_reset,
5972 .read_u64 = mem_cgroup_read_u64,
5973 },
5974 { }, /* terminate */
5975 };
5976
5977 static int __init mem_cgroup_swap_init(void)
5978 {
5979 if (!mem_cgroup_disabled() && really_do_swap_account) {
5980 do_swap_account = 1;
5981 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5982 swap_files));
5983 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5984 memsw_cgroup_files));
5985 }
5986 return 0;
5987 }
5988 subsys_initcall(mem_cgroup_swap_init);
5989
5990 #endif /* CONFIG_MEMCG_SWAP */