]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memcontrol.c
PCI: aardvark: Fix support for PME requester on emulated bridge
[mirror_ubuntu-jammy-kernel.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/file.h>
62 #include <linux/tracehook.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include "slab.h"
69
70 #include <linux/uaccess.h>
71
72 #include <trace/events/vmscan.h>
73
74 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75 EXPORT_SYMBOL(memory_cgrp_subsys);
76
77 struct mem_cgroup *root_mem_cgroup __read_mostly;
78
79 /* Active memory cgroup to use from an interrupt context */
80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
82
83 /* Socket memory accounting disabled? */
84 static bool cgroup_memory_nosocket __ro_after_init;
85
86 /* Kernel memory accounting disabled? */
87 bool cgroup_memory_nokmem __ro_after_init;
88
89 /* Whether the swap controller is active */
90 #ifdef CONFIG_MEMCG_SWAP
91 bool cgroup_memory_noswap __ro_after_init;
92 #else
93 #define cgroup_memory_noswap 1
94 #endif
95
96 #ifdef CONFIG_CGROUP_WRITEBACK
97 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98 #endif
99
100 /* Whether legacy memory+swap accounting is active */
101 static bool do_memsw_account(void)
102 {
103 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
104 }
105
106 #define THRESHOLDS_EVENTS_TARGET 128
107 #define SOFTLIMIT_EVENTS_TARGET 1024
108
109 /*
110 * Cgroups above their limits are maintained in a RB-Tree, independent of
111 * their hierarchy representation
112 */
113
114 struct mem_cgroup_tree_per_node {
115 struct rb_root rb_root;
116 struct rb_node *rb_rightmost;
117 spinlock_t lock;
118 };
119
120 struct mem_cgroup_tree {
121 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
122 };
123
124 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
125
126 /* for OOM */
127 struct mem_cgroup_eventfd_list {
128 struct list_head list;
129 struct eventfd_ctx *eventfd;
130 };
131
132 /*
133 * cgroup_event represents events which userspace want to receive.
134 */
135 struct mem_cgroup_event {
136 /*
137 * memcg which the event belongs to.
138 */
139 struct mem_cgroup *memcg;
140 /*
141 * eventfd to signal userspace about the event.
142 */
143 struct eventfd_ctx *eventfd;
144 /*
145 * Each of these stored in a list by the cgroup.
146 */
147 struct list_head list;
148 /*
149 * register_event() callback will be used to add new userspace
150 * waiter for changes related to this event. Use eventfd_signal()
151 * on eventfd to send notification to userspace.
152 */
153 int (*register_event)(struct mem_cgroup *memcg,
154 struct eventfd_ctx *eventfd, const char *args);
155 /*
156 * unregister_event() callback will be called when userspace closes
157 * the eventfd or on cgroup removing. This callback must be set,
158 * if you want provide notification functionality.
159 */
160 void (*unregister_event)(struct mem_cgroup *memcg,
161 struct eventfd_ctx *eventfd);
162 /*
163 * All fields below needed to unregister event when
164 * userspace closes eventfd.
165 */
166 poll_table pt;
167 wait_queue_head_t *wqh;
168 wait_queue_entry_t wait;
169 struct work_struct remove;
170 };
171
172 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
173 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
174
175 /* Stuffs for move charges at task migration. */
176 /*
177 * Types of charges to be moved.
178 */
179 #define MOVE_ANON 0x1U
180 #define MOVE_FILE 0x2U
181 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
182
183 /* "mc" and its members are protected by cgroup_mutex */
184 static struct move_charge_struct {
185 spinlock_t lock; /* for from, to */
186 struct mm_struct *mm;
187 struct mem_cgroup *from;
188 struct mem_cgroup *to;
189 unsigned long flags;
190 unsigned long precharge;
191 unsigned long moved_charge;
192 unsigned long moved_swap;
193 struct task_struct *moving_task; /* a task moving charges */
194 wait_queue_head_t waitq; /* a waitq for other context */
195 } mc = {
196 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
197 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
198 };
199
200 /*
201 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
202 * limit reclaim to prevent infinite loops, if they ever occur.
203 */
204 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
205 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
206
207 /* for encoding cft->private value on file */
208 enum res_type {
209 _MEM,
210 _MEMSWAP,
211 _OOM_TYPE,
212 _KMEM,
213 _TCP,
214 };
215
216 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
217 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
218 #define MEMFILE_ATTR(val) ((val) & 0xffff)
219 /* Used for OOM notifier */
220 #define OOM_CONTROL (0)
221
222 /*
223 * Iteration constructs for visiting all cgroups (under a tree). If
224 * loops are exited prematurely (break), mem_cgroup_iter_break() must
225 * be used for reference counting.
226 */
227 #define for_each_mem_cgroup_tree(iter, root) \
228 for (iter = mem_cgroup_iter(root, NULL, NULL); \
229 iter != NULL; \
230 iter = mem_cgroup_iter(root, iter, NULL))
231
232 #define for_each_mem_cgroup(iter) \
233 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
234 iter != NULL; \
235 iter = mem_cgroup_iter(NULL, iter, NULL))
236
237 static inline bool task_is_dying(void)
238 {
239 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
240 (current->flags & PF_EXITING);
241 }
242
243 /* Some nice accessors for the vmpressure. */
244 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
245 {
246 if (!memcg)
247 memcg = root_mem_cgroup;
248 return &memcg->vmpressure;
249 }
250
251 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
252 {
253 return container_of(vmpr, struct mem_cgroup, vmpressure);
254 }
255
256 #ifdef CONFIG_MEMCG_KMEM
257 static DEFINE_SPINLOCK(objcg_lock);
258
259 bool mem_cgroup_kmem_disabled(void)
260 {
261 return cgroup_memory_nokmem;
262 }
263
264 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
265 unsigned int nr_pages);
266
267 static void obj_cgroup_release(struct percpu_ref *ref)
268 {
269 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
270 unsigned int nr_bytes;
271 unsigned int nr_pages;
272 unsigned long flags;
273
274 /*
275 * At this point all allocated objects are freed, and
276 * objcg->nr_charged_bytes can't have an arbitrary byte value.
277 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
278 *
279 * The following sequence can lead to it:
280 * 1) CPU0: objcg == stock->cached_objcg
281 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
282 * PAGE_SIZE bytes are charged
283 * 3) CPU1: a process from another memcg is allocating something,
284 * the stock if flushed,
285 * objcg->nr_charged_bytes = PAGE_SIZE - 92
286 * 5) CPU0: we do release this object,
287 * 92 bytes are added to stock->nr_bytes
288 * 6) CPU0: stock is flushed,
289 * 92 bytes are added to objcg->nr_charged_bytes
290 *
291 * In the result, nr_charged_bytes == PAGE_SIZE.
292 * This page will be uncharged in obj_cgroup_release().
293 */
294 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
295 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
296 nr_pages = nr_bytes >> PAGE_SHIFT;
297
298 if (nr_pages)
299 obj_cgroup_uncharge_pages(objcg, nr_pages);
300
301 spin_lock_irqsave(&objcg_lock, flags);
302 list_del(&objcg->list);
303 spin_unlock_irqrestore(&objcg_lock, flags);
304
305 percpu_ref_exit(ref);
306 kfree_rcu(objcg, rcu);
307 }
308
309 static struct obj_cgroup *obj_cgroup_alloc(void)
310 {
311 struct obj_cgroup *objcg;
312 int ret;
313
314 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
315 if (!objcg)
316 return NULL;
317
318 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
319 GFP_KERNEL);
320 if (ret) {
321 kfree(objcg);
322 return NULL;
323 }
324 INIT_LIST_HEAD(&objcg->list);
325 return objcg;
326 }
327
328 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
329 struct mem_cgroup *parent)
330 {
331 struct obj_cgroup *objcg, *iter;
332
333 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
334
335 spin_lock_irq(&objcg_lock);
336
337 /* 1) Ready to reparent active objcg. */
338 list_add(&objcg->list, &memcg->objcg_list);
339 /* 2) Reparent active objcg and already reparented objcgs to parent. */
340 list_for_each_entry(iter, &memcg->objcg_list, list)
341 WRITE_ONCE(iter->memcg, parent);
342 /* 3) Move already reparented objcgs to the parent's list */
343 list_splice(&memcg->objcg_list, &parent->objcg_list);
344
345 spin_unlock_irq(&objcg_lock);
346
347 percpu_ref_kill(&objcg->refcnt);
348 }
349
350 /*
351 * This will be used as a shrinker list's index.
352 * The main reason for not using cgroup id for this:
353 * this works better in sparse environments, where we have a lot of memcgs,
354 * but only a few kmem-limited. Or also, if we have, for instance, 200
355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
356 * 200 entry array for that.
357 *
358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
359 * will double each time we have to increase it.
360 */
361 static DEFINE_IDA(memcg_cache_ida);
362 int memcg_nr_cache_ids;
363
364 /* Protects memcg_nr_cache_ids */
365 static DECLARE_RWSEM(memcg_cache_ids_sem);
366
367 void memcg_get_cache_ids(void)
368 {
369 down_read(&memcg_cache_ids_sem);
370 }
371
372 void memcg_put_cache_ids(void)
373 {
374 up_read(&memcg_cache_ids_sem);
375 }
376
377 /*
378 * MIN_SIZE is different than 1, because we would like to avoid going through
379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
380 * cgroups is a reasonable guess. In the future, it could be a parameter or
381 * tunable, but that is strictly not necessary.
382 *
383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384 * this constant directly from cgroup, but it is understandable that this is
385 * better kept as an internal representation in cgroup.c. In any case, the
386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
387 * increase ours as well if it increases.
388 */
389 #define MEMCG_CACHES_MIN_SIZE 4
390 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391
392 /*
393 * A lot of the calls to the cache allocation functions are expected to be
394 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
395 * conditional to this static branch, we'll have to allow modules that does
396 * kmem_cache_alloc and the such to see this symbol as well
397 */
398 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
399 EXPORT_SYMBOL(memcg_kmem_enabled_key);
400 #endif
401
402 /**
403 * mem_cgroup_css_from_page - css of the memcg associated with a page
404 * @page: page of interest
405 *
406 * If memcg is bound to the default hierarchy, css of the memcg associated
407 * with @page is returned. The returned css remains associated with @page
408 * until it is released.
409 *
410 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
411 * is returned.
412 */
413 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
414 {
415 struct mem_cgroup *memcg;
416
417 memcg = page_memcg(page);
418
419 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
420 memcg = root_mem_cgroup;
421
422 return &memcg->css;
423 }
424
425 /**
426 * page_cgroup_ino - return inode number of the memcg a page is charged to
427 * @page: the page
428 *
429 * Look up the closest online ancestor of the memory cgroup @page is charged to
430 * and return its inode number or 0 if @page is not charged to any cgroup. It
431 * is safe to call this function without holding a reference to @page.
432 *
433 * Note, this function is inherently racy, because there is nothing to prevent
434 * the cgroup inode from getting torn down and potentially reallocated a moment
435 * after page_cgroup_ino() returns, so it only should be used by callers that
436 * do not care (such as procfs interfaces).
437 */
438 ino_t page_cgroup_ino(struct page *page)
439 {
440 struct mem_cgroup *memcg;
441 unsigned long ino = 0;
442
443 rcu_read_lock();
444 memcg = page_memcg_check(page);
445
446 while (memcg && !(memcg->css.flags & CSS_ONLINE))
447 memcg = parent_mem_cgroup(memcg);
448 if (memcg)
449 ino = cgroup_ino(memcg->css.cgroup);
450 rcu_read_unlock();
451 return ino;
452 }
453
454 static struct mem_cgroup_per_node *
455 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
456 {
457 int nid = page_to_nid(page);
458
459 return memcg->nodeinfo[nid];
460 }
461
462 static struct mem_cgroup_tree_per_node *
463 soft_limit_tree_node(int nid)
464 {
465 return soft_limit_tree.rb_tree_per_node[nid];
466 }
467
468 static struct mem_cgroup_tree_per_node *
469 soft_limit_tree_from_page(struct page *page)
470 {
471 int nid = page_to_nid(page);
472
473 return soft_limit_tree.rb_tree_per_node[nid];
474 }
475
476 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
477 struct mem_cgroup_tree_per_node *mctz,
478 unsigned long new_usage_in_excess)
479 {
480 struct rb_node **p = &mctz->rb_root.rb_node;
481 struct rb_node *parent = NULL;
482 struct mem_cgroup_per_node *mz_node;
483 bool rightmost = true;
484
485 if (mz->on_tree)
486 return;
487
488 mz->usage_in_excess = new_usage_in_excess;
489 if (!mz->usage_in_excess)
490 return;
491 while (*p) {
492 parent = *p;
493 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
494 tree_node);
495 if (mz->usage_in_excess < mz_node->usage_in_excess) {
496 p = &(*p)->rb_left;
497 rightmost = false;
498 } else {
499 p = &(*p)->rb_right;
500 }
501 }
502
503 if (rightmost)
504 mctz->rb_rightmost = &mz->tree_node;
505
506 rb_link_node(&mz->tree_node, parent, p);
507 rb_insert_color(&mz->tree_node, &mctz->rb_root);
508 mz->on_tree = true;
509 }
510
511 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
512 struct mem_cgroup_tree_per_node *mctz)
513 {
514 if (!mz->on_tree)
515 return;
516
517 if (&mz->tree_node == mctz->rb_rightmost)
518 mctz->rb_rightmost = rb_prev(&mz->tree_node);
519
520 rb_erase(&mz->tree_node, &mctz->rb_root);
521 mz->on_tree = false;
522 }
523
524 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
525 struct mem_cgroup_tree_per_node *mctz)
526 {
527 unsigned long flags;
528
529 spin_lock_irqsave(&mctz->lock, flags);
530 __mem_cgroup_remove_exceeded(mz, mctz);
531 spin_unlock_irqrestore(&mctz->lock, flags);
532 }
533
534 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
535 {
536 unsigned long nr_pages = page_counter_read(&memcg->memory);
537 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
538 unsigned long excess = 0;
539
540 if (nr_pages > soft_limit)
541 excess = nr_pages - soft_limit;
542
543 return excess;
544 }
545
546 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
547 {
548 unsigned long excess;
549 struct mem_cgroup_per_node *mz;
550 struct mem_cgroup_tree_per_node *mctz;
551
552 mctz = soft_limit_tree_from_page(page);
553 if (!mctz)
554 return;
555 /*
556 * Necessary to update all ancestors when hierarchy is used.
557 * because their event counter is not touched.
558 */
559 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
560 mz = mem_cgroup_page_nodeinfo(memcg, page);
561 excess = soft_limit_excess(memcg);
562 /*
563 * We have to update the tree if mz is on RB-tree or
564 * mem is over its softlimit.
565 */
566 if (excess || mz->on_tree) {
567 unsigned long flags;
568
569 spin_lock_irqsave(&mctz->lock, flags);
570 /* if on-tree, remove it */
571 if (mz->on_tree)
572 __mem_cgroup_remove_exceeded(mz, mctz);
573 /*
574 * Insert again. mz->usage_in_excess will be updated.
575 * If excess is 0, no tree ops.
576 */
577 __mem_cgroup_insert_exceeded(mz, mctz, excess);
578 spin_unlock_irqrestore(&mctz->lock, flags);
579 }
580 }
581 }
582
583 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
584 {
585 struct mem_cgroup_tree_per_node *mctz;
586 struct mem_cgroup_per_node *mz;
587 int nid;
588
589 for_each_node(nid) {
590 mz = memcg->nodeinfo[nid];
591 mctz = soft_limit_tree_node(nid);
592 if (mctz)
593 mem_cgroup_remove_exceeded(mz, mctz);
594 }
595 }
596
597 static struct mem_cgroup_per_node *
598 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
599 {
600 struct mem_cgroup_per_node *mz;
601
602 retry:
603 mz = NULL;
604 if (!mctz->rb_rightmost)
605 goto done; /* Nothing to reclaim from */
606
607 mz = rb_entry(mctz->rb_rightmost,
608 struct mem_cgroup_per_node, tree_node);
609 /*
610 * Remove the node now but someone else can add it back,
611 * we will to add it back at the end of reclaim to its correct
612 * position in the tree.
613 */
614 __mem_cgroup_remove_exceeded(mz, mctz);
615 if (!soft_limit_excess(mz->memcg) ||
616 !css_tryget(&mz->memcg->css))
617 goto retry;
618 done:
619 return mz;
620 }
621
622 static struct mem_cgroup_per_node *
623 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
624 {
625 struct mem_cgroup_per_node *mz;
626
627 spin_lock_irq(&mctz->lock);
628 mz = __mem_cgroup_largest_soft_limit_node(mctz);
629 spin_unlock_irq(&mctz->lock);
630 return mz;
631 }
632
633 /*
634 * memcg and lruvec stats flushing
635 *
636 * Many codepaths leading to stats update or read are performance sensitive and
637 * adding stats flushing in such codepaths is not desirable. So, to optimize the
638 * flushing the kernel does:
639 *
640 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
641 * rstat update tree grow unbounded.
642 *
643 * 2) Flush the stats synchronously on reader side only when there are more than
644 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
645 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
646 * only for 2 seconds due to (1).
647 */
648 static void flush_memcg_stats_dwork(struct work_struct *w);
649 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
650 static DEFINE_SPINLOCK(stats_flush_lock);
651 static DEFINE_PER_CPU(unsigned int, stats_updates);
652 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
653 static u64 flush_next_time;
654
655 #define FLUSH_TIME (2UL*HZ)
656
657 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
658 {
659 unsigned int x;
660
661 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
662
663 x = __this_cpu_add_return(stats_updates, abs(val));
664 if (x > MEMCG_CHARGE_BATCH) {
665 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
666 __this_cpu_write(stats_updates, 0);
667 }
668 }
669
670 static void __mem_cgroup_flush_stats(void)
671 {
672 unsigned long flag;
673
674 if (!spin_trylock_irqsave(&stats_flush_lock, flag))
675 return;
676
677 flush_next_time = jiffies_64 + 2*FLUSH_TIME;
678 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
679 atomic_set(&stats_flush_threshold, 0);
680 spin_unlock_irqrestore(&stats_flush_lock, flag);
681 }
682
683 void mem_cgroup_flush_stats(void)
684 {
685 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
686 __mem_cgroup_flush_stats();
687 }
688
689 void mem_cgroup_flush_stats_delayed(void)
690 {
691 if (time_after64(jiffies_64, flush_next_time))
692 mem_cgroup_flush_stats();
693 }
694
695 static void flush_memcg_stats_dwork(struct work_struct *w)
696 {
697 __mem_cgroup_flush_stats();
698 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
699 }
700
701 /**
702 * __mod_memcg_state - update cgroup memory statistics
703 * @memcg: the memory cgroup
704 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
705 * @val: delta to add to the counter, can be negative
706 */
707 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
708 {
709 if (mem_cgroup_disabled())
710 return;
711
712 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
713 memcg_rstat_updated(memcg, val);
714 }
715
716 /* idx can be of type enum memcg_stat_item or node_stat_item. */
717 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
718 {
719 long x = 0;
720 int cpu;
721
722 for_each_possible_cpu(cpu)
723 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
724 #ifdef CONFIG_SMP
725 if (x < 0)
726 x = 0;
727 #endif
728 return x;
729 }
730
731 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
732 int val)
733 {
734 struct mem_cgroup_per_node *pn;
735 struct mem_cgroup *memcg;
736
737 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
738 memcg = pn->memcg;
739
740 /* Update memcg */
741 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
742
743 /* Update lruvec */
744 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
745
746 memcg_rstat_updated(memcg, val);
747 }
748
749 /**
750 * __mod_lruvec_state - update lruvec memory statistics
751 * @lruvec: the lruvec
752 * @idx: the stat item
753 * @val: delta to add to the counter, can be negative
754 *
755 * The lruvec is the intersection of the NUMA node and a cgroup. This
756 * function updates the all three counters that are affected by a
757 * change of state at this level: per-node, per-cgroup, per-lruvec.
758 */
759 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
760 int val)
761 {
762 /* Update node */
763 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
764
765 /* Update memcg and lruvec */
766 if (!mem_cgroup_disabled())
767 __mod_memcg_lruvec_state(lruvec, idx, val);
768 }
769
770 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
771 int val)
772 {
773 struct page *head = compound_head(page); /* rmap on tail pages */
774 struct mem_cgroup *memcg;
775 pg_data_t *pgdat = page_pgdat(page);
776 struct lruvec *lruvec;
777
778 rcu_read_lock();
779 memcg = page_memcg(head);
780 /* Untracked pages have no memcg, no lruvec. Update only the node */
781 if (!memcg) {
782 rcu_read_unlock();
783 __mod_node_page_state(pgdat, idx, val);
784 return;
785 }
786
787 lruvec = mem_cgroup_lruvec(memcg, pgdat);
788 __mod_lruvec_state(lruvec, idx, val);
789 rcu_read_unlock();
790 }
791 EXPORT_SYMBOL(__mod_lruvec_page_state);
792
793 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
794 {
795 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
796 struct mem_cgroup *memcg;
797 struct lruvec *lruvec;
798
799 rcu_read_lock();
800 memcg = mem_cgroup_from_obj(p);
801
802 /*
803 * Untracked pages have no memcg, no lruvec. Update only the
804 * node. If we reparent the slab objects to the root memcg,
805 * when we free the slab object, we need to update the per-memcg
806 * vmstats to keep it correct for the root memcg.
807 */
808 if (!memcg) {
809 __mod_node_page_state(pgdat, idx, val);
810 } else {
811 lruvec = mem_cgroup_lruvec(memcg, pgdat);
812 __mod_lruvec_state(lruvec, idx, val);
813 }
814 rcu_read_unlock();
815 }
816
817 /*
818 * mod_objcg_mlstate() may be called with irq enabled, so
819 * mod_memcg_lruvec_state() should be used.
820 */
821 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
822 struct pglist_data *pgdat,
823 enum node_stat_item idx, int nr)
824 {
825 struct mem_cgroup *memcg;
826 struct lruvec *lruvec;
827
828 rcu_read_lock();
829 memcg = obj_cgroup_memcg(objcg);
830 lruvec = mem_cgroup_lruvec(memcg, pgdat);
831 mod_memcg_lruvec_state(lruvec, idx, nr);
832 rcu_read_unlock();
833 }
834
835 /**
836 * __count_memcg_events - account VM events in a cgroup
837 * @memcg: the memory cgroup
838 * @idx: the event item
839 * @count: the number of events that occurred
840 */
841 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
842 unsigned long count)
843 {
844 if (mem_cgroup_disabled())
845 return;
846
847 __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
848 memcg_rstat_updated(memcg, count);
849 }
850
851 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
852 {
853 return READ_ONCE(memcg->vmstats.events[event]);
854 }
855
856 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
857 {
858 long x = 0;
859 int cpu;
860
861 for_each_possible_cpu(cpu)
862 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
863 return x;
864 }
865
866 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
867 struct page *page,
868 int nr_pages)
869 {
870 /* pagein of a big page is an event. So, ignore page size */
871 if (nr_pages > 0)
872 __count_memcg_events(memcg, PGPGIN, 1);
873 else {
874 __count_memcg_events(memcg, PGPGOUT, 1);
875 nr_pages = -nr_pages; /* for event */
876 }
877
878 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
879 }
880
881 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
882 enum mem_cgroup_events_target target)
883 {
884 unsigned long val, next;
885
886 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
887 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
888 /* from time_after() in jiffies.h */
889 if ((long)(next - val) < 0) {
890 switch (target) {
891 case MEM_CGROUP_TARGET_THRESH:
892 next = val + THRESHOLDS_EVENTS_TARGET;
893 break;
894 case MEM_CGROUP_TARGET_SOFTLIMIT:
895 next = val + SOFTLIMIT_EVENTS_TARGET;
896 break;
897 default:
898 break;
899 }
900 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
901 return true;
902 }
903 return false;
904 }
905
906 /*
907 * Check events in order.
908 *
909 */
910 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
911 {
912 /* threshold event is triggered in finer grain than soft limit */
913 if (unlikely(mem_cgroup_event_ratelimit(memcg,
914 MEM_CGROUP_TARGET_THRESH))) {
915 bool do_softlimit;
916
917 do_softlimit = mem_cgroup_event_ratelimit(memcg,
918 MEM_CGROUP_TARGET_SOFTLIMIT);
919 mem_cgroup_threshold(memcg);
920 if (unlikely(do_softlimit))
921 mem_cgroup_update_tree(memcg, page);
922 }
923 }
924
925 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
926 {
927 /*
928 * mm_update_next_owner() may clear mm->owner to NULL
929 * if it races with swapoff, page migration, etc.
930 * So this can be called with p == NULL.
931 */
932 if (unlikely(!p))
933 return NULL;
934
935 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
936 }
937 EXPORT_SYMBOL(mem_cgroup_from_task);
938
939 static __always_inline struct mem_cgroup *active_memcg(void)
940 {
941 if (!in_task())
942 return this_cpu_read(int_active_memcg);
943 else
944 return current->active_memcg;
945 }
946
947 /**
948 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
949 * @mm: mm from which memcg should be extracted. It can be NULL.
950 *
951 * Obtain a reference on mm->memcg and returns it if successful. If mm
952 * is NULL, then the memcg is chosen as follows:
953 * 1) The active memcg, if set.
954 * 2) current->mm->memcg, if available
955 * 3) root memcg
956 * If mem_cgroup is disabled, NULL is returned.
957 */
958 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
959 {
960 struct mem_cgroup *memcg;
961
962 if (mem_cgroup_disabled())
963 return NULL;
964
965 /*
966 * Page cache insertions can happen without an
967 * actual mm context, e.g. during disk probing
968 * on boot, loopback IO, acct() writes etc.
969 *
970 * No need to css_get on root memcg as the reference
971 * counting is disabled on the root level in the
972 * cgroup core. See CSS_NO_REF.
973 */
974 if (unlikely(!mm)) {
975 memcg = active_memcg();
976 if (unlikely(memcg)) {
977 /* remote memcg must hold a ref */
978 css_get(&memcg->css);
979 return memcg;
980 }
981 mm = current->mm;
982 if (unlikely(!mm))
983 return root_mem_cgroup;
984 }
985
986 rcu_read_lock();
987 do {
988 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
989 if (unlikely(!memcg))
990 memcg = root_mem_cgroup;
991 } while (!css_tryget(&memcg->css));
992 rcu_read_unlock();
993 return memcg;
994 }
995 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
996
997 static __always_inline bool memcg_kmem_bypass(void)
998 {
999 /* Allow remote memcg charging from any context. */
1000 if (unlikely(active_memcg()))
1001 return false;
1002
1003 /* Memcg to charge can't be determined. */
1004 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1005 return true;
1006
1007 return false;
1008 }
1009
1010 /**
1011 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1012 * @root: hierarchy root
1013 * @prev: previously returned memcg, NULL on first invocation
1014 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1015 *
1016 * Returns references to children of the hierarchy below @root, or
1017 * @root itself, or %NULL after a full round-trip.
1018 *
1019 * Caller must pass the return value in @prev on subsequent
1020 * invocations for reference counting, or use mem_cgroup_iter_break()
1021 * to cancel a hierarchy walk before the round-trip is complete.
1022 *
1023 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1024 * in the hierarchy among all concurrent reclaimers operating on the
1025 * same node.
1026 */
1027 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1028 struct mem_cgroup *prev,
1029 struct mem_cgroup_reclaim_cookie *reclaim)
1030 {
1031 struct mem_cgroup_reclaim_iter *iter;
1032 struct cgroup_subsys_state *css = NULL;
1033 struct mem_cgroup *memcg = NULL;
1034 struct mem_cgroup *pos = NULL;
1035
1036 if (mem_cgroup_disabled())
1037 return NULL;
1038
1039 if (!root)
1040 root = root_mem_cgroup;
1041
1042 if (prev && !reclaim)
1043 pos = prev;
1044
1045 rcu_read_lock();
1046
1047 if (reclaim) {
1048 struct mem_cgroup_per_node *mz;
1049
1050 mz = root->nodeinfo[reclaim->pgdat->node_id];
1051 iter = &mz->iter;
1052
1053 if (prev && reclaim->generation != iter->generation)
1054 goto out_unlock;
1055
1056 while (1) {
1057 pos = READ_ONCE(iter->position);
1058 if (!pos || css_tryget(&pos->css))
1059 break;
1060 /*
1061 * css reference reached zero, so iter->position will
1062 * be cleared by ->css_released. However, we should not
1063 * rely on this happening soon, because ->css_released
1064 * is called from a work queue, and by busy-waiting we
1065 * might block it. So we clear iter->position right
1066 * away.
1067 */
1068 (void)cmpxchg(&iter->position, pos, NULL);
1069 }
1070 }
1071
1072 if (pos)
1073 css = &pos->css;
1074
1075 for (;;) {
1076 css = css_next_descendant_pre(css, &root->css);
1077 if (!css) {
1078 /*
1079 * Reclaimers share the hierarchy walk, and a
1080 * new one might jump in right at the end of
1081 * the hierarchy - make sure they see at least
1082 * one group and restart from the beginning.
1083 */
1084 if (!prev)
1085 continue;
1086 break;
1087 }
1088
1089 /*
1090 * Verify the css and acquire a reference. The root
1091 * is provided by the caller, so we know it's alive
1092 * and kicking, and don't take an extra reference.
1093 */
1094 memcg = mem_cgroup_from_css(css);
1095
1096 if (css == &root->css)
1097 break;
1098
1099 if (css_tryget(css))
1100 break;
1101
1102 memcg = NULL;
1103 }
1104
1105 if (reclaim) {
1106 /*
1107 * The position could have already been updated by a competing
1108 * thread, so check that the value hasn't changed since we read
1109 * it to avoid reclaiming from the same cgroup twice.
1110 */
1111 (void)cmpxchg(&iter->position, pos, memcg);
1112
1113 if (pos)
1114 css_put(&pos->css);
1115
1116 if (!memcg)
1117 iter->generation++;
1118 else if (!prev)
1119 reclaim->generation = iter->generation;
1120 }
1121
1122 out_unlock:
1123 rcu_read_unlock();
1124 if (prev && prev != root)
1125 css_put(&prev->css);
1126
1127 return memcg;
1128 }
1129
1130 /**
1131 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1132 * @root: hierarchy root
1133 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1134 */
1135 void mem_cgroup_iter_break(struct mem_cgroup *root,
1136 struct mem_cgroup *prev)
1137 {
1138 if (!root)
1139 root = root_mem_cgroup;
1140 if (prev && prev != root)
1141 css_put(&prev->css);
1142 }
1143
1144 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1145 struct mem_cgroup *dead_memcg)
1146 {
1147 struct mem_cgroup_reclaim_iter *iter;
1148 struct mem_cgroup_per_node *mz;
1149 int nid;
1150
1151 for_each_node(nid) {
1152 mz = from->nodeinfo[nid];
1153 iter = &mz->iter;
1154 cmpxchg(&iter->position, dead_memcg, NULL);
1155 }
1156 }
1157
1158 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1159 {
1160 struct mem_cgroup *memcg = dead_memcg;
1161 struct mem_cgroup *last;
1162
1163 do {
1164 __invalidate_reclaim_iterators(memcg, dead_memcg);
1165 last = memcg;
1166 } while ((memcg = parent_mem_cgroup(memcg)));
1167
1168 /*
1169 * When cgruop1 non-hierarchy mode is used,
1170 * parent_mem_cgroup() does not walk all the way up to the
1171 * cgroup root (root_mem_cgroup). So we have to handle
1172 * dead_memcg from cgroup root separately.
1173 */
1174 if (last != root_mem_cgroup)
1175 __invalidate_reclaim_iterators(root_mem_cgroup,
1176 dead_memcg);
1177 }
1178
1179 /**
1180 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1181 * @memcg: hierarchy root
1182 * @fn: function to call for each task
1183 * @arg: argument passed to @fn
1184 *
1185 * This function iterates over tasks attached to @memcg or to any of its
1186 * descendants and calls @fn for each task. If @fn returns a non-zero
1187 * value, the function breaks the iteration loop and returns the value.
1188 * Otherwise, it will iterate over all tasks and return 0.
1189 *
1190 * This function must not be called for the root memory cgroup.
1191 */
1192 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1193 int (*fn)(struct task_struct *, void *), void *arg)
1194 {
1195 struct mem_cgroup *iter;
1196 int ret = 0;
1197
1198 BUG_ON(memcg == root_mem_cgroup);
1199
1200 for_each_mem_cgroup_tree(iter, memcg) {
1201 struct css_task_iter it;
1202 struct task_struct *task;
1203
1204 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1205 while (!ret && (task = css_task_iter_next(&it)))
1206 ret = fn(task, arg);
1207 css_task_iter_end(&it);
1208 if (ret) {
1209 mem_cgroup_iter_break(memcg, iter);
1210 break;
1211 }
1212 }
1213 return ret;
1214 }
1215
1216 #ifdef CONFIG_DEBUG_VM
1217 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1218 {
1219 struct mem_cgroup *memcg;
1220
1221 if (mem_cgroup_disabled())
1222 return;
1223
1224 memcg = page_memcg(page);
1225
1226 if (!memcg)
1227 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1228 else
1229 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1230 }
1231 #endif
1232
1233 /**
1234 * lock_page_lruvec - lock and return lruvec for a given page.
1235 * @page: the page
1236 *
1237 * These functions are safe to use under any of the following conditions:
1238 * - page locked
1239 * - PageLRU cleared
1240 * - lock_page_memcg()
1241 * - page->_refcount is zero
1242 */
1243 struct lruvec *lock_page_lruvec(struct page *page)
1244 {
1245 struct lruvec *lruvec;
1246
1247 lruvec = mem_cgroup_page_lruvec(page);
1248 spin_lock(&lruvec->lru_lock);
1249
1250 lruvec_memcg_debug(lruvec, page);
1251
1252 return lruvec;
1253 }
1254
1255 struct lruvec *lock_page_lruvec_irq(struct page *page)
1256 {
1257 struct lruvec *lruvec;
1258
1259 lruvec = mem_cgroup_page_lruvec(page);
1260 spin_lock_irq(&lruvec->lru_lock);
1261
1262 lruvec_memcg_debug(lruvec, page);
1263
1264 return lruvec;
1265 }
1266
1267 struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1268 {
1269 struct lruvec *lruvec;
1270
1271 lruvec = mem_cgroup_page_lruvec(page);
1272 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1273
1274 lruvec_memcg_debug(lruvec, page);
1275
1276 return lruvec;
1277 }
1278
1279 /**
1280 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1281 * @lruvec: mem_cgroup per zone lru vector
1282 * @lru: index of lru list the page is sitting on
1283 * @zid: zone id of the accounted pages
1284 * @nr_pages: positive when adding or negative when removing
1285 *
1286 * This function must be called under lru_lock, just before a page is added
1287 * to or just after a page is removed from an lru list (that ordering being
1288 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1289 */
1290 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1291 int zid, int nr_pages)
1292 {
1293 struct mem_cgroup_per_node *mz;
1294 unsigned long *lru_size;
1295 long size;
1296
1297 if (mem_cgroup_disabled())
1298 return;
1299
1300 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1301 lru_size = &mz->lru_zone_size[zid][lru];
1302
1303 if (nr_pages < 0)
1304 *lru_size += nr_pages;
1305
1306 size = *lru_size;
1307 if (WARN_ONCE(size < 0,
1308 "%s(%p, %d, %d): lru_size %ld\n",
1309 __func__, lruvec, lru, nr_pages, size)) {
1310 VM_BUG_ON(1);
1311 *lru_size = 0;
1312 }
1313
1314 if (nr_pages > 0)
1315 *lru_size += nr_pages;
1316 }
1317
1318 /**
1319 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1320 * @memcg: the memory cgroup
1321 *
1322 * Returns the maximum amount of memory @mem can be charged with, in
1323 * pages.
1324 */
1325 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1326 {
1327 unsigned long margin = 0;
1328 unsigned long count;
1329 unsigned long limit;
1330
1331 count = page_counter_read(&memcg->memory);
1332 limit = READ_ONCE(memcg->memory.max);
1333 if (count < limit)
1334 margin = limit - count;
1335
1336 if (do_memsw_account()) {
1337 count = page_counter_read(&memcg->memsw);
1338 limit = READ_ONCE(memcg->memsw.max);
1339 if (count < limit)
1340 margin = min(margin, limit - count);
1341 else
1342 margin = 0;
1343 }
1344
1345 return margin;
1346 }
1347
1348 /*
1349 * A routine for checking "mem" is under move_account() or not.
1350 *
1351 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1352 * moving cgroups. This is for waiting at high-memory pressure
1353 * caused by "move".
1354 */
1355 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1356 {
1357 struct mem_cgroup *from;
1358 struct mem_cgroup *to;
1359 bool ret = false;
1360 /*
1361 * Unlike task_move routines, we access mc.to, mc.from not under
1362 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1363 */
1364 spin_lock(&mc.lock);
1365 from = mc.from;
1366 to = mc.to;
1367 if (!from)
1368 goto unlock;
1369
1370 ret = mem_cgroup_is_descendant(from, memcg) ||
1371 mem_cgroup_is_descendant(to, memcg);
1372 unlock:
1373 spin_unlock(&mc.lock);
1374 return ret;
1375 }
1376
1377 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1378 {
1379 if (mc.moving_task && current != mc.moving_task) {
1380 if (mem_cgroup_under_move(memcg)) {
1381 DEFINE_WAIT(wait);
1382 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1383 /* moving charge context might have finished. */
1384 if (mc.moving_task)
1385 schedule();
1386 finish_wait(&mc.waitq, &wait);
1387 return true;
1388 }
1389 }
1390 return false;
1391 }
1392
1393 struct memory_stat {
1394 const char *name;
1395 unsigned int idx;
1396 };
1397
1398 static const struct memory_stat memory_stats[] = {
1399 { "anon", NR_ANON_MAPPED },
1400 { "file", NR_FILE_PAGES },
1401 { "kernel_stack", NR_KERNEL_STACK_KB },
1402 { "pagetables", NR_PAGETABLE },
1403 { "percpu", MEMCG_PERCPU_B },
1404 { "sock", MEMCG_SOCK },
1405 { "shmem", NR_SHMEM },
1406 { "file_mapped", NR_FILE_MAPPED },
1407 { "file_dirty", NR_FILE_DIRTY },
1408 { "file_writeback", NR_WRITEBACK },
1409 #ifdef CONFIG_SWAP
1410 { "swapcached", NR_SWAPCACHE },
1411 #endif
1412 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1413 { "anon_thp", NR_ANON_THPS },
1414 { "file_thp", NR_FILE_THPS },
1415 { "shmem_thp", NR_SHMEM_THPS },
1416 #endif
1417 { "inactive_anon", NR_INACTIVE_ANON },
1418 { "active_anon", NR_ACTIVE_ANON },
1419 { "inactive_file", NR_INACTIVE_FILE },
1420 { "active_file", NR_ACTIVE_FILE },
1421 { "unevictable", NR_UNEVICTABLE },
1422 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1423 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1424
1425 /* The memory events */
1426 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1427 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1428 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1429 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1430 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1431 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1432 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1433 };
1434
1435 /* Translate stat items to the correct unit for memory.stat output */
1436 static int memcg_page_state_unit(int item)
1437 {
1438 switch (item) {
1439 case MEMCG_PERCPU_B:
1440 case NR_SLAB_RECLAIMABLE_B:
1441 case NR_SLAB_UNRECLAIMABLE_B:
1442 case WORKINGSET_REFAULT_ANON:
1443 case WORKINGSET_REFAULT_FILE:
1444 case WORKINGSET_ACTIVATE_ANON:
1445 case WORKINGSET_ACTIVATE_FILE:
1446 case WORKINGSET_RESTORE_ANON:
1447 case WORKINGSET_RESTORE_FILE:
1448 case WORKINGSET_NODERECLAIM:
1449 return 1;
1450 case NR_KERNEL_STACK_KB:
1451 return SZ_1K;
1452 default:
1453 return PAGE_SIZE;
1454 }
1455 }
1456
1457 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1458 int item)
1459 {
1460 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1461 }
1462
1463 static char *memory_stat_format(struct mem_cgroup *memcg)
1464 {
1465 struct seq_buf s;
1466 int i;
1467
1468 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1469 if (!s.buffer)
1470 return NULL;
1471
1472 /*
1473 * Provide statistics on the state of the memory subsystem as
1474 * well as cumulative event counters that show past behavior.
1475 *
1476 * This list is ordered following a combination of these gradients:
1477 * 1) generic big picture -> specifics and details
1478 * 2) reflecting userspace activity -> reflecting kernel heuristics
1479 *
1480 * Current memory state:
1481 */
1482 mem_cgroup_flush_stats();
1483
1484 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1485 u64 size;
1486
1487 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1488 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1489
1490 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1491 size += memcg_page_state_output(memcg,
1492 NR_SLAB_RECLAIMABLE_B);
1493 seq_buf_printf(&s, "slab %llu\n", size);
1494 }
1495 }
1496
1497 /* Accumulated memory events */
1498
1499 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1500 memcg_events(memcg, PGFAULT));
1501 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1502 memcg_events(memcg, PGMAJFAULT));
1503 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1504 memcg_events(memcg, PGREFILL));
1505 seq_buf_printf(&s, "pgscan %lu\n",
1506 memcg_events(memcg, PGSCAN_KSWAPD) +
1507 memcg_events(memcg, PGSCAN_DIRECT));
1508 seq_buf_printf(&s, "pgsteal %lu\n",
1509 memcg_events(memcg, PGSTEAL_KSWAPD) +
1510 memcg_events(memcg, PGSTEAL_DIRECT));
1511 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1512 memcg_events(memcg, PGACTIVATE));
1513 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1514 memcg_events(memcg, PGDEACTIVATE));
1515 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1516 memcg_events(memcg, PGLAZYFREE));
1517 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1518 memcg_events(memcg, PGLAZYFREED));
1519
1520 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1521 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1522 memcg_events(memcg, THP_FAULT_ALLOC));
1523 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1524 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1525 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1526
1527 /* The above should easily fit into one page */
1528 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1529
1530 return s.buffer;
1531 }
1532
1533 #define K(x) ((x) << (PAGE_SHIFT-10))
1534 /**
1535 * mem_cgroup_print_oom_context: Print OOM information relevant to
1536 * memory controller.
1537 * @memcg: The memory cgroup that went over limit
1538 * @p: Task that is going to be killed
1539 *
1540 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1541 * enabled
1542 */
1543 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1544 {
1545 rcu_read_lock();
1546
1547 if (memcg) {
1548 pr_cont(",oom_memcg=");
1549 pr_cont_cgroup_path(memcg->css.cgroup);
1550 } else
1551 pr_cont(",global_oom");
1552 if (p) {
1553 pr_cont(",task_memcg=");
1554 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1555 }
1556 rcu_read_unlock();
1557 }
1558
1559 /**
1560 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1561 * memory controller.
1562 * @memcg: The memory cgroup that went over limit
1563 */
1564 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1565 {
1566 char *buf;
1567
1568 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1569 K((u64)page_counter_read(&memcg->memory)),
1570 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1571 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1572 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1573 K((u64)page_counter_read(&memcg->swap)),
1574 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1575 else {
1576 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1577 K((u64)page_counter_read(&memcg->memsw)),
1578 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1579 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1580 K((u64)page_counter_read(&memcg->kmem)),
1581 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1582 }
1583
1584 pr_info("Memory cgroup stats for ");
1585 pr_cont_cgroup_path(memcg->css.cgroup);
1586 pr_cont(":");
1587 buf = memory_stat_format(memcg);
1588 if (!buf)
1589 return;
1590 pr_info("%s", buf);
1591 kfree(buf);
1592 }
1593
1594 /*
1595 * Return the memory (and swap, if configured) limit for a memcg.
1596 */
1597 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1598 {
1599 unsigned long max = READ_ONCE(memcg->memory.max);
1600
1601 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1602 if (mem_cgroup_swappiness(memcg))
1603 max += min(READ_ONCE(memcg->swap.max),
1604 (unsigned long)total_swap_pages);
1605 } else { /* v1 */
1606 if (mem_cgroup_swappiness(memcg)) {
1607 /* Calculate swap excess capacity from memsw limit */
1608 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1609
1610 max += min(swap, (unsigned long)total_swap_pages);
1611 }
1612 }
1613 return max;
1614 }
1615
1616 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1617 {
1618 return page_counter_read(&memcg->memory);
1619 }
1620
1621 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1622 int order)
1623 {
1624 struct oom_control oc = {
1625 .zonelist = NULL,
1626 .nodemask = NULL,
1627 .memcg = memcg,
1628 .gfp_mask = gfp_mask,
1629 .order = order,
1630 };
1631 bool ret = true;
1632
1633 if (mutex_lock_killable(&oom_lock))
1634 return true;
1635
1636 if (mem_cgroup_margin(memcg) >= (1 << order))
1637 goto unlock;
1638
1639 /*
1640 * A few threads which were not waiting at mutex_lock_killable() can
1641 * fail to bail out. Therefore, check again after holding oom_lock.
1642 */
1643 ret = task_is_dying() || out_of_memory(&oc);
1644
1645 unlock:
1646 mutex_unlock(&oom_lock);
1647 return ret;
1648 }
1649
1650 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1651 pg_data_t *pgdat,
1652 gfp_t gfp_mask,
1653 unsigned long *total_scanned)
1654 {
1655 struct mem_cgroup *victim = NULL;
1656 int total = 0;
1657 int loop = 0;
1658 unsigned long excess;
1659 unsigned long nr_scanned;
1660 struct mem_cgroup_reclaim_cookie reclaim = {
1661 .pgdat = pgdat,
1662 };
1663
1664 excess = soft_limit_excess(root_memcg);
1665
1666 while (1) {
1667 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1668 if (!victim) {
1669 loop++;
1670 if (loop >= 2) {
1671 /*
1672 * If we have not been able to reclaim
1673 * anything, it might because there are
1674 * no reclaimable pages under this hierarchy
1675 */
1676 if (!total)
1677 break;
1678 /*
1679 * We want to do more targeted reclaim.
1680 * excess >> 2 is not to excessive so as to
1681 * reclaim too much, nor too less that we keep
1682 * coming back to reclaim from this cgroup
1683 */
1684 if (total >= (excess >> 2) ||
1685 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1686 break;
1687 }
1688 continue;
1689 }
1690 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1691 pgdat, &nr_scanned);
1692 *total_scanned += nr_scanned;
1693 if (!soft_limit_excess(root_memcg))
1694 break;
1695 }
1696 mem_cgroup_iter_break(root_memcg, victim);
1697 return total;
1698 }
1699
1700 #ifdef CONFIG_LOCKDEP
1701 static struct lockdep_map memcg_oom_lock_dep_map = {
1702 .name = "memcg_oom_lock",
1703 };
1704 #endif
1705
1706 static DEFINE_SPINLOCK(memcg_oom_lock);
1707
1708 /*
1709 * Check OOM-Killer is already running under our hierarchy.
1710 * If someone is running, return false.
1711 */
1712 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1713 {
1714 struct mem_cgroup *iter, *failed = NULL;
1715
1716 spin_lock(&memcg_oom_lock);
1717
1718 for_each_mem_cgroup_tree(iter, memcg) {
1719 if (iter->oom_lock) {
1720 /*
1721 * this subtree of our hierarchy is already locked
1722 * so we cannot give a lock.
1723 */
1724 failed = iter;
1725 mem_cgroup_iter_break(memcg, iter);
1726 break;
1727 } else
1728 iter->oom_lock = true;
1729 }
1730
1731 if (failed) {
1732 /*
1733 * OK, we failed to lock the whole subtree so we have
1734 * to clean up what we set up to the failing subtree
1735 */
1736 for_each_mem_cgroup_tree(iter, memcg) {
1737 if (iter == failed) {
1738 mem_cgroup_iter_break(memcg, iter);
1739 break;
1740 }
1741 iter->oom_lock = false;
1742 }
1743 } else
1744 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1745
1746 spin_unlock(&memcg_oom_lock);
1747
1748 return !failed;
1749 }
1750
1751 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1752 {
1753 struct mem_cgroup *iter;
1754
1755 spin_lock(&memcg_oom_lock);
1756 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1757 for_each_mem_cgroup_tree(iter, memcg)
1758 iter->oom_lock = false;
1759 spin_unlock(&memcg_oom_lock);
1760 }
1761
1762 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1763 {
1764 struct mem_cgroup *iter;
1765
1766 spin_lock(&memcg_oom_lock);
1767 for_each_mem_cgroup_tree(iter, memcg)
1768 iter->under_oom++;
1769 spin_unlock(&memcg_oom_lock);
1770 }
1771
1772 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1773 {
1774 struct mem_cgroup *iter;
1775
1776 /*
1777 * Be careful about under_oom underflows because a child memcg
1778 * could have been added after mem_cgroup_mark_under_oom.
1779 */
1780 spin_lock(&memcg_oom_lock);
1781 for_each_mem_cgroup_tree(iter, memcg)
1782 if (iter->under_oom > 0)
1783 iter->under_oom--;
1784 spin_unlock(&memcg_oom_lock);
1785 }
1786
1787 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1788
1789 struct oom_wait_info {
1790 struct mem_cgroup *memcg;
1791 wait_queue_entry_t wait;
1792 };
1793
1794 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1795 unsigned mode, int sync, void *arg)
1796 {
1797 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1798 struct mem_cgroup *oom_wait_memcg;
1799 struct oom_wait_info *oom_wait_info;
1800
1801 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1802 oom_wait_memcg = oom_wait_info->memcg;
1803
1804 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1805 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1806 return 0;
1807 return autoremove_wake_function(wait, mode, sync, arg);
1808 }
1809
1810 static void memcg_oom_recover(struct mem_cgroup *memcg)
1811 {
1812 /*
1813 * For the following lockless ->under_oom test, the only required
1814 * guarantee is that it must see the state asserted by an OOM when
1815 * this function is called as a result of userland actions
1816 * triggered by the notification of the OOM. This is trivially
1817 * achieved by invoking mem_cgroup_mark_under_oom() before
1818 * triggering notification.
1819 */
1820 if (memcg && memcg->under_oom)
1821 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1822 }
1823
1824 enum oom_status {
1825 OOM_SUCCESS,
1826 OOM_FAILED,
1827 OOM_ASYNC,
1828 OOM_SKIPPED
1829 };
1830
1831 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1832 {
1833 enum oom_status ret;
1834 bool locked;
1835
1836 if (order > PAGE_ALLOC_COSTLY_ORDER)
1837 return OOM_SKIPPED;
1838
1839 memcg_memory_event(memcg, MEMCG_OOM);
1840
1841 /*
1842 * We are in the middle of the charge context here, so we
1843 * don't want to block when potentially sitting on a callstack
1844 * that holds all kinds of filesystem and mm locks.
1845 *
1846 * cgroup1 allows disabling the OOM killer and waiting for outside
1847 * handling until the charge can succeed; remember the context and put
1848 * the task to sleep at the end of the page fault when all locks are
1849 * released.
1850 *
1851 * On the other hand, in-kernel OOM killer allows for an async victim
1852 * memory reclaim (oom_reaper) and that means that we are not solely
1853 * relying on the oom victim to make a forward progress and we can
1854 * invoke the oom killer here.
1855 *
1856 * Please note that mem_cgroup_out_of_memory might fail to find a
1857 * victim and then we have to bail out from the charge path.
1858 */
1859 if (memcg->oom_kill_disable) {
1860 if (!current->in_user_fault)
1861 return OOM_SKIPPED;
1862 css_get(&memcg->css);
1863 current->memcg_in_oom = memcg;
1864 current->memcg_oom_gfp_mask = mask;
1865 current->memcg_oom_order = order;
1866
1867 return OOM_ASYNC;
1868 }
1869
1870 mem_cgroup_mark_under_oom(memcg);
1871
1872 locked = mem_cgroup_oom_trylock(memcg);
1873
1874 if (locked)
1875 mem_cgroup_oom_notify(memcg);
1876
1877 mem_cgroup_unmark_under_oom(memcg);
1878 if (mem_cgroup_out_of_memory(memcg, mask, order))
1879 ret = OOM_SUCCESS;
1880 else
1881 ret = OOM_FAILED;
1882
1883 if (locked)
1884 mem_cgroup_oom_unlock(memcg);
1885
1886 return ret;
1887 }
1888
1889 /**
1890 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1891 * @handle: actually kill/wait or just clean up the OOM state
1892 *
1893 * This has to be called at the end of a page fault if the memcg OOM
1894 * handler was enabled.
1895 *
1896 * Memcg supports userspace OOM handling where failed allocations must
1897 * sleep on a waitqueue until the userspace task resolves the
1898 * situation. Sleeping directly in the charge context with all kinds
1899 * of locks held is not a good idea, instead we remember an OOM state
1900 * in the task and mem_cgroup_oom_synchronize() has to be called at
1901 * the end of the page fault to complete the OOM handling.
1902 *
1903 * Returns %true if an ongoing memcg OOM situation was detected and
1904 * completed, %false otherwise.
1905 */
1906 bool mem_cgroup_oom_synchronize(bool handle)
1907 {
1908 struct mem_cgroup *memcg = current->memcg_in_oom;
1909 struct oom_wait_info owait;
1910 bool locked;
1911
1912 /* OOM is global, do not handle */
1913 if (!memcg)
1914 return false;
1915
1916 if (!handle)
1917 goto cleanup;
1918
1919 owait.memcg = memcg;
1920 owait.wait.flags = 0;
1921 owait.wait.func = memcg_oom_wake_function;
1922 owait.wait.private = current;
1923 INIT_LIST_HEAD(&owait.wait.entry);
1924
1925 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1926 mem_cgroup_mark_under_oom(memcg);
1927
1928 locked = mem_cgroup_oom_trylock(memcg);
1929
1930 if (locked)
1931 mem_cgroup_oom_notify(memcg);
1932
1933 if (locked && !memcg->oom_kill_disable) {
1934 mem_cgroup_unmark_under_oom(memcg);
1935 finish_wait(&memcg_oom_waitq, &owait.wait);
1936 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1937 current->memcg_oom_order);
1938 } else {
1939 schedule();
1940 mem_cgroup_unmark_under_oom(memcg);
1941 finish_wait(&memcg_oom_waitq, &owait.wait);
1942 }
1943
1944 if (locked) {
1945 mem_cgroup_oom_unlock(memcg);
1946 /*
1947 * There is no guarantee that an OOM-lock contender
1948 * sees the wakeups triggered by the OOM kill
1949 * uncharges. Wake any sleepers explicitly.
1950 */
1951 memcg_oom_recover(memcg);
1952 }
1953 cleanup:
1954 current->memcg_in_oom = NULL;
1955 css_put(&memcg->css);
1956 return true;
1957 }
1958
1959 /**
1960 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1961 * @victim: task to be killed by the OOM killer
1962 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1963 *
1964 * Returns a pointer to a memory cgroup, which has to be cleaned up
1965 * by killing all belonging OOM-killable tasks.
1966 *
1967 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1968 */
1969 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1970 struct mem_cgroup *oom_domain)
1971 {
1972 struct mem_cgroup *oom_group = NULL;
1973 struct mem_cgroup *memcg;
1974
1975 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1976 return NULL;
1977
1978 if (!oom_domain)
1979 oom_domain = root_mem_cgroup;
1980
1981 rcu_read_lock();
1982
1983 memcg = mem_cgroup_from_task(victim);
1984 if (memcg == root_mem_cgroup)
1985 goto out;
1986
1987 /*
1988 * If the victim task has been asynchronously moved to a different
1989 * memory cgroup, we might end up killing tasks outside oom_domain.
1990 * In this case it's better to ignore memory.group.oom.
1991 */
1992 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1993 goto out;
1994
1995 /*
1996 * Traverse the memory cgroup hierarchy from the victim task's
1997 * cgroup up to the OOMing cgroup (or root) to find the
1998 * highest-level memory cgroup with oom.group set.
1999 */
2000 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2001 if (memcg->oom_group)
2002 oom_group = memcg;
2003
2004 if (memcg == oom_domain)
2005 break;
2006 }
2007
2008 if (oom_group)
2009 css_get(&oom_group->css);
2010 out:
2011 rcu_read_unlock();
2012
2013 return oom_group;
2014 }
2015
2016 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2017 {
2018 pr_info("Tasks in ");
2019 pr_cont_cgroup_path(memcg->css.cgroup);
2020 pr_cont(" are going to be killed due to memory.oom.group set\n");
2021 }
2022
2023 /**
2024 * lock_page_memcg - lock a page and memcg binding
2025 * @page: the page
2026 *
2027 * This function protects unlocked LRU pages from being moved to
2028 * another cgroup.
2029 *
2030 * It ensures lifetime of the locked memcg. Caller is responsible
2031 * for the lifetime of the page.
2032 */
2033 void lock_page_memcg(struct page *page)
2034 {
2035 struct page *head = compound_head(page); /* rmap on tail pages */
2036 struct mem_cgroup *memcg;
2037 unsigned long flags;
2038
2039 /*
2040 * The RCU lock is held throughout the transaction. The fast
2041 * path can get away without acquiring the memcg->move_lock
2042 * because page moving starts with an RCU grace period.
2043 */
2044 rcu_read_lock();
2045
2046 if (mem_cgroup_disabled())
2047 return;
2048 again:
2049 memcg = page_memcg(head);
2050 if (unlikely(!memcg))
2051 return;
2052
2053 #ifdef CONFIG_PROVE_LOCKING
2054 local_irq_save(flags);
2055 might_lock(&memcg->move_lock);
2056 local_irq_restore(flags);
2057 #endif
2058
2059 if (atomic_read(&memcg->moving_account) <= 0)
2060 return;
2061
2062 spin_lock_irqsave(&memcg->move_lock, flags);
2063 if (memcg != page_memcg(head)) {
2064 spin_unlock_irqrestore(&memcg->move_lock, flags);
2065 goto again;
2066 }
2067
2068 /*
2069 * When charge migration first begins, we can have multiple
2070 * critical sections holding the fast-path RCU lock and one
2071 * holding the slowpath move_lock. Track the task who has the
2072 * move_lock for unlock_page_memcg().
2073 */
2074 memcg->move_lock_task = current;
2075 memcg->move_lock_flags = flags;
2076 }
2077 EXPORT_SYMBOL(lock_page_memcg);
2078
2079 static void __unlock_page_memcg(struct mem_cgroup *memcg)
2080 {
2081 if (memcg && memcg->move_lock_task == current) {
2082 unsigned long flags = memcg->move_lock_flags;
2083
2084 memcg->move_lock_task = NULL;
2085 memcg->move_lock_flags = 0;
2086
2087 spin_unlock_irqrestore(&memcg->move_lock, flags);
2088 }
2089
2090 rcu_read_unlock();
2091 }
2092
2093 /**
2094 * unlock_page_memcg - unlock a page and memcg binding
2095 * @page: the page
2096 */
2097 void unlock_page_memcg(struct page *page)
2098 {
2099 struct page *head = compound_head(page);
2100
2101 __unlock_page_memcg(page_memcg(head));
2102 }
2103 EXPORT_SYMBOL(unlock_page_memcg);
2104
2105 struct obj_stock {
2106 #ifdef CONFIG_MEMCG_KMEM
2107 struct obj_cgroup *cached_objcg;
2108 struct pglist_data *cached_pgdat;
2109 unsigned int nr_bytes;
2110 int nr_slab_reclaimable_b;
2111 int nr_slab_unreclaimable_b;
2112 #else
2113 int dummy[0];
2114 #endif
2115 };
2116
2117 struct memcg_stock_pcp {
2118 struct mem_cgroup *cached; /* this never be root cgroup */
2119 unsigned int nr_pages;
2120 struct obj_stock task_obj;
2121 struct obj_stock irq_obj;
2122
2123 struct work_struct work;
2124 unsigned long flags;
2125 #define FLUSHING_CACHED_CHARGE 0
2126 };
2127 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2128 static DEFINE_MUTEX(percpu_charge_mutex);
2129
2130 #ifdef CONFIG_MEMCG_KMEM
2131 static void drain_obj_stock(struct obj_stock *stock);
2132 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2133 struct mem_cgroup *root_memcg);
2134
2135 #else
2136 static inline void drain_obj_stock(struct obj_stock *stock)
2137 {
2138 }
2139 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2140 struct mem_cgroup *root_memcg)
2141 {
2142 return false;
2143 }
2144 #endif
2145
2146 /*
2147 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2148 * sequence used in this case to access content from object stock is slow.
2149 * To optimize for user context access, there are now two object stocks for
2150 * task context and interrupt context access respectively.
2151 *
2152 * The task context object stock can be accessed by disabling preemption only
2153 * which is cheap in non-preempt kernel. The interrupt context object stock
2154 * can only be accessed after disabling interrupt. User context code can
2155 * access interrupt object stock, but not vice versa.
2156 */
2157 static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2158 {
2159 struct memcg_stock_pcp *stock;
2160
2161 if (likely(in_task())) {
2162 *pflags = 0UL;
2163 preempt_disable();
2164 stock = this_cpu_ptr(&memcg_stock);
2165 return &stock->task_obj;
2166 }
2167
2168 local_irq_save(*pflags);
2169 stock = this_cpu_ptr(&memcg_stock);
2170 return &stock->irq_obj;
2171 }
2172
2173 static inline void put_obj_stock(unsigned long flags)
2174 {
2175 if (likely(in_task()))
2176 preempt_enable();
2177 else
2178 local_irq_restore(flags);
2179 }
2180
2181 /**
2182 * consume_stock: Try to consume stocked charge on this cpu.
2183 * @memcg: memcg to consume from.
2184 * @nr_pages: how many pages to charge.
2185 *
2186 * The charges will only happen if @memcg matches the current cpu's memcg
2187 * stock, and at least @nr_pages are available in that stock. Failure to
2188 * service an allocation will refill the stock.
2189 *
2190 * returns true if successful, false otherwise.
2191 */
2192 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2193 {
2194 struct memcg_stock_pcp *stock;
2195 unsigned long flags;
2196 bool ret = false;
2197
2198 if (nr_pages > MEMCG_CHARGE_BATCH)
2199 return ret;
2200
2201 local_irq_save(flags);
2202
2203 stock = this_cpu_ptr(&memcg_stock);
2204 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2205 stock->nr_pages -= nr_pages;
2206 ret = true;
2207 }
2208
2209 local_irq_restore(flags);
2210
2211 return ret;
2212 }
2213
2214 /*
2215 * Returns stocks cached in percpu and reset cached information.
2216 */
2217 static void drain_stock(struct memcg_stock_pcp *stock)
2218 {
2219 struct mem_cgroup *old = stock->cached;
2220
2221 if (!old)
2222 return;
2223
2224 if (stock->nr_pages) {
2225 page_counter_uncharge(&old->memory, stock->nr_pages);
2226 if (do_memsw_account())
2227 page_counter_uncharge(&old->memsw, stock->nr_pages);
2228 stock->nr_pages = 0;
2229 }
2230
2231 css_put(&old->css);
2232 stock->cached = NULL;
2233 }
2234
2235 static void drain_local_stock(struct work_struct *dummy)
2236 {
2237 struct memcg_stock_pcp *stock;
2238 unsigned long flags;
2239
2240 /*
2241 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2242 * drain_stock races is that we always operate on local CPU stock
2243 * here with IRQ disabled
2244 */
2245 local_irq_save(flags);
2246
2247 stock = this_cpu_ptr(&memcg_stock);
2248 drain_obj_stock(&stock->irq_obj);
2249 if (in_task())
2250 drain_obj_stock(&stock->task_obj);
2251 drain_stock(stock);
2252 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2253
2254 local_irq_restore(flags);
2255 }
2256
2257 /*
2258 * Cache charges(val) to local per_cpu area.
2259 * This will be consumed by consume_stock() function, later.
2260 */
2261 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2262 {
2263 struct memcg_stock_pcp *stock;
2264 unsigned long flags;
2265
2266 local_irq_save(flags);
2267
2268 stock = this_cpu_ptr(&memcg_stock);
2269 if (stock->cached != memcg) { /* reset if necessary */
2270 drain_stock(stock);
2271 css_get(&memcg->css);
2272 stock->cached = memcg;
2273 }
2274 stock->nr_pages += nr_pages;
2275
2276 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2277 drain_stock(stock);
2278
2279 local_irq_restore(flags);
2280 }
2281
2282 /*
2283 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2284 * of the hierarchy under it.
2285 */
2286 static void drain_all_stock(struct mem_cgroup *root_memcg)
2287 {
2288 int cpu, curcpu;
2289
2290 /* If someone's already draining, avoid adding running more workers. */
2291 if (!mutex_trylock(&percpu_charge_mutex))
2292 return;
2293 /*
2294 * Notify other cpus that system-wide "drain" is running
2295 * We do not care about races with the cpu hotplug because cpu down
2296 * as well as workers from this path always operate on the local
2297 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2298 */
2299 curcpu = get_cpu();
2300 for_each_online_cpu(cpu) {
2301 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2302 struct mem_cgroup *memcg;
2303 bool flush = false;
2304
2305 rcu_read_lock();
2306 memcg = stock->cached;
2307 if (memcg && stock->nr_pages &&
2308 mem_cgroup_is_descendant(memcg, root_memcg))
2309 flush = true;
2310 else if (obj_stock_flush_required(stock, root_memcg))
2311 flush = true;
2312 rcu_read_unlock();
2313
2314 if (flush &&
2315 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2316 if (cpu == curcpu)
2317 drain_local_stock(&stock->work);
2318 else
2319 schedule_work_on(cpu, &stock->work);
2320 }
2321 }
2322 put_cpu();
2323 mutex_unlock(&percpu_charge_mutex);
2324 }
2325
2326 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2327 {
2328 struct memcg_stock_pcp *stock;
2329
2330 stock = &per_cpu(memcg_stock, cpu);
2331 drain_stock(stock);
2332
2333 return 0;
2334 }
2335
2336 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2337 unsigned int nr_pages,
2338 gfp_t gfp_mask)
2339 {
2340 unsigned long nr_reclaimed = 0;
2341
2342 do {
2343 unsigned long pflags;
2344
2345 if (page_counter_read(&memcg->memory) <=
2346 READ_ONCE(memcg->memory.high))
2347 continue;
2348
2349 memcg_memory_event(memcg, MEMCG_HIGH);
2350
2351 psi_memstall_enter(&pflags);
2352 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2353 gfp_mask, true);
2354 psi_memstall_leave(&pflags);
2355 } while ((memcg = parent_mem_cgroup(memcg)) &&
2356 !mem_cgroup_is_root(memcg));
2357
2358 return nr_reclaimed;
2359 }
2360
2361 static void high_work_func(struct work_struct *work)
2362 {
2363 struct mem_cgroup *memcg;
2364
2365 memcg = container_of(work, struct mem_cgroup, high_work);
2366 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2367 }
2368
2369 /*
2370 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2371 * enough to still cause a significant slowdown in most cases, while still
2372 * allowing diagnostics and tracing to proceed without becoming stuck.
2373 */
2374 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2375
2376 /*
2377 * When calculating the delay, we use these either side of the exponentiation to
2378 * maintain precision and scale to a reasonable number of jiffies (see the table
2379 * below.
2380 *
2381 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2382 * overage ratio to a delay.
2383 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2384 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2385 * to produce a reasonable delay curve.
2386 *
2387 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2388 * reasonable delay curve compared to precision-adjusted overage, not
2389 * penalising heavily at first, but still making sure that growth beyond the
2390 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2391 * example, with a high of 100 megabytes:
2392 *
2393 * +-------+------------------------+
2394 * | usage | time to allocate in ms |
2395 * +-------+------------------------+
2396 * | 100M | 0 |
2397 * | 101M | 6 |
2398 * | 102M | 25 |
2399 * | 103M | 57 |
2400 * | 104M | 102 |
2401 * | 105M | 159 |
2402 * | 106M | 230 |
2403 * | 107M | 313 |
2404 * | 108M | 409 |
2405 * | 109M | 518 |
2406 * | 110M | 639 |
2407 * | 111M | 774 |
2408 * | 112M | 921 |
2409 * | 113M | 1081 |
2410 * | 114M | 1254 |
2411 * | 115M | 1439 |
2412 * | 116M | 1638 |
2413 * | 117M | 1849 |
2414 * | 118M | 2000 |
2415 * | 119M | 2000 |
2416 * | 120M | 2000 |
2417 * +-------+------------------------+
2418 */
2419 #define MEMCG_DELAY_PRECISION_SHIFT 20
2420 #define MEMCG_DELAY_SCALING_SHIFT 14
2421
2422 static u64 calculate_overage(unsigned long usage, unsigned long high)
2423 {
2424 u64 overage;
2425
2426 if (usage <= high)
2427 return 0;
2428
2429 /*
2430 * Prevent division by 0 in overage calculation by acting as if
2431 * it was a threshold of 1 page
2432 */
2433 high = max(high, 1UL);
2434
2435 overage = usage - high;
2436 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2437 return div64_u64(overage, high);
2438 }
2439
2440 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2441 {
2442 u64 overage, max_overage = 0;
2443
2444 do {
2445 overage = calculate_overage(page_counter_read(&memcg->memory),
2446 READ_ONCE(memcg->memory.high));
2447 max_overage = max(overage, max_overage);
2448 } while ((memcg = parent_mem_cgroup(memcg)) &&
2449 !mem_cgroup_is_root(memcg));
2450
2451 return max_overage;
2452 }
2453
2454 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2455 {
2456 u64 overage, max_overage = 0;
2457
2458 do {
2459 overage = calculate_overage(page_counter_read(&memcg->swap),
2460 READ_ONCE(memcg->swap.high));
2461 if (overage)
2462 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2463 max_overage = max(overage, max_overage);
2464 } while ((memcg = parent_mem_cgroup(memcg)) &&
2465 !mem_cgroup_is_root(memcg));
2466
2467 return max_overage;
2468 }
2469
2470 /*
2471 * Get the number of jiffies that we should penalise a mischievous cgroup which
2472 * is exceeding its memory.high by checking both it and its ancestors.
2473 */
2474 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2475 unsigned int nr_pages,
2476 u64 max_overage)
2477 {
2478 unsigned long penalty_jiffies;
2479
2480 if (!max_overage)
2481 return 0;
2482
2483 /*
2484 * We use overage compared to memory.high to calculate the number of
2485 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2486 * fairly lenient on small overages, and increasingly harsh when the
2487 * memcg in question makes it clear that it has no intention of stopping
2488 * its crazy behaviour, so we exponentially increase the delay based on
2489 * overage amount.
2490 */
2491 penalty_jiffies = max_overage * max_overage * HZ;
2492 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2493 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2494
2495 /*
2496 * Factor in the task's own contribution to the overage, such that four
2497 * N-sized allocations are throttled approximately the same as one
2498 * 4N-sized allocation.
2499 *
2500 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2501 * larger the current charge patch is than that.
2502 */
2503 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2504 }
2505
2506 /*
2507 * Scheduled by try_charge() to be executed from the userland return path
2508 * and reclaims memory over the high limit.
2509 */
2510 void mem_cgroup_handle_over_high(void)
2511 {
2512 unsigned long penalty_jiffies;
2513 unsigned long pflags;
2514 unsigned long nr_reclaimed;
2515 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2516 int nr_retries = MAX_RECLAIM_RETRIES;
2517 struct mem_cgroup *memcg;
2518 bool in_retry = false;
2519
2520 if (likely(!nr_pages))
2521 return;
2522
2523 memcg = get_mem_cgroup_from_mm(current->mm);
2524 current->memcg_nr_pages_over_high = 0;
2525
2526 retry_reclaim:
2527 /*
2528 * The allocating task should reclaim at least the batch size, but for
2529 * subsequent retries we only want to do what's necessary to prevent oom
2530 * or breaching resource isolation.
2531 *
2532 * This is distinct from memory.max or page allocator behaviour because
2533 * memory.high is currently batched, whereas memory.max and the page
2534 * allocator run every time an allocation is made.
2535 */
2536 nr_reclaimed = reclaim_high(memcg,
2537 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2538 GFP_KERNEL);
2539
2540 /*
2541 * memory.high is breached and reclaim is unable to keep up. Throttle
2542 * allocators proactively to slow down excessive growth.
2543 */
2544 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2545 mem_find_max_overage(memcg));
2546
2547 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2548 swap_find_max_overage(memcg));
2549
2550 /*
2551 * Clamp the max delay per usermode return so as to still keep the
2552 * application moving forwards and also permit diagnostics, albeit
2553 * extremely slowly.
2554 */
2555 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2556
2557 /*
2558 * Don't sleep if the amount of jiffies this memcg owes us is so low
2559 * that it's not even worth doing, in an attempt to be nice to those who
2560 * go only a small amount over their memory.high value and maybe haven't
2561 * been aggressively reclaimed enough yet.
2562 */
2563 if (penalty_jiffies <= HZ / 100)
2564 goto out;
2565
2566 /*
2567 * If reclaim is making forward progress but we're still over
2568 * memory.high, we want to encourage that rather than doing allocator
2569 * throttling.
2570 */
2571 if (nr_reclaimed || nr_retries--) {
2572 in_retry = true;
2573 goto retry_reclaim;
2574 }
2575
2576 /*
2577 * If we exit early, we're guaranteed to die (since
2578 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2579 * need to account for any ill-begotten jiffies to pay them off later.
2580 */
2581 psi_memstall_enter(&pflags);
2582 schedule_timeout_killable(penalty_jiffies);
2583 psi_memstall_leave(&pflags);
2584
2585 out:
2586 css_put(&memcg->css);
2587 }
2588
2589 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2590 unsigned int nr_pages)
2591 {
2592 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2593 int nr_retries = MAX_RECLAIM_RETRIES;
2594 struct mem_cgroup *mem_over_limit;
2595 struct page_counter *counter;
2596 enum oom_status oom_status;
2597 unsigned long nr_reclaimed;
2598 bool passed_oom = false;
2599 bool may_swap = true;
2600 bool drained = false;
2601 unsigned long pflags;
2602
2603 retry:
2604 if (consume_stock(memcg, nr_pages))
2605 return 0;
2606
2607 if (!do_memsw_account() ||
2608 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2609 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2610 goto done_restock;
2611 if (do_memsw_account())
2612 page_counter_uncharge(&memcg->memsw, batch);
2613 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2614 } else {
2615 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2616 may_swap = false;
2617 }
2618
2619 if (batch > nr_pages) {
2620 batch = nr_pages;
2621 goto retry;
2622 }
2623
2624 /*
2625 * Memcg doesn't have a dedicated reserve for atomic
2626 * allocations. But like the global atomic pool, we need to
2627 * put the burden of reclaim on regular allocation requests
2628 * and let these go through as privileged allocations.
2629 */
2630 if (gfp_mask & __GFP_ATOMIC)
2631 goto force;
2632
2633 /*
2634 * Prevent unbounded recursion when reclaim operations need to
2635 * allocate memory. This might exceed the limits temporarily,
2636 * but we prefer facilitating memory reclaim and getting back
2637 * under the limit over triggering OOM kills in these cases.
2638 */
2639 if (unlikely(current->flags & PF_MEMALLOC))
2640 goto force;
2641
2642 if (unlikely(task_in_memcg_oom(current)))
2643 goto nomem;
2644
2645 if (!gfpflags_allow_blocking(gfp_mask))
2646 goto nomem;
2647
2648 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2649
2650 psi_memstall_enter(&pflags);
2651 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2652 gfp_mask, may_swap);
2653 psi_memstall_leave(&pflags);
2654
2655 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2656 goto retry;
2657
2658 if (!drained) {
2659 drain_all_stock(mem_over_limit);
2660 drained = true;
2661 goto retry;
2662 }
2663
2664 if (gfp_mask & __GFP_NORETRY)
2665 goto nomem;
2666 /*
2667 * Even though the limit is exceeded at this point, reclaim
2668 * may have been able to free some pages. Retry the charge
2669 * before killing the task.
2670 *
2671 * Only for regular pages, though: huge pages are rather
2672 * unlikely to succeed so close to the limit, and we fall back
2673 * to regular pages anyway in case of failure.
2674 */
2675 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2676 goto retry;
2677 /*
2678 * At task move, charge accounts can be doubly counted. So, it's
2679 * better to wait until the end of task_move if something is going on.
2680 */
2681 if (mem_cgroup_wait_acct_move(mem_over_limit))
2682 goto retry;
2683
2684 if (nr_retries--)
2685 goto retry;
2686
2687 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2688 goto nomem;
2689
2690 /* Avoid endless loop for tasks bypassed by the oom killer */
2691 if (passed_oom && task_is_dying())
2692 goto nomem;
2693
2694 /*
2695 * keep retrying as long as the memcg oom killer is able to make
2696 * a forward progress or bypass the charge if the oom killer
2697 * couldn't make any progress.
2698 */
2699 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2700 get_order(nr_pages * PAGE_SIZE));
2701 if (oom_status == OOM_SUCCESS) {
2702 passed_oom = true;
2703 nr_retries = MAX_RECLAIM_RETRIES;
2704 goto retry;
2705 }
2706 nomem:
2707 if (!(gfp_mask & __GFP_NOFAIL))
2708 return -ENOMEM;
2709 force:
2710 /*
2711 * The allocation either can't fail or will lead to more memory
2712 * being freed very soon. Allow memory usage go over the limit
2713 * temporarily by force charging it.
2714 */
2715 page_counter_charge(&memcg->memory, nr_pages);
2716 if (do_memsw_account())
2717 page_counter_charge(&memcg->memsw, nr_pages);
2718
2719 return 0;
2720
2721 done_restock:
2722 if (batch > nr_pages)
2723 refill_stock(memcg, batch - nr_pages);
2724
2725 /*
2726 * If the hierarchy is above the normal consumption range, schedule
2727 * reclaim on returning to userland. We can perform reclaim here
2728 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2729 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2730 * not recorded as it most likely matches current's and won't
2731 * change in the meantime. As high limit is checked again before
2732 * reclaim, the cost of mismatch is negligible.
2733 */
2734 do {
2735 bool mem_high, swap_high;
2736
2737 mem_high = page_counter_read(&memcg->memory) >
2738 READ_ONCE(memcg->memory.high);
2739 swap_high = page_counter_read(&memcg->swap) >
2740 READ_ONCE(memcg->swap.high);
2741
2742 /* Don't bother a random interrupted task */
2743 if (in_interrupt()) {
2744 if (mem_high) {
2745 schedule_work(&memcg->high_work);
2746 break;
2747 }
2748 continue;
2749 }
2750
2751 if (mem_high || swap_high) {
2752 /*
2753 * The allocating tasks in this cgroup will need to do
2754 * reclaim or be throttled to prevent further growth
2755 * of the memory or swap footprints.
2756 *
2757 * Target some best-effort fairness between the tasks,
2758 * and distribute reclaim work and delay penalties
2759 * based on how much each task is actually allocating.
2760 */
2761 current->memcg_nr_pages_over_high += batch;
2762 set_notify_resume(current);
2763 break;
2764 }
2765 } while ((memcg = parent_mem_cgroup(memcg)));
2766
2767 return 0;
2768 }
2769
2770 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2771 unsigned int nr_pages)
2772 {
2773 if (mem_cgroup_is_root(memcg))
2774 return 0;
2775
2776 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2777 }
2778
2779 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2780 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2781 {
2782 if (mem_cgroup_is_root(memcg))
2783 return;
2784
2785 page_counter_uncharge(&memcg->memory, nr_pages);
2786 if (do_memsw_account())
2787 page_counter_uncharge(&memcg->memsw, nr_pages);
2788 }
2789 #endif
2790
2791 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2792 {
2793 VM_BUG_ON_PAGE(page_memcg(page), page);
2794 /*
2795 * Any of the following ensures page's memcg stability:
2796 *
2797 * - the page lock
2798 * - LRU isolation
2799 * - lock_page_memcg()
2800 * - exclusive reference
2801 */
2802 page->memcg_data = (unsigned long)memcg;
2803 }
2804
2805 static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2806 {
2807 struct mem_cgroup *memcg;
2808
2809 rcu_read_lock();
2810 retry:
2811 memcg = obj_cgroup_memcg(objcg);
2812 if (unlikely(!css_tryget(&memcg->css)))
2813 goto retry;
2814 rcu_read_unlock();
2815
2816 return memcg;
2817 }
2818
2819 #ifdef CONFIG_MEMCG_KMEM
2820 /*
2821 * The allocated objcg pointers array is not accounted directly.
2822 * Moreover, it should not come from DMA buffer and is not readily
2823 * reclaimable. So those GFP bits should be masked off.
2824 */
2825 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2826
2827 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2828 gfp_t gfp, bool new_page)
2829 {
2830 unsigned int objects = objs_per_slab_page(s, page);
2831 unsigned long memcg_data;
2832 void *vec;
2833
2834 gfp &= ~OBJCGS_CLEAR_MASK;
2835 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2836 page_to_nid(page));
2837 if (!vec)
2838 return -ENOMEM;
2839
2840 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2841 if (new_page) {
2842 /*
2843 * If the slab page is brand new and nobody can yet access
2844 * it's memcg_data, no synchronization is required and
2845 * memcg_data can be simply assigned.
2846 */
2847 page->memcg_data = memcg_data;
2848 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2849 /*
2850 * If the slab page is already in use, somebody can allocate
2851 * and assign obj_cgroups in parallel. In this case the existing
2852 * objcg vector should be reused.
2853 */
2854 kfree(vec);
2855 return 0;
2856 }
2857
2858 kmemleak_not_leak(vec);
2859 return 0;
2860 }
2861
2862 /*
2863 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2864 *
2865 * A passed kernel object can be a slab object or a generic kernel page, so
2866 * different mechanisms for getting the memory cgroup pointer should be used.
2867 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2868 * can not know for sure how the kernel object is implemented.
2869 * mem_cgroup_from_obj() can be safely used in such cases.
2870 *
2871 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2872 * cgroup_mutex, etc.
2873 */
2874 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2875 {
2876 struct page *page;
2877
2878 if (mem_cgroup_disabled())
2879 return NULL;
2880
2881 page = virt_to_head_page(p);
2882
2883 /*
2884 * Slab objects are accounted individually, not per-page.
2885 * Memcg membership data for each individual object is saved in
2886 * the page->obj_cgroups.
2887 */
2888 if (page_objcgs_check(page)) {
2889 struct obj_cgroup *objcg;
2890 unsigned int off;
2891
2892 off = obj_to_index(page->slab_cache, page, p);
2893 objcg = page_objcgs(page)[off];
2894 if (objcg)
2895 return obj_cgroup_memcg(objcg);
2896
2897 return NULL;
2898 }
2899
2900 /*
2901 * page_memcg_check() is used here, because page_has_obj_cgroups()
2902 * check above could fail because the object cgroups vector wasn't set
2903 * at that moment, but it can be set concurrently.
2904 * page_memcg_check(page) will guarantee that a proper memory
2905 * cgroup pointer or NULL will be returned.
2906 */
2907 return page_memcg_check(page);
2908 }
2909
2910 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2911 {
2912 struct obj_cgroup *objcg = NULL;
2913 struct mem_cgroup *memcg;
2914
2915 if (memcg_kmem_bypass())
2916 return NULL;
2917
2918 rcu_read_lock();
2919 if (unlikely(active_memcg()))
2920 memcg = active_memcg();
2921 else
2922 memcg = mem_cgroup_from_task(current);
2923
2924 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2925 objcg = rcu_dereference(memcg->objcg);
2926 if (objcg && obj_cgroup_tryget(objcg))
2927 break;
2928 objcg = NULL;
2929 }
2930 rcu_read_unlock();
2931
2932 return objcg;
2933 }
2934
2935 static int memcg_alloc_cache_id(void)
2936 {
2937 int id, size;
2938 int err;
2939
2940 id = ida_simple_get(&memcg_cache_ida,
2941 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2942 if (id < 0)
2943 return id;
2944
2945 if (id < memcg_nr_cache_ids)
2946 return id;
2947
2948 /*
2949 * There's no space for the new id in memcg_caches arrays,
2950 * so we have to grow them.
2951 */
2952 down_write(&memcg_cache_ids_sem);
2953
2954 size = 2 * (id + 1);
2955 if (size < MEMCG_CACHES_MIN_SIZE)
2956 size = MEMCG_CACHES_MIN_SIZE;
2957 else if (size > MEMCG_CACHES_MAX_SIZE)
2958 size = MEMCG_CACHES_MAX_SIZE;
2959
2960 err = memcg_update_all_list_lrus(size);
2961 if (!err)
2962 memcg_nr_cache_ids = size;
2963
2964 up_write(&memcg_cache_ids_sem);
2965
2966 if (err) {
2967 ida_simple_remove(&memcg_cache_ida, id);
2968 return err;
2969 }
2970 return id;
2971 }
2972
2973 static void memcg_free_cache_id(int id)
2974 {
2975 ida_simple_remove(&memcg_cache_ida, id);
2976 }
2977
2978 /*
2979 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2980 * @objcg: object cgroup to uncharge
2981 * @nr_pages: number of pages to uncharge
2982 */
2983 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2984 unsigned int nr_pages)
2985 {
2986 struct mem_cgroup *memcg;
2987
2988 memcg = get_mem_cgroup_from_objcg(objcg);
2989
2990 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2991 page_counter_uncharge(&memcg->kmem, nr_pages);
2992 refill_stock(memcg, nr_pages);
2993
2994 css_put(&memcg->css);
2995 }
2996
2997 /*
2998 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2999 * @objcg: object cgroup to charge
3000 * @gfp: reclaim mode
3001 * @nr_pages: number of pages to charge
3002 *
3003 * Returns 0 on success, an error code on failure.
3004 */
3005 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3006 unsigned int nr_pages)
3007 {
3008 struct page_counter *counter;
3009 struct mem_cgroup *memcg;
3010 int ret;
3011
3012 memcg = get_mem_cgroup_from_objcg(objcg);
3013
3014 ret = try_charge_memcg(memcg, gfp, nr_pages);
3015 if (ret)
3016 goto out;
3017
3018 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3019 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3020
3021 /*
3022 * Enforce __GFP_NOFAIL allocation because callers are not
3023 * prepared to see failures and likely do not have any failure
3024 * handling code.
3025 */
3026 if (gfp & __GFP_NOFAIL) {
3027 page_counter_charge(&memcg->kmem, nr_pages);
3028 goto out;
3029 }
3030 cancel_charge(memcg, nr_pages);
3031 ret = -ENOMEM;
3032 }
3033 out:
3034 css_put(&memcg->css);
3035
3036 return ret;
3037 }
3038
3039 /**
3040 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3041 * @page: page to charge
3042 * @gfp: reclaim mode
3043 * @order: allocation order
3044 *
3045 * Returns 0 on success, an error code on failure.
3046 */
3047 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3048 {
3049 struct obj_cgroup *objcg;
3050 int ret = 0;
3051
3052 objcg = get_obj_cgroup_from_current();
3053 if (objcg) {
3054 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3055 if (!ret) {
3056 page->memcg_data = (unsigned long)objcg |
3057 MEMCG_DATA_KMEM;
3058 return 0;
3059 }
3060 obj_cgroup_put(objcg);
3061 }
3062 return ret;
3063 }
3064
3065 /**
3066 * __memcg_kmem_uncharge_page: uncharge a kmem page
3067 * @page: page to uncharge
3068 * @order: allocation order
3069 */
3070 void __memcg_kmem_uncharge_page(struct page *page, int order)
3071 {
3072 struct obj_cgroup *objcg;
3073 unsigned int nr_pages = 1 << order;
3074
3075 if (!PageMemcgKmem(page))
3076 return;
3077
3078 objcg = __page_objcg(page);
3079 obj_cgroup_uncharge_pages(objcg, nr_pages);
3080 page->memcg_data = 0;
3081 obj_cgroup_put(objcg);
3082 }
3083
3084 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3085 enum node_stat_item idx, int nr)
3086 {
3087 unsigned long flags;
3088 struct obj_stock *stock = get_obj_stock(&flags);
3089 int *bytes;
3090
3091 /*
3092 * Save vmstat data in stock and skip vmstat array update unless
3093 * accumulating over a page of vmstat data or when pgdat or idx
3094 * changes.
3095 */
3096 if (stock->cached_objcg != objcg) {
3097 drain_obj_stock(stock);
3098 obj_cgroup_get(objcg);
3099 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3100 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3101 stock->cached_objcg = objcg;
3102 stock->cached_pgdat = pgdat;
3103 } else if (stock->cached_pgdat != pgdat) {
3104 /* Flush the existing cached vmstat data */
3105 struct pglist_data *oldpg = stock->cached_pgdat;
3106
3107 if (stock->nr_slab_reclaimable_b) {
3108 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3109 stock->nr_slab_reclaimable_b);
3110 stock->nr_slab_reclaimable_b = 0;
3111 }
3112 if (stock->nr_slab_unreclaimable_b) {
3113 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3114 stock->nr_slab_unreclaimable_b);
3115 stock->nr_slab_unreclaimable_b = 0;
3116 }
3117 stock->cached_pgdat = pgdat;
3118 }
3119
3120 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3121 : &stock->nr_slab_unreclaimable_b;
3122 /*
3123 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3124 * cached locally at least once before pushing it out.
3125 */
3126 if (!*bytes) {
3127 *bytes = nr;
3128 nr = 0;
3129 } else {
3130 *bytes += nr;
3131 if (abs(*bytes) > PAGE_SIZE) {
3132 nr = *bytes;
3133 *bytes = 0;
3134 } else {
3135 nr = 0;
3136 }
3137 }
3138 if (nr)
3139 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3140
3141 put_obj_stock(flags);
3142 }
3143
3144 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3145 {
3146 unsigned long flags;
3147 struct obj_stock *stock = get_obj_stock(&flags);
3148 bool ret = false;
3149
3150 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3151 stock->nr_bytes -= nr_bytes;
3152 ret = true;
3153 }
3154
3155 put_obj_stock(flags);
3156
3157 return ret;
3158 }
3159
3160 static void drain_obj_stock(struct obj_stock *stock)
3161 {
3162 struct obj_cgroup *old = stock->cached_objcg;
3163
3164 if (!old)
3165 return;
3166
3167 if (stock->nr_bytes) {
3168 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3169 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3170
3171 if (nr_pages)
3172 obj_cgroup_uncharge_pages(old, nr_pages);
3173
3174 /*
3175 * The leftover is flushed to the centralized per-memcg value.
3176 * On the next attempt to refill obj stock it will be moved
3177 * to a per-cpu stock (probably, on an other CPU), see
3178 * refill_obj_stock().
3179 *
3180 * How often it's flushed is a trade-off between the memory
3181 * limit enforcement accuracy and potential CPU contention,
3182 * so it might be changed in the future.
3183 */
3184 atomic_add(nr_bytes, &old->nr_charged_bytes);
3185 stock->nr_bytes = 0;
3186 }
3187
3188 /*
3189 * Flush the vmstat data in current stock
3190 */
3191 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3192 if (stock->nr_slab_reclaimable_b) {
3193 mod_objcg_mlstate(old, stock->cached_pgdat,
3194 NR_SLAB_RECLAIMABLE_B,
3195 stock->nr_slab_reclaimable_b);
3196 stock->nr_slab_reclaimable_b = 0;
3197 }
3198 if (stock->nr_slab_unreclaimable_b) {
3199 mod_objcg_mlstate(old, stock->cached_pgdat,
3200 NR_SLAB_UNRECLAIMABLE_B,
3201 stock->nr_slab_unreclaimable_b);
3202 stock->nr_slab_unreclaimable_b = 0;
3203 }
3204 stock->cached_pgdat = NULL;
3205 }
3206
3207 obj_cgroup_put(old);
3208 stock->cached_objcg = NULL;
3209 }
3210
3211 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3212 struct mem_cgroup *root_memcg)
3213 {
3214 struct mem_cgroup *memcg;
3215
3216 if (in_task() && stock->task_obj.cached_objcg) {
3217 memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3218 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3219 return true;
3220 }
3221 if (stock->irq_obj.cached_objcg) {
3222 memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
3223 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3224 return true;
3225 }
3226
3227 return false;
3228 }
3229
3230 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3231 bool allow_uncharge)
3232 {
3233 unsigned long flags;
3234 struct obj_stock *stock = get_obj_stock(&flags);
3235 unsigned int nr_pages = 0;
3236
3237 if (stock->cached_objcg != objcg) { /* reset if necessary */
3238 drain_obj_stock(stock);
3239 obj_cgroup_get(objcg);
3240 stock->cached_objcg = objcg;
3241 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3242 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3243 allow_uncharge = true; /* Allow uncharge when objcg changes */
3244 }
3245 stock->nr_bytes += nr_bytes;
3246
3247 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3248 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3249 stock->nr_bytes &= (PAGE_SIZE - 1);
3250 }
3251
3252 put_obj_stock(flags);
3253
3254 if (nr_pages)
3255 obj_cgroup_uncharge_pages(objcg, nr_pages);
3256 }
3257
3258 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3259 {
3260 unsigned int nr_pages, nr_bytes;
3261 int ret;
3262
3263 if (consume_obj_stock(objcg, size))
3264 return 0;
3265
3266 /*
3267 * In theory, objcg->nr_charged_bytes can have enough
3268 * pre-charged bytes to satisfy the allocation. However,
3269 * flushing objcg->nr_charged_bytes requires two atomic
3270 * operations, and objcg->nr_charged_bytes can't be big.
3271 * The shared objcg->nr_charged_bytes can also become a
3272 * performance bottleneck if all tasks of the same memcg are
3273 * trying to update it. So it's better to ignore it and try
3274 * grab some new pages. The stock's nr_bytes will be flushed to
3275 * objcg->nr_charged_bytes later on when objcg changes.
3276 *
3277 * The stock's nr_bytes may contain enough pre-charged bytes
3278 * to allow one less page from being charged, but we can't rely
3279 * on the pre-charged bytes not being changed outside of
3280 * consume_obj_stock() or refill_obj_stock(). So ignore those
3281 * pre-charged bytes as well when charging pages. To avoid a
3282 * page uncharge right after a page charge, we set the
3283 * allow_uncharge flag to false when calling refill_obj_stock()
3284 * to temporarily allow the pre-charged bytes to exceed the page
3285 * size limit. The maximum reachable value of the pre-charged
3286 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3287 * race.
3288 */
3289 nr_pages = size >> PAGE_SHIFT;
3290 nr_bytes = size & (PAGE_SIZE - 1);
3291
3292 if (nr_bytes)
3293 nr_pages += 1;
3294
3295 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3296 if (!ret && nr_bytes)
3297 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3298
3299 return ret;
3300 }
3301
3302 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3303 {
3304 refill_obj_stock(objcg, size, true);
3305 }
3306
3307 #endif /* CONFIG_MEMCG_KMEM */
3308
3309 /*
3310 * Because page_memcg(head) is not set on tails, set it now.
3311 */
3312 void split_page_memcg(struct page *head, unsigned int nr)
3313 {
3314 struct mem_cgroup *memcg = page_memcg(head);
3315 int i;
3316
3317 if (mem_cgroup_disabled() || !memcg)
3318 return;
3319
3320 for (i = 1; i < nr; i++)
3321 head[i].memcg_data = head->memcg_data;
3322
3323 if (PageMemcgKmem(head))
3324 obj_cgroup_get_many(__page_objcg(head), nr - 1);
3325 else
3326 css_get_many(&memcg->css, nr - 1);
3327 }
3328
3329 #ifdef CONFIG_MEMCG_SWAP
3330 /**
3331 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3332 * @entry: swap entry to be moved
3333 * @from: mem_cgroup which the entry is moved from
3334 * @to: mem_cgroup which the entry is moved to
3335 *
3336 * It succeeds only when the swap_cgroup's record for this entry is the same
3337 * as the mem_cgroup's id of @from.
3338 *
3339 * Returns 0 on success, -EINVAL on failure.
3340 *
3341 * The caller must have charged to @to, IOW, called page_counter_charge() about
3342 * both res and memsw, and called css_get().
3343 */
3344 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3345 struct mem_cgroup *from, struct mem_cgroup *to)
3346 {
3347 unsigned short old_id, new_id;
3348
3349 old_id = mem_cgroup_id(from);
3350 new_id = mem_cgroup_id(to);
3351
3352 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3353 mod_memcg_state(from, MEMCG_SWAP, -1);
3354 mod_memcg_state(to, MEMCG_SWAP, 1);
3355 return 0;
3356 }
3357 return -EINVAL;
3358 }
3359 #else
3360 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3361 struct mem_cgroup *from, struct mem_cgroup *to)
3362 {
3363 return -EINVAL;
3364 }
3365 #endif
3366
3367 static DEFINE_MUTEX(memcg_max_mutex);
3368
3369 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3370 unsigned long max, bool memsw)
3371 {
3372 bool enlarge = false;
3373 bool drained = false;
3374 int ret;
3375 bool limits_invariant;
3376 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3377
3378 do {
3379 if (signal_pending(current)) {
3380 ret = -EINTR;
3381 break;
3382 }
3383
3384 mutex_lock(&memcg_max_mutex);
3385 /*
3386 * Make sure that the new limit (memsw or memory limit) doesn't
3387 * break our basic invariant rule memory.max <= memsw.max.
3388 */
3389 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3390 max <= memcg->memsw.max;
3391 if (!limits_invariant) {
3392 mutex_unlock(&memcg_max_mutex);
3393 ret = -EINVAL;
3394 break;
3395 }
3396 if (max > counter->max)
3397 enlarge = true;
3398 ret = page_counter_set_max(counter, max);
3399 mutex_unlock(&memcg_max_mutex);
3400
3401 if (!ret)
3402 break;
3403
3404 if (!drained) {
3405 drain_all_stock(memcg);
3406 drained = true;
3407 continue;
3408 }
3409
3410 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3411 GFP_KERNEL, !memsw)) {
3412 ret = -EBUSY;
3413 break;
3414 }
3415 } while (true);
3416
3417 if (!ret && enlarge)
3418 memcg_oom_recover(memcg);
3419
3420 return ret;
3421 }
3422
3423 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3424 gfp_t gfp_mask,
3425 unsigned long *total_scanned)
3426 {
3427 unsigned long nr_reclaimed = 0;
3428 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3429 unsigned long reclaimed;
3430 int loop = 0;
3431 struct mem_cgroup_tree_per_node *mctz;
3432 unsigned long excess;
3433 unsigned long nr_scanned;
3434
3435 if (order > 0)
3436 return 0;
3437
3438 mctz = soft_limit_tree_node(pgdat->node_id);
3439
3440 /*
3441 * Do not even bother to check the largest node if the root
3442 * is empty. Do it lockless to prevent lock bouncing. Races
3443 * are acceptable as soft limit is best effort anyway.
3444 */
3445 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3446 return 0;
3447
3448 /*
3449 * This loop can run a while, specially if mem_cgroup's continuously
3450 * keep exceeding their soft limit and putting the system under
3451 * pressure
3452 */
3453 do {
3454 if (next_mz)
3455 mz = next_mz;
3456 else
3457 mz = mem_cgroup_largest_soft_limit_node(mctz);
3458 if (!mz)
3459 break;
3460
3461 nr_scanned = 0;
3462 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3463 gfp_mask, &nr_scanned);
3464 nr_reclaimed += reclaimed;
3465 *total_scanned += nr_scanned;
3466 spin_lock_irq(&mctz->lock);
3467 __mem_cgroup_remove_exceeded(mz, mctz);
3468
3469 /*
3470 * If we failed to reclaim anything from this memory cgroup
3471 * it is time to move on to the next cgroup
3472 */
3473 next_mz = NULL;
3474 if (!reclaimed)
3475 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3476
3477 excess = soft_limit_excess(mz->memcg);
3478 /*
3479 * One school of thought says that we should not add
3480 * back the node to the tree if reclaim returns 0.
3481 * But our reclaim could return 0, simply because due
3482 * to priority we are exposing a smaller subset of
3483 * memory to reclaim from. Consider this as a longer
3484 * term TODO.
3485 */
3486 /* If excess == 0, no tree ops */
3487 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3488 spin_unlock_irq(&mctz->lock);
3489 css_put(&mz->memcg->css);
3490 loop++;
3491 /*
3492 * Could not reclaim anything and there are no more
3493 * mem cgroups to try or we seem to be looping without
3494 * reclaiming anything.
3495 */
3496 if (!nr_reclaimed &&
3497 (next_mz == NULL ||
3498 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3499 break;
3500 } while (!nr_reclaimed);
3501 if (next_mz)
3502 css_put(&next_mz->memcg->css);
3503 return nr_reclaimed;
3504 }
3505
3506 /*
3507 * Reclaims as many pages from the given memcg as possible.
3508 *
3509 * Caller is responsible for holding css reference for memcg.
3510 */
3511 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3512 {
3513 int nr_retries = MAX_RECLAIM_RETRIES;
3514
3515 /* we call try-to-free pages for make this cgroup empty */
3516 lru_add_drain_all();
3517
3518 drain_all_stock(memcg);
3519
3520 /* try to free all pages in this cgroup */
3521 while (nr_retries && page_counter_read(&memcg->memory)) {
3522 int progress;
3523
3524 if (signal_pending(current))
3525 return -EINTR;
3526
3527 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3528 GFP_KERNEL, true);
3529 if (!progress) {
3530 nr_retries--;
3531 /* maybe some writeback is necessary */
3532 congestion_wait(BLK_RW_ASYNC, HZ/10);
3533 }
3534
3535 }
3536
3537 return 0;
3538 }
3539
3540 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3541 char *buf, size_t nbytes,
3542 loff_t off)
3543 {
3544 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3545
3546 if (mem_cgroup_is_root(memcg))
3547 return -EINVAL;
3548 return mem_cgroup_force_empty(memcg) ?: nbytes;
3549 }
3550
3551 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3552 struct cftype *cft)
3553 {
3554 return 1;
3555 }
3556
3557 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3558 struct cftype *cft, u64 val)
3559 {
3560 if (val == 1)
3561 return 0;
3562
3563 pr_warn_once("Non-hierarchical mode is deprecated. "
3564 "Please report your usecase to linux-mm@kvack.org if you "
3565 "depend on this functionality.\n");
3566
3567 return -EINVAL;
3568 }
3569
3570 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3571 {
3572 unsigned long val;
3573
3574 if (mem_cgroup_is_root(memcg)) {
3575 mem_cgroup_flush_stats();
3576 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3577 memcg_page_state(memcg, NR_ANON_MAPPED);
3578 if (swap)
3579 val += memcg_page_state(memcg, MEMCG_SWAP);
3580 } else {
3581 if (!swap)
3582 val = page_counter_read(&memcg->memory);
3583 else
3584 val = page_counter_read(&memcg->memsw);
3585 }
3586 return val;
3587 }
3588
3589 enum {
3590 RES_USAGE,
3591 RES_LIMIT,
3592 RES_MAX_USAGE,
3593 RES_FAILCNT,
3594 RES_SOFT_LIMIT,
3595 };
3596
3597 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3598 struct cftype *cft)
3599 {
3600 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3601 struct page_counter *counter;
3602
3603 switch (MEMFILE_TYPE(cft->private)) {
3604 case _MEM:
3605 counter = &memcg->memory;
3606 break;
3607 case _MEMSWAP:
3608 counter = &memcg->memsw;
3609 break;
3610 case _KMEM:
3611 counter = &memcg->kmem;
3612 break;
3613 case _TCP:
3614 counter = &memcg->tcpmem;
3615 break;
3616 default:
3617 BUG();
3618 }
3619
3620 switch (MEMFILE_ATTR(cft->private)) {
3621 case RES_USAGE:
3622 if (counter == &memcg->memory)
3623 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3624 if (counter == &memcg->memsw)
3625 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3626 return (u64)page_counter_read(counter) * PAGE_SIZE;
3627 case RES_LIMIT:
3628 return (u64)counter->max * PAGE_SIZE;
3629 case RES_MAX_USAGE:
3630 return (u64)counter->watermark * PAGE_SIZE;
3631 case RES_FAILCNT:
3632 return counter->failcnt;
3633 case RES_SOFT_LIMIT:
3634 return (u64)memcg->soft_limit * PAGE_SIZE;
3635 default:
3636 BUG();
3637 }
3638 }
3639
3640 #ifdef CONFIG_MEMCG_KMEM
3641 static int memcg_online_kmem(struct mem_cgroup *memcg)
3642 {
3643 struct obj_cgroup *objcg;
3644 int memcg_id;
3645
3646 if (cgroup_memory_nokmem)
3647 return 0;
3648
3649 BUG_ON(memcg->kmemcg_id >= 0);
3650 BUG_ON(memcg->kmem_state);
3651
3652 memcg_id = memcg_alloc_cache_id();
3653 if (memcg_id < 0)
3654 return memcg_id;
3655
3656 objcg = obj_cgroup_alloc();
3657 if (!objcg) {
3658 memcg_free_cache_id(memcg_id);
3659 return -ENOMEM;
3660 }
3661 objcg->memcg = memcg;
3662 rcu_assign_pointer(memcg->objcg, objcg);
3663
3664 static_branch_enable(&memcg_kmem_enabled_key);
3665
3666 memcg->kmemcg_id = memcg_id;
3667 memcg->kmem_state = KMEM_ONLINE;
3668
3669 return 0;
3670 }
3671
3672 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3673 {
3674 struct cgroup_subsys_state *css;
3675 struct mem_cgroup *parent, *child;
3676 int kmemcg_id;
3677
3678 if (memcg->kmem_state != KMEM_ONLINE)
3679 return;
3680
3681 memcg->kmem_state = KMEM_ALLOCATED;
3682
3683 parent = parent_mem_cgroup(memcg);
3684 if (!parent)
3685 parent = root_mem_cgroup;
3686
3687 memcg_reparent_objcgs(memcg, parent);
3688
3689 kmemcg_id = memcg->kmemcg_id;
3690 BUG_ON(kmemcg_id < 0);
3691
3692 /*
3693 * Change kmemcg_id of this cgroup and all its descendants to the
3694 * parent's id, and then move all entries from this cgroup's list_lrus
3695 * to ones of the parent. After we have finished, all list_lrus
3696 * corresponding to this cgroup are guaranteed to remain empty. The
3697 * ordering is imposed by list_lru_node->lock taken by
3698 * memcg_drain_all_list_lrus().
3699 */
3700 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3701 css_for_each_descendant_pre(css, &memcg->css) {
3702 child = mem_cgroup_from_css(css);
3703 BUG_ON(child->kmemcg_id != kmemcg_id);
3704 child->kmemcg_id = parent->kmemcg_id;
3705 }
3706 rcu_read_unlock();
3707
3708 memcg_drain_all_list_lrus(kmemcg_id, parent);
3709
3710 memcg_free_cache_id(kmemcg_id);
3711 }
3712
3713 static void memcg_free_kmem(struct mem_cgroup *memcg)
3714 {
3715 /* css_alloc() failed, offlining didn't happen */
3716 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3717 memcg_offline_kmem(memcg);
3718 }
3719 #else
3720 static int memcg_online_kmem(struct mem_cgroup *memcg)
3721 {
3722 return 0;
3723 }
3724 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3725 {
3726 }
3727 static void memcg_free_kmem(struct mem_cgroup *memcg)
3728 {
3729 }
3730 #endif /* CONFIG_MEMCG_KMEM */
3731
3732 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3733 unsigned long max)
3734 {
3735 int ret;
3736
3737 mutex_lock(&memcg_max_mutex);
3738 ret = page_counter_set_max(&memcg->kmem, max);
3739 mutex_unlock(&memcg_max_mutex);
3740 return ret;
3741 }
3742
3743 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3744 {
3745 int ret;
3746
3747 mutex_lock(&memcg_max_mutex);
3748
3749 ret = page_counter_set_max(&memcg->tcpmem, max);
3750 if (ret)
3751 goto out;
3752
3753 if (!memcg->tcpmem_active) {
3754 /*
3755 * The active flag needs to be written after the static_key
3756 * update. This is what guarantees that the socket activation
3757 * function is the last one to run. See mem_cgroup_sk_alloc()
3758 * for details, and note that we don't mark any socket as
3759 * belonging to this memcg until that flag is up.
3760 *
3761 * We need to do this, because static_keys will span multiple
3762 * sites, but we can't control their order. If we mark a socket
3763 * as accounted, but the accounting functions are not patched in
3764 * yet, we'll lose accounting.
3765 *
3766 * We never race with the readers in mem_cgroup_sk_alloc(),
3767 * because when this value change, the code to process it is not
3768 * patched in yet.
3769 */
3770 static_branch_inc(&memcg_sockets_enabled_key);
3771 memcg->tcpmem_active = true;
3772 }
3773 out:
3774 mutex_unlock(&memcg_max_mutex);
3775 return ret;
3776 }
3777
3778 /*
3779 * The user of this function is...
3780 * RES_LIMIT.
3781 */
3782 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3783 char *buf, size_t nbytes, loff_t off)
3784 {
3785 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3786 unsigned long nr_pages;
3787 int ret;
3788
3789 buf = strstrip(buf);
3790 ret = page_counter_memparse(buf, "-1", &nr_pages);
3791 if (ret)
3792 return ret;
3793
3794 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3795 case RES_LIMIT:
3796 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3797 ret = -EINVAL;
3798 break;
3799 }
3800 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3801 case _MEM:
3802 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3803 break;
3804 case _MEMSWAP:
3805 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3806 break;
3807 case _KMEM:
3808 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3809 "Please report your usecase to linux-mm@kvack.org if you "
3810 "depend on this functionality.\n");
3811 ret = memcg_update_kmem_max(memcg, nr_pages);
3812 break;
3813 case _TCP:
3814 ret = memcg_update_tcp_max(memcg, nr_pages);
3815 break;
3816 }
3817 break;
3818 case RES_SOFT_LIMIT:
3819 memcg->soft_limit = nr_pages;
3820 ret = 0;
3821 break;
3822 }
3823 return ret ?: nbytes;
3824 }
3825
3826 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3827 size_t nbytes, loff_t off)
3828 {
3829 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3830 struct page_counter *counter;
3831
3832 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3833 case _MEM:
3834 counter = &memcg->memory;
3835 break;
3836 case _MEMSWAP:
3837 counter = &memcg->memsw;
3838 break;
3839 case _KMEM:
3840 counter = &memcg->kmem;
3841 break;
3842 case _TCP:
3843 counter = &memcg->tcpmem;
3844 break;
3845 default:
3846 BUG();
3847 }
3848
3849 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3850 case RES_MAX_USAGE:
3851 page_counter_reset_watermark(counter);
3852 break;
3853 case RES_FAILCNT:
3854 counter->failcnt = 0;
3855 break;
3856 default:
3857 BUG();
3858 }
3859
3860 return nbytes;
3861 }
3862
3863 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3864 struct cftype *cft)
3865 {
3866 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3867 }
3868
3869 #ifdef CONFIG_MMU
3870 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3871 struct cftype *cft, u64 val)
3872 {
3873 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3874
3875 if (val & ~MOVE_MASK)
3876 return -EINVAL;
3877
3878 /*
3879 * No kind of locking is needed in here, because ->can_attach() will
3880 * check this value once in the beginning of the process, and then carry
3881 * on with stale data. This means that changes to this value will only
3882 * affect task migrations starting after the change.
3883 */
3884 memcg->move_charge_at_immigrate = val;
3885 return 0;
3886 }
3887 #else
3888 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3889 struct cftype *cft, u64 val)
3890 {
3891 return -ENOSYS;
3892 }
3893 #endif
3894
3895 #ifdef CONFIG_NUMA
3896
3897 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3898 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3899 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3900
3901 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3902 int nid, unsigned int lru_mask, bool tree)
3903 {
3904 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3905 unsigned long nr = 0;
3906 enum lru_list lru;
3907
3908 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3909
3910 for_each_lru(lru) {
3911 if (!(BIT(lru) & lru_mask))
3912 continue;
3913 if (tree)
3914 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3915 else
3916 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3917 }
3918 return nr;
3919 }
3920
3921 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3922 unsigned int lru_mask,
3923 bool tree)
3924 {
3925 unsigned long nr = 0;
3926 enum lru_list lru;
3927
3928 for_each_lru(lru) {
3929 if (!(BIT(lru) & lru_mask))
3930 continue;
3931 if (tree)
3932 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3933 else
3934 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3935 }
3936 return nr;
3937 }
3938
3939 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3940 {
3941 struct numa_stat {
3942 const char *name;
3943 unsigned int lru_mask;
3944 };
3945
3946 static const struct numa_stat stats[] = {
3947 { "total", LRU_ALL },
3948 { "file", LRU_ALL_FILE },
3949 { "anon", LRU_ALL_ANON },
3950 { "unevictable", BIT(LRU_UNEVICTABLE) },
3951 };
3952 const struct numa_stat *stat;
3953 int nid;
3954 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3955
3956 mem_cgroup_flush_stats();
3957
3958 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3959 seq_printf(m, "%s=%lu", stat->name,
3960 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3961 false));
3962 for_each_node_state(nid, N_MEMORY)
3963 seq_printf(m, " N%d=%lu", nid,
3964 mem_cgroup_node_nr_lru_pages(memcg, nid,
3965 stat->lru_mask, false));
3966 seq_putc(m, '\n');
3967 }
3968
3969 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3970
3971 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3972 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3973 true));
3974 for_each_node_state(nid, N_MEMORY)
3975 seq_printf(m, " N%d=%lu", nid,
3976 mem_cgroup_node_nr_lru_pages(memcg, nid,
3977 stat->lru_mask, true));
3978 seq_putc(m, '\n');
3979 }
3980
3981 return 0;
3982 }
3983 #endif /* CONFIG_NUMA */
3984
3985 static const unsigned int memcg1_stats[] = {
3986 NR_FILE_PAGES,
3987 NR_ANON_MAPPED,
3988 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3989 NR_ANON_THPS,
3990 #endif
3991 NR_SHMEM,
3992 NR_FILE_MAPPED,
3993 NR_FILE_DIRTY,
3994 NR_WRITEBACK,
3995 MEMCG_SWAP,
3996 };
3997
3998 static const char *const memcg1_stat_names[] = {
3999 "cache",
4000 "rss",
4001 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4002 "rss_huge",
4003 #endif
4004 "shmem",
4005 "mapped_file",
4006 "dirty",
4007 "writeback",
4008 "swap",
4009 };
4010
4011 /* Universal VM events cgroup1 shows, original sort order */
4012 static const unsigned int memcg1_events[] = {
4013 PGPGIN,
4014 PGPGOUT,
4015 PGFAULT,
4016 PGMAJFAULT,
4017 };
4018
4019 static int memcg_stat_show(struct seq_file *m, void *v)
4020 {
4021 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4022 unsigned long memory, memsw;
4023 struct mem_cgroup *mi;
4024 unsigned int i;
4025
4026 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4027
4028 mem_cgroup_flush_stats();
4029
4030 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4031 unsigned long nr;
4032
4033 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4034 continue;
4035 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4036 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4037 }
4038
4039 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4040 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4041 memcg_events_local(memcg, memcg1_events[i]));
4042
4043 for (i = 0; i < NR_LRU_LISTS; i++)
4044 seq_printf(m, "%s %lu\n", lru_list_name(i),
4045 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4046 PAGE_SIZE);
4047
4048 /* Hierarchical information */
4049 memory = memsw = PAGE_COUNTER_MAX;
4050 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4051 memory = min(memory, READ_ONCE(mi->memory.max));
4052 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4053 }
4054 seq_printf(m, "hierarchical_memory_limit %llu\n",
4055 (u64)memory * PAGE_SIZE);
4056 if (do_memsw_account())
4057 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4058 (u64)memsw * PAGE_SIZE);
4059
4060 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4061 unsigned long nr;
4062
4063 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4064 continue;
4065 nr = memcg_page_state(memcg, memcg1_stats[i]);
4066 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4067 (u64)nr * PAGE_SIZE);
4068 }
4069
4070 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4071 seq_printf(m, "total_%s %llu\n",
4072 vm_event_name(memcg1_events[i]),
4073 (u64)memcg_events(memcg, memcg1_events[i]));
4074
4075 for (i = 0; i < NR_LRU_LISTS; i++)
4076 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4077 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4078 PAGE_SIZE);
4079
4080 #ifdef CONFIG_DEBUG_VM
4081 {
4082 pg_data_t *pgdat;
4083 struct mem_cgroup_per_node *mz;
4084 unsigned long anon_cost = 0;
4085 unsigned long file_cost = 0;
4086
4087 for_each_online_pgdat(pgdat) {
4088 mz = memcg->nodeinfo[pgdat->node_id];
4089
4090 anon_cost += mz->lruvec.anon_cost;
4091 file_cost += mz->lruvec.file_cost;
4092 }
4093 seq_printf(m, "anon_cost %lu\n", anon_cost);
4094 seq_printf(m, "file_cost %lu\n", file_cost);
4095 }
4096 #endif
4097
4098 return 0;
4099 }
4100
4101 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4102 struct cftype *cft)
4103 {
4104 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4105
4106 return mem_cgroup_swappiness(memcg);
4107 }
4108
4109 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4110 struct cftype *cft, u64 val)
4111 {
4112 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4113
4114 if (val > 200)
4115 return -EINVAL;
4116
4117 if (!mem_cgroup_is_root(memcg))
4118 memcg->swappiness = val;
4119 else
4120 vm_swappiness = val;
4121
4122 return 0;
4123 }
4124
4125 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4126 {
4127 struct mem_cgroup_threshold_ary *t;
4128 unsigned long usage;
4129 int i;
4130
4131 rcu_read_lock();
4132 if (!swap)
4133 t = rcu_dereference(memcg->thresholds.primary);
4134 else
4135 t = rcu_dereference(memcg->memsw_thresholds.primary);
4136
4137 if (!t)
4138 goto unlock;
4139
4140 usage = mem_cgroup_usage(memcg, swap);
4141
4142 /*
4143 * current_threshold points to threshold just below or equal to usage.
4144 * If it's not true, a threshold was crossed after last
4145 * call of __mem_cgroup_threshold().
4146 */
4147 i = t->current_threshold;
4148
4149 /*
4150 * Iterate backward over array of thresholds starting from
4151 * current_threshold and check if a threshold is crossed.
4152 * If none of thresholds below usage is crossed, we read
4153 * only one element of the array here.
4154 */
4155 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4156 eventfd_signal(t->entries[i].eventfd, 1);
4157
4158 /* i = current_threshold + 1 */
4159 i++;
4160
4161 /*
4162 * Iterate forward over array of thresholds starting from
4163 * current_threshold+1 and check if a threshold is crossed.
4164 * If none of thresholds above usage is crossed, we read
4165 * only one element of the array here.
4166 */
4167 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4168 eventfd_signal(t->entries[i].eventfd, 1);
4169
4170 /* Update current_threshold */
4171 t->current_threshold = i - 1;
4172 unlock:
4173 rcu_read_unlock();
4174 }
4175
4176 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4177 {
4178 while (memcg) {
4179 __mem_cgroup_threshold(memcg, false);
4180 if (do_memsw_account())
4181 __mem_cgroup_threshold(memcg, true);
4182
4183 memcg = parent_mem_cgroup(memcg);
4184 }
4185 }
4186
4187 static int compare_thresholds(const void *a, const void *b)
4188 {
4189 const struct mem_cgroup_threshold *_a = a;
4190 const struct mem_cgroup_threshold *_b = b;
4191
4192 if (_a->threshold > _b->threshold)
4193 return 1;
4194
4195 if (_a->threshold < _b->threshold)
4196 return -1;
4197
4198 return 0;
4199 }
4200
4201 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4202 {
4203 struct mem_cgroup_eventfd_list *ev;
4204
4205 spin_lock(&memcg_oom_lock);
4206
4207 list_for_each_entry(ev, &memcg->oom_notify, list)
4208 eventfd_signal(ev->eventfd, 1);
4209
4210 spin_unlock(&memcg_oom_lock);
4211 return 0;
4212 }
4213
4214 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4215 {
4216 struct mem_cgroup *iter;
4217
4218 for_each_mem_cgroup_tree(iter, memcg)
4219 mem_cgroup_oom_notify_cb(iter);
4220 }
4221
4222 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4223 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4224 {
4225 struct mem_cgroup_thresholds *thresholds;
4226 struct mem_cgroup_threshold_ary *new;
4227 unsigned long threshold;
4228 unsigned long usage;
4229 int i, size, ret;
4230
4231 ret = page_counter_memparse(args, "-1", &threshold);
4232 if (ret)
4233 return ret;
4234
4235 mutex_lock(&memcg->thresholds_lock);
4236
4237 if (type == _MEM) {
4238 thresholds = &memcg->thresholds;
4239 usage = mem_cgroup_usage(memcg, false);
4240 } else if (type == _MEMSWAP) {
4241 thresholds = &memcg->memsw_thresholds;
4242 usage = mem_cgroup_usage(memcg, true);
4243 } else
4244 BUG();
4245
4246 /* Check if a threshold crossed before adding a new one */
4247 if (thresholds->primary)
4248 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4249
4250 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4251
4252 /* Allocate memory for new array of thresholds */
4253 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4254 if (!new) {
4255 ret = -ENOMEM;
4256 goto unlock;
4257 }
4258 new->size = size;
4259
4260 /* Copy thresholds (if any) to new array */
4261 if (thresholds->primary)
4262 memcpy(new->entries, thresholds->primary->entries,
4263 flex_array_size(new, entries, size - 1));
4264
4265 /* Add new threshold */
4266 new->entries[size - 1].eventfd = eventfd;
4267 new->entries[size - 1].threshold = threshold;
4268
4269 /* Sort thresholds. Registering of new threshold isn't time-critical */
4270 sort(new->entries, size, sizeof(*new->entries),
4271 compare_thresholds, NULL);
4272
4273 /* Find current threshold */
4274 new->current_threshold = -1;
4275 for (i = 0; i < size; i++) {
4276 if (new->entries[i].threshold <= usage) {
4277 /*
4278 * new->current_threshold will not be used until
4279 * rcu_assign_pointer(), so it's safe to increment
4280 * it here.
4281 */
4282 ++new->current_threshold;
4283 } else
4284 break;
4285 }
4286
4287 /* Free old spare buffer and save old primary buffer as spare */
4288 kfree(thresholds->spare);
4289 thresholds->spare = thresholds->primary;
4290
4291 rcu_assign_pointer(thresholds->primary, new);
4292
4293 /* To be sure that nobody uses thresholds */
4294 synchronize_rcu();
4295
4296 unlock:
4297 mutex_unlock(&memcg->thresholds_lock);
4298
4299 return ret;
4300 }
4301
4302 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4303 struct eventfd_ctx *eventfd, const char *args)
4304 {
4305 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4306 }
4307
4308 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4309 struct eventfd_ctx *eventfd, const char *args)
4310 {
4311 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4312 }
4313
4314 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4315 struct eventfd_ctx *eventfd, enum res_type type)
4316 {
4317 struct mem_cgroup_thresholds *thresholds;
4318 struct mem_cgroup_threshold_ary *new;
4319 unsigned long usage;
4320 int i, j, size, entries;
4321
4322 mutex_lock(&memcg->thresholds_lock);
4323
4324 if (type == _MEM) {
4325 thresholds = &memcg->thresholds;
4326 usage = mem_cgroup_usage(memcg, false);
4327 } else if (type == _MEMSWAP) {
4328 thresholds = &memcg->memsw_thresholds;
4329 usage = mem_cgroup_usage(memcg, true);
4330 } else
4331 BUG();
4332
4333 if (!thresholds->primary)
4334 goto unlock;
4335
4336 /* Check if a threshold crossed before removing */
4337 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4338
4339 /* Calculate new number of threshold */
4340 size = entries = 0;
4341 for (i = 0; i < thresholds->primary->size; i++) {
4342 if (thresholds->primary->entries[i].eventfd != eventfd)
4343 size++;
4344 else
4345 entries++;
4346 }
4347
4348 new = thresholds->spare;
4349
4350 /* If no items related to eventfd have been cleared, nothing to do */
4351 if (!entries)
4352 goto unlock;
4353
4354 /* Set thresholds array to NULL if we don't have thresholds */
4355 if (!size) {
4356 kfree(new);
4357 new = NULL;
4358 goto swap_buffers;
4359 }
4360
4361 new->size = size;
4362
4363 /* Copy thresholds and find current threshold */
4364 new->current_threshold = -1;
4365 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4366 if (thresholds->primary->entries[i].eventfd == eventfd)
4367 continue;
4368
4369 new->entries[j] = thresholds->primary->entries[i];
4370 if (new->entries[j].threshold <= usage) {
4371 /*
4372 * new->current_threshold will not be used
4373 * until rcu_assign_pointer(), so it's safe to increment
4374 * it here.
4375 */
4376 ++new->current_threshold;
4377 }
4378 j++;
4379 }
4380
4381 swap_buffers:
4382 /* Swap primary and spare array */
4383 thresholds->spare = thresholds->primary;
4384
4385 rcu_assign_pointer(thresholds->primary, new);
4386
4387 /* To be sure that nobody uses thresholds */
4388 synchronize_rcu();
4389
4390 /* If all events are unregistered, free the spare array */
4391 if (!new) {
4392 kfree(thresholds->spare);
4393 thresholds->spare = NULL;
4394 }
4395 unlock:
4396 mutex_unlock(&memcg->thresholds_lock);
4397 }
4398
4399 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4400 struct eventfd_ctx *eventfd)
4401 {
4402 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4403 }
4404
4405 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4406 struct eventfd_ctx *eventfd)
4407 {
4408 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4409 }
4410
4411 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4412 struct eventfd_ctx *eventfd, const char *args)
4413 {
4414 struct mem_cgroup_eventfd_list *event;
4415
4416 event = kmalloc(sizeof(*event), GFP_KERNEL);
4417 if (!event)
4418 return -ENOMEM;
4419
4420 spin_lock(&memcg_oom_lock);
4421
4422 event->eventfd = eventfd;
4423 list_add(&event->list, &memcg->oom_notify);
4424
4425 /* already in OOM ? */
4426 if (memcg->under_oom)
4427 eventfd_signal(eventfd, 1);
4428 spin_unlock(&memcg_oom_lock);
4429
4430 return 0;
4431 }
4432
4433 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4434 struct eventfd_ctx *eventfd)
4435 {
4436 struct mem_cgroup_eventfd_list *ev, *tmp;
4437
4438 spin_lock(&memcg_oom_lock);
4439
4440 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4441 if (ev->eventfd == eventfd) {
4442 list_del(&ev->list);
4443 kfree(ev);
4444 }
4445 }
4446
4447 spin_unlock(&memcg_oom_lock);
4448 }
4449
4450 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4451 {
4452 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4453
4454 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4455 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4456 seq_printf(sf, "oom_kill %lu\n",
4457 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4458 return 0;
4459 }
4460
4461 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4462 struct cftype *cft, u64 val)
4463 {
4464 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4465
4466 /* cannot set to root cgroup and only 0 and 1 are allowed */
4467 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4468 return -EINVAL;
4469
4470 memcg->oom_kill_disable = val;
4471 if (!val)
4472 memcg_oom_recover(memcg);
4473
4474 return 0;
4475 }
4476
4477 #ifdef CONFIG_CGROUP_WRITEBACK
4478
4479 #include <trace/events/writeback.h>
4480
4481 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4482 {
4483 return wb_domain_init(&memcg->cgwb_domain, gfp);
4484 }
4485
4486 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4487 {
4488 wb_domain_exit(&memcg->cgwb_domain);
4489 }
4490
4491 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4492 {
4493 wb_domain_size_changed(&memcg->cgwb_domain);
4494 }
4495
4496 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4497 {
4498 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4499
4500 if (!memcg->css.parent)
4501 return NULL;
4502
4503 return &memcg->cgwb_domain;
4504 }
4505
4506 /**
4507 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4508 * @wb: bdi_writeback in question
4509 * @pfilepages: out parameter for number of file pages
4510 * @pheadroom: out parameter for number of allocatable pages according to memcg
4511 * @pdirty: out parameter for number of dirty pages
4512 * @pwriteback: out parameter for number of pages under writeback
4513 *
4514 * Determine the numbers of file, headroom, dirty, and writeback pages in
4515 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4516 * is a bit more involved.
4517 *
4518 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4519 * headroom is calculated as the lowest headroom of itself and the
4520 * ancestors. Note that this doesn't consider the actual amount of
4521 * available memory in the system. The caller should further cap
4522 * *@pheadroom accordingly.
4523 */
4524 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4525 unsigned long *pheadroom, unsigned long *pdirty,
4526 unsigned long *pwriteback)
4527 {
4528 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4529 struct mem_cgroup *parent;
4530
4531 mem_cgroup_flush_stats();
4532
4533 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4534 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4535 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4536 memcg_page_state(memcg, NR_ACTIVE_FILE);
4537
4538 *pheadroom = PAGE_COUNTER_MAX;
4539 while ((parent = parent_mem_cgroup(memcg))) {
4540 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4541 READ_ONCE(memcg->memory.high));
4542 unsigned long used = page_counter_read(&memcg->memory);
4543
4544 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4545 memcg = parent;
4546 }
4547 }
4548
4549 /*
4550 * Foreign dirty flushing
4551 *
4552 * There's an inherent mismatch between memcg and writeback. The former
4553 * tracks ownership per-page while the latter per-inode. This was a
4554 * deliberate design decision because honoring per-page ownership in the
4555 * writeback path is complicated, may lead to higher CPU and IO overheads
4556 * and deemed unnecessary given that write-sharing an inode across
4557 * different cgroups isn't a common use-case.
4558 *
4559 * Combined with inode majority-writer ownership switching, this works well
4560 * enough in most cases but there are some pathological cases. For
4561 * example, let's say there are two cgroups A and B which keep writing to
4562 * different but confined parts of the same inode. B owns the inode and
4563 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4564 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4565 * triggering background writeback. A will be slowed down without a way to
4566 * make writeback of the dirty pages happen.
4567 *
4568 * Conditions like the above can lead to a cgroup getting repeatedly and
4569 * severely throttled after making some progress after each
4570 * dirty_expire_interval while the underlying IO device is almost
4571 * completely idle.
4572 *
4573 * Solving this problem completely requires matching the ownership tracking
4574 * granularities between memcg and writeback in either direction. However,
4575 * the more egregious behaviors can be avoided by simply remembering the
4576 * most recent foreign dirtying events and initiating remote flushes on
4577 * them when local writeback isn't enough to keep the memory clean enough.
4578 *
4579 * The following two functions implement such mechanism. When a foreign
4580 * page - a page whose memcg and writeback ownerships don't match - is
4581 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4582 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4583 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4584 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4585 * foreign bdi_writebacks which haven't expired. Both the numbers of
4586 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4587 * limited to MEMCG_CGWB_FRN_CNT.
4588 *
4589 * The mechanism only remembers IDs and doesn't hold any object references.
4590 * As being wrong occasionally doesn't matter, updates and accesses to the
4591 * records are lockless and racy.
4592 */
4593 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4594 struct bdi_writeback *wb)
4595 {
4596 struct mem_cgroup *memcg = page_memcg(page);
4597 struct memcg_cgwb_frn *frn;
4598 u64 now = get_jiffies_64();
4599 u64 oldest_at = now;
4600 int oldest = -1;
4601 int i;
4602
4603 trace_track_foreign_dirty(page, wb);
4604
4605 /*
4606 * Pick the slot to use. If there is already a slot for @wb, keep
4607 * using it. If not replace the oldest one which isn't being
4608 * written out.
4609 */
4610 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4611 frn = &memcg->cgwb_frn[i];
4612 if (frn->bdi_id == wb->bdi->id &&
4613 frn->memcg_id == wb->memcg_css->id)
4614 break;
4615 if (time_before64(frn->at, oldest_at) &&
4616 atomic_read(&frn->done.cnt) == 1) {
4617 oldest = i;
4618 oldest_at = frn->at;
4619 }
4620 }
4621
4622 if (i < MEMCG_CGWB_FRN_CNT) {
4623 /*
4624 * Re-using an existing one. Update timestamp lazily to
4625 * avoid making the cacheline hot. We want them to be
4626 * reasonably up-to-date and significantly shorter than
4627 * dirty_expire_interval as that's what expires the record.
4628 * Use the shorter of 1s and dirty_expire_interval / 8.
4629 */
4630 unsigned long update_intv =
4631 min_t(unsigned long, HZ,
4632 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4633
4634 if (time_before64(frn->at, now - update_intv))
4635 frn->at = now;
4636 } else if (oldest >= 0) {
4637 /* replace the oldest free one */
4638 frn = &memcg->cgwb_frn[oldest];
4639 frn->bdi_id = wb->bdi->id;
4640 frn->memcg_id = wb->memcg_css->id;
4641 frn->at = now;
4642 }
4643 }
4644
4645 /* issue foreign writeback flushes for recorded foreign dirtying events */
4646 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4647 {
4648 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4649 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4650 u64 now = jiffies_64;
4651 int i;
4652
4653 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4654 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4655
4656 /*
4657 * If the record is older than dirty_expire_interval,
4658 * writeback on it has already started. No need to kick it
4659 * off again. Also, don't start a new one if there's
4660 * already one in flight.
4661 */
4662 if (time_after64(frn->at, now - intv) &&
4663 atomic_read(&frn->done.cnt) == 1) {
4664 frn->at = 0;
4665 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4666 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4667 WB_REASON_FOREIGN_FLUSH,
4668 &frn->done);
4669 }
4670 }
4671 }
4672
4673 #else /* CONFIG_CGROUP_WRITEBACK */
4674
4675 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4676 {
4677 return 0;
4678 }
4679
4680 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4681 {
4682 }
4683
4684 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4685 {
4686 }
4687
4688 #endif /* CONFIG_CGROUP_WRITEBACK */
4689
4690 /*
4691 * DO NOT USE IN NEW FILES.
4692 *
4693 * "cgroup.event_control" implementation.
4694 *
4695 * This is way over-engineered. It tries to support fully configurable
4696 * events for each user. Such level of flexibility is completely
4697 * unnecessary especially in the light of the planned unified hierarchy.
4698 *
4699 * Please deprecate this and replace with something simpler if at all
4700 * possible.
4701 */
4702
4703 /*
4704 * Unregister event and free resources.
4705 *
4706 * Gets called from workqueue.
4707 */
4708 static void memcg_event_remove(struct work_struct *work)
4709 {
4710 struct mem_cgroup_event *event =
4711 container_of(work, struct mem_cgroup_event, remove);
4712 struct mem_cgroup *memcg = event->memcg;
4713
4714 remove_wait_queue(event->wqh, &event->wait);
4715
4716 event->unregister_event(memcg, event->eventfd);
4717
4718 /* Notify userspace the event is going away. */
4719 eventfd_signal(event->eventfd, 1);
4720
4721 eventfd_ctx_put(event->eventfd);
4722 kfree(event);
4723 css_put(&memcg->css);
4724 }
4725
4726 /*
4727 * Gets called on EPOLLHUP on eventfd when user closes it.
4728 *
4729 * Called with wqh->lock held and interrupts disabled.
4730 */
4731 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4732 int sync, void *key)
4733 {
4734 struct mem_cgroup_event *event =
4735 container_of(wait, struct mem_cgroup_event, wait);
4736 struct mem_cgroup *memcg = event->memcg;
4737 __poll_t flags = key_to_poll(key);
4738
4739 if (flags & EPOLLHUP) {
4740 /*
4741 * If the event has been detached at cgroup removal, we
4742 * can simply return knowing the other side will cleanup
4743 * for us.
4744 *
4745 * We can't race against event freeing since the other
4746 * side will require wqh->lock via remove_wait_queue(),
4747 * which we hold.
4748 */
4749 spin_lock(&memcg->event_list_lock);
4750 if (!list_empty(&event->list)) {
4751 list_del_init(&event->list);
4752 /*
4753 * We are in atomic context, but cgroup_event_remove()
4754 * may sleep, so we have to call it in workqueue.
4755 */
4756 schedule_work(&event->remove);
4757 }
4758 spin_unlock(&memcg->event_list_lock);
4759 }
4760
4761 return 0;
4762 }
4763
4764 static void memcg_event_ptable_queue_proc(struct file *file,
4765 wait_queue_head_t *wqh, poll_table *pt)
4766 {
4767 struct mem_cgroup_event *event =
4768 container_of(pt, struct mem_cgroup_event, pt);
4769
4770 event->wqh = wqh;
4771 add_wait_queue(wqh, &event->wait);
4772 }
4773
4774 /*
4775 * DO NOT USE IN NEW FILES.
4776 *
4777 * Parse input and register new cgroup event handler.
4778 *
4779 * Input must be in format '<event_fd> <control_fd> <args>'.
4780 * Interpretation of args is defined by control file implementation.
4781 */
4782 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4783 char *buf, size_t nbytes, loff_t off)
4784 {
4785 struct cgroup_subsys_state *css = of_css(of);
4786 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4787 struct mem_cgroup_event *event;
4788 struct cgroup_subsys_state *cfile_css;
4789 unsigned int efd, cfd;
4790 struct fd efile;
4791 struct fd cfile;
4792 const char *name;
4793 char *endp;
4794 int ret;
4795
4796 buf = strstrip(buf);
4797
4798 efd = simple_strtoul(buf, &endp, 10);
4799 if (*endp != ' ')
4800 return -EINVAL;
4801 buf = endp + 1;
4802
4803 cfd = simple_strtoul(buf, &endp, 10);
4804 if ((*endp != ' ') && (*endp != '\0'))
4805 return -EINVAL;
4806 buf = endp + 1;
4807
4808 event = kzalloc(sizeof(*event), GFP_KERNEL);
4809 if (!event)
4810 return -ENOMEM;
4811
4812 event->memcg = memcg;
4813 INIT_LIST_HEAD(&event->list);
4814 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4815 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4816 INIT_WORK(&event->remove, memcg_event_remove);
4817
4818 efile = fdget(efd);
4819 if (!efile.file) {
4820 ret = -EBADF;
4821 goto out_kfree;
4822 }
4823
4824 event->eventfd = eventfd_ctx_fileget(efile.file);
4825 if (IS_ERR(event->eventfd)) {
4826 ret = PTR_ERR(event->eventfd);
4827 goto out_put_efile;
4828 }
4829
4830 cfile = fdget(cfd);
4831 if (!cfile.file) {
4832 ret = -EBADF;
4833 goto out_put_eventfd;
4834 }
4835
4836 /* the process need read permission on control file */
4837 /* AV: shouldn't we check that it's been opened for read instead? */
4838 ret = file_permission(cfile.file, MAY_READ);
4839 if (ret < 0)
4840 goto out_put_cfile;
4841
4842 /*
4843 * Determine the event callbacks and set them in @event. This used
4844 * to be done via struct cftype but cgroup core no longer knows
4845 * about these events. The following is crude but the whole thing
4846 * is for compatibility anyway.
4847 *
4848 * DO NOT ADD NEW FILES.
4849 */
4850 name = cfile.file->f_path.dentry->d_name.name;
4851
4852 if (!strcmp(name, "memory.usage_in_bytes")) {
4853 event->register_event = mem_cgroup_usage_register_event;
4854 event->unregister_event = mem_cgroup_usage_unregister_event;
4855 } else if (!strcmp(name, "memory.oom_control")) {
4856 event->register_event = mem_cgroup_oom_register_event;
4857 event->unregister_event = mem_cgroup_oom_unregister_event;
4858 } else if (!strcmp(name, "memory.pressure_level")) {
4859 event->register_event = vmpressure_register_event;
4860 event->unregister_event = vmpressure_unregister_event;
4861 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4862 event->register_event = memsw_cgroup_usage_register_event;
4863 event->unregister_event = memsw_cgroup_usage_unregister_event;
4864 } else {
4865 ret = -EINVAL;
4866 goto out_put_cfile;
4867 }
4868
4869 /*
4870 * Verify @cfile should belong to @css. Also, remaining events are
4871 * automatically removed on cgroup destruction but the removal is
4872 * asynchronous, so take an extra ref on @css.
4873 */
4874 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4875 &memory_cgrp_subsys);
4876 ret = -EINVAL;
4877 if (IS_ERR(cfile_css))
4878 goto out_put_cfile;
4879 if (cfile_css != css) {
4880 css_put(cfile_css);
4881 goto out_put_cfile;
4882 }
4883
4884 ret = event->register_event(memcg, event->eventfd, buf);
4885 if (ret)
4886 goto out_put_css;
4887
4888 vfs_poll(efile.file, &event->pt);
4889
4890 spin_lock_irq(&memcg->event_list_lock);
4891 list_add(&event->list, &memcg->event_list);
4892 spin_unlock_irq(&memcg->event_list_lock);
4893
4894 fdput(cfile);
4895 fdput(efile);
4896
4897 return nbytes;
4898
4899 out_put_css:
4900 css_put(css);
4901 out_put_cfile:
4902 fdput(cfile);
4903 out_put_eventfd:
4904 eventfd_ctx_put(event->eventfd);
4905 out_put_efile:
4906 fdput(efile);
4907 out_kfree:
4908 kfree(event);
4909
4910 return ret;
4911 }
4912
4913 static struct cftype mem_cgroup_legacy_files[] = {
4914 {
4915 .name = "usage_in_bytes",
4916 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4917 .read_u64 = mem_cgroup_read_u64,
4918 },
4919 {
4920 .name = "max_usage_in_bytes",
4921 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4922 .write = mem_cgroup_reset,
4923 .read_u64 = mem_cgroup_read_u64,
4924 },
4925 {
4926 .name = "limit_in_bytes",
4927 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4928 .write = mem_cgroup_write,
4929 .read_u64 = mem_cgroup_read_u64,
4930 },
4931 {
4932 .name = "soft_limit_in_bytes",
4933 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4934 .write = mem_cgroup_write,
4935 .read_u64 = mem_cgroup_read_u64,
4936 },
4937 {
4938 .name = "failcnt",
4939 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4940 .write = mem_cgroup_reset,
4941 .read_u64 = mem_cgroup_read_u64,
4942 },
4943 {
4944 .name = "stat",
4945 .seq_show = memcg_stat_show,
4946 },
4947 {
4948 .name = "force_empty",
4949 .write = mem_cgroup_force_empty_write,
4950 },
4951 {
4952 .name = "use_hierarchy",
4953 .write_u64 = mem_cgroup_hierarchy_write,
4954 .read_u64 = mem_cgroup_hierarchy_read,
4955 },
4956 {
4957 .name = "cgroup.event_control", /* XXX: for compat */
4958 .write = memcg_write_event_control,
4959 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4960 },
4961 {
4962 .name = "swappiness",
4963 .read_u64 = mem_cgroup_swappiness_read,
4964 .write_u64 = mem_cgroup_swappiness_write,
4965 },
4966 {
4967 .name = "move_charge_at_immigrate",
4968 .read_u64 = mem_cgroup_move_charge_read,
4969 .write_u64 = mem_cgroup_move_charge_write,
4970 },
4971 {
4972 .name = "oom_control",
4973 .seq_show = mem_cgroup_oom_control_read,
4974 .write_u64 = mem_cgroup_oom_control_write,
4975 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4976 },
4977 {
4978 .name = "pressure_level",
4979 },
4980 #ifdef CONFIG_NUMA
4981 {
4982 .name = "numa_stat",
4983 .seq_show = memcg_numa_stat_show,
4984 },
4985 #endif
4986 {
4987 .name = "kmem.limit_in_bytes",
4988 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4989 .write = mem_cgroup_write,
4990 .read_u64 = mem_cgroup_read_u64,
4991 },
4992 {
4993 .name = "kmem.usage_in_bytes",
4994 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4995 .read_u64 = mem_cgroup_read_u64,
4996 },
4997 {
4998 .name = "kmem.failcnt",
4999 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5000 .write = mem_cgroup_reset,
5001 .read_u64 = mem_cgroup_read_u64,
5002 },
5003 {
5004 .name = "kmem.max_usage_in_bytes",
5005 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5006 .write = mem_cgroup_reset,
5007 .read_u64 = mem_cgroup_read_u64,
5008 },
5009 #if defined(CONFIG_MEMCG_KMEM) && \
5010 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5011 {
5012 .name = "kmem.slabinfo",
5013 .seq_show = memcg_slab_show,
5014 },
5015 #endif
5016 {
5017 .name = "kmem.tcp.limit_in_bytes",
5018 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5019 .write = mem_cgroup_write,
5020 .read_u64 = mem_cgroup_read_u64,
5021 },
5022 {
5023 .name = "kmem.tcp.usage_in_bytes",
5024 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5025 .read_u64 = mem_cgroup_read_u64,
5026 },
5027 {
5028 .name = "kmem.tcp.failcnt",
5029 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5030 .write = mem_cgroup_reset,
5031 .read_u64 = mem_cgroup_read_u64,
5032 },
5033 {
5034 .name = "kmem.tcp.max_usage_in_bytes",
5035 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5036 .write = mem_cgroup_reset,
5037 .read_u64 = mem_cgroup_read_u64,
5038 },
5039 { }, /* terminate */
5040 };
5041
5042 /*
5043 * Private memory cgroup IDR
5044 *
5045 * Swap-out records and page cache shadow entries need to store memcg
5046 * references in constrained space, so we maintain an ID space that is
5047 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5048 * memory-controlled cgroups to 64k.
5049 *
5050 * However, there usually are many references to the offline CSS after
5051 * the cgroup has been destroyed, such as page cache or reclaimable
5052 * slab objects, that don't need to hang on to the ID. We want to keep
5053 * those dead CSS from occupying IDs, or we might quickly exhaust the
5054 * relatively small ID space and prevent the creation of new cgroups
5055 * even when there are much fewer than 64k cgroups - possibly none.
5056 *
5057 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5058 * be freed and recycled when it's no longer needed, which is usually
5059 * when the CSS is offlined.
5060 *
5061 * The only exception to that are records of swapped out tmpfs/shmem
5062 * pages that need to be attributed to live ancestors on swapin. But
5063 * those references are manageable from userspace.
5064 */
5065
5066 static DEFINE_IDR(mem_cgroup_idr);
5067
5068 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5069 {
5070 if (memcg->id.id > 0) {
5071 idr_remove(&mem_cgroup_idr, memcg->id.id);
5072 memcg->id.id = 0;
5073 }
5074 }
5075
5076 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5077 unsigned int n)
5078 {
5079 refcount_add(n, &memcg->id.ref);
5080 }
5081
5082 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5083 {
5084 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5085 mem_cgroup_id_remove(memcg);
5086
5087 /* Memcg ID pins CSS */
5088 css_put(&memcg->css);
5089 }
5090 }
5091
5092 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5093 {
5094 mem_cgroup_id_put_many(memcg, 1);
5095 }
5096
5097 /**
5098 * mem_cgroup_from_id - look up a memcg from a memcg id
5099 * @id: the memcg id to look up
5100 *
5101 * Caller must hold rcu_read_lock().
5102 */
5103 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5104 {
5105 WARN_ON_ONCE(!rcu_read_lock_held());
5106 return idr_find(&mem_cgroup_idr, id);
5107 }
5108
5109 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5110 {
5111 struct mem_cgroup_per_node *pn;
5112 int tmp = node;
5113 /*
5114 * This routine is called against possible nodes.
5115 * But it's BUG to call kmalloc() against offline node.
5116 *
5117 * TODO: this routine can waste much memory for nodes which will
5118 * never be onlined. It's better to use memory hotplug callback
5119 * function.
5120 */
5121 if (!node_state(node, N_NORMAL_MEMORY))
5122 tmp = -1;
5123 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5124 if (!pn)
5125 return 1;
5126
5127 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5128 GFP_KERNEL_ACCOUNT);
5129 if (!pn->lruvec_stats_percpu) {
5130 kfree(pn);
5131 return 1;
5132 }
5133
5134 lruvec_init(&pn->lruvec);
5135 pn->usage_in_excess = 0;
5136 pn->on_tree = false;
5137 pn->memcg = memcg;
5138
5139 memcg->nodeinfo[node] = pn;
5140 return 0;
5141 }
5142
5143 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5144 {
5145 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5146
5147 if (!pn)
5148 return;
5149
5150 free_percpu(pn->lruvec_stats_percpu);
5151 kfree(pn);
5152 }
5153
5154 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5155 {
5156 int node;
5157
5158 for_each_node(node)
5159 free_mem_cgroup_per_node_info(memcg, node);
5160 free_percpu(memcg->vmstats_percpu);
5161 kfree(memcg);
5162 }
5163
5164 static void mem_cgroup_free(struct mem_cgroup *memcg)
5165 {
5166 memcg_wb_domain_exit(memcg);
5167 __mem_cgroup_free(memcg);
5168 }
5169
5170 static struct mem_cgroup *mem_cgroup_alloc(void)
5171 {
5172 struct mem_cgroup *memcg;
5173 unsigned int size;
5174 int node;
5175 int __maybe_unused i;
5176 long error = -ENOMEM;
5177
5178 size = sizeof(struct mem_cgroup);
5179 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5180
5181 memcg = kzalloc(size, GFP_KERNEL);
5182 if (!memcg)
5183 return ERR_PTR(error);
5184
5185 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5186 1, MEM_CGROUP_ID_MAX,
5187 GFP_KERNEL);
5188 if (memcg->id.id < 0) {
5189 error = memcg->id.id;
5190 goto fail;
5191 }
5192
5193 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5194 GFP_KERNEL_ACCOUNT);
5195 if (!memcg->vmstats_percpu)
5196 goto fail;
5197
5198 for_each_node(node)
5199 if (alloc_mem_cgroup_per_node_info(memcg, node))
5200 goto fail;
5201
5202 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5203 goto fail;
5204
5205 INIT_WORK(&memcg->high_work, high_work_func);
5206 INIT_LIST_HEAD(&memcg->oom_notify);
5207 mutex_init(&memcg->thresholds_lock);
5208 spin_lock_init(&memcg->move_lock);
5209 vmpressure_init(&memcg->vmpressure);
5210 INIT_LIST_HEAD(&memcg->event_list);
5211 spin_lock_init(&memcg->event_list_lock);
5212 memcg->socket_pressure = jiffies;
5213 #ifdef CONFIG_MEMCG_KMEM
5214 memcg->kmemcg_id = -1;
5215 INIT_LIST_HEAD(&memcg->objcg_list);
5216 #endif
5217 #ifdef CONFIG_CGROUP_WRITEBACK
5218 INIT_LIST_HEAD(&memcg->cgwb_list);
5219 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5220 memcg->cgwb_frn[i].done =
5221 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5222 #endif
5223 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5224 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5225 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5226 memcg->deferred_split_queue.split_queue_len = 0;
5227 #endif
5228 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5229 return memcg;
5230 fail:
5231 mem_cgroup_id_remove(memcg);
5232 __mem_cgroup_free(memcg);
5233 return ERR_PTR(error);
5234 }
5235
5236 static struct cgroup_subsys_state * __ref
5237 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5238 {
5239 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5240 struct mem_cgroup *memcg, *old_memcg;
5241 long error = -ENOMEM;
5242
5243 old_memcg = set_active_memcg(parent);
5244 memcg = mem_cgroup_alloc();
5245 set_active_memcg(old_memcg);
5246 if (IS_ERR(memcg))
5247 return ERR_CAST(memcg);
5248
5249 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5250 memcg->soft_limit = PAGE_COUNTER_MAX;
5251 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5252 if (parent) {
5253 memcg->swappiness = mem_cgroup_swappiness(parent);
5254 memcg->oom_kill_disable = parent->oom_kill_disable;
5255
5256 page_counter_init(&memcg->memory, &parent->memory);
5257 page_counter_init(&memcg->swap, &parent->swap);
5258 page_counter_init(&memcg->kmem, &parent->kmem);
5259 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5260 } else {
5261 page_counter_init(&memcg->memory, NULL);
5262 page_counter_init(&memcg->swap, NULL);
5263 page_counter_init(&memcg->kmem, NULL);
5264 page_counter_init(&memcg->tcpmem, NULL);
5265
5266 root_mem_cgroup = memcg;
5267 return &memcg->css;
5268 }
5269
5270 /* The following stuff does not apply to the root */
5271 error = memcg_online_kmem(memcg);
5272 if (error)
5273 goto fail;
5274
5275 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5276 static_branch_inc(&memcg_sockets_enabled_key);
5277
5278 return &memcg->css;
5279 fail:
5280 mem_cgroup_id_remove(memcg);
5281 mem_cgroup_free(memcg);
5282 return ERR_PTR(error);
5283 }
5284
5285 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5286 {
5287 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5288
5289 /*
5290 * A memcg must be visible for expand_shrinker_info()
5291 * by the time the maps are allocated. So, we allocate maps
5292 * here, when for_each_mem_cgroup() can't skip it.
5293 */
5294 if (alloc_shrinker_info(memcg)) {
5295 mem_cgroup_id_remove(memcg);
5296 return -ENOMEM;
5297 }
5298
5299 /* Online state pins memcg ID, memcg ID pins CSS */
5300 refcount_set(&memcg->id.ref, 1);
5301 css_get(css);
5302
5303 if (unlikely(mem_cgroup_is_root(memcg)))
5304 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5305 2UL*HZ);
5306 return 0;
5307 }
5308
5309 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5310 {
5311 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5312 struct mem_cgroup_event *event, *tmp;
5313
5314 /*
5315 * Unregister events and notify userspace.
5316 * Notify userspace about cgroup removing only after rmdir of cgroup
5317 * directory to avoid race between userspace and kernelspace.
5318 */
5319 spin_lock_irq(&memcg->event_list_lock);
5320 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5321 list_del_init(&event->list);
5322 schedule_work(&event->remove);
5323 }
5324 spin_unlock_irq(&memcg->event_list_lock);
5325
5326 page_counter_set_min(&memcg->memory, 0);
5327 page_counter_set_low(&memcg->memory, 0);
5328
5329 memcg_offline_kmem(memcg);
5330 reparent_shrinker_deferred(memcg);
5331 wb_memcg_offline(memcg);
5332
5333 drain_all_stock(memcg);
5334
5335 mem_cgroup_id_put(memcg);
5336 }
5337
5338 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5339 {
5340 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5341
5342 invalidate_reclaim_iterators(memcg);
5343 }
5344
5345 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5346 {
5347 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5348 int __maybe_unused i;
5349
5350 #ifdef CONFIG_CGROUP_WRITEBACK
5351 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5352 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5353 #endif
5354 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5355 static_branch_dec(&memcg_sockets_enabled_key);
5356
5357 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5358 static_branch_dec(&memcg_sockets_enabled_key);
5359
5360 vmpressure_cleanup(&memcg->vmpressure);
5361 cancel_work_sync(&memcg->high_work);
5362 mem_cgroup_remove_from_trees(memcg);
5363 free_shrinker_info(memcg);
5364 memcg_free_kmem(memcg);
5365 mem_cgroup_free(memcg);
5366 }
5367
5368 /**
5369 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5370 * @css: the target css
5371 *
5372 * Reset the states of the mem_cgroup associated with @css. This is
5373 * invoked when the userland requests disabling on the default hierarchy
5374 * but the memcg is pinned through dependency. The memcg should stop
5375 * applying policies and should revert to the vanilla state as it may be
5376 * made visible again.
5377 *
5378 * The current implementation only resets the essential configurations.
5379 * This needs to be expanded to cover all the visible parts.
5380 */
5381 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5382 {
5383 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5384
5385 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5386 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5387 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5388 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5389 page_counter_set_min(&memcg->memory, 0);
5390 page_counter_set_low(&memcg->memory, 0);
5391 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5392 memcg->soft_limit = PAGE_COUNTER_MAX;
5393 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5394 memcg_wb_domain_size_changed(memcg);
5395 }
5396
5397 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5398 {
5399 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5400 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5401 struct memcg_vmstats_percpu *statc;
5402 long delta, v;
5403 int i, nid;
5404
5405 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5406
5407 for (i = 0; i < MEMCG_NR_STAT; i++) {
5408 /*
5409 * Collect the aggregated propagation counts of groups
5410 * below us. We're in a per-cpu loop here and this is
5411 * a global counter, so the first cycle will get them.
5412 */
5413 delta = memcg->vmstats.state_pending[i];
5414 if (delta)
5415 memcg->vmstats.state_pending[i] = 0;
5416
5417 /* Add CPU changes on this level since the last flush */
5418 v = READ_ONCE(statc->state[i]);
5419 if (v != statc->state_prev[i]) {
5420 delta += v - statc->state_prev[i];
5421 statc->state_prev[i] = v;
5422 }
5423
5424 if (!delta)
5425 continue;
5426
5427 /* Aggregate counts on this level and propagate upwards */
5428 memcg->vmstats.state[i] += delta;
5429 if (parent)
5430 parent->vmstats.state_pending[i] += delta;
5431 }
5432
5433 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5434 delta = memcg->vmstats.events_pending[i];
5435 if (delta)
5436 memcg->vmstats.events_pending[i] = 0;
5437
5438 v = READ_ONCE(statc->events[i]);
5439 if (v != statc->events_prev[i]) {
5440 delta += v - statc->events_prev[i];
5441 statc->events_prev[i] = v;
5442 }
5443
5444 if (!delta)
5445 continue;
5446
5447 memcg->vmstats.events[i] += delta;
5448 if (parent)
5449 parent->vmstats.events_pending[i] += delta;
5450 }
5451
5452 for_each_node_state(nid, N_MEMORY) {
5453 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5454 struct mem_cgroup_per_node *ppn = NULL;
5455 struct lruvec_stats_percpu *lstatc;
5456
5457 if (parent)
5458 ppn = parent->nodeinfo[nid];
5459
5460 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5461
5462 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5463 delta = pn->lruvec_stats.state_pending[i];
5464 if (delta)
5465 pn->lruvec_stats.state_pending[i] = 0;
5466
5467 v = READ_ONCE(lstatc->state[i]);
5468 if (v != lstatc->state_prev[i]) {
5469 delta += v - lstatc->state_prev[i];
5470 lstatc->state_prev[i] = v;
5471 }
5472
5473 if (!delta)
5474 continue;
5475
5476 pn->lruvec_stats.state[i] += delta;
5477 if (ppn)
5478 ppn->lruvec_stats.state_pending[i] += delta;
5479 }
5480 }
5481 }
5482
5483 #ifdef CONFIG_MMU
5484 /* Handlers for move charge at task migration. */
5485 static int mem_cgroup_do_precharge(unsigned long count)
5486 {
5487 int ret;
5488
5489 /* Try a single bulk charge without reclaim first, kswapd may wake */
5490 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5491 if (!ret) {
5492 mc.precharge += count;
5493 return ret;
5494 }
5495
5496 /* Try charges one by one with reclaim, but do not retry */
5497 while (count--) {
5498 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5499 if (ret)
5500 return ret;
5501 mc.precharge++;
5502 cond_resched();
5503 }
5504 return 0;
5505 }
5506
5507 union mc_target {
5508 struct page *page;
5509 swp_entry_t ent;
5510 };
5511
5512 enum mc_target_type {
5513 MC_TARGET_NONE = 0,
5514 MC_TARGET_PAGE,
5515 MC_TARGET_SWAP,
5516 MC_TARGET_DEVICE,
5517 };
5518
5519 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5520 unsigned long addr, pte_t ptent)
5521 {
5522 struct page *page = vm_normal_page(vma, addr, ptent);
5523
5524 if (!page || !page_mapped(page))
5525 return NULL;
5526 if (PageAnon(page)) {
5527 if (!(mc.flags & MOVE_ANON))
5528 return NULL;
5529 } else {
5530 if (!(mc.flags & MOVE_FILE))
5531 return NULL;
5532 }
5533 if (!get_page_unless_zero(page))
5534 return NULL;
5535
5536 return page;
5537 }
5538
5539 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5540 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5541 pte_t ptent, swp_entry_t *entry)
5542 {
5543 struct page *page = NULL;
5544 swp_entry_t ent = pte_to_swp_entry(ptent);
5545
5546 if (!(mc.flags & MOVE_ANON))
5547 return NULL;
5548
5549 /*
5550 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5551 * a device and because they are not accessible by CPU they are store
5552 * as special swap entry in the CPU page table.
5553 */
5554 if (is_device_private_entry(ent)) {
5555 page = pfn_swap_entry_to_page(ent);
5556 /*
5557 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5558 * a refcount of 1 when free (unlike normal page)
5559 */
5560 if (!page_ref_add_unless(page, 1, 1))
5561 return NULL;
5562 return page;
5563 }
5564
5565 if (non_swap_entry(ent))
5566 return NULL;
5567
5568 /*
5569 * Because lookup_swap_cache() updates some statistics counter,
5570 * we call find_get_page() with swapper_space directly.
5571 */
5572 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5573 entry->val = ent.val;
5574
5575 return page;
5576 }
5577 #else
5578 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5579 pte_t ptent, swp_entry_t *entry)
5580 {
5581 return NULL;
5582 }
5583 #endif
5584
5585 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5586 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5587 {
5588 if (!vma->vm_file) /* anonymous vma */
5589 return NULL;
5590 if (!(mc.flags & MOVE_FILE))
5591 return NULL;
5592
5593 /* page is moved even if it's not RSS of this task(page-faulted). */
5594 /* shmem/tmpfs may report page out on swap: account for that too. */
5595 return find_get_incore_page(vma->vm_file->f_mapping,
5596 linear_page_index(vma, addr));
5597 }
5598
5599 /**
5600 * mem_cgroup_move_account - move account of the page
5601 * @page: the page
5602 * @compound: charge the page as compound or small page
5603 * @from: mem_cgroup which the page is moved from.
5604 * @to: mem_cgroup which the page is moved to. @from != @to.
5605 *
5606 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5607 *
5608 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5609 * from old cgroup.
5610 */
5611 static int mem_cgroup_move_account(struct page *page,
5612 bool compound,
5613 struct mem_cgroup *from,
5614 struct mem_cgroup *to)
5615 {
5616 struct lruvec *from_vec, *to_vec;
5617 struct pglist_data *pgdat;
5618 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5619 int ret;
5620
5621 VM_BUG_ON(from == to);
5622 VM_BUG_ON_PAGE(PageLRU(page), page);
5623 VM_BUG_ON(compound && !PageTransHuge(page));
5624
5625 /*
5626 * Prevent mem_cgroup_migrate() from looking at
5627 * page's memory cgroup of its source page while we change it.
5628 */
5629 ret = -EBUSY;
5630 if (!trylock_page(page))
5631 goto out;
5632
5633 ret = -EINVAL;
5634 if (page_memcg(page) != from)
5635 goto out_unlock;
5636
5637 pgdat = page_pgdat(page);
5638 from_vec = mem_cgroup_lruvec(from, pgdat);
5639 to_vec = mem_cgroup_lruvec(to, pgdat);
5640
5641 lock_page_memcg(page);
5642
5643 if (PageAnon(page)) {
5644 if (page_mapped(page)) {
5645 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5646 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5647 if (PageTransHuge(page)) {
5648 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5649 -nr_pages);
5650 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5651 nr_pages);
5652 }
5653 }
5654 } else {
5655 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5656 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5657
5658 if (PageSwapBacked(page)) {
5659 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5660 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5661 }
5662
5663 if (page_mapped(page)) {
5664 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5665 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5666 }
5667
5668 if (PageDirty(page)) {
5669 struct address_space *mapping = page_mapping(page);
5670
5671 if (mapping_can_writeback(mapping)) {
5672 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5673 -nr_pages);
5674 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5675 nr_pages);
5676 }
5677 }
5678 }
5679
5680 if (PageWriteback(page)) {
5681 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5682 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5683 }
5684
5685 /*
5686 * All state has been migrated, let's switch to the new memcg.
5687 *
5688 * It is safe to change page's memcg here because the page
5689 * is referenced, charged, isolated, and locked: we can't race
5690 * with (un)charging, migration, LRU putback, or anything else
5691 * that would rely on a stable page's memory cgroup.
5692 *
5693 * Note that lock_page_memcg is a memcg lock, not a page lock,
5694 * to save space. As soon as we switch page's memory cgroup to a
5695 * new memcg that isn't locked, the above state can change
5696 * concurrently again. Make sure we're truly done with it.
5697 */
5698 smp_mb();
5699
5700 css_get(&to->css);
5701 css_put(&from->css);
5702
5703 page->memcg_data = (unsigned long)to;
5704
5705 __unlock_page_memcg(from);
5706
5707 ret = 0;
5708
5709 local_irq_disable();
5710 mem_cgroup_charge_statistics(to, page, nr_pages);
5711 memcg_check_events(to, page);
5712 mem_cgroup_charge_statistics(from, page, -nr_pages);
5713 memcg_check_events(from, page);
5714 local_irq_enable();
5715 out_unlock:
5716 unlock_page(page);
5717 out:
5718 return ret;
5719 }
5720
5721 /**
5722 * get_mctgt_type - get target type of moving charge
5723 * @vma: the vma the pte to be checked belongs
5724 * @addr: the address corresponding to the pte to be checked
5725 * @ptent: the pte to be checked
5726 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5727 *
5728 * Returns
5729 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5730 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5731 * move charge. if @target is not NULL, the page is stored in target->page
5732 * with extra refcnt got(Callers should handle it).
5733 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5734 * target for charge migration. if @target is not NULL, the entry is stored
5735 * in target->ent.
5736 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5737 * (so ZONE_DEVICE page and thus not on the lru).
5738 * For now we such page is charge like a regular page would be as for all
5739 * intent and purposes it is just special memory taking the place of a
5740 * regular page.
5741 *
5742 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5743 *
5744 * Called with pte lock held.
5745 */
5746
5747 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5748 unsigned long addr, pte_t ptent, union mc_target *target)
5749 {
5750 struct page *page = NULL;
5751 enum mc_target_type ret = MC_TARGET_NONE;
5752 swp_entry_t ent = { .val = 0 };
5753
5754 if (pte_present(ptent))
5755 page = mc_handle_present_pte(vma, addr, ptent);
5756 else if (is_swap_pte(ptent))
5757 page = mc_handle_swap_pte(vma, ptent, &ent);
5758 else if (pte_none(ptent))
5759 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5760
5761 if (!page && !ent.val)
5762 return ret;
5763 if (page) {
5764 /*
5765 * Do only loose check w/o serialization.
5766 * mem_cgroup_move_account() checks the page is valid or
5767 * not under LRU exclusion.
5768 */
5769 if (page_memcg(page) == mc.from) {
5770 ret = MC_TARGET_PAGE;
5771 if (is_device_private_page(page))
5772 ret = MC_TARGET_DEVICE;
5773 if (target)
5774 target->page = page;
5775 }
5776 if (!ret || !target)
5777 put_page(page);
5778 }
5779 /*
5780 * There is a swap entry and a page doesn't exist or isn't charged.
5781 * But we cannot move a tail-page in a THP.
5782 */
5783 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5784 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5785 ret = MC_TARGET_SWAP;
5786 if (target)
5787 target->ent = ent;
5788 }
5789 return ret;
5790 }
5791
5792 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5793 /*
5794 * We don't consider PMD mapped swapping or file mapped pages because THP does
5795 * not support them for now.
5796 * Caller should make sure that pmd_trans_huge(pmd) is true.
5797 */
5798 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5799 unsigned long addr, pmd_t pmd, union mc_target *target)
5800 {
5801 struct page *page = NULL;
5802 enum mc_target_type ret = MC_TARGET_NONE;
5803
5804 if (unlikely(is_swap_pmd(pmd))) {
5805 VM_BUG_ON(thp_migration_supported() &&
5806 !is_pmd_migration_entry(pmd));
5807 return ret;
5808 }
5809 page = pmd_page(pmd);
5810 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5811 if (!(mc.flags & MOVE_ANON))
5812 return ret;
5813 if (page_memcg(page) == mc.from) {
5814 ret = MC_TARGET_PAGE;
5815 if (target) {
5816 get_page(page);
5817 target->page = page;
5818 }
5819 }
5820 return ret;
5821 }
5822 #else
5823 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5824 unsigned long addr, pmd_t pmd, union mc_target *target)
5825 {
5826 return MC_TARGET_NONE;
5827 }
5828 #endif
5829
5830 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5831 unsigned long addr, unsigned long end,
5832 struct mm_walk *walk)
5833 {
5834 struct vm_area_struct *vma = walk->vma;
5835 pte_t *pte;
5836 spinlock_t *ptl;
5837
5838 ptl = pmd_trans_huge_lock(pmd, vma);
5839 if (ptl) {
5840 /*
5841 * Note their can not be MC_TARGET_DEVICE for now as we do not
5842 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5843 * this might change.
5844 */
5845 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5846 mc.precharge += HPAGE_PMD_NR;
5847 spin_unlock(ptl);
5848 return 0;
5849 }
5850
5851 if (pmd_trans_unstable(pmd))
5852 return 0;
5853 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5854 for (; addr != end; pte++, addr += PAGE_SIZE)
5855 if (get_mctgt_type(vma, addr, *pte, NULL))
5856 mc.precharge++; /* increment precharge temporarily */
5857 pte_unmap_unlock(pte - 1, ptl);
5858 cond_resched();
5859
5860 return 0;
5861 }
5862
5863 static const struct mm_walk_ops precharge_walk_ops = {
5864 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5865 };
5866
5867 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5868 {
5869 unsigned long precharge;
5870
5871 mmap_read_lock(mm);
5872 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5873 mmap_read_unlock(mm);
5874
5875 precharge = mc.precharge;
5876 mc.precharge = 0;
5877
5878 return precharge;
5879 }
5880
5881 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5882 {
5883 unsigned long precharge = mem_cgroup_count_precharge(mm);
5884
5885 VM_BUG_ON(mc.moving_task);
5886 mc.moving_task = current;
5887 return mem_cgroup_do_precharge(precharge);
5888 }
5889
5890 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5891 static void __mem_cgroup_clear_mc(void)
5892 {
5893 struct mem_cgroup *from = mc.from;
5894 struct mem_cgroup *to = mc.to;
5895
5896 /* we must uncharge all the leftover precharges from mc.to */
5897 if (mc.precharge) {
5898 cancel_charge(mc.to, mc.precharge);
5899 mc.precharge = 0;
5900 }
5901 /*
5902 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5903 * we must uncharge here.
5904 */
5905 if (mc.moved_charge) {
5906 cancel_charge(mc.from, mc.moved_charge);
5907 mc.moved_charge = 0;
5908 }
5909 /* we must fixup refcnts and charges */
5910 if (mc.moved_swap) {
5911 /* uncharge swap account from the old cgroup */
5912 if (!mem_cgroup_is_root(mc.from))
5913 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5914
5915 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5916
5917 /*
5918 * we charged both to->memory and to->memsw, so we
5919 * should uncharge to->memory.
5920 */
5921 if (!mem_cgroup_is_root(mc.to))
5922 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5923
5924 mc.moved_swap = 0;
5925 }
5926 memcg_oom_recover(from);
5927 memcg_oom_recover(to);
5928 wake_up_all(&mc.waitq);
5929 }
5930
5931 static void mem_cgroup_clear_mc(void)
5932 {
5933 struct mm_struct *mm = mc.mm;
5934
5935 /*
5936 * we must clear moving_task before waking up waiters at the end of
5937 * task migration.
5938 */
5939 mc.moving_task = NULL;
5940 __mem_cgroup_clear_mc();
5941 spin_lock(&mc.lock);
5942 mc.from = NULL;
5943 mc.to = NULL;
5944 mc.mm = NULL;
5945 spin_unlock(&mc.lock);
5946
5947 mmput(mm);
5948 }
5949
5950 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5951 {
5952 struct cgroup_subsys_state *css;
5953 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5954 struct mem_cgroup *from;
5955 struct task_struct *leader, *p;
5956 struct mm_struct *mm;
5957 unsigned long move_flags;
5958 int ret = 0;
5959
5960 /* charge immigration isn't supported on the default hierarchy */
5961 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5962 return 0;
5963
5964 /*
5965 * Multi-process migrations only happen on the default hierarchy
5966 * where charge immigration is not used. Perform charge
5967 * immigration if @tset contains a leader and whine if there are
5968 * multiple.
5969 */
5970 p = NULL;
5971 cgroup_taskset_for_each_leader(leader, css, tset) {
5972 WARN_ON_ONCE(p);
5973 p = leader;
5974 memcg = mem_cgroup_from_css(css);
5975 }
5976 if (!p)
5977 return 0;
5978
5979 /*
5980 * We are now committed to this value whatever it is. Changes in this
5981 * tunable will only affect upcoming migrations, not the current one.
5982 * So we need to save it, and keep it going.
5983 */
5984 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5985 if (!move_flags)
5986 return 0;
5987
5988 from = mem_cgroup_from_task(p);
5989
5990 VM_BUG_ON(from == memcg);
5991
5992 mm = get_task_mm(p);
5993 if (!mm)
5994 return 0;
5995 /* We move charges only when we move a owner of the mm */
5996 if (mm->owner == p) {
5997 VM_BUG_ON(mc.from);
5998 VM_BUG_ON(mc.to);
5999 VM_BUG_ON(mc.precharge);
6000 VM_BUG_ON(mc.moved_charge);
6001 VM_BUG_ON(mc.moved_swap);
6002
6003 spin_lock(&mc.lock);
6004 mc.mm = mm;
6005 mc.from = from;
6006 mc.to = memcg;
6007 mc.flags = move_flags;
6008 spin_unlock(&mc.lock);
6009 /* We set mc.moving_task later */
6010
6011 ret = mem_cgroup_precharge_mc(mm);
6012 if (ret)
6013 mem_cgroup_clear_mc();
6014 } else {
6015 mmput(mm);
6016 }
6017 return ret;
6018 }
6019
6020 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6021 {
6022 if (mc.to)
6023 mem_cgroup_clear_mc();
6024 }
6025
6026 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6027 unsigned long addr, unsigned long end,
6028 struct mm_walk *walk)
6029 {
6030 int ret = 0;
6031 struct vm_area_struct *vma = walk->vma;
6032 pte_t *pte;
6033 spinlock_t *ptl;
6034 enum mc_target_type target_type;
6035 union mc_target target;
6036 struct page *page;
6037
6038 ptl = pmd_trans_huge_lock(pmd, vma);
6039 if (ptl) {
6040 if (mc.precharge < HPAGE_PMD_NR) {
6041 spin_unlock(ptl);
6042 return 0;
6043 }
6044 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6045 if (target_type == MC_TARGET_PAGE) {
6046 page = target.page;
6047 if (!isolate_lru_page(page)) {
6048 if (!mem_cgroup_move_account(page, true,
6049 mc.from, mc.to)) {
6050 mc.precharge -= HPAGE_PMD_NR;
6051 mc.moved_charge += HPAGE_PMD_NR;
6052 }
6053 putback_lru_page(page);
6054 }
6055 put_page(page);
6056 } else if (target_type == MC_TARGET_DEVICE) {
6057 page = target.page;
6058 if (!mem_cgroup_move_account(page, true,
6059 mc.from, mc.to)) {
6060 mc.precharge -= HPAGE_PMD_NR;
6061 mc.moved_charge += HPAGE_PMD_NR;
6062 }
6063 put_page(page);
6064 }
6065 spin_unlock(ptl);
6066 return 0;
6067 }
6068
6069 if (pmd_trans_unstable(pmd))
6070 return 0;
6071 retry:
6072 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6073 for (; addr != end; addr += PAGE_SIZE) {
6074 pte_t ptent = *(pte++);
6075 bool device = false;
6076 swp_entry_t ent;
6077
6078 if (!mc.precharge)
6079 break;
6080
6081 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6082 case MC_TARGET_DEVICE:
6083 device = true;
6084 fallthrough;
6085 case MC_TARGET_PAGE:
6086 page = target.page;
6087 /*
6088 * We can have a part of the split pmd here. Moving it
6089 * can be done but it would be too convoluted so simply
6090 * ignore such a partial THP and keep it in original
6091 * memcg. There should be somebody mapping the head.
6092 */
6093 if (PageTransCompound(page))
6094 goto put;
6095 if (!device && isolate_lru_page(page))
6096 goto put;
6097 if (!mem_cgroup_move_account(page, false,
6098 mc.from, mc.to)) {
6099 mc.precharge--;
6100 /* we uncharge from mc.from later. */
6101 mc.moved_charge++;
6102 }
6103 if (!device)
6104 putback_lru_page(page);
6105 put: /* get_mctgt_type() gets the page */
6106 put_page(page);
6107 break;
6108 case MC_TARGET_SWAP:
6109 ent = target.ent;
6110 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6111 mc.precharge--;
6112 mem_cgroup_id_get_many(mc.to, 1);
6113 /* we fixup other refcnts and charges later. */
6114 mc.moved_swap++;
6115 }
6116 break;
6117 default:
6118 break;
6119 }
6120 }
6121 pte_unmap_unlock(pte - 1, ptl);
6122 cond_resched();
6123
6124 if (addr != end) {
6125 /*
6126 * We have consumed all precharges we got in can_attach().
6127 * We try charge one by one, but don't do any additional
6128 * charges to mc.to if we have failed in charge once in attach()
6129 * phase.
6130 */
6131 ret = mem_cgroup_do_precharge(1);
6132 if (!ret)
6133 goto retry;
6134 }
6135
6136 return ret;
6137 }
6138
6139 static const struct mm_walk_ops charge_walk_ops = {
6140 .pmd_entry = mem_cgroup_move_charge_pte_range,
6141 };
6142
6143 static void mem_cgroup_move_charge(void)
6144 {
6145 lru_add_drain_all();
6146 /*
6147 * Signal lock_page_memcg() to take the memcg's move_lock
6148 * while we're moving its pages to another memcg. Then wait
6149 * for already started RCU-only updates to finish.
6150 */
6151 atomic_inc(&mc.from->moving_account);
6152 synchronize_rcu();
6153 retry:
6154 if (unlikely(!mmap_read_trylock(mc.mm))) {
6155 /*
6156 * Someone who are holding the mmap_lock might be waiting in
6157 * waitq. So we cancel all extra charges, wake up all waiters,
6158 * and retry. Because we cancel precharges, we might not be able
6159 * to move enough charges, but moving charge is a best-effort
6160 * feature anyway, so it wouldn't be a big problem.
6161 */
6162 __mem_cgroup_clear_mc();
6163 cond_resched();
6164 goto retry;
6165 }
6166 /*
6167 * When we have consumed all precharges and failed in doing
6168 * additional charge, the page walk just aborts.
6169 */
6170 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6171 NULL);
6172
6173 mmap_read_unlock(mc.mm);
6174 atomic_dec(&mc.from->moving_account);
6175 }
6176
6177 static void mem_cgroup_move_task(void)
6178 {
6179 if (mc.to) {
6180 mem_cgroup_move_charge();
6181 mem_cgroup_clear_mc();
6182 }
6183 }
6184 #else /* !CONFIG_MMU */
6185 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6186 {
6187 return 0;
6188 }
6189 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6190 {
6191 }
6192 static void mem_cgroup_move_task(void)
6193 {
6194 }
6195 #endif
6196
6197 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6198 {
6199 if (value == PAGE_COUNTER_MAX)
6200 seq_puts(m, "max\n");
6201 else
6202 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6203
6204 return 0;
6205 }
6206
6207 static u64 memory_current_read(struct cgroup_subsys_state *css,
6208 struct cftype *cft)
6209 {
6210 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6211
6212 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6213 }
6214
6215 static int memory_min_show(struct seq_file *m, void *v)
6216 {
6217 return seq_puts_memcg_tunable(m,
6218 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6219 }
6220
6221 static ssize_t memory_min_write(struct kernfs_open_file *of,
6222 char *buf, size_t nbytes, loff_t off)
6223 {
6224 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6225 unsigned long min;
6226 int err;
6227
6228 buf = strstrip(buf);
6229 err = page_counter_memparse(buf, "max", &min);
6230 if (err)
6231 return err;
6232
6233 page_counter_set_min(&memcg->memory, min);
6234
6235 return nbytes;
6236 }
6237
6238 static int memory_low_show(struct seq_file *m, void *v)
6239 {
6240 return seq_puts_memcg_tunable(m,
6241 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6242 }
6243
6244 static ssize_t memory_low_write(struct kernfs_open_file *of,
6245 char *buf, size_t nbytes, loff_t off)
6246 {
6247 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6248 unsigned long low;
6249 int err;
6250
6251 buf = strstrip(buf);
6252 err = page_counter_memparse(buf, "max", &low);
6253 if (err)
6254 return err;
6255
6256 page_counter_set_low(&memcg->memory, low);
6257
6258 return nbytes;
6259 }
6260
6261 static int memory_high_show(struct seq_file *m, void *v)
6262 {
6263 return seq_puts_memcg_tunable(m,
6264 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6265 }
6266
6267 static ssize_t memory_high_write(struct kernfs_open_file *of,
6268 char *buf, size_t nbytes, loff_t off)
6269 {
6270 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6271 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6272 bool drained = false;
6273 unsigned long high;
6274 int err;
6275
6276 buf = strstrip(buf);
6277 err = page_counter_memparse(buf, "max", &high);
6278 if (err)
6279 return err;
6280
6281 page_counter_set_high(&memcg->memory, high);
6282
6283 for (;;) {
6284 unsigned long nr_pages = page_counter_read(&memcg->memory);
6285 unsigned long reclaimed;
6286
6287 if (nr_pages <= high)
6288 break;
6289
6290 if (signal_pending(current))
6291 break;
6292
6293 if (!drained) {
6294 drain_all_stock(memcg);
6295 drained = true;
6296 continue;
6297 }
6298
6299 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6300 GFP_KERNEL, true);
6301
6302 if (!reclaimed && !nr_retries--)
6303 break;
6304 }
6305
6306 memcg_wb_domain_size_changed(memcg);
6307 return nbytes;
6308 }
6309
6310 static int memory_max_show(struct seq_file *m, void *v)
6311 {
6312 return seq_puts_memcg_tunable(m,
6313 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6314 }
6315
6316 static ssize_t memory_max_write(struct kernfs_open_file *of,
6317 char *buf, size_t nbytes, loff_t off)
6318 {
6319 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6320 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6321 bool drained = false;
6322 unsigned long max;
6323 int err;
6324
6325 buf = strstrip(buf);
6326 err = page_counter_memparse(buf, "max", &max);
6327 if (err)
6328 return err;
6329
6330 xchg(&memcg->memory.max, max);
6331
6332 for (;;) {
6333 unsigned long nr_pages = page_counter_read(&memcg->memory);
6334
6335 if (nr_pages <= max)
6336 break;
6337
6338 if (signal_pending(current))
6339 break;
6340
6341 if (!drained) {
6342 drain_all_stock(memcg);
6343 drained = true;
6344 continue;
6345 }
6346
6347 if (nr_reclaims) {
6348 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6349 GFP_KERNEL, true))
6350 nr_reclaims--;
6351 continue;
6352 }
6353
6354 memcg_memory_event(memcg, MEMCG_OOM);
6355 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6356 break;
6357 }
6358
6359 memcg_wb_domain_size_changed(memcg);
6360 return nbytes;
6361 }
6362
6363 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6364 {
6365 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6366 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6367 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6368 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6369 seq_printf(m, "oom_kill %lu\n",
6370 atomic_long_read(&events[MEMCG_OOM_KILL]));
6371 }
6372
6373 static int memory_events_show(struct seq_file *m, void *v)
6374 {
6375 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6376
6377 __memory_events_show(m, memcg->memory_events);
6378 return 0;
6379 }
6380
6381 static int memory_events_local_show(struct seq_file *m, void *v)
6382 {
6383 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6384
6385 __memory_events_show(m, memcg->memory_events_local);
6386 return 0;
6387 }
6388
6389 static int memory_stat_show(struct seq_file *m, void *v)
6390 {
6391 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6392 char *buf;
6393
6394 buf = memory_stat_format(memcg);
6395 if (!buf)
6396 return -ENOMEM;
6397 seq_puts(m, buf);
6398 kfree(buf);
6399 return 0;
6400 }
6401
6402 #ifdef CONFIG_NUMA
6403 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6404 int item)
6405 {
6406 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6407 }
6408
6409 static int memory_numa_stat_show(struct seq_file *m, void *v)
6410 {
6411 int i;
6412 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6413
6414 mem_cgroup_flush_stats();
6415
6416 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6417 int nid;
6418
6419 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6420 continue;
6421
6422 seq_printf(m, "%s", memory_stats[i].name);
6423 for_each_node_state(nid, N_MEMORY) {
6424 u64 size;
6425 struct lruvec *lruvec;
6426
6427 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6428 size = lruvec_page_state_output(lruvec,
6429 memory_stats[i].idx);
6430 seq_printf(m, " N%d=%llu", nid, size);
6431 }
6432 seq_putc(m, '\n');
6433 }
6434
6435 return 0;
6436 }
6437 #endif
6438
6439 static int memory_oom_group_show(struct seq_file *m, void *v)
6440 {
6441 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6442
6443 seq_printf(m, "%d\n", memcg->oom_group);
6444
6445 return 0;
6446 }
6447
6448 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6449 char *buf, size_t nbytes, loff_t off)
6450 {
6451 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6452 int ret, oom_group;
6453
6454 buf = strstrip(buf);
6455 if (!buf)
6456 return -EINVAL;
6457
6458 ret = kstrtoint(buf, 0, &oom_group);
6459 if (ret)
6460 return ret;
6461
6462 if (oom_group != 0 && oom_group != 1)
6463 return -EINVAL;
6464
6465 memcg->oom_group = oom_group;
6466
6467 return nbytes;
6468 }
6469
6470 static struct cftype memory_files[] = {
6471 {
6472 .name = "current",
6473 .flags = CFTYPE_NOT_ON_ROOT,
6474 .read_u64 = memory_current_read,
6475 },
6476 {
6477 .name = "min",
6478 .flags = CFTYPE_NOT_ON_ROOT,
6479 .seq_show = memory_min_show,
6480 .write = memory_min_write,
6481 },
6482 {
6483 .name = "low",
6484 .flags = CFTYPE_NOT_ON_ROOT,
6485 .seq_show = memory_low_show,
6486 .write = memory_low_write,
6487 },
6488 {
6489 .name = "high",
6490 .flags = CFTYPE_NOT_ON_ROOT,
6491 .seq_show = memory_high_show,
6492 .write = memory_high_write,
6493 },
6494 {
6495 .name = "max",
6496 .flags = CFTYPE_NOT_ON_ROOT,
6497 .seq_show = memory_max_show,
6498 .write = memory_max_write,
6499 },
6500 {
6501 .name = "events",
6502 .flags = CFTYPE_NOT_ON_ROOT,
6503 .file_offset = offsetof(struct mem_cgroup, events_file),
6504 .seq_show = memory_events_show,
6505 },
6506 {
6507 .name = "events.local",
6508 .flags = CFTYPE_NOT_ON_ROOT,
6509 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6510 .seq_show = memory_events_local_show,
6511 },
6512 {
6513 .name = "stat",
6514 .seq_show = memory_stat_show,
6515 },
6516 #ifdef CONFIG_NUMA
6517 {
6518 .name = "numa_stat",
6519 .seq_show = memory_numa_stat_show,
6520 },
6521 #endif
6522 {
6523 .name = "oom.group",
6524 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6525 .seq_show = memory_oom_group_show,
6526 .write = memory_oom_group_write,
6527 },
6528 { } /* terminate */
6529 };
6530
6531 struct cgroup_subsys memory_cgrp_subsys = {
6532 .css_alloc = mem_cgroup_css_alloc,
6533 .css_online = mem_cgroup_css_online,
6534 .css_offline = mem_cgroup_css_offline,
6535 .css_released = mem_cgroup_css_released,
6536 .css_free = mem_cgroup_css_free,
6537 .css_reset = mem_cgroup_css_reset,
6538 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6539 .can_attach = mem_cgroup_can_attach,
6540 .cancel_attach = mem_cgroup_cancel_attach,
6541 .post_attach = mem_cgroup_move_task,
6542 .dfl_cftypes = memory_files,
6543 .legacy_cftypes = mem_cgroup_legacy_files,
6544 .early_init = 0,
6545 };
6546
6547 /*
6548 * This function calculates an individual cgroup's effective
6549 * protection which is derived from its own memory.min/low, its
6550 * parent's and siblings' settings, as well as the actual memory
6551 * distribution in the tree.
6552 *
6553 * The following rules apply to the effective protection values:
6554 *
6555 * 1. At the first level of reclaim, effective protection is equal to
6556 * the declared protection in memory.min and memory.low.
6557 *
6558 * 2. To enable safe delegation of the protection configuration, at
6559 * subsequent levels the effective protection is capped to the
6560 * parent's effective protection.
6561 *
6562 * 3. To make complex and dynamic subtrees easier to configure, the
6563 * user is allowed to overcommit the declared protection at a given
6564 * level. If that is the case, the parent's effective protection is
6565 * distributed to the children in proportion to how much protection
6566 * they have declared and how much of it they are utilizing.
6567 *
6568 * This makes distribution proportional, but also work-conserving:
6569 * if one cgroup claims much more protection than it uses memory,
6570 * the unused remainder is available to its siblings.
6571 *
6572 * 4. Conversely, when the declared protection is undercommitted at a
6573 * given level, the distribution of the larger parental protection
6574 * budget is NOT proportional. A cgroup's protection from a sibling
6575 * is capped to its own memory.min/low setting.
6576 *
6577 * 5. However, to allow protecting recursive subtrees from each other
6578 * without having to declare each individual cgroup's fixed share
6579 * of the ancestor's claim to protection, any unutilized -
6580 * "floating" - protection from up the tree is distributed in
6581 * proportion to each cgroup's *usage*. This makes the protection
6582 * neutral wrt sibling cgroups and lets them compete freely over
6583 * the shared parental protection budget, but it protects the
6584 * subtree as a whole from neighboring subtrees.
6585 *
6586 * Note that 4. and 5. are not in conflict: 4. is about protecting
6587 * against immediate siblings whereas 5. is about protecting against
6588 * neighboring subtrees.
6589 */
6590 static unsigned long effective_protection(unsigned long usage,
6591 unsigned long parent_usage,
6592 unsigned long setting,
6593 unsigned long parent_effective,
6594 unsigned long siblings_protected)
6595 {
6596 unsigned long protected;
6597 unsigned long ep;
6598
6599 protected = min(usage, setting);
6600 /*
6601 * If all cgroups at this level combined claim and use more
6602 * protection then what the parent affords them, distribute
6603 * shares in proportion to utilization.
6604 *
6605 * We are using actual utilization rather than the statically
6606 * claimed protection in order to be work-conserving: claimed
6607 * but unused protection is available to siblings that would
6608 * otherwise get a smaller chunk than what they claimed.
6609 */
6610 if (siblings_protected > parent_effective)
6611 return protected * parent_effective / siblings_protected;
6612
6613 /*
6614 * Ok, utilized protection of all children is within what the
6615 * parent affords them, so we know whatever this child claims
6616 * and utilizes is effectively protected.
6617 *
6618 * If there is unprotected usage beyond this value, reclaim
6619 * will apply pressure in proportion to that amount.
6620 *
6621 * If there is unutilized protection, the cgroup will be fully
6622 * shielded from reclaim, but we do return a smaller value for
6623 * protection than what the group could enjoy in theory. This
6624 * is okay. With the overcommit distribution above, effective
6625 * protection is always dependent on how memory is actually
6626 * consumed among the siblings anyway.
6627 */
6628 ep = protected;
6629
6630 /*
6631 * If the children aren't claiming (all of) the protection
6632 * afforded to them by the parent, distribute the remainder in
6633 * proportion to the (unprotected) memory of each cgroup. That
6634 * way, cgroups that aren't explicitly prioritized wrt each
6635 * other compete freely over the allowance, but they are
6636 * collectively protected from neighboring trees.
6637 *
6638 * We're using unprotected memory for the weight so that if
6639 * some cgroups DO claim explicit protection, we don't protect
6640 * the same bytes twice.
6641 *
6642 * Check both usage and parent_usage against the respective
6643 * protected values. One should imply the other, but they
6644 * aren't read atomically - make sure the division is sane.
6645 */
6646 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6647 return ep;
6648 if (parent_effective > siblings_protected &&
6649 parent_usage > siblings_protected &&
6650 usage > protected) {
6651 unsigned long unclaimed;
6652
6653 unclaimed = parent_effective - siblings_protected;
6654 unclaimed *= usage - protected;
6655 unclaimed /= parent_usage - siblings_protected;
6656
6657 ep += unclaimed;
6658 }
6659
6660 return ep;
6661 }
6662
6663 /**
6664 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6665 * @root: the top ancestor of the sub-tree being checked
6666 * @memcg: the memory cgroup to check
6667 *
6668 * WARNING: This function is not stateless! It can only be used as part
6669 * of a top-down tree iteration, not for isolated queries.
6670 */
6671 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6672 struct mem_cgroup *memcg)
6673 {
6674 unsigned long usage, parent_usage;
6675 struct mem_cgroup *parent;
6676
6677 if (mem_cgroup_disabled())
6678 return;
6679
6680 if (!root)
6681 root = root_mem_cgroup;
6682
6683 /*
6684 * Effective values of the reclaim targets are ignored so they
6685 * can be stale. Have a look at mem_cgroup_protection for more
6686 * details.
6687 * TODO: calculation should be more robust so that we do not need
6688 * that special casing.
6689 */
6690 if (memcg == root)
6691 return;
6692
6693 usage = page_counter_read(&memcg->memory);
6694 if (!usage)
6695 return;
6696
6697 parent = parent_mem_cgroup(memcg);
6698 /* No parent means a non-hierarchical mode on v1 memcg */
6699 if (!parent)
6700 return;
6701
6702 if (parent == root) {
6703 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6704 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6705 return;
6706 }
6707
6708 parent_usage = page_counter_read(&parent->memory);
6709
6710 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6711 READ_ONCE(memcg->memory.min),
6712 READ_ONCE(parent->memory.emin),
6713 atomic_long_read(&parent->memory.children_min_usage)));
6714
6715 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6716 READ_ONCE(memcg->memory.low),
6717 READ_ONCE(parent->memory.elow),
6718 atomic_long_read(&parent->memory.children_low_usage)));
6719 }
6720
6721 static int charge_memcg(struct page *page, struct mem_cgroup *memcg, gfp_t gfp)
6722 {
6723 unsigned int nr_pages = thp_nr_pages(page);
6724 int ret;
6725
6726 ret = try_charge(memcg, gfp, nr_pages);
6727 if (ret)
6728 goto out;
6729
6730 css_get(&memcg->css);
6731 commit_charge(page, memcg);
6732
6733 local_irq_disable();
6734 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6735 memcg_check_events(memcg, page);
6736 local_irq_enable();
6737 out:
6738 return ret;
6739 }
6740
6741 /**
6742 * __mem_cgroup_charge - charge a newly allocated page to a cgroup
6743 * @page: page to charge
6744 * @mm: mm context of the victim
6745 * @gfp_mask: reclaim mode
6746 *
6747 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6748 * pages according to @gfp_mask if necessary. if @mm is NULL, try to
6749 * charge to the active memcg.
6750 *
6751 * Do not use this for pages allocated for swapin.
6752 *
6753 * Returns 0 on success. Otherwise, an error code is returned.
6754 */
6755 int __mem_cgroup_charge(struct page *page, struct mm_struct *mm,
6756 gfp_t gfp_mask)
6757 {
6758 struct mem_cgroup *memcg;
6759 int ret;
6760
6761 memcg = get_mem_cgroup_from_mm(mm);
6762 ret = charge_memcg(page, memcg, gfp_mask);
6763 css_put(&memcg->css);
6764
6765 return ret;
6766 }
6767
6768 /**
6769 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6770 * @page: page to charge
6771 * @mm: mm context of the victim
6772 * @gfp: reclaim mode
6773 * @entry: swap entry for which the page is allocated
6774 *
6775 * This function charges a page allocated for swapin. Please call this before
6776 * adding the page to the swapcache.
6777 *
6778 * Returns 0 on success. Otherwise, an error code is returned.
6779 */
6780 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6781 gfp_t gfp, swp_entry_t entry)
6782 {
6783 struct mem_cgroup *memcg;
6784 unsigned short id;
6785 int ret;
6786
6787 if (mem_cgroup_disabled())
6788 return 0;
6789
6790 id = lookup_swap_cgroup_id(entry);
6791 rcu_read_lock();
6792 memcg = mem_cgroup_from_id(id);
6793 if (!memcg || !css_tryget_online(&memcg->css))
6794 memcg = get_mem_cgroup_from_mm(mm);
6795 rcu_read_unlock();
6796
6797 ret = charge_memcg(page, memcg, gfp);
6798
6799 css_put(&memcg->css);
6800 return ret;
6801 }
6802
6803 /*
6804 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6805 * @entry: swap entry for which the page is charged
6806 *
6807 * Call this function after successfully adding the charged page to swapcache.
6808 *
6809 * Note: This function assumes the page for which swap slot is being uncharged
6810 * is order 0 page.
6811 */
6812 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6813 {
6814 /*
6815 * Cgroup1's unified memory+swap counter has been charged with the
6816 * new swapcache page, finish the transfer by uncharging the swap
6817 * slot. The swap slot would also get uncharged when it dies, but
6818 * it can stick around indefinitely and we'd count the page twice
6819 * the entire time.
6820 *
6821 * Cgroup2 has separate resource counters for memory and swap,
6822 * so this is a non-issue here. Memory and swap charge lifetimes
6823 * correspond 1:1 to page and swap slot lifetimes: we charge the
6824 * page to memory here, and uncharge swap when the slot is freed.
6825 */
6826 if (!mem_cgroup_disabled() && do_memsw_account()) {
6827 /*
6828 * The swap entry might not get freed for a long time,
6829 * let's not wait for it. The page already received a
6830 * memory+swap charge, drop the swap entry duplicate.
6831 */
6832 mem_cgroup_uncharge_swap(entry, 1);
6833 }
6834 }
6835
6836 struct uncharge_gather {
6837 struct mem_cgroup *memcg;
6838 unsigned long nr_memory;
6839 unsigned long pgpgout;
6840 unsigned long nr_kmem;
6841 struct page *dummy_page;
6842 };
6843
6844 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6845 {
6846 memset(ug, 0, sizeof(*ug));
6847 }
6848
6849 static void uncharge_batch(const struct uncharge_gather *ug)
6850 {
6851 unsigned long flags;
6852
6853 if (ug->nr_memory) {
6854 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6855 if (do_memsw_account())
6856 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6857 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6858 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6859 memcg_oom_recover(ug->memcg);
6860 }
6861
6862 local_irq_save(flags);
6863 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6864 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6865 memcg_check_events(ug->memcg, ug->dummy_page);
6866 local_irq_restore(flags);
6867
6868 /* drop reference from uncharge_page */
6869 css_put(&ug->memcg->css);
6870 }
6871
6872 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6873 {
6874 unsigned long nr_pages;
6875 struct mem_cgroup *memcg;
6876 struct obj_cgroup *objcg;
6877 bool use_objcg = PageMemcgKmem(page);
6878
6879 VM_BUG_ON_PAGE(PageLRU(page), page);
6880
6881 /*
6882 * Nobody should be changing or seriously looking at
6883 * page memcg or objcg at this point, we have fully
6884 * exclusive access to the page.
6885 */
6886 if (use_objcg) {
6887 objcg = __page_objcg(page);
6888 /*
6889 * This get matches the put at the end of the function and
6890 * kmem pages do not hold memcg references anymore.
6891 */
6892 memcg = get_mem_cgroup_from_objcg(objcg);
6893 } else {
6894 memcg = __page_memcg(page);
6895 }
6896
6897 if (!memcg)
6898 return;
6899
6900 if (ug->memcg != memcg) {
6901 if (ug->memcg) {
6902 uncharge_batch(ug);
6903 uncharge_gather_clear(ug);
6904 }
6905 ug->memcg = memcg;
6906 ug->dummy_page = page;
6907
6908 /* pairs with css_put in uncharge_batch */
6909 css_get(&memcg->css);
6910 }
6911
6912 nr_pages = compound_nr(page);
6913
6914 if (use_objcg) {
6915 ug->nr_memory += nr_pages;
6916 ug->nr_kmem += nr_pages;
6917
6918 page->memcg_data = 0;
6919 obj_cgroup_put(objcg);
6920 } else {
6921 /* LRU pages aren't accounted at the root level */
6922 if (!mem_cgroup_is_root(memcg))
6923 ug->nr_memory += nr_pages;
6924 ug->pgpgout++;
6925
6926 page->memcg_data = 0;
6927 }
6928
6929 css_put(&memcg->css);
6930 }
6931
6932 /**
6933 * __mem_cgroup_uncharge - uncharge a page
6934 * @page: page to uncharge
6935 *
6936 * Uncharge a page previously charged with __mem_cgroup_charge().
6937 */
6938 void __mem_cgroup_uncharge(struct page *page)
6939 {
6940 struct uncharge_gather ug;
6941
6942 /* Don't touch page->lru of any random page, pre-check: */
6943 if (!page_memcg(page))
6944 return;
6945
6946 uncharge_gather_clear(&ug);
6947 uncharge_page(page, &ug);
6948 uncharge_batch(&ug);
6949 }
6950
6951 /**
6952 * __mem_cgroup_uncharge_list - uncharge a list of page
6953 * @page_list: list of pages to uncharge
6954 *
6955 * Uncharge a list of pages previously charged with
6956 * __mem_cgroup_charge().
6957 */
6958 void __mem_cgroup_uncharge_list(struct list_head *page_list)
6959 {
6960 struct uncharge_gather ug;
6961 struct page *page;
6962
6963 uncharge_gather_clear(&ug);
6964 list_for_each_entry(page, page_list, lru)
6965 uncharge_page(page, &ug);
6966 if (ug.memcg)
6967 uncharge_batch(&ug);
6968 }
6969
6970 /**
6971 * mem_cgroup_migrate - charge a page's replacement
6972 * @oldpage: currently circulating page
6973 * @newpage: replacement page
6974 *
6975 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6976 * be uncharged upon free.
6977 *
6978 * Both pages must be locked, @newpage->mapping must be set up.
6979 */
6980 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6981 {
6982 struct mem_cgroup *memcg;
6983 unsigned int nr_pages;
6984 unsigned long flags;
6985
6986 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6987 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6988 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6989 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6990 newpage);
6991
6992 if (mem_cgroup_disabled())
6993 return;
6994
6995 /* Page cache replacement: new page already charged? */
6996 if (page_memcg(newpage))
6997 return;
6998
6999 memcg = page_memcg(oldpage);
7000 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
7001 if (!memcg)
7002 return;
7003
7004 /* Force-charge the new page. The old one will be freed soon */
7005 nr_pages = thp_nr_pages(newpage);
7006
7007 if (!mem_cgroup_is_root(memcg)) {
7008 page_counter_charge(&memcg->memory, nr_pages);
7009 if (do_memsw_account())
7010 page_counter_charge(&memcg->memsw, nr_pages);
7011 }
7012
7013 css_get(&memcg->css);
7014 commit_charge(newpage, memcg);
7015
7016 local_irq_save(flags);
7017 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7018 memcg_check_events(memcg, newpage);
7019 local_irq_restore(flags);
7020 }
7021
7022 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7023 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7024
7025 void mem_cgroup_sk_alloc(struct sock *sk)
7026 {
7027 struct mem_cgroup *memcg;
7028
7029 if (!mem_cgroup_sockets_enabled)
7030 return;
7031
7032 /* Do not associate the sock with unrelated interrupted task's memcg. */
7033 if (in_interrupt())
7034 return;
7035
7036 rcu_read_lock();
7037 memcg = mem_cgroup_from_task(current);
7038 if (memcg == root_mem_cgroup)
7039 goto out;
7040 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7041 goto out;
7042 if (css_tryget(&memcg->css))
7043 sk->sk_memcg = memcg;
7044 out:
7045 rcu_read_unlock();
7046 }
7047
7048 void mem_cgroup_sk_free(struct sock *sk)
7049 {
7050 if (sk->sk_memcg)
7051 css_put(&sk->sk_memcg->css);
7052 }
7053
7054 /**
7055 * mem_cgroup_charge_skmem - charge socket memory
7056 * @memcg: memcg to charge
7057 * @nr_pages: number of pages to charge
7058 * @gfp_mask: reclaim mode
7059 *
7060 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7061 * @memcg's configured limit, %false if it doesn't.
7062 */
7063 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7064 gfp_t gfp_mask)
7065 {
7066 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7067 struct page_counter *fail;
7068
7069 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7070 memcg->tcpmem_pressure = 0;
7071 return true;
7072 }
7073 memcg->tcpmem_pressure = 1;
7074 if (gfp_mask & __GFP_NOFAIL) {
7075 page_counter_charge(&memcg->tcpmem, nr_pages);
7076 return true;
7077 }
7078 return false;
7079 }
7080
7081 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7082 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7083 return true;
7084 }
7085
7086 return false;
7087 }
7088
7089 /**
7090 * mem_cgroup_uncharge_skmem - uncharge socket memory
7091 * @memcg: memcg to uncharge
7092 * @nr_pages: number of pages to uncharge
7093 */
7094 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7095 {
7096 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7097 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7098 return;
7099 }
7100
7101 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7102
7103 refill_stock(memcg, nr_pages);
7104 }
7105
7106 static int __init cgroup_memory(char *s)
7107 {
7108 char *token;
7109
7110 while ((token = strsep(&s, ",")) != NULL) {
7111 if (!*token)
7112 continue;
7113 if (!strcmp(token, "nosocket"))
7114 cgroup_memory_nosocket = true;
7115 if (!strcmp(token, "nokmem"))
7116 cgroup_memory_nokmem = true;
7117 }
7118 return 1;
7119 }
7120 __setup("cgroup.memory=", cgroup_memory);
7121
7122 /*
7123 * subsys_initcall() for memory controller.
7124 *
7125 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7126 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7127 * basically everything that doesn't depend on a specific mem_cgroup structure
7128 * should be initialized from here.
7129 */
7130 static int __init mem_cgroup_init(void)
7131 {
7132 int cpu, node;
7133
7134 /*
7135 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7136 * used for per-memcg-per-cpu caching of per-node statistics. In order
7137 * to work fine, we should make sure that the overfill threshold can't
7138 * exceed S32_MAX / PAGE_SIZE.
7139 */
7140 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7141
7142 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7143 memcg_hotplug_cpu_dead);
7144
7145 for_each_possible_cpu(cpu)
7146 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7147 drain_local_stock);
7148
7149 for_each_node(node) {
7150 struct mem_cgroup_tree_per_node *rtpn;
7151
7152 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7153 node_online(node) ? node : NUMA_NO_NODE);
7154
7155 rtpn->rb_root = RB_ROOT;
7156 rtpn->rb_rightmost = NULL;
7157 spin_lock_init(&rtpn->lock);
7158 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7159 }
7160
7161 return 0;
7162 }
7163 subsys_initcall(mem_cgroup_init);
7164
7165 #ifdef CONFIG_MEMCG_SWAP
7166 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7167 {
7168 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7169 /*
7170 * The root cgroup cannot be destroyed, so it's refcount must
7171 * always be >= 1.
7172 */
7173 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7174 VM_BUG_ON(1);
7175 break;
7176 }
7177 memcg = parent_mem_cgroup(memcg);
7178 if (!memcg)
7179 memcg = root_mem_cgroup;
7180 }
7181 return memcg;
7182 }
7183
7184 /**
7185 * mem_cgroup_swapout - transfer a memsw charge to swap
7186 * @page: page whose memsw charge to transfer
7187 * @entry: swap entry to move the charge to
7188 *
7189 * Transfer the memsw charge of @page to @entry.
7190 */
7191 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7192 {
7193 struct mem_cgroup *memcg, *swap_memcg;
7194 unsigned int nr_entries;
7195 unsigned short oldid;
7196
7197 VM_BUG_ON_PAGE(PageLRU(page), page);
7198 VM_BUG_ON_PAGE(page_count(page), page);
7199
7200 if (mem_cgroup_disabled())
7201 return;
7202
7203 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7204 return;
7205
7206 memcg = page_memcg(page);
7207
7208 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7209 if (!memcg)
7210 return;
7211
7212 /*
7213 * In case the memcg owning these pages has been offlined and doesn't
7214 * have an ID allocated to it anymore, charge the closest online
7215 * ancestor for the swap instead and transfer the memory+swap charge.
7216 */
7217 swap_memcg = mem_cgroup_id_get_online(memcg);
7218 nr_entries = thp_nr_pages(page);
7219 /* Get references for the tail pages, too */
7220 if (nr_entries > 1)
7221 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7222 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7223 nr_entries);
7224 VM_BUG_ON_PAGE(oldid, page);
7225 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7226
7227 page->memcg_data = 0;
7228
7229 if (!mem_cgroup_is_root(memcg))
7230 page_counter_uncharge(&memcg->memory, nr_entries);
7231
7232 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7233 if (!mem_cgroup_is_root(swap_memcg))
7234 page_counter_charge(&swap_memcg->memsw, nr_entries);
7235 page_counter_uncharge(&memcg->memsw, nr_entries);
7236 }
7237
7238 /*
7239 * Interrupts should be disabled here because the caller holds the
7240 * i_pages lock which is taken with interrupts-off. It is
7241 * important here to have the interrupts disabled because it is the
7242 * only synchronisation we have for updating the per-CPU variables.
7243 */
7244 VM_BUG_ON(!irqs_disabled());
7245 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7246 memcg_check_events(memcg, page);
7247
7248 css_put(&memcg->css);
7249 }
7250
7251 /**
7252 * __mem_cgroup_try_charge_swap - try charging swap space for a page
7253 * @page: page being added to swap
7254 * @entry: swap entry to charge
7255 *
7256 * Try to charge @page's memcg for the swap space at @entry.
7257 *
7258 * Returns 0 on success, -ENOMEM on failure.
7259 */
7260 int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7261 {
7262 unsigned int nr_pages = thp_nr_pages(page);
7263 struct page_counter *counter;
7264 struct mem_cgroup *memcg;
7265 unsigned short oldid;
7266
7267 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7268 return 0;
7269
7270 memcg = page_memcg(page);
7271
7272 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7273 if (!memcg)
7274 return 0;
7275
7276 if (!entry.val) {
7277 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7278 return 0;
7279 }
7280
7281 memcg = mem_cgroup_id_get_online(memcg);
7282
7283 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7284 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7285 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7286 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7287 mem_cgroup_id_put(memcg);
7288 return -ENOMEM;
7289 }
7290
7291 /* Get references for the tail pages, too */
7292 if (nr_pages > 1)
7293 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7294 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7295 VM_BUG_ON_PAGE(oldid, page);
7296 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7297
7298 return 0;
7299 }
7300
7301 /**
7302 * __mem_cgroup_uncharge_swap - uncharge swap space
7303 * @entry: swap entry to uncharge
7304 * @nr_pages: the amount of swap space to uncharge
7305 */
7306 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7307 {
7308 struct mem_cgroup *memcg;
7309 unsigned short id;
7310
7311 id = swap_cgroup_record(entry, 0, nr_pages);
7312 rcu_read_lock();
7313 memcg = mem_cgroup_from_id(id);
7314 if (memcg) {
7315 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7316 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7317 page_counter_uncharge(&memcg->swap, nr_pages);
7318 else
7319 page_counter_uncharge(&memcg->memsw, nr_pages);
7320 }
7321 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7322 mem_cgroup_id_put_many(memcg, nr_pages);
7323 }
7324 rcu_read_unlock();
7325 }
7326
7327 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7328 {
7329 long nr_swap_pages = get_nr_swap_pages();
7330
7331 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7332 return nr_swap_pages;
7333 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7334 nr_swap_pages = min_t(long, nr_swap_pages,
7335 READ_ONCE(memcg->swap.max) -
7336 page_counter_read(&memcg->swap));
7337 return nr_swap_pages;
7338 }
7339
7340 bool mem_cgroup_swap_full(struct page *page)
7341 {
7342 struct mem_cgroup *memcg;
7343
7344 VM_BUG_ON_PAGE(!PageLocked(page), page);
7345
7346 if (vm_swap_full())
7347 return true;
7348 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7349 return false;
7350
7351 memcg = page_memcg(page);
7352 if (!memcg)
7353 return false;
7354
7355 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7356 unsigned long usage = page_counter_read(&memcg->swap);
7357
7358 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7359 usage * 2 >= READ_ONCE(memcg->swap.max))
7360 return true;
7361 }
7362
7363 return false;
7364 }
7365
7366 static int __init setup_swap_account(char *s)
7367 {
7368 if (!strcmp(s, "1"))
7369 cgroup_memory_noswap = false;
7370 else if (!strcmp(s, "0"))
7371 cgroup_memory_noswap = true;
7372 return 1;
7373 }
7374 __setup("swapaccount=", setup_swap_account);
7375
7376 static u64 swap_current_read(struct cgroup_subsys_state *css,
7377 struct cftype *cft)
7378 {
7379 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7380
7381 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7382 }
7383
7384 static int swap_high_show(struct seq_file *m, void *v)
7385 {
7386 return seq_puts_memcg_tunable(m,
7387 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7388 }
7389
7390 static ssize_t swap_high_write(struct kernfs_open_file *of,
7391 char *buf, size_t nbytes, loff_t off)
7392 {
7393 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7394 unsigned long high;
7395 int err;
7396
7397 buf = strstrip(buf);
7398 err = page_counter_memparse(buf, "max", &high);
7399 if (err)
7400 return err;
7401
7402 page_counter_set_high(&memcg->swap, high);
7403
7404 return nbytes;
7405 }
7406
7407 static int swap_max_show(struct seq_file *m, void *v)
7408 {
7409 return seq_puts_memcg_tunable(m,
7410 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7411 }
7412
7413 static ssize_t swap_max_write(struct kernfs_open_file *of,
7414 char *buf, size_t nbytes, loff_t off)
7415 {
7416 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7417 unsigned long max;
7418 int err;
7419
7420 buf = strstrip(buf);
7421 err = page_counter_memparse(buf, "max", &max);
7422 if (err)
7423 return err;
7424
7425 xchg(&memcg->swap.max, max);
7426
7427 return nbytes;
7428 }
7429
7430 static int swap_events_show(struct seq_file *m, void *v)
7431 {
7432 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7433
7434 seq_printf(m, "high %lu\n",
7435 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7436 seq_printf(m, "max %lu\n",
7437 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7438 seq_printf(m, "fail %lu\n",
7439 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7440
7441 return 0;
7442 }
7443
7444 static struct cftype swap_files[] = {
7445 {
7446 .name = "swap.current",
7447 .flags = CFTYPE_NOT_ON_ROOT,
7448 .read_u64 = swap_current_read,
7449 },
7450 {
7451 .name = "swap.high",
7452 .flags = CFTYPE_NOT_ON_ROOT,
7453 .seq_show = swap_high_show,
7454 .write = swap_high_write,
7455 },
7456 {
7457 .name = "swap.max",
7458 .flags = CFTYPE_NOT_ON_ROOT,
7459 .seq_show = swap_max_show,
7460 .write = swap_max_write,
7461 },
7462 {
7463 .name = "swap.events",
7464 .flags = CFTYPE_NOT_ON_ROOT,
7465 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7466 .seq_show = swap_events_show,
7467 },
7468 { } /* terminate */
7469 };
7470
7471 static struct cftype memsw_files[] = {
7472 {
7473 .name = "memsw.usage_in_bytes",
7474 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7475 .read_u64 = mem_cgroup_read_u64,
7476 },
7477 {
7478 .name = "memsw.max_usage_in_bytes",
7479 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7480 .write = mem_cgroup_reset,
7481 .read_u64 = mem_cgroup_read_u64,
7482 },
7483 {
7484 .name = "memsw.limit_in_bytes",
7485 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7486 .write = mem_cgroup_write,
7487 .read_u64 = mem_cgroup_read_u64,
7488 },
7489 {
7490 .name = "memsw.failcnt",
7491 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7492 .write = mem_cgroup_reset,
7493 .read_u64 = mem_cgroup_read_u64,
7494 },
7495 { }, /* terminate */
7496 };
7497
7498 /*
7499 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7500 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7501 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7502 * boot parameter. This may result in premature OOPS inside
7503 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7504 */
7505 static int __init mem_cgroup_swap_init(void)
7506 {
7507 /* No memory control -> no swap control */
7508 if (mem_cgroup_disabled())
7509 cgroup_memory_noswap = true;
7510
7511 if (cgroup_memory_noswap)
7512 return 0;
7513
7514 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7515 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7516
7517 return 0;
7518 }
7519 core_initcall(mem_cgroup_swap_init);
7520
7521 #endif /* CONFIG_MEMCG_SWAP */