]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memcontrol.c
mm, memcg: move memcg limit enforcement from zones to nodes
[mirror_ubuntu-jammy-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account 0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
129
130 /*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135 struct mem_cgroup_tree_per_node {
136 struct rb_root rb_root;
137 spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree {
141 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
142 };
143
144 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
145
146 /* for OOM */
147 struct mem_cgroup_eventfd_list {
148 struct list_head list;
149 struct eventfd_ctx *eventfd;
150 };
151
152 /*
153 * cgroup_event represents events which userspace want to receive.
154 */
155 struct mem_cgroup_event {
156 /*
157 * memcg which the event belongs to.
158 */
159 struct mem_cgroup *memcg;
160 /*
161 * eventfd to signal userspace about the event.
162 */
163 struct eventfd_ctx *eventfd;
164 /*
165 * Each of these stored in a list by the cgroup.
166 */
167 struct list_head list;
168 /*
169 * register_event() callback will be used to add new userspace
170 * waiter for changes related to this event. Use eventfd_signal()
171 * on eventfd to send notification to userspace.
172 */
173 int (*register_event)(struct mem_cgroup *memcg,
174 struct eventfd_ctx *eventfd, const char *args);
175 /*
176 * unregister_event() callback will be called when userspace closes
177 * the eventfd or on cgroup removing. This callback must be set,
178 * if you want provide notification functionality.
179 */
180 void (*unregister_event)(struct mem_cgroup *memcg,
181 struct eventfd_ctx *eventfd);
182 /*
183 * All fields below needed to unregister event when
184 * userspace closes eventfd.
185 */
186 poll_table pt;
187 wait_queue_head_t *wqh;
188 wait_queue_t wait;
189 struct work_struct remove;
190 };
191
192 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
194
195 /* Stuffs for move charges at task migration. */
196 /*
197 * Types of charges to be moved.
198 */
199 #define MOVE_ANON 0x1U
200 #define MOVE_FILE 0x2U
201 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
202
203 /* "mc" and its members are protected by cgroup_mutex */
204 static struct move_charge_struct {
205 spinlock_t lock; /* for from, to */
206 struct mm_struct *mm;
207 struct mem_cgroup *from;
208 struct mem_cgroup *to;
209 unsigned long flags;
210 unsigned long precharge;
211 unsigned long moved_charge;
212 unsigned long moved_swap;
213 struct task_struct *moving_task; /* a task moving charges */
214 wait_queue_head_t waitq; /* a waitq for other context */
215 } mc = {
216 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
217 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
218 };
219
220 /*
221 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222 * limit reclaim to prevent infinite loops, if they ever occur.
223 */
224 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
225 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
226
227 enum charge_type {
228 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
229 MEM_CGROUP_CHARGE_TYPE_ANON,
230 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
231 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
232 NR_CHARGE_TYPE,
233 };
234
235 /* for encoding cft->private value on file */
236 enum res_type {
237 _MEM,
238 _MEMSWAP,
239 _OOM_TYPE,
240 _KMEM,
241 _TCP,
242 };
243
244 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
246 #define MEMFILE_ATTR(val) ((val) & 0xffff)
247 /* Used for OOM nofiier */
248 #define OOM_CONTROL (0)
249
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252 {
253 if (!memcg)
254 memcg = root_mem_cgroup;
255 return &memcg->vmpressure;
256 }
257
258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259 {
260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261 }
262
263 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
264 {
265 return (memcg == root_mem_cgroup);
266 }
267
268 #ifndef CONFIG_SLOB
269 /*
270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
271 * The main reason for not using cgroup id for this:
272 * this works better in sparse environments, where we have a lot of memcgs,
273 * but only a few kmem-limited. Or also, if we have, for instance, 200
274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
275 * 200 entry array for that.
276 *
277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
278 * will double each time we have to increase it.
279 */
280 static DEFINE_IDA(memcg_cache_ida);
281 int memcg_nr_cache_ids;
282
283 /* Protects memcg_nr_cache_ids */
284 static DECLARE_RWSEM(memcg_cache_ids_sem);
285
286 void memcg_get_cache_ids(void)
287 {
288 down_read(&memcg_cache_ids_sem);
289 }
290
291 void memcg_put_cache_ids(void)
292 {
293 up_read(&memcg_cache_ids_sem);
294 }
295
296 /*
297 * MIN_SIZE is different than 1, because we would like to avoid going through
298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
299 * cgroups is a reasonable guess. In the future, it could be a parameter or
300 * tunable, but that is strictly not necessary.
301 *
302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303 * this constant directly from cgroup, but it is understandable that this is
304 * better kept as an internal representation in cgroup.c. In any case, the
305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
306 * increase ours as well if it increases.
307 */
308 #define MEMCG_CACHES_MIN_SIZE 4
309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
310
311 /*
312 * A lot of the calls to the cache allocation functions are expected to be
313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314 * conditional to this static branch, we'll have to allow modules that does
315 * kmem_cache_alloc and the such to see this symbol as well
316 */
317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318 EXPORT_SYMBOL(memcg_kmem_enabled_key);
319
320 #endif /* !CONFIG_SLOB */
321
322 /**
323 * mem_cgroup_css_from_page - css of the memcg associated with a page
324 * @page: page of interest
325 *
326 * If memcg is bound to the default hierarchy, css of the memcg associated
327 * with @page is returned. The returned css remains associated with @page
328 * until it is released.
329 *
330 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
331 * is returned.
332 */
333 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
334 {
335 struct mem_cgroup *memcg;
336
337 memcg = page->mem_cgroup;
338
339 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
340 memcg = root_mem_cgroup;
341
342 return &memcg->css;
343 }
344
345 /**
346 * page_cgroup_ino - return inode number of the memcg a page is charged to
347 * @page: the page
348 *
349 * Look up the closest online ancestor of the memory cgroup @page is charged to
350 * and return its inode number or 0 if @page is not charged to any cgroup. It
351 * is safe to call this function without holding a reference to @page.
352 *
353 * Note, this function is inherently racy, because there is nothing to prevent
354 * the cgroup inode from getting torn down and potentially reallocated a moment
355 * after page_cgroup_ino() returns, so it only should be used by callers that
356 * do not care (such as procfs interfaces).
357 */
358 ino_t page_cgroup_ino(struct page *page)
359 {
360 struct mem_cgroup *memcg;
361 unsigned long ino = 0;
362
363 rcu_read_lock();
364 memcg = READ_ONCE(page->mem_cgroup);
365 while (memcg && !(memcg->css.flags & CSS_ONLINE))
366 memcg = parent_mem_cgroup(memcg);
367 if (memcg)
368 ino = cgroup_ino(memcg->css.cgroup);
369 rcu_read_unlock();
370 return ino;
371 }
372
373 static struct mem_cgroup_per_node *
374 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
375 {
376 int nid = page_to_nid(page);
377
378 return memcg->nodeinfo[nid];
379 }
380
381 static struct mem_cgroup_tree_per_node *
382 soft_limit_tree_node(int nid)
383 {
384 return soft_limit_tree.rb_tree_per_node[nid];
385 }
386
387 static struct mem_cgroup_tree_per_node *
388 soft_limit_tree_from_page(struct page *page)
389 {
390 int nid = page_to_nid(page);
391
392 return soft_limit_tree.rb_tree_per_node[nid];
393 }
394
395 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
396 struct mem_cgroup_tree_per_node *mctz,
397 unsigned long new_usage_in_excess)
398 {
399 struct rb_node **p = &mctz->rb_root.rb_node;
400 struct rb_node *parent = NULL;
401 struct mem_cgroup_per_node *mz_node;
402
403 if (mz->on_tree)
404 return;
405
406 mz->usage_in_excess = new_usage_in_excess;
407 if (!mz->usage_in_excess)
408 return;
409 while (*p) {
410 parent = *p;
411 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
412 tree_node);
413 if (mz->usage_in_excess < mz_node->usage_in_excess)
414 p = &(*p)->rb_left;
415 /*
416 * We can't avoid mem cgroups that are over their soft
417 * limit by the same amount
418 */
419 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
420 p = &(*p)->rb_right;
421 }
422 rb_link_node(&mz->tree_node, parent, p);
423 rb_insert_color(&mz->tree_node, &mctz->rb_root);
424 mz->on_tree = true;
425 }
426
427 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
428 struct mem_cgroup_tree_per_node *mctz)
429 {
430 if (!mz->on_tree)
431 return;
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
434 }
435
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
438 {
439 unsigned long flags;
440
441 spin_lock_irqsave(&mctz->lock, flags);
442 __mem_cgroup_remove_exceeded(mz, mctz);
443 spin_unlock_irqrestore(&mctz->lock, flags);
444 }
445
446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447 {
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 unsigned long excess = 0;
451
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
454
455 return excess;
456 }
457
458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459 {
460 unsigned long excess;
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
463
464 mctz = soft_limit_tree_from_page(page);
465 /*
466 * Necessary to update all ancestors when hierarchy is used.
467 * because their event counter is not touched.
468 */
469 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
470 mz = mem_cgroup_page_nodeinfo(memcg, page);
471 excess = soft_limit_excess(memcg);
472 /*
473 * We have to update the tree if mz is on RB-tree or
474 * mem is over its softlimit.
475 */
476 if (excess || mz->on_tree) {
477 unsigned long flags;
478
479 spin_lock_irqsave(&mctz->lock, flags);
480 /* if on-tree, remove it */
481 if (mz->on_tree)
482 __mem_cgroup_remove_exceeded(mz, mctz);
483 /*
484 * Insert again. mz->usage_in_excess will be updated.
485 * If excess is 0, no tree ops.
486 */
487 __mem_cgroup_insert_exceeded(mz, mctz, excess);
488 spin_unlock_irqrestore(&mctz->lock, flags);
489 }
490 }
491 }
492
493 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
494 {
495 struct mem_cgroup_tree_per_node *mctz;
496 struct mem_cgroup_per_node *mz;
497 int nid;
498
499 for_each_node(nid) {
500 mz = mem_cgroup_nodeinfo(memcg, nid);
501 mctz = soft_limit_tree_node(nid);
502 mem_cgroup_remove_exceeded(mz, mctz);
503 }
504 }
505
506 static struct mem_cgroup_per_node *
507 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
508 {
509 struct rb_node *rightmost = NULL;
510 struct mem_cgroup_per_node *mz;
511
512 retry:
513 mz = NULL;
514 rightmost = rb_last(&mctz->rb_root);
515 if (!rightmost)
516 goto done; /* Nothing to reclaim from */
517
518 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
519 /*
520 * Remove the node now but someone else can add it back,
521 * we will to add it back at the end of reclaim to its correct
522 * position in the tree.
523 */
524 __mem_cgroup_remove_exceeded(mz, mctz);
525 if (!soft_limit_excess(mz->memcg) ||
526 !css_tryget_online(&mz->memcg->css))
527 goto retry;
528 done:
529 return mz;
530 }
531
532 static struct mem_cgroup_per_node *
533 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
534 {
535 struct mem_cgroup_per_node *mz;
536
537 spin_lock_irq(&mctz->lock);
538 mz = __mem_cgroup_largest_soft_limit_node(mctz);
539 spin_unlock_irq(&mctz->lock);
540 return mz;
541 }
542
543 /*
544 * Return page count for single (non recursive) @memcg.
545 *
546 * Implementation Note: reading percpu statistics for memcg.
547 *
548 * Both of vmstat[] and percpu_counter has threshold and do periodic
549 * synchronization to implement "quick" read. There are trade-off between
550 * reading cost and precision of value. Then, we may have a chance to implement
551 * a periodic synchronization of counter in memcg's counter.
552 *
553 * But this _read() function is used for user interface now. The user accounts
554 * memory usage by memory cgroup and he _always_ requires exact value because
555 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
556 * have to visit all online cpus and make sum. So, for now, unnecessary
557 * synchronization is not implemented. (just implemented for cpu hotplug)
558 *
559 * If there are kernel internal actions which can make use of some not-exact
560 * value, and reading all cpu value can be performance bottleneck in some
561 * common workload, threshold and synchronization as vmstat[] should be
562 * implemented.
563 */
564 static unsigned long
565 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
566 {
567 long val = 0;
568 int cpu;
569
570 /* Per-cpu values can be negative, use a signed accumulator */
571 for_each_possible_cpu(cpu)
572 val += per_cpu(memcg->stat->count[idx], cpu);
573 /*
574 * Summing races with updates, so val may be negative. Avoid exposing
575 * transient negative values.
576 */
577 if (val < 0)
578 val = 0;
579 return val;
580 }
581
582 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
583 enum mem_cgroup_events_index idx)
584 {
585 unsigned long val = 0;
586 int cpu;
587
588 for_each_possible_cpu(cpu)
589 val += per_cpu(memcg->stat->events[idx], cpu);
590 return val;
591 }
592
593 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
594 struct page *page,
595 bool compound, int nr_pages)
596 {
597 /*
598 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
599 * counted as CACHE even if it's on ANON LRU.
600 */
601 if (PageAnon(page))
602 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
603 nr_pages);
604 else
605 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
606 nr_pages);
607
608 if (compound) {
609 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
610 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
611 nr_pages);
612 }
613
614 /* pagein of a big page is an event. So, ignore page size */
615 if (nr_pages > 0)
616 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
617 else {
618 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
619 nr_pages = -nr_pages; /* for event */
620 }
621
622 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
623 }
624
625 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
626 int nid, unsigned int lru_mask)
627 {
628 unsigned long nr = 0;
629 struct mem_cgroup_per_node *mz;
630 enum lru_list lru;
631
632 VM_BUG_ON((unsigned)nid >= nr_node_ids);
633
634 for_each_lru(lru) {
635 if (!(BIT(lru) & lru_mask))
636 continue;
637 mz = mem_cgroup_nodeinfo(memcg, nid);
638 nr += mz->lru_size[lru];
639 }
640 return nr;
641 }
642
643 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
644 unsigned int lru_mask)
645 {
646 unsigned long nr = 0;
647 int nid;
648
649 for_each_node_state(nid, N_MEMORY)
650 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
651 return nr;
652 }
653
654 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
655 enum mem_cgroup_events_target target)
656 {
657 unsigned long val, next;
658
659 val = __this_cpu_read(memcg->stat->nr_page_events);
660 next = __this_cpu_read(memcg->stat->targets[target]);
661 /* from time_after() in jiffies.h */
662 if ((long)next - (long)val < 0) {
663 switch (target) {
664 case MEM_CGROUP_TARGET_THRESH:
665 next = val + THRESHOLDS_EVENTS_TARGET;
666 break;
667 case MEM_CGROUP_TARGET_SOFTLIMIT:
668 next = val + SOFTLIMIT_EVENTS_TARGET;
669 break;
670 case MEM_CGROUP_TARGET_NUMAINFO:
671 next = val + NUMAINFO_EVENTS_TARGET;
672 break;
673 default:
674 break;
675 }
676 __this_cpu_write(memcg->stat->targets[target], next);
677 return true;
678 }
679 return false;
680 }
681
682 /*
683 * Check events in order.
684 *
685 */
686 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
687 {
688 /* threshold event is triggered in finer grain than soft limit */
689 if (unlikely(mem_cgroup_event_ratelimit(memcg,
690 MEM_CGROUP_TARGET_THRESH))) {
691 bool do_softlimit;
692 bool do_numainfo __maybe_unused;
693
694 do_softlimit = mem_cgroup_event_ratelimit(memcg,
695 MEM_CGROUP_TARGET_SOFTLIMIT);
696 #if MAX_NUMNODES > 1
697 do_numainfo = mem_cgroup_event_ratelimit(memcg,
698 MEM_CGROUP_TARGET_NUMAINFO);
699 #endif
700 mem_cgroup_threshold(memcg);
701 if (unlikely(do_softlimit))
702 mem_cgroup_update_tree(memcg, page);
703 #if MAX_NUMNODES > 1
704 if (unlikely(do_numainfo))
705 atomic_inc(&memcg->numainfo_events);
706 #endif
707 }
708 }
709
710 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
711 {
712 /*
713 * mm_update_next_owner() may clear mm->owner to NULL
714 * if it races with swapoff, page migration, etc.
715 * So this can be called with p == NULL.
716 */
717 if (unlikely(!p))
718 return NULL;
719
720 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
721 }
722 EXPORT_SYMBOL(mem_cgroup_from_task);
723
724 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
725 {
726 struct mem_cgroup *memcg = NULL;
727
728 rcu_read_lock();
729 do {
730 /*
731 * Page cache insertions can happen withou an
732 * actual mm context, e.g. during disk probing
733 * on boot, loopback IO, acct() writes etc.
734 */
735 if (unlikely(!mm))
736 memcg = root_mem_cgroup;
737 else {
738 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
739 if (unlikely(!memcg))
740 memcg = root_mem_cgroup;
741 }
742 } while (!css_tryget_online(&memcg->css));
743 rcu_read_unlock();
744 return memcg;
745 }
746
747 /**
748 * mem_cgroup_iter - iterate over memory cgroup hierarchy
749 * @root: hierarchy root
750 * @prev: previously returned memcg, NULL on first invocation
751 * @reclaim: cookie for shared reclaim walks, NULL for full walks
752 *
753 * Returns references to children of the hierarchy below @root, or
754 * @root itself, or %NULL after a full round-trip.
755 *
756 * Caller must pass the return value in @prev on subsequent
757 * invocations for reference counting, or use mem_cgroup_iter_break()
758 * to cancel a hierarchy walk before the round-trip is complete.
759 *
760 * Reclaimers can specify a zone and a priority level in @reclaim to
761 * divide up the memcgs in the hierarchy among all concurrent
762 * reclaimers operating on the same zone and priority.
763 */
764 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
765 struct mem_cgroup *prev,
766 struct mem_cgroup_reclaim_cookie *reclaim)
767 {
768 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
769 struct cgroup_subsys_state *css = NULL;
770 struct mem_cgroup *memcg = NULL;
771 struct mem_cgroup *pos = NULL;
772
773 if (mem_cgroup_disabled())
774 return NULL;
775
776 if (!root)
777 root = root_mem_cgroup;
778
779 if (prev && !reclaim)
780 pos = prev;
781
782 if (!root->use_hierarchy && root != root_mem_cgroup) {
783 if (prev)
784 goto out;
785 return root;
786 }
787
788 rcu_read_lock();
789
790 if (reclaim) {
791 struct mem_cgroup_per_node *mz;
792
793 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
794 iter = &mz->iter[reclaim->priority];
795
796 if (prev && reclaim->generation != iter->generation)
797 goto out_unlock;
798
799 while (1) {
800 pos = READ_ONCE(iter->position);
801 if (!pos || css_tryget(&pos->css))
802 break;
803 /*
804 * css reference reached zero, so iter->position will
805 * be cleared by ->css_released. However, we should not
806 * rely on this happening soon, because ->css_released
807 * is called from a work queue, and by busy-waiting we
808 * might block it. So we clear iter->position right
809 * away.
810 */
811 (void)cmpxchg(&iter->position, pos, NULL);
812 }
813 }
814
815 if (pos)
816 css = &pos->css;
817
818 for (;;) {
819 css = css_next_descendant_pre(css, &root->css);
820 if (!css) {
821 /*
822 * Reclaimers share the hierarchy walk, and a
823 * new one might jump in right at the end of
824 * the hierarchy - make sure they see at least
825 * one group and restart from the beginning.
826 */
827 if (!prev)
828 continue;
829 break;
830 }
831
832 /*
833 * Verify the css and acquire a reference. The root
834 * is provided by the caller, so we know it's alive
835 * and kicking, and don't take an extra reference.
836 */
837 memcg = mem_cgroup_from_css(css);
838
839 if (css == &root->css)
840 break;
841
842 if (css_tryget(css))
843 break;
844
845 memcg = NULL;
846 }
847
848 if (reclaim) {
849 /*
850 * The position could have already been updated by a competing
851 * thread, so check that the value hasn't changed since we read
852 * it to avoid reclaiming from the same cgroup twice.
853 */
854 (void)cmpxchg(&iter->position, pos, memcg);
855
856 if (pos)
857 css_put(&pos->css);
858
859 if (!memcg)
860 iter->generation++;
861 else if (!prev)
862 reclaim->generation = iter->generation;
863 }
864
865 out_unlock:
866 rcu_read_unlock();
867 out:
868 if (prev && prev != root)
869 css_put(&prev->css);
870
871 return memcg;
872 }
873
874 /**
875 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
876 * @root: hierarchy root
877 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
878 */
879 void mem_cgroup_iter_break(struct mem_cgroup *root,
880 struct mem_cgroup *prev)
881 {
882 if (!root)
883 root = root_mem_cgroup;
884 if (prev && prev != root)
885 css_put(&prev->css);
886 }
887
888 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
889 {
890 struct mem_cgroup *memcg = dead_memcg;
891 struct mem_cgroup_reclaim_iter *iter;
892 struct mem_cgroup_per_node *mz;
893 int nid;
894 int i;
895
896 while ((memcg = parent_mem_cgroup(memcg))) {
897 for_each_node(nid) {
898 mz = mem_cgroup_nodeinfo(memcg, nid);
899 for (i = 0; i <= DEF_PRIORITY; i++) {
900 iter = &mz->iter[i];
901 cmpxchg(&iter->position,
902 dead_memcg, NULL);
903 }
904 }
905 }
906 }
907
908 /*
909 * Iteration constructs for visiting all cgroups (under a tree). If
910 * loops are exited prematurely (break), mem_cgroup_iter_break() must
911 * be used for reference counting.
912 */
913 #define for_each_mem_cgroup_tree(iter, root) \
914 for (iter = mem_cgroup_iter(root, NULL, NULL); \
915 iter != NULL; \
916 iter = mem_cgroup_iter(root, iter, NULL))
917
918 #define for_each_mem_cgroup(iter) \
919 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
920 iter != NULL; \
921 iter = mem_cgroup_iter(NULL, iter, NULL))
922
923 /**
924 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925 * @page: the page
926 * @zone: zone of the page
927 *
928 * This function is only safe when following the LRU page isolation
929 * and putback protocol: the LRU lock must be held, and the page must
930 * either be PageLRU() or the caller must have isolated/allocated it.
931 */
932 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
933 {
934 struct mem_cgroup_per_node *mz;
935 struct mem_cgroup *memcg;
936 struct lruvec *lruvec;
937
938 if (mem_cgroup_disabled()) {
939 lruvec = &pgdat->lruvec;
940 goto out;
941 }
942
943 memcg = page->mem_cgroup;
944 /*
945 * Swapcache readahead pages are added to the LRU - and
946 * possibly migrated - before they are charged.
947 */
948 if (!memcg)
949 memcg = root_mem_cgroup;
950
951 mz = mem_cgroup_page_nodeinfo(memcg, page);
952 lruvec = &mz->lruvec;
953 out:
954 /*
955 * Since a node can be onlined after the mem_cgroup was created,
956 * we have to be prepared to initialize lruvec->zone here;
957 * and if offlined then reonlined, we need to reinitialize it.
958 */
959 if (unlikely(lruvec->pgdat != pgdat))
960 lruvec->pgdat = pgdat;
961 return lruvec;
962 }
963
964 /**
965 * mem_cgroup_update_lru_size - account for adding or removing an lru page
966 * @lruvec: mem_cgroup per zone lru vector
967 * @lru: index of lru list the page is sitting on
968 * @zid: Zone ID of the zone pages have been added to
969 * @nr_pages: positive when adding or negative when removing
970 *
971 * This function must be called under lru_lock, just before a page is added
972 * to or just after a page is removed from an lru list (that ordering being
973 * so as to allow it to check that lru_size 0 is consistent with list_empty).
974 */
975 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
976 enum zone_type zid, int nr_pages)
977 {
978 struct mem_cgroup_per_node *mz;
979 unsigned long *lru_size;
980 long size;
981 bool empty;
982
983 __update_lru_size(lruvec, lru, zid, nr_pages);
984
985 if (mem_cgroup_disabled())
986 return;
987
988 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
989 lru_size = mz->lru_size + lru;
990 empty = list_empty(lruvec->lists + lru);
991
992 if (nr_pages < 0)
993 *lru_size += nr_pages;
994
995 size = *lru_size;
996 if (WARN_ONCE(size < 0 || empty != !size,
997 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
998 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
999 VM_BUG_ON(1);
1000 *lru_size = 0;
1001 }
1002
1003 if (nr_pages > 0)
1004 *lru_size += nr_pages;
1005 }
1006
1007 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1008 {
1009 struct mem_cgroup *task_memcg;
1010 struct task_struct *p;
1011 bool ret;
1012
1013 p = find_lock_task_mm(task);
1014 if (p) {
1015 task_memcg = get_mem_cgroup_from_mm(p->mm);
1016 task_unlock(p);
1017 } else {
1018 /*
1019 * All threads may have already detached their mm's, but the oom
1020 * killer still needs to detect if they have already been oom
1021 * killed to prevent needlessly killing additional tasks.
1022 */
1023 rcu_read_lock();
1024 task_memcg = mem_cgroup_from_task(task);
1025 css_get(&task_memcg->css);
1026 rcu_read_unlock();
1027 }
1028 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1029 css_put(&task_memcg->css);
1030 return ret;
1031 }
1032
1033 /**
1034 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1035 * @memcg: the memory cgroup
1036 *
1037 * Returns the maximum amount of memory @mem can be charged with, in
1038 * pages.
1039 */
1040 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1041 {
1042 unsigned long margin = 0;
1043 unsigned long count;
1044 unsigned long limit;
1045
1046 count = page_counter_read(&memcg->memory);
1047 limit = READ_ONCE(memcg->memory.limit);
1048 if (count < limit)
1049 margin = limit - count;
1050
1051 if (do_memsw_account()) {
1052 count = page_counter_read(&memcg->memsw);
1053 limit = READ_ONCE(memcg->memsw.limit);
1054 if (count <= limit)
1055 margin = min(margin, limit - count);
1056 else
1057 margin = 0;
1058 }
1059
1060 return margin;
1061 }
1062
1063 /*
1064 * A routine for checking "mem" is under move_account() or not.
1065 *
1066 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1067 * moving cgroups. This is for waiting at high-memory pressure
1068 * caused by "move".
1069 */
1070 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1071 {
1072 struct mem_cgroup *from;
1073 struct mem_cgroup *to;
1074 bool ret = false;
1075 /*
1076 * Unlike task_move routines, we access mc.to, mc.from not under
1077 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1078 */
1079 spin_lock(&mc.lock);
1080 from = mc.from;
1081 to = mc.to;
1082 if (!from)
1083 goto unlock;
1084
1085 ret = mem_cgroup_is_descendant(from, memcg) ||
1086 mem_cgroup_is_descendant(to, memcg);
1087 unlock:
1088 spin_unlock(&mc.lock);
1089 return ret;
1090 }
1091
1092 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1093 {
1094 if (mc.moving_task && current != mc.moving_task) {
1095 if (mem_cgroup_under_move(memcg)) {
1096 DEFINE_WAIT(wait);
1097 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1098 /* moving charge context might have finished. */
1099 if (mc.moving_task)
1100 schedule();
1101 finish_wait(&mc.waitq, &wait);
1102 return true;
1103 }
1104 }
1105 return false;
1106 }
1107
1108 #define K(x) ((x) << (PAGE_SHIFT-10))
1109 /**
1110 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1111 * @memcg: The memory cgroup that went over limit
1112 * @p: Task that is going to be killed
1113 *
1114 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1115 * enabled
1116 */
1117 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1118 {
1119 struct mem_cgroup *iter;
1120 unsigned int i;
1121
1122 rcu_read_lock();
1123
1124 if (p) {
1125 pr_info("Task in ");
1126 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1127 pr_cont(" killed as a result of limit of ");
1128 } else {
1129 pr_info("Memory limit reached of cgroup ");
1130 }
1131
1132 pr_cont_cgroup_path(memcg->css.cgroup);
1133 pr_cont("\n");
1134
1135 rcu_read_unlock();
1136
1137 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1138 K((u64)page_counter_read(&memcg->memory)),
1139 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1140 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1141 K((u64)page_counter_read(&memcg->memsw)),
1142 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1143 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1144 K((u64)page_counter_read(&memcg->kmem)),
1145 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1146
1147 for_each_mem_cgroup_tree(iter, memcg) {
1148 pr_info("Memory cgroup stats for ");
1149 pr_cont_cgroup_path(iter->css.cgroup);
1150 pr_cont(":");
1151
1152 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1153 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1154 continue;
1155 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1156 K(mem_cgroup_read_stat(iter, i)));
1157 }
1158
1159 for (i = 0; i < NR_LRU_LISTS; i++)
1160 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1161 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1162
1163 pr_cont("\n");
1164 }
1165 }
1166
1167 /*
1168 * This function returns the number of memcg under hierarchy tree. Returns
1169 * 1(self count) if no children.
1170 */
1171 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1172 {
1173 int num = 0;
1174 struct mem_cgroup *iter;
1175
1176 for_each_mem_cgroup_tree(iter, memcg)
1177 num++;
1178 return num;
1179 }
1180
1181 /*
1182 * Return the memory (and swap, if configured) limit for a memcg.
1183 */
1184 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1185 {
1186 unsigned long limit;
1187
1188 limit = memcg->memory.limit;
1189 if (mem_cgroup_swappiness(memcg)) {
1190 unsigned long memsw_limit;
1191 unsigned long swap_limit;
1192
1193 memsw_limit = memcg->memsw.limit;
1194 swap_limit = memcg->swap.limit;
1195 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1196 limit = min(limit + swap_limit, memsw_limit);
1197 }
1198 return limit;
1199 }
1200
1201 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1202 int order)
1203 {
1204 struct oom_control oc = {
1205 .zonelist = NULL,
1206 .nodemask = NULL,
1207 .memcg = memcg,
1208 .gfp_mask = gfp_mask,
1209 .order = order,
1210 };
1211 struct mem_cgroup *iter;
1212 unsigned long chosen_points = 0;
1213 unsigned long totalpages;
1214 unsigned int points = 0;
1215 struct task_struct *chosen = NULL;
1216
1217 mutex_lock(&oom_lock);
1218
1219 /*
1220 * If current has a pending SIGKILL or is exiting, then automatically
1221 * select it. The goal is to allow it to allocate so that it may
1222 * quickly exit and free its memory.
1223 */
1224 if (task_will_free_mem(current)) {
1225 mark_oom_victim(current);
1226 wake_oom_reaper(current);
1227 goto unlock;
1228 }
1229
1230 check_panic_on_oom(&oc, CONSTRAINT_MEMCG);
1231 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1232 for_each_mem_cgroup_tree(iter, memcg) {
1233 struct css_task_iter it;
1234 struct task_struct *task;
1235
1236 css_task_iter_start(&iter->css, &it);
1237 while ((task = css_task_iter_next(&it))) {
1238 switch (oom_scan_process_thread(&oc, task)) {
1239 case OOM_SCAN_SELECT:
1240 if (chosen)
1241 put_task_struct(chosen);
1242 chosen = task;
1243 chosen_points = ULONG_MAX;
1244 get_task_struct(chosen);
1245 /* fall through */
1246 case OOM_SCAN_CONTINUE:
1247 continue;
1248 case OOM_SCAN_ABORT:
1249 css_task_iter_end(&it);
1250 mem_cgroup_iter_break(memcg, iter);
1251 if (chosen)
1252 put_task_struct(chosen);
1253 /* Set a dummy value to return "true". */
1254 chosen = (void *) 1;
1255 goto unlock;
1256 case OOM_SCAN_OK:
1257 break;
1258 };
1259 points = oom_badness(task, memcg, NULL, totalpages);
1260 if (!points || points < chosen_points)
1261 continue;
1262 /* Prefer thread group leaders for display purposes */
1263 if (points == chosen_points &&
1264 thread_group_leader(chosen))
1265 continue;
1266
1267 if (chosen)
1268 put_task_struct(chosen);
1269 chosen = task;
1270 chosen_points = points;
1271 get_task_struct(chosen);
1272 }
1273 css_task_iter_end(&it);
1274 }
1275
1276 if (chosen) {
1277 points = chosen_points * 1000 / totalpages;
1278 oom_kill_process(&oc, chosen, points, totalpages,
1279 "Memory cgroup out of memory");
1280 }
1281 unlock:
1282 mutex_unlock(&oom_lock);
1283 return chosen;
1284 }
1285
1286 #if MAX_NUMNODES > 1
1287
1288 /**
1289 * test_mem_cgroup_node_reclaimable
1290 * @memcg: the target memcg
1291 * @nid: the node ID to be checked.
1292 * @noswap : specify true here if the user wants flle only information.
1293 *
1294 * This function returns whether the specified memcg contains any
1295 * reclaimable pages on a node. Returns true if there are any reclaimable
1296 * pages in the node.
1297 */
1298 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1299 int nid, bool noswap)
1300 {
1301 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1302 return true;
1303 if (noswap || !total_swap_pages)
1304 return false;
1305 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1306 return true;
1307 return false;
1308
1309 }
1310
1311 /*
1312 * Always updating the nodemask is not very good - even if we have an empty
1313 * list or the wrong list here, we can start from some node and traverse all
1314 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1315 *
1316 */
1317 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1318 {
1319 int nid;
1320 /*
1321 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1322 * pagein/pageout changes since the last update.
1323 */
1324 if (!atomic_read(&memcg->numainfo_events))
1325 return;
1326 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1327 return;
1328
1329 /* make a nodemask where this memcg uses memory from */
1330 memcg->scan_nodes = node_states[N_MEMORY];
1331
1332 for_each_node_mask(nid, node_states[N_MEMORY]) {
1333
1334 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1335 node_clear(nid, memcg->scan_nodes);
1336 }
1337
1338 atomic_set(&memcg->numainfo_events, 0);
1339 atomic_set(&memcg->numainfo_updating, 0);
1340 }
1341
1342 /*
1343 * Selecting a node where we start reclaim from. Because what we need is just
1344 * reducing usage counter, start from anywhere is O,K. Considering
1345 * memory reclaim from current node, there are pros. and cons.
1346 *
1347 * Freeing memory from current node means freeing memory from a node which
1348 * we'll use or we've used. So, it may make LRU bad. And if several threads
1349 * hit limits, it will see a contention on a node. But freeing from remote
1350 * node means more costs for memory reclaim because of memory latency.
1351 *
1352 * Now, we use round-robin. Better algorithm is welcomed.
1353 */
1354 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1355 {
1356 int node;
1357
1358 mem_cgroup_may_update_nodemask(memcg);
1359 node = memcg->last_scanned_node;
1360
1361 node = next_node_in(node, memcg->scan_nodes);
1362 /*
1363 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1364 * last time it really checked all the LRUs due to rate limiting.
1365 * Fallback to the current node in that case for simplicity.
1366 */
1367 if (unlikely(node == MAX_NUMNODES))
1368 node = numa_node_id();
1369
1370 memcg->last_scanned_node = node;
1371 return node;
1372 }
1373 #else
1374 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1375 {
1376 return 0;
1377 }
1378 #endif
1379
1380 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1381 pg_data_t *pgdat,
1382 gfp_t gfp_mask,
1383 unsigned long *total_scanned)
1384 {
1385 struct mem_cgroup *victim = NULL;
1386 int total = 0;
1387 int loop = 0;
1388 unsigned long excess;
1389 unsigned long nr_scanned;
1390 struct mem_cgroup_reclaim_cookie reclaim = {
1391 .pgdat = pgdat,
1392 .priority = 0,
1393 };
1394
1395 excess = soft_limit_excess(root_memcg);
1396
1397 while (1) {
1398 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1399 if (!victim) {
1400 loop++;
1401 if (loop >= 2) {
1402 /*
1403 * If we have not been able to reclaim
1404 * anything, it might because there are
1405 * no reclaimable pages under this hierarchy
1406 */
1407 if (!total)
1408 break;
1409 /*
1410 * We want to do more targeted reclaim.
1411 * excess >> 2 is not to excessive so as to
1412 * reclaim too much, nor too less that we keep
1413 * coming back to reclaim from this cgroup
1414 */
1415 if (total >= (excess >> 2) ||
1416 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1417 break;
1418 }
1419 continue;
1420 }
1421 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1422 pgdat, &nr_scanned);
1423 *total_scanned += nr_scanned;
1424 if (!soft_limit_excess(root_memcg))
1425 break;
1426 }
1427 mem_cgroup_iter_break(root_memcg, victim);
1428 return total;
1429 }
1430
1431 #ifdef CONFIG_LOCKDEP
1432 static struct lockdep_map memcg_oom_lock_dep_map = {
1433 .name = "memcg_oom_lock",
1434 };
1435 #endif
1436
1437 static DEFINE_SPINLOCK(memcg_oom_lock);
1438
1439 /*
1440 * Check OOM-Killer is already running under our hierarchy.
1441 * If someone is running, return false.
1442 */
1443 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1444 {
1445 struct mem_cgroup *iter, *failed = NULL;
1446
1447 spin_lock(&memcg_oom_lock);
1448
1449 for_each_mem_cgroup_tree(iter, memcg) {
1450 if (iter->oom_lock) {
1451 /*
1452 * this subtree of our hierarchy is already locked
1453 * so we cannot give a lock.
1454 */
1455 failed = iter;
1456 mem_cgroup_iter_break(memcg, iter);
1457 break;
1458 } else
1459 iter->oom_lock = true;
1460 }
1461
1462 if (failed) {
1463 /*
1464 * OK, we failed to lock the whole subtree so we have
1465 * to clean up what we set up to the failing subtree
1466 */
1467 for_each_mem_cgroup_tree(iter, memcg) {
1468 if (iter == failed) {
1469 mem_cgroup_iter_break(memcg, iter);
1470 break;
1471 }
1472 iter->oom_lock = false;
1473 }
1474 } else
1475 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1476
1477 spin_unlock(&memcg_oom_lock);
1478
1479 return !failed;
1480 }
1481
1482 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1483 {
1484 struct mem_cgroup *iter;
1485
1486 spin_lock(&memcg_oom_lock);
1487 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1488 for_each_mem_cgroup_tree(iter, memcg)
1489 iter->oom_lock = false;
1490 spin_unlock(&memcg_oom_lock);
1491 }
1492
1493 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1494 {
1495 struct mem_cgroup *iter;
1496
1497 spin_lock(&memcg_oom_lock);
1498 for_each_mem_cgroup_tree(iter, memcg)
1499 iter->under_oom++;
1500 spin_unlock(&memcg_oom_lock);
1501 }
1502
1503 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1504 {
1505 struct mem_cgroup *iter;
1506
1507 /*
1508 * When a new child is created while the hierarchy is under oom,
1509 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1510 */
1511 spin_lock(&memcg_oom_lock);
1512 for_each_mem_cgroup_tree(iter, memcg)
1513 if (iter->under_oom > 0)
1514 iter->under_oom--;
1515 spin_unlock(&memcg_oom_lock);
1516 }
1517
1518 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1519
1520 struct oom_wait_info {
1521 struct mem_cgroup *memcg;
1522 wait_queue_t wait;
1523 };
1524
1525 static int memcg_oom_wake_function(wait_queue_t *wait,
1526 unsigned mode, int sync, void *arg)
1527 {
1528 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1529 struct mem_cgroup *oom_wait_memcg;
1530 struct oom_wait_info *oom_wait_info;
1531
1532 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1533 oom_wait_memcg = oom_wait_info->memcg;
1534
1535 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1536 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1537 return 0;
1538 return autoremove_wake_function(wait, mode, sync, arg);
1539 }
1540
1541 static void memcg_oom_recover(struct mem_cgroup *memcg)
1542 {
1543 /*
1544 * For the following lockless ->under_oom test, the only required
1545 * guarantee is that it must see the state asserted by an OOM when
1546 * this function is called as a result of userland actions
1547 * triggered by the notification of the OOM. This is trivially
1548 * achieved by invoking mem_cgroup_mark_under_oom() before
1549 * triggering notification.
1550 */
1551 if (memcg && memcg->under_oom)
1552 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1553 }
1554
1555 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1556 {
1557 if (!current->memcg_may_oom)
1558 return;
1559 /*
1560 * We are in the middle of the charge context here, so we
1561 * don't want to block when potentially sitting on a callstack
1562 * that holds all kinds of filesystem and mm locks.
1563 *
1564 * Also, the caller may handle a failed allocation gracefully
1565 * (like optional page cache readahead) and so an OOM killer
1566 * invocation might not even be necessary.
1567 *
1568 * That's why we don't do anything here except remember the
1569 * OOM context and then deal with it at the end of the page
1570 * fault when the stack is unwound, the locks are released,
1571 * and when we know whether the fault was overall successful.
1572 */
1573 css_get(&memcg->css);
1574 current->memcg_in_oom = memcg;
1575 current->memcg_oom_gfp_mask = mask;
1576 current->memcg_oom_order = order;
1577 }
1578
1579 /**
1580 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1581 * @handle: actually kill/wait or just clean up the OOM state
1582 *
1583 * This has to be called at the end of a page fault if the memcg OOM
1584 * handler was enabled.
1585 *
1586 * Memcg supports userspace OOM handling where failed allocations must
1587 * sleep on a waitqueue until the userspace task resolves the
1588 * situation. Sleeping directly in the charge context with all kinds
1589 * of locks held is not a good idea, instead we remember an OOM state
1590 * in the task and mem_cgroup_oom_synchronize() has to be called at
1591 * the end of the page fault to complete the OOM handling.
1592 *
1593 * Returns %true if an ongoing memcg OOM situation was detected and
1594 * completed, %false otherwise.
1595 */
1596 bool mem_cgroup_oom_synchronize(bool handle)
1597 {
1598 struct mem_cgroup *memcg = current->memcg_in_oom;
1599 struct oom_wait_info owait;
1600 bool locked;
1601
1602 /* OOM is global, do not handle */
1603 if (!memcg)
1604 return false;
1605
1606 if (!handle || oom_killer_disabled)
1607 goto cleanup;
1608
1609 owait.memcg = memcg;
1610 owait.wait.flags = 0;
1611 owait.wait.func = memcg_oom_wake_function;
1612 owait.wait.private = current;
1613 INIT_LIST_HEAD(&owait.wait.task_list);
1614
1615 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1616 mem_cgroup_mark_under_oom(memcg);
1617
1618 locked = mem_cgroup_oom_trylock(memcg);
1619
1620 if (locked)
1621 mem_cgroup_oom_notify(memcg);
1622
1623 if (locked && !memcg->oom_kill_disable) {
1624 mem_cgroup_unmark_under_oom(memcg);
1625 finish_wait(&memcg_oom_waitq, &owait.wait);
1626 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1627 current->memcg_oom_order);
1628 } else {
1629 schedule();
1630 mem_cgroup_unmark_under_oom(memcg);
1631 finish_wait(&memcg_oom_waitq, &owait.wait);
1632 }
1633
1634 if (locked) {
1635 mem_cgroup_oom_unlock(memcg);
1636 /*
1637 * There is no guarantee that an OOM-lock contender
1638 * sees the wakeups triggered by the OOM kill
1639 * uncharges. Wake any sleepers explicitely.
1640 */
1641 memcg_oom_recover(memcg);
1642 }
1643 cleanup:
1644 current->memcg_in_oom = NULL;
1645 css_put(&memcg->css);
1646 return true;
1647 }
1648
1649 /**
1650 * lock_page_memcg - lock a page->mem_cgroup binding
1651 * @page: the page
1652 *
1653 * This function protects unlocked LRU pages from being moved to
1654 * another cgroup and stabilizes their page->mem_cgroup binding.
1655 */
1656 void lock_page_memcg(struct page *page)
1657 {
1658 struct mem_cgroup *memcg;
1659 unsigned long flags;
1660
1661 /*
1662 * The RCU lock is held throughout the transaction. The fast
1663 * path can get away without acquiring the memcg->move_lock
1664 * because page moving starts with an RCU grace period.
1665 */
1666 rcu_read_lock();
1667
1668 if (mem_cgroup_disabled())
1669 return;
1670 again:
1671 memcg = page->mem_cgroup;
1672 if (unlikely(!memcg))
1673 return;
1674
1675 if (atomic_read(&memcg->moving_account) <= 0)
1676 return;
1677
1678 spin_lock_irqsave(&memcg->move_lock, flags);
1679 if (memcg != page->mem_cgroup) {
1680 spin_unlock_irqrestore(&memcg->move_lock, flags);
1681 goto again;
1682 }
1683
1684 /*
1685 * When charge migration first begins, we can have locked and
1686 * unlocked page stat updates happening concurrently. Track
1687 * the task who has the lock for unlock_page_memcg().
1688 */
1689 memcg->move_lock_task = current;
1690 memcg->move_lock_flags = flags;
1691
1692 return;
1693 }
1694 EXPORT_SYMBOL(lock_page_memcg);
1695
1696 /**
1697 * unlock_page_memcg - unlock a page->mem_cgroup binding
1698 * @page: the page
1699 */
1700 void unlock_page_memcg(struct page *page)
1701 {
1702 struct mem_cgroup *memcg = page->mem_cgroup;
1703
1704 if (memcg && memcg->move_lock_task == current) {
1705 unsigned long flags = memcg->move_lock_flags;
1706
1707 memcg->move_lock_task = NULL;
1708 memcg->move_lock_flags = 0;
1709
1710 spin_unlock_irqrestore(&memcg->move_lock, flags);
1711 }
1712
1713 rcu_read_unlock();
1714 }
1715 EXPORT_SYMBOL(unlock_page_memcg);
1716
1717 /*
1718 * size of first charge trial. "32" comes from vmscan.c's magic value.
1719 * TODO: maybe necessary to use big numbers in big irons.
1720 */
1721 #define CHARGE_BATCH 32U
1722 struct memcg_stock_pcp {
1723 struct mem_cgroup *cached; /* this never be root cgroup */
1724 unsigned int nr_pages;
1725 struct work_struct work;
1726 unsigned long flags;
1727 #define FLUSHING_CACHED_CHARGE 0
1728 };
1729 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1730 static DEFINE_MUTEX(percpu_charge_mutex);
1731
1732 /**
1733 * consume_stock: Try to consume stocked charge on this cpu.
1734 * @memcg: memcg to consume from.
1735 * @nr_pages: how many pages to charge.
1736 *
1737 * The charges will only happen if @memcg matches the current cpu's memcg
1738 * stock, and at least @nr_pages are available in that stock. Failure to
1739 * service an allocation will refill the stock.
1740 *
1741 * returns true if successful, false otherwise.
1742 */
1743 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1744 {
1745 struct memcg_stock_pcp *stock;
1746 bool ret = false;
1747
1748 if (nr_pages > CHARGE_BATCH)
1749 return ret;
1750
1751 stock = &get_cpu_var(memcg_stock);
1752 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1753 stock->nr_pages -= nr_pages;
1754 ret = true;
1755 }
1756 put_cpu_var(memcg_stock);
1757 return ret;
1758 }
1759
1760 /*
1761 * Returns stocks cached in percpu and reset cached information.
1762 */
1763 static void drain_stock(struct memcg_stock_pcp *stock)
1764 {
1765 struct mem_cgroup *old = stock->cached;
1766
1767 if (stock->nr_pages) {
1768 page_counter_uncharge(&old->memory, stock->nr_pages);
1769 if (do_memsw_account())
1770 page_counter_uncharge(&old->memsw, stock->nr_pages);
1771 css_put_many(&old->css, stock->nr_pages);
1772 stock->nr_pages = 0;
1773 }
1774 stock->cached = NULL;
1775 }
1776
1777 /*
1778 * This must be called under preempt disabled or must be called by
1779 * a thread which is pinned to local cpu.
1780 */
1781 static void drain_local_stock(struct work_struct *dummy)
1782 {
1783 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1784 drain_stock(stock);
1785 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1786 }
1787
1788 /*
1789 * Cache charges(val) to local per_cpu area.
1790 * This will be consumed by consume_stock() function, later.
1791 */
1792 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1793 {
1794 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1795
1796 if (stock->cached != memcg) { /* reset if necessary */
1797 drain_stock(stock);
1798 stock->cached = memcg;
1799 }
1800 stock->nr_pages += nr_pages;
1801 put_cpu_var(memcg_stock);
1802 }
1803
1804 /*
1805 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1806 * of the hierarchy under it.
1807 */
1808 static void drain_all_stock(struct mem_cgroup *root_memcg)
1809 {
1810 int cpu, curcpu;
1811
1812 /* If someone's already draining, avoid adding running more workers. */
1813 if (!mutex_trylock(&percpu_charge_mutex))
1814 return;
1815 /* Notify other cpus that system-wide "drain" is running */
1816 get_online_cpus();
1817 curcpu = get_cpu();
1818 for_each_online_cpu(cpu) {
1819 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1820 struct mem_cgroup *memcg;
1821
1822 memcg = stock->cached;
1823 if (!memcg || !stock->nr_pages)
1824 continue;
1825 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1826 continue;
1827 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1828 if (cpu == curcpu)
1829 drain_local_stock(&stock->work);
1830 else
1831 schedule_work_on(cpu, &stock->work);
1832 }
1833 }
1834 put_cpu();
1835 put_online_cpus();
1836 mutex_unlock(&percpu_charge_mutex);
1837 }
1838
1839 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1840 unsigned long action,
1841 void *hcpu)
1842 {
1843 int cpu = (unsigned long)hcpu;
1844 struct memcg_stock_pcp *stock;
1845
1846 if (action == CPU_ONLINE)
1847 return NOTIFY_OK;
1848
1849 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1850 return NOTIFY_OK;
1851
1852 stock = &per_cpu(memcg_stock, cpu);
1853 drain_stock(stock);
1854 return NOTIFY_OK;
1855 }
1856
1857 static void reclaim_high(struct mem_cgroup *memcg,
1858 unsigned int nr_pages,
1859 gfp_t gfp_mask)
1860 {
1861 do {
1862 if (page_counter_read(&memcg->memory) <= memcg->high)
1863 continue;
1864 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1865 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1866 } while ((memcg = parent_mem_cgroup(memcg)));
1867 }
1868
1869 static void high_work_func(struct work_struct *work)
1870 {
1871 struct mem_cgroup *memcg;
1872
1873 memcg = container_of(work, struct mem_cgroup, high_work);
1874 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1875 }
1876
1877 /*
1878 * Scheduled by try_charge() to be executed from the userland return path
1879 * and reclaims memory over the high limit.
1880 */
1881 void mem_cgroup_handle_over_high(void)
1882 {
1883 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1884 struct mem_cgroup *memcg;
1885
1886 if (likely(!nr_pages))
1887 return;
1888
1889 memcg = get_mem_cgroup_from_mm(current->mm);
1890 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1891 css_put(&memcg->css);
1892 current->memcg_nr_pages_over_high = 0;
1893 }
1894
1895 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1896 unsigned int nr_pages)
1897 {
1898 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1899 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1900 struct mem_cgroup *mem_over_limit;
1901 struct page_counter *counter;
1902 unsigned long nr_reclaimed;
1903 bool may_swap = true;
1904 bool drained = false;
1905
1906 if (mem_cgroup_is_root(memcg))
1907 return 0;
1908 retry:
1909 if (consume_stock(memcg, nr_pages))
1910 return 0;
1911
1912 if (!do_memsw_account() ||
1913 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1914 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1915 goto done_restock;
1916 if (do_memsw_account())
1917 page_counter_uncharge(&memcg->memsw, batch);
1918 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1919 } else {
1920 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1921 may_swap = false;
1922 }
1923
1924 if (batch > nr_pages) {
1925 batch = nr_pages;
1926 goto retry;
1927 }
1928
1929 /*
1930 * Unlike in global OOM situations, memcg is not in a physical
1931 * memory shortage. Allow dying and OOM-killed tasks to
1932 * bypass the last charges so that they can exit quickly and
1933 * free their memory.
1934 */
1935 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1936 fatal_signal_pending(current) ||
1937 current->flags & PF_EXITING))
1938 goto force;
1939
1940 if (unlikely(task_in_memcg_oom(current)))
1941 goto nomem;
1942
1943 if (!gfpflags_allow_blocking(gfp_mask))
1944 goto nomem;
1945
1946 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1947
1948 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1949 gfp_mask, may_swap);
1950
1951 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1952 goto retry;
1953
1954 if (!drained) {
1955 drain_all_stock(mem_over_limit);
1956 drained = true;
1957 goto retry;
1958 }
1959
1960 if (gfp_mask & __GFP_NORETRY)
1961 goto nomem;
1962 /*
1963 * Even though the limit is exceeded at this point, reclaim
1964 * may have been able to free some pages. Retry the charge
1965 * before killing the task.
1966 *
1967 * Only for regular pages, though: huge pages are rather
1968 * unlikely to succeed so close to the limit, and we fall back
1969 * to regular pages anyway in case of failure.
1970 */
1971 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1972 goto retry;
1973 /*
1974 * At task move, charge accounts can be doubly counted. So, it's
1975 * better to wait until the end of task_move if something is going on.
1976 */
1977 if (mem_cgroup_wait_acct_move(mem_over_limit))
1978 goto retry;
1979
1980 if (nr_retries--)
1981 goto retry;
1982
1983 if (gfp_mask & __GFP_NOFAIL)
1984 goto force;
1985
1986 if (fatal_signal_pending(current))
1987 goto force;
1988
1989 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1990
1991 mem_cgroup_oom(mem_over_limit, gfp_mask,
1992 get_order(nr_pages * PAGE_SIZE));
1993 nomem:
1994 if (!(gfp_mask & __GFP_NOFAIL))
1995 return -ENOMEM;
1996 force:
1997 /*
1998 * The allocation either can't fail or will lead to more memory
1999 * being freed very soon. Allow memory usage go over the limit
2000 * temporarily by force charging it.
2001 */
2002 page_counter_charge(&memcg->memory, nr_pages);
2003 if (do_memsw_account())
2004 page_counter_charge(&memcg->memsw, nr_pages);
2005 css_get_many(&memcg->css, nr_pages);
2006
2007 return 0;
2008
2009 done_restock:
2010 css_get_many(&memcg->css, batch);
2011 if (batch > nr_pages)
2012 refill_stock(memcg, batch - nr_pages);
2013
2014 /*
2015 * If the hierarchy is above the normal consumption range, schedule
2016 * reclaim on returning to userland. We can perform reclaim here
2017 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2018 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2019 * not recorded as it most likely matches current's and won't
2020 * change in the meantime. As high limit is checked again before
2021 * reclaim, the cost of mismatch is negligible.
2022 */
2023 do {
2024 if (page_counter_read(&memcg->memory) > memcg->high) {
2025 /* Don't bother a random interrupted task */
2026 if (in_interrupt()) {
2027 schedule_work(&memcg->high_work);
2028 break;
2029 }
2030 current->memcg_nr_pages_over_high += batch;
2031 set_notify_resume(current);
2032 break;
2033 }
2034 } while ((memcg = parent_mem_cgroup(memcg)));
2035
2036 return 0;
2037 }
2038
2039 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2040 {
2041 if (mem_cgroup_is_root(memcg))
2042 return;
2043
2044 page_counter_uncharge(&memcg->memory, nr_pages);
2045 if (do_memsw_account())
2046 page_counter_uncharge(&memcg->memsw, nr_pages);
2047
2048 css_put_many(&memcg->css, nr_pages);
2049 }
2050
2051 static void lock_page_lru(struct page *page, int *isolated)
2052 {
2053 struct zone *zone = page_zone(page);
2054
2055 spin_lock_irq(zone_lru_lock(zone));
2056 if (PageLRU(page)) {
2057 struct lruvec *lruvec;
2058
2059 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2060 ClearPageLRU(page);
2061 del_page_from_lru_list(page, lruvec, page_lru(page));
2062 *isolated = 1;
2063 } else
2064 *isolated = 0;
2065 }
2066
2067 static void unlock_page_lru(struct page *page, int isolated)
2068 {
2069 struct zone *zone = page_zone(page);
2070
2071 if (isolated) {
2072 struct lruvec *lruvec;
2073
2074 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2075 VM_BUG_ON_PAGE(PageLRU(page), page);
2076 SetPageLRU(page);
2077 add_page_to_lru_list(page, lruvec, page_lru(page));
2078 }
2079 spin_unlock_irq(zone_lru_lock(zone));
2080 }
2081
2082 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2083 bool lrucare)
2084 {
2085 int isolated;
2086
2087 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2088
2089 /*
2090 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2091 * may already be on some other mem_cgroup's LRU. Take care of it.
2092 */
2093 if (lrucare)
2094 lock_page_lru(page, &isolated);
2095
2096 /*
2097 * Nobody should be changing or seriously looking at
2098 * page->mem_cgroup at this point:
2099 *
2100 * - the page is uncharged
2101 *
2102 * - the page is off-LRU
2103 *
2104 * - an anonymous fault has exclusive page access, except for
2105 * a locked page table
2106 *
2107 * - a page cache insertion, a swapin fault, or a migration
2108 * have the page locked
2109 */
2110 page->mem_cgroup = memcg;
2111
2112 if (lrucare)
2113 unlock_page_lru(page, isolated);
2114 }
2115
2116 #ifndef CONFIG_SLOB
2117 static int memcg_alloc_cache_id(void)
2118 {
2119 int id, size;
2120 int err;
2121
2122 id = ida_simple_get(&memcg_cache_ida,
2123 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2124 if (id < 0)
2125 return id;
2126
2127 if (id < memcg_nr_cache_ids)
2128 return id;
2129
2130 /*
2131 * There's no space for the new id in memcg_caches arrays,
2132 * so we have to grow them.
2133 */
2134 down_write(&memcg_cache_ids_sem);
2135
2136 size = 2 * (id + 1);
2137 if (size < MEMCG_CACHES_MIN_SIZE)
2138 size = MEMCG_CACHES_MIN_SIZE;
2139 else if (size > MEMCG_CACHES_MAX_SIZE)
2140 size = MEMCG_CACHES_MAX_SIZE;
2141
2142 err = memcg_update_all_caches(size);
2143 if (!err)
2144 err = memcg_update_all_list_lrus(size);
2145 if (!err)
2146 memcg_nr_cache_ids = size;
2147
2148 up_write(&memcg_cache_ids_sem);
2149
2150 if (err) {
2151 ida_simple_remove(&memcg_cache_ida, id);
2152 return err;
2153 }
2154 return id;
2155 }
2156
2157 static void memcg_free_cache_id(int id)
2158 {
2159 ida_simple_remove(&memcg_cache_ida, id);
2160 }
2161
2162 struct memcg_kmem_cache_create_work {
2163 struct mem_cgroup *memcg;
2164 struct kmem_cache *cachep;
2165 struct work_struct work;
2166 };
2167
2168 static void memcg_kmem_cache_create_func(struct work_struct *w)
2169 {
2170 struct memcg_kmem_cache_create_work *cw =
2171 container_of(w, struct memcg_kmem_cache_create_work, work);
2172 struct mem_cgroup *memcg = cw->memcg;
2173 struct kmem_cache *cachep = cw->cachep;
2174
2175 memcg_create_kmem_cache(memcg, cachep);
2176
2177 css_put(&memcg->css);
2178 kfree(cw);
2179 }
2180
2181 /*
2182 * Enqueue the creation of a per-memcg kmem_cache.
2183 */
2184 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2185 struct kmem_cache *cachep)
2186 {
2187 struct memcg_kmem_cache_create_work *cw;
2188
2189 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2190 if (!cw)
2191 return;
2192
2193 css_get(&memcg->css);
2194
2195 cw->memcg = memcg;
2196 cw->cachep = cachep;
2197 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2198
2199 schedule_work(&cw->work);
2200 }
2201
2202 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2203 struct kmem_cache *cachep)
2204 {
2205 /*
2206 * We need to stop accounting when we kmalloc, because if the
2207 * corresponding kmalloc cache is not yet created, the first allocation
2208 * in __memcg_schedule_kmem_cache_create will recurse.
2209 *
2210 * However, it is better to enclose the whole function. Depending on
2211 * the debugging options enabled, INIT_WORK(), for instance, can
2212 * trigger an allocation. This too, will make us recurse. Because at
2213 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2214 * the safest choice is to do it like this, wrapping the whole function.
2215 */
2216 current->memcg_kmem_skip_account = 1;
2217 __memcg_schedule_kmem_cache_create(memcg, cachep);
2218 current->memcg_kmem_skip_account = 0;
2219 }
2220
2221 static inline bool memcg_kmem_bypass(void)
2222 {
2223 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2224 return true;
2225 return false;
2226 }
2227
2228 /**
2229 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2230 * @cachep: the original global kmem cache
2231 *
2232 * Return the kmem_cache we're supposed to use for a slab allocation.
2233 * We try to use the current memcg's version of the cache.
2234 *
2235 * If the cache does not exist yet, if we are the first user of it, we
2236 * create it asynchronously in a workqueue and let the current allocation
2237 * go through with the original cache.
2238 *
2239 * This function takes a reference to the cache it returns to assure it
2240 * won't get destroyed while we are working with it. Once the caller is
2241 * done with it, memcg_kmem_put_cache() must be called to release the
2242 * reference.
2243 */
2244 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2245 {
2246 struct mem_cgroup *memcg;
2247 struct kmem_cache *memcg_cachep;
2248 int kmemcg_id;
2249
2250 VM_BUG_ON(!is_root_cache(cachep));
2251
2252 if (memcg_kmem_bypass())
2253 return cachep;
2254
2255 if (current->memcg_kmem_skip_account)
2256 return cachep;
2257
2258 memcg = get_mem_cgroup_from_mm(current->mm);
2259 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2260 if (kmemcg_id < 0)
2261 goto out;
2262
2263 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2264 if (likely(memcg_cachep))
2265 return memcg_cachep;
2266
2267 /*
2268 * If we are in a safe context (can wait, and not in interrupt
2269 * context), we could be be predictable and return right away.
2270 * This would guarantee that the allocation being performed
2271 * already belongs in the new cache.
2272 *
2273 * However, there are some clashes that can arrive from locking.
2274 * For instance, because we acquire the slab_mutex while doing
2275 * memcg_create_kmem_cache, this means no further allocation
2276 * could happen with the slab_mutex held. So it's better to
2277 * defer everything.
2278 */
2279 memcg_schedule_kmem_cache_create(memcg, cachep);
2280 out:
2281 css_put(&memcg->css);
2282 return cachep;
2283 }
2284
2285 /**
2286 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2287 * @cachep: the cache returned by memcg_kmem_get_cache
2288 */
2289 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2290 {
2291 if (!is_root_cache(cachep))
2292 css_put(&cachep->memcg_params.memcg->css);
2293 }
2294
2295 /**
2296 * memcg_kmem_charge: charge a kmem page
2297 * @page: page to charge
2298 * @gfp: reclaim mode
2299 * @order: allocation order
2300 * @memcg: memory cgroup to charge
2301 *
2302 * Returns 0 on success, an error code on failure.
2303 */
2304 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2305 struct mem_cgroup *memcg)
2306 {
2307 unsigned int nr_pages = 1 << order;
2308 struct page_counter *counter;
2309 int ret;
2310
2311 ret = try_charge(memcg, gfp, nr_pages);
2312 if (ret)
2313 return ret;
2314
2315 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2316 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2317 cancel_charge(memcg, nr_pages);
2318 return -ENOMEM;
2319 }
2320
2321 page->mem_cgroup = memcg;
2322
2323 return 0;
2324 }
2325
2326 /**
2327 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2328 * @page: page to charge
2329 * @gfp: reclaim mode
2330 * @order: allocation order
2331 *
2332 * Returns 0 on success, an error code on failure.
2333 */
2334 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2335 {
2336 struct mem_cgroup *memcg;
2337 int ret = 0;
2338
2339 if (memcg_kmem_bypass())
2340 return 0;
2341
2342 memcg = get_mem_cgroup_from_mm(current->mm);
2343 if (!mem_cgroup_is_root(memcg))
2344 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2345 css_put(&memcg->css);
2346 return ret;
2347 }
2348 /**
2349 * memcg_kmem_uncharge: uncharge a kmem page
2350 * @page: page to uncharge
2351 * @order: allocation order
2352 */
2353 void memcg_kmem_uncharge(struct page *page, int order)
2354 {
2355 struct mem_cgroup *memcg = page->mem_cgroup;
2356 unsigned int nr_pages = 1 << order;
2357
2358 if (!memcg)
2359 return;
2360
2361 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2362
2363 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2364 page_counter_uncharge(&memcg->kmem, nr_pages);
2365
2366 page_counter_uncharge(&memcg->memory, nr_pages);
2367 if (do_memsw_account())
2368 page_counter_uncharge(&memcg->memsw, nr_pages);
2369
2370 page->mem_cgroup = NULL;
2371 css_put_many(&memcg->css, nr_pages);
2372 }
2373 #endif /* !CONFIG_SLOB */
2374
2375 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2376
2377 /*
2378 * Because tail pages are not marked as "used", set it. We're under
2379 * zone_lru_lock and migration entries setup in all page mappings.
2380 */
2381 void mem_cgroup_split_huge_fixup(struct page *head)
2382 {
2383 int i;
2384
2385 if (mem_cgroup_disabled())
2386 return;
2387
2388 for (i = 1; i < HPAGE_PMD_NR; i++)
2389 head[i].mem_cgroup = head->mem_cgroup;
2390
2391 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2392 HPAGE_PMD_NR);
2393 }
2394 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2395
2396 #ifdef CONFIG_MEMCG_SWAP
2397 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2398 bool charge)
2399 {
2400 int val = (charge) ? 1 : -1;
2401 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2402 }
2403
2404 /**
2405 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2406 * @entry: swap entry to be moved
2407 * @from: mem_cgroup which the entry is moved from
2408 * @to: mem_cgroup which the entry is moved to
2409 *
2410 * It succeeds only when the swap_cgroup's record for this entry is the same
2411 * as the mem_cgroup's id of @from.
2412 *
2413 * Returns 0 on success, -EINVAL on failure.
2414 *
2415 * The caller must have charged to @to, IOW, called page_counter_charge() about
2416 * both res and memsw, and called css_get().
2417 */
2418 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2419 struct mem_cgroup *from, struct mem_cgroup *to)
2420 {
2421 unsigned short old_id, new_id;
2422
2423 old_id = mem_cgroup_id(from);
2424 new_id = mem_cgroup_id(to);
2425
2426 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2427 mem_cgroup_swap_statistics(from, false);
2428 mem_cgroup_swap_statistics(to, true);
2429 return 0;
2430 }
2431 return -EINVAL;
2432 }
2433 #else
2434 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2435 struct mem_cgroup *from, struct mem_cgroup *to)
2436 {
2437 return -EINVAL;
2438 }
2439 #endif
2440
2441 static DEFINE_MUTEX(memcg_limit_mutex);
2442
2443 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2444 unsigned long limit)
2445 {
2446 unsigned long curusage;
2447 unsigned long oldusage;
2448 bool enlarge = false;
2449 int retry_count;
2450 int ret;
2451
2452 /*
2453 * For keeping hierarchical_reclaim simple, how long we should retry
2454 * is depends on callers. We set our retry-count to be function
2455 * of # of children which we should visit in this loop.
2456 */
2457 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2458 mem_cgroup_count_children(memcg);
2459
2460 oldusage = page_counter_read(&memcg->memory);
2461
2462 do {
2463 if (signal_pending(current)) {
2464 ret = -EINTR;
2465 break;
2466 }
2467
2468 mutex_lock(&memcg_limit_mutex);
2469 if (limit > memcg->memsw.limit) {
2470 mutex_unlock(&memcg_limit_mutex);
2471 ret = -EINVAL;
2472 break;
2473 }
2474 if (limit > memcg->memory.limit)
2475 enlarge = true;
2476 ret = page_counter_limit(&memcg->memory, limit);
2477 mutex_unlock(&memcg_limit_mutex);
2478
2479 if (!ret)
2480 break;
2481
2482 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2483
2484 curusage = page_counter_read(&memcg->memory);
2485 /* Usage is reduced ? */
2486 if (curusage >= oldusage)
2487 retry_count--;
2488 else
2489 oldusage = curusage;
2490 } while (retry_count);
2491
2492 if (!ret && enlarge)
2493 memcg_oom_recover(memcg);
2494
2495 return ret;
2496 }
2497
2498 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2499 unsigned long limit)
2500 {
2501 unsigned long curusage;
2502 unsigned long oldusage;
2503 bool enlarge = false;
2504 int retry_count;
2505 int ret;
2506
2507 /* see mem_cgroup_resize_res_limit */
2508 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2509 mem_cgroup_count_children(memcg);
2510
2511 oldusage = page_counter_read(&memcg->memsw);
2512
2513 do {
2514 if (signal_pending(current)) {
2515 ret = -EINTR;
2516 break;
2517 }
2518
2519 mutex_lock(&memcg_limit_mutex);
2520 if (limit < memcg->memory.limit) {
2521 mutex_unlock(&memcg_limit_mutex);
2522 ret = -EINVAL;
2523 break;
2524 }
2525 if (limit > memcg->memsw.limit)
2526 enlarge = true;
2527 ret = page_counter_limit(&memcg->memsw, limit);
2528 mutex_unlock(&memcg_limit_mutex);
2529
2530 if (!ret)
2531 break;
2532
2533 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2534
2535 curusage = page_counter_read(&memcg->memsw);
2536 /* Usage is reduced ? */
2537 if (curusage >= oldusage)
2538 retry_count--;
2539 else
2540 oldusage = curusage;
2541 } while (retry_count);
2542
2543 if (!ret && enlarge)
2544 memcg_oom_recover(memcg);
2545
2546 return ret;
2547 }
2548
2549 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2550 gfp_t gfp_mask,
2551 unsigned long *total_scanned)
2552 {
2553 unsigned long nr_reclaimed = 0;
2554 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2555 unsigned long reclaimed;
2556 int loop = 0;
2557 struct mem_cgroup_tree_per_node *mctz;
2558 unsigned long excess;
2559 unsigned long nr_scanned;
2560
2561 if (order > 0)
2562 return 0;
2563
2564 mctz = soft_limit_tree_node(pgdat->node_id);
2565 /*
2566 * This loop can run a while, specially if mem_cgroup's continuously
2567 * keep exceeding their soft limit and putting the system under
2568 * pressure
2569 */
2570 do {
2571 if (next_mz)
2572 mz = next_mz;
2573 else
2574 mz = mem_cgroup_largest_soft_limit_node(mctz);
2575 if (!mz)
2576 break;
2577
2578 nr_scanned = 0;
2579 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2580 gfp_mask, &nr_scanned);
2581 nr_reclaimed += reclaimed;
2582 *total_scanned += nr_scanned;
2583 spin_lock_irq(&mctz->lock);
2584 __mem_cgroup_remove_exceeded(mz, mctz);
2585
2586 /*
2587 * If we failed to reclaim anything from this memory cgroup
2588 * it is time to move on to the next cgroup
2589 */
2590 next_mz = NULL;
2591 if (!reclaimed)
2592 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2593
2594 excess = soft_limit_excess(mz->memcg);
2595 /*
2596 * One school of thought says that we should not add
2597 * back the node to the tree if reclaim returns 0.
2598 * But our reclaim could return 0, simply because due
2599 * to priority we are exposing a smaller subset of
2600 * memory to reclaim from. Consider this as a longer
2601 * term TODO.
2602 */
2603 /* If excess == 0, no tree ops */
2604 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2605 spin_unlock_irq(&mctz->lock);
2606 css_put(&mz->memcg->css);
2607 loop++;
2608 /*
2609 * Could not reclaim anything and there are no more
2610 * mem cgroups to try or we seem to be looping without
2611 * reclaiming anything.
2612 */
2613 if (!nr_reclaimed &&
2614 (next_mz == NULL ||
2615 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2616 break;
2617 } while (!nr_reclaimed);
2618 if (next_mz)
2619 css_put(&next_mz->memcg->css);
2620 return nr_reclaimed;
2621 }
2622
2623 /*
2624 * Test whether @memcg has children, dead or alive. Note that this
2625 * function doesn't care whether @memcg has use_hierarchy enabled and
2626 * returns %true if there are child csses according to the cgroup
2627 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2628 */
2629 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2630 {
2631 bool ret;
2632
2633 rcu_read_lock();
2634 ret = css_next_child(NULL, &memcg->css);
2635 rcu_read_unlock();
2636 return ret;
2637 }
2638
2639 /*
2640 * Reclaims as many pages from the given memcg as possible.
2641 *
2642 * Caller is responsible for holding css reference for memcg.
2643 */
2644 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2645 {
2646 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2647
2648 /* we call try-to-free pages for make this cgroup empty */
2649 lru_add_drain_all();
2650 /* try to free all pages in this cgroup */
2651 while (nr_retries && page_counter_read(&memcg->memory)) {
2652 int progress;
2653
2654 if (signal_pending(current))
2655 return -EINTR;
2656
2657 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2658 GFP_KERNEL, true);
2659 if (!progress) {
2660 nr_retries--;
2661 /* maybe some writeback is necessary */
2662 congestion_wait(BLK_RW_ASYNC, HZ/10);
2663 }
2664
2665 }
2666
2667 return 0;
2668 }
2669
2670 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2671 char *buf, size_t nbytes,
2672 loff_t off)
2673 {
2674 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2675
2676 if (mem_cgroup_is_root(memcg))
2677 return -EINVAL;
2678 return mem_cgroup_force_empty(memcg) ?: nbytes;
2679 }
2680
2681 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2682 struct cftype *cft)
2683 {
2684 return mem_cgroup_from_css(css)->use_hierarchy;
2685 }
2686
2687 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2688 struct cftype *cft, u64 val)
2689 {
2690 int retval = 0;
2691 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2692 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2693
2694 if (memcg->use_hierarchy == val)
2695 return 0;
2696
2697 /*
2698 * If parent's use_hierarchy is set, we can't make any modifications
2699 * in the child subtrees. If it is unset, then the change can
2700 * occur, provided the current cgroup has no children.
2701 *
2702 * For the root cgroup, parent_mem is NULL, we allow value to be
2703 * set if there are no children.
2704 */
2705 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2706 (val == 1 || val == 0)) {
2707 if (!memcg_has_children(memcg))
2708 memcg->use_hierarchy = val;
2709 else
2710 retval = -EBUSY;
2711 } else
2712 retval = -EINVAL;
2713
2714 return retval;
2715 }
2716
2717 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2718 {
2719 struct mem_cgroup *iter;
2720 int i;
2721
2722 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2723
2724 for_each_mem_cgroup_tree(iter, memcg) {
2725 for (i = 0; i < MEMCG_NR_STAT; i++)
2726 stat[i] += mem_cgroup_read_stat(iter, i);
2727 }
2728 }
2729
2730 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2731 {
2732 struct mem_cgroup *iter;
2733 int i;
2734
2735 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2736
2737 for_each_mem_cgroup_tree(iter, memcg) {
2738 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2739 events[i] += mem_cgroup_read_events(iter, i);
2740 }
2741 }
2742
2743 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2744 {
2745 unsigned long val = 0;
2746
2747 if (mem_cgroup_is_root(memcg)) {
2748 struct mem_cgroup *iter;
2749
2750 for_each_mem_cgroup_tree(iter, memcg) {
2751 val += mem_cgroup_read_stat(iter,
2752 MEM_CGROUP_STAT_CACHE);
2753 val += mem_cgroup_read_stat(iter,
2754 MEM_CGROUP_STAT_RSS);
2755 if (swap)
2756 val += mem_cgroup_read_stat(iter,
2757 MEM_CGROUP_STAT_SWAP);
2758 }
2759 } else {
2760 if (!swap)
2761 val = page_counter_read(&memcg->memory);
2762 else
2763 val = page_counter_read(&memcg->memsw);
2764 }
2765 return val;
2766 }
2767
2768 enum {
2769 RES_USAGE,
2770 RES_LIMIT,
2771 RES_MAX_USAGE,
2772 RES_FAILCNT,
2773 RES_SOFT_LIMIT,
2774 };
2775
2776 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2777 struct cftype *cft)
2778 {
2779 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2780 struct page_counter *counter;
2781
2782 switch (MEMFILE_TYPE(cft->private)) {
2783 case _MEM:
2784 counter = &memcg->memory;
2785 break;
2786 case _MEMSWAP:
2787 counter = &memcg->memsw;
2788 break;
2789 case _KMEM:
2790 counter = &memcg->kmem;
2791 break;
2792 case _TCP:
2793 counter = &memcg->tcpmem;
2794 break;
2795 default:
2796 BUG();
2797 }
2798
2799 switch (MEMFILE_ATTR(cft->private)) {
2800 case RES_USAGE:
2801 if (counter == &memcg->memory)
2802 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2803 if (counter == &memcg->memsw)
2804 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2805 return (u64)page_counter_read(counter) * PAGE_SIZE;
2806 case RES_LIMIT:
2807 return (u64)counter->limit * PAGE_SIZE;
2808 case RES_MAX_USAGE:
2809 return (u64)counter->watermark * PAGE_SIZE;
2810 case RES_FAILCNT:
2811 return counter->failcnt;
2812 case RES_SOFT_LIMIT:
2813 return (u64)memcg->soft_limit * PAGE_SIZE;
2814 default:
2815 BUG();
2816 }
2817 }
2818
2819 #ifndef CONFIG_SLOB
2820 static int memcg_online_kmem(struct mem_cgroup *memcg)
2821 {
2822 int memcg_id;
2823
2824 if (cgroup_memory_nokmem)
2825 return 0;
2826
2827 BUG_ON(memcg->kmemcg_id >= 0);
2828 BUG_ON(memcg->kmem_state);
2829
2830 memcg_id = memcg_alloc_cache_id();
2831 if (memcg_id < 0)
2832 return memcg_id;
2833
2834 static_branch_inc(&memcg_kmem_enabled_key);
2835 /*
2836 * A memory cgroup is considered kmem-online as soon as it gets
2837 * kmemcg_id. Setting the id after enabling static branching will
2838 * guarantee no one starts accounting before all call sites are
2839 * patched.
2840 */
2841 memcg->kmemcg_id = memcg_id;
2842 memcg->kmem_state = KMEM_ONLINE;
2843
2844 return 0;
2845 }
2846
2847 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2848 {
2849 struct cgroup_subsys_state *css;
2850 struct mem_cgroup *parent, *child;
2851 int kmemcg_id;
2852
2853 if (memcg->kmem_state != KMEM_ONLINE)
2854 return;
2855 /*
2856 * Clear the online state before clearing memcg_caches array
2857 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2858 * guarantees that no cache will be created for this cgroup
2859 * after we are done (see memcg_create_kmem_cache()).
2860 */
2861 memcg->kmem_state = KMEM_ALLOCATED;
2862
2863 memcg_deactivate_kmem_caches(memcg);
2864
2865 kmemcg_id = memcg->kmemcg_id;
2866 BUG_ON(kmemcg_id < 0);
2867
2868 parent = parent_mem_cgroup(memcg);
2869 if (!parent)
2870 parent = root_mem_cgroup;
2871
2872 /*
2873 * Change kmemcg_id of this cgroup and all its descendants to the
2874 * parent's id, and then move all entries from this cgroup's list_lrus
2875 * to ones of the parent. After we have finished, all list_lrus
2876 * corresponding to this cgroup are guaranteed to remain empty. The
2877 * ordering is imposed by list_lru_node->lock taken by
2878 * memcg_drain_all_list_lrus().
2879 */
2880 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2881 css_for_each_descendant_pre(css, &memcg->css) {
2882 child = mem_cgroup_from_css(css);
2883 BUG_ON(child->kmemcg_id != kmemcg_id);
2884 child->kmemcg_id = parent->kmemcg_id;
2885 if (!memcg->use_hierarchy)
2886 break;
2887 }
2888 rcu_read_unlock();
2889
2890 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2891
2892 memcg_free_cache_id(kmemcg_id);
2893 }
2894
2895 static void memcg_free_kmem(struct mem_cgroup *memcg)
2896 {
2897 /* css_alloc() failed, offlining didn't happen */
2898 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2899 memcg_offline_kmem(memcg);
2900
2901 if (memcg->kmem_state == KMEM_ALLOCATED) {
2902 memcg_destroy_kmem_caches(memcg);
2903 static_branch_dec(&memcg_kmem_enabled_key);
2904 WARN_ON(page_counter_read(&memcg->kmem));
2905 }
2906 }
2907 #else
2908 static int memcg_online_kmem(struct mem_cgroup *memcg)
2909 {
2910 return 0;
2911 }
2912 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2913 {
2914 }
2915 static void memcg_free_kmem(struct mem_cgroup *memcg)
2916 {
2917 }
2918 #endif /* !CONFIG_SLOB */
2919
2920 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2921 unsigned long limit)
2922 {
2923 int ret;
2924
2925 mutex_lock(&memcg_limit_mutex);
2926 ret = page_counter_limit(&memcg->kmem, limit);
2927 mutex_unlock(&memcg_limit_mutex);
2928 return ret;
2929 }
2930
2931 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2932 {
2933 int ret;
2934
2935 mutex_lock(&memcg_limit_mutex);
2936
2937 ret = page_counter_limit(&memcg->tcpmem, limit);
2938 if (ret)
2939 goto out;
2940
2941 if (!memcg->tcpmem_active) {
2942 /*
2943 * The active flag needs to be written after the static_key
2944 * update. This is what guarantees that the socket activation
2945 * function is the last one to run. See sock_update_memcg() for
2946 * details, and note that we don't mark any socket as belonging
2947 * to this memcg until that flag is up.
2948 *
2949 * We need to do this, because static_keys will span multiple
2950 * sites, but we can't control their order. If we mark a socket
2951 * as accounted, but the accounting functions are not patched in
2952 * yet, we'll lose accounting.
2953 *
2954 * We never race with the readers in sock_update_memcg(),
2955 * because when this value change, the code to process it is not
2956 * patched in yet.
2957 */
2958 static_branch_inc(&memcg_sockets_enabled_key);
2959 memcg->tcpmem_active = true;
2960 }
2961 out:
2962 mutex_unlock(&memcg_limit_mutex);
2963 return ret;
2964 }
2965
2966 /*
2967 * The user of this function is...
2968 * RES_LIMIT.
2969 */
2970 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2971 char *buf, size_t nbytes, loff_t off)
2972 {
2973 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2974 unsigned long nr_pages;
2975 int ret;
2976
2977 buf = strstrip(buf);
2978 ret = page_counter_memparse(buf, "-1", &nr_pages);
2979 if (ret)
2980 return ret;
2981
2982 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2983 case RES_LIMIT:
2984 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2985 ret = -EINVAL;
2986 break;
2987 }
2988 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2989 case _MEM:
2990 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2991 break;
2992 case _MEMSWAP:
2993 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2994 break;
2995 case _KMEM:
2996 ret = memcg_update_kmem_limit(memcg, nr_pages);
2997 break;
2998 case _TCP:
2999 ret = memcg_update_tcp_limit(memcg, nr_pages);
3000 break;
3001 }
3002 break;
3003 case RES_SOFT_LIMIT:
3004 memcg->soft_limit = nr_pages;
3005 ret = 0;
3006 break;
3007 }
3008 return ret ?: nbytes;
3009 }
3010
3011 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3012 size_t nbytes, loff_t off)
3013 {
3014 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3015 struct page_counter *counter;
3016
3017 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3018 case _MEM:
3019 counter = &memcg->memory;
3020 break;
3021 case _MEMSWAP:
3022 counter = &memcg->memsw;
3023 break;
3024 case _KMEM:
3025 counter = &memcg->kmem;
3026 break;
3027 case _TCP:
3028 counter = &memcg->tcpmem;
3029 break;
3030 default:
3031 BUG();
3032 }
3033
3034 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3035 case RES_MAX_USAGE:
3036 page_counter_reset_watermark(counter);
3037 break;
3038 case RES_FAILCNT:
3039 counter->failcnt = 0;
3040 break;
3041 default:
3042 BUG();
3043 }
3044
3045 return nbytes;
3046 }
3047
3048 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3049 struct cftype *cft)
3050 {
3051 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3052 }
3053
3054 #ifdef CONFIG_MMU
3055 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3056 struct cftype *cft, u64 val)
3057 {
3058 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3059
3060 if (val & ~MOVE_MASK)
3061 return -EINVAL;
3062
3063 /*
3064 * No kind of locking is needed in here, because ->can_attach() will
3065 * check this value once in the beginning of the process, and then carry
3066 * on with stale data. This means that changes to this value will only
3067 * affect task migrations starting after the change.
3068 */
3069 memcg->move_charge_at_immigrate = val;
3070 return 0;
3071 }
3072 #else
3073 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3074 struct cftype *cft, u64 val)
3075 {
3076 return -ENOSYS;
3077 }
3078 #endif
3079
3080 #ifdef CONFIG_NUMA
3081 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3082 {
3083 struct numa_stat {
3084 const char *name;
3085 unsigned int lru_mask;
3086 };
3087
3088 static const struct numa_stat stats[] = {
3089 { "total", LRU_ALL },
3090 { "file", LRU_ALL_FILE },
3091 { "anon", LRU_ALL_ANON },
3092 { "unevictable", BIT(LRU_UNEVICTABLE) },
3093 };
3094 const struct numa_stat *stat;
3095 int nid;
3096 unsigned long nr;
3097 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3098
3099 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3100 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3101 seq_printf(m, "%s=%lu", stat->name, nr);
3102 for_each_node_state(nid, N_MEMORY) {
3103 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3104 stat->lru_mask);
3105 seq_printf(m, " N%d=%lu", nid, nr);
3106 }
3107 seq_putc(m, '\n');
3108 }
3109
3110 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3111 struct mem_cgroup *iter;
3112
3113 nr = 0;
3114 for_each_mem_cgroup_tree(iter, memcg)
3115 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3116 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3117 for_each_node_state(nid, N_MEMORY) {
3118 nr = 0;
3119 for_each_mem_cgroup_tree(iter, memcg)
3120 nr += mem_cgroup_node_nr_lru_pages(
3121 iter, nid, stat->lru_mask);
3122 seq_printf(m, " N%d=%lu", nid, nr);
3123 }
3124 seq_putc(m, '\n');
3125 }
3126
3127 return 0;
3128 }
3129 #endif /* CONFIG_NUMA */
3130
3131 static int memcg_stat_show(struct seq_file *m, void *v)
3132 {
3133 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3134 unsigned long memory, memsw;
3135 struct mem_cgroup *mi;
3136 unsigned int i;
3137
3138 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3139 MEM_CGROUP_STAT_NSTATS);
3140 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3141 MEM_CGROUP_EVENTS_NSTATS);
3142 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3143
3144 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3145 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3146 continue;
3147 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3148 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3149 }
3150
3151 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3152 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3153 mem_cgroup_read_events(memcg, i));
3154
3155 for (i = 0; i < NR_LRU_LISTS; i++)
3156 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3157 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3158
3159 /* Hierarchical information */
3160 memory = memsw = PAGE_COUNTER_MAX;
3161 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3162 memory = min(memory, mi->memory.limit);
3163 memsw = min(memsw, mi->memsw.limit);
3164 }
3165 seq_printf(m, "hierarchical_memory_limit %llu\n",
3166 (u64)memory * PAGE_SIZE);
3167 if (do_memsw_account())
3168 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3169 (u64)memsw * PAGE_SIZE);
3170
3171 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3172 unsigned long long val = 0;
3173
3174 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3175 continue;
3176 for_each_mem_cgroup_tree(mi, memcg)
3177 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3178 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3179 }
3180
3181 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3182 unsigned long long val = 0;
3183
3184 for_each_mem_cgroup_tree(mi, memcg)
3185 val += mem_cgroup_read_events(mi, i);
3186 seq_printf(m, "total_%s %llu\n",
3187 mem_cgroup_events_names[i], val);
3188 }
3189
3190 for (i = 0; i < NR_LRU_LISTS; i++) {
3191 unsigned long long val = 0;
3192
3193 for_each_mem_cgroup_tree(mi, memcg)
3194 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3195 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3196 }
3197
3198 #ifdef CONFIG_DEBUG_VM
3199 {
3200 pg_data_t *pgdat;
3201 struct mem_cgroup_per_node *mz;
3202 struct zone_reclaim_stat *rstat;
3203 unsigned long recent_rotated[2] = {0, 0};
3204 unsigned long recent_scanned[2] = {0, 0};
3205
3206 for_each_online_pgdat(pgdat) {
3207 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3208 rstat = &mz->lruvec.reclaim_stat;
3209
3210 recent_rotated[0] += rstat->recent_rotated[0];
3211 recent_rotated[1] += rstat->recent_rotated[1];
3212 recent_scanned[0] += rstat->recent_scanned[0];
3213 recent_scanned[1] += rstat->recent_scanned[1];
3214 }
3215 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3216 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3217 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3218 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3219 }
3220 #endif
3221
3222 return 0;
3223 }
3224
3225 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3226 struct cftype *cft)
3227 {
3228 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3229
3230 return mem_cgroup_swappiness(memcg);
3231 }
3232
3233 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3234 struct cftype *cft, u64 val)
3235 {
3236 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3237
3238 if (val > 100)
3239 return -EINVAL;
3240
3241 if (css->parent)
3242 memcg->swappiness = val;
3243 else
3244 vm_swappiness = val;
3245
3246 return 0;
3247 }
3248
3249 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3250 {
3251 struct mem_cgroup_threshold_ary *t;
3252 unsigned long usage;
3253 int i;
3254
3255 rcu_read_lock();
3256 if (!swap)
3257 t = rcu_dereference(memcg->thresholds.primary);
3258 else
3259 t = rcu_dereference(memcg->memsw_thresholds.primary);
3260
3261 if (!t)
3262 goto unlock;
3263
3264 usage = mem_cgroup_usage(memcg, swap);
3265
3266 /*
3267 * current_threshold points to threshold just below or equal to usage.
3268 * If it's not true, a threshold was crossed after last
3269 * call of __mem_cgroup_threshold().
3270 */
3271 i = t->current_threshold;
3272
3273 /*
3274 * Iterate backward over array of thresholds starting from
3275 * current_threshold and check if a threshold is crossed.
3276 * If none of thresholds below usage is crossed, we read
3277 * only one element of the array here.
3278 */
3279 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3280 eventfd_signal(t->entries[i].eventfd, 1);
3281
3282 /* i = current_threshold + 1 */
3283 i++;
3284
3285 /*
3286 * Iterate forward over array of thresholds starting from
3287 * current_threshold+1 and check if a threshold is crossed.
3288 * If none of thresholds above usage is crossed, we read
3289 * only one element of the array here.
3290 */
3291 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3292 eventfd_signal(t->entries[i].eventfd, 1);
3293
3294 /* Update current_threshold */
3295 t->current_threshold = i - 1;
3296 unlock:
3297 rcu_read_unlock();
3298 }
3299
3300 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3301 {
3302 while (memcg) {
3303 __mem_cgroup_threshold(memcg, false);
3304 if (do_memsw_account())
3305 __mem_cgroup_threshold(memcg, true);
3306
3307 memcg = parent_mem_cgroup(memcg);
3308 }
3309 }
3310
3311 static int compare_thresholds(const void *a, const void *b)
3312 {
3313 const struct mem_cgroup_threshold *_a = a;
3314 const struct mem_cgroup_threshold *_b = b;
3315
3316 if (_a->threshold > _b->threshold)
3317 return 1;
3318
3319 if (_a->threshold < _b->threshold)
3320 return -1;
3321
3322 return 0;
3323 }
3324
3325 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3326 {
3327 struct mem_cgroup_eventfd_list *ev;
3328
3329 spin_lock(&memcg_oom_lock);
3330
3331 list_for_each_entry(ev, &memcg->oom_notify, list)
3332 eventfd_signal(ev->eventfd, 1);
3333
3334 spin_unlock(&memcg_oom_lock);
3335 return 0;
3336 }
3337
3338 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3339 {
3340 struct mem_cgroup *iter;
3341
3342 for_each_mem_cgroup_tree(iter, memcg)
3343 mem_cgroup_oom_notify_cb(iter);
3344 }
3345
3346 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3347 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3348 {
3349 struct mem_cgroup_thresholds *thresholds;
3350 struct mem_cgroup_threshold_ary *new;
3351 unsigned long threshold;
3352 unsigned long usage;
3353 int i, size, ret;
3354
3355 ret = page_counter_memparse(args, "-1", &threshold);
3356 if (ret)
3357 return ret;
3358
3359 mutex_lock(&memcg->thresholds_lock);
3360
3361 if (type == _MEM) {
3362 thresholds = &memcg->thresholds;
3363 usage = mem_cgroup_usage(memcg, false);
3364 } else if (type == _MEMSWAP) {
3365 thresholds = &memcg->memsw_thresholds;
3366 usage = mem_cgroup_usage(memcg, true);
3367 } else
3368 BUG();
3369
3370 /* Check if a threshold crossed before adding a new one */
3371 if (thresholds->primary)
3372 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3373
3374 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3375
3376 /* Allocate memory for new array of thresholds */
3377 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3378 GFP_KERNEL);
3379 if (!new) {
3380 ret = -ENOMEM;
3381 goto unlock;
3382 }
3383 new->size = size;
3384
3385 /* Copy thresholds (if any) to new array */
3386 if (thresholds->primary) {
3387 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3388 sizeof(struct mem_cgroup_threshold));
3389 }
3390
3391 /* Add new threshold */
3392 new->entries[size - 1].eventfd = eventfd;
3393 new->entries[size - 1].threshold = threshold;
3394
3395 /* Sort thresholds. Registering of new threshold isn't time-critical */
3396 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3397 compare_thresholds, NULL);
3398
3399 /* Find current threshold */
3400 new->current_threshold = -1;
3401 for (i = 0; i < size; i++) {
3402 if (new->entries[i].threshold <= usage) {
3403 /*
3404 * new->current_threshold will not be used until
3405 * rcu_assign_pointer(), so it's safe to increment
3406 * it here.
3407 */
3408 ++new->current_threshold;
3409 } else
3410 break;
3411 }
3412
3413 /* Free old spare buffer and save old primary buffer as spare */
3414 kfree(thresholds->spare);
3415 thresholds->spare = thresholds->primary;
3416
3417 rcu_assign_pointer(thresholds->primary, new);
3418
3419 /* To be sure that nobody uses thresholds */
3420 synchronize_rcu();
3421
3422 unlock:
3423 mutex_unlock(&memcg->thresholds_lock);
3424
3425 return ret;
3426 }
3427
3428 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3429 struct eventfd_ctx *eventfd, const char *args)
3430 {
3431 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3432 }
3433
3434 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3435 struct eventfd_ctx *eventfd, const char *args)
3436 {
3437 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3438 }
3439
3440 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3441 struct eventfd_ctx *eventfd, enum res_type type)
3442 {
3443 struct mem_cgroup_thresholds *thresholds;
3444 struct mem_cgroup_threshold_ary *new;
3445 unsigned long usage;
3446 int i, j, size;
3447
3448 mutex_lock(&memcg->thresholds_lock);
3449
3450 if (type == _MEM) {
3451 thresholds = &memcg->thresholds;
3452 usage = mem_cgroup_usage(memcg, false);
3453 } else if (type == _MEMSWAP) {
3454 thresholds = &memcg->memsw_thresholds;
3455 usage = mem_cgroup_usage(memcg, true);
3456 } else
3457 BUG();
3458
3459 if (!thresholds->primary)
3460 goto unlock;
3461
3462 /* Check if a threshold crossed before removing */
3463 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3464
3465 /* Calculate new number of threshold */
3466 size = 0;
3467 for (i = 0; i < thresholds->primary->size; i++) {
3468 if (thresholds->primary->entries[i].eventfd != eventfd)
3469 size++;
3470 }
3471
3472 new = thresholds->spare;
3473
3474 /* Set thresholds array to NULL if we don't have thresholds */
3475 if (!size) {
3476 kfree(new);
3477 new = NULL;
3478 goto swap_buffers;
3479 }
3480
3481 new->size = size;
3482
3483 /* Copy thresholds and find current threshold */
3484 new->current_threshold = -1;
3485 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3486 if (thresholds->primary->entries[i].eventfd == eventfd)
3487 continue;
3488
3489 new->entries[j] = thresholds->primary->entries[i];
3490 if (new->entries[j].threshold <= usage) {
3491 /*
3492 * new->current_threshold will not be used
3493 * until rcu_assign_pointer(), so it's safe to increment
3494 * it here.
3495 */
3496 ++new->current_threshold;
3497 }
3498 j++;
3499 }
3500
3501 swap_buffers:
3502 /* Swap primary and spare array */
3503 thresholds->spare = thresholds->primary;
3504
3505 rcu_assign_pointer(thresholds->primary, new);
3506
3507 /* To be sure that nobody uses thresholds */
3508 synchronize_rcu();
3509
3510 /* If all events are unregistered, free the spare array */
3511 if (!new) {
3512 kfree(thresholds->spare);
3513 thresholds->spare = NULL;
3514 }
3515 unlock:
3516 mutex_unlock(&memcg->thresholds_lock);
3517 }
3518
3519 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3520 struct eventfd_ctx *eventfd)
3521 {
3522 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3523 }
3524
3525 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3526 struct eventfd_ctx *eventfd)
3527 {
3528 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3529 }
3530
3531 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3532 struct eventfd_ctx *eventfd, const char *args)
3533 {
3534 struct mem_cgroup_eventfd_list *event;
3535
3536 event = kmalloc(sizeof(*event), GFP_KERNEL);
3537 if (!event)
3538 return -ENOMEM;
3539
3540 spin_lock(&memcg_oom_lock);
3541
3542 event->eventfd = eventfd;
3543 list_add(&event->list, &memcg->oom_notify);
3544
3545 /* already in OOM ? */
3546 if (memcg->under_oom)
3547 eventfd_signal(eventfd, 1);
3548 spin_unlock(&memcg_oom_lock);
3549
3550 return 0;
3551 }
3552
3553 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3554 struct eventfd_ctx *eventfd)
3555 {
3556 struct mem_cgroup_eventfd_list *ev, *tmp;
3557
3558 spin_lock(&memcg_oom_lock);
3559
3560 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3561 if (ev->eventfd == eventfd) {
3562 list_del(&ev->list);
3563 kfree(ev);
3564 }
3565 }
3566
3567 spin_unlock(&memcg_oom_lock);
3568 }
3569
3570 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3571 {
3572 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3573
3574 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3575 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3576 return 0;
3577 }
3578
3579 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3580 struct cftype *cft, u64 val)
3581 {
3582 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3583
3584 /* cannot set to root cgroup and only 0 and 1 are allowed */
3585 if (!css->parent || !((val == 0) || (val == 1)))
3586 return -EINVAL;
3587
3588 memcg->oom_kill_disable = val;
3589 if (!val)
3590 memcg_oom_recover(memcg);
3591
3592 return 0;
3593 }
3594
3595 #ifdef CONFIG_CGROUP_WRITEBACK
3596
3597 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3598 {
3599 return &memcg->cgwb_list;
3600 }
3601
3602 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3603 {
3604 return wb_domain_init(&memcg->cgwb_domain, gfp);
3605 }
3606
3607 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3608 {
3609 wb_domain_exit(&memcg->cgwb_domain);
3610 }
3611
3612 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3613 {
3614 wb_domain_size_changed(&memcg->cgwb_domain);
3615 }
3616
3617 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3618 {
3619 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3620
3621 if (!memcg->css.parent)
3622 return NULL;
3623
3624 return &memcg->cgwb_domain;
3625 }
3626
3627 /**
3628 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3629 * @wb: bdi_writeback in question
3630 * @pfilepages: out parameter for number of file pages
3631 * @pheadroom: out parameter for number of allocatable pages according to memcg
3632 * @pdirty: out parameter for number of dirty pages
3633 * @pwriteback: out parameter for number of pages under writeback
3634 *
3635 * Determine the numbers of file, headroom, dirty, and writeback pages in
3636 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3637 * is a bit more involved.
3638 *
3639 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3640 * headroom is calculated as the lowest headroom of itself and the
3641 * ancestors. Note that this doesn't consider the actual amount of
3642 * available memory in the system. The caller should further cap
3643 * *@pheadroom accordingly.
3644 */
3645 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3646 unsigned long *pheadroom, unsigned long *pdirty,
3647 unsigned long *pwriteback)
3648 {
3649 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3650 struct mem_cgroup *parent;
3651
3652 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3653
3654 /* this should eventually include NR_UNSTABLE_NFS */
3655 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3656 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3657 (1 << LRU_ACTIVE_FILE));
3658 *pheadroom = PAGE_COUNTER_MAX;
3659
3660 while ((parent = parent_mem_cgroup(memcg))) {
3661 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3662 unsigned long used = page_counter_read(&memcg->memory);
3663
3664 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3665 memcg = parent;
3666 }
3667 }
3668
3669 #else /* CONFIG_CGROUP_WRITEBACK */
3670
3671 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3672 {
3673 return 0;
3674 }
3675
3676 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3677 {
3678 }
3679
3680 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3681 {
3682 }
3683
3684 #endif /* CONFIG_CGROUP_WRITEBACK */
3685
3686 /*
3687 * DO NOT USE IN NEW FILES.
3688 *
3689 * "cgroup.event_control" implementation.
3690 *
3691 * This is way over-engineered. It tries to support fully configurable
3692 * events for each user. Such level of flexibility is completely
3693 * unnecessary especially in the light of the planned unified hierarchy.
3694 *
3695 * Please deprecate this and replace with something simpler if at all
3696 * possible.
3697 */
3698
3699 /*
3700 * Unregister event and free resources.
3701 *
3702 * Gets called from workqueue.
3703 */
3704 static void memcg_event_remove(struct work_struct *work)
3705 {
3706 struct mem_cgroup_event *event =
3707 container_of(work, struct mem_cgroup_event, remove);
3708 struct mem_cgroup *memcg = event->memcg;
3709
3710 remove_wait_queue(event->wqh, &event->wait);
3711
3712 event->unregister_event(memcg, event->eventfd);
3713
3714 /* Notify userspace the event is going away. */
3715 eventfd_signal(event->eventfd, 1);
3716
3717 eventfd_ctx_put(event->eventfd);
3718 kfree(event);
3719 css_put(&memcg->css);
3720 }
3721
3722 /*
3723 * Gets called on POLLHUP on eventfd when user closes it.
3724 *
3725 * Called with wqh->lock held and interrupts disabled.
3726 */
3727 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3728 int sync, void *key)
3729 {
3730 struct mem_cgroup_event *event =
3731 container_of(wait, struct mem_cgroup_event, wait);
3732 struct mem_cgroup *memcg = event->memcg;
3733 unsigned long flags = (unsigned long)key;
3734
3735 if (flags & POLLHUP) {
3736 /*
3737 * If the event has been detached at cgroup removal, we
3738 * can simply return knowing the other side will cleanup
3739 * for us.
3740 *
3741 * We can't race against event freeing since the other
3742 * side will require wqh->lock via remove_wait_queue(),
3743 * which we hold.
3744 */
3745 spin_lock(&memcg->event_list_lock);
3746 if (!list_empty(&event->list)) {
3747 list_del_init(&event->list);
3748 /*
3749 * We are in atomic context, but cgroup_event_remove()
3750 * may sleep, so we have to call it in workqueue.
3751 */
3752 schedule_work(&event->remove);
3753 }
3754 spin_unlock(&memcg->event_list_lock);
3755 }
3756
3757 return 0;
3758 }
3759
3760 static void memcg_event_ptable_queue_proc(struct file *file,
3761 wait_queue_head_t *wqh, poll_table *pt)
3762 {
3763 struct mem_cgroup_event *event =
3764 container_of(pt, struct mem_cgroup_event, pt);
3765
3766 event->wqh = wqh;
3767 add_wait_queue(wqh, &event->wait);
3768 }
3769
3770 /*
3771 * DO NOT USE IN NEW FILES.
3772 *
3773 * Parse input and register new cgroup event handler.
3774 *
3775 * Input must be in format '<event_fd> <control_fd> <args>'.
3776 * Interpretation of args is defined by control file implementation.
3777 */
3778 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3779 char *buf, size_t nbytes, loff_t off)
3780 {
3781 struct cgroup_subsys_state *css = of_css(of);
3782 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3783 struct mem_cgroup_event *event;
3784 struct cgroup_subsys_state *cfile_css;
3785 unsigned int efd, cfd;
3786 struct fd efile;
3787 struct fd cfile;
3788 const char *name;
3789 char *endp;
3790 int ret;
3791
3792 buf = strstrip(buf);
3793
3794 efd = simple_strtoul(buf, &endp, 10);
3795 if (*endp != ' ')
3796 return -EINVAL;
3797 buf = endp + 1;
3798
3799 cfd = simple_strtoul(buf, &endp, 10);
3800 if ((*endp != ' ') && (*endp != '\0'))
3801 return -EINVAL;
3802 buf = endp + 1;
3803
3804 event = kzalloc(sizeof(*event), GFP_KERNEL);
3805 if (!event)
3806 return -ENOMEM;
3807
3808 event->memcg = memcg;
3809 INIT_LIST_HEAD(&event->list);
3810 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3811 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3812 INIT_WORK(&event->remove, memcg_event_remove);
3813
3814 efile = fdget(efd);
3815 if (!efile.file) {
3816 ret = -EBADF;
3817 goto out_kfree;
3818 }
3819
3820 event->eventfd = eventfd_ctx_fileget(efile.file);
3821 if (IS_ERR(event->eventfd)) {
3822 ret = PTR_ERR(event->eventfd);
3823 goto out_put_efile;
3824 }
3825
3826 cfile = fdget(cfd);
3827 if (!cfile.file) {
3828 ret = -EBADF;
3829 goto out_put_eventfd;
3830 }
3831
3832 /* the process need read permission on control file */
3833 /* AV: shouldn't we check that it's been opened for read instead? */
3834 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3835 if (ret < 0)
3836 goto out_put_cfile;
3837
3838 /*
3839 * Determine the event callbacks and set them in @event. This used
3840 * to be done via struct cftype but cgroup core no longer knows
3841 * about these events. The following is crude but the whole thing
3842 * is for compatibility anyway.
3843 *
3844 * DO NOT ADD NEW FILES.
3845 */
3846 name = cfile.file->f_path.dentry->d_name.name;
3847
3848 if (!strcmp(name, "memory.usage_in_bytes")) {
3849 event->register_event = mem_cgroup_usage_register_event;
3850 event->unregister_event = mem_cgroup_usage_unregister_event;
3851 } else if (!strcmp(name, "memory.oom_control")) {
3852 event->register_event = mem_cgroup_oom_register_event;
3853 event->unregister_event = mem_cgroup_oom_unregister_event;
3854 } else if (!strcmp(name, "memory.pressure_level")) {
3855 event->register_event = vmpressure_register_event;
3856 event->unregister_event = vmpressure_unregister_event;
3857 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3858 event->register_event = memsw_cgroup_usage_register_event;
3859 event->unregister_event = memsw_cgroup_usage_unregister_event;
3860 } else {
3861 ret = -EINVAL;
3862 goto out_put_cfile;
3863 }
3864
3865 /*
3866 * Verify @cfile should belong to @css. Also, remaining events are
3867 * automatically removed on cgroup destruction but the removal is
3868 * asynchronous, so take an extra ref on @css.
3869 */
3870 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3871 &memory_cgrp_subsys);
3872 ret = -EINVAL;
3873 if (IS_ERR(cfile_css))
3874 goto out_put_cfile;
3875 if (cfile_css != css) {
3876 css_put(cfile_css);
3877 goto out_put_cfile;
3878 }
3879
3880 ret = event->register_event(memcg, event->eventfd, buf);
3881 if (ret)
3882 goto out_put_css;
3883
3884 efile.file->f_op->poll(efile.file, &event->pt);
3885
3886 spin_lock(&memcg->event_list_lock);
3887 list_add(&event->list, &memcg->event_list);
3888 spin_unlock(&memcg->event_list_lock);
3889
3890 fdput(cfile);
3891 fdput(efile);
3892
3893 return nbytes;
3894
3895 out_put_css:
3896 css_put(css);
3897 out_put_cfile:
3898 fdput(cfile);
3899 out_put_eventfd:
3900 eventfd_ctx_put(event->eventfd);
3901 out_put_efile:
3902 fdput(efile);
3903 out_kfree:
3904 kfree(event);
3905
3906 return ret;
3907 }
3908
3909 static struct cftype mem_cgroup_legacy_files[] = {
3910 {
3911 .name = "usage_in_bytes",
3912 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3913 .read_u64 = mem_cgroup_read_u64,
3914 },
3915 {
3916 .name = "max_usage_in_bytes",
3917 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3918 .write = mem_cgroup_reset,
3919 .read_u64 = mem_cgroup_read_u64,
3920 },
3921 {
3922 .name = "limit_in_bytes",
3923 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3924 .write = mem_cgroup_write,
3925 .read_u64 = mem_cgroup_read_u64,
3926 },
3927 {
3928 .name = "soft_limit_in_bytes",
3929 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3930 .write = mem_cgroup_write,
3931 .read_u64 = mem_cgroup_read_u64,
3932 },
3933 {
3934 .name = "failcnt",
3935 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3936 .write = mem_cgroup_reset,
3937 .read_u64 = mem_cgroup_read_u64,
3938 },
3939 {
3940 .name = "stat",
3941 .seq_show = memcg_stat_show,
3942 },
3943 {
3944 .name = "force_empty",
3945 .write = mem_cgroup_force_empty_write,
3946 },
3947 {
3948 .name = "use_hierarchy",
3949 .write_u64 = mem_cgroup_hierarchy_write,
3950 .read_u64 = mem_cgroup_hierarchy_read,
3951 },
3952 {
3953 .name = "cgroup.event_control", /* XXX: for compat */
3954 .write = memcg_write_event_control,
3955 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3956 },
3957 {
3958 .name = "swappiness",
3959 .read_u64 = mem_cgroup_swappiness_read,
3960 .write_u64 = mem_cgroup_swappiness_write,
3961 },
3962 {
3963 .name = "move_charge_at_immigrate",
3964 .read_u64 = mem_cgroup_move_charge_read,
3965 .write_u64 = mem_cgroup_move_charge_write,
3966 },
3967 {
3968 .name = "oom_control",
3969 .seq_show = mem_cgroup_oom_control_read,
3970 .write_u64 = mem_cgroup_oom_control_write,
3971 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3972 },
3973 {
3974 .name = "pressure_level",
3975 },
3976 #ifdef CONFIG_NUMA
3977 {
3978 .name = "numa_stat",
3979 .seq_show = memcg_numa_stat_show,
3980 },
3981 #endif
3982 {
3983 .name = "kmem.limit_in_bytes",
3984 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3985 .write = mem_cgroup_write,
3986 .read_u64 = mem_cgroup_read_u64,
3987 },
3988 {
3989 .name = "kmem.usage_in_bytes",
3990 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3991 .read_u64 = mem_cgroup_read_u64,
3992 },
3993 {
3994 .name = "kmem.failcnt",
3995 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3996 .write = mem_cgroup_reset,
3997 .read_u64 = mem_cgroup_read_u64,
3998 },
3999 {
4000 .name = "kmem.max_usage_in_bytes",
4001 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4002 .write = mem_cgroup_reset,
4003 .read_u64 = mem_cgroup_read_u64,
4004 },
4005 #ifdef CONFIG_SLABINFO
4006 {
4007 .name = "kmem.slabinfo",
4008 .seq_start = slab_start,
4009 .seq_next = slab_next,
4010 .seq_stop = slab_stop,
4011 .seq_show = memcg_slab_show,
4012 },
4013 #endif
4014 {
4015 .name = "kmem.tcp.limit_in_bytes",
4016 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4017 .write = mem_cgroup_write,
4018 .read_u64 = mem_cgroup_read_u64,
4019 },
4020 {
4021 .name = "kmem.tcp.usage_in_bytes",
4022 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4023 .read_u64 = mem_cgroup_read_u64,
4024 },
4025 {
4026 .name = "kmem.tcp.failcnt",
4027 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4028 .write = mem_cgroup_reset,
4029 .read_u64 = mem_cgroup_read_u64,
4030 },
4031 {
4032 .name = "kmem.tcp.max_usage_in_bytes",
4033 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4034 .write = mem_cgroup_reset,
4035 .read_u64 = mem_cgroup_read_u64,
4036 },
4037 { }, /* terminate */
4038 };
4039
4040 /*
4041 * Private memory cgroup IDR
4042 *
4043 * Swap-out records and page cache shadow entries need to store memcg
4044 * references in constrained space, so we maintain an ID space that is
4045 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4046 * memory-controlled cgroups to 64k.
4047 *
4048 * However, there usually are many references to the oflline CSS after
4049 * the cgroup has been destroyed, such as page cache or reclaimable
4050 * slab objects, that don't need to hang on to the ID. We want to keep
4051 * those dead CSS from occupying IDs, or we might quickly exhaust the
4052 * relatively small ID space and prevent the creation of new cgroups
4053 * even when there are much fewer than 64k cgroups - possibly none.
4054 *
4055 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4056 * be freed and recycled when it's no longer needed, which is usually
4057 * when the CSS is offlined.
4058 *
4059 * The only exception to that are records of swapped out tmpfs/shmem
4060 * pages that need to be attributed to live ancestors on swapin. But
4061 * those references are manageable from userspace.
4062 */
4063
4064 static DEFINE_IDR(mem_cgroup_idr);
4065
4066 static void mem_cgroup_id_get(struct mem_cgroup *memcg)
4067 {
4068 atomic_inc(&memcg->id.ref);
4069 }
4070
4071 static void mem_cgroup_id_put(struct mem_cgroup *memcg)
4072 {
4073 if (atomic_dec_and_test(&memcg->id.ref)) {
4074 idr_remove(&mem_cgroup_idr, memcg->id.id);
4075 memcg->id.id = 0;
4076
4077 /* Memcg ID pins CSS */
4078 css_put(&memcg->css);
4079 }
4080 }
4081
4082 /**
4083 * mem_cgroup_from_id - look up a memcg from a memcg id
4084 * @id: the memcg id to look up
4085 *
4086 * Caller must hold rcu_read_lock().
4087 */
4088 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4089 {
4090 WARN_ON_ONCE(!rcu_read_lock_held());
4091 return idr_find(&mem_cgroup_idr, id);
4092 }
4093
4094 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4095 {
4096 struct mem_cgroup_per_node *pn;
4097 int tmp = node;
4098 /*
4099 * This routine is called against possible nodes.
4100 * But it's BUG to call kmalloc() against offline node.
4101 *
4102 * TODO: this routine can waste much memory for nodes which will
4103 * never be onlined. It's better to use memory hotplug callback
4104 * function.
4105 */
4106 if (!node_state(node, N_NORMAL_MEMORY))
4107 tmp = -1;
4108 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4109 if (!pn)
4110 return 1;
4111
4112 lruvec_init(&pn->lruvec);
4113 pn->usage_in_excess = 0;
4114 pn->on_tree = false;
4115 pn->memcg = memcg;
4116
4117 memcg->nodeinfo[node] = pn;
4118 return 0;
4119 }
4120
4121 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4122 {
4123 kfree(memcg->nodeinfo[node]);
4124 }
4125
4126 static void mem_cgroup_free(struct mem_cgroup *memcg)
4127 {
4128 int node;
4129
4130 memcg_wb_domain_exit(memcg);
4131 for_each_node(node)
4132 free_mem_cgroup_per_node_info(memcg, node);
4133 free_percpu(memcg->stat);
4134 kfree(memcg);
4135 }
4136
4137 static struct mem_cgroup *mem_cgroup_alloc(void)
4138 {
4139 struct mem_cgroup *memcg;
4140 size_t size;
4141 int node;
4142
4143 size = sizeof(struct mem_cgroup);
4144 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4145
4146 memcg = kzalloc(size, GFP_KERNEL);
4147 if (!memcg)
4148 return NULL;
4149
4150 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4151 1, MEM_CGROUP_ID_MAX,
4152 GFP_KERNEL);
4153 if (memcg->id.id < 0)
4154 goto fail;
4155
4156 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4157 if (!memcg->stat)
4158 goto fail;
4159
4160 for_each_node(node)
4161 if (alloc_mem_cgroup_per_node_info(memcg, node))
4162 goto fail;
4163
4164 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4165 goto fail;
4166
4167 INIT_WORK(&memcg->high_work, high_work_func);
4168 memcg->last_scanned_node = MAX_NUMNODES;
4169 INIT_LIST_HEAD(&memcg->oom_notify);
4170 mutex_init(&memcg->thresholds_lock);
4171 spin_lock_init(&memcg->move_lock);
4172 vmpressure_init(&memcg->vmpressure);
4173 INIT_LIST_HEAD(&memcg->event_list);
4174 spin_lock_init(&memcg->event_list_lock);
4175 memcg->socket_pressure = jiffies;
4176 #ifndef CONFIG_SLOB
4177 memcg->kmemcg_id = -1;
4178 #endif
4179 #ifdef CONFIG_CGROUP_WRITEBACK
4180 INIT_LIST_HEAD(&memcg->cgwb_list);
4181 #endif
4182 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4183 return memcg;
4184 fail:
4185 if (memcg->id.id > 0)
4186 idr_remove(&mem_cgroup_idr, memcg->id.id);
4187 mem_cgroup_free(memcg);
4188 return NULL;
4189 }
4190
4191 static struct cgroup_subsys_state * __ref
4192 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4193 {
4194 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4195 struct mem_cgroup *memcg;
4196 long error = -ENOMEM;
4197
4198 memcg = mem_cgroup_alloc();
4199 if (!memcg)
4200 return ERR_PTR(error);
4201
4202 memcg->high = PAGE_COUNTER_MAX;
4203 memcg->soft_limit = PAGE_COUNTER_MAX;
4204 if (parent) {
4205 memcg->swappiness = mem_cgroup_swappiness(parent);
4206 memcg->oom_kill_disable = parent->oom_kill_disable;
4207 }
4208 if (parent && parent->use_hierarchy) {
4209 memcg->use_hierarchy = true;
4210 page_counter_init(&memcg->memory, &parent->memory);
4211 page_counter_init(&memcg->swap, &parent->swap);
4212 page_counter_init(&memcg->memsw, &parent->memsw);
4213 page_counter_init(&memcg->kmem, &parent->kmem);
4214 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4215 } else {
4216 page_counter_init(&memcg->memory, NULL);
4217 page_counter_init(&memcg->swap, NULL);
4218 page_counter_init(&memcg->memsw, NULL);
4219 page_counter_init(&memcg->kmem, NULL);
4220 page_counter_init(&memcg->tcpmem, NULL);
4221 /*
4222 * Deeper hierachy with use_hierarchy == false doesn't make
4223 * much sense so let cgroup subsystem know about this
4224 * unfortunate state in our controller.
4225 */
4226 if (parent != root_mem_cgroup)
4227 memory_cgrp_subsys.broken_hierarchy = true;
4228 }
4229
4230 /* The following stuff does not apply to the root */
4231 if (!parent) {
4232 root_mem_cgroup = memcg;
4233 return &memcg->css;
4234 }
4235
4236 error = memcg_online_kmem(memcg);
4237 if (error)
4238 goto fail;
4239
4240 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4241 static_branch_inc(&memcg_sockets_enabled_key);
4242
4243 return &memcg->css;
4244 fail:
4245 mem_cgroup_free(memcg);
4246 return ERR_PTR(-ENOMEM);
4247 }
4248
4249 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4250 {
4251 /* Online state pins memcg ID, memcg ID pins CSS */
4252 mem_cgroup_id_get(mem_cgroup_from_css(css));
4253 css_get(css);
4254 return 0;
4255 }
4256
4257 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4258 {
4259 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4260 struct mem_cgroup_event *event, *tmp;
4261
4262 /*
4263 * Unregister events and notify userspace.
4264 * Notify userspace about cgroup removing only after rmdir of cgroup
4265 * directory to avoid race between userspace and kernelspace.
4266 */
4267 spin_lock(&memcg->event_list_lock);
4268 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4269 list_del_init(&event->list);
4270 schedule_work(&event->remove);
4271 }
4272 spin_unlock(&memcg->event_list_lock);
4273
4274 memcg_offline_kmem(memcg);
4275 wb_memcg_offline(memcg);
4276
4277 mem_cgroup_id_put(memcg);
4278 }
4279
4280 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4281 {
4282 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4283
4284 invalidate_reclaim_iterators(memcg);
4285 }
4286
4287 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4288 {
4289 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4290
4291 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4292 static_branch_dec(&memcg_sockets_enabled_key);
4293
4294 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4295 static_branch_dec(&memcg_sockets_enabled_key);
4296
4297 vmpressure_cleanup(&memcg->vmpressure);
4298 cancel_work_sync(&memcg->high_work);
4299 mem_cgroup_remove_from_trees(memcg);
4300 memcg_free_kmem(memcg);
4301 mem_cgroup_free(memcg);
4302 }
4303
4304 /**
4305 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4306 * @css: the target css
4307 *
4308 * Reset the states of the mem_cgroup associated with @css. This is
4309 * invoked when the userland requests disabling on the default hierarchy
4310 * but the memcg is pinned through dependency. The memcg should stop
4311 * applying policies and should revert to the vanilla state as it may be
4312 * made visible again.
4313 *
4314 * The current implementation only resets the essential configurations.
4315 * This needs to be expanded to cover all the visible parts.
4316 */
4317 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4318 {
4319 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4320
4321 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4322 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4323 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4324 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4325 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4326 memcg->low = 0;
4327 memcg->high = PAGE_COUNTER_MAX;
4328 memcg->soft_limit = PAGE_COUNTER_MAX;
4329 memcg_wb_domain_size_changed(memcg);
4330 }
4331
4332 #ifdef CONFIG_MMU
4333 /* Handlers for move charge at task migration. */
4334 static int mem_cgroup_do_precharge(unsigned long count)
4335 {
4336 int ret;
4337
4338 /* Try a single bulk charge without reclaim first, kswapd may wake */
4339 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4340 if (!ret) {
4341 mc.precharge += count;
4342 return ret;
4343 }
4344
4345 /* Try charges one by one with reclaim */
4346 while (count--) {
4347 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4348 if (ret)
4349 return ret;
4350 mc.precharge++;
4351 cond_resched();
4352 }
4353 return 0;
4354 }
4355
4356 union mc_target {
4357 struct page *page;
4358 swp_entry_t ent;
4359 };
4360
4361 enum mc_target_type {
4362 MC_TARGET_NONE = 0,
4363 MC_TARGET_PAGE,
4364 MC_TARGET_SWAP,
4365 };
4366
4367 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4368 unsigned long addr, pte_t ptent)
4369 {
4370 struct page *page = vm_normal_page(vma, addr, ptent);
4371
4372 if (!page || !page_mapped(page))
4373 return NULL;
4374 if (PageAnon(page)) {
4375 if (!(mc.flags & MOVE_ANON))
4376 return NULL;
4377 } else {
4378 if (!(mc.flags & MOVE_FILE))
4379 return NULL;
4380 }
4381 if (!get_page_unless_zero(page))
4382 return NULL;
4383
4384 return page;
4385 }
4386
4387 #ifdef CONFIG_SWAP
4388 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4389 pte_t ptent, swp_entry_t *entry)
4390 {
4391 struct page *page = NULL;
4392 swp_entry_t ent = pte_to_swp_entry(ptent);
4393
4394 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4395 return NULL;
4396 /*
4397 * Because lookup_swap_cache() updates some statistics counter,
4398 * we call find_get_page() with swapper_space directly.
4399 */
4400 page = find_get_page(swap_address_space(ent), ent.val);
4401 if (do_memsw_account())
4402 entry->val = ent.val;
4403
4404 return page;
4405 }
4406 #else
4407 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4408 pte_t ptent, swp_entry_t *entry)
4409 {
4410 return NULL;
4411 }
4412 #endif
4413
4414 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4415 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4416 {
4417 struct page *page = NULL;
4418 struct address_space *mapping;
4419 pgoff_t pgoff;
4420
4421 if (!vma->vm_file) /* anonymous vma */
4422 return NULL;
4423 if (!(mc.flags & MOVE_FILE))
4424 return NULL;
4425
4426 mapping = vma->vm_file->f_mapping;
4427 pgoff = linear_page_index(vma, addr);
4428
4429 /* page is moved even if it's not RSS of this task(page-faulted). */
4430 #ifdef CONFIG_SWAP
4431 /* shmem/tmpfs may report page out on swap: account for that too. */
4432 if (shmem_mapping(mapping)) {
4433 page = find_get_entry(mapping, pgoff);
4434 if (radix_tree_exceptional_entry(page)) {
4435 swp_entry_t swp = radix_to_swp_entry(page);
4436 if (do_memsw_account())
4437 *entry = swp;
4438 page = find_get_page(swap_address_space(swp), swp.val);
4439 }
4440 } else
4441 page = find_get_page(mapping, pgoff);
4442 #else
4443 page = find_get_page(mapping, pgoff);
4444 #endif
4445 return page;
4446 }
4447
4448 /**
4449 * mem_cgroup_move_account - move account of the page
4450 * @page: the page
4451 * @compound: charge the page as compound or small page
4452 * @from: mem_cgroup which the page is moved from.
4453 * @to: mem_cgroup which the page is moved to. @from != @to.
4454 *
4455 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4456 *
4457 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4458 * from old cgroup.
4459 */
4460 static int mem_cgroup_move_account(struct page *page,
4461 bool compound,
4462 struct mem_cgroup *from,
4463 struct mem_cgroup *to)
4464 {
4465 unsigned long flags;
4466 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4467 int ret;
4468 bool anon;
4469
4470 VM_BUG_ON(from == to);
4471 VM_BUG_ON_PAGE(PageLRU(page), page);
4472 VM_BUG_ON(compound && !PageTransHuge(page));
4473
4474 /*
4475 * Prevent mem_cgroup_migrate() from looking at
4476 * page->mem_cgroup of its source page while we change it.
4477 */
4478 ret = -EBUSY;
4479 if (!trylock_page(page))
4480 goto out;
4481
4482 ret = -EINVAL;
4483 if (page->mem_cgroup != from)
4484 goto out_unlock;
4485
4486 anon = PageAnon(page);
4487
4488 spin_lock_irqsave(&from->move_lock, flags);
4489
4490 if (!anon && page_mapped(page)) {
4491 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4492 nr_pages);
4493 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4494 nr_pages);
4495 }
4496
4497 /*
4498 * move_lock grabbed above and caller set from->moving_account, so
4499 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4500 * So mapping should be stable for dirty pages.
4501 */
4502 if (!anon && PageDirty(page)) {
4503 struct address_space *mapping = page_mapping(page);
4504
4505 if (mapping_cap_account_dirty(mapping)) {
4506 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4507 nr_pages);
4508 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4509 nr_pages);
4510 }
4511 }
4512
4513 if (PageWriteback(page)) {
4514 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4515 nr_pages);
4516 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4517 nr_pages);
4518 }
4519
4520 /*
4521 * It is safe to change page->mem_cgroup here because the page
4522 * is referenced, charged, and isolated - we can't race with
4523 * uncharging, charging, migration, or LRU putback.
4524 */
4525
4526 /* caller should have done css_get */
4527 page->mem_cgroup = to;
4528 spin_unlock_irqrestore(&from->move_lock, flags);
4529
4530 ret = 0;
4531
4532 local_irq_disable();
4533 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4534 memcg_check_events(to, page);
4535 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4536 memcg_check_events(from, page);
4537 local_irq_enable();
4538 out_unlock:
4539 unlock_page(page);
4540 out:
4541 return ret;
4542 }
4543
4544 /**
4545 * get_mctgt_type - get target type of moving charge
4546 * @vma: the vma the pte to be checked belongs
4547 * @addr: the address corresponding to the pte to be checked
4548 * @ptent: the pte to be checked
4549 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4550 *
4551 * Returns
4552 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4553 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4554 * move charge. if @target is not NULL, the page is stored in target->page
4555 * with extra refcnt got(Callers should handle it).
4556 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4557 * target for charge migration. if @target is not NULL, the entry is stored
4558 * in target->ent.
4559 *
4560 * Called with pte lock held.
4561 */
4562
4563 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4564 unsigned long addr, pte_t ptent, union mc_target *target)
4565 {
4566 struct page *page = NULL;
4567 enum mc_target_type ret = MC_TARGET_NONE;
4568 swp_entry_t ent = { .val = 0 };
4569
4570 if (pte_present(ptent))
4571 page = mc_handle_present_pte(vma, addr, ptent);
4572 else if (is_swap_pte(ptent))
4573 page = mc_handle_swap_pte(vma, ptent, &ent);
4574 else if (pte_none(ptent))
4575 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4576
4577 if (!page && !ent.val)
4578 return ret;
4579 if (page) {
4580 /*
4581 * Do only loose check w/o serialization.
4582 * mem_cgroup_move_account() checks the page is valid or
4583 * not under LRU exclusion.
4584 */
4585 if (page->mem_cgroup == mc.from) {
4586 ret = MC_TARGET_PAGE;
4587 if (target)
4588 target->page = page;
4589 }
4590 if (!ret || !target)
4591 put_page(page);
4592 }
4593 /* There is a swap entry and a page doesn't exist or isn't charged */
4594 if (ent.val && !ret &&
4595 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4596 ret = MC_TARGET_SWAP;
4597 if (target)
4598 target->ent = ent;
4599 }
4600 return ret;
4601 }
4602
4603 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4604 /*
4605 * We don't consider swapping or file mapped pages because THP does not
4606 * support them for now.
4607 * Caller should make sure that pmd_trans_huge(pmd) is true.
4608 */
4609 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4610 unsigned long addr, pmd_t pmd, union mc_target *target)
4611 {
4612 struct page *page = NULL;
4613 enum mc_target_type ret = MC_TARGET_NONE;
4614
4615 page = pmd_page(pmd);
4616 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4617 if (!(mc.flags & MOVE_ANON))
4618 return ret;
4619 if (page->mem_cgroup == mc.from) {
4620 ret = MC_TARGET_PAGE;
4621 if (target) {
4622 get_page(page);
4623 target->page = page;
4624 }
4625 }
4626 return ret;
4627 }
4628 #else
4629 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4630 unsigned long addr, pmd_t pmd, union mc_target *target)
4631 {
4632 return MC_TARGET_NONE;
4633 }
4634 #endif
4635
4636 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4637 unsigned long addr, unsigned long end,
4638 struct mm_walk *walk)
4639 {
4640 struct vm_area_struct *vma = walk->vma;
4641 pte_t *pte;
4642 spinlock_t *ptl;
4643
4644 ptl = pmd_trans_huge_lock(pmd, vma);
4645 if (ptl) {
4646 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4647 mc.precharge += HPAGE_PMD_NR;
4648 spin_unlock(ptl);
4649 return 0;
4650 }
4651
4652 if (pmd_trans_unstable(pmd))
4653 return 0;
4654 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4655 for (; addr != end; pte++, addr += PAGE_SIZE)
4656 if (get_mctgt_type(vma, addr, *pte, NULL))
4657 mc.precharge++; /* increment precharge temporarily */
4658 pte_unmap_unlock(pte - 1, ptl);
4659 cond_resched();
4660
4661 return 0;
4662 }
4663
4664 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4665 {
4666 unsigned long precharge;
4667
4668 struct mm_walk mem_cgroup_count_precharge_walk = {
4669 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4670 .mm = mm,
4671 };
4672 down_read(&mm->mmap_sem);
4673 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4674 up_read(&mm->mmap_sem);
4675
4676 precharge = mc.precharge;
4677 mc.precharge = 0;
4678
4679 return precharge;
4680 }
4681
4682 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4683 {
4684 unsigned long precharge = mem_cgroup_count_precharge(mm);
4685
4686 VM_BUG_ON(mc.moving_task);
4687 mc.moving_task = current;
4688 return mem_cgroup_do_precharge(precharge);
4689 }
4690
4691 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4692 static void __mem_cgroup_clear_mc(void)
4693 {
4694 struct mem_cgroup *from = mc.from;
4695 struct mem_cgroup *to = mc.to;
4696
4697 /* we must uncharge all the leftover precharges from mc.to */
4698 if (mc.precharge) {
4699 cancel_charge(mc.to, mc.precharge);
4700 mc.precharge = 0;
4701 }
4702 /*
4703 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4704 * we must uncharge here.
4705 */
4706 if (mc.moved_charge) {
4707 cancel_charge(mc.from, mc.moved_charge);
4708 mc.moved_charge = 0;
4709 }
4710 /* we must fixup refcnts and charges */
4711 if (mc.moved_swap) {
4712 /* uncharge swap account from the old cgroup */
4713 if (!mem_cgroup_is_root(mc.from))
4714 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4715
4716 /*
4717 * we charged both to->memory and to->memsw, so we
4718 * should uncharge to->memory.
4719 */
4720 if (!mem_cgroup_is_root(mc.to))
4721 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4722
4723 css_put_many(&mc.from->css, mc.moved_swap);
4724
4725 /* we've already done css_get(mc.to) */
4726 mc.moved_swap = 0;
4727 }
4728 memcg_oom_recover(from);
4729 memcg_oom_recover(to);
4730 wake_up_all(&mc.waitq);
4731 }
4732
4733 static void mem_cgroup_clear_mc(void)
4734 {
4735 struct mm_struct *mm = mc.mm;
4736
4737 /*
4738 * we must clear moving_task before waking up waiters at the end of
4739 * task migration.
4740 */
4741 mc.moving_task = NULL;
4742 __mem_cgroup_clear_mc();
4743 spin_lock(&mc.lock);
4744 mc.from = NULL;
4745 mc.to = NULL;
4746 mc.mm = NULL;
4747 spin_unlock(&mc.lock);
4748
4749 mmput(mm);
4750 }
4751
4752 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4753 {
4754 struct cgroup_subsys_state *css;
4755 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4756 struct mem_cgroup *from;
4757 struct task_struct *leader, *p;
4758 struct mm_struct *mm;
4759 unsigned long move_flags;
4760 int ret = 0;
4761
4762 /* charge immigration isn't supported on the default hierarchy */
4763 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4764 return 0;
4765
4766 /*
4767 * Multi-process migrations only happen on the default hierarchy
4768 * where charge immigration is not used. Perform charge
4769 * immigration if @tset contains a leader and whine if there are
4770 * multiple.
4771 */
4772 p = NULL;
4773 cgroup_taskset_for_each_leader(leader, css, tset) {
4774 WARN_ON_ONCE(p);
4775 p = leader;
4776 memcg = mem_cgroup_from_css(css);
4777 }
4778 if (!p)
4779 return 0;
4780
4781 /*
4782 * We are now commited to this value whatever it is. Changes in this
4783 * tunable will only affect upcoming migrations, not the current one.
4784 * So we need to save it, and keep it going.
4785 */
4786 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4787 if (!move_flags)
4788 return 0;
4789
4790 from = mem_cgroup_from_task(p);
4791
4792 VM_BUG_ON(from == memcg);
4793
4794 mm = get_task_mm(p);
4795 if (!mm)
4796 return 0;
4797 /* We move charges only when we move a owner of the mm */
4798 if (mm->owner == p) {
4799 VM_BUG_ON(mc.from);
4800 VM_BUG_ON(mc.to);
4801 VM_BUG_ON(mc.precharge);
4802 VM_BUG_ON(mc.moved_charge);
4803 VM_BUG_ON(mc.moved_swap);
4804
4805 spin_lock(&mc.lock);
4806 mc.mm = mm;
4807 mc.from = from;
4808 mc.to = memcg;
4809 mc.flags = move_flags;
4810 spin_unlock(&mc.lock);
4811 /* We set mc.moving_task later */
4812
4813 ret = mem_cgroup_precharge_mc(mm);
4814 if (ret)
4815 mem_cgroup_clear_mc();
4816 } else {
4817 mmput(mm);
4818 }
4819 return ret;
4820 }
4821
4822 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4823 {
4824 if (mc.to)
4825 mem_cgroup_clear_mc();
4826 }
4827
4828 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4829 unsigned long addr, unsigned long end,
4830 struct mm_walk *walk)
4831 {
4832 int ret = 0;
4833 struct vm_area_struct *vma = walk->vma;
4834 pte_t *pte;
4835 spinlock_t *ptl;
4836 enum mc_target_type target_type;
4837 union mc_target target;
4838 struct page *page;
4839
4840 ptl = pmd_trans_huge_lock(pmd, vma);
4841 if (ptl) {
4842 if (mc.precharge < HPAGE_PMD_NR) {
4843 spin_unlock(ptl);
4844 return 0;
4845 }
4846 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4847 if (target_type == MC_TARGET_PAGE) {
4848 page = target.page;
4849 if (!isolate_lru_page(page)) {
4850 if (!mem_cgroup_move_account(page, true,
4851 mc.from, mc.to)) {
4852 mc.precharge -= HPAGE_PMD_NR;
4853 mc.moved_charge += HPAGE_PMD_NR;
4854 }
4855 putback_lru_page(page);
4856 }
4857 put_page(page);
4858 }
4859 spin_unlock(ptl);
4860 return 0;
4861 }
4862
4863 if (pmd_trans_unstable(pmd))
4864 return 0;
4865 retry:
4866 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4867 for (; addr != end; addr += PAGE_SIZE) {
4868 pte_t ptent = *(pte++);
4869 swp_entry_t ent;
4870
4871 if (!mc.precharge)
4872 break;
4873
4874 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4875 case MC_TARGET_PAGE:
4876 page = target.page;
4877 /*
4878 * We can have a part of the split pmd here. Moving it
4879 * can be done but it would be too convoluted so simply
4880 * ignore such a partial THP and keep it in original
4881 * memcg. There should be somebody mapping the head.
4882 */
4883 if (PageTransCompound(page))
4884 goto put;
4885 if (isolate_lru_page(page))
4886 goto put;
4887 if (!mem_cgroup_move_account(page, false,
4888 mc.from, mc.to)) {
4889 mc.precharge--;
4890 /* we uncharge from mc.from later. */
4891 mc.moved_charge++;
4892 }
4893 putback_lru_page(page);
4894 put: /* get_mctgt_type() gets the page */
4895 put_page(page);
4896 break;
4897 case MC_TARGET_SWAP:
4898 ent = target.ent;
4899 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4900 mc.precharge--;
4901 /* we fixup refcnts and charges later. */
4902 mc.moved_swap++;
4903 }
4904 break;
4905 default:
4906 break;
4907 }
4908 }
4909 pte_unmap_unlock(pte - 1, ptl);
4910 cond_resched();
4911
4912 if (addr != end) {
4913 /*
4914 * We have consumed all precharges we got in can_attach().
4915 * We try charge one by one, but don't do any additional
4916 * charges to mc.to if we have failed in charge once in attach()
4917 * phase.
4918 */
4919 ret = mem_cgroup_do_precharge(1);
4920 if (!ret)
4921 goto retry;
4922 }
4923
4924 return ret;
4925 }
4926
4927 static void mem_cgroup_move_charge(void)
4928 {
4929 struct mm_walk mem_cgroup_move_charge_walk = {
4930 .pmd_entry = mem_cgroup_move_charge_pte_range,
4931 .mm = mc.mm,
4932 };
4933
4934 lru_add_drain_all();
4935 /*
4936 * Signal lock_page_memcg() to take the memcg's move_lock
4937 * while we're moving its pages to another memcg. Then wait
4938 * for already started RCU-only updates to finish.
4939 */
4940 atomic_inc(&mc.from->moving_account);
4941 synchronize_rcu();
4942 retry:
4943 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4944 /*
4945 * Someone who are holding the mmap_sem might be waiting in
4946 * waitq. So we cancel all extra charges, wake up all waiters,
4947 * and retry. Because we cancel precharges, we might not be able
4948 * to move enough charges, but moving charge is a best-effort
4949 * feature anyway, so it wouldn't be a big problem.
4950 */
4951 __mem_cgroup_clear_mc();
4952 cond_resched();
4953 goto retry;
4954 }
4955 /*
4956 * When we have consumed all precharges and failed in doing
4957 * additional charge, the page walk just aborts.
4958 */
4959 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4960 up_read(&mc.mm->mmap_sem);
4961 atomic_dec(&mc.from->moving_account);
4962 }
4963
4964 static void mem_cgroup_move_task(void)
4965 {
4966 if (mc.to) {
4967 mem_cgroup_move_charge();
4968 mem_cgroup_clear_mc();
4969 }
4970 }
4971 #else /* !CONFIG_MMU */
4972 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4973 {
4974 return 0;
4975 }
4976 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4977 {
4978 }
4979 static void mem_cgroup_move_task(void)
4980 {
4981 }
4982 #endif
4983
4984 /*
4985 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4986 * to verify whether we're attached to the default hierarchy on each mount
4987 * attempt.
4988 */
4989 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4990 {
4991 /*
4992 * use_hierarchy is forced on the default hierarchy. cgroup core
4993 * guarantees that @root doesn't have any children, so turning it
4994 * on for the root memcg is enough.
4995 */
4996 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4997 root_mem_cgroup->use_hierarchy = true;
4998 else
4999 root_mem_cgroup->use_hierarchy = false;
5000 }
5001
5002 static u64 memory_current_read(struct cgroup_subsys_state *css,
5003 struct cftype *cft)
5004 {
5005 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5006
5007 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5008 }
5009
5010 static int memory_low_show(struct seq_file *m, void *v)
5011 {
5012 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5013 unsigned long low = READ_ONCE(memcg->low);
5014
5015 if (low == PAGE_COUNTER_MAX)
5016 seq_puts(m, "max\n");
5017 else
5018 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5019
5020 return 0;
5021 }
5022
5023 static ssize_t memory_low_write(struct kernfs_open_file *of,
5024 char *buf, size_t nbytes, loff_t off)
5025 {
5026 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5027 unsigned long low;
5028 int err;
5029
5030 buf = strstrip(buf);
5031 err = page_counter_memparse(buf, "max", &low);
5032 if (err)
5033 return err;
5034
5035 memcg->low = low;
5036
5037 return nbytes;
5038 }
5039
5040 static int memory_high_show(struct seq_file *m, void *v)
5041 {
5042 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5043 unsigned long high = READ_ONCE(memcg->high);
5044
5045 if (high == PAGE_COUNTER_MAX)
5046 seq_puts(m, "max\n");
5047 else
5048 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5049
5050 return 0;
5051 }
5052
5053 static ssize_t memory_high_write(struct kernfs_open_file *of,
5054 char *buf, size_t nbytes, loff_t off)
5055 {
5056 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5057 unsigned long nr_pages;
5058 unsigned long high;
5059 int err;
5060
5061 buf = strstrip(buf);
5062 err = page_counter_memparse(buf, "max", &high);
5063 if (err)
5064 return err;
5065
5066 memcg->high = high;
5067
5068 nr_pages = page_counter_read(&memcg->memory);
5069 if (nr_pages > high)
5070 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5071 GFP_KERNEL, true);
5072
5073 memcg_wb_domain_size_changed(memcg);
5074 return nbytes;
5075 }
5076
5077 static int memory_max_show(struct seq_file *m, void *v)
5078 {
5079 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5080 unsigned long max = READ_ONCE(memcg->memory.limit);
5081
5082 if (max == PAGE_COUNTER_MAX)
5083 seq_puts(m, "max\n");
5084 else
5085 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5086
5087 return 0;
5088 }
5089
5090 static ssize_t memory_max_write(struct kernfs_open_file *of,
5091 char *buf, size_t nbytes, loff_t off)
5092 {
5093 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5094 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5095 bool drained = false;
5096 unsigned long max;
5097 int err;
5098
5099 buf = strstrip(buf);
5100 err = page_counter_memparse(buf, "max", &max);
5101 if (err)
5102 return err;
5103
5104 xchg(&memcg->memory.limit, max);
5105
5106 for (;;) {
5107 unsigned long nr_pages = page_counter_read(&memcg->memory);
5108
5109 if (nr_pages <= max)
5110 break;
5111
5112 if (signal_pending(current)) {
5113 err = -EINTR;
5114 break;
5115 }
5116
5117 if (!drained) {
5118 drain_all_stock(memcg);
5119 drained = true;
5120 continue;
5121 }
5122
5123 if (nr_reclaims) {
5124 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5125 GFP_KERNEL, true))
5126 nr_reclaims--;
5127 continue;
5128 }
5129
5130 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5131 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5132 break;
5133 }
5134
5135 memcg_wb_domain_size_changed(memcg);
5136 return nbytes;
5137 }
5138
5139 static int memory_events_show(struct seq_file *m, void *v)
5140 {
5141 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5142
5143 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5144 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5145 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5146 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5147
5148 return 0;
5149 }
5150
5151 static int memory_stat_show(struct seq_file *m, void *v)
5152 {
5153 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5154 unsigned long stat[MEMCG_NR_STAT];
5155 unsigned long events[MEMCG_NR_EVENTS];
5156 int i;
5157
5158 /*
5159 * Provide statistics on the state of the memory subsystem as
5160 * well as cumulative event counters that show past behavior.
5161 *
5162 * This list is ordered following a combination of these gradients:
5163 * 1) generic big picture -> specifics and details
5164 * 2) reflecting userspace activity -> reflecting kernel heuristics
5165 *
5166 * Current memory state:
5167 */
5168
5169 tree_stat(memcg, stat);
5170 tree_events(memcg, events);
5171
5172 seq_printf(m, "anon %llu\n",
5173 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5174 seq_printf(m, "file %llu\n",
5175 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5176 seq_printf(m, "kernel_stack %llu\n",
5177 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5178 seq_printf(m, "slab %llu\n",
5179 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5180 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5181 seq_printf(m, "sock %llu\n",
5182 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5183
5184 seq_printf(m, "file_mapped %llu\n",
5185 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5186 seq_printf(m, "file_dirty %llu\n",
5187 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5188 seq_printf(m, "file_writeback %llu\n",
5189 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5190
5191 for (i = 0; i < NR_LRU_LISTS; i++) {
5192 struct mem_cgroup *mi;
5193 unsigned long val = 0;
5194
5195 for_each_mem_cgroup_tree(mi, memcg)
5196 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5197 seq_printf(m, "%s %llu\n",
5198 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5199 }
5200
5201 seq_printf(m, "slab_reclaimable %llu\n",
5202 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5203 seq_printf(m, "slab_unreclaimable %llu\n",
5204 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5205
5206 /* Accumulated memory events */
5207
5208 seq_printf(m, "pgfault %lu\n",
5209 events[MEM_CGROUP_EVENTS_PGFAULT]);
5210 seq_printf(m, "pgmajfault %lu\n",
5211 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5212
5213 return 0;
5214 }
5215
5216 static struct cftype memory_files[] = {
5217 {
5218 .name = "current",
5219 .flags = CFTYPE_NOT_ON_ROOT,
5220 .read_u64 = memory_current_read,
5221 },
5222 {
5223 .name = "low",
5224 .flags = CFTYPE_NOT_ON_ROOT,
5225 .seq_show = memory_low_show,
5226 .write = memory_low_write,
5227 },
5228 {
5229 .name = "high",
5230 .flags = CFTYPE_NOT_ON_ROOT,
5231 .seq_show = memory_high_show,
5232 .write = memory_high_write,
5233 },
5234 {
5235 .name = "max",
5236 .flags = CFTYPE_NOT_ON_ROOT,
5237 .seq_show = memory_max_show,
5238 .write = memory_max_write,
5239 },
5240 {
5241 .name = "events",
5242 .flags = CFTYPE_NOT_ON_ROOT,
5243 .file_offset = offsetof(struct mem_cgroup, events_file),
5244 .seq_show = memory_events_show,
5245 },
5246 {
5247 .name = "stat",
5248 .flags = CFTYPE_NOT_ON_ROOT,
5249 .seq_show = memory_stat_show,
5250 },
5251 { } /* terminate */
5252 };
5253
5254 struct cgroup_subsys memory_cgrp_subsys = {
5255 .css_alloc = mem_cgroup_css_alloc,
5256 .css_online = mem_cgroup_css_online,
5257 .css_offline = mem_cgroup_css_offline,
5258 .css_released = mem_cgroup_css_released,
5259 .css_free = mem_cgroup_css_free,
5260 .css_reset = mem_cgroup_css_reset,
5261 .can_attach = mem_cgroup_can_attach,
5262 .cancel_attach = mem_cgroup_cancel_attach,
5263 .post_attach = mem_cgroup_move_task,
5264 .bind = mem_cgroup_bind,
5265 .dfl_cftypes = memory_files,
5266 .legacy_cftypes = mem_cgroup_legacy_files,
5267 .early_init = 0,
5268 };
5269
5270 /**
5271 * mem_cgroup_low - check if memory consumption is below the normal range
5272 * @root: the highest ancestor to consider
5273 * @memcg: the memory cgroup to check
5274 *
5275 * Returns %true if memory consumption of @memcg, and that of all
5276 * configurable ancestors up to @root, is below the normal range.
5277 */
5278 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5279 {
5280 if (mem_cgroup_disabled())
5281 return false;
5282
5283 /*
5284 * The toplevel group doesn't have a configurable range, so
5285 * it's never low when looked at directly, and it is not
5286 * considered an ancestor when assessing the hierarchy.
5287 */
5288
5289 if (memcg == root_mem_cgroup)
5290 return false;
5291
5292 if (page_counter_read(&memcg->memory) >= memcg->low)
5293 return false;
5294
5295 while (memcg != root) {
5296 memcg = parent_mem_cgroup(memcg);
5297
5298 if (memcg == root_mem_cgroup)
5299 break;
5300
5301 if (page_counter_read(&memcg->memory) >= memcg->low)
5302 return false;
5303 }
5304 return true;
5305 }
5306
5307 /**
5308 * mem_cgroup_try_charge - try charging a page
5309 * @page: page to charge
5310 * @mm: mm context of the victim
5311 * @gfp_mask: reclaim mode
5312 * @memcgp: charged memcg return
5313 * @compound: charge the page as compound or small page
5314 *
5315 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5316 * pages according to @gfp_mask if necessary.
5317 *
5318 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5319 * Otherwise, an error code is returned.
5320 *
5321 * After page->mapping has been set up, the caller must finalize the
5322 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5323 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5324 */
5325 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5326 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5327 bool compound)
5328 {
5329 struct mem_cgroup *memcg = NULL;
5330 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5331 int ret = 0;
5332
5333 if (mem_cgroup_disabled())
5334 goto out;
5335
5336 if (PageSwapCache(page)) {
5337 /*
5338 * Every swap fault against a single page tries to charge the
5339 * page, bail as early as possible. shmem_unuse() encounters
5340 * already charged pages, too. The USED bit is protected by
5341 * the page lock, which serializes swap cache removal, which
5342 * in turn serializes uncharging.
5343 */
5344 VM_BUG_ON_PAGE(!PageLocked(page), page);
5345 if (page->mem_cgroup)
5346 goto out;
5347
5348 if (do_swap_account) {
5349 swp_entry_t ent = { .val = page_private(page), };
5350 unsigned short id = lookup_swap_cgroup_id(ent);
5351
5352 rcu_read_lock();
5353 memcg = mem_cgroup_from_id(id);
5354 if (memcg && !css_tryget_online(&memcg->css))
5355 memcg = NULL;
5356 rcu_read_unlock();
5357 }
5358 }
5359
5360 if (!memcg)
5361 memcg = get_mem_cgroup_from_mm(mm);
5362
5363 ret = try_charge(memcg, gfp_mask, nr_pages);
5364
5365 css_put(&memcg->css);
5366 out:
5367 *memcgp = memcg;
5368 return ret;
5369 }
5370
5371 /**
5372 * mem_cgroup_commit_charge - commit a page charge
5373 * @page: page to charge
5374 * @memcg: memcg to charge the page to
5375 * @lrucare: page might be on LRU already
5376 * @compound: charge the page as compound or small page
5377 *
5378 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5379 * after page->mapping has been set up. This must happen atomically
5380 * as part of the page instantiation, i.e. under the page table lock
5381 * for anonymous pages, under the page lock for page and swap cache.
5382 *
5383 * In addition, the page must not be on the LRU during the commit, to
5384 * prevent racing with task migration. If it might be, use @lrucare.
5385 *
5386 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5387 */
5388 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5389 bool lrucare, bool compound)
5390 {
5391 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5392
5393 VM_BUG_ON_PAGE(!page->mapping, page);
5394 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5395
5396 if (mem_cgroup_disabled())
5397 return;
5398 /*
5399 * Swap faults will attempt to charge the same page multiple
5400 * times. But reuse_swap_page() might have removed the page
5401 * from swapcache already, so we can't check PageSwapCache().
5402 */
5403 if (!memcg)
5404 return;
5405
5406 commit_charge(page, memcg, lrucare);
5407
5408 local_irq_disable();
5409 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5410 memcg_check_events(memcg, page);
5411 local_irq_enable();
5412
5413 if (do_memsw_account() && PageSwapCache(page)) {
5414 swp_entry_t entry = { .val = page_private(page) };
5415 /*
5416 * The swap entry might not get freed for a long time,
5417 * let's not wait for it. The page already received a
5418 * memory+swap charge, drop the swap entry duplicate.
5419 */
5420 mem_cgroup_uncharge_swap(entry);
5421 }
5422 }
5423
5424 /**
5425 * mem_cgroup_cancel_charge - cancel a page charge
5426 * @page: page to charge
5427 * @memcg: memcg to charge the page to
5428 * @compound: charge the page as compound or small page
5429 *
5430 * Cancel a charge transaction started by mem_cgroup_try_charge().
5431 */
5432 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5433 bool compound)
5434 {
5435 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5436
5437 if (mem_cgroup_disabled())
5438 return;
5439 /*
5440 * Swap faults will attempt to charge the same page multiple
5441 * times. But reuse_swap_page() might have removed the page
5442 * from swapcache already, so we can't check PageSwapCache().
5443 */
5444 if (!memcg)
5445 return;
5446
5447 cancel_charge(memcg, nr_pages);
5448 }
5449
5450 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5451 unsigned long nr_anon, unsigned long nr_file,
5452 unsigned long nr_huge, unsigned long nr_kmem,
5453 struct page *dummy_page)
5454 {
5455 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5456 unsigned long flags;
5457
5458 if (!mem_cgroup_is_root(memcg)) {
5459 page_counter_uncharge(&memcg->memory, nr_pages);
5460 if (do_memsw_account())
5461 page_counter_uncharge(&memcg->memsw, nr_pages);
5462 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5463 page_counter_uncharge(&memcg->kmem, nr_kmem);
5464 memcg_oom_recover(memcg);
5465 }
5466
5467 local_irq_save(flags);
5468 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5469 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5470 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5471 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5472 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5473 memcg_check_events(memcg, dummy_page);
5474 local_irq_restore(flags);
5475
5476 if (!mem_cgroup_is_root(memcg))
5477 css_put_many(&memcg->css, nr_pages);
5478 }
5479
5480 static void uncharge_list(struct list_head *page_list)
5481 {
5482 struct mem_cgroup *memcg = NULL;
5483 unsigned long nr_anon = 0;
5484 unsigned long nr_file = 0;
5485 unsigned long nr_huge = 0;
5486 unsigned long nr_kmem = 0;
5487 unsigned long pgpgout = 0;
5488 struct list_head *next;
5489 struct page *page;
5490
5491 /*
5492 * Note that the list can be a single page->lru; hence the
5493 * do-while loop instead of a simple list_for_each_entry().
5494 */
5495 next = page_list->next;
5496 do {
5497 page = list_entry(next, struct page, lru);
5498 next = page->lru.next;
5499
5500 VM_BUG_ON_PAGE(PageLRU(page), page);
5501 VM_BUG_ON_PAGE(page_count(page), page);
5502
5503 if (!page->mem_cgroup)
5504 continue;
5505
5506 /*
5507 * Nobody should be changing or seriously looking at
5508 * page->mem_cgroup at this point, we have fully
5509 * exclusive access to the page.
5510 */
5511
5512 if (memcg != page->mem_cgroup) {
5513 if (memcg) {
5514 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5515 nr_huge, nr_kmem, page);
5516 pgpgout = nr_anon = nr_file =
5517 nr_huge = nr_kmem = 0;
5518 }
5519 memcg = page->mem_cgroup;
5520 }
5521
5522 if (!PageKmemcg(page)) {
5523 unsigned int nr_pages = 1;
5524
5525 if (PageTransHuge(page)) {
5526 nr_pages <<= compound_order(page);
5527 nr_huge += nr_pages;
5528 }
5529 if (PageAnon(page))
5530 nr_anon += nr_pages;
5531 else
5532 nr_file += nr_pages;
5533 pgpgout++;
5534 } else
5535 nr_kmem += 1 << compound_order(page);
5536
5537 page->mem_cgroup = NULL;
5538 } while (next != page_list);
5539
5540 if (memcg)
5541 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5542 nr_huge, nr_kmem, page);
5543 }
5544
5545 /**
5546 * mem_cgroup_uncharge - uncharge a page
5547 * @page: page to uncharge
5548 *
5549 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5550 * mem_cgroup_commit_charge().
5551 */
5552 void mem_cgroup_uncharge(struct page *page)
5553 {
5554 if (mem_cgroup_disabled())
5555 return;
5556
5557 /* Don't touch page->lru of any random page, pre-check: */
5558 if (!page->mem_cgroup)
5559 return;
5560
5561 INIT_LIST_HEAD(&page->lru);
5562 uncharge_list(&page->lru);
5563 }
5564
5565 /**
5566 * mem_cgroup_uncharge_list - uncharge a list of page
5567 * @page_list: list of pages to uncharge
5568 *
5569 * Uncharge a list of pages previously charged with
5570 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5571 */
5572 void mem_cgroup_uncharge_list(struct list_head *page_list)
5573 {
5574 if (mem_cgroup_disabled())
5575 return;
5576
5577 if (!list_empty(page_list))
5578 uncharge_list(page_list);
5579 }
5580
5581 /**
5582 * mem_cgroup_migrate - charge a page's replacement
5583 * @oldpage: currently circulating page
5584 * @newpage: replacement page
5585 *
5586 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5587 * be uncharged upon free.
5588 *
5589 * Both pages must be locked, @newpage->mapping must be set up.
5590 */
5591 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5592 {
5593 struct mem_cgroup *memcg;
5594 unsigned int nr_pages;
5595 bool compound;
5596 unsigned long flags;
5597
5598 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5599 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5600 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5601 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5602 newpage);
5603
5604 if (mem_cgroup_disabled())
5605 return;
5606
5607 /* Page cache replacement: new page already charged? */
5608 if (newpage->mem_cgroup)
5609 return;
5610
5611 /* Swapcache readahead pages can get replaced before being charged */
5612 memcg = oldpage->mem_cgroup;
5613 if (!memcg)
5614 return;
5615
5616 /* Force-charge the new page. The old one will be freed soon */
5617 compound = PageTransHuge(newpage);
5618 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5619
5620 page_counter_charge(&memcg->memory, nr_pages);
5621 if (do_memsw_account())
5622 page_counter_charge(&memcg->memsw, nr_pages);
5623 css_get_many(&memcg->css, nr_pages);
5624
5625 commit_charge(newpage, memcg, false);
5626
5627 local_irq_save(flags);
5628 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5629 memcg_check_events(memcg, newpage);
5630 local_irq_restore(flags);
5631 }
5632
5633 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5634 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5635
5636 void sock_update_memcg(struct sock *sk)
5637 {
5638 struct mem_cgroup *memcg;
5639
5640 /* Socket cloning can throw us here with sk_cgrp already
5641 * filled. It won't however, necessarily happen from
5642 * process context. So the test for root memcg given
5643 * the current task's memcg won't help us in this case.
5644 *
5645 * Respecting the original socket's memcg is a better
5646 * decision in this case.
5647 */
5648 if (sk->sk_memcg) {
5649 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5650 css_get(&sk->sk_memcg->css);
5651 return;
5652 }
5653
5654 rcu_read_lock();
5655 memcg = mem_cgroup_from_task(current);
5656 if (memcg == root_mem_cgroup)
5657 goto out;
5658 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5659 goto out;
5660 if (css_tryget_online(&memcg->css))
5661 sk->sk_memcg = memcg;
5662 out:
5663 rcu_read_unlock();
5664 }
5665 EXPORT_SYMBOL(sock_update_memcg);
5666
5667 void sock_release_memcg(struct sock *sk)
5668 {
5669 WARN_ON(!sk->sk_memcg);
5670 css_put(&sk->sk_memcg->css);
5671 }
5672
5673 /**
5674 * mem_cgroup_charge_skmem - charge socket memory
5675 * @memcg: memcg to charge
5676 * @nr_pages: number of pages to charge
5677 *
5678 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5679 * @memcg's configured limit, %false if the charge had to be forced.
5680 */
5681 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5682 {
5683 gfp_t gfp_mask = GFP_KERNEL;
5684
5685 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5686 struct page_counter *fail;
5687
5688 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5689 memcg->tcpmem_pressure = 0;
5690 return true;
5691 }
5692 page_counter_charge(&memcg->tcpmem, nr_pages);
5693 memcg->tcpmem_pressure = 1;
5694 return false;
5695 }
5696
5697 /* Don't block in the packet receive path */
5698 if (in_softirq())
5699 gfp_mask = GFP_NOWAIT;
5700
5701 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5702
5703 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5704 return true;
5705
5706 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5707 return false;
5708 }
5709
5710 /**
5711 * mem_cgroup_uncharge_skmem - uncharge socket memory
5712 * @memcg - memcg to uncharge
5713 * @nr_pages - number of pages to uncharge
5714 */
5715 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5716 {
5717 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5718 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5719 return;
5720 }
5721
5722 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5723
5724 page_counter_uncharge(&memcg->memory, nr_pages);
5725 css_put_many(&memcg->css, nr_pages);
5726 }
5727
5728 static int __init cgroup_memory(char *s)
5729 {
5730 char *token;
5731
5732 while ((token = strsep(&s, ",")) != NULL) {
5733 if (!*token)
5734 continue;
5735 if (!strcmp(token, "nosocket"))
5736 cgroup_memory_nosocket = true;
5737 if (!strcmp(token, "nokmem"))
5738 cgroup_memory_nokmem = true;
5739 }
5740 return 0;
5741 }
5742 __setup("cgroup.memory=", cgroup_memory);
5743
5744 /*
5745 * subsys_initcall() for memory controller.
5746 *
5747 * Some parts like hotcpu_notifier() have to be initialized from this context
5748 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5749 * everything that doesn't depend on a specific mem_cgroup structure should
5750 * be initialized from here.
5751 */
5752 static int __init mem_cgroup_init(void)
5753 {
5754 int cpu, node;
5755
5756 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5757
5758 for_each_possible_cpu(cpu)
5759 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5760 drain_local_stock);
5761
5762 for_each_node(node) {
5763 struct mem_cgroup_tree_per_node *rtpn;
5764
5765 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5766 node_online(node) ? node : NUMA_NO_NODE);
5767
5768 rtpn->rb_root = RB_ROOT;
5769 spin_lock_init(&rtpn->lock);
5770 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5771 }
5772
5773 return 0;
5774 }
5775 subsys_initcall(mem_cgroup_init);
5776
5777 #ifdef CONFIG_MEMCG_SWAP
5778 /**
5779 * mem_cgroup_swapout - transfer a memsw charge to swap
5780 * @page: page whose memsw charge to transfer
5781 * @entry: swap entry to move the charge to
5782 *
5783 * Transfer the memsw charge of @page to @entry.
5784 */
5785 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5786 {
5787 struct mem_cgroup *memcg;
5788 unsigned short oldid;
5789
5790 VM_BUG_ON_PAGE(PageLRU(page), page);
5791 VM_BUG_ON_PAGE(page_count(page), page);
5792
5793 if (!do_memsw_account())
5794 return;
5795
5796 memcg = page->mem_cgroup;
5797
5798 /* Readahead page, never charged */
5799 if (!memcg)
5800 return;
5801
5802 mem_cgroup_id_get(memcg);
5803 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5804 VM_BUG_ON_PAGE(oldid, page);
5805 mem_cgroup_swap_statistics(memcg, true);
5806
5807 page->mem_cgroup = NULL;
5808
5809 if (!mem_cgroup_is_root(memcg))
5810 page_counter_uncharge(&memcg->memory, 1);
5811
5812 /*
5813 * Interrupts should be disabled here because the caller holds the
5814 * mapping->tree_lock lock which is taken with interrupts-off. It is
5815 * important here to have the interrupts disabled because it is the
5816 * only synchronisation we have for udpating the per-CPU variables.
5817 */
5818 VM_BUG_ON(!irqs_disabled());
5819 mem_cgroup_charge_statistics(memcg, page, false, -1);
5820 memcg_check_events(memcg, page);
5821
5822 if (!mem_cgroup_is_root(memcg))
5823 css_put(&memcg->css);
5824 }
5825
5826 /*
5827 * mem_cgroup_try_charge_swap - try charging a swap entry
5828 * @page: page being added to swap
5829 * @entry: swap entry to charge
5830 *
5831 * Try to charge @entry to the memcg that @page belongs to.
5832 *
5833 * Returns 0 on success, -ENOMEM on failure.
5834 */
5835 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5836 {
5837 struct mem_cgroup *memcg;
5838 struct page_counter *counter;
5839 unsigned short oldid;
5840
5841 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5842 return 0;
5843
5844 memcg = page->mem_cgroup;
5845
5846 /* Readahead page, never charged */
5847 if (!memcg)
5848 return 0;
5849
5850 if (!mem_cgroup_is_root(memcg) &&
5851 !page_counter_try_charge(&memcg->swap, 1, &counter))
5852 return -ENOMEM;
5853
5854 mem_cgroup_id_get(memcg);
5855 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5856 VM_BUG_ON_PAGE(oldid, page);
5857 mem_cgroup_swap_statistics(memcg, true);
5858
5859 return 0;
5860 }
5861
5862 /**
5863 * mem_cgroup_uncharge_swap - uncharge a swap entry
5864 * @entry: swap entry to uncharge
5865 *
5866 * Drop the swap charge associated with @entry.
5867 */
5868 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5869 {
5870 struct mem_cgroup *memcg;
5871 unsigned short id;
5872
5873 if (!do_swap_account)
5874 return;
5875
5876 id = swap_cgroup_record(entry, 0);
5877 rcu_read_lock();
5878 memcg = mem_cgroup_from_id(id);
5879 if (memcg) {
5880 if (!mem_cgroup_is_root(memcg)) {
5881 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5882 page_counter_uncharge(&memcg->swap, 1);
5883 else
5884 page_counter_uncharge(&memcg->memsw, 1);
5885 }
5886 mem_cgroup_swap_statistics(memcg, false);
5887 mem_cgroup_id_put(memcg);
5888 }
5889 rcu_read_unlock();
5890 }
5891
5892 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5893 {
5894 long nr_swap_pages = get_nr_swap_pages();
5895
5896 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5897 return nr_swap_pages;
5898 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5899 nr_swap_pages = min_t(long, nr_swap_pages,
5900 READ_ONCE(memcg->swap.limit) -
5901 page_counter_read(&memcg->swap));
5902 return nr_swap_pages;
5903 }
5904
5905 bool mem_cgroup_swap_full(struct page *page)
5906 {
5907 struct mem_cgroup *memcg;
5908
5909 VM_BUG_ON_PAGE(!PageLocked(page), page);
5910
5911 if (vm_swap_full())
5912 return true;
5913 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5914 return false;
5915
5916 memcg = page->mem_cgroup;
5917 if (!memcg)
5918 return false;
5919
5920 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5921 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5922 return true;
5923
5924 return false;
5925 }
5926
5927 /* for remember boot option*/
5928 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5929 static int really_do_swap_account __initdata = 1;
5930 #else
5931 static int really_do_swap_account __initdata;
5932 #endif
5933
5934 static int __init enable_swap_account(char *s)
5935 {
5936 if (!strcmp(s, "1"))
5937 really_do_swap_account = 1;
5938 else if (!strcmp(s, "0"))
5939 really_do_swap_account = 0;
5940 return 1;
5941 }
5942 __setup("swapaccount=", enable_swap_account);
5943
5944 static u64 swap_current_read(struct cgroup_subsys_state *css,
5945 struct cftype *cft)
5946 {
5947 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5948
5949 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5950 }
5951
5952 static int swap_max_show(struct seq_file *m, void *v)
5953 {
5954 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5955 unsigned long max = READ_ONCE(memcg->swap.limit);
5956
5957 if (max == PAGE_COUNTER_MAX)
5958 seq_puts(m, "max\n");
5959 else
5960 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5961
5962 return 0;
5963 }
5964
5965 static ssize_t swap_max_write(struct kernfs_open_file *of,
5966 char *buf, size_t nbytes, loff_t off)
5967 {
5968 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5969 unsigned long max;
5970 int err;
5971
5972 buf = strstrip(buf);
5973 err = page_counter_memparse(buf, "max", &max);
5974 if (err)
5975 return err;
5976
5977 mutex_lock(&memcg_limit_mutex);
5978 err = page_counter_limit(&memcg->swap, max);
5979 mutex_unlock(&memcg_limit_mutex);
5980 if (err)
5981 return err;
5982
5983 return nbytes;
5984 }
5985
5986 static struct cftype swap_files[] = {
5987 {
5988 .name = "swap.current",
5989 .flags = CFTYPE_NOT_ON_ROOT,
5990 .read_u64 = swap_current_read,
5991 },
5992 {
5993 .name = "swap.max",
5994 .flags = CFTYPE_NOT_ON_ROOT,
5995 .seq_show = swap_max_show,
5996 .write = swap_max_write,
5997 },
5998 { } /* terminate */
5999 };
6000
6001 static struct cftype memsw_cgroup_files[] = {
6002 {
6003 .name = "memsw.usage_in_bytes",
6004 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6005 .read_u64 = mem_cgroup_read_u64,
6006 },
6007 {
6008 .name = "memsw.max_usage_in_bytes",
6009 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6010 .write = mem_cgroup_reset,
6011 .read_u64 = mem_cgroup_read_u64,
6012 },
6013 {
6014 .name = "memsw.limit_in_bytes",
6015 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6016 .write = mem_cgroup_write,
6017 .read_u64 = mem_cgroup_read_u64,
6018 },
6019 {
6020 .name = "memsw.failcnt",
6021 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6022 .write = mem_cgroup_reset,
6023 .read_u64 = mem_cgroup_read_u64,
6024 },
6025 { }, /* terminate */
6026 };
6027
6028 static int __init mem_cgroup_swap_init(void)
6029 {
6030 if (!mem_cgroup_disabled() && really_do_swap_account) {
6031 do_swap_account = 1;
6032 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6033 swap_files));
6034 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6035 memsw_cgroup_files));
6036 }
6037 return 0;
6038 }
6039 subsys_initcall(mem_cgroup_swap_init);
6040
6041 #endif /* CONFIG_MEMCG_SWAP */