]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memcontrol.c
mm: memcg/slab: fix use after free in obj_cgroup_charge
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66
67 #include <linux/uaccess.h>
68
69 #include <trace/events/vmscan.h>
70
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75
76 /* Active memory cgroup to use from an interrupt context */
77 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
78
79 /* Socket memory accounting disabled? */
80 static bool cgroup_memory_nosocket;
81
82 /* Kernel memory accounting disabled? */
83 static bool cgroup_memory_nokmem;
84
85 /* Whether the swap controller is active */
86 #ifdef CONFIG_MEMCG_SWAP
87 bool cgroup_memory_noswap __read_mostly;
88 #else
89 #define cgroup_memory_noswap 1
90 #endif
91
92 #ifdef CONFIG_CGROUP_WRITEBACK
93 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
94 #endif
95
96 /* Whether legacy memory+swap accounting is active */
97 static bool do_memsw_account(void)
98 {
99 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
100 }
101
102 #define THRESHOLDS_EVENTS_TARGET 128
103 #define SOFTLIMIT_EVENTS_TARGET 1024
104
105 /*
106 * Cgroups above their limits are maintained in a RB-Tree, independent of
107 * their hierarchy representation
108 */
109
110 struct mem_cgroup_tree_per_node {
111 struct rb_root rb_root;
112 struct rb_node *rb_rightmost;
113 spinlock_t lock;
114 };
115
116 struct mem_cgroup_tree {
117 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
118 };
119
120 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
121
122 /* for OOM */
123 struct mem_cgroup_eventfd_list {
124 struct list_head list;
125 struct eventfd_ctx *eventfd;
126 };
127
128 /*
129 * cgroup_event represents events which userspace want to receive.
130 */
131 struct mem_cgroup_event {
132 /*
133 * memcg which the event belongs to.
134 */
135 struct mem_cgroup *memcg;
136 /*
137 * eventfd to signal userspace about the event.
138 */
139 struct eventfd_ctx *eventfd;
140 /*
141 * Each of these stored in a list by the cgroup.
142 */
143 struct list_head list;
144 /*
145 * register_event() callback will be used to add new userspace
146 * waiter for changes related to this event. Use eventfd_signal()
147 * on eventfd to send notification to userspace.
148 */
149 int (*register_event)(struct mem_cgroup *memcg,
150 struct eventfd_ctx *eventfd, const char *args);
151 /*
152 * unregister_event() callback will be called when userspace closes
153 * the eventfd or on cgroup removing. This callback must be set,
154 * if you want provide notification functionality.
155 */
156 void (*unregister_event)(struct mem_cgroup *memcg,
157 struct eventfd_ctx *eventfd);
158 /*
159 * All fields below needed to unregister event when
160 * userspace closes eventfd.
161 */
162 poll_table pt;
163 wait_queue_head_t *wqh;
164 wait_queue_entry_t wait;
165 struct work_struct remove;
166 };
167
168 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
169 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
170
171 /* Stuffs for move charges at task migration. */
172 /*
173 * Types of charges to be moved.
174 */
175 #define MOVE_ANON 0x1U
176 #define MOVE_FILE 0x2U
177 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
178
179 /* "mc" and its members are protected by cgroup_mutex */
180 static struct move_charge_struct {
181 spinlock_t lock; /* for from, to */
182 struct mm_struct *mm;
183 struct mem_cgroup *from;
184 struct mem_cgroup *to;
185 unsigned long flags;
186 unsigned long precharge;
187 unsigned long moved_charge;
188 unsigned long moved_swap;
189 struct task_struct *moving_task; /* a task moving charges */
190 wait_queue_head_t waitq; /* a waitq for other context */
191 } mc = {
192 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
193 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
194 };
195
196 /*
197 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
198 * limit reclaim to prevent infinite loops, if they ever occur.
199 */
200 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
201 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
202
203 /* for encoding cft->private value on file */
204 enum res_type {
205 _MEM,
206 _MEMSWAP,
207 _OOM_TYPE,
208 _KMEM,
209 _TCP,
210 };
211
212 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
213 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
214 #define MEMFILE_ATTR(val) ((val) & 0xffff)
215 /* Used for OOM nofiier */
216 #define OOM_CONTROL (0)
217
218 /*
219 * Iteration constructs for visiting all cgroups (under a tree). If
220 * loops are exited prematurely (break), mem_cgroup_iter_break() must
221 * be used for reference counting.
222 */
223 #define for_each_mem_cgroup_tree(iter, root) \
224 for (iter = mem_cgroup_iter(root, NULL, NULL); \
225 iter != NULL; \
226 iter = mem_cgroup_iter(root, iter, NULL))
227
228 #define for_each_mem_cgroup(iter) \
229 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(NULL, iter, NULL))
232
233 static inline bool should_force_charge(void)
234 {
235 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 (current->flags & PF_EXITING);
237 }
238
239 /* Some nice accessors for the vmpressure. */
240 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241 {
242 if (!memcg)
243 memcg = root_mem_cgroup;
244 return &memcg->vmpressure;
245 }
246
247 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
248 {
249 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
250 }
251
252 #ifdef CONFIG_MEMCG_KMEM
253 extern spinlock_t css_set_lock;
254
255 static void obj_cgroup_release(struct percpu_ref *ref)
256 {
257 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
258 struct mem_cgroup *memcg;
259 unsigned int nr_bytes;
260 unsigned int nr_pages;
261 unsigned long flags;
262
263 /*
264 * At this point all allocated objects are freed, and
265 * objcg->nr_charged_bytes can't have an arbitrary byte value.
266 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
267 *
268 * The following sequence can lead to it:
269 * 1) CPU0: objcg == stock->cached_objcg
270 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
271 * PAGE_SIZE bytes are charged
272 * 3) CPU1: a process from another memcg is allocating something,
273 * the stock if flushed,
274 * objcg->nr_charged_bytes = PAGE_SIZE - 92
275 * 5) CPU0: we do release this object,
276 * 92 bytes are added to stock->nr_bytes
277 * 6) CPU0: stock is flushed,
278 * 92 bytes are added to objcg->nr_charged_bytes
279 *
280 * In the result, nr_charged_bytes == PAGE_SIZE.
281 * This page will be uncharged in obj_cgroup_release().
282 */
283 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
284 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
285 nr_pages = nr_bytes >> PAGE_SHIFT;
286
287 spin_lock_irqsave(&css_set_lock, flags);
288 memcg = obj_cgroup_memcg(objcg);
289 if (nr_pages)
290 __memcg_kmem_uncharge(memcg, nr_pages);
291 list_del(&objcg->list);
292 mem_cgroup_put(memcg);
293 spin_unlock_irqrestore(&css_set_lock, flags);
294
295 percpu_ref_exit(ref);
296 kfree_rcu(objcg, rcu);
297 }
298
299 static struct obj_cgroup *obj_cgroup_alloc(void)
300 {
301 struct obj_cgroup *objcg;
302 int ret;
303
304 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
305 if (!objcg)
306 return NULL;
307
308 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
309 GFP_KERNEL);
310 if (ret) {
311 kfree(objcg);
312 return NULL;
313 }
314 INIT_LIST_HEAD(&objcg->list);
315 return objcg;
316 }
317
318 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
319 struct mem_cgroup *parent)
320 {
321 struct obj_cgroup *objcg, *iter;
322
323 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
324
325 spin_lock_irq(&css_set_lock);
326
327 /* Move active objcg to the parent's list */
328 xchg(&objcg->memcg, parent);
329 css_get(&parent->css);
330 list_add(&objcg->list, &parent->objcg_list);
331
332 /* Move already reparented objcgs to the parent's list */
333 list_for_each_entry(iter, &memcg->objcg_list, list) {
334 css_get(&parent->css);
335 xchg(&iter->memcg, parent);
336 css_put(&memcg->css);
337 }
338 list_splice(&memcg->objcg_list, &parent->objcg_list);
339
340 spin_unlock_irq(&css_set_lock);
341
342 percpu_ref_kill(&objcg->refcnt);
343 }
344
345 /*
346 * This will be used as a shrinker list's index.
347 * The main reason for not using cgroup id for this:
348 * this works better in sparse environments, where we have a lot of memcgs,
349 * but only a few kmem-limited. Or also, if we have, for instance, 200
350 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
351 * 200 entry array for that.
352 *
353 * The current size of the caches array is stored in memcg_nr_cache_ids. It
354 * will double each time we have to increase it.
355 */
356 static DEFINE_IDA(memcg_cache_ida);
357 int memcg_nr_cache_ids;
358
359 /* Protects memcg_nr_cache_ids */
360 static DECLARE_RWSEM(memcg_cache_ids_sem);
361
362 void memcg_get_cache_ids(void)
363 {
364 down_read(&memcg_cache_ids_sem);
365 }
366
367 void memcg_put_cache_ids(void)
368 {
369 up_read(&memcg_cache_ids_sem);
370 }
371
372 /*
373 * MIN_SIZE is different than 1, because we would like to avoid going through
374 * the alloc/free process all the time. In a small machine, 4 kmem-limited
375 * cgroups is a reasonable guess. In the future, it could be a parameter or
376 * tunable, but that is strictly not necessary.
377 *
378 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
379 * this constant directly from cgroup, but it is understandable that this is
380 * better kept as an internal representation in cgroup.c. In any case, the
381 * cgrp_id space is not getting any smaller, and we don't have to necessarily
382 * increase ours as well if it increases.
383 */
384 #define MEMCG_CACHES_MIN_SIZE 4
385 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
386
387 /*
388 * A lot of the calls to the cache allocation functions are expected to be
389 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
390 * conditional to this static branch, we'll have to allow modules that does
391 * kmem_cache_alloc and the such to see this symbol as well
392 */
393 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
394 EXPORT_SYMBOL(memcg_kmem_enabled_key);
395 #endif
396
397 static int memcg_shrinker_map_size;
398 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
399
400 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
401 {
402 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
403 }
404
405 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
406 int size, int old_size)
407 {
408 struct memcg_shrinker_map *new, *old;
409 int nid;
410
411 lockdep_assert_held(&memcg_shrinker_map_mutex);
412
413 for_each_node(nid) {
414 old = rcu_dereference_protected(
415 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
416 /* Not yet online memcg */
417 if (!old)
418 return 0;
419
420 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
421 if (!new)
422 return -ENOMEM;
423
424 /* Set all old bits, clear all new bits */
425 memset(new->map, (int)0xff, old_size);
426 memset((void *)new->map + old_size, 0, size - old_size);
427
428 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
429 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
430 }
431
432 return 0;
433 }
434
435 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
436 {
437 struct mem_cgroup_per_node *pn;
438 struct memcg_shrinker_map *map;
439 int nid;
440
441 if (mem_cgroup_is_root(memcg))
442 return;
443
444 for_each_node(nid) {
445 pn = mem_cgroup_nodeinfo(memcg, nid);
446 map = rcu_dereference_protected(pn->shrinker_map, true);
447 if (map)
448 kvfree(map);
449 rcu_assign_pointer(pn->shrinker_map, NULL);
450 }
451 }
452
453 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
454 {
455 struct memcg_shrinker_map *map;
456 int nid, size, ret = 0;
457
458 if (mem_cgroup_is_root(memcg))
459 return 0;
460
461 mutex_lock(&memcg_shrinker_map_mutex);
462 size = memcg_shrinker_map_size;
463 for_each_node(nid) {
464 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
465 if (!map) {
466 memcg_free_shrinker_maps(memcg);
467 ret = -ENOMEM;
468 break;
469 }
470 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
471 }
472 mutex_unlock(&memcg_shrinker_map_mutex);
473
474 return ret;
475 }
476
477 int memcg_expand_shrinker_maps(int new_id)
478 {
479 int size, old_size, ret = 0;
480 struct mem_cgroup *memcg;
481
482 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
483 old_size = memcg_shrinker_map_size;
484 if (size <= old_size)
485 return 0;
486
487 mutex_lock(&memcg_shrinker_map_mutex);
488 if (!root_mem_cgroup)
489 goto unlock;
490
491 for_each_mem_cgroup(memcg) {
492 if (mem_cgroup_is_root(memcg))
493 continue;
494 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
495 if (ret) {
496 mem_cgroup_iter_break(NULL, memcg);
497 goto unlock;
498 }
499 }
500 unlock:
501 if (!ret)
502 memcg_shrinker_map_size = size;
503 mutex_unlock(&memcg_shrinker_map_mutex);
504 return ret;
505 }
506
507 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
508 {
509 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
510 struct memcg_shrinker_map *map;
511
512 rcu_read_lock();
513 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
514 /* Pairs with smp mb in shrink_slab() */
515 smp_mb__before_atomic();
516 set_bit(shrinker_id, map->map);
517 rcu_read_unlock();
518 }
519 }
520
521 /**
522 * mem_cgroup_css_from_page - css of the memcg associated with a page
523 * @page: page of interest
524 *
525 * If memcg is bound to the default hierarchy, css of the memcg associated
526 * with @page is returned. The returned css remains associated with @page
527 * until it is released.
528 *
529 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
530 * is returned.
531 */
532 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
533 {
534 struct mem_cgroup *memcg;
535
536 memcg = page->mem_cgroup;
537
538 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
539 memcg = root_mem_cgroup;
540
541 return &memcg->css;
542 }
543
544 /**
545 * page_cgroup_ino - return inode number of the memcg a page is charged to
546 * @page: the page
547 *
548 * Look up the closest online ancestor of the memory cgroup @page is charged to
549 * and return its inode number or 0 if @page is not charged to any cgroup. It
550 * is safe to call this function without holding a reference to @page.
551 *
552 * Note, this function is inherently racy, because there is nothing to prevent
553 * the cgroup inode from getting torn down and potentially reallocated a moment
554 * after page_cgroup_ino() returns, so it only should be used by callers that
555 * do not care (such as procfs interfaces).
556 */
557 ino_t page_cgroup_ino(struct page *page)
558 {
559 struct mem_cgroup *memcg;
560 unsigned long ino = 0;
561
562 rcu_read_lock();
563 memcg = page->mem_cgroup;
564
565 /*
566 * The lowest bit set means that memcg isn't a valid
567 * memcg pointer, but a obj_cgroups pointer.
568 * In this case the page is shared and doesn't belong
569 * to any specific memory cgroup.
570 */
571 if ((unsigned long) memcg & 0x1UL)
572 memcg = NULL;
573
574 while (memcg && !(memcg->css.flags & CSS_ONLINE))
575 memcg = parent_mem_cgroup(memcg);
576 if (memcg)
577 ino = cgroup_ino(memcg->css.cgroup);
578 rcu_read_unlock();
579 return ino;
580 }
581
582 static struct mem_cgroup_per_node *
583 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
584 {
585 int nid = page_to_nid(page);
586
587 return memcg->nodeinfo[nid];
588 }
589
590 static struct mem_cgroup_tree_per_node *
591 soft_limit_tree_node(int nid)
592 {
593 return soft_limit_tree.rb_tree_per_node[nid];
594 }
595
596 static struct mem_cgroup_tree_per_node *
597 soft_limit_tree_from_page(struct page *page)
598 {
599 int nid = page_to_nid(page);
600
601 return soft_limit_tree.rb_tree_per_node[nid];
602 }
603
604 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
605 struct mem_cgroup_tree_per_node *mctz,
606 unsigned long new_usage_in_excess)
607 {
608 struct rb_node **p = &mctz->rb_root.rb_node;
609 struct rb_node *parent = NULL;
610 struct mem_cgroup_per_node *mz_node;
611 bool rightmost = true;
612
613 if (mz->on_tree)
614 return;
615
616 mz->usage_in_excess = new_usage_in_excess;
617 if (!mz->usage_in_excess)
618 return;
619 while (*p) {
620 parent = *p;
621 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
622 tree_node);
623 if (mz->usage_in_excess < mz_node->usage_in_excess) {
624 p = &(*p)->rb_left;
625 rightmost = false;
626 }
627
628 /*
629 * We can't avoid mem cgroups that are over their soft
630 * limit by the same amount
631 */
632 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
633 p = &(*p)->rb_right;
634 }
635
636 if (rightmost)
637 mctz->rb_rightmost = &mz->tree_node;
638
639 rb_link_node(&mz->tree_node, parent, p);
640 rb_insert_color(&mz->tree_node, &mctz->rb_root);
641 mz->on_tree = true;
642 }
643
644 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
645 struct mem_cgroup_tree_per_node *mctz)
646 {
647 if (!mz->on_tree)
648 return;
649
650 if (&mz->tree_node == mctz->rb_rightmost)
651 mctz->rb_rightmost = rb_prev(&mz->tree_node);
652
653 rb_erase(&mz->tree_node, &mctz->rb_root);
654 mz->on_tree = false;
655 }
656
657 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
658 struct mem_cgroup_tree_per_node *mctz)
659 {
660 unsigned long flags;
661
662 spin_lock_irqsave(&mctz->lock, flags);
663 __mem_cgroup_remove_exceeded(mz, mctz);
664 spin_unlock_irqrestore(&mctz->lock, flags);
665 }
666
667 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
668 {
669 unsigned long nr_pages = page_counter_read(&memcg->memory);
670 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
671 unsigned long excess = 0;
672
673 if (nr_pages > soft_limit)
674 excess = nr_pages - soft_limit;
675
676 return excess;
677 }
678
679 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
680 {
681 unsigned long excess;
682 struct mem_cgroup_per_node *mz;
683 struct mem_cgroup_tree_per_node *mctz;
684
685 mctz = soft_limit_tree_from_page(page);
686 if (!mctz)
687 return;
688 /*
689 * Necessary to update all ancestors when hierarchy is used.
690 * because their event counter is not touched.
691 */
692 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
693 mz = mem_cgroup_page_nodeinfo(memcg, page);
694 excess = soft_limit_excess(memcg);
695 /*
696 * We have to update the tree if mz is on RB-tree or
697 * mem is over its softlimit.
698 */
699 if (excess || mz->on_tree) {
700 unsigned long flags;
701
702 spin_lock_irqsave(&mctz->lock, flags);
703 /* if on-tree, remove it */
704 if (mz->on_tree)
705 __mem_cgroup_remove_exceeded(mz, mctz);
706 /*
707 * Insert again. mz->usage_in_excess will be updated.
708 * If excess is 0, no tree ops.
709 */
710 __mem_cgroup_insert_exceeded(mz, mctz, excess);
711 spin_unlock_irqrestore(&mctz->lock, flags);
712 }
713 }
714 }
715
716 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
717 {
718 struct mem_cgroup_tree_per_node *mctz;
719 struct mem_cgroup_per_node *mz;
720 int nid;
721
722 for_each_node(nid) {
723 mz = mem_cgroup_nodeinfo(memcg, nid);
724 mctz = soft_limit_tree_node(nid);
725 if (mctz)
726 mem_cgroup_remove_exceeded(mz, mctz);
727 }
728 }
729
730 static struct mem_cgroup_per_node *
731 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
732 {
733 struct mem_cgroup_per_node *mz;
734
735 retry:
736 mz = NULL;
737 if (!mctz->rb_rightmost)
738 goto done; /* Nothing to reclaim from */
739
740 mz = rb_entry(mctz->rb_rightmost,
741 struct mem_cgroup_per_node, tree_node);
742 /*
743 * Remove the node now but someone else can add it back,
744 * we will to add it back at the end of reclaim to its correct
745 * position in the tree.
746 */
747 __mem_cgroup_remove_exceeded(mz, mctz);
748 if (!soft_limit_excess(mz->memcg) ||
749 !css_tryget(&mz->memcg->css))
750 goto retry;
751 done:
752 return mz;
753 }
754
755 static struct mem_cgroup_per_node *
756 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
757 {
758 struct mem_cgroup_per_node *mz;
759
760 spin_lock_irq(&mctz->lock);
761 mz = __mem_cgroup_largest_soft_limit_node(mctz);
762 spin_unlock_irq(&mctz->lock);
763 return mz;
764 }
765
766 /**
767 * __mod_memcg_state - update cgroup memory statistics
768 * @memcg: the memory cgroup
769 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
770 * @val: delta to add to the counter, can be negative
771 */
772 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
773 {
774 long x, threshold = MEMCG_CHARGE_BATCH;
775
776 if (mem_cgroup_disabled())
777 return;
778
779 if (memcg_stat_item_in_bytes(idx))
780 threshold <<= PAGE_SHIFT;
781
782 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
783 if (unlikely(abs(x) > threshold)) {
784 struct mem_cgroup *mi;
785
786 /*
787 * Batch local counters to keep them in sync with
788 * the hierarchical ones.
789 */
790 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
791 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
792 atomic_long_add(x, &mi->vmstats[idx]);
793 x = 0;
794 }
795 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
796 }
797
798 static struct mem_cgroup_per_node *
799 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
800 {
801 struct mem_cgroup *parent;
802
803 parent = parent_mem_cgroup(pn->memcg);
804 if (!parent)
805 return NULL;
806 return mem_cgroup_nodeinfo(parent, nid);
807 }
808
809 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
810 int val)
811 {
812 struct mem_cgroup_per_node *pn;
813 struct mem_cgroup *memcg;
814 long x, threshold = MEMCG_CHARGE_BATCH;
815
816 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
817 memcg = pn->memcg;
818
819 /* Update memcg */
820 __mod_memcg_state(memcg, idx, val);
821
822 /* Update lruvec */
823 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
824
825 if (vmstat_item_in_bytes(idx))
826 threshold <<= PAGE_SHIFT;
827
828 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
829 if (unlikely(abs(x) > threshold)) {
830 pg_data_t *pgdat = lruvec_pgdat(lruvec);
831 struct mem_cgroup_per_node *pi;
832
833 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
834 atomic_long_add(x, &pi->lruvec_stat[idx]);
835 x = 0;
836 }
837 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
838 }
839
840 /**
841 * __mod_lruvec_state - update lruvec memory statistics
842 * @lruvec: the lruvec
843 * @idx: the stat item
844 * @val: delta to add to the counter, can be negative
845 *
846 * The lruvec is the intersection of the NUMA node and a cgroup. This
847 * function updates the all three counters that are affected by a
848 * change of state at this level: per-node, per-cgroup, per-lruvec.
849 */
850 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
851 int val)
852 {
853 /* Update node */
854 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
855
856 /* Update memcg and lruvec */
857 if (!mem_cgroup_disabled())
858 __mod_memcg_lruvec_state(lruvec, idx, val);
859 }
860
861 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
862 {
863 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
864 struct mem_cgroup *memcg;
865 struct lruvec *lruvec;
866
867 rcu_read_lock();
868 memcg = mem_cgroup_from_obj(p);
869
870 /*
871 * Untracked pages have no memcg, no lruvec. Update only the
872 * node. If we reparent the slab objects to the root memcg,
873 * when we free the slab object, we need to update the per-memcg
874 * vmstats to keep it correct for the root memcg.
875 */
876 if (!memcg) {
877 __mod_node_page_state(pgdat, idx, val);
878 } else {
879 lruvec = mem_cgroup_lruvec(memcg, pgdat);
880 __mod_lruvec_state(lruvec, idx, val);
881 }
882 rcu_read_unlock();
883 }
884
885 void mod_memcg_obj_state(void *p, int idx, int val)
886 {
887 struct mem_cgroup *memcg;
888
889 rcu_read_lock();
890 memcg = mem_cgroup_from_obj(p);
891 if (memcg)
892 mod_memcg_state(memcg, idx, val);
893 rcu_read_unlock();
894 }
895
896 /**
897 * __count_memcg_events - account VM events in a cgroup
898 * @memcg: the memory cgroup
899 * @idx: the event item
900 * @count: the number of events that occured
901 */
902 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
903 unsigned long count)
904 {
905 unsigned long x;
906
907 if (mem_cgroup_disabled())
908 return;
909
910 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
911 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
912 struct mem_cgroup *mi;
913
914 /*
915 * Batch local counters to keep them in sync with
916 * the hierarchical ones.
917 */
918 __this_cpu_add(memcg->vmstats_local->events[idx], x);
919 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
920 atomic_long_add(x, &mi->vmevents[idx]);
921 x = 0;
922 }
923 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
924 }
925
926 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
927 {
928 return atomic_long_read(&memcg->vmevents[event]);
929 }
930
931 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
932 {
933 long x = 0;
934 int cpu;
935
936 for_each_possible_cpu(cpu)
937 x += per_cpu(memcg->vmstats_local->events[event], cpu);
938 return x;
939 }
940
941 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
942 struct page *page,
943 int nr_pages)
944 {
945 /* pagein of a big page is an event. So, ignore page size */
946 if (nr_pages > 0)
947 __count_memcg_events(memcg, PGPGIN, 1);
948 else {
949 __count_memcg_events(memcg, PGPGOUT, 1);
950 nr_pages = -nr_pages; /* for event */
951 }
952
953 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
954 }
955
956 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
957 enum mem_cgroup_events_target target)
958 {
959 unsigned long val, next;
960
961 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
962 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
963 /* from time_after() in jiffies.h */
964 if ((long)(next - val) < 0) {
965 switch (target) {
966 case MEM_CGROUP_TARGET_THRESH:
967 next = val + THRESHOLDS_EVENTS_TARGET;
968 break;
969 case MEM_CGROUP_TARGET_SOFTLIMIT:
970 next = val + SOFTLIMIT_EVENTS_TARGET;
971 break;
972 default:
973 break;
974 }
975 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
976 return true;
977 }
978 return false;
979 }
980
981 /*
982 * Check events in order.
983 *
984 */
985 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
986 {
987 /* threshold event is triggered in finer grain than soft limit */
988 if (unlikely(mem_cgroup_event_ratelimit(memcg,
989 MEM_CGROUP_TARGET_THRESH))) {
990 bool do_softlimit;
991
992 do_softlimit = mem_cgroup_event_ratelimit(memcg,
993 MEM_CGROUP_TARGET_SOFTLIMIT);
994 mem_cgroup_threshold(memcg);
995 if (unlikely(do_softlimit))
996 mem_cgroup_update_tree(memcg, page);
997 }
998 }
999
1000 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1001 {
1002 /*
1003 * mm_update_next_owner() may clear mm->owner to NULL
1004 * if it races with swapoff, page migration, etc.
1005 * So this can be called with p == NULL.
1006 */
1007 if (unlikely(!p))
1008 return NULL;
1009
1010 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1011 }
1012 EXPORT_SYMBOL(mem_cgroup_from_task);
1013
1014 /**
1015 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1016 * @mm: mm from which memcg should be extracted. It can be NULL.
1017 *
1018 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1019 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1020 * returned.
1021 */
1022 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1023 {
1024 struct mem_cgroup *memcg;
1025
1026 if (mem_cgroup_disabled())
1027 return NULL;
1028
1029 rcu_read_lock();
1030 do {
1031 /*
1032 * Page cache insertions can happen withou an
1033 * actual mm context, e.g. during disk probing
1034 * on boot, loopback IO, acct() writes etc.
1035 */
1036 if (unlikely(!mm))
1037 memcg = root_mem_cgroup;
1038 else {
1039 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1040 if (unlikely(!memcg))
1041 memcg = root_mem_cgroup;
1042 }
1043 } while (!css_tryget(&memcg->css));
1044 rcu_read_unlock();
1045 return memcg;
1046 }
1047 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1048
1049 /**
1050 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1051 * @page: page from which memcg should be extracted.
1052 *
1053 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1054 * root_mem_cgroup is returned.
1055 */
1056 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1057 {
1058 struct mem_cgroup *memcg = page->mem_cgroup;
1059
1060 if (mem_cgroup_disabled())
1061 return NULL;
1062
1063 rcu_read_lock();
1064 /* Page should not get uncharged and freed memcg under us. */
1065 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1066 memcg = root_mem_cgroup;
1067 rcu_read_unlock();
1068 return memcg;
1069 }
1070 EXPORT_SYMBOL(get_mem_cgroup_from_page);
1071
1072 static __always_inline struct mem_cgroup *active_memcg(void)
1073 {
1074 if (in_interrupt())
1075 return this_cpu_read(int_active_memcg);
1076 else
1077 return current->active_memcg;
1078 }
1079
1080 static __always_inline struct mem_cgroup *get_active_memcg(void)
1081 {
1082 struct mem_cgroup *memcg;
1083
1084 rcu_read_lock();
1085 memcg = active_memcg();
1086 if (memcg) {
1087 /* current->active_memcg must hold a ref. */
1088 if (WARN_ON_ONCE(!css_tryget(&memcg->css)))
1089 memcg = root_mem_cgroup;
1090 else
1091 memcg = current->active_memcg;
1092 }
1093 rcu_read_unlock();
1094
1095 return memcg;
1096 }
1097
1098 static __always_inline bool memcg_kmem_bypass(void)
1099 {
1100 /* Allow remote memcg charging from any context. */
1101 if (unlikely(active_memcg()))
1102 return false;
1103
1104 /* Memcg to charge can't be determined. */
1105 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1106 return true;
1107
1108 return false;
1109 }
1110
1111 /**
1112 * If active memcg is set, do not fallback to current->mm->memcg.
1113 */
1114 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1115 {
1116 if (memcg_kmem_bypass())
1117 return NULL;
1118
1119 if (unlikely(active_memcg()))
1120 return get_active_memcg();
1121
1122 return get_mem_cgroup_from_mm(current->mm);
1123 }
1124
1125 /**
1126 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1127 * @root: hierarchy root
1128 * @prev: previously returned memcg, NULL on first invocation
1129 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1130 *
1131 * Returns references to children of the hierarchy below @root, or
1132 * @root itself, or %NULL after a full round-trip.
1133 *
1134 * Caller must pass the return value in @prev on subsequent
1135 * invocations for reference counting, or use mem_cgroup_iter_break()
1136 * to cancel a hierarchy walk before the round-trip is complete.
1137 *
1138 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1139 * in the hierarchy among all concurrent reclaimers operating on the
1140 * same node.
1141 */
1142 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1143 struct mem_cgroup *prev,
1144 struct mem_cgroup_reclaim_cookie *reclaim)
1145 {
1146 struct mem_cgroup_reclaim_iter *iter;
1147 struct cgroup_subsys_state *css = NULL;
1148 struct mem_cgroup *memcg = NULL;
1149 struct mem_cgroup *pos = NULL;
1150
1151 if (mem_cgroup_disabled())
1152 return NULL;
1153
1154 if (!root)
1155 root = root_mem_cgroup;
1156
1157 if (prev && !reclaim)
1158 pos = prev;
1159
1160 if (!root->use_hierarchy && root != root_mem_cgroup) {
1161 if (prev)
1162 goto out;
1163 return root;
1164 }
1165
1166 rcu_read_lock();
1167
1168 if (reclaim) {
1169 struct mem_cgroup_per_node *mz;
1170
1171 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1172 iter = &mz->iter;
1173
1174 if (prev && reclaim->generation != iter->generation)
1175 goto out_unlock;
1176
1177 while (1) {
1178 pos = READ_ONCE(iter->position);
1179 if (!pos || css_tryget(&pos->css))
1180 break;
1181 /*
1182 * css reference reached zero, so iter->position will
1183 * be cleared by ->css_released. However, we should not
1184 * rely on this happening soon, because ->css_released
1185 * is called from a work queue, and by busy-waiting we
1186 * might block it. So we clear iter->position right
1187 * away.
1188 */
1189 (void)cmpxchg(&iter->position, pos, NULL);
1190 }
1191 }
1192
1193 if (pos)
1194 css = &pos->css;
1195
1196 for (;;) {
1197 css = css_next_descendant_pre(css, &root->css);
1198 if (!css) {
1199 /*
1200 * Reclaimers share the hierarchy walk, and a
1201 * new one might jump in right at the end of
1202 * the hierarchy - make sure they see at least
1203 * one group and restart from the beginning.
1204 */
1205 if (!prev)
1206 continue;
1207 break;
1208 }
1209
1210 /*
1211 * Verify the css and acquire a reference. The root
1212 * is provided by the caller, so we know it's alive
1213 * and kicking, and don't take an extra reference.
1214 */
1215 memcg = mem_cgroup_from_css(css);
1216
1217 if (css == &root->css)
1218 break;
1219
1220 if (css_tryget(css))
1221 break;
1222
1223 memcg = NULL;
1224 }
1225
1226 if (reclaim) {
1227 /*
1228 * The position could have already been updated by a competing
1229 * thread, so check that the value hasn't changed since we read
1230 * it to avoid reclaiming from the same cgroup twice.
1231 */
1232 (void)cmpxchg(&iter->position, pos, memcg);
1233
1234 if (pos)
1235 css_put(&pos->css);
1236
1237 if (!memcg)
1238 iter->generation++;
1239 else if (!prev)
1240 reclaim->generation = iter->generation;
1241 }
1242
1243 out_unlock:
1244 rcu_read_unlock();
1245 out:
1246 if (prev && prev != root)
1247 css_put(&prev->css);
1248
1249 return memcg;
1250 }
1251
1252 /**
1253 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1254 * @root: hierarchy root
1255 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1256 */
1257 void mem_cgroup_iter_break(struct mem_cgroup *root,
1258 struct mem_cgroup *prev)
1259 {
1260 if (!root)
1261 root = root_mem_cgroup;
1262 if (prev && prev != root)
1263 css_put(&prev->css);
1264 }
1265
1266 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1267 struct mem_cgroup *dead_memcg)
1268 {
1269 struct mem_cgroup_reclaim_iter *iter;
1270 struct mem_cgroup_per_node *mz;
1271 int nid;
1272
1273 for_each_node(nid) {
1274 mz = mem_cgroup_nodeinfo(from, nid);
1275 iter = &mz->iter;
1276 cmpxchg(&iter->position, dead_memcg, NULL);
1277 }
1278 }
1279
1280 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1281 {
1282 struct mem_cgroup *memcg = dead_memcg;
1283 struct mem_cgroup *last;
1284
1285 do {
1286 __invalidate_reclaim_iterators(memcg, dead_memcg);
1287 last = memcg;
1288 } while ((memcg = parent_mem_cgroup(memcg)));
1289
1290 /*
1291 * When cgruop1 non-hierarchy mode is used,
1292 * parent_mem_cgroup() does not walk all the way up to the
1293 * cgroup root (root_mem_cgroup). So we have to handle
1294 * dead_memcg from cgroup root separately.
1295 */
1296 if (last != root_mem_cgroup)
1297 __invalidate_reclaim_iterators(root_mem_cgroup,
1298 dead_memcg);
1299 }
1300
1301 /**
1302 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1303 * @memcg: hierarchy root
1304 * @fn: function to call for each task
1305 * @arg: argument passed to @fn
1306 *
1307 * This function iterates over tasks attached to @memcg or to any of its
1308 * descendants and calls @fn for each task. If @fn returns a non-zero
1309 * value, the function breaks the iteration loop and returns the value.
1310 * Otherwise, it will iterate over all tasks and return 0.
1311 *
1312 * This function must not be called for the root memory cgroup.
1313 */
1314 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1315 int (*fn)(struct task_struct *, void *), void *arg)
1316 {
1317 struct mem_cgroup *iter;
1318 int ret = 0;
1319
1320 BUG_ON(memcg == root_mem_cgroup);
1321
1322 for_each_mem_cgroup_tree(iter, memcg) {
1323 struct css_task_iter it;
1324 struct task_struct *task;
1325
1326 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1327 while (!ret && (task = css_task_iter_next(&it)))
1328 ret = fn(task, arg);
1329 css_task_iter_end(&it);
1330 if (ret) {
1331 mem_cgroup_iter_break(memcg, iter);
1332 break;
1333 }
1334 }
1335 return ret;
1336 }
1337
1338 /**
1339 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1340 * @page: the page
1341 * @pgdat: pgdat of the page
1342 *
1343 * This function relies on page->mem_cgroup being stable - see the
1344 * access rules in commit_charge().
1345 */
1346 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1347 {
1348 struct mem_cgroup_per_node *mz;
1349 struct mem_cgroup *memcg;
1350 struct lruvec *lruvec;
1351
1352 if (mem_cgroup_disabled()) {
1353 lruvec = &pgdat->__lruvec;
1354 goto out;
1355 }
1356
1357 memcg = page->mem_cgroup;
1358 /*
1359 * Swapcache readahead pages are added to the LRU - and
1360 * possibly migrated - before they are charged.
1361 */
1362 if (!memcg)
1363 memcg = root_mem_cgroup;
1364
1365 mz = mem_cgroup_page_nodeinfo(memcg, page);
1366 lruvec = &mz->lruvec;
1367 out:
1368 /*
1369 * Since a node can be onlined after the mem_cgroup was created,
1370 * we have to be prepared to initialize lruvec->zone here;
1371 * and if offlined then reonlined, we need to reinitialize it.
1372 */
1373 if (unlikely(lruvec->pgdat != pgdat))
1374 lruvec->pgdat = pgdat;
1375 return lruvec;
1376 }
1377
1378 /**
1379 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1380 * @lruvec: mem_cgroup per zone lru vector
1381 * @lru: index of lru list the page is sitting on
1382 * @zid: zone id of the accounted pages
1383 * @nr_pages: positive when adding or negative when removing
1384 *
1385 * This function must be called under lru_lock, just before a page is added
1386 * to or just after a page is removed from an lru list (that ordering being
1387 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1388 */
1389 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1390 int zid, int nr_pages)
1391 {
1392 struct mem_cgroup_per_node *mz;
1393 unsigned long *lru_size;
1394 long size;
1395
1396 if (mem_cgroup_disabled())
1397 return;
1398
1399 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1400 lru_size = &mz->lru_zone_size[zid][lru];
1401
1402 if (nr_pages < 0)
1403 *lru_size += nr_pages;
1404
1405 size = *lru_size;
1406 if (WARN_ONCE(size < 0,
1407 "%s(%p, %d, %d): lru_size %ld\n",
1408 __func__, lruvec, lru, nr_pages, size)) {
1409 VM_BUG_ON(1);
1410 *lru_size = 0;
1411 }
1412
1413 if (nr_pages > 0)
1414 *lru_size += nr_pages;
1415 }
1416
1417 /**
1418 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1419 * @memcg: the memory cgroup
1420 *
1421 * Returns the maximum amount of memory @mem can be charged with, in
1422 * pages.
1423 */
1424 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1425 {
1426 unsigned long margin = 0;
1427 unsigned long count;
1428 unsigned long limit;
1429
1430 count = page_counter_read(&memcg->memory);
1431 limit = READ_ONCE(memcg->memory.max);
1432 if (count < limit)
1433 margin = limit - count;
1434
1435 if (do_memsw_account()) {
1436 count = page_counter_read(&memcg->memsw);
1437 limit = READ_ONCE(memcg->memsw.max);
1438 if (count < limit)
1439 margin = min(margin, limit - count);
1440 else
1441 margin = 0;
1442 }
1443
1444 return margin;
1445 }
1446
1447 /*
1448 * A routine for checking "mem" is under move_account() or not.
1449 *
1450 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1451 * moving cgroups. This is for waiting at high-memory pressure
1452 * caused by "move".
1453 */
1454 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1455 {
1456 struct mem_cgroup *from;
1457 struct mem_cgroup *to;
1458 bool ret = false;
1459 /*
1460 * Unlike task_move routines, we access mc.to, mc.from not under
1461 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1462 */
1463 spin_lock(&mc.lock);
1464 from = mc.from;
1465 to = mc.to;
1466 if (!from)
1467 goto unlock;
1468
1469 ret = mem_cgroup_is_descendant(from, memcg) ||
1470 mem_cgroup_is_descendant(to, memcg);
1471 unlock:
1472 spin_unlock(&mc.lock);
1473 return ret;
1474 }
1475
1476 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1477 {
1478 if (mc.moving_task && current != mc.moving_task) {
1479 if (mem_cgroup_under_move(memcg)) {
1480 DEFINE_WAIT(wait);
1481 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1482 /* moving charge context might have finished. */
1483 if (mc.moving_task)
1484 schedule();
1485 finish_wait(&mc.waitq, &wait);
1486 return true;
1487 }
1488 }
1489 return false;
1490 }
1491
1492 struct memory_stat {
1493 const char *name;
1494 unsigned int ratio;
1495 unsigned int idx;
1496 };
1497
1498 static struct memory_stat memory_stats[] = {
1499 { "anon", PAGE_SIZE, NR_ANON_MAPPED },
1500 { "file", PAGE_SIZE, NR_FILE_PAGES },
1501 { "kernel_stack", 1024, NR_KERNEL_STACK_KB },
1502 { "percpu", 1, MEMCG_PERCPU_B },
1503 { "sock", PAGE_SIZE, MEMCG_SOCK },
1504 { "shmem", PAGE_SIZE, NR_SHMEM },
1505 { "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
1506 { "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
1507 { "file_writeback", PAGE_SIZE, NR_WRITEBACK },
1508 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1509 /*
1510 * The ratio will be initialized in memory_stats_init(). Because
1511 * on some architectures, the macro of HPAGE_PMD_SIZE is not
1512 * constant(e.g. powerpc).
1513 */
1514 { "anon_thp", 0, NR_ANON_THPS },
1515 #endif
1516 { "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
1517 { "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
1518 { "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
1519 { "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
1520 { "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
1521
1522 /*
1523 * Note: The slab_reclaimable and slab_unreclaimable must be
1524 * together and slab_reclaimable must be in front.
1525 */
1526 { "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
1527 { "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
1528
1529 /* The memory events */
1530 { "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
1531 { "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
1532 { "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
1533 { "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
1534 { "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
1535 { "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
1536 { "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
1537 };
1538
1539 static int __init memory_stats_init(void)
1540 {
1541 int i;
1542
1543 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1544 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1545 if (memory_stats[i].idx == NR_ANON_THPS)
1546 memory_stats[i].ratio = HPAGE_PMD_SIZE;
1547 #endif
1548 VM_BUG_ON(!memory_stats[i].ratio);
1549 VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
1550 }
1551
1552 return 0;
1553 }
1554 pure_initcall(memory_stats_init);
1555
1556 static char *memory_stat_format(struct mem_cgroup *memcg)
1557 {
1558 struct seq_buf s;
1559 int i;
1560
1561 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1562 if (!s.buffer)
1563 return NULL;
1564
1565 /*
1566 * Provide statistics on the state of the memory subsystem as
1567 * well as cumulative event counters that show past behavior.
1568 *
1569 * This list is ordered following a combination of these gradients:
1570 * 1) generic big picture -> specifics and details
1571 * 2) reflecting userspace activity -> reflecting kernel heuristics
1572 *
1573 * Current memory state:
1574 */
1575
1576 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1577 u64 size;
1578
1579 size = memcg_page_state(memcg, memory_stats[i].idx);
1580 size *= memory_stats[i].ratio;
1581 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1582
1583 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1584 size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1585 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
1586 seq_buf_printf(&s, "slab %llu\n", size);
1587 }
1588 }
1589
1590 /* Accumulated memory events */
1591
1592 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1593 memcg_events(memcg, PGFAULT));
1594 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1595 memcg_events(memcg, PGMAJFAULT));
1596 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1597 memcg_events(memcg, PGREFILL));
1598 seq_buf_printf(&s, "pgscan %lu\n",
1599 memcg_events(memcg, PGSCAN_KSWAPD) +
1600 memcg_events(memcg, PGSCAN_DIRECT));
1601 seq_buf_printf(&s, "pgsteal %lu\n",
1602 memcg_events(memcg, PGSTEAL_KSWAPD) +
1603 memcg_events(memcg, PGSTEAL_DIRECT));
1604 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1605 memcg_events(memcg, PGACTIVATE));
1606 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1607 memcg_events(memcg, PGDEACTIVATE));
1608 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1609 memcg_events(memcg, PGLAZYFREE));
1610 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1611 memcg_events(memcg, PGLAZYFREED));
1612
1613 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1614 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1615 memcg_events(memcg, THP_FAULT_ALLOC));
1616 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1617 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1618 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1619
1620 /* The above should easily fit into one page */
1621 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1622
1623 return s.buffer;
1624 }
1625
1626 #define K(x) ((x) << (PAGE_SHIFT-10))
1627 /**
1628 * mem_cgroup_print_oom_context: Print OOM information relevant to
1629 * memory controller.
1630 * @memcg: The memory cgroup that went over limit
1631 * @p: Task that is going to be killed
1632 *
1633 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1634 * enabled
1635 */
1636 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1637 {
1638 rcu_read_lock();
1639
1640 if (memcg) {
1641 pr_cont(",oom_memcg=");
1642 pr_cont_cgroup_path(memcg->css.cgroup);
1643 } else
1644 pr_cont(",global_oom");
1645 if (p) {
1646 pr_cont(",task_memcg=");
1647 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1648 }
1649 rcu_read_unlock();
1650 }
1651
1652 /**
1653 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1654 * memory controller.
1655 * @memcg: The memory cgroup that went over limit
1656 */
1657 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1658 {
1659 char *buf;
1660
1661 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1662 K((u64)page_counter_read(&memcg->memory)),
1663 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1664 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1665 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1666 K((u64)page_counter_read(&memcg->swap)),
1667 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1668 else {
1669 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1670 K((u64)page_counter_read(&memcg->memsw)),
1671 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1672 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1673 K((u64)page_counter_read(&memcg->kmem)),
1674 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1675 }
1676
1677 pr_info("Memory cgroup stats for ");
1678 pr_cont_cgroup_path(memcg->css.cgroup);
1679 pr_cont(":");
1680 buf = memory_stat_format(memcg);
1681 if (!buf)
1682 return;
1683 pr_info("%s", buf);
1684 kfree(buf);
1685 }
1686
1687 /*
1688 * Return the memory (and swap, if configured) limit for a memcg.
1689 */
1690 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1691 {
1692 unsigned long max = READ_ONCE(memcg->memory.max);
1693
1694 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1695 if (mem_cgroup_swappiness(memcg))
1696 max += min(READ_ONCE(memcg->swap.max),
1697 (unsigned long)total_swap_pages);
1698 } else { /* v1 */
1699 if (mem_cgroup_swappiness(memcg)) {
1700 /* Calculate swap excess capacity from memsw limit */
1701 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1702
1703 max += min(swap, (unsigned long)total_swap_pages);
1704 }
1705 }
1706 return max;
1707 }
1708
1709 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1710 {
1711 return page_counter_read(&memcg->memory);
1712 }
1713
1714 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1715 int order)
1716 {
1717 struct oom_control oc = {
1718 .zonelist = NULL,
1719 .nodemask = NULL,
1720 .memcg = memcg,
1721 .gfp_mask = gfp_mask,
1722 .order = order,
1723 };
1724 bool ret = true;
1725
1726 if (mutex_lock_killable(&oom_lock))
1727 return true;
1728
1729 if (mem_cgroup_margin(memcg) >= (1 << order))
1730 goto unlock;
1731
1732 /*
1733 * A few threads which were not waiting at mutex_lock_killable() can
1734 * fail to bail out. Therefore, check again after holding oom_lock.
1735 */
1736 ret = should_force_charge() || out_of_memory(&oc);
1737
1738 unlock:
1739 mutex_unlock(&oom_lock);
1740 return ret;
1741 }
1742
1743 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1744 pg_data_t *pgdat,
1745 gfp_t gfp_mask,
1746 unsigned long *total_scanned)
1747 {
1748 struct mem_cgroup *victim = NULL;
1749 int total = 0;
1750 int loop = 0;
1751 unsigned long excess;
1752 unsigned long nr_scanned;
1753 struct mem_cgroup_reclaim_cookie reclaim = {
1754 .pgdat = pgdat,
1755 };
1756
1757 excess = soft_limit_excess(root_memcg);
1758
1759 while (1) {
1760 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1761 if (!victim) {
1762 loop++;
1763 if (loop >= 2) {
1764 /*
1765 * If we have not been able to reclaim
1766 * anything, it might because there are
1767 * no reclaimable pages under this hierarchy
1768 */
1769 if (!total)
1770 break;
1771 /*
1772 * We want to do more targeted reclaim.
1773 * excess >> 2 is not to excessive so as to
1774 * reclaim too much, nor too less that we keep
1775 * coming back to reclaim from this cgroup
1776 */
1777 if (total >= (excess >> 2) ||
1778 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1779 break;
1780 }
1781 continue;
1782 }
1783 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1784 pgdat, &nr_scanned);
1785 *total_scanned += nr_scanned;
1786 if (!soft_limit_excess(root_memcg))
1787 break;
1788 }
1789 mem_cgroup_iter_break(root_memcg, victim);
1790 return total;
1791 }
1792
1793 #ifdef CONFIG_LOCKDEP
1794 static struct lockdep_map memcg_oom_lock_dep_map = {
1795 .name = "memcg_oom_lock",
1796 };
1797 #endif
1798
1799 static DEFINE_SPINLOCK(memcg_oom_lock);
1800
1801 /*
1802 * Check OOM-Killer is already running under our hierarchy.
1803 * If someone is running, return false.
1804 */
1805 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1806 {
1807 struct mem_cgroup *iter, *failed = NULL;
1808
1809 spin_lock(&memcg_oom_lock);
1810
1811 for_each_mem_cgroup_tree(iter, memcg) {
1812 if (iter->oom_lock) {
1813 /*
1814 * this subtree of our hierarchy is already locked
1815 * so we cannot give a lock.
1816 */
1817 failed = iter;
1818 mem_cgroup_iter_break(memcg, iter);
1819 break;
1820 } else
1821 iter->oom_lock = true;
1822 }
1823
1824 if (failed) {
1825 /*
1826 * OK, we failed to lock the whole subtree so we have
1827 * to clean up what we set up to the failing subtree
1828 */
1829 for_each_mem_cgroup_tree(iter, memcg) {
1830 if (iter == failed) {
1831 mem_cgroup_iter_break(memcg, iter);
1832 break;
1833 }
1834 iter->oom_lock = false;
1835 }
1836 } else
1837 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1838
1839 spin_unlock(&memcg_oom_lock);
1840
1841 return !failed;
1842 }
1843
1844 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1845 {
1846 struct mem_cgroup *iter;
1847
1848 spin_lock(&memcg_oom_lock);
1849 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1850 for_each_mem_cgroup_tree(iter, memcg)
1851 iter->oom_lock = false;
1852 spin_unlock(&memcg_oom_lock);
1853 }
1854
1855 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1856 {
1857 struct mem_cgroup *iter;
1858
1859 spin_lock(&memcg_oom_lock);
1860 for_each_mem_cgroup_tree(iter, memcg)
1861 iter->under_oom++;
1862 spin_unlock(&memcg_oom_lock);
1863 }
1864
1865 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1866 {
1867 struct mem_cgroup *iter;
1868
1869 /*
1870 * Be careful about under_oom underflows becase a child memcg
1871 * could have been added after mem_cgroup_mark_under_oom.
1872 */
1873 spin_lock(&memcg_oom_lock);
1874 for_each_mem_cgroup_tree(iter, memcg)
1875 if (iter->under_oom > 0)
1876 iter->under_oom--;
1877 spin_unlock(&memcg_oom_lock);
1878 }
1879
1880 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1881
1882 struct oom_wait_info {
1883 struct mem_cgroup *memcg;
1884 wait_queue_entry_t wait;
1885 };
1886
1887 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1888 unsigned mode, int sync, void *arg)
1889 {
1890 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1891 struct mem_cgroup *oom_wait_memcg;
1892 struct oom_wait_info *oom_wait_info;
1893
1894 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1895 oom_wait_memcg = oom_wait_info->memcg;
1896
1897 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1898 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1899 return 0;
1900 return autoremove_wake_function(wait, mode, sync, arg);
1901 }
1902
1903 static void memcg_oom_recover(struct mem_cgroup *memcg)
1904 {
1905 /*
1906 * For the following lockless ->under_oom test, the only required
1907 * guarantee is that it must see the state asserted by an OOM when
1908 * this function is called as a result of userland actions
1909 * triggered by the notification of the OOM. This is trivially
1910 * achieved by invoking mem_cgroup_mark_under_oom() before
1911 * triggering notification.
1912 */
1913 if (memcg && memcg->under_oom)
1914 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1915 }
1916
1917 enum oom_status {
1918 OOM_SUCCESS,
1919 OOM_FAILED,
1920 OOM_ASYNC,
1921 OOM_SKIPPED
1922 };
1923
1924 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1925 {
1926 enum oom_status ret;
1927 bool locked;
1928
1929 if (order > PAGE_ALLOC_COSTLY_ORDER)
1930 return OOM_SKIPPED;
1931
1932 memcg_memory_event(memcg, MEMCG_OOM);
1933
1934 /*
1935 * We are in the middle of the charge context here, so we
1936 * don't want to block when potentially sitting on a callstack
1937 * that holds all kinds of filesystem and mm locks.
1938 *
1939 * cgroup1 allows disabling the OOM killer and waiting for outside
1940 * handling until the charge can succeed; remember the context and put
1941 * the task to sleep at the end of the page fault when all locks are
1942 * released.
1943 *
1944 * On the other hand, in-kernel OOM killer allows for an async victim
1945 * memory reclaim (oom_reaper) and that means that we are not solely
1946 * relying on the oom victim to make a forward progress and we can
1947 * invoke the oom killer here.
1948 *
1949 * Please note that mem_cgroup_out_of_memory might fail to find a
1950 * victim and then we have to bail out from the charge path.
1951 */
1952 if (memcg->oom_kill_disable) {
1953 if (!current->in_user_fault)
1954 return OOM_SKIPPED;
1955 css_get(&memcg->css);
1956 current->memcg_in_oom = memcg;
1957 current->memcg_oom_gfp_mask = mask;
1958 current->memcg_oom_order = order;
1959
1960 return OOM_ASYNC;
1961 }
1962
1963 mem_cgroup_mark_under_oom(memcg);
1964
1965 locked = mem_cgroup_oom_trylock(memcg);
1966
1967 if (locked)
1968 mem_cgroup_oom_notify(memcg);
1969
1970 mem_cgroup_unmark_under_oom(memcg);
1971 if (mem_cgroup_out_of_memory(memcg, mask, order))
1972 ret = OOM_SUCCESS;
1973 else
1974 ret = OOM_FAILED;
1975
1976 if (locked)
1977 mem_cgroup_oom_unlock(memcg);
1978
1979 return ret;
1980 }
1981
1982 /**
1983 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1984 * @handle: actually kill/wait or just clean up the OOM state
1985 *
1986 * This has to be called at the end of a page fault if the memcg OOM
1987 * handler was enabled.
1988 *
1989 * Memcg supports userspace OOM handling where failed allocations must
1990 * sleep on a waitqueue until the userspace task resolves the
1991 * situation. Sleeping directly in the charge context with all kinds
1992 * of locks held is not a good idea, instead we remember an OOM state
1993 * in the task and mem_cgroup_oom_synchronize() has to be called at
1994 * the end of the page fault to complete the OOM handling.
1995 *
1996 * Returns %true if an ongoing memcg OOM situation was detected and
1997 * completed, %false otherwise.
1998 */
1999 bool mem_cgroup_oom_synchronize(bool handle)
2000 {
2001 struct mem_cgroup *memcg = current->memcg_in_oom;
2002 struct oom_wait_info owait;
2003 bool locked;
2004
2005 /* OOM is global, do not handle */
2006 if (!memcg)
2007 return false;
2008
2009 if (!handle)
2010 goto cleanup;
2011
2012 owait.memcg = memcg;
2013 owait.wait.flags = 0;
2014 owait.wait.func = memcg_oom_wake_function;
2015 owait.wait.private = current;
2016 INIT_LIST_HEAD(&owait.wait.entry);
2017
2018 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2019 mem_cgroup_mark_under_oom(memcg);
2020
2021 locked = mem_cgroup_oom_trylock(memcg);
2022
2023 if (locked)
2024 mem_cgroup_oom_notify(memcg);
2025
2026 if (locked && !memcg->oom_kill_disable) {
2027 mem_cgroup_unmark_under_oom(memcg);
2028 finish_wait(&memcg_oom_waitq, &owait.wait);
2029 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2030 current->memcg_oom_order);
2031 } else {
2032 schedule();
2033 mem_cgroup_unmark_under_oom(memcg);
2034 finish_wait(&memcg_oom_waitq, &owait.wait);
2035 }
2036
2037 if (locked) {
2038 mem_cgroup_oom_unlock(memcg);
2039 /*
2040 * There is no guarantee that an OOM-lock contender
2041 * sees the wakeups triggered by the OOM kill
2042 * uncharges. Wake any sleepers explicitely.
2043 */
2044 memcg_oom_recover(memcg);
2045 }
2046 cleanup:
2047 current->memcg_in_oom = NULL;
2048 css_put(&memcg->css);
2049 return true;
2050 }
2051
2052 /**
2053 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2054 * @victim: task to be killed by the OOM killer
2055 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2056 *
2057 * Returns a pointer to a memory cgroup, which has to be cleaned up
2058 * by killing all belonging OOM-killable tasks.
2059 *
2060 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2061 */
2062 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2063 struct mem_cgroup *oom_domain)
2064 {
2065 struct mem_cgroup *oom_group = NULL;
2066 struct mem_cgroup *memcg;
2067
2068 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2069 return NULL;
2070
2071 if (!oom_domain)
2072 oom_domain = root_mem_cgroup;
2073
2074 rcu_read_lock();
2075
2076 memcg = mem_cgroup_from_task(victim);
2077 if (memcg == root_mem_cgroup)
2078 goto out;
2079
2080 /*
2081 * If the victim task has been asynchronously moved to a different
2082 * memory cgroup, we might end up killing tasks outside oom_domain.
2083 * In this case it's better to ignore memory.group.oom.
2084 */
2085 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2086 goto out;
2087
2088 /*
2089 * Traverse the memory cgroup hierarchy from the victim task's
2090 * cgroup up to the OOMing cgroup (or root) to find the
2091 * highest-level memory cgroup with oom.group set.
2092 */
2093 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2094 if (memcg->oom_group)
2095 oom_group = memcg;
2096
2097 if (memcg == oom_domain)
2098 break;
2099 }
2100
2101 if (oom_group)
2102 css_get(&oom_group->css);
2103 out:
2104 rcu_read_unlock();
2105
2106 return oom_group;
2107 }
2108
2109 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2110 {
2111 pr_info("Tasks in ");
2112 pr_cont_cgroup_path(memcg->css.cgroup);
2113 pr_cont(" are going to be killed due to memory.oom.group set\n");
2114 }
2115
2116 /**
2117 * lock_page_memcg - lock a page->mem_cgroup binding
2118 * @page: the page
2119 *
2120 * This function protects unlocked LRU pages from being moved to
2121 * another cgroup.
2122 *
2123 * It ensures lifetime of the returned memcg. Caller is responsible
2124 * for the lifetime of the page; __unlock_page_memcg() is available
2125 * when @page might get freed inside the locked section.
2126 */
2127 struct mem_cgroup *lock_page_memcg(struct page *page)
2128 {
2129 struct page *head = compound_head(page); /* rmap on tail pages */
2130 struct mem_cgroup *memcg;
2131 unsigned long flags;
2132
2133 /*
2134 * The RCU lock is held throughout the transaction. The fast
2135 * path can get away without acquiring the memcg->move_lock
2136 * because page moving starts with an RCU grace period.
2137 *
2138 * The RCU lock also protects the memcg from being freed when
2139 * the page state that is going to change is the only thing
2140 * preventing the page itself from being freed. E.g. writeback
2141 * doesn't hold a page reference and relies on PG_writeback to
2142 * keep off truncation, migration and so forth.
2143 */
2144 rcu_read_lock();
2145
2146 if (mem_cgroup_disabled())
2147 return NULL;
2148 again:
2149 memcg = head->mem_cgroup;
2150 if (unlikely(!memcg))
2151 return NULL;
2152
2153 if (atomic_read(&memcg->moving_account) <= 0)
2154 return memcg;
2155
2156 spin_lock_irqsave(&memcg->move_lock, flags);
2157 if (memcg != head->mem_cgroup) {
2158 spin_unlock_irqrestore(&memcg->move_lock, flags);
2159 goto again;
2160 }
2161
2162 /*
2163 * When charge migration first begins, we can have locked and
2164 * unlocked page stat updates happening concurrently. Track
2165 * the task who has the lock for unlock_page_memcg().
2166 */
2167 memcg->move_lock_task = current;
2168 memcg->move_lock_flags = flags;
2169
2170 return memcg;
2171 }
2172 EXPORT_SYMBOL(lock_page_memcg);
2173
2174 /**
2175 * __unlock_page_memcg - unlock and unpin a memcg
2176 * @memcg: the memcg
2177 *
2178 * Unlock and unpin a memcg returned by lock_page_memcg().
2179 */
2180 void __unlock_page_memcg(struct mem_cgroup *memcg)
2181 {
2182 if (memcg && memcg->move_lock_task == current) {
2183 unsigned long flags = memcg->move_lock_flags;
2184
2185 memcg->move_lock_task = NULL;
2186 memcg->move_lock_flags = 0;
2187
2188 spin_unlock_irqrestore(&memcg->move_lock, flags);
2189 }
2190
2191 rcu_read_unlock();
2192 }
2193
2194 /**
2195 * unlock_page_memcg - unlock a page->mem_cgroup binding
2196 * @page: the page
2197 */
2198 void unlock_page_memcg(struct page *page)
2199 {
2200 struct page *head = compound_head(page);
2201
2202 __unlock_page_memcg(head->mem_cgroup);
2203 }
2204 EXPORT_SYMBOL(unlock_page_memcg);
2205
2206 struct memcg_stock_pcp {
2207 struct mem_cgroup *cached; /* this never be root cgroup */
2208 unsigned int nr_pages;
2209
2210 #ifdef CONFIG_MEMCG_KMEM
2211 struct obj_cgroup *cached_objcg;
2212 unsigned int nr_bytes;
2213 #endif
2214
2215 struct work_struct work;
2216 unsigned long flags;
2217 #define FLUSHING_CACHED_CHARGE 0
2218 };
2219 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2220 static DEFINE_MUTEX(percpu_charge_mutex);
2221
2222 #ifdef CONFIG_MEMCG_KMEM
2223 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2224 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2225 struct mem_cgroup *root_memcg);
2226
2227 #else
2228 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2229 {
2230 }
2231 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2232 struct mem_cgroup *root_memcg)
2233 {
2234 return false;
2235 }
2236 #endif
2237
2238 /**
2239 * consume_stock: Try to consume stocked charge on this cpu.
2240 * @memcg: memcg to consume from.
2241 * @nr_pages: how many pages to charge.
2242 *
2243 * The charges will only happen if @memcg matches the current cpu's memcg
2244 * stock, and at least @nr_pages are available in that stock. Failure to
2245 * service an allocation will refill the stock.
2246 *
2247 * returns true if successful, false otherwise.
2248 */
2249 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2250 {
2251 struct memcg_stock_pcp *stock;
2252 unsigned long flags;
2253 bool ret = false;
2254
2255 if (nr_pages > MEMCG_CHARGE_BATCH)
2256 return ret;
2257
2258 local_irq_save(flags);
2259
2260 stock = this_cpu_ptr(&memcg_stock);
2261 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2262 stock->nr_pages -= nr_pages;
2263 ret = true;
2264 }
2265
2266 local_irq_restore(flags);
2267
2268 return ret;
2269 }
2270
2271 /*
2272 * Returns stocks cached in percpu and reset cached information.
2273 */
2274 static void drain_stock(struct memcg_stock_pcp *stock)
2275 {
2276 struct mem_cgroup *old = stock->cached;
2277
2278 if (!old)
2279 return;
2280
2281 if (stock->nr_pages) {
2282 page_counter_uncharge(&old->memory, stock->nr_pages);
2283 if (do_memsw_account())
2284 page_counter_uncharge(&old->memsw, stock->nr_pages);
2285 stock->nr_pages = 0;
2286 }
2287
2288 css_put(&old->css);
2289 stock->cached = NULL;
2290 }
2291
2292 static void drain_local_stock(struct work_struct *dummy)
2293 {
2294 struct memcg_stock_pcp *stock;
2295 unsigned long flags;
2296
2297 /*
2298 * The only protection from memory hotplug vs. drain_stock races is
2299 * that we always operate on local CPU stock here with IRQ disabled
2300 */
2301 local_irq_save(flags);
2302
2303 stock = this_cpu_ptr(&memcg_stock);
2304 drain_obj_stock(stock);
2305 drain_stock(stock);
2306 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2307
2308 local_irq_restore(flags);
2309 }
2310
2311 /*
2312 * Cache charges(val) to local per_cpu area.
2313 * This will be consumed by consume_stock() function, later.
2314 */
2315 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2316 {
2317 struct memcg_stock_pcp *stock;
2318 unsigned long flags;
2319
2320 local_irq_save(flags);
2321
2322 stock = this_cpu_ptr(&memcg_stock);
2323 if (stock->cached != memcg) { /* reset if necessary */
2324 drain_stock(stock);
2325 css_get(&memcg->css);
2326 stock->cached = memcg;
2327 }
2328 stock->nr_pages += nr_pages;
2329
2330 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2331 drain_stock(stock);
2332
2333 local_irq_restore(flags);
2334 }
2335
2336 /*
2337 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2338 * of the hierarchy under it.
2339 */
2340 static void drain_all_stock(struct mem_cgroup *root_memcg)
2341 {
2342 int cpu, curcpu;
2343
2344 /* If someone's already draining, avoid adding running more workers. */
2345 if (!mutex_trylock(&percpu_charge_mutex))
2346 return;
2347 /*
2348 * Notify other cpus that system-wide "drain" is running
2349 * We do not care about races with the cpu hotplug because cpu down
2350 * as well as workers from this path always operate on the local
2351 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2352 */
2353 curcpu = get_cpu();
2354 for_each_online_cpu(cpu) {
2355 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2356 struct mem_cgroup *memcg;
2357 bool flush = false;
2358
2359 rcu_read_lock();
2360 memcg = stock->cached;
2361 if (memcg && stock->nr_pages &&
2362 mem_cgroup_is_descendant(memcg, root_memcg))
2363 flush = true;
2364 if (obj_stock_flush_required(stock, root_memcg))
2365 flush = true;
2366 rcu_read_unlock();
2367
2368 if (flush &&
2369 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2370 if (cpu == curcpu)
2371 drain_local_stock(&stock->work);
2372 else
2373 schedule_work_on(cpu, &stock->work);
2374 }
2375 }
2376 put_cpu();
2377 mutex_unlock(&percpu_charge_mutex);
2378 }
2379
2380 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2381 {
2382 struct memcg_stock_pcp *stock;
2383 struct mem_cgroup *memcg, *mi;
2384
2385 stock = &per_cpu(memcg_stock, cpu);
2386 drain_stock(stock);
2387
2388 for_each_mem_cgroup(memcg) {
2389 int i;
2390
2391 for (i = 0; i < MEMCG_NR_STAT; i++) {
2392 int nid;
2393 long x;
2394
2395 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2396 if (x)
2397 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2398 atomic_long_add(x, &memcg->vmstats[i]);
2399
2400 if (i >= NR_VM_NODE_STAT_ITEMS)
2401 continue;
2402
2403 for_each_node(nid) {
2404 struct mem_cgroup_per_node *pn;
2405
2406 pn = mem_cgroup_nodeinfo(memcg, nid);
2407 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2408 if (x)
2409 do {
2410 atomic_long_add(x, &pn->lruvec_stat[i]);
2411 } while ((pn = parent_nodeinfo(pn, nid)));
2412 }
2413 }
2414
2415 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2416 long x;
2417
2418 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2419 if (x)
2420 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2421 atomic_long_add(x, &memcg->vmevents[i]);
2422 }
2423 }
2424
2425 return 0;
2426 }
2427
2428 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2429 unsigned int nr_pages,
2430 gfp_t gfp_mask)
2431 {
2432 unsigned long nr_reclaimed = 0;
2433
2434 do {
2435 unsigned long pflags;
2436
2437 if (page_counter_read(&memcg->memory) <=
2438 READ_ONCE(memcg->memory.high))
2439 continue;
2440
2441 memcg_memory_event(memcg, MEMCG_HIGH);
2442
2443 psi_memstall_enter(&pflags);
2444 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2445 gfp_mask, true);
2446 psi_memstall_leave(&pflags);
2447 } while ((memcg = parent_mem_cgroup(memcg)) &&
2448 !mem_cgroup_is_root(memcg));
2449
2450 return nr_reclaimed;
2451 }
2452
2453 static void high_work_func(struct work_struct *work)
2454 {
2455 struct mem_cgroup *memcg;
2456
2457 memcg = container_of(work, struct mem_cgroup, high_work);
2458 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2459 }
2460
2461 /*
2462 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2463 * enough to still cause a significant slowdown in most cases, while still
2464 * allowing diagnostics and tracing to proceed without becoming stuck.
2465 */
2466 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2467
2468 /*
2469 * When calculating the delay, we use these either side of the exponentiation to
2470 * maintain precision and scale to a reasonable number of jiffies (see the table
2471 * below.
2472 *
2473 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2474 * overage ratio to a delay.
2475 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2476 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2477 * to produce a reasonable delay curve.
2478 *
2479 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2480 * reasonable delay curve compared to precision-adjusted overage, not
2481 * penalising heavily at first, but still making sure that growth beyond the
2482 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2483 * example, with a high of 100 megabytes:
2484 *
2485 * +-------+------------------------+
2486 * | usage | time to allocate in ms |
2487 * +-------+------------------------+
2488 * | 100M | 0 |
2489 * | 101M | 6 |
2490 * | 102M | 25 |
2491 * | 103M | 57 |
2492 * | 104M | 102 |
2493 * | 105M | 159 |
2494 * | 106M | 230 |
2495 * | 107M | 313 |
2496 * | 108M | 409 |
2497 * | 109M | 518 |
2498 * | 110M | 639 |
2499 * | 111M | 774 |
2500 * | 112M | 921 |
2501 * | 113M | 1081 |
2502 * | 114M | 1254 |
2503 * | 115M | 1439 |
2504 * | 116M | 1638 |
2505 * | 117M | 1849 |
2506 * | 118M | 2000 |
2507 * | 119M | 2000 |
2508 * | 120M | 2000 |
2509 * +-------+------------------------+
2510 */
2511 #define MEMCG_DELAY_PRECISION_SHIFT 20
2512 #define MEMCG_DELAY_SCALING_SHIFT 14
2513
2514 static u64 calculate_overage(unsigned long usage, unsigned long high)
2515 {
2516 u64 overage;
2517
2518 if (usage <= high)
2519 return 0;
2520
2521 /*
2522 * Prevent division by 0 in overage calculation by acting as if
2523 * it was a threshold of 1 page
2524 */
2525 high = max(high, 1UL);
2526
2527 overage = usage - high;
2528 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2529 return div64_u64(overage, high);
2530 }
2531
2532 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2533 {
2534 u64 overage, max_overage = 0;
2535
2536 do {
2537 overage = calculate_overage(page_counter_read(&memcg->memory),
2538 READ_ONCE(memcg->memory.high));
2539 max_overage = max(overage, max_overage);
2540 } while ((memcg = parent_mem_cgroup(memcg)) &&
2541 !mem_cgroup_is_root(memcg));
2542
2543 return max_overage;
2544 }
2545
2546 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2547 {
2548 u64 overage, max_overage = 0;
2549
2550 do {
2551 overage = calculate_overage(page_counter_read(&memcg->swap),
2552 READ_ONCE(memcg->swap.high));
2553 if (overage)
2554 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2555 max_overage = max(overage, max_overage);
2556 } while ((memcg = parent_mem_cgroup(memcg)) &&
2557 !mem_cgroup_is_root(memcg));
2558
2559 return max_overage;
2560 }
2561
2562 /*
2563 * Get the number of jiffies that we should penalise a mischievous cgroup which
2564 * is exceeding its memory.high by checking both it and its ancestors.
2565 */
2566 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2567 unsigned int nr_pages,
2568 u64 max_overage)
2569 {
2570 unsigned long penalty_jiffies;
2571
2572 if (!max_overage)
2573 return 0;
2574
2575 /*
2576 * We use overage compared to memory.high to calculate the number of
2577 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2578 * fairly lenient on small overages, and increasingly harsh when the
2579 * memcg in question makes it clear that it has no intention of stopping
2580 * its crazy behaviour, so we exponentially increase the delay based on
2581 * overage amount.
2582 */
2583 penalty_jiffies = max_overage * max_overage * HZ;
2584 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2585 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2586
2587 /*
2588 * Factor in the task's own contribution to the overage, such that four
2589 * N-sized allocations are throttled approximately the same as one
2590 * 4N-sized allocation.
2591 *
2592 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2593 * larger the current charge patch is than that.
2594 */
2595 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2596 }
2597
2598 /*
2599 * Scheduled by try_charge() to be executed from the userland return path
2600 * and reclaims memory over the high limit.
2601 */
2602 void mem_cgroup_handle_over_high(void)
2603 {
2604 unsigned long penalty_jiffies;
2605 unsigned long pflags;
2606 unsigned long nr_reclaimed;
2607 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2608 int nr_retries = MAX_RECLAIM_RETRIES;
2609 struct mem_cgroup *memcg;
2610 bool in_retry = false;
2611
2612 if (likely(!nr_pages))
2613 return;
2614
2615 memcg = get_mem_cgroup_from_mm(current->mm);
2616 current->memcg_nr_pages_over_high = 0;
2617
2618 retry_reclaim:
2619 /*
2620 * The allocating task should reclaim at least the batch size, but for
2621 * subsequent retries we only want to do what's necessary to prevent oom
2622 * or breaching resource isolation.
2623 *
2624 * This is distinct from memory.max or page allocator behaviour because
2625 * memory.high is currently batched, whereas memory.max and the page
2626 * allocator run every time an allocation is made.
2627 */
2628 nr_reclaimed = reclaim_high(memcg,
2629 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2630 GFP_KERNEL);
2631
2632 /*
2633 * memory.high is breached and reclaim is unable to keep up. Throttle
2634 * allocators proactively to slow down excessive growth.
2635 */
2636 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2637 mem_find_max_overage(memcg));
2638
2639 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2640 swap_find_max_overage(memcg));
2641
2642 /*
2643 * Clamp the max delay per usermode return so as to still keep the
2644 * application moving forwards and also permit diagnostics, albeit
2645 * extremely slowly.
2646 */
2647 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2648
2649 /*
2650 * Don't sleep if the amount of jiffies this memcg owes us is so low
2651 * that it's not even worth doing, in an attempt to be nice to those who
2652 * go only a small amount over their memory.high value and maybe haven't
2653 * been aggressively reclaimed enough yet.
2654 */
2655 if (penalty_jiffies <= HZ / 100)
2656 goto out;
2657
2658 /*
2659 * If reclaim is making forward progress but we're still over
2660 * memory.high, we want to encourage that rather than doing allocator
2661 * throttling.
2662 */
2663 if (nr_reclaimed || nr_retries--) {
2664 in_retry = true;
2665 goto retry_reclaim;
2666 }
2667
2668 /*
2669 * If we exit early, we're guaranteed to die (since
2670 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2671 * need to account for any ill-begotten jiffies to pay them off later.
2672 */
2673 psi_memstall_enter(&pflags);
2674 schedule_timeout_killable(penalty_jiffies);
2675 psi_memstall_leave(&pflags);
2676
2677 out:
2678 css_put(&memcg->css);
2679 }
2680
2681 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2682 unsigned int nr_pages)
2683 {
2684 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2685 int nr_retries = MAX_RECLAIM_RETRIES;
2686 struct mem_cgroup *mem_over_limit;
2687 struct page_counter *counter;
2688 enum oom_status oom_status;
2689 unsigned long nr_reclaimed;
2690 bool may_swap = true;
2691 bool drained = false;
2692 unsigned long pflags;
2693
2694 if (mem_cgroup_is_root(memcg))
2695 return 0;
2696 retry:
2697 if (consume_stock(memcg, nr_pages))
2698 return 0;
2699
2700 if (!do_memsw_account() ||
2701 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2702 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2703 goto done_restock;
2704 if (do_memsw_account())
2705 page_counter_uncharge(&memcg->memsw, batch);
2706 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2707 } else {
2708 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2709 may_swap = false;
2710 }
2711
2712 if (batch > nr_pages) {
2713 batch = nr_pages;
2714 goto retry;
2715 }
2716
2717 /*
2718 * Memcg doesn't have a dedicated reserve for atomic
2719 * allocations. But like the global atomic pool, we need to
2720 * put the burden of reclaim on regular allocation requests
2721 * and let these go through as privileged allocations.
2722 */
2723 if (gfp_mask & __GFP_ATOMIC)
2724 goto force;
2725
2726 /*
2727 * Unlike in global OOM situations, memcg is not in a physical
2728 * memory shortage. Allow dying and OOM-killed tasks to
2729 * bypass the last charges so that they can exit quickly and
2730 * free their memory.
2731 */
2732 if (unlikely(should_force_charge()))
2733 goto force;
2734
2735 /*
2736 * Prevent unbounded recursion when reclaim operations need to
2737 * allocate memory. This might exceed the limits temporarily,
2738 * but we prefer facilitating memory reclaim and getting back
2739 * under the limit over triggering OOM kills in these cases.
2740 */
2741 if (unlikely(current->flags & PF_MEMALLOC))
2742 goto force;
2743
2744 if (unlikely(task_in_memcg_oom(current)))
2745 goto nomem;
2746
2747 if (!gfpflags_allow_blocking(gfp_mask))
2748 goto nomem;
2749
2750 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2751
2752 psi_memstall_enter(&pflags);
2753 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2754 gfp_mask, may_swap);
2755 psi_memstall_leave(&pflags);
2756
2757 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2758 goto retry;
2759
2760 if (!drained) {
2761 drain_all_stock(mem_over_limit);
2762 drained = true;
2763 goto retry;
2764 }
2765
2766 if (gfp_mask & __GFP_NORETRY)
2767 goto nomem;
2768 /*
2769 * Even though the limit is exceeded at this point, reclaim
2770 * may have been able to free some pages. Retry the charge
2771 * before killing the task.
2772 *
2773 * Only for regular pages, though: huge pages are rather
2774 * unlikely to succeed so close to the limit, and we fall back
2775 * to regular pages anyway in case of failure.
2776 */
2777 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2778 goto retry;
2779 /*
2780 * At task move, charge accounts can be doubly counted. So, it's
2781 * better to wait until the end of task_move if something is going on.
2782 */
2783 if (mem_cgroup_wait_acct_move(mem_over_limit))
2784 goto retry;
2785
2786 if (nr_retries--)
2787 goto retry;
2788
2789 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2790 goto nomem;
2791
2792 if (gfp_mask & __GFP_NOFAIL)
2793 goto force;
2794
2795 if (fatal_signal_pending(current))
2796 goto force;
2797
2798 /*
2799 * keep retrying as long as the memcg oom killer is able to make
2800 * a forward progress or bypass the charge if the oom killer
2801 * couldn't make any progress.
2802 */
2803 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2804 get_order(nr_pages * PAGE_SIZE));
2805 switch (oom_status) {
2806 case OOM_SUCCESS:
2807 nr_retries = MAX_RECLAIM_RETRIES;
2808 goto retry;
2809 case OOM_FAILED:
2810 goto force;
2811 default:
2812 goto nomem;
2813 }
2814 nomem:
2815 if (!(gfp_mask & __GFP_NOFAIL))
2816 return -ENOMEM;
2817 force:
2818 /*
2819 * The allocation either can't fail or will lead to more memory
2820 * being freed very soon. Allow memory usage go over the limit
2821 * temporarily by force charging it.
2822 */
2823 page_counter_charge(&memcg->memory, nr_pages);
2824 if (do_memsw_account())
2825 page_counter_charge(&memcg->memsw, nr_pages);
2826
2827 return 0;
2828
2829 done_restock:
2830 if (batch > nr_pages)
2831 refill_stock(memcg, batch - nr_pages);
2832
2833 /*
2834 * If the hierarchy is above the normal consumption range, schedule
2835 * reclaim on returning to userland. We can perform reclaim here
2836 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2837 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2838 * not recorded as it most likely matches current's and won't
2839 * change in the meantime. As high limit is checked again before
2840 * reclaim, the cost of mismatch is negligible.
2841 */
2842 do {
2843 bool mem_high, swap_high;
2844
2845 mem_high = page_counter_read(&memcg->memory) >
2846 READ_ONCE(memcg->memory.high);
2847 swap_high = page_counter_read(&memcg->swap) >
2848 READ_ONCE(memcg->swap.high);
2849
2850 /* Don't bother a random interrupted task */
2851 if (in_interrupt()) {
2852 if (mem_high) {
2853 schedule_work(&memcg->high_work);
2854 break;
2855 }
2856 continue;
2857 }
2858
2859 if (mem_high || swap_high) {
2860 /*
2861 * The allocating tasks in this cgroup will need to do
2862 * reclaim or be throttled to prevent further growth
2863 * of the memory or swap footprints.
2864 *
2865 * Target some best-effort fairness between the tasks,
2866 * and distribute reclaim work and delay penalties
2867 * based on how much each task is actually allocating.
2868 */
2869 current->memcg_nr_pages_over_high += batch;
2870 set_notify_resume(current);
2871 break;
2872 }
2873 } while ((memcg = parent_mem_cgroup(memcg)));
2874
2875 return 0;
2876 }
2877
2878 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2879 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2880 {
2881 if (mem_cgroup_is_root(memcg))
2882 return;
2883
2884 page_counter_uncharge(&memcg->memory, nr_pages);
2885 if (do_memsw_account())
2886 page_counter_uncharge(&memcg->memsw, nr_pages);
2887 }
2888 #endif
2889
2890 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2891 {
2892 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2893 /*
2894 * Any of the following ensures page->mem_cgroup stability:
2895 *
2896 * - the page lock
2897 * - LRU isolation
2898 * - lock_page_memcg()
2899 * - exclusive reference
2900 */
2901 page->mem_cgroup = memcg;
2902 }
2903
2904 #ifdef CONFIG_MEMCG_KMEM
2905 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2906 gfp_t gfp)
2907 {
2908 unsigned int objects = objs_per_slab_page(s, page);
2909 void *vec;
2910
2911 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2912 page_to_nid(page));
2913 if (!vec)
2914 return -ENOMEM;
2915
2916 if (cmpxchg(&page->obj_cgroups, NULL,
2917 (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
2918 kfree(vec);
2919 else
2920 kmemleak_not_leak(vec);
2921
2922 return 0;
2923 }
2924
2925 /*
2926 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2927 *
2928 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2929 * cgroup_mutex, etc.
2930 */
2931 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2932 {
2933 struct page *page;
2934
2935 if (mem_cgroup_disabled())
2936 return NULL;
2937
2938 page = virt_to_head_page(p);
2939
2940 /*
2941 * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer
2942 * or a pointer to obj_cgroup vector. In the latter case the lowest
2943 * bit of the pointer is set.
2944 * The page->mem_cgroup pointer can be asynchronously changed
2945 * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed
2946 * from a valid memcg pointer to objcg vector or back.
2947 */
2948 if (!page->mem_cgroup)
2949 return NULL;
2950
2951 /*
2952 * Slab objects are accounted individually, not per-page.
2953 * Memcg membership data for each individual object is saved in
2954 * the page->obj_cgroups.
2955 */
2956 if (page_has_obj_cgroups(page)) {
2957 struct obj_cgroup *objcg;
2958 unsigned int off;
2959
2960 off = obj_to_index(page->slab_cache, page, p);
2961 objcg = page_obj_cgroups(page)[off];
2962 if (objcg)
2963 return obj_cgroup_memcg(objcg);
2964
2965 return NULL;
2966 }
2967
2968 /* All other pages use page->mem_cgroup */
2969 return page->mem_cgroup;
2970 }
2971
2972 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2973 {
2974 struct obj_cgroup *objcg = NULL;
2975 struct mem_cgroup *memcg;
2976
2977 if (memcg_kmem_bypass())
2978 return NULL;
2979
2980 rcu_read_lock();
2981 if (unlikely(active_memcg()))
2982 memcg = active_memcg();
2983 else
2984 memcg = mem_cgroup_from_task(current);
2985
2986 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2987 objcg = rcu_dereference(memcg->objcg);
2988 if (objcg && obj_cgroup_tryget(objcg))
2989 break;
2990 objcg = NULL;
2991 }
2992 rcu_read_unlock();
2993
2994 return objcg;
2995 }
2996
2997 static int memcg_alloc_cache_id(void)
2998 {
2999 int id, size;
3000 int err;
3001
3002 id = ida_simple_get(&memcg_cache_ida,
3003 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3004 if (id < 0)
3005 return id;
3006
3007 if (id < memcg_nr_cache_ids)
3008 return id;
3009
3010 /*
3011 * There's no space for the new id in memcg_caches arrays,
3012 * so we have to grow them.
3013 */
3014 down_write(&memcg_cache_ids_sem);
3015
3016 size = 2 * (id + 1);
3017 if (size < MEMCG_CACHES_MIN_SIZE)
3018 size = MEMCG_CACHES_MIN_SIZE;
3019 else if (size > MEMCG_CACHES_MAX_SIZE)
3020 size = MEMCG_CACHES_MAX_SIZE;
3021
3022 err = memcg_update_all_list_lrus(size);
3023 if (!err)
3024 memcg_nr_cache_ids = size;
3025
3026 up_write(&memcg_cache_ids_sem);
3027
3028 if (err) {
3029 ida_simple_remove(&memcg_cache_ida, id);
3030 return err;
3031 }
3032 return id;
3033 }
3034
3035 static void memcg_free_cache_id(int id)
3036 {
3037 ida_simple_remove(&memcg_cache_ida, id);
3038 }
3039
3040 /**
3041 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3042 * @memcg: memory cgroup to charge
3043 * @gfp: reclaim mode
3044 * @nr_pages: number of pages to charge
3045 *
3046 * Returns 0 on success, an error code on failure.
3047 */
3048 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3049 unsigned int nr_pages)
3050 {
3051 struct page_counter *counter;
3052 int ret;
3053
3054 ret = try_charge(memcg, gfp, nr_pages);
3055 if (ret)
3056 return ret;
3057
3058 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3059 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3060
3061 /*
3062 * Enforce __GFP_NOFAIL allocation because callers are not
3063 * prepared to see failures and likely do not have any failure
3064 * handling code.
3065 */
3066 if (gfp & __GFP_NOFAIL) {
3067 page_counter_charge(&memcg->kmem, nr_pages);
3068 return 0;
3069 }
3070 cancel_charge(memcg, nr_pages);
3071 return -ENOMEM;
3072 }
3073 return 0;
3074 }
3075
3076 /**
3077 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3078 * @memcg: memcg to uncharge
3079 * @nr_pages: number of pages to uncharge
3080 */
3081 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3082 {
3083 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3084 page_counter_uncharge(&memcg->kmem, nr_pages);
3085
3086 page_counter_uncharge(&memcg->memory, nr_pages);
3087 if (do_memsw_account())
3088 page_counter_uncharge(&memcg->memsw, nr_pages);
3089 }
3090
3091 /**
3092 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3093 * @page: page to charge
3094 * @gfp: reclaim mode
3095 * @order: allocation order
3096 *
3097 * Returns 0 on success, an error code on failure.
3098 */
3099 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3100 {
3101 struct mem_cgroup *memcg;
3102 int ret = 0;
3103
3104 memcg = get_mem_cgroup_from_current();
3105 if (memcg && !mem_cgroup_is_root(memcg)) {
3106 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3107 if (!ret) {
3108 page->mem_cgroup = memcg;
3109 __SetPageKmemcg(page);
3110 return 0;
3111 }
3112 css_put(&memcg->css);
3113 }
3114 return ret;
3115 }
3116
3117 /**
3118 * __memcg_kmem_uncharge_page: uncharge a kmem page
3119 * @page: page to uncharge
3120 * @order: allocation order
3121 */
3122 void __memcg_kmem_uncharge_page(struct page *page, int order)
3123 {
3124 struct mem_cgroup *memcg = page->mem_cgroup;
3125 unsigned int nr_pages = 1 << order;
3126
3127 if (!memcg)
3128 return;
3129
3130 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3131 __memcg_kmem_uncharge(memcg, nr_pages);
3132 page->mem_cgroup = NULL;
3133 css_put(&memcg->css);
3134
3135 /* slab pages do not have PageKmemcg flag set */
3136 if (PageKmemcg(page))
3137 __ClearPageKmemcg(page);
3138 }
3139
3140 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3141 {
3142 struct memcg_stock_pcp *stock;
3143 unsigned long flags;
3144 bool ret = false;
3145
3146 local_irq_save(flags);
3147
3148 stock = this_cpu_ptr(&memcg_stock);
3149 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3150 stock->nr_bytes -= nr_bytes;
3151 ret = true;
3152 }
3153
3154 local_irq_restore(flags);
3155
3156 return ret;
3157 }
3158
3159 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3160 {
3161 struct obj_cgroup *old = stock->cached_objcg;
3162
3163 if (!old)
3164 return;
3165
3166 if (stock->nr_bytes) {
3167 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3168 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3169
3170 if (nr_pages) {
3171 rcu_read_lock();
3172 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3173 rcu_read_unlock();
3174 }
3175
3176 /*
3177 * The leftover is flushed to the centralized per-memcg value.
3178 * On the next attempt to refill obj stock it will be moved
3179 * to a per-cpu stock (probably, on an other CPU), see
3180 * refill_obj_stock().
3181 *
3182 * How often it's flushed is a trade-off between the memory
3183 * limit enforcement accuracy and potential CPU contention,
3184 * so it might be changed in the future.
3185 */
3186 atomic_add(nr_bytes, &old->nr_charged_bytes);
3187 stock->nr_bytes = 0;
3188 }
3189
3190 obj_cgroup_put(old);
3191 stock->cached_objcg = NULL;
3192 }
3193
3194 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3195 struct mem_cgroup *root_memcg)
3196 {
3197 struct mem_cgroup *memcg;
3198
3199 if (stock->cached_objcg) {
3200 memcg = obj_cgroup_memcg(stock->cached_objcg);
3201 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3202 return true;
3203 }
3204
3205 return false;
3206 }
3207
3208 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3209 {
3210 struct memcg_stock_pcp *stock;
3211 unsigned long flags;
3212
3213 local_irq_save(flags);
3214
3215 stock = this_cpu_ptr(&memcg_stock);
3216 if (stock->cached_objcg != objcg) { /* reset if necessary */
3217 drain_obj_stock(stock);
3218 obj_cgroup_get(objcg);
3219 stock->cached_objcg = objcg;
3220 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3221 }
3222 stock->nr_bytes += nr_bytes;
3223
3224 if (stock->nr_bytes > PAGE_SIZE)
3225 drain_obj_stock(stock);
3226
3227 local_irq_restore(flags);
3228 }
3229
3230 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3231 {
3232 struct mem_cgroup *memcg;
3233 unsigned int nr_pages, nr_bytes;
3234 int ret;
3235
3236 if (consume_obj_stock(objcg, size))
3237 return 0;
3238
3239 /*
3240 * In theory, memcg->nr_charged_bytes can have enough
3241 * pre-charged bytes to satisfy the allocation. However,
3242 * flushing memcg->nr_charged_bytes requires two atomic
3243 * operations, and memcg->nr_charged_bytes can't be big,
3244 * so it's better to ignore it and try grab some new pages.
3245 * memcg->nr_charged_bytes will be flushed in
3246 * refill_obj_stock(), called from this function or
3247 * independently later.
3248 */
3249 rcu_read_lock();
3250 retry:
3251 memcg = obj_cgroup_memcg(objcg);
3252 if (unlikely(!css_tryget(&memcg->css)))
3253 goto retry;
3254 rcu_read_unlock();
3255
3256 nr_pages = size >> PAGE_SHIFT;
3257 nr_bytes = size & (PAGE_SIZE - 1);
3258
3259 if (nr_bytes)
3260 nr_pages += 1;
3261
3262 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3263 if (!ret && nr_bytes)
3264 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3265
3266 css_put(&memcg->css);
3267 return ret;
3268 }
3269
3270 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3271 {
3272 refill_obj_stock(objcg, size);
3273 }
3274
3275 #endif /* CONFIG_MEMCG_KMEM */
3276
3277 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3278
3279 /*
3280 * Because tail pages are not marked as "used", set it. We're under
3281 * pgdat->lru_lock and migration entries setup in all page mappings.
3282 */
3283 void mem_cgroup_split_huge_fixup(struct page *head)
3284 {
3285 struct mem_cgroup *memcg = head->mem_cgroup;
3286 int i;
3287
3288 if (mem_cgroup_disabled())
3289 return;
3290
3291 for (i = 1; i < HPAGE_PMD_NR; i++) {
3292 css_get(&memcg->css);
3293 head[i].mem_cgroup = memcg;
3294 }
3295 }
3296 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3297
3298 #ifdef CONFIG_MEMCG_SWAP
3299 /**
3300 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3301 * @entry: swap entry to be moved
3302 * @from: mem_cgroup which the entry is moved from
3303 * @to: mem_cgroup which the entry is moved to
3304 *
3305 * It succeeds only when the swap_cgroup's record for this entry is the same
3306 * as the mem_cgroup's id of @from.
3307 *
3308 * Returns 0 on success, -EINVAL on failure.
3309 *
3310 * The caller must have charged to @to, IOW, called page_counter_charge() about
3311 * both res and memsw, and called css_get().
3312 */
3313 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3314 struct mem_cgroup *from, struct mem_cgroup *to)
3315 {
3316 unsigned short old_id, new_id;
3317
3318 old_id = mem_cgroup_id(from);
3319 new_id = mem_cgroup_id(to);
3320
3321 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3322 mod_memcg_state(from, MEMCG_SWAP, -1);
3323 mod_memcg_state(to, MEMCG_SWAP, 1);
3324 return 0;
3325 }
3326 return -EINVAL;
3327 }
3328 #else
3329 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3330 struct mem_cgroup *from, struct mem_cgroup *to)
3331 {
3332 return -EINVAL;
3333 }
3334 #endif
3335
3336 static DEFINE_MUTEX(memcg_max_mutex);
3337
3338 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3339 unsigned long max, bool memsw)
3340 {
3341 bool enlarge = false;
3342 bool drained = false;
3343 int ret;
3344 bool limits_invariant;
3345 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3346
3347 do {
3348 if (signal_pending(current)) {
3349 ret = -EINTR;
3350 break;
3351 }
3352
3353 mutex_lock(&memcg_max_mutex);
3354 /*
3355 * Make sure that the new limit (memsw or memory limit) doesn't
3356 * break our basic invariant rule memory.max <= memsw.max.
3357 */
3358 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3359 max <= memcg->memsw.max;
3360 if (!limits_invariant) {
3361 mutex_unlock(&memcg_max_mutex);
3362 ret = -EINVAL;
3363 break;
3364 }
3365 if (max > counter->max)
3366 enlarge = true;
3367 ret = page_counter_set_max(counter, max);
3368 mutex_unlock(&memcg_max_mutex);
3369
3370 if (!ret)
3371 break;
3372
3373 if (!drained) {
3374 drain_all_stock(memcg);
3375 drained = true;
3376 continue;
3377 }
3378
3379 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3380 GFP_KERNEL, !memsw)) {
3381 ret = -EBUSY;
3382 break;
3383 }
3384 } while (true);
3385
3386 if (!ret && enlarge)
3387 memcg_oom_recover(memcg);
3388
3389 return ret;
3390 }
3391
3392 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3393 gfp_t gfp_mask,
3394 unsigned long *total_scanned)
3395 {
3396 unsigned long nr_reclaimed = 0;
3397 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3398 unsigned long reclaimed;
3399 int loop = 0;
3400 struct mem_cgroup_tree_per_node *mctz;
3401 unsigned long excess;
3402 unsigned long nr_scanned;
3403
3404 if (order > 0)
3405 return 0;
3406
3407 mctz = soft_limit_tree_node(pgdat->node_id);
3408
3409 /*
3410 * Do not even bother to check the largest node if the root
3411 * is empty. Do it lockless to prevent lock bouncing. Races
3412 * are acceptable as soft limit is best effort anyway.
3413 */
3414 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3415 return 0;
3416
3417 /*
3418 * This loop can run a while, specially if mem_cgroup's continuously
3419 * keep exceeding their soft limit and putting the system under
3420 * pressure
3421 */
3422 do {
3423 if (next_mz)
3424 mz = next_mz;
3425 else
3426 mz = mem_cgroup_largest_soft_limit_node(mctz);
3427 if (!mz)
3428 break;
3429
3430 nr_scanned = 0;
3431 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3432 gfp_mask, &nr_scanned);
3433 nr_reclaimed += reclaimed;
3434 *total_scanned += nr_scanned;
3435 spin_lock_irq(&mctz->lock);
3436 __mem_cgroup_remove_exceeded(mz, mctz);
3437
3438 /*
3439 * If we failed to reclaim anything from this memory cgroup
3440 * it is time to move on to the next cgroup
3441 */
3442 next_mz = NULL;
3443 if (!reclaimed)
3444 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3445
3446 excess = soft_limit_excess(mz->memcg);
3447 /*
3448 * One school of thought says that we should not add
3449 * back the node to the tree if reclaim returns 0.
3450 * But our reclaim could return 0, simply because due
3451 * to priority we are exposing a smaller subset of
3452 * memory to reclaim from. Consider this as a longer
3453 * term TODO.
3454 */
3455 /* If excess == 0, no tree ops */
3456 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3457 spin_unlock_irq(&mctz->lock);
3458 css_put(&mz->memcg->css);
3459 loop++;
3460 /*
3461 * Could not reclaim anything and there are no more
3462 * mem cgroups to try or we seem to be looping without
3463 * reclaiming anything.
3464 */
3465 if (!nr_reclaimed &&
3466 (next_mz == NULL ||
3467 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3468 break;
3469 } while (!nr_reclaimed);
3470 if (next_mz)
3471 css_put(&next_mz->memcg->css);
3472 return nr_reclaimed;
3473 }
3474
3475 /*
3476 * Test whether @memcg has children, dead or alive. Note that this
3477 * function doesn't care whether @memcg has use_hierarchy enabled and
3478 * returns %true if there are child csses according to the cgroup
3479 * hierarchy. Testing use_hierarchy is the caller's responsibility.
3480 */
3481 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3482 {
3483 bool ret;
3484
3485 rcu_read_lock();
3486 ret = css_next_child(NULL, &memcg->css);
3487 rcu_read_unlock();
3488 return ret;
3489 }
3490
3491 /*
3492 * Reclaims as many pages from the given memcg as possible.
3493 *
3494 * Caller is responsible for holding css reference for memcg.
3495 */
3496 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3497 {
3498 int nr_retries = MAX_RECLAIM_RETRIES;
3499
3500 /* we call try-to-free pages for make this cgroup empty */
3501 lru_add_drain_all();
3502
3503 drain_all_stock(memcg);
3504
3505 /* try to free all pages in this cgroup */
3506 while (nr_retries && page_counter_read(&memcg->memory)) {
3507 int progress;
3508
3509 if (signal_pending(current))
3510 return -EINTR;
3511
3512 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3513 GFP_KERNEL, true);
3514 if (!progress) {
3515 nr_retries--;
3516 /* maybe some writeback is necessary */
3517 congestion_wait(BLK_RW_ASYNC, HZ/10);
3518 }
3519
3520 }
3521
3522 return 0;
3523 }
3524
3525 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3526 char *buf, size_t nbytes,
3527 loff_t off)
3528 {
3529 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3530
3531 if (mem_cgroup_is_root(memcg))
3532 return -EINVAL;
3533 return mem_cgroup_force_empty(memcg) ?: nbytes;
3534 }
3535
3536 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3537 struct cftype *cft)
3538 {
3539 return mem_cgroup_from_css(css)->use_hierarchy;
3540 }
3541
3542 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3543 struct cftype *cft, u64 val)
3544 {
3545 int retval = 0;
3546 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3547 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3548
3549 if (memcg->use_hierarchy == val)
3550 return 0;
3551
3552 /*
3553 * If parent's use_hierarchy is set, we can't make any modifications
3554 * in the child subtrees. If it is unset, then the change can
3555 * occur, provided the current cgroup has no children.
3556 *
3557 * For the root cgroup, parent_mem is NULL, we allow value to be
3558 * set if there are no children.
3559 */
3560 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3561 (val == 1 || val == 0)) {
3562 if (!memcg_has_children(memcg))
3563 memcg->use_hierarchy = val;
3564 else
3565 retval = -EBUSY;
3566 } else
3567 retval = -EINVAL;
3568
3569 return retval;
3570 }
3571
3572 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3573 {
3574 unsigned long val;
3575
3576 if (mem_cgroup_is_root(memcg)) {
3577 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3578 memcg_page_state(memcg, NR_ANON_MAPPED);
3579 if (swap)
3580 val += memcg_page_state(memcg, MEMCG_SWAP);
3581 } else {
3582 if (!swap)
3583 val = page_counter_read(&memcg->memory);
3584 else
3585 val = page_counter_read(&memcg->memsw);
3586 }
3587 return val;
3588 }
3589
3590 enum {
3591 RES_USAGE,
3592 RES_LIMIT,
3593 RES_MAX_USAGE,
3594 RES_FAILCNT,
3595 RES_SOFT_LIMIT,
3596 };
3597
3598 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3599 struct cftype *cft)
3600 {
3601 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3602 struct page_counter *counter;
3603
3604 switch (MEMFILE_TYPE(cft->private)) {
3605 case _MEM:
3606 counter = &memcg->memory;
3607 break;
3608 case _MEMSWAP:
3609 counter = &memcg->memsw;
3610 break;
3611 case _KMEM:
3612 counter = &memcg->kmem;
3613 break;
3614 case _TCP:
3615 counter = &memcg->tcpmem;
3616 break;
3617 default:
3618 BUG();
3619 }
3620
3621 switch (MEMFILE_ATTR(cft->private)) {
3622 case RES_USAGE:
3623 if (counter == &memcg->memory)
3624 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3625 if (counter == &memcg->memsw)
3626 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3627 return (u64)page_counter_read(counter) * PAGE_SIZE;
3628 case RES_LIMIT:
3629 return (u64)counter->max * PAGE_SIZE;
3630 case RES_MAX_USAGE:
3631 return (u64)counter->watermark * PAGE_SIZE;
3632 case RES_FAILCNT:
3633 return counter->failcnt;
3634 case RES_SOFT_LIMIT:
3635 return (u64)memcg->soft_limit * PAGE_SIZE;
3636 default:
3637 BUG();
3638 }
3639 }
3640
3641 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3642 {
3643 unsigned long stat[MEMCG_NR_STAT] = {0};
3644 struct mem_cgroup *mi;
3645 int node, cpu, i;
3646
3647 for_each_online_cpu(cpu)
3648 for (i = 0; i < MEMCG_NR_STAT; i++)
3649 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3650
3651 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3652 for (i = 0; i < MEMCG_NR_STAT; i++)
3653 atomic_long_add(stat[i], &mi->vmstats[i]);
3654
3655 for_each_node(node) {
3656 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3657 struct mem_cgroup_per_node *pi;
3658
3659 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3660 stat[i] = 0;
3661
3662 for_each_online_cpu(cpu)
3663 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3664 stat[i] += per_cpu(
3665 pn->lruvec_stat_cpu->count[i], cpu);
3666
3667 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3668 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3669 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3670 }
3671 }
3672
3673 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3674 {
3675 unsigned long events[NR_VM_EVENT_ITEMS];
3676 struct mem_cgroup *mi;
3677 int cpu, i;
3678
3679 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3680 events[i] = 0;
3681
3682 for_each_online_cpu(cpu)
3683 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3684 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3685 cpu);
3686
3687 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3688 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3689 atomic_long_add(events[i], &mi->vmevents[i]);
3690 }
3691
3692 #ifdef CONFIG_MEMCG_KMEM
3693 static int memcg_online_kmem(struct mem_cgroup *memcg)
3694 {
3695 struct obj_cgroup *objcg;
3696 int memcg_id;
3697
3698 if (cgroup_memory_nokmem)
3699 return 0;
3700
3701 BUG_ON(memcg->kmemcg_id >= 0);
3702 BUG_ON(memcg->kmem_state);
3703
3704 memcg_id = memcg_alloc_cache_id();
3705 if (memcg_id < 0)
3706 return memcg_id;
3707
3708 objcg = obj_cgroup_alloc();
3709 if (!objcg) {
3710 memcg_free_cache_id(memcg_id);
3711 return -ENOMEM;
3712 }
3713 objcg->memcg = memcg;
3714 rcu_assign_pointer(memcg->objcg, objcg);
3715
3716 static_branch_enable(&memcg_kmem_enabled_key);
3717
3718 /*
3719 * A memory cgroup is considered kmem-online as soon as it gets
3720 * kmemcg_id. Setting the id after enabling static branching will
3721 * guarantee no one starts accounting before all call sites are
3722 * patched.
3723 */
3724 memcg->kmemcg_id = memcg_id;
3725 memcg->kmem_state = KMEM_ONLINE;
3726
3727 return 0;
3728 }
3729
3730 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3731 {
3732 struct cgroup_subsys_state *css;
3733 struct mem_cgroup *parent, *child;
3734 int kmemcg_id;
3735
3736 if (memcg->kmem_state != KMEM_ONLINE)
3737 return;
3738
3739 memcg->kmem_state = KMEM_ALLOCATED;
3740
3741 parent = parent_mem_cgroup(memcg);
3742 if (!parent)
3743 parent = root_mem_cgroup;
3744
3745 memcg_reparent_objcgs(memcg, parent);
3746
3747 kmemcg_id = memcg->kmemcg_id;
3748 BUG_ON(kmemcg_id < 0);
3749
3750 /*
3751 * Change kmemcg_id of this cgroup and all its descendants to the
3752 * parent's id, and then move all entries from this cgroup's list_lrus
3753 * to ones of the parent. After we have finished, all list_lrus
3754 * corresponding to this cgroup are guaranteed to remain empty. The
3755 * ordering is imposed by list_lru_node->lock taken by
3756 * memcg_drain_all_list_lrus().
3757 */
3758 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3759 css_for_each_descendant_pre(css, &memcg->css) {
3760 child = mem_cgroup_from_css(css);
3761 BUG_ON(child->kmemcg_id != kmemcg_id);
3762 child->kmemcg_id = parent->kmemcg_id;
3763 if (!memcg->use_hierarchy)
3764 break;
3765 }
3766 rcu_read_unlock();
3767
3768 memcg_drain_all_list_lrus(kmemcg_id, parent);
3769
3770 memcg_free_cache_id(kmemcg_id);
3771 }
3772
3773 static void memcg_free_kmem(struct mem_cgroup *memcg)
3774 {
3775 /* css_alloc() failed, offlining didn't happen */
3776 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3777 memcg_offline_kmem(memcg);
3778 }
3779 #else
3780 static int memcg_online_kmem(struct mem_cgroup *memcg)
3781 {
3782 return 0;
3783 }
3784 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3785 {
3786 }
3787 static void memcg_free_kmem(struct mem_cgroup *memcg)
3788 {
3789 }
3790 #endif /* CONFIG_MEMCG_KMEM */
3791
3792 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3793 unsigned long max)
3794 {
3795 int ret;
3796
3797 mutex_lock(&memcg_max_mutex);
3798 ret = page_counter_set_max(&memcg->kmem, max);
3799 mutex_unlock(&memcg_max_mutex);
3800 return ret;
3801 }
3802
3803 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3804 {
3805 int ret;
3806
3807 mutex_lock(&memcg_max_mutex);
3808
3809 ret = page_counter_set_max(&memcg->tcpmem, max);
3810 if (ret)
3811 goto out;
3812
3813 if (!memcg->tcpmem_active) {
3814 /*
3815 * The active flag needs to be written after the static_key
3816 * update. This is what guarantees that the socket activation
3817 * function is the last one to run. See mem_cgroup_sk_alloc()
3818 * for details, and note that we don't mark any socket as
3819 * belonging to this memcg until that flag is up.
3820 *
3821 * We need to do this, because static_keys will span multiple
3822 * sites, but we can't control their order. If we mark a socket
3823 * as accounted, but the accounting functions are not patched in
3824 * yet, we'll lose accounting.
3825 *
3826 * We never race with the readers in mem_cgroup_sk_alloc(),
3827 * because when this value change, the code to process it is not
3828 * patched in yet.
3829 */
3830 static_branch_inc(&memcg_sockets_enabled_key);
3831 memcg->tcpmem_active = true;
3832 }
3833 out:
3834 mutex_unlock(&memcg_max_mutex);
3835 return ret;
3836 }
3837
3838 /*
3839 * The user of this function is...
3840 * RES_LIMIT.
3841 */
3842 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3843 char *buf, size_t nbytes, loff_t off)
3844 {
3845 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3846 unsigned long nr_pages;
3847 int ret;
3848
3849 buf = strstrip(buf);
3850 ret = page_counter_memparse(buf, "-1", &nr_pages);
3851 if (ret)
3852 return ret;
3853
3854 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3855 case RES_LIMIT:
3856 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3857 ret = -EINVAL;
3858 break;
3859 }
3860 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3861 case _MEM:
3862 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3863 break;
3864 case _MEMSWAP:
3865 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3866 break;
3867 case _KMEM:
3868 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3869 "Please report your usecase to linux-mm@kvack.org if you "
3870 "depend on this functionality.\n");
3871 ret = memcg_update_kmem_max(memcg, nr_pages);
3872 break;
3873 case _TCP:
3874 ret = memcg_update_tcp_max(memcg, nr_pages);
3875 break;
3876 }
3877 break;
3878 case RES_SOFT_LIMIT:
3879 memcg->soft_limit = nr_pages;
3880 ret = 0;
3881 break;
3882 }
3883 return ret ?: nbytes;
3884 }
3885
3886 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3887 size_t nbytes, loff_t off)
3888 {
3889 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3890 struct page_counter *counter;
3891
3892 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3893 case _MEM:
3894 counter = &memcg->memory;
3895 break;
3896 case _MEMSWAP:
3897 counter = &memcg->memsw;
3898 break;
3899 case _KMEM:
3900 counter = &memcg->kmem;
3901 break;
3902 case _TCP:
3903 counter = &memcg->tcpmem;
3904 break;
3905 default:
3906 BUG();
3907 }
3908
3909 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3910 case RES_MAX_USAGE:
3911 page_counter_reset_watermark(counter);
3912 break;
3913 case RES_FAILCNT:
3914 counter->failcnt = 0;
3915 break;
3916 default:
3917 BUG();
3918 }
3919
3920 return nbytes;
3921 }
3922
3923 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3924 struct cftype *cft)
3925 {
3926 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3927 }
3928
3929 #ifdef CONFIG_MMU
3930 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3931 struct cftype *cft, u64 val)
3932 {
3933 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3934
3935 if (val & ~MOVE_MASK)
3936 return -EINVAL;
3937
3938 /*
3939 * No kind of locking is needed in here, because ->can_attach() will
3940 * check this value once in the beginning of the process, and then carry
3941 * on with stale data. This means that changes to this value will only
3942 * affect task migrations starting after the change.
3943 */
3944 memcg->move_charge_at_immigrate = val;
3945 return 0;
3946 }
3947 #else
3948 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3949 struct cftype *cft, u64 val)
3950 {
3951 return -ENOSYS;
3952 }
3953 #endif
3954
3955 #ifdef CONFIG_NUMA
3956
3957 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3958 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3959 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3960
3961 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3962 int nid, unsigned int lru_mask, bool tree)
3963 {
3964 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3965 unsigned long nr = 0;
3966 enum lru_list lru;
3967
3968 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3969
3970 for_each_lru(lru) {
3971 if (!(BIT(lru) & lru_mask))
3972 continue;
3973 if (tree)
3974 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3975 else
3976 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3977 }
3978 return nr;
3979 }
3980
3981 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3982 unsigned int lru_mask,
3983 bool tree)
3984 {
3985 unsigned long nr = 0;
3986 enum lru_list lru;
3987
3988 for_each_lru(lru) {
3989 if (!(BIT(lru) & lru_mask))
3990 continue;
3991 if (tree)
3992 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3993 else
3994 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3995 }
3996 return nr;
3997 }
3998
3999 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4000 {
4001 struct numa_stat {
4002 const char *name;
4003 unsigned int lru_mask;
4004 };
4005
4006 static const struct numa_stat stats[] = {
4007 { "total", LRU_ALL },
4008 { "file", LRU_ALL_FILE },
4009 { "anon", LRU_ALL_ANON },
4010 { "unevictable", BIT(LRU_UNEVICTABLE) },
4011 };
4012 const struct numa_stat *stat;
4013 int nid;
4014 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4015
4016 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4017 seq_printf(m, "%s=%lu", stat->name,
4018 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4019 false));
4020 for_each_node_state(nid, N_MEMORY)
4021 seq_printf(m, " N%d=%lu", nid,
4022 mem_cgroup_node_nr_lru_pages(memcg, nid,
4023 stat->lru_mask, false));
4024 seq_putc(m, '\n');
4025 }
4026
4027 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4028
4029 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4030 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4031 true));
4032 for_each_node_state(nid, N_MEMORY)
4033 seq_printf(m, " N%d=%lu", nid,
4034 mem_cgroup_node_nr_lru_pages(memcg, nid,
4035 stat->lru_mask, true));
4036 seq_putc(m, '\n');
4037 }
4038
4039 return 0;
4040 }
4041 #endif /* CONFIG_NUMA */
4042
4043 static const unsigned int memcg1_stats[] = {
4044 NR_FILE_PAGES,
4045 NR_ANON_MAPPED,
4046 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4047 NR_ANON_THPS,
4048 #endif
4049 NR_SHMEM,
4050 NR_FILE_MAPPED,
4051 NR_FILE_DIRTY,
4052 NR_WRITEBACK,
4053 MEMCG_SWAP,
4054 };
4055
4056 static const char *const memcg1_stat_names[] = {
4057 "cache",
4058 "rss",
4059 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4060 "rss_huge",
4061 #endif
4062 "shmem",
4063 "mapped_file",
4064 "dirty",
4065 "writeback",
4066 "swap",
4067 };
4068
4069 /* Universal VM events cgroup1 shows, original sort order */
4070 static const unsigned int memcg1_events[] = {
4071 PGPGIN,
4072 PGPGOUT,
4073 PGFAULT,
4074 PGMAJFAULT,
4075 };
4076
4077 static int memcg_stat_show(struct seq_file *m, void *v)
4078 {
4079 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4080 unsigned long memory, memsw;
4081 struct mem_cgroup *mi;
4082 unsigned int i;
4083
4084 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4085
4086 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4087 unsigned long nr;
4088
4089 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4090 continue;
4091 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4092 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4093 if (memcg1_stats[i] == NR_ANON_THPS)
4094 nr *= HPAGE_PMD_NR;
4095 #endif
4096 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4097 }
4098
4099 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4100 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4101 memcg_events_local(memcg, memcg1_events[i]));
4102
4103 for (i = 0; i < NR_LRU_LISTS; i++)
4104 seq_printf(m, "%s %lu\n", lru_list_name(i),
4105 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4106 PAGE_SIZE);
4107
4108 /* Hierarchical information */
4109 memory = memsw = PAGE_COUNTER_MAX;
4110 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4111 memory = min(memory, READ_ONCE(mi->memory.max));
4112 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4113 }
4114 seq_printf(m, "hierarchical_memory_limit %llu\n",
4115 (u64)memory * PAGE_SIZE);
4116 if (do_memsw_account())
4117 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4118 (u64)memsw * PAGE_SIZE);
4119
4120 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4121 unsigned long nr;
4122
4123 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4124 continue;
4125 nr = memcg_page_state(memcg, memcg1_stats[i]);
4126 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4127 if (memcg1_stats[i] == NR_ANON_THPS)
4128 nr *= HPAGE_PMD_NR;
4129 #endif
4130 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4131 (u64)nr * PAGE_SIZE);
4132 }
4133
4134 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4135 seq_printf(m, "total_%s %llu\n",
4136 vm_event_name(memcg1_events[i]),
4137 (u64)memcg_events(memcg, memcg1_events[i]));
4138
4139 for (i = 0; i < NR_LRU_LISTS; i++)
4140 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4141 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4142 PAGE_SIZE);
4143
4144 #ifdef CONFIG_DEBUG_VM
4145 {
4146 pg_data_t *pgdat;
4147 struct mem_cgroup_per_node *mz;
4148 unsigned long anon_cost = 0;
4149 unsigned long file_cost = 0;
4150
4151 for_each_online_pgdat(pgdat) {
4152 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4153
4154 anon_cost += mz->lruvec.anon_cost;
4155 file_cost += mz->lruvec.file_cost;
4156 }
4157 seq_printf(m, "anon_cost %lu\n", anon_cost);
4158 seq_printf(m, "file_cost %lu\n", file_cost);
4159 }
4160 #endif
4161
4162 return 0;
4163 }
4164
4165 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4166 struct cftype *cft)
4167 {
4168 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4169
4170 return mem_cgroup_swappiness(memcg);
4171 }
4172
4173 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4174 struct cftype *cft, u64 val)
4175 {
4176 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4177
4178 if (val > 100)
4179 return -EINVAL;
4180
4181 if (css->parent)
4182 memcg->swappiness = val;
4183 else
4184 vm_swappiness = val;
4185
4186 return 0;
4187 }
4188
4189 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4190 {
4191 struct mem_cgroup_threshold_ary *t;
4192 unsigned long usage;
4193 int i;
4194
4195 rcu_read_lock();
4196 if (!swap)
4197 t = rcu_dereference(memcg->thresholds.primary);
4198 else
4199 t = rcu_dereference(memcg->memsw_thresholds.primary);
4200
4201 if (!t)
4202 goto unlock;
4203
4204 usage = mem_cgroup_usage(memcg, swap);
4205
4206 /*
4207 * current_threshold points to threshold just below or equal to usage.
4208 * If it's not true, a threshold was crossed after last
4209 * call of __mem_cgroup_threshold().
4210 */
4211 i = t->current_threshold;
4212
4213 /*
4214 * Iterate backward over array of thresholds starting from
4215 * current_threshold and check if a threshold is crossed.
4216 * If none of thresholds below usage is crossed, we read
4217 * only one element of the array here.
4218 */
4219 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4220 eventfd_signal(t->entries[i].eventfd, 1);
4221
4222 /* i = current_threshold + 1 */
4223 i++;
4224
4225 /*
4226 * Iterate forward over array of thresholds starting from
4227 * current_threshold+1 and check if a threshold is crossed.
4228 * If none of thresholds above usage is crossed, we read
4229 * only one element of the array here.
4230 */
4231 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4232 eventfd_signal(t->entries[i].eventfd, 1);
4233
4234 /* Update current_threshold */
4235 t->current_threshold = i - 1;
4236 unlock:
4237 rcu_read_unlock();
4238 }
4239
4240 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4241 {
4242 while (memcg) {
4243 __mem_cgroup_threshold(memcg, false);
4244 if (do_memsw_account())
4245 __mem_cgroup_threshold(memcg, true);
4246
4247 memcg = parent_mem_cgroup(memcg);
4248 }
4249 }
4250
4251 static int compare_thresholds(const void *a, const void *b)
4252 {
4253 const struct mem_cgroup_threshold *_a = a;
4254 const struct mem_cgroup_threshold *_b = b;
4255
4256 if (_a->threshold > _b->threshold)
4257 return 1;
4258
4259 if (_a->threshold < _b->threshold)
4260 return -1;
4261
4262 return 0;
4263 }
4264
4265 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4266 {
4267 struct mem_cgroup_eventfd_list *ev;
4268
4269 spin_lock(&memcg_oom_lock);
4270
4271 list_for_each_entry(ev, &memcg->oom_notify, list)
4272 eventfd_signal(ev->eventfd, 1);
4273
4274 spin_unlock(&memcg_oom_lock);
4275 return 0;
4276 }
4277
4278 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4279 {
4280 struct mem_cgroup *iter;
4281
4282 for_each_mem_cgroup_tree(iter, memcg)
4283 mem_cgroup_oom_notify_cb(iter);
4284 }
4285
4286 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4287 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4288 {
4289 struct mem_cgroup_thresholds *thresholds;
4290 struct mem_cgroup_threshold_ary *new;
4291 unsigned long threshold;
4292 unsigned long usage;
4293 int i, size, ret;
4294
4295 ret = page_counter_memparse(args, "-1", &threshold);
4296 if (ret)
4297 return ret;
4298
4299 mutex_lock(&memcg->thresholds_lock);
4300
4301 if (type == _MEM) {
4302 thresholds = &memcg->thresholds;
4303 usage = mem_cgroup_usage(memcg, false);
4304 } else if (type == _MEMSWAP) {
4305 thresholds = &memcg->memsw_thresholds;
4306 usage = mem_cgroup_usage(memcg, true);
4307 } else
4308 BUG();
4309
4310 /* Check if a threshold crossed before adding a new one */
4311 if (thresholds->primary)
4312 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4313
4314 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4315
4316 /* Allocate memory for new array of thresholds */
4317 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4318 if (!new) {
4319 ret = -ENOMEM;
4320 goto unlock;
4321 }
4322 new->size = size;
4323
4324 /* Copy thresholds (if any) to new array */
4325 if (thresholds->primary)
4326 memcpy(new->entries, thresholds->primary->entries,
4327 flex_array_size(new, entries, size - 1));
4328
4329 /* Add new threshold */
4330 new->entries[size - 1].eventfd = eventfd;
4331 new->entries[size - 1].threshold = threshold;
4332
4333 /* Sort thresholds. Registering of new threshold isn't time-critical */
4334 sort(new->entries, size, sizeof(*new->entries),
4335 compare_thresholds, NULL);
4336
4337 /* Find current threshold */
4338 new->current_threshold = -1;
4339 for (i = 0; i < size; i++) {
4340 if (new->entries[i].threshold <= usage) {
4341 /*
4342 * new->current_threshold will not be used until
4343 * rcu_assign_pointer(), so it's safe to increment
4344 * it here.
4345 */
4346 ++new->current_threshold;
4347 } else
4348 break;
4349 }
4350
4351 /* Free old spare buffer and save old primary buffer as spare */
4352 kfree(thresholds->spare);
4353 thresholds->spare = thresholds->primary;
4354
4355 rcu_assign_pointer(thresholds->primary, new);
4356
4357 /* To be sure that nobody uses thresholds */
4358 synchronize_rcu();
4359
4360 unlock:
4361 mutex_unlock(&memcg->thresholds_lock);
4362
4363 return ret;
4364 }
4365
4366 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4367 struct eventfd_ctx *eventfd, const char *args)
4368 {
4369 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4370 }
4371
4372 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4373 struct eventfd_ctx *eventfd, const char *args)
4374 {
4375 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4376 }
4377
4378 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4379 struct eventfd_ctx *eventfd, enum res_type type)
4380 {
4381 struct mem_cgroup_thresholds *thresholds;
4382 struct mem_cgroup_threshold_ary *new;
4383 unsigned long usage;
4384 int i, j, size, entries;
4385
4386 mutex_lock(&memcg->thresholds_lock);
4387
4388 if (type == _MEM) {
4389 thresholds = &memcg->thresholds;
4390 usage = mem_cgroup_usage(memcg, false);
4391 } else if (type == _MEMSWAP) {
4392 thresholds = &memcg->memsw_thresholds;
4393 usage = mem_cgroup_usage(memcg, true);
4394 } else
4395 BUG();
4396
4397 if (!thresholds->primary)
4398 goto unlock;
4399
4400 /* Check if a threshold crossed before removing */
4401 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4402
4403 /* Calculate new number of threshold */
4404 size = entries = 0;
4405 for (i = 0; i < thresholds->primary->size; i++) {
4406 if (thresholds->primary->entries[i].eventfd != eventfd)
4407 size++;
4408 else
4409 entries++;
4410 }
4411
4412 new = thresholds->spare;
4413
4414 /* If no items related to eventfd have been cleared, nothing to do */
4415 if (!entries)
4416 goto unlock;
4417
4418 /* Set thresholds array to NULL if we don't have thresholds */
4419 if (!size) {
4420 kfree(new);
4421 new = NULL;
4422 goto swap_buffers;
4423 }
4424
4425 new->size = size;
4426
4427 /* Copy thresholds and find current threshold */
4428 new->current_threshold = -1;
4429 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4430 if (thresholds->primary->entries[i].eventfd == eventfd)
4431 continue;
4432
4433 new->entries[j] = thresholds->primary->entries[i];
4434 if (new->entries[j].threshold <= usage) {
4435 /*
4436 * new->current_threshold will not be used
4437 * until rcu_assign_pointer(), so it's safe to increment
4438 * it here.
4439 */
4440 ++new->current_threshold;
4441 }
4442 j++;
4443 }
4444
4445 swap_buffers:
4446 /* Swap primary and spare array */
4447 thresholds->spare = thresholds->primary;
4448
4449 rcu_assign_pointer(thresholds->primary, new);
4450
4451 /* To be sure that nobody uses thresholds */
4452 synchronize_rcu();
4453
4454 /* If all events are unregistered, free the spare array */
4455 if (!new) {
4456 kfree(thresholds->spare);
4457 thresholds->spare = NULL;
4458 }
4459 unlock:
4460 mutex_unlock(&memcg->thresholds_lock);
4461 }
4462
4463 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4464 struct eventfd_ctx *eventfd)
4465 {
4466 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4467 }
4468
4469 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4470 struct eventfd_ctx *eventfd)
4471 {
4472 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4473 }
4474
4475 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4476 struct eventfd_ctx *eventfd, const char *args)
4477 {
4478 struct mem_cgroup_eventfd_list *event;
4479
4480 event = kmalloc(sizeof(*event), GFP_KERNEL);
4481 if (!event)
4482 return -ENOMEM;
4483
4484 spin_lock(&memcg_oom_lock);
4485
4486 event->eventfd = eventfd;
4487 list_add(&event->list, &memcg->oom_notify);
4488
4489 /* already in OOM ? */
4490 if (memcg->under_oom)
4491 eventfd_signal(eventfd, 1);
4492 spin_unlock(&memcg_oom_lock);
4493
4494 return 0;
4495 }
4496
4497 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4498 struct eventfd_ctx *eventfd)
4499 {
4500 struct mem_cgroup_eventfd_list *ev, *tmp;
4501
4502 spin_lock(&memcg_oom_lock);
4503
4504 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4505 if (ev->eventfd == eventfd) {
4506 list_del(&ev->list);
4507 kfree(ev);
4508 }
4509 }
4510
4511 spin_unlock(&memcg_oom_lock);
4512 }
4513
4514 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4515 {
4516 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4517
4518 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4519 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4520 seq_printf(sf, "oom_kill %lu\n",
4521 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4522 return 0;
4523 }
4524
4525 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4526 struct cftype *cft, u64 val)
4527 {
4528 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4529
4530 /* cannot set to root cgroup and only 0 and 1 are allowed */
4531 if (!css->parent || !((val == 0) || (val == 1)))
4532 return -EINVAL;
4533
4534 memcg->oom_kill_disable = val;
4535 if (!val)
4536 memcg_oom_recover(memcg);
4537
4538 return 0;
4539 }
4540
4541 #ifdef CONFIG_CGROUP_WRITEBACK
4542
4543 #include <trace/events/writeback.h>
4544
4545 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4546 {
4547 return wb_domain_init(&memcg->cgwb_domain, gfp);
4548 }
4549
4550 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4551 {
4552 wb_domain_exit(&memcg->cgwb_domain);
4553 }
4554
4555 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4556 {
4557 wb_domain_size_changed(&memcg->cgwb_domain);
4558 }
4559
4560 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4561 {
4562 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4563
4564 if (!memcg->css.parent)
4565 return NULL;
4566
4567 return &memcg->cgwb_domain;
4568 }
4569
4570 /*
4571 * idx can be of type enum memcg_stat_item or node_stat_item.
4572 * Keep in sync with memcg_exact_page().
4573 */
4574 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4575 {
4576 long x = atomic_long_read(&memcg->vmstats[idx]);
4577 int cpu;
4578
4579 for_each_online_cpu(cpu)
4580 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4581 if (x < 0)
4582 x = 0;
4583 return x;
4584 }
4585
4586 /**
4587 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4588 * @wb: bdi_writeback in question
4589 * @pfilepages: out parameter for number of file pages
4590 * @pheadroom: out parameter for number of allocatable pages according to memcg
4591 * @pdirty: out parameter for number of dirty pages
4592 * @pwriteback: out parameter for number of pages under writeback
4593 *
4594 * Determine the numbers of file, headroom, dirty, and writeback pages in
4595 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4596 * is a bit more involved.
4597 *
4598 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4599 * headroom is calculated as the lowest headroom of itself and the
4600 * ancestors. Note that this doesn't consider the actual amount of
4601 * available memory in the system. The caller should further cap
4602 * *@pheadroom accordingly.
4603 */
4604 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4605 unsigned long *pheadroom, unsigned long *pdirty,
4606 unsigned long *pwriteback)
4607 {
4608 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4609 struct mem_cgroup *parent;
4610
4611 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4612
4613 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4614 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4615 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4616 *pheadroom = PAGE_COUNTER_MAX;
4617
4618 while ((parent = parent_mem_cgroup(memcg))) {
4619 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4620 READ_ONCE(memcg->memory.high));
4621 unsigned long used = page_counter_read(&memcg->memory);
4622
4623 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4624 memcg = parent;
4625 }
4626 }
4627
4628 /*
4629 * Foreign dirty flushing
4630 *
4631 * There's an inherent mismatch between memcg and writeback. The former
4632 * trackes ownership per-page while the latter per-inode. This was a
4633 * deliberate design decision because honoring per-page ownership in the
4634 * writeback path is complicated, may lead to higher CPU and IO overheads
4635 * and deemed unnecessary given that write-sharing an inode across
4636 * different cgroups isn't a common use-case.
4637 *
4638 * Combined with inode majority-writer ownership switching, this works well
4639 * enough in most cases but there are some pathological cases. For
4640 * example, let's say there are two cgroups A and B which keep writing to
4641 * different but confined parts of the same inode. B owns the inode and
4642 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4643 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4644 * triggering background writeback. A will be slowed down without a way to
4645 * make writeback of the dirty pages happen.
4646 *
4647 * Conditions like the above can lead to a cgroup getting repatedly and
4648 * severely throttled after making some progress after each
4649 * dirty_expire_interval while the underyling IO device is almost
4650 * completely idle.
4651 *
4652 * Solving this problem completely requires matching the ownership tracking
4653 * granularities between memcg and writeback in either direction. However,
4654 * the more egregious behaviors can be avoided by simply remembering the
4655 * most recent foreign dirtying events and initiating remote flushes on
4656 * them when local writeback isn't enough to keep the memory clean enough.
4657 *
4658 * The following two functions implement such mechanism. When a foreign
4659 * page - a page whose memcg and writeback ownerships don't match - is
4660 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4661 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4662 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4663 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4664 * foreign bdi_writebacks which haven't expired. Both the numbers of
4665 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4666 * limited to MEMCG_CGWB_FRN_CNT.
4667 *
4668 * The mechanism only remembers IDs and doesn't hold any object references.
4669 * As being wrong occasionally doesn't matter, updates and accesses to the
4670 * records are lockless and racy.
4671 */
4672 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4673 struct bdi_writeback *wb)
4674 {
4675 struct mem_cgroup *memcg = page->mem_cgroup;
4676 struct memcg_cgwb_frn *frn;
4677 u64 now = get_jiffies_64();
4678 u64 oldest_at = now;
4679 int oldest = -1;
4680 int i;
4681
4682 trace_track_foreign_dirty(page, wb);
4683
4684 /*
4685 * Pick the slot to use. If there is already a slot for @wb, keep
4686 * using it. If not replace the oldest one which isn't being
4687 * written out.
4688 */
4689 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4690 frn = &memcg->cgwb_frn[i];
4691 if (frn->bdi_id == wb->bdi->id &&
4692 frn->memcg_id == wb->memcg_css->id)
4693 break;
4694 if (time_before64(frn->at, oldest_at) &&
4695 atomic_read(&frn->done.cnt) == 1) {
4696 oldest = i;
4697 oldest_at = frn->at;
4698 }
4699 }
4700
4701 if (i < MEMCG_CGWB_FRN_CNT) {
4702 /*
4703 * Re-using an existing one. Update timestamp lazily to
4704 * avoid making the cacheline hot. We want them to be
4705 * reasonably up-to-date and significantly shorter than
4706 * dirty_expire_interval as that's what expires the record.
4707 * Use the shorter of 1s and dirty_expire_interval / 8.
4708 */
4709 unsigned long update_intv =
4710 min_t(unsigned long, HZ,
4711 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4712
4713 if (time_before64(frn->at, now - update_intv))
4714 frn->at = now;
4715 } else if (oldest >= 0) {
4716 /* replace the oldest free one */
4717 frn = &memcg->cgwb_frn[oldest];
4718 frn->bdi_id = wb->bdi->id;
4719 frn->memcg_id = wb->memcg_css->id;
4720 frn->at = now;
4721 }
4722 }
4723
4724 /* issue foreign writeback flushes for recorded foreign dirtying events */
4725 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4726 {
4727 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4728 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4729 u64 now = jiffies_64;
4730 int i;
4731
4732 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4733 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4734
4735 /*
4736 * If the record is older than dirty_expire_interval,
4737 * writeback on it has already started. No need to kick it
4738 * off again. Also, don't start a new one if there's
4739 * already one in flight.
4740 */
4741 if (time_after64(frn->at, now - intv) &&
4742 atomic_read(&frn->done.cnt) == 1) {
4743 frn->at = 0;
4744 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4745 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4746 WB_REASON_FOREIGN_FLUSH,
4747 &frn->done);
4748 }
4749 }
4750 }
4751
4752 #else /* CONFIG_CGROUP_WRITEBACK */
4753
4754 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4755 {
4756 return 0;
4757 }
4758
4759 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4760 {
4761 }
4762
4763 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4764 {
4765 }
4766
4767 #endif /* CONFIG_CGROUP_WRITEBACK */
4768
4769 /*
4770 * DO NOT USE IN NEW FILES.
4771 *
4772 * "cgroup.event_control" implementation.
4773 *
4774 * This is way over-engineered. It tries to support fully configurable
4775 * events for each user. Such level of flexibility is completely
4776 * unnecessary especially in the light of the planned unified hierarchy.
4777 *
4778 * Please deprecate this and replace with something simpler if at all
4779 * possible.
4780 */
4781
4782 /*
4783 * Unregister event and free resources.
4784 *
4785 * Gets called from workqueue.
4786 */
4787 static void memcg_event_remove(struct work_struct *work)
4788 {
4789 struct mem_cgroup_event *event =
4790 container_of(work, struct mem_cgroup_event, remove);
4791 struct mem_cgroup *memcg = event->memcg;
4792
4793 remove_wait_queue(event->wqh, &event->wait);
4794
4795 event->unregister_event(memcg, event->eventfd);
4796
4797 /* Notify userspace the event is going away. */
4798 eventfd_signal(event->eventfd, 1);
4799
4800 eventfd_ctx_put(event->eventfd);
4801 kfree(event);
4802 css_put(&memcg->css);
4803 }
4804
4805 /*
4806 * Gets called on EPOLLHUP on eventfd when user closes it.
4807 *
4808 * Called with wqh->lock held and interrupts disabled.
4809 */
4810 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4811 int sync, void *key)
4812 {
4813 struct mem_cgroup_event *event =
4814 container_of(wait, struct mem_cgroup_event, wait);
4815 struct mem_cgroup *memcg = event->memcg;
4816 __poll_t flags = key_to_poll(key);
4817
4818 if (flags & EPOLLHUP) {
4819 /*
4820 * If the event has been detached at cgroup removal, we
4821 * can simply return knowing the other side will cleanup
4822 * for us.
4823 *
4824 * We can't race against event freeing since the other
4825 * side will require wqh->lock via remove_wait_queue(),
4826 * which we hold.
4827 */
4828 spin_lock(&memcg->event_list_lock);
4829 if (!list_empty(&event->list)) {
4830 list_del_init(&event->list);
4831 /*
4832 * We are in atomic context, but cgroup_event_remove()
4833 * may sleep, so we have to call it in workqueue.
4834 */
4835 schedule_work(&event->remove);
4836 }
4837 spin_unlock(&memcg->event_list_lock);
4838 }
4839
4840 return 0;
4841 }
4842
4843 static void memcg_event_ptable_queue_proc(struct file *file,
4844 wait_queue_head_t *wqh, poll_table *pt)
4845 {
4846 struct mem_cgroup_event *event =
4847 container_of(pt, struct mem_cgroup_event, pt);
4848
4849 event->wqh = wqh;
4850 add_wait_queue(wqh, &event->wait);
4851 }
4852
4853 /*
4854 * DO NOT USE IN NEW FILES.
4855 *
4856 * Parse input and register new cgroup event handler.
4857 *
4858 * Input must be in format '<event_fd> <control_fd> <args>'.
4859 * Interpretation of args is defined by control file implementation.
4860 */
4861 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4862 char *buf, size_t nbytes, loff_t off)
4863 {
4864 struct cgroup_subsys_state *css = of_css(of);
4865 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4866 struct mem_cgroup_event *event;
4867 struct cgroup_subsys_state *cfile_css;
4868 unsigned int efd, cfd;
4869 struct fd efile;
4870 struct fd cfile;
4871 const char *name;
4872 char *endp;
4873 int ret;
4874
4875 buf = strstrip(buf);
4876
4877 efd = simple_strtoul(buf, &endp, 10);
4878 if (*endp != ' ')
4879 return -EINVAL;
4880 buf = endp + 1;
4881
4882 cfd = simple_strtoul(buf, &endp, 10);
4883 if ((*endp != ' ') && (*endp != '\0'))
4884 return -EINVAL;
4885 buf = endp + 1;
4886
4887 event = kzalloc(sizeof(*event), GFP_KERNEL);
4888 if (!event)
4889 return -ENOMEM;
4890
4891 event->memcg = memcg;
4892 INIT_LIST_HEAD(&event->list);
4893 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4894 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4895 INIT_WORK(&event->remove, memcg_event_remove);
4896
4897 efile = fdget(efd);
4898 if (!efile.file) {
4899 ret = -EBADF;
4900 goto out_kfree;
4901 }
4902
4903 event->eventfd = eventfd_ctx_fileget(efile.file);
4904 if (IS_ERR(event->eventfd)) {
4905 ret = PTR_ERR(event->eventfd);
4906 goto out_put_efile;
4907 }
4908
4909 cfile = fdget(cfd);
4910 if (!cfile.file) {
4911 ret = -EBADF;
4912 goto out_put_eventfd;
4913 }
4914
4915 /* the process need read permission on control file */
4916 /* AV: shouldn't we check that it's been opened for read instead? */
4917 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4918 if (ret < 0)
4919 goto out_put_cfile;
4920
4921 /*
4922 * Determine the event callbacks and set them in @event. This used
4923 * to be done via struct cftype but cgroup core no longer knows
4924 * about these events. The following is crude but the whole thing
4925 * is for compatibility anyway.
4926 *
4927 * DO NOT ADD NEW FILES.
4928 */
4929 name = cfile.file->f_path.dentry->d_name.name;
4930
4931 if (!strcmp(name, "memory.usage_in_bytes")) {
4932 event->register_event = mem_cgroup_usage_register_event;
4933 event->unregister_event = mem_cgroup_usage_unregister_event;
4934 } else if (!strcmp(name, "memory.oom_control")) {
4935 event->register_event = mem_cgroup_oom_register_event;
4936 event->unregister_event = mem_cgroup_oom_unregister_event;
4937 } else if (!strcmp(name, "memory.pressure_level")) {
4938 event->register_event = vmpressure_register_event;
4939 event->unregister_event = vmpressure_unregister_event;
4940 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4941 event->register_event = memsw_cgroup_usage_register_event;
4942 event->unregister_event = memsw_cgroup_usage_unregister_event;
4943 } else {
4944 ret = -EINVAL;
4945 goto out_put_cfile;
4946 }
4947
4948 /*
4949 * Verify @cfile should belong to @css. Also, remaining events are
4950 * automatically removed on cgroup destruction but the removal is
4951 * asynchronous, so take an extra ref on @css.
4952 */
4953 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4954 &memory_cgrp_subsys);
4955 ret = -EINVAL;
4956 if (IS_ERR(cfile_css))
4957 goto out_put_cfile;
4958 if (cfile_css != css) {
4959 css_put(cfile_css);
4960 goto out_put_cfile;
4961 }
4962
4963 ret = event->register_event(memcg, event->eventfd, buf);
4964 if (ret)
4965 goto out_put_css;
4966
4967 vfs_poll(efile.file, &event->pt);
4968
4969 spin_lock(&memcg->event_list_lock);
4970 list_add(&event->list, &memcg->event_list);
4971 spin_unlock(&memcg->event_list_lock);
4972
4973 fdput(cfile);
4974 fdput(efile);
4975
4976 return nbytes;
4977
4978 out_put_css:
4979 css_put(css);
4980 out_put_cfile:
4981 fdput(cfile);
4982 out_put_eventfd:
4983 eventfd_ctx_put(event->eventfd);
4984 out_put_efile:
4985 fdput(efile);
4986 out_kfree:
4987 kfree(event);
4988
4989 return ret;
4990 }
4991
4992 static struct cftype mem_cgroup_legacy_files[] = {
4993 {
4994 .name = "usage_in_bytes",
4995 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4996 .read_u64 = mem_cgroup_read_u64,
4997 },
4998 {
4999 .name = "max_usage_in_bytes",
5000 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5001 .write = mem_cgroup_reset,
5002 .read_u64 = mem_cgroup_read_u64,
5003 },
5004 {
5005 .name = "limit_in_bytes",
5006 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5007 .write = mem_cgroup_write,
5008 .read_u64 = mem_cgroup_read_u64,
5009 },
5010 {
5011 .name = "soft_limit_in_bytes",
5012 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5013 .write = mem_cgroup_write,
5014 .read_u64 = mem_cgroup_read_u64,
5015 },
5016 {
5017 .name = "failcnt",
5018 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5019 .write = mem_cgroup_reset,
5020 .read_u64 = mem_cgroup_read_u64,
5021 },
5022 {
5023 .name = "stat",
5024 .seq_show = memcg_stat_show,
5025 },
5026 {
5027 .name = "force_empty",
5028 .write = mem_cgroup_force_empty_write,
5029 },
5030 {
5031 .name = "use_hierarchy",
5032 .write_u64 = mem_cgroup_hierarchy_write,
5033 .read_u64 = mem_cgroup_hierarchy_read,
5034 },
5035 {
5036 .name = "cgroup.event_control", /* XXX: for compat */
5037 .write = memcg_write_event_control,
5038 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5039 },
5040 {
5041 .name = "swappiness",
5042 .read_u64 = mem_cgroup_swappiness_read,
5043 .write_u64 = mem_cgroup_swappiness_write,
5044 },
5045 {
5046 .name = "move_charge_at_immigrate",
5047 .read_u64 = mem_cgroup_move_charge_read,
5048 .write_u64 = mem_cgroup_move_charge_write,
5049 },
5050 {
5051 .name = "oom_control",
5052 .seq_show = mem_cgroup_oom_control_read,
5053 .write_u64 = mem_cgroup_oom_control_write,
5054 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5055 },
5056 {
5057 .name = "pressure_level",
5058 },
5059 #ifdef CONFIG_NUMA
5060 {
5061 .name = "numa_stat",
5062 .seq_show = memcg_numa_stat_show,
5063 },
5064 #endif
5065 {
5066 .name = "kmem.limit_in_bytes",
5067 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5068 .write = mem_cgroup_write,
5069 .read_u64 = mem_cgroup_read_u64,
5070 },
5071 {
5072 .name = "kmem.usage_in_bytes",
5073 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5074 .read_u64 = mem_cgroup_read_u64,
5075 },
5076 {
5077 .name = "kmem.failcnt",
5078 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5079 .write = mem_cgroup_reset,
5080 .read_u64 = mem_cgroup_read_u64,
5081 },
5082 {
5083 .name = "kmem.max_usage_in_bytes",
5084 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5085 .write = mem_cgroup_reset,
5086 .read_u64 = mem_cgroup_read_u64,
5087 },
5088 #if defined(CONFIG_MEMCG_KMEM) && \
5089 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5090 {
5091 .name = "kmem.slabinfo",
5092 .seq_show = memcg_slab_show,
5093 },
5094 #endif
5095 {
5096 .name = "kmem.tcp.limit_in_bytes",
5097 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5098 .write = mem_cgroup_write,
5099 .read_u64 = mem_cgroup_read_u64,
5100 },
5101 {
5102 .name = "kmem.tcp.usage_in_bytes",
5103 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5104 .read_u64 = mem_cgroup_read_u64,
5105 },
5106 {
5107 .name = "kmem.tcp.failcnt",
5108 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5109 .write = mem_cgroup_reset,
5110 .read_u64 = mem_cgroup_read_u64,
5111 },
5112 {
5113 .name = "kmem.tcp.max_usage_in_bytes",
5114 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5115 .write = mem_cgroup_reset,
5116 .read_u64 = mem_cgroup_read_u64,
5117 },
5118 { }, /* terminate */
5119 };
5120
5121 /*
5122 * Private memory cgroup IDR
5123 *
5124 * Swap-out records and page cache shadow entries need to store memcg
5125 * references in constrained space, so we maintain an ID space that is
5126 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5127 * memory-controlled cgroups to 64k.
5128 *
5129 * However, there usually are many references to the offline CSS after
5130 * the cgroup has been destroyed, such as page cache or reclaimable
5131 * slab objects, that don't need to hang on to the ID. We want to keep
5132 * those dead CSS from occupying IDs, or we might quickly exhaust the
5133 * relatively small ID space and prevent the creation of new cgroups
5134 * even when there are much fewer than 64k cgroups - possibly none.
5135 *
5136 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5137 * be freed and recycled when it's no longer needed, which is usually
5138 * when the CSS is offlined.
5139 *
5140 * The only exception to that are records of swapped out tmpfs/shmem
5141 * pages that need to be attributed to live ancestors on swapin. But
5142 * those references are manageable from userspace.
5143 */
5144
5145 static DEFINE_IDR(mem_cgroup_idr);
5146
5147 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5148 {
5149 if (memcg->id.id > 0) {
5150 idr_remove(&mem_cgroup_idr, memcg->id.id);
5151 memcg->id.id = 0;
5152 }
5153 }
5154
5155 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5156 unsigned int n)
5157 {
5158 refcount_add(n, &memcg->id.ref);
5159 }
5160
5161 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5162 {
5163 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5164 mem_cgroup_id_remove(memcg);
5165
5166 /* Memcg ID pins CSS */
5167 css_put(&memcg->css);
5168 }
5169 }
5170
5171 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5172 {
5173 mem_cgroup_id_put_many(memcg, 1);
5174 }
5175
5176 /**
5177 * mem_cgroup_from_id - look up a memcg from a memcg id
5178 * @id: the memcg id to look up
5179 *
5180 * Caller must hold rcu_read_lock().
5181 */
5182 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5183 {
5184 WARN_ON_ONCE(!rcu_read_lock_held());
5185 return idr_find(&mem_cgroup_idr, id);
5186 }
5187
5188 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5189 {
5190 struct mem_cgroup_per_node *pn;
5191 int tmp = node;
5192 /*
5193 * This routine is called against possible nodes.
5194 * But it's BUG to call kmalloc() against offline node.
5195 *
5196 * TODO: this routine can waste much memory for nodes which will
5197 * never be onlined. It's better to use memory hotplug callback
5198 * function.
5199 */
5200 if (!node_state(node, N_NORMAL_MEMORY))
5201 tmp = -1;
5202 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5203 if (!pn)
5204 return 1;
5205
5206 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5207 GFP_KERNEL_ACCOUNT);
5208 if (!pn->lruvec_stat_local) {
5209 kfree(pn);
5210 return 1;
5211 }
5212
5213 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5214 GFP_KERNEL_ACCOUNT);
5215 if (!pn->lruvec_stat_cpu) {
5216 free_percpu(pn->lruvec_stat_local);
5217 kfree(pn);
5218 return 1;
5219 }
5220
5221 lruvec_init(&pn->lruvec);
5222 pn->usage_in_excess = 0;
5223 pn->on_tree = false;
5224 pn->memcg = memcg;
5225
5226 memcg->nodeinfo[node] = pn;
5227 return 0;
5228 }
5229
5230 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5231 {
5232 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5233
5234 if (!pn)
5235 return;
5236
5237 free_percpu(pn->lruvec_stat_cpu);
5238 free_percpu(pn->lruvec_stat_local);
5239 kfree(pn);
5240 }
5241
5242 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5243 {
5244 int node;
5245
5246 for_each_node(node)
5247 free_mem_cgroup_per_node_info(memcg, node);
5248 free_percpu(memcg->vmstats_percpu);
5249 free_percpu(memcg->vmstats_local);
5250 kfree(memcg);
5251 }
5252
5253 static void mem_cgroup_free(struct mem_cgroup *memcg)
5254 {
5255 memcg_wb_domain_exit(memcg);
5256 /*
5257 * Flush percpu vmstats and vmevents to guarantee the value correctness
5258 * on parent's and all ancestor levels.
5259 */
5260 memcg_flush_percpu_vmstats(memcg);
5261 memcg_flush_percpu_vmevents(memcg);
5262 __mem_cgroup_free(memcg);
5263 }
5264
5265 static struct mem_cgroup *mem_cgroup_alloc(void)
5266 {
5267 struct mem_cgroup *memcg;
5268 unsigned int size;
5269 int node;
5270 int __maybe_unused i;
5271 long error = -ENOMEM;
5272
5273 size = sizeof(struct mem_cgroup);
5274 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5275
5276 memcg = kzalloc(size, GFP_KERNEL);
5277 if (!memcg)
5278 return ERR_PTR(error);
5279
5280 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5281 1, MEM_CGROUP_ID_MAX,
5282 GFP_KERNEL);
5283 if (memcg->id.id < 0) {
5284 error = memcg->id.id;
5285 goto fail;
5286 }
5287
5288 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5289 GFP_KERNEL_ACCOUNT);
5290 if (!memcg->vmstats_local)
5291 goto fail;
5292
5293 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5294 GFP_KERNEL_ACCOUNT);
5295 if (!memcg->vmstats_percpu)
5296 goto fail;
5297
5298 for_each_node(node)
5299 if (alloc_mem_cgroup_per_node_info(memcg, node))
5300 goto fail;
5301
5302 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5303 goto fail;
5304
5305 INIT_WORK(&memcg->high_work, high_work_func);
5306 INIT_LIST_HEAD(&memcg->oom_notify);
5307 mutex_init(&memcg->thresholds_lock);
5308 spin_lock_init(&memcg->move_lock);
5309 vmpressure_init(&memcg->vmpressure);
5310 INIT_LIST_HEAD(&memcg->event_list);
5311 spin_lock_init(&memcg->event_list_lock);
5312 memcg->socket_pressure = jiffies;
5313 #ifdef CONFIG_MEMCG_KMEM
5314 memcg->kmemcg_id = -1;
5315 INIT_LIST_HEAD(&memcg->objcg_list);
5316 #endif
5317 #ifdef CONFIG_CGROUP_WRITEBACK
5318 INIT_LIST_HEAD(&memcg->cgwb_list);
5319 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5320 memcg->cgwb_frn[i].done =
5321 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5322 #endif
5323 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5324 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5325 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5326 memcg->deferred_split_queue.split_queue_len = 0;
5327 #endif
5328 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5329 return memcg;
5330 fail:
5331 mem_cgroup_id_remove(memcg);
5332 __mem_cgroup_free(memcg);
5333 return ERR_PTR(error);
5334 }
5335
5336 static struct cgroup_subsys_state * __ref
5337 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5338 {
5339 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5340 struct mem_cgroup *memcg, *old_memcg;
5341 long error = -ENOMEM;
5342
5343 old_memcg = set_active_memcg(parent);
5344 memcg = mem_cgroup_alloc();
5345 set_active_memcg(old_memcg);
5346 if (IS_ERR(memcg))
5347 return ERR_CAST(memcg);
5348
5349 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5350 memcg->soft_limit = PAGE_COUNTER_MAX;
5351 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5352 if (parent) {
5353 memcg->swappiness = mem_cgroup_swappiness(parent);
5354 memcg->oom_kill_disable = parent->oom_kill_disable;
5355 }
5356 if (!parent) {
5357 page_counter_init(&memcg->memory, NULL);
5358 page_counter_init(&memcg->swap, NULL);
5359 page_counter_init(&memcg->kmem, NULL);
5360 page_counter_init(&memcg->tcpmem, NULL);
5361 } else if (parent->use_hierarchy) {
5362 memcg->use_hierarchy = true;
5363 page_counter_init(&memcg->memory, &parent->memory);
5364 page_counter_init(&memcg->swap, &parent->swap);
5365 page_counter_init(&memcg->kmem, &parent->kmem);
5366 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5367 } else {
5368 page_counter_init(&memcg->memory, &root_mem_cgroup->memory);
5369 page_counter_init(&memcg->swap, &root_mem_cgroup->swap);
5370 page_counter_init(&memcg->kmem, &root_mem_cgroup->kmem);
5371 page_counter_init(&memcg->tcpmem, &root_mem_cgroup->tcpmem);
5372 /*
5373 * Deeper hierachy with use_hierarchy == false doesn't make
5374 * much sense so let cgroup subsystem know about this
5375 * unfortunate state in our controller.
5376 */
5377 if (parent != root_mem_cgroup)
5378 memory_cgrp_subsys.broken_hierarchy = true;
5379 }
5380
5381 /* The following stuff does not apply to the root */
5382 if (!parent) {
5383 root_mem_cgroup = memcg;
5384 return &memcg->css;
5385 }
5386
5387 error = memcg_online_kmem(memcg);
5388 if (error)
5389 goto fail;
5390
5391 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5392 static_branch_inc(&memcg_sockets_enabled_key);
5393
5394 return &memcg->css;
5395 fail:
5396 mem_cgroup_id_remove(memcg);
5397 mem_cgroup_free(memcg);
5398 return ERR_PTR(error);
5399 }
5400
5401 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5402 {
5403 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5404
5405 /*
5406 * A memcg must be visible for memcg_expand_shrinker_maps()
5407 * by the time the maps are allocated. So, we allocate maps
5408 * here, when for_each_mem_cgroup() can't skip it.
5409 */
5410 if (memcg_alloc_shrinker_maps(memcg)) {
5411 mem_cgroup_id_remove(memcg);
5412 return -ENOMEM;
5413 }
5414
5415 /* Online state pins memcg ID, memcg ID pins CSS */
5416 refcount_set(&memcg->id.ref, 1);
5417 css_get(css);
5418 return 0;
5419 }
5420
5421 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5422 {
5423 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5424 struct mem_cgroup_event *event, *tmp;
5425
5426 /*
5427 * Unregister events and notify userspace.
5428 * Notify userspace about cgroup removing only after rmdir of cgroup
5429 * directory to avoid race between userspace and kernelspace.
5430 */
5431 spin_lock(&memcg->event_list_lock);
5432 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5433 list_del_init(&event->list);
5434 schedule_work(&event->remove);
5435 }
5436 spin_unlock(&memcg->event_list_lock);
5437
5438 page_counter_set_min(&memcg->memory, 0);
5439 page_counter_set_low(&memcg->memory, 0);
5440
5441 memcg_offline_kmem(memcg);
5442 wb_memcg_offline(memcg);
5443
5444 drain_all_stock(memcg);
5445
5446 mem_cgroup_id_put(memcg);
5447 }
5448
5449 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5450 {
5451 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5452
5453 invalidate_reclaim_iterators(memcg);
5454 }
5455
5456 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5457 {
5458 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5459 int __maybe_unused i;
5460
5461 #ifdef CONFIG_CGROUP_WRITEBACK
5462 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5463 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5464 #endif
5465 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5466 static_branch_dec(&memcg_sockets_enabled_key);
5467
5468 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5469 static_branch_dec(&memcg_sockets_enabled_key);
5470
5471 vmpressure_cleanup(&memcg->vmpressure);
5472 cancel_work_sync(&memcg->high_work);
5473 mem_cgroup_remove_from_trees(memcg);
5474 memcg_free_shrinker_maps(memcg);
5475 memcg_free_kmem(memcg);
5476 mem_cgroup_free(memcg);
5477 }
5478
5479 /**
5480 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5481 * @css: the target css
5482 *
5483 * Reset the states of the mem_cgroup associated with @css. This is
5484 * invoked when the userland requests disabling on the default hierarchy
5485 * but the memcg is pinned through dependency. The memcg should stop
5486 * applying policies and should revert to the vanilla state as it may be
5487 * made visible again.
5488 *
5489 * The current implementation only resets the essential configurations.
5490 * This needs to be expanded to cover all the visible parts.
5491 */
5492 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5493 {
5494 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5495
5496 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5497 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5498 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5499 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5500 page_counter_set_min(&memcg->memory, 0);
5501 page_counter_set_low(&memcg->memory, 0);
5502 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5503 memcg->soft_limit = PAGE_COUNTER_MAX;
5504 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5505 memcg_wb_domain_size_changed(memcg);
5506 }
5507
5508 #ifdef CONFIG_MMU
5509 /* Handlers for move charge at task migration. */
5510 static int mem_cgroup_do_precharge(unsigned long count)
5511 {
5512 int ret;
5513
5514 /* Try a single bulk charge without reclaim first, kswapd may wake */
5515 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5516 if (!ret) {
5517 mc.precharge += count;
5518 return ret;
5519 }
5520
5521 /* Try charges one by one with reclaim, but do not retry */
5522 while (count--) {
5523 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5524 if (ret)
5525 return ret;
5526 mc.precharge++;
5527 cond_resched();
5528 }
5529 return 0;
5530 }
5531
5532 union mc_target {
5533 struct page *page;
5534 swp_entry_t ent;
5535 };
5536
5537 enum mc_target_type {
5538 MC_TARGET_NONE = 0,
5539 MC_TARGET_PAGE,
5540 MC_TARGET_SWAP,
5541 MC_TARGET_DEVICE,
5542 };
5543
5544 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5545 unsigned long addr, pte_t ptent)
5546 {
5547 struct page *page = vm_normal_page(vma, addr, ptent);
5548
5549 if (!page || !page_mapped(page))
5550 return NULL;
5551 if (PageAnon(page)) {
5552 if (!(mc.flags & MOVE_ANON))
5553 return NULL;
5554 } else {
5555 if (!(mc.flags & MOVE_FILE))
5556 return NULL;
5557 }
5558 if (!get_page_unless_zero(page))
5559 return NULL;
5560
5561 return page;
5562 }
5563
5564 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5565 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5566 pte_t ptent, swp_entry_t *entry)
5567 {
5568 struct page *page = NULL;
5569 swp_entry_t ent = pte_to_swp_entry(ptent);
5570
5571 if (!(mc.flags & MOVE_ANON))
5572 return NULL;
5573
5574 /*
5575 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5576 * a device and because they are not accessible by CPU they are store
5577 * as special swap entry in the CPU page table.
5578 */
5579 if (is_device_private_entry(ent)) {
5580 page = device_private_entry_to_page(ent);
5581 /*
5582 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5583 * a refcount of 1 when free (unlike normal page)
5584 */
5585 if (!page_ref_add_unless(page, 1, 1))
5586 return NULL;
5587 return page;
5588 }
5589
5590 if (non_swap_entry(ent))
5591 return NULL;
5592
5593 /*
5594 * Because lookup_swap_cache() updates some statistics counter,
5595 * we call find_get_page() with swapper_space directly.
5596 */
5597 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5598 entry->val = ent.val;
5599
5600 return page;
5601 }
5602 #else
5603 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5604 pte_t ptent, swp_entry_t *entry)
5605 {
5606 return NULL;
5607 }
5608 #endif
5609
5610 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5611 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5612 {
5613 if (!vma->vm_file) /* anonymous vma */
5614 return NULL;
5615 if (!(mc.flags & MOVE_FILE))
5616 return NULL;
5617
5618 /* page is moved even if it's not RSS of this task(page-faulted). */
5619 /* shmem/tmpfs may report page out on swap: account for that too. */
5620 return find_get_incore_page(vma->vm_file->f_mapping,
5621 linear_page_index(vma, addr));
5622 }
5623
5624 /**
5625 * mem_cgroup_move_account - move account of the page
5626 * @page: the page
5627 * @compound: charge the page as compound or small page
5628 * @from: mem_cgroup which the page is moved from.
5629 * @to: mem_cgroup which the page is moved to. @from != @to.
5630 *
5631 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5632 *
5633 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5634 * from old cgroup.
5635 */
5636 static int mem_cgroup_move_account(struct page *page,
5637 bool compound,
5638 struct mem_cgroup *from,
5639 struct mem_cgroup *to)
5640 {
5641 struct lruvec *from_vec, *to_vec;
5642 struct pglist_data *pgdat;
5643 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5644 int ret;
5645
5646 VM_BUG_ON(from == to);
5647 VM_BUG_ON_PAGE(PageLRU(page), page);
5648 VM_BUG_ON(compound && !PageTransHuge(page));
5649
5650 /*
5651 * Prevent mem_cgroup_migrate() from looking at
5652 * page->mem_cgroup of its source page while we change it.
5653 */
5654 ret = -EBUSY;
5655 if (!trylock_page(page))
5656 goto out;
5657
5658 ret = -EINVAL;
5659 if (page->mem_cgroup != from)
5660 goto out_unlock;
5661
5662 pgdat = page_pgdat(page);
5663 from_vec = mem_cgroup_lruvec(from, pgdat);
5664 to_vec = mem_cgroup_lruvec(to, pgdat);
5665
5666 lock_page_memcg(page);
5667
5668 if (PageAnon(page)) {
5669 if (page_mapped(page)) {
5670 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5671 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5672 if (PageTransHuge(page)) {
5673 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5674 -nr_pages);
5675 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5676 nr_pages);
5677 }
5678
5679 }
5680 } else {
5681 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5682 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5683
5684 if (PageSwapBacked(page)) {
5685 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5686 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5687 }
5688
5689 if (page_mapped(page)) {
5690 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5691 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5692 }
5693
5694 if (PageDirty(page)) {
5695 struct address_space *mapping = page_mapping(page);
5696
5697 if (mapping_can_writeback(mapping)) {
5698 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5699 -nr_pages);
5700 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5701 nr_pages);
5702 }
5703 }
5704 }
5705
5706 if (PageWriteback(page)) {
5707 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5708 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5709 }
5710
5711 /*
5712 * All state has been migrated, let's switch to the new memcg.
5713 *
5714 * It is safe to change page->mem_cgroup here because the page
5715 * is referenced, charged, isolated, and locked: we can't race
5716 * with (un)charging, migration, LRU putback, or anything else
5717 * that would rely on a stable page->mem_cgroup.
5718 *
5719 * Note that lock_page_memcg is a memcg lock, not a page lock,
5720 * to save space. As soon as we switch page->mem_cgroup to a
5721 * new memcg that isn't locked, the above state can change
5722 * concurrently again. Make sure we're truly done with it.
5723 */
5724 smp_mb();
5725
5726 css_get(&to->css);
5727 css_put(&from->css);
5728
5729 page->mem_cgroup = to;
5730
5731 __unlock_page_memcg(from);
5732
5733 ret = 0;
5734
5735 local_irq_disable();
5736 mem_cgroup_charge_statistics(to, page, nr_pages);
5737 memcg_check_events(to, page);
5738 mem_cgroup_charge_statistics(from, page, -nr_pages);
5739 memcg_check_events(from, page);
5740 local_irq_enable();
5741 out_unlock:
5742 unlock_page(page);
5743 out:
5744 return ret;
5745 }
5746
5747 /**
5748 * get_mctgt_type - get target type of moving charge
5749 * @vma: the vma the pte to be checked belongs
5750 * @addr: the address corresponding to the pte to be checked
5751 * @ptent: the pte to be checked
5752 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5753 *
5754 * Returns
5755 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5756 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5757 * move charge. if @target is not NULL, the page is stored in target->page
5758 * with extra refcnt got(Callers should handle it).
5759 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5760 * target for charge migration. if @target is not NULL, the entry is stored
5761 * in target->ent.
5762 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5763 * (so ZONE_DEVICE page and thus not on the lru).
5764 * For now we such page is charge like a regular page would be as for all
5765 * intent and purposes it is just special memory taking the place of a
5766 * regular page.
5767 *
5768 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5769 *
5770 * Called with pte lock held.
5771 */
5772
5773 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5774 unsigned long addr, pte_t ptent, union mc_target *target)
5775 {
5776 struct page *page = NULL;
5777 enum mc_target_type ret = MC_TARGET_NONE;
5778 swp_entry_t ent = { .val = 0 };
5779
5780 if (pte_present(ptent))
5781 page = mc_handle_present_pte(vma, addr, ptent);
5782 else if (is_swap_pte(ptent))
5783 page = mc_handle_swap_pte(vma, ptent, &ent);
5784 else if (pte_none(ptent))
5785 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5786
5787 if (!page && !ent.val)
5788 return ret;
5789 if (page) {
5790 /*
5791 * Do only loose check w/o serialization.
5792 * mem_cgroup_move_account() checks the page is valid or
5793 * not under LRU exclusion.
5794 */
5795 if (page->mem_cgroup == mc.from) {
5796 ret = MC_TARGET_PAGE;
5797 if (is_device_private_page(page))
5798 ret = MC_TARGET_DEVICE;
5799 if (target)
5800 target->page = page;
5801 }
5802 if (!ret || !target)
5803 put_page(page);
5804 }
5805 /*
5806 * There is a swap entry and a page doesn't exist or isn't charged.
5807 * But we cannot move a tail-page in a THP.
5808 */
5809 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5810 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5811 ret = MC_TARGET_SWAP;
5812 if (target)
5813 target->ent = ent;
5814 }
5815 return ret;
5816 }
5817
5818 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5819 /*
5820 * We don't consider PMD mapped swapping or file mapped pages because THP does
5821 * not support them for now.
5822 * Caller should make sure that pmd_trans_huge(pmd) is true.
5823 */
5824 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5825 unsigned long addr, pmd_t pmd, union mc_target *target)
5826 {
5827 struct page *page = NULL;
5828 enum mc_target_type ret = MC_TARGET_NONE;
5829
5830 if (unlikely(is_swap_pmd(pmd))) {
5831 VM_BUG_ON(thp_migration_supported() &&
5832 !is_pmd_migration_entry(pmd));
5833 return ret;
5834 }
5835 page = pmd_page(pmd);
5836 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5837 if (!(mc.flags & MOVE_ANON))
5838 return ret;
5839 if (page->mem_cgroup == mc.from) {
5840 ret = MC_TARGET_PAGE;
5841 if (target) {
5842 get_page(page);
5843 target->page = page;
5844 }
5845 }
5846 return ret;
5847 }
5848 #else
5849 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5850 unsigned long addr, pmd_t pmd, union mc_target *target)
5851 {
5852 return MC_TARGET_NONE;
5853 }
5854 #endif
5855
5856 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5857 unsigned long addr, unsigned long end,
5858 struct mm_walk *walk)
5859 {
5860 struct vm_area_struct *vma = walk->vma;
5861 pte_t *pte;
5862 spinlock_t *ptl;
5863
5864 ptl = pmd_trans_huge_lock(pmd, vma);
5865 if (ptl) {
5866 /*
5867 * Note their can not be MC_TARGET_DEVICE for now as we do not
5868 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5869 * this might change.
5870 */
5871 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5872 mc.precharge += HPAGE_PMD_NR;
5873 spin_unlock(ptl);
5874 return 0;
5875 }
5876
5877 if (pmd_trans_unstable(pmd))
5878 return 0;
5879 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5880 for (; addr != end; pte++, addr += PAGE_SIZE)
5881 if (get_mctgt_type(vma, addr, *pte, NULL))
5882 mc.precharge++; /* increment precharge temporarily */
5883 pte_unmap_unlock(pte - 1, ptl);
5884 cond_resched();
5885
5886 return 0;
5887 }
5888
5889 static const struct mm_walk_ops precharge_walk_ops = {
5890 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5891 };
5892
5893 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5894 {
5895 unsigned long precharge;
5896
5897 mmap_read_lock(mm);
5898 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5899 mmap_read_unlock(mm);
5900
5901 precharge = mc.precharge;
5902 mc.precharge = 0;
5903
5904 return precharge;
5905 }
5906
5907 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5908 {
5909 unsigned long precharge = mem_cgroup_count_precharge(mm);
5910
5911 VM_BUG_ON(mc.moving_task);
5912 mc.moving_task = current;
5913 return mem_cgroup_do_precharge(precharge);
5914 }
5915
5916 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5917 static void __mem_cgroup_clear_mc(void)
5918 {
5919 struct mem_cgroup *from = mc.from;
5920 struct mem_cgroup *to = mc.to;
5921
5922 /* we must uncharge all the leftover precharges from mc.to */
5923 if (mc.precharge) {
5924 cancel_charge(mc.to, mc.precharge);
5925 mc.precharge = 0;
5926 }
5927 /*
5928 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5929 * we must uncharge here.
5930 */
5931 if (mc.moved_charge) {
5932 cancel_charge(mc.from, mc.moved_charge);
5933 mc.moved_charge = 0;
5934 }
5935 /* we must fixup refcnts and charges */
5936 if (mc.moved_swap) {
5937 /* uncharge swap account from the old cgroup */
5938 if (!mem_cgroup_is_root(mc.from))
5939 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5940
5941 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5942
5943 /*
5944 * we charged both to->memory and to->memsw, so we
5945 * should uncharge to->memory.
5946 */
5947 if (!mem_cgroup_is_root(mc.to))
5948 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5949
5950 mc.moved_swap = 0;
5951 }
5952 memcg_oom_recover(from);
5953 memcg_oom_recover(to);
5954 wake_up_all(&mc.waitq);
5955 }
5956
5957 static void mem_cgroup_clear_mc(void)
5958 {
5959 struct mm_struct *mm = mc.mm;
5960
5961 /*
5962 * we must clear moving_task before waking up waiters at the end of
5963 * task migration.
5964 */
5965 mc.moving_task = NULL;
5966 __mem_cgroup_clear_mc();
5967 spin_lock(&mc.lock);
5968 mc.from = NULL;
5969 mc.to = NULL;
5970 mc.mm = NULL;
5971 spin_unlock(&mc.lock);
5972
5973 mmput(mm);
5974 }
5975
5976 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5977 {
5978 struct cgroup_subsys_state *css;
5979 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5980 struct mem_cgroup *from;
5981 struct task_struct *leader, *p;
5982 struct mm_struct *mm;
5983 unsigned long move_flags;
5984 int ret = 0;
5985
5986 /* charge immigration isn't supported on the default hierarchy */
5987 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5988 return 0;
5989
5990 /*
5991 * Multi-process migrations only happen on the default hierarchy
5992 * where charge immigration is not used. Perform charge
5993 * immigration if @tset contains a leader and whine if there are
5994 * multiple.
5995 */
5996 p = NULL;
5997 cgroup_taskset_for_each_leader(leader, css, tset) {
5998 WARN_ON_ONCE(p);
5999 p = leader;
6000 memcg = mem_cgroup_from_css(css);
6001 }
6002 if (!p)
6003 return 0;
6004
6005 /*
6006 * We are now commited to this value whatever it is. Changes in this
6007 * tunable will only affect upcoming migrations, not the current one.
6008 * So we need to save it, and keep it going.
6009 */
6010 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6011 if (!move_flags)
6012 return 0;
6013
6014 from = mem_cgroup_from_task(p);
6015
6016 VM_BUG_ON(from == memcg);
6017
6018 mm = get_task_mm(p);
6019 if (!mm)
6020 return 0;
6021 /* We move charges only when we move a owner of the mm */
6022 if (mm->owner == p) {
6023 VM_BUG_ON(mc.from);
6024 VM_BUG_ON(mc.to);
6025 VM_BUG_ON(mc.precharge);
6026 VM_BUG_ON(mc.moved_charge);
6027 VM_BUG_ON(mc.moved_swap);
6028
6029 spin_lock(&mc.lock);
6030 mc.mm = mm;
6031 mc.from = from;
6032 mc.to = memcg;
6033 mc.flags = move_flags;
6034 spin_unlock(&mc.lock);
6035 /* We set mc.moving_task later */
6036
6037 ret = mem_cgroup_precharge_mc(mm);
6038 if (ret)
6039 mem_cgroup_clear_mc();
6040 } else {
6041 mmput(mm);
6042 }
6043 return ret;
6044 }
6045
6046 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6047 {
6048 if (mc.to)
6049 mem_cgroup_clear_mc();
6050 }
6051
6052 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6053 unsigned long addr, unsigned long end,
6054 struct mm_walk *walk)
6055 {
6056 int ret = 0;
6057 struct vm_area_struct *vma = walk->vma;
6058 pte_t *pte;
6059 spinlock_t *ptl;
6060 enum mc_target_type target_type;
6061 union mc_target target;
6062 struct page *page;
6063
6064 ptl = pmd_trans_huge_lock(pmd, vma);
6065 if (ptl) {
6066 if (mc.precharge < HPAGE_PMD_NR) {
6067 spin_unlock(ptl);
6068 return 0;
6069 }
6070 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6071 if (target_type == MC_TARGET_PAGE) {
6072 page = target.page;
6073 if (!isolate_lru_page(page)) {
6074 if (!mem_cgroup_move_account(page, true,
6075 mc.from, mc.to)) {
6076 mc.precharge -= HPAGE_PMD_NR;
6077 mc.moved_charge += HPAGE_PMD_NR;
6078 }
6079 putback_lru_page(page);
6080 }
6081 put_page(page);
6082 } else if (target_type == MC_TARGET_DEVICE) {
6083 page = target.page;
6084 if (!mem_cgroup_move_account(page, true,
6085 mc.from, mc.to)) {
6086 mc.precharge -= HPAGE_PMD_NR;
6087 mc.moved_charge += HPAGE_PMD_NR;
6088 }
6089 put_page(page);
6090 }
6091 spin_unlock(ptl);
6092 return 0;
6093 }
6094
6095 if (pmd_trans_unstable(pmd))
6096 return 0;
6097 retry:
6098 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6099 for (; addr != end; addr += PAGE_SIZE) {
6100 pte_t ptent = *(pte++);
6101 bool device = false;
6102 swp_entry_t ent;
6103
6104 if (!mc.precharge)
6105 break;
6106
6107 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6108 case MC_TARGET_DEVICE:
6109 device = true;
6110 fallthrough;
6111 case MC_TARGET_PAGE:
6112 page = target.page;
6113 /*
6114 * We can have a part of the split pmd here. Moving it
6115 * can be done but it would be too convoluted so simply
6116 * ignore such a partial THP and keep it in original
6117 * memcg. There should be somebody mapping the head.
6118 */
6119 if (PageTransCompound(page))
6120 goto put;
6121 if (!device && isolate_lru_page(page))
6122 goto put;
6123 if (!mem_cgroup_move_account(page, false,
6124 mc.from, mc.to)) {
6125 mc.precharge--;
6126 /* we uncharge from mc.from later. */
6127 mc.moved_charge++;
6128 }
6129 if (!device)
6130 putback_lru_page(page);
6131 put: /* get_mctgt_type() gets the page */
6132 put_page(page);
6133 break;
6134 case MC_TARGET_SWAP:
6135 ent = target.ent;
6136 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6137 mc.precharge--;
6138 mem_cgroup_id_get_many(mc.to, 1);
6139 /* we fixup other refcnts and charges later. */
6140 mc.moved_swap++;
6141 }
6142 break;
6143 default:
6144 break;
6145 }
6146 }
6147 pte_unmap_unlock(pte - 1, ptl);
6148 cond_resched();
6149
6150 if (addr != end) {
6151 /*
6152 * We have consumed all precharges we got in can_attach().
6153 * We try charge one by one, but don't do any additional
6154 * charges to mc.to if we have failed in charge once in attach()
6155 * phase.
6156 */
6157 ret = mem_cgroup_do_precharge(1);
6158 if (!ret)
6159 goto retry;
6160 }
6161
6162 return ret;
6163 }
6164
6165 static const struct mm_walk_ops charge_walk_ops = {
6166 .pmd_entry = mem_cgroup_move_charge_pte_range,
6167 };
6168
6169 static void mem_cgroup_move_charge(void)
6170 {
6171 lru_add_drain_all();
6172 /*
6173 * Signal lock_page_memcg() to take the memcg's move_lock
6174 * while we're moving its pages to another memcg. Then wait
6175 * for already started RCU-only updates to finish.
6176 */
6177 atomic_inc(&mc.from->moving_account);
6178 synchronize_rcu();
6179 retry:
6180 if (unlikely(!mmap_read_trylock(mc.mm))) {
6181 /*
6182 * Someone who are holding the mmap_lock might be waiting in
6183 * waitq. So we cancel all extra charges, wake up all waiters,
6184 * and retry. Because we cancel precharges, we might not be able
6185 * to move enough charges, but moving charge is a best-effort
6186 * feature anyway, so it wouldn't be a big problem.
6187 */
6188 __mem_cgroup_clear_mc();
6189 cond_resched();
6190 goto retry;
6191 }
6192 /*
6193 * When we have consumed all precharges and failed in doing
6194 * additional charge, the page walk just aborts.
6195 */
6196 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6197 NULL);
6198
6199 mmap_read_unlock(mc.mm);
6200 atomic_dec(&mc.from->moving_account);
6201 }
6202
6203 static void mem_cgroup_move_task(void)
6204 {
6205 if (mc.to) {
6206 mem_cgroup_move_charge();
6207 mem_cgroup_clear_mc();
6208 }
6209 }
6210 #else /* !CONFIG_MMU */
6211 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6212 {
6213 return 0;
6214 }
6215 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6216 {
6217 }
6218 static void mem_cgroup_move_task(void)
6219 {
6220 }
6221 #endif
6222
6223 /*
6224 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6225 * to verify whether we're attached to the default hierarchy on each mount
6226 * attempt.
6227 */
6228 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6229 {
6230 /*
6231 * use_hierarchy is forced on the default hierarchy. cgroup core
6232 * guarantees that @root doesn't have any children, so turning it
6233 * on for the root memcg is enough.
6234 */
6235 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6236 root_mem_cgroup->use_hierarchy = true;
6237 else
6238 root_mem_cgroup->use_hierarchy = false;
6239 }
6240
6241 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6242 {
6243 if (value == PAGE_COUNTER_MAX)
6244 seq_puts(m, "max\n");
6245 else
6246 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6247
6248 return 0;
6249 }
6250
6251 static u64 memory_current_read(struct cgroup_subsys_state *css,
6252 struct cftype *cft)
6253 {
6254 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6255
6256 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6257 }
6258
6259 static int memory_min_show(struct seq_file *m, void *v)
6260 {
6261 return seq_puts_memcg_tunable(m,
6262 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6263 }
6264
6265 static ssize_t memory_min_write(struct kernfs_open_file *of,
6266 char *buf, size_t nbytes, loff_t off)
6267 {
6268 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6269 unsigned long min;
6270 int err;
6271
6272 buf = strstrip(buf);
6273 err = page_counter_memparse(buf, "max", &min);
6274 if (err)
6275 return err;
6276
6277 page_counter_set_min(&memcg->memory, min);
6278
6279 return nbytes;
6280 }
6281
6282 static int memory_low_show(struct seq_file *m, void *v)
6283 {
6284 return seq_puts_memcg_tunable(m,
6285 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6286 }
6287
6288 static ssize_t memory_low_write(struct kernfs_open_file *of,
6289 char *buf, size_t nbytes, loff_t off)
6290 {
6291 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6292 unsigned long low;
6293 int err;
6294
6295 buf = strstrip(buf);
6296 err = page_counter_memparse(buf, "max", &low);
6297 if (err)
6298 return err;
6299
6300 page_counter_set_low(&memcg->memory, low);
6301
6302 return nbytes;
6303 }
6304
6305 static int memory_high_show(struct seq_file *m, void *v)
6306 {
6307 return seq_puts_memcg_tunable(m,
6308 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6309 }
6310
6311 static ssize_t memory_high_write(struct kernfs_open_file *of,
6312 char *buf, size_t nbytes, loff_t off)
6313 {
6314 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6315 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6316 bool drained = false;
6317 unsigned long high;
6318 int err;
6319
6320 buf = strstrip(buf);
6321 err = page_counter_memparse(buf, "max", &high);
6322 if (err)
6323 return err;
6324
6325 for (;;) {
6326 unsigned long nr_pages = page_counter_read(&memcg->memory);
6327 unsigned long reclaimed;
6328
6329 if (nr_pages <= high)
6330 break;
6331
6332 if (signal_pending(current))
6333 break;
6334
6335 if (!drained) {
6336 drain_all_stock(memcg);
6337 drained = true;
6338 continue;
6339 }
6340
6341 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6342 GFP_KERNEL, true);
6343
6344 if (!reclaimed && !nr_retries--)
6345 break;
6346 }
6347
6348 page_counter_set_high(&memcg->memory, high);
6349
6350 memcg_wb_domain_size_changed(memcg);
6351
6352 return nbytes;
6353 }
6354
6355 static int memory_max_show(struct seq_file *m, void *v)
6356 {
6357 return seq_puts_memcg_tunable(m,
6358 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6359 }
6360
6361 static ssize_t memory_max_write(struct kernfs_open_file *of,
6362 char *buf, size_t nbytes, loff_t off)
6363 {
6364 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6365 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6366 bool drained = false;
6367 unsigned long max;
6368 int err;
6369
6370 buf = strstrip(buf);
6371 err = page_counter_memparse(buf, "max", &max);
6372 if (err)
6373 return err;
6374
6375 xchg(&memcg->memory.max, max);
6376
6377 for (;;) {
6378 unsigned long nr_pages = page_counter_read(&memcg->memory);
6379
6380 if (nr_pages <= max)
6381 break;
6382
6383 if (signal_pending(current))
6384 break;
6385
6386 if (!drained) {
6387 drain_all_stock(memcg);
6388 drained = true;
6389 continue;
6390 }
6391
6392 if (nr_reclaims) {
6393 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6394 GFP_KERNEL, true))
6395 nr_reclaims--;
6396 continue;
6397 }
6398
6399 memcg_memory_event(memcg, MEMCG_OOM);
6400 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6401 break;
6402 }
6403
6404 memcg_wb_domain_size_changed(memcg);
6405 return nbytes;
6406 }
6407
6408 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6409 {
6410 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6411 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6412 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6413 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6414 seq_printf(m, "oom_kill %lu\n",
6415 atomic_long_read(&events[MEMCG_OOM_KILL]));
6416 }
6417
6418 static int memory_events_show(struct seq_file *m, void *v)
6419 {
6420 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6421
6422 __memory_events_show(m, memcg->memory_events);
6423 return 0;
6424 }
6425
6426 static int memory_events_local_show(struct seq_file *m, void *v)
6427 {
6428 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6429
6430 __memory_events_show(m, memcg->memory_events_local);
6431 return 0;
6432 }
6433
6434 static int memory_stat_show(struct seq_file *m, void *v)
6435 {
6436 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6437 char *buf;
6438
6439 buf = memory_stat_format(memcg);
6440 if (!buf)
6441 return -ENOMEM;
6442 seq_puts(m, buf);
6443 kfree(buf);
6444 return 0;
6445 }
6446
6447 #ifdef CONFIG_NUMA
6448 static int memory_numa_stat_show(struct seq_file *m, void *v)
6449 {
6450 int i;
6451 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6452
6453 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6454 int nid;
6455
6456 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6457 continue;
6458
6459 seq_printf(m, "%s", memory_stats[i].name);
6460 for_each_node_state(nid, N_MEMORY) {
6461 u64 size;
6462 struct lruvec *lruvec;
6463
6464 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6465 size = lruvec_page_state(lruvec, memory_stats[i].idx);
6466 size *= memory_stats[i].ratio;
6467 seq_printf(m, " N%d=%llu", nid, size);
6468 }
6469 seq_putc(m, '\n');
6470 }
6471
6472 return 0;
6473 }
6474 #endif
6475
6476 static int memory_oom_group_show(struct seq_file *m, void *v)
6477 {
6478 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6479
6480 seq_printf(m, "%d\n", memcg->oom_group);
6481
6482 return 0;
6483 }
6484
6485 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6486 char *buf, size_t nbytes, loff_t off)
6487 {
6488 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6489 int ret, oom_group;
6490
6491 buf = strstrip(buf);
6492 if (!buf)
6493 return -EINVAL;
6494
6495 ret = kstrtoint(buf, 0, &oom_group);
6496 if (ret)
6497 return ret;
6498
6499 if (oom_group != 0 && oom_group != 1)
6500 return -EINVAL;
6501
6502 memcg->oom_group = oom_group;
6503
6504 return nbytes;
6505 }
6506
6507 static struct cftype memory_files[] = {
6508 {
6509 .name = "current",
6510 .flags = CFTYPE_NOT_ON_ROOT,
6511 .read_u64 = memory_current_read,
6512 },
6513 {
6514 .name = "min",
6515 .flags = CFTYPE_NOT_ON_ROOT,
6516 .seq_show = memory_min_show,
6517 .write = memory_min_write,
6518 },
6519 {
6520 .name = "low",
6521 .flags = CFTYPE_NOT_ON_ROOT,
6522 .seq_show = memory_low_show,
6523 .write = memory_low_write,
6524 },
6525 {
6526 .name = "high",
6527 .flags = CFTYPE_NOT_ON_ROOT,
6528 .seq_show = memory_high_show,
6529 .write = memory_high_write,
6530 },
6531 {
6532 .name = "max",
6533 .flags = CFTYPE_NOT_ON_ROOT,
6534 .seq_show = memory_max_show,
6535 .write = memory_max_write,
6536 },
6537 {
6538 .name = "events",
6539 .flags = CFTYPE_NOT_ON_ROOT,
6540 .file_offset = offsetof(struct mem_cgroup, events_file),
6541 .seq_show = memory_events_show,
6542 },
6543 {
6544 .name = "events.local",
6545 .flags = CFTYPE_NOT_ON_ROOT,
6546 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6547 .seq_show = memory_events_local_show,
6548 },
6549 {
6550 .name = "stat",
6551 .seq_show = memory_stat_show,
6552 },
6553 #ifdef CONFIG_NUMA
6554 {
6555 .name = "numa_stat",
6556 .seq_show = memory_numa_stat_show,
6557 },
6558 #endif
6559 {
6560 .name = "oom.group",
6561 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6562 .seq_show = memory_oom_group_show,
6563 .write = memory_oom_group_write,
6564 },
6565 { } /* terminate */
6566 };
6567
6568 struct cgroup_subsys memory_cgrp_subsys = {
6569 .css_alloc = mem_cgroup_css_alloc,
6570 .css_online = mem_cgroup_css_online,
6571 .css_offline = mem_cgroup_css_offline,
6572 .css_released = mem_cgroup_css_released,
6573 .css_free = mem_cgroup_css_free,
6574 .css_reset = mem_cgroup_css_reset,
6575 .can_attach = mem_cgroup_can_attach,
6576 .cancel_attach = mem_cgroup_cancel_attach,
6577 .post_attach = mem_cgroup_move_task,
6578 .bind = mem_cgroup_bind,
6579 .dfl_cftypes = memory_files,
6580 .legacy_cftypes = mem_cgroup_legacy_files,
6581 .early_init = 0,
6582 };
6583
6584 /*
6585 * This function calculates an individual cgroup's effective
6586 * protection which is derived from its own memory.min/low, its
6587 * parent's and siblings' settings, as well as the actual memory
6588 * distribution in the tree.
6589 *
6590 * The following rules apply to the effective protection values:
6591 *
6592 * 1. At the first level of reclaim, effective protection is equal to
6593 * the declared protection in memory.min and memory.low.
6594 *
6595 * 2. To enable safe delegation of the protection configuration, at
6596 * subsequent levels the effective protection is capped to the
6597 * parent's effective protection.
6598 *
6599 * 3. To make complex and dynamic subtrees easier to configure, the
6600 * user is allowed to overcommit the declared protection at a given
6601 * level. If that is the case, the parent's effective protection is
6602 * distributed to the children in proportion to how much protection
6603 * they have declared and how much of it they are utilizing.
6604 *
6605 * This makes distribution proportional, but also work-conserving:
6606 * if one cgroup claims much more protection than it uses memory,
6607 * the unused remainder is available to its siblings.
6608 *
6609 * 4. Conversely, when the declared protection is undercommitted at a
6610 * given level, the distribution of the larger parental protection
6611 * budget is NOT proportional. A cgroup's protection from a sibling
6612 * is capped to its own memory.min/low setting.
6613 *
6614 * 5. However, to allow protecting recursive subtrees from each other
6615 * without having to declare each individual cgroup's fixed share
6616 * of the ancestor's claim to protection, any unutilized -
6617 * "floating" - protection from up the tree is distributed in
6618 * proportion to each cgroup's *usage*. This makes the protection
6619 * neutral wrt sibling cgroups and lets them compete freely over
6620 * the shared parental protection budget, but it protects the
6621 * subtree as a whole from neighboring subtrees.
6622 *
6623 * Note that 4. and 5. are not in conflict: 4. is about protecting
6624 * against immediate siblings whereas 5. is about protecting against
6625 * neighboring subtrees.
6626 */
6627 static unsigned long effective_protection(unsigned long usage,
6628 unsigned long parent_usage,
6629 unsigned long setting,
6630 unsigned long parent_effective,
6631 unsigned long siblings_protected)
6632 {
6633 unsigned long protected;
6634 unsigned long ep;
6635
6636 protected = min(usage, setting);
6637 /*
6638 * If all cgroups at this level combined claim and use more
6639 * protection then what the parent affords them, distribute
6640 * shares in proportion to utilization.
6641 *
6642 * We are using actual utilization rather than the statically
6643 * claimed protection in order to be work-conserving: claimed
6644 * but unused protection is available to siblings that would
6645 * otherwise get a smaller chunk than what they claimed.
6646 */
6647 if (siblings_protected > parent_effective)
6648 return protected * parent_effective / siblings_protected;
6649
6650 /*
6651 * Ok, utilized protection of all children is within what the
6652 * parent affords them, so we know whatever this child claims
6653 * and utilizes is effectively protected.
6654 *
6655 * If there is unprotected usage beyond this value, reclaim
6656 * will apply pressure in proportion to that amount.
6657 *
6658 * If there is unutilized protection, the cgroup will be fully
6659 * shielded from reclaim, but we do return a smaller value for
6660 * protection than what the group could enjoy in theory. This
6661 * is okay. With the overcommit distribution above, effective
6662 * protection is always dependent on how memory is actually
6663 * consumed among the siblings anyway.
6664 */
6665 ep = protected;
6666
6667 /*
6668 * If the children aren't claiming (all of) the protection
6669 * afforded to them by the parent, distribute the remainder in
6670 * proportion to the (unprotected) memory of each cgroup. That
6671 * way, cgroups that aren't explicitly prioritized wrt each
6672 * other compete freely over the allowance, but they are
6673 * collectively protected from neighboring trees.
6674 *
6675 * We're using unprotected memory for the weight so that if
6676 * some cgroups DO claim explicit protection, we don't protect
6677 * the same bytes twice.
6678 *
6679 * Check both usage and parent_usage against the respective
6680 * protected values. One should imply the other, but they
6681 * aren't read atomically - make sure the division is sane.
6682 */
6683 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6684 return ep;
6685 if (parent_effective > siblings_protected &&
6686 parent_usage > siblings_protected &&
6687 usage > protected) {
6688 unsigned long unclaimed;
6689
6690 unclaimed = parent_effective - siblings_protected;
6691 unclaimed *= usage - protected;
6692 unclaimed /= parent_usage - siblings_protected;
6693
6694 ep += unclaimed;
6695 }
6696
6697 return ep;
6698 }
6699
6700 /**
6701 * mem_cgroup_protected - check if memory consumption is in the normal range
6702 * @root: the top ancestor of the sub-tree being checked
6703 * @memcg: the memory cgroup to check
6704 *
6705 * WARNING: This function is not stateless! It can only be used as part
6706 * of a top-down tree iteration, not for isolated queries.
6707 */
6708 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6709 struct mem_cgroup *memcg)
6710 {
6711 unsigned long usage, parent_usage;
6712 struct mem_cgroup *parent;
6713
6714 if (mem_cgroup_disabled())
6715 return;
6716
6717 if (!root)
6718 root = root_mem_cgroup;
6719
6720 /*
6721 * Effective values of the reclaim targets are ignored so they
6722 * can be stale. Have a look at mem_cgroup_protection for more
6723 * details.
6724 * TODO: calculation should be more robust so that we do not need
6725 * that special casing.
6726 */
6727 if (memcg == root)
6728 return;
6729
6730 usage = page_counter_read(&memcg->memory);
6731 if (!usage)
6732 return;
6733
6734 parent = parent_mem_cgroup(memcg);
6735 /* No parent means a non-hierarchical mode on v1 memcg */
6736 if (!parent)
6737 return;
6738
6739 if (parent == root) {
6740 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6741 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6742 return;
6743 }
6744
6745 parent_usage = page_counter_read(&parent->memory);
6746
6747 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6748 READ_ONCE(memcg->memory.min),
6749 READ_ONCE(parent->memory.emin),
6750 atomic_long_read(&parent->memory.children_min_usage)));
6751
6752 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6753 READ_ONCE(memcg->memory.low),
6754 READ_ONCE(parent->memory.elow),
6755 atomic_long_read(&parent->memory.children_low_usage)));
6756 }
6757
6758 /**
6759 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6760 * @page: page to charge
6761 * @mm: mm context of the victim
6762 * @gfp_mask: reclaim mode
6763 *
6764 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6765 * pages according to @gfp_mask if necessary.
6766 *
6767 * Returns 0 on success. Otherwise, an error code is returned.
6768 */
6769 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6770 {
6771 unsigned int nr_pages = thp_nr_pages(page);
6772 struct mem_cgroup *memcg = NULL;
6773 int ret = 0;
6774
6775 if (mem_cgroup_disabled())
6776 goto out;
6777
6778 if (PageSwapCache(page)) {
6779 swp_entry_t ent = { .val = page_private(page), };
6780 unsigned short id;
6781
6782 /*
6783 * Every swap fault against a single page tries to charge the
6784 * page, bail as early as possible. shmem_unuse() encounters
6785 * already charged pages, too. page->mem_cgroup is protected
6786 * by the page lock, which serializes swap cache removal, which
6787 * in turn serializes uncharging.
6788 */
6789 VM_BUG_ON_PAGE(!PageLocked(page), page);
6790 if (compound_head(page)->mem_cgroup)
6791 goto out;
6792
6793 id = lookup_swap_cgroup_id(ent);
6794 rcu_read_lock();
6795 memcg = mem_cgroup_from_id(id);
6796 if (memcg && !css_tryget_online(&memcg->css))
6797 memcg = NULL;
6798 rcu_read_unlock();
6799 }
6800
6801 if (!memcg)
6802 memcg = get_mem_cgroup_from_mm(mm);
6803
6804 ret = try_charge(memcg, gfp_mask, nr_pages);
6805 if (ret)
6806 goto out_put;
6807
6808 css_get(&memcg->css);
6809 commit_charge(page, memcg);
6810
6811 local_irq_disable();
6812 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6813 memcg_check_events(memcg, page);
6814 local_irq_enable();
6815
6816 if (PageSwapCache(page)) {
6817 swp_entry_t entry = { .val = page_private(page) };
6818 /*
6819 * The swap entry might not get freed for a long time,
6820 * let's not wait for it. The page already received a
6821 * memory+swap charge, drop the swap entry duplicate.
6822 */
6823 mem_cgroup_uncharge_swap(entry, nr_pages);
6824 }
6825
6826 out_put:
6827 css_put(&memcg->css);
6828 out:
6829 return ret;
6830 }
6831
6832 struct uncharge_gather {
6833 struct mem_cgroup *memcg;
6834 unsigned long nr_pages;
6835 unsigned long pgpgout;
6836 unsigned long nr_kmem;
6837 struct page *dummy_page;
6838 };
6839
6840 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6841 {
6842 memset(ug, 0, sizeof(*ug));
6843 }
6844
6845 static void uncharge_batch(const struct uncharge_gather *ug)
6846 {
6847 unsigned long flags;
6848
6849 if (!mem_cgroup_is_root(ug->memcg)) {
6850 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6851 if (do_memsw_account())
6852 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6853 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6854 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6855 memcg_oom_recover(ug->memcg);
6856 }
6857
6858 local_irq_save(flags);
6859 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6860 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6861 memcg_check_events(ug->memcg, ug->dummy_page);
6862 local_irq_restore(flags);
6863
6864 /* drop reference from uncharge_page */
6865 css_put(&ug->memcg->css);
6866 }
6867
6868 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6869 {
6870 unsigned long nr_pages;
6871
6872 VM_BUG_ON_PAGE(PageLRU(page), page);
6873
6874 if (!page->mem_cgroup)
6875 return;
6876
6877 /*
6878 * Nobody should be changing or seriously looking at
6879 * page->mem_cgroup at this point, we have fully
6880 * exclusive access to the page.
6881 */
6882
6883 if (ug->memcg != page->mem_cgroup) {
6884 if (ug->memcg) {
6885 uncharge_batch(ug);
6886 uncharge_gather_clear(ug);
6887 }
6888 ug->memcg = page->mem_cgroup;
6889
6890 /* pairs with css_put in uncharge_batch */
6891 css_get(&ug->memcg->css);
6892 }
6893
6894 nr_pages = compound_nr(page);
6895 ug->nr_pages += nr_pages;
6896
6897 if (!PageKmemcg(page)) {
6898 ug->pgpgout++;
6899 } else {
6900 ug->nr_kmem += nr_pages;
6901 __ClearPageKmemcg(page);
6902 }
6903
6904 ug->dummy_page = page;
6905 page->mem_cgroup = NULL;
6906 css_put(&ug->memcg->css);
6907 }
6908
6909 static void uncharge_list(struct list_head *page_list)
6910 {
6911 struct uncharge_gather ug;
6912 struct list_head *next;
6913
6914 uncharge_gather_clear(&ug);
6915
6916 /*
6917 * Note that the list can be a single page->lru; hence the
6918 * do-while loop instead of a simple list_for_each_entry().
6919 */
6920 next = page_list->next;
6921 do {
6922 struct page *page;
6923
6924 page = list_entry(next, struct page, lru);
6925 next = page->lru.next;
6926
6927 uncharge_page(page, &ug);
6928 } while (next != page_list);
6929
6930 if (ug.memcg)
6931 uncharge_batch(&ug);
6932 }
6933
6934 /**
6935 * mem_cgroup_uncharge - uncharge a page
6936 * @page: page to uncharge
6937 *
6938 * Uncharge a page previously charged with mem_cgroup_charge().
6939 */
6940 void mem_cgroup_uncharge(struct page *page)
6941 {
6942 struct uncharge_gather ug;
6943
6944 if (mem_cgroup_disabled())
6945 return;
6946
6947 /* Don't touch page->lru of any random page, pre-check: */
6948 if (!page->mem_cgroup)
6949 return;
6950
6951 uncharge_gather_clear(&ug);
6952 uncharge_page(page, &ug);
6953 uncharge_batch(&ug);
6954 }
6955
6956 /**
6957 * mem_cgroup_uncharge_list - uncharge a list of page
6958 * @page_list: list of pages to uncharge
6959 *
6960 * Uncharge a list of pages previously charged with
6961 * mem_cgroup_charge().
6962 */
6963 void mem_cgroup_uncharge_list(struct list_head *page_list)
6964 {
6965 if (mem_cgroup_disabled())
6966 return;
6967
6968 if (!list_empty(page_list))
6969 uncharge_list(page_list);
6970 }
6971
6972 /**
6973 * mem_cgroup_migrate - charge a page's replacement
6974 * @oldpage: currently circulating page
6975 * @newpage: replacement page
6976 *
6977 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6978 * be uncharged upon free.
6979 *
6980 * Both pages must be locked, @newpage->mapping must be set up.
6981 */
6982 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6983 {
6984 struct mem_cgroup *memcg;
6985 unsigned int nr_pages;
6986 unsigned long flags;
6987
6988 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6989 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6990 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6991 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6992 newpage);
6993
6994 if (mem_cgroup_disabled())
6995 return;
6996
6997 /* Page cache replacement: new page already charged? */
6998 if (newpage->mem_cgroup)
6999 return;
7000
7001 /* Swapcache readahead pages can get replaced before being charged */
7002 memcg = oldpage->mem_cgroup;
7003 if (!memcg)
7004 return;
7005
7006 /* Force-charge the new page. The old one will be freed soon */
7007 nr_pages = thp_nr_pages(newpage);
7008
7009 page_counter_charge(&memcg->memory, nr_pages);
7010 if (do_memsw_account())
7011 page_counter_charge(&memcg->memsw, nr_pages);
7012
7013 css_get(&memcg->css);
7014 commit_charge(newpage, memcg);
7015
7016 local_irq_save(flags);
7017 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7018 memcg_check_events(memcg, newpage);
7019 local_irq_restore(flags);
7020 }
7021
7022 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7023 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7024
7025 void mem_cgroup_sk_alloc(struct sock *sk)
7026 {
7027 struct mem_cgroup *memcg;
7028
7029 if (!mem_cgroup_sockets_enabled)
7030 return;
7031
7032 /* Do not associate the sock with unrelated interrupted task's memcg. */
7033 if (in_interrupt())
7034 return;
7035
7036 rcu_read_lock();
7037 memcg = mem_cgroup_from_task(current);
7038 if (memcg == root_mem_cgroup)
7039 goto out;
7040 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7041 goto out;
7042 if (css_tryget(&memcg->css))
7043 sk->sk_memcg = memcg;
7044 out:
7045 rcu_read_unlock();
7046 }
7047
7048 void mem_cgroup_sk_free(struct sock *sk)
7049 {
7050 if (sk->sk_memcg)
7051 css_put(&sk->sk_memcg->css);
7052 }
7053
7054 /**
7055 * mem_cgroup_charge_skmem - charge socket memory
7056 * @memcg: memcg to charge
7057 * @nr_pages: number of pages to charge
7058 *
7059 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7060 * @memcg's configured limit, %false if the charge had to be forced.
7061 */
7062 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7063 {
7064 gfp_t gfp_mask = GFP_KERNEL;
7065
7066 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7067 struct page_counter *fail;
7068
7069 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7070 memcg->tcpmem_pressure = 0;
7071 return true;
7072 }
7073 page_counter_charge(&memcg->tcpmem, nr_pages);
7074 memcg->tcpmem_pressure = 1;
7075 return false;
7076 }
7077
7078 /* Don't block in the packet receive path */
7079 if (in_softirq())
7080 gfp_mask = GFP_NOWAIT;
7081
7082 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7083
7084 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7085 return true;
7086
7087 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7088 return false;
7089 }
7090
7091 /**
7092 * mem_cgroup_uncharge_skmem - uncharge socket memory
7093 * @memcg: memcg to uncharge
7094 * @nr_pages: number of pages to uncharge
7095 */
7096 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7097 {
7098 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7099 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7100 return;
7101 }
7102
7103 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7104
7105 refill_stock(memcg, nr_pages);
7106 }
7107
7108 static int __init cgroup_memory(char *s)
7109 {
7110 char *token;
7111
7112 while ((token = strsep(&s, ",")) != NULL) {
7113 if (!*token)
7114 continue;
7115 if (!strcmp(token, "nosocket"))
7116 cgroup_memory_nosocket = true;
7117 if (!strcmp(token, "nokmem"))
7118 cgroup_memory_nokmem = true;
7119 }
7120 return 0;
7121 }
7122 __setup("cgroup.memory=", cgroup_memory);
7123
7124 /*
7125 * subsys_initcall() for memory controller.
7126 *
7127 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7128 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7129 * basically everything that doesn't depend on a specific mem_cgroup structure
7130 * should be initialized from here.
7131 */
7132 static int __init mem_cgroup_init(void)
7133 {
7134 int cpu, node;
7135
7136 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7137 memcg_hotplug_cpu_dead);
7138
7139 for_each_possible_cpu(cpu)
7140 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7141 drain_local_stock);
7142
7143 for_each_node(node) {
7144 struct mem_cgroup_tree_per_node *rtpn;
7145
7146 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7147 node_online(node) ? node : NUMA_NO_NODE);
7148
7149 rtpn->rb_root = RB_ROOT;
7150 rtpn->rb_rightmost = NULL;
7151 spin_lock_init(&rtpn->lock);
7152 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7153 }
7154
7155 return 0;
7156 }
7157 subsys_initcall(mem_cgroup_init);
7158
7159 #ifdef CONFIG_MEMCG_SWAP
7160 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7161 {
7162 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7163 /*
7164 * The root cgroup cannot be destroyed, so it's refcount must
7165 * always be >= 1.
7166 */
7167 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7168 VM_BUG_ON(1);
7169 break;
7170 }
7171 memcg = parent_mem_cgroup(memcg);
7172 if (!memcg)
7173 memcg = root_mem_cgroup;
7174 }
7175 return memcg;
7176 }
7177
7178 /**
7179 * mem_cgroup_swapout - transfer a memsw charge to swap
7180 * @page: page whose memsw charge to transfer
7181 * @entry: swap entry to move the charge to
7182 *
7183 * Transfer the memsw charge of @page to @entry.
7184 */
7185 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7186 {
7187 struct mem_cgroup *memcg, *swap_memcg;
7188 unsigned int nr_entries;
7189 unsigned short oldid;
7190
7191 VM_BUG_ON_PAGE(PageLRU(page), page);
7192 VM_BUG_ON_PAGE(page_count(page), page);
7193
7194 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7195 return;
7196
7197 memcg = page->mem_cgroup;
7198
7199 /* Readahead page, never charged */
7200 if (!memcg)
7201 return;
7202
7203 /*
7204 * In case the memcg owning these pages has been offlined and doesn't
7205 * have an ID allocated to it anymore, charge the closest online
7206 * ancestor for the swap instead and transfer the memory+swap charge.
7207 */
7208 swap_memcg = mem_cgroup_id_get_online(memcg);
7209 nr_entries = thp_nr_pages(page);
7210 /* Get references for the tail pages, too */
7211 if (nr_entries > 1)
7212 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7213 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7214 nr_entries);
7215 VM_BUG_ON_PAGE(oldid, page);
7216 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7217
7218 page->mem_cgroup = NULL;
7219
7220 if (!mem_cgroup_is_root(memcg))
7221 page_counter_uncharge(&memcg->memory, nr_entries);
7222
7223 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7224 if (!mem_cgroup_is_root(swap_memcg))
7225 page_counter_charge(&swap_memcg->memsw, nr_entries);
7226 page_counter_uncharge(&memcg->memsw, nr_entries);
7227 }
7228
7229 /*
7230 * Interrupts should be disabled here because the caller holds the
7231 * i_pages lock which is taken with interrupts-off. It is
7232 * important here to have the interrupts disabled because it is the
7233 * only synchronisation we have for updating the per-CPU variables.
7234 */
7235 VM_BUG_ON(!irqs_disabled());
7236 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7237 memcg_check_events(memcg, page);
7238
7239 css_put(&memcg->css);
7240 }
7241
7242 /**
7243 * mem_cgroup_try_charge_swap - try charging swap space for a page
7244 * @page: page being added to swap
7245 * @entry: swap entry to charge
7246 *
7247 * Try to charge @page's memcg for the swap space at @entry.
7248 *
7249 * Returns 0 on success, -ENOMEM on failure.
7250 */
7251 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7252 {
7253 unsigned int nr_pages = thp_nr_pages(page);
7254 struct page_counter *counter;
7255 struct mem_cgroup *memcg;
7256 unsigned short oldid;
7257
7258 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7259 return 0;
7260
7261 memcg = page->mem_cgroup;
7262
7263 /* Readahead page, never charged */
7264 if (!memcg)
7265 return 0;
7266
7267 if (!entry.val) {
7268 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7269 return 0;
7270 }
7271
7272 memcg = mem_cgroup_id_get_online(memcg);
7273
7274 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7275 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7276 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7277 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7278 mem_cgroup_id_put(memcg);
7279 return -ENOMEM;
7280 }
7281
7282 /* Get references for the tail pages, too */
7283 if (nr_pages > 1)
7284 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7285 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7286 VM_BUG_ON_PAGE(oldid, page);
7287 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7288
7289 return 0;
7290 }
7291
7292 /**
7293 * mem_cgroup_uncharge_swap - uncharge swap space
7294 * @entry: swap entry to uncharge
7295 * @nr_pages: the amount of swap space to uncharge
7296 */
7297 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7298 {
7299 struct mem_cgroup *memcg;
7300 unsigned short id;
7301
7302 id = swap_cgroup_record(entry, 0, nr_pages);
7303 rcu_read_lock();
7304 memcg = mem_cgroup_from_id(id);
7305 if (memcg) {
7306 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7307 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7308 page_counter_uncharge(&memcg->swap, nr_pages);
7309 else
7310 page_counter_uncharge(&memcg->memsw, nr_pages);
7311 }
7312 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7313 mem_cgroup_id_put_many(memcg, nr_pages);
7314 }
7315 rcu_read_unlock();
7316 }
7317
7318 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7319 {
7320 long nr_swap_pages = get_nr_swap_pages();
7321
7322 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7323 return nr_swap_pages;
7324 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7325 nr_swap_pages = min_t(long, nr_swap_pages,
7326 READ_ONCE(memcg->swap.max) -
7327 page_counter_read(&memcg->swap));
7328 return nr_swap_pages;
7329 }
7330
7331 bool mem_cgroup_swap_full(struct page *page)
7332 {
7333 struct mem_cgroup *memcg;
7334
7335 VM_BUG_ON_PAGE(!PageLocked(page), page);
7336
7337 if (vm_swap_full())
7338 return true;
7339 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7340 return false;
7341
7342 memcg = page->mem_cgroup;
7343 if (!memcg)
7344 return false;
7345
7346 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7347 unsigned long usage = page_counter_read(&memcg->swap);
7348
7349 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7350 usage * 2 >= READ_ONCE(memcg->swap.max))
7351 return true;
7352 }
7353
7354 return false;
7355 }
7356
7357 static int __init setup_swap_account(char *s)
7358 {
7359 if (!strcmp(s, "1"))
7360 cgroup_memory_noswap = 0;
7361 else if (!strcmp(s, "0"))
7362 cgroup_memory_noswap = 1;
7363 return 1;
7364 }
7365 __setup("swapaccount=", setup_swap_account);
7366
7367 static u64 swap_current_read(struct cgroup_subsys_state *css,
7368 struct cftype *cft)
7369 {
7370 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7371
7372 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7373 }
7374
7375 static int swap_high_show(struct seq_file *m, void *v)
7376 {
7377 return seq_puts_memcg_tunable(m,
7378 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7379 }
7380
7381 static ssize_t swap_high_write(struct kernfs_open_file *of,
7382 char *buf, size_t nbytes, loff_t off)
7383 {
7384 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7385 unsigned long high;
7386 int err;
7387
7388 buf = strstrip(buf);
7389 err = page_counter_memparse(buf, "max", &high);
7390 if (err)
7391 return err;
7392
7393 page_counter_set_high(&memcg->swap, high);
7394
7395 return nbytes;
7396 }
7397
7398 static int swap_max_show(struct seq_file *m, void *v)
7399 {
7400 return seq_puts_memcg_tunable(m,
7401 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7402 }
7403
7404 static ssize_t swap_max_write(struct kernfs_open_file *of,
7405 char *buf, size_t nbytes, loff_t off)
7406 {
7407 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7408 unsigned long max;
7409 int err;
7410
7411 buf = strstrip(buf);
7412 err = page_counter_memparse(buf, "max", &max);
7413 if (err)
7414 return err;
7415
7416 xchg(&memcg->swap.max, max);
7417
7418 return nbytes;
7419 }
7420
7421 static int swap_events_show(struct seq_file *m, void *v)
7422 {
7423 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7424
7425 seq_printf(m, "high %lu\n",
7426 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7427 seq_printf(m, "max %lu\n",
7428 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7429 seq_printf(m, "fail %lu\n",
7430 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7431
7432 return 0;
7433 }
7434
7435 static struct cftype swap_files[] = {
7436 {
7437 .name = "swap.current",
7438 .flags = CFTYPE_NOT_ON_ROOT,
7439 .read_u64 = swap_current_read,
7440 },
7441 {
7442 .name = "swap.high",
7443 .flags = CFTYPE_NOT_ON_ROOT,
7444 .seq_show = swap_high_show,
7445 .write = swap_high_write,
7446 },
7447 {
7448 .name = "swap.max",
7449 .flags = CFTYPE_NOT_ON_ROOT,
7450 .seq_show = swap_max_show,
7451 .write = swap_max_write,
7452 },
7453 {
7454 .name = "swap.events",
7455 .flags = CFTYPE_NOT_ON_ROOT,
7456 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7457 .seq_show = swap_events_show,
7458 },
7459 { } /* terminate */
7460 };
7461
7462 static struct cftype memsw_files[] = {
7463 {
7464 .name = "memsw.usage_in_bytes",
7465 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7466 .read_u64 = mem_cgroup_read_u64,
7467 },
7468 {
7469 .name = "memsw.max_usage_in_bytes",
7470 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7471 .write = mem_cgroup_reset,
7472 .read_u64 = mem_cgroup_read_u64,
7473 },
7474 {
7475 .name = "memsw.limit_in_bytes",
7476 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7477 .write = mem_cgroup_write,
7478 .read_u64 = mem_cgroup_read_u64,
7479 },
7480 {
7481 .name = "memsw.failcnt",
7482 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7483 .write = mem_cgroup_reset,
7484 .read_u64 = mem_cgroup_read_u64,
7485 },
7486 { }, /* terminate */
7487 };
7488
7489 /*
7490 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7491 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7492 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7493 * boot parameter. This may result in premature OOPS inside
7494 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7495 */
7496 static int __init mem_cgroup_swap_init(void)
7497 {
7498 /* No memory control -> no swap control */
7499 if (mem_cgroup_disabled())
7500 cgroup_memory_noswap = true;
7501
7502 if (cgroup_memory_noswap)
7503 return 0;
7504
7505 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7506 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7507
7508 return 0;
7509 }
7510 core_initcall(mem_cgroup_swap_init);
7511
7512 #endif /* CONFIG_MEMCG_SWAP */