]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memcontrol.c
drm/i915/display/psr: Disable DC3CO when the PSR2 is used
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/file.h>
62 #include <linux/tracehook.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include "slab.h"
69
70 #include <linux/uaccess.h>
71
72 #include <trace/events/vmscan.h>
73
74 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75 EXPORT_SYMBOL(memory_cgrp_subsys);
76
77 struct mem_cgroup *root_mem_cgroup __read_mostly;
78
79 /* Active memory cgroup to use from an interrupt context */
80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 bool cgroup_memory_noswap __read_mostly;
91 #else
92 #define cgroup_memory_noswap 1
93 #endif
94
95 #ifdef CONFIG_CGROUP_WRITEBACK
96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97 #endif
98
99 /* Whether legacy memory+swap accounting is active */
100 static bool do_memsw_account(void)
101 {
102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
103 }
104
105 #define THRESHOLDS_EVENTS_TARGET 128
106 #define SOFTLIMIT_EVENTS_TARGET 1024
107
108 /*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
113 struct mem_cgroup_tree_per_node {
114 struct rb_root rb_root;
115 struct rb_node *rb_rightmost;
116 spinlock_t lock;
117 };
118
119 struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129 };
130
131 /*
132 * cgroup_event represents events which userspace want to receive.
133 */
134 struct mem_cgroup_event {
135 /*
136 * memcg which the event belongs to.
137 */
138 struct mem_cgroup *memcg;
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
152 int (*register_event)(struct mem_cgroup *memcg,
153 struct eventfd_ctx *eventfd, const char *args);
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
159 void (*unregister_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd);
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
167 wait_queue_entry_t wait;
168 struct work_struct remove;
169 };
170
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173
174 /* Stuffs for move charges at task migration. */
175 /*
176 * Types of charges to be moved.
177 */
178 #define MOVE_ANON 0x1U
179 #define MOVE_FILE 0x2U
180 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
181
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184 spinlock_t lock; /* for from, to */
185 struct mm_struct *mm;
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
188 unsigned long flags;
189 unsigned long precharge;
190 unsigned long moved_charge;
191 unsigned long moved_swap;
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194 } mc = {
195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198
199 /*
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
205
206 /* for encoding cft->private value on file */
207 enum res_type {
208 _MEM,
209 _MEMSWAP,
210 _OOM_TYPE,
211 _KMEM,
212 _TCP,
213 };
214
215 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
216 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
217 #define MEMFILE_ATTR(val) ((val) & 0xffff)
218 /* Used for OOM nofiier */
219 #define OOM_CONTROL (0)
220
221 /*
222 * Iteration constructs for visiting all cgroups (under a tree). If
223 * loops are exited prematurely (break), mem_cgroup_iter_break() must
224 * be used for reference counting.
225 */
226 #define for_each_mem_cgroup_tree(iter, root) \
227 for (iter = mem_cgroup_iter(root, NULL, NULL); \
228 iter != NULL; \
229 iter = mem_cgroup_iter(root, iter, NULL))
230
231 #define for_each_mem_cgroup(iter) \
232 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
233 iter != NULL; \
234 iter = mem_cgroup_iter(NULL, iter, NULL))
235
236 static inline bool should_force_charge(void)
237 {
238 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239 (current->flags & PF_EXITING);
240 }
241
242 /* Some nice accessors for the vmpressure. */
243 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244 {
245 if (!memcg)
246 memcg = root_mem_cgroup;
247 return &memcg->vmpressure;
248 }
249
250 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
251 {
252 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
253 }
254
255 #ifdef CONFIG_MEMCG_KMEM
256 extern spinlock_t css_set_lock;
257
258 static void obj_cgroup_release(struct percpu_ref *ref)
259 {
260 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
261 struct mem_cgroup *memcg;
262 unsigned int nr_bytes;
263 unsigned int nr_pages;
264 unsigned long flags;
265
266 /*
267 * At this point all allocated objects are freed, and
268 * objcg->nr_charged_bytes can't have an arbitrary byte value.
269 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
270 *
271 * The following sequence can lead to it:
272 * 1) CPU0: objcg == stock->cached_objcg
273 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
274 * PAGE_SIZE bytes are charged
275 * 3) CPU1: a process from another memcg is allocating something,
276 * the stock if flushed,
277 * objcg->nr_charged_bytes = PAGE_SIZE - 92
278 * 5) CPU0: we do release this object,
279 * 92 bytes are added to stock->nr_bytes
280 * 6) CPU0: stock is flushed,
281 * 92 bytes are added to objcg->nr_charged_bytes
282 *
283 * In the result, nr_charged_bytes == PAGE_SIZE.
284 * This page will be uncharged in obj_cgroup_release().
285 */
286 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
287 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
288 nr_pages = nr_bytes >> PAGE_SHIFT;
289
290 spin_lock_irqsave(&css_set_lock, flags);
291 memcg = obj_cgroup_memcg(objcg);
292 if (nr_pages)
293 __memcg_kmem_uncharge(memcg, nr_pages);
294 list_del(&objcg->list);
295 mem_cgroup_put(memcg);
296 spin_unlock_irqrestore(&css_set_lock, flags);
297
298 percpu_ref_exit(ref);
299 kfree_rcu(objcg, rcu);
300 }
301
302 static struct obj_cgroup *obj_cgroup_alloc(void)
303 {
304 struct obj_cgroup *objcg;
305 int ret;
306
307 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
308 if (!objcg)
309 return NULL;
310
311 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
312 GFP_KERNEL);
313 if (ret) {
314 kfree(objcg);
315 return NULL;
316 }
317 INIT_LIST_HEAD(&objcg->list);
318 return objcg;
319 }
320
321 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
322 struct mem_cgroup *parent)
323 {
324 struct obj_cgroup *objcg, *iter;
325
326 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
327
328 spin_lock_irq(&css_set_lock);
329
330 /* Move active objcg to the parent's list */
331 xchg(&objcg->memcg, parent);
332 css_get(&parent->css);
333 list_add(&objcg->list, &parent->objcg_list);
334
335 /* Move already reparented objcgs to the parent's list */
336 list_for_each_entry(iter, &memcg->objcg_list, list) {
337 css_get(&parent->css);
338 xchg(&iter->memcg, parent);
339 css_put(&memcg->css);
340 }
341 list_splice(&memcg->objcg_list, &parent->objcg_list);
342
343 spin_unlock_irq(&css_set_lock);
344
345 percpu_ref_kill(&objcg->refcnt);
346 }
347
348 /*
349 * This will be used as a shrinker list's index.
350 * The main reason for not using cgroup id for this:
351 * this works better in sparse environments, where we have a lot of memcgs,
352 * but only a few kmem-limited. Or also, if we have, for instance, 200
353 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
354 * 200 entry array for that.
355 *
356 * The current size of the caches array is stored in memcg_nr_cache_ids. It
357 * will double each time we have to increase it.
358 */
359 static DEFINE_IDA(memcg_cache_ida);
360 int memcg_nr_cache_ids;
361
362 /* Protects memcg_nr_cache_ids */
363 static DECLARE_RWSEM(memcg_cache_ids_sem);
364
365 void memcg_get_cache_ids(void)
366 {
367 down_read(&memcg_cache_ids_sem);
368 }
369
370 void memcg_put_cache_ids(void)
371 {
372 up_read(&memcg_cache_ids_sem);
373 }
374
375 /*
376 * MIN_SIZE is different than 1, because we would like to avoid going through
377 * the alloc/free process all the time. In a small machine, 4 kmem-limited
378 * cgroups is a reasonable guess. In the future, it could be a parameter or
379 * tunable, but that is strictly not necessary.
380 *
381 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
382 * this constant directly from cgroup, but it is understandable that this is
383 * better kept as an internal representation in cgroup.c. In any case, the
384 * cgrp_id space is not getting any smaller, and we don't have to necessarily
385 * increase ours as well if it increases.
386 */
387 #define MEMCG_CACHES_MIN_SIZE 4
388 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
389
390 /*
391 * A lot of the calls to the cache allocation functions are expected to be
392 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
393 * conditional to this static branch, we'll have to allow modules that does
394 * kmem_cache_alloc and the such to see this symbol as well
395 */
396 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
397 EXPORT_SYMBOL(memcg_kmem_enabled_key);
398 #endif
399
400 static int memcg_shrinker_map_size;
401 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
402
403 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
404 {
405 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
406 }
407
408 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
409 int size, int old_size)
410 {
411 struct memcg_shrinker_map *new, *old;
412 int nid;
413
414 lockdep_assert_held(&memcg_shrinker_map_mutex);
415
416 for_each_node(nid) {
417 old = rcu_dereference_protected(
418 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
419 /* Not yet online memcg */
420 if (!old)
421 return 0;
422
423 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
424 if (!new)
425 return -ENOMEM;
426
427 /* Set all old bits, clear all new bits */
428 memset(new->map, (int)0xff, old_size);
429 memset((void *)new->map + old_size, 0, size - old_size);
430
431 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
432 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
433 }
434
435 return 0;
436 }
437
438 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
439 {
440 struct mem_cgroup_per_node *pn;
441 struct memcg_shrinker_map *map;
442 int nid;
443
444 if (mem_cgroup_is_root(memcg))
445 return;
446
447 for_each_node(nid) {
448 pn = mem_cgroup_nodeinfo(memcg, nid);
449 map = rcu_dereference_protected(pn->shrinker_map, true);
450 if (map)
451 kvfree(map);
452 rcu_assign_pointer(pn->shrinker_map, NULL);
453 }
454 }
455
456 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
457 {
458 struct memcg_shrinker_map *map;
459 int nid, size, ret = 0;
460
461 if (mem_cgroup_is_root(memcg))
462 return 0;
463
464 mutex_lock(&memcg_shrinker_map_mutex);
465 size = memcg_shrinker_map_size;
466 for_each_node(nid) {
467 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
468 if (!map) {
469 memcg_free_shrinker_maps(memcg);
470 ret = -ENOMEM;
471 break;
472 }
473 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
474 }
475 mutex_unlock(&memcg_shrinker_map_mutex);
476
477 return ret;
478 }
479
480 int memcg_expand_shrinker_maps(int new_id)
481 {
482 int size, old_size, ret = 0;
483 struct mem_cgroup *memcg;
484
485 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
486 old_size = memcg_shrinker_map_size;
487 if (size <= old_size)
488 return 0;
489
490 mutex_lock(&memcg_shrinker_map_mutex);
491 if (!root_mem_cgroup)
492 goto unlock;
493
494 for_each_mem_cgroup(memcg) {
495 if (mem_cgroup_is_root(memcg))
496 continue;
497 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
498 if (ret) {
499 mem_cgroup_iter_break(NULL, memcg);
500 goto unlock;
501 }
502 }
503 unlock:
504 if (!ret)
505 memcg_shrinker_map_size = size;
506 mutex_unlock(&memcg_shrinker_map_mutex);
507 return ret;
508 }
509
510 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
511 {
512 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
513 struct memcg_shrinker_map *map;
514
515 rcu_read_lock();
516 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
517 /* Pairs with smp mb in shrink_slab() */
518 smp_mb__before_atomic();
519 set_bit(shrinker_id, map->map);
520 rcu_read_unlock();
521 }
522 }
523
524 /**
525 * mem_cgroup_css_from_page - css of the memcg associated with a page
526 * @page: page of interest
527 *
528 * If memcg is bound to the default hierarchy, css of the memcg associated
529 * with @page is returned. The returned css remains associated with @page
530 * until it is released.
531 *
532 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
533 * is returned.
534 */
535 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
536 {
537 struct mem_cgroup *memcg;
538
539 memcg = page_memcg(page);
540
541 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
542 memcg = root_mem_cgroup;
543
544 return &memcg->css;
545 }
546
547 /**
548 * page_cgroup_ino - return inode number of the memcg a page is charged to
549 * @page: the page
550 *
551 * Look up the closest online ancestor of the memory cgroup @page is charged to
552 * and return its inode number or 0 if @page is not charged to any cgroup. It
553 * is safe to call this function without holding a reference to @page.
554 *
555 * Note, this function is inherently racy, because there is nothing to prevent
556 * the cgroup inode from getting torn down and potentially reallocated a moment
557 * after page_cgroup_ino() returns, so it only should be used by callers that
558 * do not care (such as procfs interfaces).
559 */
560 ino_t page_cgroup_ino(struct page *page)
561 {
562 struct mem_cgroup *memcg;
563 unsigned long ino = 0;
564
565 rcu_read_lock();
566 memcg = page_memcg_check(page);
567
568 while (memcg && !(memcg->css.flags & CSS_ONLINE))
569 memcg = parent_mem_cgroup(memcg);
570 if (memcg)
571 ino = cgroup_ino(memcg->css.cgroup);
572 rcu_read_unlock();
573 return ino;
574 }
575
576 static struct mem_cgroup_per_node *
577 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
578 {
579 int nid = page_to_nid(page);
580
581 return memcg->nodeinfo[nid];
582 }
583
584 static struct mem_cgroup_tree_per_node *
585 soft_limit_tree_node(int nid)
586 {
587 return soft_limit_tree.rb_tree_per_node[nid];
588 }
589
590 static struct mem_cgroup_tree_per_node *
591 soft_limit_tree_from_page(struct page *page)
592 {
593 int nid = page_to_nid(page);
594
595 return soft_limit_tree.rb_tree_per_node[nid];
596 }
597
598 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
599 struct mem_cgroup_tree_per_node *mctz,
600 unsigned long new_usage_in_excess)
601 {
602 struct rb_node **p = &mctz->rb_root.rb_node;
603 struct rb_node *parent = NULL;
604 struct mem_cgroup_per_node *mz_node;
605 bool rightmost = true;
606
607 if (mz->on_tree)
608 return;
609
610 mz->usage_in_excess = new_usage_in_excess;
611 if (!mz->usage_in_excess)
612 return;
613 while (*p) {
614 parent = *p;
615 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
616 tree_node);
617 if (mz->usage_in_excess < mz_node->usage_in_excess) {
618 p = &(*p)->rb_left;
619 rightmost = false;
620 } else {
621 p = &(*p)->rb_right;
622 }
623 }
624
625 if (rightmost)
626 mctz->rb_rightmost = &mz->tree_node;
627
628 rb_link_node(&mz->tree_node, parent, p);
629 rb_insert_color(&mz->tree_node, &mctz->rb_root);
630 mz->on_tree = true;
631 }
632
633 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
634 struct mem_cgroup_tree_per_node *mctz)
635 {
636 if (!mz->on_tree)
637 return;
638
639 if (&mz->tree_node == mctz->rb_rightmost)
640 mctz->rb_rightmost = rb_prev(&mz->tree_node);
641
642 rb_erase(&mz->tree_node, &mctz->rb_root);
643 mz->on_tree = false;
644 }
645
646 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
647 struct mem_cgroup_tree_per_node *mctz)
648 {
649 unsigned long flags;
650
651 spin_lock_irqsave(&mctz->lock, flags);
652 __mem_cgroup_remove_exceeded(mz, mctz);
653 spin_unlock_irqrestore(&mctz->lock, flags);
654 }
655
656 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
657 {
658 unsigned long nr_pages = page_counter_read(&memcg->memory);
659 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
660 unsigned long excess = 0;
661
662 if (nr_pages > soft_limit)
663 excess = nr_pages - soft_limit;
664
665 return excess;
666 }
667
668 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
669 {
670 unsigned long excess;
671 struct mem_cgroup_per_node *mz;
672 struct mem_cgroup_tree_per_node *mctz;
673
674 mctz = soft_limit_tree_from_page(page);
675 if (!mctz)
676 return;
677 /*
678 * Necessary to update all ancestors when hierarchy is used.
679 * because their event counter is not touched.
680 */
681 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
682 mz = mem_cgroup_page_nodeinfo(memcg, page);
683 excess = soft_limit_excess(memcg);
684 /*
685 * We have to update the tree if mz is on RB-tree or
686 * mem is over its softlimit.
687 */
688 if (excess || mz->on_tree) {
689 unsigned long flags;
690
691 spin_lock_irqsave(&mctz->lock, flags);
692 /* if on-tree, remove it */
693 if (mz->on_tree)
694 __mem_cgroup_remove_exceeded(mz, mctz);
695 /*
696 * Insert again. mz->usage_in_excess will be updated.
697 * If excess is 0, no tree ops.
698 */
699 __mem_cgroup_insert_exceeded(mz, mctz, excess);
700 spin_unlock_irqrestore(&mctz->lock, flags);
701 }
702 }
703 }
704
705 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
706 {
707 struct mem_cgroup_tree_per_node *mctz;
708 struct mem_cgroup_per_node *mz;
709 int nid;
710
711 for_each_node(nid) {
712 mz = mem_cgroup_nodeinfo(memcg, nid);
713 mctz = soft_limit_tree_node(nid);
714 if (mctz)
715 mem_cgroup_remove_exceeded(mz, mctz);
716 }
717 }
718
719 static struct mem_cgroup_per_node *
720 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
721 {
722 struct mem_cgroup_per_node *mz;
723
724 retry:
725 mz = NULL;
726 if (!mctz->rb_rightmost)
727 goto done; /* Nothing to reclaim from */
728
729 mz = rb_entry(mctz->rb_rightmost,
730 struct mem_cgroup_per_node, tree_node);
731 /*
732 * Remove the node now but someone else can add it back,
733 * we will to add it back at the end of reclaim to its correct
734 * position in the tree.
735 */
736 __mem_cgroup_remove_exceeded(mz, mctz);
737 if (!soft_limit_excess(mz->memcg) ||
738 !css_tryget(&mz->memcg->css))
739 goto retry;
740 done:
741 return mz;
742 }
743
744 static struct mem_cgroup_per_node *
745 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
746 {
747 struct mem_cgroup_per_node *mz;
748
749 spin_lock_irq(&mctz->lock);
750 mz = __mem_cgroup_largest_soft_limit_node(mctz);
751 spin_unlock_irq(&mctz->lock);
752 return mz;
753 }
754
755 /**
756 * __mod_memcg_state - update cgroup memory statistics
757 * @memcg: the memory cgroup
758 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
759 * @val: delta to add to the counter, can be negative
760 */
761 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
762 {
763 long x, threshold = MEMCG_CHARGE_BATCH;
764
765 if (mem_cgroup_disabled())
766 return;
767
768 if (memcg_stat_item_in_bytes(idx))
769 threshold <<= PAGE_SHIFT;
770
771 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
772 if (unlikely(abs(x) > threshold)) {
773 struct mem_cgroup *mi;
774
775 /*
776 * Batch local counters to keep them in sync with
777 * the hierarchical ones.
778 */
779 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
780 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
781 atomic_long_add(x, &mi->vmstats[idx]);
782 x = 0;
783 }
784 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
785 }
786
787 static struct mem_cgroup_per_node *
788 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
789 {
790 struct mem_cgroup *parent;
791
792 parent = parent_mem_cgroup(pn->memcg);
793 if (!parent)
794 return NULL;
795 return mem_cgroup_nodeinfo(parent, nid);
796 }
797
798 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
799 int val)
800 {
801 struct mem_cgroup_per_node *pn;
802 struct mem_cgroup *memcg;
803 long x, threshold = MEMCG_CHARGE_BATCH;
804
805 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
806 memcg = pn->memcg;
807
808 /* Update memcg */
809 __mod_memcg_state(memcg, idx, val);
810
811 /* Update lruvec */
812 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
813
814 if (vmstat_item_in_bytes(idx))
815 threshold <<= PAGE_SHIFT;
816
817 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
818 if (unlikely(abs(x) > threshold)) {
819 pg_data_t *pgdat = lruvec_pgdat(lruvec);
820 struct mem_cgroup_per_node *pi;
821
822 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
823 atomic_long_add(x, &pi->lruvec_stat[idx]);
824 x = 0;
825 }
826 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
827 }
828
829 /**
830 * __mod_lruvec_state - update lruvec memory statistics
831 * @lruvec: the lruvec
832 * @idx: the stat item
833 * @val: delta to add to the counter, can be negative
834 *
835 * The lruvec is the intersection of the NUMA node and a cgroup. This
836 * function updates the all three counters that are affected by a
837 * change of state at this level: per-node, per-cgroup, per-lruvec.
838 */
839 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
840 int val)
841 {
842 /* Update node */
843 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
844
845 /* Update memcg and lruvec */
846 if (!mem_cgroup_disabled())
847 __mod_memcg_lruvec_state(lruvec, idx, val);
848 }
849
850 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
851 int val)
852 {
853 struct page *head = compound_head(page); /* rmap on tail pages */
854 struct mem_cgroup *memcg = page_memcg(head);
855 pg_data_t *pgdat = page_pgdat(page);
856 struct lruvec *lruvec;
857
858 /* Untracked pages have no memcg, no lruvec. Update only the node */
859 if (!memcg) {
860 __mod_node_page_state(pgdat, idx, val);
861 return;
862 }
863
864 lruvec = mem_cgroup_lruvec(memcg, pgdat);
865 __mod_lruvec_state(lruvec, idx, val);
866 }
867 EXPORT_SYMBOL(__mod_lruvec_page_state);
868
869 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
870 {
871 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
872 struct mem_cgroup *memcg;
873 struct lruvec *lruvec;
874
875 rcu_read_lock();
876 memcg = mem_cgroup_from_obj(p);
877
878 /*
879 * Untracked pages have no memcg, no lruvec. Update only the
880 * node. If we reparent the slab objects to the root memcg,
881 * when we free the slab object, we need to update the per-memcg
882 * vmstats to keep it correct for the root memcg.
883 */
884 if (!memcg) {
885 __mod_node_page_state(pgdat, idx, val);
886 } else {
887 lruvec = mem_cgroup_lruvec(memcg, pgdat);
888 __mod_lruvec_state(lruvec, idx, val);
889 }
890 rcu_read_unlock();
891 }
892
893 /**
894 * __count_memcg_events - account VM events in a cgroup
895 * @memcg: the memory cgroup
896 * @idx: the event item
897 * @count: the number of events that occured
898 */
899 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
900 unsigned long count)
901 {
902 unsigned long x;
903
904 if (mem_cgroup_disabled())
905 return;
906
907 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
908 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
909 struct mem_cgroup *mi;
910
911 /*
912 * Batch local counters to keep them in sync with
913 * the hierarchical ones.
914 */
915 __this_cpu_add(memcg->vmstats_local->events[idx], x);
916 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
917 atomic_long_add(x, &mi->vmevents[idx]);
918 x = 0;
919 }
920 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
921 }
922
923 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
924 {
925 return atomic_long_read(&memcg->vmevents[event]);
926 }
927
928 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
929 {
930 long x = 0;
931 int cpu;
932
933 for_each_possible_cpu(cpu)
934 x += per_cpu(memcg->vmstats_local->events[event], cpu);
935 return x;
936 }
937
938 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
939 struct page *page,
940 int nr_pages)
941 {
942 /* pagein of a big page is an event. So, ignore page size */
943 if (nr_pages > 0)
944 __count_memcg_events(memcg, PGPGIN, 1);
945 else {
946 __count_memcg_events(memcg, PGPGOUT, 1);
947 nr_pages = -nr_pages; /* for event */
948 }
949
950 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
951 }
952
953 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
954 enum mem_cgroup_events_target target)
955 {
956 unsigned long val, next;
957
958 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
959 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
960 /* from time_after() in jiffies.h */
961 if ((long)(next - val) < 0) {
962 switch (target) {
963 case MEM_CGROUP_TARGET_THRESH:
964 next = val + THRESHOLDS_EVENTS_TARGET;
965 break;
966 case MEM_CGROUP_TARGET_SOFTLIMIT:
967 next = val + SOFTLIMIT_EVENTS_TARGET;
968 break;
969 default:
970 break;
971 }
972 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
973 return true;
974 }
975 return false;
976 }
977
978 /*
979 * Check events in order.
980 *
981 */
982 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
983 {
984 /* threshold event is triggered in finer grain than soft limit */
985 if (unlikely(mem_cgroup_event_ratelimit(memcg,
986 MEM_CGROUP_TARGET_THRESH))) {
987 bool do_softlimit;
988
989 do_softlimit = mem_cgroup_event_ratelimit(memcg,
990 MEM_CGROUP_TARGET_SOFTLIMIT);
991 mem_cgroup_threshold(memcg);
992 if (unlikely(do_softlimit))
993 mem_cgroup_update_tree(memcg, page);
994 }
995 }
996
997 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
998 {
999 /*
1000 * mm_update_next_owner() may clear mm->owner to NULL
1001 * if it races with swapoff, page migration, etc.
1002 * So this can be called with p == NULL.
1003 */
1004 if (unlikely(!p))
1005 return NULL;
1006
1007 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1008 }
1009 EXPORT_SYMBOL(mem_cgroup_from_task);
1010
1011 /**
1012 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1013 * @mm: mm from which memcg should be extracted. It can be NULL.
1014 *
1015 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1016 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1017 * returned.
1018 */
1019 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1020 {
1021 struct mem_cgroup *memcg;
1022
1023 if (mem_cgroup_disabled())
1024 return NULL;
1025
1026 rcu_read_lock();
1027 do {
1028 /*
1029 * Page cache insertions can happen withou an
1030 * actual mm context, e.g. during disk probing
1031 * on boot, loopback IO, acct() writes etc.
1032 */
1033 if (unlikely(!mm))
1034 memcg = root_mem_cgroup;
1035 else {
1036 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1037 if (unlikely(!memcg))
1038 memcg = root_mem_cgroup;
1039 }
1040 } while (!css_tryget(&memcg->css));
1041 rcu_read_unlock();
1042 return memcg;
1043 }
1044 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1045
1046 /**
1047 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1048 * @page: page from which memcg should be extracted.
1049 *
1050 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1051 * root_mem_cgroup is returned.
1052 */
1053 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1054 {
1055 struct mem_cgroup *memcg = page_memcg(page);
1056
1057 if (mem_cgroup_disabled())
1058 return NULL;
1059
1060 rcu_read_lock();
1061 /* Page should not get uncharged and freed memcg under us. */
1062 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1063 memcg = root_mem_cgroup;
1064 rcu_read_unlock();
1065 return memcg;
1066 }
1067 EXPORT_SYMBOL(get_mem_cgroup_from_page);
1068
1069 static __always_inline struct mem_cgroup *active_memcg(void)
1070 {
1071 if (in_interrupt())
1072 return this_cpu_read(int_active_memcg);
1073 else
1074 return current->active_memcg;
1075 }
1076
1077 static __always_inline struct mem_cgroup *get_active_memcg(void)
1078 {
1079 struct mem_cgroup *memcg;
1080
1081 rcu_read_lock();
1082 memcg = active_memcg();
1083 /* remote memcg must hold a ref. */
1084 if (memcg && WARN_ON_ONCE(!css_tryget(&memcg->css)))
1085 memcg = root_mem_cgroup;
1086 rcu_read_unlock();
1087
1088 return memcg;
1089 }
1090
1091 static __always_inline bool memcg_kmem_bypass(void)
1092 {
1093 /* Allow remote memcg charging from any context. */
1094 if (unlikely(active_memcg()))
1095 return false;
1096
1097 /* Memcg to charge can't be determined. */
1098 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1099 return true;
1100
1101 return false;
1102 }
1103
1104 /**
1105 * If active memcg is set, do not fallback to current->mm->memcg.
1106 */
1107 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1108 {
1109 if (memcg_kmem_bypass())
1110 return NULL;
1111
1112 if (unlikely(active_memcg()))
1113 return get_active_memcg();
1114
1115 return get_mem_cgroup_from_mm(current->mm);
1116 }
1117
1118 /**
1119 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1120 * @root: hierarchy root
1121 * @prev: previously returned memcg, NULL on first invocation
1122 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1123 *
1124 * Returns references to children of the hierarchy below @root, or
1125 * @root itself, or %NULL after a full round-trip.
1126 *
1127 * Caller must pass the return value in @prev on subsequent
1128 * invocations for reference counting, or use mem_cgroup_iter_break()
1129 * to cancel a hierarchy walk before the round-trip is complete.
1130 *
1131 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1132 * in the hierarchy among all concurrent reclaimers operating on the
1133 * same node.
1134 */
1135 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1136 struct mem_cgroup *prev,
1137 struct mem_cgroup_reclaim_cookie *reclaim)
1138 {
1139 struct mem_cgroup_reclaim_iter *iter;
1140 struct cgroup_subsys_state *css = NULL;
1141 struct mem_cgroup *memcg = NULL;
1142 struct mem_cgroup *pos = NULL;
1143
1144 if (mem_cgroup_disabled())
1145 return NULL;
1146
1147 if (!root)
1148 root = root_mem_cgroup;
1149
1150 if (prev && !reclaim)
1151 pos = prev;
1152
1153 rcu_read_lock();
1154
1155 if (reclaim) {
1156 struct mem_cgroup_per_node *mz;
1157
1158 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1159 iter = &mz->iter;
1160
1161 if (prev && reclaim->generation != iter->generation)
1162 goto out_unlock;
1163
1164 while (1) {
1165 pos = READ_ONCE(iter->position);
1166 if (!pos || css_tryget(&pos->css))
1167 break;
1168 /*
1169 * css reference reached zero, so iter->position will
1170 * be cleared by ->css_released. However, we should not
1171 * rely on this happening soon, because ->css_released
1172 * is called from a work queue, and by busy-waiting we
1173 * might block it. So we clear iter->position right
1174 * away.
1175 */
1176 (void)cmpxchg(&iter->position, pos, NULL);
1177 }
1178 }
1179
1180 if (pos)
1181 css = &pos->css;
1182
1183 for (;;) {
1184 css = css_next_descendant_pre(css, &root->css);
1185 if (!css) {
1186 /*
1187 * Reclaimers share the hierarchy walk, and a
1188 * new one might jump in right at the end of
1189 * the hierarchy - make sure they see at least
1190 * one group and restart from the beginning.
1191 */
1192 if (!prev)
1193 continue;
1194 break;
1195 }
1196
1197 /*
1198 * Verify the css and acquire a reference. The root
1199 * is provided by the caller, so we know it's alive
1200 * and kicking, and don't take an extra reference.
1201 */
1202 memcg = mem_cgroup_from_css(css);
1203
1204 if (css == &root->css)
1205 break;
1206
1207 if (css_tryget(css))
1208 break;
1209
1210 memcg = NULL;
1211 }
1212
1213 if (reclaim) {
1214 /*
1215 * The position could have already been updated by a competing
1216 * thread, so check that the value hasn't changed since we read
1217 * it to avoid reclaiming from the same cgroup twice.
1218 */
1219 (void)cmpxchg(&iter->position, pos, memcg);
1220
1221 if (pos)
1222 css_put(&pos->css);
1223
1224 if (!memcg)
1225 iter->generation++;
1226 else if (!prev)
1227 reclaim->generation = iter->generation;
1228 }
1229
1230 out_unlock:
1231 rcu_read_unlock();
1232 if (prev && prev != root)
1233 css_put(&prev->css);
1234
1235 return memcg;
1236 }
1237
1238 /**
1239 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1240 * @root: hierarchy root
1241 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1242 */
1243 void mem_cgroup_iter_break(struct mem_cgroup *root,
1244 struct mem_cgroup *prev)
1245 {
1246 if (!root)
1247 root = root_mem_cgroup;
1248 if (prev && prev != root)
1249 css_put(&prev->css);
1250 }
1251
1252 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1253 struct mem_cgroup *dead_memcg)
1254 {
1255 struct mem_cgroup_reclaim_iter *iter;
1256 struct mem_cgroup_per_node *mz;
1257 int nid;
1258
1259 for_each_node(nid) {
1260 mz = mem_cgroup_nodeinfo(from, nid);
1261 iter = &mz->iter;
1262 cmpxchg(&iter->position, dead_memcg, NULL);
1263 }
1264 }
1265
1266 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1267 {
1268 struct mem_cgroup *memcg = dead_memcg;
1269 struct mem_cgroup *last;
1270
1271 do {
1272 __invalidate_reclaim_iterators(memcg, dead_memcg);
1273 last = memcg;
1274 } while ((memcg = parent_mem_cgroup(memcg)));
1275
1276 /*
1277 * When cgruop1 non-hierarchy mode is used,
1278 * parent_mem_cgroup() does not walk all the way up to the
1279 * cgroup root (root_mem_cgroup). So we have to handle
1280 * dead_memcg from cgroup root separately.
1281 */
1282 if (last != root_mem_cgroup)
1283 __invalidate_reclaim_iterators(root_mem_cgroup,
1284 dead_memcg);
1285 }
1286
1287 /**
1288 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1289 * @memcg: hierarchy root
1290 * @fn: function to call for each task
1291 * @arg: argument passed to @fn
1292 *
1293 * This function iterates over tasks attached to @memcg or to any of its
1294 * descendants and calls @fn for each task. If @fn returns a non-zero
1295 * value, the function breaks the iteration loop and returns the value.
1296 * Otherwise, it will iterate over all tasks and return 0.
1297 *
1298 * This function must not be called for the root memory cgroup.
1299 */
1300 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1301 int (*fn)(struct task_struct *, void *), void *arg)
1302 {
1303 struct mem_cgroup *iter;
1304 int ret = 0;
1305
1306 BUG_ON(memcg == root_mem_cgroup);
1307
1308 for_each_mem_cgroup_tree(iter, memcg) {
1309 struct css_task_iter it;
1310 struct task_struct *task;
1311
1312 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1313 while (!ret && (task = css_task_iter_next(&it)))
1314 ret = fn(task, arg);
1315 css_task_iter_end(&it);
1316 if (ret) {
1317 mem_cgroup_iter_break(memcg, iter);
1318 break;
1319 }
1320 }
1321 return ret;
1322 }
1323
1324 #ifdef CONFIG_DEBUG_VM
1325 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1326 {
1327 struct mem_cgroup *memcg;
1328
1329 if (mem_cgroup_disabled())
1330 return;
1331
1332 memcg = page_memcg(page);
1333
1334 if (!memcg)
1335 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1336 else
1337 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1338 }
1339 #endif
1340
1341 /**
1342 * lock_page_lruvec - lock and return lruvec for a given page.
1343 * @page: the page
1344 *
1345 * This series functions should be used in either conditions:
1346 * PageLRU is cleared or unset
1347 * or page->_refcount is zero
1348 * or page is locked.
1349 */
1350 struct lruvec *lock_page_lruvec(struct page *page)
1351 {
1352 struct lruvec *lruvec;
1353 struct pglist_data *pgdat = page_pgdat(page);
1354
1355 rcu_read_lock();
1356 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1357 spin_lock(&lruvec->lru_lock);
1358 rcu_read_unlock();
1359
1360 lruvec_memcg_debug(lruvec, page);
1361
1362 return lruvec;
1363 }
1364
1365 struct lruvec *lock_page_lruvec_irq(struct page *page)
1366 {
1367 struct lruvec *lruvec;
1368 struct pglist_data *pgdat = page_pgdat(page);
1369
1370 rcu_read_lock();
1371 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1372 spin_lock_irq(&lruvec->lru_lock);
1373 rcu_read_unlock();
1374
1375 lruvec_memcg_debug(lruvec, page);
1376
1377 return lruvec;
1378 }
1379
1380 struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1381 {
1382 struct lruvec *lruvec;
1383 struct pglist_data *pgdat = page_pgdat(page);
1384
1385 rcu_read_lock();
1386 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1387 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1388 rcu_read_unlock();
1389
1390 lruvec_memcg_debug(lruvec, page);
1391
1392 return lruvec;
1393 }
1394
1395 /**
1396 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1397 * @lruvec: mem_cgroup per zone lru vector
1398 * @lru: index of lru list the page is sitting on
1399 * @zid: zone id of the accounted pages
1400 * @nr_pages: positive when adding or negative when removing
1401 *
1402 * This function must be called under lru_lock, just before a page is added
1403 * to or just after a page is removed from an lru list (that ordering being
1404 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1405 */
1406 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1407 int zid, int nr_pages)
1408 {
1409 struct mem_cgroup_per_node *mz;
1410 unsigned long *lru_size;
1411 long size;
1412
1413 if (mem_cgroup_disabled())
1414 return;
1415
1416 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1417 lru_size = &mz->lru_zone_size[zid][lru];
1418
1419 if (nr_pages < 0)
1420 *lru_size += nr_pages;
1421
1422 size = *lru_size;
1423 if (WARN_ONCE(size < 0,
1424 "%s(%p, %d, %d): lru_size %ld\n",
1425 __func__, lruvec, lru, nr_pages, size)) {
1426 VM_BUG_ON(1);
1427 *lru_size = 0;
1428 }
1429
1430 if (nr_pages > 0)
1431 *lru_size += nr_pages;
1432 }
1433
1434 /**
1435 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1436 * @memcg: the memory cgroup
1437 *
1438 * Returns the maximum amount of memory @mem can be charged with, in
1439 * pages.
1440 */
1441 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1442 {
1443 unsigned long margin = 0;
1444 unsigned long count;
1445 unsigned long limit;
1446
1447 count = page_counter_read(&memcg->memory);
1448 limit = READ_ONCE(memcg->memory.max);
1449 if (count < limit)
1450 margin = limit - count;
1451
1452 if (do_memsw_account()) {
1453 count = page_counter_read(&memcg->memsw);
1454 limit = READ_ONCE(memcg->memsw.max);
1455 if (count < limit)
1456 margin = min(margin, limit - count);
1457 else
1458 margin = 0;
1459 }
1460
1461 return margin;
1462 }
1463
1464 /*
1465 * A routine for checking "mem" is under move_account() or not.
1466 *
1467 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1468 * moving cgroups. This is for waiting at high-memory pressure
1469 * caused by "move".
1470 */
1471 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1472 {
1473 struct mem_cgroup *from;
1474 struct mem_cgroup *to;
1475 bool ret = false;
1476 /*
1477 * Unlike task_move routines, we access mc.to, mc.from not under
1478 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1479 */
1480 spin_lock(&mc.lock);
1481 from = mc.from;
1482 to = mc.to;
1483 if (!from)
1484 goto unlock;
1485
1486 ret = mem_cgroup_is_descendant(from, memcg) ||
1487 mem_cgroup_is_descendant(to, memcg);
1488 unlock:
1489 spin_unlock(&mc.lock);
1490 return ret;
1491 }
1492
1493 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1494 {
1495 if (mc.moving_task && current != mc.moving_task) {
1496 if (mem_cgroup_under_move(memcg)) {
1497 DEFINE_WAIT(wait);
1498 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1499 /* moving charge context might have finished. */
1500 if (mc.moving_task)
1501 schedule();
1502 finish_wait(&mc.waitq, &wait);
1503 return true;
1504 }
1505 }
1506 return false;
1507 }
1508
1509 struct memory_stat {
1510 const char *name;
1511 unsigned int ratio;
1512 unsigned int idx;
1513 };
1514
1515 static struct memory_stat memory_stats[] = {
1516 { "anon", PAGE_SIZE, NR_ANON_MAPPED },
1517 { "file", PAGE_SIZE, NR_FILE_PAGES },
1518 { "kernel_stack", 1024, NR_KERNEL_STACK_KB },
1519 { "pagetables", PAGE_SIZE, NR_PAGETABLE },
1520 { "percpu", 1, MEMCG_PERCPU_B },
1521 { "sock", PAGE_SIZE, MEMCG_SOCK },
1522 { "shmem", PAGE_SIZE, NR_SHMEM },
1523 { "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
1524 { "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
1525 { "file_writeback", PAGE_SIZE, NR_WRITEBACK },
1526 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1527 /*
1528 * The ratio will be initialized in memory_stats_init(). Because
1529 * on some architectures, the macro of HPAGE_PMD_SIZE is not
1530 * constant(e.g. powerpc).
1531 */
1532 { "anon_thp", 0, NR_ANON_THPS },
1533 { "file_thp", 0, NR_FILE_THPS },
1534 { "shmem_thp", 0, NR_SHMEM_THPS },
1535 #endif
1536 { "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
1537 { "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
1538 { "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
1539 { "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
1540 { "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
1541
1542 /*
1543 * Note: The slab_reclaimable and slab_unreclaimable must be
1544 * together and slab_reclaimable must be in front.
1545 */
1546 { "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
1547 { "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
1548
1549 /* The memory events */
1550 { "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
1551 { "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
1552 { "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
1553 { "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
1554 { "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
1555 { "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
1556 { "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
1557 };
1558
1559 static int __init memory_stats_init(void)
1560 {
1561 int i;
1562
1563 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1564 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1565 if (memory_stats[i].idx == NR_ANON_THPS ||
1566 memory_stats[i].idx == NR_FILE_THPS ||
1567 memory_stats[i].idx == NR_SHMEM_THPS)
1568 memory_stats[i].ratio = HPAGE_PMD_SIZE;
1569 #endif
1570 VM_BUG_ON(!memory_stats[i].ratio);
1571 VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
1572 }
1573
1574 return 0;
1575 }
1576 pure_initcall(memory_stats_init);
1577
1578 static char *memory_stat_format(struct mem_cgroup *memcg)
1579 {
1580 struct seq_buf s;
1581 int i;
1582
1583 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1584 if (!s.buffer)
1585 return NULL;
1586
1587 /*
1588 * Provide statistics on the state of the memory subsystem as
1589 * well as cumulative event counters that show past behavior.
1590 *
1591 * This list is ordered following a combination of these gradients:
1592 * 1) generic big picture -> specifics and details
1593 * 2) reflecting userspace activity -> reflecting kernel heuristics
1594 *
1595 * Current memory state:
1596 */
1597
1598 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1599 u64 size;
1600
1601 size = memcg_page_state(memcg, memory_stats[i].idx);
1602 size *= memory_stats[i].ratio;
1603 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1604
1605 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1606 size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1607 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
1608 seq_buf_printf(&s, "slab %llu\n", size);
1609 }
1610 }
1611
1612 /* Accumulated memory events */
1613
1614 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1615 memcg_events(memcg, PGFAULT));
1616 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1617 memcg_events(memcg, PGMAJFAULT));
1618 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1619 memcg_events(memcg, PGREFILL));
1620 seq_buf_printf(&s, "pgscan %lu\n",
1621 memcg_events(memcg, PGSCAN_KSWAPD) +
1622 memcg_events(memcg, PGSCAN_DIRECT));
1623 seq_buf_printf(&s, "pgsteal %lu\n",
1624 memcg_events(memcg, PGSTEAL_KSWAPD) +
1625 memcg_events(memcg, PGSTEAL_DIRECT));
1626 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1627 memcg_events(memcg, PGACTIVATE));
1628 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1629 memcg_events(memcg, PGDEACTIVATE));
1630 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1631 memcg_events(memcg, PGLAZYFREE));
1632 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1633 memcg_events(memcg, PGLAZYFREED));
1634
1635 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1636 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1637 memcg_events(memcg, THP_FAULT_ALLOC));
1638 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1639 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1640 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1641
1642 /* The above should easily fit into one page */
1643 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1644
1645 return s.buffer;
1646 }
1647
1648 #define K(x) ((x) << (PAGE_SHIFT-10))
1649 /**
1650 * mem_cgroup_print_oom_context: Print OOM information relevant to
1651 * memory controller.
1652 * @memcg: The memory cgroup that went over limit
1653 * @p: Task that is going to be killed
1654 *
1655 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1656 * enabled
1657 */
1658 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1659 {
1660 rcu_read_lock();
1661
1662 if (memcg) {
1663 pr_cont(",oom_memcg=");
1664 pr_cont_cgroup_path(memcg->css.cgroup);
1665 } else
1666 pr_cont(",global_oom");
1667 if (p) {
1668 pr_cont(",task_memcg=");
1669 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1670 }
1671 rcu_read_unlock();
1672 }
1673
1674 /**
1675 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1676 * memory controller.
1677 * @memcg: The memory cgroup that went over limit
1678 */
1679 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1680 {
1681 char *buf;
1682
1683 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1684 K((u64)page_counter_read(&memcg->memory)),
1685 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1686 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1687 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1688 K((u64)page_counter_read(&memcg->swap)),
1689 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1690 else {
1691 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1692 K((u64)page_counter_read(&memcg->memsw)),
1693 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1694 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1695 K((u64)page_counter_read(&memcg->kmem)),
1696 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1697 }
1698
1699 pr_info("Memory cgroup stats for ");
1700 pr_cont_cgroup_path(memcg->css.cgroup);
1701 pr_cont(":");
1702 buf = memory_stat_format(memcg);
1703 if (!buf)
1704 return;
1705 pr_info("%s", buf);
1706 kfree(buf);
1707 }
1708
1709 /*
1710 * Return the memory (and swap, if configured) limit for a memcg.
1711 */
1712 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1713 {
1714 unsigned long max = READ_ONCE(memcg->memory.max);
1715
1716 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1717 if (mem_cgroup_swappiness(memcg))
1718 max += min(READ_ONCE(memcg->swap.max),
1719 (unsigned long)total_swap_pages);
1720 } else { /* v1 */
1721 if (mem_cgroup_swappiness(memcg)) {
1722 /* Calculate swap excess capacity from memsw limit */
1723 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1724
1725 max += min(swap, (unsigned long)total_swap_pages);
1726 }
1727 }
1728 return max;
1729 }
1730
1731 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1732 {
1733 return page_counter_read(&memcg->memory);
1734 }
1735
1736 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1737 int order)
1738 {
1739 struct oom_control oc = {
1740 .zonelist = NULL,
1741 .nodemask = NULL,
1742 .memcg = memcg,
1743 .gfp_mask = gfp_mask,
1744 .order = order,
1745 };
1746 bool ret = true;
1747
1748 if (mutex_lock_killable(&oom_lock))
1749 return true;
1750
1751 if (mem_cgroup_margin(memcg) >= (1 << order))
1752 goto unlock;
1753
1754 /*
1755 * A few threads which were not waiting at mutex_lock_killable() can
1756 * fail to bail out. Therefore, check again after holding oom_lock.
1757 */
1758 ret = should_force_charge() || out_of_memory(&oc);
1759
1760 unlock:
1761 mutex_unlock(&oom_lock);
1762 return ret;
1763 }
1764
1765 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1766 pg_data_t *pgdat,
1767 gfp_t gfp_mask,
1768 unsigned long *total_scanned)
1769 {
1770 struct mem_cgroup *victim = NULL;
1771 int total = 0;
1772 int loop = 0;
1773 unsigned long excess;
1774 unsigned long nr_scanned;
1775 struct mem_cgroup_reclaim_cookie reclaim = {
1776 .pgdat = pgdat,
1777 };
1778
1779 excess = soft_limit_excess(root_memcg);
1780
1781 while (1) {
1782 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1783 if (!victim) {
1784 loop++;
1785 if (loop >= 2) {
1786 /*
1787 * If we have not been able to reclaim
1788 * anything, it might because there are
1789 * no reclaimable pages under this hierarchy
1790 */
1791 if (!total)
1792 break;
1793 /*
1794 * We want to do more targeted reclaim.
1795 * excess >> 2 is not to excessive so as to
1796 * reclaim too much, nor too less that we keep
1797 * coming back to reclaim from this cgroup
1798 */
1799 if (total >= (excess >> 2) ||
1800 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1801 break;
1802 }
1803 continue;
1804 }
1805 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1806 pgdat, &nr_scanned);
1807 *total_scanned += nr_scanned;
1808 if (!soft_limit_excess(root_memcg))
1809 break;
1810 }
1811 mem_cgroup_iter_break(root_memcg, victim);
1812 return total;
1813 }
1814
1815 #ifdef CONFIG_LOCKDEP
1816 static struct lockdep_map memcg_oom_lock_dep_map = {
1817 .name = "memcg_oom_lock",
1818 };
1819 #endif
1820
1821 static DEFINE_SPINLOCK(memcg_oom_lock);
1822
1823 /*
1824 * Check OOM-Killer is already running under our hierarchy.
1825 * If someone is running, return false.
1826 */
1827 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1828 {
1829 struct mem_cgroup *iter, *failed = NULL;
1830
1831 spin_lock(&memcg_oom_lock);
1832
1833 for_each_mem_cgroup_tree(iter, memcg) {
1834 if (iter->oom_lock) {
1835 /*
1836 * this subtree of our hierarchy is already locked
1837 * so we cannot give a lock.
1838 */
1839 failed = iter;
1840 mem_cgroup_iter_break(memcg, iter);
1841 break;
1842 } else
1843 iter->oom_lock = true;
1844 }
1845
1846 if (failed) {
1847 /*
1848 * OK, we failed to lock the whole subtree so we have
1849 * to clean up what we set up to the failing subtree
1850 */
1851 for_each_mem_cgroup_tree(iter, memcg) {
1852 if (iter == failed) {
1853 mem_cgroup_iter_break(memcg, iter);
1854 break;
1855 }
1856 iter->oom_lock = false;
1857 }
1858 } else
1859 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1860
1861 spin_unlock(&memcg_oom_lock);
1862
1863 return !failed;
1864 }
1865
1866 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1867 {
1868 struct mem_cgroup *iter;
1869
1870 spin_lock(&memcg_oom_lock);
1871 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1872 for_each_mem_cgroup_tree(iter, memcg)
1873 iter->oom_lock = false;
1874 spin_unlock(&memcg_oom_lock);
1875 }
1876
1877 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1878 {
1879 struct mem_cgroup *iter;
1880
1881 spin_lock(&memcg_oom_lock);
1882 for_each_mem_cgroup_tree(iter, memcg)
1883 iter->under_oom++;
1884 spin_unlock(&memcg_oom_lock);
1885 }
1886
1887 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1888 {
1889 struct mem_cgroup *iter;
1890
1891 /*
1892 * Be careful about under_oom underflows becase a child memcg
1893 * could have been added after mem_cgroup_mark_under_oom.
1894 */
1895 spin_lock(&memcg_oom_lock);
1896 for_each_mem_cgroup_tree(iter, memcg)
1897 if (iter->under_oom > 0)
1898 iter->under_oom--;
1899 spin_unlock(&memcg_oom_lock);
1900 }
1901
1902 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1903
1904 struct oom_wait_info {
1905 struct mem_cgroup *memcg;
1906 wait_queue_entry_t wait;
1907 };
1908
1909 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1910 unsigned mode, int sync, void *arg)
1911 {
1912 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1913 struct mem_cgroup *oom_wait_memcg;
1914 struct oom_wait_info *oom_wait_info;
1915
1916 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1917 oom_wait_memcg = oom_wait_info->memcg;
1918
1919 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1920 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1921 return 0;
1922 return autoremove_wake_function(wait, mode, sync, arg);
1923 }
1924
1925 static void memcg_oom_recover(struct mem_cgroup *memcg)
1926 {
1927 /*
1928 * For the following lockless ->under_oom test, the only required
1929 * guarantee is that it must see the state asserted by an OOM when
1930 * this function is called as a result of userland actions
1931 * triggered by the notification of the OOM. This is trivially
1932 * achieved by invoking mem_cgroup_mark_under_oom() before
1933 * triggering notification.
1934 */
1935 if (memcg && memcg->under_oom)
1936 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1937 }
1938
1939 enum oom_status {
1940 OOM_SUCCESS,
1941 OOM_FAILED,
1942 OOM_ASYNC,
1943 OOM_SKIPPED
1944 };
1945
1946 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1947 {
1948 enum oom_status ret;
1949 bool locked;
1950
1951 if (order > PAGE_ALLOC_COSTLY_ORDER)
1952 return OOM_SKIPPED;
1953
1954 memcg_memory_event(memcg, MEMCG_OOM);
1955
1956 /*
1957 * We are in the middle of the charge context here, so we
1958 * don't want to block when potentially sitting on a callstack
1959 * that holds all kinds of filesystem and mm locks.
1960 *
1961 * cgroup1 allows disabling the OOM killer and waiting for outside
1962 * handling until the charge can succeed; remember the context and put
1963 * the task to sleep at the end of the page fault when all locks are
1964 * released.
1965 *
1966 * On the other hand, in-kernel OOM killer allows for an async victim
1967 * memory reclaim (oom_reaper) and that means that we are not solely
1968 * relying on the oom victim to make a forward progress and we can
1969 * invoke the oom killer here.
1970 *
1971 * Please note that mem_cgroup_out_of_memory might fail to find a
1972 * victim and then we have to bail out from the charge path.
1973 */
1974 if (memcg->oom_kill_disable) {
1975 if (!current->in_user_fault)
1976 return OOM_SKIPPED;
1977 css_get(&memcg->css);
1978 current->memcg_in_oom = memcg;
1979 current->memcg_oom_gfp_mask = mask;
1980 current->memcg_oom_order = order;
1981
1982 return OOM_ASYNC;
1983 }
1984
1985 mem_cgroup_mark_under_oom(memcg);
1986
1987 locked = mem_cgroup_oom_trylock(memcg);
1988
1989 if (locked)
1990 mem_cgroup_oom_notify(memcg);
1991
1992 mem_cgroup_unmark_under_oom(memcg);
1993 if (mem_cgroup_out_of_memory(memcg, mask, order))
1994 ret = OOM_SUCCESS;
1995 else
1996 ret = OOM_FAILED;
1997
1998 if (locked)
1999 mem_cgroup_oom_unlock(memcg);
2000
2001 return ret;
2002 }
2003
2004 /**
2005 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2006 * @handle: actually kill/wait or just clean up the OOM state
2007 *
2008 * This has to be called at the end of a page fault if the memcg OOM
2009 * handler was enabled.
2010 *
2011 * Memcg supports userspace OOM handling where failed allocations must
2012 * sleep on a waitqueue until the userspace task resolves the
2013 * situation. Sleeping directly in the charge context with all kinds
2014 * of locks held is not a good idea, instead we remember an OOM state
2015 * in the task and mem_cgroup_oom_synchronize() has to be called at
2016 * the end of the page fault to complete the OOM handling.
2017 *
2018 * Returns %true if an ongoing memcg OOM situation was detected and
2019 * completed, %false otherwise.
2020 */
2021 bool mem_cgroup_oom_synchronize(bool handle)
2022 {
2023 struct mem_cgroup *memcg = current->memcg_in_oom;
2024 struct oom_wait_info owait;
2025 bool locked;
2026
2027 /* OOM is global, do not handle */
2028 if (!memcg)
2029 return false;
2030
2031 if (!handle)
2032 goto cleanup;
2033
2034 owait.memcg = memcg;
2035 owait.wait.flags = 0;
2036 owait.wait.func = memcg_oom_wake_function;
2037 owait.wait.private = current;
2038 INIT_LIST_HEAD(&owait.wait.entry);
2039
2040 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2041 mem_cgroup_mark_under_oom(memcg);
2042
2043 locked = mem_cgroup_oom_trylock(memcg);
2044
2045 if (locked)
2046 mem_cgroup_oom_notify(memcg);
2047
2048 if (locked && !memcg->oom_kill_disable) {
2049 mem_cgroup_unmark_under_oom(memcg);
2050 finish_wait(&memcg_oom_waitq, &owait.wait);
2051 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2052 current->memcg_oom_order);
2053 } else {
2054 schedule();
2055 mem_cgroup_unmark_under_oom(memcg);
2056 finish_wait(&memcg_oom_waitq, &owait.wait);
2057 }
2058
2059 if (locked) {
2060 mem_cgroup_oom_unlock(memcg);
2061 /*
2062 * There is no guarantee that an OOM-lock contender
2063 * sees the wakeups triggered by the OOM kill
2064 * uncharges. Wake any sleepers explicitely.
2065 */
2066 memcg_oom_recover(memcg);
2067 }
2068 cleanup:
2069 current->memcg_in_oom = NULL;
2070 css_put(&memcg->css);
2071 return true;
2072 }
2073
2074 /**
2075 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2076 * @victim: task to be killed by the OOM killer
2077 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2078 *
2079 * Returns a pointer to a memory cgroup, which has to be cleaned up
2080 * by killing all belonging OOM-killable tasks.
2081 *
2082 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2083 */
2084 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2085 struct mem_cgroup *oom_domain)
2086 {
2087 struct mem_cgroup *oom_group = NULL;
2088 struct mem_cgroup *memcg;
2089
2090 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2091 return NULL;
2092
2093 if (!oom_domain)
2094 oom_domain = root_mem_cgroup;
2095
2096 rcu_read_lock();
2097
2098 memcg = mem_cgroup_from_task(victim);
2099 if (memcg == root_mem_cgroup)
2100 goto out;
2101
2102 /*
2103 * If the victim task has been asynchronously moved to a different
2104 * memory cgroup, we might end up killing tasks outside oom_domain.
2105 * In this case it's better to ignore memory.group.oom.
2106 */
2107 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2108 goto out;
2109
2110 /*
2111 * Traverse the memory cgroup hierarchy from the victim task's
2112 * cgroup up to the OOMing cgroup (or root) to find the
2113 * highest-level memory cgroup with oom.group set.
2114 */
2115 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2116 if (memcg->oom_group)
2117 oom_group = memcg;
2118
2119 if (memcg == oom_domain)
2120 break;
2121 }
2122
2123 if (oom_group)
2124 css_get(&oom_group->css);
2125 out:
2126 rcu_read_unlock();
2127
2128 return oom_group;
2129 }
2130
2131 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2132 {
2133 pr_info("Tasks in ");
2134 pr_cont_cgroup_path(memcg->css.cgroup);
2135 pr_cont(" are going to be killed due to memory.oom.group set\n");
2136 }
2137
2138 /**
2139 * lock_page_memcg - lock a page and memcg binding
2140 * @page: the page
2141 *
2142 * This function protects unlocked LRU pages from being moved to
2143 * another cgroup.
2144 *
2145 * It ensures lifetime of the returned memcg. Caller is responsible
2146 * for the lifetime of the page; __unlock_page_memcg() is available
2147 * when @page might get freed inside the locked section.
2148 */
2149 struct mem_cgroup *lock_page_memcg(struct page *page)
2150 {
2151 struct page *head = compound_head(page); /* rmap on tail pages */
2152 struct mem_cgroup *memcg;
2153 unsigned long flags;
2154
2155 /*
2156 * The RCU lock is held throughout the transaction. The fast
2157 * path can get away without acquiring the memcg->move_lock
2158 * because page moving starts with an RCU grace period.
2159 *
2160 * The RCU lock also protects the memcg from being freed when
2161 * the page state that is going to change is the only thing
2162 * preventing the page itself from being freed. E.g. writeback
2163 * doesn't hold a page reference and relies on PG_writeback to
2164 * keep off truncation, migration and so forth.
2165 */
2166 rcu_read_lock();
2167
2168 if (mem_cgroup_disabled())
2169 return NULL;
2170 again:
2171 memcg = page_memcg(head);
2172 if (unlikely(!memcg))
2173 return NULL;
2174
2175 #ifdef CONFIG_PROVE_LOCKING
2176 local_irq_save(flags);
2177 might_lock(&memcg->move_lock);
2178 local_irq_restore(flags);
2179 #endif
2180
2181 if (atomic_read(&memcg->moving_account) <= 0)
2182 return memcg;
2183
2184 spin_lock_irqsave(&memcg->move_lock, flags);
2185 if (memcg != page_memcg(head)) {
2186 spin_unlock_irqrestore(&memcg->move_lock, flags);
2187 goto again;
2188 }
2189
2190 /*
2191 * When charge migration first begins, we can have locked and
2192 * unlocked page stat updates happening concurrently. Track
2193 * the task who has the lock for unlock_page_memcg().
2194 */
2195 memcg->move_lock_task = current;
2196 memcg->move_lock_flags = flags;
2197
2198 return memcg;
2199 }
2200 EXPORT_SYMBOL(lock_page_memcg);
2201
2202 /**
2203 * __unlock_page_memcg - unlock and unpin a memcg
2204 * @memcg: the memcg
2205 *
2206 * Unlock and unpin a memcg returned by lock_page_memcg().
2207 */
2208 void __unlock_page_memcg(struct mem_cgroup *memcg)
2209 {
2210 if (memcg && memcg->move_lock_task == current) {
2211 unsigned long flags = memcg->move_lock_flags;
2212
2213 memcg->move_lock_task = NULL;
2214 memcg->move_lock_flags = 0;
2215
2216 spin_unlock_irqrestore(&memcg->move_lock, flags);
2217 }
2218
2219 rcu_read_unlock();
2220 }
2221
2222 /**
2223 * unlock_page_memcg - unlock a page and memcg binding
2224 * @page: the page
2225 */
2226 void unlock_page_memcg(struct page *page)
2227 {
2228 struct page *head = compound_head(page);
2229
2230 __unlock_page_memcg(page_memcg(head));
2231 }
2232 EXPORT_SYMBOL(unlock_page_memcg);
2233
2234 struct memcg_stock_pcp {
2235 struct mem_cgroup *cached; /* this never be root cgroup */
2236 unsigned int nr_pages;
2237
2238 #ifdef CONFIG_MEMCG_KMEM
2239 struct obj_cgroup *cached_objcg;
2240 unsigned int nr_bytes;
2241 #endif
2242
2243 struct work_struct work;
2244 unsigned long flags;
2245 #define FLUSHING_CACHED_CHARGE 0
2246 };
2247 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2248 static DEFINE_MUTEX(percpu_charge_mutex);
2249
2250 #ifdef CONFIG_MEMCG_KMEM
2251 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2252 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2253 struct mem_cgroup *root_memcg);
2254
2255 #else
2256 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2257 {
2258 }
2259 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2260 struct mem_cgroup *root_memcg)
2261 {
2262 return false;
2263 }
2264 #endif
2265
2266 /**
2267 * consume_stock: Try to consume stocked charge on this cpu.
2268 * @memcg: memcg to consume from.
2269 * @nr_pages: how many pages to charge.
2270 *
2271 * The charges will only happen if @memcg matches the current cpu's memcg
2272 * stock, and at least @nr_pages are available in that stock. Failure to
2273 * service an allocation will refill the stock.
2274 *
2275 * returns true if successful, false otherwise.
2276 */
2277 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2278 {
2279 struct memcg_stock_pcp *stock;
2280 unsigned long flags;
2281 bool ret = false;
2282
2283 if (nr_pages > MEMCG_CHARGE_BATCH)
2284 return ret;
2285
2286 local_irq_save(flags);
2287
2288 stock = this_cpu_ptr(&memcg_stock);
2289 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2290 stock->nr_pages -= nr_pages;
2291 ret = true;
2292 }
2293
2294 local_irq_restore(flags);
2295
2296 return ret;
2297 }
2298
2299 /*
2300 * Returns stocks cached in percpu and reset cached information.
2301 */
2302 static void drain_stock(struct memcg_stock_pcp *stock)
2303 {
2304 struct mem_cgroup *old = stock->cached;
2305
2306 if (!old)
2307 return;
2308
2309 if (stock->nr_pages) {
2310 page_counter_uncharge(&old->memory, stock->nr_pages);
2311 if (do_memsw_account())
2312 page_counter_uncharge(&old->memsw, stock->nr_pages);
2313 stock->nr_pages = 0;
2314 }
2315
2316 css_put(&old->css);
2317 stock->cached = NULL;
2318 }
2319
2320 static void drain_local_stock(struct work_struct *dummy)
2321 {
2322 struct memcg_stock_pcp *stock;
2323 unsigned long flags;
2324
2325 /*
2326 * The only protection from memory hotplug vs. drain_stock races is
2327 * that we always operate on local CPU stock here with IRQ disabled
2328 */
2329 local_irq_save(flags);
2330
2331 stock = this_cpu_ptr(&memcg_stock);
2332 drain_obj_stock(stock);
2333 drain_stock(stock);
2334 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2335
2336 local_irq_restore(flags);
2337 }
2338
2339 /*
2340 * Cache charges(val) to local per_cpu area.
2341 * This will be consumed by consume_stock() function, later.
2342 */
2343 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2344 {
2345 struct memcg_stock_pcp *stock;
2346 unsigned long flags;
2347
2348 local_irq_save(flags);
2349
2350 stock = this_cpu_ptr(&memcg_stock);
2351 if (stock->cached != memcg) { /* reset if necessary */
2352 drain_stock(stock);
2353 css_get(&memcg->css);
2354 stock->cached = memcg;
2355 }
2356 stock->nr_pages += nr_pages;
2357
2358 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2359 drain_stock(stock);
2360
2361 local_irq_restore(flags);
2362 }
2363
2364 /*
2365 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2366 * of the hierarchy under it.
2367 */
2368 static void drain_all_stock(struct mem_cgroup *root_memcg)
2369 {
2370 int cpu, curcpu;
2371
2372 /* If someone's already draining, avoid adding running more workers. */
2373 if (!mutex_trylock(&percpu_charge_mutex))
2374 return;
2375 /*
2376 * Notify other cpus that system-wide "drain" is running
2377 * We do not care about races with the cpu hotplug because cpu down
2378 * as well as workers from this path always operate on the local
2379 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2380 */
2381 curcpu = get_cpu();
2382 for_each_online_cpu(cpu) {
2383 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2384 struct mem_cgroup *memcg;
2385 bool flush = false;
2386
2387 rcu_read_lock();
2388 memcg = stock->cached;
2389 if (memcg && stock->nr_pages &&
2390 mem_cgroup_is_descendant(memcg, root_memcg))
2391 flush = true;
2392 if (obj_stock_flush_required(stock, root_memcg))
2393 flush = true;
2394 rcu_read_unlock();
2395
2396 if (flush &&
2397 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2398 if (cpu == curcpu)
2399 drain_local_stock(&stock->work);
2400 else
2401 schedule_work_on(cpu, &stock->work);
2402 }
2403 }
2404 put_cpu();
2405 mutex_unlock(&percpu_charge_mutex);
2406 }
2407
2408 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2409 {
2410 struct memcg_stock_pcp *stock;
2411 struct mem_cgroup *memcg, *mi;
2412
2413 stock = &per_cpu(memcg_stock, cpu);
2414 drain_stock(stock);
2415
2416 for_each_mem_cgroup(memcg) {
2417 int i;
2418
2419 for (i = 0; i < MEMCG_NR_STAT; i++) {
2420 int nid;
2421 long x;
2422
2423 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2424 if (x)
2425 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2426 atomic_long_add(x, &memcg->vmstats[i]);
2427
2428 if (i >= NR_VM_NODE_STAT_ITEMS)
2429 continue;
2430
2431 for_each_node(nid) {
2432 struct mem_cgroup_per_node *pn;
2433
2434 pn = mem_cgroup_nodeinfo(memcg, nid);
2435 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2436 if (x)
2437 do {
2438 atomic_long_add(x, &pn->lruvec_stat[i]);
2439 } while ((pn = parent_nodeinfo(pn, nid)));
2440 }
2441 }
2442
2443 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2444 long x;
2445
2446 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2447 if (x)
2448 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2449 atomic_long_add(x, &memcg->vmevents[i]);
2450 }
2451 }
2452
2453 return 0;
2454 }
2455
2456 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2457 unsigned int nr_pages,
2458 gfp_t gfp_mask)
2459 {
2460 unsigned long nr_reclaimed = 0;
2461
2462 do {
2463 unsigned long pflags;
2464
2465 if (page_counter_read(&memcg->memory) <=
2466 READ_ONCE(memcg->memory.high))
2467 continue;
2468
2469 memcg_memory_event(memcg, MEMCG_HIGH);
2470
2471 psi_memstall_enter(&pflags);
2472 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2473 gfp_mask, true);
2474 psi_memstall_leave(&pflags);
2475 } while ((memcg = parent_mem_cgroup(memcg)) &&
2476 !mem_cgroup_is_root(memcg));
2477
2478 return nr_reclaimed;
2479 }
2480
2481 static void high_work_func(struct work_struct *work)
2482 {
2483 struct mem_cgroup *memcg;
2484
2485 memcg = container_of(work, struct mem_cgroup, high_work);
2486 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2487 }
2488
2489 /*
2490 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2491 * enough to still cause a significant slowdown in most cases, while still
2492 * allowing diagnostics and tracing to proceed without becoming stuck.
2493 */
2494 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2495
2496 /*
2497 * When calculating the delay, we use these either side of the exponentiation to
2498 * maintain precision and scale to a reasonable number of jiffies (see the table
2499 * below.
2500 *
2501 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2502 * overage ratio to a delay.
2503 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2504 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2505 * to produce a reasonable delay curve.
2506 *
2507 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2508 * reasonable delay curve compared to precision-adjusted overage, not
2509 * penalising heavily at first, but still making sure that growth beyond the
2510 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2511 * example, with a high of 100 megabytes:
2512 *
2513 * +-------+------------------------+
2514 * | usage | time to allocate in ms |
2515 * +-------+------------------------+
2516 * | 100M | 0 |
2517 * | 101M | 6 |
2518 * | 102M | 25 |
2519 * | 103M | 57 |
2520 * | 104M | 102 |
2521 * | 105M | 159 |
2522 * | 106M | 230 |
2523 * | 107M | 313 |
2524 * | 108M | 409 |
2525 * | 109M | 518 |
2526 * | 110M | 639 |
2527 * | 111M | 774 |
2528 * | 112M | 921 |
2529 * | 113M | 1081 |
2530 * | 114M | 1254 |
2531 * | 115M | 1439 |
2532 * | 116M | 1638 |
2533 * | 117M | 1849 |
2534 * | 118M | 2000 |
2535 * | 119M | 2000 |
2536 * | 120M | 2000 |
2537 * +-------+------------------------+
2538 */
2539 #define MEMCG_DELAY_PRECISION_SHIFT 20
2540 #define MEMCG_DELAY_SCALING_SHIFT 14
2541
2542 static u64 calculate_overage(unsigned long usage, unsigned long high)
2543 {
2544 u64 overage;
2545
2546 if (usage <= high)
2547 return 0;
2548
2549 /*
2550 * Prevent division by 0 in overage calculation by acting as if
2551 * it was a threshold of 1 page
2552 */
2553 high = max(high, 1UL);
2554
2555 overage = usage - high;
2556 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2557 return div64_u64(overage, high);
2558 }
2559
2560 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2561 {
2562 u64 overage, max_overage = 0;
2563
2564 do {
2565 overage = calculate_overage(page_counter_read(&memcg->memory),
2566 READ_ONCE(memcg->memory.high));
2567 max_overage = max(overage, max_overage);
2568 } while ((memcg = parent_mem_cgroup(memcg)) &&
2569 !mem_cgroup_is_root(memcg));
2570
2571 return max_overage;
2572 }
2573
2574 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2575 {
2576 u64 overage, max_overage = 0;
2577
2578 do {
2579 overage = calculate_overage(page_counter_read(&memcg->swap),
2580 READ_ONCE(memcg->swap.high));
2581 if (overage)
2582 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2583 max_overage = max(overage, max_overage);
2584 } while ((memcg = parent_mem_cgroup(memcg)) &&
2585 !mem_cgroup_is_root(memcg));
2586
2587 return max_overage;
2588 }
2589
2590 /*
2591 * Get the number of jiffies that we should penalise a mischievous cgroup which
2592 * is exceeding its memory.high by checking both it and its ancestors.
2593 */
2594 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2595 unsigned int nr_pages,
2596 u64 max_overage)
2597 {
2598 unsigned long penalty_jiffies;
2599
2600 if (!max_overage)
2601 return 0;
2602
2603 /*
2604 * We use overage compared to memory.high to calculate the number of
2605 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2606 * fairly lenient on small overages, and increasingly harsh when the
2607 * memcg in question makes it clear that it has no intention of stopping
2608 * its crazy behaviour, so we exponentially increase the delay based on
2609 * overage amount.
2610 */
2611 penalty_jiffies = max_overage * max_overage * HZ;
2612 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2613 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2614
2615 /*
2616 * Factor in the task's own contribution to the overage, such that four
2617 * N-sized allocations are throttled approximately the same as one
2618 * 4N-sized allocation.
2619 *
2620 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2621 * larger the current charge patch is than that.
2622 */
2623 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2624 }
2625
2626 /*
2627 * Scheduled by try_charge() to be executed from the userland return path
2628 * and reclaims memory over the high limit.
2629 */
2630 void mem_cgroup_handle_over_high(void)
2631 {
2632 unsigned long penalty_jiffies;
2633 unsigned long pflags;
2634 unsigned long nr_reclaimed;
2635 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2636 int nr_retries = MAX_RECLAIM_RETRIES;
2637 struct mem_cgroup *memcg;
2638 bool in_retry = false;
2639
2640 if (likely(!nr_pages))
2641 return;
2642
2643 memcg = get_mem_cgroup_from_mm(current->mm);
2644 current->memcg_nr_pages_over_high = 0;
2645
2646 retry_reclaim:
2647 /*
2648 * The allocating task should reclaim at least the batch size, but for
2649 * subsequent retries we only want to do what's necessary to prevent oom
2650 * or breaching resource isolation.
2651 *
2652 * This is distinct from memory.max or page allocator behaviour because
2653 * memory.high is currently batched, whereas memory.max and the page
2654 * allocator run every time an allocation is made.
2655 */
2656 nr_reclaimed = reclaim_high(memcg,
2657 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2658 GFP_KERNEL);
2659
2660 /*
2661 * memory.high is breached and reclaim is unable to keep up. Throttle
2662 * allocators proactively to slow down excessive growth.
2663 */
2664 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2665 mem_find_max_overage(memcg));
2666
2667 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2668 swap_find_max_overage(memcg));
2669
2670 /*
2671 * Clamp the max delay per usermode return so as to still keep the
2672 * application moving forwards and also permit diagnostics, albeit
2673 * extremely slowly.
2674 */
2675 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2676
2677 /*
2678 * Don't sleep if the amount of jiffies this memcg owes us is so low
2679 * that it's not even worth doing, in an attempt to be nice to those who
2680 * go only a small amount over their memory.high value and maybe haven't
2681 * been aggressively reclaimed enough yet.
2682 */
2683 if (penalty_jiffies <= HZ / 100)
2684 goto out;
2685
2686 /*
2687 * If reclaim is making forward progress but we're still over
2688 * memory.high, we want to encourage that rather than doing allocator
2689 * throttling.
2690 */
2691 if (nr_reclaimed || nr_retries--) {
2692 in_retry = true;
2693 goto retry_reclaim;
2694 }
2695
2696 /*
2697 * If we exit early, we're guaranteed to die (since
2698 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2699 * need to account for any ill-begotten jiffies to pay them off later.
2700 */
2701 psi_memstall_enter(&pflags);
2702 schedule_timeout_killable(penalty_jiffies);
2703 psi_memstall_leave(&pflags);
2704
2705 out:
2706 css_put(&memcg->css);
2707 }
2708
2709 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2710 unsigned int nr_pages)
2711 {
2712 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2713 int nr_retries = MAX_RECLAIM_RETRIES;
2714 struct mem_cgroup *mem_over_limit;
2715 struct page_counter *counter;
2716 enum oom_status oom_status;
2717 unsigned long nr_reclaimed;
2718 bool may_swap = true;
2719 bool drained = false;
2720 unsigned long pflags;
2721
2722 if (mem_cgroup_is_root(memcg))
2723 return 0;
2724 retry:
2725 if (consume_stock(memcg, nr_pages))
2726 return 0;
2727
2728 if (!do_memsw_account() ||
2729 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2730 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2731 goto done_restock;
2732 if (do_memsw_account())
2733 page_counter_uncharge(&memcg->memsw, batch);
2734 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2735 } else {
2736 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2737 may_swap = false;
2738 }
2739
2740 if (batch > nr_pages) {
2741 batch = nr_pages;
2742 goto retry;
2743 }
2744
2745 /*
2746 * Memcg doesn't have a dedicated reserve for atomic
2747 * allocations. But like the global atomic pool, we need to
2748 * put the burden of reclaim on regular allocation requests
2749 * and let these go through as privileged allocations.
2750 */
2751 if (gfp_mask & __GFP_ATOMIC)
2752 goto force;
2753
2754 /*
2755 * Unlike in global OOM situations, memcg is not in a physical
2756 * memory shortage. Allow dying and OOM-killed tasks to
2757 * bypass the last charges so that they can exit quickly and
2758 * free their memory.
2759 */
2760 if (unlikely(should_force_charge()))
2761 goto force;
2762
2763 /*
2764 * Prevent unbounded recursion when reclaim operations need to
2765 * allocate memory. This might exceed the limits temporarily,
2766 * but we prefer facilitating memory reclaim and getting back
2767 * under the limit over triggering OOM kills in these cases.
2768 */
2769 if (unlikely(current->flags & PF_MEMALLOC))
2770 goto force;
2771
2772 if (unlikely(task_in_memcg_oom(current)))
2773 goto nomem;
2774
2775 if (!gfpflags_allow_blocking(gfp_mask))
2776 goto nomem;
2777
2778 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2779
2780 psi_memstall_enter(&pflags);
2781 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2782 gfp_mask, may_swap);
2783 psi_memstall_leave(&pflags);
2784
2785 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2786 goto retry;
2787
2788 if (!drained) {
2789 drain_all_stock(mem_over_limit);
2790 drained = true;
2791 goto retry;
2792 }
2793
2794 if (gfp_mask & __GFP_NORETRY)
2795 goto nomem;
2796 /*
2797 * Even though the limit is exceeded at this point, reclaim
2798 * may have been able to free some pages. Retry the charge
2799 * before killing the task.
2800 *
2801 * Only for regular pages, though: huge pages are rather
2802 * unlikely to succeed so close to the limit, and we fall back
2803 * to regular pages anyway in case of failure.
2804 */
2805 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2806 goto retry;
2807 /*
2808 * At task move, charge accounts can be doubly counted. So, it's
2809 * better to wait until the end of task_move if something is going on.
2810 */
2811 if (mem_cgroup_wait_acct_move(mem_over_limit))
2812 goto retry;
2813
2814 if (nr_retries--)
2815 goto retry;
2816
2817 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2818 goto nomem;
2819
2820 if (gfp_mask & __GFP_NOFAIL)
2821 goto force;
2822
2823 if (fatal_signal_pending(current))
2824 goto force;
2825
2826 /*
2827 * keep retrying as long as the memcg oom killer is able to make
2828 * a forward progress or bypass the charge if the oom killer
2829 * couldn't make any progress.
2830 */
2831 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2832 get_order(nr_pages * PAGE_SIZE));
2833 switch (oom_status) {
2834 case OOM_SUCCESS:
2835 nr_retries = MAX_RECLAIM_RETRIES;
2836 goto retry;
2837 case OOM_FAILED:
2838 goto force;
2839 default:
2840 goto nomem;
2841 }
2842 nomem:
2843 if (!(gfp_mask & __GFP_NOFAIL))
2844 return -ENOMEM;
2845 force:
2846 /*
2847 * The allocation either can't fail or will lead to more memory
2848 * being freed very soon. Allow memory usage go over the limit
2849 * temporarily by force charging it.
2850 */
2851 page_counter_charge(&memcg->memory, nr_pages);
2852 if (do_memsw_account())
2853 page_counter_charge(&memcg->memsw, nr_pages);
2854
2855 return 0;
2856
2857 done_restock:
2858 if (batch > nr_pages)
2859 refill_stock(memcg, batch - nr_pages);
2860
2861 /*
2862 * If the hierarchy is above the normal consumption range, schedule
2863 * reclaim on returning to userland. We can perform reclaim here
2864 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2865 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2866 * not recorded as it most likely matches current's and won't
2867 * change in the meantime. As high limit is checked again before
2868 * reclaim, the cost of mismatch is negligible.
2869 */
2870 do {
2871 bool mem_high, swap_high;
2872
2873 mem_high = page_counter_read(&memcg->memory) >
2874 READ_ONCE(memcg->memory.high);
2875 swap_high = page_counter_read(&memcg->swap) >
2876 READ_ONCE(memcg->swap.high);
2877
2878 /* Don't bother a random interrupted task */
2879 if (in_interrupt()) {
2880 if (mem_high) {
2881 schedule_work(&memcg->high_work);
2882 break;
2883 }
2884 continue;
2885 }
2886
2887 if (mem_high || swap_high) {
2888 /*
2889 * The allocating tasks in this cgroup will need to do
2890 * reclaim or be throttled to prevent further growth
2891 * of the memory or swap footprints.
2892 *
2893 * Target some best-effort fairness between the tasks,
2894 * and distribute reclaim work and delay penalties
2895 * based on how much each task is actually allocating.
2896 */
2897 current->memcg_nr_pages_over_high += batch;
2898 set_notify_resume(current);
2899 break;
2900 }
2901 } while ((memcg = parent_mem_cgroup(memcg)));
2902
2903 return 0;
2904 }
2905
2906 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2907 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2908 {
2909 if (mem_cgroup_is_root(memcg))
2910 return;
2911
2912 page_counter_uncharge(&memcg->memory, nr_pages);
2913 if (do_memsw_account())
2914 page_counter_uncharge(&memcg->memsw, nr_pages);
2915 }
2916 #endif
2917
2918 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2919 {
2920 VM_BUG_ON_PAGE(page_memcg(page), page);
2921 /*
2922 * Any of the following ensures page's memcg stability:
2923 *
2924 * - the page lock
2925 * - LRU isolation
2926 * - lock_page_memcg()
2927 * - exclusive reference
2928 */
2929 page->memcg_data = (unsigned long)memcg;
2930 }
2931
2932 #ifdef CONFIG_MEMCG_KMEM
2933 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2934 gfp_t gfp)
2935 {
2936 unsigned int objects = objs_per_slab_page(s, page);
2937 void *vec;
2938
2939 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2940 page_to_nid(page));
2941 if (!vec)
2942 return -ENOMEM;
2943
2944 if (!set_page_objcgs(page, vec))
2945 kfree(vec);
2946 else
2947 kmemleak_not_leak(vec);
2948
2949 return 0;
2950 }
2951
2952 /*
2953 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2954 *
2955 * A passed kernel object can be a slab object or a generic kernel page, so
2956 * different mechanisms for getting the memory cgroup pointer should be used.
2957 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2958 * can not know for sure how the kernel object is implemented.
2959 * mem_cgroup_from_obj() can be safely used in such cases.
2960 *
2961 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2962 * cgroup_mutex, etc.
2963 */
2964 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2965 {
2966 struct page *page;
2967
2968 if (mem_cgroup_disabled())
2969 return NULL;
2970
2971 page = virt_to_head_page(p);
2972
2973 /*
2974 * Slab objects are accounted individually, not per-page.
2975 * Memcg membership data for each individual object is saved in
2976 * the page->obj_cgroups.
2977 */
2978 if (page_objcgs_check(page)) {
2979 struct obj_cgroup *objcg;
2980 unsigned int off;
2981
2982 off = obj_to_index(page->slab_cache, page, p);
2983 objcg = page_objcgs(page)[off];
2984 if (objcg)
2985 return obj_cgroup_memcg(objcg);
2986
2987 return NULL;
2988 }
2989
2990 /*
2991 * page_memcg_check() is used here, because page_has_obj_cgroups()
2992 * check above could fail because the object cgroups vector wasn't set
2993 * at that moment, but it can be set concurrently.
2994 * page_memcg_check(page) will guarantee that a proper memory
2995 * cgroup pointer or NULL will be returned.
2996 */
2997 return page_memcg_check(page);
2998 }
2999
3000 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3001 {
3002 struct obj_cgroup *objcg = NULL;
3003 struct mem_cgroup *memcg;
3004
3005 if (memcg_kmem_bypass())
3006 return NULL;
3007
3008 rcu_read_lock();
3009 if (unlikely(active_memcg()))
3010 memcg = active_memcg();
3011 else
3012 memcg = mem_cgroup_from_task(current);
3013
3014 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
3015 objcg = rcu_dereference(memcg->objcg);
3016 if (objcg && obj_cgroup_tryget(objcg))
3017 break;
3018 objcg = NULL;
3019 }
3020 rcu_read_unlock();
3021
3022 return objcg;
3023 }
3024
3025 static int memcg_alloc_cache_id(void)
3026 {
3027 int id, size;
3028 int err;
3029
3030 id = ida_simple_get(&memcg_cache_ida,
3031 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3032 if (id < 0)
3033 return id;
3034
3035 if (id < memcg_nr_cache_ids)
3036 return id;
3037
3038 /*
3039 * There's no space for the new id in memcg_caches arrays,
3040 * so we have to grow them.
3041 */
3042 down_write(&memcg_cache_ids_sem);
3043
3044 size = 2 * (id + 1);
3045 if (size < MEMCG_CACHES_MIN_SIZE)
3046 size = MEMCG_CACHES_MIN_SIZE;
3047 else if (size > MEMCG_CACHES_MAX_SIZE)
3048 size = MEMCG_CACHES_MAX_SIZE;
3049
3050 err = memcg_update_all_list_lrus(size);
3051 if (!err)
3052 memcg_nr_cache_ids = size;
3053
3054 up_write(&memcg_cache_ids_sem);
3055
3056 if (err) {
3057 ida_simple_remove(&memcg_cache_ida, id);
3058 return err;
3059 }
3060 return id;
3061 }
3062
3063 static void memcg_free_cache_id(int id)
3064 {
3065 ida_simple_remove(&memcg_cache_ida, id);
3066 }
3067
3068 /**
3069 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3070 * @memcg: memory cgroup to charge
3071 * @gfp: reclaim mode
3072 * @nr_pages: number of pages to charge
3073 *
3074 * Returns 0 on success, an error code on failure.
3075 */
3076 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3077 unsigned int nr_pages)
3078 {
3079 struct page_counter *counter;
3080 int ret;
3081
3082 ret = try_charge(memcg, gfp, nr_pages);
3083 if (ret)
3084 return ret;
3085
3086 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3087 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3088
3089 /*
3090 * Enforce __GFP_NOFAIL allocation because callers are not
3091 * prepared to see failures and likely do not have any failure
3092 * handling code.
3093 */
3094 if (gfp & __GFP_NOFAIL) {
3095 page_counter_charge(&memcg->kmem, nr_pages);
3096 return 0;
3097 }
3098 cancel_charge(memcg, nr_pages);
3099 return -ENOMEM;
3100 }
3101 return 0;
3102 }
3103
3104 /**
3105 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3106 * @memcg: memcg to uncharge
3107 * @nr_pages: number of pages to uncharge
3108 */
3109 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3110 {
3111 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3112 page_counter_uncharge(&memcg->kmem, nr_pages);
3113
3114 refill_stock(memcg, nr_pages);
3115 }
3116
3117 /**
3118 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3119 * @page: page to charge
3120 * @gfp: reclaim mode
3121 * @order: allocation order
3122 *
3123 * Returns 0 on success, an error code on failure.
3124 */
3125 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3126 {
3127 struct mem_cgroup *memcg;
3128 int ret = 0;
3129
3130 memcg = get_mem_cgroup_from_current();
3131 if (memcg && !mem_cgroup_is_root(memcg)) {
3132 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3133 if (!ret) {
3134 page->memcg_data = (unsigned long)memcg |
3135 MEMCG_DATA_KMEM;
3136 return 0;
3137 }
3138 css_put(&memcg->css);
3139 }
3140 return ret;
3141 }
3142
3143 /**
3144 * __memcg_kmem_uncharge_page: uncharge a kmem page
3145 * @page: page to uncharge
3146 * @order: allocation order
3147 */
3148 void __memcg_kmem_uncharge_page(struct page *page, int order)
3149 {
3150 struct mem_cgroup *memcg = page_memcg(page);
3151 unsigned int nr_pages = 1 << order;
3152
3153 if (!memcg)
3154 return;
3155
3156 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3157 __memcg_kmem_uncharge(memcg, nr_pages);
3158 page->memcg_data = 0;
3159 css_put(&memcg->css);
3160 }
3161
3162 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3163 {
3164 struct memcg_stock_pcp *stock;
3165 unsigned long flags;
3166 bool ret = false;
3167
3168 local_irq_save(flags);
3169
3170 stock = this_cpu_ptr(&memcg_stock);
3171 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3172 stock->nr_bytes -= nr_bytes;
3173 ret = true;
3174 }
3175
3176 local_irq_restore(flags);
3177
3178 return ret;
3179 }
3180
3181 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3182 {
3183 struct obj_cgroup *old = stock->cached_objcg;
3184
3185 if (!old)
3186 return;
3187
3188 if (stock->nr_bytes) {
3189 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3190 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3191
3192 if (nr_pages) {
3193 struct mem_cgroup *memcg;
3194
3195 rcu_read_lock();
3196 retry:
3197 memcg = obj_cgroup_memcg(old);
3198 if (unlikely(!css_tryget(&memcg->css)))
3199 goto retry;
3200 rcu_read_unlock();
3201
3202 __memcg_kmem_uncharge(memcg, nr_pages);
3203 css_put(&memcg->css);
3204 }
3205
3206 /*
3207 * The leftover is flushed to the centralized per-memcg value.
3208 * On the next attempt to refill obj stock it will be moved
3209 * to a per-cpu stock (probably, on an other CPU), see
3210 * refill_obj_stock().
3211 *
3212 * How often it's flushed is a trade-off between the memory
3213 * limit enforcement accuracy and potential CPU contention,
3214 * so it might be changed in the future.
3215 */
3216 atomic_add(nr_bytes, &old->nr_charged_bytes);
3217 stock->nr_bytes = 0;
3218 }
3219
3220 obj_cgroup_put(old);
3221 stock->cached_objcg = NULL;
3222 }
3223
3224 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3225 struct mem_cgroup *root_memcg)
3226 {
3227 struct mem_cgroup *memcg;
3228
3229 if (stock->cached_objcg) {
3230 memcg = obj_cgroup_memcg(stock->cached_objcg);
3231 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3232 return true;
3233 }
3234
3235 return false;
3236 }
3237
3238 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3239 {
3240 struct memcg_stock_pcp *stock;
3241 unsigned long flags;
3242
3243 local_irq_save(flags);
3244
3245 stock = this_cpu_ptr(&memcg_stock);
3246 if (stock->cached_objcg != objcg) { /* reset if necessary */
3247 drain_obj_stock(stock);
3248 obj_cgroup_get(objcg);
3249 stock->cached_objcg = objcg;
3250 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3251 }
3252 stock->nr_bytes += nr_bytes;
3253
3254 if (stock->nr_bytes > PAGE_SIZE)
3255 drain_obj_stock(stock);
3256
3257 local_irq_restore(flags);
3258 }
3259
3260 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3261 {
3262 struct mem_cgroup *memcg;
3263 unsigned int nr_pages, nr_bytes;
3264 int ret;
3265
3266 if (consume_obj_stock(objcg, size))
3267 return 0;
3268
3269 /*
3270 * In theory, memcg->nr_charged_bytes can have enough
3271 * pre-charged bytes to satisfy the allocation. However,
3272 * flushing memcg->nr_charged_bytes requires two atomic
3273 * operations, and memcg->nr_charged_bytes can't be big,
3274 * so it's better to ignore it and try grab some new pages.
3275 * memcg->nr_charged_bytes will be flushed in
3276 * refill_obj_stock(), called from this function or
3277 * independently later.
3278 */
3279 rcu_read_lock();
3280 retry:
3281 memcg = obj_cgroup_memcg(objcg);
3282 if (unlikely(!css_tryget(&memcg->css)))
3283 goto retry;
3284 rcu_read_unlock();
3285
3286 nr_pages = size >> PAGE_SHIFT;
3287 nr_bytes = size & (PAGE_SIZE - 1);
3288
3289 if (nr_bytes)
3290 nr_pages += 1;
3291
3292 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3293 if (!ret && nr_bytes)
3294 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3295
3296 css_put(&memcg->css);
3297 return ret;
3298 }
3299
3300 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3301 {
3302 refill_obj_stock(objcg, size);
3303 }
3304
3305 #endif /* CONFIG_MEMCG_KMEM */
3306
3307 /*
3308 * Because page_memcg(head) is not set on tails, set it now.
3309 */
3310 void split_page_memcg(struct page *head, unsigned int nr)
3311 {
3312 struct mem_cgroup *memcg = page_memcg(head);
3313 int i;
3314
3315 if (mem_cgroup_disabled() || !memcg)
3316 return;
3317
3318 for (i = 1; i < nr; i++)
3319 head[i].memcg_data = head->memcg_data;
3320 css_get_many(&memcg->css, nr - 1);
3321 }
3322
3323 #ifdef CONFIG_MEMCG_SWAP
3324 /**
3325 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3326 * @entry: swap entry to be moved
3327 * @from: mem_cgroup which the entry is moved from
3328 * @to: mem_cgroup which the entry is moved to
3329 *
3330 * It succeeds only when the swap_cgroup's record for this entry is the same
3331 * as the mem_cgroup's id of @from.
3332 *
3333 * Returns 0 on success, -EINVAL on failure.
3334 *
3335 * The caller must have charged to @to, IOW, called page_counter_charge() about
3336 * both res and memsw, and called css_get().
3337 */
3338 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3339 struct mem_cgroup *from, struct mem_cgroup *to)
3340 {
3341 unsigned short old_id, new_id;
3342
3343 old_id = mem_cgroup_id(from);
3344 new_id = mem_cgroup_id(to);
3345
3346 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3347 mod_memcg_state(from, MEMCG_SWAP, -1);
3348 mod_memcg_state(to, MEMCG_SWAP, 1);
3349 return 0;
3350 }
3351 return -EINVAL;
3352 }
3353 #else
3354 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3355 struct mem_cgroup *from, struct mem_cgroup *to)
3356 {
3357 return -EINVAL;
3358 }
3359 #endif
3360
3361 static DEFINE_MUTEX(memcg_max_mutex);
3362
3363 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3364 unsigned long max, bool memsw)
3365 {
3366 bool enlarge = false;
3367 bool drained = false;
3368 int ret;
3369 bool limits_invariant;
3370 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3371
3372 do {
3373 if (signal_pending(current)) {
3374 ret = -EINTR;
3375 break;
3376 }
3377
3378 mutex_lock(&memcg_max_mutex);
3379 /*
3380 * Make sure that the new limit (memsw or memory limit) doesn't
3381 * break our basic invariant rule memory.max <= memsw.max.
3382 */
3383 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3384 max <= memcg->memsw.max;
3385 if (!limits_invariant) {
3386 mutex_unlock(&memcg_max_mutex);
3387 ret = -EINVAL;
3388 break;
3389 }
3390 if (max > counter->max)
3391 enlarge = true;
3392 ret = page_counter_set_max(counter, max);
3393 mutex_unlock(&memcg_max_mutex);
3394
3395 if (!ret)
3396 break;
3397
3398 if (!drained) {
3399 drain_all_stock(memcg);
3400 drained = true;
3401 continue;
3402 }
3403
3404 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3405 GFP_KERNEL, !memsw)) {
3406 ret = -EBUSY;
3407 break;
3408 }
3409 } while (true);
3410
3411 if (!ret && enlarge)
3412 memcg_oom_recover(memcg);
3413
3414 return ret;
3415 }
3416
3417 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3418 gfp_t gfp_mask,
3419 unsigned long *total_scanned)
3420 {
3421 unsigned long nr_reclaimed = 0;
3422 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3423 unsigned long reclaimed;
3424 int loop = 0;
3425 struct mem_cgroup_tree_per_node *mctz;
3426 unsigned long excess;
3427 unsigned long nr_scanned;
3428
3429 if (order > 0)
3430 return 0;
3431
3432 mctz = soft_limit_tree_node(pgdat->node_id);
3433
3434 /*
3435 * Do not even bother to check the largest node if the root
3436 * is empty. Do it lockless to prevent lock bouncing. Races
3437 * are acceptable as soft limit is best effort anyway.
3438 */
3439 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3440 return 0;
3441
3442 /*
3443 * This loop can run a while, specially if mem_cgroup's continuously
3444 * keep exceeding their soft limit and putting the system under
3445 * pressure
3446 */
3447 do {
3448 if (next_mz)
3449 mz = next_mz;
3450 else
3451 mz = mem_cgroup_largest_soft_limit_node(mctz);
3452 if (!mz)
3453 break;
3454
3455 nr_scanned = 0;
3456 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3457 gfp_mask, &nr_scanned);
3458 nr_reclaimed += reclaimed;
3459 *total_scanned += nr_scanned;
3460 spin_lock_irq(&mctz->lock);
3461 __mem_cgroup_remove_exceeded(mz, mctz);
3462
3463 /*
3464 * If we failed to reclaim anything from this memory cgroup
3465 * it is time to move on to the next cgroup
3466 */
3467 next_mz = NULL;
3468 if (!reclaimed)
3469 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3470
3471 excess = soft_limit_excess(mz->memcg);
3472 /*
3473 * One school of thought says that we should not add
3474 * back the node to the tree if reclaim returns 0.
3475 * But our reclaim could return 0, simply because due
3476 * to priority we are exposing a smaller subset of
3477 * memory to reclaim from. Consider this as a longer
3478 * term TODO.
3479 */
3480 /* If excess == 0, no tree ops */
3481 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3482 spin_unlock_irq(&mctz->lock);
3483 css_put(&mz->memcg->css);
3484 loop++;
3485 /*
3486 * Could not reclaim anything and there are no more
3487 * mem cgroups to try or we seem to be looping without
3488 * reclaiming anything.
3489 */
3490 if (!nr_reclaimed &&
3491 (next_mz == NULL ||
3492 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3493 break;
3494 } while (!nr_reclaimed);
3495 if (next_mz)
3496 css_put(&next_mz->memcg->css);
3497 return nr_reclaimed;
3498 }
3499
3500 /*
3501 * Reclaims as many pages from the given memcg as possible.
3502 *
3503 * Caller is responsible for holding css reference for memcg.
3504 */
3505 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3506 {
3507 int nr_retries = MAX_RECLAIM_RETRIES;
3508
3509 /* we call try-to-free pages for make this cgroup empty */
3510 lru_add_drain_all();
3511
3512 drain_all_stock(memcg);
3513
3514 /* try to free all pages in this cgroup */
3515 while (nr_retries && page_counter_read(&memcg->memory)) {
3516 int progress;
3517
3518 if (signal_pending(current))
3519 return -EINTR;
3520
3521 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3522 GFP_KERNEL, true);
3523 if (!progress) {
3524 nr_retries--;
3525 /* maybe some writeback is necessary */
3526 congestion_wait(BLK_RW_ASYNC, HZ/10);
3527 }
3528
3529 }
3530
3531 return 0;
3532 }
3533
3534 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3535 char *buf, size_t nbytes,
3536 loff_t off)
3537 {
3538 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3539
3540 if (mem_cgroup_is_root(memcg))
3541 return -EINVAL;
3542 return mem_cgroup_force_empty(memcg) ?: nbytes;
3543 }
3544
3545 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3546 struct cftype *cft)
3547 {
3548 return 1;
3549 }
3550
3551 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3552 struct cftype *cft, u64 val)
3553 {
3554 if (val == 1)
3555 return 0;
3556
3557 pr_warn_once("Non-hierarchical mode is deprecated. "
3558 "Please report your usecase to linux-mm@kvack.org if you "
3559 "depend on this functionality.\n");
3560
3561 return -EINVAL;
3562 }
3563
3564 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3565 {
3566 unsigned long val;
3567
3568 if (mem_cgroup_is_root(memcg)) {
3569 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3570 memcg_page_state(memcg, NR_ANON_MAPPED);
3571 if (swap)
3572 val += memcg_page_state(memcg, MEMCG_SWAP);
3573 } else {
3574 if (!swap)
3575 val = page_counter_read(&memcg->memory);
3576 else
3577 val = page_counter_read(&memcg->memsw);
3578 }
3579 return val;
3580 }
3581
3582 enum {
3583 RES_USAGE,
3584 RES_LIMIT,
3585 RES_MAX_USAGE,
3586 RES_FAILCNT,
3587 RES_SOFT_LIMIT,
3588 };
3589
3590 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3591 struct cftype *cft)
3592 {
3593 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3594 struct page_counter *counter;
3595
3596 switch (MEMFILE_TYPE(cft->private)) {
3597 case _MEM:
3598 counter = &memcg->memory;
3599 break;
3600 case _MEMSWAP:
3601 counter = &memcg->memsw;
3602 break;
3603 case _KMEM:
3604 counter = &memcg->kmem;
3605 break;
3606 case _TCP:
3607 counter = &memcg->tcpmem;
3608 break;
3609 default:
3610 BUG();
3611 }
3612
3613 switch (MEMFILE_ATTR(cft->private)) {
3614 case RES_USAGE:
3615 if (counter == &memcg->memory)
3616 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3617 if (counter == &memcg->memsw)
3618 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3619 return (u64)page_counter_read(counter) * PAGE_SIZE;
3620 case RES_LIMIT:
3621 return (u64)counter->max * PAGE_SIZE;
3622 case RES_MAX_USAGE:
3623 return (u64)counter->watermark * PAGE_SIZE;
3624 case RES_FAILCNT:
3625 return counter->failcnt;
3626 case RES_SOFT_LIMIT:
3627 return (u64)memcg->soft_limit * PAGE_SIZE;
3628 default:
3629 BUG();
3630 }
3631 }
3632
3633 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3634 {
3635 unsigned long stat[MEMCG_NR_STAT] = {0};
3636 struct mem_cgroup *mi;
3637 int node, cpu, i;
3638
3639 for_each_online_cpu(cpu)
3640 for (i = 0; i < MEMCG_NR_STAT; i++)
3641 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3642
3643 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3644 for (i = 0; i < MEMCG_NR_STAT; i++)
3645 atomic_long_add(stat[i], &mi->vmstats[i]);
3646
3647 for_each_node(node) {
3648 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3649 struct mem_cgroup_per_node *pi;
3650
3651 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3652 stat[i] = 0;
3653
3654 for_each_online_cpu(cpu)
3655 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3656 stat[i] += per_cpu(
3657 pn->lruvec_stat_cpu->count[i], cpu);
3658
3659 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3660 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3661 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3662 }
3663 }
3664
3665 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3666 {
3667 unsigned long events[NR_VM_EVENT_ITEMS];
3668 struct mem_cgroup *mi;
3669 int cpu, i;
3670
3671 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3672 events[i] = 0;
3673
3674 for_each_online_cpu(cpu)
3675 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3676 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3677 cpu);
3678
3679 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3680 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3681 atomic_long_add(events[i], &mi->vmevents[i]);
3682 }
3683
3684 #ifdef CONFIG_MEMCG_KMEM
3685 static int memcg_online_kmem(struct mem_cgroup *memcg)
3686 {
3687 struct obj_cgroup *objcg;
3688 int memcg_id;
3689
3690 if (cgroup_memory_nokmem)
3691 return 0;
3692
3693 BUG_ON(memcg->kmemcg_id >= 0);
3694 BUG_ON(memcg->kmem_state);
3695
3696 memcg_id = memcg_alloc_cache_id();
3697 if (memcg_id < 0)
3698 return memcg_id;
3699
3700 objcg = obj_cgroup_alloc();
3701 if (!objcg) {
3702 memcg_free_cache_id(memcg_id);
3703 return -ENOMEM;
3704 }
3705 objcg->memcg = memcg;
3706 rcu_assign_pointer(memcg->objcg, objcg);
3707
3708 static_branch_enable(&memcg_kmem_enabled_key);
3709
3710 memcg->kmemcg_id = memcg_id;
3711 memcg->kmem_state = KMEM_ONLINE;
3712
3713 return 0;
3714 }
3715
3716 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3717 {
3718 struct cgroup_subsys_state *css;
3719 struct mem_cgroup *parent, *child;
3720 int kmemcg_id;
3721
3722 if (memcg->kmem_state != KMEM_ONLINE)
3723 return;
3724
3725 memcg->kmem_state = KMEM_ALLOCATED;
3726
3727 parent = parent_mem_cgroup(memcg);
3728 if (!parent)
3729 parent = root_mem_cgroup;
3730
3731 memcg_reparent_objcgs(memcg, parent);
3732
3733 kmemcg_id = memcg->kmemcg_id;
3734 BUG_ON(kmemcg_id < 0);
3735
3736 /*
3737 * Change kmemcg_id of this cgroup and all its descendants to the
3738 * parent's id, and then move all entries from this cgroup's list_lrus
3739 * to ones of the parent. After we have finished, all list_lrus
3740 * corresponding to this cgroup are guaranteed to remain empty. The
3741 * ordering is imposed by list_lru_node->lock taken by
3742 * memcg_drain_all_list_lrus().
3743 */
3744 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3745 css_for_each_descendant_pre(css, &memcg->css) {
3746 child = mem_cgroup_from_css(css);
3747 BUG_ON(child->kmemcg_id != kmemcg_id);
3748 child->kmemcg_id = parent->kmemcg_id;
3749 }
3750 rcu_read_unlock();
3751
3752 memcg_drain_all_list_lrus(kmemcg_id, parent);
3753
3754 memcg_free_cache_id(kmemcg_id);
3755 }
3756
3757 static void memcg_free_kmem(struct mem_cgroup *memcg)
3758 {
3759 /* css_alloc() failed, offlining didn't happen */
3760 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3761 memcg_offline_kmem(memcg);
3762 }
3763 #else
3764 static int memcg_online_kmem(struct mem_cgroup *memcg)
3765 {
3766 return 0;
3767 }
3768 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3769 {
3770 }
3771 static void memcg_free_kmem(struct mem_cgroup *memcg)
3772 {
3773 }
3774 #endif /* CONFIG_MEMCG_KMEM */
3775
3776 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3777 unsigned long max)
3778 {
3779 int ret;
3780
3781 mutex_lock(&memcg_max_mutex);
3782 ret = page_counter_set_max(&memcg->kmem, max);
3783 mutex_unlock(&memcg_max_mutex);
3784 return ret;
3785 }
3786
3787 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3788 {
3789 int ret;
3790
3791 mutex_lock(&memcg_max_mutex);
3792
3793 ret = page_counter_set_max(&memcg->tcpmem, max);
3794 if (ret)
3795 goto out;
3796
3797 if (!memcg->tcpmem_active) {
3798 /*
3799 * The active flag needs to be written after the static_key
3800 * update. This is what guarantees that the socket activation
3801 * function is the last one to run. See mem_cgroup_sk_alloc()
3802 * for details, and note that we don't mark any socket as
3803 * belonging to this memcg until that flag is up.
3804 *
3805 * We need to do this, because static_keys will span multiple
3806 * sites, but we can't control their order. If we mark a socket
3807 * as accounted, but the accounting functions are not patched in
3808 * yet, we'll lose accounting.
3809 *
3810 * We never race with the readers in mem_cgroup_sk_alloc(),
3811 * because when this value change, the code to process it is not
3812 * patched in yet.
3813 */
3814 static_branch_inc(&memcg_sockets_enabled_key);
3815 memcg->tcpmem_active = true;
3816 }
3817 out:
3818 mutex_unlock(&memcg_max_mutex);
3819 return ret;
3820 }
3821
3822 /*
3823 * The user of this function is...
3824 * RES_LIMIT.
3825 */
3826 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3827 char *buf, size_t nbytes, loff_t off)
3828 {
3829 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3830 unsigned long nr_pages;
3831 int ret;
3832
3833 buf = strstrip(buf);
3834 ret = page_counter_memparse(buf, "-1", &nr_pages);
3835 if (ret)
3836 return ret;
3837
3838 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3839 case RES_LIMIT:
3840 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3841 ret = -EINVAL;
3842 break;
3843 }
3844 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3845 case _MEM:
3846 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3847 break;
3848 case _MEMSWAP:
3849 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3850 break;
3851 case _KMEM:
3852 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3853 "Please report your usecase to linux-mm@kvack.org if you "
3854 "depend on this functionality.\n");
3855 ret = memcg_update_kmem_max(memcg, nr_pages);
3856 break;
3857 case _TCP:
3858 ret = memcg_update_tcp_max(memcg, nr_pages);
3859 break;
3860 }
3861 break;
3862 case RES_SOFT_LIMIT:
3863 memcg->soft_limit = nr_pages;
3864 ret = 0;
3865 break;
3866 }
3867 return ret ?: nbytes;
3868 }
3869
3870 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3871 size_t nbytes, loff_t off)
3872 {
3873 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3874 struct page_counter *counter;
3875
3876 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3877 case _MEM:
3878 counter = &memcg->memory;
3879 break;
3880 case _MEMSWAP:
3881 counter = &memcg->memsw;
3882 break;
3883 case _KMEM:
3884 counter = &memcg->kmem;
3885 break;
3886 case _TCP:
3887 counter = &memcg->tcpmem;
3888 break;
3889 default:
3890 BUG();
3891 }
3892
3893 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3894 case RES_MAX_USAGE:
3895 page_counter_reset_watermark(counter);
3896 break;
3897 case RES_FAILCNT:
3898 counter->failcnt = 0;
3899 break;
3900 default:
3901 BUG();
3902 }
3903
3904 return nbytes;
3905 }
3906
3907 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3908 struct cftype *cft)
3909 {
3910 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3911 }
3912
3913 #ifdef CONFIG_MMU
3914 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3915 struct cftype *cft, u64 val)
3916 {
3917 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3918
3919 if (val & ~MOVE_MASK)
3920 return -EINVAL;
3921
3922 /*
3923 * No kind of locking is needed in here, because ->can_attach() will
3924 * check this value once in the beginning of the process, and then carry
3925 * on with stale data. This means that changes to this value will only
3926 * affect task migrations starting after the change.
3927 */
3928 memcg->move_charge_at_immigrate = val;
3929 return 0;
3930 }
3931 #else
3932 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3933 struct cftype *cft, u64 val)
3934 {
3935 return -ENOSYS;
3936 }
3937 #endif
3938
3939 #ifdef CONFIG_NUMA
3940
3941 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3942 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3943 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3944
3945 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3946 int nid, unsigned int lru_mask, bool tree)
3947 {
3948 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3949 unsigned long nr = 0;
3950 enum lru_list lru;
3951
3952 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3953
3954 for_each_lru(lru) {
3955 if (!(BIT(lru) & lru_mask))
3956 continue;
3957 if (tree)
3958 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3959 else
3960 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3961 }
3962 return nr;
3963 }
3964
3965 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3966 unsigned int lru_mask,
3967 bool tree)
3968 {
3969 unsigned long nr = 0;
3970 enum lru_list lru;
3971
3972 for_each_lru(lru) {
3973 if (!(BIT(lru) & lru_mask))
3974 continue;
3975 if (tree)
3976 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3977 else
3978 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3979 }
3980 return nr;
3981 }
3982
3983 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3984 {
3985 struct numa_stat {
3986 const char *name;
3987 unsigned int lru_mask;
3988 };
3989
3990 static const struct numa_stat stats[] = {
3991 { "total", LRU_ALL },
3992 { "file", LRU_ALL_FILE },
3993 { "anon", LRU_ALL_ANON },
3994 { "unevictable", BIT(LRU_UNEVICTABLE) },
3995 };
3996 const struct numa_stat *stat;
3997 int nid;
3998 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3999
4000 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4001 seq_printf(m, "%s=%lu", stat->name,
4002 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4003 false));
4004 for_each_node_state(nid, N_MEMORY)
4005 seq_printf(m, " N%d=%lu", nid,
4006 mem_cgroup_node_nr_lru_pages(memcg, nid,
4007 stat->lru_mask, false));
4008 seq_putc(m, '\n');
4009 }
4010
4011 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4012
4013 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4014 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4015 true));
4016 for_each_node_state(nid, N_MEMORY)
4017 seq_printf(m, " N%d=%lu", nid,
4018 mem_cgroup_node_nr_lru_pages(memcg, nid,
4019 stat->lru_mask, true));
4020 seq_putc(m, '\n');
4021 }
4022
4023 return 0;
4024 }
4025 #endif /* CONFIG_NUMA */
4026
4027 static const unsigned int memcg1_stats[] = {
4028 NR_FILE_PAGES,
4029 NR_ANON_MAPPED,
4030 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4031 NR_ANON_THPS,
4032 #endif
4033 NR_SHMEM,
4034 NR_FILE_MAPPED,
4035 NR_FILE_DIRTY,
4036 NR_WRITEBACK,
4037 MEMCG_SWAP,
4038 };
4039
4040 static const char *const memcg1_stat_names[] = {
4041 "cache",
4042 "rss",
4043 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4044 "rss_huge",
4045 #endif
4046 "shmem",
4047 "mapped_file",
4048 "dirty",
4049 "writeback",
4050 "swap",
4051 };
4052
4053 /* Universal VM events cgroup1 shows, original sort order */
4054 static const unsigned int memcg1_events[] = {
4055 PGPGIN,
4056 PGPGOUT,
4057 PGFAULT,
4058 PGMAJFAULT,
4059 };
4060
4061 static int memcg_stat_show(struct seq_file *m, void *v)
4062 {
4063 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4064 unsigned long memory, memsw;
4065 struct mem_cgroup *mi;
4066 unsigned int i;
4067
4068 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4069
4070 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4071 unsigned long nr;
4072
4073 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4074 continue;
4075 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4076 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4077 if (memcg1_stats[i] == NR_ANON_THPS)
4078 nr *= HPAGE_PMD_NR;
4079 #endif
4080 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4081 }
4082
4083 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4084 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4085 memcg_events_local(memcg, memcg1_events[i]));
4086
4087 for (i = 0; i < NR_LRU_LISTS; i++)
4088 seq_printf(m, "%s %lu\n", lru_list_name(i),
4089 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4090 PAGE_SIZE);
4091
4092 /* Hierarchical information */
4093 memory = memsw = PAGE_COUNTER_MAX;
4094 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4095 memory = min(memory, READ_ONCE(mi->memory.max));
4096 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4097 }
4098 seq_printf(m, "hierarchical_memory_limit %llu\n",
4099 (u64)memory * PAGE_SIZE);
4100 if (do_memsw_account())
4101 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4102 (u64)memsw * PAGE_SIZE);
4103
4104 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4105 unsigned long nr;
4106
4107 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4108 continue;
4109 nr = memcg_page_state(memcg, memcg1_stats[i]);
4110 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4111 if (memcg1_stats[i] == NR_ANON_THPS)
4112 nr *= HPAGE_PMD_NR;
4113 #endif
4114 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4115 (u64)nr * PAGE_SIZE);
4116 }
4117
4118 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4119 seq_printf(m, "total_%s %llu\n",
4120 vm_event_name(memcg1_events[i]),
4121 (u64)memcg_events(memcg, memcg1_events[i]));
4122
4123 for (i = 0; i < NR_LRU_LISTS; i++)
4124 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4125 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4126 PAGE_SIZE);
4127
4128 #ifdef CONFIG_DEBUG_VM
4129 {
4130 pg_data_t *pgdat;
4131 struct mem_cgroup_per_node *mz;
4132 unsigned long anon_cost = 0;
4133 unsigned long file_cost = 0;
4134
4135 for_each_online_pgdat(pgdat) {
4136 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4137
4138 anon_cost += mz->lruvec.anon_cost;
4139 file_cost += mz->lruvec.file_cost;
4140 }
4141 seq_printf(m, "anon_cost %lu\n", anon_cost);
4142 seq_printf(m, "file_cost %lu\n", file_cost);
4143 }
4144 #endif
4145
4146 return 0;
4147 }
4148
4149 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4150 struct cftype *cft)
4151 {
4152 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4153
4154 return mem_cgroup_swappiness(memcg);
4155 }
4156
4157 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4158 struct cftype *cft, u64 val)
4159 {
4160 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4161
4162 if (val > 100)
4163 return -EINVAL;
4164
4165 if (css->parent)
4166 memcg->swappiness = val;
4167 else
4168 vm_swappiness = val;
4169
4170 return 0;
4171 }
4172
4173 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4174 {
4175 struct mem_cgroup_threshold_ary *t;
4176 unsigned long usage;
4177 int i;
4178
4179 rcu_read_lock();
4180 if (!swap)
4181 t = rcu_dereference(memcg->thresholds.primary);
4182 else
4183 t = rcu_dereference(memcg->memsw_thresholds.primary);
4184
4185 if (!t)
4186 goto unlock;
4187
4188 usage = mem_cgroup_usage(memcg, swap);
4189
4190 /*
4191 * current_threshold points to threshold just below or equal to usage.
4192 * If it's not true, a threshold was crossed after last
4193 * call of __mem_cgroup_threshold().
4194 */
4195 i = t->current_threshold;
4196
4197 /*
4198 * Iterate backward over array of thresholds starting from
4199 * current_threshold and check if a threshold is crossed.
4200 * If none of thresholds below usage is crossed, we read
4201 * only one element of the array here.
4202 */
4203 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4204 eventfd_signal(t->entries[i].eventfd, 1);
4205
4206 /* i = current_threshold + 1 */
4207 i++;
4208
4209 /*
4210 * Iterate forward over array of thresholds starting from
4211 * current_threshold+1 and check if a threshold is crossed.
4212 * If none of thresholds above usage is crossed, we read
4213 * only one element of the array here.
4214 */
4215 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4216 eventfd_signal(t->entries[i].eventfd, 1);
4217
4218 /* Update current_threshold */
4219 t->current_threshold = i - 1;
4220 unlock:
4221 rcu_read_unlock();
4222 }
4223
4224 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4225 {
4226 while (memcg) {
4227 __mem_cgroup_threshold(memcg, false);
4228 if (do_memsw_account())
4229 __mem_cgroup_threshold(memcg, true);
4230
4231 memcg = parent_mem_cgroup(memcg);
4232 }
4233 }
4234
4235 static int compare_thresholds(const void *a, const void *b)
4236 {
4237 const struct mem_cgroup_threshold *_a = a;
4238 const struct mem_cgroup_threshold *_b = b;
4239
4240 if (_a->threshold > _b->threshold)
4241 return 1;
4242
4243 if (_a->threshold < _b->threshold)
4244 return -1;
4245
4246 return 0;
4247 }
4248
4249 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4250 {
4251 struct mem_cgroup_eventfd_list *ev;
4252
4253 spin_lock(&memcg_oom_lock);
4254
4255 list_for_each_entry(ev, &memcg->oom_notify, list)
4256 eventfd_signal(ev->eventfd, 1);
4257
4258 spin_unlock(&memcg_oom_lock);
4259 return 0;
4260 }
4261
4262 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4263 {
4264 struct mem_cgroup *iter;
4265
4266 for_each_mem_cgroup_tree(iter, memcg)
4267 mem_cgroup_oom_notify_cb(iter);
4268 }
4269
4270 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4271 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4272 {
4273 struct mem_cgroup_thresholds *thresholds;
4274 struct mem_cgroup_threshold_ary *new;
4275 unsigned long threshold;
4276 unsigned long usage;
4277 int i, size, ret;
4278
4279 ret = page_counter_memparse(args, "-1", &threshold);
4280 if (ret)
4281 return ret;
4282
4283 mutex_lock(&memcg->thresholds_lock);
4284
4285 if (type == _MEM) {
4286 thresholds = &memcg->thresholds;
4287 usage = mem_cgroup_usage(memcg, false);
4288 } else if (type == _MEMSWAP) {
4289 thresholds = &memcg->memsw_thresholds;
4290 usage = mem_cgroup_usage(memcg, true);
4291 } else
4292 BUG();
4293
4294 /* Check if a threshold crossed before adding a new one */
4295 if (thresholds->primary)
4296 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4297
4298 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4299
4300 /* Allocate memory for new array of thresholds */
4301 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4302 if (!new) {
4303 ret = -ENOMEM;
4304 goto unlock;
4305 }
4306 new->size = size;
4307
4308 /* Copy thresholds (if any) to new array */
4309 if (thresholds->primary)
4310 memcpy(new->entries, thresholds->primary->entries,
4311 flex_array_size(new, entries, size - 1));
4312
4313 /* Add new threshold */
4314 new->entries[size - 1].eventfd = eventfd;
4315 new->entries[size - 1].threshold = threshold;
4316
4317 /* Sort thresholds. Registering of new threshold isn't time-critical */
4318 sort(new->entries, size, sizeof(*new->entries),
4319 compare_thresholds, NULL);
4320
4321 /* Find current threshold */
4322 new->current_threshold = -1;
4323 for (i = 0; i < size; i++) {
4324 if (new->entries[i].threshold <= usage) {
4325 /*
4326 * new->current_threshold will not be used until
4327 * rcu_assign_pointer(), so it's safe to increment
4328 * it here.
4329 */
4330 ++new->current_threshold;
4331 } else
4332 break;
4333 }
4334
4335 /* Free old spare buffer and save old primary buffer as spare */
4336 kfree(thresholds->spare);
4337 thresholds->spare = thresholds->primary;
4338
4339 rcu_assign_pointer(thresholds->primary, new);
4340
4341 /* To be sure that nobody uses thresholds */
4342 synchronize_rcu();
4343
4344 unlock:
4345 mutex_unlock(&memcg->thresholds_lock);
4346
4347 return ret;
4348 }
4349
4350 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4351 struct eventfd_ctx *eventfd, const char *args)
4352 {
4353 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4354 }
4355
4356 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4357 struct eventfd_ctx *eventfd, const char *args)
4358 {
4359 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4360 }
4361
4362 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4363 struct eventfd_ctx *eventfd, enum res_type type)
4364 {
4365 struct mem_cgroup_thresholds *thresholds;
4366 struct mem_cgroup_threshold_ary *new;
4367 unsigned long usage;
4368 int i, j, size, entries;
4369
4370 mutex_lock(&memcg->thresholds_lock);
4371
4372 if (type == _MEM) {
4373 thresholds = &memcg->thresholds;
4374 usage = mem_cgroup_usage(memcg, false);
4375 } else if (type == _MEMSWAP) {
4376 thresholds = &memcg->memsw_thresholds;
4377 usage = mem_cgroup_usage(memcg, true);
4378 } else
4379 BUG();
4380
4381 if (!thresholds->primary)
4382 goto unlock;
4383
4384 /* Check if a threshold crossed before removing */
4385 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4386
4387 /* Calculate new number of threshold */
4388 size = entries = 0;
4389 for (i = 0; i < thresholds->primary->size; i++) {
4390 if (thresholds->primary->entries[i].eventfd != eventfd)
4391 size++;
4392 else
4393 entries++;
4394 }
4395
4396 new = thresholds->spare;
4397
4398 /* If no items related to eventfd have been cleared, nothing to do */
4399 if (!entries)
4400 goto unlock;
4401
4402 /* Set thresholds array to NULL if we don't have thresholds */
4403 if (!size) {
4404 kfree(new);
4405 new = NULL;
4406 goto swap_buffers;
4407 }
4408
4409 new->size = size;
4410
4411 /* Copy thresholds and find current threshold */
4412 new->current_threshold = -1;
4413 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4414 if (thresholds->primary->entries[i].eventfd == eventfd)
4415 continue;
4416
4417 new->entries[j] = thresholds->primary->entries[i];
4418 if (new->entries[j].threshold <= usage) {
4419 /*
4420 * new->current_threshold will not be used
4421 * until rcu_assign_pointer(), so it's safe to increment
4422 * it here.
4423 */
4424 ++new->current_threshold;
4425 }
4426 j++;
4427 }
4428
4429 swap_buffers:
4430 /* Swap primary and spare array */
4431 thresholds->spare = thresholds->primary;
4432
4433 rcu_assign_pointer(thresholds->primary, new);
4434
4435 /* To be sure that nobody uses thresholds */
4436 synchronize_rcu();
4437
4438 /* If all events are unregistered, free the spare array */
4439 if (!new) {
4440 kfree(thresholds->spare);
4441 thresholds->spare = NULL;
4442 }
4443 unlock:
4444 mutex_unlock(&memcg->thresholds_lock);
4445 }
4446
4447 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4448 struct eventfd_ctx *eventfd)
4449 {
4450 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4451 }
4452
4453 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4454 struct eventfd_ctx *eventfd)
4455 {
4456 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4457 }
4458
4459 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4460 struct eventfd_ctx *eventfd, const char *args)
4461 {
4462 struct mem_cgroup_eventfd_list *event;
4463
4464 event = kmalloc(sizeof(*event), GFP_KERNEL);
4465 if (!event)
4466 return -ENOMEM;
4467
4468 spin_lock(&memcg_oom_lock);
4469
4470 event->eventfd = eventfd;
4471 list_add(&event->list, &memcg->oom_notify);
4472
4473 /* already in OOM ? */
4474 if (memcg->under_oom)
4475 eventfd_signal(eventfd, 1);
4476 spin_unlock(&memcg_oom_lock);
4477
4478 return 0;
4479 }
4480
4481 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4482 struct eventfd_ctx *eventfd)
4483 {
4484 struct mem_cgroup_eventfd_list *ev, *tmp;
4485
4486 spin_lock(&memcg_oom_lock);
4487
4488 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4489 if (ev->eventfd == eventfd) {
4490 list_del(&ev->list);
4491 kfree(ev);
4492 }
4493 }
4494
4495 spin_unlock(&memcg_oom_lock);
4496 }
4497
4498 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4499 {
4500 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4501
4502 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4503 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4504 seq_printf(sf, "oom_kill %lu\n",
4505 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4506 return 0;
4507 }
4508
4509 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4510 struct cftype *cft, u64 val)
4511 {
4512 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4513
4514 /* cannot set to root cgroup and only 0 and 1 are allowed */
4515 if (!css->parent || !((val == 0) || (val == 1)))
4516 return -EINVAL;
4517
4518 memcg->oom_kill_disable = val;
4519 if (!val)
4520 memcg_oom_recover(memcg);
4521
4522 return 0;
4523 }
4524
4525 #ifdef CONFIG_CGROUP_WRITEBACK
4526
4527 #include <trace/events/writeback.h>
4528
4529 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4530 {
4531 return wb_domain_init(&memcg->cgwb_domain, gfp);
4532 }
4533
4534 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4535 {
4536 wb_domain_exit(&memcg->cgwb_domain);
4537 }
4538
4539 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4540 {
4541 wb_domain_size_changed(&memcg->cgwb_domain);
4542 }
4543
4544 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4545 {
4546 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4547
4548 if (!memcg->css.parent)
4549 return NULL;
4550
4551 return &memcg->cgwb_domain;
4552 }
4553
4554 /*
4555 * idx can be of type enum memcg_stat_item or node_stat_item.
4556 * Keep in sync with memcg_exact_page().
4557 */
4558 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4559 {
4560 long x = atomic_long_read(&memcg->vmstats[idx]);
4561 int cpu;
4562
4563 for_each_online_cpu(cpu)
4564 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4565 if (x < 0)
4566 x = 0;
4567 return x;
4568 }
4569
4570 /**
4571 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4572 * @wb: bdi_writeback in question
4573 * @pfilepages: out parameter for number of file pages
4574 * @pheadroom: out parameter for number of allocatable pages according to memcg
4575 * @pdirty: out parameter for number of dirty pages
4576 * @pwriteback: out parameter for number of pages under writeback
4577 *
4578 * Determine the numbers of file, headroom, dirty, and writeback pages in
4579 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4580 * is a bit more involved.
4581 *
4582 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4583 * headroom is calculated as the lowest headroom of itself and the
4584 * ancestors. Note that this doesn't consider the actual amount of
4585 * available memory in the system. The caller should further cap
4586 * *@pheadroom accordingly.
4587 */
4588 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4589 unsigned long *pheadroom, unsigned long *pdirty,
4590 unsigned long *pwriteback)
4591 {
4592 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4593 struct mem_cgroup *parent;
4594
4595 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4596
4597 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4598 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4599 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4600 *pheadroom = PAGE_COUNTER_MAX;
4601
4602 while ((parent = parent_mem_cgroup(memcg))) {
4603 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4604 READ_ONCE(memcg->memory.high));
4605 unsigned long used = page_counter_read(&memcg->memory);
4606
4607 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4608 memcg = parent;
4609 }
4610 }
4611
4612 /*
4613 * Foreign dirty flushing
4614 *
4615 * There's an inherent mismatch between memcg and writeback. The former
4616 * trackes ownership per-page while the latter per-inode. This was a
4617 * deliberate design decision because honoring per-page ownership in the
4618 * writeback path is complicated, may lead to higher CPU and IO overheads
4619 * and deemed unnecessary given that write-sharing an inode across
4620 * different cgroups isn't a common use-case.
4621 *
4622 * Combined with inode majority-writer ownership switching, this works well
4623 * enough in most cases but there are some pathological cases. For
4624 * example, let's say there are two cgroups A and B which keep writing to
4625 * different but confined parts of the same inode. B owns the inode and
4626 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4627 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4628 * triggering background writeback. A will be slowed down without a way to
4629 * make writeback of the dirty pages happen.
4630 *
4631 * Conditions like the above can lead to a cgroup getting repatedly and
4632 * severely throttled after making some progress after each
4633 * dirty_expire_interval while the underyling IO device is almost
4634 * completely idle.
4635 *
4636 * Solving this problem completely requires matching the ownership tracking
4637 * granularities between memcg and writeback in either direction. However,
4638 * the more egregious behaviors can be avoided by simply remembering the
4639 * most recent foreign dirtying events and initiating remote flushes on
4640 * them when local writeback isn't enough to keep the memory clean enough.
4641 *
4642 * The following two functions implement such mechanism. When a foreign
4643 * page - a page whose memcg and writeback ownerships don't match - is
4644 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4645 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4646 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4647 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4648 * foreign bdi_writebacks which haven't expired. Both the numbers of
4649 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4650 * limited to MEMCG_CGWB_FRN_CNT.
4651 *
4652 * The mechanism only remembers IDs and doesn't hold any object references.
4653 * As being wrong occasionally doesn't matter, updates and accesses to the
4654 * records are lockless and racy.
4655 */
4656 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4657 struct bdi_writeback *wb)
4658 {
4659 struct mem_cgroup *memcg = page_memcg(page);
4660 struct memcg_cgwb_frn *frn;
4661 u64 now = get_jiffies_64();
4662 u64 oldest_at = now;
4663 int oldest = -1;
4664 int i;
4665
4666 trace_track_foreign_dirty(page, wb);
4667
4668 /*
4669 * Pick the slot to use. If there is already a slot for @wb, keep
4670 * using it. If not replace the oldest one which isn't being
4671 * written out.
4672 */
4673 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4674 frn = &memcg->cgwb_frn[i];
4675 if (frn->bdi_id == wb->bdi->id &&
4676 frn->memcg_id == wb->memcg_css->id)
4677 break;
4678 if (time_before64(frn->at, oldest_at) &&
4679 atomic_read(&frn->done.cnt) == 1) {
4680 oldest = i;
4681 oldest_at = frn->at;
4682 }
4683 }
4684
4685 if (i < MEMCG_CGWB_FRN_CNT) {
4686 /*
4687 * Re-using an existing one. Update timestamp lazily to
4688 * avoid making the cacheline hot. We want them to be
4689 * reasonably up-to-date and significantly shorter than
4690 * dirty_expire_interval as that's what expires the record.
4691 * Use the shorter of 1s and dirty_expire_interval / 8.
4692 */
4693 unsigned long update_intv =
4694 min_t(unsigned long, HZ,
4695 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4696
4697 if (time_before64(frn->at, now - update_intv))
4698 frn->at = now;
4699 } else if (oldest >= 0) {
4700 /* replace the oldest free one */
4701 frn = &memcg->cgwb_frn[oldest];
4702 frn->bdi_id = wb->bdi->id;
4703 frn->memcg_id = wb->memcg_css->id;
4704 frn->at = now;
4705 }
4706 }
4707
4708 /* issue foreign writeback flushes for recorded foreign dirtying events */
4709 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4710 {
4711 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4712 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4713 u64 now = jiffies_64;
4714 int i;
4715
4716 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4717 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4718
4719 /*
4720 * If the record is older than dirty_expire_interval,
4721 * writeback on it has already started. No need to kick it
4722 * off again. Also, don't start a new one if there's
4723 * already one in flight.
4724 */
4725 if (time_after64(frn->at, now - intv) &&
4726 atomic_read(&frn->done.cnt) == 1) {
4727 frn->at = 0;
4728 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4729 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4730 WB_REASON_FOREIGN_FLUSH,
4731 &frn->done);
4732 }
4733 }
4734 }
4735
4736 #else /* CONFIG_CGROUP_WRITEBACK */
4737
4738 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4739 {
4740 return 0;
4741 }
4742
4743 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4744 {
4745 }
4746
4747 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4748 {
4749 }
4750
4751 #endif /* CONFIG_CGROUP_WRITEBACK */
4752
4753 /*
4754 * DO NOT USE IN NEW FILES.
4755 *
4756 * "cgroup.event_control" implementation.
4757 *
4758 * This is way over-engineered. It tries to support fully configurable
4759 * events for each user. Such level of flexibility is completely
4760 * unnecessary especially in the light of the planned unified hierarchy.
4761 *
4762 * Please deprecate this and replace with something simpler if at all
4763 * possible.
4764 */
4765
4766 /*
4767 * Unregister event and free resources.
4768 *
4769 * Gets called from workqueue.
4770 */
4771 static void memcg_event_remove(struct work_struct *work)
4772 {
4773 struct mem_cgroup_event *event =
4774 container_of(work, struct mem_cgroup_event, remove);
4775 struct mem_cgroup *memcg = event->memcg;
4776
4777 remove_wait_queue(event->wqh, &event->wait);
4778
4779 event->unregister_event(memcg, event->eventfd);
4780
4781 /* Notify userspace the event is going away. */
4782 eventfd_signal(event->eventfd, 1);
4783
4784 eventfd_ctx_put(event->eventfd);
4785 kfree(event);
4786 css_put(&memcg->css);
4787 }
4788
4789 /*
4790 * Gets called on EPOLLHUP on eventfd when user closes it.
4791 *
4792 * Called with wqh->lock held and interrupts disabled.
4793 */
4794 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4795 int sync, void *key)
4796 {
4797 struct mem_cgroup_event *event =
4798 container_of(wait, struct mem_cgroup_event, wait);
4799 struct mem_cgroup *memcg = event->memcg;
4800 __poll_t flags = key_to_poll(key);
4801
4802 if (flags & EPOLLHUP) {
4803 /*
4804 * If the event has been detached at cgroup removal, we
4805 * can simply return knowing the other side will cleanup
4806 * for us.
4807 *
4808 * We can't race against event freeing since the other
4809 * side will require wqh->lock via remove_wait_queue(),
4810 * which we hold.
4811 */
4812 spin_lock(&memcg->event_list_lock);
4813 if (!list_empty(&event->list)) {
4814 list_del_init(&event->list);
4815 /*
4816 * We are in atomic context, but cgroup_event_remove()
4817 * may sleep, so we have to call it in workqueue.
4818 */
4819 schedule_work(&event->remove);
4820 }
4821 spin_unlock(&memcg->event_list_lock);
4822 }
4823
4824 return 0;
4825 }
4826
4827 static void memcg_event_ptable_queue_proc(struct file *file,
4828 wait_queue_head_t *wqh, poll_table *pt)
4829 {
4830 struct mem_cgroup_event *event =
4831 container_of(pt, struct mem_cgroup_event, pt);
4832
4833 event->wqh = wqh;
4834 add_wait_queue(wqh, &event->wait);
4835 }
4836
4837 /*
4838 * DO NOT USE IN NEW FILES.
4839 *
4840 * Parse input and register new cgroup event handler.
4841 *
4842 * Input must be in format '<event_fd> <control_fd> <args>'.
4843 * Interpretation of args is defined by control file implementation.
4844 */
4845 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4846 char *buf, size_t nbytes, loff_t off)
4847 {
4848 struct cgroup_subsys_state *css = of_css(of);
4849 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4850 struct mem_cgroup_event *event;
4851 struct cgroup_subsys_state *cfile_css;
4852 unsigned int efd, cfd;
4853 struct fd efile;
4854 struct fd cfile;
4855 const char *name;
4856 char *endp;
4857 int ret;
4858
4859 buf = strstrip(buf);
4860
4861 efd = simple_strtoul(buf, &endp, 10);
4862 if (*endp != ' ')
4863 return -EINVAL;
4864 buf = endp + 1;
4865
4866 cfd = simple_strtoul(buf, &endp, 10);
4867 if ((*endp != ' ') && (*endp != '\0'))
4868 return -EINVAL;
4869 buf = endp + 1;
4870
4871 event = kzalloc(sizeof(*event), GFP_KERNEL);
4872 if (!event)
4873 return -ENOMEM;
4874
4875 event->memcg = memcg;
4876 INIT_LIST_HEAD(&event->list);
4877 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4878 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4879 INIT_WORK(&event->remove, memcg_event_remove);
4880
4881 efile = fdget(efd);
4882 if (!efile.file) {
4883 ret = -EBADF;
4884 goto out_kfree;
4885 }
4886
4887 event->eventfd = eventfd_ctx_fileget(efile.file);
4888 if (IS_ERR(event->eventfd)) {
4889 ret = PTR_ERR(event->eventfd);
4890 goto out_put_efile;
4891 }
4892
4893 cfile = fdget(cfd);
4894 if (!cfile.file) {
4895 ret = -EBADF;
4896 goto out_put_eventfd;
4897 }
4898
4899 /* the process need read permission on control file */
4900 /* AV: shouldn't we check that it's been opened for read instead? */
4901 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4902 if (ret < 0)
4903 goto out_put_cfile;
4904
4905 /*
4906 * Determine the event callbacks and set them in @event. This used
4907 * to be done via struct cftype but cgroup core no longer knows
4908 * about these events. The following is crude but the whole thing
4909 * is for compatibility anyway.
4910 *
4911 * DO NOT ADD NEW FILES.
4912 */
4913 name = cfile.file->f_path.dentry->d_name.name;
4914
4915 if (!strcmp(name, "memory.usage_in_bytes")) {
4916 event->register_event = mem_cgroup_usage_register_event;
4917 event->unregister_event = mem_cgroup_usage_unregister_event;
4918 } else if (!strcmp(name, "memory.oom_control")) {
4919 event->register_event = mem_cgroup_oom_register_event;
4920 event->unregister_event = mem_cgroup_oom_unregister_event;
4921 } else if (!strcmp(name, "memory.pressure_level")) {
4922 event->register_event = vmpressure_register_event;
4923 event->unregister_event = vmpressure_unregister_event;
4924 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4925 event->register_event = memsw_cgroup_usage_register_event;
4926 event->unregister_event = memsw_cgroup_usage_unregister_event;
4927 } else {
4928 ret = -EINVAL;
4929 goto out_put_cfile;
4930 }
4931
4932 /*
4933 * Verify @cfile should belong to @css. Also, remaining events are
4934 * automatically removed on cgroup destruction but the removal is
4935 * asynchronous, so take an extra ref on @css.
4936 */
4937 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4938 &memory_cgrp_subsys);
4939 ret = -EINVAL;
4940 if (IS_ERR(cfile_css))
4941 goto out_put_cfile;
4942 if (cfile_css != css) {
4943 css_put(cfile_css);
4944 goto out_put_cfile;
4945 }
4946
4947 ret = event->register_event(memcg, event->eventfd, buf);
4948 if (ret)
4949 goto out_put_css;
4950
4951 vfs_poll(efile.file, &event->pt);
4952
4953 spin_lock(&memcg->event_list_lock);
4954 list_add(&event->list, &memcg->event_list);
4955 spin_unlock(&memcg->event_list_lock);
4956
4957 fdput(cfile);
4958 fdput(efile);
4959
4960 return nbytes;
4961
4962 out_put_css:
4963 css_put(css);
4964 out_put_cfile:
4965 fdput(cfile);
4966 out_put_eventfd:
4967 eventfd_ctx_put(event->eventfd);
4968 out_put_efile:
4969 fdput(efile);
4970 out_kfree:
4971 kfree(event);
4972
4973 return ret;
4974 }
4975
4976 static struct cftype mem_cgroup_legacy_files[] = {
4977 {
4978 .name = "usage_in_bytes",
4979 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4980 .read_u64 = mem_cgroup_read_u64,
4981 },
4982 {
4983 .name = "max_usage_in_bytes",
4984 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4985 .write = mem_cgroup_reset,
4986 .read_u64 = mem_cgroup_read_u64,
4987 },
4988 {
4989 .name = "limit_in_bytes",
4990 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4991 .write = mem_cgroup_write,
4992 .read_u64 = mem_cgroup_read_u64,
4993 },
4994 {
4995 .name = "soft_limit_in_bytes",
4996 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4997 .write = mem_cgroup_write,
4998 .read_u64 = mem_cgroup_read_u64,
4999 },
5000 {
5001 .name = "failcnt",
5002 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5003 .write = mem_cgroup_reset,
5004 .read_u64 = mem_cgroup_read_u64,
5005 },
5006 {
5007 .name = "stat",
5008 .seq_show = memcg_stat_show,
5009 },
5010 {
5011 .name = "force_empty",
5012 .write = mem_cgroup_force_empty_write,
5013 },
5014 {
5015 .name = "use_hierarchy",
5016 .write_u64 = mem_cgroup_hierarchy_write,
5017 .read_u64 = mem_cgroup_hierarchy_read,
5018 },
5019 {
5020 .name = "cgroup.event_control", /* XXX: for compat */
5021 .write = memcg_write_event_control,
5022 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5023 },
5024 {
5025 .name = "swappiness",
5026 .read_u64 = mem_cgroup_swappiness_read,
5027 .write_u64 = mem_cgroup_swappiness_write,
5028 },
5029 {
5030 .name = "move_charge_at_immigrate",
5031 .read_u64 = mem_cgroup_move_charge_read,
5032 .write_u64 = mem_cgroup_move_charge_write,
5033 },
5034 {
5035 .name = "oom_control",
5036 .seq_show = mem_cgroup_oom_control_read,
5037 .write_u64 = mem_cgroup_oom_control_write,
5038 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5039 },
5040 {
5041 .name = "pressure_level",
5042 },
5043 #ifdef CONFIG_NUMA
5044 {
5045 .name = "numa_stat",
5046 .seq_show = memcg_numa_stat_show,
5047 },
5048 #endif
5049 {
5050 .name = "kmem.limit_in_bytes",
5051 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5052 .write = mem_cgroup_write,
5053 .read_u64 = mem_cgroup_read_u64,
5054 },
5055 {
5056 .name = "kmem.usage_in_bytes",
5057 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5058 .read_u64 = mem_cgroup_read_u64,
5059 },
5060 {
5061 .name = "kmem.failcnt",
5062 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5063 .write = mem_cgroup_reset,
5064 .read_u64 = mem_cgroup_read_u64,
5065 },
5066 {
5067 .name = "kmem.max_usage_in_bytes",
5068 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5069 .write = mem_cgroup_reset,
5070 .read_u64 = mem_cgroup_read_u64,
5071 },
5072 #if defined(CONFIG_MEMCG_KMEM) && \
5073 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5074 {
5075 .name = "kmem.slabinfo",
5076 .seq_show = memcg_slab_show,
5077 },
5078 #endif
5079 {
5080 .name = "kmem.tcp.limit_in_bytes",
5081 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5082 .write = mem_cgroup_write,
5083 .read_u64 = mem_cgroup_read_u64,
5084 },
5085 {
5086 .name = "kmem.tcp.usage_in_bytes",
5087 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5088 .read_u64 = mem_cgroup_read_u64,
5089 },
5090 {
5091 .name = "kmem.tcp.failcnt",
5092 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5093 .write = mem_cgroup_reset,
5094 .read_u64 = mem_cgroup_read_u64,
5095 },
5096 {
5097 .name = "kmem.tcp.max_usage_in_bytes",
5098 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5099 .write = mem_cgroup_reset,
5100 .read_u64 = mem_cgroup_read_u64,
5101 },
5102 { }, /* terminate */
5103 };
5104
5105 /*
5106 * Private memory cgroup IDR
5107 *
5108 * Swap-out records and page cache shadow entries need to store memcg
5109 * references in constrained space, so we maintain an ID space that is
5110 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5111 * memory-controlled cgroups to 64k.
5112 *
5113 * However, there usually are many references to the offline CSS after
5114 * the cgroup has been destroyed, such as page cache or reclaimable
5115 * slab objects, that don't need to hang on to the ID. We want to keep
5116 * those dead CSS from occupying IDs, or we might quickly exhaust the
5117 * relatively small ID space and prevent the creation of new cgroups
5118 * even when there are much fewer than 64k cgroups - possibly none.
5119 *
5120 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5121 * be freed and recycled when it's no longer needed, which is usually
5122 * when the CSS is offlined.
5123 *
5124 * The only exception to that are records of swapped out tmpfs/shmem
5125 * pages that need to be attributed to live ancestors on swapin. But
5126 * those references are manageable from userspace.
5127 */
5128
5129 static DEFINE_IDR(mem_cgroup_idr);
5130
5131 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5132 {
5133 if (memcg->id.id > 0) {
5134 idr_remove(&mem_cgroup_idr, memcg->id.id);
5135 memcg->id.id = 0;
5136 }
5137 }
5138
5139 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5140 unsigned int n)
5141 {
5142 refcount_add(n, &memcg->id.ref);
5143 }
5144
5145 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5146 {
5147 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5148 mem_cgroup_id_remove(memcg);
5149
5150 /* Memcg ID pins CSS */
5151 css_put(&memcg->css);
5152 }
5153 }
5154
5155 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5156 {
5157 mem_cgroup_id_put_many(memcg, 1);
5158 }
5159
5160 /**
5161 * mem_cgroup_from_id - look up a memcg from a memcg id
5162 * @id: the memcg id to look up
5163 *
5164 * Caller must hold rcu_read_lock().
5165 */
5166 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5167 {
5168 WARN_ON_ONCE(!rcu_read_lock_held());
5169 return idr_find(&mem_cgroup_idr, id);
5170 }
5171
5172 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5173 {
5174 struct mem_cgroup_per_node *pn;
5175 int tmp = node;
5176 /*
5177 * This routine is called against possible nodes.
5178 * But it's BUG to call kmalloc() against offline node.
5179 *
5180 * TODO: this routine can waste much memory for nodes which will
5181 * never be onlined. It's better to use memory hotplug callback
5182 * function.
5183 */
5184 if (!node_state(node, N_NORMAL_MEMORY))
5185 tmp = -1;
5186 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5187 if (!pn)
5188 return 1;
5189
5190 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5191 GFP_KERNEL_ACCOUNT);
5192 if (!pn->lruvec_stat_local) {
5193 kfree(pn);
5194 return 1;
5195 }
5196
5197 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5198 GFP_KERNEL_ACCOUNT);
5199 if (!pn->lruvec_stat_cpu) {
5200 free_percpu(pn->lruvec_stat_local);
5201 kfree(pn);
5202 return 1;
5203 }
5204
5205 lruvec_init(&pn->lruvec);
5206 pn->usage_in_excess = 0;
5207 pn->on_tree = false;
5208 pn->memcg = memcg;
5209
5210 memcg->nodeinfo[node] = pn;
5211 return 0;
5212 }
5213
5214 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5215 {
5216 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5217
5218 if (!pn)
5219 return;
5220
5221 free_percpu(pn->lruvec_stat_cpu);
5222 free_percpu(pn->lruvec_stat_local);
5223 kfree(pn);
5224 }
5225
5226 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5227 {
5228 int node;
5229
5230 for_each_node(node)
5231 free_mem_cgroup_per_node_info(memcg, node);
5232 free_percpu(memcg->vmstats_percpu);
5233 free_percpu(memcg->vmstats_local);
5234 kfree(memcg);
5235 }
5236
5237 static void mem_cgroup_free(struct mem_cgroup *memcg)
5238 {
5239 memcg_wb_domain_exit(memcg);
5240 /*
5241 * Flush percpu vmstats and vmevents to guarantee the value correctness
5242 * on parent's and all ancestor levels.
5243 */
5244 memcg_flush_percpu_vmstats(memcg);
5245 memcg_flush_percpu_vmevents(memcg);
5246 __mem_cgroup_free(memcg);
5247 }
5248
5249 static struct mem_cgroup *mem_cgroup_alloc(void)
5250 {
5251 struct mem_cgroup *memcg;
5252 unsigned int size;
5253 int node;
5254 int __maybe_unused i;
5255 long error = -ENOMEM;
5256
5257 size = sizeof(struct mem_cgroup);
5258 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5259
5260 memcg = kzalloc(size, GFP_KERNEL);
5261 if (!memcg)
5262 return ERR_PTR(error);
5263
5264 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5265 1, MEM_CGROUP_ID_MAX,
5266 GFP_KERNEL);
5267 if (memcg->id.id < 0) {
5268 error = memcg->id.id;
5269 goto fail;
5270 }
5271
5272 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5273 GFP_KERNEL_ACCOUNT);
5274 if (!memcg->vmstats_local)
5275 goto fail;
5276
5277 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5278 GFP_KERNEL_ACCOUNT);
5279 if (!memcg->vmstats_percpu)
5280 goto fail;
5281
5282 for_each_node(node)
5283 if (alloc_mem_cgroup_per_node_info(memcg, node))
5284 goto fail;
5285
5286 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5287 goto fail;
5288
5289 INIT_WORK(&memcg->high_work, high_work_func);
5290 INIT_LIST_HEAD(&memcg->oom_notify);
5291 mutex_init(&memcg->thresholds_lock);
5292 spin_lock_init(&memcg->move_lock);
5293 vmpressure_init(&memcg->vmpressure);
5294 INIT_LIST_HEAD(&memcg->event_list);
5295 spin_lock_init(&memcg->event_list_lock);
5296 memcg->socket_pressure = jiffies;
5297 #ifdef CONFIG_MEMCG_KMEM
5298 memcg->kmemcg_id = -1;
5299 INIT_LIST_HEAD(&memcg->objcg_list);
5300 #endif
5301 #ifdef CONFIG_CGROUP_WRITEBACK
5302 INIT_LIST_HEAD(&memcg->cgwb_list);
5303 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5304 memcg->cgwb_frn[i].done =
5305 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5306 #endif
5307 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5308 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5309 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5310 memcg->deferred_split_queue.split_queue_len = 0;
5311 #endif
5312 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5313 return memcg;
5314 fail:
5315 mem_cgroup_id_remove(memcg);
5316 __mem_cgroup_free(memcg);
5317 return ERR_PTR(error);
5318 }
5319
5320 static struct cgroup_subsys_state * __ref
5321 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5322 {
5323 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5324 struct mem_cgroup *memcg, *old_memcg;
5325 long error = -ENOMEM;
5326
5327 old_memcg = set_active_memcg(parent);
5328 memcg = mem_cgroup_alloc();
5329 set_active_memcg(old_memcg);
5330 if (IS_ERR(memcg))
5331 return ERR_CAST(memcg);
5332
5333 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5334 memcg->soft_limit = PAGE_COUNTER_MAX;
5335 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5336 if (parent) {
5337 memcg->swappiness = mem_cgroup_swappiness(parent);
5338 memcg->oom_kill_disable = parent->oom_kill_disable;
5339
5340 page_counter_init(&memcg->memory, &parent->memory);
5341 page_counter_init(&memcg->swap, &parent->swap);
5342 page_counter_init(&memcg->kmem, &parent->kmem);
5343 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5344 } else {
5345 page_counter_init(&memcg->memory, NULL);
5346 page_counter_init(&memcg->swap, NULL);
5347 page_counter_init(&memcg->kmem, NULL);
5348 page_counter_init(&memcg->tcpmem, NULL);
5349
5350 root_mem_cgroup = memcg;
5351 return &memcg->css;
5352 }
5353
5354 /* The following stuff does not apply to the root */
5355 error = memcg_online_kmem(memcg);
5356 if (error)
5357 goto fail;
5358
5359 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5360 static_branch_inc(&memcg_sockets_enabled_key);
5361
5362 return &memcg->css;
5363 fail:
5364 mem_cgroup_id_remove(memcg);
5365 mem_cgroup_free(memcg);
5366 return ERR_PTR(error);
5367 }
5368
5369 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5370 {
5371 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5372
5373 /*
5374 * A memcg must be visible for memcg_expand_shrinker_maps()
5375 * by the time the maps are allocated. So, we allocate maps
5376 * here, when for_each_mem_cgroup() can't skip it.
5377 */
5378 if (memcg_alloc_shrinker_maps(memcg)) {
5379 mem_cgroup_id_remove(memcg);
5380 return -ENOMEM;
5381 }
5382
5383 /* Online state pins memcg ID, memcg ID pins CSS */
5384 refcount_set(&memcg->id.ref, 1);
5385 css_get(css);
5386 return 0;
5387 }
5388
5389 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5390 {
5391 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5392 struct mem_cgroup_event *event, *tmp;
5393
5394 /*
5395 * Unregister events and notify userspace.
5396 * Notify userspace about cgroup removing only after rmdir of cgroup
5397 * directory to avoid race between userspace and kernelspace.
5398 */
5399 spin_lock(&memcg->event_list_lock);
5400 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5401 list_del_init(&event->list);
5402 schedule_work(&event->remove);
5403 }
5404 spin_unlock(&memcg->event_list_lock);
5405
5406 page_counter_set_min(&memcg->memory, 0);
5407 page_counter_set_low(&memcg->memory, 0);
5408
5409 memcg_offline_kmem(memcg);
5410 wb_memcg_offline(memcg);
5411
5412 drain_all_stock(memcg);
5413
5414 mem_cgroup_id_put(memcg);
5415 }
5416
5417 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5418 {
5419 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5420
5421 invalidate_reclaim_iterators(memcg);
5422 }
5423
5424 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5425 {
5426 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5427 int __maybe_unused i;
5428
5429 #ifdef CONFIG_CGROUP_WRITEBACK
5430 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5431 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5432 #endif
5433 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5434 static_branch_dec(&memcg_sockets_enabled_key);
5435
5436 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5437 static_branch_dec(&memcg_sockets_enabled_key);
5438
5439 vmpressure_cleanup(&memcg->vmpressure);
5440 cancel_work_sync(&memcg->high_work);
5441 mem_cgroup_remove_from_trees(memcg);
5442 memcg_free_shrinker_maps(memcg);
5443 memcg_free_kmem(memcg);
5444 mem_cgroup_free(memcg);
5445 }
5446
5447 /**
5448 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5449 * @css: the target css
5450 *
5451 * Reset the states of the mem_cgroup associated with @css. This is
5452 * invoked when the userland requests disabling on the default hierarchy
5453 * but the memcg is pinned through dependency. The memcg should stop
5454 * applying policies and should revert to the vanilla state as it may be
5455 * made visible again.
5456 *
5457 * The current implementation only resets the essential configurations.
5458 * This needs to be expanded to cover all the visible parts.
5459 */
5460 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5461 {
5462 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5463
5464 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5465 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5466 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5467 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5468 page_counter_set_min(&memcg->memory, 0);
5469 page_counter_set_low(&memcg->memory, 0);
5470 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5471 memcg->soft_limit = PAGE_COUNTER_MAX;
5472 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5473 memcg_wb_domain_size_changed(memcg);
5474 }
5475
5476 #ifdef CONFIG_MMU
5477 /* Handlers for move charge at task migration. */
5478 static int mem_cgroup_do_precharge(unsigned long count)
5479 {
5480 int ret;
5481
5482 /* Try a single bulk charge without reclaim first, kswapd may wake */
5483 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5484 if (!ret) {
5485 mc.precharge += count;
5486 return ret;
5487 }
5488
5489 /* Try charges one by one with reclaim, but do not retry */
5490 while (count--) {
5491 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5492 if (ret)
5493 return ret;
5494 mc.precharge++;
5495 cond_resched();
5496 }
5497 return 0;
5498 }
5499
5500 union mc_target {
5501 struct page *page;
5502 swp_entry_t ent;
5503 };
5504
5505 enum mc_target_type {
5506 MC_TARGET_NONE = 0,
5507 MC_TARGET_PAGE,
5508 MC_TARGET_SWAP,
5509 MC_TARGET_DEVICE,
5510 };
5511
5512 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5513 unsigned long addr, pte_t ptent)
5514 {
5515 struct page *page = vm_normal_page(vma, addr, ptent);
5516
5517 if (!page || !page_mapped(page))
5518 return NULL;
5519 if (PageAnon(page)) {
5520 if (!(mc.flags & MOVE_ANON))
5521 return NULL;
5522 } else {
5523 if (!(mc.flags & MOVE_FILE))
5524 return NULL;
5525 }
5526 if (!get_page_unless_zero(page))
5527 return NULL;
5528
5529 return page;
5530 }
5531
5532 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5533 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5534 pte_t ptent, swp_entry_t *entry)
5535 {
5536 struct page *page = NULL;
5537 swp_entry_t ent = pte_to_swp_entry(ptent);
5538
5539 if (!(mc.flags & MOVE_ANON))
5540 return NULL;
5541
5542 /*
5543 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5544 * a device and because they are not accessible by CPU they are store
5545 * as special swap entry in the CPU page table.
5546 */
5547 if (is_device_private_entry(ent)) {
5548 page = device_private_entry_to_page(ent);
5549 /*
5550 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5551 * a refcount of 1 when free (unlike normal page)
5552 */
5553 if (!page_ref_add_unless(page, 1, 1))
5554 return NULL;
5555 return page;
5556 }
5557
5558 if (non_swap_entry(ent))
5559 return NULL;
5560
5561 /*
5562 * Because lookup_swap_cache() updates some statistics counter,
5563 * we call find_get_page() with swapper_space directly.
5564 */
5565 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5566 entry->val = ent.val;
5567
5568 return page;
5569 }
5570 #else
5571 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5572 pte_t ptent, swp_entry_t *entry)
5573 {
5574 return NULL;
5575 }
5576 #endif
5577
5578 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5579 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5580 {
5581 if (!vma->vm_file) /* anonymous vma */
5582 return NULL;
5583 if (!(mc.flags & MOVE_FILE))
5584 return NULL;
5585
5586 /* page is moved even if it's not RSS of this task(page-faulted). */
5587 /* shmem/tmpfs may report page out on swap: account for that too. */
5588 return find_get_incore_page(vma->vm_file->f_mapping,
5589 linear_page_index(vma, addr));
5590 }
5591
5592 /**
5593 * mem_cgroup_move_account - move account of the page
5594 * @page: the page
5595 * @compound: charge the page as compound or small page
5596 * @from: mem_cgroup which the page is moved from.
5597 * @to: mem_cgroup which the page is moved to. @from != @to.
5598 *
5599 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5600 *
5601 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5602 * from old cgroup.
5603 */
5604 static int mem_cgroup_move_account(struct page *page,
5605 bool compound,
5606 struct mem_cgroup *from,
5607 struct mem_cgroup *to)
5608 {
5609 struct lruvec *from_vec, *to_vec;
5610 struct pglist_data *pgdat;
5611 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5612 int ret;
5613
5614 VM_BUG_ON(from == to);
5615 VM_BUG_ON_PAGE(PageLRU(page), page);
5616 VM_BUG_ON(compound && !PageTransHuge(page));
5617
5618 /*
5619 * Prevent mem_cgroup_migrate() from looking at
5620 * page's memory cgroup of its source page while we change it.
5621 */
5622 ret = -EBUSY;
5623 if (!trylock_page(page))
5624 goto out;
5625
5626 ret = -EINVAL;
5627 if (page_memcg(page) != from)
5628 goto out_unlock;
5629
5630 pgdat = page_pgdat(page);
5631 from_vec = mem_cgroup_lruvec(from, pgdat);
5632 to_vec = mem_cgroup_lruvec(to, pgdat);
5633
5634 lock_page_memcg(page);
5635
5636 if (PageAnon(page)) {
5637 if (page_mapped(page)) {
5638 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5639 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5640 if (PageTransHuge(page)) {
5641 __dec_lruvec_state(from_vec, NR_ANON_THPS);
5642 __inc_lruvec_state(to_vec, NR_ANON_THPS);
5643 }
5644
5645 }
5646 } else {
5647 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5648 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5649
5650 if (PageSwapBacked(page)) {
5651 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5652 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5653 }
5654
5655 if (page_mapped(page)) {
5656 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5657 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5658 }
5659
5660 if (PageDirty(page)) {
5661 struct address_space *mapping = page_mapping(page);
5662
5663 if (mapping_can_writeback(mapping)) {
5664 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5665 -nr_pages);
5666 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5667 nr_pages);
5668 }
5669 }
5670 }
5671
5672 if (PageWriteback(page)) {
5673 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5674 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5675 }
5676
5677 /*
5678 * All state has been migrated, let's switch to the new memcg.
5679 *
5680 * It is safe to change page's memcg here because the page
5681 * is referenced, charged, isolated, and locked: we can't race
5682 * with (un)charging, migration, LRU putback, or anything else
5683 * that would rely on a stable page's memory cgroup.
5684 *
5685 * Note that lock_page_memcg is a memcg lock, not a page lock,
5686 * to save space. As soon as we switch page's memory cgroup to a
5687 * new memcg that isn't locked, the above state can change
5688 * concurrently again. Make sure we're truly done with it.
5689 */
5690 smp_mb();
5691
5692 css_get(&to->css);
5693 css_put(&from->css);
5694
5695 page->memcg_data = (unsigned long)to;
5696
5697 __unlock_page_memcg(from);
5698
5699 ret = 0;
5700
5701 local_irq_disable();
5702 mem_cgroup_charge_statistics(to, page, nr_pages);
5703 memcg_check_events(to, page);
5704 mem_cgroup_charge_statistics(from, page, -nr_pages);
5705 memcg_check_events(from, page);
5706 local_irq_enable();
5707 out_unlock:
5708 unlock_page(page);
5709 out:
5710 return ret;
5711 }
5712
5713 /**
5714 * get_mctgt_type - get target type of moving charge
5715 * @vma: the vma the pte to be checked belongs
5716 * @addr: the address corresponding to the pte to be checked
5717 * @ptent: the pte to be checked
5718 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5719 *
5720 * Returns
5721 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5722 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5723 * move charge. if @target is not NULL, the page is stored in target->page
5724 * with extra refcnt got(Callers should handle it).
5725 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5726 * target for charge migration. if @target is not NULL, the entry is stored
5727 * in target->ent.
5728 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5729 * (so ZONE_DEVICE page and thus not on the lru).
5730 * For now we such page is charge like a regular page would be as for all
5731 * intent and purposes it is just special memory taking the place of a
5732 * regular page.
5733 *
5734 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5735 *
5736 * Called with pte lock held.
5737 */
5738
5739 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5740 unsigned long addr, pte_t ptent, union mc_target *target)
5741 {
5742 struct page *page = NULL;
5743 enum mc_target_type ret = MC_TARGET_NONE;
5744 swp_entry_t ent = { .val = 0 };
5745
5746 if (pte_present(ptent))
5747 page = mc_handle_present_pte(vma, addr, ptent);
5748 else if (is_swap_pte(ptent))
5749 page = mc_handle_swap_pte(vma, ptent, &ent);
5750 else if (pte_none(ptent))
5751 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5752
5753 if (!page && !ent.val)
5754 return ret;
5755 if (page) {
5756 /*
5757 * Do only loose check w/o serialization.
5758 * mem_cgroup_move_account() checks the page is valid or
5759 * not under LRU exclusion.
5760 */
5761 if (page_memcg(page) == mc.from) {
5762 ret = MC_TARGET_PAGE;
5763 if (is_device_private_page(page))
5764 ret = MC_TARGET_DEVICE;
5765 if (target)
5766 target->page = page;
5767 }
5768 if (!ret || !target)
5769 put_page(page);
5770 }
5771 /*
5772 * There is a swap entry and a page doesn't exist or isn't charged.
5773 * But we cannot move a tail-page in a THP.
5774 */
5775 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5776 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5777 ret = MC_TARGET_SWAP;
5778 if (target)
5779 target->ent = ent;
5780 }
5781 return ret;
5782 }
5783
5784 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5785 /*
5786 * We don't consider PMD mapped swapping or file mapped pages because THP does
5787 * not support them for now.
5788 * Caller should make sure that pmd_trans_huge(pmd) is true.
5789 */
5790 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5791 unsigned long addr, pmd_t pmd, union mc_target *target)
5792 {
5793 struct page *page = NULL;
5794 enum mc_target_type ret = MC_TARGET_NONE;
5795
5796 if (unlikely(is_swap_pmd(pmd))) {
5797 VM_BUG_ON(thp_migration_supported() &&
5798 !is_pmd_migration_entry(pmd));
5799 return ret;
5800 }
5801 page = pmd_page(pmd);
5802 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5803 if (!(mc.flags & MOVE_ANON))
5804 return ret;
5805 if (page_memcg(page) == mc.from) {
5806 ret = MC_TARGET_PAGE;
5807 if (target) {
5808 get_page(page);
5809 target->page = page;
5810 }
5811 }
5812 return ret;
5813 }
5814 #else
5815 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5816 unsigned long addr, pmd_t pmd, union mc_target *target)
5817 {
5818 return MC_TARGET_NONE;
5819 }
5820 #endif
5821
5822 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5823 unsigned long addr, unsigned long end,
5824 struct mm_walk *walk)
5825 {
5826 struct vm_area_struct *vma = walk->vma;
5827 pte_t *pte;
5828 spinlock_t *ptl;
5829
5830 ptl = pmd_trans_huge_lock(pmd, vma);
5831 if (ptl) {
5832 /*
5833 * Note their can not be MC_TARGET_DEVICE for now as we do not
5834 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5835 * this might change.
5836 */
5837 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5838 mc.precharge += HPAGE_PMD_NR;
5839 spin_unlock(ptl);
5840 return 0;
5841 }
5842
5843 if (pmd_trans_unstable(pmd))
5844 return 0;
5845 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5846 for (; addr != end; pte++, addr += PAGE_SIZE)
5847 if (get_mctgt_type(vma, addr, *pte, NULL))
5848 mc.precharge++; /* increment precharge temporarily */
5849 pte_unmap_unlock(pte - 1, ptl);
5850 cond_resched();
5851
5852 return 0;
5853 }
5854
5855 static const struct mm_walk_ops precharge_walk_ops = {
5856 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5857 };
5858
5859 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5860 {
5861 unsigned long precharge;
5862
5863 mmap_read_lock(mm);
5864 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5865 mmap_read_unlock(mm);
5866
5867 precharge = mc.precharge;
5868 mc.precharge = 0;
5869
5870 return precharge;
5871 }
5872
5873 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5874 {
5875 unsigned long precharge = mem_cgroup_count_precharge(mm);
5876
5877 VM_BUG_ON(mc.moving_task);
5878 mc.moving_task = current;
5879 return mem_cgroup_do_precharge(precharge);
5880 }
5881
5882 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5883 static void __mem_cgroup_clear_mc(void)
5884 {
5885 struct mem_cgroup *from = mc.from;
5886 struct mem_cgroup *to = mc.to;
5887
5888 /* we must uncharge all the leftover precharges from mc.to */
5889 if (mc.precharge) {
5890 cancel_charge(mc.to, mc.precharge);
5891 mc.precharge = 0;
5892 }
5893 /*
5894 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5895 * we must uncharge here.
5896 */
5897 if (mc.moved_charge) {
5898 cancel_charge(mc.from, mc.moved_charge);
5899 mc.moved_charge = 0;
5900 }
5901 /* we must fixup refcnts and charges */
5902 if (mc.moved_swap) {
5903 /* uncharge swap account from the old cgroup */
5904 if (!mem_cgroup_is_root(mc.from))
5905 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5906
5907 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5908
5909 /*
5910 * we charged both to->memory and to->memsw, so we
5911 * should uncharge to->memory.
5912 */
5913 if (!mem_cgroup_is_root(mc.to))
5914 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5915
5916 mc.moved_swap = 0;
5917 }
5918 memcg_oom_recover(from);
5919 memcg_oom_recover(to);
5920 wake_up_all(&mc.waitq);
5921 }
5922
5923 static void mem_cgroup_clear_mc(void)
5924 {
5925 struct mm_struct *mm = mc.mm;
5926
5927 /*
5928 * we must clear moving_task before waking up waiters at the end of
5929 * task migration.
5930 */
5931 mc.moving_task = NULL;
5932 __mem_cgroup_clear_mc();
5933 spin_lock(&mc.lock);
5934 mc.from = NULL;
5935 mc.to = NULL;
5936 mc.mm = NULL;
5937 spin_unlock(&mc.lock);
5938
5939 mmput(mm);
5940 }
5941
5942 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5943 {
5944 struct cgroup_subsys_state *css;
5945 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5946 struct mem_cgroup *from;
5947 struct task_struct *leader, *p;
5948 struct mm_struct *mm;
5949 unsigned long move_flags;
5950 int ret = 0;
5951
5952 /* charge immigration isn't supported on the default hierarchy */
5953 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5954 return 0;
5955
5956 /*
5957 * Multi-process migrations only happen on the default hierarchy
5958 * where charge immigration is not used. Perform charge
5959 * immigration if @tset contains a leader and whine if there are
5960 * multiple.
5961 */
5962 p = NULL;
5963 cgroup_taskset_for_each_leader(leader, css, tset) {
5964 WARN_ON_ONCE(p);
5965 p = leader;
5966 memcg = mem_cgroup_from_css(css);
5967 }
5968 if (!p)
5969 return 0;
5970
5971 /*
5972 * We are now commited to this value whatever it is. Changes in this
5973 * tunable will only affect upcoming migrations, not the current one.
5974 * So we need to save it, and keep it going.
5975 */
5976 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5977 if (!move_flags)
5978 return 0;
5979
5980 from = mem_cgroup_from_task(p);
5981
5982 VM_BUG_ON(from == memcg);
5983
5984 mm = get_task_mm(p);
5985 if (!mm)
5986 return 0;
5987 /* We move charges only when we move a owner of the mm */
5988 if (mm->owner == p) {
5989 VM_BUG_ON(mc.from);
5990 VM_BUG_ON(mc.to);
5991 VM_BUG_ON(mc.precharge);
5992 VM_BUG_ON(mc.moved_charge);
5993 VM_BUG_ON(mc.moved_swap);
5994
5995 spin_lock(&mc.lock);
5996 mc.mm = mm;
5997 mc.from = from;
5998 mc.to = memcg;
5999 mc.flags = move_flags;
6000 spin_unlock(&mc.lock);
6001 /* We set mc.moving_task later */
6002
6003 ret = mem_cgroup_precharge_mc(mm);
6004 if (ret)
6005 mem_cgroup_clear_mc();
6006 } else {
6007 mmput(mm);
6008 }
6009 return ret;
6010 }
6011
6012 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6013 {
6014 if (mc.to)
6015 mem_cgroup_clear_mc();
6016 }
6017
6018 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6019 unsigned long addr, unsigned long end,
6020 struct mm_walk *walk)
6021 {
6022 int ret = 0;
6023 struct vm_area_struct *vma = walk->vma;
6024 pte_t *pte;
6025 spinlock_t *ptl;
6026 enum mc_target_type target_type;
6027 union mc_target target;
6028 struct page *page;
6029
6030 ptl = pmd_trans_huge_lock(pmd, vma);
6031 if (ptl) {
6032 if (mc.precharge < HPAGE_PMD_NR) {
6033 spin_unlock(ptl);
6034 return 0;
6035 }
6036 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6037 if (target_type == MC_TARGET_PAGE) {
6038 page = target.page;
6039 if (!isolate_lru_page(page)) {
6040 if (!mem_cgroup_move_account(page, true,
6041 mc.from, mc.to)) {
6042 mc.precharge -= HPAGE_PMD_NR;
6043 mc.moved_charge += HPAGE_PMD_NR;
6044 }
6045 putback_lru_page(page);
6046 }
6047 put_page(page);
6048 } else if (target_type == MC_TARGET_DEVICE) {
6049 page = target.page;
6050 if (!mem_cgroup_move_account(page, true,
6051 mc.from, mc.to)) {
6052 mc.precharge -= HPAGE_PMD_NR;
6053 mc.moved_charge += HPAGE_PMD_NR;
6054 }
6055 put_page(page);
6056 }
6057 spin_unlock(ptl);
6058 return 0;
6059 }
6060
6061 if (pmd_trans_unstable(pmd))
6062 return 0;
6063 retry:
6064 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6065 for (; addr != end; addr += PAGE_SIZE) {
6066 pte_t ptent = *(pte++);
6067 bool device = false;
6068 swp_entry_t ent;
6069
6070 if (!mc.precharge)
6071 break;
6072
6073 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6074 case MC_TARGET_DEVICE:
6075 device = true;
6076 fallthrough;
6077 case MC_TARGET_PAGE:
6078 page = target.page;
6079 /*
6080 * We can have a part of the split pmd here. Moving it
6081 * can be done but it would be too convoluted so simply
6082 * ignore such a partial THP and keep it in original
6083 * memcg. There should be somebody mapping the head.
6084 */
6085 if (PageTransCompound(page))
6086 goto put;
6087 if (!device && isolate_lru_page(page))
6088 goto put;
6089 if (!mem_cgroup_move_account(page, false,
6090 mc.from, mc.to)) {
6091 mc.precharge--;
6092 /* we uncharge from mc.from later. */
6093 mc.moved_charge++;
6094 }
6095 if (!device)
6096 putback_lru_page(page);
6097 put: /* get_mctgt_type() gets the page */
6098 put_page(page);
6099 break;
6100 case MC_TARGET_SWAP:
6101 ent = target.ent;
6102 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6103 mc.precharge--;
6104 mem_cgroup_id_get_many(mc.to, 1);
6105 /* we fixup other refcnts and charges later. */
6106 mc.moved_swap++;
6107 }
6108 break;
6109 default:
6110 break;
6111 }
6112 }
6113 pte_unmap_unlock(pte - 1, ptl);
6114 cond_resched();
6115
6116 if (addr != end) {
6117 /*
6118 * We have consumed all precharges we got in can_attach().
6119 * We try charge one by one, but don't do any additional
6120 * charges to mc.to if we have failed in charge once in attach()
6121 * phase.
6122 */
6123 ret = mem_cgroup_do_precharge(1);
6124 if (!ret)
6125 goto retry;
6126 }
6127
6128 return ret;
6129 }
6130
6131 static const struct mm_walk_ops charge_walk_ops = {
6132 .pmd_entry = mem_cgroup_move_charge_pte_range,
6133 };
6134
6135 static void mem_cgroup_move_charge(void)
6136 {
6137 lru_add_drain_all();
6138 /*
6139 * Signal lock_page_memcg() to take the memcg's move_lock
6140 * while we're moving its pages to another memcg. Then wait
6141 * for already started RCU-only updates to finish.
6142 */
6143 atomic_inc(&mc.from->moving_account);
6144 synchronize_rcu();
6145 retry:
6146 if (unlikely(!mmap_read_trylock(mc.mm))) {
6147 /*
6148 * Someone who are holding the mmap_lock might be waiting in
6149 * waitq. So we cancel all extra charges, wake up all waiters,
6150 * and retry. Because we cancel precharges, we might not be able
6151 * to move enough charges, but moving charge is a best-effort
6152 * feature anyway, so it wouldn't be a big problem.
6153 */
6154 __mem_cgroup_clear_mc();
6155 cond_resched();
6156 goto retry;
6157 }
6158 /*
6159 * When we have consumed all precharges and failed in doing
6160 * additional charge, the page walk just aborts.
6161 */
6162 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6163 NULL);
6164
6165 mmap_read_unlock(mc.mm);
6166 atomic_dec(&mc.from->moving_account);
6167 }
6168
6169 static void mem_cgroup_move_task(void)
6170 {
6171 if (mc.to) {
6172 mem_cgroup_move_charge();
6173 mem_cgroup_clear_mc();
6174 }
6175 }
6176 #else /* !CONFIG_MMU */
6177 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6178 {
6179 return 0;
6180 }
6181 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6182 {
6183 }
6184 static void mem_cgroup_move_task(void)
6185 {
6186 }
6187 #endif
6188
6189 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6190 {
6191 if (value == PAGE_COUNTER_MAX)
6192 seq_puts(m, "max\n");
6193 else
6194 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6195
6196 return 0;
6197 }
6198
6199 static u64 memory_current_read(struct cgroup_subsys_state *css,
6200 struct cftype *cft)
6201 {
6202 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6203
6204 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6205 }
6206
6207 static int memory_min_show(struct seq_file *m, void *v)
6208 {
6209 return seq_puts_memcg_tunable(m,
6210 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6211 }
6212
6213 static ssize_t memory_min_write(struct kernfs_open_file *of,
6214 char *buf, size_t nbytes, loff_t off)
6215 {
6216 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6217 unsigned long min;
6218 int err;
6219
6220 buf = strstrip(buf);
6221 err = page_counter_memparse(buf, "max", &min);
6222 if (err)
6223 return err;
6224
6225 page_counter_set_min(&memcg->memory, min);
6226
6227 return nbytes;
6228 }
6229
6230 static int memory_low_show(struct seq_file *m, void *v)
6231 {
6232 return seq_puts_memcg_tunable(m,
6233 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6234 }
6235
6236 static ssize_t memory_low_write(struct kernfs_open_file *of,
6237 char *buf, size_t nbytes, loff_t off)
6238 {
6239 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6240 unsigned long low;
6241 int err;
6242
6243 buf = strstrip(buf);
6244 err = page_counter_memparse(buf, "max", &low);
6245 if (err)
6246 return err;
6247
6248 page_counter_set_low(&memcg->memory, low);
6249
6250 return nbytes;
6251 }
6252
6253 static int memory_high_show(struct seq_file *m, void *v)
6254 {
6255 return seq_puts_memcg_tunable(m,
6256 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6257 }
6258
6259 static ssize_t memory_high_write(struct kernfs_open_file *of,
6260 char *buf, size_t nbytes, loff_t off)
6261 {
6262 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6263 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6264 bool drained = false;
6265 unsigned long high;
6266 int err;
6267
6268 buf = strstrip(buf);
6269 err = page_counter_memparse(buf, "max", &high);
6270 if (err)
6271 return err;
6272
6273 page_counter_set_high(&memcg->memory, high);
6274
6275 for (;;) {
6276 unsigned long nr_pages = page_counter_read(&memcg->memory);
6277 unsigned long reclaimed;
6278
6279 if (nr_pages <= high)
6280 break;
6281
6282 if (signal_pending(current))
6283 break;
6284
6285 if (!drained) {
6286 drain_all_stock(memcg);
6287 drained = true;
6288 continue;
6289 }
6290
6291 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6292 GFP_KERNEL, true);
6293
6294 if (!reclaimed && !nr_retries--)
6295 break;
6296 }
6297
6298 memcg_wb_domain_size_changed(memcg);
6299 return nbytes;
6300 }
6301
6302 static int memory_max_show(struct seq_file *m, void *v)
6303 {
6304 return seq_puts_memcg_tunable(m,
6305 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6306 }
6307
6308 static ssize_t memory_max_write(struct kernfs_open_file *of,
6309 char *buf, size_t nbytes, loff_t off)
6310 {
6311 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6312 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6313 bool drained = false;
6314 unsigned long max;
6315 int err;
6316
6317 buf = strstrip(buf);
6318 err = page_counter_memparse(buf, "max", &max);
6319 if (err)
6320 return err;
6321
6322 xchg(&memcg->memory.max, max);
6323
6324 for (;;) {
6325 unsigned long nr_pages = page_counter_read(&memcg->memory);
6326
6327 if (nr_pages <= max)
6328 break;
6329
6330 if (signal_pending(current))
6331 break;
6332
6333 if (!drained) {
6334 drain_all_stock(memcg);
6335 drained = true;
6336 continue;
6337 }
6338
6339 if (nr_reclaims) {
6340 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6341 GFP_KERNEL, true))
6342 nr_reclaims--;
6343 continue;
6344 }
6345
6346 memcg_memory_event(memcg, MEMCG_OOM);
6347 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6348 break;
6349 }
6350
6351 memcg_wb_domain_size_changed(memcg);
6352 return nbytes;
6353 }
6354
6355 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6356 {
6357 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6358 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6359 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6360 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6361 seq_printf(m, "oom_kill %lu\n",
6362 atomic_long_read(&events[MEMCG_OOM_KILL]));
6363 }
6364
6365 static int memory_events_show(struct seq_file *m, void *v)
6366 {
6367 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6368
6369 __memory_events_show(m, memcg->memory_events);
6370 return 0;
6371 }
6372
6373 static int memory_events_local_show(struct seq_file *m, void *v)
6374 {
6375 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6376
6377 __memory_events_show(m, memcg->memory_events_local);
6378 return 0;
6379 }
6380
6381 static int memory_stat_show(struct seq_file *m, void *v)
6382 {
6383 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6384 char *buf;
6385
6386 buf = memory_stat_format(memcg);
6387 if (!buf)
6388 return -ENOMEM;
6389 seq_puts(m, buf);
6390 kfree(buf);
6391 return 0;
6392 }
6393
6394 #ifdef CONFIG_NUMA
6395 static int memory_numa_stat_show(struct seq_file *m, void *v)
6396 {
6397 int i;
6398 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6399
6400 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6401 int nid;
6402
6403 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6404 continue;
6405
6406 seq_printf(m, "%s", memory_stats[i].name);
6407 for_each_node_state(nid, N_MEMORY) {
6408 u64 size;
6409 struct lruvec *lruvec;
6410
6411 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6412 size = lruvec_page_state(lruvec, memory_stats[i].idx);
6413 size *= memory_stats[i].ratio;
6414 seq_printf(m, " N%d=%llu", nid, size);
6415 }
6416 seq_putc(m, '\n');
6417 }
6418
6419 return 0;
6420 }
6421 #endif
6422
6423 static int memory_oom_group_show(struct seq_file *m, void *v)
6424 {
6425 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6426
6427 seq_printf(m, "%d\n", memcg->oom_group);
6428
6429 return 0;
6430 }
6431
6432 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6433 char *buf, size_t nbytes, loff_t off)
6434 {
6435 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6436 int ret, oom_group;
6437
6438 buf = strstrip(buf);
6439 if (!buf)
6440 return -EINVAL;
6441
6442 ret = kstrtoint(buf, 0, &oom_group);
6443 if (ret)
6444 return ret;
6445
6446 if (oom_group != 0 && oom_group != 1)
6447 return -EINVAL;
6448
6449 memcg->oom_group = oom_group;
6450
6451 return nbytes;
6452 }
6453
6454 static struct cftype memory_files[] = {
6455 {
6456 .name = "current",
6457 .flags = CFTYPE_NOT_ON_ROOT,
6458 .read_u64 = memory_current_read,
6459 },
6460 {
6461 .name = "min",
6462 .flags = CFTYPE_NOT_ON_ROOT,
6463 .seq_show = memory_min_show,
6464 .write = memory_min_write,
6465 },
6466 {
6467 .name = "low",
6468 .flags = CFTYPE_NOT_ON_ROOT,
6469 .seq_show = memory_low_show,
6470 .write = memory_low_write,
6471 },
6472 {
6473 .name = "high",
6474 .flags = CFTYPE_NOT_ON_ROOT,
6475 .seq_show = memory_high_show,
6476 .write = memory_high_write,
6477 },
6478 {
6479 .name = "max",
6480 .flags = CFTYPE_NOT_ON_ROOT,
6481 .seq_show = memory_max_show,
6482 .write = memory_max_write,
6483 },
6484 {
6485 .name = "events",
6486 .flags = CFTYPE_NOT_ON_ROOT,
6487 .file_offset = offsetof(struct mem_cgroup, events_file),
6488 .seq_show = memory_events_show,
6489 },
6490 {
6491 .name = "events.local",
6492 .flags = CFTYPE_NOT_ON_ROOT,
6493 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6494 .seq_show = memory_events_local_show,
6495 },
6496 {
6497 .name = "stat",
6498 .seq_show = memory_stat_show,
6499 },
6500 #ifdef CONFIG_NUMA
6501 {
6502 .name = "numa_stat",
6503 .seq_show = memory_numa_stat_show,
6504 },
6505 #endif
6506 {
6507 .name = "oom.group",
6508 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6509 .seq_show = memory_oom_group_show,
6510 .write = memory_oom_group_write,
6511 },
6512 { } /* terminate */
6513 };
6514
6515 struct cgroup_subsys memory_cgrp_subsys = {
6516 .css_alloc = mem_cgroup_css_alloc,
6517 .css_online = mem_cgroup_css_online,
6518 .css_offline = mem_cgroup_css_offline,
6519 .css_released = mem_cgroup_css_released,
6520 .css_free = mem_cgroup_css_free,
6521 .css_reset = mem_cgroup_css_reset,
6522 .can_attach = mem_cgroup_can_attach,
6523 .cancel_attach = mem_cgroup_cancel_attach,
6524 .post_attach = mem_cgroup_move_task,
6525 .dfl_cftypes = memory_files,
6526 .legacy_cftypes = mem_cgroup_legacy_files,
6527 .early_init = 0,
6528 };
6529
6530 /*
6531 * This function calculates an individual cgroup's effective
6532 * protection which is derived from its own memory.min/low, its
6533 * parent's and siblings' settings, as well as the actual memory
6534 * distribution in the tree.
6535 *
6536 * The following rules apply to the effective protection values:
6537 *
6538 * 1. At the first level of reclaim, effective protection is equal to
6539 * the declared protection in memory.min and memory.low.
6540 *
6541 * 2. To enable safe delegation of the protection configuration, at
6542 * subsequent levels the effective protection is capped to the
6543 * parent's effective protection.
6544 *
6545 * 3. To make complex and dynamic subtrees easier to configure, the
6546 * user is allowed to overcommit the declared protection at a given
6547 * level. If that is the case, the parent's effective protection is
6548 * distributed to the children in proportion to how much protection
6549 * they have declared and how much of it they are utilizing.
6550 *
6551 * This makes distribution proportional, but also work-conserving:
6552 * if one cgroup claims much more protection than it uses memory,
6553 * the unused remainder is available to its siblings.
6554 *
6555 * 4. Conversely, when the declared protection is undercommitted at a
6556 * given level, the distribution of the larger parental protection
6557 * budget is NOT proportional. A cgroup's protection from a sibling
6558 * is capped to its own memory.min/low setting.
6559 *
6560 * 5. However, to allow protecting recursive subtrees from each other
6561 * without having to declare each individual cgroup's fixed share
6562 * of the ancestor's claim to protection, any unutilized -
6563 * "floating" - protection from up the tree is distributed in
6564 * proportion to each cgroup's *usage*. This makes the protection
6565 * neutral wrt sibling cgroups and lets them compete freely over
6566 * the shared parental protection budget, but it protects the
6567 * subtree as a whole from neighboring subtrees.
6568 *
6569 * Note that 4. and 5. are not in conflict: 4. is about protecting
6570 * against immediate siblings whereas 5. is about protecting against
6571 * neighboring subtrees.
6572 */
6573 static unsigned long effective_protection(unsigned long usage,
6574 unsigned long parent_usage,
6575 unsigned long setting,
6576 unsigned long parent_effective,
6577 unsigned long siblings_protected)
6578 {
6579 unsigned long protected;
6580 unsigned long ep;
6581
6582 protected = min(usage, setting);
6583 /*
6584 * If all cgroups at this level combined claim and use more
6585 * protection then what the parent affords them, distribute
6586 * shares in proportion to utilization.
6587 *
6588 * We are using actual utilization rather than the statically
6589 * claimed protection in order to be work-conserving: claimed
6590 * but unused protection is available to siblings that would
6591 * otherwise get a smaller chunk than what they claimed.
6592 */
6593 if (siblings_protected > parent_effective)
6594 return protected * parent_effective / siblings_protected;
6595
6596 /*
6597 * Ok, utilized protection of all children is within what the
6598 * parent affords them, so we know whatever this child claims
6599 * and utilizes is effectively protected.
6600 *
6601 * If there is unprotected usage beyond this value, reclaim
6602 * will apply pressure in proportion to that amount.
6603 *
6604 * If there is unutilized protection, the cgroup will be fully
6605 * shielded from reclaim, but we do return a smaller value for
6606 * protection than what the group could enjoy in theory. This
6607 * is okay. With the overcommit distribution above, effective
6608 * protection is always dependent on how memory is actually
6609 * consumed among the siblings anyway.
6610 */
6611 ep = protected;
6612
6613 /*
6614 * If the children aren't claiming (all of) the protection
6615 * afforded to them by the parent, distribute the remainder in
6616 * proportion to the (unprotected) memory of each cgroup. That
6617 * way, cgroups that aren't explicitly prioritized wrt each
6618 * other compete freely over the allowance, but they are
6619 * collectively protected from neighboring trees.
6620 *
6621 * We're using unprotected memory for the weight so that if
6622 * some cgroups DO claim explicit protection, we don't protect
6623 * the same bytes twice.
6624 *
6625 * Check both usage and parent_usage against the respective
6626 * protected values. One should imply the other, but they
6627 * aren't read atomically - make sure the division is sane.
6628 */
6629 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6630 return ep;
6631 if (parent_effective > siblings_protected &&
6632 parent_usage > siblings_protected &&
6633 usage > protected) {
6634 unsigned long unclaimed;
6635
6636 unclaimed = parent_effective - siblings_protected;
6637 unclaimed *= usage - protected;
6638 unclaimed /= parent_usage - siblings_protected;
6639
6640 ep += unclaimed;
6641 }
6642
6643 return ep;
6644 }
6645
6646 /**
6647 * mem_cgroup_protected - check if memory consumption is in the normal range
6648 * @root: the top ancestor of the sub-tree being checked
6649 * @memcg: the memory cgroup to check
6650 *
6651 * WARNING: This function is not stateless! It can only be used as part
6652 * of a top-down tree iteration, not for isolated queries.
6653 */
6654 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6655 struct mem_cgroup *memcg)
6656 {
6657 unsigned long usage, parent_usage;
6658 struct mem_cgroup *parent;
6659
6660 if (mem_cgroup_disabled())
6661 return;
6662
6663 if (!root)
6664 root = root_mem_cgroup;
6665
6666 /*
6667 * Effective values of the reclaim targets are ignored so they
6668 * can be stale. Have a look at mem_cgroup_protection for more
6669 * details.
6670 * TODO: calculation should be more robust so that we do not need
6671 * that special casing.
6672 */
6673 if (memcg == root)
6674 return;
6675
6676 usage = page_counter_read(&memcg->memory);
6677 if (!usage)
6678 return;
6679
6680 parent = parent_mem_cgroup(memcg);
6681 /* No parent means a non-hierarchical mode on v1 memcg */
6682 if (!parent)
6683 return;
6684
6685 if (parent == root) {
6686 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6687 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6688 return;
6689 }
6690
6691 parent_usage = page_counter_read(&parent->memory);
6692
6693 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6694 READ_ONCE(memcg->memory.min),
6695 READ_ONCE(parent->memory.emin),
6696 atomic_long_read(&parent->memory.children_min_usage)));
6697
6698 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6699 READ_ONCE(memcg->memory.low),
6700 READ_ONCE(parent->memory.elow),
6701 atomic_long_read(&parent->memory.children_low_usage)));
6702 }
6703
6704 /**
6705 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6706 * @page: page to charge
6707 * @mm: mm context of the victim
6708 * @gfp_mask: reclaim mode
6709 *
6710 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6711 * pages according to @gfp_mask if necessary.
6712 *
6713 * Returns 0 on success. Otherwise, an error code is returned.
6714 */
6715 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6716 {
6717 unsigned int nr_pages = thp_nr_pages(page);
6718 struct mem_cgroup *memcg = NULL;
6719 int ret = 0;
6720
6721 if (mem_cgroup_disabled())
6722 goto out;
6723
6724 if (PageSwapCache(page)) {
6725 swp_entry_t ent = { .val = page_private(page), };
6726 unsigned short id;
6727
6728 /*
6729 * Every swap fault against a single page tries to charge the
6730 * page, bail as early as possible. shmem_unuse() encounters
6731 * already charged pages, too. page and memcg binding is
6732 * protected by the page lock, which serializes swap cache
6733 * removal, which in turn serializes uncharging.
6734 */
6735 VM_BUG_ON_PAGE(!PageLocked(page), page);
6736 if (page_memcg(compound_head(page)))
6737 goto out;
6738
6739 id = lookup_swap_cgroup_id(ent);
6740 rcu_read_lock();
6741 memcg = mem_cgroup_from_id(id);
6742 if (memcg && !css_tryget_online(&memcg->css))
6743 memcg = NULL;
6744 rcu_read_unlock();
6745 }
6746
6747 if (!memcg)
6748 memcg = get_mem_cgroup_from_mm(mm);
6749
6750 ret = try_charge(memcg, gfp_mask, nr_pages);
6751 if (ret)
6752 goto out_put;
6753
6754 css_get(&memcg->css);
6755 commit_charge(page, memcg);
6756
6757 local_irq_disable();
6758 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6759 memcg_check_events(memcg, page);
6760 local_irq_enable();
6761
6762 /*
6763 * Cgroup1's unified memory+swap counter has been charged with the
6764 * new swapcache page, finish the transfer by uncharging the swap
6765 * slot. The swap slot would also get uncharged when it dies, but
6766 * it can stick around indefinitely and we'd count the page twice
6767 * the entire time.
6768 *
6769 * Cgroup2 has separate resource counters for memory and swap,
6770 * so this is a non-issue here. Memory and swap charge lifetimes
6771 * correspond 1:1 to page and swap slot lifetimes: we charge the
6772 * page to memory here, and uncharge swap when the slot is freed.
6773 */
6774 if (do_memsw_account() && PageSwapCache(page)) {
6775 swp_entry_t entry = { .val = page_private(page) };
6776 /*
6777 * The swap entry might not get freed for a long time,
6778 * let's not wait for it. The page already received a
6779 * memory+swap charge, drop the swap entry duplicate.
6780 */
6781 mem_cgroup_uncharge_swap(entry, nr_pages);
6782 }
6783
6784 out_put:
6785 css_put(&memcg->css);
6786 out:
6787 return ret;
6788 }
6789
6790 struct uncharge_gather {
6791 struct mem_cgroup *memcg;
6792 unsigned long nr_pages;
6793 unsigned long pgpgout;
6794 unsigned long nr_kmem;
6795 struct page *dummy_page;
6796 };
6797
6798 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6799 {
6800 memset(ug, 0, sizeof(*ug));
6801 }
6802
6803 static void uncharge_batch(const struct uncharge_gather *ug)
6804 {
6805 unsigned long flags;
6806
6807 if (!mem_cgroup_is_root(ug->memcg)) {
6808 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6809 if (do_memsw_account())
6810 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6811 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6812 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6813 memcg_oom_recover(ug->memcg);
6814 }
6815
6816 local_irq_save(flags);
6817 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6818 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6819 memcg_check_events(ug->memcg, ug->dummy_page);
6820 local_irq_restore(flags);
6821
6822 /* drop reference from uncharge_page */
6823 css_put(&ug->memcg->css);
6824 }
6825
6826 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6827 {
6828 unsigned long nr_pages;
6829
6830 VM_BUG_ON_PAGE(PageLRU(page), page);
6831
6832 if (!page_memcg(page))
6833 return;
6834
6835 /*
6836 * Nobody should be changing or seriously looking at
6837 * page_memcg(page) at this point, we have fully
6838 * exclusive access to the page.
6839 */
6840
6841 if (ug->memcg != page_memcg(page)) {
6842 if (ug->memcg) {
6843 uncharge_batch(ug);
6844 uncharge_gather_clear(ug);
6845 }
6846 ug->memcg = page_memcg(page);
6847
6848 /* pairs with css_put in uncharge_batch */
6849 css_get(&ug->memcg->css);
6850 }
6851
6852 nr_pages = compound_nr(page);
6853 ug->nr_pages += nr_pages;
6854
6855 if (PageMemcgKmem(page))
6856 ug->nr_kmem += nr_pages;
6857 else
6858 ug->pgpgout++;
6859
6860 ug->dummy_page = page;
6861 page->memcg_data = 0;
6862 css_put(&ug->memcg->css);
6863 }
6864
6865 static void uncharge_list(struct list_head *page_list)
6866 {
6867 struct uncharge_gather ug;
6868 struct list_head *next;
6869
6870 uncharge_gather_clear(&ug);
6871
6872 /*
6873 * Note that the list can be a single page->lru; hence the
6874 * do-while loop instead of a simple list_for_each_entry().
6875 */
6876 next = page_list->next;
6877 do {
6878 struct page *page;
6879
6880 page = list_entry(next, struct page, lru);
6881 next = page->lru.next;
6882
6883 uncharge_page(page, &ug);
6884 } while (next != page_list);
6885
6886 if (ug.memcg)
6887 uncharge_batch(&ug);
6888 }
6889
6890 /**
6891 * mem_cgroup_uncharge - uncharge a page
6892 * @page: page to uncharge
6893 *
6894 * Uncharge a page previously charged with mem_cgroup_charge().
6895 */
6896 void mem_cgroup_uncharge(struct page *page)
6897 {
6898 struct uncharge_gather ug;
6899
6900 if (mem_cgroup_disabled())
6901 return;
6902
6903 /* Don't touch page->lru of any random page, pre-check: */
6904 if (!page_memcg(page))
6905 return;
6906
6907 uncharge_gather_clear(&ug);
6908 uncharge_page(page, &ug);
6909 uncharge_batch(&ug);
6910 }
6911
6912 /**
6913 * mem_cgroup_uncharge_list - uncharge a list of page
6914 * @page_list: list of pages to uncharge
6915 *
6916 * Uncharge a list of pages previously charged with
6917 * mem_cgroup_charge().
6918 */
6919 void mem_cgroup_uncharge_list(struct list_head *page_list)
6920 {
6921 if (mem_cgroup_disabled())
6922 return;
6923
6924 if (!list_empty(page_list))
6925 uncharge_list(page_list);
6926 }
6927
6928 /**
6929 * mem_cgroup_migrate - charge a page's replacement
6930 * @oldpage: currently circulating page
6931 * @newpage: replacement page
6932 *
6933 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6934 * be uncharged upon free.
6935 *
6936 * Both pages must be locked, @newpage->mapping must be set up.
6937 */
6938 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6939 {
6940 struct mem_cgroup *memcg;
6941 unsigned int nr_pages;
6942 unsigned long flags;
6943
6944 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6945 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6946 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6947 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6948 newpage);
6949
6950 if (mem_cgroup_disabled())
6951 return;
6952
6953 /* Page cache replacement: new page already charged? */
6954 if (page_memcg(newpage))
6955 return;
6956
6957 memcg = page_memcg(oldpage);
6958 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6959 if (!memcg)
6960 return;
6961
6962 /* Force-charge the new page. The old one will be freed soon */
6963 nr_pages = thp_nr_pages(newpage);
6964
6965 page_counter_charge(&memcg->memory, nr_pages);
6966 if (do_memsw_account())
6967 page_counter_charge(&memcg->memsw, nr_pages);
6968
6969 css_get(&memcg->css);
6970 commit_charge(newpage, memcg);
6971
6972 local_irq_save(flags);
6973 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6974 memcg_check_events(memcg, newpage);
6975 local_irq_restore(flags);
6976 }
6977
6978 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6979 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6980
6981 void mem_cgroup_sk_alloc(struct sock *sk)
6982 {
6983 struct mem_cgroup *memcg;
6984
6985 if (!mem_cgroup_sockets_enabled)
6986 return;
6987
6988 /* Do not associate the sock with unrelated interrupted task's memcg. */
6989 if (in_interrupt())
6990 return;
6991
6992 rcu_read_lock();
6993 memcg = mem_cgroup_from_task(current);
6994 if (memcg == root_mem_cgroup)
6995 goto out;
6996 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6997 goto out;
6998 if (css_tryget(&memcg->css))
6999 sk->sk_memcg = memcg;
7000 out:
7001 rcu_read_unlock();
7002 }
7003
7004 void mem_cgroup_sk_free(struct sock *sk)
7005 {
7006 if (sk->sk_memcg)
7007 css_put(&sk->sk_memcg->css);
7008 }
7009
7010 /**
7011 * mem_cgroup_charge_skmem - charge socket memory
7012 * @memcg: memcg to charge
7013 * @nr_pages: number of pages to charge
7014 *
7015 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7016 * @memcg's configured limit, %false if the charge had to be forced.
7017 */
7018 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7019 {
7020 gfp_t gfp_mask = GFP_KERNEL;
7021
7022 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7023 struct page_counter *fail;
7024
7025 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7026 memcg->tcpmem_pressure = 0;
7027 return true;
7028 }
7029 page_counter_charge(&memcg->tcpmem, nr_pages);
7030 memcg->tcpmem_pressure = 1;
7031 return false;
7032 }
7033
7034 /* Don't block in the packet receive path */
7035 if (in_softirq())
7036 gfp_mask = GFP_NOWAIT;
7037
7038 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7039
7040 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7041 return true;
7042
7043 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7044 return false;
7045 }
7046
7047 /**
7048 * mem_cgroup_uncharge_skmem - uncharge socket memory
7049 * @memcg: memcg to uncharge
7050 * @nr_pages: number of pages to uncharge
7051 */
7052 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7053 {
7054 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7055 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7056 return;
7057 }
7058
7059 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7060
7061 refill_stock(memcg, nr_pages);
7062 }
7063
7064 static int __init cgroup_memory(char *s)
7065 {
7066 char *token;
7067
7068 while ((token = strsep(&s, ",")) != NULL) {
7069 if (!*token)
7070 continue;
7071 if (!strcmp(token, "nosocket"))
7072 cgroup_memory_nosocket = true;
7073 if (!strcmp(token, "nokmem"))
7074 cgroup_memory_nokmem = true;
7075 }
7076 return 0;
7077 }
7078 __setup("cgroup.memory=", cgroup_memory);
7079
7080 /*
7081 * subsys_initcall() for memory controller.
7082 *
7083 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7084 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7085 * basically everything that doesn't depend on a specific mem_cgroup structure
7086 * should be initialized from here.
7087 */
7088 static int __init mem_cgroup_init(void)
7089 {
7090 int cpu, node;
7091
7092 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7093 memcg_hotplug_cpu_dead);
7094
7095 for_each_possible_cpu(cpu)
7096 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7097 drain_local_stock);
7098
7099 for_each_node(node) {
7100 struct mem_cgroup_tree_per_node *rtpn;
7101
7102 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7103 node_online(node) ? node : NUMA_NO_NODE);
7104
7105 rtpn->rb_root = RB_ROOT;
7106 rtpn->rb_rightmost = NULL;
7107 spin_lock_init(&rtpn->lock);
7108 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7109 }
7110
7111 return 0;
7112 }
7113 subsys_initcall(mem_cgroup_init);
7114
7115 #ifdef CONFIG_MEMCG_SWAP
7116 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7117 {
7118 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7119 /*
7120 * The root cgroup cannot be destroyed, so it's refcount must
7121 * always be >= 1.
7122 */
7123 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7124 VM_BUG_ON(1);
7125 break;
7126 }
7127 memcg = parent_mem_cgroup(memcg);
7128 if (!memcg)
7129 memcg = root_mem_cgroup;
7130 }
7131 return memcg;
7132 }
7133
7134 /**
7135 * mem_cgroup_swapout - transfer a memsw charge to swap
7136 * @page: page whose memsw charge to transfer
7137 * @entry: swap entry to move the charge to
7138 *
7139 * Transfer the memsw charge of @page to @entry.
7140 */
7141 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7142 {
7143 struct mem_cgroup *memcg, *swap_memcg;
7144 unsigned int nr_entries;
7145 unsigned short oldid;
7146
7147 VM_BUG_ON_PAGE(PageLRU(page), page);
7148 VM_BUG_ON_PAGE(page_count(page), page);
7149
7150 if (mem_cgroup_disabled())
7151 return;
7152
7153 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7154 return;
7155
7156 memcg = page_memcg(page);
7157
7158 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7159 if (!memcg)
7160 return;
7161
7162 /*
7163 * In case the memcg owning these pages has been offlined and doesn't
7164 * have an ID allocated to it anymore, charge the closest online
7165 * ancestor for the swap instead and transfer the memory+swap charge.
7166 */
7167 swap_memcg = mem_cgroup_id_get_online(memcg);
7168 nr_entries = thp_nr_pages(page);
7169 /* Get references for the tail pages, too */
7170 if (nr_entries > 1)
7171 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7172 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7173 nr_entries);
7174 VM_BUG_ON_PAGE(oldid, page);
7175 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7176
7177 page->memcg_data = 0;
7178
7179 if (!mem_cgroup_is_root(memcg))
7180 page_counter_uncharge(&memcg->memory, nr_entries);
7181
7182 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7183 if (!mem_cgroup_is_root(swap_memcg))
7184 page_counter_charge(&swap_memcg->memsw, nr_entries);
7185 page_counter_uncharge(&memcg->memsw, nr_entries);
7186 }
7187
7188 /*
7189 * Interrupts should be disabled here because the caller holds the
7190 * i_pages lock which is taken with interrupts-off. It is
7191 * important here to have the interrupts disabled because it is the
7192 * only synchronisation we have for updating the per-CPU variables.
7193 */
7194 VM_BUG_ON(!irqs_disabled());
7195 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7196 memcg_check_events(memcg, page);
7197
7198 css_put(&memcg->css);
7199 }
7200
7201 /**
7202 * mem_cgroup_try_charge_swap - try charging swap space for a page
7203 * @page: page being added to swap
7204 * @entry: swap entry to charge
7205 *
7206 * Try to charge @page's memcg for the swap space at @entry.
7207 *
7208 * Returns 0 on success, -ENOMEM on failure.
7209 */
7210 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7211 {
7212 unsigned int nr_pages = thp_nr_pages(page);
7213 struct page_counter *counter;
7214 struct mem_cgroup *memcg;
7215 unsigned short oldid;
7216
7217 if (mem_cgroup_disabled())
7218 return 0;
7219
7220 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7221 return 0;
7222
7223 memcg = page_memcg(page);
7224
7225 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7226 if (!memcg)
7227 return 0;
7228
7229 if (!entry.val) {
7230 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7231 return 0;
7232 }
7233
7234 memcg = mem_cgroup_id_get_online(memcg);
7235
7236 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7237 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7238 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7239 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7240 mem_cgroup_id_put(memcg);
7241 return -ENOMEM;
7242 }
7243
7244 /* Get references for the tail pages, too */
7245 if (nr_pages > 1)
7246 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7247 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7248 VM_BUG_ON_PAGE(oldid, page);
7249 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7250
7251 return 0;
7252 }
7253
7254 /**
7255 * mem_cgroup_uncharge_swap - uncharge swap space
7256 * @entry: swap entry to uncharge
7257 * @nr_pages: the amount of swap space to uncharge
7258 */
7259 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7260 {
7261 struct mem_cgroup *memcg;
7262 unsigned short id;
7263
7264 id = swap_cgroup_record(entry, 0, nr_pages);
7265 rcu_read_lock();
7266 memcg = mem_cgroup_from_id(id);
7267 if (memcg) {
7268 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7269 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7270 page_counter_uncharge(&memcg->swap, nr_pages);
7271 else
7272 page_counter_uncharge(&memcg->memsw, nr_pages);
7273 }
7274 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7275 mem_cgroup_id_put_many(memcg, nr_pages);
7276 }
7277 rcu_read_unlock();
7278 }
7279
7280 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7281 {
7282 long nr_swap_pages = get_nr_swap_pages();
7283
7284 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7285 return nr_swap_pages;
7286 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7287 nr_swap_pages = min_t(long, nr_swap_pages,
7288 READ_ONCE(memcg->swap.max) -
7289 page_counter_read(&memcg->swap));
7290 return nr_swap_pages;
7291 }
7292
7293 bool mem_cgroup_swap_full(struct page *page)
7294 {
7295 struct mem_cgroup *memcg;
7296
7297 VM_BUG_ON_PAGE(!PageLocked(page), page);
7298
7299 if (vm_swap_full())
7300 return true;
7301 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7302 return false;
7303
7304 memcg = page_memcg(page);
7305 if (!memcg)
7306 return false;
7307
7308 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7309 unsigned long usage = page_counter_read(&memcg->swap);
7310
7311 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7312 usage * 2 >= READ_ONCE(memcg->swap.max))
7313 return true;
7314 }
7315
7316 return false;
7317 }
7318
7319 static int __init setup_swap_account(char *s)
7320 {
7321 if (!strcmp(s, "1"))
7322 cgroup_memory_noswap = false;
7323 else if (!strcmp(s, "0"))
7324 cgroup_memory_noswap = true;
7325 return 1;
7326 }
7327 __setup("swapaccount=", setup_swap_account);
7328
7329 static u64 swap_current_read(struct cgroup_subsys_state *css,
7330 struct cftype *cft)
7331 {
7332 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7333
7334 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7335 }
7336
7337 static int swap_high_show(struct seq_file *m, void *v)
7338 {
7339 return seq_puts_memcg_tunable(m,
7340 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7341 }
7342
7343 static ssize_t swap_high_write(struct kernfs_open_file *of,
7344 char *buf, size_t nbytes, loff_t off)
7345 {
7346 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7347 unsigned long high;
7348 int err;
7349
7350 buf = strstrip(buf);
7351 err = page_counter_memparse(buf, "max", &high);
7352 if (err)
7353 return err;
7354
7355 page_counter_set_high(&memcg->swap, high);
7356
7357 return nbytes;
7358 }
7359
7360 static int swap_max_show(struct seq_file *m, void *v)
7361 {
7362 return seq_puts_memcg_tunable(m,
7363 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7364 }
7365
7366 static ssize_t swap_max_write(struct kernfs_open_file *of,
7367 char *buf, size_t nbytes, loff_t off)
7368 {
7369 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7370 unsigned long max;
7371 int err;
7372
7373 buf = strstrip(buf);
7374 err = page_counter_memparse(buf, "max", &max);
7375 if (err)
7376 return err;
7377
7378 xchg(&memcg->swap.max, max);
7379
7380 return nbytes;
7381 }
7382
7383 static int swap_events_show(struct seq_file *m, void *v)
7384 {
7385 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7386
7387 seq_printf(m, "high %lu\n",
7388 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7389 seq_printf(m, "max %lu\n",
7390 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7391 seq_printf(m, "fail %lu\n",
7392 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7393
7394 return 0;
7395 }
7396
7397 static struct cftype swap_files[] = {
7398 {
7399 .name = "swap.current",
7400 .flags = CFTYPE_NOT_ON_ROOT,
7401 .read_u64 = swap_current_read,
7402 },
7403 {
7404 .name = "swap.high",
7405 .flags = CFTYPE_NOT_ON_ROOT,
7406 .seq_show = swap_high_show,
7407 .write = swap_high_write,
7408 },
7409 {
7410 .name = "swap.max",
7411 .flags = CFTYPE_NOT_ON_ROOT,
7412 .seq_show = swap_max_show,
7413 .write = swap_max_write,
7414 },
7415 {
7416 .name = "swap.events",
7417 .flags = CFTYPE_NOT_ON_ROOT,
7418 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7419 .seq_show = swap_events_show,
7420 },
7421 { } /* terminate */
7422 };
7423
7424 static struct cftype memsw_files[] = {
7425 {
7426 .name = "memsw.usage_in_bytes",
7427 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7428 .read_u64 = mem_cgroup_read_u64,
7429 },
7430 {
7431 .name = "memsw.max_usage_in_bytes",
7432 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7433 .write = mem_cgroup_reset,
7434 .read_u64 = mem_cgroup_read_u64,
7435 },
7436 {
7437 .name = "memsw.limit_in_bytes",
7438 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7439 .write = mem_cgroup_write,
7440 .read_u64 = mem_cgroup_read_u64,
7441 },
7442 {
7443 .name = "memsw.failcnt",
7444 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7445 .write = mem_cgroup_reset,
7446 .read_u64 = mem_cgroup_read_u64,
7447 },
7448 { }, /* terminate */
7449 };
7450
7451 /*
7452 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7453 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7454 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7455 * boot parameter. This may result in premature OOPS inside
7456 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7457 */
7458 static int __init mem_cgroup_swap_init(void)
7459 {
7460 /* No memory control -> no swap control */
7461 if (mem_cgroup_disabled())
7462 cgroup_memory_noswap = true;
7463
7464 if (cgroup_memory_noswap)
7465 return 0;
7466
7467 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7468 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7469
7470 return 0;
7471 }
7472 core_initcall(mem_cgroup_swap_init);
7473
7474 #endif /* CONFIG_MEMCG_SWAP */