]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/memcontrol.c
block: partition: convert percpu ref
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include <net/tcp_memcontrol.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 #define MEM_CGROUP_RECLAIM_RETRIES 5
79 static struct mem_cgroup *root_mem_cgroup __read_mostly;
80 struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
81
82 /* Whether the swap controller is active */
83 #ifdef CONFIG_MEMCG_SWAP
84 int do_swap_account __read_mostly;
85 #else
86 #define do_swap_account 0
87 #endif
88
89 static const char * const mem_cgroup_stat_names[] = {
90 "cache",
91 "rss",
92 "rss_huge",
93 "mapped_file",
94 "dirty",
95 "writeback",
96 "swap",
97 };
98
99 static const char * const mem_cgroup_events_names[] = {
100 "pgpgin",
101 "pgpgout",
102 "pgfault",
103 "pgmajfault",
104 };
105
106 static const char * const mem_cgroup_lru_names[] = {
107 "inactive_anon",
108 "active_anon",
109 "inactive_file",
110 "active_file",
111 "unevictable",
112 };
113
114 /*
115 * Per memcg event counter is incremented at every pagein/pageout. With THP,
116 * it will be incremated by the number of pages. This counter is used for
117 * for trigger some periodic events. This is straightforward and better
118 * than using jiffies etc. to handle periodic memcg event.
119 */
120 enum mem_cgroup_events_target {
121 MEM_CGROUP_TARGET_THRESH,
122 MEM_CGROUP_TARGET_SOFTLIMIT,
123 MEM_CGROUP_TARGET_NUMAINFO,
124 MEM_CGROUP_NTARGETS,
125 };
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
129
130 struct mem_cgroup_stat_cpu {
131 long count[MEM_CGROUP_STAT_NSTATS];
132 unsigned long events[MEMCG_NR_EVENTS];
133 unsigned long nr_page_events;
134 unsigned long targets[MEM_CGROUP_NTARGETS];
135 };
136
137 struct reclaim_iter {
138 struct mem_cgroup *position;
139 /* scan generation, increased every round-trip */
140 unsigned int generation;
141 };
142
143 /*
144 * per-zone information in memory controller.
145 */
146 struct mem_cgroup_per_zone {
147 struct lruvec lruvec;
148 unsigned long lru_size[NR_LRU_LISTS];
149
150 struct reclaim_iter iter[DEF_PRIORITY + 1];
151
152 struct rb_node tree_node; /* RB tree node */
153 unsigned long usage_in_excess;/* Set to the value by which */
154 /* the soft limit is exceeded*/
155 bool on_tree;
156 struct mem_cgroup *memcg; /* Back pointer, we cannot */
157 /* use container_of */
158 };
159
160 struct mem_cgroup_per_node {
161 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
162 };
163
164 /*
165 * Cgroups above their limits are maintained in a RB-Tree, independent of
166 * their hierarchy representation
167 */
168
169 struct mem_cgroup_tree_per_zone {
170 struct rb_root rb_root;
171 spinlock_t lock;
172 };
173
174 struct mem_cgroup_tree_per_node {
175 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
176 };
177
178 struct mem_cgroup_tree {
179 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
180 };
181
182 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
183
184 struct mem_cgroup_threshold {
185 struct eventfd_ctx *eventfd;
186 unsigned long threshold;
187 };
188
189 /* For threshold */
190 struct mem_cgroup_threshold_ary {
191 /* An array index points to threshold just below or equal to usage. */
192 int current_threshold;
193 /* Size of entries[] */
194 unsigned int size;
195 /* Array of thresholds */
196 struct mem_cgroup_threshold entries[0];
197 };
198
199 struct mem_cgroup_thresholds {
200 /* Primary thresholds array */
201 struct mem_cgroup_threshold_ary *primary;
202 /*
203 * Spare threshold array.
204 * This is needed to make mem_cgroup_unregister_event() "never fail".
205 * It must be able to store at least primary->size - 1 entries.
206 */
207 struct mem_cgroup_threshold_ary *spare;
208 };
209
210 /* for OOM */
211 struct mem_cgroup_eventfd_list {
212 struct list_head list;
213 struct eventfd_ctx *eventfd;
214 };
215
216 /*
217 * cgroup_event represents events which userspace want to receive.
218 */
219 struct mem_cgroup_event {
220 /*
221 * memcg which the event belongs to.
222 */
223 struct mem_cgroup *memcg;
224 /*
225 * eventfd to signal userspace about the event.
226 */
227 struct eventfd_ctx *eventfd;
228 /*
229 * Each of these stored in a list by the cgroup.
230 */
231 struct list_head list;
232 /*
233 * register_event() callback will be used to add new userspace
234 * waiter for changes related to this event. Use eventfd_signal()
235 * on eventfd to send notification to userspace.
236 */
237 int (*register_event)(struct mem_cgroup *memcg,
238 struct eventfd_ctx *eventfd, const char *args);
239 /*
240 * unregister_event() callback will be called when userspace closes
241 * the eventfd or on cgroup removing. This callback must be set,
242 * if you want provide notification functionality.
243 */
244 void (*unregister_event)(struct mem_cgroup *memcg,
245 struct eventfd_ctx *eventfd);
246 /*
247 * All fields below needed to unregister event when
248 * userspace closes eventfd.
249 */
250 poll_table pt;
251 wait_queue_head_t *wqh;
252 wait_queue_t wait;
253 struct work_struct remove;
254 };
255
256 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
257 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
258
259 /*
260 * The memory controller data structure. The memory controller controls both
261 * page cache and RSS per cgroup. We would eventually like to provide
262 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
263 * to help the administrator determine what knobs to tune.
264 */
265 struct mem_cgroup {
266 struct cgroup_subsys_state css;
267
268 /* Accounted resources */
269 struct page_counter memory;
270 struct page_counter memsw;
271 struct page_counter kmem;
272
273 /* Normal memory consumption range */
274 unsigned long low;
275 unsigned long high;
276
277 unsigned long soft_limit;
278
279 /* vmpressure notifications */
280 struct vmpressure vmpressure;
281
282 /* css_online() has been completed */
283 int initialized;
284
285 /*
286 * Should the accounting and control be hierarchical, per subtree?
287 */
288 bool use_hierarchy;
289
290 /* protected by memcg_oom_lock */
291 bool oom_lock;
292 int under_oom;
293
294 int swappiness;
295 /* OOM-Killer disable */
296 int oom_kill_disable;
297
298 /* protect arrays of thresholds */
299 struct mutex thresholds_lock;
300
301 /* thresholds for memory usage. RCU-protected */
302 struct mem_cgroup_thresholds thresholds;
303
304 /* thresholds for mem+swap usage. RCU-protected */
305 struct mem_cgroup_thresholds memsw_thresholds;
306
307 /* For oom notifier event fd */
308 struct list_head oom_notify;
309
310 /*
311 * Should we move charges of a task when a task is moved into this
312 * mem_cgroup ? And what type of charges should we move ?
313 */
314 unsigned long move_charge_at_immigrate;
315 /*
316 * set > 0 if pages under this cgroup are moving to other cgroup.
317 */
318 atomic_t moving_account;
319 /* taken only while moving_account > 0 */
320 spinlock_t move_lock;
321 struct task_struct *move_lock_task;
322 unsigned long move_lock_flags;
323 /*
324 * percpu counter.
325 */
326 struct mem_cgroup_stat_cpu __percpu *stat;
327 spinlock_t pcp_counter_lock;
328
329 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
330 struct cg_proto tcp_mem;
331 #endif
332 #if defined(CONFIG_MEMCG_KMEM)
333 /* Index in the kmem_cache->memcg_params.memcg_caches array */
334 int kmemcg_id;
335 bool kmem_acct_activated;
336 bool kmem_acct_active;
337 #endif
338
339 int last_scanned_node;
340 #if MAX_NUMNODES > 1
341 nodemask_t scan_nodes;
342 atomic_t numainfo_events;
343 atomic_t numainfo_updating;
344 #endif
345
346 #ifdef CONFIG_CGROUP_WRITEBACK
347 struct list_head cgwb_list;
348 struct wb_domain cgwb_domain;
349 #endif
350
351 /* List of events which userspace want to receive */
352 struct list_head event_list;
353 spinlock_t event_list_lock;
354
355 struct mem_cgroup_per_node *nodeinfo[0];
356 /* WARNING: nodeinfo must be the last member here */
357 };
358
359 #ifdef CONFIG_MEMCG_KMEM
360 bool memcg_kmem_is_active(struct mem_cgroup *memcg)
361 {
362 return memcg->kmem_acct_active;
363 }
364 #endif
365
366 /* Stuffs for move charges at task migration. */
367 /*
368 * Types of charges to be moved.
369 */
370 #define MOVE_ANON 0x1U
371 #define MOVE_FILE 0x2U
372 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
373
374 /* "mc" and its members are protected by cgroup_mutex */
375 static struct move_charge_struct {
376 spinlock_t lock; /* for from, to */
377 struct mem_cgroup *from;
378 struct mem_cgroup *to;
379 unsigned long flags;
380 unsigned long precharge;
381 unsigned long moved_charge;
382 unsigned long moved_swap;
383 struct task_struct *moving_task; /* a task moving charges */
384 wait_queue_head_t waitq; /* a waitq for other context */
385 } mc = {
386 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
387 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
388 };
389
390 /*
391 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
392 * limit reclaim to prevent infinite loops, if they ever occur.
393 */
394 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
395 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
396
397 enum charge_type {
398 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
399 MEM_CGROUP_CHARGE_TYPE_ANON,
400 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
401 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
402 NR_CHARGE_TYPE,
403 };
404
405 /* for encoding cft->private value on file */
406 enum res_type {
407 _MEM,
408 _MEMSWAP,
409 _OOM_TYPE,
410 _KMEM,
411 };
412
413 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
414 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
415 #define MEMFILE_ATTR(val) ((val) & 0xffff)
416 /* Used for OOM nofiier */
417 #define OOM_CONTROL (0)
418
419 /*
420 * The memcg_create_mutex will be held whenever a new cgroup is created.
421 * As a consequence, any change that needs to protect against new child cgroups
422 * appearing has to hold it as well.
423 */
424 static DEFINE_MUTEX(memcg_create_mutex);
425
426 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
427 {
428 return s ? container_of(s, struct mem_cgroup, css) : NULL;
429 }
430
431 /* Some nice accessors for the vmpressure. */
432 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
433 {
434 if (!memcg)
435 memcg = root_mem_cgroup;
436 return &memcg->vmpressure;
437 }
438
439 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
440 {
441 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
442 }
443
444 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
445 {
446 return (memcg == root_mem_cgroup);
447 }
448
449 /*
450 * We restrict the id in the range of [1, 65535], so it can fit into
451 * an unsigned short.
452 */
453 #define MEM_CGROUP_ID_MAX USHRT_MAX
454
455 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
456 {
457 return memcg->css.id;
458 }
459
460 /*
461 * A helper function to get mem_cgroup from ID. must be called under
462 * rcu_read_lock(). The caller is responsible for calling
463 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
464 * refcnt from swap can be called against removed memcg.)
465 */
466 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
467 {
468 struct cgroup_subsys_state *css;
469
470 css = css_from_id(id, &memory_cgrp_subsys);
471 return mem_cgroup_from_css(css);
472 }
473
474 /* Writing them here to avoid exposing memcg's inner layout */
475 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
476
477 void sock_update_memcg(struct sock *sk)
478 {
479 if (mem_cgroup_sockets_enabled) {
480 struct mem_cgroup *memcg;
481 struct cg_proto *cg_proto;
482
483 BUG_ON(!sk->sk_prot->proto_cgroup);
484
485 /* Socket cloning can throw us here with sk_cgrp already
486 * filled. It won't however, necessarily happen from
487 * process context. So the test for root memcg given
488 * the current task's memcg won't help us in this case.
489 *
490 * Respecting the original socket's memcg is a better
491 * decision in this case.
492 */
493 if (sk->sk_cgrp) {
494 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
495 css_get(&sk->sk_cgrp->memcg->css);
496 return;
497 }
498
499 rcu_read_lock();
500 memcg = mem_cgroup_from_task(current);
501 cg_proto = sk->sk_prot->proto_cgroup(memcg);
502 if (!mem_cgroup_is_root(memcg) &&
503 memcg_proto_active(cg_proto) &&
504 css_tryget_online(&memcg->css)) {
505 sk->sk_cgrp = cg_proto;
506 }
507 rcu_read_unlock();
508 }
509 }
510 EXPORT_SYMBOL(sock_update_memcg);
511
512 void sock_release_memcg(struct sock *sk)
513 {
514 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
515 struct mem_cgroup *memcg;
516 WARN_ON(!sk->sk_cgrp->memcg);
517 memcg = sk->sk_cgrp->memcg;
518 css_put(&sk->sk_cgrp->memcg->css);
519 }
520 }
521
522 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
523 {
524 if (!memcg || mem_cgroup_is_root(memcg))
525 return NULL;
526
527 return &memcg->tcp_mem;
528 }
529 EXPORT_SYMBOL(tcp_proto_cgroup);
530
531 #endif
532
533 #ifdef CONFIG_MEMCG_KMEM
534 /*
535 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
536 * The main reason for not using cgroup id for this:
537 * this works better in sparse environments, where we have a lot of memcgs,
538 * but only a few kmem-limited. Or also, if we have, for instance, 200
539 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
540 * 200 entry array for that.
541 *
542 * The current size of the caches array is stored in memcg_nr_cache_ids. It
543 * will double each time we have to increase it.
544 */
545 static DEFINE_IDA(memcg_cache_ida);
546 int memcg_nr_cache_ids;
547
548 /* Protects memcg_nr_cache_ids */
549 static DECLARE_RWSEM(memcg_cache_ids_sem);
550
551 void memcg_get_cache_ids(void)
552 {
553 down_read(&memcg_cache_ids_sem);
554 }
555
556 void memcg_put_cache_ids(void)
557 {
558 up_read(&memcg_cache_ids_sem);
559 }
560
561 /*
562 * MIN_SIZE is different than 1, because we would like to avoid going through
563 * the alloc/free process all the time. In a small machine, 4 kmem-limited
564 * cgroups is a reasonable guess. In the future, it could be a parameter or
565 * tunable, but that is strictly not necessary.
566 *
567 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
568 * this constant directly from cgroup, but it is understandable that this is
569 * better kept as an internal representation in cgroup.c. In any case, the
570 * cgrp_id space is not getting any smaller, and we don't have to necessarily
571 * increase ours as well if it increases.
572 */
573 #define MEMCG_CACHES_MIN_SIZE 4
574 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
575
576 /*
577 * A lot of the calls to the cache allocation functions are expected to be
578 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
579 * conditional to this static branch, we'll have to allow modules that does
580 * kmem_cache_alloc and the such to see this symbol as well
581 */
582 struct static_key memcg_kmem_enabled_key;
583 EXPORT_SYMBOL(memcg_kmem_enabled_key);
584
585 #endif /* CONFIG_MEMCG_KMEM */
586
587 static struct mem_cgroup_per_zone *
588 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
589 {
590 int nid = zone_to_nid(zone);
591 int zid = zone_idx(zone);
592
593 return &memcg->nodeinfo[nid]->zoneinfo[zid];
594 }
595
596 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
597 {
598 return &memcg->css;
599 }
600
601 /**
602 * mem_cgroup_css_from_page - css of the memcg associated with a page
603 * @page: page of interest
604 *
605 * If memcg is bound to the default hierarchy, css of the memcg associated
606 * with @page is returned. The returned css remains associated with @page
607 * until it is released.
608 *
609 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
610 * is returned.
611 *
612 * XXX: The above description of behavior on the default hierarchy isn't
613 * strictly true yet as replace_page_cache_page() can modify the
614 * association before @page is released even on the default hierarchy;
615 * however, the current and planned usages don't mix the the two functions
616 * and replace_page_cache_page() will soon be updated to make the invariant
617 * actually true.
618 */
619 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
620 {
621 struct mem_cgroup *memcg;
622
623 rcu_read_lock();
624
625 memcg = page->mem_cgroup;
626
627 if (!memcg || !cgroup_on_dfl(memcg->css.cgroup))
628 memcg = root_mem_cgroup;
629
630 rcu_read_unlock();
631 return &memcg->css;
632 }
633
634 static struct mem_cgroup_per_zone *
635 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
636 {
637 int nid = page_to_nid(page);
638 int zid = page_zonenum(page);
639
640 return &memcg->nodeinfo[nid]->zoneinfo[zid];
641 }
642
643 static struct mem_cgroup_tree_per_zone *
644 soft_limit_tree_node_zone(int nid, int zid)
645 {
646 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
647 }
648
649 static struct mem_cgroup_tree_per_zone *
650 soft_limit_tree_from_page(struct page *page)
651 {
652 int nid = page_to_nid(page);
653 int zid = page_zonenum(page);
654
655 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
656 }
657
658 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
659 struct mem_cgroup_tree_per_zone *mctz,
660 unsigned long new_usage_in_excess)
661 {
662 struct rb_node **p = &mctz->rb_root.rb_node;
663 struct rb_node *parent = NULL;
664 struct mem_cgroup_per_zone *mz_node;
665
666 if (mz->on_tree)
667 return;
668
669 mz->usage_in_excess = new_usage_in_excess;
670 if (!mz->usage_in_excess)
671 return;
672 while (*p) {
673 parent = *p;
674 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
675 tree_node);
676 if (mz->usage_in_excess < mz_node->usage_in_excess)
677 p = &(*p)->rb_left;
678 /*
679 * We can't avoid mem cgroups that are over their soft
680 * limit by the same amount
681 */
682 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
683 p = &(*p)->rb_right;
684 }
685 rb_link_node(&mz->tree_node, parent, p);
686 rb_insert_color(&mz->tree_node, &mctz->rb_root);
687 mz->on_tree = true;
688 }
689
690 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
691 struct mem_cgroup_tree_per_zone *mctz)
692 {
693 if (!mz->on_tree)
694 return;
695 rb_erase(&mz->tree_node, &mctz->rb_root);
696 mz->on_tree = false;
697 }
698
699 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
700 struct mem_cgroup_tree_per_zone *mctz)
701 {
702 unsigned long flags;
703
704 spin_lock_irqsave(&mctz->lock, flags);
705 __mem_cgroup_remove_exceeded(mz, mctz);
706 spin_unlock_irqrestore(&mctz->lock, flags);
707 }
708
709 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
710 {
711 unsigned long nr_pages = page_counter_read(&memcg->memory);
712 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
713 unsigned long excess = 0;
714
715 if (nr_pages > soft_limit)
716 excess = nr_pages - soft_limit;
717
718 return excess;
719 }
720
721 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
722 {
723 unsigned long excess;
724 struct mem_cgroup_per_zone *mz;
725 struct mem_cgroup_tree_per_zone *mctz;
726
727 mctz = soft_limit_tree_from_page(page);
728 /*
729 * Necessary to update all ancestors when hierarchy is used.
730 * because their event counter is not touched.
731 */
732 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
733 mz = mem_cgroup_page_zoneinfo(memcg, page);
734 excess = soft_limit_excess(memcg);
735 /*
736 * We have to update the tree if mz is on RB-tree or
737 * mem is over its softlimit.
738 */
739 if (excess || mz->on_tree) {
740 unsigned long flags;
741
742 spin_lock_irqsave(&mctz->lock, flags);
743 /* if on-tree, remove it */
744 if (mz->on_tree)
745 __mem_cgroup_remove_exceeded(mz, mctz);
746 /*
747 * Insert again. mz->usage_in_excess will be updated.
748 * If excess is 0, no tree ops.
749 */
750 __mem_cgroup_insert_exceeded(mz, mctz, excess);
751 spin_unlock_irqrestore(&mctz->lock, flags);
752 }
753 }
754 }
755
756 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
757 {
758 struct mem_cgroup_tree_per_zone *mctz;
759 struct mem_cgroup_per_zone *mz;
760 int nid, zid;
761
762 for_each_node(nid) {
763 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
764 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
765 mctz = soft_limit_tree_node_zone(nid, zid);
766 mem_cgroup_remove_exceeded(mz, mctz);
767 }
768 }
769 }
770
771 static struct mem_cgroup_per_zone *
772 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
773 {
774 struct rb_node *rightmost = NULL;
775 struct mem_cgroup_per_zone *mz;
776
777 retry:
778 mz = NULL;
779 rightmost = rb_last(&mctz->rb_root);
780 if (!rightmost)
781 goto done; /* Nothing to reclaim from */
782
783 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
784 /*
785 * Remove the node now but someone else can add it back,
786 * we will to add it back at the end of reclaim to its correct
787 * position in the tree.
788 */
789 __mem_cgroup_remove_exceeded(mz, mctz);
790 if (!soft_limit_excess(mz->memcg) ||
791 !css_tryget_online(&mz->memcg->css))
792 goto retry;
793 done:
794 return mz;
795 }
796
797 static struct mem_cgroup_per_zone *
798 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
799 {
800 struct mem_cgroup_per_zone *mz;
801
802 spin_lock_irq(&mctz->lock);
803 mz = __mem_cgroup_largest_soft_limit_node(mctz);
804 spin_unlock_irq(&mctz->lock);
805 return mz;
806 }
807
808 /*
809 * Implementation Note: reading percpu statistics for memcg.
810 *
811 * Both of vmstat[] and percpu_counter has threshold and do periodic
812 * synchronization to implement "quick" read. There are trade-off between
813 * reading cost and precision of value. Then, we may have a chance to implement
814 * a periodic synchronizion of counter in memcg's counter.
815 *
816 * But this _read() function is used for user interface now. The user accounts
817 * memory usage by memory cgroup and he _always_ requires exact value because
818 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
819 * have to visit all online cpus and make sum. So, for now, unnecessary
820 * synchronization is not implemented. (just implemented for cpu hotplug)
821 *
822 * If there are kernel internal actions which can make use of some not-exact
823 * value, and reading all cpu value can be performance bottleneck in some
824 * common workload, threashold and synchonization as vmstat[] should be
825 * implemented.
826 */
827 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
828 enum mem_cgroup_stat_index idx)
829 {
830 long val = 0;
831 int cpu;
832
833 for_each_possible_cpu(cpu)
834 val += per_cpu(memcg->stat->count[idx], cpu);
835 return val;
836 }
837
838 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
839 enum mem_cgroup_events_index idx)
840 {
841 unsigned long val = 0;
842 int cpu;
843
844 for_each_possible_cpu(cpu)
845 val += per_cpu(memcg->stat->events[idx], cpu);
846 return val;
847 }
848
849 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
850 struct page *page,
851 int nr_pages)
852 {
853 /*
854 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
855 * counted as CACHE even if it's on ANON LRU.
856 */
857 if (PageAnon(page))
858 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
859 nr_pages);
860 else
861 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
862 nr_pages);
863
864 if (PageTransHuge(page))
865 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
866 nr_pages);
867
868 /* pagein of a big page is an event. So, ignore page size */
869 if (nr_pages > 0)
870 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
871 else {
872 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
873 nr_pages = -nr_pages; /* for event */
874 }
875
876 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
877 }
878
879 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
880 {
881 struct mem_cgroup_per_zone *mz;
882
883 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
884 return mz->lru_size[lru];
885 }
886
887 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
888 int nid,
889 unsigned int lru_mask)
890 {
891 unsigned long nr = 0;
892 int zid;
893
894 VM_BUG_ON((unsigned)nid >= nr_node_ids);
895
896 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
897 struct mem_cgroup_per_zone *mz;
898 enum lru_list lru;
899
900 for_each_lru(lru) {
901 if (!(BIT(lru) & lru_mask))
902 continue;
903 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
904 nr += mz->lru_size[lru];
905 }
906 }
907 return nr;
908 }
909
910 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
911 unsigned int lru_mask)
912 {
913 unsigned long nr = 0;
914 int nid;
915
916 for_each_node_state(nid, N_MEMORY)
917 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
918 return nr;
919 }
920
921 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
922 enum mem_cgroup_events_target target)
923 {
924 unsigned long val, next;
925
926 val = __this_cpu_read(memcg->stat->nr_page_events);
927 next = __this_cpu_read(memcg->stat->targets[target]);
928 /* from time_after() in jiffies.h */
929 if ((long)next - (long)val < 0) {
930 switch (target) {
931 case MEM_CGROUP_TARGET_THRESH:
932 next = val + THRESHOLDS_EVENTS_TARGET;
933 break;
934 case MEM_CGROUP_TARGET_SOFTLIMIT:
935 next = val + SOFTLIMIT_EVENTS_TARGET;
936 break;
937 case MEM_CGROUP_TARGET_NUMAINFO:
938 next = val + NUMAINFO_EVENTS_TARGET;
939 break;
940 default:
941 break;
942 }
943 __this_cpu_write(memcg->stat->targets[target], next);
944 return true;
945 }
946 return false;
947 }
948
949 /*
950 * Check events in order.
951 *
952 */
953 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
954 {
955 /* threshold event is triggered in finer grain than soft limit */
956 if (unlikely(mem_cgroup_event_ratelimit(memcg,
957 MEM_CGROUP_TARGET_THRESH))) {
958 bool do_softlimit;
959 bool do_numainfo __maybe_unused;
960
961 do_softlimit = mem_cgroup_event_ratelimit(memcg,
962 MEM_CGROUP_TARGET_SOFTLIMIT);
963 #if MAX_NUMNODES > 1
964 do_numainfo = mem_cgroup_event_ratelimit(memcg,
965 MEM_CGROUP_TARGET_NUMAINFO);
966 #endif
967 mem_cgroup_threshold(memcg);
968 if (unlikely(do_softlimit))
969 mem_cgroup_update_tree(memcg, page);
970 #if MAX_NUMNODES > 1
971 if (unlikely(do_numainfo))
972 atomic_inc(&memcg->numainfo_events);
973 #endif
974 }
975 }
976
977 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
978 {
979 /*
980 * mm_update_next_owner() may clear mm->owner to NULL
981 * if it races with swapoff, page migration, etc.
982 * So this can be called with p == NULL.
983 */
984 if (unlikely(!p))
985 return NULL;
986
987 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
988 }
989
990 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
991 {
992 struct mem_cgroup *memcg = NULL;
993
994 rcu_read_lock();
995 do {
996 /*
997 * Page cache insertions can happen withou an
998 * actual mm context, e.g. during disk probing
999 * on boot, loopback IO, acct() writes etc.
1000 */
1001 if (unlikely(!mm))
1002 memcg = root_mem_cgroup;
1003 else {
1004 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1005 if (unlikely(!memcg))
1006 memcg = root_mem_cgroup;
1007 }
1008 } while (!css_tryget_online(&memcg->css));
1009 rcu_read_unlock();
1010 return memcg;
1011 }
1012
1013 /**
1014 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1015 * @root: hierarchy root
1016 * @prev: previously returned memcg, NULL on first invocation
1017 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1018 *
1019 * Returns references to children of the hierarchy below @root, or
1020 * @root itself, or %NULL after a full round-trip.
1021 *
1022 * Caller must pass the return value in @prev on subsequent
1023 * invocations for reference counting, or use mem_cgroup_iter_break()
1024 * to cancel a hierarchy walk before the round-trip is complete.
1025 *
1026 * Reclaimers can specify a zone and a priority level in @reclaim to
1027 * divide up the memcgs in the hierarchy among all concurrent
1028 * reclaimers operating on the same zone and priority.
1029 */
1030 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1031 struct mem_cgroup *prev,
1032 struct mem_cgroup_reclaim_cookie *reclaim)
1033 {
1034 struct reclaim_iter *uninitialized_var(iter);
1035 struct cgroup_subsys_state *css = NULL;
1036 struct mem_cgroup *memcg = NULL;
1037 struct mem_cgroup *pos = NULL;
1038
1039 if (mem_cgroup_disabled())
1040 return NULL;
1041
1042 if (!root)
1043 root = root_mem_cgroup;
1044
1045 if (prev && !reclaim)
1046 pos = prev;
1047
1048 if (!root->use_hierarchy && root != root_mem_cgroup) {
1049 if (prev)
1050 goto out;
1051 return root;
1052 }
1053
1054 rcu_read_lock();
1055
1056 if (reclaim) {
1057 struct mem_cgroup_per_zone *mz;
1058
1059 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1060 iter = &mz->iter[reclaim->priority];
1061
1062 if (prev && reclaim->generation != iter->generation)
1063 goto out_unlock;
1064
1065 do {
1066 pos = READ_ONCE(iter->position);
1067 /*
1068 * A racing update may change the position and
1069 * put the last reference, hence css_tryget(),
1070 * or retry to see the updated position.
1071 */
1072 } while (pos && !css_tryget(&pos->css));
1073 }
1074
1075 if (pos)
1076 css = &pos->css;
1077
1078 for (;;) {
1079 css = css_next_descendant_pre(css, &root->css);
1080 if (!css) {
1081 /*
1082 * Reclaimers share the hierarchy walk, and a
1083 * new one might jump in right at the end of
1084 * the hierarchy - make sure they see at least
1085 * one group and restart from the beginning.
1086 */
1087 if (!prev)
1088 continue;
1089 break;
1090 }
1091
1092 /*
1093 * Verify the css and acquire a reference. The root
1094 * is provided by the caller, so we know it's alive
1095 * and kicking, and don't take an extra reference.
1096 */
1097 memcg = mem_cgroup_from_css(css);
1098
1099 if (css == &root->css)
1100 break;
1101
1102 if (css_tryget(css)) {
1103 /*
1104 * Make sure the memcg is initialized:
1105 * mem_cgroup_css_online() orders the the
1106 * initialization against setting the flag.
1107 */
1108 if (smp_load_acquire(&memcg->initialized))
1109 break;
1110
1111 css_put(css);
1112 }
1113
1114 memcg = NULL;
1115 }
1116
1117 if (reclaim) {
1118 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1119 if (memcg)
1120 css_get(&memcg->css);
1121 if (pos)
1122 css_put(&pos->css);
1123 }
1124
1125 /*
1126 * pairs with css_tryget when dereferencing iter->position
1127 * above.
1128 */
1129 if (pos)
1130 css_put(&pos->css);
1131
1132 if (!memcg)
1133 iter->generation++;
1134 else if (!prev)
1135 reclaim->generation = iter->generation;
1136 }
1137
1138 out_unlock:
1139 rcu_read_unlock();
1140 out:
1141 if (prev && prev != root)
1142 css_put(&prev->css);
1143
1144 return memcg;
1145 }
1146
1147 /**
1148 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1149 * @root: hierarchy root
1150 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1151 */
1152 void mem_cgroup_iter_break(struct mem_cgroup *root,
1153 struct mem_cgroup *prev)
1154 {
1155 if (!root)
1156 root = root_mem_cgroup;
1157 if (prev && prev != root)
1158 css_put(&prev->css);
1159 }
1160
1161 /*
1162 * Iteration constructs for visiting all cgroups (under a tree). If
1163 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1164 * be used for reference counting.
1165 */
1166 #define for_each_mem_cgroup_tree(iter, root) \
1167 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1168 iter != NULL; \
1169 iter = mem_cgroup_iter(root, iter, NULL))
1170
1171 #define for_each_mem_cgroup(iter) \
1172 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1173 iter != NULL; \
1174 iter = mem_cgroup_iter(NULL, iter, NULL))
1175
1176 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1177 {
1178 struct mem_cgroup *memcg;
1179
1180 rcu_read_lock();
1181 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1182 if (unlikely(!memcg))
1183 goto out;
1184
1185 switch (idx) {
1186 case PGFAULT:
1187 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1188 break;
1189 case PGMAJFAULT:
1190 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1191 break;
1192 default:
1193 BUG();
1194 }
1195 out:
1196 rcu_read_unlock();
1197 }
1198 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1199
1200 /**
1201 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1202 * @zone: zone of the wanted lruvec
1203 * @memcg: memcg of the wanted lruvec
1204 *
1205 * Returns the lru list vector holding pages for the given @zone and
1206 * @mem. This can be the global zone lruvec, if the memory controller
1207 * is disabled.
1208 */
1209 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1210 struct mem_cgroup *memcg)
1211 {
1212 struct mem_cgroup_per_zone *mz;
1213 struct lruvec *lruvec;
1214
1215 if (mem_cgroup_disabled()) {
1216 lruvec = &zone->lruvec;
1217 goto out;
1218 }
1219
1220 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1221 lruvec = &mz->lruvec;
1222 out:
1223 /*
1224 * Since a node can be onlined after the mem_cgroup was created,
1225 * we have to be prepared to initialize lruvec->zone here;
1226 * and if offlined then reonlined, we need to reinitialize it.
1227 */
1228 if (unlikely(lruvec->zone != zone))
1229 lruvec->zone = zone;
1230 return lruvec;
1231 }
1232
1233 /**
1234 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1235 * @page: the page
1236 * @zone: zone of the page
1237 *
1238 * This function is only safe when following the LRU page isolation
1239 * and putback protocol: the LRU lock must be held, and the page must
1240 * either be PageLRU() or the caller must have isolated/allocated it.
1241 */
1242 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1243 {
1244 struct mem_cgroup_per_zone *mz;
1245 struct mem_cgroup *memcg;
1246 struct lruvec *lruvec;
1247
1248 if (mem_cgroup_disabled()) {
1249 lruvec = &zone->lruvec;
1250 goto out;
1251 }
1252
1253 memcg = page->mem_cgroup;
1254 /*
1255 * Swapcache readahead pages are added to the LRU - and
1256 * possibly migrated - before they are charged.
1257 */
1258 if (!memcg)
1259 memcg = root_mem_cgroup;
1260
1261 mz = mem_cgroup_page_zoneinfo(memcg, page);
1262 lruvec = &mz->lruvec;
1263 out:
1264 /*
1265 * Since a node can be onlined after the mem_cgroup was created,
1266 * we have to be prepared to initialize lruvec->zone here;
1267 * and if offlined then reonlined, we need to reinitialize it.
1268 */
1269 if (unlikely(lruvec->zone != zone))
1270 lruvec->zone = zone;
1271 return lruvec;
1272 }
1273
1274 /**
1275 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1276 * @lruvec: mem_cgroup per zone lru vector
1277 * @lru: index of lru list the page is sitting on
1278 * @nr_pages: positive when adding or negative when removing
1279 *
1280 * This function must be called when a page is added to or removed from an
1281 * lru list.
1282 */
1283 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1284 int nr_pages)
1285 {
1286 struct mem_cgroup_per_zone *mz;
1287 unsigned long *lru_size;
1288
1289 if (mem_cgroup_disabled())
1290 return;
1291
1292 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1293 lru_size = mz->lru_size + lru;
1294 *lru_size += nr_pages;
1295 VM_BUG_ON((long)(*lru_size) < 0);
1296 }
1297
1298 bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1299 {
1300 if (root == memcg)
1301 return true;
1302 if (!root->use_hierarchy)
1303 return false;
1304 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1305 }
1306
1307 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1308 {
1309 struct mem_cgroup *task_memcg;
1310 struct task_struct *p;
1311 bool ret;
1312
1313 p = find_lock_task_mm(task);
1314 if (p) {
1315 task_memcg = get_mem_cgroup_from_mm(p->mm);
1316 task_unlock(p);
1317 } else {
1318 /*
1319 * All threads may have already detached their mm's, but the oom
1320 * killer still needs to detect if they have already been oom
1321 * killed to prevent needlessly killing additional tasks.
1322 */
1323 rcu_read_lock();
1324 task_memcg = mem_cgroup_from_task(task);
1325 css_get(&task_memcg->css);
1326 rcu_read_unlock();
1327 }
1328 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1329 css_put(&task_memcg->css);
1330 return ret;
1331 }
1332
1333 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1334 {
1335 unsigned long inactive_ratio;
1336 unsigned long inactive;
1337 unsigned long active;
1338 unsigned long gb;
1339
1340 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1341 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1342
1343 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1344 if (gb)
1345 inactive_ratio = int_sqrt(10 * gb);
1346 else
1347 inactive_ratio = 1;
1348
1349 return inactive * inactive_ratio < active;
1350 }
1351
1352 bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
1353 {
1354 struct mem_cgroup_per_zone *mz;
1355 struct mem_cgroup *memcg;
1356
1357 if (mem_cgroup_disabled())
1358 return true;
1359
1360 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1361 memcg = mz->memcg;
1362
1363 return !!(memcg->css.flags & CSS_ONLINE);
1364 }
1365
1366 #define mem_cgroup_from_counter(counter, member) \
1367 container_of(counter, struct mem_cgroup, member)
1368
1369 /**
1370 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1371 * @memcg: the memory cgroup
1372 *
1373 * Returns the maximum amount of memory @mem can be charged with, in
1374 * pages.
1375 */
1376 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1377 {
1378 unsigned long margin = 0;
1379 unsigned long count;
1380 unsigned long limit;
1381
1382 count = page_counter_read(&memcg->memory);
1383 limit = READ_ONCE(memcg->memory.limit);
1384 if (count < limit)
1385 margin = limit - count;
1386
1387 if (do_swap_account) {
1388 count = page_counter_read(&memcg->memsw);
1389 limit = READ_ONCE(memcg->memsw.limit);
1390 if (count <= limit)
1391 margin = min(margin, limit - count);
1392 }
1393
1394 return margin;
1395 }
1396
1397 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1398 {
1399 /* root ? */
1400 if (mem_cgroup_disabled() || !memcg->css.parent)
1401 return vm_swappiness;
1402
1403 return memcg->swappiness;
1404 }
1405
1406 /*
1407 * A routine for checking "mem" is under move_account() or not.
1408 *
1409 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1410 * moving cgroups. This is for waiting at high-memory pressure
1411 * caused by "move".
1412 */
1413 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1414 {
1415 struct mem_cgroup *from;
1416 struct mem_cgroup *to;
1417 bool ret = false;
1418 /*
1419 * Unlike task_move routines, we access mc.to, mc.from not under
1420 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1421 */
1422 spin_lock(&mc.lock);
1423 from = mc.from;
1424 to = mc.to;
1425 if (!from)
1426 goto unlock;
1427
1428 ret = mem_cgroup_is_descendant(from, memcg) ||
1429 mem_cgroup_is_descendant(to, memcg);
1430 unlock:
1431 spin_unlock(&mc.lock);
1432 return ret;
1433 }
1434
1435 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1436 {
1437 if (mc.moving_task && current != mc.moving_task) {
1438 if (mem_cgroup_under_move(memcg)) {
1439 DEFINE_WAIT(wait);
1440 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1441 /* moving charge context might have finished. */
1442 if (mc.moving_task)
1443 schedule();
1444 finish_wait(&mc.waitq, &wait);
1445 return true;
1446 }
1447 }
1448 return false;
1449 }
1450
1451 #define K(x) ((x) << (PAGE_SHIFT-10))
1452 /**
1453 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1454 * @memcg: The memory cgroup that went over limit
1455 * @p: Task that is going to be killed
1456 *
1457 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1458 * enabled
1459 */
1460 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1461 {
1462 /* oom_info_lock ensures that parallel ooms do not interleave */
1463 static DEFINE_MUTEX(oom_info_lock);
1464 struct mem_cgroup *iter;
1465 unsigned int i;
1466
1467 mutex_lock(&oom_info_lock);
1468 rcu_read_lock();
1469
1470 if (p) {
1471 pr_info("Task in ");
1472 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1473 pr_cont(" killed as a result of limit of ");
1474 } else {
1475 pr_info("Memory limit reached of cgroup ");
1476 }
1477
1478 pr_cont_cgroup_path(memcg->css.cgroup);
1479 pr_cont("\n");
1480
1481 rcu_read_unlock();
1482
1483 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1484 K((u64)page_counter_read(&memcg->memory)),
1485 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1486 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1487 K((u64)page_counter_read(&memcg->memsw)),
1488 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1489 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1490 K((u64)page_counter_read(&memcg->kmem)),
1491 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1492
1493 for_each_mem_cgroup_tree(iter, memcg) {
1494 pr_info("Memory cgroup stats for ");
1495 pr_cont_cgroup_path(iter->css.cgroup);
1496 pr_cont(":");
1497
1498 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1499 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1500 continue;
1501 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1502 K(mem_cgroup_read_stat(iter, i)));
1503 }
1504
1505 for (i = 0; i < NR_LRU_LISTS; i++)
1506 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1507 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1508
1509 pr_cont("\n");
1510 }
1511 mutex_unlock(&oom_info_lock);
1512 }
1513
1514 /*
1515 * This function returns the number of memcg under hierarchy tree. Returns
1516 * 1(self count) if no children.
1517 */
1518 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1519 {
1520 int num = 0;
1521 struct mem_cgroup *iter;
1522
1523 for_each_mem_cgroup_tree(iter, memcg)
1524 num++;
1525 return num;
1526 }
1527
1528 /*
1529 * Return the memory (and swap, if configured) limit for a memcg.
1530 */
1531 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1532 {
1533 unsigned long limit;
1534
1535 limit = memcg->memory.limit;
1536 if (mem_cgroup_swappiness(memcg)) {
1537 unsigned long memsw_limit;
1538
1539 memsw_limit = memcg->memsw.limit;
1540 limit = min(limit + total_swap_pages, memsw_limit);
1541 }
1542 return limit;
1543 }
1544
1545 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1546 int order)
1547 {
1548 struct mem_cgroup *iter;
1549 unsigned long chosen_points = 0;
1550 unsigned long totalpages;
1551 unsigned int points = 0;
1552 struct task_struct *chosen = NULL;
1553
1554 mutex_lock(&oom_lock);
1555
1556 /*
1557 * If current has a pending SIGKILL or is exiting, then automatically
1558 * select it. The goal is to allow it to allocate so that it may
1559 * quickly exit and free its memory.
1560 */
1561 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1562 mark_oom_victim(current);
1563 goto unlock;
1564 }
1565
1566 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL, memcg);
1567 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1568 for_each_mem_cgroup_tree(iter, memcg) {
1569 struct css_task_iter it;
1570 struct task_struct *task;
1571
1572 css_task_iter_start(&iter->css, &it);
1573 while ((task = css_task_iter_next(&it))) {
1574 switch (oom_scan_process_thread(task, totalpages, NULL,
1575 false)) {
1576 case OOM_SCAN_SELECT:
1577 if (chosen)
1578 put_task_struct(chosen);
1579 chosen = task;
1580 chosen_points = ULONG_MAX;
1581 get_task_struct(chosen);
1582 /* fall through */
1583 case OOM_SCAN_CONTINUE:
1584 continue;
1585 case OOM_SCAN_ABORT:
1586 css_task_iter_end(&it);
1587 mem_cgroup_iter_break(memcg, iter);
1588 if (chosen)
1589 put_task_struct(chosen);
1590 goto unlock;
1591 case OOM_SCAN_OK:
1592 break;
1593 };
1594 points = oom_badness(task, memcg, NULL, totalpages);
1595 if (!points || points < chosen_points)
1596 continue;
1597 /* Prefer thread group leaders for display purposes */
1598 if (points == chosen_points &&
1599 thread_group_leader(chosen))
1600 continue;
1601
1602 if (chosen)
1603 put_task_struct(chosen);
1604 chosen = task;
1605 chosen_points = points;
1606 get_task_struct(chosen);
1607 }
1608 css_task_iter_end(&it);
1609 }
1610
1611 if (chosen) {
1612 points = chosen_points * 1000 / totalpages;
1613 oom_kill_process(chosen, gfp_mask, order, points, totalpages,
1614 memcg, NULL, "Memory cgroup out of memory");
1615 }
1616 unlock:
1617 mutex_unlock(&oom_lock);
1618 }
1619
1620 #if MAX_NUMNODES > 1
1621
1622 /**
1623 * test_mem_cgroup_node_reclaimable
1624 * @memcg: the target memcg
1625 * @nid: the node ID to be checked.
1626 * @noswap : specify true here if the user wants flle only information.
1627 *
1628 * This function returns whether the specified memcg contains any
1629 * reclaimable pages on a node. Returns true if there are any reclaimable
1630 * pages in the node.
1631 */
1632 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1633 int nid, bool noswap)
1634 {
1635 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1636 return true;
1637 if (noswap || !total_swap_pages)
1638 return false;
1639 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1640 return true;
1641 return false;
1642
1643 }
1644
1645 /*
1646 * Always updating the nodemask is not very good - even if we have an empty
1647 * list or the wrong list here, we can start from some node and traverse all
1648 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1649 *
1650 */
1651 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1652 {
1653 int nid;
1654 /*
1655 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1656 * pagein/pageout changes since the last update.
1657 */
1658 if (!atomic_read(&memcg->numainfo_events))
1659 return;
1660 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1661 return;
1662
1663 /* make a nodemask where this memcg uses memory from */
1664 memcg->scan_nodes = node_states[N_MEMORY];
1665
1666 for_each_node_mask(nid, node_states[N_MEMORY]) {
1667
1668 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1669 node_clear(nid, memcg->scan_nodes);
1670 }
1671
1672 atomic_set(&memcg->numainfo_events, 0);
1673 atomic_set(&memcg->numainfo_updating, 0);
1674 }
1675
1676 /*
1677 * Selecting a node where we start reclaim from. Because what we need is just
1678 * reducing usage counter, start from anywhere is O,K. Considering
1679 * memory reclaim from current node, there are pros. and cons.
1680 *
1681 * Freeing memory from current node means freeing memory from a node which
1682 * we'll use or we've used. So, it may make LRU bad. And if several threads
1683 * hit limits, it will see a contention on a node. But freeing from remote
1684 * node means more costs for memory reclaim because of memory latency.
1685 *
1686 * Now, we use round-robin. Better algorithm is welcomed.
1687 */
1688 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1689 {
1690 int node;
1691
1692 mem_cgroup_may_update_nodemask(memcg);
1693 node = memcg->last_scanned_node;
1694
1695 node = next_node(node, memcg->scan_nodes);
1696 if (node == MAX_NUMNODES)
1697 node = first_node(memcg->scan_nodes);
1698 /*
1699 * We call this when we hit limit, not when pages are added to LRU.
1700 * No LRU may hold pages because all pages are UNEVICTABLE or
1701 * memcg is too small and all pages are not on LRU. In that case,
1702 * we use curret node.
1703 */
1704 if (unlikely(node == MAX_NUMNODES))
1705 node = numa_node_id();
1706
1707 memcg->last_scanned_node = node;
1708 return node;
1709 }
1710 #else
1711 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1712 {
1713 return 0;
1714 }
1715 #endif
1716
1717 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1718 struct zone *zone,
1719 gfp_t gfp_mask,
1720 unsigned long *total_scanned)
1721 {
1722 struct mem_cgroup *victim = NULL;
1723 int total = 0;
1724 int loop = 0;
1725 unsigned long excess;
1726 unsigned long nr_scanned;
1727 struct mem_cgroup_reclaim_cookie reclaim = {
1728 .zone = zone,
1729 .priority = 0,
1730 };
1731
1732 excess = soft_limit_excess(root_memcg);
1733
1734 while (1) {
1735 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1736 if (!victim) {
1737 loop++;
1738 if (loop >= 2) {
1739 /*
1740 * If we have not been able to reclaim
1741 * anything, it might because there are
1742 * no reclaimable pages under this hierarchy
1743 */
1744 if (!total)
1745 break;
1746 /*
1747 * We want to do more targeted reclaim.
1748 * excess >> 2 is not to excessive so as to
1749 * reclaim too much, nor too less that we keep
1750 * coming back to reclaim from this cgroup
1751 */
1752 if (total >= (excess >> 2) ||
1753 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1754 break;
1755 }
1756 continue;
1757 }
1758 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1759 zone, &nr_scanned);
1760 *total_scanned += nr_scanned;
1761 if (!soft_limit_excess(root_memcg))
1762 break;
1763 }
1764 mem_cgroup_iter_break(root_memcg, victim);
1765 return total;
1766 }
1767
1768 #ifdef CONFIG_LOCKDEP
1769 static struct lockdep_map memcg_oom_lock_dep_map = {
1770 .name = "memcg_oom_lock",
1771 };
1772 #endif
1773
1774 static DEFINE_SPINLOCK(memcg_oom_lock);
1775
1776 /*
1777 * Check OOM-Killer is already running under our hierarchy.
1778 * If someone is running, return false.
1779 */
1780 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1781 {
1782 struct mem_cgroup *iter, *failed = NULL;
1783
1784 spin_lock(&memcg_oom_lock);
1785
1786 for_each_mem_cgroup_tree(iter, memcg) {
1787 if (iter->oom_lock) {
1788 /*
1789 * this subtree of our hierarchy is already locked
1790 * so we cannot give a lock.
1791 */
1792 failed = iter;
1793 mem_cgroup_iter_break(memcg, iter);
1794 break;
1795 } else
1796 iter->oom_lock = true;
1797 }
1798
1799 if (failed) {
1800 /*
1801 * OK, we failed to lock the whole subtree so we have
1802 * to clean up what we set up to the failing subtree
1803 */
1804 for_each_mem_cgroup_tree(iter, memcg) {
1805 if (iter == failed) {
1806 mem_cgroup_iter_break(memcg, iter);
1807 break;
1808 }
1809 iter->oom_lock = false;
1810 }
1811 } else
1812 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1813
1814 spin_unlock(&memcg_oom_lock);
1815
1816 return !failed;
1817 }
1818
1819 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1820 {
1821 struct mem_cgroup *iter;
1822
1823 spin_lock(&memcg_oom_lock);
1824 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1825 for_each_mem_cgroup_tree(iter, memcg)
1826 iter->oom_lock = false;
1827 spin_unlock(&memcg_oom_lock);
1828 }
1829
1830 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1831 {
1832 struct mem_cgroup *iter;
1833
1834 spin_lock(&memcg_oom_lock);
1835 for_each_mem_cgroup_tree(iter, memcg)
1836 iter->under_oom++;
1837 spin_unlock(&memcg_oom_lock);
1838 }
1839
1840 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1841 {
1842 struct mem_cgroup *iter;
1843
1844 /*
1845 * When a new child is created while the hierarchy is under oom,
1846 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1847 */
1848 spin_lock(&memcg_oom_lock);
1849 for_each_mem_cgroup_tree(iter, memcg)
1850 if (iter->under_oom > 0)
1851 iter->under_oom--;
1852 spin_unlock(&memcg_oom_lock);
1853 }
1854
1855 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1856
1857 struct oom_wait_info {
1858 struct mem_cgroup *memcg;
1859 wait_queue_t wait;
1860 };
1861
1862 static int memcg_oom_wake_function(wait_queue_t *wait,
1863 unsigned mode, int sync, void *arg)
1864 {
1865 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1866 struct mem_cgroup *oom_wait_memcg;
1867 struct oom_wait_info *oom_wait_info;
1868
1869 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1870 oom_wait_memcg = oom_wait_info->memcg;
1871
1872 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1873 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1874 return 0;
1875 return autoremove_wake_function(wait, mode, sync, arg);
1876 }
1877
1878 static void memcg_oom_recover(struct mem_cgroup *memcg)
1879 {
1880 /*
1881 * For the following lockless ->under_oom test, the only required
1882 * guarantee is that it must see the state asserted by an OOM when
1883 * this function is called as a result of userland actions
1884 * triggered by the notification of the OOM. This is trivially
1885 * achieved by invoking mem_cgroup_mark_under_oom() before
1886 * triggering notification.
1887 */
1888 if (memcg && memcg->under_oom)
1889 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1890 }
1891
1892 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1893 {
1894 if (!current->memcg_oom.may_oom)
1895 return;
1896 /*
1897 * We are in the middle of the charge context here, so we
1898 * don't want to block when potentially sitting on a callstack
1899 * that holds all kinds of filesystem and mm locks.
1900 *
1901 * Also, the caller may handle a failed allocation gracefully
1902 * (like optional page cache readahead) and so an OOM killer
1903 * invocation might not even be necessary.
1904 *
1905 * That's why we don't do anything here except remember the
1906 * OOM context and then deal with it at the end of the page
1907 * fault when the stack is unwound, the locks are released,
1908 * and when we know whether the fault was overall successful.
1909 */
1910 css_get(&memcg->css);
1911 current->memcg_oom.memcg = memcg;
1912 current->memcg_oom.gfp_mask = mask;
1913 current->memcg_oom.order = order;
1914 }
1915
1916 /**
1917 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1918 * @handle: actually kill/wait or just clean up the OOM state
1919 *
1920 * This has to be called at the end of a page fault if the memcg OOM
1921 * handler was enabled.
1922 *
1923 * Memcg supports userspace OOM handling where failed allocations must
1924 * sleep on a waitqueue until the userspace task resolves the
1925 * situation. Sleeping directly in the charge context with all kinds
1926 * of locks held is not a good idea, instead we remember an OOM state
1927 * in the task and mem_cgroup_oom_synchronize() has to be called at
1928 * the end of the page fault to complete the OOM handling.
1929 *
1930 * Returns %true if an ongoing memcg OOM situation was detected and
1931 * completed, %false otherwise.
1932 */
1933 bool mem_cgroup_oom_synchronize(bool handle)
1934 {
1935 struct mem_cgroup *memcg = current->memcg_oom.memcg;
1936 struct oom_wait_info owait;
1937 bool locked;
1938
1939 /* OOM is global, do not handle */
1940 if (!memcg)
1941 return false;
1942
1943 if (!handle || oom_killer_disabled)
1944 goto cleanup;
1945
1946 owait.memcg = memcg;
1947 owait.wait.flags = 0;
1948 owait.wait.func = memcg_oom_wake_function;
1949 owait.wait.private = current;
1950 INIT_LIST_HEAD(&owait.wait.task_list);
1951
1952 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1953 mem_cgroup_mark_under_oom(memcg);
1954
1955 locked = mem_cgroup_oom_trylock(memcg);
1956
1957 if (locked)
1958 mem_cgroup_oom_notify(memcg);
1959
1960 if (locked && !memcg->oom_kill_disable) {
1961 mem_cgroup_unmark_under_oom(memcg);
1962 finish_wait(&memcg_oom_waitq, &owait.wait);
1963 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1964 current->memcg_oom.order);
1965 } else {
1966 schedule();
1967 mem_cgroup_unmark_under_oom(memcg);
1968 finish_wait(&memcg_oom_waitq, &owait.wait);
1969 }
1970
1971 if (locked) {
1972 mem_cgroup_oom_unlock(memcg);
1973 /*
1974 * There is no guarantee that an OOM-lock contender
1975 * sees the wakeups triggered by the OOM kill
1976 * uncharges. Wake any sleepers explicitely.
1977 */
1978 memcg_oom_recover(memcg);
1979 }
1980 cleanup:
1981 current->memcg_oom.memcg = NULL;
1982 css_put(&memcg->css);
1983 return true;
1984 }
1985
1986 /**
1987 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1988 * @page: page that is going to change accounted state
1989 *
1990 * This function must mark the beginning of an accounted page state
1991 * change to prevent double accounting when the page is concurrently
1992 * being moved to another memcg:
1993 *
1994 * memcg = mem_cgroup_begin_page_stat(page);
1995 * if (TestClearPageState(page))
1996 * mem_cgroup_update_page_stat(memcg, state, -1);
1997 * mem_cgroup_end_page_stat(memcg);
1998 */
1999 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
2000 {
2001 struct mem_cgroup *memcg;
2002 unsigned long flags;
2003
2004 /*
2005 * The RCU lock is held throughout the transaction. The fast
2006 * path can get away without acquiring the memcg->move_lock
2007 * because page moving starts with an RCU grace period.
2008 *
2009 * The RCU lock also protects the memcg from being freed when
2010 * the page state that is going to change is the only thing
2011 * preventing the page from being uncharged.
2012 * E.g. end-writeback clearing PageWriteback(), which allows
2013 * migration to go ahead and uncharge the page before the
2014 * account transaction might be complete.
2015 */
2016 rcu_read_lock();
2017
2018 if (mem_cgroup_disabled())
2019 return NULL;
2020 again:
2021 memcg = page->mem_cgroup;
2022 if (unlikely(!memcg))
2023 return NULL;
2024
2025 if (atomic_read(&memcg->moving_account) <= 0)
2026 return memcg;
2027
2028 spin_lock_irqsave(&memcg->move_lock, flags);
2029 if (memcg != page->mem_cgroup) {
2030 spin_unlock_irqrestore(&memcg->move_lock, flags);
2031 goto again;
2032 }
2033
2034 /*
2035 * When charge migration first begins, we can have locked and
2036 * unlocked page stat updates happening concurrently. Track
2037 * the task who has the lock for mem_cgroup_end_page_stat().
2038 */
2039 memcg->move_lock_task = current;
2040 memcg->move_lock_flags = flags;
2041
2042 return memcg;
2043 }
2044 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
2045
2046 /**
2047 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2048 * @memcg: the memcg that was accounted against
2049 */
2050 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2051 {
2052 if (memcg && memcg->move_lock_task == current) {
2053 unsigned long flags = memcg->move_lock_flags;
2054
2055 memcg->move_lock_task = NULL;
2056 memcg->move_lock_flags = 0;
2057
2058 spin_unlock_irqrestore(&memcg->move_lock, flags);
2059 }
2060
2061 rcu_read_unlock();
2062 }
2063 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
2064
2065 /**
2066 * mem_cgroup_update_page_stat - update page state statistics
2067 * @memcg: memcg to account against
2068 * @idx: page state item to account
2069 * @val: number of pages (positive or negative)
2070 *
2071 * See mem_cgroup_begin_page_stat() for locking requirements.
2072 */
2073 void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
2074 enum mem_cgroup_stat_index idx, int val)
2075 {
2076 VM_BUG_ON(!rcu_read_lock_held());
2077
2078 if (memcg)
2079 this_cpu_add(memcg->stat->count[idx], val);
2080 }
2081
2082 /*
2083 * size of first charge trial. "32" comes from vmscan.c's magic value.
2084 * TODO: maybe necessary to use big numbers in big irons.
2085 */
2086 #define CHARGE_BATCH 32U
2087 struct memcg_stock_pcp {
2088 struct mem_cgroup *cached; /* this never be root cgroup */
2089 unsigned int nr_pages;
2090 struct work_struct work;
2091 unsigned long flags;
2092 #define FLUSHING_CACHED_CHARGE 0
2093 };
2094 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2095 static DEFINE_MUTEX(percpu_charge_mutex);
2096
2097 /**
2098 * consume_stock: Try to consume stocked charge on this cpu.
2099 * @memcg: memcg to consume from.
2100 * @nr_pages: how many pages to charge.
2101 *
2102 * The charges will only happen if @memcg matches the current cpu's memcg
2103 * stock, and at least @nr_pages are available in that stock. Failure to
2104 * service an allocation will refill the stock.
2105 *
2106 * returns true if successful, false otherwise.
2107 */
2108 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2109 {
2110 struct memcg_stock_pcp *stock;
2111 bool ret = false;
2112
2113 if (nr_pages > CHARGE_BATCH)
2114 return ret;
2115
2116 stock = &get_cpu_var(memcg_stock);
2117 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2118 stock->nr_pages -= nr_pages;
2119 ret = true;
2120 }
2121 put_cpu_var(memcg_stock);
2122 return ret;
2123 }
2124
2125 /*
2126 * Returns stocks cached in percpu and reset cached information.
2127 */
2128 static void drain_stock(struct memcg_stock_pcp *stock)
2129 {
2130 struct mem_cgroup *old = stock->cached;
2131
2132 if (stock->nr_pages) {
2133 page_counter_uncharge(&old->memory, stock->nr_pages);
2134 if (do_swap_account)
2135 page_counter_uncharge(&old->memsw, stock->nr_pages);
2136 css_put_many(&old->css, stock->nr_pages);
2137 stock->nr_pages = 0;
2138 }
2139 stock->cached = NULL;
2140 }
2141
2142 /*
2143 * This must be called under preempt disabled or must be called by
2144 * a thread which is pinned to local cpu.
2145 */
2146 static void drain_local_stock(struct work_struct *dummy)
2147 {
2148 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2149 drain_stock(stock);
2150 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2151 }
2152
2153 /*
2154 * Cache charges(val) to local per_cpu area.
2155 * This will be consumed by consume_stock() function, later.
2156 */
2157 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2158 {
2159 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2160
2161 if (stock->cached != memcg) { /* reset if necessary */
2162 drain_stock(stock);
2163 stock->cached = memcg;
2164 }
2165 stock->nr_pages += nr_pages;
2166 put_cpu_var(memcg_stock);
2167 }
2168
2169 /*
2170 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2171 * of the hierarchy under it.
2172 */
2173 static void drain_all_stock(struct mem_cgroup *root_memcg)
2174 {
2175 int cpu, curcpu;
2176
2177 /* If someone's already draining, avoid adding running more workers. */
2178 if (!mutex_trylock(&percpu_charge_mutex))
2179 return;
2180 /* Notify other cpus that system-wide "drain" is running */
2181 get_online_cpus();
2182 curcpu = get_cpu();
2183 for_each_online_cpu(cpu) {
2184 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2185 struct mem_cgroup *memcg;
2186
2187 memcg = stock->cached;
2188 if (!memcg || !stock->nr_pages)
2189 continue;
2190 if (!mem_cgroup_is_descendant(memcg, root_memcg))
2191 continue;
2192 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2193 if (cpu == curcpu)
2194 drain_local_stock(&stock->work);
2195 else
2196 schedule_work_on(cpu, &stock->work);
2197 }
2198 }
2199 put_cpu();
2200 put_online_cpus();
2201 mutex_unlock(&percpu_charge_mutex);
2202 }
2203
2204 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2205 unsigned long action,
2206 void *hcpu)
2207 {
2208 int cpu = (unsigned long)hcpu;
2209 struct memcg_stock_pcp *stock;
2210
2211 if (action == CPU_ONLINE)
2212 return NOTIFY_OK;
2213
2214 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2215 return NOTIFY_OK;
2216
2217 stock = &per_cpu(memcg_stock, cpu);
2218 drain_stock(stock);
2219 return NOTIFY_OK;
2220 }
2221
2222 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2223 unsigned int nr_pages)
2224 {
2225 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2226 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2227 struct mem_cgroup *mem_over_limit;
2228 struct page_counter *counter;
2229 unsigned long nr_reclaimed;
2230 bool may_swap = true;
2231 bool drained = false;
2232 int ret = 0;
2233
2234 if (mem_cgroup_is_root(memcg))
2235 goto done;
2236 retry:
2237 if (consume_stock(memcg, nr_pages))
2238 goto done;
2239
2240 if (!do_swap_account ||
2241 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2242 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2243 goto done_restock;
2244 if (do_swap_account)
2245 page_counter_uncharge(&memcg->memsw, batch);
2246 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2247 } else {
2248 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2249 may_swap = false;
2250 }
2251
2252 if (batch > nr_pages) {
2253 batch = nr_pages;
2254 goto retry;
2255 }
2256
2257 /*
2258 * Unlike in global OOM situations, memcg is not in a physical
2259 * memory shortage. Allow dying and OOM-killed tasks to
2260 * bypass the last charges so that they can exit quickly and
2261 * free their memory.
2262 */
2263 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2264 fatal_signal_pending(current) ||
2265 current->flags & PF_EXITING))
2266 goto bypass;
2267
2268 if (unlikely(task_in_memcg_oom(current)))
2269 goto nomem;
2270
2271 if (!(gfp_mask & __GFP_WAIT))
2272 goto nomem;
2273
2274 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2275
2276 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2277 gfp_mask, may_swap);
2278
2279 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2280 goto retry;
2281
2282 if (!drained) {
2283 drain_all_stock(mem_over_limit);
2284 drained = true;
2285 goto retry;
2286 }
2287
2288 if (gfp_mask & __GFP_NORETRY)
2289 goto nomem;
2290 /*
2291 * Even though the limit is exceeded at this point, reclaim
2292 * may have been able to free some pages. Retry the charge
2293 * before killing the task.
2294 *
2295 * Only for regular pages, though: huge pages are rather
2296 * unlikely to succeed so close to the limit, and we fall back
2297 * to regular pages anyway in case of failure.
2298 */
2299 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2300 goto retry;
2301 /*
2302 * At task move, charge accounts can be doubly counted. So, it's
2303 * better to wait until the end of task_move if something is going on.
2304 */
2305 if (mem_cgroup_wait_acct_move(mem_over_limit))
2306 goto retry;
2307
2308 if (nr_retries--)
2309 goto retry;
2310
2311 if (gfp_mask & __GFP_NOFAIL)
2312 goto bypass;
2313
2314 if (fatal_signal_pending(current))
2315 goto bypass;
2316
2317 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2318
2319 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2320 nomem:
2321 if (!(gfp_mask & __GFP_NOFAIL))
2322 return -ENOMEM;
2323 bypass:
2324 return -EINTR;
2325
2326 done_restock:
2327 css_get_many(&memcg->css, batch);
2328 if (batch > nr_pages)
2329 refill_stock(memcg, batch - nr_pages);
2330 if (!(gfp_mask & __GFP_WAIT))
2331 goto done;
2332 /*
2333 * If the hierarchy is above the normal consumption range,
2334 * make the charging task trim their excess contribution.
2335 */
2336 do {
2337 if (page_counter_read(&memcg->memory) <= memcg->high)
2338 continue;
2339 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2340 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2341 } while ((memcg = parent_mem_cgroup(memcg)));
2342 done:
2343 return ret;
2344 }
2345
2346 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2347 {
2348 if (mem_cgroup_is_root(memcg))
2349 return;
2350
2351 page_counter_uncharge(&memcg->memory, nr_pages);
2352 if (do_swap_account)
2353 page_counter_uncharge(&memcg->memsw, nr_pages);
2354
2355 css_put_many(&memcg->css, nr_pages);
2356 }
2357
2358 /*
2359 * try_get_mem_cgroup_from_page - look up page's memcg association
2360 * @page: the page
2361 *
2362 * Look up, get a css reference, and return the memcg that owns @page.
2363 *
2364 * The page must be locked to prevent racing with swap-in and page
2365 * cache charges. If coming from an unlocked page table, the caller
2366 * must ensure the page is on the LRU or this can race with charging.
2367 */
2368 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2369 {
2370 struct mem_cgroup *memcg;
2371 unsigned short id;
2372 swp_entry_t ent;
2373
2374 VM_BUG_ON_PAGE(!PageLocked(page), page);
2375
2376 memcg = page->mem_cgroup;
2377 if (memcg) {
2378 if (!css_tryget_online(&memcg->css))
2379 memcg = NULL;
2380 } else if (PageSwapCache(page)) {
2381 ent.val = page_private(page);
2382 id = lookup_swap_cgroup_id(ent);
2383 rcu_read_lock();
2384 memcg = mem_cgroup_from_id(id);
2385 if (memcg && !css_tryget_online(&memcg->css))
2386 memcg = NULL;
2387 rcu_read_unlock();
2388 }
2389 return memcg;
2390 }
2391
2392 static void lock_page_lru(struct page *page, int *isolated)
2393 {
2394 struct zone *zone = page_zone(page);
2395
2396 spin_lock_irq(&zone->lru_lock);
2397 if (PageLRU(page)) {
2398 struct lruvec *lruvec;
2399
2400 lruvec = mem_cgroup_page_lruvec(page, zone);
2401 ClearPageLRU(page);
2402 del_page_from_lru_list(page, lruvec, page_lru(page));
2403 *isolated = 1;
2404 } else
2405 *isolated = 0;
2406 }
2407
2408 static void unlock_page_lru(struct page *page, int isolated)
2409 {
2410 struct zone *zone = page_zone(page);
2411
2412 if (isolated) {
2413 struct lruvec *lruvec;
2414
2415 lruvec = mem_cgroup_page_lruvec(page, zone);
2416 VM_BUG_ON_PAGE(PageLRU(page), page);
2417 SetPageLRU(page);
2418 add_page_to_lru_list(page, lruvec, page_lru(page));
2419 }
2420 spin_unlock_irq(&zone->lru_lock);
2421 }
2422
2423 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2424 bool lrucare)
2425 {
2426 int isolated;
2427
2428 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2429
2430 /*
2431 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2432 * may already be on some other mem_cgroup's LRU. Take care of it.
2433 */
2434 if (lrucare)
2435 lock_page_lru(page, &isolated);
2436
2437 /*
2438 * Nobody should be changing or seriously looking at
2439 * page->mem_cgroup at this point:
2440 *
2441 * - the page is uncharged
2442 *
2443 * - the page is off-LRU
2444 *
2445 * - an anonymous fault has exclusive page access, except for
2446 * a locked page table
2447 *
2448 * - a page cache insertion, a swapin fault, or a migration
2449 * have the page locked
2450 */
2451 page->mem_cgroup = memcg;
2452
2453 if (lrucare)
2454 unlock_page_lru(page, isolated);
2455 }
2456
2457 #ifdef CONFIG_MEMCG_KMEM
2458 int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2459 unsigned long nr_pages)
2460 {
2461 struct page_counter *counter;
2462 int ret = 0;
2463
2464 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2465 if (ret < 0)
2466 return ret;
2467
2468 ret = try_charge(memcg, gfp, nr_pages);
2469 if (ret == -EINTR) {
2470 /*
2471 * try_charge() chose to bypass to root due to OOM kill or
2472 * fatal signal. Since our only options are to either fail
2473 * the allocation or charge it to this cgroup, do it as a
2474 * temporary condition. But we can't fail. From a kmem/slab
2475 * perspective, the cache has already been selected, by
2476 * mem_cgroup_kmem_get_cache(), so it is too late to change
2477 * our minds.
2478 *
2479 * This condition will only trigger if the task entered
2480 * memcg_charge_kmem in a sane state, but was OOM-killed
2481 * during try_charge() above. Tasks that were already dying
2482 * when the allocation triggers should have been already
2483 * directed to the root cgroup in memcontrol.h
2484 */
2485 page_counter_charge(&memcg->memory, nr_pages);
2486 if (do_swap_account)
2487 page_counter_charge(&memcg->memsw, nr_pages);
2488 css_get_many(&memcg->css, nr_pages);
2489 ret = 0;
2490 } else if (ret)
2491 page_counter_uncharge(&memcg->kmem, nr_pages);
2492
2493 return ret;
2494 }
2495
2496 void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2497 {
2498 page_counter_uncharge(&memcg->memory, nr_pages);
2499 if (do_swap_account)
2500 page_counter_uncharge(&memcg->memsw, nr_pages);
2501
2502 page_counter_uncharge(&memcg->kmem, nr_pages);
2503
2504 css_put_many(&memcg->css, nr_pages);
2505 }
2506
2507 /*
2508 * helper for acessing a memcg's index. It will be used as an index in the
2509 * child cache array in kmem_cache, and also to derive its name. This function
2510 * will return -1 when this is not a kmem-limited memcg.
2511 */
2512 int memcg_cache_id(struct mem_cgroup *memcg)
2513 {
2514 return memcg ? memcg->kmemcg_id : -1;
2515 }
2516
2517 static int memcg_alloc_cache_id(void)
2518 {
2519 int id, size;
2520 int err;
2521
2522 id = ida_simple_get(&memcg_cache_ida,
2523 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2524 if (id < 0)
2525 return id;
2526
2527 if (id < memcg_nr_cache_ids)
2528 return id;
2529
2530 /*
2531 * There's no space for the new id in memcg_caches arrays,
2532 * so we have to grow them.
2533 */
2534 down_write(&memcg_cache_ids_sem);
2535
2536 size = 2 * (id + 1);
2537 if (size < MEMCG_CACHES_MIN_SIZE)
2538 size = MEMCG_CACHES_MIN_SIZE;
2539 else if (size > MEMCG_CACHES_MAX_SIZE)
2540 size = MEMCG_CACHES_MAX_SIZE;
2541
2542 err = memcg_update_all_caches(size);
2543 if (!err)
2544 err = memcg_update_all_list_lrus(size);
2545 if (!err)
2546 memcg_nr_cache_ids = size;
2547
2548 up_write(&memcg_cache_ids_sem);
2549
2550 if (err) {
2551 ida_simple_remove(&memcg_cache_ida, id);
2552 return err;
2553 }
2554 return id;
2555 }
2556
2557 static void memcg_free_cache_id(int id)
2558 {
2559 ida_simple_remove(&memcg_cache_ida, id);
2560 }
2561
2562 struct memcg_kmem_cache_create_work {
2563 struct mem_cgroup *memcg;
2564 struct kmem_cache *cachep;
2565 struct work_struct work;
2566 };
2567
2568 static void memcg_kmem_cache_create_func(struct work_struct *w)
2569 {
2570 struct memcg_kmem_cache_create_work *cw =
2571 container_of(w, struct memcg_kmem_cache_create_work, work);
2572 struct mem_cgroup *memcg = cw->memcg;
2573 struct kmem_cache *cachep = cw->cachep;
2574
2575 memcg_create_kmem_cache(memcg, cachep);
2576
2577 css_put(&memcg->css);
2578 kfree(cw);
2579 }
2580
2581 /*
2582 * Enqueue the creation of a per-memcg kmem_cache.
2583 */
2584 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2585 struct kmem_cache *cachep)
2586 {
2587 struct memcg_kmem_cache_create_work *cw;
2588
2589 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2590 if (!cw)
2591 return;
2592
2593 css_get(&memcg->css);
2594
2595 cw->memcg = memcg;
2596 cw->cachep = cachep;
2597 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2598
2599 schedule_work(&cw->work);
2600 }
2601
2602 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2603 struct kmem_cache *cachep)
2604 {
2605 /*
2606 * We need to stop accounting when we kmalloc, because if the
2607 * corresponding kmalloc cache is not yet created, the first allocation
2608 * in __memcg_schedule_kmem_cache_create will recurse.
2609 *
2610 * However, it is better to enclose the whole function. Depending on
2611 * the debugging options enabled, INIT_WORK(), for instance, can
2612 * trigger an allocation. This too, will make us recurse. Because at
2613 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2614 * the safest choice is to do it like this, wrapping the whole function.
2615 */
2616 current->memcg_kmem_skip_account = 1;
2617 __memcg_schedule_kmem_cache_create(memcg, cachep);
2618 current->memcg_kmem_skip_account = 0;
2619 }
2620
2621 /*
2622 * Return the kmem_cache we're supposed to use for a slab allocation.
2623 * We try to use the current memcg's version of the cache.
2624 *
2625 * If the cache does not exist yet, if we are the first user of it,
2626 * we either create it immediately, if possible, or create it asynchronously
2627 * in a workqueue.
2628 * In the latter case, we will let the current allocation go through with
2629 * the original cache.
2630 *
2631 * Can't be called in interrupt context or from kernel threads.
2632 * This function needs to be called with rcu_read_lock() held.
2633 */
2634 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2635 {
2636 struct mem_cgroup *memcg;
2637 struct kmem_cache *memcg_cachep;
2638 int kmemcg_id;
2639
2640 VM_BUG_ON(!is_root_cache(cachep));
2641
2642 if (current->memcg_kmem_skip_account)
2643 return cachep;
2644
2645 memcg = get_mem_cgroup_from_mm(current->mm);
2646 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2647 if (kmemcg_id < 0)
2648 goto out;
2649
2650 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2651 if (likely(memcg_cachep))
2652 return memcg_cachep;
2653
2654 /*
2655 * If we are in a safe context (can wait, and not in interrupt
2656 * context), we could be be predictable and return right away.
2657 * This would guarantee that the allocation being performed
2658 * already belongs in the new cache.
2659 *
2660 * However, there are some clashes that can arrive from locking.
2661 * For instance, because we acquire the slab_mutex while doing
2662 * memcg_create_kmem_cache, this means no further allocation
2663 * could happen with the slab_mutex held. So it's better to
2664 * defer everything.
2665 */
2666 memcg_schedule_kmem_cache_create(memcg, cachep);
2667 out:
2668 css_put(&memcg->css);
2669 return cachep;
2670 }
2671
2672 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2673 {
2674 if (!is_root_cache(cachep))
2675 css_put(&cachep->memcg_params.memcg->css);
2676 }
2677
2678 /*
2679 * We need to verify if the allocation against current->mm->owner's memcg is
2680 * possible for the given order. But the page is not allocated yet, so we'll
2681 * need a further commit step to do the final arrangements.
2682 *
2683 * It is possible for the task to switch cgroups in this mean time, so at
2684 * commit time, we can't rely on task conversion any longer. We'll then use
2685 * the handle argument to return to the caller which cgroup we should commit
2686 * against. We could also return the memcg directly and avoid the pointer
2687 * passing, but a boolean return value gives better semantics considering
2688 * the compiled-out case as well.
2689 *
2690 * Returning true means the allocation is possible.
2691 */
2692 bool
2693 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2694 {
2695 struct mem_cgroup *memcg;
2696 int ret;
2697
2698 *_memcg = NULL;
2699
2700 memcg = get_mem_cgroup_from_mm(current->mm);
2701
2702 if (!memcg_kmem_is_active(memcg)) {
2703 css_put(&memcg->css);
2704 return true;
2705 }
2706
2707 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2708 if (!ret)
2709 *_memcg = memcg;
2710
2711 css_put(&memcg->css);
2712 return (ret == 0);
2713 }
2714
2715 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2716 int order)
2717 {
2718 VM_BUG_ON(mem_cgroup_is_root(memcg));
2719
2720 /* The page allocation failed. Revert */
2721 if (!page) {
2722 memcg_uncharge_kmem(memcg, 1 << order);
2723 return;
2724 }
2725 page->mem_cgroup = memcg;
2726 }
2727
2728 void __memcg_kmem_uncharge_pages(struct page *page, int order)
2729 {
2730 struct mem_cgroup *memcg = page->mem_cgroup;
2731
2732 if (!memcg)
2733 return;
2734
2735 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2736
2737 memcg_uncharge_kmem(memcg, 1 << order);
2738 page->mem_cgroup = NULL;
2739 }
2740
2741 struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2742 {
2743 struct mem_cgroup *memcg = NULL;
2744 struct kmem_cache *cachep;
2745 struct page *page;
2746
2747 page = virt_to_head_page(ptr);
2748 if (PageSlab(page)) {
2749 cachep = page->slab_cache;
2750 if (!is_root_cache(cachep))
2751 memcg = cachep->memcg_params.memcg;
2752 } else
2753 /* page allocated by alloc_kmem_pages */
2754 memcg = page->mem_cgroup;
2755
2756 return memcg;
2757 }
2758 #endif /* CONFIG_MEMCG_KMEM */
2759
2760 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2761
2762 /*
2763 * Because tail pages are not marked as "used", set it. We're under
2764 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2765 * charge/uncharge will be never happen and move_account() is done under
2766 * compound_lock(), so we don't have to take care of races.
2767 */
2768 void mem_cgroup_split_huge_fixup(struct page *head)
2769 {
2770 int i;
2771
2772 if (mem_cgroup_disabled())
2773 return;
2774
2775 for (i = 1; i < HPAGE_PMD_NR; i++)
2776 head[i].mem_cgroup = head->mem_cgroup;
2777
2778 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2779 HPAGE_PMD_NR);
2780 }
2781 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2782
2783 #ifdef CONFIG_MEMCG_SWAP
2784 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2785 bool charge)
2786 {
2787 int val = (charge) ? 1 : -1;
2788 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2789 }
2790
2791 /**
2792 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2793 * @entry: swap entry to be moved
2794 * @from: mem_cgroup which the entry is moved from
2795 * @to: mem_cgroup which the entry is moved to
2796 *
2797 * It succeeds only when the swap_cgroup's record for this entry is the same
2798 * as the mem_cgroup's id of @from.
2799 *
2800 * Returns 0 on success, -EINVAL on failure.
2801 *
2802 * The caller must have charged to @to, IOW, called page_counter_charge() about
2803 * both res and memsw, and called css_get().
2804 */
2805 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2806 struct mem_cgroup *from, struct mem_cgroup *to)
2807 {
2808 unsigned short old_id, new_id;
2809
2810 old_id = mem_cgroup_id(from);
2811 new_id = mem_cgroup_id(to);
2812
2813 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2814 mem_cgroup_swap_statistics(from, false);
2815 mem_cgroup_swap_statistics(to, true);
2816 return 0;
2817 }
2818 return -EINVAL;
2819 }
2820 #else
2821 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2822 struct mem_cgroup *from, struct mem_cgroup *to)
2823 {
2824 return -EINVAL;
2825 }
2826 #endif
2827
2828 static DEFINE_MUTEX(memcg_limit_mutex);
2829
2830 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2831 unsigned long limit)
2832 {
2833 unsigned long curusage;
2834 unsigned long oldusage;
2835 bool enlarge = false;
2836 int retry_count;
2837 int ret;
2838
2839 /*
2840 * For keeping hierarchical_reclaim simple, how long we should retry
2841 * is depends on callers. We set our retry-count to be function
2842 * of # of children which we should visit in this loop.
2843 */
2844 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2845 mem_cgroup_count_children(memcg);
2846
2847 oldusage = page_counter_read(&memcg->memory);
2848
2849 do {
2850 if (signal_pending(current)) {
2851 ret = -EINTR;
2852 break;
2853 }
2854
2855 mutex_lock(&memcg_limit_mutex);
2856 if (limit > memcg->memsw.limit) {
2857 mutex_unlock(&memcg_limit_mutex);
2858 ret = -EINVAL;
2859 break;
2860 }
2861 if (limit > memcg->memory.limit)
2862 enlarge = true;
2863 ret = page_counter_limit(&memcg->memory, limit);
2864 mutex_unlock(&memcg_limit_mutex);
2865
2866 if (!ret)
2867 break;
2868
2869 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2870
2871 curusage = page_counter_read(&memcg->memory);
2872 /* Usage is reduced ? */
2873 if (curusage >= oldusage)
2874 retry_count--;
2875 else
2876 oldusage = curusage;
2877 } while (retry_count);
2878
2879 if (!ret && enlarge)
2880 memcg_oom_recover(memcg);
2881
2882 return ret;
2883 }
2884
2885 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2886 unsigned long limit)
2887 {
2888 unsigned long curusage;
2889 unsigned long oldusage;
2890 bool enlarge = false;
2891 int retry_count;
2892 int ret;
2893
2894 /* see mem_cgroup_resize_res_limit */
2895 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2896 mem_cgroup_count_children(memcg);
2897
2898 oldusage = page_counter_read(&memcg->memsw);
2899
2900 do {
2901 if (signal_pending(current)) {
2902 ret = -EINTR;
2903 break;
2904 }
2905
2906 mutex_lock(&memcg_limit_mutex);
2907 if (limit < memcg->memory.limit) {
2908 mutex_unlock(&memcg_limit_mutex);
2909 ret = -EINVAL;
2910 break;
2911 }
2912 if (limit > memcg->memsw.limit)
2913 enlarge = true;
2914 ret = page_counter_limit(&memcg->memsw, limit);
2915 mutex_unlock(&memcg_limit_mutex);
2916
2917 if (!ret)
2918 break;
2919
2920 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2921
2922 curusage = page_counter_read(&memcg->memsw);
2923 /* Usage is reduced ? */
2924 if (curusage >= oldusage)
2925 retry_count--;
2926 else
2927 oldusage = curusage;
2928 } while (retry_count);
2929
2930 if (!ret && enlarge)
2931 memcg_oom_recover(memcg);
2932
2933 return ret;
2934 }
2935
2936 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2937 gfp_t gfp_mask,
2938 unsigned long *total_scanned)
2939 {
2940 unsigned long nr_reclaimed = 0;
2941 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2942 unsigned long reclaimed;
2943 int loop = 0;
2944 struct mem_cgroup_tree_per_zone *mctz;
2945 unsigned long excess;
2946 unsigned long nr_scanned;
2947
2948 if (order > 0)
2949 return 0;
2950
2951 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2952 /*
2953 * This loop can run a while, specially if mem_cgroup's continuously
2954 * keep exceeding their soft limit and putting the system under
2955 * pressure
2956 */
2957 do {
2958 if (next_mz)
2959 mz = next_mz;
2960 else
2961 mz = mem_cgroup_largest_soft_limit_node(mctz);
2962 if (!mz)
2963 break;
2964
2965 nr_scanned = 0;
2966 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2967 gfp_mask, &nr_scanned);
2968 nr_reclaimed += reclaimed;
2969 *total_scanned += nr_scanned;
2970 spin_lock_irq(&mctz->lock);
2971 __mem_cgroup_remove_exceeded(mz, mctz);
2972
2973 /*
2974 * If we failed to reclaim anything from this memory cgroup
2975 * it is time to move on to the next cgroup
2976 */
2977 next_mz = NULL;
2978 if (!reclaimed)
2979 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2980
2981 excess = soft_limit_excess(mz->memcg);
2982 /*
2983 * One school of thought says that we should not add
2984 * back the node to the tree if reclaim returns 0.
2985 * But our reclaim could return 0, simply because due
2986 * to priority we are exposing a smaller subset of
2987 * memory to reclaim from. Consider this as a longer
2988 * term TODO.
2989 */
2990 /* If excess == 0, no tree ops */
2991 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2992 spin_unlock_irq(&mctz->lock);
2993 css_put(&mz->memcg->css);
2994 loop++;
2995 /*
2996 * Could not reclaim anything and there are no more
2997 * mem cgroups to try or we seem to be looping without
2998 * reclaiming anything.
2999 */
3000 if (!nr_reclaimed &&
3001 (next_mz == NULL ||
3002 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3003 break;
3004 } while (!nr_reclaimed);
3005 if (next_mz)
3006 css_put(&next_mz->memcg->css);
3007 return nr_reclaimed;
3008 }
3009
3010 /*
3011 * Test whether @memcg has children, dead or alive. Note that this
3012 * function doesn't care whether @memcg has use_hierarchy enabled and
3013 * returns %true if there are child csses according to the cgroup
3014 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3015 */
3016 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3017 {
3018 bool ret;
3019
3020 /*
3021 * The lock does not prevent addition or deletion of children, but
3022 * it prevents a new child from being initialized based on this
3023 * parent in css_online(), so it's enough to decide whether
3024 * hierarchically inherited attributes can still be changed or not.
3025 */
3026 lockdep_assert_held(&memcg_create_mutex);
3027
3028 rcu_read_lock();
3029 ret = css_next_child(NULL, &memcg->css);
3030 rcu_read_unlock();
3031 return ret;
3032 }
3033
3034 /*
3035 * Reclaims as many pages from the given memcg as possible and moves
3036 * the rest to the parent.
3037 *
3038 * Caller is responsible for holding css reference for memcg.
3039 */
3040 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3041 {
3042 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3043
3044 /* we call try-to-free pages for make this cgroup empty */
3045 lru_add_drain_all();
3046 /* try to free all pages in this cgroup */
3047 while (nr_retries && page_counter_read(&memcg->memory)) {
3048 int progress;
3049
3050 if (signal_pending(current))
3051 return -EINTR;
3052
3053 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3054 GFP_KERNEL, true);
3055 if (!progress) {
3056 nr_retries--;
3057 /* maybe some writeback is necessary */
3058 congestion_wait(BLK_RW_ASYNC, HZ/10);
3059 }
3060
3061 }
3062
3063 return 0;
3064 }
3065
3066 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3067 char *buf, size_t nbytes,
3068 loff_t off)
3069 {
3070 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3071
3072 if (mem_cgroup_is_root(memcg))
3073 return -EINVAL;
3074 return mem_cgroup_force_empty(memcg) ?: nbytes;
3075 }
3076
3077 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3078 struct cftype *cft)
3079 {
3080 return mem_cgroup_from_css(css)->use_hierarchy;
3081 }
3082
3083 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3084 struct cftype *cft, u64 val)
3085 {
3086 int retval = 0;
3087 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3088 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3089
3090 mutex_lock(&memcg_create_mutex);
3091
3092 if (memcg->use_hierarchy == val)
3093 goto out;
3094
3095 /*
3096 * If parent's use_hierarchy is set, we can't make any modifications
3097 * in the child subtrees. If it is unset, then the change can
3098 * occur, provided the current cgroup has no children.
3099 *
3100 * For the root cgroup, parent_mem is NULL, we allow value to be
3101 * set if there are no children.
3102 */
3103 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3104 (val == 1 || val == 0)) {
3105 if (!memcg_has_children(memcg))
3106 memcg->use_hierarchy = val;
3107 else
3108 retval = -EBUSY;
3109 } else
3110 retval = -EINVAL;
3111
3112 out:
3113 mutex_unlock(&memcg_create_mutex);
3114
3115 return retval;
3116 }
3117
3118 static unsigned long tree_stat(struct mem_cgroup *memcg,
3119 enum mem_cgroup_stat_index idx)
3120 {
3121 struct mem_cgroup *iter;
3122 long val = 0;
3123
3124 /* Per-cpu values can be negative, use a signed accumulator */
3125 for_each_mem_cgroup_tree(iter, memcg)
3126 val += mem_cgroup_read_stat(iter, idx);
3127
3128 if (val < 0) /* race ? */
3129 val = 0;
3130 return val;
3131 }
3132
3133 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3134 {
3135 u64 val;
3136
3137 if (mem_cgroup_is_root(memcg)) {
3138 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3139 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3140 if (swap)
3141 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3142 } else {
3143 if (!swap)
3144 val = page_counter_read(&memcg->memory);
3145 else
3146 val = page_counter_read(&memcg->memsw);
3147 }
3148 return val << PAGE_SHIFT;
3149 }
3150
3151 enum {
3152 RES_USAGE,
3153 RES_LIMIT,
3154 RES_MAX_USAGE,
3155 RES_FAILCNT,
3156 RES_SOFT_LIMIT,
3157 };
3158
3159 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3160 struct cftype *cft)
3161 {
3162 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3163 struct page_counter *counter;
3164
3165 switch (MEMFILE_TYPE(cft->private)) {
3166 case _MEM:
3167 counter = &memcg->memory;
3168 break;
3169 case _MEMSWAP:
3170 counter = &memcg->memsw;
3171 break;
3172 case _KMEM:
3173 counter = &memcg->kmem;
3174 break;
3175 default:
3176 BUG();
3177 }
3178
3179 switch (MEMFILE_ATTR(cft->private)) {
3180 case RES_USAGE:
3181 if (counter == &memcg->memory)
3182 return mem_cgroup_usage(memcg, false);
3183 if (counter == &memcg->memsw)
3184 return mem_cgroup_usage(memcg, true);
3185 return (u64)page_counter_read(counter) * PAGE_SIZE;
3186 case RES_LIMIT:
3187 return (u64)counter->limit * PAGE_SIZE;
3188 case RES_MAX_USAGE:
3189 return (u64)counter->watermark * PAGE_SIZE;
3190 case RES_FAILCNT:
3191 return counter->failcnt;
3192 case RES_SOFT_LIMIT:
3193 return (u64)memcg->soft_limit * PAGE_SIZE;
3194 default:
3195 BUG();
3196 }
3197 }
3198
3199 #ifdef CONFIG_MEMCG_KMEM
3200 static int memcg_activate_kmem(struct mem_cgroup *memcg,
3201 unsigned long nr_pages)
3202 {
3203 int err = 0;
3204 int memcg_id;
3205
3206 BUG_ON(memcg->kmemcg_id >= 0);
3207 BUG_ON(memcg->kmem_acct_activated);
3208 BUG_ON(memcg->kmem_acct_active);
3209
3210 /*
3211 * For simplicity, we won't allow this to be disabled. It also can't
3212 * be changed if the cgroup has children already, or if tasks had
3213 * already joined.
3214 *
3215 * If tasks join before we set the limit, a person looking at
3216 * kmem.usage_in_bytes will have no way to determine when it took
3217 * place, which makes the value quite meaningless.
3218 *
3219 * After it first became limited, changes in the value of the limit are
3220 * of course permitted.
3221 */
3222 mutex_lock(&memcg_create_mutex);
3223 if (cgroup_has_tasks(memcg->css.cgroup) ||
3224 (memcg->use_hierarchy && memcg_has_children(memcg)))
3225 err = -EBUSY;
3226 mutex_unlock(&memcg_create_mutex);
3227 if (err)
3228 goto out;
3229
3230 memcg_id = memcg_alloc_cache_id();
3231 if (memcg_id < 0) {
3232 err = memcg_id;
3233 goto out;
3234 }
3235
3236 /*
3237 * We couldn't have accounted to this cgroup, because it hasn't got
3238 * activated yet, so this should succeed.
3239 */
3240 err = page_counter_limit(&memcg->kmem, nr_pages);
3241 VM_BUG_ON(err);
3242
3243 static_key_slow_inc(&memcg_kmem_enabled_key);
3244 /*
3245 * A memory cgroup is considered kmem-active as soon as it gets
3246 * kmemcg_id. Setting the id after enabling static branching will
3247 * guarantee no one starts accounting before all call sites are
3248 * patched.
3249 */
3250 memcg->kmemcg_id = memcg_id;
3251 memcg->kmem_acct_activated = true;
3252 memcg->kmem_acct_active = true;
3253 out:
3254 return err;
3255 }
3256
3257 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3258 unsigned long limit)
3259 {
3260 int ret;
3261
3262 mutex_lock(&memcg_limit_mutex);
3263 if (!memcg_kmem_is_active(memcg))
3264 ret = memcg_activate_kmem(memcg, limit);
3265 else
3266 ret = page_counter_limit(&memcg->kmem, limit);
3267 mutex_unlock(&memcg_limit_mutex);
3268 return ret;
3269 }
3270
3271 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3272 {
3273 int ret = 0;
3274 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3275
3276 if (!parent)
3277 return 0;
3278
3279 mutex_lock(&memcg_limit_mutex);
3280 /*
3281 * If the parent cgroup is not kmem-active now, it cannot be activated
3282 * after this point, because it has at least one child already.
3283 */
3284 if (memcg_kmem_is_active(parent))
3285 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3286 mutex_unlock(&memcg_limit_mutex);
3287 return ret;
3288 }
3289 #else
3290 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3291 unsigned long limit)
3292 {
3293 return -EINVAL;
3294 }
3295 #endif /* CONFIG_MEMCG_KMEM */
3296
3297 /*
3298 * The user of this function is...
3299 * RES_LIMIT.
3300 */
3301 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3302 char *buf, size_t nbytes, loff_t off)
3303 {
3304 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3305 unsigned long nr_pages;
3306 int ret;
3307
3308 buf = strstrip(buf);
3309 ret = page_counter_memparse(buf, "-1", &nr_pages);
3310 if (ret)
3311 return ret;
3312
3313 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3314 case RES_LIMIT:
3315 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3316 ret = -EINVAL;
3317 break;
3318 }
3319 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3320 case _MEM:
3321 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3322 break;
3323 case _MEMSWAP:
3324 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3325 break;
3326 case _KMEM:
3327 ret = memcg_update_kmem_limit(memcg, nr_pages);
3328 break;
3329 }
3330 break;
3331 case RES_SOFT_LIMIT:
3332 memcg->soft_limit = nr_pages;
3333 ret = 0;
3334 break;
3335 }
3336 return ret ?: nbytes;
3337 }
3338
3339 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3340 size_t nbytes, loff_t off)
3341 {
3342 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3343 struct page_counter *counter;
3344
3345 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3346 case _MEM:
3347 counter = &memcg->memory;
3348 break;
3349 case _MEMSWAP:
3350 counter = &memcg->memsw;
3351 break;
3352 case _KMEM:
3353 counter = &memcg->kmem;
3354 break;
3355 default:
3356 BUG();
3357 }
3358
3359 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3360 case RES_MAX_USAGE:
3361 page_counter_reset_watermark(counter);
3362 break;
3363 case RES_FAILCNT:
3364 counter->failcnt = 0;
3365 break;
3366 default:
3367 BUG();
3368 }
3369
3370 return nbytes;
3371 }
3372
3373 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3374 struct cftype *cft)
3375 {
3376 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3377 }
3378
3379 #ifdef CONFIG_MMU
3380 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3381 struct cftype *cft, u64 val)
3382 {
3383 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3384
3385 if (val & ~MOVE_MASK)
3386 return -EINVAL;
3387
3388 /*
3389 * No kind of locking is needed in here, because ->can_attach() will
3390 * check this value once in the beginning of the process, and then carry
3391 * on with stale data. This means that changes to this value will only
3392 * affect task migrations starting after the change.
3393 */
3394 memcg->move_charge_at_immigrate = val;
3395 return 0;
3396 }
3397 #else
3398 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3399 struct cftype *cft, u64 val)
3400 {
3401 return -ENOSYS;
3402 }
3403 #endif
3404
3405 #ifdef CONFIG_NUMA
3406 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3407 {
3408 struct numa_stat {
3409 const char *name;
3410 unsigned int lru_mask;
3411 };
3412
3413 static const struct numa_stat stats[] = {
3414 { "total", LRU_ALL },
3415 { "file", LRU_ALL_FILE },
3416 { "anon", LRU_ALL_ANON },
3417 { "unevictable", BIT(LRU_UNEVICTABLE) },
3418 };
3419 const struct numa_stat *stat;
3420 int nid;
3421 unsigned long nr;
3422 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3423
3424 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3425 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3426 seq_printf(m, "%s=%lu", stat->name, nr);
3427 for_each_node_state(nid, N_MEMORY) {
3428 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3429 stat->lru_mask);
3430 seq_printf(m, " N%d=%lu", nid, nr);
3431 }
3432 seq_putc(m, '\n');
3433 }
3434
3435 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3436 struct mem_cgroup *iter;
3437
3438 nr = 0;
3439 for_each_mem_cgroup_tree(iter, memcg)
3440 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3441 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3442 for_each_node_state(nid, N_MEMORY) {
3443 nr = 0;
3444 for_each_mem_cgroup_tree(iter, memcg)
3445 nr += mem_cgroup_node_nr_lru_pages(
3446 iter, nid, stat->lru_mask);
3447 seq_printf(m, " N%d=%lu", nid, nr);
3448 }
3449 seq_putc(m, '\n');
3450 }
3451
3452 return 0;
3453 }
3454 #endif /* CONFIG_NUMA */
3455
3456 static int memcg_stat_show(struct seq_file *m, void *v)
3457 {
3458 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3459 unsigned long memory, memsw;
3460 struct mem_cgroup *mi;
3461 unsigned int i;
3462
3463 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3464 MEM_CGROUP_STAT_NSTATS);
3465 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3466 MEM_CGROUP_EVENTS_NSTATS);
3467 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3468
3469 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3470 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3471 continue;
3472 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3473 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3474 }
3475
3476 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3477 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3478 mem_cgroup_read_events(memcg, i));
3479
3480 for (i = 0; i < NR_LRU_LISTS; i++)
3481 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3482 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3483
3484 /* Hierarchical information */
3485 memory = memsw = PAGE_COUNTER_MAX;
3486 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3487 memory = min(memory, mi->memory.limit);
3488 memsw = min(memsw, mi->memsw.limit);
3489 }
3490 seq_printf(m, "hierarchical_memory_limit %llu\n",
3491 (u64)memory * PAGE_SIZE);
3492 if (do_swap_account)
3493 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3494 (u64)memsw * PAGE_SIZE);
3495
3496 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3497 long long val = 0;
3498
3499 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3500 continue;
3501 for_each_mem_cgroup_tree(mi, memcg)
3502 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3503 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3504 }
3505
3506 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3507 unsigned long long val = 0;
3508
3509 for_each_mem_cgroup_tree(mi, memcg)
3510 val += mem_cgroup_read_events(mi, i);
3511 seq_printf(m, "total_%s %llu\n",
3512 mem_cgroup_events_names[i], val);
3513 }
3514
3515 for (i = 0; i < NR_LRU_LISTS; i++) {
3516 unsigned long long val = 0;
3517
3518 for_each_mem_cgroup_tree(mi, memcg)
3519 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3520 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3521 }
3522
3523 #ifdef CONFIG_DEBUG_VM
3524 {
3525 int nid, zid;
3526 struct mem_cgroup_per_zone *mz;
3527 struct zone_reclaim_stat *rstat;
3528 unsigned long recent_rotated[2] = {0, 0};
3529 unsigned long recent_scanned[2] = {0, 0};
3530
3531 for_each_online_node(nid)
3532 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3533 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3534 rstat = &mz->lruvec.reclaim_stat;
3535
3536 recent_rotated[0] += rstat->recent_rotated[0];
3537 recent_rotated[1] += rstat->recent_rotated[1];
3538 recent_scanned[0] += rstat->recent_scanned[0];
3539 recent_scanned[1] += rstat->recent_scanned[1];
3540 }
3541 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3542 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3543 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3544 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3545 }
3546 #endif
3547
3548 return 0;
3549 }
3550
3551 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3552 struct cftype *cft)
3553 {
3554 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3555
3556 return mem_cgroup_swappiness(memcg);
3557 }
3558
3559 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3560 struct cftype *cft, u64 val)
3561 {
3562 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3563
3564 if (val > 100)
3565 return -EINVAL;
3566
3567 if (css->parent)
3568 memcg->swappiness = val;
3569 else
3570 vm_swappiness = val;
3571
3572 return 0;
3573 }
3574
3575 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3576 {
3577 struct mem_cgroup_threshold_ary *t;
3578 unsigned long usage;
3579 int i;
3580
3581 rcu_read_lock();
3582 if (!swap)
3583 t = rcu_dereference(memcg->thresholds.primary);
3584 else
3585 t = rcu_dereference(memcg->memsw_thresholds.primary);
3586
3587 if (!t)
3588 goto unlock;
3589
3590 usage = mem_cgroup_usage(memcg, swap);
3591
3592 /*
3593 * current_threshold points to threshold just below or equal to usage.
3594 * If it's not true, a threshold was crossed after last
3595 * call of __mem_cgroup_threshold().
3596 */
3597 i = t->current_threshold;
3598
3599 /*
3600 * Iterate backward over array of thresholds starting from
3601 * current_threshold and check if a threshold is crossed.
3602 * If none of thresholds below usage is crossed, we read
3603 * only one element of the array here.
3604 */
3605 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3606 eventfd_signal(t->entries[i].eventfd, 1);
3607
3608 /* i = current_threshold + 1 */
3609 i++;
3610
3611 /*
3612 * Iterate forward over array of thresholds starting from
3613 * current_threshold+1 and check if a threshold is crossed.
3614 * If none of thresholds above usage is crossed, we read
3615 * only one element of the array here.
3616 */
3617 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3618 eventfd_signal(t->entries[i].eventfd, 1);
3619
3620 /* Update current_threshold */
3621 t->current_threshold = i - 1;
3622 unlock:
3623 rcu_read_unlock();
3624 }
3625
3626 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3627 {
3628 while (memcg) {
3629 __mem_cgroup_threshold(memcg, false);
3630 if (do_swap_account)
3631 __mem_cgroup_threshold(memcg, true);
3632
3633 memcg = parent_mem_cgroup(memcg);
3634 }
3635 }
3636
3637 static int compare_thresholds(const void *a, const void *b)
3638 {
3639 const struct mem_cgroup_threshold *_a = a;
3640 const struct mem_cgroup_threshold *_b = b;
3641
3642 if (_a->threshold > _b->threshold)
3643 return 1;
3644
3645 if (_a->threshold < _b->threshold)
3646 return -1;
3647
3648 return 0;
3649 }
3650
3651 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3652 {
3653 struct mem_cgroup_eventfd_list *ev;
3654
3655 spin_lock(&memcg_oom_lock);
3656
3657 list_for_each_entry(ev, &memcg->oom_notify, list)
3658 eventfd_signal(ev->eventfd, 1);
3659
3660 spin_unlock(&memcg_oom_lock);
3661 return 0;
3662 }
3663
3664 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3665 {
3666 struct mem_cgroup *iter;
3667
3668 for_each_mem_cgroup_tree(iter, memcg)
3669 mem_cgroup_oom_notify_cb(iter);
3670 }
3671
3672 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3673 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3674 {
3675 struct mem_cgroup_thresholds *thresholds;
3676 struct mem_cgroup_threshold_ary *new;
3677 unsigned long threshold;
3678 unsigned long usage;
3679 int i, size, ret;
3680
3681 ret = page_counter_memparse(args, "-1", &threshold);
3682 if (ret)
3683 return ret;
3684
3685 mutex_lock(&memcg->thresholds_lock);
3686
3687 if (type == _MEM) {
3688 thresholds = &memcg->thresholds;
3689 usage = mem_cgroup_usage(memcg, false);
3690 } else if (type == _MEMSWAP) {
3691 thresholds = &memcg->memsw_thresholds;
3692 usage = mem_cgroup_usage(memcg, true);
3693 } else
3694 BUG();
3695
3696 /* Check if a threshold crossed before adding a new one */
3697 if (thresholds->primary)
3698 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3699
3700 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3701
3702 /* Allocate memory for new array of thresholds */
3703 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3704 GFP_KERNEL);
3705 if (!new) {
3706 ret = -ENOMEM;
3707 goto unlock;
3708 }
3709 new->size = size;
3710
3711 /* Copy thresholds (if any) to new array */
3712 if (thresholds->primary) {
3713 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3714 sizeof(struct mem_cgroup_threshold));
3715 }
3716
3717 /* Add new threshold */
3718 new->entries[size - 1].eventfd = eventfd;
3719 new->entries[size - 1].threshold = threshold;
3720
3721 /* Sort thresholds. Registering of new threshold isn't time-critical */
3722 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3723 compare_thresholds, NULL);
3724
3725 /* Find current threshold */
3726 new->current_threshold = -1;
3727 for (i = 0; i < size; i++) {
3728 if (new->entries[i].threshold <= usage) {
3729 /*
3730 * new->current_threshold will not be used until
3731 * rcu_assign_pointer(), so it's safe to increment
3732 * it here.
3733 */
3734 ++new->current_threshold;
3735 } else
3736 break;
3737 }
3738
3739 /* Free old spare buffer and save old primary buffer as spare */
3740 kfree(thresholds->spare);
3741 thresholds->spare = thresholds->primary;
3742
3743 rcu_assign_pointer(thresholds->primary, new);
3744
3745 /* To be sure that nobody uses thresholds */
3746 synchronize_rcu();
3747
3748 unlock:
3749 mutex_unlock(&memcg->thresholds_lock);
3750
3751 return ret;
3752 }
3753
3754 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3755 struct eventfd_ctx *eventfd, const char *args)
3756 {
3757 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3758 }
3759
3760 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3761 struct eventfd_ctx *eventfd, const char *args)
3762 {
3763 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3764 }
3765
3766 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3767 struct eventfd_ctx *eventfd, enum res_type type)
3768 {
3769 struct mem_cgroup_thresholds *thresholds;
3770 struct mem_cgroup_threshold_ary *new;
3771 unsigned long usage;
3772 int i, j, size;
3773
3774 mutex_lock(&memcg->thresholds_lock);
3775
3776 if (type == _MEM) {
3777 thresholds = &memcg->thresholds;
3778 usage = mem_cgroup_usage(memcg, false);
3779 } else if (type == _MEMSWAP) {
3780 thresholds = &memcg->memsw_thresholds;
3781 usage = mem_cgroup_usage(memcg, true);
3782 } else
3783 BUG();
3784
3785 if (!thresholds->primary)
3786 goto unlock;
3787
3788 /* Check if a threshold crossed before removing */
3789 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3790
3791 /* Calculate new number of threshold */
3792 size = 0;
3793 for (i = 0; i < thresholds->primary->size; i++) {
3794 if (thresholds->primary->entries[i].eventfd != eventfd)
3795 size++;
3796 }
3797
3798 new = thresholds->spare;
3799
3800 /* Set thresholds array to NULL if we don't have thresholds */
3801 if (!size) {
3802 kfree(new);
3803 new = NULL;
3804 goto swap_buffers;
3805 }
3806
3807 new->size = size;
3808
3809 /* Copy thresholds and find current threshold */
3810 new->current_threshold = -1;
3811 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3812 if (thresholds->primary->entries[i].eventfd == eventfd)
3813 continue;
3814
3815 new->entries[j] = thresholds->primary->entries[i];
3816 if (new->entries[j].threshold <= usage) {
3817 /*
3818 * new->current_threshold will not be used
3819 * until rcu_assign_pointer(), so it's safe to increment
3820 * it here.
3821 */
3822 ++new->current_threshold;
3823 }
3824 j++;
3825 }
3826
3827 swap_buffers:
3828 /* Swap primary and spare array */
3829 thresholds->spare = thresholds->primary;
3830 /* If all events are unregistered, free the spare array */
3831 if (!new) {
3832 kfree(thresholds->spare);
3833 thresholds->spare = NULL;
3834 }
3835
3836 rcu_assign_pointer(thresholds->primary, new);
3837
3838 /* To be sure that nobody uses thresholds */
3839 synchronize_rcu();
3840 unlock:
3841 mutex_unlock(&memcg->thresholds_lock);
3842 }
3843
3844 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3845 struct eventfd_ctx *eventfd)
3846 {
3847 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3848 }
3849
3850 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3851 struct eventfd_ctx *eventfd)
3852 {
3853 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3854 }
3855
3856 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3857 struct eventfd_ctx *eventfd, const char *args)
3858 {
3859 struct mem_cgroup_eventfd_list *event;
3860
3861 event = kmalloc(sizeof(*event), GFP_KERNEL);
3862 if (!event)
3863 return -ENOMEM;
3864
3865 spin_lock(&memcg_oom_lock);
3866
3867 event->eventfd = eventfd;
3868 list_add(&event->list, &memcg->oom_notify);
3869
3870 /* already in OOM ? */
3871 if (memcg->under_oom)
3872 eventfd_signal(eventfd, 1);
3873 spin_unlock(&memcg_oom_lock);
3874
3875 return 0;
3876 }
3877
3878 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3879 struct eventfd_ctx *eventfd)
3880 {
3881 struct mem_cgroup_eventfd_list *ev, *tmp;
3882
3883 spin_lock(&memcg_oom_lock);
3884
3885 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3886 if (ev->eventfd == eventfd) {
3887 list_del(&ev->list);
3888 kfree(ev);
3889 }
3890 }
3891
3892 spin_unlock(&memcg_oom_lock);
3893 }
3894
3895 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3896 {
3897 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3898
3899 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3900 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3901 return 0;
3902 }
3903
3904 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3905 struct cftype *cft, u64 val)
3906 {
3907 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3908
3909 /* cannot set to root cgroup and only 0 and 1 are allowed */
3910 if (!css->parent || !((val == 0) || (val == 1)))
3911 return -EINVAL;
3912
3913 memcg->oom_kill_disable = val;
3914 if (!val)
3915 memcg_oom_recover(memcg);
3916
3917 return 0;
3918 }
3919
3920 #ifdef CONFIG_MEMCG_KMEM
3921 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3922 {
3923 int ret;
3924
3925 ret = memcg_propagate_kmem(memcg);
3926 if (ret)
3927 return ret;
3928
3929 return mem_cgroup_sockets_init(memcg, ss);
3930 }
3931
3932 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3933 {
3934 struct cgroup_subsys_state *css;
3935 struct mem_cgroup *parent, *child;
3936 int kmemcg_id;
3937
3938 if (!memcg->kmem_acct_active)
3939 return;
3940
3941 /*
3942 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3943 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3944 * guarantees no cache will be created for this cgroup after we are
3945 * done (see memcg_create_kmem_cache()).
3946 */
3947 memcg->kmem_acct_active = false;
3948
3949 memcg_deactivate_kmem_caches(memcg);
3950
3951 kmemcg_id = memcg->kmemcg_id;
3952 BUG_ON(kmemcg_id < 0);
3953
3954 parent = parent_mem_cgroup(memcg);
3955 if (!parent)
3956 parent = root_mem_cgroup;
3957
3958 /*
3959 * Change kmemcg_id of this cgroup and all its descendants to the
3960 * parent's id, and then move all entries from this cgroup's list_lrus
3961 * to ones of the parent. After we have finished, all list_lrus
3962 * corresponding to this cgroup are guaranteed to remain empty. The
3963 * ordering is imposed by list_lru_node->lock taken by
3964 * memcg_drain_all_list_lrus().
3965 */
3966 css_for_each_descendant_pre(css, &memcg->css) {
3967 child = mem_cgroup_from_css(css);
3968 BUG_ON(child->kmemcg_id != kmemcg_id);
3969 child->kmemcg_id = parent->kmemcg_id;
3970 if (!memcg->use_hierarchy)
3971 break;
3972 }
3973 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3974
3975 memcg_free_cache_id(kmemcg_id);
3976 }
3977
3978 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3979 {
3980 if (memcg->kmem_acct_activated) {
3981 memcg_destroy_kmem_caches(memcg);
3982 static_key_slow_dec(&memcg_kmem_enabled_key);
3983 WARN_ON(page_counter_read(&memcg->kmem));
3984 }
3985 mem_cgroup_sockets_destroy(memcg);
3986 }
3987 #else
3988 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3989 {
3990 return 0;
3991 }
3992
3993 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3994 {
3995 }
3996
3997 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3998 {
3999 }
4000 #endif
4001
4002 #ifdef CONFIG_CGROUP_WRITEBACK
4003
4004 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
4005 {
4006 return &memcg->cgwb_list;
4007 }
4008
4009 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4010 {
4011 return wb_domain_init(&memcg->cgwb_domain, gfp);
4012 }
4013
4014 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4015 {
4016 wb_domain_exit(&memcg->cgwb_domain);
4017 }
4018
4019 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4020 {
4021 wb_domain_size_changed(&memcg->cgwb_domain);
4022 }
4023
4024 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4025 {
4026 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4027
4028 if (!memcg->css.parent)
4029 return NULL;
4030
4031 return &memcg->cgwb_domain;
4032 }
4033
4034 /**
4035 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4036 * @wb: bdi_writeback in question
4037 * @pavail: out parameter for number of available pages
4038 * @pdirty: out parameter for number of dirty pages
4039 * @pwriteback: out parameter for number of pages under writeback
4040 *
4041 * Determine the numbers of available, dirty, and writeback pages in @wb's
4042 * memcg. Dirty and writeback are self-explanatory. Available is a bit
4043 * more involved.
4044 *
4045 * A memcg's headroom is "min(max, high) - used". The available memory is
4046 * calculated as the lowest headroom of itself and the ancestors plus the
4047 * number of pages already being used for file pages. Note that this
4048 * doesn't consider the actual amount of available memory in the system.
4049 * The caller should further cap *@pavail accordingly.
4050 */
4051 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pavail,
4052 unsigned long *pdirty, unsigned long *pwriteback)
4053 {
4054 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4055 struct mem_cgroup *parent;
4056 unsigned long head_room = PAGE_COUNTER_MAX;
4057 unsigned long file_pages;
4058
4059 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
4060
4061 /* this should eventually include NR_UNSTABLE_NFS */
4062 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
4063
4064 file_pages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
4065 (1 << LRU_ACTIVE_FILE));
4066 while ((parent = parent_mem_cgroup(memcg))) {
4067 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
4068 unsigned long used = page_counter_read(&memcg->memory);
4069
4070 head_room = min(head_room, ceiling - min(ceiling, used));
4071 memcg = parent;
4072 }
4073
4074 *pavail = file_pages + head_room;
4075 }
4076
4077 #else /* CONFIG_CGROUP_WRITEBACK */
4078
4079 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4080 {
4081 return 0;
4082 }
4083
4084 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4085 {
4086 }
4087
4088 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4089 {
4090 }
4091
4092 #endif /* CONFIG_CGROUP_WRITEBACK */
4093
4094 /*
4095 * DO NOT USE IN NEW FILES.
4096 *
4097 * "cgroup.event_control" implementation.
4098 *
4099 * This is way over-engineered. It tries to support fully configurable
4100 * events for each user. Such level of flexibility is completely
4101 * unnecessary especially in the light of the planned unified hierarchy.
4102 *
4103 * Please deprecate this and replace with something simpler if at all
4104 * possible.
4105 */
4106
4107 /*
4108 * Unregister event and free resources.
4109 *
4110 * Gets called from workqueue.
4111 */
4112 static void memcg_event_remove(struct work_struct *work)
4113 {
4114 struct mem_cgroup_event *event =
4115 container_of(work, struct mem_cgroup_event, remove);
4116 struct mem_cgroup *memcg = event->memcg;
4117
4118 remove_wait_queue(event->wqh, &event->wait);
4119
4120 event->unregister_event(memcg, event->eventfd);
4121
4122 /* Notify userspace the event is going away. */
4123 eventfd_signal(event->eventfd, 1);
4124
4125 eventfd_ctx_put(event->eventfd);
4126 kfree(event);
4127 css_put(&memcg->css);
4128 }
4129
4130 /*
4131 * Gets called on POLLHUP on eventfd when user closes it.
4132 *
4133 * Called with wqh->lock held and interrupts disabled.
4134 */
4135 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4136 int sync, void *key)
4137 {
4138 struct mem_cgroup_event *event =
4139 container_of(wait, struct mem_cgroup_event, wait);
4140 struct mem_cgroup *memcg = event->memcg;
4141 unsigned long flags = (unsigned long)key;
4142
4143 if (flags & POLLHUP) {
4144 /*
4145 * If the event has been detached at cgroup removal, we
4146 * can simply return knowing the other side will cleanup
4147 * for us.
4148 *
4149 * We can't race against event freeing since the other
4150 * side will require wqh->lock via remove_wait_queue(),
4151 * which we hold.
4152 */
4153 spin_lock(&memcg->event_list_lock);
4154 if (!list_empty(&event->list)) {
4155 list_del_init(&event->list);
4156 /*
4157 * We are in atomic context, but cgroup_event_remove()
4158 * may sleep, so we have to call it in workqueue.
4159 */
4160 schedule_work(&event->remove);
4161 }
4162 spin_unlock(&memcg->event_list_lock);
4163 }
4164
4165 return 0;
4166 }
4167
4168 static void memcg_event_ptable_queue_proc(struct file *file,
4169 wait_queue_head_t *wqh, poll_table *pt)
4170 {
4171 struct mem_cgroup_event *event =
4172 container_of(pt, struct mem_cgroup_event, pt);
4173
4174 event->wqh = wqh;
4175 add_wait_queue(wqh, &event->wait);
4176 }
4177
4178 /*
4179 * DO NOT USE IN NEW FILES.
4180 *
4181 * Parse input and register new cgroup event handler.
4182 *
4183 * Input must be in format '<event_fd> <control_fd> <args>'.
4184 * Interpretation of args is defined by control file implementation.
4185 */
4186 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4187 char *buf, size_t nbytes, loff_t off)
4188 {
4189 struct cgroup_subsys_state *css = of_css(of);
4190 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4191 struct mem_cgroup_event *event;
4192 struct cgroup_subsys_state *cfile_css;
4193 unsigned int efd, cfd;
4194 struct fd efile;
4195 struct fd cfile;
4196 const char *name;
4197 char *endp;
4198 int ret;
4199
4200 buf = strstrip(buf);
4201
4202 efd = simple_strtoul(buf, &endp, 10);
4203 if (*endp != ' ')
4204 return -EINVAL;
4205 buf = endp + 1;
4206
4207 cfd = simple_strtoul(buf, &endp, 10);
4208 if ((*endp != ' ') && (*endp != '\0'))
4209 return -EINVAL;
4210 buf = endp + 1;
4211
4212 event = kzalloc(sizeof(*event), GFP_KERNEL);
4213 if (!event)
4214 return -ENOMEM;
4215
4216 event->memcg = memcg;
4217 INIT_LIST_HEAD(&event->list);
4218 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4219 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4220 INIT_WORK(&event->remove, memcg_event_remove);
4221
4222 efile = fdget(efd);
4223 if (!efile.file) {
4224 ret = -EBADF;
4225 goto out_kfree;
4226 }
4227
4228 event->eventfd = eventfd_ctx_fileget(efile.file);
4229 if (IS_ERR(event->eventfd)) {
4230 ret = PTR_ERR(event->eventfd);
4231 goto out_put_efile;
4232 }
4233
4234 cfile = fdget(cfd);
4235 if (!cfile.file) {
4236 ret = -EBADF;
4237 goto out_put_eventfd;
4238 }
4239
4240 /* the process need read permission on control file */
4241 /* AV: shouldn't we check that it's been opened for read instead? */
4242 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4243 if (ret < 0)
4244 goto out_put_cfile;
4245
4246 /*
4247 * Determine the event callbacks and set them in @event. This used
4248 * to be done via struct cftype but cgroup core no longer knows
4249 * about these events. The following is crude but the whole thing
4250 * is for compatibility anyway.
4251 *
4252 * DO NOT ADD NEW FILES.
4253 */
4254 name = cfile.file->f_path.dentry->d_name.name;
4255
4256 if (!strcmp(name, "memory.usage_in_bytes")) {
4257 event->register_event = mem_cgroup_usage_register_event;
4258 event->unregister_event = mem_cgroup_usage_unregister_event;
4259 } else if (!strcmp(name, "memory.oom_control")) {
4260 event->register_event = mem_cgroup_oom_register_event;
4261 event->unregister_event = mem_cgroup_oom_unregister_event;
4262 } else if (!strcmp(name, "memory.pressure_level")) {
4263 event->register_event = vmpressure_register_event;
4264 event->unregister_event = vmpressure_unregister_event;
4265 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4266 event->register_event = memsw_cgroup_usage_register_event;
4267 event->unregister_event = memsw_cgroup_usage_unregister_event;
4268 } else {
4269 ret = -EINVAL;
4270 goto out_put_cfile;
4271 }
4272
4273 /*
4274 * Verify @cfile should belong to @css. Also, remaining events are
4275 * automatically removed on cgroup destruction but the removal is
4276 * asynchronous, so take an extra ref on @css.
4277 */
4278 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4279 &memory_cgrp_subsys);
4280 ret = -EINVAL;
4281 if (IS_ERR(cfile_css))
4282 goto out_put_cfile;
4283 if (cfile_css != css) {
4284 css_put(cfile_css);
4285 goto out_put_cfile;
4286 }
4287
4288 ret = event->register_event(memcg, event->eventfd, buf);
4289 if (ret)
4290 goto out_put_css;
4291
4292 efile.file->f_op->poll(efile.file, &event->pt);
4293
4294 spin_lock(&memcg->event_list_lock);
4295 list_add(&event->list, &memcg->event_list);
4296 spin_unlock(&memcg->event_list_lock);
4297
4298 fdput(cfile);
4299 fdput(efile);
4300
4301 return nbytes;
4302
4303 out_put_css:
4304 css_put(css);
4305 out_put_cfile:
4306 fdput(cfile);
4307 out_put_eventfd:
4308 eventfd_ctx_put(event->eventfd);
4309 out_put_efile:
4310 fdput(efile);
4311 out_kfree:
4312 kfree(event);
4313
4314 return ret;
4315 }
4316
4317 static struct cftype mem_cgroup_legacy_files[] = {
4318 {
4319 .name = "usage_in_bytes",
4320 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4321 .read_u64 = mem_cgroup_read_u64,
4322 },
4323 {
4324 .name = "max_usage_in_bytes",
4325 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4326 .write = mem_cgroup_reset,
4327 .read_u64 = mem_cgroup_read_u64,
4328 },
4329 {
4330 .name = "limit_in_bytes",
4331 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4332 .write = mem_cgroup_write,
4333 .read_u64 = mem_cgroup_read_u64,
4334 },
4335 {
4336 .name = "soft_limit_in_bytes",
4337 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4338 .write = mem_cgroup_write,
4339 .read_u64 = mem_cgroup_read_u64,
4340 },
4341 {
4342 .name = "failcnt",
4343 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4344 .write = mem_cgroup_reset,
4345 .read_u64 = mem_cgroup_read_u64,
4346 },
4347 {
4348 .name = "stat",
4349 .seq_show = memcg_stat_show,
4350 },
4351 {
4352 .name = "force_empty",
4353 .write = mem_cgroup_force_empty_write,
4354 },
4355 {
4356 .name = "use_hierarchy",
4357 .write_u64 = mem_cgroup_hierarchy_write,
4358 .read_u64 = mem_cgroup_hierarchy_read,
4359 },
4360 {
4361 .name = "cgroup.event_control", /* XXX: for compat */
4362 .write = memcg_write_event_control,
4363 .flags = CFTYPE_NO_PREFIX,
4364 .mode = S_IWUGO,
4365 },
4366 {
4367 .name = "swappiness",
4368 .read_u64 = mem_cgroup_swappiness_read,
4369 .write_u64 = mem_cgroup_swappiness_write,
4370 },
4371 {
4372 .name = "move_charge_at_immigrate",
4373 .read_u64 = mem_cgroup_move_charge_read,
4374 .write_u64 = mem_cgroup_move_charge_write,
4375 },
4376 {
4377 .name = "oom_control",
4378 .seq_show = mem_cgroup_oom_control_read,
4379 .write_u64 = mem_cgroup_oom_control_write,
4380 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4381 },
4382 {
4383 .name = "pressure_level",
4384 },
4385 #ifdef CONFIG_NUMA
4386 {
4387 .name = "numa_stat",
4388 .seq_show = memcg_numa_stat_show,
4389 },
4390 #endif
4391 #ifdef CONFIG_MEMCG_KMEM
4392 {
4393 .name = "kmem.limit_in_bytes",
4394 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4395 .write = mem_cgroup_write,
4396 .read_u64 = mem_cgroup_read_u64,
4397 },
4398 {
4399 .name = "kmem.usage_in_bytes",
4400 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4401 .read_u64 = mem_cgroup_read_u64,
4402 },
4403 {
4404 .name = "kmem.failcnt",
4405 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4406 .write = mem_cgroup_reset,
4407 .read_u64 = mem_cgroup_read_u64,
4408 },
4409 {
4410 .name = "kmem.max_usage_in_bytes",
4411 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4412 .write = mem_cgroup_reset,
4413 .read_u64 = mem_cgroup_read_u64,
4414 },
4415 #ifdef CONFIG_SLABINFO
4416 {
4417 .name = "kmem.slabinfo",
4418 .seq_start = slab_start,
4419 .seq_next = slab_next,
4420 .seq_stop = slab_stop,
4421 .seq_show = memcg_slab_show,
4422 },
4423 #endif
4424 #endif
4425 { }, /* terminate */
4426 };
4427
4428 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4429 {
4430 struct mem_cgroup_per_node *pn;
4431 struct mem_cgroup_per_zone *mz;
4432 int zone, tmp = node;
4433 /*
4434 * This routine is called against possible nodes.
4435 * But it's BUG to call kmalloc() against offline node.
4436 *
4437 * TODO: this routine can waste much memory for nodes which will
4438 * never be onlined. It's better to use memory hotplug callback
4439 * function.
4440 */
4441 if (!node_state(node, N_NORMAL_MEMORY))
4442 tmp = -1;
4443 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4444 if (!pn)
4445 return 1;
4446
4447 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4448 mz = &pn->zoneinfo[zone];
4449 lruvec_init(&mz->lruvec);
4450 mz->usage_in_excess = 0;
4451 mz->on_tree = false;
4452 mz->memcg = memcg;
4453 }
4454 memcg->nodeinfo[node] = pn;
4455 return 0;
4456 }
4457
4458 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4459 {
4460 kfree(memcg->nodeinfo[node]);
4461 }
4462
4463 static struct mem_cgroup *mem_cgroup_alloc(void)
4464 {
4465 struct mem_cgroup *memcg;
4466 size_t size;
4467
4468 size = sizeof(struct mem_cgroup);
4469 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4470
4471 memcg = kzalloc(size, GFP_KERNEL);
4472 if (!memcg)
4473 return NULL;
4474
4475 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4476 if (!memcg->stat)
4477 goto out_free;
4478
4479 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4480 goto out_free_stat;
4481
4482 spin_lock_init(&memcg->pcp_counter_lock);
4483 return memcg;
4484
4485 out_free_stat:
4486 free_percpu(memcg->stat);
4487 out_free:
4488 kfree(memcg);
4489 return NULL;
4490 }
4491
4492 /*
4493 * At destroying mem_cgroup, references from swap_cgroup can remain.
4494 * (scanning all at force_empty is too costly...)
4495 *
4496 * Instead of clearing all references at force_empty, we remember
4497 * the number of reference from swap_cgroup and free mem_cgroup when
4498 * it goes down to 0.
4499 *
4500 * Removal of cgroup itself succeeds regardless of refs from swap.
4501 */
4502
4503 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4504 {
4505 int node;
4506
4507 mem_cgroup_remove_from_trees(memcg);
4508
4509 for_each_node(node)
4510 free_mem_cgroup_per_zone_info(memcg, node);
4511
4512 free_percpu(memcg->stat);
4513 memcg_wb_domain_exit(memcg);
4514 kfree(memcg);
4515 }
4516
4517 /*
4518 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4519 */
4520 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4521 {
4522 if (!memcg->memory.parent)
4523 return NULL;
4524 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4525 }
4526 EXPORT_SYMBOL(parent_mem_cgroup);
4527
4528 static struct cgroup_subsys_state * __ref
4529 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4530 {
4531 struct mem_cgroup *memcg;
4532 long error = -ENOMEM;
4533 int node;
4534
4535 memcg = mem_cgroup_alloc();
4536 if (!memcg)
4537 return ERR_PTR(error);
4538
4539 for_each_node(node)
4540 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4541 goto free_out;
4542
4543 /* root ? */
4544 if (parent_css == NULL) {
4545 root_mem_cgroup = memcg;
4546 mem_cgroup_root_css = &memcg->css;
4547 page_counter_init(&memcg->memory, NULL);
4548 memcg->high = PAGE_COUNTER_MAX;
4549 memcg->soft_limit = PAGE_COUNTER_MAX;
4550 page_counter_init(&memcg->memsw, NULL);
4551 page_counter_init(&memcg->kmem, NULL);
4552 }
4553
4554 memcg->last_scanned_node = MAX_NUMNODES;
4555 INIT_LIST_HEAD(&memcg->oom_notify);
4556 memcg->move_charge_at_immigrate = 0;
4557 mutex_init(&memcg->thresholds_lock);
4558 spin_lock_init(&memcg->move_lock);
4559 vmpressure_init(&memcg->vmpressure);
4560 INIT_LIST_HEAD(&memcg->event_list);
4561 spin_lock_init(&memcg->event_list_lock);
4562 #ifdef CONFIG_MEMCG_KMEM
4563 memcg->kmemcg_id = -1;
4564 #endif
4565 #ifdef CONFIG_CGROUP_WRITEBACK
4566 INIT_LIST_HEAD(&memcg->cgwb_list);
4567 #endif
4568 return &memcg->css;
4569
4570 free_out:
4571 __mem_cgroup_free(memcg);
4572 return ERR_PTR(error);
4573 }
4574
4575 static int
4576 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4577 {
4578 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4579 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4580 int ret;
4581
4582 if (css->id > MEM_CGROUP_ID_MAX)
4583 return -ENOSPC;
4584
4585 if (!parent)
4586 return 0;
4587
4588 mutex_lock(&memcg_create_mutex);
4589
4590 memcg->use_hierarchy = parent->use_hierarchy;
4591 memcg->oom_kill_disable = parent->oom_kill_disable;
4592 memcg->swappiness = mem_cgroup_swappiness(parent);
4593
4594 if (parent->use_hierarchy) {
4595 page_counter_init(&memcg->memory, &parent->memory);
4596 memcg->high = PAGE_COUNTER_MAX;
4597 memcg->soft_limit = PAGE_COUNTER_MAX;
4598 page_counter_init(&memcg->memsw, &parent->memsw);
4599 page_counter_init(&memcg->kmem, &parent->kmem);
4600
4601 /*
4602 * No need to take a reference to the parent because cgroup
4603 * core guarantees its existence.
4604 */
4605 } else {
4606 page_counter_init(&memcg->memory, NULL);
4607 memcg->high = PAGE_COUNTER_MAX;
4608 memcg->soft_limit = PAGE_COUNTER_MAX;
4609 page_counter_init(&memcg->memsw, NULL);
4610 page_counter_init(&memcg->kmem, NULL);
4611 /*
4612 * Deeper hierachy with use_hierarchy == false doesn't make
4613 * much sense so let cgroup subsystem know about this
4614 * unfortunate state in our controller.
4615 */
4616 if (parent != root_mem_cgroup)
4617 memory_cgrp_subsys.broken_hierarchy = true;
4618 }
4619 mutex_unlock(&memcg_create_mutex);
4620
4621 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4622 if (ret)
4623 return ret;
4624
4625 /*
4626 * Make sure the memcg is initialized: mem_cgroup_iter()
4627 * orders reading memcg->initialized against its callers
4628 * reading the memcg members.
4629 */
4630 smp_store_release(&memcg->initialized, 1);
4631
4632 return 0;
4633 }
4634
4635 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4636 {
4637 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4638 struct mem_cgroup_event *event, *tmp;
4639
4640 /*
4641 * Unregister events and notify userspace.
4642 * Notify userspace about cgroup removing only after rmdir of cgroup
4643 * directory to avoid race between userspace and kernelspace.
4644 */
4645 spin_lock(&memcg->event_list_lock);
4646 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4647 list_del_init(&event->list);
4648 schedule_work(&event->remove);
4649 }
4650 spin_unlock(&memcg->event_list_lock);
4651
4652 vmpressure_cleanup(&memcg->vmpressure);
4653
4654 memcg_deactivate_kmem(memcg);
4655
4656 wb_memcg_offline(memcg);
4657 }
4658
4659 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4660 {
4661 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4662
4663 memcg_destroy_kmem(memcg);
4664 __mem_cgroup_free(memcg);
4665 }
4666
4667 /**
4668 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4669 * @css: the target css
4670 *
4671 * Reset the states of the mem_cgroup associated with @css. This is
4672 * invoked when the userland requests disabling on the default hierarchy
4673 * but the memcg is pinned through dependency. The memcg should stop
4674 * applying policies and should revert to the vanilla state as it may be
4675 * made visible again.
4676 *
4677 * The current implementation only resets the essential configurations.
4678 * This needs to be expanded to cover all the visible parts.
4679 */
4680 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4681 {
4682 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4683
4684 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4685 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4686 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4687 memcg->low = 0;
4688 memcg->high = PAGE_COUNTER_MAX;
4689 memcg->soft_limit = PAGE_COUNTER_MAX;
4690 memcg_wb_domain_size_changed(memcg);
4691 }
4692
4693 #ifdef CONFIG_MMU
4694 /* Handlers for move charge at task migration. */
4695 static int mem_cgroup_do_precharge(unsigned long count)
4696 {
4697 int ret;
4698
4699 /* Try a single bulk charge without reclaim first */
4700 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4701 if (!ret) {
4702 mc.precharge += count;
4703 return ret;
4704 }
4705 if (ret == -EINTR) {
4706 cancel_charge(root_mem_cgroup, count);
4707 return ret;
4708 }
4709
4710 /* Try charges one by one with reclaim */
4711 while (count--) {
4712 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4713 /*
4714 * In case of failure, any residual charges against
4715 * mc.to will be dropped by mem_cgroup_clear_mc()
4716 * later on. However, cancel any charges that are
4717 * bypassed to root right away or they'll be lost.
4718 */
4719 if (ret == -EINTR)
4720 cancel_charge(root_mem_cgroup, 1);
4721 if (ret)
4722 return ret;
4723 mc.precharge++;
4724 cond_resched();
4725 }
4726 return 0;
4727 }
4728
4729 /**
4730 * get_mctgt_type - get target type of moving charge
4731 * @vma: the vma the pte to be checked belongs
4732 * @addr: the address corresponding to the pte to be checked
4733 * @ptent: the pte to be checked
4734 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4735 *
4736 * Returns
4737 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4738 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4739 * move charge. if @target is not NULL, the page is stored in target->page
4740 * with extra refcnt got(Callers should handle it).
4741 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4742 * target for charge migration. if @target is not NULL, the entry is stored
4743 * in target->ent.
4744 *
4745 * Called with pte lock held.
4746 */
4747 union mc_target {
4748 struct page *page;
4749 swp_entry_t ent;
4750 };
4751
4752 enum mc_target_type {
4753 MC_TARGET_NONE = 0,
4754 MC_TARGET_PAGE,
4755 MC_TARGET_SWAP,
4756 };
4757
4758 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4759 unsigned long addr, pte_t ptent)
4760 {
4761 struct page *page = vm_normal_page(vma, addr, ptent);
4762
4763 if (!page || !page_mapped(page))
4764 return NULL;
4765 if (PageAnon(page)) {
4766 if (!(mc.flags & MOVE_ANON))
4767 return NULL;
4768 } else {
4769 if (!(mc.flags & MOVE_FILE))
4770 return NULL;
4771 }
4772 if (!get_page_unless_zero(page))
4773 return NULL;
4774
4775 return page;
4776 }
4777
4778 #ifdef CONFIG_SWAP
4779 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4780 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4781 {
4782 struct page *page = NULL;
4783 swp_entry_t ent = pte_to_swp_entry(ptent);
4784
4785 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4786 return NULL;
4787 /*
4788 * Because lookup_swap_cache() updates some statistics counter,
4789 * we call find_get_page() with swapper_space directly.
4790 */
4791 page = find_get_page(swap_address_space(ent), ent.val);
4792 if (do_swap_account)
4793 entry->val = ent.val;
4794
4795 return page;
4796 }
4797 #else
4798 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4799 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4800 {
4801 return NULL;
4802 }
4803 #endif
4804
4805 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4806 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4807 {
4808 struct page *page = NULL;
4809 struct address_space *mapping;
4810 pgoff_t pgoff;
4811
4812 if (!vma->vm_file) /* anonymous vma */
4813 return NULL;
4814 if (!(mc.flags & MOVE_FILE))
4815 return NULL;
4816
4817 mapping = vma->vm_file->f_mapping;
4818 pgoff = linear_page_index(vma, addr);
4819
4820 /* page is moved even if it's not RSS of this task(page-faulted). */
4821 #ifdef CONFIG_SWAP
4822 /* shmem/tmpfs may report page out on swap: account for that too. */
4823 if (shmem_mapping(mapping)) {
4824 page = find_get_entry(mapping, pgoff);
4825 if (radix_tree_exceptional_entry(page)) {
4826 swp_entry_t swp = radix_to_swp_entry(page);
4827 if (do_swap_account)
4828 *entry = swp;
4829 page = find_get_page(swap_address_space(swp), swp.val);
4830 }
4831 } else
4832 page = find_get_page(mapping, pgoff);
4833 #else
4834 page = find_get_page(mapping, pgoff);
4835 #endif
4836 return page;
4837 }
4838
4839 /**
4840 * mem_cgroup_move_account - move account of the page
4841 * @page: the page
4842 * @nr_pages: number of regular pages (>1 for huge pages)
4843 * @from: mem_cgroup which the page is moved from.
4844 * @to: mem_cgroup which the page is moved to. @from != @to.
4845 *
4846 * The caller must confirm following.
4847 * - page is not on LRU (isolate_page() is useful.)
4848 * - compound_lock is held when nr_pages > 1
4849 *
4850 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4851 * from old cgroup.
4852 */
4853 static int mem_cgroup_move_account(struct page *page,
4854 unsigned int nr_pages,
4855 struct mem_cgroup *from,
4856 struct mem_cgroup *to)
4857 {
4858 unsigned long flags;
4859 int ret;
4860 bool anon;
4861
4862 VM_BUG_ON(from == to);
4863 VM_BUG_ON_PAGE(PageLRU(page), page);
4864 /*
4865 * The page is isolated from LRU. So, collapse function
4866 * will not handle this page. But page splitting can happen.
4867 * Do this check under compound_page_lock(). The caller should
4868 * hold it.
4869 */
4870 ret = -EBUSY;
4871 if (nr_pages > 1 && !PageTransHuge(page))
4872 goto out;
4873
4874 /*
4875 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4876 * of its source page while we change it: page migration takes
4877 * both pages off the LRU, but page cache replacement doesn't.
4878 */
4879 if (!trylock_page(page))
4880 goto out;
4881
4882 ret = -EINVAL;
4883 if (page->mem_cgroup != from)
4884 goto out_unlock;
4885
4886 anon = PageAnon(page);
4887
4888 spin_lock_irqsave(&from->move_lock, flags);
4889
4890 if (!anon && page_mapped(page)) {
4891 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4892 nr_pages);
4893 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4894 nr_pages);
4895 }
4896
4897 /*
4898 * move_lock grabbed above and caller set from->moving_account, so
4899 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4900 * So mapping should be stable for dirty pages.
4901 */
4902 if (!anon && PageDirty(page)) {
4903 struct address_space *mapping = page_mapping(page);
4904
4905 if (mapping_cap_account_dirty(mapping)) {
4906 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4907 nr_pages);
4908 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4909 nr_pages);
4910 }
4911 }
4912
4913 if (PageWriteback(page)) {
4914 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4915 nr_pages);
4916 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4917 nr_pages);
4918 }
4919
4920 /*
4921 * It is safe to change page->mem_cgroup here because the page
4922 * is referenced, charged, and isolated - we can't race with
4923 * uncharging, charging, migration, or LRU putback.
4924 */
4925
4926 /* caller should have done css_get */
4927 page->mem_cgroup = to;
4928 spin_unlock_irqrestore(&from->move_lock, flags);
4929
4930 ret = 0;
4931
4932 local_irq_disable();
4933 mem_cgroup_charge_statistics(to, page, nr_pages);
4934 memcg_check_events(to, page);
4935 mem_cgroup_charge_statistics(from, page, -nr_pages);
4936 memcg_check_events(from, page);
4937 local_irq_enable();
4938 out_unlock:
4939 unlock_page(page);
4940 out:
4941 return ret;
4942 }
4943
4944 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4945 unsigned long addr, pte_t ptent, union mc_target *target)
4946 {
4947 struct page *page = NULL;
4948 enum mc_target_type ret = MC_TARGET_NONE;
4949 swp_entry_t ent = { .val = 0 };
4950
4951 if (pte_present(ptent))
4952 page = mc_handle_present_pte(vma, addr, ptent);
4953 else if (is_swap_pte(ptent))
4954 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4955 else if (pte_none(ptent))
4956 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4957
4958 if (!page && !ent.val)
4959 return ret;
4960 if (page) {
4961 /*
4962 * Do only loose check w/o serialization.
4963 * mem_cgroup_move_account() checks the page is valid or
4964 * not under LRU exclusion.
4965 */
4966 if (page->mem_cgroup == mc.from) {
4967 ret = MC_TARGET_PAGE;
4968 if (target)
4969 target->page = page;
4970 }
4971 if (!ret || !target)
4972 put_page(page);
4973 }
4974 /* There is a swap entry and a page doesn't exist or isn't charged */
4975 if (ent.val && !ret &&
4976 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4977 ret = MC_TARGET_SWAP;
4978 if (target)
4979 target->ent = ent;
4980 }
4981 return ret;
4982 }
4983
4984 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4985 /*
4986 * We don't consider swapping or file mapped pages because THP does not
4987 * support them for now.
4988 * Caller should make sure that pmd_trans_huge(pmd) is true.
4989 */
4990 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4991 unsigned long addr, pmd_t pmd, union mc_target *target)
4992 {
4993 struct page *page = NULL;
4994 enum mc_target_type ret = MC_TARGET_NONE;
4995
4996 page = pmd_page(pmd);
4997 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4998 if (!(mc.flags & MOVE_ANON))
4999 return ret;
5000 if (page->mem_cgroup == mc.from) {
5001 ret = MC_TARGET_PAGE;
5002 if (target) {
5003 get_page(page);
5004 target->page = page;
5005 }
5006 }
5007 return ret;
5008 }
5009 #else
5010 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5011 unsigned long addr, pmd_t pmd, union mc_target *target)
5012 {
5013 return MC_TARGET_NONE;
5014 }
5015 #endif
5016
5017 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5018 unsigned long addr, unsigned long end,
5019 struct mm_walk *walk)
5020 {
5021 struct vm_area_struct *vma = walk->vma;
5022 pte_t *pte;
5023 spinlock_t *ptl;
5024
5025 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5026 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5027 mc.precharge += HPAGE_PMD_NR;
5028 spin_unlock(ptl);
5029 return 0;
5030 }
5031
5032 if (pmd_trans_unstable(pmd))
5033 return 0;
5034 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5035 for (; addr != end; pte++, addr += PAGE_SIZE)
5036 if (get_mctgt_type(vma, addr, *pte, NULL))
5037 mc.precharge++; /* increment precharge temporarily */
5038 pte_unmap_unlock(pte - 1, ptl);
5039 cond_resched();
5040
5041 return 0;
5042 }
5043
5044 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5045 {
5046 unsigned long precharge;
5047
5048 struct mm_walk mem_cgroup_count_precharge_walk = {
5049 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5050 .mm = mm,
5051 };
5052 down_read(&mm->mmap_sem);
5053 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
5054 up_read(&mm->mmap_sem);
5055
5056 precharge = mc.precharge;
5057 mc.precharge = 0;
5058
5059 return precharge;
5060 }
5061
5062 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5063 {
5064 unsigned long precharge = mem_cgroup_count_precharge(mm);
5065
5066 VM_BUG_ON(mc.moving_task);
5067 mc.moving_task = current;
5068 return mem_cgroup_do_precharge(precharge);
5069 }
5070
5071 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5072 static void __mem_cgroup_clear_mc(void)
5073 {
5074 struct mem_cgroup *from = mc.from;
5075 struct mem_cgroup *to = mc.to;
5076
5077 /* we must uncharge all the leftover precharges from mc.to */
5078 if (mc.precharge) {
5079 cancel_charge(mc.to, mc.precharge);
5080 mc.precharge = 0;
5081 }
5082 /*
5083 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5084 * we must uncharge here.
5085 */
5086 if (mc.moved_charge) {
5087 cancel_charge(mc.from, mc.moved_charge);
5088 mc.moved_charge = 0;
5089 }
5090 /* we must fixup refcnts and charges */
5091 if (mc.moved_swap) {
5092 /* uncharge swap account from the old cgroup */
5093 if (!mem_cgroup_is_root(mc.from))
5094 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5095
5096 /*
5097 * we charged both to->memory and to->memsw, so we
5098 * should uncharge to->memory.
5099 */
5100 if (!mem_cgroup_is_root(mc.to))
5101 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5102
5103 css_put_many(&mc.from->css, mc.moved_swap);
5104
5105 /* we've already done css_get(mc.to) */
5106 mc.moved_swap = 0;
5107 }
5108 memcg_oom_recover(from);
5109 memcg_oom_recover(to);
5110 wake_up_all(&mc.waitq);
5111 }
5112
5113 static void mem_cgroup_clear_mc(void)
5114 {
5115 /*
5116 * we must clear moving_task before waking up waiters at the end of
5117 * task migration.
5118 */
5119 mc.moving_task = NULL;
5120 __mem_cgroup_clear_mc();
5121 spin_lock(&mc.lock);
5122 mc.from = NULL;
5123 mc.to = NULL;
5124 spin_unlock(&mc.lock);
5125 }
5126
5127 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5128 struct cgroup_taskset *tset)
5129 {
5130 struct task_struct *p = cgroup_taskset_first(tset);
5131 int ret = 0;
5132 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5133 unsigned long move_flags;
5134
5135 /*
5136 * We are now commited to this value whatever it is. Changes in this
5137 * tunable will only affect upcoming migrations, not the current one.
5138 * So we need to save it, and keep it going.
5139 */
5140 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5141 if (move_flags) {
5142 struct mm_struct *mm;
5143 struct mem_cgroup *from = mem_cgroup_from_task(p);
5144
5145 VM_BUG_ON(from == memcg);
5146
5147 mm = get_task_mm(p);
5148 if (!mm)
5149 return 0;
5150 /* We move charges only when we move a owner of the mm */
5151 if (mm->owner == p) {
5152 VM_BUG_ON(mc.from);
5153 VM_BUG_ON(mc.to);
5154 VM_BUG_ON(mc.precharge);
5155 VM_BUG_ON(mc.moved_charge);
5156 VM_BUG_ON(mc.moved_swap);
5157
5158 spin_lock(&mc.lock);
5159 mc.from = from;
5160 mc.to = memcg;
5161 mc.flags = move_flags;
5162 spin_unlock(&mc.lock);
5163 /* We set mc.moving_task later */
5164
5165 ret = mem_cgroup_precharge_mc(mm);
5166 if (ret)
5167 mem_cgroup_clear_mc();
5168 }
5169 mmput(mm);
5170 }
5171 return ret;
5172 }
5173
5174 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5175 struct cgroup_taskset *tset)
5176 {
5177 if (mc.to)
5178 mem_cgroup_clear_mc();
5179 }
5180
5181 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5182 unsigned long addr, unsigned long end,
5183 struct mm_walk *walk)
5184 {
5185 int ret = 0;
5186 struct vm_area_struct *vma = walk->vma;
5187 pte_t *pte;
5188 spinlock_t *ptl;
5189 enum mc_target_type target_type;
5190 union mc_target target;
5191 struct page *page;
5192
5193 /*
5194 * We don't take compound_lock() here but no race with splitting thp
5195 * happens because:
5196 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5197 * under splitting, which means there's no concurrent thp split,
5198 * - if another thread runs into split_huge_page() just after we
5199 * entered this if-block, the thread must wait for page table lock
5200 * to be unlocked in __split_huge_page_splitting(), where the main
5201 * part of thp split is not executed yet.
5202 */
5203 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5204 if (mc.precharge < HPAGE_PMD_NR) {
5205 spin_unlock(ptl);
5206 return 0;
5207 }
5208 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5209 if (target_type == MC_TARGET_PAGE) {
5210 page = target.page;
5211 if (!isolate_lru_page(page)) {
5212 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5213 mc.from, mc.to)) {
5214 mc.precharge -= HPAGE_PMD_NR;
5215 mc.moved_charge += HPAGE_PMD_NR;
5216 }
5217 putback_lru_page(page);
5218 }
5219 put_page(page);
5220 }
5221 spin_unlock(ptl);
5222 return 0;
5223 }
5224
5225 if (pmd_trans_unstable(pmd))
5226 return 0;
5227 retry:
5228 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5229 for (; addr != end; addr += PAGE_SIZE) {
5230 pte_t ptent = *(pte++);
5231 swp_entry_t ent;
5232
5233 if (!mc.precharge)
5234 break;
5235
5236 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5237 case MC_TARGET_PAGE:
5238 page = target.page;
5239 if (isolate_lru_page(page))
5240 goto put;
5241 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5242 mc.precharge--;
5243 /* we uncharge from mc.from later. */
5244 mc.moved_charge++;
5245 }
5246 putback_lru_page(page);
5247 put: /* get_mctgt_type() gets the page */
5248 put_page(page);
5249 break;
5250 case MC_TARGET_SWAP:
5251 ent = target.ent;
5252 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5253 mc.precharge--;
5254 /* we fixup refcnts and charges later. */
5255 mc.moved_swap++;
5256 }
5257 break;
5258 default:
5259 break;
5260 }
5261 }
5262 pte_unmap_unlock(pte - 1, ptl);
5263 cond_resched();
5264
5265 if (addr != end) {
5266 /*
5267 * We have consumed all precharges we got in can_attach().
5268 * We try charge one by one, but don't do any additional
5269 * charges to mc.to if we have failed in charge once in attach()
5270 * phase.
5271 */
5272 ret = mem_cgroup_do_precharge(1);
5273 if (!ret)
5274 goto retry;
5275 }
5276
5277 return ret;
5278 }
5279
5280 static void mem_cgroup_move_charge(struct mm_struct *mm)
5281 {
5282 struct mm_walk mem_cgroup_move_charge_walk = {
5283 .pmd_entry = mem_cgroup_move_charge_pte_range,
5284 .mm = mm,
5285 };
5286
5287 lru_add_drain_all();
5288 /*
5289 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5290 * move_lock while we're moving its pages to another memcg.
5291 * Then wait for already started RCU-only updates to finish.
5292 */
5293 atomic_inc(&mc.from->moving_account);
5294 synchronize_rcu();
5295 retry:
5296 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5297 /*
5298 * Someone who are holding the mmap_sem might be waiting in
5299 * waitq. So we cancel all extra charges, wake up all waiters,
5300 * and retry. Because we cancel precharges, we might not be able
5301 * to move enough charges, but moving charge is a best-effort
5302 * feature anyway, so it wouldn't be a big problem.
5303 */
5304 __mem_cgroup_clear_mc();
5305 cond_resched();
5306 goto retry;
5307 }
5308 /*
5309 * When we have consumed all precharges and failed in doing
5310 * additional charge, the page walk just aborts.
5311 */
5312 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5313 up_read(&mm->mmap_sem);
5314 atomic_dec(&mc.from->moving_account);
5315 }
5316
5317 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5318 struct cgroup_taskset *tset)
5319 {
5320 struct task_struct *p = cgroup_taskset_first(tset);
5321 struct mm_struct *mm = get_task_mm(p);
5322
5323 if (mm) {
5324 if (mc.to)
5325 mem_cgroup_move_charge(mm);
5326 mmput(mm);
5327 }
5328 if (mc.to)
5329 mem_cgroup_clear_mc();
5330 }
5331 #else /* !CONFIG_MMU */
5332 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5333 struct cgroup_taskset *tset)
5334 {
5335 return 0;
5336 }
5337 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5338 struct cgroup_taskset *tset)
5339 {
5340 }
5341 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5342 struct cgroup_taskset *tset)
5343 {
5344 }
5345 #endif
5346
5347 /*
5348 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5349 * to verify whether we're attached to the default hierarchy on each mount
5350 * attempt.
5351 */
5352 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5353 {
5354 /*
5355 * use_hierarchy is forced on the default hierarchy. cgroup core
5356 * guarantees that @root doesn't have any children, so turning it
5357 * on for the root memcg is enough.
5358 */
5359 if (cgroup_on_dfl(root_css->cgroup))
5360 root_mem_cgroup->use_hierarchy = true;
5361 else
5362 root_mem_cgroup->use_hierarchy = false;
5363 }
5364
5365 static u64 memory_current_read(struct cgroup_subsys_state *css,
5366 struct cftype *cft)
5367 {
5368 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5369 }
5370
5371 static int memory_low_show(struct seq_file *m, void *v)
5372 {
5373 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5374 unsigned long low = READ_ONCE(memcg->low);
5375
5376 if (low == PAGE_COUNTER_MAX)
5377 seq_puts(m, "max\n");
5378 else
5379 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5380
5381 return 0;
5382 }
5383
5384 static ssize_t memory_low_write(struct kernfs_open_file *of,
5385 char *buf, size_t nbytes, loff_t off)
5386 {
5387 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5388 unsigned long low;
5389 int err;
5390
5391 buf = strstrip(buf);
5392 err = page_counter_memparse(buf, "max", &low);
5393 if (err)
5394 return err;
5395
5396 memcg->low = low;
5397
5398 return nbytes;
5399 }
5400
5401 static int memory_high_show(struct seq_file *m, void *v)
5402 {
5403 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5404 unsigned long high = READ_ONCE(memcg->high);
5405
5406 if (high == PAGE_COUNTER_MAX)
5407 seq_puts(m, "max\n");
5408 else
5409 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5410
5411 return 0;
5412 }
5413
5414 static ssize_t memory_high_write(struct kernfs_open_file *of,
5415 char *buf, size_t nbytes, loff_t off)
5416 {
5417 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5418 unsigned long high;
5419 int err;
5420
5421 buf = strstrip(buf);
5422 err = page_counter_memparse(buf, "max", &high);
5423 if (err)
5424 return err;
5425
5426 memcg->high = high;
5427
5428 memcg_wb_domain_size_changed(memcg);
5429 return nbytes;
5430 }
5431
5432 static int memory_max_show(struct seq_file *m, void *v)
5433 {
5434 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5435 unsigned long max = READ_ONCE(memcg->memory.limit);
5436
5437 if (max == PAGE_COUNTER_MAX)
5438 seq_puts(m, "max\n");
5439 else
5440 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5441
5442 return 0;
5443 }
5444
5445 static ssize_t memory_max_write(struct kernfs_open_file *of,
5446 char *buf, size_t nbytes, loff_t off)
5447 {
5448 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5449 unsigned long max;
5450 int err;
5451
5452 buf = strstrip(buf);
5453 err = page_counter_memparse(buf, "max", &max);
5454 if (err)
5455 return err;
5456
5457 err = mem_cgroup_resize_limit(memcg, max);
5458 if (err)
5459 return err;
5460
5461 memcg_wb_domain_size_changed(memcg);
5462 return nbytes;
5463 }
5464
5465 static int memory_events_show(struct seq_file *m, void *v)
5466 {
5467 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5468
5469 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5470 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5471 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5472 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5473
5474 return 0;
5475 }
5476
5477 static struct cftype memory_files[] = {
5478 {
5479 .name = "current",
5480 .read_u64 = memory_current_read,
5481 },
5482 {
5483 .name = "low",
5484 .flags = CFTYPE_NOT_ON_ROOT,
5485 .seq_show = memory_low_show,
5486 .write = memory_low_write,
5487 },
5488 {
5489 .name = "high",
5490 .flags = CFTYPE_NOT_ON_ROOT,
5491 .seq_show = memory_high_show,
5492 .write = memory_high_write,
5493 },
5494 {
5495 .name = "max",
5496 .flags = CFTYPE_NOT_ON_ROOT,
5497 .seq_show = memory_max_show,
5498 .write = memory_max_write,
5499 },
5500 {
5501 .name = "events",
5502 .flags = CFTYPE_NOT_ON_ROOT,
5503 .seq_show = memory_events_show,
5504 },
5505 { } /* terminate */
5506 };
5507
5508 struct cgroup_subsys memory_cgrp_subsys = {
5509 .css_alloc = mem_cgroup_css_alloc,
5510 .css_online = mem_cgroup_css_online,
5511 .css_offline = mem_cgroup_css_offline,
5512 .css_free = mem_cgroup_css_free,
5513 .css_reset = mem_cgroup_css_reset,
5514 .can_attach = mem_cgroup_can_attach,
5515 .cancel_attach = mem_cgroup_cancel_attach,
5516 .attach = mem_cgroup_move_task,
5517 .bind = mem_cgroup_bind,
5518 .dfl_cftypes = memory_files,
5519 .legacy_cftypes = mem_cgroup_legacy_files,
5520 .early_init = 0,
5521 };
5522
5523 /**
5524 * mem_cgroup_events - count memory events against a cgroup
5525 * @memcg: the memory cgroup
5526 * @idx: the event index
5527 * @nr: the number of events to account for
5528 */
5529 void mem_cgroup_events(struct mem_cgroup *memcg,
5530 enum mem_cgroup_events_index idx,
5531 unsigned int nr)
5532 {
5533 this_cpu_add(memcg->stat->events[idx], nr);
5534 }
5535
5536 /**
5537 * mem_cgroup_low - check if memory consumption is below the normal range
5538 * @root: the highest ancestor to consider
5539 * @memcg: the memory cgroup to check
5540 *
5541 * Returns %true if memory consumption of @memcg, and that of all
5542 * configurable ancestors up to @root, is below the normal range.
5543 */
5544 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5545 {
5546 if (mem_cgroup_disabled())
5547 return false;
5548
5549 /*
5550 * The toplevel group doesn't have a configurable range, so
5551 * it's never low when looked at directly, and it is not
5552 * considered an ancestor when assessing the hierarchy.
5553 */
5554
5555 if (memcg == root_mem_cgroup)
5556 return false;
5557
5558 if (page_counter_read(&memcg->memory) >= memcg->low)
5559 return false;
5560
5561 while (memcg != root) {
5562 memcg = parent_mem_cgroup(memcg);
5563
5564 if (memcg == root_mem_cgroup)
5565 break;
5566
5567 if (page_counter_read(&memcg->memory) >= memcg->low)
5568 return false;
5569 }
5570 return true;
5571 }
5572
5573 /**
5574 * mem_cgroup_try_charge - try charging a page
5575 * @page: page to charge
5576 * @mm: mm context of the victim
5577 * @gfp_mask: reclaim mode
5578 * @memcgp: charged memcg return
5579 *
5580 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5581 * pages according to @gfp_mask if necessary.
5582 *
5583 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5584 * Otherwise, an error code is returned.
5585 *
5586 * After page->mapping has been set up, the caller must finalize the
5587 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5588 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5589 */
5590 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5591 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5592 {
5593 struct mem_cgroup *memcg = NULL;
5594 unsigned int nr_pages = 1;
5595 int ret = 0;
5596
5597 if (mem_cgroup_disabled())
5598 goto out;
5599
5600 if (PageSwapCache(page)) {
5601 /*
5602 * Every swap fault against a single page tries to charge the
5603 * page, bail as early as possible. shmem_unuse() encounters
5604 * already charged pages, too. The USED bit is protected by
5605 * the page lock, which serializes swap cache removal, which
5606 * in turn serializes uncharging.
5607 */
5608 if (page->mem_cgroup)
5609 goto out;
5610 }
5611
5612 if (PageTransHuge(page)) {
5613 nr_pages <<= compound_order(page);
5614 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5615 }
5616
5617 if (do_swap_account && PageSwapCache(page))
5618 memcg = try_get_mem_cgroup_from_page(page);
5619 if (!memcg)
5620 memcg = get_mem_cgroup_from_mm(mm);
5621
5622 ret = try_charge(memcg, gfp_mask, nr_pages);
5623
5624 css_put(&memcg->css);
5625
5626 if (ret == -EINTR) {
5627 memcg = root_mem_cgroup;
5628 ret = 0;
5629 }
5630 out:
5631 *memcgp = memcg;
5632 return ret;
5633 }
5634
5635 /**
5636 * mem_cgroup_commit_charge - commit a page charge
5637 * @page: page to charge
5638 * @memcg: memcg to charge the page to
5639 * @lrucare: page might be on LRU already
5640 *
5641 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5642 * after page->mapping has been set up. This must happen atomically
5643 * as part of the page instantiation, i.e. under the page table lock
5644 * for anonymous pages, under the page lock for page and swap cache.
5645 *
5646 * In addition, the page must not be on the LRU during the commit, to
5647 * prevent racing with task migration. If it might be, use @lrucare.
5648 *
5649 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5650 */
5651 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5652 bool lrucare)
5653 {
5654 unsigned int nr_pages = 1;
5655
5656 VM_BUG_ON_PAGE(!page->mapping, page);
5657 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5658
5659 if (mem_cgroup_disabled())
5660 return;
5661 /*
5662 * Swap faults will attempt to charge the same page multiple
5663 * times. But reuse_swap_page() might have removed the page
5664 * from swapcache already, so we can't check PageSwapCache().
5665 */
5666 if (!memcg)
5667 return;
5668
5669 commit_charge(page, memcg, lrucare);
5670
5671 if (PageTransHuge(page)) {
5672 nr_pages <<= compound_order(page);
5673 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5674 }
5675
5676 local_irq_disable();
5677 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5678 memcg_check_events(memcg, page);
5679 local_irq_enable();
5680
5681 if (do_swap_account && PageSwapCache(page)) {
5682 swp_entry_t entry = { .val = page_private(page) };
5683 /*
5684 * The swap entry might not get freed for a long time,
5685 * let's not wait for it. The page already received a
5686 * memory+swap charge, drop the swap entry duplicate.
5687 */
5688 mem_cgroup_uncharge_swap(entry);
5689 }
5690 }
5691
5692 /**
5693 * mem_cgroup_cancel_charge - cancel a page charge
5694 * @page: page to charge
5695 * @memcg: memcg to charge the page to
5696 *
5697 * Cancel a charge transaction started by mem_cgroup_try_charge().
5698 */
5699 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5700 {
5701 unsigned int nr_pages = 1;
5702
5703 if (mem_cgroup_disabled())
5704 return;
5705 /*
5706 * Swap faults will attempt to charge the same page multiple
5707 * times. But reuse_swap_page() might have removed the page
5708 * from swapcache already, so we can't check PageSwapCache().
5709 */
5710 if (!memcg)
5711 return;
5712
5713 if (PageTransHuge(page)) {
5714 nr_pages <<= compound_order(page);
5715 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5716 }
5717
5718 cancel_charge(memcg, nr_pages);
5719 }
5720
5721 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5722 unsigned long nr_anon, unsigned long nr_file,
5723 unsigned long nr_huge, struct page *dummy_page)
5724 {
5725 unsigned long nr_pages = nr_anon + nr_file;
5726 unsigned long flags;
5727
5728 if (!mem_cgroup_is_root(memcg)) {
5729 page_counter_uncharge(&memcg->memory, nr_pages);
5730 if (do_swap_account)
5731 page_counter_uncharge(&memcg->memsw, nr_pages);
5732 memcg_oom_recover(memcg);
5733 }
5734
5735 local_irq_save(flags);
5736 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5737 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5738 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5739 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5740 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5741 memcg_check_events(memcg, dummy_page);
5742 local_irq_restore(flags);
5743
5744 if (!mem_cgroup_is_root(memcg))
5745 css_put_many(&memcg->css, nr_pages);
5746 }
5747
5748 static void uncharge_list(struct list_head *page_list)
5749 {
5750 struct mem_cgroup *memcg = NULL;
5751 unsigned long nr_anon = 0;
5752 unsigned long nr_file = 0;
5753 unsigned long nr_huge = 0;
5754 unsigned long pgpgout = 0;
5755 struct list_head *next;
5756 struct page *page;
5757
5758 next = page_list->next;
5759 do {
5760 unsigned int nr_pages = 1;
5761
5762 page = list_entry(next, struct page, lru);
5763 next = page->lru.next;
5764
5765 VM_BUG_ON_PAGE(PageLRU(page), page);
5766 VM_BUG_ON_PAGE(page_count(page), page);
5767
5768 if (!page->mem_cgroup)
5769 continue;
5770
5771 /*
5772 * Nobody should be changing or seriously looking at
5773 * page->mem_cgroup at this point, we have fully
5774 * exclusive access to the page.
5775 */
5776
5777 if (memcg != page->mem_cgroup) {
5778 if (memcg) {
5779 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5780 nr_huge, page);
5781 pgpgout = nr_anon = nr_file = nr_huge = 0;
5782 }
5783 memcg = page->mem_cgroup;
5784 }
5785
5786 if (PageTransHuge(page)) {
5787 nr_pages <<= compound_order(page);
5788 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5789 nr_huge += nr_pages;
5790 }
5791
5792 if (PageAnon(page))
5793 nr_anon += nr_pages;
5794 else
5795 nr_file += nr_pages;
5796
5797 page->mem_cgroup = NULL;
5798
5799 pgpgout++;
5800 } while (next != page_list);
5801
5802 if (memcg)
5803 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5804 nr_huge, page);
5805 }
5806
5807 /**
5808 * mem_cgroup_uncharge - uncharge a page
5809 * @page: page to uncharge
5810 *
5811 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5812 * mem_cgroup_commit_charge().
5813 */
5814 void mem_cgroup_uncharge(struct page *page)
5815 {
5816 if (mem_cgroup_disabled())
5817 return;
5818
5819 /* Don't touch page->lru of any random page, pre-check: */
5820 if (!page->mem_cgroup)
5821 return;
5822
5823 INIT_LIST_HEAD(&page->lru);
5824 uncharge_list(&page->lru);
5825 }
5826
5827 /**
5828 * mem_cgroup_uncharge_list - uncharge a list of page
5829 * @page_list: list of pages to uncharge
5830 *
5831 * Uncharge a list of pages previously charged with
5832 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5833 */
5834 void mem_cgroup_uncharge_list(struct list_head *page_list)
5835 {
5836 if (mem_cgroup_disabled())
5837 return;
5838
5839 if (!list_empty(page_list))
5840 uncharge_list(page_list);
5841 }
5842
5843 /**
5844 * mem_cgroup_migrate - migrate a charge to another page
5845 * @oldpage: currently charged page
5846 * @newpage: page to transfer the charge to
5847 * @lrucare: either or both pages might be on the LRU already
5848 *
5849 * Migrate the charge from @oldpage to @newpage.
5850 *
5851 * Both pages must be locked, @newpage->mapping must be set up.
5852 */
5853 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5854 bool lrucare)
5855 {
5856 struct mem_cgroup *memcg;
5857 int isolated;
5858
5859 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5860 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5861 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5862 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5863 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5864 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5865 newpage);
5866
5867 if (mem_cgroup_disabled())
5868 return;
5869
5870 /* Page cache replacement: new page already charged? */
5871 if (newpage->mem_cgroup)
5872 return;
5873
5874 /*
5875 * Swapcache readahead pages can get migrated before being
5876 * charged, and migration from compaction can happen to an
5877 * uncharged page when the PFN walker finds a page that
5878 * reclaim just put back on the LRU but has not released yet.
5879 */
5880 memcg = oldpage->mem_cgroup;
5881 if (!memcg)
5882 return;
5883
5884 if (lrucare)
5885 lock_page_lru(oldpage, &isolated);
5886
5887 oldpage->mem_cgroup = NULL;
5888
5889 if (lrucare)
5890 unlock_page_lru(oldpage, isolated);
5891
5892 commit_charge(newpage, memcg, lrucare);
5893 }
5894
5895 /*
5896 * subsys_initcall() for memory controller.
5897 *
5898 * Some parts like hotcpu_notifier() have to be initialized from this context
5899 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5900 * everything that doesn't depend on a specific mem_cgroup structure should
5901 * be initialized from here.
5902 */
5903 static int __init mem_cgroup_init(void)
5904 {
5905 int cpu, node;
5906
5907 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5908
5909 for_each_possible_cpu(cpu)
5910 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5911 drain_local_stock);
5912
5913 for_each_node(node) {
5914 struct mem_cgroup_tree_per_node *rtpn;
5915 int zone;
5916
5917 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5918 node_online(node) ? node : NUMA_NO_NODE);
5919
5920 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5921 struct mem_cgroup_tree_per_zone *rtpz;
5922
5923 rtpz = &rtpn->rb_tree_per_zone[zone];
5924 rtpz->rb_root = RB_ROOT;
5925 spin_lock_init(&rtpz->lock);
5926 }
5927 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5928 }
5929
5930 return 0;
5931 }
5932 subsys_initcall(mem_cgroup_init);
5933
5934 #ifdef CONFIG_MEMCG_SWAP
5935 /**
5936 * mem_cgroup_swapout - transfer a memsw charge to swap
5937 * @page: page whose memsw charge to transfer
5938 * @entry: swap entry to move the charge to
5939 *
5940 * Transfer the memsw charge of @page to @entry.
5941 */
5942 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5943 {
5944 struct mem_cgroup *memcg;
5945 unsigned short oldid;
5946
5947 VM_BUG_ON_PAGE(PageLRU(page), page);
5948 VM_BUG_ON_PAGE(page_count(page), page);
5949
5950 if (!do_swap_account)
5951 return;
5952
5953 memcg = page->mem_cgroup;
5954
5955 /* Readahead page, never charged */
5956 if (!memcg)
5957 return;
5958
5959 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5960 VM_BUG_ON_PAGE(oldid, page);
5961 mem_cgroup_swap_statistics(memcg, true);
5962
5963 page->mem_cgroup = NULL;
5964
5965 if (!mem_cgroup_is_root(memcg))
5966 page_counter_uncharge(&memcg->memory, 1);
5967
5968 /* Caller disabled preemption with mapping->tree_lock */
5969 mem_cgroup_charge_statistics(memcg, page, -1);
5970 memcg_check_events(memcg, page);
5971 }
5972
5973 /**
5974 * mem_cgroup_uncharge_swap - uncharge a swap entry
5975 * @entry: swap entry to uncharge
5976 *
5977 * Drop the memsw charge associated with @entry.
5978 */
5979 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5980 {
5981 struct mem_cgroup *memcg;
5982 unsigned short id;
5983
5984 if (!do_swap_account)
5985 return;
5986
5987 id = swap_cgroup_record(entry, 0);
5988 rcu_read_lock();
5989 memcg = mem_cgroup_from_id(id);
5990 if (memcg) {
5991 if (!mem_cgroup_is_root(memcg))
5992 page_counter_uncharge(&memcg->memsw, 1);
5993 mem_cgroup_swap_statistics(memcg, false);
5994 css_put(&memcg->css);
5995 }
5996 rcu_read_unlock();
5997 }
5998
5999 /* for remember boot option*/
6000 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6001 static int really_do_swap_account __initdata = 1;
6002 #else
6003 static int really_do_swap_account __initdata;
6004 #endif
6005
6006 static int __init enable_swap_account(char *s)
6007 {
6008 if (!strcmp(s, "1"))
6009 really_do_swap_account = 1;
6010 else if (!strcmp(s, "0"))
6011 really_do_swap_account = 0;
6012 return 1;
6013 }
6014 __setup("swapaccount=", enable_swap_account);
6015
6016 static struct cftype memsw_cgroup_files[] = {
6017 {
6018 .name = "memsw.usage_in_bytes",
6019 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6020 .read_u64 = mem_cgroup_read_u64,
6021 },
6022 {
6023 .name = "memsw.max_usage_in_bytes",
6024 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6025 .write = mem_cgroup_reset,
6026 .read_u64 = mem_cgroup_read_u64,
6027 },
6028 {
6029 .name = "memsw.limit_in_bytes",
6030 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6031 .write = mem_cgroup_write,
6032 .read_u64 = mem_cgroup_read_u64,
6033 },
6034 {
6035 .name = "memsw.failcnt",
6036 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6037 .write = mem_cgroup_reset,
6038 .read_u64 = mem_cgroup_read_u64,
6039 },
6040 { }, /* terminate */
6041 };
6042
6043 static int __init mem_cgroup_swap_init(void)
6044 {
6045 if (!mem_cgroup_disabled() && really_do_swap_account) {
6046 do_swap_account = 1;
6047 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6048 memsw_cgroup_files));
6049 }
6050 return 0;
6051 }
6052 subsys_initcall(mem_cgroup_swap_init);
6053
6054 #endif /* CONFIG_MEMCG_SWAP */