]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memcontrol.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 157
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/mm.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include "internal.h"
61 #include <net/sock.h>
62 #include <net/ip.h>
63 #include "slab.h"
64
65 #include <linux/uaccess.h>
66
67 #include <trace/events/vmscan.h>
68
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71
72 struct mem_cgroup *root_mem_cgroup __read_mostly;
73
74 #define MEM_CGROUP_RECLAIM_RETRIES 5
75
76 /* Socket memory accounting disabled? */
77 static bool cgroup_memory_nosocket;
78
79 /* Kernel memory accounting disabled? */
80 static bool cgroup_memory_nokmem;
81
82 /* Whether the swap controller is active */
83 #ifdef CONFIG_MEMCG_SWAP
84 int do_swap_account __read_mostly;
85 #else
86 #define do_swap_account 0
87 #endif
88
89 /* Whether legacy memory+swap accounting is active */
90 static bool do_memsw_account(void)
91 {
92 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
93 }
94
95 static const char *const mem_cgroup_lru_names[] = {
96 "inactive_anon",
97 "active_anon",
98 "inactive_file",
99 "active_file",
100 "unevictable",
101 };
102
103 #define THRESHOLDS_EVENTS_TARGET 128
104 #define SOFTLIMIT_EVENTS_TARGET 1024
105 #define NUMAINFO_EVENTS_TARGET 1024
106
107 /*
108 * Cgroups above their limits are maintained in a RB-Tree, independent of
109 * their hierarchy representation
110 */
111
112 struct mem_cgroup_tree_per_node {
113 struct rb_root rb_root;
114 struct rb_node *rb_rightmost;
115 spinlock_t lock;
116 };
117
118 struct mem_cgroup_tree {
119 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
120 };
121
122 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
123
124 /* for OOM */
125 struct mem_cgroup_eventfd_list {
126 struct list_head list;
127 struct eventfd_ctx *eventfd;
128 };
129
130 /*
131 * cgroup_event represents events which userspace want to receive.
132 */
133 struct mem_cgroup_event {
134 /*
135 * memcg which the event belongs to.
136 */
137 struct mem_cgroup *memcg;
138 /*
139 * eventfd to signal userspace about the event.
140 */
141 struct eventfd_ctx *eventfd;
142 /*
143 * Each of these stored in a list by the cgroup.
144 */
145 struct list_head list;
146 /*
147 * register_event() callback will be used to add new userspace
148 * waiter for changes related to this event. Use eventfd_signal()
149 * on eventfd to send notification to userspace.
150 */
151 int (*register_event)(struct mem_cgroup *memcg,
152 struct eventfd_ctx *eventfd, const char *args);
153 /*
154 * unregister_event() callback will be called when userspace closes
155 * the eventfd or on cgroup removing. This callback must be set,
156 * if you want provide notification functionality.
157 */
158 void (*unregister_event)(struct mem_cgroup *memcg,
159 struct eventfd_ctx *eventfd);
160 /*
161 * All fields below needed to unregister event when
162 * userspace closes eventfd.
163 */
164 poll_table pt;
165 wait_queue_head_t *wqh;
166 wait_queue_entry_t wait;
167 struct work_struct remove;
168 };
169
170 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
171 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
172
173 /* Stuffs for move charges at task migration. */
174 /*
175 * Types of charges to be moved.
176 */
177 #define MOVE_ANON 0x1U
178 #define MOVE_FILE 0x2U
179 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
180
181 /* "mc" and its members are protected by cgroup_mutex */
182 static struct move_charge_struct {
183 spinlock_t lock; /* for from, to */
184 struct mm_struct *mm;
185 struct mem_cgroup *from;
186 struct mem_cgroup *to;
187 unsigned long flags;
188 unsigned long precharge;
189 unsigned long moved_charge;
190 unsigned long moved_swap;
191 struct task_struct *moving_task; /* a task moving charges */
192 wait_queue_head_t waitq; /* a waitq for other context */
193 } mc = {
194 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
195 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
196 };
197
198 /*
199 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
200 * limit reclaim to prevent infinite loops, if they ever occur.
201 */
202 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
203 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
204
205 enum charge_type {
206 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
207 MEM_CGROUP_CHARGE_TYPE_ANON,
208 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
209 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
210 NR_CHARGE_TYPE,
211 };
212
213 /* for encoding cft->private value on file */
214 enum res_type {
215 _MEM,
216 _MEMSWAP,
217 _OOM_TYPE,
218 _KMEM,
219 _TCP,
220 };
221
222 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
223 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
224 #define MEMFILE_ATTR(val) ((val) & 0xffff)
225 /* Used for OOM nofiier */
226 #define OOM_CONTROL (0)
227
228 /*
229 * Iteration constructs for visiting all cgroups (under a tree). If
230 * loops are exited prematurely (break), mem_cgroup_iter_break() must
231 * be used for reference counting.
232 */
233 #define for_each_mem_cgroup_tree(iter, root) \
234 for (iter = mem_cgroup_iter(root, NULL, NULL); \
235 iter != NULL; \
236 iter = mem_cgroup_iter(root, iter, NULL))
237
238 #define for_each_mem_cgroup(iter) \
239 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
240 iter != NULL; \
241 iter = mem_cgroup_iter(NULL, iter, NULL))
242
243 static inline bool should_force_charge(void)
244 {
245 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
246 (current->flags & PF_EXITING);
247 }
248
249 /* Some nice accessors for the vmpressure. */
250 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
251 {
252 if (!memcg)
253 memcg = root_mem_cgroup;
254 return &memcg->vmpressure;
255 }
256
257 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
258 {
259 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
260 }
261
262 #ifdef CONFIG_MEMCG_KMEM
263 /*
264 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
265 * The main reason for not using cgroup id for this:
266 * this works better in sparse environments, where we have a lot of memcgs,
267 * but only a few kmem-limited. Or also, if we have, for instance, 200
268 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
269 * 200 entry array for that.
270 *
271 * The current size of the caches array is stored in memcg_nr_cache_ids. It
272 * will double each time we have to increase it.
273 */
274 static DEFINE_IDA(memcg_cache_ida);
275 int memcg_nr_cache_ids;
276
277 /* Protects memcg_nr_cache_ids */
278 static DECLARE_RWSEM(memcg_cache_ids_sem);
279
280 void memcg_get_cache_ids(void)
281 {
282 down_read(&memcg_cache_ids_sem);
283 }
284
285 void memcg_put_cache_ids(void)
286 {
287 up_read(&memcg_cache_ids_sem);
288 }
289
290 /*
291 * MIN_SIZE is different than 1, because we would like to avoid going through
292 * the alloc/free process all the time. In a small machine, 4 kmem-limited
293 * cgroups is a reasonable guess. In the future, it could be a parameter or
294 * tunable, but that is strictly not necessary.
295 *
296 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
297 * this constant directly from cgroup, but it is understandable that this is
298 * better kept as an internal representation in cgroup.c. In any case, the
299 * cgrp_id space is not getting any smaller, and we don't have to necessarily
300 * increase ours as well if it increases.
301 */
302 #define MEMCG_CACHES_MIN_SIZE 4
303 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
304
305 /*
306 * A lot of the calls to the cache allocation functions are expected to be
307 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
308 * conditional to this static branch, we'll have to allow modules that does
309 * kmem_cache_alloc and the such to see this symbol as well
310 */
311 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
312 EXPORT_SYMBOL(memcg_kmem_enabled_key);
313
314 struct workqueue_struct *memcg_kmem_cache_wq;
315
316 static int memcg_shrinker_map_size;
317 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
318
319 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
320 {
321 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
322 }
323
324 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
325 int size, int old_size)
326 {
327 struct memcg_shrinker_map *new, *old;
328 int nid;
329
330 lockdep_assert_held(&memcg_shrinker_map_mutex);
331
332 for_each_node(nid) {
333 old = rcu_dereference_protected(
334 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
335 /* Not yet online memcg */
336 if (!old)
337 return 0;
338
339 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
340 if (!new)
341 return -ENOMEM;
342
343 /* Set all old bits, clear all new bits */
344 memset(new->map, (int)0xff, old_size);
345 memset((void *)new->map + old_size, 0, size - old_size);
346
347 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
348 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
349 }
350
351 return 0;
352 }
353
354 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
355 {
356 struct mem_cgroup_per_node *pn;
357 struct memcg_shrinker_map *map;
358 int nid;
359
360 if (mem_cgroup_is_root(memcg))
361 return;
362
363 for_each_node(nid) {
364 pn = mem_cgroup_nodeinfo(memcg, nid);
365 map = rcu_dereference_protected(pn->shrinker_map, true);
366 if (map)
367 kvfree(map);
368 rcu_assign_pointer(pn->shrinker_map, NULL);
369 }
370 }
371
372 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
373 {
374 struct memcg_shrinker_map *map;
375 int nid, size, ret = 0;
376
377 if (mem_cgroup_is_root(memcg))
378 return 0;
379
380 mutex_lock(&memcg_shrinker_map_mutex);
381 size = memcg_shrinker_map_size;
382 for_each_node(nid) {
383 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
384 if (!map) {
385 memcg_free_shrinker_maps(memcg);
386 ret = -ENOMEM;
387 break;
388 }
389 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
390 }
391 mutex_unlock(&memcg_shrinker_map_mutex);
392
393 return ret;
394 }
395
396 int memcg_expand_shrinker_maps(int new_id)
397 {
398 int size, old_size, ret = 0;
399 struct mem_cgroup *memcg;
400
401 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
402 old_size = memcg_shrinker_map_size;
403 if (size <= old_size)
404 return 0;
405
406 mutex_lock(&memcg_shrinker_map_mutex);
407 if (!root_mem_cgroup)
408 goto unlock;
409
410 for_each_mem_cgroup(memcg) {
411 if (mem_cgroup_is_root(memcg))
412 continue;
413 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
414 if (ret)
415 goto unlock;
416 }
417 unlock:
418 if (!ret)
419 memcg_shrinker_map_size = size;
420 mutex_unlock(&memcg_shrinker_map_mutex);
421 return ret;
422 }
423
424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
425 {
426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 struct memcg_shrinker_map *map;
428
429 rcu_read_lock();
430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 /* Pairs with smp mb in shrink_slab() */
432 smp_mb__before_atomic();
433 set_bit(shrinker_id, map->map);
434 rcu_read_unlock();
435 }
436 }
437
438 #else /* CONFIG_MEMCG_KMEM */
439 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
440 {
441 return 0;
442 }
443 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
444 #endif /* CONFIG_MEMCG_KMEM */
445
446 /**
447 * mem_cgroup_css_from_page - css of the memcg associated with a page
448 * @page: page of interest
449 *
450 * If memcg is bound to the default hierarchy, css of the memcg associated
451 * with @page is returned. The returned css remains associated with @page
452 * until it is released.
453 *
454 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
455 * is returned.
456 */
457 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
458 {
459 struct mem_cgroup *memcg;
460
461 memcg = page->mem_cgroup;
462
463 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
464 memcg = root_mem_cgroup;
465
466 return &memcg->css;
467 }
468
469 /**
470 * page_cgroup_ino - return inode number of the memcg a page is charged to
471 * @page: the page
472 *
473 * Look up the closest online ancestor of the memory cgroup @page is charged to
474 * and return its inode number or 0 if @page is not charged to any cgroup. It
475 * is safe to call this function without holding a reference to @page.
476 *
477 * Note, this function is inherently racy, because there is nothing to prevent
478 * the cgroup inode from getting torn down and potentially reallocated a moment
479 * after page_cgroup_ino() returns, so it only should be used by callers that
480 * do not care (such as procfs interfaces).
481 */
482 ino_t page_cgroup_ino(struct page *page)
483 {
484 struct mem_cgroup *memcg;
485 unsigned long ino = 0;
486
487 rcu_read_lock();
488 memcg = READ_ONCE(page->mem_cgroup);
489 while (memcg && !(memcg->css.flags & CSS_ONLINE))
490 memcg = parent_mem_cgroup(memcg);
491 if (memcg)
492 ino = cgroup_ino(memcg->css.cgroup);
493 rcu_read_unlock();
494 return ino;
495 }
496
497 static struct mem_cgroup_per_node *
498 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
499 {
500 int nid = page_to_nid(page);
501
502 return memcg->nodeinfo[nid];
503 }
504
505 static struct mem_cgroup_tree_per_node *
506 soft_limit_tree_node(int nid)
507 {
508 return soft_limit_tree.rb_tree_per_node[nid];
509 }
510
511 static struct mem_cgroup_tree_per_node *
512 soft_limit_tree_from_page(struct page *page)
513 {
514 int nid = page_to_nid(page);
515
516 return soft_limit_tree.rb_tree_per_node[nid];
517 }
518
519 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
520 struct mem_cgroup_tree_per_node *mctz,
521 unsigned long new_usage_in_excess)
522 {
523 struct rb_node **p = &mctz->rb_root.rb_node;
524 struct rb_node *parent = NULL;
525 struct mem_cgroup_per_node *mz_node;
526 bool rightmost = true;
527
528 if (mz->on_tree)
529 return;
530
531 mz->usage_in_excess = new_usage_in_excess;
532 if (!mz->usage_in_excess)
533 return;
534 while (*p) {
535 parent = *p;
536 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
537 tree_node);
538 if (mz->usage_in_excess < mz_node->usage_in_excess) {
539 p = &(*p)->rb_left;
540 rightmost = false;
541 }
542
543 /*
544 * We can't avoid mem cgroups that are over their soft
545 * limit by the same amount
546 */
547 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
548 p = &(*p)->rb_right;
549 }
550
551 if (rightmost)
552 mctz->rb_rightmost = &mz->tree_node;
553
554 rb_link_node(&mz->tree_node, parent, p);
555 rb_insert_color(&mz->tree_node, &mctz->rb_root);
556 mz->on_tree = true;
557 }
558
559 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
560 struct mem_cgroup_tree_per_node *mctz)
561 {
562 if (!mz->on_tree)
563 return;
564
565 if (&mz->tree_node == mctz->rb_rightmost)
566 mctz->rb_rightmost = rb_prev(&mz->tree_node);
567
568 rb_erase(&mz->tree_node, &mctz->rb_root);
569 mz->on_tree = false;
570 }
571
572 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
573 struct mem_cgroup_tree_per_node *mctz)
574 {
575 unsigned long flags;
576
577 spin_lock_irqsave(&mctz->lock, flags);
578 __mem_cgroup_remove_exceeded(mz, mctz);
579 spin_unlock_irqrestore(&mctz->lock, flags);
580 }
581
582 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
583 {
584 unsigned long nr_pages = page_counter_read(&memcg->memory);
585 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
586 unsigned long excess = 0;
587
588 if (nr_pages > soft_limit)
589 excess = nr_pages - soft_limit;
590
591 return excess;
592 }
593
594 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
595 {
596 unsigned long excess;
597 struct mem_cgroup_per_node *mz;
598 struct mem_cgroup_tree_per_node *mctz;
599
600 mctz = soft_limit_tree_from_page(page);
601 if (!mctz)
602 return;
603 /*
604 * Necessary to update all ancestors when hierarchy is used.
605 * because their event counter is not touched.
606 */
607 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
608 mz = mem_cgroup_page_nodeinfo(memcg, page);
609 excess = soft_limit_excess(memcg);
610 /*
611 * We have to update the tree if mz is on RB-tree or
612 * mem is over its softlimit.
613 */
614 if (excess || mz->on_tree) {
615 unsigned long flags;
616
617 spin_lock_irqsave(&mctz->lock, flags);
618 /* if on-tree, remove it */
619 if (mz->on_tree)
620 __mem_cgroup_remove_exceeded(mz, mctz);
621 /*
622 * Insert again. mz->usage_in_excess will be updated.
623 * If excess is 0, no tree ops.
624 */
625 __mem_cgroup_insert_exceeded(mz, mctz, excess);
626 spin_unlock_irqrestore(&mctz->lock, flags);
627 }
628 }
629 }
630
631 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
632 {
633 struct mem_cgroup_tree_per_node *mctz;
634 struct mem_cgroup_per_node *mz;
635 int nid;
636
637 for_each_node(nid) {
638 mz = mem_cgroup_nodeinfo(memcg, nid);
639 mctz = soft_limit_tree_node(nid);
640 if (mctz)
641 mem_cgroup_remove_exceeded(mz, mctz);
642 }
643 }
644
645 static struct mem_cgroup_per_node *
646 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
647 {
648 struct mem_cgroup_per_node *mz;
649
650 retry:
651 mz = NULL;
652 if (!mctz->rb_rightmost)
653 goto done; /* Nothing to reclaim from */
654
655 mz = rb_entry(mctz->rb_rightmost,
656 struct mem_cgroup_per_node, tree_node);
657 /*
658 * Remove the node now but someone else can add it back,
659 * we will to add it back at the end of reclaim to its correct
660 * position in the tree.
661 */
662 __mem_cgroup_remove_exceeded(mz, mctz);
663 if (!soft_limit_excess(mz->memcg) ||
664 !css_tryget_online(&mz->memcg->css))
665 goto retry;
666 done:
667 return mz;
668 }
669
670 static struct mem_cgroup_per_node *
671 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
672 {
673 struct mem_cgroup_per_node *mz;
674
675 spin_lock_irq(&mctz->lock);
676 mz = __mem_cgroup_largest_soft_limit_node(mctz);
677 spin_unlock_irq(&mctz->lock);
678 return mz;
679 }
680
681 /**
682 * __mod_memcg_state - update cgroup memory statistics
683 * @memcg: the memory cgroup
684 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
685 * @val: delta to add to the counter, can be negative
686 */
687 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
688 {
689 long x;
690
691 if (mem_cgroup_disabled())
692 return;
693
694 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
695 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
696 struct mem_cgroup *mi;
697
698 atomic_long_add(x, &memcg->vmstats_local[idx]);
699 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
700 atomic_long_add(x, &mi->vmstats[idx]);
701 x = 0;
702 }
703 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
704 }
705
706 static struct mem_cgroup_per_node *
707 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
708 {
709 struct mem_cgroup *parent;
710
711 parent = parent_mem_cgroup(pn->memcg);
712 if (!parent)
713 return NULL;
714 return mem_cgroup_nodeinfo(parent, nid);
715 }
716
717 /**
718 * __mod_lruvec_state - update lruvec memory statistics
719 * @lruvec: the lruvec
720 * @idx: the stat item
721 * @val: delta to add to the counter, can be negative
722 *
723 * The lruvec is the intersection of the NUMA node and a cgroup. This
724 * function updates the all three counters that are affected by a
725 * change of state at this level: per-node, per-cgroup, per-lruvec.
726 */
727 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
728 int val)
729 {
730 pg_data_t *pgdat = lruvec_pgdat(lruvec);
731 struct mem_cgroup_per_node *pn;
732 struct mem_cgroup *memcg;
733 long x;
734
735 /* Update node */
736 __mod_node_page_state(pgdat, idx, val);
737
738 if (mem_cgroup_disabled())
739 return;
740
741 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
742 memcg = pn->memcg;
743
744 /* Update memcg */
745 __mod_memcg_state(memcg, idx, val);
746
747 /* Update lruvec */
748 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
749 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
750 struct mem_cgroup_per_node *pi;
751
752 atomic_long_add(x, &pn->lruvec_stat_local[idx]);
753 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
754 atomic_long_add(x, &pi->lruvec_stat[idx]);
755 x = 0;
756 }
757 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
758 }
759
760 /**
761 * __count_memcg_events - account VM events in a cgroup
762 * @memcg: the memory cgroup
763 * @idx: the event item
764 * @count: the number of events that occured
765 */
766 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
767 unsigned long count)
768 {
769 unsigned long x;
770
771 if (mem_cgroup_disabled())
772 return;
773
774 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
775 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
776 struct mem_cgroup *mi;
777
778 atomic_long_add(x, &memcg->vmevents_local[idx]);
779 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
780 atomic_long_add(x, &mi->vmevents[idx]);
781 x = 0;
782 }
783 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
784 }
785
786 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
787 {
788 return atomic_long_read(&memcg->vmevents[event]);
789 }
790
791 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
792 {
793 return atomic_long_read(&memcg->vmevents_local[event]);
794 }
795
796 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
797 struct page *page,
798 bool compound, int nr_pages)
799 {
800 /*
801 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
802 * counted as CACHE even if it's on ANON LRU.
803 */
804 if (PageAnon(page))
805 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
806 else {
807 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
808 if (PageSwapBacked(page))
809 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
810 }
811
812 if (compound) {
813 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
814 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
815 }
816
817 /* pagein of a big page is an event. So, ignore page size */
818 if (nr_pages > 0)
819 __count_memcg_events(memcg, PGPGIN, 1);
820 else {
821 __count_memcg_events(memcg, PGPGOUT, 1);
822 nr_pages = -nr_pages; /* for event */
823 }
824
825 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
826 }
827
828 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
829 enum mem_cgroup_events_target target)
830 {
831 unsigned long val, next;
832
833 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
834 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
835 /* from time_after() in jiffies.h */
836 if ((long)(next - val) < 0) {
837 switch (target) {
838 case MEM_CGROUP_TARGET_THRESH:
839 next = val + THRESHOLDS_EVENTS_TARGET;
840 break;
841 case MEM_CGROUP_TARGET_SOFTLIMIT:
842 next = val + SOFTLIMIT_EVENTS_TARGET;
843 break;
844 case MEM_CGROUP_TARGET_NUMAINFO:
845 next = val + NUMAINFO_EVENTS_TARGET;
846 break;
847 default:
848 break;
849 }
850 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
851 return true;
852 }
853 return false;
854 }
855
856 /*
857 * Check events in order.
858 *
859 */
860 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
861 {
862 /* threshold event is triggered in finer grain than soft limit */
863 if (unlikely(mem_cgroup_event_ratelimit(memcg,
864 MEM_CGROUP_TARGET_THRESH))) {
865 bool do_softlimit;
866 bool do_numainfo __maybe_unused;
867
868 do_softlimit = mem_cgroup_event_ratelimit(memcg,
869 MEM_CGROUP_TARGET_SOFTLIMIT);
870 #if MAX_NUMNODES > 1
871 do_numainfo = mem_cgroup_event_ratelimit(memcg,
872 MEM_CGROUP_TARGET_NUMAINFO);
873 #endif
874 mem_cgroup_threshold(memcg);
875 if (unlikely(do_softlimit))
876 mem_cgroup_update_tree(memcg, page);
877 #if MAX_NUMNODES > 1
878 if (unlikely(do_numainfo))
879 atomic_inc(&memcg->numainfo_events);
880 #endif
881 }
882 }
883
884 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
885 {
886 /*
887 * mm_update_next_owner() may clear mm->owner to NULL
888 * if it races with swapoff, page migration, etc.
889 * So this can be called with p == NULL.
890 */
891 if (unlikely(!p))
892 return NULL;
893
894 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
895 }
896 EXPORT_SYMBOL(mem_cgroup_from_task);
897
898 /**
899 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
900 * @mm: mm from which memcg should be extracted. It can be NULL.
901 *
902 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
903 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
904 * returned.
905 */
906 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
907 {
908 struct mem_cgroup *memcg;
909
910 if (mem_cgroup_disabled())
911 return NULL;
912
913 rcu_read_lock();
914 do {
915 /*
916 * Page cache insertions can happen withou an
917 * actual mm context, e.g. during disk probing
918 * on boot, loopback IO, acct() writes etc.
919 */
920 if (unlikely(!mm))
921 memcg = root_mem_cgroup;
922 else {
923 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
924 if (unlikely(!memcg))
925 memcg = root_mem_cgroup;
926 }
927 } while (!css_tryget_online(&memcg->css));
928 rcu_read_unlock();
929 return memcg;
930 }
931 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
932
933 /**
934 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
935 * @page: page from which memcg should be extracted.
936 *
937 * Obtain a reference on page->memcg and returns it if successful. Otherwise
938 * root_mem_cgroup is returned.
939 */
940 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
941 {
942 struct mem_cgroup *memcg = page->mem_cgroup;
943
944 if (mem_cgroup_disabled())
945 return NULL;
946
947 rcu_read_lock();
948 if (!memcg || !css_tryget_online(&memcg->css))
949 memcg = root_mem_cgroup;
950 rcu_read_unlock();
951 return memcg;
952 }
953 EXPORT_SYMBOL(get_mem_cgroup_from_page);
954
955 /**
956 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
957 */
958 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
959 {
960 if (unlikely(current->active_memcg)) {
961 struct mem_cgroup *memcg = root_mem_cgroup;
962
963 rcu_read_lock();
964 if (css_tryget_online(&current->active_memcg->css))
965 memcg = current->active_memcg;
966 rcu_read_unlock();
967 return memcg;
968 }
969 return get_mem_cgroup_from_mm(current->mm);
970 }
971
972 /**
973 * mem_cgroup_iter - iterate over memory cgroup hierarchy
974 * @root: hierarchy root
975 * @prev: previously returned memcg, NULL on first invocation
976 * @reclaim: cookie for shared reclaim walks, NULL for full walks
977 *
978 * Returns references to children of the hierarchy below @root, or
979 * @root itself, or %NULL after a full round-trip.
980 *
981 * Caller must pass the return value in @prev on subsequent
982 * invocations for reference counting, or use mem_cgroup_iter_break()
983 * to cancel a hierarchy walk before the round-trip is complete.
984 *
985 * Reclaimers can specify a node and a priority level in @reclaim to
986 * divide up the memcgs in the hierarchy among all concurrent
987 * reclaimers operating on the same node and priority.
988 */
989 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
990 struct mem_cgroup *prev,
991 struct mem_cgroup_reclaim_cookie *reclaim)
992 {
993 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
994 struct cgroup_subsys_state *css = NULL;
995 struct mem_cgroup *memcg = NULL;
996 struct mem_cgroup *pos = NULL;
997
998 if (mem_cgroup_disabled())
999 return NULL;
1000
1001 if (!root)
1002 root = root_mem_cgroup;
1003
1004 if (prev && !reclaim)
1005 pos = prev;
1006
1007 if (!root->use_hierarchy && root != root_mem_cgroup) {
1008 if (prev)
1009 goto out;
1010 return root;
1011 }
1012
1013 rcu_read_lock();
1014
1015 if (reclaim) {
1016 struct mem_cgroup_per_node *mz;
1017
1018 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1019 iter = &mz->iter[reclaim->priority];
1020
1021 if (prev && reclaim->generation != iter->generation)
1022 goto out_unlock;
1023
1024 while (1) {
1025 pos = READ_ONCE(iter->position);
1026 if (!pos || css_tryget(&pos->css))
1027 break;
1028 /*
1029 * css reference reached zero, so iter->position will
1030 * be cleared by ->css_released. However, we should not
1031 * rely on this happening soon, because ->css_released
1032 * is called from a work queue, and by busy-waiting we
1033 * might block it. So we clear iter->position right
1034 * away.
1035 */
1036 (void)cmpxchg(&iter->position, pos, NULL);
1037 }
1038 }
1039
1040 if (pos)
1041 css = &pos->css;
1042
1043 for (;;) {
1044 css = css_next_descendant_pre(css, &root->css);
1045 if (!css) {
1046 /*
1047 * Reclaimers share the hierarchy walk, and a
1048 * new one might jump in right at the end of
1049 * the hierarchy - make sure they see at least
1050 * one group and restart from the beginning.
1051 */
1052 if (!prev)
1053 continue;
1054 break;
1055 }
1056
1057 /*
1058 * Verify the css and acquire a reference. The root
1059 * is provided by the caller, so we know it's alive
1060 * and kicking, and don't take an extra reference.
1061 */
1062 memcg = mem_cgroup_from_css(css);
1063
1064 if (css == &root->css)
1065 break;
1066
1067 if (css_tryget(css))
1068 break;
1069
1070 memcg = NULL;
1071 }
1072
1073 if (reclaim) {
1074 /*
1075 * The position could have already been updated by a competing
1076 * thread, so check that the value hasn't changed since we read
1077 * it to avoid reclaiming from the same cgroup twice.
1078 */
1079 (void)cmpxchg(&iter->position, pos, memcg);
1080
1081 if (pos)
1082 css_put(&pos->css);
1083
1084 if (!memcg)
1085 iter->generation++;
1086 else if (!prev)
1087 reclaim->generation = iter->generation;
1088 }
1089
1090 out_unlock:
1091 rcu_read_unlock();
1092 out:
1093 if (prev && prev != root)
1094 css_put(&prev->css);
1095
1096 return memcg;
1097 }
1098
1099 /**
1100 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1101 * @root: hierarchy root
1102 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1103 */
1104 void mem_cgroup_iter_break(struct mem_cgroup *root,
1105 struct mem_cgroup *prev)
1106 {
1107 if (!root)
1108 root = root_mem_cgroup;
1109 if (prev && prev != root)
1110 css_put(&prev->css);
1111 }
1112
1113 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1114 {
1115 struct mem_cgroup *memcg = dead_memcg;
1116 struct mem_cgroup_reclaim_iter *iter;
1117 struct mem_cgroup_per_node *mz;
1118 int nid;
1119 int i;
1120
1121 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1122 for_each_node(nid) {
1123 mz = mem_cgroup_nodeinfo(memcg, nid);
1124 for (i = 0; i <= DEF_PRIORITY; i++) {
1125 iter = &mz->iter[i];
1126 cmpxchg(&iter->position,
1127 dead_memcg, NULL);
1128 }
1129 }
1130 }
1131 }
1132
1133 /**
1134 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1135 * @memcg: hierarchy root
1136 * @fn: function to call for each task
1137 * @arg: argument passed to @fn
1138 *
1139 * This function iterates over tasks attached to @memcg or to any of its
1140 * descendants and calls @fn for each task. If @fn returns a non-zero
1141 * value, the function breaks the iteration loop and returns the value.
1142 * Otherwise, it will iterate over all tasks and return 0.
1143 *
1144 * This function must not be called for the root memory cgroup.
1145 */
1146 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1147 int (*fn)(struct task_struct *, void *), void *arg)
1148 {
1149 struct mem_cgroup *iter;
1150 int ret = 0;
1151
1152 BUG_ON(memcg == root_mem_cgroup);
1153
1154 for_each_mem_cgroup_tree(iter, memcg) {
1155 struct css_task_iter it;
1156 struct task_struct *task;
1157
1158 css_task_iter_start(&iter->css, 0, &it);
1159 while (!ret && (task = css_task_iter_next(&it)))
1160 ret = fn(task, arg);
1161 css_task_iter_end(&it);
1162 if (ret) {
1163 mem_cgroup_iter_break(memcg, iter);
1164 break;
1165 }
1166 }
1167 return ret;
1168 }
1169
1170 /**
1171 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1172 * @page: the page
1173 * @pgdat: pgdat of the page
1174 *
1175 * This function is only safe when following the LRU page isolation
1176 * and putback protocol: the LRU lock must be held, and the page must
1177 * either be PageLRU() or the caller must have isolated/allocated it.
1178 */
1179 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1180 {
1181 struct mem_cgroup_per_node *mz;
1182 struct mem_cgroup *memcg;
1183 struct lruvec *lruvec;
1184
1185 if (mem_cgroup_disabled()) {
1186 lruvec = &pgdat->lruvec;
1187 goto out;
1188 }
1189
1190 memcg = page->mem_cgroup;
1191 /*
1192 * Swapcache readahead pages are added to the LRU - and
1193 * possibly migrated - before they are charged.
1194 */
1195 if (!memcg)
1196 memcg = root_mem_cgroup;
1197
1198 mz = mem_cgroup_page_nodeinfo(memcg, page);
1199 lruvec = &mz->lruvec;
1200 out:
1201 /*
1202 * Since a node can be onlined after the mem_cgroup was created,
1203 * we have to be prepared to initialize lruvec->zone here;
1204 * and if offlined then reonlined, we need to reinitialize it.
1205 */
1206 if (unlikely(lruvec->pgdat != pgdat))
1207 lruvec->pgdat = pgdat;
1208 return lruvec;
1209 }
1210
1211 /**
1212 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1213 * @lruvec: mem_cgroup per zone lru vector
1214 * @lru: index of lru list the page is sitting on
1215 * @zid: zone id of the accounted pages
1216 * @nr_pages: positive when adding or negative when removing
1217 *
1218 * This function must be called under lru_lock, just before a page is added
1219 * to or just after a page is removed from an lru list (that ordering being
1220 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1221 */
1222 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1223 int zid, int nr_pages)
1224 {
1225 struct mem_cgroup_per_node *mz;
1226 unsigned long *lru_size;
1227 long size;
1228
1229 if (mem_cgroup_disabled())
1230 return;
1231
1232 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1233 lru_size = &mz->lru_zone_size[zid][lru];
1234
1235 if (nr_pages < 0)
1236 *lru_size += nr_pages;
1237
1238 size = *lru_size;
1239 if (WARN_ONCE(size < 0,
1240 "%s(%p, %d, %d): lru_size %ld\n",
1241 __func__, lruvec, lru, nr_pages, size)) {
1242 VM_BUG_ON(1);
1243 *lru_size = 0;
1244 }
1245
1246 if (nr_pages > 0)
1247 *lru_size += nr_pages;
1248 }
1249
1250 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1251 {
1252 struct mem_cgroup *task_memcg;
1253 struct task_struct *p;
1254 bool ret;
1255
1256 p = find_lock_task_mm(task);
1257 if (p) {
1258 task_memcg = get_mem_cgroup_from_mm(p->mm);
1259 task_unlock(p);
1260 } else {
1261 /*
1262 * All threads may have already detached their mm's, but the oom
1263 * killer still needs to detect if they have already been oom
1264 * killed to prevent needlessly killing additional tasks.
1265 */
1266 rcu_read_lock();
1267 task_memcg = mem_cgroup_from_task(task);
1268 css_get(&task_memcg->css);
1269 rcu_read_unlock();
1270 }
1271 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1272 css_put(&task_memcg->css);
1273 return ret;
1274 }
1275
1276 /**
1277 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1278 * @memcg: the memory cgroup
1279 *
1280 * Returns the maximum amount of memory @mem can be charged with, in
1281 * pages.
1282 */
1283 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1284 {
1285 unsigned long margin = 0;
1286 unsigned long count;
1287 unsigned long limit;
1288
1289 count = page_counter_read(&memcg->memory);
1290 limit = READ_ONCE(memcg->memory.max);
1291 if (count < limit)
1292 margin = limit - count;
1293
1294 if (do_memsw_account()) {
1295 count = page_counter_read(&memcg->memsw);
1296 limit = READ_ONCE(memcg->memsw.max);
1297 if (count <= limit)
1298 margin = min(margin, limit - count);
1299 else
1300 margin = 0;
1301 }
1302
1303 return margin;
1304 }
1305
1306 /*
1307 * A routine for checking "mem" is under move_account() or not.
1308 *
1309 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1310 * moving cgroups. This is for waiting at high-memory pressure
1311 * caused by "move".
1312 */
1313 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1314 {
1315 struct mem_cgroup *from;
1316 struct mem_cgroup *to;
1317 bool ret = false;
1318 /*
1319 * Unlike task_move routines, we access mc.to, mc.from not under
1320 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1321 */
1322 spin_lock(&mc.lock);
1323 from = mc.from;
1324 to = mc.to;
1325 if (!from)
1326 goto unlock;
1327
1328 ret = mem_cgroup_is_descendant(from, memcg) ||
1329 mem_cgroup_is_descendant(to, memcg);
1330 unlock:
1331 spin_unlock(&mc.lock);
1332 return ret;
1333 }
1334
1335 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1336 {
1337 if (mc.moving_task && current != mc.moving_task) {
1338 if (mem_cgroup_under_move(memcg)) {
1339 DEFINE_WAIT(wait);
1340 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1341 /* moving charge context might have finished. */
1342 if (mc.moving_task)
1343 schedule();
1344 finish_wait(&mc.waitq, &wait);
1345 return true;
1346 }
1347 }
1348 return false;
1349 }
1350
1351 static const unsigned int memcg1_stats[] = {
1352 MEMCG_CACHE,
1353 MEMCG_RSS,
1354 MEMCG_RSS_HUGE,
1355 NR_SHMEM,
1356 NR_FILE_MAPPED,
1357 NR_FILE_DIRTY,
1358 NR_WRITEBACK,
1359 MEMCG_SWAP,
1360 };
1361
1362 static const char *const memcg1_stat_names[] = {
1363 "cache",
1364 "rss",
1365 "rss_huge",
1366 "shmem",
1367 "mapped_file",
1368 "dirty",
1369 "writeback",
1370 "swap",
1371 };
1372
1373 #define K(x) ((x) << (PAGE_SHIFT-10))
1374 /**
1375 * mem_cgroup_print_oom_context: Print OOM information relevant to
1376 * memory controller.
1377 * @memcg: The memory cgroup that went over limit
1378 * @p: Task that is going to be killed
1379 *
1380 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1381 * enabled
1382 */
1383 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1384 {
1385 rcu_read_lock();
1386
1387 if (memcg) {
1388 pr_cont(",oom_memcg=");
1389 pr_cont_cgroup_path(memcg->css.cgroup);
1390 } else
1391 pr_cont(",global_oom");
1392 if (p) {
1393 pr_cont(",task_memcg=");
1394 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1395 }
1396 rcu_read_unlock();
1397 }
1398
1399 /**
1400 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1401 * memory controller.
1402 * @memcg: The memory cgroup that went over limit
1403 */
1404 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1405 {
1406 struct mem_cgroup *iter;
1407 unsigned int i;
1408
1409 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1410 K((u64)page_counter_read(&memcg->memory)),
1411 K((u64)memcg->memory.max), memcg->memory.failcnt);
1412 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1413 K((u64)page_counter_read(&memcg->memsw)),
1414 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1415 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1416 K((u64)page_counter_read(&memcg->kmem)),
1417 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1418
1419 for_each_mem_cgroup_tree(iter, memcg) {
1420 pr_info("Memory cgroup stats for ");
1421 pr_cont_cgroup_path(iter->css.cgroup);
1422 pr_cont(":");
1423
1424 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1425 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1426 continue;
1427 pr_cont(" %s:%luKB", memcg1_stat_names[i],
1428 K(memcg_page_state_local(iter,
1429 memcg1_stats[i])));
1430 }
1431
1432 for (i = 0; i < NR_LRU_LISTS; i++)
1433 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1434 K(memcg_page_state_local(iter,
1435 NR_LRU_BASE + i)));
1436
1437 pr_cont("\n");
1438 }
1439 }
1440
1441 /*
1442 * Return the memory (and swap, if configured) limit for a memcg.
1443 */
1444 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1445 {
1446 unsigned long max;
1447
1448 max = memcg->memory.max;
1449 if (mem_cgroup_swappiness(memcg)) {
1450 unsigned long memsw_max;
1451 unsigned long swap_max;
1452
1453 memsw_max = memcg->memsw.max;
1454 swap_max = memcg->swap.max;
1455 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1456 max = min(max + swap_max, memsw_max);
1457 }
1458 return max;
1459 }
1460
1461 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1462 int order)
1463 {
1464 struct oom_control oc = {
1465 .zonelist = NULL,
1466 .nodemask = NULL,
1467 .memcg = memcg,
1468 .gfp_mask = gfp_mask,
1469 .order = order,
1470 };
1471 bool ret;
1472
1473 if (mutex_lock_killable(&oom_lock))
1474 return true;
1475 /*
1476 * A few threads which were not waiting at mutex_lock_killable() can
1477 * fail to bail out. Therefore, check again after holding oom_lock.
1478 */
1479 ret = should_force_charge() || out_of_memory(&oc);
1480 mutex_unlock(&oom_lock);
1481 return ret;
1482 }
1483
1484 #if MAX_NUMNODES > 1
1485
1486 /**
1487 * test_mem_cgroup_node_reclaimable
1488 * @memcg: the target memcg
1489 * @nid: the node ID to be checked.
1490 * @noswap : specify true here if the user wants flle only information.
1491 *
1492 * This function returns whether the specified memcg contains any
1493 * reclaimable pages on a node. Returns true if there are any reclaimable
1494 * pages in the node.
1495 */
1496 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1497 int nid, bool noswap)
1498 {
1499 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1500
1501 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1502 lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1503 return true;
1504 if (noswap || !total_swap_pages)
1505 return false;
1506 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1507 lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1508 return true;
1509 return false;
1510
1511 }
1512
1513 /*
1514 * Always updating the nodemask is not very good - even if we have an empty
1515 * list or the wrong list here, we can start from some node and traverse all
1516 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1517 *
1518 */
1519 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1520 {
1521 int nid;
1522 /*
1523 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1524 * pagein/pageout changes since the last update.
1525 */
1526 if (!atomic_read(&memcg->numainfo_events))
1527 return;
1528 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1529 return;
1530
1531 /* make a nodemask where this memcg uses memory from */
1532 memcg->scan_nodes = node_states[N_MEMORY];
1533
1534 for_each_node_mask(nid, node_states[N_MEMORY]) {
1535
1536 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1537 node_clear(nid, memcg->scan_nodes);
1538 }
1539
1540 atomic_set(&memcg->numainfo_events, 0);
1541 atomic_set(&memcg->numainfo_updating, 0);
1542 }
1543
1544 /*
1545 * Selecting a node where we start reclaim from. Because what we need is just
1546 * reducing usage counter, start from anywhere is O,K. Considering
1547 * memory reclaim from current node, there are pros. and cons.
1548 *
1549 * Freeing memory from current node means freeing memory from a node which
1550 * we'll use or we've used. So, it may make LRU bad. And if several threads
1551 * hit limits, it will see a contention on a node. But freeing from remote
1552 * node means more costs for memory reclaim because of memory latency.
1553 *
1554 * Now, we use round-robin. Better algorithm is welcomed.
1555 */
1556 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1557 {
1558 int node;
1559
1560 mem_cgroup_may_update_nodemask(memcg);
1561 node = memcg->last_scanned_node;
1562
1563 node = next_node_in(node, memcg->scan_nodes);
1564 /*
1565 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1566 * last time it really checked all the LRUs due to rate limiting.
1567 * Fallback to the current node in that case for simplicity.
1568 */
1569 if (unlikely(node == MAX_NUMNODES))
1570 node = numa_node_id();
1571
1572 memcg->last_scanned_node = node;
1573 return node;
1574 }
1575 #else
1576 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1577 {
1578 return 0;
1579 }
1580 #endif
1581
1582 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1583 pg_data_t *pgdat,
1584 gfp_t gfp_mask,
1585 unsigned long *total_scanned)
1586 {
1587 struct mem_cgroup *victim = NULL;
1588 int total = 0;
1589 int loop = 0;
1590 unsigned long excess;
1591 unsigned long nr_scanned;
1592 struct mem_cgroup_reclaim_cookie reclaim = {
1593 .pgdat = pgdat,
1594 .priority = 0,
1595 };
1596
1597 excess = soft_limit_excess(root_memcg);
1598
1599 while (1) {
1600 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1601 if (!victim) {
1602 loop++;
1603 if (loop >= 2) {
1604 /*
1605 * If we have not been able to reclaim
1606 * anything, it might because there are
1607 * no reclaimable pages under this hierarchy
1608 */
1609 if (!total)
1610 break;
1611 /*
1612 * We want to do more targeted reclaim.
1613 * excess >> 2 is not to excessive so as to
1614 * reclaim too much, nor too less that we keep
1615 * coming back to reclaim from this cgroup
1616 */
1617 if (total >= (excess >> 2) ||
1618 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1619 break;
1620 }
1621 continue;
1622 }
1623 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1624 pgdat, &nr_scanned);
1625 *total_scanned += nr_scanned;
1626 if (!soft_limit_excess(root_memcg))
1627 break;
1628 }
1629 mem_cgroup_iter_break(root_memcg, victim);
1630 return total;
1631 }
1632
1633 #ifdef CONFIG_LOCKDEP
1634 static struct lockdep_map memcg_oom_lock_dep_map = {
1635 .name = "memcg_oom_lock",
1636 };
1637 #endif
1638
1639 static DEFINE_SPINLOCK(memcg_oom_lock);
1640
1641 /*
1642 * Check OOM-Killer is already running under our hierarchy.
1643 * If someone is running, return false.
1644 */
1645 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1646 {
1647 struct mem_cgroup *iter, *failed = NULL;
1648
1649 spin_lock(&memcg_oom_lock);
1650
1651 for_each_mem_cgroup_tree(iter, memcg) {
1652 if (iter->oom_lock) {
1653 /*
1654 * this subtree of our hierarchy is already locked
1655 * so we cannot give a lock.
1656 */
1657 failed = iter;
1658 mem_cgroup_iter_break(memcg, iter);
1659 break;
1660 } else
1661 iter->oom_lock = true;
1662 }
1663
1664 if (failed) {
1665 /*
1666 * OK, we failed to lock the whole subtree so we have
1667 * to clean up what we set up to the failing subtree
1668 */
1669 for_each_mem_cgroup_tree(iter, memcg) {
1670 if (iter == failed) {
1671 mem_cgroup_iter_break(memcg, iter);
1672 break;
1673 }
1674 iter->oom_lock = false;
1675 }
1676 } else
1677 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1678
1679 spin_unlock(&memcg_oom_lock);
1680
1681 return !failed;
1682 }
1683
1684 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1685 {
1686 struct mem_cgroup *iter;
1687
1688 spin_lock(&memcg_oom_lock);
1689 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1690 for_each_mem_cgroup_tree(iter, memcg)
1691 iter->oom_lock = false;
1692 spin_unlock(&memcg_oom_lock);
1693 }
1694
1695 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1696 {
1697 struct mem_cgroup *iter;
1698
1699 spin_lock(&memcg_oom_lock);
1700 for_each_mem_cgroup_tree(iter, memcg)
1701 iter->under_oom++;
1702 spin_unlock(&memcg_oom_lock);
1703 }
1704
1705 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1706 {
1707 struct mem_cgroup *iter;
1708
1709 /*
1710 * When a new child is created while the hierarchy is under oom,
1711 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1712 */
1713 spin_lock(&memcg_oom_lock);
1714 for_each_mem_cgroup_tree(iter, memcg)
1715 if (iter->under_oom > 0)
1716 iter->under_oom--;
1717 spin_unlock(&memcg_oom_lock);
1718 }
1719
1720 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1721
1722 struct oom_wait_info {
1723 struct mem_cgroup *memcg;
1724 wait_queue_entry_t wait;
1725 };
1726
1727 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1728 unsigned mode, int sync, void *arg)
1729 {
1730 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1731 struct mem_cgroup *oom_wait_memcg;
1732 struct oom_wait_info *oom_wait_info;
1733
1734 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1735 oom_wait_memcg = oom_wait_info->memcg;
1736
1737 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1738 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1739 return 0;
1740 return autoremove_wake_function(wait, mode, sync, arg);
1741 }
1742
1743 static void memcg_oom_recover(struct mem_cgroup *memcg)
1744 {
1745 /*
1746 * For the following lockless ->under_oom test, the only required
1747 * guarantee is that it must see the state asserted by an OOM when
1748 * this function is called as a result of userland actions
1749 * triggered by the notification of the OOM. This is trivially
1750 * achieved by invoking mem_cgroup_mark_under_oom() before
1751 * triggering notification.
1752 */
1753 if (memcg && memcg->under_oom)
1754 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1755 }
1756
1757 enum oom_status {
1758 OOM_SUCCESS,
1759 OOM_FAILED,
1760 OOM_ASYNC,
1761 OOM_SKIPPED
1762 };
1763
1764 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1765 {
1766 enum oom_status ret;
1767 bool locked;
1768
1769 if (order > PAGE_ALLOC_COSTLY_ORDER)
1770 return OOM_SKIPPED;
1771
1772 memcg_memory_event(memcg, MEMCG_OOM);
1773
1774 /*
1775 * We are in the middle of the charge context here, so we
1776 * don't want to block when potentially sitting on a callstack
1777 * that holds all kinds of filesystem and mm locks.
1778 *
1779 * cgroup1 allows disabling the OOM killer and waiting for outside
1780 * handling until the charge can succeed; remember the context and put
1781 * the task to sleep at the end of the page fault when all locks are
1782 * released.
1783 *
1784 * On the other hand, in-kernel OOM killer allows for an async victim
1785 * memory reclaim (oom_reaper) and that means that we are not solely
1786 * relying on the oom victim to make a forward progress and we can
1787 * invoke the oom killer here.
1788 *
1789 * Please note that mem_cgroup_out_of_memory might fail to find a
1790 * victim and then we have to bail out from the charge path.
1791 */
1792 if (memcg->oom_kill_disable) {
1793 if (!current->in_user_fault)
1794 return OOM_SKIPPED;
1795 css_get(&memcg->css);
1796 current->memcg_in_oom = memcg;
1797 current->memcg_oom_gfp_mask = mask;
1798 current->memcg_oom_order = order;
1799
1800 return OOM_ASYNC;
1801 }
1802
1803 mem_cgroup_mark_under_oom(memcg);
1804
1805 locked = mem_cgroup_oom_trylock(memcg);
1806
1807 if (locked)
1808 mem_cgroup_oom_notify(memcg);
1809
1810 mem_cgroup_unmark_under_oom(memcg);
1811 if (mem_cgroup_out_of_memory(memcg, mask, order))
1812 ret = OOM_SUCCESS;
1813 else
1814 ret = OOM_FAILED;
1815
1816 if (locked)
1817 mem_cgroup_oom_unlock(memcg);
1818
1819 return ret;
1820 }
1821
1822 /**
1823 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1824 * @handle: actually kill/wait or just clean up the OOM state
1825 *
1826 * This has to be called at the end of a page fault if the memcg OOM
1827 * handler was enabled.
1828 *
1829 * Memcg supports userspace OOM handling where failed allocations must
1830 * sleep on a waitqueue until the userspace task resolves the
1831 * situation. Sleeping directly in the charge context with all kinds
1832 * of locks held is not a good idea, instead we remember an OOM state
1833 * in the task and mem_cgroup_oom_synchronize() has to be called at
1834 * the end of the page fault to complete the OOM handling.
1835 *
1836 * Returns %true if an ongoing memcg OOM situation was detected and
1837 * completed, %false otherwise.
1838 */
1839 bool mem_cgroup_oom_synchronize(bool handle)
1840 {
1841 struct mem_cgroup *memcg = current->memcg_in_oom;
1842 struct oom_wait_info owait;
1843 bool locked;
1844
1845 /* OOM is global, do not handle */
1846 if (!memcg)
1847 return false;
1848
1849 if (!handle)
1850 goto cleanup;
1851
1852 owait.memcg = memcg;
1853 owait.wait.flags = 0;
1854 owait.wait.func = memcg_oom_wake_function;
1855 owait.wait.private = current;
1856 INIT_LIST_HEAD(&owait.wait.entry);
1857
1858 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1859 mem_cgroup_mark_under_oom(memcg);
1860
1861 locked = mem_cgroup_oom_trylock(memcg);
1862
1863 if (locked)
1864 mem_cgroup_oom_notify(memcg);
1865
1866 if (locked && !memcg->oom_kill_disable) {
1867 mem_cgroup_unmark_under_oom(memcg);
1868 finish_wait(&memcg_oom_waitq, &owait.wait);
1869 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1870 current->memcg_oom_order);
1871 } else {
1872 schedule();
1873 mem_cgroup_unmark_under_oom(memcg);
1874 finish_wait(&memcg_oom_waitq, &owait.wait);
1875 }
1876
1877 if (locked) {
1878 mem_cgroup_oom_unlock(memcg);
1879 /*
1880 * There is no guarantee that an OOM-lock contender
1881 * sees the wakeups triggered by the OOM kill
1882 * uncharges. Wake any sleepers explicitely.
1883 */
1884 memcg_oom_recover(memcg);
1885 }
1886 cleanup:
1887 current->memcg_in_oom = NULL;
1888 css_put(&memcg->css);
1889 return true;
1890 }
1891
1892 /**
1893 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1894 * @victim: task to be killed by the OOM killer
1895 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1896 *
1897 * Returns a pointer to a memory cgroup, which has to be cleaned up
1898 * by killing all belonging OOM-killable tasks.
1899 *
1900 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1901 */
1902 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1903 struct mem_cgroup *oom_domain)
1904 {
1905 struct mem_cgroup *oom_group = NULL;
1906 struct mem_cgroup *memcg;
1907
1908 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1909 return NULL;
1910
1911 if (!oom_domain)
1912 oom_domain = root_mem_cgroup;
1913
1914 rcu_read_lock();
1915
1916 memcg = mem_cgroup_from_task(victim);
1917 if (memcg == root_mem_cgroup)
1918 goto out;
1919
1920 /*
1921 * Traverse the memory cgroup hierarchy from the victim task's
1922 * cgroup up to the OOMing cgroup (or root) to find the
1923 * highest-level memory cgroup with oom.group set.
1924 */
1925 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1926 if (memcg->oom_group)
1927 oom_group = memcg;
1928
1929 if (memcg == oom_domain)
1930 break;
1931 }
1932
1933 if (oom_group)
1934 css_get(&oom_group->css);
1935 out:
1936 rcu_read_unlock();
1937
1938 return oom_group;
1939 }
1940
1941 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1942 {
1943 pr_info("Tasks in ");
1944 pr_cont_cgroup_path(memcg->css.cgroup);
1945 pr_cont(" are going to be killed due to memory.oom.group set\n");
1946 }
1947
1948 /**
1949 * lock_page_memcg - lock a page->mem_cgroup binding
1950 * @page: the page
1951 *
1952 * This function protects unlocked LRU pages from being moved to
1953 * another cgroup.
1954 *
1955 * It ensures lifetime of the returned memcg. Caller is responsible
1956 * for the lifetime of the page; __unlock_page_memcg() is available
1957 * when @page might get freed inside the locked section.
1958 */
1959 struct mem_cgroup *lock_page_memcg(struct page *page)
1960 {
1961 struct mem_cgroup *memcg;
1962 unsigned long flags;
1963
1964 /*
1965 * The RCU lock is held throughout the transaction. The fast
1966 * path can get away without acquiring the memcg->move_lock
1967 * because page moving starts with an RCU grace period.
1968 *
1969 * The RCU lock also protects the memcg from being freed when
1970 * the page state that is going to change is the only thing
1971 * preventing the page itself from being freed. E.g. writeback
1972 * doesn't hold a page reference and relies on PG_writeback to
1973 * keep off truncation, migration and so forth.
1974 */
1975 rcu_read_lock();
1976
1977 if (mem_cgroup_disabled())
1978 return NULL;
1979 again:
1980 memcg = page->mem_cgroup;
1981 if (unlikely(!memcg))
1982 return NULL;
1983
1984 if (atomic_read(&memcg->moving_account) <= 0)
1985 return memcg;
1986
1987 spin_lock_irqsave(&memcg->move_lock, flags);
1988 if (memcg != page->mem_cgroup) {
1989 spin_unlock_irqrestore(&memcg->move_lock, flags);
1990 goto again;
1991 }
1992
1993 /*
1994 * When charge migration first begins, we can have locked and
1995 * unlocked page stat updates happening concurrently. Track
1996 * the task who has the lock for unlock_page_memcg().
1997 */
1998 memcg->move_lock_task = current;
1999 memcg->move_lock_flags = flags;
2000
2001 return memcg;
2002 }
2003 EXPORT_SYMBOL(lock_page_memcg);
2004
2005 /**
2006 * __unlock_page_memcg - unlock and unpin a memcg
2007 * @memcg: the memcg
2008 *
2009 * Unlock and unpin a memcg returned by lock_page_memcg().
2010 */
2011 void __unlock_page_memcg(struct mem_cgroup *memcg)
2012 {
2013 if (memcg && memcg->move_lock_task == current) {
2014 unsigned long flags = memcg->move_lock_flags;
2015
2016 memcg->move_lock_task = NULL;
2017 memcg->move_lock_flags = 0;
2018
2019 spin_unlock_irqrestore(&memcg->move_lock, flags);
2020 }
2021
2022 rcu_read_unlock();
2023 }
2024
2025 /**
2026 * unlock_page_memcg - unlock a page->mem_cgroup binding
2027 * @page: the page
2028 */
2029 void unlock_page_memcg(struct page *page)
2030 {
2031 __unlock_page_memcg(page->mem_cgroup);
2032 }
2033 EXPORT_SYMBOL(unlock_page_memcg);
2034
2035 struct memcg_stock_pcp {
2036 struct mem_cgroup *cached; /* this never be root cgroup */
2037 unsigned int nr_pages;
2038 struct work_struct work;
2039 unsigned long flags;
2040 #define FLUSHING_CACHED_CHARGE 0
2041 };
2042 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2043 static DEFINE_MUTEX(percpu_charge_mutex);
2044
2045 /**
2046 * consume_stock: Try to consume stocked charge on this cpu.
2047 * @memcg: memcg to consume from.
2048 * @nr_pages: how many pages to charge.
2049 *
2050 * The charges will only happen if @memcg matches the current cpu's memcg
2051 * stock, and at least @nr_pages are available in that stock. Failure to
2052 * service an allocation will refill the stock.
2053 *
2054 * returns true if successful, false otherwise.
2055 */
2056 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2057 {
2058 struct memcg_stock_pcp *stock;
2059 unsigned long flags;
2060 bool ret = false;
2061
2062 if (nr_pages > MEMCG_CHARGE_BATCH)
2063 return ret;
2064
2065 local_irq_save(flags);
2066
2067 stock = this_cpu_ptr(&memcg_stock);
2068 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2069 stock->nr_pages -= nr_pages;
2070 ret = true;
2071 }
2072
2073 local_irq_restore(flags);
2074
2075 return ret;
2076 }
2077
2078 /*
2079 * Returns stocks cached in percpu and reset cached information.
2080 */
2081 static void drain_stock(struct memcg_stock_pcp *stock)
2082 {
2083 struct mem_cgroup *old = stock->cached;
2084
2085 if (stock->nr_pages) {
2086 page_counter_uncharge(&old->memory, stock->nr_pages);
2087 if (do_memsw_account())
2088 page_counter_uncharge(&old->memsw, stock->nr_pages);
2089 css_put_many(&old->css, stock->nr_pages);
2090 stock->nr_pages = 0;
2091 }
2092 stock->cached = NULL;
2093 }
2094
2095 static void drain_local_stock(struct work_struct *dummy)
2096 {
2097 struct memcg_stock_pcp *stock;
2098 unsigned long flags;
2099
2100 /*
2101 * The only protection from memory hotplug vs. drain_stock races is
2102 * that we always operate on local CPU stock here with IRQ disabled
2103 */
2104 local_irq_save(flags);
2105
2106 stock = this_cpu_ptr(&memcg_stock);
2107 drain_stock(stock);
2108 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2109
2110 local_irq_restore(flags);
2111 }
2112
2113 /*
2114 * Cache charges(val) to local per_cpu area.
2115 * This will be consumed by consume_stock() function, later.
2116 */
2117 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2118 {
2119 struct memcg_stock_pcp *stock;
2120 unsigned long flags;
2121
2122 local_irq_save(flags);
2123
2124 stock = this_cpu_ptr(&memcg_stock);
2125 if (stock->cached != memcg) { /* reset if necessary */
2126 drain_stock(stock);
2127 stock->cached = memcg;
2128 }
2129 stock->nr_pages += nr_pages;
2130
2131 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2132 drain_stock(stock);
2133
2134 local_irq_restore(flags);
2135 }
2136
2137 /*
2138 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2139 * of the hierarchy under it.
2140 */
2141 static void drain_all_stock(struct mem_cgroup *root_memcg)
2142 {
2143 int cpu, curcpu;
2144
2145 /* If someone's already draining, avoid adding running more workers. */
2146 if (!mutex_trylock(&percpu_charge_mutex))
2147 return;
2148 /*
2149 * Notify other cpus that system-wide "drain" is running
2150 * We do not care about races with the cpu hotplug because cpu down
2151 * as well as workers from this path always operate on the local
2152 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2153 */
2154 curcpu = get_cpu();
2155 for_each_online_cpu(cpu) {
2156 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2157 struct mem_cgroup *memcg;
2158
2159 memcg = stock->cached;
2160 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2161 continue;
2162 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2163 css_put(&memcg->css);
2164 continue;
2165 }
2166 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2167 if (cpu == curcpu)
2168 drain_local_stock(&stock->work);
2169 else
2170 schedule_work_on(cpu, &stock->work);
2171 }
2172 css_put(&memcg->css);
2173 }
2174 put_cpu();
2175 mutex_unlock(&percpu_charge_mutex);
2176 }
2177
2178 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2179 {
2180 struct memcg_stock_pcp *stock;
2181 struct mem_cgroup *memcg, *mi;
2182
2183 stock = &per_cpu(memcg_stock, cpu);
2184 drain_stock(stock);
2185
2186 for_each_mem_cgroup(memcg) {
2187 int i;
2188
2189 for (i = 0; i < MEMCG_NR_STAT; i++) {
2190 int nid;
2191 long x;
2192
2193 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2194 if (x) {
2195 atomic_long_add(x, &memcg->vmstats_local[i]);
2196 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2197 atomic_long_add(x, &memcg->vmstats[i]);
2198 }
2199
2200 if (i >= NR_VM_NODE_STAT_ITEMS)
2201 continue;
2202
2203 for_each_node(nid) {
2204 struct mem_cgroup_per_node *pn;
2205
2206 pn = mem_cgroup_nodeinfo(memcg, nid);
2207 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2208 if (x) {
2209 atomic_long_add(x, &pn->lruvec_stat_local[i]);
2210 do {
2211 atomic_long_add(x, &pn->lruvec_stat[i]);
2212 } while ((pn = parent_nodeinfo(pn, nid)));
2213 }
2214 }
2215 }
2216
2217 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2218 long x;
2219
2220 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2221 if (x) {
2222 atomic_long_add(x, &memcg->vmevents_local[i]);
2223 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2224 atomic_long_add(x, &memcg->vmevents[i]);
2225 }
2226 }
2227 }
2228
2229 return 0;
2230 }
2231
2232 static void reclaim_high(struct mem_cgroup *memcg,
2233 unsigned int nr_pages,
2234 gfp_t gfp_mask)
2235 {
2236 do {
2237 if (page_counter_read(&memcg->memory) <= memcg->high)
2238 continue;
2239 memcg_memory_event(memcg, MEMCG_HIGH);
2240 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2241 } while ((memcg = parent_mem_cgroup(memcg)));
2242 }
2243
2244 static void high_work_func(struct work_struct *work)
2245 {
2246 struct mem_cgroup *memcg;
2247
2248 memcg = container_of(work, struct mem_cgroup, high_work);
2249 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2250 }
2251
2252 /*
2253 * Scheduled by try_charge() to be executed from the userland return path
2254 * and reclaims memory over the high limit.
2255 */
2256 void mem_cgroup_handle_over_high(void)
2257 {
2258 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2259 struct mem_cgroup *memcg;
2260
2261 if (likely(!nr_pages))
2262 return;
2263
2264 memcg = get_mem_cgroup_from_mm(current->mm);
2265 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2266 css_put(&memcg->css);
2267 current->memcg_nr_pages_over_high = 0;
2268 }
2269
2270 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2271 unsigned int nr_pages)
2272 {
2273 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2274 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2275 struct mem_cgroup *mem_over_limit;
2276 struct page_counter *counter;
2277 unsigned long nr_reclaimed;
2278 bool may_swap = true;
2279 bool drained = false;
2280 bool oomed = false;
2281 enum oom_status oom_status;
2282
2283 if (mem_cgroup_is_root(memcg))
2284 return 0;
2285 retry:
2286 if (consume_stock(memcg, nr_pages))
2287 return 0;
2288
2289 if (!do_memsw_account() ||
2290 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2291 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2292 goto done_restock;
2293 if (do_memsw_account())
2294 page_counter_uncharge(&memcg->memsw, batch);
2295 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2296 } else {
2297 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2298 may_swap = false;
2299 }
2300
2301 if (batch > nr_pages) {
2302 batch = nr_pages;
2303 goto retry;
2304 }
2305
2306 /*
2307 * Unlike in global OOM situations, memcg is not in a physical
2308 * memory shortage. Allow dying and OOM-killed tasks to
2309 * bypass the last charges so that they can exit quickly and
2310 * free their memory.
2311 */
2312 if (unlikely(should_force_charge()))
2313 goto force;
2314
2315 /*
2316 * Prevent unbounded recursion when reclaim operations need to
2317 * allocate memory. This might exceed the limits temporarily,
2318 * but we prefer facilitating memory reclaim and getting back
2319 * under the limit over triggering OOM kills in these cases.
2320 */
2321 if (unlikely(current->flags & PF_MEMALLOC))
2322 goto force;
2323
2324 if (unlikely(task_in_memcg_oom(current)))
2325 goto nomem;
2326
2327 if (!gfpflags_allow_blocking(gfp_mask))
2328 goto nomem;
2329
2330 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2331
2332 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2333 gfp_mask, may_swap);
2334
2335 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2336 goto retry;
2337
2338 if (!drained) {
2339 drain_all_stock(mem_over_limit);
2340 drained = true;
2341 goto retry;
2342 }
2343
2344 if (gfp_mask & __GFP_NORETRY)
2345 goto nomem;
2346 /*
2347 * Even though the limit is exceeded at this point, reclaim
2348 * may have been able to free some pages. Retry the charge
2349 * before killing the task.
2350 *
2351 * Only for regular pages, though: huge pages are rather
2352 * unlikely to succeed so close to the limit, and we fall back
2353 * to regular pages anyway in case of failure.
2354 */
2355 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2356 goto retry;
2357 /*
2358 * At task move, charge accounts can be doubly counted. So, it's
2359 * better to wait until the end of task_move if something is going on.
2360 */
2361 if (mem_cgroup_wait_acct_move(mem_over_limit))
2362 goto retry;
2363
2364 if (nr_retries--)
2365 goto retry;
2366
2367 if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
2368 goto nomem;
2369
2370 if (gfp_mask & __GFP_NOFAIL)
2371 goto force;
2372
2373 if (fatal_signal_pending(current))
2374 goto force;
2375
2376 /*
2377 * keep retrying as long as the memcg oom killer is able to make
2378 * a forward progress or bypass the charge if the oom killer
2379 * couldn't make any progress.
2380 */
2381 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2382 get_order(nr_pages * PAGE_SIZE));
2383 switch (oom_status) {
2384 case OOM_SUCCESS:
2385 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2386 oomed = true;
2387 goto retry;
2388 case OOM_FAILED:
2389 goto force;
2390 default:
2391 goto nomem;
2392 }
2393 nomem:
2394 if (!(gfp_mask & __GFP_NOFAIL))
2395 return -ENOMEM;
2396 force:
2397 /*
2398 * The allocation either can't fail or will lead to more memory
2399 * being freed very soon. Allow memory usage go over the limit
2400 * temporarily by force charging it.
2401 */
2402 page_counter_charge(&memcg->memory, nr_pages);
2403 if (do_memsw_account())
2404 page_counter_charge(&memcg->memsw, nr_pages);
2405 css_get_many(&memcg->css, nr_pages);
2406
2407 return 0;
2408
2409 done_restock:
2410 css_get_many(&memcg->css, batch);
2411 if (batch > nr_pages)
2412 refill_stock(memcg, batch - nr_pages);
2413
2414 /*
2415 * If the hierarchy is above the normal consumption range, schedule
2416 * reclaim on returning to userland. We can perform reclaim here
2417 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2418 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2419 * not recorded as it most likely matches current's and won't
2420 * change in the meantime. As high limit is checked again before
2421 * reclaim, the cost of mismatch is negligible.
2422 */
2423 do {
2424 if (page_counter_read(&memcg->memory) > memcg->high) {
2425 /* Don't bother a random interrupted task */
2426 if (in_interrupt()) {
2427 schedule_work(&memcg->high_work);
2428 break;
2429 }
2430 current->memcg_nr_pages_over_high += batch;
2431 set_notify_resume(current);
2432 break;
2433 }
2434 } while ((memcg = parent_mem_cgroup(memcg)));
2435
2436 return 0;
2437 }
2438
2439 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2440 {
2441 if (mem_cgroup_is_root(memcg))
2442 return;
2443
2444 page_counter_uncharge(&memcg->memory, nr_pages);
2445 if (do_memsw_account())
2446 page_counter_uncharge(&memcg->memsw, nr_pages);
2447
2448 css_put_many(&memcg->css, nr_pages);
2449 }
2450
2451 static void lock_page_lru(struct page *page, int *isolated)
2452 {
2453 pg_data_t *pgdat = page_pgdat(page);
2454
2455 spin_lock_irq(&pgdat->lru_lock);
2456 if (PageLRU(page)) {
2457 struct lruvec *lruvec;
2458
2459 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2460 ClearPageLRU(page);
2461 del_page_from_lru_list(page, lruvec, page_lru(page));
2462 *isolated = 1;
2463 } else
2464 *isolated = 0;
2465 }
2466
2467 static void unlock_page_lru(struct page *page, int isolated)
2468 {
2469 pg_data_t *pgdat = page_pgdat(page);
2470
2471 if (isolated) {
2472 struct lruvec *lruvec;
2473
2474 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2475 VM_BUG_ON_PAGE(PageLRU(page), page);
2476 SetPageLRU(page);
2477 add_page_to_lru_list(page, lruvec, page_lru(page));
2478 }
2479 spin_unlock_irq(&pgdat->lru_lock);
2480 }
2481
2482 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2483 bool lrucare)
2484 {
2485 int isolated;
2486
2487 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2488
2489 /*
2490 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2491 * may already be on some other mem_cgroup's LRU. Take care of it.
2492 */
2493 if (lrucare)
2494 lock_page_lru(page, &isolated);
2495
2496 /*
2497 * Nobody should be changing or seriously looking at
2498 * page->mem_cgroup at this point:
2499 *
2500 * - the page is uncharged
2501 *
2502 * - the page is off-LRU
2503 *
2504 * - an anonymous fault has exclusive page access, except for
2505 * a locked page table
2506 *
2507 * - a page cache insertion, a swapin fault, or a migration
2508 * have the page locked
2509 */
2510 page->mem_cgroup = memcg;
2511
2512 if (lrucare)
2513 unlock_page_lru(page, isolated);
2514 }
2515
2516 #ifdef CONFIG_MEMCG_KMEM
2517 static int memcg_alloc_cache_id(void)
2518 {
2519 int id, size;
2520 int err;
2521
2522 id = ida_simple_get(&memcg_cache_ida,
2523 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2524 if (id < 0)
2525 return id;
2526
2527 if (id < memcg_nr_cache_ids)
2528 return id;
2529
2530 /*
2531 * There's no space for the new id in memcg_caches arrays,
2532 * so we have to grow them.
2533 */
2534 down_write(&memcg_cache_ids_sem);
2535
2536 size = 2 * (id + 1);
2537 if (size < MEMCG_CACHES_MIN_SIZE)
2538 size = MEMCG_CACHES_MIN_SIZE;
2539 else if (size > MEMCG_CACHES_MAX_SIZE)
2540 size = MEMCG_CACHES_MAX_SIZE;
2541
2542 err = memcg_update_all_caches(size);
2543 if (!err)
2544 err = memcg_update_all_list_lrus(size);
2545 if (!err)
2546 memcg_nr_cache_ids = size;
2547
2548 up_write(&memcg_cache_ids_sem);
2549
2550 if (err) {
2551 ida_simple_remove(&memcg_cache_ida, id);
2552 return err;
2553 }
2554 return id;
2555 }
2556
2557 static void memcg_free_cache_id(int id)
2558 {
2559 ida_simple_remove(&memcg_cache_ida, id);
2560 }
2561
2562 struct memcg_kmem_cache_create_work {
2563 struct mem_cgroup *memcg;
2564 struct kmem_cache *cachep;
2565 struct work_struct work;
2566 };
2567
2568 static void memcg_kmem_cache_create_func(struct work_struct *w)
2569 {
2570 struct memcg_kmem_cache_create_work *cw =
2571 container_of(w, struct memcg_kmem_cache_create_work, work);
2572 struct mem_cgroup *memcg = cw->memcg;
2573 struct kmem_cache *cachep = cw->cachep;
2574
2575 memcg_create_kmem_cache(memcg, cachep);
2576
2577 css_put(&memcg->css);
2578 kfree(cw);
2579 }
2580
2581 /*
2582 * Enqueue the creation of a per-memcg kmem_cache.
2583 */
2584 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2585 struct kmem_cache *cachep)
2586 {
2587 struct memcg_kmem_cache_create_work *cw;
2588
2589 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2590 if (!cw)
2591 return;
2592
2593 css_get(&memcg->css);
2594
2595 cw->memcg = memcg;
2596 cw->cachep = cachep;
2597 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2598
2599 queue_work(memcg_kmem_cache_wq, &cw->work);
2600 }
2601
2602 static inline bool memcg_kmem_bypass(void)
2603 {
2604 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2605 return true;
2606 return false;
2607 }
2608
2609 /**
2610 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2611 * @cachep: the original global kmem cache
2612 *
2613 * Return the kmem_cache we're supposed to use for a slab allocation.
2614 * We try to use the current memcg's version of the cache.
2615 *
2616 * If the cache does not exist yet, if we are the first user of it, we
2617 * create it asynchronously in a workqueue and let the current allocation
2618 * go through with the original cache.
2619 *
2620 * This function takes a reference to the cache it returns to assure it
2621 * won't get destroyed while we are working with it. Once the caller is
2622 * done with it, memcg_kmem_put_cache() must be called to release the
2623 * reference.
2624 */
2625 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2626 {
2627 struct mem_cgroup *memcg;
2628 struct kmem_cache *memcg_cachep;
2629 int kmemcg_id;
2630
2631 VM_BUG_ON(!is_root_cache(cachep));
2632
2633 if (memcg_kmem_bypass())
2634 return cachep;
2635
2636 memcg = get_mem_cgroup_from_current();
2637 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2638 if (kmemcg_id < 0)
2639 goto out;
2640
2641 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2642 if (likely(memcg_cachep))
2643 return memcg_cachep;
2644
2645 /*
2646 * If we are in a safe context (can wait, and not in interrupt
2647 * context), we could be be predictable and return right away.
2648 * This would guarantee that the allocation being performed
2649 * already belongs in the new cache.
2650 *
2651 * However, there are some clashes that can arrive from locking.
2652 * For instance, because we acquire the slab_mutex while doing
2653 * memcg_create_kmem_cache, this means no further allocation
2654 * could happen with the slab_mutex held. So it's better to
2655 * defer everything.
2656 */
2657 memcg_schedule_kmem_cache_create(memcg, cachep);
2658 out:
2659 css_put(&memcg->css);
2660 return cachep;
2661 }
2662
2663 /**
2664 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2665 * @cachep: the cache returned by memcg_kmem_get_cache
2666 */
2667 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2668 {
2669 if (!is_root_cache(cachep))
2670 css_put(&cachep->memcg_params.memcg->css);
2671 }
2672
2673 /**
2674 * __memcg_kmem_charge_memcg: charge a kmem page
2675 * @page: page to charge
2676 * @gfp: reclaim mode
2677 * @order: allocation order
2678 * @memcg: memory cgroup to charge
2679 *
2680 * Returns 0 on success, an error code on failure.
2681 */
2682 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2683 struct mem_cgroup *memcg)
2684 {
2685 unsigned int nr_pages = 1 << order;
2686 struct page_counter *counter;
2687 int ret;
2688
2689 ret = try_charge(memcg, gfp, nr_pages);
2690 if (ret)
2691 return ret;
2692
2693 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2694 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2695 cancel_charge(memcg, nr_pages);
2696 return -ENOMEM;
2697 }
2698
2699 page->mem_cgroup = memcg;
2700
2701 return 0;
2702 }
2703
2704 /**
2705 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2706 * @page: page to charge
2707 * @gfp: reclaim mode
2708 * @order: allocation order
2709 *
2710 * Returns 0 on success, an error code on failure.
2711 */
2712 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2713 {
2714 struct mem_cgroup *memcg;
2715 int ret = 0;
2716
2717 if (memcg_kmem_bypass())
2718 return 0;
2719
2720 memcg = get_mem_cgroup_from_current();
2721 if (!mem_cgroup_is_root(memcg)) {
2722 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2723 if (!ret)
2724 __SetPageKmemcg(page);
2725 }
2726 css_put(&memcg->css);
2727 return ret;
2728 }
2729 /**
2730 * __memcg_kmem_uncharge: uncharge a kmem page
2731 * @page: page to uncharge
2732 * @order: allocation order
2733 */
2734 void __memcg_kmem_uncharge(struct page *page, int order)
2735 {
2736 struct mem_cgroup *memcg = page->mem_cgroup;
2737 unsigned int nr_pages = 1 << order;
2738
2739 if (!memcg)
2740 return;
2741
2742 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2743
2744 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2745 page_counter_uncharge(&memcg->kmem, nr_pages);
2746
2747 page_counter_uncharge(&memcg->memory, nr_pages);
2748 if (do_memsw_account())
2749 page_counter_uncharge(&memcg->memsw, nr_pages);
2750
2751 page->mem_cgroup = NULL;
2752
2753 /* slab pages do not have PageKmemcg flag set */
2754 if (PageKmemcg(page))
2755 __ClearPageKmemcg(page);
2756
2757 css_put_many(&memcg->css, nr_pages);
2758 }
2759 #endif /* CONFIG_MEMCG_KMEM */
2760
2761 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2762
2763 /*
2764 * Because tail pages are not marked as "used", set it. We're under
2765 * pgdat->lru_lock and migration entries setup in all page mappings.
2766 */
2767 void mem_cgroup_split_huge_fixup(struct page *head)
2768 {
2769 int i;
2770
2771 if (mem_cgroup_disabled())
2772 return;
2773
2774 for (i = 1; i < HPAGE_PMD_NR; i++)
2775 head[i].mem_cgroup = head->mem_cgroup;
2776
2777 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2778 }
2779 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2780
2781 #ifdef CONFIG_MEMCG_SWAP
2782 /**
2783 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2784 * @entry: swap entry to be moved
2785 * @from: mem_cgroup which the entry is moved from
2786 * @to: mem_cgroup which the entry is moved to
2787 *
2788 * It succeeds only when the swap_cgroup's record for this entry is the same
2789 * as the mem_cgroup's id of @from.
2790 *
2791 * Returns 0 on success, -EINVAL on failure.
2792 *
2793 * The caller must have charged to @to, IOW, called page_counter_charge() about
2794 * both res and memsw, and called css_get().
2795 */
2796 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2797 struct mem_cgroup *from, struct mem_cgroup *to)
2798 {
2799 unsigned short old_id, new_id;
2800
2801 old_id = mem_cgroup_id(from);
2802 new_id = mem_cgroup_id(to);
2803
2804 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2805 mod_memcg_state(from, MEMCG_SWAP, -1);
2806 mod_memcg_state(to, MEMCG_SWAP, 1);
2807 return 0;
2808 }
2809 return -EINVAL;
2810 }
2811 #else
2812 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2813 struct mem_cgroup *from, struct mem_cgroup *to)
2814 {
2815 return -EINVAL;
2816 }
2817 #endif
2818
2819 static DEFINE_MUTEX(memcg_max_mutex);
2820
2821 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2822 unsigned long max, bool memsw)
2823 {
2824 bool enlarge = false;
2825 bool drained = false;
2826 int ret;
2827 bool limits_invariant;
2828 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2829
2830 do {
2831 if (signal_pending(current)) {
2832 ret = -EINTR;
2833 break;
2834 }
2835
2836 mutex_lock(&memcg_max_mutex);
2837 /*
2838 * Make sure that the new limit (memsw or memory limit) doesn't
2839 * break our basic invariant rule memory.max <= memsw.max.
2840 */
2841 limits_invariant = memsw ? max >= memcg->memory.max :
2842 max <= memcg->memsw.max;
2843 if (!limits_invariant) {
2844 mutex_unlock(&memcg_max_mutex);
2845 ret = -EINVAL;
2846 break;
2847 }
2848 if (max > counter->max)
2849 enlarge = true;
2850 ret = page_counter_set_max(counter, max);
2851 mutex_unlock(&memcg_max_mutex);
2852
2853 if (!ret)
2854 break;
2855
2856 if (!drained) {
2857 drain_all_stock(memcg);
2858 drained = true;
2859 continue;
2860 }
2861
2862 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2863 GFP_KERNEL, !memsw)) {
2864 ret = -EBUSY;
2865 break;
2866 }
2867 } while (true);
2868
2869 if (!ret && enlarge)
2870 memcg_oom_recover(memcg);
2871
2872 return ret;
2873 }
2874
2875 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2876 gfp_t gfp_mask,
2877 unsigned long *total_scanned)
2878 {
2879 unsigned long nr_reclaimed = 0;
2880 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2881 unsigned long reclaimed;
2882 int loop = 0;
2883 struct mem_cgroup_tree_per_node *mctz;
2884 unsigned long excess;
2885 unsigned long nr_scanned;
2886
2887 if (order > 0)
2888 return 0;
2889
2890 mctz = soft_limit_tree_node(pgdat->node_id);
2891
2892 /*
2893 * Do not even bother to check the largest node if the root
2894 * is empty. Do it lockless to prevent lock bouncing. Races
2895 * are acceptable as soft limit is best effort anyway.
2896 */
2897 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2898 return 0;
2899
2900 /*
2901 * This loop can run a while, specially if mem_cgroup's continuously
2902 * keep exceeding their soft limit and putting the system under
2903 * pressure
2904 */
2905 do {
2906 if (next_mz)
2907 mz = next_mz;
2908 else
2909 mz = mem_cgroup_largest_soft_limit_node(mctz);
2910 if (!mz)
2911 break;
2912
2913 nr_scanned = 0;
2914 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2915 gfp_mask, &nr_scanned);
2916 nr_reclaimed += reclaimed;
2917 *total_scanned += nr_scanned;
2918 spin_lock_irq(&mctz->lock);
2919 __mem_cgroup_remove_exceeded(mz, mctz);
2920
2921 /*
2922 * If we failed to reclaim anything from this memory cgroup
2923 * it is time to move on to the next cgroup
2924 */
2925 next_mz = NULL;
2926 if (!reclaimed)
2927 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2928
2929 excess = soft_limit_excess(mz->memcg);
2930 /*
2931 * One school of thought says that we should not add
2932 * back the node to the tree if reclaim returns 0.
2933 * But our reclaim could return 0, simply because due
2934 * to priority we are exposing a smaller subset of
2935 * memory to reclaim from. Consider this as a longer
2936 * term TODO.
2937 */
2938 /* If excess == 0, no tree ops */
2939 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2940 spin_unlock_irq(&mctz->lock);
2941 css_put(&mz->memcg->css);
2942 loop++;
2943 /*
2944 * Could not reclaim anything and there are no more
2945 * mem cgroups to try or we seem to be looping without
2946 * reclaiming anything.
2947 */
2948 if (!nr_reclaimed &&
2949 (next_mz == NULL ||
2950 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2951 break;
2952 } while (!nr_reclaimed);
2953 if (next_mz)
2954 css_put(&next_mz->memcg->css);
2955 return nr_reclaimed;
2956 }
2957
2958 /*
2959 * Test whether @memcg has children, dead or alive. Note that this
2960 * function doesn't care whether @memcg has use_hierarchy enabled and
2961 * returns %true if there are child csses according to the cgroup
2962 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2963 */
2964 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2965 {
2966 bool ret;
2967
2968 rcu_read_lock();
2969 ret = css_next_child(NULL, &memcg->css);
2970 rcu_read_unlock();
2971 return ret;
2972 }
2973
2974 /*
2975 * Reclaims as many pages from the given memcg as possible.
2976 *
2977 * Caller is responsible for holding css reference for memcg.
2978 */
2979 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2980 {
2981 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2982
2983 /* we call try-to-free pages for make this cgroup empty */
2984 lru_add_drain_all();
2985
2986 drain_all_stock(memcg);
2987
2988 /* try to free all pages in this cgroup */
2989 while (nr_retries && page_counter_read(&memcg->memory)) {
2990 int progress;
2991
2992 if (signal_pending(current))
2993 return -EINTR;
2994
2995 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2996 GFP_KERNEL, true);
2997 if (!progress) {
2998 nr_retries--;
2999 /* maybe some writeback is necessary */
3000 congestion_wait(BLK_RW_ASYNC, HZ/10);
3001 }
3002
3003 }
3004
3005 return 0;
3006 }
3007
3008 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3009 char *buf, size_t nbytes,
3010 loff_t off)
3011 {
3012 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3013
3014 if (mem_cgroup_is_root(memcg))
3015 return -EINVAL;
3016 return mem_cgroup_force_empty(memcg) ?: nbytes;
3017 }
3018
3019 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3020 struct cftype *cft)
3021 {
3022 return mem_cgroup_from_css(css)->use_hierarchy;
3023 }
3024
3025 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3026 struct cftype *cft, u64 val)
3027 {
3028 int retval = 0;
3029 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3030 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3031
3032 if (memcg->use_hierarchy == val)
3033 return 0;
3034
3035 /*
3036 * If parent's use_hierarchy is set, we can't make any modifications
3037 * in the child subtrees. If it is unset, then the change can
3038 * occur, provided the current cgroup has no children.
3039 *
3040 * For the root cgroup, parent_mem is NULL, we allow value to be
3041 * set if there are no children.
3042 */
3043 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3044 (val == 1 || val == 0)) {
3045 if (!memcg_has_children(memcg))
3046 memcg->use_hierarchy = val;
3047 else
3048 retval = -EBUSY;
3049 } else
3050 retval = -EINVAL;
3051
3052 return retval;
3053 }
3054
3055 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3056 {
3057 unsigned long val;
3058
3059 if (mem_cgroup_is_root(memcg)) {
3060 val = memcg_page_state(memcg, MEMCG_CACHE) +
3061 memcg_page_state(memcg, MEMCG_RSS);
3062 if (swap)
3063 val += memcg_page_state(memcg, MEMCG_SWAP);
3064 } else {
3065 if (!swap)
3066 val = page_counter_read(&memcg->memory);
3067 else
3068 val = page_counter_read(&memcg->memsw);
3069 }
3070 return val;
3071 }
3072
3073 enum {
3074 RES_USAGE,
3075 RES_LIMIT,
3076 RES_MAX_USAGE,
3077 RES_FAILCNT,
3078 RES_SOFT_LIMIT,
3079 };
3080
3081 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3082 struct cftype *cft)
3083 {
3084 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3085 struct page_counter *counter;
3086
3087 switch (MEMFILE_TYPE(cft->private)) {
3088 case _MEM:
3089 counter = &memcg->memory;
3090 break;
3091 case _MEMSWAP:
3092 counter = &memcg->memsw;
3093 break;
3094 case _KMEM:
3095 counter = &memcg->kmem;
3096 break;
3097 case _TCP:
3098 counter = &memcg->tcpmem;
3099 break;
3100 default:
3101 BUG();
3102 }
3103
3104 switch (MEMFILE_ATTR(cft->private)) {
3105 case RES_USAGE:
3106 if (counter == &memcg->memory)
3107 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3108 if (counter == &memcg->memsw)
3109 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3110 return (u64)page_counter_read(counter) * PAGE_SIZE;
3111 case RES_LIMIT:
3112 return (u64)counter->max * PAGE_SIZE;
3113 case RES_MAX_USAGE:
3114 return (u64)counter->watermark * PAGE_SIZE;
3115 case RES_FAILCNT:
3116 return counter->failcnt;
3117 case RES_SOFT_LIMIT:
3118 return (u64)memcg->soft_limit * PAGE_SIZE;
3119 default:
3120 BUG();
3121 }
3122 }
3123
3124 #ifdef CONFIG_MEMCG_KMEM
3125 static int memcg_online_kmem(struct mem_cgroup *memcg)
3126 {
3127 int memcg_id;
3128
3129 if (cgroup_memory_nokmem)
3130 return 0;
3131
3132 BUG_ON(memcg->kmemcg_id >= 0);
3133 BUG_ON(memcg->kmem_state);
3134
3135 memcg_id = memcg_alloc_cache_id();
3136 if (memcg_id < 0)
3137 return memcg_id;
3138
3139 static_branch_inc(&memcg_kmem_enabled_key);
3140 /*
3141 * A memory cgroup is considered kmem-online as soon as it gets
3142 * kmemcg_id. Setting the id after enabling static branching will
3143 * guarantee no one starts accounting before all call sites are
3144 * patched.
3145 */
3146 memcg->kmemcg_id = memcg_id;
3147 memcg->kmem_state = KMEM_ONLINE;
3148 INIT_LIST_HEAD(&memcg->kmem_caches);
3149
3150 return 0;
3151 }
3152
3153 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3154 {
3155 struct cgroup_subsys_state *css;
3156 struct mem_cgroup *parent, *child;
3157 int kmemcg_id;
3158
3159 if (memcg->kmem_state != KMEM_ONLINE)
3160 return;
3161 /*
3162 * Clear the online state before clearing memcg_caches array
3163 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3164 * guarantees that no cache will be created for this cgroup
3165 * after we are done (see memcg_create_kmem_cache()).
3166 */
3167 memcg->kmem_state = KMEM_ALLOCATED;
3168
3169 memcg_deactivate_kmem_caches(memcg);
3170
3171 kmemcg_id = memcg->kmemcg_id;
3172 BUG_ON(kmemcg_id < 0);
3173
3174 parent = parent_mem_cgroup(memcg);
3175 if (!parent)
3176 parent = root_mem_cgroup;
3177
3178 /*
3179 * Change kmemcg_id of this cgroup and all its descendants to the
3180 * parent's id, and then move all entries from this cgroup's list_lrus
3181 * to ones of the parent. After we have finished, all list_lrus
3182 * corresponding to this cgroup are guaranteed to remain empty. The
3183 * ordering is imposed by list_lru_node->lock taken by
3184 * memcg_drain_all_list_lrus().
3185 */
3186 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3187 css_for_each_descendant_pre(css, &memcg->css) {
3188 child = mem_cgroup_from_css(css);
3189 BUG_ON(child->kmemcg_id != kmemcg_id);
3190 child->kmemcg_id = parent->kmemcg_id;
3191 if (!memcg->use_hierarchy)
3192 break;
3193 }
3194 rcu_read_unlock();
3195
3196 memcg_drain_all_list_lrus(kmemcg_id, parent);
3197
3198 memcg_free_cache_id(kmemcg_id);
3199 }
3200
3201 static void memcg_free_kmem(struct mem_cgroup *memcg)
3202 {
3203 /* css_alloc() failed, offlining didn't happen */
3204 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3205 memcg_offline_kmem(memcg);
3206
3207 if (memcg->kmem_state == KMEM_ALLOCATED) {
3208 memcg_destroy_kmem_caches(memcg);
3209 static_branch_dec(&memcg_kmem_enabled_key);
3210 WARN_ON(page_counter_read(&memcg->kmem));
3211 }
3212 }
3213 #else
3214 static int memcg_online_kmem(struct mem_cgroup *memcg)
3215 {
3216 return 0;
3217 }
3218 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3219 {
3220 }
3221 static void memcg_free_kmem(struct mem_cgroup *memcg)
3222 {
3223 }
3224 #endif /* CONFIG_MEMCG_KMEM */
3225
3226 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3227 unsigned long max)
3228 {
3229 int ret;
3230
3231 mutex_lock(&memcg_max_mutex);
3232 ret = page_counter_set_max(&memcg->kmem, max);
3233 mutex_unlock(&memcg_max_mutex);
3234 return ret;
3235 }
3236
3237 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3238 {
3239 int ret;
3240
3241 mutex_lock(&memcg_max_mutex);
3242
3243 ret = page_counter_set_max(&memcg->tcpmem, max);
3244 if (ret)
3245 goto out;
3246
3247 if (!memcg->tcpmem_active) {
3248 /*
3249 * The active flag needs to be written after the static_key
3250 * update. This is what guarantees that the socket activation
3251 * function is the last one to run. See mem_cgroup_sk_alloc()
3252 * for details, and note that we don't mark any socket as
3253 * belonging to this memcg until that flag is up.
3254 *
3255 * We need to do this, because static_keys will span multiple
3256 * sites, but we can't control their order. If we mark a socket
3257 * as accounted, but the accounting functions are not patched in
3258 * yet, we'll lose accounting.
3259 *
3260 * We never race with the readers in mem_cgroup_sk_alloc(),
3261 * because when this value change, the code to process it is not
3262 * patched in yet.
3263 */
3264 static_branch_inc(&memcg_sockets_enabled_key);
3265 memcg->tcpmem_active = true;
3266 }
3267 out:
3268 mutex_unlock(&memcg_max_mutex);
3269 return ret;
3270 }
3271
3272 /*
3273 * The user of this function is...
3274 * RES_LIMIT.
3275 */
3276 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3277 char *buf, size_t nbytes, loff_t off)
3278 {
3279 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3280 unsigned long nr_pages;
3281 int ret;
3282
3283 buf = strstrip(buf);
3284 ret = page_counter_memparse(buf, "-1", &nr_pages);
3285 if (ret)
3286 return ret;
3287
3288 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3289 case RES_LIMIT:
3290 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3291 ret = -EINVAL;
3292 break;
3293 }
3294 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3295 case _MEM:
3296 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3297 break;
3298 case _MEMSWAP:
3299 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3300 break;
3301 case _KMEM:
3302 ret = memcg_update_kmem_max(memcg, nr_pages);
3303 break;
3304 case _TCP:
3305 ret = memcg_update_tcp_max(memcg, nr_pages);
3306 break;
3307 }
3308 break;
3309 case RES_SOFT_LIMIT:
3310 memcg->soft_limit = nr_pages;
3311 ret = 0;
3312 break;
3313 }
3314 return ret ?: nbytes;
3315 }
3316
3317 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3318 size_t nbytes, loff_t off)
3319 {
3320 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3321 struct page_counter *counter;
3322
3323 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3324 case _MEM:
3325 counter = &memcg->memory;
3326 break;
3327 case _MEMSWAP:
3328 counter = &memcg->memsw;
3329 break;
3330 case _KMEM:
3331 counter = &memcg->kmem;
3332 break;
3333 case _TCP:
3334 counter = &memcg->tcpmem;
3335 break;
3336 default:
3337 BUG();
3338 }
3339
3340 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3341 case RES_MAX_USAGE:
3342 page_counter_reset_watermark(counter);
3343 break;
3344 case RES_FAILCNT:
3345 counter->failcnt = 0;
3346 break;
3347 default:
3348 BUG();
3349 }
3350
3351 return nbytes;
3352 }
3353
3354 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3355 struct cftype *cft)
3356 {
3357 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3358 }
3359
3360 #ifdef CONFIG_MMU
3361 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3362 struct cftype *cft, u64 val)
3363 {
3364 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3365
3366 if (val & ~MOVE_MASK)
3367 return -EINVAL;
3368
3369 /*
3370 * No kind of locking is needed in here, because ->can_attach() will
3371 * check this value once in the beginning of the process, and then carry
3372 * on with stale data. This means that changes to this value will only
3373 * affect task migrations starting after the change.
3374 */
3375 memcg->move_charge_at_immigrate = val;
3376 return 0;
3377 }
3378 #else
3379 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3380 struct cftype *cft, u64 val)
3381 {
3382 return -ENOSYS;
3383 }
3384 #endif
3385
3386 #ifdef CONFIG_NUMA
3387
3388 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3389 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3390 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3391
3392 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3393 int nid, unsigned int lru_mask)
3394 {
3395 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3396 unsigned long nr = 0;
3397 enum lru_list lru;
3398
3399 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3400
3401 for_each_lru(lru) {
3402 if (!(BIT(lru) & lru_mask))
3403 continue;
3404 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3405 }
3406 return nr;
3407 }
3408
3409 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3410 unsigned int lru_mask)
3411 {
3412 unsigned long nr = 0;
3413 enum lru_list lru;
3414
3415 for_each_lru(lru) {
3416 if (!(BIT(lru) & lru_mask))
3417 continue;
3418 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3419 }
3420 return nr;
3421 }
3422
3423 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3424 {
3425 struct numa_stat {
3426 const char *name;
3427 unsigned int lru_mask;
3428 };
3429
3430 static const struct numa_stat stats[] = {
3431 { "total", LRU_ALL },
3432 { "file", LRU_ALL_FILE },
3433 { "anon", LRU_ALL_ANON },
3434 { "unevictable", BIT(LRU_UNEVICTABLE) },
3435 };
3436 const struct numa_stat *stat;
3437 int nid;
3438 unsigned long nr;
3439 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3440
3441 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3442 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3443 seq_printf(m, "%s=%lu", stat->name, nr);
3444 for_each_node_state(nid, N_MEMORY) {
3445 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3446 stat->lru_mask);
3447 seq_printf(m, " N%d=%lu", nid, nr);
3448 }
3449 seq_putc(m, '\n');
3450 }
3451
3452 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3453 struct mem_cgroup *iter;
3454
3455 nr = 0;
3456 for_each_mem_cgroup_tree(iter, memcg)
3457 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3458 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3459 for_each_node_state(nid, N_MEMORY) {
3460 nr = 0;
3461 for_each_mem_cgroup_tree(iter, memcg)
3462 nr += mem_cgroup_node_nr_lru_pages(
3463 iter, nid, stat->lru_mask);
3464 seq_printf(m, " N%d=%lu", nid, nr);
3465 }
3466 seq_putc(m, '\n');
3467 }
3468
3469 return 0;
3470 }
3471 #endif /* CONFIG_NUMA */
3472
3473 /* Universal VM events cgroup1 shows, original sort order */
3474 static const unsigned int memcg1_events[] = {
3475 PGPGIN,
3476 PGPGOUT,
3477 PGFAULT,
3478 PGMAJFAULT,
3479 };
3480
3481 static const char *const memcg1_event_names[] = {
3482 "pgpgin",
3483 "pgpgout",
3484 "pgfault",
3485 "pgmajfault",
3486 };
3487
3488 static int memcg_stat_show(struct seq_file *m, void *v)
3489 {
3490 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3491 unsigned long memory, memsw;
3492 struct mem_cgroup *mi;
3493 unsigned int i;
3494
3495 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3496 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3497
3498 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3499 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3500 continue;
3501 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3502 memcg_page_state_local(memcg, memcg1_stats[i]) *
3503 PAGE_SIZE);
3504 }
3505
3506 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3507 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3508 memcg_events_local(memcg, memcg1_events[i]));
3509
3510 for (i = 0; i < NR_LRU_LISTS; i++)
3511 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3512 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3513 PAGE_SIZE);
3514
3515 /* Hierarchical information */
3516 memory = memsw = PAGE_COUNTER_MAX;
3517 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3518 memory = min(memory, mi->memory.max);
3519 memsw = min(memsw, mi->memsw.max);
3520 }
3521 seq_printf(m, "hierarchical_memory_limit %llu\n",
3522 (u64)memory * PAGE_SIZE);
3523 if (do_memsw_account())
3524 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3525 (u64)memsw * PAGE_SIZE);
3526
3527 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3528 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3529 continue;
3530 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3531 (u64)memcg_page_state(memcg, i) * PAGE_SIZE);
3532 }
3533
3534 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3535 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3536 (u64)memcg_events(memcg, i));
3537
3538 for (i = 0; i < NR_LRU_LISTS; i++)
3539 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3540 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3541 PAGE_SIZE);
3542
3543 #ifdef CONFIG_DEBUG_VM
3544 {
3545 pg_data_t *pgdat;
3546 struct mem_cgroup_per_node *mz;
3547 struct zone_reclaim_stat *rstat;
3548 unsigned long recent_rotated[2] = {0, 0};
3549 unsigned long recent_scanned[2] = {0, 0};
3550
3551 for_each_online_pgdat(pgdat) {
3552 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3553 rstat = &mz->lruvec.reclaim_stat;
3554
3555 recent_rotated[0] += rstat->recent_rotated[0];
3556 recent_rotated[1] += rstat->recent_rotated[1];
3557 recent_scanned[0] += rstat->recent_scanned[0];
3558 recent_scanned[1] += rstat->recent_scanned[1];
3559 }
3560 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3561 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3562 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3563 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3564 }
3565 #endif
3566
3567 return 0;
3568 }
3569
3570 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3571 struct cftype *cft)
3572 {
3573 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3574
3575 return mem_cgroup_swappiness(memcg);
3576 }
3577
3578 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3579 struct cftype *cft, u64 val)
3580 {
3581 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3582
3583 if (val > 100)
3584 return -EINVAL;
3585
3586 if (css->parent)
3587 memcg->swappiness = val;
3588 else
3589 vm_swappiness = val;
3590
3591 return 0;
3592 }
3593
3594 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3595 {
3596 struct mem_cgroup_threshold_ary *t;
3597 unsigned long usage;
3598 int i;
3599
3600 rcu_read_lock();
3601 if (!swap)
3602 t = rcu_dereference(memcg->thresholds.primary);
3603 else
3604 t = rcu_dereference(memcg->memsw_thresholds.primary);
3605
3606 if (!t)
3607 goto unlock;
3608
3609 usage = mem_cgroup_usage(memcg, swap);
3610
3611 /*
3612 * current_threshold points to threshold just below or equal to usage.
3613 * If it's not true, a threshold was crossed after last
3614 * call of __mem_cgroup_threshold().
3615 */
3616 i = t->current_threshold;
3617
3618 /*
3619 * Iterate backward over array of thresholds starting from
3620 * current_threshold and check if a threshold is crossed.
3621 * If none of thresholds below usage is crossed, we read
3622 * only one element of the array here.
3623 */
3624 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3625 eventfd_signal(t->entries[i].eventfd, 1);
3626
3627 /* i = current_threshold + 1 */
3628 i++;
3629
3630 /*
3631 * Iterate forward over array of thresholds starting from
3632 * current_threshold+1 and check if a threshold is crossed.
3633 * If none of thresholds above usage is crossed, we read
3634 * only one element of the array here.
3635 */
3636 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3637 eventfd_signal(t->entries[i].eventfd, 1);
3638
3639 /* Update current_threshold */
3640 t->current_threshold = i - 1;
3641 unlock:
3642 rcu_read_unlock();
3643 }
3644
3645 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3646 {
3647 while (memcg) {
3648 __mem_cgroup_threshold(memcg, false);
3649 if (do_memsw_account())
3650 __mem_cgroup_threshold(memcg, true);
3651
3652 memcg = parent_mem_cgroup(memcg);
3653 }
3654 }
3655
3656 static int compare_thresholds(const void *a, const void *b)
3657 {
3658 const struct mem_cgroup_threshold *_a = a;
3659 const struct mem_cgroup_threshold *_b = b;
3660
3661 if (_a->threshold > _b->threshold)
3662 return 1;
3663
3664 if (_a->threshold < _b->threshold)
3665 return -1;
3666
3667 return 0;
3668 }
3669
3670 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3671 {
3672 struct mem_cgroup_eventfd_list *ev;
3673
3674 spin_lock(&memcg_oom_lock);
3675
3676 list_for_each_entry(ev, &memcg->oom_notify, list)
3677 eventfd_signal(ev->eventfd, 1);
3678
3679 spin_unlock(&memcg_oom_lock);
3680 return 0;
3681 }
3682
3683 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3684 {
3685 struct mem_cgroup *iter;
3686
3687 for_each_mem_cgroup_tree(iter, memcg)
3688 mem_cgroup_oom_notify_cb(iter);
3689 }
3690
3691 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3692 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3693 {
3694 struct mem_cgroup_thresholds *thresholds;
3695 struct mem_cgroup_threshold_ary *new;
3696 unsigned long threshold;
3697 unsigned long usage;
3698 int i, size, ret;
3699
3700 ret = page_counter_memparse(args, "-1", &threshold);
3701 if (ret)
3702 return ret;
3703
3704 mutex_lock(&memcg->thresholds_lock);
3705
3706 if (type == _MEM) {
3707 thresholds = &memcg->thresholds;
3708 usage = mem_cgroup_usage(memcg, false);
3709 } else if (type == _MEMSWAP) {
3710 thresholds = &memcg->memsw_thresholds;
3711 usage = mem_cgroup_usage(memcg, true);
3712 } else
3713 BUG();
3714
3715 /* Check if a threshold crossed before adding a new one */
3716 if (thresholds->primary)
3717 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3718
3719 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3720
3721 /* Allocate memory for new array of thresholds */
3722 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3723 if (!new) {
3724 ret = -ENOMEM;
3725 goto unlock;
3726 }
3727 new->size = size;
3728
3729 /* Copy thresholds (if any) to new array */
3730 if (thresholds->primary) {
3731 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3732 sizeof(struct mem_cgroup_threshold));
3733 }
3734
3735 /* Add new threshold */
3736 new->entries[size - 1].eventfd = eventfd;
3737 new->entries[size - 1].threshold = threshold;
3738
3739 /* Sort thresholds. Registering of new threshold isn't time-critical */
3740 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3741 compare_thresholds, NULL);
3742
3743 /* Find current threshold */
3744 new->current_threshold = -1;
3745 for (i = 0; i < size; i++) {
3746 if (new->entries[i].threshold <= usage) {
3747 /*
3748 * new->current_threshold will not be used until
3749 * rcu_assign_pointer(), so it's safe to increment
3750 * it here.
3751 */
3752 ++new->current_threshold;
3753 } else
3754 break;
3755 }
3756
3757 /* Free old spare buffer and save old primary buffer as spare */
3758 kfree(thresholds->spare);
3759 thresholds->spare = thresholds->primary;
3760
3761 rcu_assign_pointer(thresholds->primary, new);
3762
3763 /* To be sure that nobody uses thresholds */
3764 synchronize_rcu();
3765
3766 unlock:
3767 mutex_unlock(&memcg->thresholds_lock);
3768
3769 return ret;
3770 }
3771
3772 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3773 struct eventfd_ctx *eventfd, const char *args)
3774 {
3775 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3776 }
3777
3778 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3779 struct eventfd_ctx *eventfd, const char *args)
3780 {
3781 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3782 }
3783
3784 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3785 struct eventfd_ctx *eventfd, enum res_type type)
3786 {
3787 struct mem_cgroup_thresholds *thresholds;
3788 struct mem_cgroup_threshold_ary *new;
3789 unsigned long usage;
3790 int i, j, size;
3791
3792 mutex_lock(&memcg->thresholds_lock);
3793
3794 if (type == _MEM) {
3795 thresholds = &memcg->thresholds;
3796 usage = mem_cgroup_usage(memcg, false);
3797 } else if (type == _MEMSWAP) {
3798 thresholds = &memcg->memsw_thresholds;
3799 usage = mem_cgroup_usage(memcg, true);
3800 } else
3801 BUG();
3802
3803 if (!thresholds->primary)
3804 goto unlock;
3805
3806 /* Check if a threshold crossed before removing */
3807 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3808
3809 /* Calculate new number of threshold */
3810 size = 0;
3811 for (i = 0; i < thresholds->primary->size; i++) {
3812 if (thresholds->primary->entries[i].eventfd != eventfd)
3813 size++;
3814 }
3815
3816 new = thresholds->spare;
3817
3818 /* Set thresholds array to NULL if we don't have thresholds */
3819 if (!size) {
3820 kfree(new);
3821 new = NULL;
3822 goto swap_buffers;
3823 }
3824
3825 new->size = size;
3826
3827 /* Copy thresholds and find current threshold */
3828 new->current_threshold = -1;
3829 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3830 if (thresholds->primary->entries[i].eventfd == eventfd)
3831 continue;
3832
3833 new->entries[j] = thresholds->primary->entries[i];
3834 if (new->entries[j].threshold <= usage) {
3835 /*
3836 * new->current_threshold will not be used
3837 * until rcu_assign_pointer(), so it's safe to increment
3838 * it here.
3839 */
3840 ++new->current_threshold;
3841 }
3842 j++;
3843 }
3844
3845 swap_buffers:
3846 /* Swap primary and spare array */
3847 thresholds->spare = thresholds->primary;
3848
3849 rcu_assign_pointer(thresholds->primary, new);
3850
3851 /* To be sure that nobody uses thresholds */
3852 synchronize_rcu();
3853
3854 /* If all events are unregistered, free the spare array */
3855 if (!new) {
3856 kfree(thresholds->spare);
3857 thresholds->spare = NULL;
3858 }
3859 unlock:
3860 mutex_unlock(&memcg->thresholds_lock);
3861 }
3862
3863 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3864 struct eventfd_ctx *eventfd)
3865 {
3866 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3867 }
3868
3869 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3870 struct eventfd_ctx *eventfd)
3871 {
3872 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3873 }
3874
3875 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3876 struct eventfd_ctx *eventfd, const char *args)
3877 {
3878 struct mem_cgroup_eventfd_list *event;
3879
3880 event = kmalloc(sizeof(*event), GFP_KERNEL);
3881 if (!event)
3882 return -ENOMEM;
3883
3884 spin_lock(&memcg_oom_lock);
3885
3886 event->eventfd = eventfd;
3887 list_add(&event->list, &memcg->oom_notify);
3888
3889 /* already in OOM ? */
3890 if (memcg->under_oom)
3891 eventfd_signal(eventfd, 1);
3892 spin_unlock(&memcg_oom_lock);
3893
3894 return 0;
3895 }
3896
3897 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3898 struct eventfd_ctx *eventfd)
3899 {
3900 struct mem_cgroup_eventfd_list *ev, *tmp;
3901
3902 spin_lock(&memcg_oom_lock);
3903
3904 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3905 if (ev->eventfd == eventfd) {
3906 list_del(&ev->list);
3907 kfree(ev);
3908 }
3909 }
3910
3911 spin_unlock(&memcg_oom_lock);
3912 }
3913
3914 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3915 {
3916 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3917
3918 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3919 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3920 seq_printf(sf, "oom_kill %lu\n",
3921 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3922 return 0;
3923 }
3924
3925 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3926 struct cftype *cft, u64 val)
3927 {
3928 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3929
3930 /* cannot set to root cgroup and only 0 and 1 are allowed */
3931 if (!css->parent || !((val == 0) || (val == 1)))
3932 return -EINVAL;
3933
3934 memcg->oom_kill_disable = val;
3935 if (!val)
3936 memcg_oom_recover(memcg);
3937
3938 return 0;
3939 }
3940
3941 #ifdef CONFIG_CGROUP_WRITEBACK
3942
3943 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3944 {
3945 return wb_domain_init(&memcg->cgwb_domain, gfp);
3946 }
3947
3948 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3949 {
3950 wb_domain_exit(&memcg->cgwb_domain);
3951 }
3952
3953 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3954 {
3955 wb_domain_size_changed(&memcg->cgwb_domain);
3956 }
3957
3958 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3959 {
3960 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3961
3962 if (!memcg->css.parent)
3963 return NULL;
3964
3965 return &memcg->cgwb_domain;
3966 }
3967
3968 /*
3969 * idx can be of type enum memcg_stat_item or node_stat_item.
3970 * Keep in sync with memcg_exact_page().
3971 */
3972 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
3973 {
3974 long x = atomic_long_read(&memcg->vmstats[idx]);
3975 int cpu;
3976
3977 for_each_online_cpu(cpu)
3978 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
3979 if (x < 0)
3980 x = 0;
3981 return x;
3982 }
3983
3984 /**
3985 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3986 * @wb: bdi_writeback in question
3987 * @pfilepages: out parameter for number of file pages
3988 * @pheadroom: out parameter for number of allocatable pages according to memcg
3989 * @pdirty: out parameter for number of dirty pages
3990 * @pwriteback: out parameter for number of pages under writeback
3991 *
3992 * Determine the numbers of file, headroom, dirty, and writeback pages in
3993 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3994 * is a bit more involved.
3995 *
3996 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3997 * headroom is calculated as the lowest headroom of itself and the
3998 * ancestors. Note that this doesn't consider the actual amount of
3999 * available memory in the system. The caller should further cap
4000 * *@pheadroom accordingly.
4001 */
4002 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4003 unsigned long *pheadroom, unsigned long *pdirty,
4004 unsigned long *pwriteback)
4005 {
4006 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4007 struct mem_cgroup *parent;
4008
4009 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4010
4011 /* this should eventually include NR_UNSTABLE_NFS */
4012 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4013 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4014 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4015 *pheadroom = PAGE_COUNTER_MAX;
4016
4017 while ((parent = parent_mem_cgroup(memcg))) {
4018 unsigned long ceiling = min(memcg->memory.max, memcg->high);
4019 unsigned long used = page_counter_read(&memcg->memory);
4020
4021 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4022 memcg = parent;
4023 }
4024 }
4025
4026 #else /* CONFIG_CGROUP_WRITEBACK */
4027
4028 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4029 {
4030 return 0;
4031 }
4032
4033 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4034 {
4035 }
4036
4037 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4038 {
4039 }
4040
4041 #endif /* CONFIG_CGROUP_WRITEBACK */
4042
4043 /*
4044 * DO NOT USE IN NEW FILES.
4045 *
4046 * "cgroup.event_control" implementation.
4047 *
4048 * This is way over-engineered. It tries to support fully configurable
4049 * events for each user. Such level of flexibility is completely
4050 * unnecessary especially in the light of the planned unified hierarchy.
4051 *
4052 * Please deprecate this and replace with something simpler if at all
4053 * possible.
4054 */
4055
4056 /*
4057 * Unregister event and free resources.
4058 *
4059 * Gets called from workqueue.
4060 */
4061 static void memcg_event_remove(struct work_struct *work)
4062 {
4063 struct mem_cgroup_event *event =
4064 container_of(work, struct mem_cgroup_event, remove);
4065 struct mem_cgroup *memcg = event->memcg;
4066
4067 remove_wait_queue(event->wqh, &event->wait);
4068
4069 event->unregister_event(memcg, event->eventfd);
4070
4071 /* Notify userspace the event is going away. */
4072 eventfd_signal(event->eventfd, 1);
4073
4074 eventfd_ctx_put(event->eventfd);
4075 kfree(event);
4076 css_put(&memcg->css);
4077 }
4078
4079 /*
4080 * Gets called on EPOLLHUP on eventfd when user closes it.
4081 *
4082 * Called with wqh->lock held and interrupts disabled.
4083 */
4084 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4085 int sync, void *key)
4086 {
4087 struct mem_cgroup_event *event =
4088 container_of(wait, struct mem_cgroup_event, wait);
4089 struct mem_cgroup *memcg = event->memcg;
4090 __poll_t flags = key_to_poll(key);
4091
4092 if (flags & EPOLLHUP) {
4093 /*
4094 * If the event has been detached at cgroup removal, we
4095 * can simply return knowing the other side will cleanup
4096 * for us.
4097 *
4098 * We can't race against event freeing since the other
4099 * side will require wqh->lock via remove_wait_queue(),
4100 * which we hold.
4101 */
4102 spin_lock(&memcg->event_list_lock);
4103 if (!list_empty(&event->list)) {
4104 list_del_init(&event->list);
4105 /*
4106 * We are in atomic context, but cgroup_event_remove()
4107 * may sleep, so we have to call it in workqueue.
4108 */
4109 schedule_work(&event->remove);
4110 }
4111 spin_unlock(&memcg->event_list_lock);
4112 }
4113
4114 return 0;
4115 }
4116
4117 static void memcg_event_ptable_queue_proc(struct file *file,
4118 wait_queue_head_t *wqh, poll_table *pt)
4119 {
4120 struct mem_cgroup_event *event =
4121 container_of(pt, struct mem_cgroup_event, pt);
4122
4123 event->wqh = wqh;
4124 add_wait_queue(wqh, &event->wait);
4125 }
4126
4127 /*
4128 * DO NOT USE IN NEW FILES.
4129 *
4130 * Parse input and register new cgroup event handler.
4131 *
4132 * Input must be in format '<event_fd> <control_fd> <args>'.
4133 * Interpretation of args is defined by control file implementation.
4134 */
4135 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4136 char *buf, size_t nbytes, loff_t off)
4137 {
4138 struct cgroup_subsys_state *css = of_css(of);
4139 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4140 struct mem_cgroup_event *event;
4141 struct cgroup_subsys_state *cfile_css;
4142 unsigned int efd, cfd;
4143 struct fd efile;
4144 struct fd cfile;
4145 const char *name;
4146 char *endp;
4147 int ret;
4148
4149 buf = strstrip(buf);
4150
4151 efd = simple_strtoul(buf, &endp, 10);
4152 if (*endp != ' ')
4153 return -EINVAL;
4154 buf = endp + 1;
4155
4156 cfd = simple_strtoul(buf, &endp, 10);
4157 if ((*endp != ' ') && (*endp != '\0'))
4158 return -EINVAL;
4159 buf = endp + 1;
4160
4161 event = kzalloc(sizeof(*event), GFP_KERNEL);
4162 if (!event)
4163 return -ENOMEM;
4164
4165 event->memcg = memcg;
4166 INIT_LIST_HEAD(&event->list);
4167 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4168 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4169 INIT_WORK(&event->remove, memcg_event_remove);
4170
4171 efile = fdget(efd);
4172 if (!efile.file) {
4173 ret = -EBADF;
4174 goto out_kfree;
4175 }
4176
4177 event->eventfd = eventfd_ctx_fileget(efile.file);
4178 if (IS_ERR(event->eventfd)) {
4179 ret = PTR_ERR(event->eventfd);
4180 goto out_put_efile;
4181 }
4182
4183 cfile = fdget(cfd);
4184 if (!cfile.file) {
4185 ret = -EBADF;
4186 goto out_put_eventfd;
4187 }
4188
4189 /* the process need read permission on control file */
4190 /* AV: shouldn't we check that it's been opened for read instead? */
4191 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4192 if (ret < 0)
4193 goto out_put_cfile;
4194
4195 /*
4196 * Determine the event callbacks and set them in @event. This used
4197 * to be done via struct cftype but cgroup core no longer knows
4198 * about these events. The following is crude but the whole thing
4199 * is for compatibility anyway.
4200 *
4201 * DO NOT ADD NEW FILES.
4202 */
4203 name = cfile.file->f_path.dentry->d_name.name;
4204
4205 if (!strcmp(name, "memory.usage_in_bytes")) {
4206 event->register_event = mem_cgroup_usage_register_event;
4207 event->unregister_event = mem_cgroup_usage_unregister_event;
4208 } else if (!strcmp(name, "memory.oom_control")) {
4209 event->register_event = mem_cgroup_oom_register_event;
4210 event->unregister_event = mem_cgroup_oom_unregister_event;
4211 } else if (!strcmp(name, "memory.pressure_level")) {
4212 event->register_event = vmpressure_register_event;
4213 event->unregister_event = vmpressure_unregister_event;
4214 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4215 event->register_event = memsw_cgroup_usage_register_event;
4216 event->unregister_event = memsw_cgroup_usage_unregister_event;
4217 } else {
4218 ret = -EINVAL;
4219 goto out_put_cfile;
4220 }
4221
4222 /*
4223 * Verify @cfile should belong to @css. Also, remaining events are
4224 * automatically removed on cgroup destruction but the removal is
4225 * asynchronous, so take an extra ref on @css.
4226 */
4227 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4228 &memory_cgrp_subsys);
4229 ret = -EINVAL;
4230 if (IS_ERR(cfile_css))
4231 goto out_put_cfile;
4232 if (cfile_css != css) {
4233 css_put(cfile_css);
4234 goto out_put_cfile;
4235 }
4236
4237 ret = event->register_event(memcg, event->eventfd, buf);
4238 if (ret)
4239 goto out_put_css;
4240
4241 vfs_poll(efile.file, &event->pt);
4242
4243 spin_lock(&memcg->event_list_lock);
4244 list_add(&event->list, &memcg->event_list);
4245 spin_unlock(&memcg->event_list_lock);
4246
4247 fdput(cfile);
4248 fdput(efile);
4249
4250 return nbytes;
4251
4252 out_put_css:
4253 css_put(css);
4254 out_put_cfile:
4255 fdput(cfile);
4256 out_put_eventfd:
4257 eventfd_ctx_put(event->eventfd);
4258 out_put_efile:
4259 fdput(efile);
4260 out_kfree:
4261 kfree(event);
4262
4263 return ret;
4264 }
4265
4266 static struct cftype mem_cgroup_legacy_files[] = {
4267 {
4268 .name = "usage_in_bytes",
4269 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4270 .read_u64 = mem_cgroup_read_u64,
4271 },
4272 {
4273 .name = "max_usage_in_bytes",
4274 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4275 .write = mem_cgroup_reset,
4276 .read_u64 = mem_cgroup_read_u64,
4277 },
4278 {
4279 .name = "limit_in_bytes",
4280 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4281 .write = mem_cgroup_write,
4282 .read_u64 = mem_cgroup_read_u64,
4283 },
4284 {
4285 .name = "soft_limit_in_bytes",
4286 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4287 .write = mem_cgroup_write,
4288 .read_u64 = mem_cgroup_read_u64,
4289 },
4290 {
4291 .name = "failcnt",
4292 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4293 .write = mem_cgroup_reset,
4294 .read_u64 = mem_cgroup_read_u64,
4295 },
4296 {
4297 .name = "stat",
4298 .seq_show = memcg_stat_show,
4299 },
4300 {
4301 .name = "force_empty",
4302 .write = mem_cgroup_force_empty_write,
4303 },
4304 {
4305 .name = "use_hierarchy",
4306 .write_u64 = mem_cgroup_hierarchy_write,
4307 .read_u64 = mem_cgroup_hierarchy_read,
4308 },
4309 {
4310 .name = "cgroup.event_control", /* XXX: for compat */
4311 .write = memcg_write_event_control,
4312 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4313 },
4314 {
4315 .name = "swappiness",
4316 .read_u64 = mem_cgroup_swappiness_read,
4317 .write_u64 = mem_cgroup_swappiness_write,
4318 },
4319 {
4320 .name = "move_charge_at_immigrate",
4321 .read_u64 = mem_cgroup_move_charge_read,
4322 .write_u64 = mem_cgroup_move_charge_write,
4323 },
4324 {
4325 .name = "oom_control",
4326 .seq_show = mem_cgroup_oom_control_read,
4327 .write_u64 = mem_cgroup_oom_control_write,
4328 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4329 },
4330 {
4331 .name = "pressure_level",
4332 },
4333 #ifdef CONFIG_NUMA
4334 {
4335 .name = "numa_stat",
4336 .seq_show = memcg_numa_stat_show,
4337 },
4338 #endif
4339 {
4340 .name = "kmem.limit_in_bytes",
4341 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4342 .write = mem_cgroup_write,
4343 .read_u64 = mem_cgroup_read_u64,
4344 },
4345 {
4346 .name = "kmem.usage_in_bytes",
4347 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4348 .read_u64 = mem_cgroup_read_u64,
4349 },
4350 {
4351 .name = "kmem.failcnt",
4352 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4353 .write = mem_cgroup_reset,
4354 .read_u64 = mem_cgroup_read_u64,
4355 },
4356 {
4357 .name = "kmem.max_usage_in_bytes",
4358 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4359 .write = mem_cgroup_reset,
4360 .read_u64 = mem_cgroup_read_u64,
4361 },
4362 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4363 {
4364 .name = "kmem.slabinfo",
4365 .seq_start = memcg_slab_start,
4366 .seq_next = memcg_slab_next,
4367 .seq_stop = memcg_slab_stop,
4368 .seq_show = memcg_slab_show,
4369 },
4370 #endif
4371 {
4372 .name = "kmem.tcp.limit_in_bytes",
4373 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4374 .write = mem_cgroup_write,
4375 .read_u64 = mem_cgroup_read_u64,
4376 },
4377 {
4378 .name = "kmem.tcp.usage_in_bytes",
4379 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4380 .read_u64 = mem_cgroup_read_u64,
4381 },
4382 {
4383 .name = "kmem.tcp.failcnt",
4384 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4385 .write = mem_cgroup_reset,
4386 .read_u64 = mem_cgroup_read_u64,
4387 },
4388 {
4389 .name = "kmem.tcp.max_usage_in_bytes",
4390 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4391 .write = mem_cgroup_reset,
4392 .read_u64 = mem_cgroup_read_u64,
4393 },
4394 { }, /* terminate */
4395 };
4396
4397 /*
4398 * Private memory cgroup IDR
4399 *
4400 * Swap-out records and page cache shadow entries need to store memcg
4401 * references in constrained space, so we maintain an ID space that is
4402 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4403 * memory-controlled cgroups to 64k.
4404 *
4405 * However, there usually are many references to the oflline CSS after
4406 * the cgroup has been destroyed, such as page cache or reclaimable
4407 * slab objects, that don't need to hang on to the ID. We want to keep
4408 * those dead CSS from occupying IDs, or we might quickly exhaust the
4409 * relatively small ID space and prevent the creation of new cgroups
4410 * even when there are much fewer than 64k cgroups - possibly none.
4411 *
4412 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4413 * be freed and recycled when it's no longer needed, which is usually
4414 * when the CSS is offlined.
4415 *
4416 * The only exception to that are records of swapped out tmpfs/shmem
4417 * pages that need to be attributed to live ancestors on swapin. But
4418 * those references are manageable from userspace.
4419 */
4420
4421 static DEFINE_IDR(mem_cgroup_idr);
4422
4423 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4424 {
4425 if (memcg->id.id > 0) {
4426 idr_remove(&mem_cgroup_idr, memcg->id.id);
4427 memcg->id.id = 0;
4428 }
4429 }
4430
4431 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4432 {
4433 refcount_add(n, &memcg->id.ref);
4434 }
4435
4436 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4437 {
4438 if (refcount_sub_and_test(n, &memcg->id.ref)) {
4439 mem_cgroup_id_remove(memcg);
4440
4441 /* Memcg ID pins CSS */
4442 css_put(&memcg->css);
4443 }
4444 }
4445
4446 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4447 {
4448 mem_cgroup_id_get_many(memcg, 1);
4449 }
4450
4451 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4452 {
4453 mem_cgroup_id_put_many(memcg, 1);
4454 }
4455
4456 /**
4457 * mem_cgroup_from_id - look up a memcg from a memcg id
4458 * @id: the memcg id to look up
4459 *
4460 * Caller must hold rcu_read_lock().
4461 */
4462 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4463 {
4464 WARN_ON_ONCE(!rcu_read_lock_held());
4465 return idr_find(&mem_cgroup_idr, id);
4466 }
4467
4468 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4469 {
4470 struct mem_cgroup_per_node *pn;
4471 int tmp = node;
4472 /*
4473 * This routine is called against possible nodes.
4474 * But it's BUG to call kmalloc() against offline node.
4475 *
4476 * TODO: this routine can waste much memory for nodes which will
4477 * never be onlined. It's better to use memory hotplug callback
4478 * function.
4479 */
4480 if (!node_state(node, N_NORMAL_MEMORY))
4481 tmp = -1;
4482 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4483 if (!pn)
4484 return 1;
4485
4486 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4487 if (!pn->lruvec_stat_cpu) {
4488 kfree(pn);
4489 return 1;
4490 }
4491
4492 lruvec_init(&pn->lruvec);
4493 pn->usage_in_excess = 0;
4494 pn->on_tree = false;
4495 pn->memcg = memcg;
4496
4497 memcg->nodeinfo[node] = pn;
4498 return 0;
4499 }
4500
4501 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4502 {
4503 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4504
4505 if (!pn)
4506 return;
4507
4508 free_percpu(pn->lruvec_stat_cpu);
4509 kfree(pn);
4510 }
4511
4512 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4513 {
4514 int node;
4515
4516 for_each_node(node)
4517 free_mem_cgroup_per_node_info(memcg, node);
4518 free_percpu(memcg->vmstats_percpu);
4519 kfree(memcg);
4520 }
4521
4522 static void mem_cgroup_free(struct mem_cgroup *memcg)
4523 {
4524 memcg_wb_domain_exit(memcg);
4525 __mem_cgroup_free(memcg);
4526 }
4527
4528 static struct mem_cgroup *mem_cgroup_alloc(void)
4529 {
4530 struct mem_cgroup *memcg;
4531 unsigned int size;
4532 int node;
4533
4534 size = sizeof(struct mem_cgroup);
4535 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4536
4537 memcg = kzalloc(size, GFP_KERNEL);
4538 if (!memcg)
4539 return NULL;
4540
4541 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4542 1, MEM_CGROUP_ID_MAX,
4543 GFP_KERNEL);
4544 if (memcg->id.id < 0)
4545 goto fail;
4546
4547 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4548 if (!memcg->vmstats_percpu)
4549 goto fail;
4550
4551 for_each_node(node)
4552 if (alloc_mem_cgroup_per_node_info(memcg, node))
4553 goto fail;
4554
4555 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4556 goto fail;
4557
4558 INIT_WORK(&memcg->high_work, high_work_func);
4559 memcg->last_scanned_node = MAX_NUMNODES;
4560 INIT_LIST_HEAD(&memcg->oom_notify);
4561 mutex_init(&memcg->thresholds_lock);
4562 spin_lock_init(&memcg->move_lock);
4563 vmpressure_init(&memcg->vmpressure);
4564 INIT_LIST_HEAD(&memcg->event_list);
4565 spin_lock_init(&memcg->event_list_lock);
4566 memcg->socket_pressure = jiffies;
4567 #ifdef CONFIG_MEMCG_KMEM
4568 memcg->kmemcg_id = -1;
4569 #endif
4570 #ifdef CONFIG_CGROUP_WRITEBACK
4571 INIT_LIST_HEAD(&memcg->cgwb_list);
4572 #endif
4573 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4574 return memcg;
4575 fail:
4576 mem_cgroup_id_remove(memcg);
4577 __mem_cgroup_free(memcg);
4578 return NULL;
4579 }
4580
4581 static struct cgroup_subsys_state * __ref
4582 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4583 {
4584 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4585 struct mem_cgroup *memcg;
4586 long error = -ENOMEM;
4587
4588 memcg = mem_cgroup_alloc();
4589 if (!memcg)
4590 return ERR_PTR(error);
4591
4592 memcg->high = PAGE_COUNTER_MAX;
4593 memcg->soft_limit = PAGE_COUNTER_MAX;
4594 if (parent) {
4595 memcg->swappiness = mem_cgroup_swappiness(parent);
4596 memcg->oom_kill_disable = parent->oom_kill_disable;
4597 }
4598 if (parent && parent->use_hierarchy) {
4599 memcg->use_hierarchy = true;
4600 page_counter_init(&memcg->memory, &parent->memory);
4601 page_counter_init(&memcg->swap, &parent->swap);
4602 page_counter_init(&memcg->memsw, &parent->memsw);
4603 page_counter_init(&memcg->kmem, &parent->kmem);
4604 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4605 } else {
4606 page_counter_init(&memcg->memory, NULL);
4607 page_counter_init(&memcg->swap, NULL);
4608 page_counter_init(&memcg->memsw, NULL);
4609 page_counter_init(&memcg->kmem, NULL);
4610 page_counter_init(&memcg->tcpmem, NULL);
4611 /*
4612 * Deeper hierachy with use_hierarchy == false doesn't make
4613 * much sense so let cgroup subsystem know about this
4614 * unfortunate state in our controller.
4615 */
4616 if (parent != root_mem_cgroup)
4617 memory_cgrp_subsys.broken_hierarchy = true;
4618 }
4619
4620 /* The following stuff does not apply to the root */
4621 if (!parent) {
4622 root_mem_cgroup = memcg;
4623 return &memcg->css;
4624 }
4625
4626 error = memcg_online_kmem(memcg);
4627 if (error)
4628 goto fail;
4629
4630 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4631 static_branch_inc(&memcg_sockets_enabled_key);
4632
4633 return &memcg->css;
4634 fail:
4635 mem_cgroup_id_remove(memcg);
4636 mem_cgroup_free(memcg);
4637 return ERR_PTR(-ENOMEM);
4638 }
4639
4640 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4641 {
4642 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4643
4644 /*
4645 * A memcg must be visible for memcg_expand_shrinker_maps()
4646 * by the time the maps are allocated. So, we allocate maps
4647 * here, when for_each_mem_cgroup() can't skip it.
4648 */
4649 if (memcg_alloc_shrinker_maps(memcg)) {
4650 mem_cgroup_id_remove(memcg);
4651 return -ENOMEM;
4652 }
4653
4654 /* Online state pins memcg ID, memcg ID pins CSS */
4655 refcount_set(&memcg->id.ref, 1);
4656 css_get(css);
4657 return 0;
4658 }
4659
4660 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4661 {
4662 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4663 struct mem_cgroup_event *event, *tmp;
4664
4665 /*
4666 * Unregister events and notify userspace.
4667 * Notify userspace about cgroup removing only after rmdir of cgroup
4668 * directory to avoid race between userspace and kernelspace.
4669 */
4670 spin_lock(&memcg->event_list_lock);
4671 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4672 list_del_init(&event->list);
4673 schedule_work(&event->remove);
4674 }
4675 spin_unlock(&memcg->event_list_lock);
4676
4677 page_counter_set_min(&memcg->memory, 0);
4678 page_counter_set_low(&memcg->memory, 0);
4679
4680 memcg_offline_kmem(memcg);
4681 wb_memcg_offline(memcg);
4682
4683 drain_all_stock(memcg);
4684
4685 mem_cgroup_id_put(memcg);
4686 }
4687
4688 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4689 {
4690 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4691
4692 invalidate_reclaim_iterators(memcg);
4693 }
4694
4695 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4696 {
4697 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4698
4699 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4700 static_branch_dec(&memcg_sockets_enabled_key);
4701
4702 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4703 static_branch_dec(&memcg_sockets_enabled_key);
4704
4705 vmpressure_cleanup(&memcg->vmpressure);
4706 cancel_work_sync(&memcg->high_work);
4707 mem_cgroup_remove_from_trees(memcg);
4708 memcg_free_shrinker_maps(memcg);
4709 memcg_free_kmem(memcg);
4710 mem_cgroup_free(memcg);
4711 }
4712
4713 /**
4714 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4715 * @css: the target css
4716 *
4717 * Reset the states of the mem_cgroup associated with @css. This is
4718 * invoked when the userland requests disabling on the default hierarchy
4719 * but the memcg is pinned through dependency. The memcg should stop
4720 * applying policies and should revert to the vanilla state as it may be
4721 * made visible again.
4722 *
4723 * The current implementation only resets the essential configurations.
4724 * This needs to be expanded to cover all the visible parts.
4725 */
4726 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4727 {
4728 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4729
4730 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4731 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4732 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4733 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4734 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4735 page_counter_set_min(&memcg->memory, 0);
4736 page_counter_set_low(&memcg->memory, 0);
4737 memcg->high = PAGE_COUNTER_MAX;
4738 memcg->soft_limit = PAGE_COUNTER_MAX;
4739 memcg_wb_domain_size_changed(memcg);
4740 }
4741
4742 #ifdef CONFIG_MMU
4743 /* Handlers for move charge at task migration. */
4744 static int mem_cgroup_do_precharge(unsigned long count)
4745 {
4746 int ret;
4747
4748 /* Try a single bulk charge without reclaim first, kswapd may wake */
4749 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4750 if (!ret) {
4751 mc.precharge += count;
4752 return ret;
4753 }
4754
4755 /* Try charges one by one with reclaim, but do not retry */
4756 while (count--) {
4757 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4758 if (ret)
4759 return ret;
4760 mc.precharge++;
4761 cond_resched();
4762 }
4763 return 0;
4764 }
4765
4766 union mc_target {
4767 struct page *page;
4768 swp_entry_t ent;
4769 };
4770
4771 enum mc_target_type {
4772 MC_TARGET_NONE = 0,
4773 MC_TARGET_PAGE,
4774 MC_TARGET_SWAP,
4775 MC_TARGET_DEVICE,
4776 };
4777
4778 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4779 unsigned long addr, pte_t ptent)
4780 {
4781 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4782
4783 if (!page || !page_mapped(page))
4784 return NULL;
4785 if (PageAnon(page)) {
4786 if (!(mc.flags & MOVE_ANON))
4787 return NULL;
4788 } else {
4789 if (!(mc.flags & MOVE_FILE))
4790 return NULL;
4791 }
4792 if (!get_page_unless_zero(page))
4793 return NULL;
4794
4795 return page;
4796 }
4797
4798 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4799 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4800 pte_t ptent, swp_entry_t *entry)
4801 {
4802 struct page *page = NULL;
4803 swp_entry_t ent = pte_to_swp_entry(ptent);
4804
4805 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4806 return NULL;
4807
4808 /*
4809 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4810 * a device and because they are not accessible by CPU they are store
4811 * as special swap entry in the CPU page table.
4812 */
4813 if (is_device_private_entry(ent)) {
4814 page = device_private_entry_to_page(ent);
4815 /*
4816 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4817 * a refcount of 1 when free (unlike normal page)
4818 */
4819 if (!page_ref_add_unless(page, 1, 1))
4820 return NULL;
4821 return page;
4822 }
4823
4824 /*
4825 * Because lookup_swap_cache() updates some statistics counter,
4826 * we call find_get_page() with swapper_space directly.
4827 */
4828 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4829 if (do_memsw_account())
4830 entry->val = ent.val;
4831
4832 return page;
4833 }
4834 #else
4835 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4836 pte_t ptent, swp_entry_t *entry)
4837 {
4838 return NULL;
4839 }
4840 #endif
4841
4842 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4843 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4844 {
4845 struct page *page = NULL;
4846 struct address_space *mapping;
4847 pgoff_t pgoff;
4848
4849 if (!vma->vm_file) /* anonymous vma */
4850 return NULL;
4851 if (!(mc.flags & MOVE_FILE))
4852 return NULL;
4853
4854 mapping = vma->vm_file->f_mapping;
4855 pgoff = linear_page_index(vma, addr);
4856
4857 /* page is moved even if it's not RSS of this task(page-faulted). */
4858 #ifdef CONFIG_SWAP
4859 /* shmem/tmpfs may report page out on swap: account for that too. */
4860 if (shmem_mapping(mapping)) {
4861 page = find_get_entry(mapping, pgoff);
4862 if (xa_is_value(page)) {
4863 swp_entry_t swp = radix_to_swp_entry(page);
4864 if (do_memsw_account())
4865 *entry = swp;
4866 page = find_get_page(swap_address_space(swp),
4867 swp_offset(swp));
4868 }
4869 } else
4870 page = find_get_page(mapping, pgoff);
4871 #else
4872 page = find_get_page(mapping, pgoff);
4873 #endif
4874 return page;
4875 }
4876
4877 /**
4878 * mem_cgroup_move_account - move account of the page
4879 * @page: the page
4880 * @compound: charge the page as compound or small page
4881 * @from: mem_cgroup which the page is moved from.
4882 * @to: mem_cgroup which the page is moved to. @from != @to.
4883 *
4884 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4885 *
4886 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4887 * from old cgroup.
4888 */
4889 static int mem_cgroup_move_account(struct page *page,
4890 bool compound,
4891 struct mem_cgroup *from,
4892 struct mem_cgroup *to)
4893 {
4894 unsigned long flags;
4895 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4896 int ret;
4897 bool anon;
4898
4899 VM_BUG_ON(from == to);
4900 VM_BUG_ON_PAGE(PageLRU(page), page);
4901 VM_BUG_ON(compound && !PageTransHuge(page));
4902
4903 /*
4904 * Prevent mem_cgroup_migrate() from looking at
4905 * page->mem_cgroup of its source page while we change it.
4906 */
4907 ret = -EBUSY;
4908 if (!trylock_page(page))
4909 goto out;
4910
4911 ret = -EINVAL;
4912 if (page->mem_cgroup != from)
4913 goto out_unlock;
4914
4915 anon = PageAnon(page);
4916
4917 spin_lock_irqsave(&from->move_lock, flags);
4918
4919 if (!anon && page_mapped(page)) {
4920 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4921 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4922 }
4923
4924 /*
4925 * move_lock grabbed above and caller set from->moving_account, so
4926 * mod_memcg_page_state will serialize updates to PageDirty.
4927 * So mapping should be stable for dirty pages.
4928 */
4929 if (!anon && PageDirty(page)) {
4930 struct address_space *mapping = page_mapping(page);
4931
4932 if (mapping_cap_account_dirty(mapping)) {
4933 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4934 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4935 }
4936 }
4937
4938 if (PageWriteback(page)) {
4939 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4940 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4941 }
4942
4943 /*
4944 * It is safe to change page->mem_cgroup here because the page
4945 * is referenced, charged, and isolated - we can't race with
4946 * uncharging, charging, migration, or LRU putback.
4947 */
4948
4949 /* caller should have done css_get */
4950 page->mem_cgroup = to;
4951 spin_unlock_irqrestore(&from->move_lock, flags);
4952
4953 ret = 0;
4954
4955 local_irq_disable();
4956 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4957 memcg_check_events(to, page);
4958 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4959 memcg_check_events(from, page);
4960 local_irq_enable();
4961 out_unlock:
4962 unlock_page(page);
4963 out:
4964 return ret;
4965 }
4966
4967 /**
4968 * get_mctgt_type - get target type of moving charge
4969 * @vma: the vma the pte to be checked belongs
4970 * @addr: the address corresponding to the pte to be checked
4971 * @ptent: the pte to be checked
4972 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4973 *
4974 * Returns
4975 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4976 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4977 * move charge. if @target is not NULL, the page is stored in target->page
4978 * with extra refcnt got(Callers should handle it).
4979 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4980 * target for charge migration. if @target is not NULL, the entry is stored
4981 * in target->ent.
4982 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4983 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4984 * For now we such page is charge like a regular page would be as for all
4985 * intent and purposes it is just special memory taking the place of a
4986 * regular page.
4987 *
4988 * See Documentations/vm/hmm.txt and include/linux/hmm.h
4989 *
4990 * Called with pte lock held.
4991 */
4992
4993 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4994 unsigned long addr, pte_t ptent, union mc_target *target)
4995 {
4996 struct page *page = NULL;
4997 enum mc_target_type ret = MC_TARGET_NONE;
4998 swp_entry_t ent = { .val = 0 };
4999
5000 if (pte_present(ptent))
5001 page = mc_handle_present_pte(vma, addr, ptent);
5002 else if (is_swap_pte(ptent))
5003 page = mc_handle_swap_pte(vma, ptent, &ent);
5004 else if (pte_none(ptent))
5005 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5006
5007 if (!page && !ent.val)
5008 return ret;
5009 if (page) {
5010 /*
5011 * Do only loose check w/o serialization.
5012 * mem_cgroup_move_account() checks the page is valid or
5013 * not under LRU exclusion.
5014 */
5015 if (page->mem_cgroup == mc.from) {
5016 ret = MC_TARGET_PAGE;
5017 if (is_device_private_page(page) ||
5018 is_device_public_page(page))
5019 ret = MC_TARGET_DEVICE;
5020 if (target)
5021 target->page = page;
5022 }
5023 if (!ret || !target)
5024 put_page(page);
5025 }
5026 /*
5027 * There is a swap entry and a page doesn't exist or isn't charged.
5028 * But we cannot move a tail-page in a THP.
5029 */
5030 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5031 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5032 ret = MC_TARGET_SWAP;
5033 if (target)
5034 target->ent = ent;
5035 }
5036 return ret;
5037 }
5038
5039 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5040 /*
5041 * We don't consider PMD mapped swapping or file mapped pages because THP does
5042 * not support them for now.
5043 * Caller should make sure that pmd_trans_huge(pmd) is true.
5044 */
5045 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5046 unsigned long addr, pmd_t pmd, union mc_target *target)
5047 {
5048 struct page *page = NULL;
5049 enum mc_target_type ret = MC_TARGET_NONE;
5050
5051 if (unlikely(is_swap_pmd(pmd))) {
5052 VM_BUG_ON(thp_migration_supported() &&
5053 !is_pmd_migration_entry(pmd));
5054 return ret;
5055 }
5056 page = pmd_page(pmd);
5057 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5058 if (!(mc.flags & MOVE_ANON))
5059 return ret;
5060 if (page->mem_cgroup == mc.from) {
5061 ret = MC_TARGET_PAGE;
5062 if (target) {
5063 get_page(page);
5064 target->page = page;
5065 }
5066 }
5067 return ret;
5068 }
5069 #else
5070 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5071 unsigned long addr, pmd_t pmd, union mc_target *target)
5072 {
5073 return MC_TARGET_NONE;
5074 }
5075 #endif
5076
5077 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5078 unsigned long addr, unsigned long end,
5079 struct mm_walk *walk)
5080 {
5081 struct vm_area_struct *vma = walk->vma;
5082 pte_t *pte;
5083 spinlock_t *ptl;
5084
5085 ptl = pmd_trans_huge_lock(pmd, vma);
5086 if (ptl) {
5087 /*
5088 * Note their can not be MC_TARGET_DEVICE for now as we do not
5089 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
5090 * MEMORY_DEVICE_PRIVATE but this might change.
5091 */
5092 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5093 mc.precharge += HPAGE_PMD_NR;
5094 spin_unlock(ptl);
5095 return 0;
5096 }
5097
5098 if (pmd_trans_unstable(pmd))
5099 return 0;
5100 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5101 for (; addr != end; pte++, addr += PAGE_SIZE)
5102 if (get_mctgt_type(vma, addr, *pte, NULL))
5103 mc.precharge++; /* increment precharge temporarily */
5104 pte_unmap_unlock(pte - 1, ptl);
5105 cond_resched();
5106
5107 return 0;
5108 }
5109
5110 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5111 {
5112 unsigned long precharge;
5113
5114 struct mm_walk mem_cgroup_count_precharge_walk = {
5115 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5116 .mm = mm,
5117 };
5118 down_read(&mm->mmap_sem);
5119 walk_page_range(0, mm->highest_vm_end,
5120 &mem_cgroup_count_precharge_walk);
5121 up_read(&mm->mmap_sem);
5122
5123 precharge = mc.precharge;
5124 mc.precharge = 0;
5125
5126 return precharge;
5127 }
5128
5129 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5130 {
5131 unsigned long precharge = mem_cgroup_count_precharge(mm);
5132
5133 VM_BUG_ON(mc.moving_task);
5134 mc.moving_task = current;
5135 return mem_cgroup_do_precharge(precharge);
5136 }
5137
5138 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5139 static void __mem_cgroup_clear_mc(void)
5140 {
5141 struct mem_cgroup *from = mc.from;
5142 struct mem_cgroup *to = mc.to;
5143
5144 /* we must uncharge all the leftover precharges from mc.to */
5145 if (mc.precharge) {
5146 cancel_charge(mc.to, mc.precharge);
5147 mc.precharge = 0;
5148 }
5149 /*
5150 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5151 * we must uncharge here.
5152 */
5153 if (mc.moved_charge) {
5154 cancel_charge(mc.from, mc.moved_charge);
5155 mc.moved_charge = 0;
5156 }
5157 /* we must fixup refcnts and charges */
5158 if (mc.moved_swap) {
5159 /* uncharge swap account from the old cgroup */
5160 if (!mem_cgroup_is_root(mc.from))
5161 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5162
5163 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5164
5165 /*
5166 * we charged both to->memory and to->memsw, so we
5167 * should uncharge to->memory.
5168 */
5169 if (!mem_cgroup_is_root(mc.to))
5170 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5171
5172 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5173 css_put_many(&mc.to->css, mc.moved_swap);
5174
5175 mc.moved_swap = 0;
5176 }
5177 memcg_oom_recover(from);
5178 memcg_oom_recover(to);
5179 wake_up_all(&mc.waitq);
5180 }
5181
5182 static void mem_cgroup_clear_mc(void)
5183 {
5184 struct mm_struct *mm = mc.mm;
5185
5186 /*
5187 * we must clear moving_task before waking up waiters at the end of
5188 * task migration.
5189 */
5190 mc.moving_task = NULL;
5191 __mem_cgroup_clear_mc();
5192 spin_lock(&mc.lock);
5193 mc.from = NULL;
5194 mc.to = NULL;
5195 mc.mm = NULL;
5196 spin_unlock(&mc.lock);
5197
5198 mmput(mm);
5199 }
5200
5201 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5202 {
5203 struct cgroup_subsys_state *css;
5204 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5205 struct mem_cgroup *from;
5206 struct task_struct *leader, *p;
5207 struct mm_struct *mm;
5208 unsigned long move_flags;
5209 int ret = 0;
5210
5211 /* charge immigration isn't supported on the default hierarchy */
5212 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5213 return 0;
5214
5215 /*
5216 * Multi-process migrations only happen on the default hierarchy
5217 * where charge immigration is not used. Perform charge
5218 * immigration if @tset contains a leader and whine if there are
5219 * multiple.
5220 */
5221 p = NULL;
5222 cgroup_taskset_for_each_leader(leader, css, tset) {
5223 WARN_ON_ONCE(p);
5224 p = leader;
5225 memcg = mem_cgroup_from_css(css);
5226 }
5227 if (!p)
5228 return 0;
5229
5230 /*
5231 * We are now commited to this value whatever it is. Changes in this
5232 * tunable will only affect upcoming migrations, not the current one.
5233 * So we need to save it, and keep it going.
5234 */
5235 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5236 if (!move_flags)
5237 return 0;
5238
5239 from = mem_cgroup_from_task(p);
5240
5241 VM_BUG_ON(from == memcg);
5242
5243 mm = get_task_mm(p);
5244 if (!mm)
5245 return 0;
5246 /* We move charges only when we move a owner of the mm */
5247 if (mm->owner == p) {
5248 VM_BUG_ON(mc.from);
5249 VM_BUG_ON(mc.to);
5250 VM_BUG_ON(mc.precharge);
5251 VM_BUG_ON(mc.moved_charge);
5252 VM_BUG_ON(mc.moved_swap);
5253
5254 spin_lock(&mc.lock);
5255 mc.mm = mm;
5256 mc.from = from;
5257 mc.to = memcg;
5258 mc.flags = move_flags;
5259 spin_unlock(&mc.lock);
5260 /* We set mc.moving_task later */
5261
5262 ret = mem_cgroup_precharge_mc(mm);
5263 if (ret)
5264 mem_cgroup_clear_mc();
5265 } else {
5266 mmput(mm);
5267 }
5268 return ret;
5269 }
5270
5271 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5272 {
5273 if (mc.to)
5274 mem_cgroup_clear_mc();
5275 }
5276
5277 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5278 unsigned long addr, unsigned long end,
5279 struct mm_walk *walk)
5280 {
5281 int ret = 0;
5282 struct vm_area_struct *vma = walk->vma;
5283 pte_t *pte;
5284 spinlock_t *ptl;
5285 enum mc_target_type target_type;
5286 union mc_target target;
5287 struct page *page;
5288
5289 ptl = pmd_trans_huge_lock(pmd, vma);
5290 if (ptl) {
5291 if (mc.precharge < HPAGE_PMD_NR) {
5292 spin_unlock(ptl);
5293 return 0;
5294 }
5295 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5296 if (target_type == MC_TARGET_PAGE) {
5297 page = target.page;
5298 if (!isolate_lru_page(page)) {
5299 if (!mem_cgroup_move_account(page, true,
5300 mc.from, mc.to)) {
5301 mc.precharge -= HPAGE_PMD_NR;
5302 mc.moved_charge += HPAGE_PMD_NR;
5303 }
5304 putback_lru_page(page);
5305 }
5306 put_page(page);
5307 } else if (target_type == MC_TARGET_DEVICE) {
5308 page = target.page;
5309 if (!mem_cgroup_move_account(page, true,
5310 mc.from, mc.to)) {
5311 mc.precharge -= HPAGE_PMD_NR;
5312 mc.moved_charge += HPAGE_PMD_NR;
5313 }
5314 put_page(page);
5315 }
5316 spin_unlock(ptl);
5317 return 0;
5318 }
5319
5320 if (pmd_trans_unstable(pmd))
5321 return 0;
5322 retry:
5323 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5324 for (; addr != end; addr += PAGE_SIZE) {
5325 pte_t ptent = *(pte++);
5326 bool device = false;
5327 swp_entry_t ent;
5328
5329 if (!mc.precharge)
5330 break;
5331
5332 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5333 case MC_TARGET_DEVICE:
5334 device = true;
5335 /* fall through */
5336 case MC_TARGET_PAGE:
5337 page = target.page;
5338 /*
5339 * We can have a part of the split pmd here. Moving it
5340 * can be done but it would be too convoluted so simply
5341 * ignore such a partial THP and keep it in original
5342 * memcg. There should be somebody mapping the head.
5343 */
5344 if (PageTransCompound(page))
5345 goto put;
5346 if (!device && isolate_lru_page(page))
5347 goto put;
5348 if (!mem_cgroup_move_account(page, false,
5349 mc.from, mc.to)) {
5350 mc.precharge--;
5351 /* we uncharge from mc.from later. */
5352 mc.moved_charge++;
5353 }
5354 if (!device)
5355 putback_lru_page(page);
5356 put: /* get_mctgt_type() gets the page */
5357 put_page(page);
5358 break;
5359 case MC_TARGET_SWAP:
5360 ent = target.ent;
5361 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5362 mc.precharge--;
5363 /* we fixup refcnts and charges later. */
5364 mc.moved_swap++;
5365 }
5366 break;
5367 default:
5368 break;
5369 }
5370 }
5371 pte_unmap_unlock(pte - 1, ptl);
5372 cond_resched();
5373
5374 if (addr != end) {
5375 /*
5376 * We have consumed all precharges we got in can_attach().
5377 * We try charge one by one, but don't do any additional
5378 * charges to mc.to if we have failed in charge once in attach()
5379 * phase.
5380 */
5381 ret = mem_cgroup_do_precharge(1);
5382 if (!ret)
5383 goto retry;
5384 }
5385
5386 return ret;
5387 }
5388
5389 static void mem_cgroup_move_charge(void)
5390 {
5391 struct mm_walk mem_cgroup_move_charge_walk = {
5392 .pmd_entry = mem_cgroup_move_charge_pte_range,
5393 .mm = mc.mm,
5394 };
5395
5396 lru_add_drain_all();
5397 /*
5398 * Signal lock_page_memcg() to take the memcg's move_lock
5399 * while we're moving its pages to another memcg. Then wait
5400 * for already started RCU-only updates to finish.
5401 */
5402 atomic_inc(&mc.from->moving_account);
5403 synchronize_rcu();
5404 retry:
5405 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5406 /*
5407 * Someone who are holding the mmap_sem might be waiting in
5408 * waitq. So we cancel all extra charges, wake up all waiters,
5409 * and retry. Because we cancel precharges, we might not be able
5410 * to move enough charges, but moving charge is a best-effort
5411 * feature anyway, so it wouldn't be a big problem.
5412 */
5413 __mem_cgroup_clear_mc();
5414 cond_resched();
5415 goto retry;
5416 }
5417 /*
5418 * When we have consumed all precharges and failed in doing
5419 * additional charge, the page walk just aborts.
5420 */
5421 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5422
5423 up_read(&mc.mm->mmap_sem);
5424 atomic_dec(&mc.from->moving_account);
5425 }
5426
5427 static void mem_cgroup_move_task(void)
5428 {
5429 if (mc.to) {
5430 mem_cgroup_move_charge();
5431 mem_cgroup_clear_mc();
5432 }
5433 }
5434 #else /* !CONFIG_MMU */
5435 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5436 {
5437 return 0;
5438 }
5439 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5440 {
5441 }
5442 static void mem_cgroup_move_task(void)
5443 {
5444 }
5445 #endif
5446
5447 /*
5448 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5449 * to verify whether we're attached to the default hierarchy on each mount
5450 * attempt.
5451 */
5452 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5453 {
5454 /*
5455 * use_hierarchy is forced on the default hierarchy. cgroup core
5456 * guarantees that @root doesn't have any children, so turning it
5457 * on for the root memcg is enough.
5458 */
5459 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5460 root_mem_cgroup->use_hierarchy = true;
5461 else
5462 root_mem_cgroup->use_hierarchy = false;
5463 }
5464
5465 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5466 {
5467 if (value == PAGE_COUNTER_MAX)
5468 seq_puts(m, "max\n");
5469 else
5470 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5471
5472 return 0;
5473 }
5474
5475 static u64 memory_current_read(struct cgroup_subsys_state *css,
5476 struct cftype *cft)
5477 {
5478 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5479
5480 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5481 }
5482
5483 static int memory_min_show(struct seq_file *m, void *v)
5484 {
5485 return seq_puts_memcg_tunable(m,
5486 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5487 }
5488
5489 static ssize_t memory_min_write(struct kernfs_open_file *of,
5490 char *buf, size_t nbytes, loff_t off)
5491 {
5492 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5493 unsigned long min;
5494 int err;
5495
5496 buf = strstrip(buf);
5497 err = page_counter_memparse(buf, "max", &min);
5498 if (err)
5499 return err;
5500
5501 page_counter_set_min(&memcg->memory, min);
5502
5503 return nbytes;
5504 }
5505
5506 static int memory_low_show(struct seq_file *m, void *v)
5507 {
5508 return seq_puts_memcg_tunable(m,
5509 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5510 }
5511
5512 static ssize_t memory_low_write(struct kernfs_open_file *of,
5513 char *buf, size_t nbytes, loff_t off)
5514 {
5515 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5516 unsigned long low;
5517 int err;
5518
5519 buf = strstrip(buf);
5520 err = page_counter_memparse(buf, "max", &low);
5521 if (err)
5522 return err;
5523
5524 page_counter_set_low(&memcg->memory, low);
5525
5526 return nbytes;
5527 }
5528
5529 static int memory_high_show(struct seq_file *m, void *v)
5530 {
5531 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5532 }
5533
5534 static ssize_t memory_high_write(struct kernfs_open_file *of,
5535 char *buf, size_t nbytes, loff_t off)
5536 {
5537 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5538 unsigned long nr_pages;
5539 unsigned long high;
5540 int err;
5541
5542 buf = strstrip(buf);
5543 err = page_counter_memparse(buf, "max", &high);
5544 if (err)
5545 return err;
5546
5547 memcg->high = high;
5548
5549 nr_pages = page_counter_read(&memcg->memory);
5550 if (nr_pages > high)
5551 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5552 GFP_KERNEL, true);
5553
5554 memcg_wb_domain_size_changed(memcg);
5555 return nbytes;
5556 }
5557
5558 static int memory_max_show(struct seq_file *m, void *v)
5559 {
5560 return seq_puts_memcg_tunable(m,
5561 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
5562 }
5563
5564 static ssize_t memory_max_write(struct kernfs_open_file *of,
5565 char *buf, size_t nbytes, loff_t off)
5566 {
5567 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5568 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5569 bool drained = false;
5570 unsigned long max;
5571 int err;
5572
5573 buf = strstrip(buf);
5574 err = page_counter_memparse(buf, "max", &max);
5575 if (err)
5576 return err;
5577
5578 xchg(&memcg->memory.max, max);
5579
5580 for (;;) {
5581 unsigned long nr_pages = page_counter_read(&memcg->memory);
5582
5583 if (nr_pages <= max)
5584 break;
5585
5586 if (signal_pending(current)) {
5587 err = -EINTR;
5588 break;
5589 }
5590
5591 if (!drained) {
5592 drain_all_stock(memcg);
5593 drained = true;
5594 continue;
5595 }
5596
5597 if (nr_reclaims) {
5598 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5599 GFP_KERNEL, true))
5600 nr_reclaims--;
5601 continue;
5602 }
5603
5604 memcg_memory_event(memcg, MEMCG_OOM);
5605 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5606 break;
5607 }
5608
5609 memcg_wb_domain_size_changed(memcg);
5610 return nbytes;
5611 }
5612
5613 static int memory_events_show(struct seq_file *m, void *v)
5614 {
5615 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5616
5617 seq_printf(m, "low %lu\n",
5618 atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5619 seq_printf(m, "high %lu\n",
5620 atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5621 seq_printf(m, "max %lu\n",
5622 atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5623 seq_printf(m, "oom %lu\n",
5624 atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
5625 seq_printf(m, "oom_kill %lu\n",
5626 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
5627
5628 return 0;
5629 }
5630
5631 static int memory_stat_show(struct seq_file *m, void *v)
5632 {
5633 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5634 int i;
5635
5636 /*
5637 * Provide statistics on the state of the memory subsystem as
5638 * well as cumulative event counters that show past behavior.
5639 *
5640 * This list is ordered following a combination of these gradients:
5641 * 1) generic big picture -> specifics and details
5642 * 2) reflecting userspace activity -> reflecting kernel heuristics
5643 *
5644 * Current memory state:
5645 */
5646
5647 seq_printf(m, "anon %llu\n",
5648 (u64)memcg_page_state(memcg, MEMCG_RSS) * PAGE_SIZE);
5649 seq_printf(m, "file %llu\n",
5650 (u64)memcg_page_state(memcg, MEMCG_CACHE) * PAGE_SIZE);
5651 seq_printf(m, "kernel_stack %llu\n",
5652 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) * 1024);
5653 seq_printf(m, "slab %llu\n",
5654 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
5655 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
5656 PAGE_SIZE);
5657 seq_printf(m, "sock %llu\n",
5658 (u64)memcg_page_state(memcg, MEMCG_SOCK) * PAGE_SIZE);
5659
5660 seq_printf(m, "shmem %llu\n",
5661 (u64)memcg_page_state(memcg, NR_SHMEM) * PAGE_SIZE);
5662 seq_printf(m, "file_mapped %llu\n",
5663 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) * PAGE_SIZE);
5664 seq_printf(m, "file_dirty %llu\n",
5665 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) * PAGE_SIZE);
5666 seq_printf(m, "file_writeback %llu\n",
5667 (u64)memcg_page_state(memcg, NR_WRITEBACK) * PAGE_SIZE);
5668
5669 /*
5670 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
5671 * with the NR_ANON_THP vm counter, but right now it's a pain in the
5672 * arse because it requires migrating the work out of rmap to a place
5673 * where the page->mem_cgroup is set up and stable.
5674 */
5675 seq_printf(m, "anon_thp %llu\n",
5676 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) * PAGE_SIZE);
5677
5678 for (i = 0; i < NR_LRU_LISTS; i++)
5679 seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
5680 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
5681 PAGE_SIZE);
5682
5683 seq_printf(m, "slab_reclaimable %llu\n",
5684 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
5685 PAGE_SIZE);
5686 seq_printf(m, "slab_unreclaimable %llu\n",
5687 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
5688 PAGE_SIZE);
5689
5690 /* Accumulated memory events */
5691
5692 seq_printf(m, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
5693 seq_printf(m, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
5694
5695 seq_printf(m, "workingset_refault %lu\n",
5696 memcg_page_state(memcg, WORKINGSET_REFAULT));
5697 seq_printf(m, "workingset_activate %lu\n",
5698 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
5699 seq_printf(m, "workingset_nodereclaim %lu\n",
5700 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
5701
5702 seq_printf(m, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
5703 seq_printf(m, "pgscan %lu\n", memcg_events(memcg, PGSCAN_KSWAPD) +
5704 memcg_events(memcg, PGSCAN_DIRECT));
5705 seq_printf(m, "pgsteal %lu\n", memcg_events(memcg, PGSTEAL_KSWAPD) +
5706 memcg_events(memcg, PGSTEAL_DIRECT));
5707 seq_printf(m, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
5708 seq_printf(m, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
5709 seq_printf(m, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
5710 seq_printf(m, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
5711
5712 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5713 seq_printf(m, "thp_fault_alloc %lu\n",
5714 memcg_events(memcg, THP_FAULT_ALLOC));
5715 seq_printf(m, "thp_collapse_alloc %lu\n",
5716 memcg_events(memcg, THP_COLLAPSE_ALLOC));
5717 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5718
5719 return 0;
5720 }
5721
5722 static int memory_oom_group_show(struct seq_file *m, void *v)
5723 {
5724 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5725
5726 seq_printf(m, "%d\n", memcg->oom_group);
5727
5728 return 0;
5729 }
5730
5731 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5732 char *buf, size_t nbytes, loff_t off)
5733 {
5734 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5735 int ret, oom_group;
5736
5737 buf = strstrip(buf);
5738 if (!buf)
5739 return -EINVAL;
5740
5741 ret = kstrtoint(buf, 0, &oom_group);
5742 if (ret)
5743 return ret;
5744
5745 if (oom_group != 0 && oom_group != 1)
5746 return -EINVAL;
5747
5748 memcg->oom_group = oom_group;
5749
5750 return nbytes;
5751 }
5752
5753 static struct cftype memory_files[] = {
5754 {
5755 .name = "current",
5756 .flags = CFTYPE_NOT_ON_ROOT,
5757 .read_u64 = memory_current_read,
5758 },
5759 {
5760 .name = "min",
5761 .flags = CFTYPE_NOT_ON_ROOT,
5762 .seq_show = memory_min_show,
5763 .write = memory_min_write,
5764 },
5765 {
5766 .name = "low",
5767 .flags = CFTYPE_NOT_ON_ROOT,
5768 .seq_show = memory_low_show,
5769 .write = memory_low_write,
5770 },
5771 {
5772 .name = "high",
5773 .flags = CFTYPE_NOT_ON_ROOT,
5774 .seq_show = memory_high_show,
5775 .write = memory_high_write,
5776 },
5777 {
5778 .name = "max",
5779 .flags = CFTYPE_NOT_ON_ROOT,
5780 .seq_show = memory_max_show,
5781 .write = memory_max_write,
5782 },
5783 {
5784 .name = "events",
5785 .flags = CFTYPE_NOT_ON_ROOT,
5786 .file_offset = offsetof(struct mem_cgroup, events_file),
5787 .seq_show = memory_events_show,
5788 },
5789 {
5790 .name = "stat",
5791 .flags = CFTYPE_NOT_ON_ROOT,
5792 .seq_show = memory_stat_show,
5793 },
5794 {
5795 .name = "oom.group",
5796 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5797 .seq_show = memory_oom_group_show,
5798 .write = memory_oom_group_write,
5799 },
5800 { } /* terminate */
5801 };
5802
5803 struct cgroup_subsys memory_cgrp_subsys = {
5804 .css_alloc = mem_cgroup_css_alloc,
5805 .css_online = mem_cgroup_css_online,
5806 .css_offline = mem_cgroup_css_offline,
5807 .css_released = mem_cgroup_css_released,
5808 .css_free = mem_cgroup_css_free,
5809 .css_reset = mem_cgroup_css_reset,
5810 .can_attach = mem_cgroup_can_attach,
5811 .cancel_attach = mem_cgroup_cancel_attach,
5812 .post_attach = mem_cgroup_move_task,
5813 .bind = mem_cgroup_bind,
5814 .dfl_cftypes = memory_files,
5815 .legacy_cftypes = mem_cgroup_legacy_files,
5816 .early_init = 0,
5817 };
5818
5819 /**
5820 * mem_cgroup_protected - check if memory consumption is in the normal range
5821 * @root: the top ancestor of the sub-tree being checked
5822 * @memcg: the memory cgroup to check
5823 *
5824 * WARNING: This function is not stateless! It can only be used as part
5825 * of a top-down tree iteration, not for isolated queries.
5826 *
5827 * Returns one of the following:
5828 * MEMCG_PROT_NONE: cgroup memory is not protected
5829 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5830 * an unprotected supply of reclaimable memory from other cgroups.
5831 * MEMCG_PROT_MIN: cgroup memory is protected
5832 *
5833 * @root is exclusive; it is never protected when looked at directly
5834 *
5835 * To provide a proper hierarchical behavior, effective memory.min/low values
5836 * are used. Below is the description of how effective memory.low is calculated.
5837 * Effective memory.min values is calculated in the same way.
5838 *
5839 * Effective memory.low is always equal or less than the original memory.low.
5840 * If there is no memory.low overcommittment (which is always true for
5841 * top-level memory cgroups), these two values are equal.
5842 * Otherwise, it's a part of parent's effective memory.low,
5843 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5844 * memory.low usages, where memory.low usage is the size of actually
5845 * protected memory.
5846 *
5847 * low_usage
5848 * elow = min( memory.low, parent->elow * ------------------ ),
5849 * siblings_low_usage
5850 *
5851 * | memory.current, if memory.current < memory.low
5852 * low_usage = |
5853 * | 0, otherwise.
5854 *
5855 *
5856 * Such definition of the effective memory.low provides the expected
5857 * hierarchical behavior: parent's memory.low value is limiting
5858 * children, unprotected memory is reclaimed first and cgroups,
5859 * which are not using their guarantee do not affect actual memory
5860 * distribution.
5861 *
5862 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5863 *
5864 * A A/memory.low = 2G, A/memory.current = 6G
5865 * //\\
5866 * BC DE B/memory.low = 3G B/memory.current = 2G
5867 * C/memory.low = 1G C/memory.current = 2G
5868 * D/memory.low = 0 D/memory.current = 2G
5869 * E/memory.low = 10G E/memory.current = 0
5870 *
5871 * and the memory pressure is applied, the following memory distribution
5872 * is expected (approximately):
5873 *
5874 * A/memory.current = 2G
5875 *
5876 * B/memory.current = 1.3G
5877 * C/memory.current = 0.6G
5878 * D/memory.current = 0
5879 * E/memory.current = 0
5880 *
5881 * These calculations require constant tracking of the actual low usages
5882 * (see propagate_protected_usage()), as well as recursive calculation of
5883 * effective memory.low values. But as we do call mem_cgroup_protected()
5884 * path for each memory cgroup top-down from the reclaim,
5885 * it's possible to optimize this part, and save calculated elow
5886 * for next usage. This part is intentionally racy, but it's ok,
5887 * as memory.low is a best-effort mechanism.
5888 */
5889 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5890 struct mem_cgroup *memcg)
5891 {
5892 struct mem_cgroup *parent;
5893 unsigned long emin, parent_emin;
5894 unsigned long elow, parent_elow;
5895 unsigned long usage;
5896
5897 if (mem_cgroup_disabled())
5898 return MEMCG_PROT_NONE;
5899
5900 if (!root)
5901 root = root_mem_cgroup;
5902 if (memcg == root)
5903 return MEMCG_PROT_NONE;
5904
5905 usage = page_counter_read(&memcg->memory);
5906 if (!usage)
5907 return MEMCG_PROT_NONE;
5908
5909 emin = memcg->memory.min;
5910 elow = memcg->memory.low;
5911
5912 parent = parent_mem_cgroup(memcg);
5913 /* No parent means a non-hierarchical mode on v1 memcg */
5914 if (!parent)
5915 return MEMCG_PROT_NONE;
5916
5917 if (parent == root)
5918 goto exit;
5919
5920 parent_emin = READ_ONCE(parent->memory.emin);
5921 emin = min(emin, parent_emin);
5922 if (emin && parent_emin) {
5923 unsigned long min_usage, siblings_min_usage;
5924
5925 min_usage = min(usage, memcg->memory.min);
5926 siblings_min_usage = atomic_long_read(
5927 &parent->memory.children_min_usage);
5928
5929 if (min_usage && siblings_min_usage)
5930 emin = min(emin, parent_emin * min_usage /
5931 siblings_min_usage);
5932 }
5933
5934 parent_elow = READ_ONCE(parent->memory.elow);
5935 elow = min(elow, parent_elow);
5936 if (elow && parent_elow) {
5937 unsigned long low_usage, siblings_low_usage;
5938
5939 low_usage = min(usage, memcg->memory.low);
5940 siblings_low_usage = atomic_long_read(
5941 &parent->memory.children_low_usage);
5942
5943 if (low_usage && siblings_low_usage)
5944 elow = min(elow, parent_elow * low_usage /
5945 siblings_low_usage);
5946 }
5947
5948 exit:
5949 memcg->memory.emin = emin;
5950 memcg->memory.elow = elow;
5951
5952 if (usage <= emin)
5953 return MEMCG_PROT_MIN;
5954 else if (usage <= elow)
5955 return MEMCG_PROT_LOW;
5956 else
5957 return MEMCG_PROT_NONE;
5958 }
5959
5960 /**
5961 * mem_cgroup_try_charge - try charging a page
5962 * @page: page to charge
5963 * @mm: mm context of the victim
5964 * @gfp_mask: reclaim mode
5965 * @memcgp: charged memcg return
5966 * @compound: charge the page as compound or small page
5967 *
5968 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5969 * pages according to @gfp_mask if necessary.
5970 *
5971 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5972 * Otherwise, an error code is returned.
5973 *
5974 * After page->mapping has been set up, the caller must finalize the
5975 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5976 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5977 */
5978 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5979 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5980 bool compound)
5981 {
5982 struct mem_cgroup *memcg = NULL;
5983 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5984 int ret = 0;
5985
5986 if (mem_cgroup_disabled())
5987 goto out;
5988
5989 if (PageSwapCache(page)) {
5990 /*
5991 * Every swap fault against a single page tries to charge the
5992 * page, bail as early as possible. shmem_unuse() encounters
5993 * already charged pages, too. The USED bit is protected by
5994 * the page lock, which serializes swap cache removal, which
5995 * in turn serializes uncharging.
5996 */
5997 VM_BUG_ON_PAGE(!PageLocked(page), page);
5998 if (compound_head(page)->mem_cgroup)
5999 goto out;
6000
6001 if (do_swap_account) {
6002 swp_entry_t ent = { .val = page_private(page), };
6003 unsigned short id = lookup_swap_cgroup_id(ent);
6004
6005 rcu_read_lock();
6006 memcg = mem_cgroup_from_id(id);
6007 if (memcg && !css_tryget_online(&memcg->css))
6008 memcg = NULL;
6009 rcu_read_unlock();
6010 }
6011 }
6012
6013 if (!memcg)
6014 memcg = get_mem_cgroup_from_mm(mm);
6015
6016 ret = try_charge(memcg, gfp_mask, nr_pages);
6017
6018 css_put(&memcg->css);
6019 out:
6020 *memcgp = memcg;
6021 return ret;
6022 }
6023
6024 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6025 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6026 bool compound)
6027 {
6028 struct mem_cgroup *memcg;
6029 int ret;
6030
6031 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6032 memcg = *memcgp;
6033 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6034 return ret;
6035 }
6036
6037 /**
6038 * mem_cgroup_commit_charge - commit a page charge
6039 * @page: page to charge
6040 * @memcg: memcg to charge the page to
6041 * @lrucare: page might be on LRU already
6042 * @compound: charge the page as compound or small page
6043 *
6044 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6045 * after page->mapping has been set up. This must happen atomically
6046 * as part of the page instantiation, i.e. under the page table lock
6047 * for anonymous pages, under the page lock for page and swap cache.
6048 *
6049 * In addition, the page must not be on the LRU during the commit, to
6050 * prevent racing with task migration. If it might be, use @lrucare.
6051 *
6052 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6053 */
6054 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6055 bool lrucare, bool compound)
6056 {
6057 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6058
6059 VM_BUG_ON_PAGE(!page->mapping, page);
6060 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6061
6062 if (mem_cgroup_disabled())
6063 return;
6064 /*
6065 * Swap faults will attempt to charge the same page multiple
6066 * times. But reuse_swap_page() might have removed the page
6067 * from swapcache already, so we can't check PageSwapCache().
6068 */
6069 if (!memcg)
6070 return;
6071
6072 commit_charge(page, memcg, lrucare);
6073
6074 local_irq_disable();
6075 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6076 memcg_check_events(memcg, page);
6077 local_irq_enable();
6078
6079 if (do_memsw_account() && PageSwapCache(page)) {
6080 swp_entry_t entry = { .val = page_private(page) };
6081 /*
6082 * The swap entry might not get freed for a long time,
6083 * let's not wait for it. The page already received a
6084 * memory+swap charge, drop the swap entry duplicate.
6085 */
6086 mem_cgroup_uncharge_swap(entry, nr_pages);
6087 }
6088 }
6089
6090 /**
6091 * mem_cgroup_cancel_charge - cancel a page charge
6092 * @page: page to charge
6093 * @memcg: memcg to charge the page to
6094 * @compound: charge the page as compound or small page
6095 *
6096 * Cancel a charge transaction started by mem_cgroup_try_charge().
6097 */
6098 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6099 bool compound)
6100 {
6101 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6102
6103 if (mem_cgroup_disabled())
6104 return;
6105 /*
6106 * Swap faults will attempt to charge the same page multiple
6107 * times. But reuse_swap_page() might have removed the page
6108 * from swapcache already, so we can't check PageSwapCache().
6109 */
6110 if (!memcg)
6111 return;
6112
6113 cancel_charge(memcg, nr_pages);
6114 }
6115
6116 struct uncharge_gather {
6117 struct mem_cgroup *memcg;
6118 unsigned long pgpgout;
6119 unsigned long nr_anon;
6120 unsigned long nr_file;
6121 unsigned long nr_kmem;
6122 unsigned long nr_huge;
6123 unsigned long nr_shmem;
6124 struct page *dummy_page;
6125 };
6126
6127 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6128 {
6129 memset(ug, 0, sizeof(*ug));
6130 }
6131
6132 static void uncharge_batch(const struct uncharge_gather *ug)
6133 {
6134 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6135 unsigned long flags;
6136
6137 if (!mem_cgroup_is_root(ug->memcg)) {
6138 page_counter_uncharge(&ug->memcg->memory, nr_pages);
6139 if (do_memsw_account())
6140 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6141 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6142 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6143 memcg_oom_recover(ug->memcg);
6144 }
6145
6146 local_irq_save(flags);
6147 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6148 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6149 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6150 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6151 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6152 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6153 memcg_check_events(ug->memcg, ug->dummy_page);
6154 local_irq_restore(flags);
6155
6156 if (!mem_cgroup_is_root(ug->memcg))
6157 css_put_many(&ug->memcg->css, nr_pages);
6158 }
6159
6160 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6161 {
6162 VM_BUG_ON_PAGE(PageLRU(page), page);
6163 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6164 !PageHWPoison(page) , page);
6165
6166 if (!page->mem_cgroup)
6167 return;
6168
6169 /*
6170 * Nobody should be changing or seriously looking at
6171 * page->mem_cgroup at this point, we have fully
6172 * exclusive access to the page.
6173 */
6174
6175 if (ug->memcg != page->mem_cgroup) {
6176 if (ug->memcg) {
6177 uncharge_batch(ug);
6178 uncharge_gather_clear(ug);
6179 }
6180 ug->memcg = page->mem_cgroup;
6181 }
6182
6183 if (!PageKmemcg(page)) {
6184 unsigned int nr_pages = 1;
6185
6186 if (PageTransHuge(page)) {
6187 nr_pages <<= compound_order(page);
6188 ug->nr_huge += nr_pages;
6189 }
6190 if (PageAnon(page))
6191 ug->nr_anon += nr_pages;
6192 else {
6193 ug->nr_file += nr_pages;
6194 if (PageSwapBacked(page))
6195 ug->nr_shmem += nr_pages;
6196 }
6197 ug->pgpgout++;
6198 } else {
6199 ug->nr_kmem += 1 << compound_order(page);
6200 __ClearPageKmemcg(page);
6201 }
6202
6203 ug->dummy_page = page;
6204 page->mem_cgroup = NULL;
6205 }
6206
6207 static void uncharge_list(struct list_head *page_list)
6208 {
6209 struct uncharge_gather ug;
6210 struct list_head *next;
6211
6212 uncharge_gather_clear(&ug);
6213
6214 /*
6215 * Note that the list can be a single page->lru; hence the
6216 * do-while loop instead of a simple list_for_each_entry().
6217 */
6218 next = page_list->next;
6219 do {
6220 struct page *page;
6221
6222 page = list_entry(next, struct page, lru);
6223 next = page->lru.next;
6224
6225 uncharge_page(page, &ug);
6226 } while (next != page_list);
6227
6228 if (ug.memcg)
6229 uncharge_batch(&ug);
6230 }
6231
6232 /**
6233 * mem_cgroup_uncharge - uncharge a page
6234 * @page: page to uncharge
6235 *
6236 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6237 * mem_cgroup_commit_charge().
6238 */
6239 void mem_cgroup_uncharge(struct page *page)
6240 {
6241 struct uncharge_gather ug;
6242
6243 if (mem_cgroup_disabled())
6244 return;
6245
6246 /* Don't touch page->lru of any random page, pre-check: */
6247 if (!page->mem_cgroup)
6248 return;
6249
6250 uncharge_gather_clear(&ug);
6251 uncharge_page(page, &ug);
6252 uncharge_batch(&ug);
6253 }
6254
6255 /**
6256 * mem_cgroup_uncharge_list - uncharge a list of page
6257 * @page_list: list of pages to uncharge
6258 *
6259 * Uncharge a list of pages previously charged with
6260 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6261 */
6262 void mem_cgroup_uncharge_list(struct list_head *page_list)
6263 {
6264 if (mem_cgroup_disabled())
6265 return;
6266
6267 if (!list_empty(page_list))
6268 uncharge_list(page_list);
6269 }
6270
6271 /**
6272 * mem_cgroup_migrate - charge a page's replacement
6273 * @oldpage: currently circulating page
6274 * @newpage: replacement page
6275 *
6276 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6277 * be uncharged upon free.
6278 *
6279 * Both pages must be locked, @newpage->mapping must be set up.
6280 */
6281 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6282 {
6283 struct mem_cgroup *memcg;
6284 unsigned int nr_pages;
6285 bool compound;
6286 unsigned long flags;
6287
6288 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6289 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6290 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6291 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6292 newpage);
6293
6294 if (mem_cgroup_disabled())
6295 return;
6296
6297 /* Page cache replacement: new page already charged? */
6298 if (newpage->mem_cgroup)
6299 return;
6300
6301 /* Swapcache readahead pages can get replaced before being charged */
6302 memcg = oldpage->mem_cgroup;
6303 if (!memcg)
6304 return;
6305
6306 /* Force-charge the new page. The old one will be freed soon */
6307 compound = PageTransHuge(newpage);
6308 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6309
6310 page_counter_charge(&memcg->memory, nr_pages);
6311 if (do_memsw_account())
6312 page_counter_charge(&memcg->memsw, nr_pages);
6313 css_get_many(&memcg->css, nr_pages);
6314
6315 commit_charge(newpage, memcg, false);
6316
6317 local_irq_save(flags);
6318 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6319 memcg_check_events(memcg, newpage);
6320 local_irq_restore(flags);
6321 }
6322
6323 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6324 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6325
6326 void mem_cgroup_sk_alloc(struct sock *sk)
6327 {
6328 struct mem_cgroup *memcg;
6329
6330 if (!mem_cgroup_sockets_enabled)
6331 return;
6332
6333 /*
6334 * Socket cloning can throw us here with sk_memcg already
6335 * filled. It won't however, necessarily happen from
6336 * process context. So the test for root memcg given
6337 * the current task's memcg won't help us in this case.
6338 *
6339 * Respecting the original socket's memcg is a better
6340 * decision in this case.
6341 */
6342 if (sk->sk_memcg) {
6343 css_get(&sk->sk_memcg->css);
6344 return;
6345 }
6346
6347 rcu_read_lock();
6348 memcg = mem_cgroup_from_task(current);
6349 if (memcg == root_mem_cgroup)
6350 goto out;
6351 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6352 goto out;
6353 if (css_tryget_online(&memcg->css))
6354 sk->sk_memcg = memcg;
6355 out:
6356 rcu_read_unlock();
6357 }
6358
6359 void mem_cgroup_sk_free(struct sock *sk)
6360 {
6361 if (sk->sk_memcg)
6362 css_put(&sk->sk_memcg->css);
6363 }
6364
6365 /**
6366 * mem_cgroup_charge_skmem - charge socket memory
6367 * @memcg: memcg to charge
6368 * @nr_pages: number of pages to charge
6369 *
6370 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6371 * @memcg's configured limit, %false if the charge had to be forced.
6372 */
6373 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6374 {
6375 gfp_t gfp_mask = GFP_KERNEL;
6376
6377 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6378 struct page_counter *fail;
6379
6380 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6381 memcg->tcpmem_pressure = 0;
6382 return true;
6383 }
6384 page_counter_charge(&memcg->tcpmem, nr_pages);
6385 memcg->tcpmem_pressure = 1;
6386 return false;
6387 }
6388
6389 /* Don't block in the packet receive path */
6390 if (in_softirq())
6391 gfp_mask = GFP_NOWAIT;
6392
6393 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6394
6395 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6396 return true;
6397
6398 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6399 return false;
6400 }
6401
6402 /**
6403 * mem_cgroup_uncharge_skmem - uncharge socket memory
6404 * @memcg: memcg to uncharge
6405 * @nr_pages: number of pages to uncharge
6406 */
6407 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6408 {
6409 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6410 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6411 return;
6412 }
6413
6414 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6415
6416 refill_stock(memcg, nr_pages);
6417 }
6418
6419 static int __init cgroup_memory(char *s)
6420 {
6421 char *token;
6422
6423 while ((token = strsep(&s, ",")) != NULL) {
6424 if (!*token)
6425 continue;
6426 if (!strcmp(token, "nosocket"))
6427 cgroup_memory_nosocket = true;
6428 if (!strcmp(token, "nokmem"))
6429 cgroup_memory_nokmem = true;
6430 }
6431 return 0;
6432 }
6433 __setup("cgroup.memory=", cgroup_memory);
6434
6435 /*
6436 * subsys_initcall() for memory controller.
6437 *
6438 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6439 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6440 * basically everything that doesn't depend on a specific mem_cgroup structure
6441 * should be initialized from here.
6442 */
6443 static int __init mem_cgroup_init(void)
6444 {
6445 int cpu, node;
6446
6447 #ifdef CONFIG_MEMCG_KMEM
6448 /*
6449 * Kmem cache creation is mostly done with the slab_mutex held,
6450 * so use a workqueue with limited concurrency to avoid stalling
6451 * all worker threads in case lots of cgroups are created and
6452 * destroyed simultaneously.
6453 */
6454 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6455 BUG_ON(!memcg_kmem_cache_wq);
6456 #endif
6457
6458 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6459 memcg_hotplug_cpu_dead);
6460
6461 for_each_possible_cpu(cpu)
6462 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6463 drain_local_stock);
6464
6465 for_each_node(node) {
6466 struct mem_cgroup_tree_per_node *rtpn;
6467
6468 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6469 node_online(node) ? node : NUMA_NO_NODE);
6470
6471 rtpn->rb_root = RB_ROOT;
6472 rtpn->rb_rightmost = NULL;
6473 spin_lock_init(&rtpn->lock);
6474 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6475 }
6476
6477 return 0;
6478 }
6479 subsys_initcall(mem_cgroup_init);
6480
6481 #ifdef CONFIG_MEMCG_SWAP
6482 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6483 {
6484 while (!refcount_inc_not_zero(&memcg->id.ref)) {
6485 /*
6486 * The root cgroup cannot be destroyed, so it's refcount must
6487 * always be >= 1.
6488 */
6489 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6490 VM_BUG_ON(1);
6491 break;
6492 }
6493 memcg = parent_mem_cgroup(memcg);
6494 if (!memcg)
6495 memcg = root_mem_cgroup;
6496 }
6497 return memcg;
6498 }
6499
6500 /**
6501 * mem_cgroup_swapout - transfer a memsw charge to swap
6502 * @page: page whose memsw charge to transfer
6503 * @entry: swap entry to move the charge to
6504 *
6505 * Transfer the memsw charge of @page to @entry.
6506 */
6507 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6508 {
6509 struct mem_cgroup *memcg, *swap_memcg;
6510 unsigned int nr_entries;
6511 unsigned short oldid;
6512
6513 VM_BUG_ON_PAGE(PageLRU(page), page);
6514 VM_BUG_ON_PAGE(page_count(page), page);
6515
6516 if (!do_memsw_account())
6517 return;
6518
6519 memcg = page->mem_cgroup;
6520
6521 /* Readahead page, never charged */
6522 if (!memcg)
6523 return;
6524
6525 /*
6526 * In case the memcg owning these pages has been offlined and doesn't
6527 * have an ID allocated to it anymore, charge the closest online
6528 * ancestor for the swap instead and transfer the memory+swap charge.
6529 */
6530 swap_memcg = mem_cgroup_id_get_online(memcg);
6531 nr_entries = hpage_nr_pages(page);
6532 /* Get references for the tail pages, too */
6533 if (nr_entries > 1)
6534 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6535 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6536 nr_entries);
6537 VM_BUG_ON_PAGE(oldid, page);
6538 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6539
6540 page->mem_cgroup = NULL;
6541
6542 if (!mem_cgroup_is_root(memcg))
6543 page_counter_uncharge(&memcg->memory, nr_entries);
6544
6545 if (memcg != swap_memcg) {
6546 if (!mem_cgroup_is_root(swap_memcg))
6547 page_counter_charge(&swap_memcg->memsw, nr_entries);
6548 page_counter_uncharge(&memcg->memsw, nr_entries);
6549 }
6550
6551 /*
6552 * Interrupts should be disabled here because the caller holds the
6553 * i_pages lock which is taken with interrupts-off. It is
6554 * important here to have the interrupts disabled because it is the
6555 * only synchronisation we have for updating the per-CPU variables.
6556 */
6557 VM_BUG_ON(!irqs_disabled());
6558 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6559 -nr_entries);
6560 memcg_check_events(memcg, page);
6561
6562 if (!mem_cgroup_is_root(memcg))
6563 css_put_many(&memcg->css, nr_entries);
6564 }
6565
6566 /**
6567 * mem_cgroup_try_charge_swap - try charging swap space for a page
6568 * @page: page being added to swap
6569 * @entry: swap entry to charge
6570 *
6571 * Try to charge @page's memcg for the swap space at @entry.
6572 *
6573 * Returns 0 on success, -ENOMEM on failure.
6574 */
6575 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6576 {
6577 unsigned int nr_pages = hpage_nr_pages(page);
6578 struct page_counter *counter;
6579 struct mem_cgroup *memcg;
6580 unsigned short oldid;
6581
6582 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6583 return 0;
6584
6585 memcg = page->mem_cgroup;
6586
6587 /* Readahead page, never charged */
6588 if (!memcg)
6589 return 0;
6590
6591 if (!entry.val) {
6592 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6593 return 0;
6594 }
6595
6596 memcg = mem_cgroup_id_get_online(memcg);
6597
6598 if (!mem_cgroup_is_root(memcg) &&
6599 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6600 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6601 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6602 mem_cgroup_id_put(memcg);
6603 return -ENOMEM;
6604 }
6605
6606 /* Get references for the tail pages, too */
6607 if (nr_pages > 1)
6608 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6609 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6610 VM_BUG_ON_PAGE(oldid, page);
6611 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6612
6613 return 0;
6614 }
6615
6616 /**
6617 * mem_cgroup_uncharge_swap - uncharge swap space
6618 * @entry: swap entry to uncharge
6619 * @nr_pages: the amount of swap space to uncharge
6620 */
6621 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6622 {
6623 struct mem_cgroup *memcg;
6624 unsigned short id;
6625
6626 if (!do_swap_account)
6627 return;
6628
6629 id = swap_cgroup_record(entry, 0, nr_pages);
6630 rcu_read_lock();
6631 memcg = mem_cgroup_from_id(id);
6632 if (memcg) {
6633 if (!mem_cgroup_is_root(memcg)) {
6634 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6635 page_counter_uncharge(&memcg->swap, nr_pages);
6636 else
6637 page_counter_uncharge(&memcg->memsw, nr_pages);
6638 }
6639 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6640 mem_cgroup_id_put_many(memcg, nr_pages);
6641 }
6642 rcu_read_unlock();
6643 }
6644
6645 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6646 {
6647 long nr_swap_pages = get_nr_swap_pages();
6648
6649 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6650 return nr_swap_pages;
6651 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6652 nr_swap_pages = min_t(long, nr_swap_pages,
6653 READ_ONCE(memcg->swap.max) -
6654 page_counter_read(&memcg->swap));
6655 return nr_swap_pages;
6656 }
6657
6658 bool mem_cgroup_swap_full(struct page *page)
6659 {
6660 struct mem_cgroup *memcg;
6661
6662 VM_BUG_ON_PAGE(!PageLocked(page), page);
6663
6664 if (vm_swap_full())
6665 return true;
6666 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6667 return false;
6668
6669 memcg = page->mem_cgroup;
6670 if (!memcg)
6671 return false;
6672
6673 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6674 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6675 return true;
6676
6677 return false;
6678 }
6679
6680 /* for remember boot option*/
6681 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6682 static int really_do_swap_account __initdata = 1;
6683 #else
6684 static int really_do_swap_account __initdata;
6685 #endif
6686
6687 static int __init enable_swap_account(char *s)
6688 {
6689 if (!strcmp(s, "1"))
6690 really_do_swap_account = 1;
6691 else if (!strcmp(s, "0"))
6692 really_do_swap_account = 0;
6693 return 1;
6694 }
6695 __setup("swapaccount=", enable_swap_account);
6696
6697 static u64 swap_current_read(struct cgroup_subsys_state *css,
6698 struct cftype *cft)
6699 {
6700 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6701
6702 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6703 }
6704
6705 static int swap_max_show(struct seq_file *m, void *v)
6706 {
6707 return seq_puts_memcg_tunable(m,
6708 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
6709 }
6710
6711 static ssize_t swap_max_write(struct kernfs_open_file *of,
6712 char *buf, size_t nbytes, loff_t off)
6713 {
6714 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6715 unsigned long max;
6716 int err;
6717
6718 buf = strstrip(buf);
6719 err = page_counter_memparse(buf, "max", &max);
6720 if (err)
6721 return err;
6722
6723 xchg(&memcg->swap.max, max);
6724
6725 return nbytes;
6726 }
6727
6728 static int swap_events_show(struct seq_file *m, void *v)
6729 {
6730 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6731
6732 seq_printf(m, "max %lu\n",
6733 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6734 seq_printf(m, "fail %lu\n",
6735 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6736
6737 return 0;
6738 }
6739
6740 static struct cftype swap_files[] = {
6741 {
6742 .name = "swap.current",
6743 .flags = CFTYPE_NOT_ON_ROOT,
6744 .read_u64 = swap_current_read,
6745 },
6746 {
6747 .name = "swap.max",
6748 .flags = CFTYPE_NOT_ON_ROOT,
6749 .seq_show = swap_max_show,
6750 .write = swap_max_write,
6751 },
6752 {
6753 .name = "swap.events",
6754 .flags = CFTYPE_NOT_ON_ROOT,
6755 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6756 .seq_show = swap_events_show,
6757 },
6758 { } /* terminate */
6759 };
6760
6761 static struct cftype memsw_cgroup_files[] = {
6762 {
6763 .name = "memsw.usage_in_bytes",
6764 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6765 .read_u64 = mem_cgroup_read_u64,
6766 },
6767 {
6768 .name = "memsw.max_usage_in_bytes",
6769 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6770 .write = mem_cgroup_reset,
6771 .read_u64 = mem_cgroup_read_u64,
6772 },
6773 {
6774 .name = "memsw.limit_in_bytes",
6775 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6776 .write = mem_cgroup_write,
6777 .read_u64 = mem_cgroup_read_u64,
6778 },
6779 {
6780 .name = "memsw.failcnt",
6781 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6782 .write = mem_cgroup_reset,
6783 .read_u64 = mem_cgroup_read_u64,
6784 },
6785 { }, /* terminate */
6786 };
6787
6788 static int __init mem_cgroup_swap_init(void)
6789 {
6790 if (!mem_cgroup_disabled() && really_do_swap_account) {
6791 do_swap_account = 1;
6792 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6793 swap_files));
6794 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6795 memsw_cgroup_files));
6796 }
6797 return 0;
6798 }
6799 subsys_initcall(mem_cgroup_swap_init);
6800
6801 #endif /* CONFIG_MEMCG_SWAP */