]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memcontrol.c
mm: oom: add memcg to oom_control
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account 0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
129
130 /*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135 struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143
144 struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154 };
155
156 /*
157 * cgroup_event represents events which userspace want to receive.
158 */
159 struct mem_cgroup_event {
160 /*
161 * memcg which the event belongs to.
162 */
163 struct mem_cgroup *memcg;
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
177 int (*register_event)(struct mem_cgroup *memcg,
178 struct eventfd_ctx *eventfd, const char *args);
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
184 void (*unregister_event)(struct mem_cgroup *memcg,
185 struct eventfd_ctx *eventfd);
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194 };
195
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199 /* Stuffs for move charges at task migration. */
200 /*
201 * Types of charges to be moved.
202 */
203 #define MOVE_ANON 0x1U
204 #define MOVE_FILE 0x2U
205 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
206
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209 spinlock_t lock; /* for from, to */
210 struct mm_struct *mm;
211 struct mem_cgroup *from;
212 struct mem_cgroup *to;
213 unsigned long flags;
214 unsigned long precharge;
215 unsigned long moved_charge;
216 unsigned long moved_swap;
217 struct task_struct *moving_task; /* a task moving charges */
218 wait_queue_head_t waitq; /* a waitq for other context */
219 } mc = {
220 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222 };
223
224 /*
225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226 * limit reclaim to prevent infinite loops, if they ever occur.
227 */
228 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
229 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
230
231 enum charge_type {
232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233 MEM_CGROUP_CHARGE_TYPE_ANON,
234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
235 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
236 NR_CHARGE_TYPE,
237 };
238
239 /* for encoding cft->private value on file */
240 enum res_type {
241 _MEM,
242 _MEMSWAP,
243 _OOM_TYPE,
244 _KMEM,
245 _TCP,
246 };
247
248 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
250 #define MEMFILE_ATTR(val) ((val) & 0xffff)
251 /* Used for OOM nofiier */
252 #define OOM_CONTROL (0)
253
254 /* Some nice accessors for the vmpressure. */
255 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256 {
257 if (!memcg)
258 memcg = root_mem_cgroup;
259 return &memcg->vmpressure;
260 }
261
262 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263 {
264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265 }
266
267 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268 {
269 return (memcg == root_mem_cgroup);
270 }
271
272 #ifndef CONFIG_SLOB
273 /*
274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
275 * The main reason for not using cgroup id for this:
276 * this works better in sparse environments, where we have a lot of memcgs,
277 * but only a few kmem-limited. Or also, if we have, for instance, 200
278 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
279 * 200 entry array for that.
280 *
281 * The current size of the caches array is stored in memcg_nr_cache_ids. It
282 * will double each time we have to increase it.
283 */
284 static DEFINE_IDA(memcg_cache_ida);
285 int memcg_nr_cache_ids;
286
287 /* Protects memcg_nr_cache_ids */
288 static DECLARE_RWSEM(memcg_cache_ids_sem);
289
290 void memcg_get_cache_ids(void)
291 {
292 down_read(&memcg_cache_ids_sem);
293 }
294
295 void memcg_put_cache_ids(void)
296 {
297 up_read(&memcg_cache_ids_sem);
298 }
299
300 /*
301 * MIN_SIZE is different than 1, because we would like to avoid going through
302 * the alloc/free process all the time. In a small machine, 4 kmem-limited
303 * cgroups is a reasonable guess. In the future, it could be a parameter or
304 * tunable, but that is strictly not necessary.
305 *
306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307 * this constant directly from cgroup, but it is understandable that this is
308 * better kept as an internal representation in cgroup.c. In any case, the
309 * cgrp_id space is not getting any smaller, and we don't have to necessarily
310 * increase ours as well if it increases.
311 */
312 #define MEMCG_CACHES_MIN_SIZE 4
313 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314
315 /*
316 * A lot of the calls to the cache allocation functions are expected to be
317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318 * conditional to this static branch, we'll have to allow modules that does
319 * kmem_cache_alloc and the such to see this symbol as well
320 */
321 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322 EXPORT_SYMBOL(memcg_kmem_enabled_key);
323
324 #endif /* !CONFIG_SLOB */
325
326 static struct mem_cgroup_per_zone *
327 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
328 {
329 int nid = zone_to_nid(zone);
330 int zid = zone_idx(zone);
331
332 return &memcg->nodeinfo[nid]->zoneinfo[zid];
333 }
334
335 /**
336 * mem_cgroup_css_from_page - css of the memcg associated with a page
337 * @page: page of interest
338 *
339 * If memcg is bound to the default hierarchy, css of the memcg associated
340 * with @page is returned. The returned css remains associated with @page
341 * until it is released.
342 *
343 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344 * is returned.
345 */
346 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
347 {
348 struct mem_cgroup *memcg;
349
350 memcg = page->mem_cgroup;
351
352 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353 memcg = root_mem_cgroup;
354
355 return &memcg->css;
356 }
357
358 /**
359 * page_cgroup_ino - return inode number of the memcg a page is charged to
360 * @page: the page
361 *
362 * Look up the closest online ancestor of the memory cgroup @page is charged to
363 * and return its inode number or 0 if @page is not charged to any cgroup. It
364 * is safe to call this function without holding a reference to @page.
365 *
366 * Note, this function is inherently racy, because there is nothing to prevent
367 * the cgroup inode from getting torn down and potentially reallocated a moment
368 * after page_cgroup_ino() returns, so it only should be used by callers that
369 * do not care (such as procfs interfaces).
370 */
371 ino_t page_cgroup_ino(struct page *page)
372 {
373 struct mem_cgroup *memcg;
374 unsigned long ino = 0;
375
376 rcu_read_lock();
377 memcg = READ_ONCE(page->mem_cgroup);
378 while (memcg && !(memcg->css.flags & CSS_ONLINE))
379 memcg = parent_mem_cgroup(memcg);
380 if (memcg)
381 ino = cgroup_ino(memcg->css.cgroup);
382 rcu_read_unlock();
383 return ino;
384 }
385
386 static struct mem_cgroup_per_zone *
387 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
388 {
389 int nid = page_to_nid(page);
390 int zid = page_zonenum(page);
391
392 return &memcg->nodeinfo[nid]->zoneinfo[zid];
393 }
394
395 static struct mem_cgroup_tree_per_zone *
396 soft_limit_tree_node_zone(int nid, int zid)
397 {
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399 }
400
401 static struct mem_cgroup_tree_per_zone *
402 soft_limit_tree_from_page(struct page *page)
403 {
404 int nid = page_to_nid(page);
405 int zid = page_zonenum(page);
406
407 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
408 }
409
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411 struct mem_cgroup_tree_per_zone *mctz,
412 unsigned long new_usage_in_excess)
413 {
414 struct rb_node **p = &mctz->rb_root.rb_node;
415 struct rb_node *parent = NULL;
416 struct mem_cgroup_per_zone *mz_node;
417
418 if (mz->on_tree)
419 return;
420
421 mz->usage_in_excess = new_usage_in_excess;
422 if (!mz->usage_in_excess)
423 return;
424 while (*p) {
425 parent = *p;
426 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427 tree_node);
428 if (mz->usage_in_excess < mz_node->usage_in_excess)
429 p = &(*p)->rb_left;
430 /*
431 * We can't avoid mem cgroups that are over their soft
432 * limit by the same amount
433 */
434 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435 p = &(*p)->rb_right;
436 }
437 rb_link_node(&mz->tree_node, parent, p);
438 rb_insert_color(&mz->tree_node, &mctz->rb_root);
439 mz->on_tree = true;
440 }
441
442 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443 struct mem_cgroup_tree_per_zone *mctz)
444 {
445 if (!mz->on_tree)
446 return;
447 rb_erase(&mz->tree_node, &mctz->rb_root);
448 mz->on_tree = false;
449 }
450
451 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452 struct mem_cgroup_tree_per_zone *mctz)
453 {
454 unsigned long flags;
455
456 spin_lock_irqsave(&mctz->lock, flags);
457 __mem_cgroup_remove_exceeded(mz, mctz);
458 spin_unlock_irqrestore(&mctz->lock, flags);
459 }
460
461 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
462 {
463 unsigned long nr_pages = page_counter_read(&memcg->memory);
464 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465 unsigned long excess = 0;
466
467 if (nr_pages > soft_limit)
468 excess = nr_pages - soft_limit;
469
470 return excess;
471 }
472
473 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
474 {
475 unsigned long excess;
476 struct mem_cgroup_per_zone *mz;
477 struct mem_cgroup_tree_per_zone *mctz;
478
479 mctz = soft_limit_tree_from_page(page);
480 /*
481 * Necessary to update all ancestors when hierarchy is used.
482 * because their event counter is not touched.
483 */
484 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485 mz = mem_cgroup_page_zoneinfo(memcg, page);
486 excess = soft_limit_excess(memcg);
487 /*
488 * We have to update the tree if mz is on RB-tree or
489 * mem is over its softlimit.
490 */
491 if (excess || mz->on_tree) {
492 unsigned long flags;
493
494 spin_lock_irqsave(&mctz->lock, flags);
495 /* if on-tree, remove it */
496 if (mz->on_tree)
497 __mem_cgroup_remove_exceeded(mz, mctz);
498 /*
499 * Insert again. mz->usage_in_excess will be updated.
500 * If excess is 0, no tree ops.
501 */
502 __mem_cgroup_insert_exceeded(mz, mctz, excess);
503 spin_unlock_irqrestore(&mctz->lock, flags);
504 }
505 }
506 }
507
508 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
509 {
510 struct mem_cgroup_tree_per_zone *mctz;
511 struct mem_cgroup_per_zone *mz;
512 int nid, zid;
513
514 for_each_node(nid) {
515 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517 mctz = soft_limit_tree_node_zone(nid, zid);
518 mem_cgroup_remove_exceeded(mz, mctz);
519 }
520 }
521 }
522
523 static struct mem_cgroup_per_zone *
524 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525 {
526 struct rb_node *rightmost = NULL;
527 struct mem_cgroup_per_zone *mz;
528
529 retry:
530 mz = NULL;
531 rightmost = rb_last(&mctz->rb_root);
532 if (!rightmost)
533 goto done; /* Nothing to reclaim from */
534
535 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
536 /*
537 * Remove the node now but someone else can add it back,
538 * we will to add it back at the end of reclaim to its correct
539 * position in the tree.
540 */
541 __mem_cgroup_remove_exceeded(mz, mctz);
542 if (!soft_limit_excess(mz->memcg) ||
543 !css_tryget_online(&mz->memcg->css))
544 goto retry;
545 done:
546 return mz;
547 }
548
549 static struct mem_cgroup_per_zone *
550 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
551 {
552 struct mem_cgroup_per_zone *mz;
553
554 spin_lock_irq(&mctz->lock);
555 mz = __mem_cgroup_largest_soft_limit_node(mctz);
556 spin_unlock_irq(&mctz->lock);
557 return mz;
558 }
559
560 /*
561 * Return page count for single (non recursive) @memcg.
562 *
563 * Implementation Note: reading percpu statistics for memcg.
564 *
565 * Both of vmstat[] and percpu_counter has threshold and do periodic
566 * synchronization to implement "quick" read. There are trade-off between
567 * reading cost and precision of value. Then, we may have a chance to implement
568 * a periodic synchronization of counter in memcg's counter.
569 *
570 * But this _read() function is used for user interface now. The user accounts
571 * memory usage by memory cgroup and he _always_ requires exact value because
572 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573 * have to visit all online cpus and make sum. So, for now, unnecessary
574 * synchronization is not implemented. (just implemented for cpu hotplug)
575 *
576 * If there are kernel internal actions which can make use of some not-exact
577 * value, and reading all cpu value can be performance bottleneck in some
578 * common workload, threshold and synchronization as vmstat[] should be
579 * implemented.
580 */
581 static unsigned long
582 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
583 {
584 long val = 0;
585 int cpu;
586
587 /* Per-cpu values can be negative, use a signed accumulator */
588 for_each_possible_cpu(cpu)
589 val += per_cpu(memcg->stat->count[idx], cpu);
590 /*
591 * Summing races with updates, so val may be negative. Avoid exposing
592 * transient negative values.
593 */
594 if (val < 0)
595 val = 0;
596 return val;
597 }
598
599 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600 enum mem_cgroup_events_index idx)
601 {
602 unsigned long val = 0;
603 int cpu;
604
605 for_each_possible_cpu(cpu)
606 val += per_cpu(memcg->stat->events[idx], cpu);
607 return val;
608 }
609
610 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611 struct page *page,
612 bool compound, int nr_pages)
613 {
614 /*
615 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616 * counted as CACHE even if it's on ANON LRU.
617 */
618 if (PageAnon(page))
619 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620 nr_pages);
621 else
622 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623 nr_pages);
624
625 if (compound) {
626 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628 nr_pages);
629 }
630
631 /* pagein of a big page is an event. So, ignore page size */
632 if (nr_pages > 0)
633 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634 else {
635 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636 nr_pages = -nr_pages; /* for event */
637 }
638
639 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
640 }
641
642 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643 int nid, unsigned int lru_mask)
644 {
645 unsigned long nr = 0;
646 int zid;
647
648 VM_BUG_ON((unsigned)nid >= nr_node_ids);
649
650 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 struct mem_cgroup_per_zone *mz;
652 enum lru_list lru;
653
654 for_each_lru(lru) {
655 if (!(BIT(lru) & lru_mask))
656 continue;
657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 nr += mz->lru_size[lru];
659 }
660 }
661 return nr;
662 }
663
664 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665 unsigned int lru_mask)
666 {
667 unsigned long nr = 0;
668 int nid;
669
670 for_each_node_state(nid, N_MEMORY)
671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 return nr;
673 }
674
675 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 enum mem_cgroup_events_target target)
677 {
678 unsigned long val, next;
679
680 val = __this_cpu_read(memcg->stat->nr_page_events);
681 next = __this_cpu_read(memcg->stat->targets[target]);
682 /* from time_after() in jiffies.h */
683 if ((long)next - (long)val < 0) {
684 switch (target) {
685 case MEM_CGROUP_TARGET_THRESH:
686 next = val + THRESHOLDS_EVENTS_TARGET;
687 break;
688 case MEM_CGROUP_TARGET_SOFTLIMIT:
689 next = val + SOFTLIMIT_EVENTS_TARGET;
690 break;
691 case MEM_CGROUP_TARGET_NUMAINFO:
692 next = val + NUMAINFO_EVENTS_TARGET;
693 break;
694 default:
695 break;
696 }
697 __this_cpu_write(memcg->stat->targets[target], next);
698 return true;
699 }
700 return false;
701 }
702
703 /*
704 * Check events in order.
705 *
706 */
707 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708 {
709 /* threshold event is triggered in finer grain than soft limit */
710 if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 MEM_CGROUP_TARGET_THRESH))) {
712 bool do_softlimit;
713 bool do_numainfo __maybe_unused;
714
715 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 MEM_CGROUP_TARGET_SOFTLIMIT);
717 #if MAX_NUMNODES > 1
718 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 MEM_CGROUP_TARGET_NUMAINFO);
720 #endif
721 mem_cgroup_threshold(memcg);
722 if (unlikely(do_softlimit))
723 mem_cgroup_update_tree(memcg, page);
724 #if MAX_NUMNODES > 1
725 if (unlikely(do_numainfo))
726 atomic_inc(&memcg->numainfo_events);
727 #endif
728 }
729 }
730
731 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732 {
733 /*
734 * mm_update_next_owner() may clear mm->owner to NULL
735 * if it races with swapoff, page migration, etc.
736 * So this can be called with p == NULL.
737 */
738 if (unlikely(!p))
739 return NULL;
740
741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742 }
743 EXPORT_SYMBOL(mem_cgroup_from_task);
744
745 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746 {
747 struct mem_cgroup *memcg = NULL;
748
749 rcu_read_lock();
750 do {
751 /*
752 * Page cache insertions can happen withou an
753 * actual mm context, e.g. during disk probing
754 * on boot, loopback IO, acct() writes etc.
755 */
756 if (unlikely(!mm))
757 memcg = root_mem_cgroup;
758 else {
759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 if (unlikely(!memcg))
761 memcg = root_mem_cgroup;
762 }
763 } while (!css_tryget_online(&memcg->css));
764 rcu_read_unlock();
765 return memcg;
766 }
767
768 /**
769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
770 * @root: hierarchy root
771 * @prev: previously returned memcg, NULL on first invocation
772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
773 *
774 * Returns references to children of the hierarchy below @root, or
775 * @root itself, or %NULL after a full round-trip.
776 *
777 * Caller must pass the return value in @prev on subsequent
778 * invocations for reference counting, or use mem_cgroup_iter_break()
779 * to cancel a hierarchy walk before the round-trip is complete.
780 *
781 * Reclaimers can specify a zone and a priority level in @reclaim to
782 * divide up the memcgs in the hierarchy among all concurrent
783 * reclaimers operating on the same zone and priority.
784 */
785 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786 struct mem_cgroup *prev,
787 struct mem_cgroup_reclaim_cookie *reclaim)
788 {
789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790 struct cgroup_subsys_state *css = NULL;
791 struct mem_cgroup *memcg = NULL;
792 struct mem_cgroup *pos = NULL;
793
794 if (mem_cgroup_disabled())
795 return NULL;
796
797 if (!root)
798 root = root_mem_cgroup;
799
800 if (prev && !reclaim)
801 pos = prev;
802
803 if (!root->use_hierarchy && root != root_mem_cgroup) {
804 if (prev)
805 goto out;
806 return root;
807 }
808
809 rcu_read_lock();
810
811 if (reclaim) {
812 struct mem_cgroup_per_zone *mz;
813
814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 iter = &mz->iter[reclaim->priority];
816
817 if (prev && reclaim->generation != iter->generation)
818 goto out_unlock;
819
820 while (1) {
821 pos = READ_ONCE(iter->position);
822 if (!pos || css_tryget(&pos->css))
823 break;
824 /*
825 * css reference reached zero, so iter->position will
826 * be cleared by ->css_released. However, we should not
827 * rely on this happening soon, because ->css_released
828 * is called from a work queue, and by busy-waiting we
829 * might block it. So we clear iter->position right
830 * away.
831 */
832 (void)cmpxchg(&iter->position, pos, NULL);
833 }
834 }
835
836 if (pos)
837 css = &pos->css;
838
839 for (;;) {
840 css = css_next_descendant_pre(css, &root->css);
841 if (!css) {
842 /*
843 * Reclaimers share the hierarchy walk, and a
844 * new one might jump in right at the end of
845 * the hierarchy - make sure they see at least
846 * one group and restart from the beginning.
847 */
848 if (!prev)
849 continue;
850 break;
851 }
852
853 /*
854 * Verify the css and acquire a reference. The root
855 * is provided by the caller, so we know it's alive
856 * and kicking, and don't take an extra reference.
857 */
858 memcg = mem_cgroup_from_css(css);
859
860 if (css == &root->css)
861 break;
862
863 if (css_tryget(css))
864 break;
865
866 memcg = NULL;
867 }
868
869 if (reclaim) {
870 /*
871 * The position could have already been updated by a competing
872 * thread, so check that the value hasn't changed since we read
873 * it to avoid reclaiming from the same cgroup twice.
874 */
875 (void)cmpxchg(&iter->position, pos, memcg);
876
877 if (pos)
878 css_put(&pos->css);
879
880 if (!memcg)
881 iter->generation++;
882 else if (!prev)
883 reclaim->generation = iter->generation;
884 }
885
886 out_unlock:
887 rcu_read_unlock();
888 out:
889 if (prev && prev != root)
890 css_put(&prev->css);
891
892 return memcg;
893 }
894
895 /**
896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897 * @root: hierarchy root
898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899 */
900 void mem_cgroup_iter_break(struct mem_cgroup *root,
901 struct mem_cgroup *prev)
902 {
903 if (!root)
904 root = root_mem_cgroup;
905 if (prev && prev != root)
906 css_put(&prev->css);
907 }
908
909 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910 {
911 struct mem_cgroup *memcg = dead_memcg;
912 struct mem_cgroup_reclaim_iter *iter;
913 struct mem_cgroup_per_zone *mz;
914 int nid, zid;
915 int i;
916
917 while ((memcg = parent_mem_cgroup(memcg))) {
918 for_each_node(nid) {
919 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 for (i = 0; i <= DEF_PRIORITY; i++) {
922 iter = &mz->iter[i];
923 cmpxchg(&iter->position,
924 dead_memcg, NULL);
925 }
926 }
927 }
928 }
929 }
930
931 /*
932 * Iteration constructs for visiting all cgroups (under a tree). If
933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
934 * be used for reference counting.
935 */
936 #define for_each_mem_cgroup_tree(iter, root) \
937 for (iter = mem_cgroup_iter(root, NULL, NULL); \
938 iter != NULL; \
939 iter = mem_cgroup_iter(root, iter, NULL))
940
941 #define for_each_mem_cgroup(iter) \
942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
943 iter != NULL; \
944 iter = mem_cgroup_iter(NULL, iter, NULL))
945
946 /**
947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948 * @zone: zone of the wanted lruvec
949 * @memcg: memcg of the wanted lruvec
950 *
951 * Returns the lru list vector holding pages for the given @zone and
952 * @mem. This can be the global zone lruvec, if the memory controller
953 * is disabled.
954 */
955 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 struct mem_cgroup *memcg)
957 {
958 struct mem_cgroup_per_zone *mz;
959 struct lruvec *lruvec;
960
961 if (mem_cgroup_disabled()) {
962 lruvec = &zone->lruvec;
963 goto out;
964 }
965
966 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 lruvec = &mz->lruvec;
968 out:
969 /*
970 * Since a node can be onlined after the mem_cgroup was created,
971 * we have to be prepared to initialize lruvec->zone here;
972 * and if offlined then reonlined, we need to reinitialize it.
973 */
974 if (unlikely(lruvec->zone != zone))
975 lruvec->zone = zone;
976 return lruvec;
977 }
978
979 /**
980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981 * @page: the page
982 * @zone: zone of the page
983 *
984 * This function is only safe when following the LRU page isolation
985 * and putback protocol: the LRU lock must be held, and the page must
986 * either be PageLRU() or the caller must have isolated/allocated it.
987 */
988 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
989 {
990 struct mem_cgroup_per_zone *mz;
991 struct mem_cgroup *memcg;
992 struct lruvec *lruvec;
993
994 if (mem_cgroup_disabled()) {
995 lruvec = &zone->lruvec;
996 goto out;
997 }
998
999 memcg = page->mem_cgroup;
1000 /*
1001 * Swapcache readahead pages are added to the LRU - and
1002 * possibly migrated - before they are charged.
1003 */
1004 if (!memcg)
1005 memcg = root_mem_cgroup;
1006
1007 mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 lruvec = &mz->lruvec;
1009 out:
1010 /*
1011 * Since a node can be onlined after the mem_cgroup was created,
1012 * we have to be prepared to initialize lruvec->zone here;
1013 * and if offlined then reonlined, we need to reinitialize it.
1014 */
1015 if (unlikely(lruvec->zone != zone))
1016 lruvec->zone = zone;
1017 return lruvec;
1018 }
1019
1020 /**
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
1025 *
1026 * This function must be called under lru_lock, just before a page is added
1027 * to or just after a page is removed from an lru list (that ordering being
1028 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1029 */
1030 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1031 int nr_pages)
1032 {
1033 struct mem_cgroup_per_zone *mz;
1034 unsigned long *lru_size;
1035 long size;
1036 bool empty;
1037
1038 __update_lru_size(lruvec, lru, nr_pages);
1039
1040 if (mem_cgroup_disabled())
1041 return;
1042
1043 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1044 lru_size = mz->lru_size + lru;
1045 empty = list_empty(lruvec->lists + lru);
1046
1047 if (nr_pages < 0)
1048 *lru_size += nr_pages;
1049
1050 size = *lru_size;
1051 if (WARN_ONCE(size < 0 || empty != !size,
1052 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
1053 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1054 VM_BUG_ON(1);
1055 *lru_size = 0;
1056 }
1057
1058 if (nr_pages > 0)
1059 *lru_size += nr_pages;
1060 }
1061
1062 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1063 {
1064 struct mem_cgroup *task_memcg;
1065 struct task_struct *p;
1066 bool ret;
1067
1068 p = find_lock_task_mm(task);
1069 if (p) {
1070 task_memcg = get_mem_cgroup_from_mm(p->mm);
1071 task_unlock(p);
1072 } else {
1073 /*
1074 * All threads may have already detached their mm's, but the oom
1075 * killer still needs to detect if they have already been oom
1076 * killed to prevent needlessly killing additional tasks.
1077 */
1078 rcu_read_lock();
1079 task_memcg = mem_cgroup_from_task(task);
1080 css_get(&task_memcg->css);
1081 rcu_read_unlock();
1082 }
1083 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1084 css_put(&task_memcg->css);
1085 return ret;
1086 }
1087
1088 /**
1089 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1090 * @memcg: the memory cgroup
1091 *
1092 * Returns the maximum amount of memory @mem can be charged with, in
1093 * pages.
1094 */
1095 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1096 {
1097 unsigned long margin = 0;
1098 unsigned long count;
1099 unsigned long limit;
1100
1101 count = page_counter_read(&memcg->memory);
1102 limit = READ_ONCE(memcg->memory.limit);
1103 if (count < limit)
1104 margin = limit - count;
1105
1106 if (do_memsw_account()) {
1107 count = page_counter_read(&memcg->memsw);
1108 limit = READ_ONCE(memcg->memsw.limit);
1109 if (count <= limit)
1110 margin = min(margin, limit - count);
1111 else
1112 margin = 0;
1113 }
1114
1115 return margin;
1116 }
1117
1118 /*
1119 * A routine for checking "mem" is under move_account() or not.
1120 *
1121 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1122 * moving cgroups. This is for waiting at high-memory pressure
1123 * caused by "move".
1124 */
1125 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1126 {
1127 struct mem_cgroup *from;
1128 struct mem_cgroup *to;
1129 bool ret = false;
1130 /*
1131 * Unlike task_move routines, we access mc.to, mc.from not under
1132 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1133 */
1134 spin_lock(&mc.lock);
1135 from = mc.from;
1136 to = mc.to;
1137 if (!from)
1138 goto unlock;
1139
1140 ret = mem_cgroup_is_descendant(from, memcg) ||
1141 mem_cgroup_is_descendant(to, memcg);
1142 unlock:
1143 spin_unlock(&mc.lock);
1144 return ret;
1145 }
1146
1147 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1148 {
1149 if (mc.moving_task && current != mc.moving_task) {
1150 if (mem_cgroup_under_move(memcg)) {
1151 DEFINE_WAIT(wait);
1152 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1153 /* moving charge context might have finished. */
1154 if (mc.moving_task)
1155 schedule();
1156 finish_wait(&mc.waitq, &wait);
1157 return true;
1158 }
1159 }
1160 return false;
1161 }
1162
1163 #define K(x) ((x) << (PAGE_SHIFT-10))
1164 /**
1165 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1166 * @memcg: The memory cgroup that went over limit
1167 * @p: Task that is going to be killed
1168 *
1169 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1170 * enabled
1171 */
1172 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1173 {
1174 struct mem_cgroup *iter;
1175 unsigned int i;
1176
1177 rcu_read_lock();
1178
1179 if (p) {
1180 pr_info("Task in ");
1181 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1182 pr_cont(" killed as a result of limit of ");
1183 } else {
1184 pr_info("Memory limit reached of cgroup ");
1185 }
1186
1187 pr_cont_cgroup_path(memcg->css.cgroup);
1188 pr_cont("\n");
1189
1190 rcu_read_unlock();
1191
1192 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1193 K((u64)page_counter_read(&memcg->memory)),
1194 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1195 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1196 K((u64)page_counter_read(&memcg->memsw)),
1197 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1198 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1199 K((u64)page_counter_read(&memcg->kmem)),
1200 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1201
1202 for_each_mem_cgroup_tree(iter, memcg) {
1203 pr_info("Memory cgroup stats for ");
1204 pr_cont_cgroup_path(iter->css.cgroup);
1205 pr_cont(":");
1206
1207 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1208 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1209 continue;
1210 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1211 K(mem_cgroup_read_stat(iter, i)));
1212 }
1213
1214 for (i = 0; i < NR_LRU_LISTS; i++)
1215 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1216 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1217
1218 pr_cont("\n");
1219 }
1220 }
1221
1222 /*
1223 * This function returns the number of memcg under hierarchy tree. Returns
1224 * 1(self count) if no children.
1225 */
1226 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1227 {
1228 int num = 0;
1229 struct mem_cgroup *iter;
1230
1231 for_each_mem_cgroup_tree(iter, memcg)
1232 num++;
1233 return num;
1234 }
1235
1236 /*
1237 * Return the memory (and swap, if configured) limit for a memcg.
1238 */
1239 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1240 {
1241 unsigned long limit;
1242
1243 limit = memcg->memory.limit;
1244 if (mem_cgroup_swappiness(memcg)) {
1245 unsigned long memsw_limit;
1246 unsigned long swap_limit;
1247
1248 memsw_limit = memcg->memsw.limit;
1249 swap_limit = memcg->swap.limit;
1250 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1251 limit = min(limit + swap_limit, memsw_limit);
1252 }
1253 return limit;
1254 }
1255
1256 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1257 int order)
1258 {
1259 struct oom_control oc = {
1260 .zonelist = NULL,
1261 .nodemask = NULL,
1262 .memcg = memcg,
1263 .gfp_mask = gfp_mask,
1264 .order = order,
1265 };
1266 struct mem_cgroup *iter;
1267 unsigned long chosen_points = 0;
1268 unsigned long totalpages;
1269 unsigned int points = 0;
1270 struct task_struct *chosen = NULL;
1271
1272 mutex_lock(&oom_lock);
1273
1274 /*
1275 * If current has a pending SIGKILL or is exiting, then automatically
1276 * select it. The goal is to allow it to allocate so that it may
1277 * quickly exit and free its memory.
1278 */
1279 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1280 mark_oom_victim(current);
1281 try_oom_reaper(current);
1282 goto unlock;
1283 }
1284
1285 check_panic_on_oom(&oc, CONSTRAINT_MEMCG);
1286 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1287 for_each_mem_cgroup_tree(iter, memcg) {
1288 struct css_task_iter it;
1289 struct task_struct *task;
1290
1291 css_task_iter_start(&iter->css, &it);
1292 while ((task = css_task_iter_next(&it))) {
1293 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1294 case OOM_SCAN_SELECT:
1295 if (chosen)
1296 put_task_struct(chosen);
1297 chosen = task;
1298 chosen_points = ULONG_MAX;
1299 get_task_struct(chosen);
1300 /* fall through */
1301 case OOM_SCAN_CONTINUE:
1302 continue;
1303 case OOM_SCAN_ABORT:
1304 css_task_iter_end(&it);
1305 mem_cgroup_iter_break(memcg, iter);
1306 if (chosen)
1307 put_task_struct(chosen);
1308 /* Set a dummy value to return "true". */
1309 chosen = (void *) 1;
1310 goto unlock;
1311 case OOM_SCAN_OK:
1312 break;
1313 };
1314 points = oom_badness(task, memcg, NULL, totalpages);
1315 if (!points || points < chosen_points)
1316 continue;
1317 /* Prefer thread group leaders for display purposes */
1318 if (points == chosen_points &&
1319 thread_group_leader(chosen))
1320 continue;
1321
1322 if (chosen)
1323 put_task_struct(chosen);
1324 chosen = task;
1325 chosen_points = points;
1326 get_task_struct(chosen);
1327 }
1328 css_task_iter_end(&it);
1329 }
1330
1331 if (chosen) {
1332 points = chosen_points * 1000 / totalpages;
1333 oom_kill_process(&oc, chosen, points, totalpages,
1334 "Memory cgroup out of memory");
1335 }
1336 unlock:
1337 mutex_unlock(&oom_lock);
1338 return chosen;
1339 }
1340
1341 #if MAX_NUMNODES > 1
1342
1343 /**
1344 * test_mem_cgroup_node_reclaimable
1345 * @memcg: the target memcg
1346 * @nid: the node ID to be checked.
1347 * @noswap : specify true here if the user wants flle only information.
1348 *
1349 * This function returns whether the specified memcg contains any
1350 * reclaimable pages on a node. Returns true if there are any reclaimable
1351 * pages in the node.
1352 */
1353 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1354 int nid, bool noswap)
1355 {
1356 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1357 return true;
1358 if (noswap || !total_swap_pages)
1359 return false;
1360 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1361 return true;
1362 return false;
1363
1364 }
1365
1366 /*
1367 * Always updating the nodemask is not very good - even if we have an empty
1368 * list or the wrong list here, we can start from some node and traverse all
1369 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1370 *
1371 */
1372 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1373 {
1374 int nid;
1375 /*
1376 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1377 * pagein/pageout changes since the last update.
1378 */
1379 if (!atomic_read(&memcg->numainfo_events))
1380 return;
1381 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1382 return;
1383
1384 /* make a nodemask where this memcg uses memory from */
1385 memcg->scan_nodes = node_states[N_MEMORY];
1386
1387 for_each_node_mask(nid, node_states[N_MEMORY]) {
1388
1389 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1390 node_clear(nid, memcg->scan_nodes);
1391 }
1392
1393 atomic_set(&memcg->numainfo_events, 0);
1394 atomic_set(&memcg->numainfo_updating, 0);
1395 }
1396
1397 /*
1398 * Selecting a node where we start reclaim from. Because what we need is just
1399 * reducing usage counter, start from anywhere is O,K. Considering
1400 * memory reclaim from current node, there are pros. and cons.
1401 *
1402 * Freeing memory from current node means freeing memory from a node which
1403 * we'll use or we've used. So, it may make LRU bad. And if several threads
1404 * hit limits, it will see a contention on a node. But freeing from remote
1405 * node means more costs for memory reclaim because of memory latency.
1406 *
1407 * Now, we use round-robin. Better algorithm is welcomed.
1408 */
1409 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1410 {
1411 int node;
1412
1413 mem_cgroup_may_update_nodemask(memcg);
1414 node = memcg->last_scanned_node;
1415
1416 node = next_node_in(node, memcg->scan_nodes);
1417 /*
1418 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1419 * last time it really checked all the LRUs due to rate limiting.
1420 * Fallback to the current node in that case for simplicity.
1421 */
1422 if (unlikely(node == MAX_NUMNODES))
1423 node = numa_node_id();
1424
1425 memcg->last_scanned_node = node;
1426 return node;
1427 }
1428 #else
1429 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1430 {
1431 return 0;
1432 }
1433 #endif
1434
1435 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1436 struct zone *zone,
1437 gfp_t gfp_mask,
1438 unsigned long *total_scanned)
1439 {
1440 struct mem_cgroup *victim = NULL;
1441 int total = 0;
1442 int loop = 0;
1443 unsigned long excess;
1444 unsigned long nr_scanned;
1445 struct mem_cgroup_reclaim_cookie reclaim = {
1446 .zone = zone,
1447 .priority = 0,
1448 };
1449
1450 excess = soft_limit_excess(root_memcg);
1451
1452 while (1) {
1453 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1454 if (!victim) {
1455 loop++;
1456 if (loop >= 2) {
1457 /*
1458 * If we have not been able to reclaim
1459 * anything, it might because there are
1460 * no reclaimable pages under this hierarchy
1461 */
1462 if (!total)
1463 break;
1464 /*
1465 * We want to do more targeted reclaim.
1466 * excess >> 2 is not to excessive so as to
1467 * reclaim too much, nor too less that we keep
1468 * coming back to reclaim from this cgroup
1469 */
1470 if (total >= (excess >> 2) ||
1471 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1472 break;
1473 }
1474 continue;
1475 }
1476 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1477 zone, &nr_scanned);
1478 *total_scanned += nr_scanned;
1479 if (!soft_limit_excess(root_memcg))
1480 break;
1481 }
1482 mem_cgroup_iter_break(root_memcg, victim);
1483 return total;
1484 }
1485
1486 #ifdef CONFIG_LOCKDEP
1487 static struct lockdep_map memcg_oom_lock_dep_map = {
1488 .name = "memcg_oom_lock",
1489 };
1490 #endif
1491
1492 static DEFINE_SPINLOCK(memcg_oom_lock);
1493
1494 /*
1495 * Check OOM-Killer is already running under our hierarchy.
1496 * If someone is running, return false.
1497 */
1498 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1499 {
1500 struct mem_cgroup *iter, *failed = NULL;
1501
1502 spin_lock(&memcg_oom_lock);
1503
1504 for_each_mem_cgroup_tree(iter, memcg) {
1505 if (iter->oom_lock) {
1506 /*
1507 * this subtree of our hierarchy is already locked
1508 * so we cannot give a lock.
1509 */
1510 failed = iter;
1511 mem_cgroup_iter_break(memcg, iter);
1512 break;
1513 } else
1514 iter->oom_lock = true;
1515 }
1516
1517 if (failed) {
1518 /*
1519 * OK, we failed to lock the whole subtree so we have
1520 * to clean up what we set up to the failing subtree
1521 */
1522 for_each_mem_cgroup_tree(iter, memcg) {
1523 if (iter == failed) {
1524 mem_cgroup_iter_break(memcg, iter);
1525 break;
1526 }
1527 iter->oom_lock = false;
1528 }
1529 } else
1530 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1531
1532 spin_unlock(&memcg_oom_lock);
1533
1534 return !failed;
1535 }
1536
1537 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1538 {
1539 struct mem_cgroup *iter;
1540
1541 spin_lock(&memcg_oom_lock);
1542 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1543 for_each_mem_cgroup_tree(iter, memcg)
1544 iter->oom_lock = false;
1545 spin_unlock(&memcg_oom_lock);
1546 }
1547
1548 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1549 {
1550 struct mem_cgroup *iter;
1551
1552 spin_lock(&memcg_oom_lock);
1553 for_each_mem_cgroup_tree(iter, memcg)
1554 iter->under_oom++;
1555 spin_unlock(&memcg_oom_lock);
1556 }
1557
1558 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1559 {
1560 struct mem_cgroup *iter;
1561
1562 /*
1563 * When a new child is created while the hierarchy is under oom,
1564 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1565 */
1566 spin_lock(&memcg_oom_lock);
1567 for_each_mem_cgroup_tree(iter, memcg)
1568 if (iter->under_oom > 0)
1569 iter->under_oom--;
1570 spin_unlock(&memcg_oom_lock);
1571 }
1572
1573 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1574
1575 struct oom_wait_info {
1576 struct mem_cgroup *memcg;
1577 wait_queue_t wait;
1578 };
1579
1580 static int memcg_oom_wake_function(wait_queue_t *wait,
1581 unsigned mode, int sync, void *arg)
1582 {
1583 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1584 struct mem_cgroup *oom_wait_memcg;
1585 struct oom_wait_info *oom_wait_info;
1586
1587 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1588 oom_wait_memcg = oom_wait_info->memcg;
1589
1590 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1591 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1592 return 0;
1593 return autoremove_wake_function(wait, mode, sync, arg);
1594 }
1595
1596 static void memcg_oom_recover(struct mem_cgroup *memcg)
1597 {
1598 /*
1599 * For the following lockless ->under_oom test, the only required
1600 * guarantee is that it must see the state asserted by an OOM when
1601 * this function is called as a result of userland actions
1602 * triggered by the notification of the OOM. This is trivially
1603 * achieved by invoking mem_cgroup_mark_under_oom() before
1604 * triggering notification.
1605 */
1606 if (memcg && memcg->under_oom)
1607 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1608 }
1609
1610 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1611 {
1612 if (!current->memcg_may_oom)
1613 return;
1614 /*
1615 * We are in the middle of the charge context here, so we
1616 * don't want to block when potentially sitting on a callstack
1617 * that holds all kinds of filesystem and mm locks.
1618 *
1619 * Also, the caller may handle a failed allocation gracefully
1620 * (like optional page cache readahead) and so an OOM killer
1621 * invocation might not even be necessary.
1622 *
1623 * That's why we don't do anything here except remember the
1624 * OOM context and then deal with it at the end of the page
1625 * fault when the stack is unwound, the locks are released,
1626 * and when we know whether the fault was overall successful.
1627 */
1628 css_get(&memcg->css);
1629 current->memcg_in_oom = memcg;
1630 current->memcg_oom_gfp_mask = mask;
1631 current->memcg_oom_order = order;
1632 }
1633
1634 /**
1635 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1636 * @handle: actually kill/wait or just clean up the OOM state
1637 *
1638 * This has to be called at the end of a page fault if the memcg OOM
1639 * handler was enabled.
1640 *
1641 * Memcg supports userspace OOM handling where failed allocations must
1642 * sleep on a waitqueue until the userspace task resolves the
1643 * situation. Sleeping directly in the charge context with all kinds
1644 * of locks held is not a good idea, instead we remember an OOM state
1645 * in the task and mem_cgroup_oom_synchronize() has to be called at
1646 * the end of the page fault to complete the OOM handling.
1647 *
1648 * Returns %true if an ongoing memcg OOM situation was detected and
1649 * completed, %false otherwise.
1650 */
1651 bool mem_cgroup_oom_synchronize(bool handle)
1652 {
1653 struct mem_cgroup *memcg = current->memcg_in_oom;
1654 struct oom_wait_info owait;
1655 bool locked;
1656
1657 /* OOM is global, do not handle */
1658 if (!memcg)
1659 return false;
1660
1661 if (!handle || oom_killer_disabled)
1662 goto cleanup;
1663
1664 owait.memcg = memcg;
1665 owait.wait.flags = 0;
1666 owait.wait.func = memcg_oom_wake_function;
1667 owait.wait.private = current;
1668 INIT_LIST_HEAD(&owait.wait.task_list);
1669
1670 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1671 mem_cgroup_mark_under_oom(memcg);
1672
1673 locked = mem_cgroup_oom_trylock(memcg);
1674
1675 if (locked)
1676 mem_cgroup_oom_notify(memcg);
1677
1678 if (locked && !memcg->oom_kill_disable) {
1679 mem_cgroup_unmark_under_oom(memcg);
1680 finish_wait(&memcg_oom_waitq, &owait.wait);
1681 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1682 current->memcg_oom_order);
1683 } else {
1684 schedule();
1685 mem_cgroup_unmark_under_oom(memcg);
1686 finish_wait(&memcg_oom_waitq, &owait.wait);
1687 }
1688
1689 if (locked) {
1690 mem_cgroup_oom_unlock(memcg);
1691 /*
1692 * There is no guarantee that an OOM-lock contender
1693 * sees the wakeups triggered by the OOM kill
1694 * uncharges. Wake any sleepers explicitely.
1695 */
1696 memcg_oom_recover(memcg);
1697 }
1698 cleanup:
1699 current->memcg_in_oom = NULL;
1700 css_put(&memcg->css);
1701 return true;
1702 }
1703
1704 /**
1705 * lock_page_memcg - lock a page->mem_cgroup binding
1706 * @page: the page
1707 *
1708 * This function protects unlocked LRU pages from being moved to
1709 * another cgroup and stabilizes their page->mem_cgroup binding.
1710 */
1711 void lock_page_memcg(struct page *page)
1712 {
1713 struct mem_cgroup *memcg;
1714 unsigned long flags;
1715
1716 /*
1717 * The RCU lock is held throughout the transaction. The fast
1718 * path can get away without acquiring the memcg->move_lock
1719 * because page moving starts with an RCU grace period.
1720 */
1721 rcu_read_lock();
1722
1723 if (mem_cgroup_disabled())
1724 return;
1725 again:
1726 memcg = page->mem_cgroup;
1727 if (unlikely(!memcg))
1728 return;
1729
1730 if (atomic_read(&memcg->moving_account) <= 0)
1731 return;
1732
1733 spin_lock_irqsave(&memcg->move_lock, flags);
1734 if (memcg != page->mem_cgroup) {
1735 spin_unlock_irqrestore(&memcg->move_lock, flags);
1736 goto again;
1737 }
1738
1739 /*
1740 * When charge migration first begins, we can have locked and
1741 * unlocked page stat updates happening concurrently. Track
1742 * the task who has the lock for unlock_page_memcg().
1743 */
1744 memcg->move_lock_task = current;
1745 memcg->move_lock_flags = flags;
1746
1747 return;
1748 }
1749 EXPORT_SYMBOL(lock_page_memcg);
1750
1751 /**
1752 * unlock_page_memcg - unlock a page->mem_cgroup binding
1753 * @page: the page
1754 */
1755 void unlock_page_memcg(struct page *page)
1756 {
1757 struct mem_cgroup *memcg = page->mem_cgroup;
1758
1759 if (memcg && memcg->move_lock_task == current) {
1760 unsigned long flags = memcg->move_lock_flags;
1761
1762 memcg->move_lock_task = NULL;
1763 memcg->move_lock_flags = 0;
1764
1765 spin_unlock_irqrestore(&memcg->move_lock, flags);
1766 }
1767
1768 rcu_read_unlock();
1769 }
1770 EXPORT_SYMBOL(unlock_page_memcg);
1771
1772 /*
1773 * size of first charge trial. "32" comes from vmscan.c's magic value.
1774 * TODO: maybe necessary to use big numbers in big irons.
1775 */
1776 #define CHARGE_BATCH 32U
1777 struct memcg_stock_pcp {
1778 struct mem_cgroup *cached; /* this never be root cgroup */
1779 unsigned int nr_pages;
1780 struct work_struct work;
1781 unsigned long flags;
1782 #define FLUSHING_CACHED_CHARGE 0
1783 };
1784 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1785 static DEFINE_MUTEX(percpu_charge_mutex);
1786
1787 /**
1788 * consume_stock: Try to consume stocked charge on this cpu.
1789 * @memcg: memcg to consume from.
1790 * @nr_pages: how many pages to charge.
1791 *
1792 * The charges will only happen if @memcg matches the current cpu's memcg
1793 * stock, and at least @nr_pages are available in that stock. Failure to
1794 * service an allocation will refill the stock.
1795 *
1796 * returns true if successful, false otherwise.
1797 */
1798 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1799 {
1800 struct memcg_stock_pcp *stock;
1801 bool ret = false;
1802
1803 if (nr_pages > CHARGE_BATCH)
1804 return ret;
1805
1806 stock = &get_cpu_var(memcg_stock);
1807 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1808 stock->nr_pages -= nr_pages;
1809 ret = true;
1810 }
1811 put_cpu_var(memcg_stock);
1812 return ret;
1813 }
1814
1815 /*
1816 * Returns stocks cached in percpu and reset cached information.
1817 */
1818 static void drain_stock(struct memcg_stock_pcp *stock)
1819 {
1820 struct mem_cgroup *old = stock->cached;
1821
1822 if (stock->nr_pages) {
1823 page_counter_uncharge(&old->memory, stock->nr_pages);
1824 if (do_memsw_account())
1825 page_counter_uncharge(&old->memsw, stock->nr_pages);
1826 css_put_many(&old->css, stock->nr_pages);
1827 stock->nr_pages = 0;
1828 }
1829 stock->cached = NULL;
1830 }
1831
1832 /*
1833 * This must be called under preempt disabled or must be called by
1834 * a thread which is pinned to local cpu.
1835 */
1836 static void drain_local_stock(struct work_struct *dummy)
1837 {
1838 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1839 drain_stock(stock);
1840 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1841 }
1842
1843 /*
1844 * Cache charges(val) to local per_cpu area.
1845 * This will be consumed by consume_stock() function, later.
1846 */
1847 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1848 {
1849 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1850
1851 if (stock->cached != memcg) { /* reset if necessary */
1852 drain_stock(stock);
1853 stock->cached = memcg;
1854 }
1855 stock->nr_pages += nr_pages;
1856 put_cpu_var(memcg_stock);
1857 }
1858
1859 /*
1860 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1861 * of the hierarchy under it.
1862 */
1863 static void drain_all_stock(struct mem_cgroup *root_memcg)
1864 {
1865 int cpu, curcpu;
1866
1867 /* If someone's already draining, avoid adding running more workers. */
1868 if (!mutex_trylock(&percpu_charge_mutex))
1869 return;
1870 /* Notify other cpus that system-wide "drain" is running */
1871 get_online_cpus();
1872 curcpu = get_cpu();
1873 for_each_online_cpu(cpu) {
1874 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1875 struct mem_cgroup *memcg;
1876
1877 memcg = stock->cached;
1878 if (!memcg || !stock->nr_pages)
1879 continue;
1880 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1881 continue;
1882 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1883 if (cpu == curcpu)
1884 drain_local_stock(&stock->work);
1885 else
1886 schedule_work_on(cpu, &stock->work);
1887 }
1888 }
1889 put_cpu();
1890 put_online_cpus();
1891 mutex_unlock(&percpu_charge_mutex);
1892 }
1893
1894 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1895 unsigned long action,
1896 void *hcpu)
1897 {
1898 int cpu = (unsigned long)hcpu;
1899 struct memcg_stock_pcp *stock;
1900
1901 if (action == CPU_ONLINE)
1902 return NOTIFY_OK;
1903
1904 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1905 return NOTIFY_OK;
1906
1907 stock = &per_cpu(memcg_stock, cpu);
1908 drain_stock(stock);
1909 return NOTIFY_OK;
1910 }
1911
1912 static void reclaim_high(struct mem_cgroup *memcg,
1913 unsigned int nr_pages,
1914 gfp_t gfp_mask)
1915 {
1916 do {
1917 if (page_counter_read(&memcg->memory) <= memcg->high)
1918 continue;
1919 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1920 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1921 } while ((memcg = parent_mem_cgroup(memcg)));
1922 }
1923
1924 static void high_work_func(struct work_struct *work)
1925 {
1926 struct mem_cgroup *memcg;
1927
1928 memcg = container_of(work, struct mem_cgroup, high_work);
1929 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1930 }
1931
1932 /*
1933 * Scheduled by try_charge() to be executed from the userland return path
1934 * and reclaims memory over the high limit.
1935 */
1936 void mem_cgroup_handle_over_high(void)
1937 {
1938 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1939 struct mem_cgroup *memcg;
1940
1941 if (likely(!nr_pages))
1942 return;
1943
1944 memcg = get_mem_cgroup_from_mm(current->mm);
1945 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1946 css_put(&memcg->css);
1947 current->memcg_nr_pages_over_high = 0;
1948 }
1949
1950 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1951 unsigned int nr_pages)
1952 {
1953 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1954 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1955 struct mem_cgroup *mem_over_limit;
1956 struct page_counter *counter;
1957 unsigned long nr_reclaimed;
1958 bool may_swap = true;
1959 bool drained = false;
1960
1961 if (mem_cgroup_is_root(memcg))
1962 return 0;
1963 retry:
1964 if (consume_stock(memcg, nr_pages))
1965 return 0;
1966
1967 if (!do_memsw_account() ||
1968 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1969 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1970 goto done_restock;
1971 if (do_memsw_account())
1972 page_counter_uncharge(&memcg->memsw, batch);
1973 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1974 } else {
1975 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1976 may_swap = false;
1977 }
1978
1979 if (batch > nr_pages) {
1980 batch = nr_pages;
1981 goto retry;
1982 }
1983
1984 /*
1985 * Unlike in global OOM situations, memcg is not in a physical
1986 * memory shortage. Allow dying and OOM-killed tasks to
1987 * bypass the last charges so that they can exit quickly and
1988 * free their memory.
1989 */
1990 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1991 fatal_signal_pending(current) ||
1992 current->flags & PF_EXITING))
1993 goto force;
1994
1995 if (unlikely(task_in_memcg_oom(current)))
1996 goto nomem;
1997
1998 if (!gfpflags_allow_blocking(gfp_mask))
1999 goto nomem;
2000
2001 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2002
2003 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2004 gfp_mask, may_swap);
2005
2006 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2007 goto retry;
2008
2009 if (!drained) {
2010 drain_all_stock(mem_over_limit);
2011 drained = true;
2012 goto retry;
2013 }
2014
2015 if (gfp_mask & __GFP_NORETRY)
2016 goto nomem;
2017 /*
2018 * Even though the limit is exceeded at this point, reclaim
2019 * may have been able to free some pages. Retry the charge
2020 * before killing the task.
2021 *
2022 * Only for regular pages, though: huge pages are rather
2023 * unlikely to succeed so close to the limit, and we fall back
2024 * to regular pages anyway in case of failure.
2025 */
2026 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2027 goto retry;
2028 /*
2029 * At task move, charge accounts can be doubly counted. So, it's
2030 * better to wait until the end of task_move if something is going on.
2031 */
2032 if (mem_cgroup_wait_acct_move(mem_over_limit))
2033 goto retry;
2034
2035 if (nr_retries--)
2036 goto retry;
2037
2038 if (gfp_mask & __GFP_NOFAIL)
2039 goto force;
2040
2041 if (fatal_signal_pending(current))
2042 goto force;
2043
2044 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2045
2046 mem_cgroup_oom(mem_over_limit, gfp_mask,
2047 get_order(nr_pages * PAGE_SIZE));
2048 nomem:
2049 if (!(gfp_mask & __GFP_NOFAIL))
2050 return -ENOMEM;
2051 force:
2052 /*
2053 * The allocation either can't fail or will lead to more memory
2054 * being freed very soon. Allow memory usage go over the limit
2055 * temporarily by force charging it.
2056 */
2057 page_counter_charge(&memcg->memory, nr_pages);
2058 if (do_memsw_account())
2059 page_counter_charge(&memcg->memsw, nr_pages);
2060 css_get_many(&memcg->css, nr_pages);
2061
2062 return 0;
2063
2064 done_restock:
2065 css_get_many(&memcg->css, batch);
2066 if (batch > nr_pages)
2067 refill_stock(memcg, batch - nr_pages);
2068
2069 /*
2070 * If the hierarchy is above the normal consumption range, schedule
2071 * reclaim on returning to userland. We can perform reclaim here
2072 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2073 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2074 * not recorded as it most likely matches current's and won't
2075 * change in the meantime. As high limit is checked again before
2076 * reclaim, the cost of mismatch is negligible.
2077 */
2078 do {
2079 if (page_counter_read(&memcg->memory) > memcg->high) {
2080 /* Don't bother a random interrupted task */
2081 if (in_interrupt()) {
2082 schedule_work(&memcg->high_work);
2083 break;
2084 }
2085 current->memcg_nr_pages_over_high += batch;
2086 set_notify_resume(current);
2087 break;
2088 }
2089 } while ((memcg = parent_mem_cgroup(memcg)));
2090
2091 return 0;
2092 }
2093
2094 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2095 {
2096 if (mem_cgroup_is_root(memcg))
2097 return;
2098
2099 page_counter_uncharge(&memcg->memory, nr_pages);
2100 if (do_memsw_account())
2101 page_counter_uncharge(&memcg->memsw, nr_pages);
2102
2103 css_put_many(&memcg->css, nr_pages);
2104 }
2105
2106 static void lock_page_lru(struct page *page, int *isolated)
2107 {
2108 struct zone *zone = page_zone(page);
2109
2110 spin_lock_irq(&zone->lru_lock);
2111 if (PageLRU(page)) {
2112 struct lruvec *lruvec;
2113
2114 lruvec = mem_cgroup_page_lruvec(page, zone);
2115 ClearPageLRU(page);
2116 del_page_from_lru_list(page, lruvec, page_lru(page));
2117 *isolated = 1;
2118 } else
2119 *isolated = 0;
2120 }
2121
2122 static void unlock_page_lru(struct page *page, int isolated)
2123 {
2124 struct zone *zone = page_zone(page);
2125
2126 if (isolated) {
2127 struct lruvec *lruvec;
2128
2129 lruvec = mem_cgroup_page_lruvec(page, zone);
2130 VM_BUG_ON_PAGE(PageLRU(page), page);
2131 SetPageLRU(page);
2132 add_page_to_lru_list(page, lruvec, page_lru(page));
2133 }
2134 spin_unlock_irq(&zone->lru_lock);
2135 }
2136
2137 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2138 bool lrucare)
2139 {
2140 int isolated;
2141
2142 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2143
2144 /*
2145 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2146 * may already be on some other mem_cgroup's LRU. Take care of it.
2147 */
2148 if (lrucare)
2149 lock_page_lru(page, &isolated);
2150
2151 /*
2152 * Nobody should be changing or seriously looking at
2153 * page->mem_cgroup at this point:
2154 *
2155 * - the page is uncharged
2156 *
2157 * - the page is off-LRU
2158 *
2159 * - an anonymous fault has exclusive page access, except for
2160 * a locked page table
2161 *
2162 * - a page cache insertion, a swapin fault, or a migration
2163 * have the page locked
2164 */
2165 page->mem_cgroup = memcg;
2166
2167 if (lrucare)
2168 unlock_page_lru(page, isolated);
2169 }
2170
2171 #ifndef CONFIG_SLOB
2172 static int memcg_alloc_cache_id(void)
2173 {
2174 int id, size;
2175 int err;
2176
2177 id = ida_simple_get(&memcg_cache_ida,
2178 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2179 if (id < 0)
2180 return id;
2181
2182 if (id < memcg_nr_cache_ids)
2183 return id;
2184
2185 /*
2186 * There's no space for the new id in memcg_caches arrays,
2187 * so we have to grow them.
2188 */
2189 down_write(&memcg_cache_ids_sem);
2190
2191 size = 2 * (id + 1);
2192 if (size < MEMCG_CACHES_MIN_SIZE)
2193 size = MEMCG_CACHES_MIN_SIZE;
2194 else if (size > MEMCG_CACHES_MAX_SIZE)
2195 size = MEMCG_CACHES_MAX_SIZE;
2196
2197 err = memcg_update_all_caches(size);
2198 if (!err)
2199 err = memcg_update_all_list_lrus(size);
2200 if (!err)
2201 memcg_nr_cache_ids = size;
2202
2203 up_write(&memcg_cache_ids_sem);
2204
2205 if (err) {
2206 ida_simple_remove(&memcg_cache_ida, id);
2207 return err;
2208 }
2209 return id;
2210 }
2211
2212 static void memcg_free_cache_id(int id)
2213 {
2214 ida_simple_remove(&memcg_cache_ida, id);
2215 }
2216
2217 struct memcg_kmem_cache_create_work {
2218 struct mem_cgroup *memcg;
2219 struct kmem_cache *cachep;
2220 struct work_struct work;
2221 };
2222
2223 static void memcg_kmem_cache_create_func(struct work_struct *w)
2224 {
2225 struct memcg_kmem_cache_create_work *cw =
2226 container_of(w, struct memcg_kmem_cache_create_work, work);
2227 struct mem_cgroup *memcg = cw->memcg;
2228 struct kmem_cache *cachep = cw->cachep;
2229
2230 memcg_create_kmem_cache(memcg, cachep);
2231
2232 css_put(&memcg->css);
2233 kfree(cw);
2234 }
2235
2236 /*
2237 * Enqueue the creation of a per-memcg kmem_cache.
2238 */
2239 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2240 struct kmem_cache *cachep)
2241 {
2242 struct memcg_kmem_cache_create_work *cw;
2243
2244 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2245 if (!cw)
2246 return;
2247
2248 css_get(&memcg->css);
2249
2250 cw->memcg = memcg;
2251 cw->cachep = cachep;
2252 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2253
2254 schedule_work(&cw->work);
2255 }
2256
2257 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2258 struct kmem_cache *cachep)
2259 {
2260 /*
2261 * We need to stop accounting when we kmalloc, because if the
2262 * corresponding kmalloc cache is not yet created, the first allocation
2263 * in __memcg_schedule_kmem_cache_create will recurse.
2264 *
2265 * However, it is better to enclose the whole function. Depending on
2266 * the debugging options enabled, INIT_WORK(), for instance, can
2267 * trigger an allocation. This too, will make us recurse. Because at
2268 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2269 * the safest choice is to do it like this, wrapping the whole function.
2270 */
2271 current->memcg_kmem_skip_account = 1;
2272 __memcg_schedule_kmem_cache_create(memcg, cachep);
2273 current->memcg_kmem_skip_account = 0;
2274 }
2275
2276 /*
2277 * Return the kmem_cache we're supposed to use for a slab allocation.
2278 * We try to use the current memcg's version of the cache.
2279 *
2280 * If the cache does not exist yet, if we are the first user of it,
2281 * we either create it immediately, if possible, or create it asynchronously
2282 * in a workqueue.
2283 * In the latter case, we will let the current allocation go through with
2284 * the original cache.
2285 *
2286 * Can't be called in interrupt context or from kernel threads.
2287 * This function needs to be called with rcu_read_lock() held.
2288 */
2289 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2290 {
2291 struct mem_cgroup *memcg;
2292 struct kmem_cache *memcg_cachep;
2293 int kmemcg_id;
2294
2295 VM_BUG_ON(!is_root_cache(cachep));
2296
2297 if (cachep->flags & SLAB_ACCOUNT)
2298 gfp |= __GFP_ACCOUNT;
2299
2300 if (!(gfp & __GFP_ACCOUNT))
2301 return cachep;
2302
2303 if (current->memcg_kmem_skip_account)
2304 return cachep;
2305
2306 memcg = get_mem_cgroup_from_mm(current->mm);
2307 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2308 if (kmemcg_id < 0)
2309 goto out;
2310
2311 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2312 if (likely(memcg_cachep))
2313 return memcg_cachep;
2314
2315 /*
2316 * If we are in a safe context (can wait, and not in interrupt
2317 * context), we could be be predictable and return right away.
2318 * This would guarantee that the allocation being performed
2319 * already belongs in the new cache.
2320 *
2321 * However, there are some clashes that can arrive from locking.
2322 * For instance, because we acquire the slab_mutex while doing
2323 * memcg_create_kmem_cache, this means no further allocation
2324 * could happen with the slab_mutex held. So it's better to
2325 * defer everything.
2326 */
2327 memcg_schedule_kmem_cache_create(memcg, cachep);
2328 out:
2329 css_put(&memcg->css);
2330 return cachep;
2331 }
2332
2333 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2334 {
2335 if (!is_root_cache(cachep))
2336 css_put(&cachep->memcg_params.memcg->css);
2337 }
2338
2339 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2340 struct mem_cgroup *memcg)
2341 {
2342 unsigned int nr_pages = 1 << order;
2343 struct page_counter *counter;
2344 int ret;
2345
2346 ret = try_charge(memcg, gfp, nr_pages);
2347 if (ret)
2348 return ret;
2349
2350 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2351 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2352 cancel_charge(memcg, nr_pages);
2353 return -ENOMEM;
2354 }
2355
2356 page->mem_cgroup = memcg;
2357
2358 return 0;
2359 }
2360
2361 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2362 {
2363 struct mem_cgroup *memcg;
2364 int ret = 0;
2365
2366 memcg = get_mem_cgroup_from_mm(current->mm);
2367 if (!mem_cgroup_is_root(memcg))
2368 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2369 css_put(&memcg->css);
2370 return ret;
2371 }
2372
2373 void __memcg_kmem_uncharge(struct page *page, int order)
2374 {
2375 struct mem_cgroup *memcg = page->mem_cgroup;
2376 unsigned int nr_pages = 1 << order;
2377
2378 if (!memcg)
2379 return;
2380
2381 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2382
2383 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2384 page_counter_uncharge(&memcg->kmem, nr_pages);
2385
2386 page_counter_uncharge(&memcg->memory, nr_pages);
2387 if (do_memsw_account())
2388 page_counter_uncharge(&memcg->memsw, nr_pages);
2389
2390 page->mem_cgroup = NULL;
2391 css_put_many(&memcg->css, nr_pages);
2392 }
2393 #endif /* !CONFIG_SLOB */
2394
2395 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2396
2397 /*
2398 * Because tail pages are not marked as "used", set it. We're under
2399 * zone->lru_lock and migration entries setup in all page mappings.
2400 */
2401 void mem_cgroup_split_huge_fixup(struct page *head)
2402 {
2403 int i;
2404
2405 if (mem_cgroup_disabled())
2406 return;
2407
2408 for (i = 1; i < HPAGE_PMD_NR; i++)
2409 head[i].mem_cgroup = head->mem_cgroup;
2410
2411 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2412 HPAGE_PMD_NR);
2413 }
2414 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2415
2416 #ifdef CONFIG_MEMCG_SWAP
2417 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2418 bool charge)
2419 {
2420 int val = (charge) ? 1 : -1;
2421 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2422 }
2423
2424 /**
2425 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2426 * @entry: swap entry to be moved
2427 * @from: mem_cgroup which the entry is moved from
2428 * @to: mem_cgroup which the entry is moved to
2429 *
2430 * It succeeds only when the swap_cgroup's record for this entry is the same
2431 * as the mem_cgroup's id of @from.
2432 *
2433 * Returns 0 on success, -EINVAL on failure.
2434 *
2435 * The caller must have charged to @to, IOW, called page_counter_charge() about
2436 * both res and memsw, and called css_get().
2437 */
2438 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2439 struct mem_cgroup *from, struct mem_cgroup *to)
2440 {
2441 unsigned short old_id, new_id;
2442
2443 old_id = mem_cgroup_id(from);
2444 new_id = mem_cgroup_id(to);
2445
2446 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2447 mem_cgroup_swap_statistics(from, false);
2448 mem_cgroup_swap_statistics(to, true);
2449 return 0;
2450 }
2451 return -EINVAL;
2452 }
2453 #else
2454 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2455 struct mem_cgroup *from, struct mem_cgroup *to)
2456 {
2457 return -EINVAL;
2458 }
2459 #endif
2460
2461 static DEFINE_MUTEX(memcg_limit_mutex);
2462
2463 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2464 unsigned long limit)
2465 {
2466 unsigned long curusage;
2467 unsigned long oldusage;
2468 bool enlarge = false;
2469 int retry_count;
2470 int ret;
2471
2472 /*
2473 * For keeping hierarchical_reclaim simple, how long we should retry
2474 * is depends on callers. We set our retry-count to be function
2475 * of # of children which we should visit in this loop.
2476 */
2477 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2478 mem_cgroup_count_children(memcg);
2479
2480 oldusage = page_counter_read(&memcg->memory);
2481
2482 do {
2483 if (signal_pending(current)) {
2484 ret = -EINTR;
2485 break;
2486 }
2487
2488 mutex_lock(&memcg_limit_mutex);
2489 if (limit > memcg->memsw.limit) {
2490 mutex_unlock(&memcg_limit_mutex);
2491 ret = -EINVAL;
2492 break;
2493 }
2494 if (limit > memcg->memory.limit)
2495 enlarge = true;
2496 ret = page_counter_limit(&memcg->memory, limit);
2497 mutex_unlock(&memcg_limit_mutex);
2498
2499 if (!ret)
2500 break;
2501
2502 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2503
2504 curusage = page_counter_read(&memcg->memory);
2505 /* Usage is reduced ? */
2506 if (curusage >= oldusage)
2507 retry_count--;
2508 else
2509 oldusage = curusage;
2510 } while (retry_count);
2511
2512 if (!ret && enlarge)
2513 memcg_oom_recover(memcg);
2514
2515 return ret;
2516 }
2517
2518 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2519 unsigned long limit)
2520 {
2521 unsigned long curusage;
2522 unsigned long oldusage;
2523 bool enlarge = false;
2524 int retry_count;
2525 int ret;
2526
2527 /* see mem_cgroup_resize_res_limit */
2528 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2529 mem_cgroup_count_children(memcg);
2530
2531 oldusage = page_counter_read(&memcg->memsw);
2532
2533 do {
2534 if (signal_pending(current)) {
2535 ret = -EINTR;
2536 break;
2537 }
2538
2539 mutex_lock(&memcg_limit_mutex);
2540 if (limit < memcg->memory.limit) {
2541 mutex_unlock(&memcg_limit_mutex);
2542 ret = -EINVAL;
2543 break;
2544 }
2545 if (limit > memcg->memsw.limit)
2546 enlarge = true;
2547 ret = page_counter_limit(&memcg->memsw, limit);
2548 mutex_unlock(&memcg_limit_mutex);
2549
2550 if (!ret)
2551 break;
2552
2553 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2554
2555 curusage = page_counter_read(&memcg->memsw);
2556 /* Usage is reduced ? */
2557 if (curusage >= oldusage)
2558 retry_count--;
2559 else
2560 oldusage = curusage;
2561 } while (retry_count);
2562
2563 if (!ret && enlarge)
2564 memcg_oom_recover(memcg);
2565
2566 return ret;
2567 }
2568
2569 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2570 gfp_t gfp_mask,
2571 unsigned long *total_scanned)
2572 {
2573 unsigned long nr_reclaimed = 0;
2574 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2575 unsigned long reclaimed;
2576 int loop = 0;
2577 struct mem_cgroup_tree_per_zone *mctz;
2578 unsigned long excess;
2579 unsigned long nr_scanned;
2580
2581 if (order > 0)
2582 return 0;
2583
2584 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2585 /*
2586 * This loop can run a while, specially if mem_cgroup's continuously
2587 * keep exceeding their soft limit and putting the system under
2588 * pressure
2589 */
2590 do {
2591 if (next_mz)
2592 mz = next_mz;
2593 else
2594 mz = mem_cgroup_largest_soft_limit_node(mctz);
2595 if (!mz)
2596 break;
2597
2598 nr_scanned = 0;
2599 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2600 gfp_mask, &nr_scanned);
2601 nr_reclaimed += reclaimed;
2602 *total_scanned += nr_scanned;
2603 spin_lock_irq(&mctz->lock);
2604 __mem_cgroup_remove_exceeded(mz, mctz);
2605
2606 /*
2607 * If we failed to reclaim anything from this memory cgroup
2608 * it is time to move on to the next cgroup
2609 */
2610 next_mz = NULL;
2611 if (!reclaimed)
2612 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2613
2614 excess = soft_limit_excess(mz->memcg);
2615 /*
2616 * One school of thought says that we should not add
2617 * back the node to the tree if reclaim returns 0.
2618 * But our reclaim could return 0, simply because due
2619 * to priority we are exposing a smaller subset of
2620 * memory to reclaim from. Consider this as a longer
2621 * term TODO.
2622 */
2623 /* If excess == 0, no tree ops */
2624 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2625 spin_unlock_irq(&mctz->lock);
2626 css_put(&mz->memcg->css);
2627 loop++;
2628 /*
2629 * Could not reclaim anything and there are no more
2630 * mem cgroups to try or we seem to be looping without
2631 * reclaiming anything.
2632 */
2633 if (!nr_reclaimed &&
2634 (next_mz == NULL ||
2635 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2636 break;
2637 } while (!nr_reclaimed);
2638 if (next_mz)
2639 css_put(&next_mz->memcg->css);
2640 return nr_reclaimed;
2641 }
2642
2643 /*
2644 * Test whether @memcg has children, dead or alive. Note that this
2645 * function doesn't care whether @memcg has use_hierarchy enabled and
2646 * returns %true if there are child csses according to the cgroup
2647 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2648 */
2649 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2650 {
2651 bool ret;
2652
2653 rcu_read_lock();
2654 ret = css_next_child(NULL, &memcg->css);
2655 rcu_read_unlock();
2656 return ret;
2657 }
2658
2659 /*
2660 * Reclaims as many pages from the given memcg as possible.
2661 *
2662 * Caller is responsible for holding css reference for memcg.
2663 */
2664 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2665 {
2666 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2667
2668 /* we call try-to-free pages for make this cgroup empty */
2669 lru_add_drain_all();
2670 /* try to free all pages in this cgroup */
2671 while (nr_retries && page_counter_read(&memcg->memory)) {
2672 int progress;
2673
2674 if (signal_pending(current))
2675 return -EINTR;
2676
2677 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2678 GFP_KERNEL, true);
2679 if (!progress) {
2680 nr_retries--;
2681 /* maybe some writeback is necessary */
2682 congestion_wait(BLK_RW_ASYNC, HZ/10);
2683 }
2684
2685 }
2686
2687 return 0;
2688 }
2689
2690 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2691 char *buf, size_t nbytes,
2692 loff_t off)
2693 {
2694 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2695
2696 if (mem_cgroup_is_root(memcg))
2697 return -EINVAL;
2698 return mem_cgroup_force_empty(memcg) ?: nbytes;
2699 }
2700
2701 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2702 struct cftype *cft)
2703 {
2704 return mem_cgroup_from_css(css)->use_hierarchy;
2705 }
2706
2707 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2708 struct cftype *cft, u64 val)
2709 {
2710 int retval = 0;
2711 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2712 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2713
2714 if (memcg->use_hierarchy == val)
2715 return 0;
2716
2717 /*
2718 * If parent's use_hierarchy is set, we can't make any modifications
2719 * in the child subtrees. If it is unset, then the change can
2720 * occur, provided the current cgroup has no children.
2721 *
2722 * For the root cgroup, parent_mem is NULL, we allow value to be
2723 * set if there are no children.
2724 */
2725 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2726 (val == 1 || val == 0)) {
2727 if (!memcg_has_children(memcg))
2728 memcg->use_hierarchy = val;
2729 else
2730 retval = -EBUSY;
2731 } else
2732 retval = -EINVAL;
2733
2734 return retval;
2735 }
2736
2737 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2738 {
2739 struct mem_cgroup *iter;
2740 int i;
2741
2742 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2743
2744 for_each_mem_cgroup_tree(iter, memcg) {
2745 for (i = 0; i < MEMCG_NR_STAT; i++)
2746 stat[i] += mem_cgroup_read_stat(iter, i);
2747 }
2748 }
2749
2750 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2751 {
2752 struct mem_cgroup *iter;
2753 int i;
2754
2755 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2756
2757 for_each_mem_cgroup_tree(iter, memcg) {
2758 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2759 events[i] += mem_cgroup_read_events(iter, i);
2760 }
2761 }
2762
2763 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2764 {
2765 unsigned long val = 0;
2766
2767 if (mem_cgroup_is_root(memcg)) {
2768 struct mem_cgroup *iter;
2769
2770 for_each_mem_cgroup_tree(iter, memcg) {
2771 val += mem_cgroup_read_stat(iter,
2772 MEM_CGROUP_STAT_CACHE);
2773 val += mem_cgroup_read_stat(iter,
2774 MEM_CGROUP_STAT_RSS);
2775 if (swap)
2776 val += mem_cgroup_read_stat(iter,
2777 MEM_CGROUP_STAT_SWAP);
2778 }
2779 } else {
2780 if (!swap)
2781 val = page_counter_read(&memcg->memory);
2782 else
2783 val = page_counter_read(&memcg->memsw);
2784 }
2785 return val;
2786 }
2787
2788 enum {
2789 RES_USAGE,
2790 RES_LIMIT,
2791 RES_MAX_USAGE,
2792 RES_FAILCNT,
2793 RES_SOFT_LIMIT,
2794 };
2795
2796 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2797 struct cftype *cft)
2798 {
2799 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2800 struct page_counter *counter;
2801
2802 switch (MEMFILE_TYPE(cft->private)) {
2803 case _MEM:
2804 counter = &memcg->memory;
2805 break;
2806 case _MEMSWAP:
2807 counter = &memcg->memsw;
2808 break;
2809 case _KMEM:
2810 counter = &memcg->kmem;
2811 break;
2812 case _TCP:
2813 counter = &memcg->tcpmem;
2814 break;
2815 default:
2816 BUG();
2817 }
2818
2819 switch (MEMFILE_ATTR(cft->private)) {
2820 case RES_USAGE:
2821 if (counter == &memcg->memory)
2822 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2823 if (counter == &memcg->memsw)
2824 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2825 return (u64)page_counter_read(counter) * PAGE_SIZE;
2826 case RES_LIMIT:
2827 return (u64)counter->limit * PAGE_SIZE;
2828 case RES_MAX_USAGE:
2829 return (u64)counter->watermark * PAGE_SIZE;
2830 case RES_FAILCNT:
2831 return counter->failcnt;
2832 case RES_SOFT_LIMIT:
2833 return (u64)memcg->soft_limit * PAGE_SIZE;
2834 default:
2835 BUG();
2836 }
2837 }
2838
2839 #ifndef CONFIG_SLOB
2840 static int memcg_online_kmem(struct mem_cgroup *memcg)
2841 {
2842 int memcg_id;
2843
2844 if (cgroup_memory_nokmem)
2845 return 0;
2846
2847 BUG_ON(memcg->kmemcg_id >= 0);
2848 BUG_ON(memcg->kmem_state);
2849
2850 memcg_id = memcg_alloc_cache_id();
2851 if (memcg_id < 0)
2852 return memcg_id;
2853
2854 static_branch_inc(&memcg_kmem_enabled_key);
2855 /*
2856 * A memory cgroup is considered kmem-online as soon as it gets
2857 * kmemcg_id. Setting the id after enabling static branching will
2858 * guarantee no one starts accounting before all call sites are
2859 * patched.
2860 */
2861 memcg->kmemcg_id = memcg_id;
2862 memcg->kmem_state = KMEM_ONLINE;
2863
2864 return 0;
2865 }
2866
2867 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2868 {
2869 struct cgroup_subsys_state *css;
2870 struct mem_cgroup *parent, *child;
2871 int kmemcg_id;
2872
2873 if (memcg->kmem_state != KMEM_ONLINE)
2874 return;
2875 /*
2876 * Clear the online state before clearing memcg_caches array
2877 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2878 * guarantees that no cache will be created for this cgroup
2879 * after we are done (see memcg_create_kmem_cache()).
2880 */
2881 memcg->kmem_state = KMEM_ALLOCATED;
2882
2883 memcg_deactivate_kmem_caches(memcg);
2884
2885 kmemcg_id = memcg->kmemcg_id;
2886 BUG_ON(kmemcg_id < 0);
2887
2888 parent = parent_mem_cgroup(memcg);
2889 if (!parent)
2890 parent = root_mem_cgroup;
2891
2892 /*
2893 * Change kmemcg_id of this cgroup and all its descendants to the
2894 * parent's id, and then move all entries from this cgroup's list_lrus
2895 * to ones of the parent. After we have finished, all list_lrus
2896 * corresponding to this cgroup are guaranteed to remain empty. The
2897 * ordering is imposed by list_lru_node->lock taken by
2898 * memcg_drain_all_list_lrus().
2899 */
2900 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2901 css_for_each_descendant_pre(css, &memcg->css) {
2902 child = mem_cgroup_from_css(css);
2903 BUG_ON(child->kmemcg_id != kmemcg_id);
2904 child->kmemcg_id = parent->kmemcg_id;
2905 if (!memcg->use_hierarchy)
2906 break;
2907 }
2908 rcu_read_unlock();
2909
2910 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2911
2912 memcg_free_cache_id(kmemcg_id);
2913 }
2914
2915 static void memcg_free_kmem(struct mem_cgroup *memcg)
2916 {
2917 /* css_alloc() failed, offlining didn't happen */
2918 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2919 memcg_offline_kmem(memcg);
2920
2921 if (memcg->kmem_state == KMEM_ALLOCATED) {
2922 memcg_destroy_kmem_caches(memcg);
2923 static_branch_dec(&memcg_kmem_enabled_key);
2924 WARN_ON(page_counter_read(&memcg->kmem));
2925 }
2926 }
2927 #else
2928 static int memcg_online_kmem(struct mem_cgroup *memcg)
2929 {
2930 return 0;
2931 }
2932 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2933 {
2934 }
2935 static void memcg_free_kmem(struct mem_cgroup *memcg)
2936 {
2937 }
2938 #endif /* !CONFIG_SLOB */
2939
2940 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2941 unsigned long limit)
2942 {
2943 int ret;
2944
2945 mutex_lock(&memcg_limit_mutex);
2946 ret = page_counter_limit(&memcg->kmem, limit);
2947 mutex_unlock(&memcg_limit_mutex);
2948 return ret;
2949 }
2950
2951 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2952 {
2953 int ret;
2954
2955 mutex_lock(&memcg_limit_mutex);
2956
2957 ret = page_counter_limit(&memcg->tcpmem, limit);
2958 if (ret)
2959 goto out;
2960
2961 if (!memcg->tcpmem_active) {
2962 /*
2963 * The active flag needs to be written after the static_key
2964 * update. This is what guarantees that the socket activation
2965 * function is the last one to run. See sock_update_memcg() for
2966 * details, and note that we don't mark any socket as belonging
2967 * to this memcg until that flag is up.
2968 *
2969 * We need to do this, because static_keys will span multiple
2970 * sites, but we can't control their order. If we mark a socket
2971 * as accounted, but the accounting functions are not patched in
2972 * yet, we'll lose accounting.
2973 *
2974 * We never race with the readers in sock_update_memcg(),
2975 * because when this value change, the code to process it is not
2976 * patched in yet.
2977 */
2978 static_branch_inc(&memcg_sockets_enabled_key);
2979 memcg->tcpmem_active = true;
2980 }
2981 out:
2982 mutex_unlock(&memcg_limit_mutex);
2983 return ret;
2984 }
2985
2986 /*
2987 * The user of this function is...
2988 * RES_LIMIT.
2989 */
2990 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2991 char *buf, size_t nbytes, loff_t off)
2992 {
2993 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2994 unsigned long nr_pages;
2995 int ret;
2996
2997 buf = strstrip(buf);
2998 ret = page_counter_memparse(buf, "-1", &nr_pages);
2999 if (ret)
3000 return ret;
3001
3002 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3003 case RES_LIMIT:
3004 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3005 ret = -EINVAL;
3006 break;
3007 }
3008 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3009 case _MEM:
3010 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3011 break;
3012 case _MEMSWAP:
3013 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3014 break;
3015 case _KMEM:
3016 ret = memcg_update_kmem_limit(memcg, nr_pages);
3017 break;
3018 case _TCP:
3019 ret = memcg_update_tcp_limit(memcg, nr_pages);
3020 break;
3021 }
3022 break;
3023 case RES_SOFT_LIMIT:
3024 memcg->soft_limit = nr_pages;
3025 ret = 0;
3026 break;
3027 }
3028 return ret ?: nbytes;
3029 }
3030
3031 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3032 size_t nbytes, loff_t off)
3033 {
3034 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3035 struct page_counter *counter;
3036
3037 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3038 case _MEM:
3039 counter = &memcg->memory;
3040 break;
3041 case _MEMSWAP:
3042 counter = &memcg->memsw;
3043 break;
3044 case _KMEM:
3045 counter = &memcg->kmem;
3046 break;
3047 case _TCP:
3048 counter = &memcg->tcpmem;
3049 break;
3050 default:
3051 BUG();
3052 }
3053
3054 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3055 case RES_MAX_USAGE:
3056 page_counter_reset_watermark(counter);
3057 break;
3058 case RES_FAILCNT:
3059 counter->failcnt = 0;
3060 break;
3061 default:
3062 BUG();
3063 }
3064
3065 return nbytes;
3066 }
3067
3068 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3069 struct cftype *cft)
3070 {
3071 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3072 }
3073
3074 #ifdef CONFIG_MMU
3075 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3076 struct cftype *cft, u64 val)
3077 {
3078 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3079
3080 if (val & ~MOVE_MASK)
3081 return -EINVAL;
3082
3083 /*
3084 * No kind of locking is needed in here, because ->can_attach() will
3085 * check this value once in the beginning of the process, and then carry
3086 * on with stale data. This means that changes to this value will only
3087 * affect task migrations starting after the change.
3088 */
3089 memcg->move_charge_at_immigrate = val;
3090 return 0;
3091 }
3092 #else
3093 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3094 struct cftype *cft, u64 val)
3095 {
3096 return -ENOSYS;
3097 }
3098 #endif
3099
3100 #ifdef CONFIG_NUMA
3101 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3102 {
3103 struct numa_stat {
3104 const char *name;
3105 unsigned int lru_mask;
3106 };
3107
3108 static const struct numa_stat stats[] = {
3109 { "total", LRU_ALL },
3110 { "file", LRU_ALL_FILE },
3111 { "anon", LRU_ALL_ANON },
3112 { "unevictable", BIT(LRU_UNEVICTABLE) },
3113 };
3114 const struct numa_stat *stat;
3115 int nid;
3116 unsigned long nr;
3117 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3118
3119 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3120 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3121 seq_printf(m, "%s=%lu", stat->name, nr);
3122 for_each_node_state(nid, N_MEMORY) {
3123 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3124 stat->lru_mask);
3125 seq_printf(m, " N%d=%lu", nid, nr);
3126 }
3127 seq_putc(m, '\n');
3128 }
3129
3130 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3131 struct mem_cgroup *iter;
3132
3133 nr = 0;
3134 for_each_mem_cgroup_tree(iter, memcg)
3135 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3136 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3137 for_each_node_state(nid, N_MEMORY) {
3138 nr = 0;
3139 for_each_mem_cgroup_tree(iter, memcg)
3140 nr += mem_cgroup_node_nr_lru_pages(
3141 iter, nid, stat->lru_mask);
3142 seq_printf(m, " N%d=%lu", nid, nr);
3143 }
3144 seq_putc(m, '\n');
3145 }
3146
3147 return 0;
3148 }
3149 #endif /* CONFIG_NUMA */
3150
3151 static int memcg_stat_show(struct seq_file *m, void *v)
3152 {
3153 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3154 unsigned long memory, memsw;
3155 struct mem_cgroup *mi;
3156 unsigned int i;
3157
3158 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3159 MEM_CGROUP_STAT_NSTATS);
3160 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3161 MEM_CGROUP_EVENTS_NSTATS);
3162 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3163
3164 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3165 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3166 continue;
3167 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3168 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3169 }
3170
3171 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3172 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3173 mem_cgroup_read_events(memcg, i));
3174
3175 for (i = 0; i < NR_LRU_LISTS; i++)
3176 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3177 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3178
3179 /* Hierarchical information */
3180 memory = memsw = PAGE_COUNTER_MAX;
3181 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3182 memory = min(memory, mi->memory.limit);
3183 memsw = min(memsw, mi->memsw.limit);
3184 }
3185 seq_printf(m, "hierarchical_memory_limit %llu\n",
3186 (u64)memory * PAGE_SIZE);
3187 if (do_memsw_account())
3188 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3189 (u64)memsw * PAGE_SIZE);
3190
3191 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3192 unsigned long long val = 0;
3193
3194 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3195 continue;
3196 for_each_mem_cgroup_tree(mi, memcg)
3197 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3198 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3199 }
3200
3201 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3202 unsigned long long val = 0;
3203
3204 for_each_mem_cgroup_tree(mi, memcg)
3205 val += mem_cgroup_read_events(mi, i);
3206 seq_printf(m, "total_%s %llu\n",
3207 mem_cgroup_events_names[i], val);
3208 }
3209
3210 for (i = 0; i < NR_LRU_LISTS; i++) {
3211 unsigned long long val = 0;
3212
3213 for_each_mem_cgroup_tree(mi, memcg)
3214 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3215 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3216 }
3217
3218 #ifdef CONFIG_DEBUG_VM
3219 {
3220 int nid, zid;
3221 struct mem_cgroup_per_zone *mz;
3222 struct zone_reclaim_stat *rstat;
3223 unsigned long recent_rotated[2] = {0, 0};
3224 unsigned long recent_scanned[2] = {0, 0};
3225
3226 for_each_online_node(nid)
3227 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3228 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3229 rstat = &mz->lruvec.reclaim_stat;
3230
3231 recent_rotated[0] += rstat->recent_rotated[0];
3232 recent_rotated[1] += rstat->recent_rotated[1];
3233 recent_scanned[0] += rstat->recent_scanned[0];
3234 recent_scanned[1] += rstat->recent_scanned[1];
3235 }
3236 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3237 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3238 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3239 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3240 }
3241 #endif
3242
3243 return 0;
3244 }
3245
3246 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3247 struct cftype *cft)
3248 {
3249 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3250
3251 return mem_cgroup_swappiness(memcg);
3252 }
3253
3254 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3255 struct cftype *cft, u64 val)
3256 {
3257 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3258
3259 if (val > 100)
3260 return -EINVAL;
3261
3262 if (css->parent)
3263 memcg->swappiness = val;
3264 else
3265 vm_swappiness = val;
3266
3267 return 0;
3268 }
3269
3270 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3271 {
3272 struct mem_cgroup_threshold_ary *t;
3273 unsigned long usage;
3274 int i;
3275
3276 rcu_read_lock();
3277 if (!swap)
3278 t = rcu_dereference(memcg->thresholds.primary);
3279 else
3280 t = rcu_dereference(memcg->memsw_thresholds.primary);
3281
3282 if (!t)
3283 goto unlock;
3284
3285 usage = mem_cgroup_usage(memcg, swap);
3286
3287 /*
3288 * current_threshold points to threshold just below or equal to usage.
3289 * If it's not true, a threshold was crossed after last
3290 * call of __mem_cgroup_threshold().
3291 */
3292 i = t->current_threshold;
3293
3294 /*
3295 * Iterate backward over array of thresholds starting from
3296 * current_threshold and check if a threshold is crossed.
3297 * If none of thresholds below usage is crossed, we read
3298 * only one element of the array here.
3299 */
3300 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3301 eventfd_signal(t->entries[i].eventfd, 1);
3302
3303 /* i = current_threshold + 1 */
3304 i++;
3305
3306 /*
3307 * Iterate forward over array of thresholds starting from
3308 * current_threshold+1 and check if a threshold is crossed.
3309 * If none of thresholds above usage is crossed, we read
3310 * only one element of the array here.
3311 */
3312 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3313 eventfd_signal(t->entries[i].eventfd, 1);
3314
3315 /* Update current_threshold */
3316 t->current_threshold = i - 1;
3317 unlock:
3318 rcu_read_unlock();
3319 }
3320
3321 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3322 {
3323 while (memcg) {
3324 __mem_cgroup_threshold(memcg, false);
3325 if (do_memsw_account())
3326 __mem_cgroup_threshold(memcg, true);
3327
3328 memcg = parent_mem_cgroup(memcg);
3329 }
3330 }
3331
3332 static int compare_thresholds(const void *a, const void *b)
3333 {
3334 const struct mem_cgroup_threshold *_a = a;
3335 const struct mem_cgroup_threshold *_b = b;
3336
3337 if (_a->threshold > _b->threshold)
3338 return 1;
3339
3340 if (_a->threshold < _b->threshold)
3341 return -1;
3342
3343 return 0;
3344 }
3345
3346 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3347 {
3348 struct mem_cgroup_eventfd_list *ev;
3349
3350 spin_lock(&memcg_oom_lock);
3351
3352 list_for_each_entry(ev, &memcg->oom_notify, list)
3353 eventfd_signal(ev->eventfd, 1);
3354
3355 spin_unlock(&memcg_oom_lock);
3356 return 0;
3357 }
3358
3359 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3360 {
3361 struct mem_cgroup *iter;
3362
3363 for_each_mem_cgroup_tree(iter, memcg)
3364 mem_cgroup_oom_notify_cb(iter);
3365 }
3366
3367 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3368 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3369 {
3370 struct mem_cgroup_thresholds *thresholds;
3371 struct mem_cgroup_threshold_ary *new;
3372 unsigned long threshold;
3373 unsigned long usage;
3374 int i, size, ret;
3375
3376 ret = page_counter_memparse(args, "-1", &threshold);
3377 if (ret)
3378 return ret;
3379
3380 mutex_lock(&memcg->thresholds_lock);
3381
3382 if (type == _MEM) {
3383 thresholds = &memcg->thresholds;
3384 usage = mem_cgroup_usage(memcg, false);
3385 } else if (type == _MEMSWAP) {
3386 thresholds = &memcg->memsw_thresholds;
3387 usage = mem_cgroup_usage(memcg, true);
3388 } else
3389 BUG();
3390
3391 /* Check if a threshold crossed before adding a new one */
3392 if (thresholds->primary)
3393 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3394
3395 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3396
3397 /* Allocate memory for new array of thresholds */
3398 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3399 GFP_KERNEL);
3400 if (!new) {
3401 ret = -ENOMEM;
3402 goto unlock;
3403 }
3404 new->size = size;
3405
3406 /* Copy thresholds (if any) to new array */
3407 if (thresholds->primary) {
3408 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3409 sizeof(struct mem_cgroup_threshold));
3410 }
3411
3412 /* Add new threshold */
3413 new->entries[size - 1].eventfd = eventfd;
3414 new->entries[size - 1].threshold = threshold;
3415
3416 /* Sort thresholds. Registering of new threshold isn't time-critical */
3417 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3418 compare_thresholds, NULL);
3419
3420 /* Find current threshold */
3421 new->current_threshold = -1;
3422 for (i = 0; i < size; i++) {
3423 if (new->entries[i].threshold <= usage) {
3424 /*
3425 * new->current_threshold will not be used until
3426 * rcu_assign_pointer(), so it's safe to increment
3427 * it here.
3428 */
3429 ++new->current_threshold;
3430 } else
3431 break;
3432 }
3433
3434 /* Free old spare buffer and save old primary buffer as spare */
3435 kfree(thresholds->spare);
3436 thresholds->spare = thresholds->primary;
3437
3438 rcu_assign_pointer(thresholds->primary, new);
3439
3440 /* To be sure that nobody uses thresholds */
3441 synchronize_rcu();
3442
3443 unlock:
3444 mutex_unlock(&memcg->thresholds_lock);
3445
3446 return ret;
3447 }
3448
3449 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3450 struct eventfd_ctx *eventfd, const char *args)
3451 {
3452 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3453 }
3454
3455 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3456 struct eventfd_ctx *eventfd, const char *args)
3457 {
3458 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3459 }
3460
3461 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3462 struct eventfd_ctx *eventfd, enum res_type type)
3463 {
3464 struct mem_cgroup_thresholds *thresholds;
3465 struct mem_cgroup_threshold_ary *new;
3466 unsigned long usage;
3467 int i, j, size;
3468
3469 mutex_lock(&memcg->thresholds_lock);
3470
3471 if (type == _MEM) {
3472 thresholds = &memcg->thresholds;
3473 usage = mem_cgroup_usage(memcg, false);
3474 } else if (type == _MEMSWAP) {
3475 thresholds = &memcg->memsw_thresholds;
3476 usage = mem_cgroup_usage(memcg, true);
3477 } else
3478 BUG();
3479
3480 if (!thresholds->primary)
3481 goto unlock;
3482
3483 /* Check if a threshold crossed before removing */
3484 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3485
3486 /* Calculate new number of threshold */
3487 size = 0;
3488 for (i = 0; i < thresholds->primary->size; i++) {
3489 if (thresholds->primary->entries[i].eventfd != eventfd)
3490 size++;
3491 }
3492
3493 new = thresholds->spare;
3494
3495 /* Set thresholds array to NULL if we don't have thresholds */
3496 if (!size) {
3497 kfree(new);
3498 new = NULL;
3499 goto swap_buffers;
3500 }
3501
3502 new->size = size;
3503
3504 /* Copy thresholds and find current threshold */
3505 new->current_threshold = -1;
3506 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3507 if (thresholds->primary->entries[i].eventfd == eventfd)
3508 continue;
3509
3510 new->entries[j] = thresholds->primary->entries[i];
3511 if (new->entries[j].threshold <= usage) {
3512 /*
3513 * new->current_threshold will not be used
3514 * until rcu_assign_pointer(), so it's safe to increment
3515 * it here.
3516 */
3517 ++new->current_threshold;
3518 }
3519 j++;
3520 }
3521
3522 swap_buffers:
3523 /* Swap primary and spare array */
3524 thresholds->spare = thresholds->primary;
3525
3526 rcu_assign_pointer(thresholds->primary, new);
3527
3528 /* To be sure that nobody uses thresholds */
3529 synchronize_rcu();
3530
3531 /* If all events are unregistered, free the spare array */
3532 if (!new) {
3533 kfree(thresholds->spare);
3534 thresholds->spare = NULL;
3535 }
3536 unlock:
3537 mutex_unlock(&memcg->thresholds_lock);
3538 }
3539
3540 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3541 struct eventfd_ctx *eventfd)
3542 {
3543 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3544 }
3545
3546 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3547 struct eventfd_ctx *eventfd)
3548 {
3549 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3550 }
3551
3552 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3553 struct eventfd_ctx *eventfd, const char *args)
3554 {
3555 struct mem_cgroup_eventfd_list *event;
3556
3557 event = kmalloc(sizeof(*event), GFP_KERNEL);
3558 if (!event)
3559 return -ENOMEM;
3560
3561 spin_lock(&memcg_oom_lock);
3562
3563 event->eventfd = eventfd;
3564 list_add(&event->list, &memcg->oom_notify);
3565
3566 /* already in OOM ? */
3567 if (memcg->under_oom)
3568 eventfd_signal(eventfd, 1);
3569 spin_unlock(&memcg_oom_lock);
3570
3571 return 0;
3572 }
3573
3574 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3575 struct eventfd_ctx *eventfd)
3576 {
3577 struct mem_cgroup_eventfd_list *ev, *tmp;
3578
3579 spin_lock(&memcg_oom_lock);
3580
3581 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3582 if (ev->eventfd == eventfd) {
3583 list_del(&ev->list);
3584 kfree(ev);
3585 }
3586 }
3587
3588 spin_unlock(&memcg_oom_lock);
3589 }
3590
3591 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3592 {
3593 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3594
3595 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3596 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3597 return 0;
3598 }
3599
3600 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3601 struct cftype *cft, u64 val)
3602 {
3603 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3604
3605 /* cannot set to root cgroup and only 0 and 1 are allowed */
3606 if (!css->parent || !((val == 0) || (val == 1)))
3607 return -EINVAL;
3608
3609 memcg->oom_kill_disable = val;
3610 if (!val)
3611 memcg_oom_recover(memcg);
3612
3613 return 0;
3614 }
3615
3616 #ifdef CONFIG_CGROUP_WRITEBACK
3617
3618 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3619 {
3620 return &memcg->cgwb_list;
3621 }
3622
3623 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3624 {
3625 return wb_domain_init(&memcg->cgwb_domain, gfp);
3626 }
3627
3628 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3629 {
3630 wb_domain_exit(&memcg->cgwb_domain);
3631 }
3632
3633 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3634 {
3635 wb_domain_size_changed(&memcg->cgwb_domain);
3636 }
3637
3638 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3639 {
3640 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3641
3642 if (!memcg->css.parent)
3643 return NULL;
3644
3645 return &memcg->cgwb_domain;
3646 }
3647
3648 /**
3649 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3650 * @wb: bdi_writeback in question
3651 * @pfilepages: out parameter for number of file pages
3652 * @pheadroom: out parameter for number of allocatable pages according to memcg
3653 * @pdirty: out parameter for number of dirty pages
3654 * @pwriteback: out parameter for number of pages under writeback
3655 *
3656 * Determine the numbers of file, headroom, dirty, and writeback pages in
3657 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3658 * is a bit more involved.
3659 *
3660 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3661 * headroom is calculated as the lowest headroom of itself and the
3662 * ancestors. Note that this doesn't consider the actual amount of
3663 * available memory in the system. The caller should further cap
3664 * *@pheadroom accordingly.
3665 */
3666 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3667 unsigned long *pheadroom, unsigned long *pdirty,
3668 unsigned long *pwriteback)
3669 {
3670 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3671 struct mem_cgroup *parent;
3672
3673 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3674
3675 /* this should eventually include NR_UNSTABLE_NFS */
3676 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3677 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3678 (1 << LRU_ACTIVE_FILE));
3679 *pheadroom = PAGE_COUNTER_MAX;
3680
3681 while ((parent = parent_mem_cgroup(memcg))) {
3682 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3683 unsigned long used = page_counter_read(&memcg->memory);
3684
3685 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3686 memcg = parent;
3687 }
3688 }
3689
3690 #else /* CONFIG_CGROUP_WRITEBACK */
3691
3692 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3693 {
3694 return 0;
3695 }
3696
3697 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3698 {
3699 }
3700
3701 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3702 {
3703 }
3704
3705 #endif /* CONFIG_CGROUP_WRITEBACK */
3706
3707 /*
3708 * DO NOT USE IN NEW FILES.
3709 *
3710 * "cgroup.event_control" implementation.
3711 *
3712 * This is way over-engineered. It tries to support fully configurable
3713 * events for each user. Such level of flexibility is completely
3714 * unnecessary especially in the light of the planned unified hierarchy.
3715 *
3716 * Please deprecate this and replace with something simpler if at all
3717 * possible.
3718 */
3719
3720 /*
3721 * Unregister event and free resources.
3722 *
3723 * Gets called from workqueue.
3724 */
3725 static void memcg_event_remove(struct work_struct *work)
3726 {
3727 struct mem_cgroup_event *event =
3728 container_of(work, struct mem_cgroup_event, remove);
3729 struct mem_cgroup *memcg = event->memcg;
3730
3731 remove_wait_queue(event->wqh, &event->wait);
3732
3733 event->unregister_event(memcg, event->eventfd);
3734
3735 /* Notify userspace the event is going away. */
3736 eventfd_signal(event->eventfd, 1);
3737
3738 eventfd_ctx_put(event->eventfd);
3739 kfree(event);
3740 css_put(&memcg->css);
3741 }
3742
3743 /*
3744 * Gets called on POLLHUP on eventfd when user closes it.
3745 *
3746 * Called with wqh->lock held and interrupts disabled.
3747 */
3748 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3749 int sync, void *key)
3750 {
3751 struct mem_cgroup_event *event =
3752 container_of(wait, struct mem_cgroup_event, wait);
3753 struct mem_cgroup *memcg = event->memcg;
3754 unsigned long flags = (unsigned long)key;
3755
3756 if (flags & POLLHUP) {
3757 /*
3758 * If the event has been detached at cgroup removal, we
3759 * can simply return knowing the other side will cleanup
3760 * for us.
3761 *
3762 * We can't race against event freeing since the other
3763 * side will require wqh->lock via remove_wait_queue(),
3764 * which we hold.
3765 */
3766 spin_lock(&memcg->event_list_lock);
3767 if (!list_empty(&event->list)) {
3768 list_del_init(&event->list);
3769 /*
3770 * We are in atomic context, but cgroup_event_remove()
3771 * may sleep, so we have to call it in workqueue.
3772 */
3773 schedule_work(&event->remove);
3774 }
3775 spin_unlock(&memcg->event_list_lock);
3776 }
3777
3778 return 0;
3779 }
3780
3781 static void memcg_event_ptable_queue_proc(struct file *file,
3782 wait_queue_head_t *wqh, poll_table *pt)
3783 {
3784 struct mem_cgroup_event *event =
3785 container_of(pt, struct mem_cgroup_event, pt);
3786
3787 event->wqh = wqh;
3788 add_wait_queue(wqh, &event->wait);
3789 }
3790
3791 /*
3792 * DO NOT USE IN NEW FILES.
3793 *
3794 * Parse input and register new cgroup event handler.
3795 *
3796 * Input must be in format '<event_fd> <control_fd> <args>'.
3797 * Interpretation of args is defined by control file implementation.
3798 */
3799 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3800 char *buf, size_t nbytes, loff_t off)
3801 {
3802 struct cgroup_subsys_state *css = of_css(of);
3803 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3804 struct mem_cgroup_event *event;
3805 struct cgroup_subsys_state *cfile_css;
3806 unsigned int efd, cfd;
3807 struct fd efile;
3808 struct fd cfile;
3809 const char *name;
3810 char *endp;
3811 int ret;
3812
3813 buf = strstrip(buf);
3814
3815 efd = simple_strtoul(buf, &endp, 10);
3816 if (*endp != ' ')
3817 return -EINVAL;
3818 buf = endp + 1;
3819
3820 cfd = simple_strtoul(buf, &endp, 10);
3821 if ((*endp != ' ') && (*endp != '\0'))
3822 return -EINVAL;
3823 buf = endp + 1;
3824
3825 event = kzalloc(sizeof(*event), GFP_KERNEL);
3826 if (!event)
3827 return -ENOMEM;
3828
3829 event->memcg = memcg;
3830 INIT_LIST_HEAD(&event->list);
3831 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3832 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3833 INIT_WORK(&event->remove, memcg_event_remove);
3834
3835 efile = fdget(efd);
3836 if (!efile.file) {
3837 ret = -EBADF;
3838 goto out_kfree;
3839 }
3840
3841 event->eventfd = eventfd_ctx_fileget(efile.file);
3842 if (IS_ERR(event->eventfd)) {
3843 ret = PTR_ERR(event->eventfd);
3844 goto out_put_efile;
3845 }
3846
3847 cfile = fdget(cfd);
3848 if (!cfile.file) {
3849 ret = -EBADF;
3850 goto out_put_eventfd;
3851 }
3852
3853 /* the process need read permission on control file */
3854 /* AV: shouldn't we check that it's been opened for read instead? */
3855 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3856 if (ret < 0)
3857 goto out_put_cfile;
3858
3859 /*
3860 * Determine the event callbacks and set them in @event. This used
3861 * to be done via struct cftype but cgroup core no longer knows
3862 * about these events. The following is crude but the whole thing
3863 * is for compatibility anyway.
3864 *
3865 * DO NOT ADD NEW FILES.
3866 */
3867 name = cfile.file->f_path.dentry->d_name.name;
3868
3869 if (!strcmp(name, "memory.usage_in_bytes")) {
3870 event->register_event = mem_cgroup_usage_register_event;
3871 event->unregister_event = mem_cgroup_usage_unregister_event;
3872 } else if (!strcmp(name, "memory.oom_control")) {
3873 event->register_event = mem_cgroup_oom_register_event;
3874 event->unregister_event = mem_cgroup_oom_unregister_event;
3875 } else if (!strcmp(name, "memory.pressure_level")) {
3876 event->register_event = vmpressure_register_event;
3877 event->unregister_event = vmpressure_unregister_event;
3878 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3879 event->register_event = memsw_cgroup_usage_register_event;
3880 event->unregister_event = memsw_cgroup_usage_unregister_event;
3881 } else {
3882 ret = -EINVAL;
3883 goto out_put_cfile;
3884 }
3885
3886 /*
3887 * Verify @cfile should belong to @css. Also, remaining events are
3888 * automatically removed on cgroup destruction but the removal is
3889 * asynchronous, so take an extra ref on @css.
3890 */
3891 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3892 &memory_cgrp_subsys);
3893 ret = -EINVAL;
3894 if (IS_ERR(cfile_css))
3895 goto out_put_cfile;
3896 if (cfile_css != css) {
3897 css_put(cfile_css);
3898 goto out_put_cfile;
3899 }
3900
3901 ret = event->register_event(memcg, event->eventfd, buf);
3902 if (ret)
3903 goto out_put_css;
3904
3905 efile.file->f_op->poll(efile.file, &event->pt);
3906
3907 spin_lock(&memcg->event_list_lock);
3908 list_add(&event->list, &memcg->event_list);
3909 spin_unlock(&memcg->event_list_lock);
3910
3911 fdput(cfile);
3912 fdput(efile);
3913
3914 return nbytes;
3915
3916 out_put_css:
3917 css_put(css);
3918 out_put_cfile:
3919 fdput(cfile);
3920 out_put_eventfd:
3921 eventfd_ctx_put(event->eventfd);
3922 out_put_efile:
3923 fdput(efile);
3924 out_kfree:
3925 kfree(event);
3926
3927 return ret;
3928 }
3929
3930 static struct cftype mem_cgroup_legacy_files[] = {
3931 {
3932 .name = "usage_in_bytes",
3933 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3934 .read_u64 = mem_cgroup_read_u64,
3935 },
3936 {
3937 .name = "max_usage_in_bytes",
3938 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3939 .write = mem_cgroup_reset,
3940 .read_u64 = mem_cgroup_read_u64,
3941 },
3942 {
3943 .name = "limit_in_bytes",
3944 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3945 .write = mem_cgroup_write,
3946 .read_u64 = mem_cgroup_read_u64,
3947 },
3948 {
3949 .name = "soft_limit_in_bytes",
3950 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3951 .write = mem_cgroup_write,
3952 .read_u64 = mem_cgroup_read_u64,
3953 },
3954 {
3955 .name = "failcnt",
3956 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3957 .write = mem_cgroup_reset,
3958 .read_u64 = mem_cgroup_read_u64,
3959 },
3960 {
3961 .name = "stat",
3962 .seq_show = memcg_stat_show,
3963 },
3964 {
3965 .name = "force_empty",
3966 .write = mem_cgroup_force_empty_write,
3967 },
3968 {
3969 .name = "use_hierarchy",
3970 .write_u64 = mem_cgroup_hierarchy_write,
3971 .read_u64 = mem_cgroup_hierarchy_read,
3972 },
3973 {
3974 .name = "cgroup.event_control", /* XXX: for compat */
3975 .write = memcg_write_event_control,
3976 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3977 },
3978 {
3979 .name = "swappiness",
3980 .read_u64 = mem_cgroup_swappiness_read,
3981 .write_u64 = mem_cgroup_swappiness_write,
3982 },
3983 {
3984 .name = "move_charge_at_immigrate",
3985 .read_u64 = mem_cgroup_move_charge_read,
3986 .write_u64 = mem_cgroup_move_charge_write,
3987 },
3988 {
3989 .name = "oom_control",
3990 .seq_show = mem_cgroup_oom_control_read,
3991 .write_u64 = mem_cgroup_oom_control_write,
3992 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3993 },
3994 {
3995 .name = "pressure_level",
3996 },
3997 #ifdef CONFIG_NUMA
3998 {
3999 .name = "numa_stat",
4000 .seq_show = memcg_numa_stat_show,
4001 },
4002 #endif
4003 {
4004 .name = "kmem.limit_in_bytes",
4005 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4006 .write = mem_cgroup_write,
4007 .read_u64 = mem_cgroup_read_u64,
4008 },
4009 {
4010 .name = "kmem.usage_in_bytes",
4011 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4012 .read_u64 = mem_cgroup_read_u64,
4013 },
4014 {
4015 .name = "kmem.failcnt",
4016 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4017 .write = mem_cgroup_reset,
4018 .read_u64 = mem_cgroup_read_u64,
4019 },
4020 {
4021 .name = "kmem.max_usage_in_bytes",
4022 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4023 .write = mem_cgroup_reset,
4024 .read_u64 = mem_cgroup_read_u64,
4025 },
4026 #ifdef CONFIG_SLABINFO
4027 {
4028 .name = "kmem.slabinfo",
4029 .seq_start = slab_start,
4030 .seq_next = slab_next,
4031 .seq_stop = slab_stop,
4032 .seq_show = memcg_slab_show,
4033 },
4034 #endif
4035 {
4036 .name = "kmem.tcp.limit_in_bytes",
4037 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4038 .write = mem_cgroup_write,
4039 .read_u64 = mem_cgroup_read_u64,
4040 },
4041 {
4042 .name = "kmem.tcp.usage_in_bytes",
4043 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4044 .read_u64 = mem_cgroup_read_u64,
4045 },
4046 {
4047 .name = "kmem.tcp.failcnt",
4048 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4049 .write = mem_cgroup_reset,
4050 .read_u64 = mem_cgroup_read_u64,
4051 },
4052 {
4053 .name = "kmem.tcp.max_usage_in_bytes",
4054 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4055 .write = mem_cgroup_reset,
4056 .read_u64 = mem_cgroup_read_u64,
4057 },
4058 { }, /* terminate */
4059 };
4060
4061 /*
4062 * Private memory cgroup IDR
4063 *
4064 * Swap-out records and page cache shadow entries need to store memcg
4065 * references in constrained space, so we maintain an ID space that is
4066 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4067 * memory-controlled cgroups to 64k.
4068 *
4069 * However, there usually are many references to the oflline CSS after
4070 * the cgroup has been destroyed, such as page cache or reclaimable
4071 * slab objects, that don't need to hang on to the ID. We want to keep
4072 * those dead CSS from occupying IDs, or we might quickly exhaust the
4073 * relatively small ID space and prevent the creation of new cgroups
4074 * even when there are much fewer than 64k cgroups - possibly none.
4075 *
4076 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4077 * be freed and recycled when it's no longer needed, which is usually
4078 * when the CSS is offlined.
4079 *
4080 * The only exception to that are records of swapped out tmpfs/shmem
4081 * pages that need to be attributed to live ancestors on swapin. But
4082 * those references are manageable from userspace.
4083 */
4084
4085 static DEFINE_IDR(mem_cgroup_idr);
4086
4087 static void mem_cgroup_id_get(struct mem_cgroup *memcg)
4088 {
4089 atomic_inc(&memcg->id.ref);
4090 }
4091
4092 static void mem_cgroup_id_put(struct mem_cgroup *memcg)
4093 {
4094 if (atomic_dec_and_test(&memcg->id.ref)) {
4095 idr_remove(&mem_cgroup_idr, memcg->id.id);
4096 memcg->id.id = 0;
4097
4098 /* Memcg ID pins CSS */
4099 css_put(&memcg->css);
4100 }
4101 }
4102
4103 /**
4104 * mem_cgroup_from_id - look up a memcg from a memcg id
4105 * @id: the memcg id to look up
4106 *
4107 * Caller must hold rcu_read_lock().
4108 */
4109 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4110 {
4111 WARN_ON_ONCE(!rcu_read_lock_held());
4112 return idr_find(&mem_cgroup_idr, id);
4113 }
4114
4115 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4116 {
4117 struct mem_cgroup_per_node *pn;
4118 struct mem_cgroup_per_zone *mz;
4119 int zone, tmp = node;
4120 /*
4121 * This routine is called against possible nodes.
4122 * But it's BUG to call kmalloc() against offline node.
4123 *
4124 * TODO: this routine can waste much memory for nodes which will
4125 * never be onlined. It's better to use memory hotplug callback
4126 * function.
4127 */
4128 if (!node_state(node, N_NORMAL_MEMORY))
4129 tmp = -1;
4130 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4131 if (!pn)
4132 return 1;
4133
4134 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4135 mz = &pn->zoneinfo[zone];
4136 lruvec_init(&mz->lruvec);
4137 mz->usage_in_excess = 0;
4138 mz->on_tree = false;
4139 mz->memcg = memcg;
4140 }
4141 memcg->nodeinfo[node] = pn;
4142 return 0;
4143 }
4144
4145 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4146 {
4147 kfree(memcg->nodeinfo[node]);
4148 }
4149
4150 static void mem_cgroup_free(struct mem_cgroup *memcg)
4151 {
4152 int node;
4153
4154 memcg_wb_domain_exit(memcg);
4155 for_each_node(node)
4156 free_mem_cgroup_per_zone_info(memcg, node);
4157 free_percpu(memcg->stat);
4158 kfree(memcg);
4159 }
4160
4161 static struct mem_cgroup *mem_cgroup_alloc(void)
4162 {
4163 struct mem_cgroup *memcg;
4164 size_t size;
4165 int node;
4166
4167 size = sizeof(struct mem_cgroup);
4168 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4169
4170 memcg = kzalloc(size, GFP_KERNEL);
4171 if (!memcg)
4172 return NULL;
4173
4174 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4175 1, MEM_CGROUP_ID_MAX,
4176 GFP_KERNEL);
4177 if (memcg->id.id < 0)
4178 goto fail;
4179
4180 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4181 if (!memcg->stat)
4182 goto fail;
4183
4184 for_each_node(node)
4185 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4186 goto fail;
4187
4188 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4189 goto fail;
4190
4191 INIT_WORK(&memcg->high_work, high_work_func);
4192 memcg->last_scanned_node = MAX_NUMNODES;
4193 INIT_LIST_HEAD(&memcg->oom_notify);
4194 mutex_init(&memcg->thresholds_lock);
4195 spin_lock_init(&memcg->move_lock);
4196 vmpressure_init(&memcg->vmpressure);
4197 INIT_LIST_HEAD(&memcg->event_list);
4198 spin_lock_init(&memcg->event_list_lock);
4199 memcg->socket_pressure = jiffies;
4200 #ifndef CONFIG_SLOB
4201 memcg->kmemcg_id = -1;
4202 #endif
4203 #ifdef CONFIG_CGROUP_WRITEBACK
4204 INIT_LIST_HEAD(&memcg->cgwb_list);
4205 #endif
4206 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4207 return memcg;
4208 fail:
4209 if (memcg->id.id > 0)
4210 idr_remove(&mem_cgroup_idr, memcg->id.id);
4211 mem_cgroup_free(memcg);
4212 return NULL;
4213 }
4214
4215 static struct cgroup_subsys_state * __ref
4216 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4217 {
4218 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4219 struct mem_cgroup *memcg;
4220 long error = -ENOMEM;
4221
4222 memcg = mem_cgroup_alloc();
4223 if (!memcg)
4224 return ERR_PTR(error);
4225
4226 memcg->high = PAGE_COUNTER_MAX;
4227 memcg->soft_limit = PAGE_COUNTER_MAX;
4228 if (parent) {
4229 memcg->swappiness = mem_cgroup_swappiness(parent);
4230 memcg->oom_kill_disable = parent->oom_kill_disable;
4231 }
4232 if (parent && parent->use_hierarchy) {
4233 memcg->use_hierarchy = true;
4234 page_counter_init(&memcg->memory, &parent->memory);
4235 page_counter_init(&memcg->swap, &parent->swap);
4236 page_counter_init(&memcg->memsw, &parent->memsw);
4237 page_counter_init(&memcg->kmem, &parent->kmem);
4238 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4239 } else {
4240 page_counter_init(&memcg->memory, NULL);
4241 page_counter_init(&memcg->swap, NULL);
4242 page_counter_init(&memcg->memsw, NULL);
4243 page_counter_init(&memcg->kmem, NULL);
4244 page_counter_init(&memcg->tcpmem, NULL);
4245 /*
4246 * Deeper hierachy with use_hierarchy == false doesn't make
4247 * much sense so let cgroup subsystem know about this
4248 * unfortunate state in our controller.
4249 */
4250 if (parent != root_mem_cgroup)
4251 memory_cgrp_subsys.broken_hierarchy = true;
4252 }
4253
4254 /* The following stuff does not apply to the root */
4255 if (!parent) {
4256 root_mem_cgroup = memcg;
4257 return &memcg->css;
4258 }
4259
4260 error = memcg_online_kmem(memcg);
4261 if (error)
4262 goto fail;
4263
4264 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4265 static_branch_inc(&memcg_sockets_enabled_key);
4266
4267 return &memcg->css;
4268 fail:
4269 mem_cgroup_free(memcg);
4270 return ERR_PTR(-ENOMEM);
4271 }
4272
4273 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4274 {
4275 /* Online state pins memcg ID, memcg ID pins CSS */
4276 mem_cgroup_id_get(mem_cgroup_from_css(css));
4277 css_get(css);
4278 return 0;
4279 }
4280
4281 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4282 {
4283 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4284 struct mem_cgroup_event *event, *tmp;
4285
4286 /*
4287 * Unregister events and notify userspace.
4288 * Notify userspace about cgroup removing only after rmdir of cgroup
4289 * directory to avoid race between userspace and kernelspace.
4290 */
4291 spin_lock(&memcg->event_list_lock);
4292 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4293 list_del_init(&event->list);
4294 schedule_work(&event->remove);
4295 }
4296 spin_unlock(&memcg->event_list_lock);
4297
4298 memcg_offline_kmem(memcg);
4299 wb_memcg_offline(memcg);
4300
4301 mem_cgroup_id_put(memcg);
4302 }
4303
4304 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4305 {
4306 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4307
4308 invalidate_reclaim_iterators(memcg);
4309 }
4310
4311 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4312 {
4313 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4314
4315 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4316 static_branch_dec(&memcg_sockets_enabled_key);
4317
4318 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4319 static_branch_dec(&memcg_sockets_enabled_key);
4320
4321 vmpressure_cleanup(&memcg->vmpressure);
4322 cancel_work_sync(&memcg->high_work);
4323 mem_cgroup_remove_from_trees(memcg);
4324 memcg_free_kmem(memcg);
4325 mem_cgroup_free(memcg);
4326 }
4327
4328 /**
4329 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4330 * @css: the target css
4331 *
4332 * Reset the states of the mem_cgroup associated with @css. This is
4333 * invoked when the userland requests disabling on the default hierarchy
4334 * but the memcg is pinned through dependency. The memcg should stop
4335 * applying policies and should revert to the vanilla state as it may be
4336 * made visible again.
4337 *
4338 * The current implementation only resets the essential configurations.
4339 * This needs to be expanded to cover all the visible parts.
4340 */
4341 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4342 {
4343 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4344
4345 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4346 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4347 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4348 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4349 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4350 memcg->low = 0;
4351 memcg->high = PAGE_COUNTER_MAX;
4352 memcg->soft_limit = PAGE_COUNTER_MAX;
4353 memcg_wb_domain_size_changed(memcg);
4354 }
4355
4356 #ifdef CONFIG_MMU
4357 /* Handlers for move charge at task migration. */
4358 static int mem_cgroup_do_precharge(unsigned long count)
4359 {
4360 int ret;
4361
4362 /* Try a single bulk charge without reclaim first, kswapd may wake */
4363 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4364 if (!ret) {
4365 mc.precharge += count;
4366 return ret;
4367 }
4368
4369 /* Try charges one by one with reclaim */
4370 while (count--) {
4371 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4372 if (ret)
4373 return ret;
4374 mc.precharge++;
4375 cond_resched();
4376 }
4377 return 0;
4378 }
4379
4380 union mc_target {
4381 struct page *page;
4382 swp_entry_t ent;
4383 };
4384
4385 enum mc_target_type {
4386 MC_TARGET_NONE = 0,
4387 MC_TARGET_PAGE,
4388 MC_TARGET_SWAP,
4389 };
4390
4391 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4392 unsigned long addr, pte_t ptent)
4393 {
4394 struct page *page = vm_normal_page(vma, addr, ptent);
4395
4396 if (!page || !page_mapped(page))
4397 return NULL;
4398 if (PageAnon(page)) {
4399 if (!(mc.flags & MOVE_ANON))
4400 return NULL;
4401 } else {
4402 if (!(mc.flags & MOVE_FILE))
4403 return NULL;
4404 }
4405 if (!get_page_unless_zero(page))
4406 return NULL;
4407
4408 return page;
4409 }
4410
4411 #ifdef CONFIG_SWAP
4412 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4413 pte_t ptent, swp_entry_t *entry)
4414 {
4415 struct page *page = NULL;
4416 swp_entry_t ent = pte_to_swp_entry(ptent);
4417
4418 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4419 return NULL;
4420 /*
4421 * Because lookup_swap_cache() updates some statistics counter,
4422 * we call find_get_page() with swapper_space directly.
4423 */
4424 page = find_get_page(swap_address_space(ent), ent.val);
4425 if (do_memsw_account())
4426 entry->val = ent.val;
4427
4428 return page;
4429 }
4430 #else
4431 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4432 pte_t ptent, swp_entry_t *entry)
4433 {
4434 return NULL;
4435 }
4436 #endif
4437
4438 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4439 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4440 {
4441 struct page *page = NULL;
4442 struct address_space *mapping;
4443 pgoff_t pgoff;
4444
4445 if (!vma->vm_file) /* anonymous vma */
4446 return NULL;
4447 if (!(mc.flags & MOVE_FILE))
4448 return NULL;
4449
4450 mapping = vma->vm_file->f_mapping;
4451 pgoff = linear_page_index(vma, addr);
4452
4453 /* page is moved even if it's not RSS of this task(page-faulted). */
4454 #ifdef CONFIG_SWAP
4455 /* shmem/tmpfs may report page out on swap: account for that too. */
4456 if (shmem_mapping(mapping)) {
4457 page = find_get_entry(mapping, pgoff);
4458 if (radix_tree_exceptional_entry(page)) {
4459 swp_entry_t swp = radix_to_swp_entry(page);
4460 if (do_memsw_account())
4461 *entry = swp;
4462 page = find_get_page(swap_address_space(swp), swp.val);
4463 }
4464 } else
4465 page = find_get_page(mapping, pgoff);
4466 #else
4467 page = find_get_page(mapping, pgoff);
4468 #endif
4469 return page;
4470 }
4471
4472 /**
4473 * mem_cgroup_move_account - move account of the page
4474 * @page: the page
4475 * @nr_pages: number of regular pages (>1 for huge pages)
4476 * @from: mem_cgroup which the page is moved from.
4477 * @to: mem_cgroup which the page is moved to. @from != @to.
4478 *
4479 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4480 *
4481 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4482 * from old cgroup.
4483 */
4484 static int mem_cgroup_move_account(struct page *page,
4485 bool compound,
4486 struct mem_cgroup *from,
4487 struct mem_cgroup *to)
4488 {
4489 unsigned long flags;
4490 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4491 int ret;
4492 bool anon;
4493
4494 VM_BUG_ON(from == to);
4495 VM_BUG_ON_PAGE(PageLRU(page), page);
4496 VM_BUG_ON(compound && !PageTransHuge(page));
4497
4498 /*
4499 * Prevent mem_cgroup_migrate() from looking at
4500 * page->mem_cgroup of its source page while we change it.
4501 */
4502 ret = -EBUSY;
4503 if (!trylock_page(page))
4504 goto out;
4505
4506 ret = -EINVAL;
4507 if (page->mem_cgroup != from)
4508 goto out_unlock;
4509
4510 anon = PageAnon(page);
4511
4512 spin_lock_irqsave(&from->move_lock, flags);
4513
4514 if (!anon && page_mapped(page)) {
4515 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4516 nr_pages);
4517 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4518 nr_pages);
4519 }
4520
4521 /*
4522 * move_lock grabbed above and caller set from->moving_account, so
4523 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4524 * So mapping should be stable for dirty pages.
4525 */
4526 if (!anon && PageDirty(page)) {
4527 struct address_space *mapping = page_mapping(page);
4528
4529 if (mapping_cap_account_dirty(mapping)) {
4530 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4531 nr_pages);
4532 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4533 nr_pages);
4534 }
4535 }
4536
4537 if (PageWriteback(page)) {
4538 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4539 nr_pages);
4540 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4541 nr_pages);
4542 }
4543
4544 /*
4545 * It is safe to change page->mem_cgroup here because the page
4546 * is referenced, charged, and isolated - we can't race with
4547 * uncharging, charging, migration, or LRU putback.
4548 */
4549
4550 /* caller should have done css_get */
4551 page->mem_cgroup = to;
4552 spin_unlock_irqrestore(&from->move_lock, flags);
4553
4554 ret = 0;
4555
4556 local_irq_disable();
4557 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4558 memcg_check_events(to, page);
4559 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4560 memcg_check_events(from, page);
4561 local_irq_enable();
4562 out_unlock:
4563 unlock_page(page);
4564 out:
4565 return ret;
4566 }
4567
4568 /**
4569 * get_mctgt_type - get target type of moving charge
4570 * @vma: the vma the pte to be checked belongs
4571 * @addr: the address corresponding to the pte to be checked
4572 * @ptent: the pte to be checked
4573 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4574 *
4575 * Returns
4576 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4577 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4578 * move charge. if @target is not NULL, the page is stored in target->page
4579 * with extra refcnt got(Callers should handle it).
4580 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4581 * target for charge migration. if @target is not NULL, the entry is stored
4582 * in target->ent.
4583 *
4584 * Called with pte lock held.
4585 */
4586
4587 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4588 unsigned long addr, pte_t ptent, union mc_target *target)
4589 {
4590 struct page *page = NULL;
4591 enum mc_target_type ret = MC_TARGET_NONE;
4592 swp_entry_t ent = { .val = 0 };
4593
4594 if (pte_present(ptent))
4595 page = mc_handle_present_pte(vma, addr, ptent);
4596 else if (is_swap_pte(ptent))
4597 page = mc_handle_swap_pte(vma, ptent, &ent);
4598 else if (pte_none(ptent))
4599 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4600
4601 if (!page && !ent.val)
4602 return ret;
4603 if (page) {
4604 /*
4605 * Do only loose check w/o serialization.
4606 * mem_cgroup_move_account() checks the page is valid or
4607 * not under LRU exclusion.
4608 */
4609 if (page->mem_cgroup == mc.from) {
4610 ret = MC_TARGET_PAGE;
4611 if (target)
4612 target->page = page;
4613 }
4614 if (!ret || !target)
4615 put_page(page);
4616 }
4617 /* There is a swap entry and a page doesn't exist or isn't charged */
4618 if (ent.val && !ret &&
4619 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4620 ret = MC_TARGET_SWAP;
4621 if (target)
4622 target->ent = ent;
4623 }
4624 return ret;
4625 }
4626
4627 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4628 /*
4629 * We don't consider swapping or file mapped pages because THP does not
4630 * support them for now.
4631 * Caller should make sure that pmd_trans_huge(pmd) is true.
4632 */
4633 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4634 unsigned long addr, pmd_t pmd, union mc_target *target)
4635 {
4636 struct page *page = NULL;
4637 enum mc_target_type ret = MC_TARGET_NONE;
4638
4639 page = pmd_page(pmd);
4640 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4641 if (!(mc.flags & MOVE_ANON))
4642 return ret;
4643 if (page->mem_cgroup == mc.from) {
4644 ret = MC_TARGET_PAGE;
4645 if (target) {
4646 get_page(page);
4647 target->page = page;
4648 }
4649 }
4650 return ret;
4651 }
4652 #else
4653 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4654 unsigned long addr, pmd_t pmd, union mc_target *target)
4655 {
4656 return MC_TARGET_NONE;
4657 }
4658 #endif
4659
4660 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4661 unsigned long addr, unsigned long end,
4662 struct mm_walk *walk)
4663 {
4664 struct vm_area_struct *vma = walk->vma;
4665 pte_t *pte;
4666 spinlock_t *ptl;
4667
4668 ptl = pmd_trans_huge_lock(pmd, vma);
4669 if (ptl) {
4670 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4671 mc.precharge += HPAGE_PMD_NR;
4672 spin_unlock(ptl);
4673 return 0;
4674 }
4675
4676 if (pmd_trans_unstable(pmd))
4677 return 0;
4678 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4679 for (; addr != end; pte++, addr += PAGE_SIZE)
4680 if (get_mctgt_type(vma, addr, *pte, NULL))
4681 mc.precharge++; /* increment precharge temporarily */
4682 pte_unmap_unlock(pte - 1, ptl);
4683 cond_resched();
4684
4685 return 0;
4686 }
4687
4688 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4689 {
4690 unsigned long precharge;
4691
4692 struct mm_walk mem_cgroup_count_precharge_walk = {
4693 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4694 .mm = mm,
4695 };
4696 down_read(&mm->mmap_sem);
4697 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4698 up_read(&mm->mmap_sem);
4699
4700 precharge = mc.precharge;
4701 mc.precharge = 0;
4702
4703 return precharge;
4704 }
4705
4706 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4707 {
4708 unsigned long precharge = mem_cgroup_count_precharge(mm);
4709
4710 VM_BUG_ON(mc.moving_task);
4711 mc.moving_task = current;
4712 return mem_cgroup_do_precharge(precharge);
4713 }
4714
4715 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4716 static void __mem_cgroup_clear_mc(void)
4717 {
4718 struct mem_cgroup *from = mc.from;
4719 struct mem_cgroup *to = mc.to;
4720
4721 /* we must uncharge all the leftover precharges from mc.to */
4722 if (mc.precharge) {
4723 cancel_charge(mc.to, mc.precharge);
4724 mc.precharge = 0;
4725 }
4726 /*
4727 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4728 * we must uncharge here.
4729 */
4730 if (mc.moved_charge) {
4731 cancel_charge(mc.from, mc.moved_charge);
4732 mc.moved_charge = 0;
4733 }
4734 /* we must fixup refcnts and charges */
4735 if (mc.moved_swap) {
4736 /* uncharge swap account from the old cgroup */
4737 if (!mem_cgroup_is_root(mc.from))
4738 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4739
4740 /*
4741 * we charged both to->memory and to->memsw, so we
4742 * should uncharge to->memory.
4743 */
4744 if (!mem_cgroup_is_root(mc.to))
4745 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4746
4747 css_put_many(&mc.from->css, mc.moved_swap);
4748
4749 /* we've already done css_get(mc.to) */
4750 mc.moved_swap = 0;
4751 }
4752 memcg_oom_recover(from);
4753 memcg_oom_recover(to);
4754 wake_up_all(&mc.waitq);
4755 }
4756
4757 static void mem_cgroup_clear_mc(void)
4758 {
4759 struct mm_struct *mm = mc.mm;
4760
4761 /*
4762 * we must clear moving_task before waking up waiters at the end of
4763 * task migration.
4764 */
4765 mc.moving_task = NULL;
4766 __mem_cgroup_clear_mc();
4767 spin_lock(&mc.lock);
4768 mc.from = NULL;
4769 mc.to = NULL;
4770 mc.mm = NULL;
4771 spin_unlock(&mc.lock);
4772
4773 mmput(mm);
4774 }
4775
4776 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4777 {
4778 struct cgroup_subsys_state *css;
4779 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4780 struct mem_cgroup *from;
4781 struct task_struct *leader, *p;
4782 struct mm_struct *mm;
4783 unsigned long move_flags;
4784 int ret = 0;
4785
4786 /* charge immigration isn't supported on the default hierarchy */
4787 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4788 return 0;
4789
4790 /*
4791 * Multi-process migrations only happen on the default hierarchy
4792 * where charge immigration is not used. Perform charge
4793 * immigration if @tset contains a leader and whine if there are
4794 * multiple.
4795 */
4796 p = NULL;
4797 cgroup_taskset_for_each_leader(leader, css, tset) {
4798 WARN_ON_ONCE(p);
4799 p = leader;
4800 memcg = mem_cgroup_from_css(css);
4801 }
4802 if (!p)
4803 return 0;
4804
4805 /*
4806 * We are now commited to this value whatever it is. Changes in this
4807 * tunable will only affect upcoming migrations, not the current one.
4808 * So we need to save it, and keep it going.
4809 */
4810 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4811 if (!move_flags)
4812 return 0;
4813
4814 from = mem_cgroup_from_task(p);
4815
4816 VM_BUG_ON(from == memcg);
4817
4818 mm = get_task_mm(p);
4819 if (!mm)
4820 return 0;
4821 /* We move charges only when we move a owner of the mm */
4822 if (mm->owner == p) {
4823 VM_BUG_ON(mc.from);
4824 VM_BUG_ON(mc.to);
4825 VM_BUG_ON(mc.precharge);
4826 VM_BUG_ON(mc.moved_charge);
4827 VM_BUG_ON(mc.moved_swap);
4828
4829 spin_lock(&mc.lock);
4830 mc.mm = mm;
4831 mc.from = from;
4832 mc.to = memcg;
4833 mc.flags = move_flags;
4834 spin_unlock(&mc.lock);
4835 /* We set mc.moving_task later */
4836
4837 ret = mem_cgroup_precharge_mc(mm);
4838 if (ret)
4839 mem_cgroup_clear_mc();
4840 } else {
4841 mmput(mm);
4842 }
4843 return ret;
4844 }
4845
4846 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4847 {
4848 if (mc.to)
4849 mem_cgroup_clear_mc();
4850 }
4851
4852 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4853 unsigned long addr, unsigned long end,
4854 struct mm_walk *walk)
4855 {
4856 int ret = 0;
4857 struct vm_area_struct *vma = walk->vma;
4858 pte_t *pte;
4859 spinlock_t *ptl;
4860 enum mc_target_type target_type;
4861 union mc_target target;
4862 struct page *page;
4863
4864 ptl = pmd_trans_huge_lock(pmd, vma);
4865 if (ptl) {
4866 if (mc.precharge < HPAGE_PMD_NR) {
4867 spin_unlock(ptl);
4868 return 0;
4869 }
4870 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4871 if (target_type == MC_TARGET_PAGE) {
4872 page = target.page;
4873 if (!isolate_lru_page(page)) {
4874 if (!mem_cgroup_move_account(page, true,
4875 mc.from, mc.to)) {
4876 mc.precharge -= HPAGE_PMD_NR;
4877 mc.moved_charge += HPAGE_PMD_NR;
4878 }
4879 putback_lru_page(page);
4880 }
4881 put_page(page);
4882 }
4883 spin_unlock(ptl);
4884 return 0;
4885 }
4886
4887 if (pmd_trans_unstable(pmd))
4888 return 0;
4889 retry:
4890 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4891 for (; addr != end; addr += PAGE_SIZE) {
4892 pte_t ptent = *(pte++);
4893 swp_entry_t ent;
4894
4895 if (!mc.precharge)
4896 break;
4897
4898 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4899 case MC_TARGET_PAGE:
4900 page = target.page;
4901 /*
4902 * We can have a part of the split pmd here. Moving it
4903 * can be done but it would be too convoluted so simply
4904 * ignore such a partial THP and keep it in original
4905 * memcg. There should be somebody mapping the head.
4906 */
4907 if (PageTransCompound(page))
4908 goto put;
4909 if (isolate_lru_page(page))
4910 goto put;
4911 if (!mem_cgroup_move_account(page, false,
4912 mc.from, mc.to)) {
4913 mc.precharge--;
4914 /* we uncharge from mc.from later. */
4915 mc.moved_charge++;
4916 }
4917 putback_lru_page(page);
4918 put: /* get_mctgt_type() gets the page */
4919 put_page(page);
4920 break;
4921 case MC_TARGET_SWAP:
4922 ent = target.ent;
4923 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4924 mc.precharge--;
4925 /* we fixup refcnts and charges later. */
4926 mc.moved_swap++;
4927 }
4928 break;
4929 default:
4930 break;
4931 }
4932 }
4933 pte_unmap_unlock(pte - 1, ptl);
4934 cond_resched();
4935
4936 if (addr != end) {
4937 /*
4938 * We have consumed all precharges we got in can_attach().
4939 * We try charge one by one, but don't do any additional
4940 * charges to mc.to if we have failed in charge once in attach()
4941 * phase.
4942 */
4943 ret = mem_cgroup_do_precharge(1);
4944 if (!ret)
4945 goto retry;
4946 }
4947
4948 return ret;
4949 }
4950
4951 static void mem_cgroup_move_charge(void)
4952 {
4953 struct mm_walk mem_cgroup_move_charge_walk = {
4954 .pmd_entry = mem_cgroup_move_charge_pte_range,
4955 .mm = mc.mm,
4956 };
4957
4958 lru_add_drain_all();
4959 /*
4960 * Signal lock_page_memcg() to take the memcg's move_lock
4961 * while we're moving its pages to another memcg. Then wait
4962 * for already started RCU-only updates to finish.
4963 */
4964 atomic_inc(&mc.from->moving_account);
4965 synchronize_rcu();
4966 retry:
4967 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4968 /*
4969 * Someone who are holding the mmap_sem might be waiting in
4970 * waitq. So we cancel all extra charges, wake up all waiters,
4971 * and retry. Because we cancel precharges, we might not be able
4972 * to move enough charges, but moving charge is a best-effort
4973 * feature anyway, so it wouldn't be a big problem.
4974 */
4975 __mem_cgroup_clear_mc();
4976 cond_resched();
4977 goto retry;
4978 }
4979 /*
4980 * When we have consumed all precharges and failed in doing
4981 * additional charge, the page walk just aborts.
4982 */
4983 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4984 up_read(&mc.mm->mmap_sem);
4985 atomic_dec(&mc.from->moving_account);
4986 }
4987
4988 static void mem_cgroup_move_task(void)
4989 {
4990 if (mc.to) {
4991 mem_cgroup_move_charge();
4992 mem_cgroup_clear_mc();
4993 }
4994 }
4995 #else /* !CONFIG_MMU */
4996 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4997 {
4998 return 0;
4999 }
5000 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5001 {
5002 }
5003 static void mem_cgroup_move_task(void)
5004 {
5005 }
5006 #endif
5007
5008 /*
5009 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5010 * to verify whether we're attached to the default hierarchy on each mount
5011 * attempt.
5012 */
5013 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5014 {
5015 /*
5016 * use_hierarchy is forced on the default hierarchy. cgroup core
5017 * guarantees that @root doesn't have any children, so turning it
5018 * on for the root memcg is enough.
5019 */
5020 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5021 root_mem_cgroup->use_hierarchy = true;
5022 else
5023 root_mem_cgroup->use_hierarchy = false;
5024 }
5025
5026 static u64 memory_current_read(struct cgroup_subsys_state *css,
5027 struct cftype *cft)
5028 {
5029 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5030
5031 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5032 }
5033
5034 static int memory_low_show(struct seq_file *m, void *v)
5035 {
5036 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5037 unsigned long low = READ_ONCE(memcg->low);
5038
5039 if (low == PAGE_COUNTER_MAX)
5040 seq_puts(m, "max\n");
5041 else
5042 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5043
5044 return 0;
5045 }
5046
5047 static ssize_t memory_low_write(struct kernfs_open_file *of,
5048 char *buf, size_t nbytes, loff_t off)
5049 {
5050 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5051 unsigned long low;
5052 int err;
5053
5054 buf = strstrip(buf);
5055 err = page_counter_memparse(buf, "max", &low);
5056 if (err)
5057 return err;
5058
5059 memcg->low = low;
5060
5061 return nbytes;
5062 }
5063
5064 static int memory_high_show(struct seq_file *m, void *v)
5065 {
5066 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5067 unsigned long high = READ_ONCE(memcg->high);
5068
5069 if (high == PAGE_COUNTER_MAX)
5070 seq_puts(m, "max\n");
5071 else
5072 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5073
5074 return 0;
5075 }
5076
5077 static ssize_t memory_high_write(struct kernfs_open_file *of,
5078 char *buf, size_t nbytes, loff_t off)
5079 {
5080 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5081 unsigned long nr_pages;
5082 unsigned long high;
5083 int err;
5084
5085 buf = strstrip(buf);
5086 err = page_counter_memparse(buf, "max", &high);
5087 if (err)
5088 return err;
5089
5090 memcg->high = high;
5091
5092 nr_pages = page_counter_read(&memcg->memory);
5093 if (nr_pages > high)
5094 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5095 GFP_KERNEL, true);
5096
5097 memcg_wb_domain_size_changed(memcg);
5098 return nbytes;
5099 }
5100
5101 static int memory_max_show(struct seq_file *m, void *v)
5102 {
5103 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5104 unsigned long max = READ_ONCE(memcg->memory.limit);
5105
5106 if (max == PAGE_COUNTER_MAX)
5107 seq_puts(m, "max\n");
5108 else
5109 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5110
5111 return 0;
5112 }
5113
5114 static ssize_t memory_max_write(struct kernfs_open_file *of,
5115 char *buf, size_t nbytes, loff_t off)
5116 {
5117 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5118 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5119 bool drained = false;
5120 unsigned long max;
5121 int err;
5122
5123 buf = strstrip(buf);
5124 err = page_counter_memparse(buf, "max", &max);
5125 if (err)
5126 return err;
5127
5128 xchg(&memcg->memory.limit, max);
5129
5130 for (;;) {
5131 unsigned long nr_pages = page_counter_read(&memcg->memory);
5132
5133 if (nr_pages <= max)
5134 break;
5135
5136 if (signal_pending(current)) {
5137 err = -EINTR;
5138 break;
5139 }
5140
5141 if (!drained) {
5142 drain_all_stock(memcg);
5143 drained = true;
5144 continue;
5145 }
5146
5147 if (nr_reclaims) {
5148 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5149 GFP_KERNEL, true))
5150 nr_reclaims--;
5151 continue;
5152 }
5153
5154 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5155 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5156 break;
5157 }
5158
5159 memcg_wb_domain_size_changed(memcg);
5160 return nbytes;
5161 }
5162
5163 static int memory_events_show(struct seq_file *m, void *v)
5164 {
5165 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5166
5167 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5168 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5169 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5170 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5171
5172 return 0;
5173 }
5174
5175 static int memory_stat_show(struct seq_file *m, void *v)
5176 {
5177 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5178 unsigned long stat[MEMCG_NR_STAT];
5179 unsigned long events[MEMCG_NR_EVENTS];
5180 int i;
5181
5182 /*
5183 * Provide statistics on the state of the memory subsystem as
5184 * well as cumulative event counters that show past behavior.
5185 *
5186 * This list is ordered following a combination of these gradients:
5187 * 1) generic big picture -> specifics and details
5188 * 2) reflecting userspace activity -> reflecting kernel heuristics
5189 *
5190 * Current memory state:
5191 */
5192
5193 tree_stat(memcg, stat);
5194 tree_events(memcg, events);
5195
5196 seq_printf(m, "anon %llu\n",
5197 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5198 seq_printf(m, "file %llu\n",
5199 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5200 seq_printf(m, "kernel_stack %llu\n",
5201 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5202 seq_printf(m, "slab %llu\n",
5203 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5204 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5205 seq_printf(m, "sock %llu\n",
5206 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5207
5208 seq_printf(m, "file_mapped %llu\n",
5209 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5210 seq_printf(m, "file_dirty %llu\n",
5211 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5212 seq_printf(m, "file_writeback %llu\n",
5213 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5214
5215 for (i = 0; i < NR_LRU_LISTS; i++) {
5216 struct mem_cgroup *mi;
5217 unsigned long val = 0;
5218
5219 for_each_mem_cgroup_tree(mi, memcg)
5220 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5221 seq_printf(m, "%s %llu\n",
5222 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5223 }
5224
5225 seq_printf(m, "slab_reclaimable %llu\n",
5226 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5227 seq_printf(m, "slab_unreclaimable %llu\n",
5228 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5229
5230 /* Accumulated memory events */
5231
5232 seq_printf(m, "pgfault %lu\n",
5233 events[MEM_CGROUP_EVENTS_PGFAULT]);
5234 seq_printf(m, "pgmajfault %lu\n",
5235 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5236
5237 return 0;
5238 }
5239
5240 static struct cftype memory_files[] = {
5241 {
5242 .name = "current",
5243 .flags = CFTYPE_NOT_ON_ROOT,
5244 .read_u64 = memory_current_read,
5245 },
5246 {
5247 .name = "low",
5248 .flags = CFTYPE_NOT_ON_ROOT,
5249 .seq_show = memory_low_show,
5250 .write = memory_low_write,
5251 },
5252 {
5253 .name = "high",
5254 .flags = CFTYPE_NOT_ON_ROOT,
5255 .seq_show = memory_high_show,
5256 .write = memory_high_write,
5257 },
5258 {
5259 .name = "max",
5260 .flags = CFTYPE_NOT_ON_ROOT,
5261 .seq_show = memory_max_show,
5262 .write = memory_max_write,
5263 },
5264 {
5265 .name = "events",
5266 .flags = CFTYPE_NOT_ON_ROOT,
5267 .file_offset = offsetof(struct mem_cgroup, events_file),
5268 .seq_show = memory_events_show,
5269 },
5270 {
5271 .name = "stat",
5272 .flags = CFTYPE_NOT_ON_ROOT,
5273 .seq_show = memory_stat_show,
5274 },
5275 { } /* terminate */
5276 };
5277
5278 struct cgroup_subsys memory_cgrp_subsys = {
5279 .css_alloc = mem_cgroup_css_alloc,
5280 .css_online = mem_cgroup_css_online,
5281 .css_offline = mem_cgroup_css_offline,
5282 .css_released = mem_cgroup_css_released,
5283 .css_free = mem_cgroup_css_free,
5284 .css_reset = mem_cgroup_css_reset,
5285 .can_attach = mem_cgroup_can_attach,
5286 .cancel_attach = mem_cgroup_cancel_attach,
5287 .post_attach = mem_cgroup_move_task,
5288 .bind = mem_cgroup_bind,
5289 .dfl_cftypes = memory_files,
5290 .legacy_cftypes = mem_cgroup_legacy_files,
5291 .early_init = 0,
5292 };
5293
5294 /**
5295 * mem_cgroup_low - check if memory consumption is below the normal range
5296 * @root: the highest ancestor to consider
5297 * @memcg: the memory cgroup to check
5298 *
5299 * Returns %true if memory consumption of @memcg, and that of all
5300 * configurable ancestors up to @root, is below the normal range.
5301 */
5302 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5303 {
5304 if (mem_cgroup_disabled())
5305 return false;
5306
5307 /*
5308 * The toplevel group doesn't have a configurable range, so
5309 * it's never low when looked at directly, and it is not
5310 * considered an ancestor when assessing the hierarchy.
5311 */
5312
5313 if (memcg == root_mem_cgroup)
5314 return false;
5315
5316 if (page_counter_read(&memcg->memory) >= memcg->low)
5317 return false;
5318
5319 while (memcg != root) {
5320 memcg = parent_mem_cgroup(memcg);
5321
5322 if (memcg == root_mem_cgroup)
5323 break;
5324
5325 if (page_counter_read(&memcg->memory) >= memcg->low)
5326 return false;
5327 }
5328 return true;
5329 }
5330
5331 /**
5332 * mem_cgroup_try_charge - try charging a page
5333 * @page: page to charge
5334 * @mm: mm context of the victim
5335 * @gfp_mask: reclaim mode
5336 * @memcgp: charged memcg return
5337 *
5338 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5339 * pages according to @gfp_mask if necessary.
5340 *
5341 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5342 * Otherwise, an error code is returned.
5343 *
5344 * After page->mapping has been set up, the caller must finalize the
5345 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5346 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5347 */
5348 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5349 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5350 bool compound)
5351 {
5352 struct mem_cgroup *memcg = NULL;
5353 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5354 int ret = 0;
5355
5356 if (mem_cgroup_disabled())
5357 goto out;
5358
5359 if (PageSwapCache(page)) {
5360 /*
5361 * Every swap fault against a single page tries to charge the
5362 * page, bail as early as possible. shmem_unuse() encounters
5363 * already charged pages, too. The USED bit is protected by
5364 * the page lock, which serializes swap cache removal, which
5365 * in turn serializes uncharging.
5366 */
5367 VM_BUG_ON_PAGE(!PageLocked(page), page);
5368 if (page->mem_cgroup)
5369 goto out;
5370
5371 if (do_swap_account) {
5372 swp_entry_t ent = { .val = page_private(page), };
5373 unsigned short id = lookup_swap_cgroup_id(ent);
5374
5375 rcu_read_lock();
5376 memcg = mem_cgroup_from_id(id);
5377 if (memcg && !css_tryget_online(&memcg->css))
5378 memcg = NULL;
5379 rcu_read_unlock();
5380 }
5381 }
5382
5383 if (!memcg)
5384 memcg = get_mem_cgroup_from_mm(mm);
5385
5386 ret = try_charge(memcg, gfp_mask, nr_pages);
5387
5388 css_put(&memcg->css);
5389 out:
5390 *memcgp = memcg;
5391 return ret;
5392 }
5393
5394 /**
5395 * mem_cgroup_commit_charge - commit a page charge
5396 * @page: page to charge
5397 * @memcg: memcg to charge the page to
5398 * @lrucare: page might be on LRU already
5399 *
5400 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5401 * after page->mapping has been set up. This must happen atomically
5402 * as part of the page instantiation, i.e. under the page table lock
5403 * for anonymous pages, under the page lock for page and swap cache.
5404 *
5405 * In addition, the page must not be on the LRU during the commit, to
5406 * prevent racing with task migration. If it might be, use @lrucare.
5407 *
5408 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5409 */
5410 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5411 bool lrucare, bool compound)
5412 {
5413 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5414
5415 VM_BUG_ON_PAGE(!page->mapping, page);
5416 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5417
5418 if (mem_cgroup_disabled())
5419 return;
5420 /*
5421 * Swap faults will attempt to charge the same page multiple
5422 * times. But reuse_swap_page() might have removed the page
5423 * from swapcache already, so we can't check PageSwapCache().
5424 */
5425 if (!memcg)
5426 return;
5427
5428 commit_charge(page, memcg, lrucare);
5429
5430 local_irq_disable();
5431 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5432 memcg_check_events(memcg, page);
5433 local_irq_enable();
5434
5435 if (do_memsw_account() && PageSwapCache(page)) {
5436 swp_entry_t entry = { .val = page_private(page) };
5437 /*
5438 * The swap entry might not get freed for a long time,
5439 * let's not wait for it. The page already received a
5440 * memory+swap charge, drop the swap entry duplicate.
5441 */
5442 mem_cgroup_uncharge_swap(entry);
5443 }
5444 }
5445
5446 /**
5447 * mem_cgroup_cancel_charge - cancel a page charge
5448 * @page: page to charge
5449 * @memcg: memcg to charge the page to
5450 *
5451 * Cancel a charge transaction started by mem_cgroup_try_charge().
5452 */
5453 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5454 bool compound)
5455 {
5456 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5457
5458 if (mem_cgroup_disabled())
5459 return;
5460 /*
5461 * Swap faults will attempt to charge the same page multiple
5462 * times. But reuse_swap_page() might have removed the page
5463 * from swapcache already, so we can't check PageSwapCache().
5464 */
5465 if (!memcg)
5466 return;
5467
5468 cancel_charge(memcg, nr_pages);
5469 }
5470
5471 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5472 unsigned long nr_anon, unsigned long nr_file,
5473 unsigned long nr_huge, struct page *dummy_page)
5474 {
5475 unsigned long nr_pages = nr_anon + nr_file;
5476 unsigned long flags;
5477
5478 if (!mem_cgroup_is_root(memcg)) {
5479 page_counter_uncharge(&memcg->memory, nr_pages);
5480 if (do_memsw_account())
5481 page_counter_uncharge(&memcg->memsw, nr_pages);
5482 memcg_oom_recover(memcg);
5483 }
5484
5485 local_irq_save(flags);
5486 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5487 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5488 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5489 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5490 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5491 memcg_check_events(memcg, dummy_page);
5492 local_irq_restore(flags);
5493
5494 if (!mem_cgroup_is_root(memcg))
5495 css_put_many(&memcg->css, nr_pages);
5496 }
5497
5498 static void uncharge_list(struct list_head *page_list)
5499 {
5500 struct mem_cgroup *memcg = NULL;
5501 unsigned long nr_anon = 0;
5502 unsigned long nr_file = 0;
5503 unsigned long nr_huge = 0;
5504 unsigned long pgpgout = 0;
5505 struct list_head *next;
5506 struct page *page;
5507
5508 /*
5509 * Note that the list can be a single page->lru; hence the
5510 * do-while loop instead of a simple list_for_each_entry().
5511 */
5512 next = page_list->next;
5513 do {
5514 unsigned int nr_pages = 1;
5515
5516 page = list_entry(next, struct page, lru);
5517 next = page->lru.next;
5518
5519 VM_BUG_ON_PAGE(PageLRU(page), page);
5520 VM_BUG_ON_PAGE(page_count(page), page);
5521
5522 if (!page->mem_cgroup)
5523 continue;
5524
5525 /*
5526 * Nobody should be changing or seriously looking at
5527 * page->mem_cgroup at this point, we have fully
5528 * exclusive access to the page.
5529 */
5530
5531 if (memcg != page->mem_cgroup) {
5532 if (memcg) {
5533 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5534 nr_huge, page);
5535 pgpgout = nr_anon = nr_file = nr_huge = 0;
5536 }
5537 memcg = page->mem_cgroup;
5538 }
5539
5540 if (PageTransHuge(page)) {
5541 nr_pages <<= compound_order(page);
5542 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5543 nr_huge += nr_pages;
5544 }
5545
5546 if (PageAnon(page))
5547 nr_anon += nr_pages;
5548 else
5549 nr_file += nr_pages;
5550
5551 page->mem_cgroup = NULL;
5552
5553 pgpgout++;
5554 } while (next != page_list);
5555
5556 if (memcg)
5557 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5558 nr_huge, page);
5559 }
5560
5561 /**
5562 * mem_cgroup_uncharge - uncharge a page
5563 * @page: page to uncharge
5564 *
5565 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5566 * mem_cgroup_commit_charge().
5567 */
5568 void mem_cgroup_uncharge(struct page *page)
5569 {
5570 if (mem_cgroup_disabled())
5571 return;
5572
5573 /* Don't touch page->lru of any random page, pre-check: */
5574 if (!page->mem_cgroup)
5575 return;
5576
5577 INIT_LIST_HEAD(&page->lru);
5578 uncharge_list(&page->lru);
5579 }
5580
5581 /**
5582 * mem_cgroup_uncharge_list - uncharge a list of page
5583 * @page_list: list of pages to uncharge
5584 *
5585 * Uncharge a list of pages previously charged with
5586 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5587 */
5588 void mem_cgroup_uncharge_list(struct list_head *page_list)
5589 {
5590 if (mem_cgroup_disabled())
5591 return;
5592
5593 if (!list_empty(page_list))
5594 uncharge_list(page_list);
5595 }
5596
5597 /**
5598 * mem_cgroup_migrate - charge a page's replacement
5599 * @oldpage: currently circulating page
5600 * @newpage: replacement page
5601 *
5602 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5603 * be uncharged upon free.
5604 *
5605 * Both pages must be locked, @newpage->mapping must be set up.
5606 */
5607 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5608 {
5609 struct mem_cgroup *memcg;
5610 unsigned int nr_pages;
5611 bool compound;
5612 unsigned long flags;
5613
5614 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5615 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5616 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5617 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5618 newpage);
5619
5620 if (mem_cgroup_disabled())
5621 return;
5622
5623 /* Page cache replacement: new page already charged? */
5624 if (newpage->mem_cgroup)
5625 return;
5626
5627 /* Swapcache readahead pages can get replaced before being charged */
5628 memcg = oldpage->mem_cgroup;
5629 if (!memcg)
5630 return;
5631
5632 /* Force-charge the new page. The old one will be freed soon */
5633 compound = PageTransHuge(newpage);
5634 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5635
5636 page_counter_charge(&memcg->memory, nr_pages);
5637 if (do_memsw_account())
5638 page_counter_charge(&memcg->memsw, nr_pages);
5639 css_get_many(&memcg->css, nr_pages);
5640
5641 commit_charge(newpage, memcg, false);
5642
5643 local_irq_save(flags);
5644 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5645 memcg_check_events(memcg, newpage);
5646 local_irq_restore(flags);
5647 }
5648
5649 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5650 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5651
5652 void sock_update_memcg(struct sock *sk)
5653 {
5654 struct mem_cgroup *memcg;
5655
5656 /* Socket cloning can throw us here with sk_cgrp already
5657 * filled. It won't however, necessarily happen from
5658 * process context. So the test for root memcg given
5659 * the current task's memcg won't help us in this case.
5660 *
5661 * Respecting the original socket's memcg is a better
5662 * decision in this case.
5663 */
5664 if (sk->sk_memcg) {
5665 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5666 css_get(&sk->sk_memcg->css);
5667 return;
5668 }
5669
5670 rcu_read_lock();
5671 memcg = mem_cgroup_from_task(current);
5672 if (memcg == root_mem_cgroup)
5673 goto out;
5674 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5675 goto out;
5676 if (css_tryget_online(&memcg->css))
5677 sk->sk_memcg = memcg;
5678 out:
5679 rcu_read_unlock();
5680 }
5681 EXPORT_SYMBOL(sock_update_memcg);
5682
5683 void sock_release_memcg(struct sock *sk)
5684 {
5685 WARN_ON(!sk->sk_memcg);
5686 css_put(&sk->sk_memcg->css);
5687 }
5688
5689 /**
5690 * mem_cgroup_charge_skmem - charge socket memory
5691 * @memcg: memcg to charge
5692 * @nr_pages: number of pages to charge
5693 *
5694 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5695 * @memcg's configured limit, %false if the charge had to be forced.
5696 */
5697 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5698 {
5699 gfp_t gfp_mask = GFP_KERNEL;
5700
5701 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5702 struct page_counter *fail;
5703
5704 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5705 memcg->tcpmem_pressure = 0;
5706 return true;
5707 }
5708 page_counter_charge(&memcg->tcpmem, nr_pages);
5709 memcg->tcpmem_pressure = 1;
5710 return false;
5711 }
5712
5713 /* Don't block in the packet receive path */
5714 if (in_softirq())
5715 gfp_mask = GFP_NOWAIT;
5716
5717 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5718
5719 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5720 return true;
5721
5722 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5723 return false;
5724 }
5725
5726 /**
5727 * mem_cgroup_uncharge_skmem - uncharge socket memory
5728 * @memcg - memcg to uncharge
5729 * @nr_pages - number of pages to uncharge
5730 */
5731 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5732 {
5733 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5734 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5735 return;
5736 }
5737
5738 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5739
5740 page_counter_uncharge(&memcg->memory, nr_pages);
5741 css_put_many(&memcg->css, nr_pages);
5742 }
5743
5744 static int __init cgroup_memory(char *s)
5745 {
5746 char *token;
5747
5748 while ((token = strsep(&s, ",")) != NULL) {
5749 if (!*token)
5750 continue;
5751 if (!strcmp(token, "nosocket"))
5752 cgroup_memory_nosocket = true;
5753 if (!strcmp(token, "nokmem"))
5754 cgroup_memory_nokmem = true;
5755 }
5756 return 0;
5757 }
5758 __setup("cgroup.memory=", cgroup_memory);
5759
5760 /*
5761 * subsys_initcall() for memory controller.
5762 *
5763 * Some parts like hotcpu_notifier() have to be initialized from this context
5764 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5765 * everything that doesn't depend on a specific mem_cgroup structure should
5766 * be initialized from here.
5767 */
5768 static int __init mem_cgroup_init(void)
5769 {
5770 int cpu, node;
5771
5772 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5773
5774 for_each_possible_cpu(cpu)
5775 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5776 drain_local_stock);
5777
5778 for_each_node(node) {
5779 struct mem_cgroup_tree_per_node *rtpn;
5780 int zone;
5781
5782 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5783 node_online(node) ? node : NUMA_NO_NODE);
5784
5785 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5786 struct mem_cgroup_tree_per_zone *rtpz;
5787
5788 rtpz = &rtpn->rb_tree_per_zone[zone];
5789 rtpz->rb_root = RB_ROOT;
5790 spin_lock_init(&rtpz->lock);
5791 }
5792 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5793 }
5794
5795 return 0;
5796 }
5797 subsys_initcall(mem_cgroup_init);
5798
5799 #ifdef CONFIG_MEMCG_SWAP
5800 /**
5801 * mem_cgroup_swapout - transfer a memsw charge to swap
5802 * @page: page whose memsw charge to transfer
5803 * @entry: swap entry to move the charge to
5804 *
5805 * Transfer the memsw charge of @page to @entry.
5806 */
5807 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5808 {
5809 struct mem_cgroup *memcg;
5810 unsigned short oldid;
5811
5812 VM_BUG_ON_PAGE(PageLRU(page), page);
5813 VM_BUG_ON_PAGE(page_count(page), page);
5814
5815 if (!do_memsw_account())
5816 return;
5817
5818 memcg = page->mem_cgroup;
5819
5820 /* Readahead page, never charged */
5821 if (!memcg)
5822 return;
5823
5824 mem_cgroup_id_get(memcg);
5825 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5826 VM_BUG_ON_PAGE(oldid, page);
5827 mem_cgroup_swap_statistics(memcg, true);
5828
5829 page->mem_cgroup = NULL;
5830
5831 if (!mem_cgroup_is_root(memcg))
5832 page_counter_uncharge(&memcg->memory, 1);
5833
5834 /*
5835 * Interrupts should be disabled here because the caller holds the
5836 * mapping->tree_lock lock which is taken with interrupts-off. It is
5837 * important here to have the interrupts disabled because it is the
5838 * only synchronisation we have for udpating the per-CPU variables.
5839 */
5840 VM_BUG_ON(!irqs_disabled());
5841 mem_cgroup_charge_statistics(memcg, page, false, -1);
5842 memcg_check_events(memcg, page);
5843
5844 if (!mem_cgroup_is_root(memcg))
5845 css_put(&memcg->css);
5846 }
5847
5848 /*
5849 * mem_cgroup_try_charge_swap - try charging a swap entry
5850 * @page: page being added to swap
5851 * @entry: swap entry to charge
5852 *
5853 * Try to charge @entry to the memcg that @page belongs to.
5854 *
5855 * Returns 0 on success, -ENOMEM on failure.
5856 */
5857 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5858 {
5859 struct mem_cgroup *memcg;
5860 struct page_counter *counter;
5861 unsigned short oldid;
5862
5863 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5864 return 0;
5865
5866 memcg = page->mem_cgroup;
5867
5868 /* Readahead page, never charged */
5869 if (!memcg)
5870 return 0;
5871
5872 if (!mem_cgroup_is_root(memcg) &&
5873 !page_counter_try_charge(&memcg->swap, 1, &counter))
5874 return -ENOMEM;
5875
5876 mem_cgroup_id_get(memcg);
5877 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5878 VM_BUG_ON_PAGE(oldid, page);
5879 mem_cgroup_swap_statistics(memcg, true);
5880
5881 return 0;
5882 }
5883
5884 /**
5885 * mem_cgroup_uncharge_swap - uncharge a swap entry
5886 * @entry: swap entry to uncharge
5887 *
5888 * Drop the swap charge associated with @entry.
5889 */
5890 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5891 {
5892 struct mem_cgroup *memcg;
5893 unsigned short id;
5894
5895 if (!do_swap_account)
5896 return;
5897
5898 id = swap_cgroup_record(entry, 0);
5899 rcu_read_lock();
5900 memcg = mem_cgroup_from_id(id);
5901 if (memcg) {
5902 if (!mem_cgroup_is_root(memcg)) {
5903 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5904 page_counter_uncharge(&memcg->swap, 1);
5905 else
5906 page_counter_uncharge(&memcg->memsw, 1);
5907 }
5908 mem_cgroup_swap_statistics(memcg, false);
5909 mem_cgroup_id_put(memcg);
5910 }
5911 rcu_read_unlock();
5912 }
5913
5914 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5915 {
5916 long nr_swap_pages = get_nr_swap_pages();
5917
5918 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5919 return nr_swap_pages;
5920 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5921 nr_swap_pages = min_t(long, nr_swap_pages,
5922 READ_ONCE(memcg->swap.limit) -
5923 page_counter_read(&memcg->swap));
5924 return nr_swap_pages;
5925 }
5926
5927 bool mem_cgroup_swap_full(struct page *page)
5928 {
5929 struct mem_cgroup *memcg;
5930
5931 VM_BUG_ON_PAGE(!PageLocked(page), page);
5932
5933 if (vm_swap_full())
5934 return true;
5935 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5936 return false;
5937
5938 memcg = page->mem_cgroup;
5939 if (!memcg)
5940 return false;
5941
5942 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5943 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5944 return true;
5945
5946 return false;
5947 }
5948
5949 /* for remember boot option*/
5950 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5951 static int really_do_swap_account __initdata = 1;
5952 #else
5953 static int really_do_swap_account __initdata;
5954 #endif
5955
5956 static int __init enable_swap_account(char *s)
5957 {
5958 if (!strcmp(s, "1"))
5959 really_do_swap_account = 1;
5960 else if (!strcmp(s, "0"))
5961 really_do_swap_account = 0;
5962 return 1;
5963 }
5964 __setup("swapaccount=", enable_swap_account);
5965
5966 static u64 swap_current_read(struct cgroup_subsys_state *css,
5967 struct cftype *cft)
5968 {
5969 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5970
5971 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5972 }
5973
5974 static int swap_max_show(struct seq_file *m, void *v)
5975 {
5976 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5977 unsigned long max = READ_ONCE(memcg->swap.limit);
5978
5979 if (max == PAGE_COUNTER_MAX)
5980 seq_puts(m, "max\n");
5981 else
5982 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5983
5984 return 0;
5985 }
5986
5987 static ssize_t swap_max_write(struct kernfs_open_file *of,
5988 char *buf, size_t nbytes, loff_t off)
5989 {
5990 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5991 unsigned long max;
5992 int err;
5993
5994 buf = strstrip(buf);
5995 err = page_counter_memparse(buf, "max", &max);
5996 if (err)
5997 return err;
5998
5999 mutex_lock(&memcg_limit_mutex);
6000 err = page_counter_limit(&memcg->swap, max);
6001 mutex_unlock(&memcg_limit_mutex);
6002 if (err)
6003 return err;
6004
6005 return nbytes;
6006 }
6007
6008 static struct cftype swap_files[] = {
6009 {
6010 .name = "swap.current",
6011 .flags = CFTYPE_NOT_ON_ROOT,
6012 .read_u64 = swap_current_read,
6013 },
6014 {
6015 .name = "swap.max",
6016 .flags = CFTYPE_NOT_ON_ROOT,
6017 .seq_show = swap_max_show,
6018 .write = swap_max_write,
6019 },
6020 { } /* terminate */
6021 };
6022
6023 static struct cftype memsw_cgroup_files[] = {
6024 {
6025 .name = "memsw.usage_in_bytes",
6026 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6027 .read_u64 = mem_cgroup_read_u64,
6028 },
6029 {
6030 .name = "memsw.max_usage_in_bytes",
6031 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6032 .write = mem_cgroup_reset,
6033 .read_u64 = mem_cgroup_read_u64,
6034 },
6035 {
6036 .name = "memsw.limit_in_bytes",
6037 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6038 .write = mem_cgroup_write,
6039 .read_u64 = mem_cgroup_read_u64,
6040 },
6041 {
6042 .name = "memsw.failcnt",
6043 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6044 .write = mem_cgroup_reset,
6045 .read_u64 = mem_cgroup_read_u64,
6046 },
6047 { }, /* terminate */
6048 };
6049
6050 static int __init mem_cgroup_swap_init(void)
6051 {
6052 if (!mem_cgroup_disabled() && really_do_swap_account) {
6053 do_swap_account = 1;
6054 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6055 swap_files));
6056 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6057 memsw_cgroup_files));
6058 }
6059 return 0;
6060 }
6061 subsys_initcall(mem_cgroup_swap_init);
6062
6063 #endif /* CONFIG_MEMCG_SWAP */