]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/memcontrol.c
memcg: break out event counters from other stats
[mirror_ubuntu-focal-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/vmscan.h>
56
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES 5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
71
72 #else
73 #define do_swap_account (0)
74 #endif
75
76 /*
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 *
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82 */
83 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85
86 /*
87 * Statistics for memory cgroup.
88 */
89 enum mem_cgroup_stat_index {
90 /*
91 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92 */
93 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
94 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
95 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
96 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
97 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
98 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
99 MEM_CGROUP_STAT_NSTATS,
100 };
101
102 enum mem_cgroup_events_index {
103 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
104 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
105 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
106 MEM_CGROUP_EVENTS_NSTATS,
107 };
108
109 struct mem_cgroup_stat_cpu {
110 s64 count[MEM_CGROUP_STAT_NSTATS];
111 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
112 };
113
114 /*
115 * per-zone information in memory controller.
116 */
117 struct mem_cgroup_per_zone {
118 /*
119 * spin_lock to protect the per cgroup LRU
120 */
121 struct list_head lists[NR_LRU_LISTS];
122 unsigned long count[NR_LRU_LISTS];
123
124 struct zone_reclaim_stat reclaim_stat;
125 struct rb_node tree_node; /* RB tree node */
126 unsigned long long usage_in_excess;/* Set to the value by which */
127 /* the soft limit is exceeded*/
128 bool on_tree;
129 struct mem_cgroup *mem; /* Back pointer, we cannot */
130 /* use container_of */
131 };
132 /* Macro for accessing counter */
133 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
134
135 struct mem_cgroup_per_node {
136 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
137 };
138
139 struct mem_cgroup_lru_info {
140 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
141 };
142
143 /*
144 * Cgroups above their limits are maintained in a RB-Tree, independent of
145 * their hierarchy representation
146 */
147
148 struct mem_cgroup_tree_per_zone {
149 struct rb_root rb_root;
150 spinlock_t lock;
151 };
152
153 struct mem_cgroup_tree_per_node {
154 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
155 };
156
157 struct mem_cgroup_tree {
158 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
159 };
160
161 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
162
163 struct mem_cgroup_threshold {
164 struct eventfd_ctx *eventfd;
165 u64 threshold;
166 };
167
168 /* For threshold */
169 struct mem_cgroup_threshold_ary {
170 /* An array index points to threshold just below usage. */
171 int current_threshold;
172 /* Size of entries[] */
173 unsigned int size;
174 /* Array of thresholds */
175 struct mem_cgroup_threshold entries[0];
176 };
177
178 struct mem_cgroup_thresholds {
179 /* Primary thresholds array */
180 struct mem_cgroup_threshold_ary *primary;
181 /*
182 * Spare threshold array.
183 * This is needed to make mem_cgroup_unregister_event() "never fail".
184 * It must be able to store at least primary->size - 1 entries.
185 */
186 struct mem_cgroup_threshold_ary *spare;
187 };
188
189 /* for OOM */
190 struct mem_cgroup_eventfd_list {
191 struct list_head list;
192 struct eventfd_ctx *eventfd;
193 };
194
195 static void mem_cgroup_threshold(struct mem_cgroup *mem);
196 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
197
198 /*
199 * The memory controller data structure. The memory controller controls both
200 * page cache and RSS per cgroup. We would eventually like to provide
201 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
202 * to help the administrator determine what knobs to tune.
203 *
204 * TODO: Add a water mark for the memory controller. Reclaim will begin when
205 * we hit the water mark. May be even add a low water mark, such that
206 * no reclaim occurs from a cgroup at it's low water mark, this is
207 * a feature that will be implemented much later in the future.
208 */
209 struct mem_cgroup {
210 struct cgroup_subsys_state css;
211 /*
212 * the counter to account for memory usage
213 */
214 struct res_counter res;
215 /*
216 * the counter to account for mem+swap usage.
217 */
218 struct res_counter memsw;
219 /*
220 * Per cgroup active and inactive list, similar to the
221 * per zone LRU lists.
222 */
223 struct mem_cgroup_lru_info info;
224 /*
225 * While reclaiming in a hierarchy, we cache the last child we
226 * reclaimed from.
227 */
228 int last_scanned_child;
229 /*
230 * Should the accounting and control be hierarchical, per subtree?
231 */
232 bool use_hierarchy;
233 atomic_t oom_lock;
234 atomic_t refcnt;
235
236 unsigned int swappiness;
237 /* OOM-Killer disable */
238 int oom_kill_disable;
239
240 /* set when res.limit == memsw.limit */
241 bool memsw_is_minimum;
242
243 /* protect arrays of thresholds */
244 struct mutex thresholds_lock;
245
246 /* thresholds for memory usage. RCU-protected */
247 struct mem_cgroup_thresholds thresholds;
248
249 /* thresholds for mem+swap usage. RCU-protected */
250 struct mem_cgroup_thresholds memsw_thresholds;
251
252 /* For oom notifier event fd */
253 struct list_head oom_notify;
254
255 /*
256 * Should we move charges of a task when a task is moved into this
257 * mem_cgroup ? And what type of charges should we move ?
258 */
259 unsigned long move_charge_at_immigrate;
260 /*
261 * percpu counter.
262 */
263 struct mem_cgroup_stat_cpu *stat;
264 /*
265 * used when a cpu is offlined or other synchronizations
266 * See mem_cgroup_read_stat().
267 */
268 struct mem_cgroup_stat_cpu nocpu_base;
269 spinlock_t pcp_counter_lock;
270 };
271
272 /* Stuffs for move charges at task migration. */
273 /*
274 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
275 * left-shifted bitmap of these types.
276 */
277 enum move_type {
278 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
279 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
280 NR_MOVE_TYPE,
281 };
282
283 /* "mc" and its members are protected by cgroup_mutex */
284 static struct move_charge_struct {
285 spinlock_t lock; /* for from, to */
286 struct mem_cgroup *from;
287 struct mem_cgroup *to;
288 unsigned long precharge;
289 unsigned long moved_charge;
290 unsigned long moved_swap;
291 struct task_struct *moving_task; /* a task moving charges */
292 wait_queue_head_t waitq; /* a waitq for other context */
293 } mc = {
294 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
295 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
296 };
297
298 static bool move_anon(void)
299 {
300 return test_bit(MOVE_CHARGE_TYPE_ANON,
301 &mc.to->move_charge_at_immigrate);
302 }
303
304 static bool move_file(void)
305 {
306 return test_bit(MOVE_CHARGE_TYPE_FILE,
307 &mc.to->move_charge_at_immigrate);
308 }
309
310 /*
311 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
312 * limit reclaim to prevent infinite loops, if they ever occur.
313 */
314 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
315 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
316
317 enum charge_type {
318 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
319 MEM_CGROUP_CHARGE_TYPE_MAPPED,
320 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
321 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
322 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
323 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
324 NR_CHARGE_TYPE,
325 };
326
327 /* for encoding cft->private value on file */
328 #define _MEM (0)
329 #define _MEMSWAP (1)
330 #define _OOM_TYPE (2)
331 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
332 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
333 #define MEMFILE_ATTR(val) ((val) & 0xffff)
334 /* Used for OOM nofiier */
335 #define OOM_CONTROL (0)
336
337 /*
338 * Reclaim flags for mem_cgroup_hierarchical_reclaim
339 */
340 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
341 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
342 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
343 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
344 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
345 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
346
347 static void mem_cgroup_get(struct mem_cgroup *mem);
348 static void mem_cgroup_put(struct mem_cgroup *mem);
349 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
350 static void drain_all_stock_async(void);
351
352 static struct mem_cgroup_per_zone *
353 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
354 {
355 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
356 }
357
358 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
359 {
360 return &mem->css;
361 }
362
363 static struct mem_cgroup_per_zone *
364 page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
365 {
366 int nid = page_to_nid(page);
367 int zid = page_zonenum(page);
368
369 return mem_cgroup_zoneinfo(mem, nid, zid);
370 }
371
372 static struct mem_cgroup_tree_per_zone *
373 soft_limit_tree_node_zone(int nid, int zid)
374 {
375 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
376 }
377
378 static struct mem_cgroup_tree_per_zone *
379 soft_limit_tree_from_page(struct page *page)
380 {
381 int nid = page_to_nid(page);
382 int zid = page_zonenum(page);
383
384 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
385 }
386
387 static void
388 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
389 struct mem_cgroup_per_zone *mz,
390 struct mem_cgroup_tree_per_zone *mctz,
391 unsigned long long new_usage_in_excess)
392 {
393 struct rb_node **p = &mctz->rb_root.rb_node;
394 struct rb_node *parent = NULL;
395 struct mem_cgroup_per_zone *mz_node;
396
397 if (mz->on_tree)
398 return;
399
400 mz->usage_in_excess = new_usage_in_excess;
401 if (!mz->usage_in_excess)
402 return;
403 while (*p) {
404 parent = *p;
405 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
406 tree_node);
407 if (mz->usage_in_excess < mz_node->usage_in_excess)
408 p = &(*p)->rb_left;
409 /*
410 * We can't avoid mem cgroups that are over their soft
411 * limit by the same amount
412 */
413 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
414 p = &(*p)->rb_right;
415 }
416 rb_link_node(&mz->tree_node, parent, p);
417 rb_insert_color(&mz->tree_node, &mctz->rb_root);
418 mz->on_tree = true;
419 }
420
421 static void
422 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
423 struct mem_cgroup_per_zone *mz,
424 struct mem_cgroup_tree_per_zone *mctz)
425 {
426 if (!mz->on_tree)
427 return;
428 rb_erase(&mz->tree_node, &mctz->rb_root);
429 mz->on_tree = false;
430 }
431
432 static void
433 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
434 struct mem_cgroup_per_zone *mz,
435 struct mem_cgroup_tree_per_zone *mctz)
436 {
437 spin_lock(&mctz->lock);
438 __mem_cgroup_remove_exceeded(mem, mz, mctz);
439 spin_unlock(&mctz->lock);
440 }
441
442
443 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
444 {
445 unsigned long long excess;
446 struct mem_cgroup_per_zone *mz;
447 struct mem_cgroup_tree_per_zone *mctz;
448 int nid = page_to_nid(page);
449 int zid = page_zonenum(page);
450 mctz = soft_limit_tree_from_page(page);
451
452 /*
453 * Necessary to update all ancestors when hierarchy is used.
454 * because their event counter is not touched.
455 */
456 for (; mem; mem = parent_mem_cgroup(mem)) {
457 mz = mem_cgroup_zoneinfo(mem, nid, zid);
458 excess = res_counter_soft_limit_excess(&mem->res);
459 /*
460 * We have to update the tree if mz is on RB-tree or
461 * mem is over its softlimit.
462 */
463 if (excess || mz->on_tree) {
464 spin_lock(&mctz->lock);
465 /* if on-tree, remove it */
466 if (mz->on_tree)
467 __mem_cgroup_remove_exceeded(mem, mz, mctz);
468 /*
469 * Insert again. mz->usage_in_excess will be updated.
470 * If excess is 0, no tree ops.
471 */
472 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
473 spin_unlock(&mctz->lock);
474 }
475 }
476 }
477
478 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
479 {
480 int node, zone;
481 struct mem_cgroup_per_zone *mz;
482 struct mem_cgroup_tree_per_zone *mctz;
483
484 for_each_node_state(node, N_POSSIBLE) {
485 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
486 mz = mem_cgroup_zoneinfo(mem, node, zone);
487 mctz = soft_limit_tree_node_zone(node, zone);
488 mem_cgroup_remove_exceeded(mem, mz, mctz);
489 }
490 }
491 }
492
493 static struct mem_cgroup_per_zone *
494 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
495 {
496 struct rb_node *rightmost = NULL;
497 struct mem_cgroup_per_zone *mz;
498
499 retry:
500 mz = NULL;
501 rightmost = rb_last(&mctz->rb_root);
502 if (!rightmost)
503 goto done; /* Nothing to reclaim from */
504
505 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
506 /*
507 * Remove the node now but someone else can add it back,
508 * we will to add it back at the end of reclaim to its correct
509 * position in the tree.
510 */
511 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
512 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
513 !css_tryget(&mz->mem->css))
514 goto retry;
515 done:
516 return mz;
517 }
518
519 static struct mem_cgroup_per_zone *
520 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
521 {
522 struct mem_cgroup_per_zone *mz;
523
524 spin_lock(&mctz->lock);
525 mz = __mem_cgroup_largest_soft_limit_node(mctz);
526 spin_unlock(&mctz->lock);
527 return mz;
528 }
529
530 /*
531 * Implementation Note: reading percpu statistics for memcg.
532 *
533 * Both of vmstat[] and percpu_counter has threshold and do periodic
534 * synchronization to implement "quick" read. There are trade-off between
535 * reading cost and precision of value. Then, we may have a chance to implement
536 * a periodic synchronizion of counter in memcg's counter.
537 *
538 * But this _read() function is used for user interface now. The user accounts
539 * memory usage by memory cgroup and he _always_ requires exact value because
540 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
541 * have to visit all online cpus and make sum. So, for now, unnecessary
542 * synchronization is not implemented. (just implemented for cpu hotplug)
543 *
544 * If there are kernel internal actions which can make use of some not-exact
545 * value, and reading all cpu value can be performance bottleneck in some
546 * common workload, threashold and synchonization as vmstat[] should be
547 * implemented.
548 */
549 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
550 enum mem_cgroup_stat_index idx)
551 {
552 int cpu;
553 s64 val = 0;
554
555 get_online_cpus();
556 for_each_online_cpu(cpu)
557 val += per_cpu(mem->stat->count[idx], cpu);
558 #ifdef CONFIG_HOTPLUG_CPU
559 spin_lock(&mem->pcp_counter_lock);
560 val += mem->nocpu_base.count[idx];
561 spin_unlock(&mem->pcp_counter_lock);
562 #endif
563 put_online_cpus();
564 return val;
565 }
566
567 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
568 {
569 s64 ret;
570
571 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
572 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
573 return ret;
574 }
575
576 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
577 bool charge)
578 {
579 int val = (charge) ? 1 : -1;
580 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
581 }
582
583 static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
584 enum mem_cgroup_events_index idx)
585 {
586 unsigned long val = 0;
587 int cpu;
588
589 for_each_online_cpu(cpu)
590 val += per_cpu(mem->stat->events[idx], cpu);
591 #ifdef CONFIG_HOTPLUG_CPU
592 spin_lock(&mem->pcp_counter_lock);
593 val += mem->nocpu_base.events[idx];
594 spin_unlock(&mem->pcp_counter_lock);
595 #endif
596 return val;
597 }
598
599 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
600 bool file, int nr_pages)
601 {
602 preempt_disable();
603
604 if (file)
605 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
606 else
607 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
608
609 /* pagein of a big page is an event. So, ignore page size */
610 if (nr_pages > 0)
611 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
612 else {
613 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
614 nr_pages = -nr_pages; /* for event */
615 }
616
617 __this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
618
619 preempt_enable();
620 }
621
622 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
623 enum lru_list idx)
624 {
625 int nid, zid;
626 struct mem_cgroup_per_zone *mz;
627 u64 total = 0;
628
629 for_each_online_node(nid)
630 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
631 mz = mem_cgroup_zoneinfo(mem, nid, zid);
632 total += MEM_CGROUP_ZSTAT(mz, idx);
633 }
634 return total;
635 }
636
637 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
638 {
639 unsigned long val;
640
641 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
642
643 return !(val & ((1 << event_mask_shift) - 1));
644 }
645
646 /*
647 * Check events in order.
648 *
649 */
650 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
651 {
652 /* threshold event is triggered in finer grain than soft limit */
653 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
654 mem_cgroup_threshold(mem);
655 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
656 mem_cgroup_update_tree(mem, page);
657 }
658 }
659
660 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
661 {
662 return container_of(cgroup_subsys_state(cont,
663 mem_cgroup_subsys_id), struct mem_cgroup,
664 css);
665 }
666
667 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
668 {
669 /*
670 * mm_update_next_owner() may clear mm->owner to NULL
671 * if it races with swapoff, page migration, etc.
672 * So this can be called with p == NULL.
673 */
674 if (unlikely(!p))
675 return NULL;
676
677 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
678 struct mem_cgroup, css);
679 }
680
681 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
682 {
683 struct mem_cgroup *mem = NULL;
684
685 if (!mm)
686 return NULL;
687 /*
688 * Because we have no locks, mm->owner's may be being moved to other
689 * cgroup. We use css_tryget() here even if this looks
690 * pessimistic (rather than adding locks here).
691 */
692 rcu_read_lock();
693 do {
694 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
695 if (unlikely(!mem))
696 break;
697 } while (!css_tryget(&mem->css));
698 rcu_read_unlock();
699 return mem;
700 }
701
702 /* The caller has to guarantee "mem" exists before calling this */
703 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
704 {
705 struct cgroup_subsys_state *css;
706 int found;
707
708 if (!mem) /* ROOT cgroup has the smallest ID */
709 return root_mem_cgroup; /*css_put/get against root is ignored*/
710 if (!mem->use_hierarchy) {
711 if (css_tryget(&mem->css))
712 return mem;
713 return NULL;
714 }
715 rcu_read_lock();
716 /*
717 * searching a memory cgroup which has the smallest ID under given
718 * ROOT cgroup. (ID >= 1)
719 */
720 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
721 if (css && css_tryget(css))
722 mem = container_of(css, struct mem_cgroup, css);
723 else
724 mem = NULL;
725 rcu_read_unlock();
726 return mem;
727 }
728
729 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
730 struct mem_cgroup *root,
731 bool cond)
732 {
733 int nextid = css_id(&iter->css) + 1;
734 int found;
735 int hierarchy_used;
736 struct cgroup_subsys_state *css;
737
738 hierarchy_used = iter->use_hierarchy;
739
740 css_put(&iter->css);
741 /* If no ROOT, walk all, ignore hierarchy */
742 if (!cond || (root && !hierarchy_used))
743 return NULL;
744
745 if (!root)
746 root = root_mem_cgroup;
747
748 do {
749 iter = NULL;
750 rcu_read_lock();
751
752 css = css_get_next(&mem_cgroup_subsys, nextid,
753 &root->css, &found);
754 if (css && css_tryget(css))
755 iter = container_of(css, struct mem_cgroup, css);
756 rcu_read_unlock();
757 /* If css is NULL, no more cgroups will be found */
758 nextid = found + 1;
759 } while (css && !iter);
760
761 return iter;
762 }
763 /*
764 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
765 * be careful that "break" loop is not allowed. We have reference count.
766 * Instead of that modify "cond" to be false and "continue" to exit the loop.
767 */
768 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
769 for (iter = mem_cgroup_start_loop(root);\
770 iter != NULL;\
771 iter = mem_cgroup_get_next(iter, root, cond))
772
773 #define for_each_mem_cgroup_tree(iter, root) \
774 for_each_mem_cgroup_tree_cond(iter, root, true)
775
776 #define for_each_mem_cgroup_all(iter) \
777 for_each_mem_cgroup_tree_cond(iter, NULL, true)
778
779
780 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
781 {
782 return (mem == root_mem_cgroup);
783 }
784
785 /*
786 * Following LRU functions are allowed to be used without PCG_LOCK.
787 * Operations are called by routine of global LRU independently from memcg.
788 * What we have to take care of here is validness of pc->mem_cgroup.
789 *
790 * Changes to pc->mem_cgroup happens when
791 * 1. charge
792 * 2. moving account
793 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
794 * It is added to LRU before charge.
795 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
796 * When moving account, the page is not on LRU. It's isolated.
797 */
798
799 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
800 {
801 struct page_cgroup *pc;
802 struct mem_cgroup_per_zone *mz;
803
804 if (mem_cgroup_disabled())
805 return;
806 pc = lookup_page_cgroup(page);
807 /* can happen while we handle swapcache. */
808 if (!TestClearPageCgroupAcctLRU(pc))
809 return;
810 VM_BUG_ON(!pc->mem_cgroup);
811 /*
812 * We don't check PCG_USED bit. It's cleared when the "page" is finally
813 * removed from global LRU.
814 */
815 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
816 /* huge page split is done under lru_lock. so, we have no races. */
817 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
818 if (mem_cgroup_is_root(pc->mem_cgroup))
819 return;
820 VM_BUG_ON(list_empty(&pc->lru));
821 list_del_init(&pc->lru);
822 }
823
824 void mem_cgroup_del_lru(struct page *page)
825 {
826 mem_cgroup_del_lru_list(page, page_lru(page));
827 }
828
829 /*
830 * Writeback is about to end against a page which has been marked for immediate
831 * reclaim. If it still appears to be reclaimable, move it to the tail of the
832 * inactive list.
833 */
834 void mem_cgroup_rotate_reclaimable_page(struct page *page)
835 {
836 struct mem_cgroup_per_zone *mz;
837 struct page_cgroup *pc;
838 enum lru_list lru = page_lru(page);
839
840 if (mem_cgroup_disabled())
841 return;
842
843 pc = lookup_page_cgroup(page);
844 /* unused or root page is not rotated. */
845 if (!PageCgroupUsed(pc))
846 return;
847 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
848 smp_rmb();
849 if (mem_cgroup_is_root(pc->mem_cgroup))
850 return;
851 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
852 list_move_tail(&pc->lru, &mz->lists[lru]);
853 }
854
855 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
856 {
857 struct mem_cgroup_per_zone *mz;
858 struct page_cgroup *pc;
859
860 if (mem_cgroup_disabled())
861 return;
862
863 pc = lookup_page_cgroup(page);
864 /* unused or root page is not rotated. */
865 if (!PageCgroupUsed(pc))
866 return;
867 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
868 smp_rmb();
869 if (mem_cgroup_is_root(pc->mem_cgroup))
870 return;
871 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
872 list_move(&pc->lru, &mz->lists[lru]);
873 }
874
875 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
876 {
877 struct page_cgroup *pc;
878 struct mem_cgroup_per_zone *mz;
879
880 if (mem_cgroup_disabled())
881 return;
882 pc = lookup_page_cgroup(page);
883 VM_BUG_ON(PageCgroupAcctLRU(pc));
884 if (!PageCgroupUsed(pc))
885 return;
886 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
887 smp_rmb();
888 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
889 /* huge page split is done under lru_lock. so, we have no races. */
890 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
891 SetPageCgroupAcctLRU(pc);
892 if (mem_cgroup_is_root(pc->mem_cgroup))
893 return;
894 list_add(&pc->lru, &mz->lists[lru]);
895 }
896
897 /*
898 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
899 * lru because the page may.be reused after it's fully uncharged (because of
900 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
901 * it again. This function is only used to charge SwapCache. It's done under
902 * lock_page and expected that zone->lru_lock is never held.
903 */
904 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
905 {
906 unsigned long flags;
907 struct zone *zone = page_zone(page);
908 struct page_cgroup *pc = lookup_page_cgroup(page);
909
910 spin_lock_irqsave(&zone->lru_lock, flags);
911 /*
912 * Forget old LRU when this page_cgroup is *not* used. This Used bit
913 * is guarded by lock_page() because the page is SwapCache.
914 */
915 if (!PageCgroupUsed(pc))
916 mem_cgroup_del_lru_list(page, page_lru(page));
917 spin_unlock_irqrestore(&zone->lru_lock, flags);
918 }
919
920 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
921 {
922 unsigned long flags;
923 struct zone *zone = page_zone(page);
924 struct page_cgroup *pc = lookup_page_cgroup(page);
925
926 spin_lock_irqsave(&zone->lru_lock, flags);
927 /* link when the page is linked to LRU but page_cgroup isn't */
928 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
929 mem_cgroup_add_lru_list(page, page_lru(page));
930 spin_unlock_irqrestore(&zone->lru_lock, flags);
931 }
932
933
934 void mem_cgroup_move_lists(struct page *page,
935 enum lru_list from, enum lru_list to)
936 {
937 if (mem_cgroup_disabled())
938 return;
939 mem_cgroup_del_lru_list(page, from);
940 mem_cgroup_add_lru_list(page, to);
941 }
942
943 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
944 {
945 int ret;
946 struct mem_cgroup *curr = NULL;
947 struct task_struct *p;
948
949 p = find_lock_task_mm(task);
950 if (!p)
951 return 0;
952 curr = try_get_mem_cgroup_from_mm(p->mm);
953 task_unlock(p);
954 if (!curr)
955 return 0;
956 /*
957 * We should check use_hierarchy of "mem" not "curr". Because checking
958 * use_hierarchy of "curr" here make this function true if hierarchy is
959 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
960 * hierarchy(even if use_hierarchy is disabled in "mem").
961 */
962 if (mem->use_hierarchy)
963 ret = css_is_ancestor(&curr->css, &mem->css);
964 else
965 ret = (curr == mem);
966 css_put(&curr->css);
967 return ret;
968 }
969
970 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
971 {
972 unsigned long active;
973 unsigned long inactive;
974 unsigned long gb;
975 unsigned long inactive_ratio;
976
977 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
978 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
979
980 gb = (inactive + active) >> (30 - PAGE_SHIFT);
981 if (gb)
982 inactive_ratio = int_sqrt(10 * gb);
983 else
984 inactive_ratio = 1;
985
986 if (present_pages) {
987 present_pages[0] = inactive;
988 present_pages[1] = active;
989 }
990
991 return inactive_ratio;
992 }
993
994 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
995 {
996 unsigned long active;
997 unsigned long inactive;
998 unsigned long present_pages[2];
999 unsigned long inactive_ratio;
1000
1001 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1002
1003 inactive = present_pages[0];
1004 active = present_pages[1];
1005
1006 if (inactive * inactive_ratio < active)
1007 return 1;
1008
1009 return 0;
1010 }
1011
1012 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1013 {
1014 unsigned long active;
1015 unsigned long inactive;
1016
1017 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
1018 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1019
1020 return (active > inactive);
1021 }
1022
1023 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1024 struct zone *zone,
1025 enum lru_list lru)
1026 {
1027 int nid = zone_to_nid(zone);
1028 int zid = zone_idx(zone);
1029 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1030
1031 return MEM_CGROUP_ZSTAT(mz, lru);
1032 }
1033
1034 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1035 struct zone *zone)
1036 {
1037 int nid = zone_to_nid(zone);
1038 int zid = zone_idx(zone);
1039 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1040
1041 return &mz->reclaim_stat;
1042 }
1043
1044 struct zone_reclaim_stat *
1045 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1046 {
1047 struct page_cgroup *pc;
1048 struct mem_cgroup_per_zone *mz;
1049
1050 if (mem_cgroup_disabled())
1051 return NULL;
1052
1053 pc = lookup_page_cgroup(page);
1054 if (!PageCgroupUsed(pc))
1055 return NULL;
1056 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1057 smp_rmb();
1058 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1059 return &mz->reclaim_stat;
1060 }
1061
1062 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1063 struct list_head *dst,
1064 unsigned long *scanned, int order,
1065 int mode, struct zone *z,
1066 struct mem_cgroup *mem_cont,
1067 int active, int file)
1068 {
1069 unsigned long nr_taken = 0;
1070 struct page *page;
1071 unsigned long scan;
1072 LIST_HEAD(pc_list);
1073 struct list_head *src;
1074 struct page_cgroup *pc, *tmp;
1075 int nid = zone_to_nid(z);
1076 int zid = zone_idx(z);
1077 struct mem_cgroup_per_zone *mz;
1078 int lru = LRU_FILE * file + active;
1079 int ret;
1080
1081 BUG_ON(!mem_cont);
1082 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1083 src = &mz->lists[lru];
1084
1085 scan = 0;
1086 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1087 if (scan >= nr_to_scan)
1088 break;
1089
1090 if (unlikely(!PageCgroupUsed(pc)))
1091 continue;
1092
1093 page = lookup_cgroup_page(pc);
1094
1095 if (unlikely(!PageLRU(page)))
1096 continue;
1097
1098 scan++;
1099 ret = __isolate_lru_page(page, mode, file);
1100 switch (ret) {
1101 case 0:
1102 list_move(&page->lru, dst);
1103 mem_cgroup_del_lru(page);
1104 nr_taken += hpage_nr_pages(page);
1105 break;
1106 case -EBUSY:
1107 /* we don't affect global LRU but rotate in our LRU */
1108 mem_cgroup_rotate_lru_list(page, page_lru(page));
1109 break;
1110 default:
1111 break;
1112 }
1113 }
1114
1115 *scanned = scan;
1116
1117 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1118 0, 0, 0, mode);
1119
1120 return nr_taken;
1121 }
1122
1123 #define mem_cgroup_from_res_counter(counter, member) \
1124 container_of(counter, struct mem_cgroup, member)
1125
1126 /**
1127 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1128 * @mem: the memory cgroup
1129 *
1130 * Returns the maximum amount of memory @mem can be charged with, in
1131 * pages.
1132 */
1133 static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1134 {
1135 unsigned long long margin;
1136
1137 margin = res_counter_margin(&mem->res);
1138 if (do_swap_account)
1139 margin = min(margin, res_counter_margin(&mem->memsw));
1140 return margin >> PAGE_SHIFT;
1141 }
1142
1143 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1144 {
1145 struct cgroup *cgrp = memcg->css.cgroup;
1146
1147 /* root ? */
1148 if (cgrp->parent == NULL)
1149 return vm_swappiness;
1150
1151 return memcg->swappiness;
1152 }
1153
1154 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1155 {
1156 int cpu;
1157
1158 get_online_cpus();
1159 spin_lock(&mem->pcp_counter_lock);
1160 for_each_online_cpu(cpu)
1161 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1162 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1163 spin_unlock(&mem->pcp_counter_lock);
1164 put_online_cpus();
1165
1166 synchronize_rcu();
1167 }
1168
1169 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1170 {
1171 int cpu;
1172
1173 if (!mem)
1174 return;
1175 get_online_cpus();
1176 spin_lock(&mem->pcp_counter_lock);
1177 for_each_online_cpu(cpu)
1178 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1179 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1180 spin_unlock(&mem->pcp_counter_lock);
1181 put_online_cpus();
1182 }
1183 /*
1184 * 2 routines for checking "mem" is under move_account() or not.
1185 *
1186 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1187 * for avoiding race in accounting. If true,
1188 * pc->mem_cgroup may be overwritten.
1189 *
1190 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1191 * under hierarchy of moving cgroups. This is for
1192 * waiting at hith-memory prressure caused by "move".
1193 */
1194
1195 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1196 {
1197 VM_BUG_ON(!rcu_read_lock_held());
1198 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1199 }
1200
1201 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1202 {
1203 struct mem_cgroup *from;
1204 struct mem_cgroup *to;
1205 bool ret = false;
1206 /*
1207 * Unlike task_move routines, we access mc.to, mc.from not under
1208 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1209 */
1210 spin_lock(&mc.lock);
1211 from = mc.from;
1212 to = mc.to;
1213 if (!from)
1214 goto unlock;
1215 if (from == mem || to == mem
1216 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1217 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1218 ret = true;
1219 unlock:
1220 spin_unlock(&mc.lock);
1221 return ret;
1222 }
1223
1224 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1225 {
1226 if (mc.moving_task && current != mc.moving_task) {
1227 if (mem_cgroup_under_move(mem)) {
1228 DEFINE_WAIT(wait);
1229 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1230 /* moving charge context might have finished. */
1231 if (mc.moving_task)
1232 schedule();
1233 finish_wait(&mc.waitq, &wait);
1234 return true;
1235 }
1236 }
1237 return false;
1238 }
1239
1240 /**
1241 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1242 * @memcg: The memory cgroup that went over limit
1243 * @p: Task that is going to be killed
1244 *
1245 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1246 * enabled
1247 */
1248 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1249 {
1250 struct cgroup *task_cgrp;
1251 struct cgroup *mem_cgrp;
1252 /*
1253 * Need a buffer in BSS, can't rely on allocations. The code relies
1254 * on the assumption that OOM is serialized for memory controller.
1255 * If this assumption is broken, revisit this code.
1256 */
1257 static char memcg_name[PATH_MAX];
1258 int ret;
1259
1260 if (!memcg || !p)
1261 return;
1262
1263
1264 rcu_read_lock();
1265
1266 mem_cgrp = memcg->css.cgroup;
1267 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1268
1269 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1270 if (ret < 0) {
1271 /*
1272 * Unfortunately, we are unable to convert to a useful name
1273 * But we'll still print out the usage information
1274 */
1275 rcu_read_unlock();
1276 goto done;
1277 }
1278 rcu_read_unlock();
1279
1280 printk(KERN_INFO "Task in %s killed", memcg_name);
1281
1282 rcu_read_lock();
1283 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1284 if (ret < 0) {
1285 rcu_read_unlock();
1286 goto done;
1287 }
1288 rcu_read_unlock();
1289
1290 /*
1291 * Continues from above, so we don't need an KERN_ level
1292 */
1293 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1294 done:
1295
1296 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1297 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1298 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1299 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1300 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1301 "failcnt %llu\n",
1302 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1303 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1304 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1305 }
1306
1307 /*
1308 * This function returns the number of memcg under hierarchy tree. Returns
1309 * 1(self count) if no children.
1310 */
1311 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1312 {
1313 int num = 0;
1314 struct mem_cgroup *iter;
1315
1316 for_each_mem_cgroup_tree(iter, mem)
1317 num++;
1318 return num;
1319 }
1320
1321 /*
1322 * Return the memory (and swap, if configured) limit for a memcg.
1323 */
1324 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1325 {
1326 u64 limit;
1327 u64 memsw;
1328
1329 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1330 limit += total_swap_pages << PAGE_SHIFT;
1331
1332 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1333 /*
1334 * If memsw is finite and limits the amount of swap space available
1335 * to this memcg, return that limit.
1336 */
1337 return min(limit, memsw);
1338 }
1339
1340 /*
1341 * Visit the first child (need not be the first child as per the ordering
1342 * of the cgroup list, since we track last_scanned_child) of @mem and use
1343 * that to reclaim free pages from.
1344 */
1345 static struct mem_cgroup *
1346 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1347 {
1348 struct mem_cgroup *ret = NULL;
1349 struct cgroup_subsys_state *css;
1350 int nextid, found;
1351
1352 if (!root_mem->use_hierarchy) {
1353 css_get(&root_mem->css);
1354 ret = root_mem;
1355 }
1356
1357 while (!ret) {
1358 rcu_read_lock();
1359 nextid = root_mem->last_scanned_child + 1;
1360 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1361 &found);
1362 if (css && css_tryget(css))
1363 ret = container_of(css, struct mem_cgroup, css);
1364
1365 rcu_read_unlock();
1366 /* Updates scanning parameter */
1367 if (!css) {
1368 /* this means start scan from ID:1 */
1369 root_mem->last_scanned_child = 0;
1370 } else
1371 root_mem->last_scanned_child = found;
1372 }
1373
1374 return ret;
1375 }
1376
1377 /*
1378 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1379 * we reclaimed from, so that we don't end up penalizing one child extensively
1380 * based on its position in the children list.
1381 *
1382 * root_mem is the original ancestor that we've been reclaim from.
1383 *
1384 * We give up and return to the caller when we visit root_mem twice.
1385 * (other groups can be removed while we're walking....)
1386 *
1387 * If shrink==true, for avoiding to free too much, this returns immedieately.
1388 */
1389 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1390 struct zone *zone,
1391 gfp_t gfp_mask,
1392 unsigned long reclaim_options)
1393 {
1394 struct mem_cgroup *victim;
1395 int ret, total = 0;
1396 int loop = 0;
1397 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1398 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1399 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1400 unsigned long excess;
1401
1402 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1403
1404 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1405 if (root_mem->memsw_is_minimum)
1406 noswap = true;
1407
1408 while (1) {
1409 victim = mem_cgroup_select_victim(root_mem);
1410 if (victim == root_mem) {
1411 loop++;
1412 if (loop >= 1)
1413 drain_all_stock_async();
1414 if (loop >= 2) {
1415 /*
1416 * If we have not been able to reclaim
1417 * anything, it might because there are
1418 * no reclaimable pages under this hierarchy
1419 */
1420 if (!check_soft || !total) {
1421 css_put(&victim->css);
1422 break;
1423 }
1424 /*
1425 * We want to do more targetted reclaim.
1426 * excess >> 2 is not to excessive so as to
1427 * reclaim too much, nor too less that we keep
1428 * coming back to reclaim from this cgroup
1429 */
1430 if (total >= (excess >> 2) ||
1431 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1432 css_put(&victim->css);
1433 break;
1434 }
1435 }
1436 }
1437 if (!mem_cgroup_local_usage(victim)) {
1438 /* this cgroup's local usage == 0 */
1439 css_put(&victim->css);
1440 continue;
1441 }
1442 /* we use swappiness of local cgroup */
1443 if (check_soft)
1444 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1445 noswap, get_swappiness(victim), zone);
1446 else
1447 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1448 noswap, get_swappiness(victim));
1449 css_put(&victim->css);
1450 /*
1451 * At shrinking usage, we can't check we should stop here or
1452 * reclaim more. It's depends on callers. last_scanned_child
1453 * will work enough for keeping fairness under tree.
1454 */
1455 if (shrink)
1456 return ret;
1457 total += ret;
1458 if (check_soft) {
1459 if (!res_counter_soft_limit_excess(&root_mem->res))
1460 return total;
1461 } else if (mem_cgroup_margin(root_mem))
1462 return 1 + total;
1463 }
1464 return total;
1465 }
1466
1467 /*
1468 * Check OOM-Killer is already running under our hierarchy.
1469 * If someone is running, return false.
1470 */
1471 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1472 {
1473 int x, lock_count = 0;
1474 struct mem_cgroup *iter;
1475
1476 for_each_mem_cgroup_tree(iter, mem) {
1477 x = atomic_inc_return(&iter->oom_lock);
1478 lock_count = max(x, lock_count);
1479 }
1480
1481 if (lock_count == 1)
1482 return true;
1483 return false;
1484 }
1485
1486 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1487 {
1488 struct mem_cgroup *iter;
1489
1490 /*
1491 * When a new child is created while the hierarchy is under oom,
1492 * mem_cgroup_oom_lock() may not be called. We have to use
1493 * atomic_add_unless() here.
1494 */
1495 for_each_mem_cgroup_tree(iter, mem)
1496 atomic_add_unless(&iter->oom_lock, -1, 0);
1497 return 0;
1498 }
1499
1500
1501 static DEFINE_MUTEX(memcg_oom_mutex);
1502 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1503
1504 struct oom_wait_info {
1505 struct mem_cgroup *mem;
1506 wait_queue_t wait;
1507 };
1508
1509 static int memcg_oom_wake_function(wait_queue_t *wait,
1510 unsigned mode, int sync, void *arg)
1511 {
1512 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1513 struct oom_wait_info *oom_wait_info;
1514
1515 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1516
1517 if (oom_wait_info->mem == wake_mem)
1518 goto wakeup;
1519 /* if no hierarchy, no match */
1520 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1521 return 0;
1522 /*
1523 * Both of oom_wait_info->mem and wake_mem are stable under us.
1524 * Then we can use css_is_ancestor without taking care of RCU.
1525 */
1526 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1527 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1528 return 0;
1529
1530 wakeup:
1531 return autoremove_wake_function(wait, mode, sync, arg);
1532 }
1533
1534 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1535 {
1536 /* for filtering, pass "mem" as argument. */
1537 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1538 }
1539
1540 static void memcg_oom_recover(struct mem_cgroup *mem)
1541 {
1542 if (mem && atomic_read(&mem->oom_lock))
1543 memcg_wakeup_oom(mem);
1544 }
1545
1546 /*
1547 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1548 */
1549 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1550 {
1551 struct oom_wait_info owait;
1552 bool locked, need_to_kill;
1553
1554 owait.mem = mem;
1555 owait.wait.flags = 0;
1556 owait.wait.func = memcg_oom_wake_function;
1557 owait.wait.private = current;
1558 INIT_LIST_HEAD(&owait.wait.task_list);
1559 need_to_kill = true;
1560 /* At first, try to OOM lock hierarchy under mem.*/
1561 mutex_lock(&memcg_oom_mutex);
1562 locked = mem_cgroup_oom_lock(mem);
1563 /*
1564 * Even if signal_pending(), we can't quit charge() loop without
1565 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1566 * under OOM is always welcomed, use TASK_KILLABLE here.
1567 */
1568 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1569 if (!locked || mem->oom_kill_disable)
1570 need_to_kill = false;
1571 if (locked)
1572 mem_cgroup_oom_notify(mem);
1573 mutex_unlock(&memcg_oom_mutex);
1574
1575 if (need_to_kill) {
1576 finish_wait(&memcg_oom_waitq, &owait.wait);
1577 mem_cgroup_out_of_memory(mem, mask);
1578 } else {
1579 schedule();
1580 finish_wait(&memcg_oom_waitq, &owait.wait);
1581 }
1582 mutex_lock(&memcg_oom_mutex);
1583 mem_cgroup_oom_unlock(mem);
1584 memcg_wakeup_oom(mem);
1585 mutex_unlock(&memcg_oom_mutex);
1586
1587 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1588 return false;
1589 /* Give chance to dying process */
1590 schedule_timeout(1);
1591 return true;
1592 }
1593
1594 /*
1595 * Currently used to update mapped file statistics, but the routine can be
1596 * generalized to update other statistics as well.
1597 *
1598 * Notes: Race condition
1599 *
1600 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1601 * it tends to be costly. But considering some conditions, we doesn't need
1602 * to do so _always_.
1603 *
1604 * Considering "charge", lock_page_cgroup() is not required because all
1605 * file-stat operations happen after a page is attached to radix-tree. There
1606 * are no race with "charge".
1607 *
1608 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1609 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1610 * if there are race with "uncharge". Statistics itself is properly handled
1611 * by flags.
1612 *
1613 * Considering "move", this is an only case we see a race. To make the race
1614 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1615 * possibility of race condition. If there is, we take a lock.
1616 */
1617
1618 void mem_cgroup_update_page_stat(struct page *page,
1619 enum mem_cgroup_page_stat_item idx, int val)
1620 {
1621 struct mem_cgroup *mem;
1622 struct page_cgroup *pc = lookup_page_cgroup(page);
1623 bool need_unlock = false;
1624 unsigned long uninitialized_var(flags);
1625
1626 if (unlikely(!pc))
1627 return;
1628
1629 rcu_read_lock();
1630 mem = pc->mem_cgroup;
1631 if (unlikely(!mem || !PageCgroupUsed(pc)))
1632 goto out;
1633 /* pc->mem_cgroup is unstable ? */
1634 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1635 /* take a lock against to access pc->mem_cgroup */
1636 move_lock_page_cgroup(pc, &flags);
1637 need_unlock = true;
1638 mem = pc->mem_cgroup;
1639 if (!mem || !PageCgroupUsed(pc))
1640 goto out;
1641 }
1642
1643 switch (idx) {
1644 case MEMCG_NR_FILE_MAPPED:
1645 if (val > 0)
1646 SetPageCgroupFileMapped(pc);
1647 else if (!page_mapped(page))
1648 ClearPageCgroupFileMapped(pc);
1649 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1650 break;
1651 default:
1652 BUG();
1653 }
1654
1655 this_cpu_add(mem->stat->count[idx], val);
1656
1657 out:
1658 if (unlikely(need_unlock))
1659 move_unlock_page_cgroup(pc, &flags);
1660 rcu_read_unlock();
1661 return;
1662 }
1663 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1664
1665 /*
1666 * size of first charge trial. "32" comes from vmscan.c's magic value.
1667 * TODO: maybe necessary to use big numbers in big irons.
1668 */
1669 #define CHARGE_BATCH 32U
1670 struct memcg_stock_pcp {
1671 struct mem_cgroup *cached; /* this never be root cgroup */
1672 unsigned int nr_pages;
1673 struct work_struct work;
1674 };
1675 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1676 static atomic_t memcg_drain_count;
1677
1678 /*
1679 * Try to consume stocked charge on this cpu. If success, one page is consumed
1680 * from local stock and true is returned. If the stock is 0 or charges from a
1681 * cgroup which is not current target, returns false. This stock will be
1682 * refilled.
1683 */
1684 static bool consume_stock(struct mem_cgroup *mem)
1685 {
1686 struct memcg_stock_pcp *stock;
1687 bool ret = true;
1688
1689 stock = &get_cpu_var(memcg_stock);
1690 if (mem == stock->cached && stock->nr_pages)
1691 stock->nr_pages--;
1692 else /* need to call res_counter_charge */
1693 ret = false;
1694 put_cpu_var(memcg_stock);
1695 return ret;
1696 }
1697
1698 /*
1699 * Returns stocks cached in percpu to res_counter and reset cached information.
1700 */
1701 static void drain_stock(struct memcg_stock_pcp *stock)
1702 {
1703 struct mem_cgroup *old = stock->cached;
1704
1705 if (stock->nr_pages) {
1706 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1707
1708 res_counter_uncharge(&old->res, bytes);
1709 if (do_swap_account)
1710 res_counter_uncharge(&old->memsw, bytes);
1711 stock->nr_pages = 0;
1712 }
1713 stock->cached = NULL;
1714 }
1715
1716 /*
1717 * This must be called under preempt disabled or must be called by
1718 * a thread which is pinned to local cpu.
1719 */
1720 static void drain_local_stock(struct work_struct *dummy)
1721 {
1722 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1723 drain_stock(stock);
1724 }
1725
1726 /*
1727 * Cache charges(val) which is from res_counter, to local per_cpu area.
1728 * This will be consumed by consume_stock() function, later.
1729 */
1730 static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
1731 {
1732 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1733
1734 if (stock->cached != mem) { /* reset if necessary */
1735 drain_stock(stock);
1736 stock->cached = mem;
1737 }
1738 stock->nr_pages += nr_pages;
1739 put_cpu_var(memcg_stock);
1740 }
1741
1742 /*
1743 * Tries to drain stocked charges in other cpus. This function is asynchronous
1744 * and just put a work per cpu for draining localy on each cpu. Caller can
1745 * expects some charges will be back to res_counter later but cannot wait for
1746 * it.
1747 */
1748 static void drain_all_stock_async(void)
1749 {
1750 int cpu;
1751 /* This function is for scheduling "drain" in asynchronous way.
1752 * The result of "drain" is not directly handled by callers. Then,
1753 * if someone is calling drain, we don't have to call drain more.
1754 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1755 * there is a race. We just do loose check here.
1756 */
1757 if (atomic_read(&memcg_drain_count))
1758 return;
1759 /* Notify other cpus that system-wide "drain" is running */
1760 atomic_inc(&memcg_drain_count);
1761 get_online_cpus();
1762 for_each_online_cpu(cpu) {
1763 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1764 schedule_work_on(cpu, &stock->work);
1765 }
1766 put_online_cpus();
1767 atomic_dec(&memcg_drain_count);
1768 /* We don't wait for flush_work */
1769 }
1770
1771 /* This is a synchronous drain interface. */
1772 static void drain_all_stock_sync(void)
1773 {
1774 /* called when force_empty is called */
1775 atomic_inc(&memcg_drain_count);
1776 schedule_on_each_cpu(drain_local_stock);
1777 atomic_dec(&memcg_drain_count);
1778 }
1779
1780 /*
1781 * This function drains percpu counter value from DEAD cpu and
1782 * move it to local cpu. Note that this function can be preempted.
1783 */
1784 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1785 {
1786 int i;
1787
1788 spin_lock(&mem->pcp_counter_lock);
1789 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1790 s64 x = per_cpu(mem->stat->count[i], cpu);
1791
1792 per_cpu(mem->stat->count[i], cpu) = 0;
1793 mem->nocpu_base.count[i] += x;
1794 }
1795 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
1796 unsigned long x = per_cpu(mem->stat->events[i], cpu);
1797
1798 per_cpu(mem->stat->events[i], cpu) = 0;
1799 mem->nocpu_base.events[i] += x;
1800 }
1801 /* need to clear ON_MOVE value, works as a kind of lock. */
1802 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1803 spin_unlock(&mem->pcp_counter_lock);
1804 }
1805
1806 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1807 {
1808 int idx = MEM_CGROUP_ON_MOVE;
1809
1810 spin_lock(&mem->pcp_counter_lock);
1811 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1812 spin_unlock(&mem->pcp_counter_lock);
1813 }
1814
1815 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1816 unsigned long action,
1817 void *hcpu)
1818 {
1819 int cpu = (unsigned long)hcpu;
1820 struct memcg_stock_pcp *stock;
1821 struct mem_cgroup *iter;
1822
1823 if ((action == CPU_ONLINE)) {
1824 for_each_mem_cgroup_all(iter)
1825 synchronize_mem_cgroup_on_move(iter, cpu);
1826 return NOTIFY_OK;
1827 }
1828
1829 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1830 return NOTIFY_OK;
1831
1832 for_each_mem_cgroup_all(iter)
1833 mem_cgroup_drain_pcp_counter(iter, cpu);
1834
1835 stock = &per_cpu(memcg_stock, cpu);
1836 drain_stock(stock);
1837 return NOTIFY_OK;
1838 }
1839
1840
1841 /* See __mem_cgroup_try_charge() for details */
1842 enum {
1843 CHARGE_OK, /* success */
1844 CHARGE_RETRY, /* need to retry but retry is not bad */
1845 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1846 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1847 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1848 };
1849
1850 static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1851 unsigned int nr_pages, bool oom_check)
1852 {
1853 unsigned long csize = nr_pages * PAGE_SIZE;
1854 struct mem_cgroup *mem_over_limit;
1855 struct res_counter *fail_res;
1856 unsigned long flags = 0;
1857 int ret;
1858
1859 ret = res_counter_charge(&mem->res, csize, &fail_res);
1860
1861 if (likely(!ret)) {
1862 if (!do_swap_account)
1863 return CHARGE_OK;
1864 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1865 if (likely(!ret))
1866 return CHARGE_OK;
1867
1868 res_counter_uncharge(&mem->res, csize);
1869 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1870 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1871 } else
1872 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1873 /*
1874 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
1875 * of regular pages (CHARGE_BATCH), or a single regular page (1).
1876 *
1877 * Never reclaim on behalf of optional batching, retry with a
1878 * single page instead.
1879 */
1880 if (nr_pages == CHARGE_BATCH)
1881 return CHARGE_RETRY;
1882
1883 if (!(gfp_mask & __GFP_WAIT))
1884 return CHARGE_WOULDBLOCK;
1885
1886 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1887 gfp_mask, flags);
1888 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1889 return CHARGE_RETRY;
1890 /*
1891 * Even though the limit is exceeded at this point, reclaim
1892 * may have been able to free some pages. Retry the charge
1893 * before killing the task.
1894 *
1895 * Only for regular pages, though: huge pages are rather
1896 * unlikely to succeed so close to the limit, and we fall back
1897 * to regular pages anyway in case of failure.
1898 */
1899 if (nr_pages == 1 && ret)
1900 return CHARGE_RETRY;
1901
1902 /*
1903 * At task move, charge accounts can be doubly counted. So, it's
1904 * better to wait until the end of task_move if something is going on.
1905 */
1906 if (mem_cgroup_wait_acct_move(mem_over_limit))
1907 return CHARGE_RETRY;
1908
1909 /* If we don't need to call oom-killer at el, return immediately */
1910 if (!oom_check)
1911 return CHARGE_NOMEM;
1912 /* check OOM */
1913 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1914 return CHARGE_OOM_DIE;
1915
1916 return CHARGE_RETRY;
1917 }
1918
1919 /*
1920 * Unlike exported interface, "oom" parameter is added. if oom==true,
1921 * oom-killer can be invoked.
1922 */
1923 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1924 gfp_t gfp_mask,
1925 unsigned int nr_pages,
1926 struct mem_cgroup **memcg,
1927 bool oom)
1928 {
1929 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1930 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1931 struct mem_cgroup *mem = NULL;
1932 int ret;
1933
1934 /*
1935 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1936 * in system level. So, allow to go ahead dying process in addition to
1937 * MEMDIE process.
1938 */
1939 if (unlikely(test_thread_flag(TIF_MEMDIE)
1940 || fatal_signal_pending(current)))
1941 goto bypass;
1942
1943 /*
1944 * We always charge the cgroup the mm_struct belongs to.
1945 * The mm_struct's mem_cgroup changes on task migration if the
1946 * thread group leader migrates. It's possible that mm is not
1947 * set, if so charge the init_mm (happens for pagecache usage).
1948 */
1949 if (!*memcg && !mm)
1950 goto bypass;
1951 again:
1952 if (*memcg) { /* css should be a valid one */
1953 mem = *memcg;
1954 VM_BUG_ON(css_is_removed(&mem->css));
1955 if (mem_cgroup_is_root(mem))
1956 goto done;
1957 if (nr_pages == 1 && consume_stock(mem))
1958 goto done;
1959 css_get(&mem->css);
1960 } else {
1961 struct task_struct *p;
1962
1963 rcu_read_lock();
1964 p = rcu_dereference(mm->owner);
1965 /*
1966 * Because we don't have task_lock(), "p" can exit.
1967 * In that case, "mem" can point to root or p can be NULL with
1968 * race with swapoff. Then, we have small risk of mis-accouning.
1969 * But such kind of mis-account by race always happens because
1970 * we don't have cgroup_mutex(). It's overkill and we allo that
1971 * small race, here.
1972 * (*) swapoff at el will charge against mm-struct not against
1973 * task-struct. So, mm->owner can be NULL.
1974 */
1975 mem = mem_cgroup_from_task(p);
1976 if (!mem || mem_cgroup_is_root(mem)) {
1977 rcu_read_unlock();
1978 goto done;
1979 }
1980 if (nr_pages == 1 && consume_stock(mem)) {
1981 /*
1982 * It seems dagerous to access memcg without css_get().
1983 * But considering how consume_stok works, it's not
1984 * necessary. If consume_stock success, some charges
1985 * from this memcg are cached on this cpu. So, we
1986 * don't need to call css_get()/css_tryget() before
1987 * calling consume_stock().
1988 */
1989 rcu_read_unlock();
1990 goto done;
1991 }
1992 /* after here, we may be blocked. we need to get refcnt */
1993 if (!css_tryget(&mem->css)) {
1994 rcu_read_unlock();
1995 goto again;
1996 }
1997 rcu_read_unlock();
1998 }
1999
2000 do {
2001 bool oom_check;
2002
2003 /* If killed, bypass charge */
2004 if (fatal_signal_pending(current)) {
2005 css_put(&mem->css);
2006 goto bypass;
2007 }
2008
2009 oom_check = false;
2010 if (oom && !nr_oom_retries) {
2011 oom_check = true;
2012 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2013 }
2014
2015 ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2016 switch (ret) {
2017 case CHARGE_OK:
2018 break;
2019 case CHARGE_RETRY: /* not in OOM situation but retry */
2020 batch = nr_pages;
2021 css_put(&mem->css);
2022 mem = NULL;
2023 goto again;
2024 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2025 css_put(&mem->css);
2026 goto nomem;
2027 case CHARGE_NOMEM: /* OOM routine works */
2028 if (!oom) {
2029 css_put(&mem->css);
2030 goto nomem;
2031 }
2032 /* If oom, we never return -ENOMEM */
2033 nr_oom_retries--;
2034 break;
2035 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2036 css_put(&mem->css);
2037 goto bypass;
2038 }
2039 } while (ret != CHARGE_OK);
2040
2041 if (batch > nr_pages)
2042 refill_stock(mem, batch - nr_pages);
2043 css_put(&mem->css);
2044 done:
2045 *memcg = mem;
2046 return 0;
2047 nomem:
2048 *memcg = NULL;
2049 return -ENOMEM;
2050 bypass:
2051 *memcg = NULL;
2052 return 0;
2053 }
2054
2055 /*
2056 * Somemtimes we have to undo a charge we got by try_charge().
2057 * This function is for that and do uncharge, put css's refcnt.
2058 * gotten by try_charge().
2059 */
2060 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2061 unsigned int nr_pages)
2062 {
2063 if (!mem_cgroup_is_root(mem)) {
2064 unsigned long bytes = nr_pages * PAGE_SIZE;
2065
2066 res_counter_uncharge(&mem->res, bytes);
2067 if (do_swap_account)
2068 res_counter_uncharge(&mem->memsw, bytes);
2069 }
2070 }
2071
2072 /*
2073 * A helper function to get mem_cgroup from ID. must be called under
2074 * rcu_read_lock(). The caller must check css_is_removed() or some if
2075 * it's concern. (dropping refcnt from swap can be called against removed
2076 * memcg.)
2077 */
2078 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2079 {
2080 struct cgroup_subsys_state *css;
2081
2082 /* ID 0 is unused ID */
2083 if (!id)
2084 return NULL;
2085 css = css_lookup(&mem_cgroup_subsys, id);
2086 if (!css)
2087 return NULL;
2088 return container_of(css, struct mem_cgroup, css);
2089 }
2090
2091 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2092 {
2093 struct mem_cgroup *mem = NULL;
2094 struct page_cgroup *pc;
2095 unsigned short id;
2096 swp_entry_t ent;
2097
2098 VM_BUG_ON(!PageLocked(page));
2099
2100 pc = lookup_page_cgroup(page);
2101 lock_page_cgroup(pc);
2102 if (PageCgroupUsed(pc)) {
2103 mem = pc->mem_cgroup;
2104 if (mem && !css_tryget(&mem->css))
2105 mem = NULL;
2106 } else if (PageSwapCache(page)) {
2107 ent.val = page_private(page);
2108 id = lookup_swap_cgroup(ent);
2109 rcu_read_lock();
2110 mem = mem_cgroup_lookup(id);
2111 if (mem && !css_tryget(&mem->css))
2112 mem = NULL;
2113 rcu_read_unlock();
2114 }
2115 unlock_page_cgroup(pc);
2116 return mem;
2117 }
2118
2119 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2120 struct page *page,
2121 unsigned int nr_pages,
2122 struct page_cgroup *pc,
2123 enum charge_type ctype)
2124 {
2125 lock_page_cgroup(pc);
2126 if (unlikely(PageCgroupUsed(pc))) {
2127 unlock_page_cgroup(pc);
2128 __mem_cgroup_cancel_charge(mem, nr_pages);
2129 return;
2130 }
2131 /*
2132 * we don't need page_cgroup_lock about tail pages, becase they are not
2133 * accessed by any other context at this point.
2134 */
2135 pc->mem_cgroup = mem;
2136 /*
2137 * We access a page_cgroup asynchronously without lock_page_cgroup().
2138 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2139 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2140 * before USED bit, we need memory barrier here.
2141 * See mem_cgroup_add_lru_list(), etc.
2142 */
2143 smp_wmb();
2144 switch (ctype) {
2145 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2146 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2147 SetPageCgroupCache(pc);
2148 SetPageCgroupUsed(pc);
2149 break;
2150 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2151 ClearPageCgroupCache(pc);
2152 SetPageCgroupUsed(pc);
2153 break;
2154 default:
2155 break;
2156 }
2157
2158 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2159 unlock_page_cgroup(pc);
2160 /*
2161 * "charge_statistics" updated event counter. Then, check it.
2162 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2163 * if they exceeds softlimit.
2164 */
2165 memcg_check_events(mem, page);
2166 }
2167
2168 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2169
2170 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2171 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2172 /*
2173 * Because tail pages are not marked as "used", set it. We're under
2174 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2175 */
2176 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2177 {
2178 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2179 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2180 unsigned long flags;
2181
2182 if (mem_cgroup_disabled())
2183 return;
2184 /*
2185 * We have no races with charge/uncharge but will have races with
2186 * page state accounting.
2187 */
2188 move_lock_page_cgroup(head_pc, &flags);
2189
2190 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2191 smp_wmb(); /* see __commit_charge() */
2192 if (PageCgroupAcctLRU(head_pc)) {
2193 enum lru_list lru;
2194 struct mem_cgroup_per_zone *mz;
2195
2196 /*
2197 * LRU flags cannot be copied because we need to add tail
2198 *.page to LRU by generic call and our hook will be called.
2199 * We hold lru_lock, then, reduce counter directly.
2200 */
2201 lru = page_lru(head);
2202 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2203 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2204 }
2205 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2206 move_unlock_page_cgroup(head_pc, &flags);
2207 }
2208 #endif
2209
2210 /**
2211 * mem_cgroup_move_account - move account of the page
2212 * @page: the page
2213 * @nr_pages: number of regular pages (>1 for huge pages)
2214 * @pc: page_cgroup of the page.
2215 * @from: mem_cgroup which the page is moved from.
2216 * @to: mem_cgroup which the page is moved to. @from != @to.
2217 * @uncharge: whether we should call uncharge and css_put against @from.
2218 *
2219 * The caller must confirm following.
2220 * - page is not on LRU (isolate_page() is useful.)
2221 * - compound_lock is held when nr_pages > 1
2222 *
2223 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2224 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2225 * true, this function does "uncharge" from old cgroup, but it doesn't if
2226 * @uncharge is false, so a caller should do "uncharge".
2227 */
2228 static int mem_cgroup_move_account(struct page *page,
2229 unsigned int nr_pages,
2230 struct page_cgroup *pc,
2231 struct mem_cgroup *from,
2232 struct mem_cgroup *to,
2233 bool uncharge)
2234 {
2235 unsigned long flags;
2236 int ret;
2237
2238 VM_BUG_ON(from == to);
2239 VM_BUG_ON(PageLRU(page));
2240 /*
2241 * The page is isolated from LRU. So, collapse function
2242 * will not handle this page. But page splitting can happen.
2243 * Do this check under compound_page_lock(). The caller should
2244 * hold it.
2245 */
2246 ret = -EBUSY;
2247 if (nr_pages > 1 && !PageTransHuge(page))
2248 goto out;
2249
2250 lock_page_cgroup(pc);
2251
2252 ret = -EINVAL;
2253 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2254 goto unlock;
2255
2256 move_lock_page_cgroup(pc, &flags);
2257
2258 if (PageCgroupFileMapped(pc)) {
2259 /* Update mapped_file data for mem_cgroup */
2260 preempt_disable();
2261 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2262 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2263 preempt_enable();
2264 }
2265 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2266 if (uncharge)
2267 /* This is not "cancel", but cancel_charge does all we need. */
2268 __mem_cgroup_cancel_charge(from, nr_pages);
2269
2270 /* caller should have done css_get */
2271 pc->mem_cgroup = to;
2272 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2273 /*
2274 * We charges against "to" which may not have any tasks. Then, "to"
2275 * can be under rmdir(). But in current implementation, caller of
2276 * this function is just force_empty() and move charge, so it's
2277 * garanteed that "to" is never removed. So, we don't check rmdir
2278 * status here.
2279 */
2280 move_unlock_page_cgroup(pc, &flags);
2281 ret = 0;
2282 unlock:
2283 unlock_page_cgroup(pc);
2284 /*
2285 * check events
2286 */
2287 memcg_check_events(to, page);
2288 memcg_check_events(from, page);
2289 out:
2290 return ret;
2291 }
2292
2293 /*
2294 * move charges to its parent.
2295 */
2296
2297 static int mem_cgroup_move_parent(struct page *page,
2298 struct page_cgroup *pc,
2299 struct mem_cgroup *child,
2300 gfp_t gfp_mask)
2301 {
2302 struct cgroup *cg = child->css.cgroup;
2303 struct cgroup *pcg = cg->parent;
2304 struct mem_cgroup *parent;
2305 unsigned int nr_pages;
2306 unsigned long flags;
2307 int ret;
2308
2309 /* Is ROOT ? */
2310 if (!pcg)
2311 return -EINVAL;
2312
2313 ret = -EBUSY;
2314 if (!get_page_unless_zero(page))
2315 goto out;
2316 if (isolate_lru_page(page))
2317 goto put;
2318
2319 nr_pages = hpage_nr_pages(page);
2320
2321 parent = mem_cgroup_from_cont(pcg);
2322 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2323 if (ret || !parent)
2324 goto put_back;
2325
2326 if (nr_pages > 1)
2327 flags = compound_lock_irqsave(page);
2328
2329 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2330 if (ret)
2331 __mem_cgroup_cancel_charge(parent, nr_pages);
2332
2333 if (nr_pages > 1)
2334 compound_unlock_irqrestore(page, flags);
2335 put_back:
2336 putback_lru_page(page);
2337 put:
2338 put_page(page);
2339 out:
2340 return ret;
2341 }
2342
2343 /*
2344 * Charge the memory controller for page usage.
2345 * Return
2346 * 0 if the charge was successful
2347 * < 0 if the cgroup is over its limit
2348 */
2349 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2350 gfp_t gfp_mask, enum charge_type ctype)
2351 {
2352 struct mem_cgroup *mem = NULL;
2353 unsigned int nr_pages = 1;
2354 struct page_cgroup *pc;
2355 bool oom = true;
2356 int ret;
2357
2358 if (PageTransHuge(page)) {
2359 nr_pages <<= compound_order(page);
2360 VM_BUG_ON(!PageTransHuge(page));
2361 /*
2362 * Never OOM-kill a process for a huge page. The
2363 * fault handler will fall back to regular pages.
2364 */
2365 oom = false;
2366 }
2367
2368 pc = lookup_page_cgroup(page);
2369 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2370
2371 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2372 if (ret || !mem)
2373 return ret;
2374
2375 __mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2376 return 0;
2377 }
2378
2379 int mem_cgroup_newpage_charge(struct page *page,
2380 struct mm_struct *mm, gfp_t gfp_mask)
2381 {
2382 if (mem_cgroup_disabled())
2383 return 0;
2384 /*
2385 * If already mapped, we don't have to account.
2386 * If page cache, page->mapping has address_space.
2387 * But page->mapping may have out-of-use anon_vma pointer,
2388 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2389 * is NULL.
2390 */
2391 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2392 return 0;
2393 if (unlikely(!mm))
2394 mm = &init_mm;
2395 return mem_cgroup_charge_common(page, mm, gfp_mask,
2396 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2397 }
2398
2399 static void
2400 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2401 enum charge_type ctype);
2402
2403 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2404 gfp_t gfp_mask)
2405 {
2406 int ret;
2407
2408 if (mem_cgroup_disabled())
2409 return 0;
2410 if (PageCompound(page))
2411 return 0;
2412 /*
2413 * Corner case handling. This is called from add_to_page_cache()
2414 * in usual. But some FS (shmem) precharges this page before calling it
2415 * and call add_to_page_cache() with GFP_NOWAIT.
2416 *
2417 * For GFP_NOWAIT case, the page may be pre-charged before calling
2418 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2419 * charge twice. (It works but has to pay a bit larger cost.)
2420 * And when the page is SwapCache, it should take swap information
2421 * into account. This is under lock_page() now.
2422 */
2423 if (!(gfp_mask & __GFP_WAIT)) {
2424 struct page_cgroup *pc;
2425
2426 pc = lookup_page_cgroup(page);
2427 if (!pc)
2428 return 0;
2429 lock_page_cgroup(pc);
2430 if (PageCgroupUsed(pc)) {
2431 unlock_page_cgroup(pc);
2432 return 0;
2433 }
2434 unlock_page_cgroup(pc);
2435 }
2436
2437 if (unlikely(!mm))
2438 mm = &init_mm;
2439
2440 if (page_is_file_cache(page))
2441 return mem_cgroup_charge_common(page, mm, gfp_mask,
2442 MEM_CGROUP_CHARGE_TYPE_CACHE);
2443
2444 /* shmem */
2445 if (PageSwapCache(page)) {
2446 struct mem_cgroup *mem;
2447
2448 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2449 if (!ret)
2450 __mem_cgroup_commit_charge_swapin(page, mem,
2451 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2452 } else
2453 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2454 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2455
2456 return ret;
2457 }
2458
2459 /*
2460 * While swap-in, try_charge -> commit or cancel, the page is locked.
2461 * And when try_charge() successfully returns, one refcnt to memcg without
2462 * struct page_cgroup is acquired. This refcnt will be consumed by
2463 * "commit()" or removed by "cancel()"
2464 */
2465 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2466 struct page *page,
2467 gfp_t mask, struct mem_cgroup **ptr)
2468 {
2469 struct mem_cgroup *mem;
2470 int ret;
2471
2472 *ptr = NULL;
2473
2474 if (mem_cgroup_disabled())
2475 return 0;
2476
2477 if (!do_swap_account)
2478 goto charge_cur_mm;
2479 /*
2480 * A racing thread's fault, or swapoff, may have already updated
2481 * the pte, and even removed page from swap cache: in those cases
2482 * do_swap_page()'s pte_same() test will fail; but there's also a
2483 * KSM case which does need to charge the page.
2484 */
2485 if (!PageSwapCache(page))
2486 goto charge_cur_mm;
2487 mem = try_get_mem_cgroup_from_page(page);
2488 if (!mem)
2489 goto charge_cur_mm;
2490 *ptr = mem;
2491 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2492 css_put(&mem->css);
2493 return ret;
2494 charge_cur_mm:
2495 if (unlikely(!mm))
2496 mm = &init_mm;
2497 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2498 }
2499
2500 static void
2501 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2502 enum charge_type ctype)
2503 {
2504 struct page_cgroup *pc;
2505
2506 if (mem_cgroup_disabled())
2507 return;
2508 if (!ptr)
2509 return;
2510 cgroup_exclude_rmdir(&ptr->css);
2511 pc = lookup_page_cgroup(page);
2512 mem_cgroup_lru_del_before_commit_swapcache(page);
2513 __mem_cgroup_commit_charge(ptr, page, 1, pc, ctype);
2514 mem_cgroup_lru_add_after_commit_swapcache(page);
2515 /*
2516 * Now swap is on-memory. This means this page may be
2517 * counted both as mem and swap....double count.
2518 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2519 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2520 * may call delete_from_swap_cache() before reach here.
2521 */
2522 if (do_swap_account && PageSwapCache(page)) {
2523 swp_entry_t ent = {.val = page_private(page)};
2524 unsigned short id;
2525 struct mem_cgroup *memcg;
2526
2527 id = swap_cgroup_record(ent, 0);
2528 rcu_read_lock();
2529 memcg = mem_cgroup_lookup(id);
2530 if (memcg) {
2531 /*
2532 * This recorded memcg can be obsolete one. So, avoid
2533 * calling css_tryget
2534 */
2535 if (!mem_cgroup_is_root(memcg))
2536 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2537 mem_cgroup_swap_statistics(memcg, false);
2538 mem_cgroup_put(memcg);
2539 }
2540 rcu_read_unlock();
2541 }
2542 /*
2543 * At swapin, we may charge account against cgroup which has no tasks.
2544 * So, rmdir()->pre_destroy() can be called while we do this charge.
2545 * In that case, we need to call pre_destroy() again. check it here.
2546 */
2547 cgroup_release_and_wakeup_rmdir(&ptr->css);
2548 }
2549
2550 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2551 {
2552 __mem_cgroup_commit_charge_swapin(page, ptr,
2553 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2554 }
2555
2556 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2557 {
2558 if (mem_cgroup_disabled())
2559 return;
2560 if (!mem)
2561 return;
2562 __mem_cgroup_cancel_charge(mem, 1);
2563 }
2564
2565 static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
2566 unsigned int nr_pages,
2567 const enum charge_type ctype)
2568 {
2569 struct memcg_batch_info *batch = NULL;
2570 bool uncharge_memsw = true;
2571
2572 /* If swapout, usage of swap doesn't decrease */
2573 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2574 uncharge_memsw = false;
2575
2576 batch = &current->memcg_batch;
2577 /*
2578 * In usual, we do css_get() when we remember memcg pointer.
2579 * But in this case, we keep res->usage until end of a series of
2580 * uncharges. Then, it's ok to ignore memcg's refcnt.
2581 */
2582 if (!batch->memcg)
2583 batch->memcg = mem;
2584 /*
2585 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2586 * In those cases, all pages freed continously can be expected to be in
2587 * the same cgroup and we have chance to coalesce uncharges.
2588 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2589 * because we want to do uncharge as soon as possible.
2590 */
2591
2592 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2593 goto direct_uncharge;
2594
2595 if (nr_pages > 1)
2596 goto direct_uncharge;
2597
2598 /*
2599 * In typical case, batch->memcg == mem. This means we can
2600 * merge a series of uncharges to an uncharge of res_counter.
2601 * If not, we uncharge res_counter ony by one.
2602 */
2603 if (batch->memcg != mem)
2604 goto direct_uncharge;
2605 /* remember freed charge and uncharge it later */
2606 batch->nr_pages++;
2607 if (uncharge_memsw)
2608 batch->memsw_nr_pages++;
2609 return;
2610 direct_uncharge:
2611 res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2612 if (uncharge_memsw)
2613 res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2614 if (unlikely(batch->memcg != mem))
2615 memcg_oom_recover(mem);
2616 return;
2617 }
2618
2619 /*
2620 * uncharge if !page_mapped(page)
2621 */
2622 static struct mem_cgroup *
2623 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2624 {
2625 struct mem_cgroup *mem = NULL;
2626 unsigned int nr_pages = 1;
2627 struct page_cgroup *pc;
2628
2629 if (mem_cgroup_disabled())
2630 return NULL;
2631
2632 if (PageSwapCache(page))
2633 return NULL;
2634
2635 if (PageTransHuge(page)) {
2636 nr_pages <<= compound_order(page);
2637 VM_BUG_ON(!PageTransHuge(page));
2638 }
2639 /*
2640 * Check if our page_cgroup is valid
2641 */
2642 pc = lookup_page_cgroup(page);
2643 if (unlikely(!pc || !PageCgroupUsed(pc)))
2644 return NULL;
2645
2646 lock_page_cgroup(pc);
2647
2648 mem = pc->mem_cgroup;
2649
2650 if (!PageCgroupUsed(pc))
2651 goto unlock_out;
2652
2653 switch (ctype) {
2654 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2655 case MEM_CGROUP_CHARGE_TYPE_DROP:
2656 /* See mem_cgroup_prepare_migration() */
2657 if (page_mapped(page) || PageCgroupMigration(pc))
2658 goto unlock_out;
2659 break;
2660 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2661 if (!PageAnon(page)) { /* Shared memory */
2662 if (page->mapping && !page_is_file_cache(page))
2663 goto unlock_out;
2664 } else if (page_mapped(page)) /* Anon */
2665 goto unlock_out;
2666 break;
2667 default:
2668 break;
2669 }
2670
2671 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
2672
2673 ClearPageCgroupUsed(pc);
2674 /*
2675 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2676 * freed from LRU. This is safe because uncharged page is expected not
2677 * to be reused (freed soon). Exception is SwapCache, it's handled by
2678 * special functions.
2679 */
2680
2681 unlock_page_cgroup(pc);
2682 /*
2683 * even after unlock, we have mem->res.usage here and this memcg
2684 * will never be freed.
2685 */
2686 memcg_check_events(mem, page);
2687 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2688 mem_cgroup_swap_statistics(mem, true);
2689 mem_cgroup_get(mem);
2690 }
2691 if (!mem_cgroup_is_root(mem))
2692 mem_cgroup_do_uncharge(mem, nr_pages, ctype);
2693
2694 return mem;
2695
2696 unlock_out:
2697 unlock_page_cgroup(pc);
2698 return NULL;
2699 }
2700
2701 void mem_cgroup_uncharge_page(struct page *page)
2702 {
2703 /* early check. */
2704 if (page_mapped(page))
2705 return;
2706 if (page->mapping && !PageAnon(page))
2707 return;
2708 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2709 }
2710
2711 void mem_cgroup_uncharge_cache_page(struct page *page)
2712 {
2713 VM_BUG_ON(page_mapped(page));
2714 VM_BUG_ON(page->mapping);
2715 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2716 }
2717
2718 /*
2719 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2720 * In that cases, pages are freed continuously and we can expect pages
2721 * are in the same memcg. All these calls itself limits the number of
2722 * pages freed at once, then uncharge_start/end() is called properly.
2723 * This may be called prural(2) times in a context,
2724 */
2725
2726 void mem_cgroup_uncharge_start(void)
2727 {
2728 current->memcg_batch.do_batch++;
2729 /* We can do nest. */
2730 if (current->memcg_batch.do_batch == 1) {
2731 current->memcg_batch.memcg = NULL;
2732 current->memcg_batch.nr_pages = 0;
2733 current->memcg_batch.memsw_nr_pages = 0;
2734 }
2735 }
2736
2737 void mem_cgroup_uncharge_end(void)
2738 {
2739 struct memcg_batch_info *batch = &current->memcg_batch;
2740
2741 if (!batch->do_batch)
2742 return;
2743
2744 batch->do_batch--;
2745 if (batch->do_batch) /* If stacked, do nothing. */
2746 return;
2747
2748 if (!batch->memcg)
2749 return;
2750 /*
2751 * This "batch->memcg" is valid without any css_get/put etc...
2752 * bacause we hide charges behind us.
2753 */
2754 if (batch->nr_pages)
2755 res_counter_uncharge(&batch->memcg->res,
2756 batch->nr_pages * PAGE_SIZE);
2757 if (batch->memsw_nr_pages)
2758 res_counter_uncharge(&batch->memcg->memsw,
2759 batch->memsw_nr_pages * PAGE_SIZE);
2760 memcg_oom_recover(batch->memcg);
2761 /* forget this pointer (for sanity check) */
2762 batch->memcg = NULL;
2763 }
2764
2765 #ifdef CONFIG_SWAP
2766 /*
2767 * called after __delete_from_swap_cache() and drop "page" account.
2768 * memcg information is recorded to swap_cgroup of "ent"
2769 */
2770 void
2771 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2772 {
2773 struct mem_cgroup *memcg;
2774 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2775
2776 if (!swapout) /* this was a swap cache but the swap is unused ! */
2777 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2778
2779 memcg = __mem_cgroup_uncharge_common(page, ctype);
2780
2781 /*
2782 * record memcg information, if swapout && memcg != NULL,
2783 * mem_cgroup_get() was called in uncharge().
2784 */
2785 if (do_swap_account && swapout && memcg)
2786 swap_cgroup_record(ent, css_id(&memcg->css));
2787 }
2788 #endif
2789
2790 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2791 /*
2792 * called from swap_entry_free(). remove record in swap_cgroup and
2793 * uncharge "memsw" account.
2794 */
2795 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2796 {
2797 struct mem_cgroup *memcg;
2798 unsigned short id;
2799
2800 if (!do_swap_account)
2801 return;
2802
2803 id = swap_cgroup_record(ent, 0);
2804 rcu_read_lock();
2805 memcg = mem_cgroup_lookup(id);
2806 if (memcg) {
2807 /*
2808 * We uncharge this because swap is freed.
2809 * This memcg can be obsolete one. We avoid calling css_tryget
2810 */
2811 if (!mem_cgroup_is_root(memcg))
2812 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2813 mem_cgroup_swap_statistics(memcg, false);
2814 mem_cgroup_put(memcg);
2815 }
2816 rcu_read_unlock();
2817 }
2818
2819 /**
2820 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2821 * @entry: swap entry to be moved
2822 * @from: mem_cgroup which the entry is moved from
2823 * @to: mem_cgroup which the entry is moved to
2824 * @need_fixup: whether we should fixup res_counters and refcounts.
2825 *
2826 * It succeeds only when the swap_cgroup's record for this entry is the same
2827 * as the mem_cgroup's id of @from.
2828 *
2829 * Returns 0 on success, -EINVAL on failure.
2830 *
2831 * The caller must have charged to @to, IOW, called res_counter_charge() about
2832 * both res and memsw, and called css_get().
2833 */
2834 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2835 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2836 {
2837 unsigned short old_id, new_id;
2838
2839 old_id = css_id(&from->css);
2840 new_id = css_id(&to->css);
2841
2842 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2843 mem_cgroup_swap_statistics(from, false);
2844 mem_cgroup_swap_statistics(to, true);
2845 /*
2846 * This function is only called from task migration context now.
2847 * It postpones res_counter and refcount handling till the end
2848 * of task migration(mem_cgroup_clear_mc()) for performance
2849 * improvement. But we cannot postpone mem_cgroup_get(to)
2850 * because if the process that has been moved to @to does
2851 * swap-in, the refcount of @to might be decreased to 0.
2852 */
2853 mem_cgroup_get(to);
2854 if (need_fixup) {
2855 if (!mem_cgroup_is_root(from))
2856 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2857 mem_cgroup_put(from);
2858 /*
2859 * we charged both to->res and to->memsw, so we should
2860 * uncharge to->res.
2861 */
2862 if (!mem_cgroup_is_root(to))
2863 res_counter_uncharge(&to->res, PAGE_SIZE);
2864 }
2865 return 0;
2866 }
2867 return -EINVAL;
2868 }
2869 #else
2870 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2871 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2872 {
2873 return -EINVAL;
2874 }
2875 #endif
2876
2877 /*
2878 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2879 * page belongs to.
2880 */
2881 int mem_cgroup_prepare_migration(struct page *page,
2882 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
2883 {
2884 struct mem_cgroup *mem = NULL;
2885 struct page_cgroup *pc;
2886 enum charge_type ctype;
2887 int ret = 0;
2888
2889 *ptr = NULL;
2890
2891 VM_BUG_ON(PageTransHuge(page));
2892 if (mem_cgroup_disabled())
2893 return 0;
2894
2895 pc = lookup_page_cgroup(page);
2896 lock_page_cgroup(pc);
2897 if (PageCgroupUsed(pc)) {
2898 mem = pc->mem_cgroup;
2899 css_get(&mem->css);
2900 /*
2901 * At migrating an anonymous page, its mapcount goes down
2902 * to 0 and uncharge() will be called. But, even if it's fully
2903 * unmapped, migration may fail and this page has to be
2904 * charged again. We set MIGRATION flag here and delay uncharge
2905 * until end_migration() is called
2906 *
2907 * Corner Case Thinking
2908 * A)
2909 * When the old page was mapped as Anon and it's unmap-and-freed
2910 * while migration was ongoing.
2911 * If unmap finds the old page, uncharge() of it will be delayed
2912 * until end_migration(). If unmap finds a new page, it's
2913 * uncharged when it make mapcount to be 1->0. If unmap code
2914 * finds swap_migration_entry, the new page will not be mapped
2915 * and end_migration() will find it(mapcount==0).
2916 *
2917 * B)
2918 * When the old page was mapped but migraion fails, the kernel
2919 * remaps it. A charge for it is kept by MIGRATION flag even
2920 * if mapcount goes down to 0. We can do remap successfully
2921 * without charging it again.
2922 *
2923 * C)
2924 * The "old" page is under lock_page() until the end of
2925 * migration, so, the old page itself will not be swapped-out.
2926 * If the new page is swapped out before end_migraton, our
2927 * hook to usual swap-out path will catch the event.
2928 */
2929 if (PageAnon(page))
2930 SetPageCgroupMigration(pc);
2931 }
2932 unlock_page_cgroup(pc);
2933 /*
2934 * If the page is not charged at this point,
2935 * we return here.
2936 */
2937 if (!mem)
2938 return 0;
2939
2940 *ptr = mem;
2941 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
2942 css_put(&mem->css);/* drop extra refcnt */
2943 if (ret || *ptr == NULL) {
2944 if (PageAnon(page)) {
2945 lock_page_cgroup(pc);
2946 ClearPageCgroupMigration(pc);
2947 unlock_page_cgroup(pc);
2948 /*
2949 * The old page may be fully unmapped while we kept it.
2950 */
2951 mem_cgroup_uncharge_page(page);
2952 }
2953 return -ENOMEM;
2954 }
2955 /*
2956 * We charge new page before it's used/mapped. So, even if unlock_page()
2957 * is called before end_migration, we can catch all events on this new
2958 * page. In the case new page is migrated but not remapped, new page's
2959 * mapcount will be finally 0 and we call uncharge in end_migration().
2960 */
2961 pc = lookup_page_cgroup(newpage);
2962 if (PageAnon(page))
2963 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2964 else if (page_is_file_cache(page))
2965 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2966 else
2967 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2968 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2969 return ret;
2970 }
2971
2972 /* remove redundant charge if migration failed*/
2973 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2974 struct page *oldpage, struct page *newpage, bool migration_ok)
2975 {
2976 struct page *used, *unused;
2977 struct page_cgroup *pc;
2978
2979 if (!mem)
2980 return;
2981 /* blocks rmdir() */
2982 cgroup_exclude_rmdir(&mem->css);
2983 if (!migration_ok) {
2984 used = oldpage;
2985 unused = newpage;
2986 } else {
2987 used = newpage;
2988 unused = oldpage;
2989 }
2990 /*
2991 * We disallowed uncharge of pages under migration because mapcount
2992 * of the page goes down to zero, temporarly.
2993 * Clear the flag and check the page should be charged.
2994 */
2995 pc = lookup_page_cgroup(oldpage);
2996 lock_page_cgroup(pc);
2997 ClearPageCgroupMigration(pc);
2998 unlock_page_cgroup(pc);
2999
3000 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3001
3002 /*
3003 * If a page is a file cache, radix-tree replacement is very atomic
3004 * and we can skip this check. When it was an Anon page, its mapcount
3005 * goes down to 0. But because we added MIGRATION flage, it's not
3006 * uncharged yet. There are several case but page->mapcount check
3007 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3008 * check. (see prepare_charge() also)
3009 */
3010 if (PageAnon(used))
3011 mem_cgroup_uncharge_page(used);
3012 /*
3013 * At migration, we may charge account against cgroup which has no
3014 * tasks.
3015 * So, rmdir()->pre_destroy() can be called while we do this charge.
3016 * In that case, we need to call pre_destroy() again. check it here.
3017 */
3018 cgroup_release_and_wakeup_rmdir(&mem->css);
3019 }
3020
3021 /*
3022 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3023 * Calling hierarchical_reclaim is not enough because we should update
3024 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3025 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3026 * not from the memcg which this page would be charged to.
3027 * try_charge_swapin does all of these works properly.
3028 */
3029 int mem_cgroup_shmem_charge_fallback(struct page *page,
3030 struct mm_struct *mm,
3031 gfp_t gfp_mask)
3032 {
3033 struct mem_cgroup *mem;
3034 int ret;
3035
3036 if (mem_cgroup_disabled())
3037 return 0;
3038
3039 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3040 if (!ret)
3041 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3042
3043 return ret;
3044 }
3045
3046 #ifdef CONFIG_DEBUG_VM
3047 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3048 {
3049 struct page_cgroup *pc;
3050
3051 pc = lookup_page_cgroup(page);
3052 if (likely(pc) && PageCgroupUsed(pc))
3053 return pc;
3054 return NULL;
3055 }
3056
3057 bool mem_cgroup_bad_page_check(struct page *page)
3058 {
3059 if (mem_cgroup_disabled())
3060 return false;
3061
3062 return lookup_page_cgroup_used(page) != NULL;
3063 }
3064
3065 void mem_cgroup_print_bad_page(struct page *page)
3066 {
3067 struct page_cgroup *pc;
3068
3069 pc = lookup_page_cgroup_used(page);
3070 if (pc) {
3071 int ret = -1;
3072 char *path;
3073
3074 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3075 pc, pc->flags, pc->mem_cgroup);
3076
3077 path = kmalloc(PATH_MAX, GFP_KERNEL);
3078 if (path) {
3079 rcu_read_lock();
3080 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3081 path, PATH_MAX);
3082 rcu_read_unlock();
3083 }
3084
3085 printk(KERN_CONT "(%s)\n",
3086 (ret < 0) ? "cannot get the path" : path);
3087 kfree(path);
3088 }
3089 }
3090 #endif
3091
3092 static DEFINE_MUTEX(set_limit_mutex);
3093
3094 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3095 unsigned long long val)
3096 {
3097 int retry_count;
3098 u64 memswlimit, memlimit;
3099 int ret = 0;
3100 int children = mem_cgroup_count_children(memcg);
3101 u64 curusage, oldusage;
3102 int enlarge;
3103
3104 /*
3105 * For keeping hierarchical_reclaim simple, how long we should retry
3106 * is depends on callers. We set our retry-count to be function
3107 * of # of children which we should visit in this loop.
3108 */
3109 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3110
3111 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3112
3113 enlarge = 0;
3114 while (retry_count) {
3115 if (signal_pending(current)) {
3116 ret = -EINTR;
3117 break;
3118 }
3119 /*
3120 * Rather than hide all in some function, I do this in
3121 * open coded manner. You see what this really does.
3122 * We have to guarantee mem->res.limit < mem->memsw.limit.
3123 */
3124 mutex_lock(&set_limit_mutex);
3125 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3126 if (memswlimit < val) {
3127 ret = -EINVAL;
3128 mutex_unlock(&set_limit_mutex);
3129 break;
3130 }
3131
3132 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3133 if (memlimit < val)
3134 enlarge = 1;
3135
3136 ret = res_counter_set_limit(&memcg->res, val);
3137 if (!ret) {
3138 if (memswlimit == val)
3139 memcg->memsw_is_minimum = true;
3140 else
3141 memcg->memsw_is_minimum = false;
3142 }
3143 mutex_unlock(&set_limit_mutex);
3144
3145 if (!ret)
3146 break;
3147
3148 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3149 MEM_CGROUP_RECLAIM_SHRINK);
3150 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3151 /* Usage is reduced ? */
3152 if (curusage >= oldusage)
3153 retry_count--;
3154 else
3155 oldusage = curusage;
3156 }
3157 if (!ret && enlarge)
3158 memcg_oom_recover(memcg);
3159
3160 return ret;
3161 }
3162
3163 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3164 unsigned long long val)
3165 {
3166 int retry_count;
3167 u64 memlimit, memswlimit, oldusage, curusage;
3168 int children = mem_cgroup_count_children(memcg);
3169 int ret = -EBUSY;
3170 int enlarge = 0;
3171
3172 /* see mem_cgroup_resize_res_limit */
3173 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3174 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3175 while (retry_count) {
3176 if (signal_pending(current)) {
3177 ret = -EINTR;
3178 break;
3179 }
3180 /*
3181 * Rather than hide all in some function, I do this in
3182 * open coded manner. You see what this really does.
3183 * We have to guarantee mem->res.limit < mem->memsw.limit.
3184 */
3185 mutex_lock(&set_limit_mutex);
3186 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3187 if (memlimit > val) {
3188 ret = -EINVAL;
3189 mutex_unlock(&set_limit_mutex);
3190 break;
3191 }
3192 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3193 if (memswlimit < val)
3194 enlarge = 1;
3195 ret = res_counter_set_limit(&memcg->memsw, val);
3196 if (!ret) {
3197 if (memlimit == val)
3198 memcg->memsw_is_minimum = true;
3199 else
3200 memcg->memsw_is_minimum = false;
3201 }
3202 mutex_unlock(&set_limit_mutex);
3203
3204 if (!ret)
3205 break;
3206
3207 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3208 MEM_CGROUP_RECLAIM_NOSWAP |
3209 MEM_CGROUP_RECLAIM_SHRINK);
3210 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3211 /* Usage is reduced ? */
3212 if (curusage >= oldusage)
3213 retry_count--;
3214 else
3215 oldusage = curusage;
3216 }
3217 if (!ret && enlarge)
3218 memcg_oom_recover(memcg);
3219 return ret;
3220 }
3221
3222 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3223 gfp_t gfp_mask)
3224 {
3225 unsigned long nr_reclaimed = 0;
3226 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3227 unsigned long reclaimed;
3228 int loop = 0;
3229 struct mem_cgroup_tree_per_zone *mctz;
3230 unsigned long long excess;
3231
3232 if (order > 0)
3233 return 0;
3234
3235 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3236 /*
3237 * This loop can run a while, specially if mem_cgroup's continuously
3238 * keep exceeding their soft limit and putting the system under
3239 * pressure
3240 */
3241 do {
3242 if (next_mz)
3243 mz = next_mz;
3244 else
3245 mz = mem_cgroup_largest_soft_limit_node(mctz);
3246 if (!mz)
3247 break;
3248
3249 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3250 gfp_mask,
3251 MEM_CGROUP_RECLAIM_SOFT);
3252 nr_reclaimed += reclaimed;
3253 spin_lock(&mctz->lock);
3254
3255 /*
3256 * If we failed to reclaim anything from this memory cgroup
3257 * it is time to move on to the next cgroup
3258 */
3259 next_mz = NULL;
3260 if (!reclaimed) {
3261 do {
3262 /*
3263 * Loop until we find yet another one.
3264 *
3265 * By the time we get the soft_limit lock
3266 * again, someone might have aded the
3267 * group back on the RB tree. Iterate to
3268 * make sure we get a different mem.
3269 * mem_cgroup_largest_soft_limit_node returns
3270 * NULL if no other cgroup is present on
3271 * the tree
3272 */
3273 next_mz =
3274 __mem_cgroup_largest_soft_limit_node(mctz);
3275 if (next_mz == mz) {
3276 css_put(&next_mz->mem->css);
3277 next_mz = NULL;
3278 } else /* next_mz == NULL or other memcg */
3279 break;
3280 } while (1);
3281 }
3282 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3283 excess = res_counter_soft_limit_excess(&mz->mem->res);
3284 /*
3285 * One school of thought says that we should not add
3286 * back the node to the tree if reclaim returns 0.
3287 * But our reclaim could return 0, simply because due
3288 * to priority we are exposing a smaller subset of
3289 * memory to reclaim from. Consider this as a longer
3290 * term TODO.
3291 */
3292 /* If excess == 0, no tree ops */
3293 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3294 spin_unlock(&mctz->lock);
3295 css_put(&mz->mem->css);
3296 loop++;
3297 /*
3298 * Could not reclaim anything and there are no more
3299 * mem cgroups to try or we seem to be looping without
3300 * reclaiming anything.
3301 */
3302 if (!nr_reclaimed &&
3303 (next_mz == NULL ||
3304 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3305 break;
3306 } while (!nr_reclaimed);
3307 if (next_mz)
3308 css_put(&next_mz->mem->css);
3309 return nr_reclaimed;
3310 }
3311
3312 /*
3313 * This routine traverse page_cgroup in given list and drop them all.
3314 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3315 */
3316 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3317 int node, int zid, enum lru_list lru)
3318 {
3319 struct zone *zone;
3320 struct mem_cgroup_per_zone *mz;
3321 struct page_cgroup *pc, *busy;
3322 unsigned long flags, loop;
3323 struct list_head *list;
3324 int ret = 0;
3325
3326 zone = &NODE_DATA(node)->node_zones[zid];
3327 mz = mem_cgroup_zoneinfo(mem, node, zid);
3328 list = &mz->lists[lru];
3329
3330 loop = MEM_CGROUP_ZSTAT(mz, lru);
3331 /* give some margin against EBUSY etc...*/
3332 loop += 256;
3333 busy = NULL;
3334 while (loop--) {
3335 struct page *page;
3336
3337 ret = 0;
3338 spin_lock_irqsave(&zone->lru_lock, flags);
3339 if (list_empty(list)) {
3340 spin_unlock_irqrestore(&zone->lru_lock, flags);
3341 break;
3342 }
3343 pc = list_entry(list->prev, struct page_cgroup, lru);
3344 if (busy == pc) {
3345 list_move(&pc->lru, list);
3346 busy = NULL;
3347 spin_unlock_irqrestore(&zone->lru_lock, flags);
3348 continue;
3349 }
3350 spin_unlock_irqrestore(&zone->lru_lock, flags);
3351
3352 page = lookup_cgroup_page(pc);
3353
3354 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3355 if (ret == -ENOMEM)
3356 break;
3357
3358 if (ret == -EBUSY || ret == -EINVAL) {
3359 /* found lock contention or "pc" is obsolete. */
3360 busy = pc;
3361 cond_resched();
3362 } else
3363 busy = NULL;
3364 }
3365
3366 if (!ret && !list_empty(list))
3367 return -EBUSY;
3368 return ret;
3369 }
3370
3371 /*
3372 * make mem_cgroup's charge to be 0 if there is no task.
3373 * This enables deleting this mem_cgroup.
3374 */
3375 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3376 {
3377 int ret;
3378 int node, zid, shrink;
3379 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3380 struct cgroup *cgrp = mem->css.cgroup;
3381
3382 css_get(&mem->css);
3383
3384 shrink = 0;
3385 /* should free all ? */
3386 if (free_all)
3387 goto try_to_free;
3388 move_account:
3389 do {
3390 ret = -EBUSY;
3391 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3392 goto out;
3393 ret = -EINTR;
3394 if (signal_pending(current))
3395 goto out;
3396 /* This is for making all *used* pages to be on LRU. */
3397 lru_add_drain_all();
3398 drain_all_stock_sync();
3399 ret = 0;
3400 mem_cgroup_start_move(mem);
3401 for_each_node_state(node, N_HIGH_MEMORY) {
3402 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3403 enum lru_list l;
3404 for_each_lru(l) {
3405 ret = mem_cgroup_force_empty_list(mem,
3406 node, zid, l);
3407 if (ret)
3408 break;
3409 }
3410 }
3411 if (ret)
3412 break;
3413 }
3414 mem_cgroup_end_move(mem);
3415 memcg_oom_recover(mem);
3416 /* it seems parent cgroup doesn't have enough mem */
3417 if (ret == -ENOMEM)
3418 goto try_to_free;
3419 cond_resched();
3420 /* "ret" should also be checked to ensure all lists are empty. */
3421 } while (mem->res.usage > 0 || ret);
3422 out:
3423 css_put(&mem->css);
3424 return ret;
3425
3426 try_to_free:
3427 /* returns EBUSY if there is a task or if we come here twice. */
3428 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3429 ret = -EBUSY;
3430 goto out;
3431 }
3432 /* we call try-to-free pages for make this cgroup empty */
3433 lru_add_drain_all();
3434 /* try to free all pages in this cgroup */
3435 shrink = 1;
3436 while (nr_retries && mem->res.usage > 0) {
3437 int progress;
3438
3439 if (signal_pending(current)) {
3440 ret = -EINTR;
3441 goto out;
3442 }
3443 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3444 false, get_swappiness(mem));
3445 if (!progress) {
3446 nr_retries--;
3447 /* maybe some writeback is necessary */
3448 congestion_wait(BLK_RW_ASYNC, HZ/10);
3449 }
3450
3451 }
3452 lru_add_drain();
3453 /* try move_account...there may be some *locked* pages. */
3454 goto move_account;
3455 }
3456
3457 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3458 {
3459 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3460 }
3461
3462
3463 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3464 {
3465 return mem_cgroup_from_cont(cont)->use_hierarchy;
3466 }
3467
3468 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3469 u64 val)
3470 {
3471 int retval = 0;
3472 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3473 struct cgroup *parent = cont->parent;
3474 struct mem_cgroup *parent_mem = NULL;
3475
3476 if (parent)
3477 parent_mem = mem_cgroup_from_cont(parent);
3478
3479 cgroup_lock();
3480 /*
3481 * If parent's use_hierarchy is set, we can't make any modifications
3482 * in the child subtrees. If it is unset, then the change can
3483 * occur, provided the current cgroup has no children.
3484 *
3485 * For the root cgroup, parent_mem is NULL, we allow value to be
3486 * set if there are no children.
3487 */
3488 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3489 (val == 1 || val == 0)) {
3490 if (list_empty(&cont->children))
3491 mem->use_hierarchy = val;
3492 else
3493 retval = -EBUSY;
3494 } else
3495 retval = -EINVAL;
3496 cgroup_unlock();
3497
3498 return retval;
3499 }
3500
3501
3502 static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3503 enum mem_cgroup_stat_index idx)
3504 {
3505 struct mem_cgroup *iter;
3506 s64 val = 0;
3507
3508 /* each per cpu's value can be minus.Then, use s64 */
3509 for_each_mem_cgroup_tree(iter, mem)
3510 val += mem_cgroup_read_stat(iter, idx);
3511
3512 if (val < 0) /* race ? */
3513 val = 0;
3514 return val;
3515 }
3516
3517 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3518 {
3519 u64 val;
3520
3521 if (!mem_cgroup_is_root(mem)) {
3522 if (!swap)
3523 return res_counter_read_u64(&mem->res, RES_USAGE);
3524 else
3525 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3526 }
3527
3528 val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3529 val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3530
3531 if (swap)
3532 val += mem_cgroup_get_recursive_idx_stat(mem,
3533 MEM_CGROUP_STAT_SWAPOUT);
3534
3535 return val << PAGE_SHIFT;
3536 }
3537
3538 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3539 {
3540 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3541 u64 val;
3542 int type, name;
3543
3544 type = MEMFILE_TYPE(cft->private);
3545 name = MEMFILE_ATTR(cft->private);
3546 switch (type) {
3547 case _MEM:
3548 if (name == RES_USAGE)
3549 val = mem_cgroup_usage(mem, false);
3550 else
3551 val = res_counter_read_u64(&mem->res, name);
3552 break;
3553 case _MEMSWAP:
3554 if (name == RES_USAGE)
3555 val = mem_cgroup_usage(mem, true);
3556 else
3557 val = res_counter_read_u64(&mem->memsw, name);
3558 break;
3559 default:
3560 BUG();
3561 break;
3562 }
3563 return val;
3564 }
3565 /*
3566 * The user of this function is...
3567 * RES_LIMIT.
3568 */
3569 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3570 const char *buffer)
3571 {
3572 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3573 int type, name;
3574 unsigned long long val;
3575 int ret;
3576
3577 type = MEMFILE_TYPE(cft->private);
3578 name = MEMFILE_ATTR(cft->private);
3579 switch (name) {
3580 case RES_LIMIT:
3581 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3582 ret = -EINVAL;
3583 break;
3584 }
3585 /* This function does all necessary parse...reuse it */
3586 ret = res_counter_memparse_write_strategy(buffer, &val);
3587 if (ret)
3588 break;
3589 if (type == _MEM)
3590 ret = mem_cgroup_resize_limit(memcg, val);
3591 else
3592 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3593 break;
3594 case RES_SOFT_LIMIT:
3595 ret = res_counter_memparse_write_strategy(buffer, &val);
3596 if (ret)
3597 break;
3598 /*
3599 * For memsw, soft limits are hard to implement in terms
3600 * of semantics, for now, we support soft limits for
3601 * control without swap
3602 */
3603 if (type == _MEM)
3604 ret = res_counter_set_soft_limit(&memcg->res, val);
3605 else
3606 ret = -EINVAL;
3607 break;
3608 default:
3609 ret = -EINVAL; /* should be BUG() ? */
3610 break;
3611 }
3612 return ret;
3613 }
3614
3615 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3616 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3617 {
3618 struct cgroup *cgroup;
3619 unsigned long long min_limit, min_memsw_limit, tmp;
3620
3621 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3622 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3623 cgroup = memcg->css.cgroup;
3624 if (!memcg->use_hierarchy)
3625 goto out;
3626
3627 while (cgroup->parent) {
3628 cgroup = cgroup->parent;
3629 memcg = mem_cgroup_from_cont(cgroup);
3630 if (!memcg->use_hierarchy)
3631 break;
3632 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3633 min_limit = min(min_limit, tmp);
3634 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3635 min_memsw_limit = min(min_memsw_limit, tmp);
3636 }
3637 out:
3638 *mem_limit = min_limit;
3639 *memsw_limit = min_memsw_limit;
3640 return;
3641 }
3642
3643 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3644 {
3645 struct mem_cgroup *mem;
3646 int type, name;
3647
3648 mem = mem_cgroup_from_cont(cont);
3649 type = MEMFILE_TYPE(event);
3650 name = MEMFILE_ATTR(event);
3651 switch (name) {
3652 case RES_MAX_USAGE:
3653 if (type == _MEM)
3654 res_counter_reset_max(&mem->res);
3655 else
3656 res_counter_reset_max(&mem->memsw);
3657 break;
3658 case RES_FAILCNT:
3659 if (type == _MEM)
3660 res_counter_reset_failcnt(&mem->res);
3661 else
3662 res_counter_reset_failcnt(&mem->memsw);
3663 break;
3664 }
3665
3666 return 0;
3667 }
3668
3669 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3670 struct cftype *cft)
3671 {
3672 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3673 }
3674
3675 #ifdef CONFIG_MMU
3676 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3677 struct cftype *cft, u64 val)
3678 {
3679 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3680
3681 if (val >= (1 << NR_MOVE_TYPE))
3682 return -EINVAL;
3683 /*
3684 * We check this value several times in both in can_attach() and
3685 * attach(), so we need cgroup lock to prevent this value from being
3686 * inconsistent.
3687 */
3688 cgroup_lock();
3689 mem->move_charge_at_immigrate = val;
3690 cgroup_unlock();
3691
3692 return 0;
3693 }
3694 #else
3695 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3696 struct cftype *cft, u64 val)
3697 {
3698 return -ENOSYS;
3699 }
3700 #endif
3701
3702
3703 /* For read statistics */
3704 enum {
3705 MCS_CACHE,
3706 MCS_RSS,
3707 MCS_FILE_MAPPED,
3708 MCS_PGPGIN,
3709 MCS_PGPGOUT,
3710 MCS_SWAP,
3711 MCS_INACTIVE_ANON,
3712 MCS_ACTIVE_ANON,
3713 MCS_INACTIVE_FILE,
3714 MCS_ACTIVE_FILE,
3715 MCS_UNEVICTABLE,
3716 NR_MCS_STAT,
3717 };
3718
3719 struct mcs_total_stat {
3720 s64 stat[NR_MCS_STAT];
3721 };
3722
3723 struct {
3724 char *local_name;
3725 char *total_name;
3726 } memcg_stat_strings[NR_MCS_STAT] = {
3727 {"cache", "total_cache"},
3728 {"rss", "total_rss"},
3729 {"mapped_file", "total_mapped_file"},
3730 {"pgpgin", "total_pgpgin"},
3731 {"pgpgout", "total_pgpgout"},
3732 {"swap", "total_swap"},
3733 {"inactive_anon", "total_inactive_anon"},
3734 {"active_anon", "total_active_anon"},
3735 {"inactive_file", "total_inactive_file"},
3736 {"active_file", "total_active_file"},
3737 {"unevictable", "total_unevictable"}
3738 };
3739
3740
3741 static void
3742 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3743 {
3744 s64 val;
3745
3746 /* per cpu stat */
3747 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3748 s->stat[MCS_CACHE] += val * PAGE_SIZE;
3749 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3750 s->stat[MCS_RSS] += val * PAGE_SIZE;
3751 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3752 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3753 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
3754 s->stat[MCS_PGPGIN] += val;
3755 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
3756 s->stat[MCS_PGPGOUT] += val;
3757 if (do_swap_account) {
3758 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3759 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3760 }
3761
3762 /* per zone stat */
3763 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3764 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3765 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3766 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3767 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3768 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3769 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3770 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3771 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3772 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3773 }
3774
3775 static void
3776 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3777 {
3778 struct mem_cgroup *iter;
3779
3780 for_each_mem_cgroup_tree(iter, mem)
3781 mem_cgroup_get_local_stat(iter, s);
3782 }
3783
3784 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3785 struct cgroup_map_cb *cb)
3786 {
3787 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3788 struct mcs_total_stat mystat;
3789 int i;
3790
3791 memset(&mystat, 0, sizeof(mystat));
3792 mem_cgroup_get_local_stat(mem_cont, &mystat);
3793
3794 for (i = 0; i < NR_MCS_STAT; i++) {
3795 if (i == MCS_SWAP && !do_swap_account)
3796 continue;
3797 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3798 }
3799
3800 /* Hierarchical information */
3801 {
3802 unsigned long long limit, memsw_limit;
3803 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3804 cb->fill(cb, "hierarchical_memory_limit", limit);
3805 if (do_swap_account)
3806 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3807 }
3808
3809 memset(&mystat, 0, sizeof(mystat));
3810 mem_cgroup_get_total_stat(mem_cont, &mystat);
3811 for (i = 0; i < NR_MCS_STAT; i++) {
3812 if (i == MCS_SWAP && !do_swap_account)
3813 continue;
3814 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3815 }
3816
3817 #ifdef CONFIG_DEBUG_VM
3818 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3819
3820 {
3821 int nid, zid;
3822 struct mem_cgroup_per_zone *mz;
3823 unsigned long recent_rotated[2] = {0, 0};
3824 unsigned long recent_scanned[2] = {0, 0};
3825
3826 for_each_online_node(nid)
3827 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3828 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3829
3830 recent_rotated[0] +=
3831 mz->reclaim_stat.recent_rotated[0];
3832 recent_rotated[1] +=
3833 mz->reclaim_stat.recent_rotated[1];
3834 recent_scanned[0] +=
3835 mz->reclaim_stat.recent_scanned[0];
3836 recent_scanned[1] +=
3837 mz->reclaim_stat.recent_scanned[1];
3838 }
3839 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3840 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3841 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3842 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3843 }
3844 #endif
3845
3846 return 0;
3847 }
3848
3849 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3850 {
3851 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3852
3853 return get_swappiness(memcg);
3854 }
3855
3856 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3857 u64 val)
3858 {
3859 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3860 struct mem_cgroup *parent;
3861
3862 if (val > 100)
3863 return -EINVAL;
3864
3865 if (cgrp->parent == NULL)
3866 return -EINVAL;
3867
3868 parent = mem_cgroup_from_cont(cgrp->parent);
3869
3870 cgroup_lock();
3871
3872 /* If under hierarchy, only empty-root can set this value */
3873 if ((parent->use_hierarchy) ||
3874 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3875 cgroup_unlock();
3876 return -EINVAL;
3877 }
3878
3879 memcg->swappiness = val;
3880
3881 cgroup_unlock();
3882
3883 return 0;
3884 }
3885
3886 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3887 {
3888 struct mem_cgroup_threshold_ary *t;
3889 u64 usage;
3890 int i;
3891
3892 rcu_read_lock();
3893 if (!swap)
3894 t = rcu_dereference(memcg->thresholds.primary);
3895 else
3896 t = rcu_dereference(memcg->memsw_thresholds.primary);
3897
3898 if (!t)
3899 goto unlock;
3900
3901 usage = mem_cgroup_usage(memcg, swap);
3902
3903 /*
3904 * current_threshold points to threshold just below usage.
3905 * If it's not true, a threshold was crossed after last
3906 * call of __mem_cgroup_threshold().
3907 */
3908 i = t->current_threshold;
3909
3910 /*
3911 * Iterate backward over array of thresholds starting from
3912 * current_threshold and check if a threshold is crossed.
3913 * If none of thresholds below usage is crossed, we read
3914 * only one element of the array here.
3915 */
3916 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3917 eventfd_signal(t->entries[i].eventfd, 1);
3918
3919 /* i = current_threshold + 1 */
3920 i++;
3921
3922 /*
3923 * Iterate forward over array of thresholds starting from
3924 * current_threshold+1 and check if a threshold is crossed.
3925 * If none of thresholds above usage is crossed, we read
3926 * only one element of the array here.
3927 */
3928 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3929 eventfd_signal(t->entries[i].eventfd, 1);
3930
3931 /* Update current_threshold */
3932 t->current_threshold = i - 1;
3933 unlock:
3934 rcu_read_unlock();
3935 }
3936
3937 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3938 {
3939 while (memcg) {
3940 __mem_cgroup_threshold(memcg, false);
3941 if (do_swap_account)
3942 __mem_cgroup_threshold(memcg, true);
3943
3944 memcg = parent_mem_cgroup(memcg);
3945 }
3946 }
3947
3948 static int compare_thresholds(const void *a, const void *b)
3949 {
3950 const struct mem_cgroup_threshold *_a = a;
3951 const struct mem_cgroup_threshold *_b = b;
3952
3953 return _a->threshold - _b->threshold;
3954 }
3955
3956 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3957 {
3958 struct mem_cgroup_eventfd_list *ev;
3959
3960 list_for_each_entry(ev, &mem->oom_notify, list)
3961 eventfd_signal(ev->eventfd, 1);
3962 return 0;
3963 }
3964
3965 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3966 {
3967 struct mem_cgroup *iter;
3968
3969 for_each_mem_cgroup_tree(iter, mem)
3970 mem_cgroup_oom_notify_cb(iter);
3971 }
3972
3973 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3974 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3975 {
3976 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3977 struct mem_cgroup_thresholds *thresholds;
3978 struct mem_cgroup_threshold_ary *new;
3979 int type = MEMFILE_TYPE(cft->private);
3980 u64 threshold, usage;
3981 int i, size, ret;
3982
3983 ret = res_counter_memparse_write_strategy(args, &threshold);
3984 if (ret)
3985 return ret;
3986
3987 mutex_lock(&memcg->thresholds_lock);
3988
3989 if (type == _MEM)
3990 thresholds = &memcg->thresholds;
3991 else if (type == _MEMSWAP)
3992 thresholds = &memcg->memsw_thresholds;
3993 else
3994 BUG();
3995
3996 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3997
3998 /* Check if a threshold crossed before adding a new one */
3999 if (thresholds->primary)
4000 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4001
4002 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4003
4004 /* Allocate memory for new array of thresholds */
4005 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4006 GFP_KERNEL);
4007 if (!new) {
4008 ret = -ENOMEM;
4009 goto unlock;
4010 }
4011 new->size = size;
4012
4013 /* Copy thresholds (if any) to new array */
4014 if (thresholds->primary) {
4015 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4016 sizeof(struct mem_cgroup_threshold));
4017 }
4018
4019 /* Add new threshold */
4020 new->entries[size - 1].eventfd = eventfd;
4021 new->entries[size - 1].threshold = threshold;
4022
4023 /* Sort thresholds. Registering of new threshold isn't time-critical */
4024 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4025 compare_thresholds, NULL);
4026
4027 /* Find current threshold */
4028 new->current_threshold = -1;
4029 for (i = 0; i < size; i++) {
4030 if (new->entries[i].threshold < usage) {
4031 /*
4032 * new->current_threshold will not be used until
4033 * rcu_assign_pointer(), so it's safe to increment
4034 * it here.
4035 */
4036 ++new->current_threshold;
4037 }
4038 }
4039
4040 /* Free old spare buffer and save old primary buffer as spare */
4041 kfree(thresholds->spare);
4042 thresholds->spare = thresholds->primary;
4043
4044 rcu_assign_pointer(thresholds->primary, new);
4045
4046 /* To be sure that nobody uses thresholds */
4047 synchronize_rcu();
4048
4049 unlock:
4050 mutex_unlock(&memcg->thresholds_lock);
4051
4052 return ret;
4053 }
4054
4055 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4056 struct cftype *cft, struct eventfd_ctx *eventfd)
4057 {
4058 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4059 struct mem_cgroup_thresholds *thresholds;
4060 struct mem_cgroup_threshold_ary *new;
4061 int type = MEMFILE_TYPE(cft->private);
4062 u64 usage;
4063 int i, j, size;
4064
4065 mutex_lock(&memcg->thresholds_lock);
4066 if (type == _MEM)
4067 thresholds = &memcg->thresholds;
4068 else if (type == _MEMSWAP)
4069 thresholds = &memcg->memsw_thresholds;
4070 else
4071 BUG();
4072
4073 /*
4074 * Something went wrong if we trying to unregister a threshold
4075 * if we don't have thresholds
4076 */
4077 BUG_ON(!thresholds);
4078
4079 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4080
4081 /* Check if a threshold crossed before removing */
4082 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4083
4084 /* Calculate new number of threshold */
4085 size = 0;
4086 for (i = 0; i < thresholds->primary->size; i++) {
4087 if (thresholds->primary->entries[i].eventfd != eventfd)
4088 size++;
4089 }
4090
4091 new = thresholds->spare;
4092
4093 /* Set thresholds array to NULL if we don't have thresholds */
4094 if (!size) {
4095 kfree(new);
4096 new = NULL;
4097 goto swap_buffers;
4098 }
4099
4100 new->size = size;
4101
4102 /* Copy thresholds and find current threshold */
4103 new->current_threshold = -1;
4104 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4105 if (thresholds->primary->entries[i].eventfd == eventfd)
4106 continue;
4107
4108 new->entries[j] = thresholds->primary->entries[i];
4109 if (new->entries[j].threshold < usage) {
4110 /*
4111 * new->current_threshold will not be used
4112 * until rcu_assign_pointer(), so it's safe to increment
4113 * it here.
4114 */
4115 ++new->current_threshold;
4116 }
4117 j++;
4118 }
4119
4120 swap_buffers:
4121 /* Swap primary and spare array */
4122 thresholds->spare = thresholds->primary;
4123 rcu_assign_pointer(thresholds->primary, new);
4124
4125 /* To be sure that nobody uses thresholds */
4126 synchronize_rcu();
4127
4128 mutex_unlock(&memcg->thresholds_lock);
4129 }
4130
4131 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4132 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4133 {
4134 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4135 struct mem_cgroup_eventfd_list *event;
4136 int type = MEMFILE_TYPE(cft->private);
4137
4138 BUG_ON(type != _OOM_TYPE);
4139 event = kmalloc(sizeof(*event), GFP_KERNEL);
4140 if (!event)
4141 return -ENOMEM;
4142
4143 mutex_lock(&memcg_oom_mutex);
4144
4145 event->eventfd = eventfd;
4146 list_add(&event->list, &memcg->oom_notify);
4147
4148 /* already in OOM ? */
4149 if (atomic_read(&memcg->oom_lock))
4150 eventfd_signal(eventfd, 1);
4151 mutex_unlock(&memcg_oom_mutex);
4152
4153 return 0;
4154 }
4155
4156 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4157 struct cftype *cft, struct eventfd_ctx *eventfd)
4158 {
4159 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4160 struct mem_cgroup_eventfd_list *ev, *tmp;
4161 int type = MEMFILE_TYPE(cft->private);
4162
4163 BUG_ON(type != _OOM_TYPE);
4164
4165 mutex_lock(&memcg_oom_mutex);
4166
4167 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4168 if (ev->eventfd == eventfd) {
4169 list_del(&ev->list);
4170 kfree(ev);
4171 }
4172 }
4173
4174 mutex_unlock(&memcg_oom_mutex);
4175 }
4176
4177 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4178 struct cftype *cft, struct cgroup_map_cb *cb)
4179 {
4180 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4181
4182 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4183
4184 if (atomic_read(&mem->oom_lock))
4185 cb->fill(cb, "under_oom", 1);
4186 else
4187 cb->fill(cb, "under_oom", 0);
4188 return 0;
4189 }
4190
4191 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4192 struct cftype *cft, u64 val)
4193 {
4194 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4195 struct mem_cgroup *parent;
4196
4197 /* cannot set to root cgroup and only 0 and 1 are allowed */
4198 if (!cgrp->parent || !((val == 0) || (val == 1)))
4199 return -EINVAL;
4200
4201 parent = mem_cgroup_from_cont(cgrp->parent);
4202
4203 cgroup_lock();
4204 /* oom-kill-disable is a flag for subhierarchy. */
4205 if ((parent->use_hierarchy) ||
4206 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4207 cgroup_unlock();
4208 return -EINVAL;
4209 }
4210 mem->oom_kill_disable = val;
4211 if (!val)
4212 memcg_oom_recover(mem);
4213 cgroup_unlock();
4214 return 0;
4215 }
4216
4217 static struct cftype mem_cgroup_files[] = {
4218 {
4219 .name = "usage_in_bytes",
4220 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4221 .read_u64 = mem_cgroup_read,
4222 .register_event = mem_cgroup_usage_register_event,
4223 .unregister_event = mem_cgroup_usage_unregister_event,
4224 },
4225 {
4226 .name = "max_usage_in_bytes",
4227 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4228 .trigger = mem_cgroup_reset,
4229 .read_u64 = mem_cgroup_read,
4230 },
4231 {
4232 .name = "limit_in_bytes",
4233 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4234 .write_string = mem_cgroup_write,
4235 .read_u64 = mem_cgroup_read,
4236 },
4237 {
4238 .name = "soft_limit_in_bytes",
4239 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4240 .write_string = mem_cgroup_write,
4241 .read_u64 = mem_cgroup_read,
4242 },
4243 {
4244 .name = "failcnt",
4245 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4246 .trigger = mem_cgroup_reset,
4247 .read_u64 = mem_cgroup_read,
4248 },
4249 {
4250 .name = "stat",
4251 .read_map = mem_control_stat_show,
4252 },
4253 {
4254 .name = "force_empty",
4255 .trigger = mem_cgroup_force_empty_write,
4256 },
4257 {
4258 .name = "use_hierarchy",
4259 .write_u64 = mem_cgroup_hierarchy_write,
4260 .read_u64 = mem_cgroup_hierarchy_read,
4261 },
4262 {
4263 .name = "swappiness",
4264 .read_u64 = mem_cgroup_swappiness_read,
4265 .write_u64 = mem_cgroup_swappiness_write,
4266 },
4267 {
4268 .name = "move_charge_at_immigrate",
4269 .read_u64 = mem_cgroup_move_charge_read,
4270 .write_u64 = mem_cgroup_move_charge_write,
4271 },
4272 {
4273 .name = "oom_control",
4274 .read_map = mem_cgroup_oom_control_read,
4275 .write_u64 = mem_cgroup_oom_control_write,
4276 .register_event = mem_cgroup_oom_register_event,
4277 .unregister_event = mem_cgroup_oom_unregister_event,
4278 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4279 },
4280 };
4281
4282 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4283 static struct cftype memsw_cgroup_files[] = {
4284 {
4285 .name = "memsw.usage_in_bytes",
4286 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4287 .read_u64 = mem_cgroup_read,
4288 .register_event = mem_cgroup_usage_register_event,
4289 .unregister_event = mem_cgroup_usage_unregister_event,
4290 },
4291 {
4292 .name = "memsw.max_usage_in_bytes",
4293 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4294 .trigger = mem_cgroup_reset,
4295 .read_u64 = mem_cgroup_read,
4296 },
4297 {
4298 .name = "memsw.limit_in_bytes",
4299 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4300 .write_string = mem_cgroup_write,
4301 .read_u64 = mem_cgroup_read,
4302 },
4303 {
4304 .name = "memsw.failcnt",
4305 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4306 .trigger = mem_cgroup_reset,
4307 .read_u64 = mem_cgroup_read,
4308 },
4309 };
4310
4311 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4312 {
4313 if (!do_swap_account)
4314 return 0;
4315 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4316 ARRAY_SIZE(memsw_cgroup_files));
4317 };
4318 #else
4319 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4320 {
4321 return 0;
4322 }
4323 #endif
4324
4325 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4326 {
4327 struct mem_cgroup_per_node *pn;
4328 struct mem_cgroup_per_zone *mz;
4329 enum lru_list l;
4330 int zone, tmp = node;
4331 /*
4332 * This routine is called against possible nodes.
4333 * But it's BUG to call kmalloc() against offline node.
4334 *
4335 * TODO: this routine can waste much memory for nodes which will
4336 * never be onlined. It's better to use memory hotplug callback
4337 * function.
4338 */
4339 if (!node_state(node, N_NORMAL_MEMORY))
4340 tmp = -1;
4341 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4342 if (!pn)
4343 return 1;
4344
4345 mem->info.nodeinfo[node] = pn;
4346 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4347 mz = &pn->zoneinfo[zone];
4348 for_each_lru(l)
4349 INIT_LIST_HEAD(&mz->lists[l]);
4350 mz->usage_in_excess = 0;
4351 mz->on_tree = false;
4352 mz->mem = mem;
4353 }
4354 return 0;
4355 }
4356
4357 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4358 {
4359 kfree(mem->info.nodeinfo[node]);
4360 }
4361
4362 static struct mem_cgroup *mem_cgroup_alloc(void)
4363 {
4364 struct mem_cgroup *mem;
4365 int size = sizeof(struct mem_cgroup);
4366
4367 /* Can be very big if MAX_NUMNODES is very big */
4368 if (size < PAGE_SIZE)
4369 mem = kzalloc(size, GFP_KERNEL);
4370 else
4371 mem = vzalloc(size);
4372
4373 if (!mem)
4374 return NULL;
4375
4376 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4377 if (!mem->stat)
4378 goto out_free;
4379 spin_lock_init(&mem->pcp_counter_lock);
4380 return mem;
4381
4382 out_free:
4383 if (size < PAGE_SIZE)
4384 kfree(mem);
4385 else
4386 vfree(mem);
4387 return NULL;
4388 }
4389
4390 /*
4391 * At destroying mem_cgroup, references from swap_cgroup can remain.
4392 * (scanning all at force_empty is too costly...)
4393 *
4394 * Instead of clearing all references at force_empty, we remember
4395 * the number of reference from swap_cgroup and free mem_cgroup when
4396 * it goes down to 0.
4397 *
4398 * Removal of cgroup itself succeeds regardless of refs from swap.
4399 */
4400
4401 static void __mem_cgroup_free(struct mem_cgroup *mem)
4402 {
4403 int node;
4404
4405 mem_cgroup_remove_from_trees(mem);
4406 free_css_id(&mem_cgroup_subsys, &mem->css);
4407
4408 for_each_node_state(node, N_POSSIBLE)
4409 free_mem_cgroup_per_zone_info(mem, node);
4410
4411 free_percpu(mem->stat);
4412 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4413 kfree(mem);
4414 else
4415 vfree(mem);
4416 }
4417
4418 static void mem_cgroup_get(struct mem_cgroup *mem)
4419 {
4420 atomic_inc(&mem->refcnt);
4421 }
4422
4423 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4424 {
4425 if (atomic_sub_and_test(count, &mem->refcnt)) {
4426 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4427 __mem_cgroup_free(mem);
4428 if (parent)
4429 mem_cgroup_put(parent);
4430 }
4431 }
4432
4433 static void mem_cgroup_put(struct mem_cgroup *mem)
4434 {
4435 __mem_cgroup_put(mem, 1);
4436 }
4437
4438 /*
4439 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4440 */
4441 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4442 {
4443 if (!mem->res.parent)
4444 return NULL;
4445 return mem_cgroup_from_res_counter(mem->res.parent, res);
4446 }
4447
4448 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4449 static void __init enable_swap_cgroup(void)
4450 {
4451 if (!mem_cgroup_disabled() && really_do_swap_account)
4452 do_swap_account = 1;
4453 }
4454 #else
4455 static void __init enable_swap_cgroup(void)
4456 {
4457 }
4458 #endif
4459
4460 static int mem_cgroup_soft_limit_tree_init(void)
4461 {
4462 struct mem_cgroup_tree_per_node *rtpn;
4463 struct mem_cgroup_tree_per_zone *rtpz;
4464 int tmp, node, zone;
4465
4466 for_each_node_state(node, N_POSSIBLE) {
4467 tmp = node;
4468 if (!node_state(node, N_NORMAL_MEMORY))
4469 tmp = -1;
4470 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4471 if (!rtpn)
4472 return 1;
4473
4474 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4475
4476 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4477 rtpz = &rtpn->rb_tree_per_zone[zone];
4478 rtpz->rb_root = RB_ROOT;
4479 spin_lock_init(&rtpz->lock);
4480 }
4481 }
4482 return 0;
4483 }
4484
4485 static struct cgroup_subsys_state * __ref
4486 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4487 {
4488 struct mem_cgroup *mem, *parent;
4489 long error = -ENOMEM;
4490 int node;
4491
4492 mem = mem_cgroup_alloc();
4493 if (!mem)
4494 return ERR_PTR(error);
4495
4496 for_each_node_state(node, N_POSSIBLE)
4497 if (alloc_mem_cgroup_per_zone_info(mem, node))
4498 goto free_out;
4499
4500 /* root ? */
4501 if (cont->parent == NULL) {
4502 int cpu;
4503 enable_swap_cgroup();
4504 parent = NULL;
4505 root_mem_cgroup = mem;
4506 if (mem_cgroup_soft_limit_tree_init())
4507 goto free_out;
4508 for_each_possible_cpu(cpu) {
4509 struct memcg_stock_pcp *stock =
4510 &per_cpu(memcg_stock, cpu);
4511 INIT_WORK(&stock->work, drain_local_stock);
4512 }
4513 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4514 } else {
4515 parent = mem_cgroup_from_cont(cont->parent);
4516 mem->use_hierarchy = parent->use_hierarchy;
4517 mem->oom_kill_disable = parent->oom_kill_disable;
4518 }
4519
4520 if (parent && parent->use_hierarchy) {
4521 res_counter_init(&mem->res, &parent->res);
4522 res_counter_init(&mem->memsw, &parent->memsw);
4523 /*
4524 * We increment refcnt of the parent to ensure that we can
4525 * safely access it on res_counter_charge/uncharge.
4526 * This refcnt will be decremented when freeing this
4527 * mem_cgroup(see mem_cgroup_put).
4528 */
4529 mem_cgroup_get(parent);
4530 } else {
4531 res_counter_init(&mem->res, NULL);
4532 res_counter_init(&mem->memsw, NULL);
4533 }
4534 mem->last_scanned_child = 0;
4535 INIT_LIST_HEAD(&mem->oom_notify);
4536
4537 if (parent)
4538 mem->swappiness = get_swappiness(parent);
4539 atomic_set(&mem->refcnt, 1);
4540 mem->move_charge_at_immigrate = 0;
4541 mutex_init(&mem->thresholds_lock);
4542 return &mem->css;
4543 free_out:
4544 __mem_cgroup_free(mem);
4545 root_mem_cgroup = NULL;
4546 return ERR_PTR(error);
4547 }
4548
4549 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4550 struct cgroup *cont)
4551 {
4552 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4553
4554 return mem_cgroup_force_empty(mem, false);
4555 }
4556
4557 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4558 struct cgroup *cont)
4559 {
4560 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4561
4562 mem_cgroup_put(mem);
4563 }
4564
4565 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4566 struct cgroup *cont)
4567 {
4568 int ret;
4569
4570 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4571 ARRAY_SIZE(mem_cgroup_files));
4572
4573 if (!ret)
4574 ret = register_memsw_files(cont, ss);
4575 return ret;
4576 }
4577
4578 #ifdef CONFIG_MMU
4579 /* Handlers for move charge at task migration. */
4580 #define PRECHARGE_COUNT_AT_ONCE 256
4581 static int mem_cgroup_do_precharge(unsigned long count)
4582 {
4583 int ret = 0;
4584 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4585 struct mem_cgroup *mem = mc.to;
4586
4587 if (mem_cgroup_is_root(mem)) {
4588 mc.precharge += count;
4589 /* we don't need css_get for root */
4590 return ret;
4591 }
4592 /* try to charge at once */
4593 if (count > 1) {
4594 struct res_counter *dummy;
4595 /*
4596 * "mem" cannot be under rmdir() because we've already checked
4597 * by cgroup_lock_live_cgroup() that it is not removed and we
4598 * are still under the same cgroup_mutex. So we can postpone
4599 * css_get().
4600 */
4601 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4602 goto one_by_one;
4603 if (do_swap_account && res_counter_charge(&mem->memsw,
4604 PAGE_SIZE * count, &dummy)) {
4605 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4606 goto one_by_one;
4607 }
4608 mc.precharge += count;
4609 return ret;
4610 }
4611 one_by_one:
4612 /* fall back to one by one charge */
4613 while (count--) {
4614 if (signal_pending(current)) {
4615 ret = -EINTR;
4616 break;
4617 }
4618 if (!batch_count--) {
4619 batch_count = PRECHARGE_COUNT_AT_ONCE;
4620 cond_resched();
4621 }
4622 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
4623 if (ret || !mem)
4624 /* mem_cgroup_clear_mc() will do uncharge later */
4625 return -ENOMEM;
4626 mc.precharge++;
4627 }
4628 return ret;
4629 }
4630
4631 /**
4632 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4633 * @vma: the vma the pte to be checked belongs
4634 * @addr: the address corresponding to the pte to be checked
4635 * @ptent: the pte to be checked
4636 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4637 *
4638 * Returns
4639 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4640 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4641 * move charge. if @target is not NULL, the page is stored in target->page
4642 * with extra refcnt got(Callers should handle it).
4643 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4644 * target for charge migration. if @target is not NULL, the entry is stored
4645 * in target->ent.
4646 *
4647 * Called with pte lock held.
4648 */
4649 union mc_target {
4650 struct page *page;
4651 swp_entry_t ent;
4652 };
4653
4654 enum mc_target_type {
4655 MC_TARGET_NONE, /* not used */
4656 MC_TARGET_PAGE,
4657 MC_TARGET_SWAP,
4658 };
4659
4660 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4661 unsigned long addr, pte_t ptent)
4662 {
4663 struct page *page = vm_normal_page(vma, addr, ptent);
4664
4665 if (!page || !page_mapped(page))
4666 return NULL;
4667 if (PageAnon(page)) {
4668 /* we don't move shared anon */
4669 if (!move_anon() || page_mapcount(page) > 2)
4670 return NULL;
4671 } else if (!move_file())
4672 /* we ignore mapcount for file pages */
4673 return NULL;
4674 if (!get_page_unless_zero(page))
4675 return NULL;
4676
4677 return page;
4678 }
4679
4680 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4681 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4682 {
4683 int usage_count;
4684 struct page *page = NULL;
4685 swp_entry_t ent = pte_to_swp_entry(ptent);
4686
4687 if (!move_anon() || non_swap_entry(ent))
4688 return NULL;
4689 usage_count = mem_cgroup_count_swap_user(ent, &page);
4690 if (usage_count > 1) { /* we don't move shared anon */
4691 if (page)
4692 put_page(page);
4693 return NULL;
4694 }
4695 if (do_swap_account)
4696 entry->val = ent.val;
4697
4698 return page;
4699 }
4700
4701 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4702 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4703 {
4704 struct page *page = NULL;
4705 struct inode *inode;
4706 struct address_space *mapping;
4707 pgoff_t pgoff;
4708
4709 if (!vma->vm_file) /* anonymous vma */
4710 return NULL;
4711 if (!move_file())
4712 return NULL;
4713
4714 inode = vma->vm_file->f_path.dentry->d_inode;
4715 mapping = vma->vm_file->f_mapping;
4716 if (pte_none(ptent))
4717 pgoff = linear_page_index(vma, addr);
4718 else /* pte_file(ptent) is true */
4719 pgoff = pte_to_pgoff(ptent);
4720
4721 /* page is moved even if it's not RSS of this task(page-faulted). */
4722 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4723 page = find_get_page(mapping, pgoff);
4724 } else { /* shmem/tmpfs file. we should take account of swap too. */
4725 swp_entry_t ent;
4726 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4727 if (do_swap_account)
4728 entry->val = ent.val;
4729 }
4730
4731 return page;
4732 }
4733
4734 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4735 unsigned long addr, pte_t ptent, union mc_target *target)
4736 {
4737 struct page *page = NULL;
4738 struct page_cgroup *pc;
4739 int ret = 0;
4740 swp_entry_t ent = { .val = 0 };
4741
4742 if (pte_present(ptent))
4743 page = mc_handle_present_pte(vma, addr, ptent);
4744 else if (is_swap_pte(ptent))
4745 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4746 else if (pte_none(ptent) || pte_file(ptent))
4747 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4748
4749 if (!page && !ent.val)
4750 return 0;
4751 if (page) {
4752 pc = lookup_page_cgroup(page);
4753 /*
4754 * Do only loose check w/o page_cgroup lock.
4755 * mem_cgroup_move_account() checks the pc is valid or not under
4756 * the lock.
4757 */
4758 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4759 ret = MC_TARGET_PAGE;
4760 if (target)
4761 target->page = page;
4762 }
4763 if (!ret || !target)
4764 put_page(page);
4765 }
4766 /* There is a swap entry and a page doesn't exist or isn't charged */
4767 if (ent.val && !ret &&
4768 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4769 ret = MC_TARGET_SWAP;
4770 if (target)
4771 target->ent = ent;
4772 }
4773 return ret;
4774 }
4775
4776 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4777 unsigned long addr, unsigned long end,
4778 struct mm_walk *walk)
4779 {
4780 struct vm_area_struct *vma = walk->private;
4781 pte_t *pte;
4782 spinlock_t *ptl;
4783
4784 split_huge_page_pmd(walk->mm, pmd);
4785
4786 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4787 for (; addr != end; pte++, addr += PAGE_SIZE)
4788 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4789 mc.precharge++; /* increment precharge temporarily */
4790 pte_unmap_unlock(pte - 1, ptl);
4791 cond_resched();
4792
4793 return 0;
4794 }
4795
4796 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4797 {
4798 unsigned long precharge;
4799 struct vm_area_struct *vma;
4800
4801 down_read(&mm->mmap_sem);
4802 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4803 struct mm_walk mem_cgroup_count_precharge_walk = {
4804 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4805 .mm = mm,
4806 .private = vma,
4807 };
4808 if (is_vm_hugetlb_page(vma))
4809 continue;
4810 walk_page_range(vma->vm_start, vma->vm_end,
4811 &mem_cgroup_count_precharge_walk);
4812 }
4813 up_read(&mm->mmap_sem);
4814
4815 precharge = mc.precharge;
4816 mc.precharge = 0;
4817
4818 return precharge;
4819 }
4820
4821 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4822 {
4823 unsigned long precharge = mem_cgroup_count_precharge(mm);
4824
4825 VM_BUG_ON(mc.moving_task);
4826 mc.moving_task = current;
4827 return mem_cgroup_do_precharge(precharge);
4828 }
4829
4830 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4831 static void __mem_cgroup_clear_mc(void)
4832 {
4833 struct mem_cgroup *from = mc.from;
4834 struct mem_cgroup *to = mc.to;
4835
4836 /* we must uncharge all the leftover precharges from mc.to */
4837 if (mc.precharge) {
4838 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4839 mc.precharge = 0;
4840 }
4841 /*
4842 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4843 * we must uncharge here.
4844 */
4845 if (mc.moved_charge) {
4846 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4847 mc.moved_charge = 0;
4848 }
4849 /* we must fixup refcnts and charges */
4850 if (mc.moved_swap) {
4851 /* uncharge swap account from the old cgroup */
4852 if (!mem_cgroup_is_root(mc.from))
4853 res_counter_uncharge(&mc.from->memsw,
4854 PAGE_SIZE * mc.moved_swap);
4855 __mem_cgroup_put(mc.from, mc.moved_swap);
4856
4857 if (!mem_cgroup_is_root(mc.to)) {
4858 /*
4859 * we charged both to->res and to->memsw, so we should
4860 * uncharge to->res.
4861 */
4862 res_counter_uncharge(&mc.to->res,
4863 PAGE_SIZE * mc.moved_swap);
4864 }
4865 /* we've already done mem_cgroup_get(mc.to) */
4866 mc.moved_swap = 0;
4867 }
4868 memcg_oom_recover(from);
4869 memcg_oom_recover(to);
4870 wake_up_all(&mc.waitq);
4871 }
4872
4873 static void mem_cgroup_clear_mc(void)
4874 {
4875 struct mem_cgroup *from = mc.from;
4876
4877 /*
4878 * we must clear moving_task before waking up waiters at the end of
4879 * task migration.
4880 */
4881 mc.moving_task = NULL;
4882 __mem_cgroup_clear_mc();
4883 spin_lock(&mc.lock);
4884 mc.from = NULL;
4885 mc.to = NULL;
4886 spin_unlock(&mc.lock);
4887 mem_cgroup_end_move(from);
4888 }
4889
4890 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4891 struct cgroup *cgroup,
4892 struct task_struct *p,
4893 bool threadgroup)
4894 {
4895 int ret = 0;
4896 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4897
4898 if (mem->move_charge_at_immigrate) {
4899 struct mm_struct *mm;
4900 struct mem_cgroup *from = mem_cgroup_from_task(p);
4901
4902 VM_BUG_ON(from == mem);
4903
4904 mm = get_task_mm(p);
4905 if (!mm)
4906 return 0;
4907 /* We move charges only when we move a owner of the mm */
4908 if (mm->owner == p) {
4909 VM_BUG_ON(mc.from);
4910 VM_BUG_ON(mc.to);
4911 VM_BUG_ON(mc.precharge);
4912 VM_BUG_ON(mc.moved_charge);
4913 VM_BUG_ON(mc.moved_swap);
4914 mem_cgroup_start_move(from);
4915 spin_lock(&mc.lock);
4916 mc.from = from;
4917 mc.to = mem;
4918 spin_unlock(&mc.lock);
4919 /* We set mc.moving_task later */
4920
4921 ret = mem_cgroup_precharge_mc(mm);
4922 if (ret)
4923 mem_cgroup_clear_mc();
4924 }
4925 mmput(mm);
4926 }
4927 return ret;
4928 }
4929
4930 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4931 struct cgroup *cgroup,
4932 struct task_struct *p,
4933 bool threadgroup)
4934 {
4935 mem_cgroup_clear_mc();
4936 }
4937
4938 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4939 unsigned long addr, unsigned long end,
4940 struct mm_walk *walk)
4941 {
4942 int ret = 0;
4943 struct vm_area_struct *vma = walk->private;
4944 pte_t *pte;
4945 spinlock_t *ptl;
4946
4947 split_huge_page_pmd(walk->mm, pmd);
4948 retry:
4949 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4950 for (; addr != end; addr += PAGE_SIZE) {
4951 pte_t ptent = *(pte++);
4952 union mc_target target;
4953 int type;
4954 struct page *page;
4955 struct page_cgroup *pc;
4956 swp_entry_t ent;
4957
4958 if (!mc.precharge)
4959 break;
4960
4961 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4962 switch (type) {
4963 case MC_TARGET_PAGE:
4964 page = target.page;
4965 if (isolate_lru_page(page))
4966 goto put;
4967 pc = lookup_page_cgroup(page);
4968 if (!mem_cgroup_move_account(page, 1, pc,
4969 mc.from, mc.to, false)) {
4970 mc.precharge--;
4971 /* we uncharge from mc.from later. */
4972 mc.moved_charge++;
4973 }
4974 putback_lru_page(page);
4975 put: /* is_target_pte_for_mc() gets the page */
4976 put_page(page);
4977 break;
4978 case MC_TARGET_SWAP:
4979 ent = target.ent;
4980 if (!mem_cgroup_move_swap_account(ent,
4981 mc.from, mc.to, false)) {
4982 mc.precharge--;
4983 /* we fixup refcnts and charges later. */
4984 mc.moved_swap++;
4985 }
4986 break;
4987 default:
4988 break;
4989 }
4990 }
4991 pte_unmap_unlock(pte - 1, ptl);
4992 cond_resched();
4993
4994 if (addr != end) {
4995 /*
4996 * We have consumed all precharges we got in can_attach().
4997 * We try charge one by one, but don't do any additional
4998 * charges to mc.to if we have failed in charge once in attach()
4999 * phase.
5000 */
5001 ret = mem_cgroup_do_precharge(1);
5002 if (!ret)
5003 goto retry;
5004 }
5005
5006 return ret;
5007 }
5008
5009 static void mem_cgroup_move_charge(struct mm_struct *mm)
5010 {
5011 struct vm_area_struct *vma;
5012
5013 lru_add_drain_all();
5014 retry:
5015 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5016 /*
5017 * Someone who are holding the mmap_sem might be waiting in
5018 * waitq. So we cancel all extra charges, wake up all waiters,
5019 * and retry. Because we cancel precharges, we might not be able
5020 * to move enough charges, but moving charge is a best-effort
5021 * feature anyway, so it wouldn't be a big problem.
5022 */
5023 __mem_cgroup_clear_mc();
5024 cond_resched();
5025 goto retry;
5026 }
5027 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5028 int ret;
5029 struct mm_walk mem_cgroup_move_charge_walk = {
5030 .pmd_entry = mem_cgroup_move_charge_pte_range,
5031 .mm = mm,
5032 .private = vma,
5033 };
5034 if (is_vm_hugetlb_page(vma))
5035 continue;
5036 ret = walk_page_range(vma->vm_start, vma->vm_end,
5037 &mem_cgroup_move_charge_walk);
5038 if (ret)
5039 /*
5040 * means we have consumed all precharges and failed in
5041 * doing additional charge. Just abandon here.
5042 */
5043 break;
5044 }
5045 up_read(&mm->mmap_sem);
5046 }
5047
5048 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5049 struct cgroup *cont,
5050 struct cgroup *old_cont,
5051 struct task_struct *p,
5052 bool threadgroup)
5053 {
5054 struct mm_struct *mm;
5055
5056 if (!mc.to)
5057 /* no need to move charge */
5058 return;
5059
5060 mm = get_task_mm(p);
5061 if (mm) {
5062 mem_cgroup_move_charge(mm);
5063 mmput(mm);
5064 }
5065 mem_cgroup_clear_mc();
5066 }
5067 #else /* !CONFIG_MMU */
5068 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5069 struct cgroup *cgroup,
5070 struct task_struct *p,
5071 bool threadgroup)
5072 {
5073 return 0;
5074 }
5075 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5076 struct cgroup *cgroup,
5077 struct task_struct *p,
5078 bool threadgroup)
5079 {
5080 }
5081 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5082 struct cgroup *cont,
5083 struct cgroup *old_cont,
5084 struct task_struct *p,
5085 bool threadgroup)
5086 {
5087 }
5088 #endif
5089
5090 struct cgroup_subsys mem_cgroup_subsys = {
5091 .name = "memory",
5092 .subsys_id = mem_cgroup_subsys_id,
5093 .create = mem_cgroup_create,
5094 .pre_destroy = mem_cgroup_pre_destroy,
5095 .destroy = mem_cgroup_destroy,
5096 .populate = mem_cgroup_populate,
5097 .can_attach = mem_cgroup_can_attach,
5098 .cancel_attach = mem_cgroup_cancel_attach,
5099 .attach = mem_cgroup_move_task,
5100 .early_init = 0,
5101 .use_id = 1,
5102 };
5103
5104 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5105 static int __init enable_swap_account(char *s)
5106 {
5107 /* consider enabled if no parameter or 1 is given */
5108 if (!(*s) || !strcmp(s, "=1"))
5109 really_do_swap_account = 1;
5110 else if (!strcmp(s, "=0"))
5111 really_do_swap_account = 0;
5112 return 1;
5113 }
5114 __setup("swapaccount", enable_swap_account);
5115
5116 static int __init disable_swap_account(char *s)
5117 {
5118 printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
5119 enable_swap_account("=0");
5120 return 1;
5121 }
5122 __setup("noswapaccount", disable_swap_account);
5123 #endif