]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memcontrol.c
writeback: implement memcg writeback domain based throttling
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include <net/tcp_memcontrol.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 #define MEM_CGROUP_RECLAIM_RETRIES 5
79 static struct mem_cgroup *root_mem_cgroup __read_mostly;
80 struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
81
82 /* Whether the swap controller is active */
83 #ifdef CONFIG_MEMCG_SWAP
84 int do_swap_account __read_mostly;
85 #else
86 #define do_swap_account 0
87 #endif
88
89 static const char * const mem_cgroup_stat_names[] = {
90 "cache",
91 "rss",
92 "rss_huge",
93 "mapped_file",
94 "dirty",
95 "writeback",
96 "swap",
97 };
98
99 static const char * const mem_cgroup_events_names[] = {
100 "pgpgin",
101 "pgpgout",
102 "pgfault",
103 "pgmajfault",
104 };
105
106 static const char * const mem_cgroup_lru_names[] = {
107 "inactive_anon",
108 "active_anon",
109 "inactive_file",
110 "active_file",
111 "unevictable",
112 };
113
114 /*
115 * Per memcg event counter is incremented at every pagein/pageout. With THP,
116 * it will be incremated by the number of pages. This counter is used for
117 * for trigger some periodic events. This is straightforward and better
118 * than using jiffies etc. to handle periodic memcg event.
119 */
120 enum mem_cgroup_events_target {
121 MEM_CGROUP_TARGET_THRESH,
122 MEM_CGROUP_TARGET_SOFTLIMIT,
123 MEM_CGROUP_TARGET_NUMAINFO,
124 MEM_CGROUP_NTARGETS,
125 };
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
129
130 struct mem_cgroup_stat_cpu {
131 long count[MEM_CGROUP_STAT_NSTATS];
132 unsigned long events[MEMCG_NR_EVENTS];
133 unsigned long nr_page_events;
134 unsigned long targets[MEM_CGROUP_NTARGETS];
135 };
136
137 struct reclaim_iter {
138 struct mem_cgroup *position;
139 /* scan generation, increased every round-trip */
140 unsigned int generation;
141 };
142
143 /*
144 * per-zone information in memory controller.
145 */
146 struct mem_cgroup_per_zone {
147 struct lruvec lruvec;
148 unsigned long lru_size[NR_LRU_LISTS];
149
150 struct reclaim_iter iter[DEF_PRIORITY + 1];
151
152 struct rb_node tree_node; /* RB tree node */
153 unsigned long usage_in_excess;/* Set to the value by which */
154 /* the soft limit is exceeded*/
155 bool on_tree;
156 struct mem_cgroup *memcg; /* Back pointer, we cannot */
157 /* use container_of */
158 };
159
160 struct mem_cgroup_per_node {
161 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
162 };
163
164 /*
165 * Cgroups above their limits are maintained in a RB-Tree, independent of
166 * their hierarchy representation
167 */
168
169 struct mem_cgroup_tree_per_zone {
170 struct rb_root rb_root;
171 spinlock_t lock;
172 };
173
174 struct mem_cgroup_tree_per_node {
175 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
176 };
177
178 struct mem_cgroup_tree {
179 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
180 };
181
182 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
183
184 struct mem_cgroup_threshold {
185 struct eventfd_ctx *eventfd;
186 unsigned long threshold;
187 };
188
189 /* For threshold */
190 struct mem_cgroup_threshold_ary {
191 /* An array index points to threshold just below or equal to usage. */
192 int current_threshold;
193 /* Size of entries[] */
194 unsigned int size;
195 /* Array of thresholds */
196 struct mem_cgroup_threshold entries[0];
197 };
198
199 struct mem_cgroup_thresholds {
200 /* Primary thresholds array */
201 struct mem_cgroup_threshold_ary *primary;
202 /*
203 * Spare threshold array.
204 * This is needed to make mem_cgroup_unregister_event() "never fail".
205 * It must be able to store at least primary->size - 1 entries.
206 */
207 struct mem_cgroup_threshold_ary *spare;
208 };
209
210 /* for OOM */
211 struct mem_cgroup_eventfd_list {
212 struct list_head list;
213 struct eventfd_ctx *eventfd;
214 };
215
216 /*
217 * cgroup_event represents events which userspace want to receive.
218 */
219 struct mem_cgroup_event {
220 /*
221 * memcg which the event belongs to.
222 */
223 struct mem_cgroup *memcg;
224 /*
225 * eventfd to signal userspace about the event.
226 */
227 struct eventfd_ctx *eventfd;
228 /*
229 * Each of these stored in a list by the cgroup.
230 */
231 struct list_head list;
232 /*
233 * register_event() callback will be used to add new userspace
234 * waiter for changes related to this event. Use eventfd_signal()
235 * on eventfd to send notification to userspace.
236 */
237 int (*register_event)(struct mem_cgroup *memcg,
238 struct eventfd_ctx *eventfd, const char *args);
239 /*
240 * unregister_event() callback will be called when userspace closes
241 * the eventfd or on cgroup removing. This callback must be set,
242 * if you want provide notification functionality.
243 */
244 void (*unregister_event)(struct mem_cgroup *memcg,
245 struct eventfd_ctx *eventfd);
246 /*
247 * All fields below needed to unregister event when
248 * userspace closes eventfd.
249 */
250 poll_table pt;
251 wait_queue_head_t *wqh;
252 wait_queue_t wait;
253 struct work_struct remove;
254 };
255
256 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
257 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
258
259 /*
260 * The memory controller data structure. The memory controller controls both
261 * page cache and RSS per cgroup. We would eventually like to provide
262 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
263 * to help the administrator determine what knobs to tune.
264 */
265 struct mem_cgroup {
266 struct cgroup_subsys_state css;
267
268 /* Accounted resources */
269 struct page_counter memory;
270 struct page_counter memsw;
271 struct page_counter kmem;
272
273 /* Normal memory consumption range */
274 unsigned long low;
275 unsigned long high;
276
277 unsigned long soft_limit;
278
279 /* vmpressure notifications */
280 struct vmpressure vmpressure;
281
282 /* css_online() has been completed */
283 int initialized;
284
285 /*
286 * Should the accounting and control be hierarchical, per subtree?
287 */
288 bool use_hierarchy;
289
290 bool oom_lock;
291 atomic_t under_oom;
292 atomic_t oom_wakeups;
293
294 int swappiness;
295 /* OOM-Killer disable */
296 int oom_kill_disable;
297
298 /* protect arrays of thresholds */
299 struct mutex thresholds_lock;
300
301 /* thresholds for memory usage. RCU-protected */
302 struct mem_cgroup_thresholds thresholds;
303
304 /* thresholds for mem+swap usage. RCU-protected */
305 struct mem_cgroup_thresholds memsw_thresholds;
306
307 /* For oom notifier event fd */
308 struct list_head oom_notify;
309
310 /*
311 * Should we move charges of a task when a task is moved into this
312 * mem_cgroup ? And what type of charges should we move ?
313 */
314 unsigned long move_charge_at_immigrate;
315 /*
316 * set > 0 if pages under this cgroup are moving to other cgroup.
317 */
318 atomic_t moving_account;
319 /* taken only while moving_account > 0 */
320 spinlock_t move_lock;
321 struct task_struct *move_lock_task;
322 unsigned long move_lock_flags;
323 /*
324 * percpu counter.
325 */
326 struct mem_cgroup_stat_cpu __percpu *stat;
327 spinlock_t pcp_counter_lock;
328
329 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
330 struct cg_proto tcp_mem;
331 #endif
332 #if defined(CONFIG_MEMCG_KMEM)
333 /* Index in the kmem_cache->memcg_params.memcg_caches array */
334 int kmemcg_id;
335 bool kmem_acct_activated;
336 bool kmem_acct_active;
337 #endif
338
339 int last_scanned_node;
340 #if MAX_NUMNODES > 1
341 nodemask_t scan_nodes;
342 atomic_t numainfo_events;
343 atomic_t numainfo_updating;
344 #endif
345
346 #ifdef CONFIG_CGROUP_WRITEBACK
347 struct list_head cgwb_list;
348 struct wb_domain cgwb_domain;
349 #endif
350
351 /* List of events which userspace want to receive */
352 struct list_head event_list;
353 spinlock_t event_list_lock;
354
355 struct mem_cgroup_per_node *nodeinfo[0];
356 /* WARNING: nodeinfo must be the last member here */
357 };
358
359 #ifdef CONFIG_MEMCG_KMEM
360 bool memcg_kmem_is_active(struct mem_cgroup *memcg)
361 {
362 return memcg->kmem_acct_active;
363 }
364 #endif
365
366 /* Stuffs for move charges at task migration. */
367 /*
368 * Types of charges to be moved.
369 */
370 #define MOVE_ANON 0x1U
371 #define MOVE_FILE 0x2U
372 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
373
374 /* "mc" and its members are protected by cgroup_mutex */
375 static struct move_charge_struct {
376 spinlock_t lock; /* for from, to */
377 struct mem_cgroup *from;
378 struct mem_cgroup *to;
379 unsigned long flags;
380 unsigned long precharge;
381 unsigned long moved_charge;
382 unsigned long moved_swap;
383 struct task_struct *moving_task; /* a task moving charges */
384 wait_queue_head_t waitq; /* a waitq for other context */
385 } mc = {
386 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
387 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
388 };
389
390 /*
391 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
392 * limit reclaim to prevent infinite loops, if they ever occur.
393 */
394 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
395 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
396
397 enum charge_type {
398 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
399 MEM_CGROUP_CHARGE_TYPE_ANON,
400 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
401 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
402 NR_CHARGE_TYPE,
403 };
404
405 /* for encoding cft->private value on file */
406 enum res_type {
407 _MEM,
408 _MEMSWAP,
409 _OOM_TYPE,
410 _KMEM,
411 };
412
413 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
414 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
415 #define MEMFILE_ATTR(val) ((val) & 0xffff)
416 /* Used for OOM nofiier */
417 #define OOM_CONTROL (0)
418
419 /*
420 * The memcg_create_mutex will be held whenever a new cgroup is created.
421 * As a consequence, any change that needs to protect against new child cgroups
422 * appearing has to hold it as well.
423 */
424 static DEFINE_MUTEX(memcg_create_mutex);
425
426 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
427 {
428 return s ? container_of(s, struct mem_cgroup, css) : NULL;
429 }
430
431 /* Some nice accessors for the vmpressure. */
432 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
433 {
434 if (!memcg)
435 memcg = root_mem_cgroup;
436 return &memcg->vmpressure;
437 }
438
439 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
440 {
441 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
442 }
443
444 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
445 {
446 return (memcg == root_mem_cgroup);
447 }
448
449 /*
450 * We restrict the id in the range of [1, 65535], so it can fit into
451 * an unsigned short.
452 */
453 #define MEM_CGROUP_ID_MAX USHRT_MAX
454
455 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
456 {
457 return memcg->css.id;
458 }
459
460 /*
461 * A helper function to get mem_cgroup from ID. must be called under
462 * rcu_read_lock(). The caller is responsible for calling
463 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
464 * refcnt from swap can be called against removed memcg.)
465 */
466 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
467 {
468 struct cgroup_subsys_state *css;
469
470 css = css_from_id(id, &memory_cgrp_subsys);
471 return mem_cgroup_from_css(css);
472 }
473
474 /* Writing them here to avoid exposing memcg's inner layout */
475 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
476
477 void sock_update_memcg(struct sock *sk)
478 {
479 if (mem_cgroup_sockets_enabled) {
480 struct mem_cgroup *memcg;
481 struct cg_proto *cg_proto;
482
483 BUG_ON(!sk->sk_prot->proto_cgroup);
484
485 /* Socket cloning can throw us here with sk_cgrp already
486 * filled. It won't however, necessarily happen from
487 * process context. So the test for root memcg given
488 * the current task's memcg won't help us in this case.
489 *
490 * Respecting the original socket's memcg is a better
491 * decision in this case.
492 */
493 if (sk->sk_cgrp) {
494 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
495 css_get(&sk->sk_cgrp->memcg->css);
496 return;
497 }
498
499 rcu_read_lock();
500 memcg = mem_cgroup_from_task(current);
501 cg_proto = sk->sk_prot->proto_cgroup(memcg);
502 if (!mem_cgroup_is_root(memcg) &&
503 memcg_proto_active(cg_proto) &&
504 css_tryget_online(&memcg->css)) {
505 sk->sk_cgrp = cg_proto;
506 }
507 rcu_read_unlock();
508 }
509 }
510 EXPORT_SYMBOL(sock_update_memcg);
511
512 void sock_release_memcg(struct sock *sk)
513 {
514 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
515 struct mem_cgroup *memcg;
516 WARN_ON(!sk->sk_cgrp->memcg);
517 memcg = sk->sk_cgrp->memcg;
518 css_put(&sk->sk_cgrp->memcg->css);
519 }
520 }
521
522 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
523 {
524 if (!memcg || mem_cgroup_is_root(memcg))
525 return NULL;
526
527 return &memcg->tcp_mem;
528 }
529 EXPORT_SYMBOL(tcp_proto_cgroup);
530
531 #endif
532
533 #ifdef CONFIG_MEMCG_KMEM
534 /*
535 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
536 * The main reason for not using cgroup id for this:
537 * this works better in sparse environments, where we have a lot of memcgs,
538 * but only a few kmem-limited. Or also, if we have, for instance, 200
539 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
540 * 200 entry array for that.
541 *
542 * The current size of the caches array is stored in memcg_nr_cache_ids. It
543 * will double each time we have to increase it.
544 */
545 static DEFINE_IDA(memcg_cache_ida);
546 int memcg_nr_cache_ids;
547
548 /* Protects memcg_nr_cache_ids */
549 static DECLARE_RWSEM(memcg_cache_ids_sem);
550
551 void memcg_get_cache_ids(void)
552 {
553 down_read(&memcg_cache_ids_sem);
554 }
555
556 void memcg_put_cache_ids(void)
557 {
558 up_read(&memcg_cache_ids_sem);
559 }
560
561 /*
562 * MIN_SIZE is different than 1, because we would like to avoid going through
563 * the alloc/free process all the time. In a small machine, 4 kmem-limited
564 * cgroups is a reasonable guess. In the future, it could be a parameter or
565 * tunable, but that is strictly not necessary.
566 *
567 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
568 * this constant directly from cgroup, but it is understandable that this is
569 * better kept as an internal representation in cgroup.c. In any case, the
570 * cgrp_id space is not getting any smaller, and we don't have to necessarily
571 * increase ours as well if it increases.
572 */
573 #define MEMCG_CACHES_MIN_SIZE 4
574 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
575
576 /*
577 * A lot of the calls to the cache allocation functions are expected to be
578 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
579 * conditional to this static branch, we'll have to allow modules that does
580 * kmem_cache_alloc and the such to see this symbol as well
581 */
582 struct static_key memcg_kmem_enabled_key;
583 EXPORT_SYMBOL(memcg_kmem_enabled_key);
584
585 #endif /* CONFIG_MEMCG_KMEM */
586
587 static struct mem_cgroup_per_zone *
588 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
589 {
590 int nid = zone_to_nid(zone);
591 int zid = zone_idx(zone);
592
593 return &memcg->nodeinfo[nid]->zoneinfo[zid];
594 }
595
596 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
597 {
598 return &memcg->css;
599 }
600
601 /**
602 * mem_cgroup_css_from_page - css of the memcg associated with a page
603 * @page: page of interest
604 *
605 * If memcg is bound to the default hierarchy, css of the memcg associated
606 * with @page is returned. The returned css remains associated with @page
607 * until it is released.
608 *
609 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
610 * is returned.
611 *
612 * XXX: The above description of behavior on the default hierarchy isn't
613 * strictly true yet as replace_page_cache_page() can modify the
614 * association before @page is released even on the default hierarchy;
615 * however, the current and planned usages don't mix the the two functions
616 * and replace_page_cache_page() will soon be updated to make the invariant
617 * actually true.
618 */
619 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
620 {
621 struct mem_cgroup *memcg;
622
623 rcu_read_lock();
624
625 memcg = page->mem_cgroup;
626
627 if (!memcg || !cgroup_on_dfl(memcg->css.cgroup))
628 memcg = root_mem_cgroup;
629
630 rcu_read_unlock();
631 return &memcg->css;
632 }
633
634 static struct mem_cgroup_per_zone *
635 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
636 {
637 int nid = page_to_nid(page);
638 int zid = page_zonenum(page);
639
640 return &memcg->nodeinfo[nid]->zoneinfo[zid];
641 }
642
643 static struct mem_cgroup_tree_per_zone *
644 soft_limit_tree_node_zone(int nid, int zid)
645 {
646 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
647 }
648
649 static struct mem_cgroup_tree_per_zone *
650 soft_limit_tree_from_page(struct page *page)
651 {
652 int nid = page_to_nid(page);
653 int zid = page_zonenum(page);
654
655 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
656 }
657
658 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
659 struct mem_cgroup_tree_per_zone *mctz,
660 unsigned long new_usage_in_excess)
661 {
662 struct rb_node **p = &mctz->rb_root.rb_node;
663 struct rb_node *parent = NULL;
664 struct mem_cgroup_per_zone *mz_node;
665
666 if (mz->on_tree)
667 return;
668
669 mz->usage_in_excess = new_usage_in_excess;
670 if (!mz->usage_in_excess)
671 return;
672 while (*p) {
673 parent = *p;
674 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
675 tree_node);
676 if (mz->usage_in_excess < mz_node->usage_in_excess)
677 p = &(*p)->rb_left;
678 /*
679 * We can't avoid mem cgroups that are over their soft
680 * limit by the same amount
681 */
682 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
683 p = &(*p)->rb_right;
684 }
685 rb_link_node(&mz->tree_node, parent, p);
686 rb_insert_color(&mz->tree_node, &mctz->rb_root);
687 mz->on_tree = true;
688 }
689
690 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
691 struct mem_cgroup_tree_per_zone *mctz)
692 {
693 if (!mz->on_tree)
694 return;
695 rb_erase(&mz->tree_node, &mctz->rb_root);
696 mz->on_tree = false;
697 }
698
699 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
700 struct mem_cgroup_tree_per_zone *mctz)
701 {
702 unsigned long flags;
703
704 spin_lock_irqsave(&mctz->lock, flags);
705 __mem_cgroup_remove_exceeded(mz, mctz);
706 spin_unlock_irqrestore(&mctz->lock, flags);
707 }
708
709 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
710 {
711 unsigned long nr_pages = page_counter_read(&memcg->memory);
712 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
713 unsigned long excess = 0;
714
715 if (nr_pages > soft_limit)
716 excess = nr_pages - soft_limit;
717
718 return excess;
719 }
720
721 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
722 {
723 unsigned long excess;
724 struct mem_cgroup_per_zone *mz;
725 struct mem_cgroup_tree_per_zone *mctz;
726
727 mctz = soft_limit_tree_from_page(page);
728 /*
729 * Necessary to update all ancestors when hierarchy is used.
730 * because their event counter is not touched.
731 */
732 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
733 mz = mem_cgroup_page_zoneinfo(memcg, page);
734 excess = soft_limit_excess(memcg);
735 /*
736 * We have to update the tree if mz is on RB-tree or
737 * mem is over its softlimit.
738 */
739 if (excess || mz->on_tree) {
740 unsigned long flags;
741
742 spin_lock_irqsave(&mctz->lock, flags);
743 /* if on-tree, remove it */
744 if (mz->on_tree)
745 __mem_cgroup_remove_exceeded(mz, mctz);
746 /*
747 * Insert again. mz->usage_in_excess will be updated.
748 * If excess is 0, no tree ops.
749 */
750 __mem_cgroup_insert_exceeded(mz, mctz, excess);
751 spin_unlock_irqrestore(&mctz->lock, flags);
752 }
753 }
754 }
755
756 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
757 {
758 struct mem_cgroup_tree_per_zone *mctz;
759 struct mem_cgroup_per_zone *mz;
760 int nid, zid;
761
762 for_each_node(nid) {
763 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
764 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
765 mctz = soft_limit_tree_node_zone(nid, zid);
766 mem_cgroup_remove_exceeded(mz, mctz);
767 }
768 }
769 }
770
771 static struct mem_cgroup_per_zone *
772 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
773 {
774 struct rb_node *rightmost = NULL;
775 struct mem_cgroup_per_zone *mz;
776
777 retry:
778 mz = NULL;
779 rightmost = rb_last(&mctz->rb_root);
780 if (!rightmost)
781 goto done; /* Nothing to reclaim from */
782
783 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
784 /*
785 * Remove the node now but someone else can add it back,
786 * we will to add it back at the end of reclaim to its correct
787 * position in the tree.
788 */
789 __mem_cgroup_remove_exceeded(mz, mctz);
790 if (!soft_limit_excess(mz->memcg) ||
791 !css_tryget_online(&mz->memcg->css))
792 goto retry;
793 done:
794 return mz;
795 }
796
797 static struct mem_cgroup_per_zone *
798 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
799 {
800 struct mem_cgroup_per_zone *mz;
801
802 spin_lock_irq(&mctz->lock);
803 mz = __mem_cgroup_largest_soft_limit_node(mctz);
804 spin_unlock_irq(&mctz->lock);
805 return mz;
806 }
807
808 /*
809 * Implementation Note: reading percpu statistics for memcg.
810 *
811 * Both of vmstat[] and percpu_counter has threshold and do periodic
812 * synchronization to implement "quick" read. There are trade-off between
813 * reading cost and precision of value. Then, we may have a chance to implement
814 * a periodic synchronizion of counter in memcg's counter.
815 *
816 * But this _read() function is used for user interface now. The user accounts
817 * memory usage by memory cgroup and he _always_ requires exact value because
818 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
819 * have to visit all online cpus and make sum. So, for now, unnecessary
820 * synchronization is not implemented. (just implemented for cpu hotplug)
821 *
822 * If there are kernel internal actions which can make use of some not-exact
823 * value, and reading all cpu value can be performance bottleneck in some
824 * common workload, threashold and synchonization as vmstat[] should be
825 * implemented.
826 */
827 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
828 enum mem_cgroup_stat_index idx)
829 {
830 long val = 0;
831 int cpu;
832
833 for_each_possible_cpu(cpu)
834 val += per_cpu(memcg->stat->count[idx], cpu);
835 return val;
836 }
837
838 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
839 enum mem_cgroup_events_index idx)
840 {
841 unsigned long val = 0;
842 int cpu;
843
844 for_each_possible_cpu(cpu)
845 val += per_cpu(memcg->stat->events[idx], cpu);
846 return val;
847 }
848
849 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
850 struct page *page,
851 int nr_pages)
852 {
853 /*
854 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
855 * counted as CACHE even if it's on ANON LRU.
856 */
857 if (PageAnon(page))
858 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
859 nr_pages);
860 else
861 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
862 nr_pages);
863
864 if (PageTransHuge(page))
865 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
866 nr_pages);
867
868 /* pagein of a big page is an event. So, ignore page size */
869 if (nr_pages > 0)
870 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
871 else {
872 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
873 nr_pages = -nr_pages; /* for event */
874 }
875
876 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
877 }
878
879 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
880 {
881 struct mem_cgroup_per_zone *mz;
882
883 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
884 return mz->lru_size[lru];
885 }
886
887 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
888 int nid,
889 unsigned int lru_mask)
890 {
891 unsigned long nr = 0;
892 int zid;
893
894 VM_BUG_ON((unsigned)nid >= nr_node_ids);
895
896 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
897 struct mem_cgroup_per_zone *mz;
898 enum lru_list lru;
899
900 for_each_lru(lru) {
901 if (!(BIT(lru) & lru_mask))
902 continue;
903 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
904 nr += mz->lru_size[lru];
905 }
906 }
907 return nr;
908 }
909
910 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
911 unsigned int lru_mask)
912 {
913 unsigned long nr = 0;
914 int nid;
915
916 for_each_node_state(nid, N_MEMORY)
917 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
918 return nr;
919 }
920
921 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
922 enum mem_cgroup_events_target target)
923 {
924 unsigned long val, next;
925
926 val = __this_cpu_read(memcg->stat->nr_page_events);
927 next = __this_cpu_read(memcg->stat->targets[target]);
928 /* from time_after() in jiffies.h */
929 if ((long)next - (long)val < 0) {
930 switch (target) {
931 case MEM_CGROUP_TARGET_THRESH:
932 next = val + THRESHOLDS_EVENTS_TARGET;
933 break;
934 case MEM_CGROUP_TARGET_SOFTLIMIT:
935 next = val + SOFTLIMIT_EVENTS_TARGET;
936 break;
937 case MEM_CGROUP_TARGET_NUMAINFO:
938 next = val + NUMAINFO_EVENTS_TARGET;
939 break;
940 default:
941 break;
942 }
943 __this_cpu_write(memcg->stat->targets[target], next);
944 return true;
945 }
946 return false;
947 }
948
949 /*
950 * Check events in order.
951 *
952 */
953 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
954 {
955 /* threshold event is triggered in finer grain than soft limit */
956 if (unlikely(mem_cgroup_event_ratelimit(memcg,
957 MEM_CGROUP_TARGET_THRESH))) {
958 bool do_softlimit;
959 bool do_numainfo __maybe_unused;
960
961 do_softlimit = mem_cgroup_event_ratelimit(memcg,
962 MEM_CGROUP_TARGET_SOFTLIMIT);
963 #if MAX_NUMNODES > 1
964 do_numainfo = mem_cgroup_event_ratelimit(memcg,
965 MEM_CGROUP_TARGET_NUMAINFO);
966 #endif
967 mem_cgroup_threshold(memcg);
968 if (unlikely(do_softlimit))
969 mem_cgroup_update_tree(memcg, page);
970 #if MAX_NUMNODES > 1
971 if (unlikely(do_numainfo))
972 atomic_inc(&memcg->numainfo_events);
973 #endif
974 }
975 }
976
977 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
978 {
979 /*
980 * mm_update_next_owner() may clear mm->owner to NULL
981 * if it races with swapoff, page migration, etc.
982 * So this can be called with p == NULL.
983 */
984 if (unlikely(!p))
985 return NULL;
986
987 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
988 }
989
990 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
991 {
992 struct mem_cgroup *memcg = NULL;
993
994 rcu_read_lock();
995 do {
996 /*
997 * Page cache insertions can happen withou an
998 * actual mm context, e.g. during disk probing
999 * on boot, loopback IO, acct() writes etc.
1000 */
1001 if (unlikely(!mm))
1002 memcg = root_mem_cgroup;
1003 else {
1004 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1005 if (unlikely(!memcg))
1006 memcg = root_mem_cgroup;
1007 }
1008 } while (!css_tryget_online(&memcg->css));
1009 rcu_read_unlock();
1010 return memcg;
1011 }
1012
1013 /**
1014 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1015 * @root: hierarchy root
1016 * @prev: previously returned memcg, NULL on first invocation
1017 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1018 *
1019 * Returns references to children of the hierarchy below @root, or
1020 * @root itself, or %NULL after a full round-trip.
1021 *
1022 * Caller must pass the return value in @prev on subsequent
1023 * invocations for reference counting, or use mem_cgroup_iter_break()
1024 * to cancel a hierarchy walk before the round-trip is complete.
1025 *
1026 * Reclaimers can specify a zone and a priority level in @reclaim to
1027 * divide up the memcgs in the hierarchy among all concurrent
1028 * reclaimers operating on the same zone and priority.
1029 */
1030 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1031 struct mem_cgroup *prev,
1032 struct mem_cgroup_reclaim_cookie *reclaim)
1033 {
1034 struct reclaim_iter *uninitialized_var(iter);
1035 struct cgroup_subsys_state *css = NULL;
1036 struct mem_cgroup *memcg = NULL;
1037 struct mem_cgroup *pos = NULL;
1038
1039 if (mem_cgroup_disabled())
1040 return NULL;
1041
1042 if (!root)
1043 root = root_mem_cgroup;
1044
1045 if (prev && !reclaim)
1046 pos = prev;
1047
1048 if (!root->use_hierarchy && root != root_mem_cgroup) {
1049 if (prev)
1050 goto out;
1051 return root;
1052 }
1053
1054 rcu_read_lock();
1055
1056 if (reclaim) {
1057 struct mem_cgroup_per_zone *mz;
1058
1059 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1060 iter = &mz->iter[reclaim->priority];
1061
1062 if (prev && reclaim->generation != iter->generation)
1063 goto out_unlock;
1064
1065 do {
1066 pos = READ_ONCE(iter->position);
1067 /*
1068 * A racing update may change the position and
1069 * put the last reference, hence css_tryget(),
1070 * or retry to see the updated position.
1071 */
1072 } while (pos && !css_tryget(&pos->css));
1073 }
1074
1075 if (pos)
1076 css = &pos->css;
1077
1078 for (;;) {
1079 css = css_next_descendant_pre(css, &root->css);
1080 if (!css) {
1081 /*
1082 * Reclaimers share the hierarchy walk, and a
1083 * new one might jump in right at the end of
1084 * the hierarchy - make sure they see at least
1085 * one group and restart from the beginning.
1086 */
1087 if (!prev)
1088 continue;
1089 break;
1090 }
1091
1092 /*
1093 * Verify the css and acquire a reference. The root
1094 * is provided by the caller, so we know it's alive
1095 * and kicking, and don't take an extra reference.
1096 */
1097 memcg = mem_cgroup_from_css(css);
1098
1099 if (css == &root->css)
1100 break;
1101
1102 if (css_tryget(css)) {
1103 /*
1104 * Make sure the memcg is initialized:
1105 * mem_cgroup_css_online() orders the the
1106 * initialization against setting the flag.
1107 */
1108 if (smp_load_acquire(&memcg->initialized))
1109 break;
1110
1111 css_put(css);
1112 }
1113
1114 memcg = NULL;
1115 }
1116
1117 if (reclaim) {
1118 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1119 if (memcg)
1120 css_get(&memcg->css);
1121 if (pos)
1122 css_put(&pos->css);
1123 }
1124
1125 /*
1126 * pairs with css_tryget when dereferencing iter->position
1127 * above.
1128 */
1129 if (pos)
1130 css_put(&pos->css);
1131
1132 if (!memcg)
1133 iter->generation++;
1134 else if (!prev)
1135 reclaim->generation = iter->generation;
1136 }
1137
1138 out_unlock:
1139 rcu_read_unlock();
1140 out:
1141 if (prev && prev != root)
1142 css_put(&prev->css);
1143
1144 return memcg;
1145 }
1146
1147 /**
1148 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1149 * @root: hierarchy root
1150 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1151 */
1152 void mem_cgroup_iter_break(struct mem_cgroup *root,
1153 struct mem_cgroup *prev)
1154 {
1155 if (!root)
1156 root = root_mem_cgroup;
1157 if (prev && prev != root)
1158 css_put(&prev->css);
1159 }
1160
1161 /*
1162 * Iteration constructs for visiting all cgroups (under a tree). If
1163 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1164 * be used for reference counting.
1165 */
1166 #define for_each_mem_cgroup_tree(iter, root) \
1167 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1168 iter != NULL; \
1169 iter = mem_cgroup_iter(root, iter, NULL))
1170
1171 #define for_each_mem_cgroup(iter) \
1172 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1173 iter != NULL; \
1174 iter = mem_cgroup_iter(NULL, iter, NULL))
1175
1176 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1177 {
1178 struct mem_cgroup *memcg;
1179
1180 rcu_read_lock();
1181 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1182 if (unlikely(!memcg))
1183 goto out;
1184
1185 switch (idx) {
1186 case PGFAULT:
1187 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1188 break;
1189 case PGMAJFAULT:
1190 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1191 break;
1192 default:
1193 BUG();
1194 }
1195 out:
1196 rcu_read_unlock();
1197 }
1198 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1199
1200 /**
1201 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1202 * @zone: zone of the wanted lruvec
1203 * @memcg: memcg of the wanted lruvec
1204 *
1205 * Returns the lru list vector holding pages for the given @zone and
1206 * @mem. This can be the global zone lruvec, if the memory controller
1207 * is disabled.
1208 */
1209 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1210 struct mem_cgroup *memcg)
1211 {
1212 struct mem_cgroup_per_zone *mz;
1213 struct lruvec *lruvec;
1214
1215 if (mem_cgroup_disabled()) {
1216 lruvec = &zone->lruvec;
1217 goto out;
1218 }
1219
1220 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1221 lruvec = &mz->lruvec;
1222 out:
1223 /*
1224 * Since a node can be onlined after the mem_cgroup was created,
1225 * we have to be prepared to initialize lruvec->zone here;
1226 * and if offlined then reonlined, we need to reinitialize it.
1227 */
1228 if (unlikely(lruvec->zone != zone))
1229 lruvec->zone = zone;
1230 return lruvec;
1231 }
1232
1233 /**
1234 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1235 * @page: the page
1236 * @zone: zone of the page
1237 *
1238 * This function is only safe when following the LRU page isolation
1239 * and putback protocol: the LRU lock must be held, and the page must
1240 * either be PageLRU() or the caller must have isolated/allocated it.
1241 */
1242 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1243 {
1244 struct mem_cgroup_per_zone *mz;
1245 struct mem_cgroup *memcg;
1246 struct lruvec *lruvec;
1247
1248 if (mem_cgroup_disabled()) {
1249 lruvec = &zone->lruvec;
1250 goto out;
1251 }
1252
1253 memcg = page->mem_cgroup;
1254 /*
1255 * Swapcache readahead pages are added to the LRU - and
1256 * possibly migrated - before they are charged.
1257 */
1258 if (!memcg)
1259 memcg = root_mem_cgroup;
1260
1261 mz = mem_cgroup_page_zoneinfo(memcg, page);
1262 lruvec = &mz->lruvec;
1263 out:
1264 /*
1265 * Since a node can be onlined after the mem_cgroup was created,
1266 * we have to be prepared to initialize lruvec->zone here;
1267 * and if offlined then reonlined, we need to reinitialize it.
1268 */
1269 if (unlikely(lruvec->zone != zone))
1270 lruvec->zone = zone;
1271 return lruvec;
1272 }
1273
1274 /**
1275 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1276 * @lruvec: mem_cgroup per zone lru vector
1277 * @lru: index of lru list the page is sitting on
1278 * @nr_pages: positive when adding or negative when removing
1279 *
1280 * This function must be called when a page is added to or removed from an
1281 * lru list.
1282 */
1283 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1284 int nr_pages)
1285 {
1286 struct mem_cgroup_per_zone *mz;
1287 unsigned long *lru_size;
1288
1289 if (mem_cgroup_disabled())
1290 return;
1291
1292 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1293 lru_size = mz->lru_size + lru;
1294 *lru_size += nr_pages;
1295 VM_BUG_ON((long)(*lru_size) < 0);
1296 }
1297
1298 bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1299 {
1300 if (root == memcg)
1301 return true;
1302 if (!root->use_hierarchy)
1303 return false;
1304 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1305 }
1306
1307 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1308 {
1309 struct mem_cgroup *task_memcg;
1310 struct task_struct *p;
1311 bool ret;
1312
1313 p = find_lock_task_mm(task);
1314 if (p) {
1315 task_memcg = get_mem_cgroup_from_mm(p->mm);
1316 task_unlock(p);
1317 } else {
1318 /*
1319 * All threads may have already detached their mm's, but the oom
1320 * killer still needs to detect if they have already been oom
1321 * killed to prevent needlessly killing additional tasks.
1322 */
1323 rcu_read_lock();
1324 task_memcg = mem_cgroup_from_task(task);
1325 css_get(&task_memcg->css);
1326 rcu_read_unlock();
1327 }
1328 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1329 css_put(&task_memcg->css);
1330 return ret;
1331 }
1332
1333 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1334 {
1335 unsigned long inactive_ratio;
1336 unsigned long inactive;
1337 unsigned long active;
1338 unsigned long gb;
1339
1340 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1341 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1342
1343 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1344 if (gb)
1345 inactive_ratio = int_sqrt(10 * gb);
1346 else
1347 inactive_ratio = 1;
1348
1349 return inactive * inactive_ratio < active;
1350 }
1351
1352 bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
1353 {
1354 struct mem_cgroup_per_zone *mz;
1355 struct mem_cgroup *memcg;
1356
1357 if (mem_cgroup_disabled())
1358 return true;
1359
1360 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1361 memcg = mz->memcg;
1362
1363 return !!(memcg->css.flags & CSS_ONLINE);
1364 }
1365
1366 #define mem_cgroup_from_counter(counter, member) \
1367 container_of(counter, struct mem_cgroup, member)
1368
1369 /**
1370 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1371 * @memcg: the memory cgroup
1372 *
1373 * Returns the maximum amount of memory @mem can be charged with, in
1374 * pages.
1375 */
1376 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1377 {
1378 unsigned long margin = 0;
1379 unsigned long count;
1380 unsigned long limit;
1381
1382 count = page_counter_read(&memcg->memory);
1383 limit = READ_ONCE(memcg->memory.limit);
1384 if (count < limit)
1385 margin = limit - count;
1386
1387 if (do_swap_account) {
1388 count = page_counter_read(&memcg->memsw);
1389 limit = READ_ONCE(memcg->memsw.limit);
1390 if (count <= limit)
1391 margin = min(margin, limit - count);
1392 }
1393
1394 return margin;
1395 }
1396
1397 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1398 {
1399 /* root ? */
1400 if (mem_cgroup_disabled() || !memcg->css.parent)
1401 return vm_swappiness;
1402
1403 return memcg->swappiness;
1404 }
1405
1406 /*
1407 * A routine for checking "mem" is under move_account() or not.
1408 *
1409 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1410 * moving cgroups. This is for waiting at high-memory pressure
1411 * caused by "move".
1412 */
1413 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1414 {
1415 struct mem_cgroup *from;
1416 struct mem_cgroup *to;
1417 bool ret = false;
1418 /*
1419 * Unlike task_move routines, we access mc.to, mc.from not under
1420 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1421 */
1422 spin_lock(&mc.lock);
1423 from = mc.from;
1424 to = mc.to;
1425 if (!from)
1426 goto unlock;
1427
1428 ret = mem_cgroup_is_descendant(from, memcg) ||
1429 mem_cgroup_is_descendant(to, memcg);
1430 unlock:
1431 spin_unlock(&mc.lock);
1432 return ret;
1433 }
1434
1435 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1436 {
1437 if (mc.moving_task && current != mc.moving_task) {
1438 if (mem_cgroup_under_move(memcg)) {
1439 DEFINE_WAIT(wait);
1440 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1441 /* moving charge context might have finished. */
1442 if (mc.moving_task)
1443 schedule();
1444 finish_wait(&mc.waitq, &wait);
1445 return true;
1446 }
1447 }
1448 return false;
1449 }
1450
1451 #define K(x) ((x) << (PAGE_SHIFT-10))
1452 /**
1453 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1454 * @memcg: The memory cgroup that went over limit
1455 * @p: Task that is going to be killed
1456 *
1457 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1458 * enabled
1459 */
1460 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1461 {
1462 /* oom_info_lock ensures that parallel ooms do not interleave */
1463 static DEFINE_MUTEX(oom_info_lock);
1464 struct mem_cgroup *iter;
1465 unsigned int i;
1466
1467 mutex_lock(&oom_info_lock);
1468 rcu_read_lock();
1469
1470 if (p) {
1471 pr_info("Task in ");
1472 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1473 pr_cont(" killed as a result of limit of ");
1474 } else {
1475 pr_info("Memory limit reached of cgroup ");
1476 }
1477
1478 pr_cont_cgroup_path(memcg->css.cgroup);
1479 pr_cont("\n");
1480
1481 rcu_read_unlock();
1482
1483 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1484 K((u64)page_counter_read(&memcg->memory)),
1485 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1486 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1487 K((u64)page_counter_read(&memcg->memsw)),
1488 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1489 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1490 K((u64)page_counter_read(&memcg->kmem)),
1491 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1492
1493 for_each_mem_cgroup_tree(iter, memcg) {
1494 pr_info("Memory cgroup stats for ");
1495 pr_cont_cgroup_path(iter->css.cgroup);
1496 pr_cont(":");
1497
1498 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1499 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1500 continue;
1501 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1502 K(mem_cgroup_read_stat(iter, i)));
1503 }
1504
1505 for (i = 0; i < NR_LRU_LISTS; i++)
1506 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1507 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1508
1509 pr_cont("\n");
1510 }
1511 mutex_unlock(&oom_info_lock);
1512 }
1513
1514 /*
1515 * This function returns the number of memcg under hierarchy tree. Returns
1516 * 1(self count) if no children.
1517 */
1518 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1519 {
1520 int num = 0;
1521 struct mem_cgroup *iter;
1522
1523 for_each_mem_cgroup_tree(iter, memcg)
1524 num++;
1525 return num;
1526 }
1527
1528 /*
1529 * Return the memory (and swap, if configured) limit for a memcg.
1530 */
1531 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1532 {
1533 unsigned long limit;
1534
1535 limit = memcg->memory.limit;
1536 if (mem_cgroup_swappiness(memcg)) {
1537 unsigned long memsw_limit;
1538
1539 memsw_limit = memcg->memsw.limit;
1540 limit = min(limit + total_swap_pages, memsw_limit);
1541 }
1542 return limit;
1543 }
1544
1545 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1546 int order)
1547 {
1548 struct mem_cgroup *iter;
1549 unsigned long chosen_points = 0;
1550 unsigned long totalpages;
1551 unsigned int points = 0;
1552 struct task_struct *chosen = NULL;
1553
1554 /*
1555 * If current has a pending SIGKILL or is exiting, then automatically
1556 * select it. The goal is to allow it to allocate so that it may
1557 * quickly exit and free its memory.
1558 */
1559 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1560 mark_tsk_oom_victim(current);
1561 return;
1562 }
1563
1564 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL, memcg);
1565 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1566 for_each_mem_cgroup_tree(iter, memcg) {
1567 struct css_task_iter it;
1568 struct task_struct *task;
1569
1570 css_task_iter_start(&iter->css, &it);
1571 while ((task = css_task_iter_next(&it))) {
1572 switch (oom_scan_process_thread(task, totalpages, NULL,
1573 false)) {
1574 case OOM_SCAN_SELECT:
1575 if (chosen)
1576 put_task_struct(chosen);
1577 chosen = task;
1578 chosen_points = ULONG_MAX;
1579 get_task_struct(chosen);
1580 /* fall through */
1581 case OOM_SCAN_CONTINUE:
1582 continue;
1583 case OOM_SCAN_ABORT:
1584 css_task_iter_end(&it);
1585 mem_cgroup_iter_break(memcg, iter);
1586 if (chosen)
1587 put_task_struct(chosen);
1588 return;
1589 case OOM_SCAN_OK:
1590 break;
1591 };
1592 points = oom_badness(task, memcg, NULL, totalpages);
1593 if (!points || points < chosen_points)
1594 continue;
1595 /* Prefer thread group leaders for display purposes */
1596 if (points == chosen_points &&
1597 thread_group_leader(chosen))
1598 continue;
1599
1600 if (chosen)
1601 put_task_struct(chosen);
1602 chosen = task;
1603 chosen_points = points;
1604 get_task_struct(chosen);
1605 }
1606 css_task_iter_end(&it);
1607 }
1608
1609 if (!chosen)
1610 return;
1611 points = chosen_points * 1000 / totalpages;
1612 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1613 NULL, "Memory cgroup out of memory");
1614 }
1615
1616 #if MAX_NUMNODES > 1
1617
1618 /**
1619 * test_mem_cgroup_node_reclaimable
1620 * @memcg: the target memcg
1621 * @nid: the node ID to be checked.
1622 * @noswap : specify true here if the user wants flle only information.
1623 *
1624 * This function returns whether the specified memcg contains any
1625 * reclaimable pages on a node. Returns true if there are any reclaimable
1626 * pages in the node.
1627 */
1628 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1629 int nid, bool noswap)
1630 {
1631 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1632 return true;
1633 if (noswap || !total_swap_pages)
1634 return false;
1635 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1636 return true;
1637 return false;
1638
1639 }
1640
1641 /*
1642 * Always updating the nodemask is not very good - even if we have an empty
1643 * list or the wrong list here, we can start from some node and traverse all
1644 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1645 *
1646 */
1647 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1648 {
1649 int nid;
1650 /*
1651 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1652 * pagein/pageout changes since the last update.
1653 */
1654 if (!atomic_read(&memcg->numainfo_events))
1655 return;
1656 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1657 return;
1658
1659 /* make a nodemask where this memcg uses memory from */
1660 memcg->scan_nodes = node_states[N_MEMORY];
1661
1662 for_each_node_mask(nid, node_states[N_MEMORY]) {
1663
1664 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1665 node_clear(nid, memcg->scan_nodes);
1666 }
1667
1668 atomic_set(&memcg->numainfo_events, 0);
1669 atomic_set(&memcg->numainfo_updating, 0);
1670 }
1671
1672 /*
1673 * Selecting a node where we start reclaim from. Because what we need is just
1674 * reducing usage counter, start from anywhere is O,K. Considering
1675 * memory reclaim from current node, there are pros. and cons.
1676 *
1677 * Freeing memory from current node means freeing memory from a node which
1678 * we'll use or we've used. So, it may make LRU bad. And if several threads
1679 * hit limits, it will see a contention on a node. But freeing from remote
1680 * node means more costs for memory reclaim because of memory latency.
1681 *
1682 * Now, we use round-robin. Better algorithm is welcomed.
1683 */
1684 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1685 {
1686 int node;
1687
1688 mem_cgroup_may_update_nodemask(memcg);
1689 node = memcg->last_scanned_node;
1690
1691 node = next_node(node, memcg->scan_nodes);
1692 if (node == MAX_NUMNODES)
1693 node = first_node(memcg->scan_nodes);
1694 /*
1695 * We call this when we hit limit, not when pages are added to LRU.
1696 * No LRU may hold pages because all pages are UNEVICTABLE or
1697 * memcg is too small and all pages are not on LRU. In that case,
1698 * we use curret node.
1699 */
1700 if (unlikely(node == MAX_NUMNODES))
1701 node = numa_node_id();
1702
1703 memcg->last_scanned_node = node;
1704 return node;
1705 }
1706 #else
1707 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1708 {
1709 return 0;
1710 }
1711 #endif
1712
1713 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1714 struct zone *zone,
1715 gfp_t gfp_mask,
1716 unsigned long *total_scanned)
1717 {
1718 struct mem_cgroup *victim = NULL;
1719 int total = 0;
1720 int loop = 0;
1721 unsigned long excess;
1722 unsigned long nr_scanned;
1723 struct mem_cgroup_reclaim_cookie reclaim = {
1724 .zone = zone,
1725 .priority = 0,
1726 };
1727
1728 excess = soft_limit_excess(root_memcg);
1729
1730 while (1) {
1731 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1732 if (!victim) {
1733 loop++;
1734 if (loop >= 2) {
1735 /*
1736 * If we have not been able to reclaim
1737 * anything, it might because there are
1738 * no reclaimable pages under this hierarchy
1739 */
1740 if (!total)
1741 break;
1742 /*
1743 * We want to do more targeted reclaim.
1744 * excess >> 2 is not to excessive so as to
1745 * reclaim too much, nor too less that we keep
1746 * coming back to reclaim from this cgroup
1747 */
1748 if (total >= (excess >> 2) ||
1749 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1750 break;
1751 }
1752 continue;
1753 }
1754 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1755 zone, &nr_scanned);
1756 *total_scanned += nr_scanned;
1757 if (!soft_limit_excess(root_memcg))
1758 break;
1759 }
1760 mem_cgroup_iter_break(root_memcg, victim);
1761 return total;
1762 }
1763
1764 #ifdef CONFIG_LOCKDEP
1765 static struct lockdep_map memcg_oom_lock_dep_map = {
1766 .name = "memcg_oom_lock",
1767 };
1768 #endif
1769
1770 static DEFINE_SPINLOCK(memcg_oom_lock);
1771
1772 /*
1773 * Check OOM-Killer is already running under our hierarchy.
1774 * If someone is running, return false.
1775 */
1776 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1777 {
1778 struct mem_cgroup *iter, *failed = NULL;
1779
1780 spin_lock(&memcg_oom_lock);
1781
1782 for_each_mem_cgroup_tree(iter, memcg) {
1783 if (iter->oom_lock) {
1784 /*
1785 * this subtree of our hierarchy is already locked
1786 * so we cannot give a lock.
1787 */
1788 failed = iter;
1789 mem_cgroup_iter_break(memcg, iter);
1790 break;
1791 } else
1792 iter->oom_lock = true;
1793 }
1794
1795 if (failed) {
1796 /*
1797 * OK, we failed to lock the whole subtree so we have
1798 * to clean up what we set up to the failing subtree
1799 */
1800 for_each_mem_cgroup_tree(iter, memcg) {
1801 if (iter == failed) {
1802 mem_cgroup_iter_break(memcg, iter);
1803 break;
1804 }
1805 iter->oom_lock = false;
1806 }
1807 } else
1808 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1809
1810 spin_unlock(&memcg_oom_lock);
1811
1812 return !failed;
1813 }
1814
1815 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1816 {
1817 struct mem_cgroup *iter;
1818
1819 spin_lock(&memcg_oom_lock);
1820 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1821 for_each_mem_cgroup_tree(iter, memcg)
1822 iter->oom_lock = false;
1823 spin_unlock(&memcg_oom_lock);
1824 }
1825
1826 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1827 {
1828 struct mem_cgroup *iter;
1829
1830 for_each_mem_cgroup_tree(iter, memcg)
1831 atomic_inc(&iter->under_oom);
1832 }
1833
1834 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1835 {
1836 struct mem_cgroup *iter;
1837
1838 /*
1839 * When a new child is created while the hierarchy is under oom,
1840 * mem_cgroup_oom_lock() may not be called. We have to use
1841 * atomic_add_unless() here.
1842 */
1843 for_each_mem_cgroup_tree(iter, memcg)
1844 atomic_add_unless(&iter->under_oom, -1, 0);
1845 }
1846
1847 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1848
1849 struct oom_wait_info {
1850 struct mem_cgroup *memcg;
1851 wait_queue_t wait;
1852 };
1853
1854 static int memcg_oom_wake_function(wait_queue_t *wait,
1855 unsigned mode, int sync, void *arg)
1856 {
1857 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1858 struct mem_cgroup *oom_wait_memcg;
1859 struct oom_wait_info *oom_wait_info;
1860
1861 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1862 oom_wait_memcg = oom_wait_info->memcg;
1863
1864 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1865 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1866 return 0;
1867 return autoremove_wake_function(wait, mode, sync, arg);
1868 }
1869
1870 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1871 {
1872 atomic_inc(&memcg->oom_wakeups);
1873 /* for filtering, pass "memcg" as argument. */
1874 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1875 }
1876
1877 static void memcg_oom_recover(struct mem_cgroup *memcg)
1878 {
1879 if (memcg && atomic_read(&memcg->under_oom))
1880 memcg_wakeup_oom(memcg);
1881 }
1882
1883 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1884 {
1885 if (!current->memcg_oom.may_oom)
1886 return;
1887 /*
1888 * We are in the middle of the charge context here, so we
1889 * don't want to block when potentially sitting on a callstack
1890 * that holds all kinds of filesystem and mm locks.
1891 *
1892 * Also, the caller may handle a failed allocation gracefully
1893 * (like optional page cache readahead) and so an OOM killer
1894 * invocation might not even be necessary.
1895 *
1896 * That's why we don't do anything here except remember the
1897 * OOM context and then deal with it at the end of the page
1898 * fault when the stack is unwound, the locks are released,
1899 * and when we know whether the fault was overall successful.
1900 */
1901 css_get(&memcg->css);
1902 current->memcg_oom.memcg = memcg;
1903 current->memcg_oom.gfp_mask = mask;
1904 current->memcg_oom.order = order;
1905 }
1906
1907 /**
1908 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1909 * @handle: actually kill/wait or just clean up the OOM state
1910 *
1911 * This has to be called at the end of a page fault if the memcg OOM
1912 * handler was enabled.
1913 *
1914 * Memcg supports userspace OOM handling where failed allocations must
1915 * sleep on a waitqueue until the userspace task resolves the
1916 * situation. Sleeping directly in the charge context with all kinds
1917 * of locks held is not a good idea, instead we remember an OOM state
1918 * in the task and mem_cgroup_oom_synchronize() has to be called at
1919 * the end of the page fault to complete the OOM handling.
1920 *
1921 * Returns %true if an ongoing memcg OOM situation was detected and
1922 * completed, %false otherwise.
1923 */
1924 bool mem_cgroup_oom_synchronize(bool handle)
1925 {
1926 struct mem_cgroup *memcg = current->memcg_oom.memcg;
1927 struct oom_wait_info owait;
1928 bool locked;
1929
1930 /* OOM is global, do not handle */
1931 if (!memcg)
1932 return false;
1933
1934 if (!handle || oom_killer_disabled)
1935 goto cleanup;
1936
1937 owait.memcg = memcg;
1938 owait.wait.flags = 0;
1939 owait.wait.func = memcg_oom_wake_function;
1940 owait.wait.private = current;
1941 INIT_LIST_HEAD(&owait.wait.task_list);
1942
1943 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1944 mem_cgroup_mark_under_oom(memcg);
1945
1946 locked = mem_cgroup_oom_trylock(memcg);
1947
1948 if (locked)
1949 mem_cgroup_oom_notify(memcg);
1950
1951 if (locked && !memcg->oom_kill_disable) {
1952 mem_cgroup_unmark_under_oom(memcg);
1953 finish_wait(&memcg_oom_waitq, &owait.wait);
1954 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1955 current->memcg_oom.order);
1956 } else {
1957 schedule();
1958 mem_cgroup_unmark_under_oom(memcg);
1959 finish_wait(&memcg_oom_waitq, &owait.wait);
1960 }
1961
1962 if (locked) {
1963 mem_cgroup_oom_unlock(memcg);
1964 /*
1965 * There is no guarantee that an OOM-lock contender
1966 * sees the wakeups triggered by the OOM kill
1967 * uncharges. Wake any sleepers explicitely.
1968 */
1969 memcg_oom_recover(memcg);
1970 }
1971 cleanup:
1972 current->memcg_oom.memcg = NULL;
1973 css_put(&memcg->css);
1974 return true;
1975 }
1976
1977 /**
1978 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1979 * @page: page that is going to change accounted state
1980 *
1981 * This function must mark the beginning of an accounted page state
1982 * change to prevent double accounting when the page is concurrently
1983 * being moved to another memcg:
1984 *
1985 * memcg = mem_cgroup_begin_page_stat(page);
1986 * if (TestClearPageState(page))
1987 * mem_cgroup_update_page_stat(memcg, state, -1);
1988 * mem_cgroup_end_page_stat(memcg);
1989 */
1990 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1991 {
1992 struct mem_cgroup *memcg;
1993 unsigned long flags;
1994
1995 /*
1996 * The RCU lock is held throughout the transaction. The fast
1997 * path can get away without acquiring the memcg->move_lock
1998 * because page moving starts with an RCU grace period.
1999 *
2000 * The RCU lock also protects the memcg from being freed when
2001 * the page state that is going to change is the only thing
2002 * preventing the page from being uncharged.
2003 * E.g. end-writeback clearing PageWriteback(), which allows
2004 * migration to go ahead and uncharge the page before the
2005 * account transaction might be complete.
2006 */
2007 rcu_read_lock();
2008
2009 if (mem_cgroup_disabled())
2010 return NULL;
2011 again:
2012 memcg = page->mem_cgroup;
2013 if (unlikely(!memcg))
2014 return NULL;
2015
2016 if (atomic_read(&memcg->moving_account) <= 0)
2017 return memcg;
2018
2019 spin_lock_irqsave(&memcg->move_lock, flags);
2020 if (memcg != page->mem_cgroup) {
2021 spin_unlock_irqrestore(&memcg->move_lock, flags);
2022 goto again;
2023 }
2024
2025 /*
2026 * When charge migration first begins, we can have locked and
2027 * unlocked page stat updates happening concurrently. Track
2028 * the task who has the lock for mem_cgroup_end_page_stat().
2029 */
2030 memcg->move_lock_task = current;
2031 memcg->move_lock_flags = flags;
2032
2033 return memcg;
2034 }
2035 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
2036
2037 /**
2038 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2039 * @memcg: the memcg that was accounted against
2040 */
2041 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2042 {
2043 if (memcg && memcg->move_lock_task == current) {
2044 unsigned long flags = memcg->move_lock_flags;
2045
2046 memcg->move_lock_task = NULL;
2047 memcg->move_lock_flags = 0;
2048
2049 spin_unlock_irqrestore(&memcg->move_lock, flags);
2050 }
2051
2052 rcu_read_unlock();
2053 }
2054 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
2055
2056 /**
2057 * mem_cgroup_update_page_stat - update page state statistics
2058 * @memcg: memcg to account against
2059 * @idx: page state item to account
2060 * @val: number of pages (positive or negative)
2061 *
2062 * See mem_cgroup_begin_page_stat() for locking requirements.
2063 */
2064 void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
2065 enum mem_cgroup_stat_index idx, int val)
2066 {
2067 VM_BUG_ON(!rcu_read_lock_held());
2068
2069 if (memcg)
2070 this_cpu_add(memcg->stat->count[idx], val);
2071 }
2072
2073 /*
2074 * size of first charge trial. "32" comes from vmscan.c's magic value.
2075 * TODO: maybe necessary to use big numbers in big irons.
2076 */
2077 #define CHARGE_BATCH 32U
2078 struct memcg_stock_pcp {
2079 struct mem_cgroup *cached; /* this never be root cgroup */
2080 unsigned int nr_pages;
2081 struct work_struct work;
2082 unsigned long flags;
2083 #define FLUSHING_CACHED_CHARGE 0
2084 };
2085 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2086 static DEFINE_MUTEX(percpu_charge_mutex);
2087
2088 /**
2089 * consume_stock: Try to consume stocked charge on this cpu.
2090 * @memcg: memcg to consume from.
2091 * @nr_pages: how many pages to charge.
2092 *
2093 * The charges will only happen if @memcg matches the current cpu's memcg
2094 * stock, and at least @nr_pages are available in that stock. Failure to
2095 * service an allocation will refill the stock.
2096 *
2097 * returns true if successful, false otherwise.
2098 */
2099 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2100 {
2101 struct memcg_stock_pcp *stock;
2102 bool ret = false;
2103
2104 if (nr_pages > CHARGE_BATCH)
2105 return ret;
2106
2107 stock = &get_cpu_var(memcg_stock);
2108 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2109 stock->nr_pages -= nr_pages;
2110 ret = true;
2111 }
2112 put_cpu_var(memcg_stock);
2113 return ret;
2114 }
2115
2116 /*
2117 * Returns stocks cached in percpu and reset cached information.
2118 */
2119 static void drain_stock(struct memcg_stock_pcp *stock)
2120 {
2121 struct mem_cgroup *old = stock->cached;
2122
2123 if (stock->nr_pages) {
2124 page_counter_uncharge(&old->memory, stock->nr_pages);
2125 if (do_swap_account)
2126 page_counter_uncharge(&old->memsw, stock->nr_pages);
2127 css_put_many(&old->css, stock->nr_pages);
2128 stock->nr_pages = 0;
2129 }
2130 stock->cached = NULL;
2131 }
2132
2133 /*
2134 * This must be called under preempt disabled or must be called by
2135 * a thread which is pinned to local cpu.
2136 */
2137 static void drain_local_stock(struct work_struct *dummy)
2138 {
2139 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2140 drain_stock(stock);
2141 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2142 }
2143
2144 /*
2145 * Cache charges(val) to local per_cpu area.
2146 * This will be consumed by consume_stock() function, later.
2147 */
2148 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2149 {
2150 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2151
2152 if (stock->cached != memcg) { /* reset if necessary */
2153 drain_stock(stock);
2154 stock->cached = memcg;
2155 }
2156 stock->nr_pages += nr_pages;
2157 put_cpu_var(memcg_stock);
2158 }
2159
2160 /*
2161 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2162 * of the hierarchy under it.
2163 */
2164 static void drain_all_stock(struct mem_cgroup *root_memcg)
2165 {
2166 int cpu, curcpu;
2167
2168 /* If someone's already draining, avoid adding running more workers. */
2169 if (!mutex_trylock(&percpu_charge_mutex))
2170 return;
2171 /* Notify other cpus that system-wide "drain" is running */
2172 get_online_cpus();
2173 curcpu = get_cpu();
2174 for_each_online_cpu(cpu) {
2175 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2176 struct mem_cgroup *memcg;
2177
2178 memcg = stock->cached;
2179 if (!memcg || !stock->nr_pages)
2180 continue;
2181 if (!mem_cgroup_is_descendant(memcg, root_memcg))
2182 continue;
2183 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2184 if (cpu == curcpu)
2185 drain_local_stock(&stock->work);
2186 else
2187 schedule_work_on(cpu, &stock->work);
2188 }
2189 }
2190 put_cpu();
2191 put_online_cpus();
2192 mutex_unlock(&percpu_charge_mutex);
2193 }
2194
2195 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2196 unsigned long action,
2197 void *hcpu)
2198 {
2199 int cpu = (unsigned long)hcpu;
2200 struct memcg_stock_pcp *stock;
2201
2202 if (action == CPU_ONLINE)
2203 return NOTIFY_OK;
2204
2205 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2206 return NOTIFY_OK;
2207
2208 stock = &per_cpu(memcg_stock, cpu);
2209 drain_stock(stock);
2210 return NOTIFY_OK;
2211 }
2212
2213 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2214 unsigned int nr_pages)
2215 {
2216 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2217 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2218 struct mem_cgroup *mem_over_limit;
2219 struct page_counter *counter;
2220 unsigned long nr_reclaimed;
2221 bool may_swap = true;
2222 bool drained = false;
2223 int ret = 0;
2224
2225 if (mem_cgroup_is_root(memcg))
2226 goto done;
2227 retry:
2228 if (consume_stock(memcg, nr_pages))
2229 goto done;
2230
2231 if (!do_swap_account ||
2232 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2233 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2234 goto done_restock;
2235 if (do_swap_account)
2236 page_counter_uncharge(&memcg->memsw, batch);
2237 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2238 } else {
2239 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2240 may_swap = false;
2241 }
2242
2243 if (batch > nr_pages) {
2244 batch = nr_pages;
2245 goto retry;
2246 }
2247
2248 /*
2249 * Unlike in global OOM situations, memcg is not in a physical
2250 * memory shortage. Allow dying and OOM-killed tasks to
2251 * bypass the last charges so that they can exit quickly and
2252 * free their memory.
2253 */
2254 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2255 fatal_signal_pending(current) ||
2256 current->flags & PF_EXITING))
2257 goto bypass;
2258
2259 if (unlikely(task_in_memcg_oom(current)))
2260 goto nomem;
2261
2262 if (!(gfp_mask & __GFP_WAIT))
2263 goto nomem;
2264
2265 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2266
2267 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2268 gfp_mask, may_swap);
2269
2270 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2271 goto retry;
2272
2273 if (!drained) {
2274 drain_all_stock(mem_over_limit);
2275 drained = true;
2276 goto retry;
2277 }
2278
2279 if (gfp_mask & __GFP_NORETRY)
2280 goto nomem;
2281 /*
2282 * Even though the limit is exceeded at this point, reclaim
2283 * may have been able to free some pages. Retry the charge
2284 * before killing the task.
2285 *
2286 * Only for regular pages, though: huge pages are rather
2287 * unlikely to succeed so close to the limit, and we fall back
2288 * to regular pages anyway in case of failure.
2289 */
2290 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2291 goto retry;
2292 /*
2293 * At task move, charge accounts can be doubly counted. So, it's
2294 * better to wait until the end of task_move if something is going on.
2295 */
2296 if (mem_cgroup_wait_acct_move(mem_over_limit))
2297 goto retry;
2298
2299 if (nr_retries--)
2300 goto retry;
2301
2302 if (gfp_mask & __GFP_NOFAIL)
2303 goto bypass;
2304
2305 if (fatal_signal_pending(current))
2306 goto bypass;
2307
2308 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2309
2310 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2311 nomem:
2312 if (!(gfp_mask & __GFP_NOFAIL))
2313 return -ENOMEM;
2314 bypass:
2315 return -EINTR;
2316
2317 done_restock:
2318 css_get_many(&memcg->css, batch);
2319 if (batch > nr_pages)
2320 refill_stock(memcg, batch - nr_pages);
2321 /*
2322 * If the hierarchy is above the normal consumption range,
2323 * make the charging task trim their excess contribution.
2324 */
2325 do {
2326 if (page_counter_read(&memcg->memory) <= memcg->high)
2327 continue;
2328 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2329 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2330 } while ((memcg = parent_mem_cgroup(memcg)));
2331 done:
2332 return ret;
2333 }
2334
2335 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2336 {
2337 if (mem_cgroup_is_root(memcg))
2338 return;
2339
2340 page_counter_uncharge(&memcg->memory, nr_pages);
2341 if (do_swap_account)
2342 page_counter_uncharge(&memcg->memsw, nr_pages);
2343
2344 css_put_many(&memcg->css, nr_pages);
2345 }
2346
2347 /*
2348 * try_get_mem_cgroup_from_page - look up page's memcg association
2349 * @page: the page
2350 *
2351 * Look up, get a css reference, and return the memcg that owns @page.
2352 *
2353 * The page must be locked to prevent racing with swap-in and page
2354 * cache charges. If coming from an unlocked page table, the caller
2355 * must ensure the page is on the LRU or this can race with charging.
2356 */
2357 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2358 {
2359 struct mem_cgroup *memcg;
2360 unsigned short id;
2361 swp_entry_t ent;
2362
2363 VM_BUG_ON_PAGE(!PageLocked(page), page);
2364
2365 memcg = page->mem_cgroup;
2366 if (memcg) {
2367 if (!css_tryget_online(&memcg->css))
2368 memcg = NULL;
2369 } else if (PageSwapCache(page)) {
2370 ent.val = page_private(page);
2371 id = lookup_swap_cgroup_id(ent);
2372 rcu_read_lock();
2373 memcg = mem_cgroup_from_id(id);
2374 if (memcg && !css_tryget_online(&memcg->css))
2375 memcg = NULL;
2376 rcu_read_unlock();
2377 }
2378 return memcg;
2379 }
2380
2381 static void lock_page_lru(struct page *page, int *isolated)
2382 {
2383 struct zone *zone = page_zone(page);
2384
2385 spin_lock_irq(&zone->lru_lock);
2386 if (PageLRU(page)) {
2387 struct lruvec *lruvec;
2388
2389 lruvec = mem_cgroup_page_lruvec(page, zone);
2390 ClearPageLRU(page);
2391 del_page_from_lru_list(page, lruvec, page_lru(page));
2392 *isolated = 1;
2393 } else
2394 *isolated = 0;
2395 }
2396
2397 static void unlock_page_lru(struct page *page, int isolated)
2398 {
2399 struct zone *zone = page_zone(page);
2400
2401 if (isolated) {
2402 struct lruvec *lruvec;
2403
2404 lruvec = mem_cgroup_page_lruvec(page, zone);
2405 VM_BUG_ON_PAGE(PageLRU(page), page);
2406 SetPageLRU(page);
2407 add_page_to_lru_list(page, lruvec, page_lru(page));
2408 }
2409 spin_unlock_irq(&zone->lru_lock);
2410 }
2411
2412 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2413 bool lrucare)
2414 {
2415 int isolated;
2416
2417 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2418
2419 /*
2420 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2421 * may already be on some other mem_cgroup's LRU. Take care of it.
2422 */
2423 if (lrucare)
2424 lock_page_lru(page, &isolated);
2425
2426 /*
2427 * Nobody should be changing or seriously looking at
2428 * page->mem_cgroup at this point:
2429 *
2430 * - the page is uncharged
2431 *
2432 * - the page is off-LRU
2433 *
2434 * - an anonymous fault has exclusive page access, except for
2435 * a locked page table
2436 *
2437 * - a page cache insertion, a swapin fault, or a migration
2438 * have the page locked
2439 */
2440 page->mem_cgroup = memcg;
2441
2442 if (lrucare)
2443 unlock_page_lru(page, isolated);
2444 }
2445
2446 #ifdef CONFIG_MEMCG_KMEM
2447 int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2448 unsigned long nr_pages)
2449 {
2450 struct page_counter *counter;
2451 int ret = 0;
2452
2453 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2454 if (ret < 0)
2455 return ret;
2456
2457 ret = try_charge(memcg, gfp, nr_pages);
2458 if (ret == -EINTR) {
2459 /*
2460 * try_charge() chose to bypass to root due to OOM kill or
2461 * fatal signal. Since our only options are to either fail
2462 * the allocation or charge it to this cgroup, do it as a
2463 * temporary condition. But we can't fail. From a kmem/slab
2464 * perspective, the cache has already been selected, by
2465 * mem_cgroup_kmem_get_cache(), so it is too late to change
2466 * our minds.
2467 *
2468 * This condition will only trigger if the task entered
2469 * memcg_charge_kmem in a sane state, but was OOM-killed
2470 * during try_charge() above. Tasks that were already dying
2471 * when the allocation triggers should have been already
2472 * directed to the root cgroup in memcontrol.h
2473 */
2474 page_counter_charge(&memcg->memory, nr_pages);
2475 if (do_swap_account)
2476 page_counter_charge(&memcg->memsw, nr_pages);
2477 css_get_many(&memcg->css, nr_pages);
2478 ret = 0;
2479 } else if (ret)
2480 page_counter_uncharge(&memcg->kmem, nr_pages);
2481
2482 return ret;
2483 }
2484
2485 void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2486 {
2487 page_counter_uncharge(&memcg->memory, nr_pages);
2488 if (do_swap_account)
2489 page_counter_uncharge(&memcg->memsw, nr_pages);
2490
2491 page_counter_uncharge(&memcg->kmem, nr_pages);
2492
2493 css_put_many(&memcg->css, nr_pages);
2494 }
2495
2496 /*
2497 * helper for acessing a memcg's index. It will be used as an index in the
2498 * child cache array in kmem_cache, and also to derive its name. This function
2499 * will return -1 when this is not a kmem-limited memcg.
2500 */
2501 int memcg_cache_id(struct mem_cgroup *memcg)
2502 {
2503 return memcg ? memcg->kmemcg_id : -1;
2504 }
2505
2506 static int memcg_alloc_cache_id(void)
2507 {
2508 int id, size;
2509 int err;
2510
2511 id = ida_simple_get(&memcg_cache_ida,
2512 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2513 if (id < 0)
2514 return id;
2515
2516 if (id < memcg_nr_cache_ids)
2517 return id;
2518
2519 /*
2520 * There's no space for the new id in memcg_caches arrays,
2521 * so we have to grow them.
2522 */
2523 down_write(&memcg_cache_ids_sem);
2524
2525 size = 2 * (id + 1);
2526 if (size < MEMCG_CACHES_MIN_SIZE)
2527 size = MEMCG_CACHES_MIN_SIZE;
2528 else if (size > MEMCG_CACHES_MAX_SIZE)
2529 size = MEMCG_CACHES_MAX_SIZE;
2530
2531 err = memcg_update_all_caches(size);
2532 if (!err)
2533 err = memcg_update_all_list_lrus(size);
2534 if (!err)
2535 memcg_nr_cache_ids = size;
2536
2537 up_write(&memcg_cache_ids_sem);
2538
2539 if (err) {
2540 ida_simple_remove(&memcg_cache_ida, id);
2541 return err;
2542 }
2543 return id;
2544 }
2545
2546 static void memcg_free_cache_id(int id)
2547 {
2548 ida_simple_remove(&memcg_cache_ida, id);
2549 }
2550
2551 struct memcg_kmem_cache_create_work {
2552 struct mem_cgroup *memcg;
2553 struct kmem_cache *cachep;
2554 struct work_struct work;
2555 };
2556
2557 static void memcg_kmem_cache_create_func(struct work_struct *w)
2558 {
2559 struct memcg_kmem_cache_create_work *cw =
2560 container_of(w, struct memcg_kmem_cache_create_work, work);
2561 struct mem_cgroup *memcg = cw->memcg;
2562 struct kmem_cache *cachep = cw->cachep;
2563
2564 memcg_create_kmem_cache(memcg, cachep);
2565
2566 css_put(&memcg->css);
2567 kfree(cw);
2568 }
2569
2570 /*
2571 * Enqueue the creation of a per-memcg kmem_cache.
2572 */
2573 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2574 struct kmem_cache *cachep)
2575 {
2576 struct memcg_kmem_cache_create_work *cw;
2577
2578 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2579 if (!cw)
2580 return;
2581
2582 css_get(&memcg->css);
2583
2584 cw->memcg = memcg;
2585 cw->cachep = cachep;
2586 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2587
2588 schedule_work(&cw->work);
2589 }
2590
2591 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2592 struct kmem_cache *cachep)
2593 {
2594 /*
2595 * We need to stop accounting when we kmalloc, because if the
2596 * corresponding kmalloc cache is not yet created, the first allocation
2597 * in __memcg_schedule_kmem_cache_create will recurse.
2598 *
2599 * However, it is better to enclose the whole function. Depending on
2600 * the debugging options enabled, INIT_WORK(), for instance, can
2601 * trigger an allocation. This too, will make us recurse. Because at
2602 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2603 * the safest choice is to do it like this, wrapping the whole function.
2604 */
2605 current->memcg_kmem_skip_account = 1;
2606 __memcg_schedule_kmem_cache_create(memcg, cachep);
2607 current->memcg_kmem_skip_account = 0;
2608 }
2609
2610 /*
2611 * Return the kmem_cache we're supposed to use for a slab allocation.
2612 * We try to use the current memcg's version of the cache.
2613 *
2614 * If the cache does not exist yet, if we are the first user of it,
2615 * we either create it immediately, if possible, or create it asynchronously
2616 * in a workqueue.
2617 * In the latter case, we will let the current allocation go through with
2618 * the original cache.
2619 *
2620 * Can't be called in interrupt context or from kernel threads.
2621 * This function needs to be called with rcu_read_lock() held.
2622 */
2623 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2624 {
2625 struct mem_cgroup *memcg;
2626 struct kmem_cache *memcg_cachep;
2627 int kmemcg_id;
2628
2629 VM_BUG_ON(!is_root_cache(cachep));
2630
2631 if (current->memcg_kmem_skip_account)
2632 return cachep;
2633
2634 memcg = get_mem_cgroup_from_mm(current->mm);
2635 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2636 if (kmemcg_id < 0)
2637 goto out;
2638
2639 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2640 if (likely(memcg_cachep))
2641 return memcg_cachep;
2642
2643 /*
2644 * If we are in a safe context (can wait, and not in interrupt
2645 * context), we could be be predictable and return right away.
2646 * This would guarantee that the allocation being performed
2647 * already belongs in the new cache.
2648 *
2649 * However, there are some clashes that can arrive from locking.
2650 * For instance, because we acquire the slab_mutex while doing
2651 * memcg_create_kmem_cache, this means no further allocation
2652 * could happen with the slab_mutex held. So it's better to
2653 * defer everything.
2654 */
2655 memcg_schedule_kmem_cache_create(memcg, cachep);
2656 out:
2657 css_put(&memcg->css);
2658 return cachep;
2659 }
2660
2661 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2662 {
2663 if (!is_root_cache(cachep))
2664 css_put(&cachep->memcg_params.memcg->css);
2665 }
2666
2667 /*
2668 * We need to verify if the allocation against current->mm->owner's memcg is
2669 * possible for the given order. But the page is not allocated yet, so we'll
2670 * need a further commit step to do the final arrangements.
2671 *
2672 * It is possible for the task to switch cgroups in this mean time, so at
2673 * commit time, we can't rely on task conversion any longer. We'll then use
2674 * the handle argument to return to the caller which cgroup we should commit
2675 * against. We could also return the memcg directly and avoid the pointer
2676 * passing, but a boolean return value gives better semantics considering
2677 * the compiled-out case as well.
2678 *
2679 * Returning true means the allocation is possible.
2680 */
2681 bool
2682 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2683 {
2684 struct mem_cgroup *memcg;
2685 int ret;
2686
2687 *_memcg = NULL;
2688
2689 memcg = get_mem_cgroup_from_mm(current->mm);
2690
2691 if (!memcg_kmem_is_active(memcg)) {
2692 css_put(&memcg->css);
2693 return true;
2694 }
2695
2696 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2697 if (!ret)
2698 *_memcg = memcg;
2699
2700 css_put(&memcg->css);
2701 return (ret == 0);
2702 }
2703
2704 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2705 int order)
2706 {
2707 VM_BUG_ON(mem_cgroup_is_root(memcg));
2708
2709 /* The page allocation failed. Revert */
2710 if (!page) {
2711 memcg_uncharge_kmem(memcg, 1 << order);
2712 return;
2713 }
2714 page->mem_cgroup = memcg;
2715 }
2716
2717 void __memcg_kmem_uncharge_pages(struct page *page, int order)
2718 {
2719 struct mem_cgroup *memcg = page->mem_cgroup;
2720
2721 if (!memcg)
2722 return;
2723
2724 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2725
2726 memcg_uncharge_kmem(memcg, 1 << order);
2727 page->mem_cgroup = NULL;
2728 }
2729
2730 struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2731 {
2732 struct mem_cgroup *memcg = NULL;
2733 struct kmem_cache *cachep;
2734 struct page *page;
2735
2736 page = virt_to_head_page(ptr);
2737 if (PageSlab(page)) {
2738 cachep = page->slab_cache;
2739 if (!is_root_cache(cachep))
2740 memcg = cachep->memcg_params.memcg;
2741 } else
2742 /* page allocated by alloc_kmem_pages */
2743 memcg = page->mem_cgroup;
2744
2745 return memcg;
2746 }
2747 #endif /* CONFIG_MEMCG_KMEM */
2748
2749 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2750
2751 /*
2752 * Because tail pages are not marked as "used", set it. We're under
2753 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2754 * charge/uncharge will be never happen and move_account() is done under
2755 * compound_lock(), so we don't have to take care of races.
2756 */
2757 void mem_cgroup_split_huge_fixup(struct page *head)
2758 {
2759 int i;
2760
2761 if (mem_cgroup_disabled())
2762 return;
2763
2764 for (i = 1; i < HPAGE_PMD_NR; i++)
2765 head[i].mem_cgroup = head->mem_cgroup;
2766
2767 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2768 HPAGE_PMD_NR);
2769 }
2770 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2771
2772 #ifdef CONFIG_MEMCG_SWAP
2773 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2774 bool charge)
2775 {
2776 int val = (charge) ? 1 : -1;
2777 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2778 }
2779
2780 /**
2781 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2782 * @entry: swap entry to be moved
2783 * @from: mem_cgroup which the entry is moved from
2784 * @to: mem_cgroup which the entry is moved to
2785 *
2786 * It succeeds only when the swap_cgroup's record for this entry is the same
2787 * as the mem_cgroup's id of @from.
2788 *
2789 * Returns 0 on success, -EINVAL on failure.
2790 *
2791 * The caller must have charged to @to, IOW, called page_counter_charge() about
2792 * both res and memsw, and called css_get().
2793 */
2794 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2795 struct mem_cgroup *from, struct mem_cgroup *to)
2796 {
2797 unsigned short old_id, new_id;
2798
2799 old_id = mem_cgroup_id(from);
2800 new_id = mem_cgroup_id(to);
2801
2802 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2803 mem_cgroup_swap_statistics(from, false);
2804 mem_cgroup_swap_statistics(to, true);
2805 return 0;
2806 }
2807 return -EINVAL;
2808 }
2809 #else
2810 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2811 struct mem_cgroup *from, struct mem_cgroup *to)
2812 {
2813 return -EINVAL;
2814 }
2815 #endif
2816
2817 static DEFINE_MUTEX(memcg_limit_mutex);
2818
2819 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2820 unsigned long limit)
2821 {
2822 unsigned long curusage;
2823 unsigned long oldusage;
2824 bool enlarge = false;
2825 int retry_count;
2826 int ret;
2827
2828 /*
2829 * For keeping hierarchical_reclaim simple, how long we should retry
2830 * is depends on callers. We set our retry-count to be function
2831 * of # of children which we should visit in this loop.
2832 */
2833 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2834 mem_cgroup_count_children(memcg);
2835
2836 oldusage = page_counter_read(&memcg->memory);
2837
2838 do {
2839 if (signal_pending(current)) {
2840 ret = -EINTR;
2841 break;
2842 }
2843
2844 mutex_lock(&memcg_limit_mutex);
2845 if (limit > memcg->memsw.limit) {
2846 mutex_unlock(&memcg_limit_mutex);
2847 ret = -EINVAL;
2848 break;
2849 }
2850 if (limit > memcg->memory.limit)
2851 enlarge = true;
2852 ret = page_counter_limit(&memcg->memory, limit);
2853 mutex_unlock(&memcg_limit_mutex);
2854
2855 if (!ret)
2856 break;
2857
2858 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2859
2860 curusage = page_counter_read(&memcg->memory);
2861 /* Usage is reduced ? */
2862 if (curusage >= oldusage)
2863 retry_count--;
2864 else
2865 oldusage = curusage;
2866 } while (retry_count);
2867
2868 if (!ret && enlarge)
2869 memcg_oom_recover(memcg);
2870
2871 return ret;
2872 }
2873
2874 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2875 unsigned long limit)
2876 {
2877 unsigned long curusage;
2878 unsigned long oldusage;
2879 bool enlarge = false;
2880 int retry_count;
2881 int ret;
2882
2883 /* see mem_cgroup_resize_res_limit */
2884 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2885 mem_cgroup_count_children(memcg);
2886
2887 oldusage = page_counter_read(&memcg->memsw);
2888
2889 do {
2890 if (signal_pending(current)) {
2891 ret = -EINTR;
2892 break;
2893 }
2894
2895 mutex_lock(&memcg_limit_mutex);
2896 if (limit < memcg->memory.limit) {
2897 mutex_unlock(&memcg_limit_mutex);
2898 ret = -EINVAL;
2899 break;
2900 }
2901 if (limit > memcg->memsw.limit)
2902 enlarge = true;
2903 ret = page_counter_limit(&memcg->memsw, limit);
2904 mutex_unlock(&memcg_limit_mutex);
2905
2906 if (!ret)
2907 break;
2908
2909 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2910
2911 curusage = page_counter_read(&memcg->memsw);
2912 /* Usage is reduced ? */
2913 if (curusage >= oldusage)
2914 retry_count--;
2915 else
2916 oldusage = curusage;
2917 } while (retry_count);
2918
2919 if (!ret && enlarge)
2920 memcg_oom_recover(memcg);
2921
2922 return ret;
2923 }
2924
2925 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2926 gfp_t gfp_mask,
2927 unsigned long *total_scanned)
2928 {
2929 unsigned long nr_reclaimed = 0;
2930 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2931 unsigned long reclaimed;
2932 int loop = 0;
2933 struct mem_cgroup_tree_per_zone *mctz;
2934 unsigned long excess;
2935 unsigned long nr_scanned;
2936
2937 if (order > 0)
2938 return 0;
2939
2940 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2941 /*
2942 * This loop can run a while, specially if mem_cgroup's continuously
2943 * keep exceeding their soft limit and putting the system under
2944 * pressure
2945 */
2946 do {
2947 if (next_mz)
2948 mz = next_mz;
2949 else
2950 mz = mem_cgroup_largest_soft_limit_node(mctz);
2951 if (!mz)
2952 break;
2953
2954 nr_scanned = 0;
2955 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2956 gfp_mask, &nr_scanned);
2957 nr_reclaimed += reclaimed;
2958 *total_scanned += nr_scanned;
2959 spin_lock_irq(&mctz->lock);
2960 __mem_cgroup_remove_exceeded(mz, mctz);
2961
2962 /*
2963 * If we failed to reclaim anything from this memory cgroup
2964 * it is time to move on to the next cgroup
2965 */
2966 next_mz = NULL;
2967 if (!reclaimed)
2968 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2969
2970 excess = soft_limit_excess(mz->memcg);
2971 /*
2972 * One school of thought says that we should not add
2973 * back the node to the tree if reclaim returns 0.
2974 * But our reclaim could return 0, simply because due
2975 * to priority we are exposing a smaller subset of
2976 * memory to reclaim from. Consider this as a longer
2977 * term TODO.
2978 */
2979 /* If excess == 0, no tree ops */
2980 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2981 spin_unlock_irq(&mctz->lock);
2982 css_put(&mz->memcg->css);
2983 loop++;
2984 /*
2985 * Could not reclaim anything and there are no more
2986 * mem cgroups to try or we seem to be looping without
2987 * reclaiming anything.
2988 */
2989 if (!nr_reclaimed &&
2990 (next_mz == NULL ||
2991 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2992 break;
2993 } while (!nr_reclaimed);
2994 if (next_mz)
2995 css_put(&next_mz->memcg->css);
2996 return nr_reclaimed;
2997 }
2998
2999 /*
3000 * Test whether @memcg has children, dead or alive. Note that this
3001 * function doesn't care whether @memcg has use_hierarchy enabled and
3002 * returns %true if there are child csses according to the cgroup
3003 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3004 */
3005 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3006 {
3007 bool ret;
3008
3009 /*
3010 * The lock does not prevent addition or deletion of children, but
3011 * it prevents a new child from being initialized based on this
3012 * parent in css_online(), so it's enough to decide whether
3013 * hierarchically inherited attributes can still be changed or not.
3014 */
3015 lockdep_assert_held(&memcg_create_mutex);
3016
3017 rcu_read_lock();
3018 ret = css_next_child(NULL, &memcg->css);
3019 rcu_read_unlock();
3020 return ret;
3021 }
3022
3023 /*
3024 * Reclaims as many pages from the given memcg as possible and moves
3025 * the rest to the parent.
3026 *
3027 * Caller is responsible for holding css reference for memcg.
3028 */
3029 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3030 {
3031 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3032
3033 /* we call try-to-free pages for make this cgroup empty */
3034 lru_add_drain_all();
3035 /* try to free all pages in this cgroup */
3036 while (nr_retries && page_counter_read(&memcg->memory)) {
3037 int progress;
3038
3039 if (signal_pending(current))
3040 return -EINTR;
3041
3042 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3043 GFP_KERNEL, true);
3044 if (!progress) {
3045 nr_retries--;
3046 /* maybe some writeback is necessary */
3047 congestion_wait(BLK_RW_ASYNC, HZ/10);
3048 }
3049
3050 }
3051
3052 return 0;
3053 }
3054
3055 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3056 char *buf, size_t nbytes,
3057 loff_t off)
3058 {
3059 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3060
3061 if (mem_cgroup_is_root(memcg))
3062 return -EINVAL;
3063 return mem_cgroup_force_empty(memcg) ?: nbytes;
3064 }
3065
3066 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3067 struct cftype *cft)
3068 {
3069 return mem_cgroup_from_css(css)->use_hierarchy;
3070 }
3071
3072 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3073 struct cftype *cft, u64 val)
3074 {
3075 int retval = 0;
3076 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3077 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3078
3079 mutex_lock(&memcg_create_mutex);
3080
3081 if (memcg->use_hierarchy == val)
3082 goto out;
3083
3084 /*
3085 * If parent's use_hierarchy is set, we can't make any modifications
3086 * in the child subtrees. If it is unset, then the change can
3087 * occur, provided the current cgroup has no children.
3088 *
3089 * For the root cgroup, parent_mem is NULL, we allow value to be
3090 * set if there are no children.
3091 */
3092 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3093 (val == 1 || val == 0)) {
3094 if (!memcg_has_children(memcg))
3095 memcg->use_hierarchy = val;
3096 else
3097 retval = -EBUSY;
3098 } else
3099 retval = -EINVAL;
3100
3101 out:
3102 mutex_unlock(&memcg_create_mutex);
3103
3104 return retval;
3105 }
3106
3107 static unsigned long tree_stat(struct mem_cgroup *memcg,
3108 enum mem_cgroup_stat_index idx)
3109 {
3110 struct mem_cgroup *iter;
3111 long val = 0;
3112
3113 /* Per-cpu values can be negative, use a signed accumulator */
3114 for_each_mem_cgroup_tree(iter, memcg)
3115 val += mem_cgroup_read_stat(iter, idx);
3116
3117 if (val < 0) /* race ? */
3118 val = 0;
3119 return val;
3120 }
3121
3122 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3123 {
3124 u64 val;
3125
3126 if (mem_cgroup_is_root(memcg)) {
3127 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3128 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3129 if (swap)
3130 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3131 } else {
3132 if (!swap)
3133 val = page_counter_read(&memcg->memory);
3134 else
3135 val = page_counter_read(&memcg->memsw);
3136 }
3137 return val << PAGE_SHIFT;
3138 }
3139
3140 enum {
3141 RES_USAGE,
3142 RES_LIMIT,
3143 RES_MAX_USAGE,
3144 RES_FAILCNT,
3145 RES_SOFT_LIMIT,
3146 };
3147
3148 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3149 struct cftype *cft)
3150 {
3151 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3152 struct page_counter *counter;
3153
3154 switch (MEMFILE_TYPE(cft->private)) {
3155 case _MEM:
3156 counter = &memcg->memory;
3157 break;
3158 case _MEMSWAP:
3159 counter = &memcg->memsw;
3160 break;
3161 case _KMEM:
3162 counter = &memcg->kmem;
3163 break;
3164 default:
3165 BUG();
3166 }
3167
3168 switch (MEMFILE_ATTR(cft->private)) {
3169 case RES_USAGE:
3170 if (counter == &memcg->memory)
3171 return mem_cgroup_usage(memcg, false);
3172 if (counter == &memcg->memsw)
3173 return mem_cgroup_usage(memcg, true);
3174 return (u64)page_counter_read(counter) * PAGE_SIZE;
3175 case RES_LIMIT:
3176 return (u64)counter->limit * PAGE_SIZE;
3177 case RES_MAX_USAGE:
3178 return (u64)counter->watermark * PAGE_SIZE;
3179 case RES_FAILCNT:
3180 return counter->failcnt;
3181 case RES_SOFT_LIMIT:
3182 return (u64)memcg->soft_limit * PAGE_SIZE;
3183 default:
3184 BUG();
3185 }
3186 }
3187
3188 #ifdef CONFIG_MEMCG_KMEM
3189 static int memcg_activate_kmem(struct mem_cgroup *memcg,
3190 unsigned long nr_pages)
3191 {
3192 int err = 0;
3193 int memcg_id;
3194
3195 BUG_ON(memcg->kmemcg_id >= 0);
3196 BUG_ON(memcg->kmem_acct_activated);
3197 BUG_ON(memcg->kmem_acct_active);
3198
3199 /*
3200 * For simplicity, we won't allow this to be disabled. It also can't
3201 * be changed if the cgroup has children already, or if tasks had
3202 * already joined.
3203 *
3204 * If tasks join before we set the limit, a person looking at
3205 * kmem.usage_in_bytes will have no way to determine when it took
3206 * place, which makes the value quite meaningless.
3207 *
3208 * After it first became limited, changes in the value of the limit are
3209 * of course permitted.
3210 */
3211 mutex_lock(&memcg_create_mutex);
3212 if (cgroup_has_tasks(memcg->css.cgroup) ||
3213 (memcg->use_hierarchy && memcg_has_children(memcg)))
3214 err = -EBUSY;
3215 mutex_unlock(&memcg_create_mutex);
3216 if (err)
3217 goto out;
3218
3219 memcg_id = memcg_alloc_cache_id();
3220 if (memcg_id < 0) {
3221 err = memcg_id;
3222 goto out;
3223 }
3224
3225 /*
3226 * We couldn't have accounted to this cgroup, because it hasn't got
3227 * activated yet, so this should succeed.
3228 */
3229 err = page_counter_limit(&memcg->kmem, nr_pages);
3230 VM_BUG_ON(err);
3231
3232 static_key_slow_inc(&memcg_kmem_enabled_key);
3233 /*
3234 * A memory cgroup is considered kmem-active as soon as it gets
3235 * kmemcg_id. Setting the id after enabling static branching will
3236 * guarantee no one starts accounting before all call sites are
3237 * patched.
3238 */
3239 memcg->kmemcg_id = memcg_id;
3240 memcg->kmem_acct_activated = true;
3241 memcg->kmem_acct_active = true;
3242 out:
3243 return err;
3244 }
3245
3246 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3247 unsigned long limit)
3248 {
3249 int ret;
3250
3251 mutex_lock(&memcg_limit_mutex);
3252 if (!memcg_kmem_is_active(memcg))
3253 ret = memcg_activate_kmem(memcg, limit);
3254 else
3255 ret = page_counter_limit(&memcg->kmem, limit);
3256 mutex_unlock(&memcg_limit_mutex);
3257 return ret;
3258 }
3259
3260 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3261 {
3262 int ret = 0;
3263 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3264
3265 if (!parent)
3266 return 0;
3267
3268 mutex_lock(&memcg_limit_mutex);
3269 /*
3270 * If the parent cgroup is not kmem-active now, it cannot be activated
3271 * after this point, because it has at least one child already.
3272 */
3273 if (memcg_kmem_is_active(parent))
3274 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3275 mutex_unlock(&memcg_limit_mutex);
3276 return ret;
3277 }
3278 #else
3279 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3280 unsigned long limit)
3281 {
3282 return -EINVAL;
3283 }
3284 #endif /* CONFIG_MEMCG_KMEM */
3285
3286 /*
3287 * The user of this function is...
3288 * RES_LIMIT.
3289 */
3290 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3291 char *buf, size_t nbytes, loff_t off)
3292 {
3293 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3294 unsigned long nr_pages;
3295 int ret;
3296
3297 buf = strstrip(buf);
3298 ret = page_counter_memparse(buf, "-1", &nr_pages);
3299 if (ret)
3300 return ret;
3301
3302 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3303 case RES_LIMIT:
3304 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3305 ret = -EINVAL;
3306 break;
3307 }
3308 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3309 case _MEM:
3310 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3311 break;
3312 case _MEMSWAP:
3313 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3314 break;
3315 case _KMEM:
3316 ret = memcg_update_kmem_limit(memcg, nr_pages);
3317 break;
3318 }
3319 break;
3320 case RES_SOFT_LIMIT:
3321 memcg->soft_limit = nr_pages;
3322 ret = 0;
3323 break;
3324 }
3325 return ret ?: nbytes;
3326 }
3327
3328 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3329 size_t nbytes, loff_t off)
3330 {
3331 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3332 struct page_counter *counter;
3333
3334 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3335 case _MEM:
3336 counter = &memcg->memory;
3337 break;
3338 case _MEMSWAP:
3339 counter = &memcg->memsw;
3340 break;
3341 case _KMEM:
3342 counter = &memcg->kmem;
3343 break;
3344 default:
3345 BUG();
3346 }
3347
3348 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3349 case RES_MAX_USAGE:
3350 page_counter_reset_watermark(counter);
3351 break;
3352 case RES_FAILCNT:
3353 counter->failcnt = 0;
3354 break;
3355 default:
3356 BUG();
3357 }
3358
3359 return nbytes;
3360 }
3361
3362 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3363 struct cftype *cft)
3364 {
3365 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3366 }
3367
3368 #ifdef CONFIG_MMU
3369 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3370 struct cftype *cft, u64 val)
3371 {
3372 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3373
3374 if (val & ~MOVE_MASK)
3375 return -EINVAL;
3376
3377 /*
3378 * No kind of locking is needed in here, because ->can_attach() will
3379 * check this value once in the beginning of the process, and then carry
3380 * on with stale data. This means that changes to this value will only
3381 * affect task migrations starting after the change.
3382 */
3383 memcg->move_charge_at_immigrate = val;
3384 return 0;
3385 }
3386 #else
3387 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3388 struct cftype *cft, u64 val)
3389 {
3390 return -ENOSYS;
3391 }
3392 #endif
3393
3394 #ifdef CONFIG_NUMA
3395 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3396 {
3397 struct numa_stat {
3398 const char *name;
3399 unsigned int lru_mask;
3400 };
3401
3402 static const struct numa_stat stats[] = {
3403 { "total", LRU_ALL },
3404 { "file", LRU_ALL_FILE },
3405 { "anon", LRU_ALL_ANON },
3406 { "unevictable", BIT(LRU_UNEVICTABLE) },
3407 };
3408 const struct numa_stat *stat;
3409 int nid;
3410 unsigned long nr;
3411 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3412
3413 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3414 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3415 seq_printf(m, "%s=%lu", stat->name, nr);
3416 for_each_node_state(nid, N_MEMORY) {
3417 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3418 stat->lru_mask);
3419 seq_printf(m, " N%d=%lu", nid, nr);
3420 }
3421 seq_putc(m, '\n');
3422 }
3423
3424 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3425 struct mem_cgroup *iter;
3426
3427 nr = 0;
3428 for_each_mem_cgroup_tree(iter, memcg)
3429 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3430 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3431 for_each_node_state(nid, N_MEMORY) {
3432 nr = 0;
3433 for_each_mem_cgroup_tree(iter, memcg)
3434 nr += mem_cgroup_node_nr_lru_pages(
3435 iter, nid, stat->lru_mask);
3436 seq_printf(m, " N%d=%lu", nid, nr);
3437 }
3438 seq_putc(m, '\n');
3439 }
3440
3441 return 0;
3442 }
3443 #endif /* CONFIG_NUMA */
3444
3445 static int memcg_stat_show(struct seq_file *m, void *v)
3446 {
3447 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3448 unsigned long memory, memsw;
3449 struct mem_cgroup *mi;
3450 unsigned int i;
3451
3452 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3453 MEM_CGROUP_STAT_NSTATS);
3454 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3455 MEM_CGROUP_EVENTS_NSTATS);
3456 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3457
3458 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3459 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3460 continue;
3461 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3462 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3463 }
3464
3465 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3466 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3467 mem_cgroup_read_events(memcg, i));
3468
3469 for (i = 0; i < NR_LRU_LISTS; i++)
3470 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3471 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3472
3473 /* Hierarchical information */
3474 memory = memsw = PAGE_COUNTER_MAX;
3475 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3476 memory = min(memory, mi->memory.limit);
3477 memsw = min(memsw, mi->memsw.limit);
3478 }
3479 seq_printf(m, "hierarchical_memory_limit %llu\n",
3480 (u64)memory * PAGE_SIZE);
3481 if (do_swap_account)
3482 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3483 (u64)memsw * PAGE_SIZE);
3484
3485 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3486 long long val = 0;
3487
3488 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3489 continue;
3490 for_each_mem_cgroup_tree(mi, memcg)
3491 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3492 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3493 }
3494
3495 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3496 unsigned long long val = 0;
3497
3498 for_each_mem_cgroup_tree(mi, memcg)
3499 val += mem_cgroup_read_events(mi, i);
3500 seq_printf(m, "total_%s %llu\n",
3501 mem_cgroup_events_names[i], val);
3502 }
3503
3504 for (i = 0; i < NR_LRU_LISTS; i++) {
3505 unsigned long long val = 0;
3506
3507 for_each_mem_cgroup_tree(mi, memcg)
3508 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3509 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3510 }
3511
3512 #ifdef CONFIG_DEBUG_VM
3513 {
3514 int nid, zid;
3515 struct mem_cgroup_per_zone *mz;
3516 struct zone_reclaim_stat *rstat;
3517 unsigned long recent_rotated[2] = {0, 0};
3518 unsigned long recent_scanned[2] = {0, 0};
3519
3520 for_each_online_node(nid)
3521 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3522 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3523 rstat = &mz->lruvec.reclaim_stat;
3524
3525 recent_rotated[0] += rstat->recent_rotated[0];
3526 recent_rotated[1] += rstat->recent_rotated[1];
3527 recent_scanned[0] += rstat->recent_scanned[0];
3528 recent_scanned[1] += rstat->recent_scanned[1];
3529 }
3530 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3531 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3532 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3533 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3534 }
3535 #endif
3536
3537 return 0;
3538 }
3539
3540 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3541 struct cftype *cft)
3542 {
3543 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3544
3545 return mem_cgroup_swappiness(memcg);
3546 }
3547
3548 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3549 struct cftype *cft, u64 val)
3550 {
3551 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3552
3553 if (val > 100)
3554 return -EINVAL;
3555
3556 if (css->parent)
3557 memcg->swappiness = val;
3558 else
3559 vm_swappiness = val;
3560
3561 return 0;
3562 }
3563
3564 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3565 {
3566 struct mem_cgroup_threshold_ary *t;
3567 unsigned long usage;
3568 int i;
3569
3570 rcu_read_lock();
3571 if (!swap)
3572 t = rcu_dereference(memcg->thresholds.primary);
3573 else
3574 t = rcu_dereference(memcg->memsw_thresholds.primary);
3575
3576 if (!t)
3577 goto unlock;
3578
3579 usage = mem_cgroup_usage(memcg, swap);
3580
3581 /*
3582 * current_threshold points to threshold just below or equal to usage.
3583 * If it's not true, a threshold was crossed after last
3584 * call of __mem_cgroup_threshold().
3585 */
3586 i = t->current_threshold;
3587
3588 /*
3589 * Iterate backward over array of thresholds starting from
3590 * current_threshold and check if a threshold is crossed.
3591 * If none of thresholds below usage is crossed, we read
3592 * only one element of the array here.
3593 */
3594 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3595 eventfd_signal(t->entries[i].eventfd, 1);
3596
3597 /* i = current_threshold + 1 */
3598 i++;
3599
3600 /*
3601 * Iterate forward over array of thresholds starting from
3602 * current_threshold+1 and check if a threshold is crossed.
3603 * If none of thresholds above usage is crossed, we read
3604 * only one element of the array here.
3605 */
3606 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3607 eventfd_signal(t->entries[i].eventfd, 1);
3608
3609 /* Update current_threshold */
3610 t->current_threshold = i - 1;
3611 unlock:
3612 rcu_read_unlock();
3613 }
3614
3615 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3616 {
3617 while (memcg) {
3618 __mem_cgroup_threshold(memcg, false);
3619 if (do_swap_account)
3620 __mem_cgroup_threshold(memcg, true);
3621
3622 memcg = parent_mem_cgroup(memcg);
3623 }
3624 }
3625
3626 static int compare_thresholds(const void *a, const void *b)
3627 {
3628 const struct mem_cgroup_threshold *_a = a;
3629 const struct mem_cgroup_threshold *_b = b;
3630
3631 if (_a->threshold > _b->threshold)
3632 return 1;
3633
3634 if (_a->threshold < _b->threshold)
3635 return -1;
3636
3637 return 0;
3638 }
3639
3640 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3641 {
3642 struct mem_cgroup_eventfd_list *ev;
3643
3644 spin_lock(&memcg_oom_lock);
3645
3646 list_for_each_entry(ev, &memcg->oom_notify, list)
3647 eventfd_signal(ev->eventfd, 1);
3648
3649 spin_unlock(&memcg_oom_lock);
3650 return 0;
3651 }
3652
3653 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3654 {
3655 struct mem_cgroup *iter;
3656
3657 for_each_mem_cgroup_tree(iter, memcg)
3658 mem_cgroup_oom_notify_cb(iter);
3659 }
3660
3661 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3662 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3663 {
3664 struct mem_cgroup_thresholds *thresholds;
3665 struct mem_cgroup_threshold_ary *new;
3666 unsigned long threshold;
3667 unsigned long usage;
3668 int i, size, ret;
3669
3670 ret = page_counter_memparse(args, "-1", &threshold);
3671 if (ret)
3672 return ret;
3673
3674 mutex_lock(&memcg->thresholds_lock);
3675
3676 if (type == _MEM) {
3677 thresholds = &memcg->thresholds;
3678 usage = mem_cgroup_usage(memcg, false);
3679 } else if (type == _MEMSWAP) {
3680 thresholds = &memcg->memsw_thresholds;
3681 usage = mem_cgroup_usage(memcg, true);
3682 } else
3683 BUG();
3684
3685 /* Check if a threshold crossed before adding a new one */
3686 if (thresholds->primary)
3687 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3688
3689 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3690
3691 /* Allocate memory for new array of thresholds */
3692 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3693 GFP_KERNEL);
3694 if (!new) {
3695 ret = -ENOMEM;
3696 goto unlock;
3697 }
3698 new->size = size;
3699
3700 /* Copy thresholds (if any) to new array */
3701 if (thresholds->primary) {
3702 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3703 sizeof(struct mem_cgroup_threshold));
3704 }
3705
3706 /* Add new threshold */
3707 new->entries[size - 1].eventfd = eventfd;
3708 new->entries[size - 1].threshold = threshold;
3709
3710 /* Sort thresholds. Registering of new threshold isn't time-critical */
3711 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3712 compare_thresholds, NULL);
3713
3714 /* Find current threshold */
3715 new->current_threshold = -1;
3716 for (i = 0; i < size; i++) {
3717 if (new->entries[i].threshold <= usage) {
3718 /*
3719 * new->current_threshold will not be used until
3720 * rcu_assign_pointer(), so it's safe to increment
3721 * it here.
3722 */
3723 ++new->current_threshold;
3724 } else
3725 break;
3726 }
3727
3728 /* Free old spare buffer and save old primary buffer as spare */
3729 kfree(thresholds->spare);
3730 thresholds->spare = thresholds->primary;
3731
3732 rcu_assign_pointer(thresholds->primary, new);
3733
3734 /* To be sure that nobody uses thresholds */
3735 synchronize_rcu();
3736
3737 unlock:
3738 mutex_unlock(&memcg->thresholds_lock);
3739
3740 return ret;
3741 }
3742
3743 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3744 struct eventfd_ctx *eventfd, const char *args)
3745 {
3746 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3747 }
3748
3749 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3750 struct eventfd_ctx *eventfd, const char *args)
3751 {
3752 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3753 }
3754
3755 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3756 struct eventfd_ctx *eventfd, enum res_type type)
3757 {
3758 struct mem_cgroup_thresholds *thresholds;
3759 struct mem_cgroup_threshold_ary *new;
3760 unsigned long usage;
3761 int i, j, size;
3762
3763 mutex_lock(&memcg->thresholds_lock);
3764
3765 if (type == _MEM) {
3766 thresholds = &memcg->thresholds;
3767 usage = mem_cgroup_usage(memcg, false);
3768 } else if (type == _MEMSWAP) {
3769 thresholds = &memcg->memsw_thresholds;
3770 usage = mem_cgroup_usage(memcg, true);
3771 } else
3772 BUG();
3773
3774 if (!thresholds->primary)
3775 goto unlock;
3776
3777 /* Check if a threshold crossed before removing */
3778 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3779
3780 /* Calculate new number of threshold */
3781 size = 0;
3782 for (i = 0; i < thresholds->primary->size; i++) {
3783 if (thresholds->primary->entries[i].eventfd != eventfd)
3784 size++;
3785 }
3786
3787 new = thresholds->spare;
3788
3789 /* Set thresholds array to NULL if we don't have thresholds */
3790 if (!size) {
3791 kfree(new);
3792 new = NULL;
3793 goto swap_buffers;
3794 }
3795
3796 new->size = size;
3797
3798 /* Copy thresholds and find current threshold */
3799 new->current_threshold = -1;
3800 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3801 if (thresholds->primary->entries[i].eventfd == eventfd)
3802 continue;
3803
3804 new->entries[j] = thresholds->primary->entries[i];
3805 if (new->entries[j].threshold <= usage) {
3806 /*
3807 * new->current_threshold will not be used
3808 * until rcu_assign_pointer(), so it's safe to increment
3809 * it here.
3810 */
3811 ++new->current_threshold;
3812 }
3813 j++;
3814 }
3815
3816 swap_buffers:
3817 /* Swap primary and spare array */
3818 thresholds->spare = thresholds->primary;
3819 /* If all events are unregistered, free the spare array */
3820 if (!new) {
3821 kfree(thresholds->spare);
3822 thresholds->spare = NULL;
3823 }
3824
3825 rcu_assign_pointer(thresholds->primary, new);
3826
3827 /* To be sure that nobody uses thresholds */
3828 synchronize_rcu();
3829 unlock:
3830 mutex_unlock(&memcg->thresholds_lock);
3831 }
3832
3833 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3834 struct eventfd_ctx *eventfd)
3835 {
3836 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3837 }
3838
3839 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3840 struct eventfd_ctx *eventfd)
3841 {
3842 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3843 }
3844
3845 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3846 struct eventfd_ctx *eventfd, const char *args)
3847 {
3848 struct mem_cgroup_eventfd_list *event;
3849
3850 event = kmalloc(sizeof(*event), GFP_KERNEL);
3851 if (!event)
3852 return -ENOMEM;
3853
3854 spin_lock(&memcg_oom_lock);
3855
3856 event->eventfd = eventfd;
3857 list_add(&event->list, &memcg->oom_notify);
3858
3859 /* already in OOM ? */
3860 if (atomic_read(&memcg->under_oom))
3861 eventfd_signal(eventfd, 1);
3862 spin_unlock(&memcg_oom_lock);
3863
3864 return 0;
3865 }
3866
3867 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3868 struct eventfd_ctx *eventfd)
3869 {
3870 struct mem_cgroup_eventfd_list *ev, *tmp;
3871
3872 spin_lock(&memcg_oom_lock);
3873
3874 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3875 if (ev->eventfd == eventfd) {
3876 list_del(&ev->list);
3877 kfree(ev);
3878 }
3879 }
3880
3881 spin_unlock(&memcg_oom_lock);
3882 }
3883
3884 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3885 {
3886 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3887
3888 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3889 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3890 return 0;
3891 }
3892
3893 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3894 struct cftype *cft, u64 val)
3895 {
3896 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3897
3898 /* cannot set to root cgroup and only 0 and 1 are allowed */
3899 if (!css->parent || !((val == 0) || (val == 1)))
3900 return -EINVAL;
3901
3902 memcg->oom_kill_disable = val;
3903 if (!val)
3904 memcg_oom_recover(memcg);
3905
3906 return 0;
3907 }
3908
3909 #ifdef CONFIG_MEMCG_KMEM
3910 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3911 {
3912 int ret;
3913
3914 ret = memcg_propagate_kmem(memcg);
3915 if (ret)
3916 return ret;
3917
3918 return mem_cgroup_sockets_init(memcg, ss);
3919 }
3920
3921 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3922 {
3923 struct cgroup_subsys_state *css;
3924 struct mem_cgroup *parent, *child;
3925 int kmemcg_id;
3926
3927 if (!memcg->kmem_acct_active)
3928 return;
3929
3930 /*
3931 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3932 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3933 * guarantees no cache will be created for this cgroup after we are
3934 * done (see memcg_create_kmem_cache()).
3935 */
3936 memcg->kmem_acct_active = false;
3937
3938 memcg_deactivate_kmem_caches(memcg);
3939
3940 kmemcg_id = memcg->kmemcg_id;
3941 BUG_ON(kmemcg_id < 0);
3942
3943 parent = parent_mem_cgroup(memcg);
3944 if (!parent)
3945 parent = root_mem_cgroup;
3946
3947 /*
3948 * Change kmemcg_id of this cgroup and all its descendants to the
3949 * parent's id, and then move all entries from this cgroup's list_lrus
3950 * to ones of the parent. After we have finished, all list_lrus
3951 * corresponding to this cgroup are guaranteed to remain empty. The
3952 * ordering is imposed by list_lru_node->lock taken by
3953 * memcg_drain_all_list_lrus().
3954 */
3955 css_for_each_descendant_pre(css, &memcg->css) {
3956 child = mem_cgroup_from_css(css);
3957 BUG_ON(child->kmemcg_id != kmemcg_id);
3958 child->kmemcg_id = parent->kmemcg_id;
3959 if (!memcg->use_hierarchy)
3960 break;
3961 }
3962 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3963
3964 memcg_free_cache_id(kmemcg_id);
3965 }
3966
3967 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3968 {
3969 if (memcg->kmem_acct_activated) {
3970 memcg_destroy_kmem_caches(memcg);
3971 static_key_slow_dec(&memcg_kmem_enabled_key);
3972 WARN_ON(page_counter_read(&memcg->kmem));
3973 }
3974 mem_cgroup_sockets_destroy(memcg);
3975 }
3976 #else
3977 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3978 {
3979 return 0;
3980 }
3981
3982 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3983 {
3984 }
3985
3986 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3987 {
3988 }
3989 #endif
3990
3991 #ifdef CONFIG_CGROUP_WRITEBACK
3992
3993 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3994 {
3995 return &memcg->cgwb_list;
3996 }
3997
3998 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3999 {
4000 return wb_domain_init(&memcg->cgwb_domain, gfp);
4001 }
4002
4003 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4004 {
4005 wb_domain_exit(&memcg->cgwb_domain);
4006 }
4007
4008 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4009 {
4010 wb_domain_size_changed(&memcg->cgwb_domain);
4011 }
4012
4013 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4014 {
4015 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4016
4017 if (!memcg->css.parent)
4018 return NULL;
4019
4020 return &memcg->cgwb_domain;
4021 }
4022
4023 /**
4024 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4025 * @wb: bdi_writeback in question
4026 * @pavail: out parameter for number of available pages
4027 * @pdirty: out parameter for number of dirty pages
4028 * @pwriteback: out parameter for number of pages under writeback
4029 *
4030 * Determine the numbers of available, dirty, and writeback pages in @wb's
4031 * memcg. Dirty and writeback are self-explanatory. Available is a bit
4032 * more involved.
4033 *
4034 * A memcg's headroom is "min(max, high) - used". The available memory is
4035 * calculated as the lowest headroom of itself and the ancestors plus the
4036 * number of pages already being used for file pages. Note that this
4037 * doesn't consider the actual amount of available memory in the system.
4038 * The caller should further cap *@pavail accordingly.
4039 */
4040 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pavail,
4041 unsigned long *pdirty, unsigned long *pwriteback)
4042 {
4043 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4044 struct mem_cgroup *parent;
4045 unsigned long head_room = PAGE_COUNTER_MAX;
4046 unsigned long file_pages;
4047
4048 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
4049
4050 /* this should eventually include NR_UNSTABLE_NFS */
4051 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
4052
4053 file_pages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
4054 (1 << LRU_ACTIVE_FILE));
4055 while ((parent = parent_mem_cgroup(memcg))) {
4056 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
4057 unsigned long used = page_counter_read(&memcg->memory);
4058
4059 head_room = min(head_room, ceiling - min(ceiling, used));
4060 memcg = parent;
4061 }
4062
4063 *pavail = file_pages + head_room;
4064 }
4065
4066 #else /* CONFIG_CGROUP_WRITEBACK */
4067
4068 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4069 {
4070 return 0;
4071 }
4072
4073 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4074 {
4075 }
4076
4077 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4078 {
4079 }
4080
4081 #endif /* CONFIG_CGROUP_WRITEBACK */
4082
4083 /*
4084 * DO NOT USE IN NEW FILES.
4085 *
4086 * "cgroup.event_control" implementation.
4087 *
4088 * This is way over-engineered. It tries to support fully configurable
4089 * events for each user. Such level of flexibility is completely
4090 * unnecessary especially in the light of the planned unified hierarchy.
4091 *
4092 * Please deprecate this and replace with something simpler if at all
4093 * possible.
4094 */
4095
4096 /*
4097 * Unregister event and free resources.
4098 *
4099 * Gets called from workqueue.
4100 */
4101 static void memcg_event_remove(struct work_struct *work)
4102 {
4103 struct mem_cgroup_event *event =
4104 container_of(work, struct mem_cgroup_event, remove);
4105 struct mem_cgroup *memcg = event->memcg;
4106
4107 remove_wait_queue(event->wqh, &event->wait);
4108
4109 event->unregister_event(memcg, event->eventfd);
4110
4111 /* Notify userspace the event is going away. */
4112 eventfd_signal(event->eventfd, 1);
4113
4114 eventfd_ctx_put(event->eventfd);
4115 kfree(event);
4116 css_put(&memcg->css);
4117 }
4118
4119 /*
4120 * Gets called on POLLHUP on eventfd when user closes it.
4121 *
4122 * Called with wqh->lock held and interrupts disabled.
4123 */
4124 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4125 int sync, void *key)
4126 {
4127 struct mem_cgroup_event *event =
4128 container_of(wait, struct mem_cgroup_event, wait);
4129 struct mem_cgroup *memcg = event->memcg;
4130 unsigned long flags = (unsigned long)key;
4131
4132 if (flags & POLLHUP) {
4133 /*
4134 * If the event has been detached at cgroup removal, we
4135 * can simply return knowing the other side will cleanup
4136 * for us.
4137 *
4138 * We can't race against event freeing since the other
4139 * side will require wqh->lock via remove_wait_queue(),
4140 * which we hold.
4141 */
4142 spin_lock(&memcg->event_list_lock);
4143 if (!list_empty(&event->list)) {
4144 list_del_init(&event->list);
4145 /*
4146 * We are in atomic context, but cgroup_event_remove()
4147 * may sleep, so we have to call it in workqueue.
4148 */
4149 schedule_work(&event->remove);
4150 }
4151 spin_unlock(&memcg->event_list_lock);
4152 }
4153
4154 return 0;
4155 }
4156
4157 static void memcg_event_ptable_queue_proc(struct file *file,
4158 wait_queue_head_t *wqh, poll_table *pt)
4159 {
4160 struct mem_cgroup_event *event =
4161 container_of(pt, struct mem_cgroup_event, pt);
4162
4163 event->wqh = wqh;
4164 add_wait_queue(wqh, &event->wait);
4165 }
4166
4167 /*
4168 * DO NOT USE IN NEW FILES.
4169 *
4170 * Parse input and register new cgroup event handler.
4171 *
4172 * Input must be in format '<event_fd> <control_fd> <args>'.
4173 * Interpretation of args is defined by control file implementation.
4174 */
4175 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4176 char *buf, size_t nbytes, loff_t off)
4177 {
4178 struct cgroup_subsys_state *css = of_css(of);
4179 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4180 struct mem_cgroup_event *event;
4181 struct cgroup_subsys_state *cfile_css;
4182 unsigned int efd, cfd;
4183 struct fd efile;
4184 struct fd cfile;
4185 const char *name;
4186 char *endp;
4187 int ret;
4188
4189 buf = strstrip(buf);
4190
4191 efd = simple_strtoul(buf, &endp, 10);
4192 if (*endp != ' ')
4193 return -EINVAL;
4194 buf = endp + 1;
4195
4196 cfd = simple_strtoul(buf, &endp, 10);
4197 if ((*endp != ' ') && (*endp != '\0'))
4198 return -EINVAL;
4199 buf = endp + 1;
4200
4201 event = kzalloc(sizeof(*event), GFP_KERNEL);
4202 if (!event)
4203 return -ENOMEM;
4204
4205 event->memcg = memcg;
4206 INIT_LIST_HEAD(&event->list);
4207 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4208 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4209 INIT_WORK(&event->remove, memcg_event_remove);
4210
4211 efile = fdget(efd);
4212 if (!efile.file) {
4213 ret = -EBADF;
4214 goto out_kfree;
4215 }
4216
4217 event->eventfd = eventfd_ctx_fileget(efile.file);
4218 if (IS_ERR(event->eventfd)) {
4219 ret = PTR_ERR(event->eventfd);
4220 goto out_put_efile;
4221 }
4222
4223 cfile = fdget(cfd);
4224 if (!cfile.file) {
4225 ret = -EBADF;
4226 goto out_put_eventfd;
4227 }
4228
4229 /* the process need read permission on control file */
4230 /* AV: shouldn't we check that it's been opened for read instead? */
4231 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4232 if (ret < 0)
4233 goto out_put_cfile;
4234
4235 /*
4236 * Determine the event callbacks and set them in @event. This used
4237 * to be done via struct cftype but cgroup core no longer knows
4238 * about these events. The following is crude but the whole thing
4239 * is for compatibility anyway.
4240 *
4241 * DO NOT ADD NEW FILES.
4242 */
4243 name = cfile.file->f_path.dentry->d_name.name;
4244
4245 if (!strcmp(name, "memory.usage_in_bytes")) {
4246 event->register_event = mem_cgroup_usage_register_event;
4247 event->unregister_event = mem_cgroup_usage_unregister_event;
4248 } else if (!strcmp(name, "memory.oom_control")) {
4249 event->register_event = mem_cgroup_oom_register_event;
4250 event->unregister_event = mem_cgroup_oom_unregister_event;
4251 } else if (!strcmp(name, "memory.pressure_level")) {
4252 event->register_event = vmpressure_register_event;
4253 event->unregister_event = vmpressure_unregister_event;
4254 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4255 event->register_event = memsw_cgroup_usage_register_event;
4256 event->unregister_event = memsw_cgroup_usage_unregister_event;
4257 } else {
4258 ret = -EINVAL;
4259 goto out_put_cfile;
4260 }
4261
4262 /*
4263 * Verify @cfile should belong to @css. Also, remaining events are
4264 * automatically removed on cgroup destruction but the removal is
4265 * asynchronous, so take an extra ref on @css.
4266 */
4267 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4268 &memory_cgrp_subsys);
4269 ret = -EINVAL;
4270 if (IS_ERR(cfile_css))
4271 goto out_put_cfile;
4272 if (cfile_css != css) {
4273 css_put(cfile_css);
4274 goto out_put_cfile;
4275 }
4276
4277 ret = event->register_event(memcg, event->eventfd, buf);
4278 if (ret)
4279 goto out_put_css;
4280
4281 efile.file->f_op->poll(efile.file, &event->pt);
4282
4283 spin_lock(&memcg->event_list_lock);
4284 list_add(&event->list, &memcg->event_list);
4285 spin_unlock(&memcg->event_list_lock);
4286
4287 fdput(cfile);
4288 fdput(efile);
4289
4290 return nbytes;
4291
4292 out_put_css:
4293 css_put(css);
4294 out_put_cfile:
4295 fdput(cfile);
4296 out_put_eventfd:
4297 eventfd_ctx_put(event->eventfd);
4298 out_put_efile:
4299 fdput(efile);
4300 out_kfree:
4301 kfree(event);
4302
4303 return ret;
4304 }
4305
4306 static struct cftype mem_cgroup_legacy_files[] = {
4307 {
4308 .name = "usage_in_bytes",
4309 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4310 .read_u64 = mem_cgroup_read_u64,
4311 },
4312 {
4313 .name = "max_usage_in_bytes",
4314 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4315 .write = mem_cgroup_reset,
4316 .read_u64 = mem_cgroup_read_u64,
4317 },
4318 {
4319 .name = "limit_in_bytes",
4320 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4321 .write = mem_cgroup_write,
4322 .read_u64 = mem_cgroup_read_u64,
4323 },
4324 {
4325 .name = "soft_limit_in_bytes",
4326 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4327 .write = mem_cgroup_write,
4328 .read_u64 = mem_cgroup_read_u64,
4329 },
4330 {
4331 .name = "failcnt",
4332 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4333 .write = mem_cgroup_reset,
4334 .read_u64 = mem_cgroup_read_u64,
4335 },
4336 {
4337 .name = "stat",
4338 .seq_show = memcg_stat_show,
4339 },
4340 {
4341 .name = "force_empty",
4342 .write = mem_cgroup_force_empty_write,
4343 },
4344 {
4345 .name = "use_hierarchy",
4346 .write_u64 = mem_cgroup_hierarchy_write,
4347 .read_u64 = mem_cgroup_hierarchy_read,
4348 },
4349 {
4350 .name = "cgroup.event_control", /* XXX: for compat */
4351 .write = memcg_write_event_control,
4352 .flags = CFTYPE_NO_PREFIX,
4353 .mode = S_IWUGO,
4354 },
4355 {
4356 .name = "swappiness",
4357 .read_u64 = mem_cgroup_swappiness_read,
4358 .write_u64 = mem_cgroup_swappiness_write,
4359 },
4360 {
4361 .name = "move_charge_at_immigrate",
4362 .read_u64 = mem_cgroup_move_charge_read,
4363 .write_u64 = mem_cgroup_move_charge_write,
4364 },
4365 {
4366 .name = "oom_control",
4367 .seq_show = mem_cgroup_oom_control_read,
4368 .write_u64 = mem_cgroup_oom_control_write,
4369 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4370 },
4371 {
4372 .name = "pressure_level",
4373 },
4374 #ifdef CONFIG_NUMA
4375 {
4376 .name = "numa_stat",
4377 .seq_show = memcg_numa_stat_show,
4378 },
4379 #endif
4380 #ifdef CONFIG_MEMCG_KMEM
4381 {
4382 .name = "kmem.limit_in_bytes",
4383 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4384 .write = mem_cgroup_write,
4385 .read_u64 = mem_cgroup_read_u64,
4386 },
4387 {
4388 .name = "kmem.usage_in_bytes",
4389 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4390 .read_u64 = mem_cgroup_read_u64,
4391 },
4392 {
4393 .name = "kmem.failcnt",
4394 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4395 .write = mem_cgroup_reset,
4396 .read_u64 = mem_cgroup_read_u64,
4397 },
4398 {
4399 .name = "kmem.max_usage_in_bytes",
4400 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4401 .write = mem_cgroup_reset,
4402 .read_u64 = mem_cgroup_read_u64,
4403 },
4404 #ifdef CONFIG_SLABINFO
4405 {
4406 .name = "kmem.slabinfo",
4407 .seq_start = slab_start,
4408 .seq_next = slab_next,
4409 .seq_stop = slab_stop,
4410 .seq_show = memcg_slab_show,
4411 },
4412 #endif
4413 #endif
4414 { }, /* terminate */
4415 };
4416
4417 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4418 {
4419 struct mem_cgroup_per_node *pn;
4420 struct mem_cgroup_per_zone *mz;
4421 int zone, tmp = node;
4422 /*
4423 * This routine is called against possible nodes.
4424 * But it's BUG to call kmalloc() against offline node.
4425 *
4426 * TODO: this routine can waste much memory for nodes which will
4427 * never be onlined. It's better to use memory hotplug callback
4428 * function.
4429 */
4430 if (!node_state(node, N_NORMAL_MEMORY))
4431 tmp = -1;
4432 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4433 if (!pn)
4434 return 1;
4435
4436 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4437 mz = &pn->zoneinfo[zone];
4438 lruvec_init(&mz->lruvec);
4439 mz->usage_in_excess = 0;
4440 mz->on_tree = false;
4441 mz->memcg = memcg;
4442 }
4443 memcg->nodeinfo[node] = pn;
4444 return 0;
4445 }
4446
4447 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4448 {
4449 kfree(memcg->nodeinfo[node]);
4450 }
4451
4452 static struct mem_cgroup *mem_cgroup_alloc(void)
4453 {
4454 struct mem_cgroup *memcg;
4455 size_t size;
4456
4457 size = sizeof(struct mem_cgroup);
4458 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4459
4460 memcg = kzalloc(size, GFP_KERNEL);
4461 if (!memcg)
4462 return NULL;
4463
4464 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4465 if (!memcg->stat)
4466 goto out_free;
4467
4468 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4469 goto out_free_stat;
4470
4471 spin_lock_init(&memcg->pcp_counter_lock);
4472 return memcg;
4473
4474 out_free_stat:
4475 free_percpu(memcg->stat);
4476 out_free:
4477 kfree(memcg);
4478 return NULL;
4479 }
4480
4481 /*
4482 * At destroying mem_cgroup, references from swap_cgroup can remain.
4483 * (scanning all at force_empty is too costly...)
4484 *
4485 * Instead of clearing all references at force_empty, we remember
4486 * the number of reference from swap_cgroup and free mem_cgroup when
4487 * it goes down to 0.
4488 *
4489 * Removal of cgroup itself succeeds regardless of refs from swap.
4490 */
4491
4492 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4493 {
4494 int node;
4495
4496 mem_cgroup_remove_from_trees(memcg);
4497
4498 for_each_node(node)
4499 free_mem_cgroup_per_zone_info(memcg, node);
4500
4501 free_percpu(memcg->stat);
4502 memcg_wb_domain_exit(memcg);
4503 kfree(memcg);
4504 }
4505
4506 /*
4507 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4508 */
4509 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4510 {
4511 if (!memcg->memory.parent)
4512 return NULL;
4513 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4514 }
4515 EXPORT_SYMBOL(parent_mem_cgroup);
4516
4517 static struct cgroup_subsys_state * __ref
4518 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4519 {
4520 struct mem_cgroup *memcg;
4521 long error = -ENOMEM;
4522 int node;
4523
4524 memcg = mem_cgroup_alloc();
4525 if (!memcg)
4526 return ERR_PTR(error);
4527
4528 for_each_node(node)
4529 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4530 goto free_out;
4531
4532 /* root ? */
4533 if (parent_css == NULL) {
4534 root_mem_cgroup = memcg;
4535 mem_cgroup_root_css = &memcg->css;
4536 page_counter_init(&memcg->memory, NULL);
4537 memcg->high = PAGE_COUNTER_MAX;
4538 memcg->soft_limit = PAGE_COUNTER_MAX;
4539 page_counter_init(&memcg->memsw, NULL);
4540 page_counter_init(&memcg->kmem, NULL);
4541 }
4542
4543 memcg->last_scanned_node = MAX_NUMNODES;
4544 INIT_LIST_HEAD(&memcg->oom_notify);
4545 memcg->move_charge_at_immigrate = 0;
4546 mutex_init(&memcg->thresholds_lock);
4547 spin_lock_init(&memcg->move_lock);
4548 vmpressure_init(&memcg->vmpressure);
4549 INIT_LIST_HEAD(&memcg->event_list);
4550 spin_lock_init(&memcg->event_list_lock);
4551 #ifdef CONFIG_MEMCG_KMEM
4552 memcg->kmemcg_id = -1;
4553 #endif
4554 #ifdef CONFIG_CGROUP_WRITEBACK
4555 INIT_LIST_HEAD(&memcg->cgwb_list);
4556 #endif
4557 return &memcg->css;
4558
4559 free_out:
4560 __mem_cgroup_free(memcg);
4561 return ERR_PTR(error);
4562 }
4563
4564 static int
4565 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4566 {
4567 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4568 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4569 int ret;
4570
4571 if (css->id > MEM_CGROUP_ID_MAX)
4572 return -ENOSPC;
4573
4574 if (!parent)
4575 return 0;
4576
4577 mutex_lock(&memcg_create_mutex);
4578
4579 memcg->use_hierarchy = parent->use_hierarchy;
4580 memcg->oom_kill_disable = parent->oom_kill_disable;
4581 memcg->swappiness = mem_cgroup_swappiness(parent);
4582
4583 if (parent->use_hierarchy) {
4584 page_counter_init(&memcg->memory, &parent->memory);
4585 memcg->high = PAGE_COUNTER_MAX;
4586 memcg->soft_limit = PAGE_COUNTER_MAX;
4587 page_counter_init(&memcg->memsw, &parent->memsw);
4588 page_counter_init(&memcg->kmem, &parent->kmem);
4589
4590 /*
4591 * No need to take a reference to the parent because cgroup
4592 * core guarantees its existence.
4593 */
4594 } else {
4595 page_counter_init(&memcg->memory, NULL);
4596 memcg->high = PAGE_COUNTER_MAX;
4597 memcg->soft_limit = PAGE_COUNTER_MAX;
4598 page_counter_init(&memcg->memsw, NULL);
4599 page_counter_init(&memcg->kmem, NULL);
4600 /*
4601 * Deeper hierachy with use_hierarchy == false doesn't make
4602 * much sense so let cgroup subsystem know about this
4603 * unfortunate state in our controller.
4604 */
4605 if (parent != root_mem_cgroup)
4606 memory_cgrp_subsys.broken_hierarchy = true;
4607 }
4608 mutex_unlock(&memcg_create_mutex);
4609
4610 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4611 if (ret)
4612 return ret;
4613
4614 /*
4615 * Make sure the memcg is initialized: mem_cgroup_iter()
4616 * orders reading memcg->initialized against its callers
4617 * reading the memcg members.
4618 */
4619 smp_store_release(&memcg->initialized, 1);
4620
4621 return 0;
4622 }
4623
4624 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4625 {
4626 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4627 struct mem_cgroup_event *event, *tmp;
4628
4629 /*
4630 * Unregister events and notify userspace.
4631 * Notify userspace about cgroup removing only after rmdir of cgroup
4632 * directory to avoid race between userspace and kernelspace.
4633 */
4634 spin_lock(&memcg->event_list_lock);
4635 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4636 list_del_init(&event->list);
4637 schedule_work(&event->remove);
4638 }
4639 spin_unlock(&memcg->event_list_lock);
4640
4641 vmpressure_cleanup(&memcg->vmpressure);
4642
4643 memcg_deactivate_kmem(memcg);
4644
4645 wb_memcg_offline(memcg);
4646 }
4647
4648 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4649 {
4650 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4651
4652 memcg_destroy_kmem(memcg);
4653 __mem_cgroup_free(memcg);
4654 }
4655
4656 /**
4657 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4658 * @css: the target css
4659 *
4660 * Reset the states of the mem_cgroup associated with @css. This is
4661 * invoked when the userland requests disabling on the default hierarchy
4662 * but the memcg is pinned through dependency. The memcg should stop
4663 * applying policies and should revert to the vanilla state as it may be
4664 * made visible again.
4665 *
4666 * The current implementation only resets the essential configurations.
4667 * This needs to be expanded to cover all the visible parts.
4668 */
4669 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4670 {
4671 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4672
4673 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4674 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4675 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4676 memcg->low = 0;
4677 memcg->high = PAGE_COUNTER_MAX;
4678 memcg->soft_limit = PAGE_COUNTER_MAX;
4679 memcg_wb_domain_size_changed(memcg);
4680 }
4681
4682 #ifdef CONFIG_MMU
4683 /* Handlers for move charge at task migration. */
4684 static int mem_cgroup_do_precharge(unsigned long count)
4685 {
4686 int ret;
4687
4688 /* Try a single bulk charge without reclaim first */
4689 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4690 if (!ret) {
4691 mc.precharge += count;
4692 return ret;
4693 }
4694 if (ret == -EINTR) {
4695 cancel_charge(root_mem_cgroup, count);
4696 return ret;
4697 }
4698
4699 /* Try charges one by one with reclaim */
4700 while (count--) {
4701 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4702 /*
4703 * In case of failure, any residual charges against
4704 * mc.to will be dropped by mem_cgroup_clear_mc()
4705 * later on. However, cancel any charges that are
4706 * bypassed to root right away or they'll be lost.
4707 */
4708 if (ret == -EINTR)
4709 cancel_charge(root_mem_cgroup, 1);
4710 if (ret)
4711 return ret;
4712 mc.precharge++;
4713 cond_resched();
4714 }
4715 return 0;
4716 }
4717
4718 /**
4719 * get_mctgt_type - get target type of moving charge
4720 * @vma: the vma the pte to be checked belongs
4721 * @addr: the address corresponding to the pte to be checked
4722 * @ptent: the pte to be checked
4723 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4724 *
4725 * Returns
4726 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4727 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4728 * move charge. if @target is not NULL, the page is stored in target->page
4729 * with extra refcnt got(Callers should handle it).
4730 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4731 * target for charge migration. if @target is not NULL, the entry is stored
4732 * in target->ent.
4733 *
4734 * Called with pte lock held.
4735 */
4736 union mc_target {
4737 struct page *page;
4738 swp_entry_t ent;
4739 };
4740
4741 enum mc_target_type {
4742 MC_TARGET_NONE = 0,
4743 MC_TARGET_PAGE,
4744 MC_TARGET_SWAP,
4745 };
4746
4747 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4748 unsigned long addr, pte_t ptent)
4749 {
4750 struct page *page = vm_normal_page(vma, addr, ptent);
4751
4752 if (!page || !page_mapped(page))
4753 return NULL;
4754 if (PageAnon(page)) {
4755 if (!(mc.flags & MOVE_ANON))
4756 return NULL;
4757 } else {
4758 if (!(mc.flags & MOVE_FILE))
4759 return NULL;
4760 }
4761 if (!get_page_unless_zero(page))
4762 return NULL;
4763
4764 return page;
4765 }
4766
4767 #ifdef CONFIG_SWAP
4768 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4769 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4770 {
4771 struct page *page = NULL;
4772 swp_entry_t ent = pte_to_swp_entry(ptent);
4773
4774 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4775 return NULL;
4776 /*
4777 * Because lookup_swap_cache() updates some statistics counter,
4778 * we call find_get_page() with swapper_space directly.
4779 */
4780 page = find_get_page(swap_address_space(ent), ent.val);
4781 if (do_swap_account)
4782 entry->val = ent.val;
4783
4784 return page;
4785 }
4786 #else
4787 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4788 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4789 {
4790 return NULL;
4791 }
4792 #endif
4793
4794 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4795 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4796 {
4797 struct page *page = NULL;
4798 struct address_space *mapping;
4799 pgoff_t pgoff;
4800
4801 if (!vma->vm_file) /* anonymous vma */
4802 return NULL;
4803 if (!(mc.flags & MOVE_FILE))
4804 return NULL;
4805
4806 mapping = vma->vm_file->f_mapping;
4807 pgoff = linear_page_index(vma, addr);
4808
4809 /* page is moved even if it's not RSS of this task(page-faulted). */
4810 #ifdef CONFIG_SWAP
4811 /* shmem/tmpfs may report page out on swap: account for that too. */
4812 if (shmem_mapping(mapping)) {
4813 page = find_get_entry(mapping, pgoff);
4814 if (radix_tree_exceptional_entry(page)) {
4815 swp_entry_t swp = radix_to_swp_entry(page);
4816 if (do_swap_account)
4817 *entry = swp;
4818 page = find_get_page(swap_address_space(swp), swp.val);
4819 }
4820 } else
4821 page = find_get_page(mapping, pgoff);
4822 #else
4823 page = find_get_page(mapping, pgoff);
4824 #endif
4825 return page;
4826 }
4827
4828 /**
4829 * mem_cgroup_move_account - move account of the page
4830 * @page: the page
4831 * @nr_pages: number of regular pages (>1 for huge pages)
4832 * @from: mem_cgroup which the page is moved from.
4833 * @to: mem_cgroup which the page is moved to. @from != @to.
4834 *
4835 * The caller must confirm following.
4836 * - page is not on LRU (isolate_page() is useful.)
4837 * - compound_lock is held when nr_pages > 1
4838 *
4839 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4840 * from old cgroup.
4841 */
4842 static int mem_cgroup_move_account(struct page *page,
4843 unsigned int nr_pages,
4844 struct mem_cgroup *from,
4845 struct mem_cgroup *to)
4846 {
4847 unsigned long flags;
4848 int ret;
4849 bool anon;
4850
4851 VM_BUG_ON(from == to);
4852 VM_BUG_ON_PAGE(PageLRU(page), page);
4853 /*
4854 * The page is isolated from LRU. So, collapse function
4855 * will not handle this page. But page splitting can happen.
4856 * Do this check under compound_page_lock(). The caller should
4857 * hold it.
4858 */
4859 ret = -EBUSY;
4860 if (nr_pages > 1 && !PageTransHuge(page))
4861 goto out;
4862
4863 /*
4864 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4865 * of its source page while we change it: page migration takes
4866 * both pages off the LRU, but page cache replacement doesn't.
4867 */
4868 if (!trylock_page(page))
4869 goto out;
4870
4871 ret = -EINVAL;
4872 if (page->mem_cgroup != from)
4873 goto out_unlock;
4874
4875 anon = PageAnon(page);
4876
4877 spin_lock_irqsave(&from->move_lock, flags);
4878
4879 if (!anon && page_mapped(page)) {
4880 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4881 nr_pages);
4882 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4883 nr_pages);
4884 }
4885
4886 /*
4887 * move_lock grabbed above and caller set from->moving_account, so
4888 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4889 * So mapping should be stable for dirty pages.
4890 */
4891 if (!anon && PageDirty(page)) {
4892 struct address_space *mapping = page_mapping(page);
4893
4894 if (mapping_cap_account_dirty(mapping)) {
4895 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4896 nr_pages);
4897 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4898 nr_pages);
4899 }
4900 }
4901
4902 if (PageWriteback(page)) {
4903 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4904 nr_pages);
4905 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4906 nr_pages);
4907 }
4908
4909 /*
4910 * It is safe to change page->mem_cgroup here because the page
4911 * is referenced, charged, and isolated - we can't race with
4912 * uncharging, charging, migration, or LRU putback.
4913 */
4914
4915 /* caller should have done css_get */
4916 page->mem_cgroup = to;
4917 spin_unlock_irqrestore(&from->move_lock, flags);
4918
4919 ret = 0;
4920
4921 local_irq_disable();
4922 mem_cgroup_charge_statistics(to, page, nr_pages);
4923 memcg_check_events(to, page);
4924 mem_cgroup_charge_statistics(from, page, -nr_pages);
4925 memcg_check_events(from, page);
4926 local_irq_enable();
4927 out_unlock:
4928 unlock_page(page);
4929 out:
4930 return ret;
4931 }
4932
4933 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4934 unsigned long addr, pte_t ptent, union mc_target *target)
4935 {
4936 struct page *page = NULL;
4937 enum mc_target_type ret = MC_TARGET_NONE;
4938 swp_entry_t ent = { .val = 0 };
4939
4940 if (pte_present(ptent))
4941 page = mc_handle_present_pte(vma, addr, ptent);
4942 else if (is_swap_pte(ptent))
4943 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4944 else if (pte_none(ptent))
4945 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4946
4947 if (!page && !ent.val)
4948 return ret;
4949 if (page) {
4950 /*
4951 * Do only loose check w/o serialization.
4952 * mem_cgroup_move_account() checks the page is valid or
4953 * not under LRU exclusion.
4954 */
4955 if (page->mem_cgroup == mc.from) {
4956 ret = MC_TARGET_PAGE;
4957 if (target)
4958 target->page = page;
4959 }
4960 if (!ret || !target)
4961 put_page(page);
4962 }
4963 /* There is a swap entry and a page doesn't exist or isn't charged */
4964 if (ent.val && !ret &&
4965 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4966 ret = MC_TARGET_SWAP;
4967 if (target)
4968 target->ent = ent;
4969 }
4970 return ret;
4971 }
4972
4973 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4974 /*
4975 * We don't consider swapping or file mapped pages because THP does not
4976 * support them for now.
4977 * Caller should make sure that pmd_trans_huge(pmd) is true.
4978 */
4979 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4980 unsigned long addr, pmd_t pmd, union mc_target *target)
4981 {
4982 struct page *page = NULL;
4983 enum mc_target_type ret = MC_TARGET_NONE;
4984
4985 page = pmd_page(pmd);
4986 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4987 if (!(mc.flags & MOVE_ANON))
4988 return ret;
4989 if (page->mem_cgroup == mc.from) {
4990 ret = MC_TARGET_PAGE;
4991 if (target) {
4992 get_page(page);
4993 target->page = page;
4994 }
4995 }
4996 return ret;
4997 }
4998 #else
4999 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5000 unsigned long addr, pmd_t pmd, union mc_target *target)
5001 {
5002 return MC_TARGET_NONE;
5003 }
5004 #endif
5005
5006 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5007 unsigned long addr, unsigned long end,
5008 struct mm_walk *walk)
5009 {
5010 struct vm_area_struct *vma = walk->vma;
5011 pte_t *pte;
5012 spinlock_t *ptl;
5013
5014 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5015 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5016 mc.precharge += HPAGE_PMD_NR;
5017 spin_unlock(ptl);
5018 return 0;
5019 }
5020
5021 if (pmd_trans_unstable(pmd))
5022 return 0;
5023 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5024 for (; addr != end; pte++, addr += PAGE_SIZE)
5025 if (get_mctgt_type(vma, addr, *pte, NULL))
5026 mc.precharge++; /* increment precharge temporarily */
5027 pte_unmap_unlock(pte - 1, ptl);
5028 cond_resched();
5029
5030 return 0;
5031 }
5032
5033 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5034 {
5035 unsigned long precharge;
5036
5037 struct mm_walk mem_cgroup_count_precharge_walk = {
5038 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5039 .mm = mm,
5040 };
5041 down_read(&mm->mmap_sem);
5042 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
5043 up_read(&mm->mmap_sem);
5044
5045 precharge = mc.precharge;
5046 mc.precharge = 0;
5047
5048 return precharge;
5049 }
5050
5051 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5052 {
5053 unsigned long precharge = mem_cgroup_count_precharge(mm);
5054
5055 VM_BUG_ON(mc.moving_task);
5056 mc.moving_task = current;
5057 return mem_cgroup_do_precharge(precharge);
5058 }
5059
5060 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5061 static void __mem_cgroup_clear_mc(void)
5062 {
5063 struct mem_cgroup *from = mc.from;
5064 struct mem_cgroup *to = mc.to;
5065
5066 /* we must uncharge all the leftover precharges from mc.to */
5067 if (mc.precharge) {
5068 cancel_charge(mc.to, mc.precharge);
5069 mc.precharge = 0;
5070 }
5071 /*
5072 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5073 * we must uncharge here.
5074 */
5075 if (mc.moved_charge) {
5076 cancel_charge(mc.from, mc.moved_charge);
5077 mc.moved_charge = 0;
5078 }
5079 /* we must fixup refcnts and charges */
5080 if (mc.moved_swap) {
5081 /* uncharge swap account from the old cgroup */
5082 if (!mem_cgroup_is_root(mc.from))
5083 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5084
5085 /*
5086 * we charged both to->memory and to->memsw, so we
5087 * should uncharge to->memory.
5088 */
5089 if (!mem_cgroup_is_root(mc.to))
5090 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5091
5092 css_put_many(&mc.from->css, mc.moved_swap);
5093
5094 /* we've already done css_get(mc.to) */
5095 mc.moved_swap = 0;
5096 }
5097 memcg_oom_recover(from);
5098 memcg_oom_recover(to);
5099 wake_up_all(&mc.waitq);
5100 }
5101
5102 static void mem_cgroup_clear_mc(void)
5103 {
5104 /*
5105 * we must clear moving_task before waking up waiters at the end of
5106 * task migration.
5107 */
5108 mc.moving_task = NULL;
5109 __mem_cgroup_clear_mc();
5110 spin_lock(&mc.lock);
5111 mc.from = NULL;
5112 mc.to = NULL;
5113 spin_unlock(&mc.lock);
5114 }
5115
5116 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5117 struct cgroup_taskset *tset)
5118 {
5119 struct task_struct *p = cgroup_taskset_first(tset);
5120 int ret = 0;
5121 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5122 unsigned long move_flags;
5123
5124 /*
5125 * We are now commited to this value whatever it is. Changes in this
5126 * tunable will only affect upcoming migrations, not the current one.
5127 * So we need to save it, and keep it going.
5128 */
5129 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5130 if (move_flags) {
5131 struct mm_struct *mm;
5132 struct mem_cgroup *from = mem_cgroup_from_task(p);
5133
5134 VM_BUG_ON(from == memcg);
5135
5136 mm = get_task_mm(p);
5137 if (!mm)
5138 return 0;
5139 /* We move charges only when we move a owner of the mm */
5140 if (mm->owner == p) {
5141 VM_BUG_ON(mc.from);
5142 VM_BUG_ON(mc.to);
5143 VM_BUG_ON(mc.precharge);
5144 VM_BUG_ON(mc.moved_charge);
5145 VM_BUG_ON(mc.moved_swap);
5146
5147 spin_lock(&mc.lock);
5148 mc.from = from;
5149 mc.to = memcg;
5150 mc.flags = move_flags;
5151 spin_unlock(&mc.lock);
5152 /* We set mc.moving_task later */
5153
5154 ret = mem_cgroup_precharge_mc(mm);
5155 if (ret)
5156 mem_cgroup_clear_mc();
5157 }
5158 mmput(mm);
5159 }
5160 return ret;
5161 }
5162
5163 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5164 struct cgroup_taskset *tset)
5165 {
5166 if (mc.to)
5167 mem_cgroup_clear_mc();
5168 }
5169
5170 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5171 unsigned long addr, unsigned long end,
5172 struct mm_walk *walk)
5173 {
5174 int ret = 0;
5175 struct vm_area_struct *vma = walk->vma;
5176 pte_t *pte;
5177 spinlock_t *ptl;
5178 enum mc_target_type target_type;
5179 union mc_target target;
5180 struct page *page;
5181
5182 /*
5183 * We don't take compound_lock() here but no race with splitting thp
5184 * happens because:
5185 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5186 * under splitting, which means there's no concurrent thp split,
5187 * - if another thread runs into split_huge_page() just after we
5188 * entered this if-block, the thread must wait for page table lock
5189 * to be unlocked in __split_huge_page_splitting(), where the main
5190 * part of thp split is not executed yet.
5191 */
5192 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5193 if (mc.precharge < HPAGE_PMD_NR) {
5194 spin_unlock(ptl);
5195 return 0;
5196 }
5197 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5198 if (target_type == MC_TARGET_PAGE) {
5199 page = target.page;
5200 if (!isolate_lru_page(page)) {
5201 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5202 mc.from, mc.to)) {
5203 mc.precharge -= HPAGE_PMD_NR;
5204 mc.moved_charge += HPAGE_PMD_NR;
5205 }
5206 putback_lru_page(page);
5207 }
5208 put_page(page);
5209 }
5210 spin_unlock(ptl);
5211 return 0;
5212 }
5213
5214 if (pmd_trans_unstable(pmd))
5215 return 0;
5216 retry:
5217 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5218 for (; addr != end; addr += PAGE_SIZE) {
5219 pte_t ptent = *(pte++);
5220 swp_entry_t ent;
5221
5222 if (!mc.precharge)
5223 break;
5224
5225 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5226 case MC_TARGET_PAGE:
5227 page = target.page;
5228 if (isolate_lru_page(page))
5229 goto put;
5230 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5231 mc.precharge--;
5232 /* we uncharge from mc.from later. */
5233 mc.moved_charge++;
5234 }
5235 putback_lru_page(page);
5236 put: /* get_mctgt_type() gets the page */
5237 put_page(page);
5238 break;
5239 case MC_TARGET_SWAP:
5240 ent = target.ent;
5241 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5242 mc.precharge--;
5243 /* we fixup refcnts and charges later. */
5244 mc.moved_swap++;
5245 }
5246 break;
5247 default:
5248 break;
5249 }
5250 }
5251 pte_unmap_unlock(pte - 1, ptl);
5252 cond_resched();
5253
5254 if (addr != end) {
5255 /*
5256 * We have consumed all precharges we got in can_attach().
5257 * We try charge one by one, but don't do any additional
5258 * charges to mc.to if we have failed in charge once in attach()
5259 * phase.
5260 */
5261 ret = mem_cgroup_do_precharge(1);
5262 if (!ret)
5263 goto retry;
5264 }
5265
5266 return ret;
5267 }
5268
5269 static void mem_cgroup_move_charge(struct mm_struct *mm)
5270 {
5271 struct mm_walk mem_cgroup_move_charge_walk = {
5272 .pmd_entry = mem_cgroup_move_charge_pte_range,
5273 .mm = mm,
5274 };
5275
5276 lru_add_drain_all();
5277 /*
5278 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5279 * move_lock while we're moving its pages to another memcg.
5280 * Then wait for already started RCU-only updates to finish.
5281 */
5282 atomic_inc(&mc.from->moving_account);
5283 synchronize_rcu();
5284 retry:
5285 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5286 /*
5287 * Someone who are holding the mmap_sem might be waiting in
5288 * waitq. So we cancel all extra charges, wake up all waiters,
5289 * and retry. Because we cancel precharges, we might not be able
5290 * to move enough charges, but moving charge is a best-effort
5291 * feature anyway, so it wouldn't be a big problem.
5292 */
5293 __mem_cgroup_clear_mc();
5294 cond_resched();
5295 goto retry;
5296 }
5297 /*
5298 * When we have consumed all precharges and failed in doing
5299 * additional charge, the page walk just aborts.
5300 */
5301 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5302 up_read(&mm->mmap_sem);
5303 atomic_dec(&mc.from->moving_account);
5304 }
5305
5306 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5307 struct cgroup_taskset *tset)
5308 {
5309 struct task_struct *p = cgroup_taskset_first(tset);
5310 struct mm_struct *mm = get_task_mm(p);
5311
5312 if (mm) {
5313 if (mc.to)
5314 mem_cgroup_move_charge(mm);
5315 mmput(mm);
5316 }
5317 if (mc.to)
5318 mem_cgroup_clear_mc();
5319 }
5320 #else /* !CONFIG_MMU */
5321 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5322 struct cgroup_taskset *tset)
5323 {
5324 return 0;
5325 }
5326 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5327 struct cgroup_taskset *tset)
5328 {
5329 }
5330 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5331 struct cgroup_taskset *tset)
5332 {
5333 }
5334 #endif
5335
5336 /*
5337 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5338 * to verify whether we're attached to the default hierarchy on each mount
5339 * attempt.
5340 */
5341 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5342 {
5343 /*
5344 * use_hierarchy is forced on the default hierarchy. cgroup core
5345 * guarantees that @root doesn't have any children, so turning it
5346 * on for the root memcg is enough.
5347 */
5348 if (cgroup_on_dfl(root_css->cgroup))
5349 root_mem_cgroup->use_hierarchy = true;
5350 else
5351 root_mem_cgroup->use_hierarchy = false;
5352 }
5353
5354 static u64 memory_current_read(struct cgroup_subsys_state *css,
5355 struct cftype *cft)
5356 {
5357 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5358 }
5359
5360 static int memory_low_show(struct seq_file *m, void *v)
5361 {
5362 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5363 unsigned long low = READ_ONCE(memcg->low);
5364
5365 if (low == PAGE_COUNTER_MAX)
5366 seq_puts(m, "max\n");
5367 else
5368 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5369
5370 return 0;
5371 }
5372
5373 static ssize_t memory_low_write(struct kernfs_open_file *of,
5374 char *buf, size_t nbytes, loff_t off)
5375 {
5376 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5377 unsigned long low;
5378 int err;
5379
5380 buf = strstrip(buf);
5381 err = page_counter_memparse(buf, "max", &low);
5382 if (err)
5383 return err;
5384
5385 memcg->low = low;
5386
5387 return nbytes;
5388 }
5389
5390 static int memory_high_show(struct seq_file *m, void *v)
5391 {
5392 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5393 unsigned long high = READ_ONCE(memcg->high);
5394
5395 if (high == PAGE_COUNTER_MAX)
5396 seq_puts(m, "max\n");
5397 else
5398 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5399
5400 return 0;
5401 }
5402
5403 static ssize_t memory_high_write(struct kernfs_open_file *of,
5404 char *buf, size_t nbytes, loff_t off)
5405 {
5406 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5407 unsigned long high;
5408 int err;
5409
5410 buf = strstrip(buf);
5411 err = page_counter_memparse(buf, "max", &high);
5412 if (err)
5413 return err;
5414
5415 memcg->high = high;
5416
5417 memcg_wb_domain_size_changed(memcg);
5418 return nbytes;
5419 }
5420
5421 static int memory_max_show(struct seq_file *m, void *v)
5422 {
5423 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5424 unsigned long max = READ_ONCE(memcg->memory.limit);
5425
5426 if (max == PAGE_COUNTER_MAX)
5427 seq_puts(m, "max\n");
5428 else
5429 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5430
5431 return 0;
5432 }
5433
5434 static ssize_t memory_max_write(struct kernfs_open_file *of,
5435 char *buf, size_t nbytes, loff_t off)
5436 {
5437 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5438 unsigned long max;
5439 int err;
5440
5441 buf = strstrip(buf);
5442 err = page_counter_memparse(buf, "max", &max);
5443 if (err)
5444 return err;
5445
5446 err = mem_cgroup_resize_limit(memcg, max);
5447 if (err)
5448 return err;
5449
5450 memcg_wb_domain_size_changed(memcg);
5451 return nbytes;
5452 }
5453
5454 static int memory_events_show(struct seq_file *m, void *v)
5455 {
5456 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5457
5458 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5459 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5460 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5461 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5462
5463 return 0;
5464 }
5465
5466 static struct cftype memory_files[] = {
5467 {
5468 .name = "current",
5469 .read_u64 = memory_current_read,
5470 },
5471 {
5472 .name = "low",
5473 .flags = CFTYPE_NOT_ON_ROOT,
5474 .seq_show = memory_low_show,
5475 .write = memory_low_write,
5476 },
5477 {
5478 .name = "high",
5479 .flags = CFTYPE_NOT_ON_ROOT,
5480 .seq_show = memory_high_show,
5481 .write = memory_high_write,
5482 },
5483 {
5484 .name = "max",
5485 .flags = CFTYPE_NOT_ON_ROOT,
5486 .seq_show = memory_max_show,
5487 .write = memory_max_write,
5488 },
5489 {
5490 .name = "events",
5491 .flags = CFTYPE_NOT_ON_ROOT,
5492 .seq_show = memory_events_show,
5493 },
5494 { } /* terminate */
5495 };
5496
5497 struct cgroup_subsys memory_cgrp_subsys = {
5498 .css_alloc = mem_cgroup_css_alloc,
5499 .css_online = mem_cgroup_css_online,
5500 .css_offline = mem_cgroup_css_offline,
5501 .css_free = mem_cgroup_css_free,
5502 .css_reset = mem_cgroup_css_reset,
5503 .can_attach = mem_cgroup_can_attach,
5504 .cancel_attach = mem_cgroup_cancel_attach,
5505 .attach = mem_cgroup_move_task,
5506 .bind = mem_cgroup_bind,
5507 .dfl_cftypes = memory_files,
5508 .legacy_cftypes = mem_cgroup_legacy_files,
5509 .early_init = 0,
5510 };
5511
5512 /**
5513 * mem_cgroup_events - count memory events against a cgroup
5514 * @memcg: the memory cgroup
5515 * @idx: the event index
5516 * @nr: the number of events to account for
5517 */
5518 void mem_cgroup_events(struct mem_cgroup *memcg,
5519 enum mem_cgroup_events_index idx,
5520 unsigned int nr)
5521 {
5522 this_cpu_add(memcg->stat->events[idx], nr);
5523 }
5524
5525 /**
5526 * mem_cgroup_low - check if memory consumption is below the normal range
5527 * @root: the highest ancestor to consider
5528 * @memcg: the memory cgroup to check
5529 *
5530 * Returns %true if memory consumption of @memcg, and that of all
5531 * configurable ancestors up to @root, is below the normal range.
5532 */
5533 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5534 {
5535 if (mem_cgroup_disabled())
5536 return false;
5537
5538 /*
5539 * The toplevel group doesn't have a configurable range, so
5540 * it's never low when looked at directly, and it is not
5541 * considered an ancestor when assessing the hierarchy.
5542 */
5543
5544 if (memcg == root_mem_cgroup)
5545 return false;
5546
5547 if (page_counter_read(&memcg->memory) >= memcg->low)
5548 return false;
5549
5550 while (memcg != root) {
5551 memcg = parent_mem_cgroup(memcg);
5552
5553 if (memcg == root_mem_cgroup)
5554 break;
5555
5556 if (page_counter_read(&memcg->memory) >= memcg->low)
5557 return false;
5558 }
5559 return true;
5560 }
5561
5562 /**
5563 * mem_cgroup_try_charge - try charging a page
5564 * @page: page to charge
5565 * @mm: mm context of the victim
5566 * @gfp_mask: reclaim mode
5567 * @memcgp: charged memcg return
5568 *
5569 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5570 * pages according to @gfp_mask if necessary.
5571 *
5572 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5573 * Otherwise, an error code is returned.
5574 *
5575 * After page->mapping has been set up, the caller must finalize the
5576 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5577 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5578 */
5579 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5580 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5581 {
5582 struct mem_cgroup *memcg = NULL;
5583 unsigned int nr_pages = 1;
5584 int ret = 0;
5585
5586 if (mem_cgroup_disabled())
5587 goto out;
5588
5589 if (PageSwapCache(page)) {
5590 /*
5591 * Every swap fault against a single page tries to charge the
5592 * page, bail as early as possible. shmem_unuse() encounters
5593 * already charged pages, too. The USED bit is protected by
5594 * the page lock, which serializes swap cache removal, which
5595 * in turn serializes uncharging.
5596 */
5597 if (page->mem_cgroup)
5598 goto out;
5599 }
5600
5601 if (PageTransHuge(page)) {
5602 nr_pages <<= compound_order(page);
5603 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5604 }
5605
5606 if (do_swap_account && PageSwapCache(page))
5607 memcg = try_get_mem_cgroup_from_page(page);
5608 if (!memcg)
5609 memcg = get_mem_cgroup_from_mm(mm);
5610
5611 ret = try_charge(memcg, gfp_mask, nr_pages);
5612
5613 css_put(&memcg->css);
5614
5615 if (ret == -EINTR) {
5616 memcg = root_mem_cgroup;
5617 ret = 0;
5618 }
5619 out:
5620 *memcgp = memcg;
5621 return ret;
5622 }
5623
5624 /**
5625 * mem_cgroup_commit_charge - commit a page charge
5626 * @page: page to charge
5627 * @memcg: memcg to charge the page to
5628 * @lrucare: page might be on LRU already
5629 *
5630 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5631 * after page->mapping has been set up. This must happen atomically
5632 * as part of the page instantiation, i.e. under the page table lock
5633 * for anonymous pages, under the page lock for page and swap cache.
5634 *
5635 * In addition, the page must not be on the LRU during the commit, to
5636 * prevent racing with task migration. If it might be, use @lrucare.
5637 *
5638 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5639 */
5640 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5641 bool lrucare)
5642 {
5643 unsigned int nr_pages = 1;
5644
5645 VM_BUG_ON_PAGE(!page->mapping, page);
5646 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5647
5648 if (mem_cgroup_disabled())
5649 return;
5650 /*
5651 * Swap faults will attempt to charge the same page multiple
5652 * times. But reuse_swap_page() might have removed the page
5653 * from swapcache already, so we can't check PageSwapCache().
5654 */
5655 if (!memcg)
5656 return;
5657
5658 commit_charge(page, memcg, lrucare);
5659
5660 if (PageTransHuge(page)) {
5661 nr_pages <<= compound_order(page);
5662 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5663 }
5664
5665 local_irq_disable();
5666 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5667 memcg_check_events(memcg, page);
5668 local_irq_enable();
5669
5670 if (do_swap_account && PageSwapCache(page)) {
5671 swp_entry_t entry = { .val = page_private(page) };
5672 /*
5673 * The swap entry might not get freed for a long time,
5674 * let's not wait for it. The page already received a
5675 * memory+swap charge, drop the swap entry duplicate.
5676 */
5677 mem_cgroup_uncharge_swap(entry);
5678 }
5679 }
5680
5681 /**
5682 * mem_cgroup_cancel_charge - cancel a page charge
5683 * @page: page to charge
5684 * @memcg: memcg to charge the page to
5685 *
5686 * Cancel a charge transaction started by mem_cgroup_try_charge().
5687 */
5688 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5689 {
5690 unsigned int nr_pages = 1;
5691
5692 if (mem_cgroup_disabled())
5693 return;
5694 /*
5695 * Swap faults will attempt to charge the same page multiple
5696 * times. But reuse_swap_page() might have removed the page
5697 * from swapcache already, so we can't check PageSwapCache().
5698 */
5699 if (!memcg)
5700 return;
5701
5702 if (PageTransHuge(page)) {
5703 nr_pages <<= compound_order(page);
5704 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5705 }
5706
5707 cancel_charge(memcg, nr_pages);
5708 }
5709
5710 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5711 unsigned long nr_anon, unsigned long nr_file,
5712 unsigned long nr_huge, struct page *dummy_page)
5713 {
5714 unsigned long nr_pages = nr_anon + nr_file;
5715 unsigned long flags;
5716
5717 if (!mem_cgroup_is_root(memcg)) {
5718 page_counter_uncharge(&memcg->memory, nr_pages);
5719 if (do_swap_account)
5720 page_counter_uncharge(&memcg->memsw, nr_pages);
5721 memcg_oom_recover(memcg);
5722 }
5723
5724 local_irq_save(flags);
5725 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5726 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5727 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5728 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5729 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5730 memcg_check_events(memcg, dummy_page);
5731 local_irq_restore(flags);
5732
5733 if (!mem_cgroup_is_root(memcg))
5734 css_put_many(&memcg->css, nr_pages);
5735 }
5736
5737 static void uncharge_list(struct list_head *page_list)
5738 {
5739 struct mem_cgroup *memcg = NULL;
5740 unsigned long nr_anon = 0;
5741 unsigned long nr_file = 0;
5742 unsigned long nr_huge = 0;
5743 unsigned long pgpgout = 0;
5744 struct list_head *next;
5745 struct page *page;
5746
5747 next = page_list->next;
5748 do {
5749 unsigned int nr_pages = 1;
5750
5751 page = list_entry(next, struct page, lru);
5752 next = page->lru.next;
5753
5754 VM_BUG_ON_PAGE(PageLRU(page), page);
5755 VM_BUG_ON_PAGE(page_count(page), page);
5756
5757 if (!page->mem_cgroup)
5758 continue;
5759
5760 /*
5761 * Nobody should be changing or seriously looking at
5762 * page->mem_cgroup at this point, we have fully
5763 * exclusive access to the page.
5764 */
5765
5766 if (memcg != page->mem_cgroup) {
5767 if (memcg) {
5768 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5769 nr_huge, page);
5770 pgpgout = nr_anon = nr_file = nr_huge = 0;
5771 }
5772 memcg = page->mem_cgroup;
5773 }
5774
5775 if (PageTransHuge(page)) {
5776 nr_pages <<= compound_order(page);
5777 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5778 nr_huge += nr_pages;
5779 }
5780
5781 if (PageAnon(page))
5782 nr_anon += nr_pages;
5783 else
5784 nr_file += nr_pages;
5785
5786 page->mem_cgroup = NULL;
5787
5788 pgpgout++;
5789 } while (next != page_list);
5790
5791 if (memcg)
5792 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5793 nr_huge, page);
5794 }
5795
5796 /**
5797 * mem_cgroup_uncharge - uncharge a page
5798 * @page: page to uncharge
5799 *
5800 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5801 * mem_cgroup_commit_charge().
5802 */
5803 void mem_cgroup_uncharge(struct page *page)
5804 {
5805 if (mem_cgroup_disabled())
5806 return;
5807
5808 /* Don't touch page->lru of any random page, pre-check: */
5809 if (!page->mem_cgroup)
5810 return;
5811
5812 INIT_LIST_HEAD(&page->lru);
5813 uncharge_list(&page->lru);
5814 }
5815
5816 /**
5817 * mem_cgroup_uncharge_list - uncharge a list of page
5818 * @page_list: list of pages to uncharge
5819 *
5820 * Uncharge a list of pages previously charged with
5821 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5822 */
5823 void mem_cgroup_uncharge_list(struct list_head *page_list)
5824 {
5825 if (mem_cgroup_disabled())
5826 return;
5827
5828 if (!list_empty(page_list))
5829 uncharge_list(page_list);
5830 }
5831
5832 /**
5833 * mem_cgroup_migrate - migrate a charge to another page
5834 * @oldpage: currently charged page
5835 * @newpage: page to transfer the charge to
5836 * @lrucare: either or both pages might be on the LRU already
5837 *
5838 * Migrate the charge from @oldpage to @newpage.
5839 *
5840 * Both pages must be locked, @newpage->mapping must be set up.
5841 */
5842 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5843 bool lrucare)
5844 {
5845 struct mem_cgroup *memcg;
5846 int isolated;
5847
5848 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5849 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5850 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5851 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5852 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5853 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5854 newpage);
5855
5856 if (mem_cgroup_disabled())
5857 return;
5858
5859 /* Page cache replacement: new page already charged? */
5860 if (newpage->mem_cgroup)
5861 return;
5862
5863 /*
5864 * Swapcache readahead pages can get migrated before being
5865 * charged, and migration from compaction can happen to an
5866 * uncharged page when the PFN walker finds a page that
5867 * reclaim just put back on the LRU but has not released yet.
5868 */
5869 memcg = oldpage->mem_cgroup;
5870 if (!memcg)
5871 return;
5872
5873 if (lrucare)
5874 lock_page_lru(oldpage, &isolated);
5875
5876 oldpage->mem_cgroup = NULL;
5877
5878 if (lrucare)
5879 unlock_page_lru(oldpage, isolated);
5880
5881 commit_charge(newpage, memcg, lrucare);
5882 }
5883
5884 /*
5885 * subsys_initcall() for memory controller.
5886 *
5887 * Some parts like hotcpu_notifier() have to be initialized from this context
5888 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5889 * everything that doesn't depend on a specific mem_cgroup structure should
5890 * be initialized from here.
5891 */
5892 static int __init mem_cgroup_init(void)
5893 {
5894 int cpu, node;
5895
5896 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5897
5898 for_each_possible_cpu(cpu)
5899 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5900 drain_local_stock);
5901
5902 for_each_node(node) {
5903 struct mem_cgroup_tree_per_node *rtpn;
5904 int zone;
5905
5906 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5907 node_online(node) ? node : NUMA_NO_NODE);
5908
5909 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5910 struct mem_cgroup_tree_per_zone *rtpz;
5911
5912 rtpz = &rtpn->rb_tree_per_zone[zone];
5913 rtpz->rb_root = RB_ROOT;
5914 spin_lock_init(&rtpz->lock);
5915 }
5916 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5917 }
5918
5919 return 0;
5920 }
5921 subsys_initcall(mem_cgroup_init);
5922
5923 #ifdef CONFIG_MEMCG_SWAP
5924 /**
5925 * mem_cgroup_swapout - transfer a memsw charge to swap
5926 * @page: page whose memsw charge to transfer
5927 * @entry: swap entry to move the charge to
5928 *
5929 * Transfer the memsw charge of @page to @entry.
5930 */
5931 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5932 {
5933 struct mem_cgroup *memcg;
5934 unsigned short oldid;
5935
5936 VM_BUG_ON_PAGE(PageLRU(page), page);
5937 VM_BUG_ON_PAGE(page_count(page), page);
5938
5939 if (!do_swap_account)
5940 return;
5941
5942 memcg = page->mem_cgroup;
5943
5944 /* Readahead page, never charged */
5945 if (!memcg)
5946 return;
5947
5948 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5949 VM_BUG_ON_PAGE(oldid, page);
5950 mem_cgroup_swap_statistics(memcg, true);
5951
5952 page->mem_cgroup = NULL;
5953
5954 if (!mem_cgroup_is_root(memcg))
5955 page_counter_uncharge(&memcg->memory, 1);
5956
5957 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5958 VM_BUG_ON(!irqs_disabled());
5959
5960 mem_cgroup_charge_statistics(memcg, page, -1);
5961 memcg_check_events(memcg, page);
5962 }
5963
5964 /**
5965 * mem_cgroup_uncharge_swap - uncharge a swap entry
5966 * @entry: swap entry to uncharge
5967 *
5968 * Drop the memsw charge associated with @entry.
5969 */
5970 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5971 {
5972 struct mem_cgroup *memcg;
5973 unsigned short id;
5974
5975 if (!do_swap_account)
5976 return;
5977
5978 id = swap_cgroup_record(entry, 0);
5979 rcu_read_lock();
5980 memcg = mem_cgroup_from_id(id);
5981 if (memcg) {
5982 if (!mem_cgroup_is_root(memcg))
5983 page_counter_uncharge(&memcg->memsw, 1);
5984 mem_cgroup_swap_statistics(memcg, false);
5985 css_put(&memcg->css);
5986 }
5987 rcu_read_unlock();
5988 }
5989
5990 /* for remember boot option*/
5991 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5992 static int really_do_swap_account __initdata = 1;
5993 #else
5994 static int really_do_swap_account __initdata;
5995 #endif
5996
5997 static int __init enable_swap_account(char *s)
5998 {
5999 if (!strcmp(s, "1"))
6000 really_do_swap_account = 1;
6001 else if (!strcmp(s, "0"))
6002 really_do_swap_account = 0;
6003 return 1;
6004 }
6005 __setup("swapaccount=", enable_swap_account);
6006
6007 static struct cftype memsw_cgroup_files[] = {
6008 {
6009 .name = "memsw.usage_in_bytes",
6010 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6011 .read_u64 = mem_cgroup_read_u64,
6012 },
6013 {
6014 .name = "memsw.max_usage_in_bytes",
6015 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6016 .write = mem_cgroup_reset,
6017 .read_u64 = mem_cgroup_read_u64,
6018 },
6019 {
6020 .name = "memsw.limit_in_bytes",
6021 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6022 .write = mem_cgroup_write,
6023 .read_u64 = mem_cgroup_read_u64,
6024 },
6025 {
6026 .name = "memsw.failcnt",
6027 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6028 .write = mem_cgroup_reset,
6029 .read_u64 = mem_cgroup_read_u64,
6030 },
6031 { }, /* terminate */
6032 };
6033
6034 static int __init mem_cgroup_swap_init(void)
6035 {
6036 if (!mem_cgroup_disabled() && really_do_swap_account) {
6037 do_swap_account = 1;
6038 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6039 memsw_cgroup_files));
6040 }
6041 return 0;
6042 }
6043 subsys_initcall(mem_cgroup_swap_init);
6044
6045 #endif /* CONFIG_MEMCG_SWAP */