]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memcontrol.c
mmap locking API: convert mmap_sem API comments
[mirror_ubuntu-jammy-kernel.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66
67 #include <linux/uaccess.h>
68
69 #include <trace/events/vmscan.h>
70
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75
76 #define MEM_CGROUP_RECLAIM_RETRIES 5
77
78 /* Socket memory accounting disabled? */
79 static bool cgroup_memory_nosocket;
80
81 /* Kernel memory accounting disabled? */
82 static bool cgroup_memory_nokmem;
83
84 /* Whether the swap controller is active */
85 #ifdef CONFIG_MEMCG_SWAP
86 bool cgroup_memory_noswap __read_mostly;
87 #else
88 #define cgroup_memory_noswap 1
89 #endif
90
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
99 }
100
101 #define THRESHOLDS_EVENTS_TARGET 128
102 #define SOFTLIMIT_EVENTS_TARGET 1024
103
104 /*
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
107 */
108
109 struct mem_cgroup_tree_per_node {
110 struct rb_root rb_root;
111 struct rb_node *rb_rightmost;
112 spinlock_t lock;
113 };
114
115 struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117 };
118
119 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120
121 /* for OOM */
122 struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
125 };
126
127 /*
128 * cgroup_event represents events which userspace want to receive.
129 */
130 struct mem_cgroup_event {
131 /*
132 * memcg which the event belongs to.
133 */
134 struct mem_cgroup *memcg;
135 /*
136 * eventfd to signal userspace about the event.
137 */
138 struct eventfd_ctx *eventfd;
139 /*
140 * Each of these stored in a list by the cgroup.
141 */
142 struct list_head list;
143 /*
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
147 */
148 int (*register_event)(struct mem_cgroup *memcg,
149 struct eventfd_ctx *eventfd, const char *args);
150 /*
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
154 */
155 void (*unregister_event)(struct mem_cgroup *memcg,
156 struct eventfd_ctx *eventfd);
157 /*
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
160 */
161 poll_table pt;
162 wait_queue_head_t *wqh;
163 wait_queue_entry_t wait;
164 struct work_struct remove;
165 };
166
167 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169
170 /* Stuffs for move charges at task migration. */
171 /*
172 * Types of charges to be moved.
173 */
174 #define MOVE_ANON 0x1U
175 #define MOVE_FILE 0x2U
176 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
177
178 /* "mc" and its members are protected by cgroup_mutex */
179 static struct move_charge_struct {
180 spinlock_t lock; /* for from, to */
181 struct mm_struct *mm;
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
184 unsigned long flags;
185 unsigned long precharge;
186 unsigned long moved_charge;
187 unsigned long moved_swap;
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
190 } mc = {
191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193 };
194
195 /*
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
198 */
199 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
200 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
201
202 enum charge_type {
203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
204 MEM_CGROUP_CHARGE_TYPE_ANON,
205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
207 NR_CHARGE_TYPE,
208 };
209
210 /* for encoding cft->private value on file */
211 enum res_type {
212 _MEM,
213 _MEMSWAP,
214 _OOM_TYPE,
215 _KMEM,
216 _TCP,
217 };
218
219 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
220 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
221 #define MEMFILE_ATTR(val) ((val) & 0xffff)
222 /* Used for OOM nofiier */
223 #define OOM_CONTROL (0)
224
225 /*
226 * Iteration constructs for visiting all cgroups (under a tree). If
227 * loops are exited prematurely (break), mem_cgroup_iter_break() must
228 * be used for reference counting.
229 */
230 #define for_each_mem_cgroup_tree(iter, root) \
231 for (iter = mem_cgroup_iter(root, NULL, NULL); \
232 iter != NULL; \
233 iter = mem_cgroup_iter(root, iter, NULL))
234
235 #define for_each_mem_cgroup(iter) \
236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
237 iter != NULL; \
238 iter = mem_cgroup_iter(NULL, iter, NULL))
239
240 static inline bool should_force_charge(void)
241 {
242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 (current->flags & PF_EXITING);
244 }
245
246 /* Some nice accessors for the vmpressure. */
247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
248 {
249 if (!memcg)
250 memcg = root_mem_cgroup;
251 return &memcg->vmpressure;
252 }
253
254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
255 {
256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
257 }
258
259 #ifdef CONFIG_MEMCG_KMEM
260 /*
261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
262 * The main reason for not using cgroup id for this:
263 * this works better in sparse environments, where we have a lot of memcgs,
264 * but only a few kmem-limited. Or also, if we have, for instance, 200
265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
266 * 200 entry array for that.
267 *
268 * The current size of the caches array is stored in memcg_nr_cache_ids. It
269 * will double each time we have to increase it.
270 */
271 static DEFINE_IDA(memcg_cache_ida);
272 int memcg_nr_cache_ids;
273
274 /* Protects memcg_nr_cache_ids */
275 static DECLARE_RWSEM(memcg_cache_ids_sem);
276
277 void memcg_get_cache_ids(void)
278 {
279 down_read(&memcg_cache_ids_sem);
280 }
281
282 void memcg_put_cache_ids(void)
283 {
284 up_read(&memcg_cache_ids_sem);
285 }
286
287 /*
288 * MIN_SIZE is different than 1, because we would like to avoid going through
289 * the alloc/free process all the time. In a small machine, 4 kmem-limited
290 * cgroups is a reasonable guess. In the future, it could be a parameter or
291 * tunable, but that is strictly not necessary.
292 *
293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
294 * this constant directly from cgroup, but it is understandable that this is
295 * better kept as an internal representation in cgroup.c. In any case, the
296 * cgrp_id space is not getting any smaller, and we don't have to necessarily
297 * increase ours as well if it increases.
298 */
299 #define MEMCG_CACHES_MIN_SIZE 4
300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
301
302 /*
303 * A lot of the calls to the cache allocation functions are expected to be
304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305 * conditional to this static branch, we'll have to allow modules that does
306 * kmem_cache_alloc and the such to see this symbol as well
307 */
308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
309 EXPORT_SYMBOL(memcg_kmem_enabled_key);
310
311 struct workqueue_struct *memcg_kmem_cache_wq;
312 #endif
313
314 static int memcg_shrinker_map_size;
315 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
316
317 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
318 {
319 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
320 }
321
322 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 int size, int old_size)
324 {
325 struct memcg_shrinker_map *new, *old;
326 int nid;
327
328 lockdep_assert_held(&memcg_shrinker_map_mutex);
329
330 for_each_node(nid) {
331 old = rcu_dereference_protected(
332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 /* Not yet online memcg */
334 if (!old)
335 return 0;
336
337 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
338 if (!new)
339 return -ENOMEM;
340
341 /* Set all old bits, clear all new bits */
342 memset(new->map, (int)0xff, old_size);
343 memset((void *)new->map + old_size, 0, size - old_size);
344
345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
347 }
348
349 return 0;
350 }
351
352 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
353 {
354 struct mem_cgroup_per_node *pn;
355 struct memcg_shrinker_map *map;
356 int nid;
357
358 if (mem_cgroup_is_root(memcg))
359 return;
360
361 for_each_node(nid) {
362 pn = mem_cgroup_nodeinfo(memcg, nid);
363 map = rcu_dereference_protected(pn->shrinker_map, true);
364 if (map)
365 kvfree(map);
366 rcu_assign_pointer(pn->shrinker_map, NULL);
367 }
368 }
369
370 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
371 {
372 struct memcg_shrinker_map *map;
373 int nid, size, ret = 0;
374
375 if (mem_cgroup_is_root(memcg))
376 return 0;
377
378 mutex_lock(&memcg_shrinker_map_mutex);
379 size = memcg_shrinker_map_size;
380 for_each_node(nid) {
381 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
382 if (!map) {
383 memcg_free_shrinker_maps(memcg);
384 ret = -ENOMEM;
385 break;
386 }
387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
388 }
389 mutex_unlock(&memcg_shrinker_map_mutex);
390
391 return ret;
392 }
393
394 int memcg_expand_shrinker_maps(int new_id)
395 {
396 int size, old_size, ret = 0;
397 struct mem_cgroup *memcg;
398
399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 old_size = memcg_shrinker_map_size;
401 if (size <= old_size)
402 return 0;
403
404 mutex_lock(&memcg_shrinker_map_mutex);
405 if (!root_mem_cgroup)
406 goto unlock;
407
408 for_each_mem_cgroup(memcg) {
409 if (mem_cgroup_is_root(memcg))
410 continue;
411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
412 if (ret) {
413 mem_cgroup_iter_break(NULL, memcg);
414 goto unlock;
415 }
416 }
417 unlock:
418 if (!ret)
419 memcg_shrinker_map_size = size;
420 mutex_unlock(&memcg_shrinker_map_mutex);
421 return ret;
422 }
423
424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
425 {
426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 struct memcg_shrinker_map *map;
428
429 rcu_read_lock();
430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 /* Pairs with smp mb in shrink_slab() */
432 smp_mb__before_atomic();
433 set_bit(shrinker_id, map->map);
434 rcu_read_unlock();
435 }
436 }
437
438 /**
439 * mem_cgroup_css_from_page - css of the memcg associated with a page
440 * @page: page of interest
441 *
442 * If memcg is bound to the default hierarchy, css of the memcg associated
443 * with @page is returned. The returned css remains associated with @page
444 * until it is released.
445 *
446 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
447 * is returned.
448 */
449 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
450 {
451 struct mem_cgroup *memcg;
452
453 memcg = page->mem_cgroup;
454
455 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
456 memcg = root_mem_cgroup;
457
458 return &memcg->css;
459 }
460
461 /**
462 * page_cgroup_ino - return inode number of the memcg a page is charged to
463 * @page: the page
464 *
465 * Look up the closest online ancestor of the memory cgroup @page is charged to
466 * and return its inode number or 0 if @page is not charged to any cgroup. It
467 * is safe to call this function without holding a reference to @page.
468 *
469 * Note, this function is inherently racy, because there is nothing to prevent
470 * the cgroup inode from getting torn down and potentially reallocated a moment
471 * after page_cgroup_ino() returns, so it only should be used by callers that
472 * do not care (such as procfs interfaces).
473 */
474 ino_t page_cgroup_ino(struct page *page)
475 {
476 struct mem_cgroup *memcg;
477 unsigned long ino = 0;
478
479 rcu_read_lock();
480 if (PageSlab(page) && !PageTail(page))
481 memcg = memcg_from_slab_page(page);
482 else
483 memcg = READ_ONCE(page->mem_cgroup);
484 while (memcg && !(memcg->css.flags & CSS_ONLINE))
485 memcg = parent_mem_cgroup(memcg);
486 if (memcg)
487 ino = cgroup_ino(memcg->css.cgroup);
488 rcu_read_unlock();
489 return ino;
490 }
491
492 static struct mem_cgroup_per_node *
493 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
494 {
495 int nid = page_to_nid(page);
496
497 return memcg->nodeinfo[nid];
498 }
499
500 static struct mem_cgroup_tree_per_node *
501 soft_limit_tree_node(int nid)
502 {
503 return soft_limit_tree.rb_tree_per_node[nid];
504 }
505
506 static struct mem_cgroup_tree_per_node *
507 soft_limit_tree_from_page(struct page *page)
508 {
509 int nid = page_to_nid(page);
510
511 return soft_limit_tree.rb_tree_per_node[nid];
512 }
513
514 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
515 struct mem_cgroup_tree_per_node *mctz,
516 unsigned long new_usage_in_excess)
517 {
518 struct rb_node **p = &mctz->rb_root.rb_node;
519 struct rb_node *parent = NULL;
520 struct mem_cgroup_per_node *mz_node;
521 bool rightmost = true;
522
523 if (mz->on_tree)
524 return;
525
526 mz->usage_in_excess = new_usage_in_excess;
527 if (!mz->usage_in_excess)
528 return;
529 while (*p) {
530 parent = *p;
531 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
532 tree_node);
533 if (mz->usage_in_excess < mz_node->usage_in_excess) {
534 p = &(*p)->rb_left;
535 rightmost = false;
536 }
537
538 /*
539 * We can't avoid mem cgroups that are over their soft
540 * limit by the same amount
541 */
542 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
543 p = &(*p)->rb_right;
544 }
545
546 if (rightmost)
547 mctz->rb_rightmost = &mz->tree_node;
548
549 rb_link_node(&mz->tree_node, parent, p);
550 rb_insert_color(&mz->tree_node, &mctz->rb_root);
551 mz->on_tree = true;
552 }
553
554 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
555 struct mem_cgroup_tree_per_node *mctz)
556 {
557 if (!mz->on_tree)
558 return;
559
560 if (&mz->tree_node == mctz->rb_rightmost)
561 mctz->rb_rightmost = rb_prev(&mz->tree_node);
562
563 rb_erase(&mz->tree_node, &mctz->rb_root);
564 mz->on_tree = false;
565 }
566
567 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 struct mem_cgroup_tree_per_node *mctz)
569 {
570 unsigned long flags;
571
572 spin_lock_irqsave(&mctz->lock, flags);
573 __mem_cgroup_remove_exceeded(mz, mctz);
574 spin_unlock_irqrestore(&mctz->lock, flags);
575 }
576
577 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
578 {
579 unsigned long nr_pages = page_counter_read(&memcg->memory);
580 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
581 unsigned long excess = 0;
582
583 if (nr_pages > soft_limit)
584 excess = nr_pages - soft_limit;
585
586 return excess;
587 }
588
589 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
590 {
591 unsigned long excess;
592 struct mem_cgroup_per_node *mz;
593 struct mem_cgroup_tree_per_node *mctz;
594
595 mctz = soft_limit_tree_from_page(page);
596 if (!mctz)
597 return;
598 /*
599 * Necessary to update all ancestors when hierarchy is used.
600 * because their event counter is not touched.
601 */
602 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
603 mz = mem_cgroup_page_nodeinfo(memcg, page);
604 excess = soft_limit_excess(memcg);
605 /*
606 * We have to update the tree if mz is on RB-tree or
607 * mem is over its softlimit.
608 */
609 if (excess || mz->on_tree) {
610 unsigned long flags;
611
612 spin_lock_irqsave(&mctz->lock, flags);
613 /* if on-tree, remove it */
614 if (mz->on_tree)
615 __mem_cgroup_remove_exceeded(mz, mctz);
616 /*
617 * Insert again. mz->usage_in_excess will be updated.
618 * If excess is 0, no tree ops.
619 */
620 __mem_cgroup_insert_exceeded(mz, mctz, excess);
621 spin_unlock_irqrestore(&mctz->lock, flags);
622 }
623 }
624 }
625
626 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
627 {
628 struct mem_cgroup_tree_per_node *mctz;
629 struct mem_cgroup_per_node *mz;
630 int nid;
631
632 for_each_node(nid) {
633 mz = mem_cgroup_nodeinfo(memcg, nid);
634 mctz = soft_limit_tree_node(nid);
635 if (mctz)
636 mem_cgroup_remove_exceeded(mz, mctz);
637 }
638 }
639
640 static struct mem_cgroup_per_node *
641 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
642 {
643 struct mem_cgroup_per_node *mz;
644
645 retry:
646 mz = NULL;
647 if (!mctz->rb_rightmost)
648 goto done; /* Nothing to reclaim from */
649
650 mz = rb_entry(mctz->rb_rightmost,
651 struct mem_cgroup_per_node, tree_node);
652 /*
653 * Remove the node now but someone else can add it back,
654 * we will to add it back at the end of reclaim to its correct
655 * position in the tree.
656 */
657 __mem_cgroup_remove_exceeded(mz, mctz);
658 if (!soft_limit_excess(mz->memcg) ||
659 !css_tryget(&mz->memcg->css))
660 goto retry;
661 done:
662 return mz;
663 }
664
665 static struct mem_cgroup_per_node *
666 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
667 {
668 struct mem_cgroup_per_node *mz;
669
670 spin_lock_irq(&mctz->lock);
671 mz = __mem_cgroup_largest_soft_limit_node(mctz);
672 spin_unlock_irq(&mctz->lock);
673 return mz;
674 }
675
676 /**
677 * __mod_memcg_state - update cgroup memory statistics
678 * @memcg: the memory cgroup
679 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
680 * @val: delta to add to the counter, can be negative
681 */
682 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
683 {
684 long x;
685
686 if (mem_cgroup_disabled())
687 return;
688
689 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
690 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
691 struct mem_cgroup *mi;
692
693 /*
694 * Batch local counters to keep them in sync with
695 * the hierarchical ones.
696 */
697 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
698 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
699 atomic_long_add(x, &mi->vmstats[idx]);
700 x = 0;
701 }
702 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
703 }
704
705 static struct mem_cgroup_per_node *
706 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
707 {
708 struct mem_cgroup *parent;
709
710 parent = parent_mem_cgroup(pn->memcg);
711 if (!parent)
712 return NULL;
713 return mem_cgroup_nodeinfo(parent, nid);
714 }
715
716 /**
717 * __mod_lruvec_state - update lruvec memory statistics
718 * @lruvec: the lruvec
719 * @idx: the stat item
720 * @val: delta to add to the counter, can be negative
721 *
722 * The lruvec is the intersection of the NUMA node and a cgroup. This
723 * function updates the all three counters that are affected by a
724 * change of state at this level: per-node, per-cgroup, per-lruvec.
725 */
726 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 int val)
728 {
729 pg_data_t *pgdat = lruvec_pgdat(lruvec);
730 struct mem_cgroup_per_node *pn;
731 struct mem_cgroup *memcg;
732 long x;
733
734 /* Update node */
735 __mod_node_page_state(pgdat, idx, val);
736
737 if (mem_cgroup_disabled())
738 return;
739
740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
741 memcg = pn->memcg;
742
743 /* Update memcg */
744 __mod_memcg_state(memcg, idx, val);
745
746 /* Update lruvec */
747 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
748
749 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
750 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
751 struct mem_cgroup_per_node *pi;
752
753 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
754 atomic_long_add(x, &pi->lruvec_stat[idx]);
755 x = 0;
756 }
757 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
758 }
759
760 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
761 {
762 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
763 struct mem_cgroup *memcg;
764 struct lruvec *lruvec;
765
766 rcu_read_lock();
767 memcg = mem_cgroup_from_obj(p);
768
769 /* Untracked pages have no memcg, no lruvec. Update only the node */
770 if (!memcg || memcg == root_mem_cgroup) {
771 __mod_node_page_state(pgdat, idx, val);
772 } else {
773 lruvec = mem_cgroup_lruvec(memcg, pgdat);
774 __mod_lruvec_state(lruvec, idx, val);
775 }
776 rcu_read_unlock();
777 }
778
779 void mod_memcg_obj_state(void *p, int idx, int val)
780 {
781 struct mem_cgroup *memcg;
782
783 rcu_read_lock();
784 memcg = mem_cgroup_from_obj(p);
785 if (memcg)
786 mod_memcg_state(memcg, idx, val);
787 rcu_read_unlock();
788 }
789
790 /**
791 * __count_memcg_events - account VM events in a cgroup
792 * @memcg: the memory cgroup
793 * @idx: the event item
794 * @count: the number of events that occured
795 */
796 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
797 unsigned long count)
798 {
799 unsigned long x;
800
801 if (mem_cgroup_disabled())
802 return;
803
804 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
805 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
806 struct mem_cgroup *mi;
807
808 /*
809 * Batch local counters to keep them in sync with
810 * the hierarchical ones.
811 */
812 __this_cpu_add(memcg->vmstats_local->events[idx], x);
813 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
814 atomic_long_add(x, &mi->vmevents[idx]);
815 x = 0;
816 }
817 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
818 }
819
820 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
821 {
822 return atomic_long_read(&memcg->vmevents[event]);
823 }
824
825 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
826 {
827 long x = 0;
828 int cpu;
829
830 for_each_possible_cpu(cpu)
831 x += per_cpu(memcg->vmstats_local->events[event], cpu);
832 return x;
833 }
834
835 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
836 struct page *page,
837 int nr_pages)
838 {
839 /* pagein of a big page is an event. So, ignore page size */
840 if (nr_pages > 0)
841 __count_memcg_events(memcg, PGPGIN, 1);
842 else {
843 __count_memcg_events(memcg, PGPGOUT, 1);
844 nr_pages = -nr_pages; /* for event */
845 }
846
847 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
848 }
849
850 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
851 enum mem_cgroup_events_target target)
852 {
853 unsigned long val, next;
854
855 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
856 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
857 /* from time_after() in jiffies.h */
858 if ((long)(next - val) < 0) {
859 switch (target) {
860 case MEM_CGROUP_TARGET_THRESH:
861 next = val + THRESHOLDS_EVENTS_TARGET;
862 break;
863 case MEM_CGROUP_TARGET_SOFTLIMIT:
864 next = val + SOFTLIMIT_EVENTS_TARGET;
865 break;
866 default:
867 break;
868 }
869 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
870 return true;
871 }
872 return false;
873 }
874
875 /*
876 * Check events in order.
877 *
878 */
879 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
880 {
881 /* threshold event is triggered in finer grain than soft limit */
882 if (unlikely(mem_cgroup_event_ratelimit(memcg,
883 MEM_CGROUP_TARGET_THRESH))) {
884 bool do_softlimit;
885
886 do_softlimit = mem_cgroup_event_ratelimit(memcg,
887 MEM_CGROUP_TARGET_SOFTLIMIT);
888 mem_cgroup_threshold(memcg);
889 if (unlikely(do_softlimit))
890 mem_cgroup_update_tree(memcg, page);
891 }
892 }
893
894 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
895 {
896 /*
897 * mm_update_next_owner() may clear mm->owner to NULL
898 * if it races with swapoff, page migration, etc.
899 * So this can be called with p == NULL.
900 */
901 if (unlikely(!p))
902 return NULL;
903
904 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
905 }
906 EXPORT_SYMBOL(mem_cgroup_from_task);
907
908 /**
909 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
910 * @mm: mm from which memcg should be extracted. It can be NULL.
911 *
912 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
913 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
914 * returned.
915 */
916 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
917 {
918 struct mem_cgroup *memcg;
919
920 if (mem_cgroup_disabled())
921 return NULL;
922
923 rcu_read_lock();
924 do {
925 /*
926 * Page cache insertions can happen withou an
927 * actual mm context, e.g. during disk probing
928 * on boot, loopback IO, acct() writes etc.
929 */
930 if (unlikely(!mm))
931 memcg = root_mem_cgroup;
932 else {
933 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
934 if (unlikely(!memcg))
935 memcg = root_mem_cgroup;
936 }
937 } while (!css_tryget(&memcg->css));
938 rcu_read_unlock();
939 return memcg;
940 }
941 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
942
943 /**
944 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
945 * @page: page from which memcg should be extracted.
946 *
947 * Obtain a reference on page->memcg and returns it if successful. Otherwise
948 * root_mem_cgroup is returned.
949 */
950 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
951 {
952 struct mem_cgroup *memcg = page->mem_cgroup;
953
954 if (mem_cgroup_disabled())
955 return NULL;
956
957 rcu_read_lock();
958 /* Page should not get uncharged and freed memcg under us. */
959 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
960 memcg = root_mem_cgroup;
961 rcu_read_unlock();
962 return memcg;
963 }
964 EXPORT_SYMBOL(get_mem_cgroup_from_page);
965
966 /**
967 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
968 */
969 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
970 {
971 if (unlikely(current->active_memcg)) {
972 struct mem_cgroup *memcg;
973
974 rcu_read_lock();
975 /* current->active_memcg must hold a ref. */
976 if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
977 memcg = root_mem_cgroup;
978 else
979 memcg = current->active_memcg;
980 rcu_read_unlock();
981 return memcg;
982 }
983 return get_mem_cgroup_from_mm(current->mm);
984 }
985
986 /**
987 * mem_cgroup_iter - iterate over memory cgroup hierarchy
988 * @root: hierarchy root
989 * @prev: previously returned memcg, NULL on first invocation
990 * @reclaim: cookie for shared reclaim walks, NULL for full walks
991 *
992 * Returns references to children of the hierarchy below @root, or
993 * @root itself, or %NULL after a full round-trip.
994 *
995 * Caller must pass the return value in @prev on subsequent
996 * invocations for reference counting, or use mem_cgroup_iter_break()
997 * to cancel a hierarchy walk before the round-trip is complete.
998 *
999 * Reclaimers can specify a node and a priority level in @reclaim to
1000 * divide up the memcgs in the hierarchy among all concurrent
1001 * reclaimers operating on the same node and priority.
1002 */
1003 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1004 struct mem_cgroup *prev,
1005 struct mem_cgroup_reclaim_cookie *reclaim)
1006 {
1007 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1008 struct cgroup_subsys_state *css = NULL;
1009 struct mem_cgroup *memcg = NULL;
1010 struct mem_cgroup *pos = NULL;
1011
1012 if (mem_cgroup_disabled())
1013 return NULL;
1014
1015 if (!root)
1016 root = root_mem_cgroup;
1017
1018 if (prev && !reclaim)
1019 pos = prev;
1020
1021 if (!root->use_hierarchy && root != root_mem_cgroup) {
1022 if (prev)
1023 goto out;
1024 return root;
1025 }
1026
1027 rcu_read_lock();
1028
1029 if (reclaim) {
1030 struct mem_cgroup_per_node *mz;
1031
1032 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1033 iter = &mz->iter;
1034
1035 if (prev && reclaim->generation != iter->generation)
1036 goto out_unlock;
1037
1038 while (1) {
1039 pos = READ_ONCE(iter->position);
1040 if (!pos || css_tryget(&pos->css))
1041 break;
1042 /*
1043 * css reference reached zero, so iter->position will
1044 * be cleared by ->css_released. However, we should not
1045 * rely on this happening soon, because ->css_released
1046 * is called from a work queue, and by busy-waiting we
1047 * might block it. So we clear iter->position right
1048 * away.
1049 */
1050 (void)cmpxchg(&iter->position, pos, NULL);
1051 }
1052 }
1053
1054 if (pos)
1055 css = &pos->css;
1056
1057 for (;;) {
1058 css = css_next_descendant_pre(css, &root->css);
1059 if (!css) {
1060 /*
1061 * Reclaimers share the hierarchy walk, and a
1062 * new one might jump in right at the end of
1063 * the hierarchy - make sure they see at least
1064 * one group and restart from the beginning.
1065 */
1066 if (!prev)
1067 continue;
1068 break;
1069 }
1070
1071 /*
1072 * Verify the css and acquire a reference. The root
1073 * is provided by the caller, so we know it's alive
1074 * and kicking, and don't take an extra reference.
1075 */
1076 memcg = mem_cgroup_from_css(css);
1077
1078 if (css == &root->css)
1079 break;
1080
1081 if (css_tryget(css))
1082 break;
1083
1084 memcg = NULL;
1085 }
1086
1087 if (reclaim) {
1088 /*
1089 * The position could have already been updated by a competing
1090 * thread, so check that the value hasn't changed since we read
1091 * it to avoid reclaiming from the same cgroup twice.
1092 */
1093 (void)cmpxchg(&iter->position, pos, memcg);
1094
1095 if (pos)
1096 css_put(&pos->css);
1097
1098 if (!memcg)
1099 iter->generation++;
1100 else if (!prev)
1101 reclaim->generation = iter->generation;
1102 }
1103
1104 out_unlock:
1105 rcu_read_unlock();
1106 out:
1107 if (prev && prev != root)
1108 css_put(&prev->css);
1109
1110 return memcg;
1111 }
1112
1113 /**
1114 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1115 * @root: hierarchy root
1116 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1117 */
1118 void mem_cgroup_iter_break(struct mem_cgroup *root,
1119 struct mem_cgroup *prev)
1120 {
1121 if (!root)
1122 root = root_mem_cgroup;
1123 if (prev && prev != root)
1124 css_put(&prev->css);
1125 }
1126
1127 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1128 struct mem_cgroup *dead_memcg)
1129 {
1130 struct mem_cgroup_reclaim_iter *iter;
1131 struct mem_cgroup_per_node *mz;
1132 int nid;
1133
1134 for_each_node(nid) {
1135 mz = mem_cgroup_nodeinfo(from, nid);
1136 iter = &mz->iter;
1137 cmpxchg(&iter->position, dead_memcg, NULL);
1138 }
1139 }
1140
1141 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1142 {
1143 struct mem_cgroup *memcg = dead_memcg;
1144 struct mem_cgroup *last;
1145
1146 do {
1147 __invalidate_reclaim_iterators(memcg, dead_memcg);
1148 last = memcg;
1149 } while ((memcg = parent_mem_cgroup(memcg)));
1150
1151 /*
1152 * When cgruop1 non-hierarchy mode is used,
1153 * parent_mem_cgroup() does not walk all the way up to the
1154 * cgroup root (root_mem_cgroup). So we have to handle
1155 * dead_memcg from cgroup root separately.
1156 */
1157 if (last != root_mem_cgroup)
1158 __invalidate_reclaim_iterators(root_mem_cgroup,
1159 dead_memcg);
1160 }
1161
1162 /**
1163 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1164 * @memcg: hierarchy root
1165 * @fn: function to call for each task
1166 * @arg: argument passed to @fn
1167 *
1168 * This function iterates over tasks attached to @memcg or to any of its
1169 * descendants and calls @fn for each task. If @fn returns a non-zero
1170 * value, the function breaks the iteration loop and returns the value.
1171 * Otherwise, it will iterate over all tasks and return 0.
1172 *
1173 * This function must not be called for the root memory cgroup.
1174 */
1175 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1176 int (*fn)(struct task_struct *, void *), void *arg)
1177 {
1178 struct mem_cgroup *iter;
1179 int ret = 0;
1180
1181 BUG_ON(memcg == root_mem_cgroup);
1182
1183 for_each_mem_cgroup_tree(iter, memcg) {
1184 struct css_task_iter it;
1185 struct task_struct *task;
1186
1187 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1188 while (!ret && (task = css_task_iter_next(&it)))
1189 ret = fn(task, arg);
1190 css_task_iter_end(&it);
1191 if (ret) {
1192 mem_cgroup_iter_break(memcg, iter);
1193 break;
1194 }
1195 }
1196 return ret;
1197 }
1198
1199 /**
1200 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1201 * @page: the page
1202 * @pgdat: pgdat of the page
1203 *
1204 * This function relies on page->mem_cgroup being stable - see the
1205 * access rules in commit_charge().
1206 */
1207 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1208 {
1209 struct mem_cgroup_per_node *mz;
1210 struct mem_cgroup *memcg;
1211 struct lruvec *lruvec;
1212
1213 if (mem_cgroup_disabled()) {
1214 lruvec = &pgdat->__lruvec;
1215 goto out;
1216 }
1217
1218 memcg = page->mem_cgroup;
1219 /*
1220 * Swapcache readahead pages are added to the LRU - and
1221 * possibly migrated - before they are charged.
1222 */
1223 if (!memcg)
1224 memcg = root_mem_cgroup;
1225
1226 mz = mem_cgroup_page_nodeinfo(memcg, page);
1227 lruvec = &mz->lruvec;
1228 out:
1229 /*
1230 * Since a node can be onlined after the mem_cgroup was created,
1231 * we have to be prepared to initialize lruvec->zone here;
1232 * and if offlined then reonlined, we need to reinitialize it.
1233 */
1234 if (unlikely(lruvec->pgdat != pgdat))
1235 lruvec->pgdat = pgdat;
1236 return lruvec;
1237 }
1238
1239 /**
1240 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1241 * @lruvec: mem_cgroup per zone lru vector
1242 * @lru: index of lru list the page is sitting on
1243 * @zid: zone id of the accounted pages
1244 * @nr_pages: positive when adding or negative when removing
1245 *
1246 * This function must be called under lru_lock, just before a page is added
1247 * to or just after a page is removed from an lru list (that ordering being
1248 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1249 */
1250 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1251 int zid, int nr_pages)
1252 {
1253 struct mem_cgroup_per_node *mz;
1254 unsigned long *lru_size;
1255 long size;
1256
1257 if (mem_cgroup_disabled())
1258 return;
1259
1260 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1261 lru_size = &mz->lru_zone_size[zid][lru];
1262
1263 if (nr_pages < 0)
1264 *lru_size += nr_pages;
1265
1266 size = *lru_size;
1267 if (WARN_ONCE(size < 0,
1268 "%s(%p, %d, %d): lru_size %ld\n",
1269 __func__, lruvec, lru, nr_pages, size)) {
1270 VM_BUG_ON(1);
1271 *lru_size = 0;
1272 }
1273
1274 if (nr_pages > 0)
1275 *lru_size += nr_pages;
1276 }
1277
1278 /**
1279 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1280 * @memcg: the memory cgroup
1281 *
1282 * Returns the maximum amount of memory @mem can be charged with, in
1283 * pages.
1284 */
1285 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1286 {
1287 unsigned long margin = 0;
1288 unsigned long count;
1289 unsigned long limit;
1290
1291 count = page_counter_read(&memcg->memory);
1292 limit = READ_ONCE(memcg->memory.max);
1293 if (count < limit)
1294 margin = limit - count;
1295
1296 if (do_memsw_account()) {
1297 count = page_counter_read(&memcg->memsw);
1298 limit = READ_ONCE(memcg->memsw.max);
1299 if (count < limit)
1300 margin = min(margin, limit - count);
1301 else
1302 margin = 0;
1303 }
1304
1305 return margin;
1306 }
1307
1308 /*
1309 * A routine for checking "mem" is under move_account() or not.
1310 *
1311 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1312 * moving cgroups. This is for waiting at high-memory pressure
1313 * caused by "move".
1314 */
1315 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1316 {
1317 struct mem_cgroup *from;
1318 struct mem_cgroup *to;
1319 bool ret = false;
1320 /*
1321 * Unlike task_move routines, we access mc.to, mc.from not under
1322 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1323 */
1324 spin_lock(&mc.lock);
1325 from = mc.from;
1326 to = mc.to;
1327 if (!from)
1328 goto unlock;
1329
1330 ret = mem_cgroup_is_descendant(from, memcg) ||
1331 mem_cgroup_is_descendant(to, memcg);
1332 unlock:
1333 spin_unlock(&mc.lock);
1334 return ret;
1335 }
1336
1337 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1338 {
1339 if (mc.moving_task && current != mc.moving_task) {
1340 if (mem_cgroup_under_move(memcg)) {
1341 DEFINE_WAIT(wait);
1342 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1343 /* moving charge context might have finished. */
1344 if (mc.moving_task)
1345 schedule();
1346 finish_wait(&mc.waitq, &wait);
1347 return true;
1348 }
1349 }
1350 return false;
1351 }
1352
1353 static char *memory_stat_format(struct mem_cgroup *memcg)
1354 {
1355 struct seq_buf s;
1356 int i;
1357
1358 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1359 if (!s.buffer)
1360 return NULL;
1361
1362 /*
1363 * Provide statistics on the state of the memory subsystem as
1364 * well as cumulative event counters that show past behavior.
1365 *
1366 * This list is ordered following a combination of these gradients:
1367 * 1) generic big picture -> specifics and details
1368 * 2) reflecting userspace activity -> reflecting kernel heuristics
1369 *
1370 * Current memory state:
1371 */
1372
1373 seq_buf_printf(&s, "anon %llu\n",
1374 (u64)memcg_page_state(memcg, NR_ANON_MAPPED) *
1375 PAGE_SIZE);
1376 seq_buf_printf(&s, "file %llu\n",
1377 (u64)memcg_page_state(memcg, NR_FILE_PAGES) *
1378 PAGE_SIZE);
1379 seq_buf_printf(&s, "kernel_stack %llu\n",
1380 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1381 1024);
1382 seq_buf_printf(&s, "slab %llu\n",
1383 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1384 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1385 PAGE_SIZE);
1386 seq_buf_printf(&s, "sock %llu\n",
1387 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1388 PAGE_SIZE);
1389
1390 seq_buf_printf(&s, "shmem %llu\n",
1391 (u64)memcg_page_state(memcg, NR_SHMEM) *
1392 PAGE_SIZE);
1393 seq_buf_printf(&s, "file_mapped %llu\n",
1394 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1395 PAGE_SIZE);
1396 seq_buf_printf(&s, "file_dirty %llu\n",
1397 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1398 PAGE_SIZE);
1399 seq_buf_printf(&s, "file_writeback %llu\n",
1400 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1401 PAGE_SIZE);
1402
1403 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1404 seq_buf_printf(&s, "anon_thp %llu\n",
1405 (u64)memcg_page_state(memcg, NR_ANON_THPS) *
1406 HPAGE_PMD_SIZE);
1407 #endif
1408
1409 for (i = 0; i < NR_LRU_LISTS; i++)
1410 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1411 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1412 PAGE_SIZE);
1413
1414 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1415 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1416 PAGE_SIZE);
1417 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1418 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1419 PAGE_SIZE);
1420
1421 /* Accumulated memory events */
1422
1423 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1424 memcg_events(memcg, PGFAULT));
1425 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1426 memcg_events(memcg, PGMAJFAULT));
1427
1428 seq_buf_printf(&s, "workingset_refault %lu\n",
1429 memcg_page_state(memcg, WORKINGSET_REFAULT));
1430 seq_buf_printf(&s, "workingset_activate %lu\n",
1431 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1432 seq_buf_printf(&s, "workingset_restore %lu\n",
1433 memcg_page_state(memcg, WORKINGSET_RESTORE));
1434 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1435 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1436
1437 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1438 memcg_events(memcg, PGREFILL));
1439 seq_buf_printf(&s, "pgscan %lu\n",
1440 memcg_events(memcg, PGSCAN_KSWAPD) +
1441 memcg_events(memcg, PGSCAN_DIRECT));
1442 seq_buf_printf(&s, "pgsteal %lu\n",
1443 memcg_events(memcg, PGSTEAL_KSWAPD) +
1444 memcg_events(memcg, PGSTEAL_DIRECT));
1445 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1446 memcg_events(memcg, PGACTIVATE));
1447 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1448 memcg_events(memcg, PGDEACTIVATE));
1449 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1450 memcg_events(memcg, PGLAZYFREE));
1451 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1452 memcg_events(memcg, PGLAZYFREED));
1453
1454 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1455 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1456 memcg_events(memcg, THP_FAULT_ALLOC));
1457 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1458 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1459 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1460
1461 /* The above should easily fit into one page */
1462 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1463
1464 return s.buffer;
1465 }
1466
1467 #define K(x) ((x) << (PAGE_SHIFT-10))
1468 /**
1469 * mem_cgroup_print_oom_context: Print OOM information relevant to
1470 * memory controller.
1471 * @memcg: The memory cgroup that went over limit
1472 * @p: Task that is going to be killed
1473 *
1474 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1475 * enabled
1476 */
1477 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1478 {
1479 rcu_read_lock();
1480
1481 if (memcg) {
1482 pr_cont(",oom_memcg=");
1483 pr_cont_cgroup_path(memcg->css.cgroup);
1484 } else
1485 pr_cont(",global_oom");
1486 if (p) {
1487 pr_cont(",task_memcg=");
1488 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1489 }
1490 rcu_read_unlock();
1491 }
1492
1493 /**
1494 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1495 * memory controller.
1496 * @memcg: The memory cgroup that went over limit
1497 */
1498 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1499 {
1500 char *buf;
1501
1502 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1503 K((u64)page_counter_read(&memcg->memory)),
1504 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1505 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1506 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1507 K((u64)page_counter_read(&memcg->swap)),
1508 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1509 else {
1510 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1511 K((u64)page_counter_read(&memcg->memsw)),
1512 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1513 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1514 K((u64)page_counter_read(&memcg->kmem)),
1515 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1516 }
1517
1518 pr_info("Memory cgroup stats for ");
1519 pr_cont_cgroup_path(memcg->css.cgroup);
1520 pr_cont(":");
1521 buf = memory_stat_format(memcg);
1522 if (!buf)
1523 return;
1524 pr_info("%s", buf);
1525 kfree(buf);
1526 }
1527
1528 /*
1529 * Return the memory (and swap, if configured) limit for a memcg.
1530 */
1531 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1532 {
1533 unsigned long max;
1534
1535 max = READ_ONCE(memcg->memory.max);
1536 if (mem_cgroup_swappiness(memcg)) {
1537 unsigned long memsw_max;
1538 unsigned long swap_max;
1539
1540 memsw_max = memcg->memsw.max;
1541 swap_max = READ_ONCE(memcg->swap.max);
1542 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1543 max = min(max + swap_max, memsw_max);
1544 }
1545 return max;
1546 }
1547
1548 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1549 {
1550 return page_counter_read(&memcg->memory);
1551 }
1552
1553 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1554 int order)
1555 {
1556 struct oom_control oc = {
1557 .zonelist = NULL,
1558 .nodemask = NULL,
1559 .memcg = memcg,
1560 .gfp_mask = gfp_mask,
1561 .order = order,
1562 };
1563 bool ret;
1564
1565 if (mutex_lock_killable(&oom_lock))
1566 return true;
1567 /*
1568 * A few threads which were not waiting at mutex_lock_killable() can
1569 * fail to bail out. Therefore, check again after holding oom_lock.
1570 */
1571 ret = should_force_charge() || out_of_memory(&oc);
1572 mutex_unlock(&oom_lock);
1573 return ret;
1574 }
1575
1576 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1577 pg_data_t *pgdat,
1578 gfp_t gfp_mask,
1579 unsigned long *total_scanned)
1580 {
1581 struct mem_cgroup *victim = NULL;
1582 int total = 0;
1583 int loop = 0;
1584 unsigned long excess;
1585 unsigned long nr_scanned;
1586 struct mem_cgroup_reclaim_cookie reclaim = {
1587 .pgdat = pgdat,
1588 };
1589
1590 excess = soft_limit_excess(root_memcg);
1591
1592 while (1) {
1593 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1594 if (!victim) {
1595 loop++;
1596 if (loop >= 2) {
1597 /*
1598 * If we have not been able to reclaim
1599 * anything, it might because there are
1600 * no reclaimable pages under this hierarchy
1601 */
1602 if (!total)
1603 break;
1604 /*
1605 * We want to do more targeted reclaim.
1606 * excess >> 2 is not to excessive so as to
1607 * reclaim too much, nor too less that we keep
1608 * coming back to reclaim from this cgroup
1609 */
1610 if (total >= (excess >> 2) ||
1611 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1612 break;
1613 }
1614 continue;
1615 }
1616 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1617 pgdat, &nr_scanned);
1618 *total_scanned += nr_scanned;
1619 if (!soft_limit_excess(root_memcg))
1620 break;
1621 }
1622 mem_cgroup_iter_break(root_memcg, victim);
1623 return total;
1624 }
1625
1626 #ifdef CONFIG_LOCKDEP
1627 static struct lockdep_map memcg_oom_lock_dep_map = {
1628 .name = "memcg_oom_lock",
1629 };
1630 #endif
1631
1632 static DEFINE_SPINLOCK(memcg_oom_lock);
1633
1634 /*
1635 * Check OOM-Killer is already running under our hierarchy.
1636 * If someone is running, return false.
1637 */
1638 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1639 {
1640 struct mem_cgroup *iter, *failed = NULL;
1641
1642 spin_lock(&memcg_oom_lock);
1643
1644 for_each_mem_cgroup_tree(iter, memcg) {
1645 if (iter->oom_lock) {
1646 /*
1647 * this subtree of our hierarchy is already locked
1648 * so we cannot give a lock.
1649 */
1650 failed = iter;
1651 mem_cgroup_iter_break(memcg, iter);
1652 break;
1653 } else
1654 iter->oom_lock = true;
1655 }
1656
1657 if (failed) {
1658 /*
1659 * OK, we failed to lock the whole subtree so we have
1660 * to clean up what we set up to the failing subtree
1661 */
1662 for_each_mem_cgroup_tree(iter, memcg) {
1663 if (iter == failed) {
1664 mem_cgroup_iter_break(memcg, iter);
1665 break;
1666 }
1667 iter->oom_lock = false;
1668 }
1669 } else
1670 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1671
1672 spin_unlock(&memcg_oom_lock);
1673
1674 return !failed;
1675 }
1676
1677 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1678 {
1679 struct mem_cgroup *iter;
1680
1681 spin_lock(&memcg_oom_lock);
1682 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1683 for_each_mem_cgroup_tree(iter, memcg)
1684 iter->oom_lock = false;
1685 spin_unlock(&memcg_oom_lock);
1686 }
1687
1688 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1689 {
1690 struct mem_cgroup *iter;
1691
1692 spin_lock(&memcg_oom_lock);
1693 for_each_mem_cgroup_tree(iter, memcg)
1694 iter->under_oom++;
1695 spin_unlock(&memcg_oom_lock);
1696 }
1697
1698 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1699 {
1700 struct mem_cgroup *iter;
1701
1702 /*
1703 * When a new child is created while the hierarchy is under oom,
1704 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1705 */
1706 spin_lock(&memcg_oom_lock);
1707 for_each_mem_cgroup_tree(iter, memcg)
1708 if (iter->under_oom > 0)
1709 iter->under_oom--;
1710 spin_unlock(&memcg_oom_lock);
1711 }
1712
1713 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1714
1715 struct oom_wait_info {
1716 struct mem_cgroup *memcg;
1717 wait_queue_entry_t wait;
1718 };
1719
1720 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1721 unsigned mode, int sync, void *arg)
1722 {
1723 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1724 struct mem_cgroup *oom_wait_memcg;
1725 struct oom_wait_info *oom_wait_info;
1726
1727 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1728 oom_wait_memcg = oom_wait_info->memcg;
1729
1730 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1731 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1732 return 0;
1733 return autoremove_wake_function(wait, mode, sync, arg);
1734 }
1735
1736 static void memcg_oom_recover(struct mem_cgroup *memcg)
1737 {
1738 /*
1739 * For the following lockless ->under_oom test, the only required
1740 * guarantee is that it must see the state asserted by an OOM when
1741 * this function is called as a result of userland actions
1742 * triggered by the notification of the OOM. This is trivially
1743 * achieved by invoking mem_cgroup_mark_under_oom() before
1744 * triggering notification.
1745 */
1746 if (memcg && memcg->under_oom)
1747 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1748 }
1749
1750 enum oom_status {
1751 OOM_SUCCESS,
1752 OOM_FAILED,
1753 OOM_ASYNC,
1754 OOM_SKIPPED
1755 };
1756
1757 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1758 {
1759 enum oom_status ret;
1760 bool locked;
1761
1762 if (order > PAGE_ALLOC_COSTLY_ORDER)
1763 return OOM_SKIPPED;
1764
1765 memcg_memory_event(memcg, MEMCG_OOM);
1766
1767 /*
1768 * We are in the middle of the charge context here, so we
1769 * don't want to block when potentially sitting on a callstack
1770 * that holds all kinds of filesystem and mm locks.
1771 *
1772 * cgroup1 allows disabling the OOM killer and waiting for outside
1773 * handling until the charge can succeed; remember the context and put
1774 * the task to sleep at the end of the page fault when all locks are
1775 * released.
1776 *
1777 * On the other hand, in-kernel OOM killer allows for an async victim
1778 * memory reclaim (oom_reaper) and that means that we are not solely
1779 * relying on the oom victim to make a forward progress and we can
1780 * invoke the oom killer here.
1781 *
1782 * Please note that mem_cgroup_out_of_memory might fail to find a
1783 * victim and then we have to bail out from the charge path.
1784 */
1785 if (memcg->oom_kill_disable) {
1786 if (!current->in_user_fault)
1787 return OOM_SKIPPED;
1788 css_get(&memcg->css);
1789 current->memcg_in_oom = memcg;
1790 current->memcg_oom_gfp_mask = mask;
1791 current->memcg_oom_order = order;
1792
1793 return OOM_ASYNC;
1794 }
1795
1796 mem_cgroup_mark_under_oom(memcg);
1797
1798 locked = mem_cgroup_oom_trylock(memcg);
1799
1800 if (locked)
1801 mem_cgroup_oom_notify(memcg);
1802
1803 mem_cgroup_unmark_under_oom(memcg);
1804 if (mem_cgroup_out_of_memory(memcg, mask, order))
1805 ret = OOM_SUCCESS;
1806 else
1807 ret = OOM_FAILED;
1808
1809 if (locked)
1810 mem_cgroup_oom_unlock(memcg);
1811
1812 return ret;
1813 }
1814
1815 /**
1816 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1817 * @handle: actually kill/wait or just clean up the OOM state
1818 *
1819 * This has to be called at the end of a page fault if the memcg OOM
1820 * handler was enabled.
1821 *
1822 * Memcg supports userspace OOM handling where failed allocations must
1823 * sleep on a waitqueue until the userspace task resolves the
1824 * situation. Sleeping directly in the charge context with all kinds
1825 * of locks held is not a good idea, instead we remember an OOM state
1826 * in the task and mem_cgroup_oom_synchronize() has to be called at
1827 * the end of the page fault to complete the OOM handling.
1828 *
1829 * Returns %true if an ongoing memcg OOM situation was detected and
1830 * completed, %false otherwise.
1831 */
1832 bool mem_cgroup_oom_synchronize(bool handle)
1833 {
1834 struct mem_cgroup *memcg = current->memcg_in_oom;
1835 struct oom_wait_info owait;
1836 bool locked;
1837
1838 /* OOM is global, do not handle */
1839 if (!memcg)
1840 return false;
1841
1842 if (!handle)
1843 goto cleanup;
1844
1845 owait.memcg = memcg;
1846 owait.wait.flags = 0;
1847 owait.wait.func = memcg_oom_wake_function;
1848 owait.wait.private = current;
1849 INIT_LIST_HEAD(&owait.wait.entry);
1850
1851 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1852 mem_cgroup_mark_under_oom(memcg);
1853
1854 locked = mem_cgroup_oom_trylock(memcg);
1855
1856 if (locked)
1857 mem_cgroup_oom_notify(memcg);
1858
1859 if (locked && !memcg->oom_kill_disable) {
1860 mem_cgroup_unmark_under_oom(memcg);
1861 finish_wait(&memcg_oom_waitq, &owait.wait);
1862 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1863 current->memcg_oom_order);
1864 } else {
1865 schedule();
1866 mem_cgroup_unmark_under_oom(memcg);
1867 finish_wait(&memcg_oom_waitq, &owait.wait);
1868 }
1869
1870 if (locked) {
1871 mem_cgroup_oom_unlock(memcg);
1872 /*
1873 * There is no guarantee that an OOM-lock contender
1874 * sees the wakeups triggered by the OOM kill
1875 * uncharges. Wake any sleepers explicitely.
1876 */
1877 memcg_oom_recover(memcg);
1878 }
1879 cleanup:
1880 current->memcg_in_oom = NULL;
1881 css_put(&memcg->css);
1882 return true;
1883 }
1884
1885 /**
1886 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1887 * @victim: task to be killed by the OOM killer
1888 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1889 *
1890 * Returns a pointer to a memory cgroup, which has to be cleaned up
1891 * by killing all belonging OOM-killable tasks.
1892 *
1893 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1894 */
1895 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1896 struct mem_cgroup *oom_domain)
1897 {
1898 struct mem_cgroup *oom_group = NULL;
1899 struct mem_cgroup *memcg;
1900
1901 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1902 return NULL;
1903
1904 if (!oom_domain)
1905 oom_domain = root_mem_cgroup;
1906
1907 rcu_read_lock();
1908
1909 memcg = mem_cgroup_from_task(victim);
1910 if (memcg == root_mem_cgroup)
1911 goto out;
1912
1913 /*
1914 * If the victim task has been asynchronously moved to a different
1915 * memory cgroup, we might end up killing tasks outside oom_domain.
1916 * In this case it's better to ignore memory.group.oom.
1917 */
1918 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1919 goto out;
1920
1921 /*
1922 * Traverse the memory cgroup hierarchy from the victim task's
1923 * cgroup up to the OOMing cgroup (or root) to find the
1924 * highest-level memory cgroup with oom.group set.
1925 */
1926 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1927 if (memcg->oom_group)
1928 oom_group = memcg;
1929
1930 if (memcg == oom_domain)
1931 break;
1932 }
1933
1934 if (oom_group)
1935 css_get(&oom_group->css);
1936 out:
1937 rcu_read_unlock();
1938
1939 return oom_group;
1940 }
1941
1942 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1943 {
1944 pr_info("Tasks in ");
1945 pr_cont_cgroup_path(memcg->css.cgroup);
1946 pr_cont(" are going to be killed due to memory.oom.group set\n");
1947 }
1948
1949 /**
1950 * lock_page_memcg - lock a page->mem_cgroup binding
1951 * @page: the page
1952 *
1953 * This function protects unlocked LRU pages from being moved to
1954 * another cgroup.
1955 *
1956 * It ensures lifetime of the returned memcg. Caller is responsible
1957 * for the lifetime of the page; __unlock_page_memcg() is available
1958 * when @page might get freed inside the locked section.
1959 */
1960 struct mem_cgroup *lock_page_memcg(struct page *page)
1961 {
1962 struct page *head = compound_head(page); /* rmap on tail pages */
1963 struct mem_cgroup *memcg;
1964 unsigned long flags;
1965
1966 /*
1967 * The RCU lock is held throughout the transaction. The fast
1968 * path can get away without acquiring the memcg->move_lock
1969 * because page moving starts with an RCU grace period.
1970 *
1971 * The RCU lock also protects the memcg from being freed when
1972 * the page state that is going to change is the only thing
1973 * preventing the page itself from being freed. E.g. writeback
1974 * doesn't hold a page reference and relies on PG_writeback to
1975 * keep off truncation, migration and so forth.
1976 */
1977 rcu_read_lock();
1978
1979 if (mem_cgroup_disabled())
1980 return NULL;
1981 again:
1982 memcg = head->mem_cgroup;
1983 if (unlikely(!memcg))
1984 return NULL;
1985
1986 if (atomic_read(&memcg->moving_account) <= 0)
1987 return memcg;
1988
1989 spin_lock_irqsave(&memcg->move_lock, flags);
1990 if (memcg != head->mem_cgroup) {
1991 spin_unlock_irqrestore(&memcg->move_lock, flags);
1992 goto again;
1993 }
1994
1995 /*
1996 * When charge migration first begins, we can have locked and
1997 * unlocked page stat updates happening concurrently. Track
1998 * the task who has the lock for unlock_page_memcg().
1999 */
2000 memcg->move_lock_task = current;
2001 memcg->move_lock_flags = flags;
2002
2003 return memcg;
2004 }
2005 EXPORT_SYMBOL(lock_page_memcg);
2006
2007 /**
2008 * __unlock_page_memcg - unlock and unpin a memcg
2009 * @memcg: the memcg
2010 *
2011 * Unlock and unpin a memcg returned by lock_page_memcg().
2012 */
2013 void __unlock_page_memcg(struct mem_cgroup *memcg)
2014 {
2015 if (memcg && memcg->move_lock_task == current) {
2016 unsigned long flags = memcg->move_lock_flags;
2017
2018 memcg->move_lock_task = NULL;
2019 memcg->move_lock_flags = 0;
2020
2021 spin_unlock_irqrestore(&memcg->move_lock, flags);
2022 }
2023
2024 rcu_read_unlock();
2025 }
2026
2027 /**
2028 * unlock_page_memcg - unlock a page->mem_cgroup binding
2029 * @page: the page
2030 */
2031 void unlock_page_memcg(struct page *page)
2032 {
2033 struct page *head = compound_head(page);
2034
2035 __unlock_page_memcg(head->mem_cgroup);
2036 }
2037 EXPORT_SYMBOL(unlock_page_memcg);
2038
2039 struct memcg_stock_pcp {
2040 struct mem_cgroup *cached; /* this never be root cgroup */
2041 unsigned int nr_pages;
2042 struct work_struct work;
2043 unsigned long flags;
2044 #define FLUSHING_CACHED_CHARGE 0
2045 };
2046 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2047 static DEFINE_MUTEX(percpu_charge_mutex);
2048
2049 /**
2050 * consume_stock: Try to consume stocked charge on this cpu.
2051 * @memcg: memcg to consume from.
2052 * @nr_pages: how many pages to charge.
2053 *
2054 * The charges will only happen if @memcg matches the current cpu's memcg
2055 * stock, and at least @nr_pages are available in that stock. Failure to
2056 * service an allocation will refill the stock.
2057 *
2058 * returns true if successful, false otherwise.
2059 */
2060 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2061 {
2062 struct memcg_stock_pcp *stock;
2063 unsigned long flags;
2064 bool ret = false;
2065
2066 if (nr_pages > MEMCG_CHARGE_BATCH)
2067 return ret;
2068
2069 local_irq_save(flags);
2070
2071 stock = this_cpu_ptr(&memcg_stock);
2072 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2073 stock->nr_pages -= nr_pages;
2074 ret = true;
2075 }
2076
2077 local_irq_restore(flags);
2078
2079 return ret;
2080 }
2081
2082 /*
2083 * Returns stocks cached in percpu and reset cached information.
2084 */
2085 static void drain_stock(struct memcg_stock_pcp *stock)
2086 {
2087 struct mem_cgroup *old = stock->cached;
2088
2089 if (stock->nr_pages) {
2090 page_counter_uncharge(&old->memory, stock->nr_pages);
2091 if (do_memsw_account())
2092 page_counter_uncharge(&old->memsw, stock->nr_pages);
2093 css_put_many(&old->css, stock->nr_pages);
2094 stock->nr_pages = 0;
2095 }
2096 stock->cached = NULL;
2097 }
2098
2099 static void drain_local_stock(struct work_struct *dummy)
2100 {
2101 struct memcg_stock_pcp *stock;
2102 unsigned long flags;
2103
2104 /*
2105 * The only protection from memory hotplug vs. drain_stock races is
2106 * that we always operate on local CPU stock here with IRQ disabled
2107 */
2108 local_irq_save(flags);
2109
2110 stock = this_cpu_ptr(&memcg_stock);
2111 drain_stock(stock);
2112 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2113
2114 local_irq_restore(flags);
2115 }
2116
2117 /*
2118 * Cache charges(val) to local per_cpu area.
2119 * This will be consumed by consume_stock() function, later.
2120 */
2121 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2122 {
2123 struct memcg_stock_pcp *stock;
2124 unsigned long flags;
2125
2126 local_irq_save(flags);
2127
2128 stock = this_cpu_ptr(&memcg_stock);
2129 if (stock->cached != memcg) { /* reset if necessary */
2130 drain_stock(stock);
2131 stock->cached = memcg;
2132 }
2133 stock->nr_pages += nr_pages;
2134
2135 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2136 drain_stock(stock);
2137
2138 local_irq_restore(flags);
2139 }
2140
2141 /*
2142 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2143 * of the hierarchy under it.
2144 */
2145 static void drain_all_stock(struct mem_cgroup *root_memcg)
2146 {
2147 int cpu, curcpu;
2148
2149 /* If someone's already draining, avoid adding running more workers. */
2150 if (!mutex_trylock(&percpu_charge_mutex))
2151 return;
2152 /*
2153 * Notify other cpus that system-wide "drain" is running
2154 * We do not care about races with the cpu hotplug because cpu down
2155 * as well as workers from this path always operate on the local
2156 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2157 */
2158 curcpu = get_cpu();
2159 for_each_online_cpu(cpu) {
2160 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2161 struct mem_cgroup *memcg;
2162 bool flush = false;
2163
2164 rcu_read_lock();
2165 memcg = stock->cached;
2166 if (memcg && stock->nr_pages &&
2167 mem_cgroup_is_descendant(memcg, root_memcg))
2168 flush = true;
2169 rcu_read_unlock();
2170
2171 if (flush &&
2172 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2173 if (cpu == curcpu)
2174 drain_local_stock(&stock->work);
2175 else
2176 schedule_work_on(cpu, &stock->work);
2177 }
2178 }
2179 put_cpu();
2180 mutex_unlock(&percpu_charge_mutex);
2181 }
2182
2183 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2184 {
2185 struct memcg_stock_pcp *stock;
2186 struct mem_cgroup *memcg, *mi;
2187
2188 stock = &per_cpu(memcg_stock, cpu);
2189 drain_stock(stock);
2190
2191 for_each_mem_cgroup(memcg) {
2192 int i;
2193
2194 for (i = 0; i < MEMCG_NR_STAT; i++) {
2195 int nid;
2196 long x;
2197
2198 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2199 if (x)
2200 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2201 atomic_long_add(x, &memcg->vmstats[i]);
2202
2203 if (i >= NR_VM_NODE_STAT_ITEMS)
2204 continue;
2205
2206 for_each_node(nid) {
2207 struct mem_cgroup_per_node *pn;
2208
2209 pn = mem_cgroup_nodeinfo(memcg, nid);
2210 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2211 if (x)
2212 do {
2213 atomic_long_add(x, &pn->lruvec_stat[i]);
2214 } while ((pn = parent_nodeinfo(pn, nid)));
2215 }
2216 }
2217
2218 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2219 long x;
2220
2221 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2222 if (x)
2223 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2224 atomic_long_add(x, &memcg->vmevents[i]);
2225 }
2226 }
2227
2228 return 0;
2229 }
2230
2231 static void reclaim_high(struct mem_cgroup *memcg,
2232 unsigned int nr_pages,
2233 gfp_t gfp_mask)
2234 {
2235 do {
2236 if (page_counter_read(&memcg->memory) <=
2237 READ_ONCE(memcg->memory.high))
2238 continue;
2239 memcg_memory_event(memcg, MEMCG_HIGH);
2240 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2241 } while ((memcg = parent_mem_cgroup(memcg)) &&
2242 !mem_cgroup_is_root(memcg));
2243 }
2244
2245 static void high_work_func(struct work_struct *work)
2246 {
2247 struct mem_cgroup *memcg;
2248
2249 memcg = container_of(work, struct mem_cgroup, high_work);
2250 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2251 }
2252
2253 /*
2254 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2255 * enough to still cause a significant slowdown in most cases, while still
2256 * allowing diagnostics and tracing to proceed without becoming stuck.
2257 */
2258 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2259
2260 /*
2261 * When calculating the delay, we use these either side of the exponentiation to
2262 * maintain precision and scale to a reasonable number of jiffies (see the table
2263 * below.
2264 *
2265 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2266 * overage ratio to a delay.
2267 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2268 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2269 * to produce a reasonable delay curve.
2270 *
2271 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2272 * reasonable delay curve compared to precision-adjusted overage, not
2273 * penalising heavily at first, but still making sure that growth beyond the
2274 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2275 * example, with a high of 100 megabytes:
2276 *
2277 * +-------+------------------------+
2278 * | usage | time to allocate in ms |
2279 * +-------+------------------------+
2280 * | 100M | 0 |
2281 * | 101M | 6 |
2282 * | 102M | 25 |
2283 * | 103M | 57 |
2284 * | 104M | 102 |
2285 * | 105M | 159 |
2286 * | 106M | 230 |
2287 * | 107M | 313 |
2288 * | 108M | 409 |
2289 * | 109M | 518 |
2290 * | 110M | 639 |
2291 * | 111M | 774 |
2292 * | 112M | 921 |
2293 * | 113M | 1081 |
2294 * | 114M | 1254 |
2295 * | 115M | 1439 |
2296 * | 116M | 1638 |
2297 * | 117M | 1849 |
2298 * | 118M | 2000 |
2299 * | 119M | 2000 |
2300 * | 120M | 2000 |
2301 * +-------+------------------------+
2302 */
2303 #define MEMCG_DELAY_PRECISION_SHIFT 20
2304 #define MEMCG_DELAY_SCALING_SHIFT 14
2305
2306 static u64 calculate_overage(unsigned long usage, unsigned long high)
2307 {
2308 u64 overage;
2309
2310 if (usage <= high)
2311 return 0;
2312
2313 /*
2314 * Prevent division by 0 in overage calculation by acting as if
2315 * it was a threshold of 1 page
2316 */
2317 high = max(high, 1UL);
2318
2319 overage = usage - high;
2320 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2321 return div64_u64(overage, high);
2322 }
2323
2324 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2325 {
2326 u64 overage, max_overage = 0;
2327
2328 do {
2329 overage = calculate_overage(page_counter_read(&memcg->memory),
2330 READ_ONCE(memcg->memory.high));
2331 max_overage = max(overage, max_overage);
2332 } while ((memcg = parent_mem_cgroup(memcg)) &&
2333 !mem_cgroup_is_root(memcg));
2334
2335 return max_overage;
2336 }
2337
2338 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2339 {
2340 u64 overage, max_overage = 0;
2341
2342 do {
2343 overage = calculate_overage(page_counter_read(&memcg->swap),
2344 READ_ONCE(memcg->swap.high));
2345 if (overage)
2346 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2347 max_overage = max(overage, max_overage);
2348 } while ((memcg = parent_mem_cgroup(memcg)) &&
2349 !mem_cgroup_is_root(memcg));
2350
2351 return max_overage;
2352 }
2353
2354 /*
2355 * Get the number of jiffies that we should penalise a mischievous cgroup which
2356 * is exceeding its memory.high by checking both it and its ancestors.
2357 */
2358 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2359 unsigned int nr_pages,
2360 u64 max_overage)
2361 {
2362 unsigned long penalty_jiffies;
2363
2364 if (!max_overage)
2365 return 0;
2366
2367 /*
2368 * We use overage compared to memory.high to calculate the number of
2369 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2370 * fairly lenient on small overages, and increasingly harsh when the
2371 * memcg in question makes it clear that it has no intention of stopping
2372 * its crazy behaviour, so we exponentially increase the delay based on
2373 * overage amount.
2374 */
2375 penalty_jiffies = max_overage * max_overage * HZ;
2376 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2377 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2378
2379 /*
2380 * Factor in the task's own contribution to the overage, such that four
2381 * N-sized allocations are throttled approximately the same as one
2382 * 4N-sized allocation.
2383 *
2384 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2385 * larger the current charge patch is than that.
2386 */
2387 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2388 }
2389
2390 /*
2391 * Scheduled by try_charge() to be executed from the userland return path
2392 * and reclaims memory over the high limit.
2393 */
2394 void mem_cgroup_handle_over_high(void)
2395 {
2396 unsigned long penalty_jiffies;
2397 unsigned long pflags;
2398 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2399 struct mem_cgroup *memcg;
2400
2401 if (likely(!nr_pages))
2402 return;
2403
2404 memcg = get_mem_cgroup_from_mm(current->mm);
2405 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2406 current->memcg_nr_pages_over_high = 0;
2407
2408 /*
2409 * memory.high is breached and reclaim is unable to keep up. Throttle
2410 * allocators proactively to slow down excessive growth.
2411 */
2412 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2413 mem_find_max_overage(memcg));
2414
2415 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2416 swap_find_max_overage(memcg));
2417
2418 /*
2419 * Clamp the max delay per usermode return so as to still keep the
2420 * application moving forwards and also permit diagnostics, albeit
2421 * extremely slowly.
2422 */
2423 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2424
2425 /*
2426 * Don't sleep if the amount of jiffies this memcg owes us is so low
2427 * that it's not even worth doing, in an attempt to be nice to those who
2428 * go only a small amount over their memory.high value and maybe haven't
2429 * been aggressively reclaimed enough yet.
2430 */
2431 if (penalty_jiffies <= HZ / 100)
2432 goto out;
2433
2434 /*
2435 * If we exit early, we're guaranteed to die (since
2436 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2437 * need to account for any ill-begotten jiffies to pay them off later.
2438 */
2439 psi_memstall_enter(&pflags);
2440 schedule_timeout_killable(penalty_jiffies);
2441 psi_memstall_leave(&pflags);
2442
2443 out:
2444 css_put(&memcg->css);
2445 }
2446
2447 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2448 unsigned int nr_pages)
2449 {
2450 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2451 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2452 struct mem_cgroup *mem_over_limit;
2453 struct page_counter *counter;
2454 unsigned long nr_reclaimed;
2455 bool may_swap = true;
2456 bool drained = false;
2457 enum oom_status oom_status;
2458
2459 if (mem_cgroup_is_root(memcg))
2460 return 0;
2461 retry:
2462 if (consume_stock(memcg, nr_pages))
2463 return 0;
2464
2465 if (!do_memsw_account() ||
2466 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2467 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2468 goto done_restock;
2469 if (do_memsw_account())
2470 page_counter_uncharge(&memcg->memsw, batch);
2471 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2472 } else {
2473 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2474 may_swap = false;
2475 }
2476
2477 if (batch > nr_pages) {
2478 batch = nr_pages;
2479 goto retry;
2480 }
2481
2482 /*
2483 * Memcg doesn't have a dedicated reserve for atomic
2484 * allocations. But like the global atomic pool, we need to
2485 * put the burden of reclaim on regular allocation requests
2486 * and let these go through as privileged allocations.
2487 */
2488 if (gfp_mask & __GFP_ATOMIC)
2489 goto force;
2490
2491 /*
2492 * Unlike in global OOM situations, memcg is not in a physical
2493 * memory shortage. Allow dying and OOM-killed tasks to
2494 * bypass the last charges so that they can exit quickly and
2495 * free their memory.
2496 */
2497 if (unlikely(should_force_charge()))
2498 goto force;
2499
2500 /*
2501 * Prevent unbounded recursion when reclaim operations need to
2502 * allocate memory. This might exceed the limits temporarily,
2503 * but we prefer facilitating memory reclaim and getting back
2504 * under the limit over triggering OOM kills in these cases.
2505 */
2506 if (unlikely(current->flags & PF_MEMALLOC))
2507 goto force;
2508
2509 if (unlikely(task_in_memcg_oom(current)))
2510 goto nomem;
2511
2512 if (!gfpflags_allow_blocking(gfp_mask))
2513 goto nomem;
2514
2515 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2516
2517 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2518 gfp_mask, may_swap);
2519
2520 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2521 goto retry;
2522
2523 if (!drained) {
2524 drain_all_stock(mem_over_limit);
2525 drained = true;
2526 goto retry;
2527 }
2528
2529 if (gfp_mask & __GFP_NORETRY)
2530 goto nomem;
2531 /*
2532 * Even though the limit is exceeded at this point, reclaim
2533 * may have been able to free some pages. Retry the charge
2534 * before killing the task.
2535 *
2536 * Only for regular pages, though: huge pages are rather
2537 * unlikely to succeed so close to the limit, and we fall back
2538 * to regular pages anyway in case of failure.
2539 */
2540 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2541 goto retry;
2542 /*
2543 * At task move, charge accounts can be doubly counted. So, it's
2544 * better to wait until the end of task_move if something is going on.
2545 */
2546 if (mem_cgroup_wait_acct_move(mem_over_limit))
2547 goto retry;
2548
2549 if (nr_retries--)
2550 goto retry;
2551
2552 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2553 goto nomem;
2554
2555 if (gfp_mask & __GFP_NOFAIL)
2556 goto force;
2557
2558 if (fatal_signal_pending(current))
2559 goto force;
2560
2561 /*
2562 * keep retrying as long as the memcg oom killer is able to make
2563 * a forward progress or bypass the charge if the oom killer
2564 * couldn't make any progress.
2565 */
2566 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2567 get_order(nr_pages * PAGE_SIZE));
2568 switch (oom_status) {
2569 case OOM_SUCCESS:
2570 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2571 goto retry;
2572 case OOM_FAILED:
2573 goto force;
2574 default:
2575 goto nomem;
2576 }
2577 nomem:
2578 if (!(gfp_mask & __GFP_NOFAIL))
2579 return -ENOMEM;
2580 force:
2581 /*
2582 * The allocation either can't fail or will lead to more memory
2583 * being freed very soon. Allow memory usage go over the limit
2584 * temporarily by force charging it.
2585 */
2586 page_counter_charge(&memcg->memory, nr_pages);
2587 if (do_memsw_account())
2588 page_counter_charge(&memcg->memsw, nr_pages);
2589 css_get_many(&memcg->css, nr_pages);
2590
2591 return 0;
2592
2593 done_restock:
2594 css_get_many(&memcg->css, batch);
2595 if (batch > nr_pages)
2596 refill_stock(memcg, batch - nr_pages);
2597
2598 /*
2599 * If the hierarchy is above the normal consumption range, schedule
2600 * reclaim on returning to userland. We can perform reclaim here
2601 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2602 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2603 * not recorded as it most likely matches current's and won't
2604 * change in the meantime. As high limit is checked again before
2605 * reclaim, the cost of mismatch is negligible.
2606 */
2607 do {
2608 bool mem_high, swap_high;
2609
2610 mem_high = page_counter_read(&memcg->memory) >
2611 READ_ONCE(memcg->memory.high);
2612 swap_high = page_counter_read(&memcg->swap) >
2613 READ_ONCE(memcg->swap.high);
2614
2615 /* Don't bother a random interrupted task */
2616 if (in_interrupt()) {
2617 if (mem_high) {
2618 schedule_work(&memcg->high_work);
2619 break;
2620 }
2621 continue;
2622 }
2623
2624 if (mem_high || swap_high) {
2625 /*
2626 * The allocating tasks in this cgroup will need to do
2627 * reclaim or be throttled to prevent further growth
2628 * of the memory or swap footprints.
2629 *
2630 * Target some best-effort fairness between the tasks,
2631 * and distribute reclaim work and delay penalties
2632 * based on how much each task is actually allocating.
2633 */
2634 current->memcg_nr_pages_over_high += batch;
2635 set_notify_resume(current);
2636 break;
2637 }
2638 } while ((memcg = parent_mem_cgroup(memcg)));
2639
2640 return 0;
2641 }
2642
2643 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2644 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2645 {
2646 if (mem_cgroup_is_root(memcg))
2647 return;
2648
2649 page_counter_uncharge(&memcg->memory, nr_pages);
2650 if (do_memsw_account())
2651 page_counter_uncharge(&memcg->memsw, nr_pages);
2652
2653 css_put_many(&memcg->css, nr_pages);
2654 }
2655 #endif
2656
2657 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2658 {
2659 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2660 /*
2661 * Any of the following ensures page->mem_cgroup stability:
2662 *
2663 * - the page lock
2664 * - LRU isolation
2665 * - lock_page_memcg()
2666 * - exclusive reference
2667 */
2668 page->mem_cgroup = memcg;
2669 }
2670
2671 #ifdef CONFIG_MEMCG_KMEM
2672 /*
2673 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2674 *
2675 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2676 * cgroup_mutex, etc.
2677 */
2678 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2679 {
2680 struct page *page;
2681
2682 if (mem_cgroup_disabled())
2683 return NULL;
2684
2685 page = virt_to_head_page(p);
2686
2687 /*
2688 * Slab pages don't have page->mem_cgroup set because corresponding
2689 * kmem caches can be reparented during the lifetime. That's why
2690 * memcg_from_slab_page() should be used instead.
2691 */
2692 if (PageSlab(page))
2693 return memcg_from_slab_page(page);
2694
2695 /* All other pages use page->mem_cgroup */
2696 return page->mem_cgroup;
2697 }
2698
2699 static int memcg_alloc_cache_id(void)
2700 {
2701 int id, size;
2702 int err;
2703
2704 id = ida_simple_get(&memcg_cache_ida,
2705 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2706 if (id < 0)
2707 return id;
2708
2709 if (id < memcg_nr_cache_ids)
2710 return id;
2711
2712 /*
2713 * There's no space for the new id in memcg_caches arrays,
2714 * so we have to grow them.
2715 */
2716 down_write(&memcg_cache_ids_sem);
2717
2718 size = 2 * (id + 1);
2719 if (size < MEMCG_CACHES_MIN_SIZE)
2720 size = MEMCG_CACHES_MIN_SIZE;
2721 else if (size > MEMCG_CACHES_MAX_SIZE)
2722 size = MEMCG_CACHES_MAX_SIZE;
2723
2724 err = memcg_update_all_caches(size);
2725 if (!err)
2726 err = memcg_update_all_list_lrus(size);
2727 if (!err)
2728 memcg_nr_cache_ids = size;
2729
2730 up_write(&memcg_cache_ids_sem);
2731
2732 if (err) {
2733 ida_simple_remove(&memcg_cache_ida, id);
2734 return err;
2735 }
2736 return id;
2737 }
2738
2739 static void memcg_free_cache_id(int id)
2740 {
2741 ida_simple_remove(&memcg_cache_ida, id);
2742 }
2743
2744 struct memcg_kmem_cache_create_work {
2745 struct mem_cgroup *memcg;
2746 struct kmem_cache *cachep;
2747 struct work_struct work;
2748 };
2749
2750 static void memcg_kmem_cache_create_func(struct work_struct *w)
2751 {
2752 struct memcg_kmem_cache_create_work *cw =
2753 container_of(w, struct memcg_kmem_cache_create_work, work);
2754 struct mem_cgroup *memcg = cw->memcg;
2755 struct kmem_cache *cachep = cw->cachep;
2756
2757 memcg_create_kmem_cache(memcg, cachep);
2758
2759 css_put(&memcg->css);
2760 kfree(cw);
2761 }
2762
2763 /*
2764 * Enqueue the creation of a per-memcg kmem_cache.
2765 */
2766 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2767 struct kmem_cache *cachep)
2768 {
2769 struct memcg_kmem_cache_create_work *cw;
2770
2771 if (!css_tryget_online(&memcg->css))
2772 return;
2773
2774 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2775 if (!cw)
2776 return;
2777
2778 cw->memcg = memcg;
2779 cw->cachep = cachep;
2780 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2781
2782 queue_work(memcg_kmem_cache_wq, &cw->work);
2783 }
2784
2785 static inline bool memcg_kmem_bypass(void)
2786 {
2787 if (in_interrupt())
2788 return true;
2789
2790 /* Allow remote memcg charging in kthread contexts. */
2791 if ((!current->mm || (current->flags & PF_KTHREAD)) &&
2792 !current->active_memcg)
2793 return true;
2794 return false;
2795 }
2796
2797 /**
2798 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2799 * @cachep: the original global kmem cache
2800 *
2801 * Return the kmem_cache we're supposed to use for a slab allocation.
2802 * We try to use the current memcg's version of the cache.
2803 *
2804 * If the cache does not exist yet, if we are the first user of it, we
2805 * create it asynchronously in a workqueue and let the current allocation
2806 * go through with the original cache.
2807 *
2808 * This function takes a reference to the cache it returns to assure it
2809 * won't get destroyed while we are working with it. Once the caller is
2810 * done with it, memcg_kmem_put_cache() must be called to release the
2811 * reference.
2812 */
2813 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2814 {
2815 struct mem_cgroup *memcg;
2816 struct kmem_cache *memcg_cachep;
2817 struct memcg_cache_array *arr;
2818 int kmemcg_id;
2819
2820 VM_BUG_ON(!is_root_cache(cachep));
2821
2822 if (memcg_kmem_bypass())
2823 return cachep;
2824
2825 rcu_read_lock();
2826
2827 if (unlikely(current->active_memcg))
2828 memcg = current->active_memcg;
2829 else
2830 memcg = mem_cgroup_from_task(current);
2831
2832 if (!memcg || memcg == root_mem_cgroup)
2833 goto out_unlock;
2834
2835 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2836 if (kmemcg_id < 0)
2837 goto out_unlock;
2838
2839 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2840
2841 /*
2842 * Make sure we will access the up-to-date value. The code updating
2843 * memcg_caches issues a write barrier to match the data dependency
2844 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2845 */
2846 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2847
2848 /*
2849 * If we are in a safe context (can wait, and not in interrupt
2850 * context), we could be be predictable and return right away.
2851 * This would guarantee that the allocation being performed
2852 * already belongs in the new cache.
2853 *
2854 * However, there are some clashes that can arrive from locking.
2855 * For instance, because we acquire the slab_mutex while doing
2856 * memcg_create_kmem_cache, this means no further allocation
2857 * could happen with the slab_mutex held. So it's better to
2858 * defer everything.
2859 *
2860 * If the memcg is dying or memcg_cache is about to be released,
2861 * don't bother creating new kmem_caches. Because memcg_cachep
2862 * is ZEROed as the fist step of kmem offlining, we don't need
2863 * percpu_ref_tryget_live() here. css_tryget_online() check in
2864 * memcg_schedule_kmem_cache_create() will prevent us from
2865 * creation of a new kmem_cache.
2866 */
2867 if (unlikely(!memcg_cachep))
2868 memcg_schedule_kmem_cache_create(memcg, cachep);
2869 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2870 cachep = memcg_cachep;
2871 out_unlock:
2872 rcu_read_unlock();
2873 return cachep;
2874 }
2875
2876 /**
2877 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2878 * @cachep: the cache returned by memcg_kmem_get_cache
2879 */
2880 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2881 {
2882 if (!is_root_cache(cachep))
2883 percpu_ref_put(&cachep->memcg_params.refcnt);
2884 }
2885
2886 /**
2887 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
2888 * @memcg: memory cgroup to charge
2889 * @gfp: reclaim mode
2890 * @nr_pages: number of pages to charge
2891 *
2892 * Returns 0 on success, an error code on failure.
2893 */
2894 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
2895 unsigned int nr_pages)
2896 {
2897 struct page_counter *counter;
2898 int ret;
2899
2900 ret = try_charge(memcg, gfp, nr_pages);
2901 if (ret)
2902 return ret;
2903
2904 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2905 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2906
2907 /*
2908 * Enforce __GFP_NOFAIL allocation because callers are not
2909 * prepared to see failures and likely do not have any failure
2910 * handling code.
2911 */
2912 if (gfp & __GFP_NOFAIL) {
2913 page_counter_charge(&memcg->kmem, nr_pages);
2914 return 0;
2915 }
2916 cancel_charge(memcg, nr_pages);
2917 return -ENOMEM;
2918 }
2919 return 0;
2920 }
2921
2922 /**
2923 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
2924 * @memcg: memcg to uncharge
2925 * @nr_pages: number of pages to uncharge
2926 */
2927 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
2928 {
2929 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2930 page_counter_uncharge(&memcg->kmem, nr_pages);
2931
2932 page_counter_uncharge(&memcg->memory, nr_pages);
2933 if (do_memsw_account())
2934 page_counter_uncharge(&memcg->memsw, nr_pages);
2935 }
2936
2937 /**
2938 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2939 * @page: page to charge
2940 * @gfp: reclaim mode
2941 * @order: allocation order
2942 *
2943 * Returns 0 on success, an error code on failure.
2944 */
2945 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2946 {
2947 struct mem_cgroup *memcg;
2948 int ret = 0;
2949
2950 if (memcg_kmem_bypass())
2951 return 0;
2952
2953 memcg = get_mem_cgroup_from_current();
2954 if (!mem_cgroup_is_root(memcg)) {
2955 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
2956 if (!ret) {
2957 page->mem_cgroup = memcg;
2958 __SetPageKmemcg(page);
2959 }
2960 }
2961 css_put(&memcg->css);
2962 return ret;
2963 }
2964
2965 /**
2966 * __memcg_kmem_uncharge_page: uncharge a kmem page
2967 * @page: page to uncharge
2968 * @order: allocation order
2969 */
2970 void __memcg_kmem_uncharge_page(struct page *page, int order)
2971 {
2972 struct mem_cgroup *memcg = page->mem_cgroup;
2973 unsigned int nr_pages = 1 << order;
2974
2975 if (!memcg)
2976 return;
2977
2978 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2979 __memcg_kmem_uncharge(memcg, nr_pages);
2980 page->mem_cgroup = NULL;
2981
2982 /* slab pages do not have PageKmemcg flag set */
2983 if (PageKmemcg(page))
2984 __ClearPageKmemcg(page);
2985
2986 css_put_many(&memcg->css, nr_pages);
2987 }
2988 #endif /* CONFIG_MEMCG_KMEM */
2989
2990 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2991
2992 /*
2993 * Because tail pages are not marked as "used", set it. We're under
2994 * pgdat->lru_lock and migration entries setup in all page mappings.
2995 */
2996 void mem_cgroup_split_huge_fixup(struct page *head)
2997 {
2998 int i;
2999
3000 if (mem_cgroup_disabled())
3001 return;
3002
3003 for (i = 1; i < HPAGE_PMD_NR; i++)
3004 head[i].mem_cgroup = head->mem_cgroup;
3005 }
3006 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3007
3008 #ifdef CONFIG_MEMCG_SWAP
3009 /**
3010 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3011 * @entry: swap entry to be moved
3012 * @from: mem_cgroup which the entry is moved from
3013 * @to: mem_cgroup which the entry is moved to
3014 *
3015 * It succeeds only when the swap_cgroup's record for this entry is the same
3016 * as the mem_cgroup's id of @from.
3017 *
3018 * Returns 0 on success, -EINVAL on failure.
3019 *
3020 * The caller must have charged to @to, IOW, called page_counter_charge() about
3021 * both res and memsw, and called css_get().
3022 */
3023 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3024 struct mem_cgroup *from, struct mem_cgroup *to)
3025 {
3026 unsigned short old_id, new_id;
3027
3028 old_id = mem_cgroup_id(from);
3029 new_id = mem_cgroup_id(to);
3030
3031 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3032 mod_memcg_state(from, MEMCG_SWAP, -1);
3033 mod_memcg_state(to, MEMCG_SWAP, 1);
3034 return 0;
3035 }
3036 return -EINVAL;
3037 }
3038 #else
3039 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3040 struct mem_cgroup *from, struct mem_cgroup *to)
3041 {
3042 return -EINVAL;
3043 }
3044 #endif
3045
3046 static DEFINE_MUTEX(memcg_max_mutex);
3047
3048 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3049 unsigned long max, bool memsw)
3050 {
3051 bool enlarge = false;
3052 bool drained = false;
3053 int ret;
3054 bool limits_invariant;
3055 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3056
3057 do {
3058 if (signal_pending(current)) {
3059 ret = -EINTR;
3060 break;
3061 }
3062
3063 mutex_lock(&memcg_max_mutex);
3064 /*
3065 * Make sure that the new limit (memsw or memory limit) doesn't
3066 * break our basic invariant rule memory.max <= memsw.max.
3067 */
3068 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3069 max <= memcg->memsw.max;
3070 if (!limits_invariant) {
3071 mutex_unlock(&memcg_max_mutex);
3072 ret = -EINVAL;
3073 break;
3074 }
3075 if (max > counter->max)
3076 enlarge = true;
3077 ret = page_counter_set_max(counter, max);
3078 mutex_unlock(&memcg_max_mutex);
3079
3080 if (!ret)
3081 break;
3082
3083 if (!drained) {
3084 drain_all_stock(memcg);
3085 drained = true;
3086 continue;
3087 }
3088
3089 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3090 GFP_KERNEL, !memsw)) {
3091 ret = -EBUSY;
3092 break;
3093 }
3094 } while (true);
3095
3096 if (!ret && enlarge)
3097 memcg_oom_recover(memcg);
3098
3099 return ret;
3100 }
3101
3102 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3103 gfp_t gfp_mask,
3104 unsigned long *total_scanned)
3105 {
3106 unsigned long nr_reclaimed = 0;
3107 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3108 unsigned long reclaimed;
3109 int loop = 0;
3110 struct mem_cgroup_tree_per_node *mctz;
3111 unsigned long excess;
3112 unsigned long nr_scanned;
3113
3114 if (order > 0)
3115 return 0;
3116
3117 mctz = soft_limit_tree_node(pgdat->node_id);
3118
3119 /*
3120 * Do not even bother to check the largest node if the root
3121 * is empty. Do it lockless to prevent lock bouncing. Races
3122 * are acceptable as soft limit is best effort anyway.
3123 */
3124 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3125 return 0;
3126
3127 /*
3128 * This loop can run a while, specially if mem_cgroup's continuously
3129 * keep exceeding their soft limit and putting the system under
3130 * pressure
3131 */
3132 do {
3133 if (next_mz)
3134 mz = next_mz;
3135 else
3136 mz = mem_cgroup_largest_soft_limit_node(mctz);
3137 if (!mz)
3138 break;
3139
3140 nr_scanned = 0;
3141 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3142 gfp_mask, &nr_scanned);
3143 nr_reclaimed += reclaimed;
3144 *total_scanned += nr_scanned;
3145 spin_lock_irq(&mctz->lock);
3146 __mem_cgroup_remove_exceeded(mz, mctz);
3147
3148 /*
3149 * If we failed to reclaim anything from this memory cgroup
3150 * it is time to move on to the next cgroup
3151 */
3152 next_mz = NULL;
3153 if (!reclaimed)
3154 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3155
3156 excess = soft_limit_excess(mz->memcg);
3157 /*
3158 * One school of thought says that we should not add
3159 * back the node to the tree if reclaim returns 0.
3160 * But our reclaim could return 0, simply because due
3161 * to priority we are exposing a smaller subset of
3162 * memory to reclaim from. Consider this as a longer
3163 * term TODO.
3164 */
3165 /* If excess == 0, no tree ops */
3166 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3167 spin_unlock_irq(&mctz->lock);
3168 css_put(&mz->memcg->css);
3169 loop++;
3170 /*
3171 * Could not reclaim anything and there are no more
3172 * mem cgroups to try or we seem to be looping without
3173 * reclaiming anything.
3174 */
3175 if (!nr_reclaimed &&
3176 (next_mz == NULL ||
3177 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3178 break;
3179 } while (!nr_reclaimed);
3180 if (next_mz)
3181 css_put(&next_mz->memcg->css);
3182 return nr_reclaimed;
3183 }
3184
3185 /*
3186 * Test whether @memcg has children, dead or alive. Note that this
3187 * function doesn't care whether @memcg has use_hierarchy enabled and
3188 * returns %true if there are child csses according to the cgroup
3189 * hierarchy. Testing use_hierarchy is the caller's responsibility.
3190 */
3191 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3192 {
3193 bool ret;
3194
3195 rcu_read_lock();
3196 ret = css_next_child(NULL, &memcg->css);
3197 rcu_read_unlock();
3198 return ret;
3199 }
3200
3201 /*
3202 * Reclaims as many pages from the given memcg as possible.
3203 *
3204 * Caller is responsible for holding css reference for memcg.
3205 */
3206 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3207 {
3208 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3209
3210 /* we call try-to-free pages for make this cgroup empty */
3211 lru_add_drain_all();
3212
3213 drain_all_stock(memcg);
3214
3215 /* try to free all pages in this cgroup */
3216 while (nr_retries && page_counter_read(&memcg->memory)) {
3217 int progress;
3218
3219 if (signal_pending(current))
3220 return -EINTR;
3221
3222 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3223 GFP_KERNEL, true);
3224 if (!progress) {
3225 nr_retries--;
3226 /* maybe some writeback is necessary */
3227 congestion_wait(BLK_RW_ASYNC, HZ/10);
3228 }
3229
3230 }
3231
3232 return 0;
3233 }
3234
3235 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3236 char *buf, size_t nbytes,
3237 loff_t off)
3238 {
3239 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3240
3241 if (mem_cgroup_is_root(memcg))
3242 return -EINVAL;
3243 return mem_cgroup_force_empty(memcg) ?: nbytes;
3244 }
3245
3246 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3247 struct cftype *cft)
3248 {
3249 return mem_cgroup_from_css(css)->use_hierarchy;
3250 }
3251
3252 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3253 struct cftype *cft, u64 val)
3254 {
3255 int retval = 0;
3256 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3257 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3258
3259 if (memcg->use_hierarchy == val)
3260 return 0;
3261
3262 /*
3263 * If parent's use_hierarchy is set, we can't make any modifications
3264 * in the child subtrees. If it is unset, then the change can
3265 * occur, provided the current cgroup has no children.
3266 *
3267 * For the root cgroup, parent_mem is NULL, we allow value to be
3268 * set if there are no children.
3269 */
3270 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3271 (val == 1 || val == 0)) {
3272 if (!memcg_has_children(memcg))
3273 memcg->use_hierarchy = val;
3274 else
3275 retval = -EBUSY;
3276 } else
3277 retval = -EINVAL;
3278
3279 return retval;
3280 }
3281
3282 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3283 {
3284 unsigned long val;
3285
3286 if (mem_cgroup_is_root(memcg)) {
3287 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3288 memcg_page_state(memcg, NR_ANON_MAPPED);
3289 if (swap)
3290 val += memcg_page_state(memcg, MEMCG_SWAP);
3291 } else {
3292 if (!swap)
3293 val = page_counter_read(&memcg->memory);
3294 else
3295 val = page_counter_read(&memcg->memsw);
3296 }
3297 return val;
3298 }
3299
3300 enum {
3301 RES_USAGE,
3302 RES_LIMIT,
3303 RES_MAX_USAGE,
3304 RES_FAILCNT,
3305 RES_SOFT_LIMIT,
3306 };
3307
3308 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3309 struct cftype *cft)
3310 {
3311 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3312 struct page_counter *counter;
3313
3314 switch (MEMFILE_TYPE(cft->private)) {
3315 case _MEM:
3316 counter = &memcg->memory;
3317 break;
3318 case _MEMSWAP:
3319 counter = &memcg->memsw;
3320 break;
3321 case _KMEM:
3322 counter = &memcg->kmem;
3323 break;
3324 case _TCP:
3325 counter = &memcg->tcpmem;
3326 break;
3327 default:
3328 BUG();
3329 }
3330
3331 switch (MEMFILE_ATTR(cft->private)) {
3332 case RES_USAGE:
3333 if (counter == &memcg->memory)
3334 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3335 if (counter == &memcg->memsw)
3336 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3337 return (u64)page_counter_read(counter) * PAGE_SIZE;
3338 case RES_LIMIT:
3339 return (u64)counter->max * PAGE_SIZE;
3340 case RES_MAX_USAGE:
3341 return (u64)counter->watermark * PAGE_SIZE;
3342 case RES_FAILCNT:
3343 return counter->failcnt;
3344 case RES_SOFT_LIMIT:
3345 return (u64)memcg->soft_limit * PAGE_SIZE;
3346 default:
3347 BUG();
3348 }
3349 }
3350
3351 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3352 {
3353 unsigned long stat[MEMCG_NR_STAT] = {0};
3354 struct mem_cgroup *mi;
3355 int node, cpu, i;
3356
3357 for_each_online_cpu(cpu)
3358 for (i = 0; i < MEMCG_NR_STAT; i++)
3359 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3360
3361 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3362 for (i = 0; i < MEMCG_NR_STAT; i++)
3363 atomic_long_add(stat[i], &mi->vmstats[i]);
3364
3365 for_each_node(node) {
3366 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3367 struct mem_cgroup_per_node *pi;
3368
3369 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3370 stat[i] = 0;
3371
3372 for_each_online_cpu(cpu)
3373 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3374 stat[i] += per_cpu(
3375 pn->lruvec_stat_cpu->count[i], cpu);
3376
3377 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3378 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3379 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3380 }
3381 }
3382
3383 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3384 {
3385 unsigned long events[NR_VM_EVENT_ITEMS];
3386 struct mem_cgroup *mi;
3387 int cpu, i;
3388
3389 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3390 events[i] = 0;
3391
3392 for_each_online_cpu(cpu)
3393 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3394 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3395 cpu);
3396
3397 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3398 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3399 atomic_long_add(events[i], &mi->vmevents[i]);
3400 }
3401
3402 #ifdef CONFIG_MEMCG_KMEM
3403 static int memcg_online_kmem(struct mem_cgroup *memcg)
3404 {
3405 int memcg_id;
3406
3407 if (cgroup_memory_nokmem)
3408 return 0;
3409
3410 BUG_ON(memcg->kmemcg_id >= 0);
3411 BUG_ON(memcg->kmem_state);
3412
3413 memcg_id = memcg_alloc_cache_id();
3414 if (memcg_id < 0)
3415 return memcg_id;
3416
3417 static_branch_inc(&memcg_kmem_enabled_key);
3418 /*
3419 * A memory cgroup is considered kmem-online as soon as it gets
3420 * kmemcg_id. Setting the id after enabling static branching will
3421 * guarantee no one starts accounting before all call sites are
3422 * patched.
3423 */
3424 memcg->kmemcg_id = memcg_id;
3425 memcg->kmem_state = KMEM_ONLINE;
3426 INIT_LIST_HEAD(&memcg->kmem_caches);
3427
3428 return 0;
3429 }
3430
3431 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3432 {
3433 struct cgroup_subsys_state *css;
3434 struct mem_cgroup *parent, *child;
3435 int kmemcg_id;
3436
3437 if (memcg->kmem_state != KMEM_ONLINE)
3438 return;
3439 /*
3440 * Clear the online state before clearing memcg_caches array
3441 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3442 * guarantees that no cache will be created for this cgroup
3443 * after we are done (see memcg_create_kmem_cache()).
3444 */
3445 memcg->kmem_state = KMEM_ALLOCATED;
3446
3447 parent = parent_mem_cgroup(memcg);
3448 if (!parent)
3449 parent = root_mem_cgroup;
3450
3451 /*
3452 * Deactivate and reparent kmem_caches.
3453 */
3454 memcg_deactivate_kmem_caches(memcg, parent);
3455
3456 kmemcg_id = memcg->kmemcg_id;
3457 BUG_ON(kmemcg_id < 0);
3458
3459 /*
3460 * Change kmemcg_id of this cgroup and all its descendants to the
3461 * parent's id, and then move all entries from this cgroup's list_lrus
3462 * to ones of the parent. After we have finished, all list_lrus
3463 * corresponding to this cgroup are guaranteed to remain empty. The
3464 * ordering is imposed by list_lru_node->lock taken by
3465 * memcg_drain_all_list_lrus().
3466 */
3467 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3468 css_for_each_descendant_pre(css, &memcg->css) {
3469 child = mem_cgroup_from_css(css);
3470 BUG_ON(child->kmemcg_id != kmemcg_id);
3471 child->kmemcg_id = parent->kmemcg_id;
3472 if (!memcg->use_hierarchy)
3473 break;
3474 }
3475 rcu_read_unlock();
3476
3477 memcg_drain_all_list_lrus(kmemcg_id, parent);
3478
3479 memcg_free_cache_id(kmemcg_id);
3480 }
3481
3482 static void memcg_free_kmem(struct mem_cgroup *memcg)
3483 {
3484 /* css_alloc() failed, offlining didn't happen */
3485 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3486 memcg_offline_kmem(memcg);
3487
3488 if (memcg->kmem_state == KMEM_ALLOCATED) {
3489 WARN_ON(!list_empty(&memcg->kmem_caches));
3490 static_branch_dec(&memcg_kmem_enabled_key);
3491 }
3492 }
3493 #else
3494 static int memcg_online_kmem(struct mem_cgroup *memcg)
3495 {
3496 return 0;
3497 }
3498 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3499 {
3500 }
3501 static void memcg_free_kmem(struct mem_cgroup *memcg)
3502 {
3503 }
3504 #endif /* CONFIG_MEMCG_KMEM */
3505
3506 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3507 unsigned long max)
3508 {
3509 int ret;
3510
3511 mutex_lock(&memcg_max_mutex);
3512 ret = page_counter_set_max(&memcg->kmem, max);
3513 mutex_unlock(&memcg_max_mutex);
3514 return ret;
3515 }
3516
3517 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3518 {
3519 int ret;
3520
3521 mutex_lock(&memcg_max_mutex);
3522
3523 ret = page_counter_set_max(&memcg->tcpmem, max);
3524 if (ret)
3525 goto out;
3526
3527 if (!memcg->tcpmem_active) {
3528 /*
3529 * The active flag needs to be written after the static_key
3530 * update. This is what guarantees that the socket activation
3531 * function is the last one to run. See mem_cgroup_sk_alloc()
3532 * for details, and note that we don't mark any socket as
3533 * belonging to this memcg until that flag is up.
3534 *
3535 * We need to do this, because static_keys will span multiple
3536 * sites, but we can't control their order. If we mark a socket
3537 * as accounted, but the accounting functions are not patched in
3538 * yet, we'll lose accounting.
3539 *
3540 * We never race with the readers in mem_cgroup_sk_alloc(),
3541 * because when this value change, the code to process it is not
3542 * patched in yet.
3543 */
3544 static_branch_inc(&memcg_sockets_enabled_key);
3545 memcg->tcpmem_active = true;
3546 }
3547 out:
3548 mutex_unlock(&memcg_max_mutex);
3549 return ret;
3550 }
3551
3552 /*
3553 * The user of this function is...
3554 * RES_LIMIT.
3555 */
3556 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3557 char *buf, size_t nbytes, loff_t off)
3558 {
3559 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3560 unsigned long nr_pages;
3561 int ret;
3562
3563 buf = strstrip(buf);
3564 ret = page_counter_memparse(buf, "-1", &nr_pages);
3565 if (ret)
3566 return ret;
3567
3568 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3569 case RES_LIMIT:
3570 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3571 ret = -EINVAL;
3572 break;
3573 }
3574 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3575 case _MEM:
3576 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3577 break;
3578 case _MEMSWAP:
3579 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3580 break;
3581 case _KMEM:
3582 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3583 "Please report your usecase to linux-mm@kvack.org if you "
3584 "depend on this functionality.\n");
3585 ret = memcg_update_kmem_max(memcg, nr_pages);
3586 break;
3587 case _TCP:
3588 ret = memcg_update_tcp_max(memcg, nr_pages);
3589 break;
3590 }
3591 break;
3592 case RES_SOFT_LIMIT:
3593 memcg->soft_limit = nr_pages;
3594 ret = 0;
3595 break;
3596 }
3597 return ret ?: nbytes;
3598 }
3599
3600 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3601 size_t nbytes, loff_t off)
3602 {
3603 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3604 struct page_counter *counter;
3605
3606 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3607 case _MEM:
3608 counter = &memcg->memory;
3609 break;
3610 case _MEMSWAP:
3611 counter = &memcg->memsw;
3612 break;
3613 case _KMEM:
3614 counter = &memcg->kmem;
3615 break;
3616 case _TCP:
3617 counter = &memcg->tcpmem;
3618 break;
3619 default:
3620 BUG();
3621 }
3622
3623 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3624 case RES_MAX_USAGE:
3625 page_counter_reset_watermark(counter);
3626 break;
3627 case RES_FAILCNT:
3628 counter->failcnt = 0;
3629 break;
3630 default:
3631 BUG();
3632 }
3633
3634 return nbytes;
3635 }
3636
3637 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3638 struct cftype *cft)
3639 {
3640 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3641 }
3642
3643 #ifdef CONFIG_MMU
3644 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3645 struct cftype *cft, u64 val)
3646 {
3647 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3648
3649 if (val & ~MOVE_MASK)
3650 return -EINVAL;
3651
3652 /*
3653 * No kind of locking is needed in here, because ->can_attach() will
3654 * check this value once in the beginning of the process, and then carry
3655 * on with stale data. This means that changes to this value will only
3656 * affect task migrations starting after the change.
3657 */
3658 memcg->move_charge_at_immigrate = val;
3659 return 0;
3660 }
3661 #else
3662 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3663 struct cftype *cft, u64 val)
3664 {
3665 return -ENOSYS;
3666 }
3667 #endif
3668
3669 #ifdef CONFIG_NUMA
3670
3671 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3672 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3673 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3674
3675 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3676 int nid, unsigned int lru_mask, bool tree)
3677 {
3678 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3679 unsigned long nr = 0;
3680 enum lru_list lru;
3681
3682 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3683
3684 for_each_lru(lru) {
3685 if (!(BIT(lru) & lru_mask))
3686 continue;
3687 if (tree)
3688 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3689 else
3690 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3691 }
3692 return nr;
3693 }
3694
3695 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3696 unsigned int lru_mask,
3697 bool tree)
3698 {
3699 unsigned long nr = 0;
3700 enum lru_list lru;
3701
3702 for_each_lru(lru) {
3703 if (!(BIT(lru) & lru_mask))
3704 continue;
3705 if (tree)
3706 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3707 else
3708 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3709 }
3710 return nr;
3711 }
3712
3713 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3714 {
3715 struct numa_stat {
3716 const char *name;
3717 unsigned int lru_mask;
3718 };
3719
3720 static const struct numa_stat stats[] = {
3721 { "total", LRU_ALL },
3722 { "file", LRU_ALL_FILE },
3723 { "anon", LRU_ALL_ANON },
3724 { "unevictable", BIT(LRU_UNEVICTABLE) },
3725 };
3726 const struct numa_stat *stat;
3727 int nid;
3728 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3729
3730 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3731 seq_printf(m, "%s=%lu", stat->name,
3732 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3733 false));
3734 for_each_node_state(nid, N_MEMORY)
3735 seq_printf(m, " N%d=%lu", nid,
3736 mem_cgroup_node_nr_lru_pages(memcg, nid,
3737 stat->lru_mask, false));
3738 seq_putc(m, '\n');
3739 }
3740
3741 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3742
3743 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3744 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3745 true));
3746 for_each_node_state(nid, N_MEMORY)
3747 seq_printf(m, " N%d=%lu", nid,
3748 mem_cgroup_node_nr_lru_pages(memcg, nid,
3749 stat->lru_mask, true));
3750 seq_putc(m, '\n');
3751 }
3752
3753 return 0;
3754 }
3755 #endif /* CONFIG_NUMA */
3756
3757 static const unsigned int memcg1_stats[] = {
3758 NR_FILE_PAGES,
3759 NR_ANON_MAPPED,
3760 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3761 NR_ANON_THPS,
3762 #endif
3763 NR_SHMEM,
3764 NR_FILE_MAPPED,
3765 NR_FILE_DIRTY,
3766 NR_WRITEBACK,
3767 MEMCG_SWAP,
3768 };
3769
3770 static const char *const memcg1_stat_names[] = {
3771 "cache",
3772 "rss",
3773 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3774 "rss_huge",
3775 #endif
3776 "shmem",
3777 "mapped_file",
3778 "dirty",
3779 "writeback",
3780 "swap",
3781 };
3782
3783 /* Universal VM events cgroup1 shows, original sort order */
3784 static const unsigned int memcg1_events[] = {
3785 PGPGIN,
3786 PGPGOUT,
3787 PGFAULT,
3788 PGMAJFAULT,
3789 };
3790
3791 static int memcg_stat_show(struct seq_file *m, void *v)
3792 {
3793 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3794 unsigned long memory, memsw;
3795 struct mem_cgroup *mi;
3796 unsigned int i;
3797
3798 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3799
3800 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3801 unsigned long nr;
3802
3803 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3804 continue;
3805 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3806 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3807 if (memcg1_stats[i] == NR_ANON_THPS)
3808 nr *= HPAGE_PMD_NR;
3809 #endif
3810 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3811 }
3812
3813 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3814 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3815 memcg_events_local(memcg, memcg1_events[i]));
3816
3817 for (i = 0; i < NR_LRU_LISTS; i++)
3818 seq_printf(m, "%s %lu\n", lru_list_name(i),
3819 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3820 PAGE_SIZE);
3821
3822 /* Hierarchical information */
3823 memory = memsw = PAGE_COUNTER_MAX;
3824 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3825 memory = min(memory, READ_ONCE(mi->memory.max));
3826 memsw = min(memsw, READ_ONCE(mi->memsw.max));
3827 }
3828 seq_printf(m, "hierarchical_memory_limit %llu\n",
3829 (u64)memory * PAGE_SIZE);
3830 if (do_memsw_account())
3831 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3832 (u64)memsw * PAGE_SIZE);
3833
3834 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3835 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3836 continue;
3837 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3838 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3839 PAGE_SIZE);
3840 }
3841
3842 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3843 seq_printf(m, "total_%s %llu\n",
3844 vm_event_name(memcg1_events[i]),
3845 (u64)memcg_events(memcg, memcg1_events[i]));
3846
3847 for (i = 0; i < NR_LRU_LISTS; i++)
3848 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3849 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3850 PAGE_SIZE);
3851
3852 #ifdef CONFIG_DEBUG_VM
3853 {
3854 pg_data_t *pgdat;
3855 struct mem_cgroup_per_node *mz;
3856 unsigned long anon_cost = 0;
3857 unsigned long file_cost = 0;
3858
3859 for_each_online_pgdat(pgdat) {
3860 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3861
3862 anon_cost += mz->lruvec.anon_cost;
3863 file_cost += mz->lruvec.file_cost;
3864 }
3865 seq_printf(m, "anon_cost %lu\n", anon_cost);
3866 seq_printf(m, "file_cost %lu\n", file_cost);
3867 }
3868 #endif
3869
3870 return 0;
3871 }
3872
3873 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3874 struct cftype *cft)
3875 {
3876 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3877
3878 return mem_cgroup_swappiness(memcg);
3879 }
3880
3881 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3882 struct cftype *cft, u64 val)
3883 {
3884 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3885
3886 if (val > 100)
3887 return -EINVAL;
3888
3889 if (css->parent)
3890 memcg->swappiness = val;
3891 else
3892 vm_swappiness = val;
3893
3894 return 0;
3895 }
3896
3897 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3898 {
3899 struct mem_cgroup_threshold_ary *t;
3900 unsigned long usage;
3901 int i;
3902
3903 rcu_read_lock();
3904 if (!swap)
3905 t = rcu_dereference(memcg->thresholds.primary);
3906 else
3907 t = rcu_dereference(memcg->memsw_thresholds.primary);
3908
3909 if (!t)
3910 goto unlock;
3911
3912 usage = mem_cgroup_usage(memcg, swap);
3913
3914 /*
3915 * current_threshold points to threshold just below or equal to usage.
3916 * If it's not true, a threshold was crossed after last
3917 * call of __mem_cgroup_threshold().
3918 */
3919 i = t->current_threshold;
3920
3921 /*
3922 * Iterate backward over array of thresholds starting from
3923 * current_threshold and check if a threshold is crossed.
3924 * If none of thresholds below usage is crossed, we read
3925 * only one element of the array here.
3926 */
3927 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3928 eventfd_signal(t->entries[i].eventfd, 1);
3929
3930 /* i = current_threshold + 1 */
3931 i++;
3932
3933 /*
3934 * Iterate forward over array of thresholds starting from
3935 * current_threshold+1 and check if a threshold is crossed.
3936 * If none of thresholds above usage is crossed, we read
3937 * only one element of the array here.
3938 */
3939 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3940 eventfd_signal(t->entries[i].eventfd, 1);
3941
3942 /* Update current_threshold */
3943 t->current_threshold = i - 1;
3944 unlock:
3945 rcu_read_unlock();
3946 }
3947
3948 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3949 {
3950 while (memcg) {
3951 __mem_cgroup_threshold(memcg, false);
3952 if (do_memsw_account())
3953 __mem_cgroup_threshold(memcg, true);
3954
3955 memcg = parent_mem_cgroup(memcg);
3956 }
3957 }
3958
3959 static int compare_thresholds(const void *a, const void *b)
3960 {
3961 const struct mem_cgroup_threshold *_a = a;
3962 const struct mem_cgroup_threshold *_b = b;
3963
3964 if (_a->threshold > _b->threshold)
3965 return 1;
3966
3967 if (_a->threshold < _b->threshold)
3968 return -1;
3969
3970 return 0;
3971 }
3972
3973 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3974 {
3975 struct mem_cgroup_eventfd_list *ev;
3976
3977 spin_lock(&memcg_oom_lock);
3978
3979 list_for_each_entry(ev, &memcg->oom_notify, list)
3980 eventfd_signal(ev->eventfd, 1);
3981
3982 spin_unlock(&memcg_oom_lock);
3983 return 0;
3984 }
3985
3986 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3987 {
3988 struct mem_cgroup *iter;
3989
3990 for_each_mem_cgroup_tree(iter, memcg)
3991 mem_cgroup_oom_notify_cb(iter);
3992 }
3993
3994 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3995 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3996 {
3997 struct mem_cgroup_thresholds *thresholds;
3998 struct mem_cgroup_threshold_ary *new;
3999 unsigned long threshold;
4000 unsigned long usage;
4001 int i, size, ret;
4002
4003 ret = page_counter_memparse(args, "-1", &threshold);
4004 if (ret)
4005 return ret;
4006
4007 mutex_lock(&memcg->thresholds_lock);
4008
4009 if (type == _MEM) {
4010 thresholds = &memcg->thresholds;
4011 usage = mem_cgroup_usage(memcg, false);
4012 } else if (type == _MEMSWAP) {
4013 thresholds = &memcg->memsw_thresholds;
4014 usage = mem_cgroup_usage(memcg, true);
4015 } else
4016 BUG();
4017
4018 /* Check if a threshold crossed before adding a new one */
4019 if (thresholds->primary)
4020 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4021
4022 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4023
4024 /* Allocate memory for new array of thresholds */
4025 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4026 if (!new) {
4027 ret = -ENOMEM;
4028 goto unlock;
4029 }
4030 new->size = size;
4031
4032 /* Copy thresholds (if any) to new array */
4033 if (thresholds->primary) {
4034 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4035 sizeof(struct mem_cgroup_threshold));
4036 }
4037
4038 /* Add new threshold */
4039 new->entries[size - 1].eventfd = eventfd;
4040 new->entries[size - 1].threshold = threshold;
4041
4042 /* Sort thresholds. Registering of new threshold isn't time-critical */
4043 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4044 compare_thresholds, NULL);
4045
4046 /* Find current threshold */
4047 new->current_threshold = -1;
4048 for (i = 0; i < size; i++) {
4049 if (new->entries[i].threshold <= usage) {
4050 /*
4051 * new->current_threshold will not be used until
4052 * rcu_assign_pointer(), so it's safe to increment
4053 * it here.
4054 */
4055 ++new->current_threshold;
4056 } else
4057 break;
4058 }
4059
4060 /* Free old spare buffer and save old primary buffer as spare */
4061 kfree(thresholds->spare);
4062 thresholds->spare = thresholds->primary;
4063
4064 rcu_assign_pointer(thresholds->primary, new);
4065
4066 /* To be sure that nobody uses thresholds */
4067 synchronize_rcu();
4068
4069 unlock:
4070 mutex_unlock(&memcg->thresholds_lock);
4071
4072 return ret;
4073 }
4074
4075 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4076 struct eventfd_ctx *eventfd, const char *args)
4077 {
4078 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4079 }
4080
4081 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4082 struct eventfd_ctx *eventfd, const char *args)
4083 {
4084 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4085 }
4086
4087 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4088 struct eventfd_ctx *eventfd, enum res_type type)
4089 {
4090 struct mem_cgroup_thresholds *thresholds;
4091 struct mem_cgroup_threshold_ary *new;
4092 unsigned long usage;
4093 int i, j, size, entries;
4094
4095 mutex_lock(&memcg->thresholds_lock);
4096
4097 if (type == _MEM) {
4098 thresholds = &memcg->thresholds;
4099 usage = mem_cgroup_usage(memcg, false);
4100 } else if (type == _MEMSWAP) {
4101 thresholds = &memcg->memsw_thresholds;
4102 usage = mem_cgroup_usage(memcg, true);
4103 } else
4104 BUG();
4105
4106 if (!thresholds->primary)
4107 goto unlock;
4108
4109 /* Check if a threshold crossed before removing */
4110 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4111
4112 /* Calculate new number of threshold */
4113 size = entries = 0;
4114 for (i = 0; i < thresholds->primary->size; i++) {
4115 if (thresholds->primary->entries[i].eventfd != eventfd)
4116 size++;
4117 else
4118 entries++;
4119 }
4120
4121 new = thresholds->spare;
4122
4123 /* If no items related to eventfd have been cleared, nothing to do */
4124 if (!entries)
4125 goto unlock;
4126
4127 /* Set thresholds array to NULL if we don't have thresholds */
4128 if (!size) {
4129 kfree(new);
4130 new = NULL;
4131 goto swap_buffers;
4132 }
4133
4134 new->size = size;
4135
4136 /* Copy thresholds and find current threshold */
4137 new->current_threshold = -1;
4138 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4139 if (thresholds->primary->entries[i].eventfd == eventfd)
4140 continue;
4141
4142 new->entries[j] = thresholds->primary->entries[i];
4143 if (new->entries[j].threshold <= usage) {
4144 /*
4145 * new->current_threshold will not be used
4146 * until rcu_assign_pointer(), so it's safe to increment
4147 * it here.
4148 */
4149 ++new->current_threshold;
4150 }
4151 j++;
4152 }
4153
4154 swap_buffers:
4155 /* Swap primary and spare array */
4156 thresholds->spare = thresholds->primary;
4157
4158 rcu_assign_pointer(thresholds->primary, new);
4159
4160 /* To be sure that nobody uses thresholds */
4161 synchronize_rcu();
4162
4163 /* If all events are unregistered, free the spare array */
4164 if (!new) {
4165 kfree(thresholds->spare);
4166 thresholds->spare = NULL;
4167 }
4168 unlock:
4169 mutex_unlock(&memcg->thresholds_lock);
4170 }
4171
4172 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4173 struct eventfd_ctx *eventfd)
4174 {
4175 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4176 }
4177
4178 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4179 struct eventfd_ctx *eventfd)
4180 {
4181 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4182 }
4183
4184 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4185 struct eventfd_ctx *eventfd, const char *args)
4186 {
4187 struct mem_cgroup_eventfd_list *event;
4188
4189 event = kmalloc(sizeof(*event), GFP_KERNEL);
4190 if (!event)
4191 return -ENOMEM;
4192
4193 spin_lock(&memcg_oom_lock);
4194
4195 event->eventfd = eventfd;
4196 list_add(&event->list, &memcg->oom_notify);
4197
4198 /* already in OOM ? */
4199 if (memcg->under_oom)
4200 eventfd_signal(eventfd, 1);
4201 spin_unlock(&memcg_oom_lock);
4202
4203 return 0;
4204 }
4205
4206 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4207 struct eventfd_ctx *eventfd)
4208 {
4209 struct mem_cgroup_eventfd_list *ev, *tmp;
4210
4211 spin_lock(&memcg_oom_lock);
4212
4213 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4214 if (ev->eventfd == eventfd) {
4215 list_del(&ev->list);
4216 kfree(ev);
4217 }
4218 }
4219
4220 spin_unlock(&memcg_oom_lock);
4221 }
4222
4223 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4224 {
4225 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4226
4227 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4228 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4229 seq_printf(sf, "oom_kill %lu\n",
4230 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4231 return 0;
4232 }
4233
4234 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4235 struct cftype *cft, u64 val)
4236 {
4237 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4238
4239 /* cannot set to root cgroup and only 0 and 1 are allowed */
4240 if (!css->parent || !((val == 0) || (val == 1)))
4241 return -EINVAL;
4242
4243 memcg->oom_kill_disable = val;
4244 if (!val)
4245 memcg_oom_recover(memcg);
4246
4247 return 0;
4248 }
4249
4250 #ifdef CONFIG_CGROUP_WRITEBACK
4251
4252 #include <trace/events/writeback.h>
4253
4254 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4255 {
4256 return wb_domain_init(&memcg->cgwb_domain, gfp);
4257 }
4258
4259 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4260 {
4261 wb_domain_exit(&memcg->cgwb_domain);
4262 }
4263
4264 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4265 {
4266 wb_domain_size_changed(&memcg->cgwb_domain);
4267 }
4268
4269 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4270 {
4271 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4272
4273 if (!memcg->css.parent)
4274 return NULL;
4275
4276 return &memcg->cgwb_domain;
4277 }
4278
4279 /*
4280 * idx can be of type enum memcg_stat_item or node_stat_item.
4281 * Keep in sync with memcg_exact_page().
4282 */
4283 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4284 {
4285 long x = atomic_long_read(&memcg->vmstats[idx]);
4286 int cpu;
4287
4288 for_each_online_cpu(cpu)
4289 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4290 if (x < 0)
4291 x = 0;
4292 return x;
4293 }
4294
4295 /**
4296 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4297 * @wb: bdi_writeback in question
4298 * @pfilepages: out parameter for number of file pages
4299 * @pheadroom: out parameter for number of allocatable pages according to memcg
4300 * @pdirty: out parameter for number of dirty pages
4301 * @pwriteback: out parameter for number of pages under writeback
4302 *
4303 * Determine the numbers of file, headroom, dirty, and writeback pages in
4304 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4305 * is a bit more involved.
4306 *
4307 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4308 * headroom is calculated as the lowest headroom of itself and the
4309 * ancestors. Note that this doesn't consider the actual amount of
4310 * available memory in the system. The caller should further cap
4311 * *@pheadroom accordingly.
4312 */
4313 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4314 unsigned long *pheadroom, unsigned long *pdirty,
4315 unsigned long *pwriteback)
4316 {
4317 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4318 struct mem_cgroup *parent;
4319
4320 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4321
4322 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4323 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4324 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4325 *pheadroom = PAGE_COUNTER_MAX;
4326
4327 while ((parent = parent_mem_cgroup(memcg))) {
4328 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4329 READ_ONCE(memcg->memory.high));
4330 unsigned long used = page_counter_read(&memcg->memory);
4331
4332 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4333 memcg = parent;
4334 }
4335 }
4336
4337 /*
4338 * Foreign dirty flushing
4339 *
4340 * There's an inherent mismatch between memcg and writeback. The former
4341 * trackes ownership per-page while the latter per-inode. This was a
4342 * deliberate design decision because honoring per-page ownership in the
4343 * writeback path is complicated, may lead to higher CPU and IO overheads
4344 * and deemed unnecessary given that write-sharing an inode across
4345 * different cgroups isn't a common use-case.
4346 *
4347 * Combined with inode majority-writer ownership switching, this works well
4348 * enough in most cases but there are some pathological cases. For
4349 * example, let's say there are two cgroups A and B which keep writing to
4350 * different but confined parts of the same inode. B owns the inode and
4351 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4352 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4353 * triggering background writeback. A will be slowed down without a way to
4354 * make writeback of the dirty pages happen.
4355 *
4356 * Conditions like the above can lead to a cgroup getting repatedly and
4357 * severely throttled after making some progress after each
4358 * dirty_expire_interval while the underyling IO device is almost
4359 * completely idle.
4360 *
4361 * Solving this problem completely requires matching the ownership tracking
4362 * granularities between memcg and writeback in either direction. However,
4363 * the more egregious behaviors can be avoided by simply remembering the
4364 * most recent foreign dirtying events and initiating remote flushes on
4365 * them when local writeback isn't enough to keep the memory clean enough.
4366 *
4367 * The following two functions implement such mechanism. When a foreign
4368 * page - a page whose memcg and writeback ownerships don't match - is
4369 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4370 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4371 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4372 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4373 * foreign bdi_writebacks which haven't expired. Both the numbers of
4374 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4375 * limited to MEMCG_CGWB_FRN_CNT.
4376 *
4377 * The mechanism only remembers IDs and doesn't hold any object references.
4378 * As being wrong occasionally doesn't matter, updates and accesses to the
4379 * records are lockless and racy.
4380 */
4381 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4382 struct bdi_writeback *wb)
4383 {
4384 struct mem_cgroup *memcg = page->mem_cgroup;
4385 struct memcg_cgwb_frn *frn;
4386 u64 now = get_jiffies_64();
4387 u64 oldest_at = now;
4388 int oldest = -1;
4389 int i;
4390
4391 trace_track_foreign_dirty(page, wb);
4392
4393 /*
4394 * Pick the slot to use. If there is already a slot for @wb, keep
4395 * using it. If not replace the oldest one which isn't being
4396 * written out.
4397 */
4398 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4399 frn = &memcg->cgwb_frn[i];
4400 if (frn->bdi_id == wb->bdi->id &&
4401 frn->memcg_id == wb->memcg_css->id)
4402 break;
4403 if (time_before64(frn->at, oldest_at) &&
4404 atomic_read(&frn->done.cnt) == 1) {
4405 oldest = i;
4406 oldest_at = frn->at;
4407 }
4408 }
4409
4410 if (i < MEMCG_CGWB_FRN_CNT) {
4411 /*
4412 * Re-using an existing one. Update timestamp lazily to
4413 * avoid making the cacheline hot. We want them to be
4414 * reasonably up-to-date and significantly shorter than
4415 * dirty_expire_interval as that's what expires the record.
4416 * Use the shorter of 1s and dirty_expire_interval / 8.
4417 */
4418 unsigned long update_intv =
4419 min_t(unsigned long, HZ,
4420 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4421
4422 if (time_before64(frn->at, now - update_intv))
4423 frn->at = now;
4424 } else if (oldest >= 0) {
4425 /* replace the oldest free one */
4426 frn = &memcg->cgwb_frn[oldest];
4427 frn->bdi_id = wb->bdi->id;
4428 frn->memcg_id = wb->memcg_css->id;
4429 frn->at = now;
4430 }
4431 }
4432
4433 /* issue foreign writeback flushes for recorded foreign dirtying events */
4434 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4435 {
4436 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4437 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4438 u64 now = jiffies_64;
4439 int i;
4440
4441 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4442 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4443
4444 /*
4445 * If the record is older than dirty_expire_interval,
4446 * writeback on it has already started. No need to kick it
4447 * off again. Also, don't start a new one if there's
4448 * already one in flight.
4449 */
4450 if (time_after64(frn->at, now - intv) &&
4451 atomic_read(&frn->done.cnt) == 1) {
4452 frn->at = 0;
4453 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4454 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4455 WB_REASON_FOREIGN_FLUSH,
4456 &frn->done);
4457 }
4458 }
4459 }
4460
4461 #else /* CONFIG_CGROUP_WRITEBACK */
4462
4463 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4464 {
4465 return 0;
4466 }
4467
4468 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4469 {
4470 }
4471
4472 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4473 {
4474 }
4475
4476 #endif /* CONFIG_CGROUP_WRITEBACK */
4477
4478 /*
4479 * DO NOT USE IN NEW FILES.
4480 *
4481 * "cgroup.event_control" implementation.
4482 *
4483 * This is way over-engineered. It tries to support fully configurable
4484 * events for each user. Such level of flexibility is completely
4485 * unnecessary especially in the light of the planned unified hierarchy.
4486 *
4487 * Please deprecate this and replace with something simpler if at all
4488 * possible.
4489 */
4490
4491 /*
4492 * Unregister event and free resources.
4493 *
4494 * Gets called from workqueue.
4495 */
4496 static void memcg_event_remove(struct work_struct *work)
4497 {
4498 struct mem_cgroup_event *event =
4499 container_of(work, struct mem_cgroup_event, remove);
4500 struct mem_cgroup *memcg = event->memcg;
4501
4502 remove_wait_queue(event->wqh, &event->wait);
4503
4504 event->unregister_event(memcg, event->eventfd);
4505
4506 /* Notify userspace the event is going away. */
4507 eventfd_signal(event->eventfd, 1);
4508
4509 eventfd_ctx_put(event->eventfd);
4510 kfree(event);
4511 css_put(&memcg->css);
4512 }
4513
4514 /*
4515 * Gets called on EPOLLHUP on eventfd when user closes it.
4516 *
4517 * Called with wqh->lock held and interrupts disabled.
4518 */
4519 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4520 int sync, void *key)
4521 {
4522 struct mem_cgroup_event *event =
4523 container_of(wait, struct mem_cgroup_event, wait);
4524 struct mem_cgroup *memcg = event->memcg;
4525 __poll_t flags = key_to_poll(key);
4526
4527 if (flags & EPOLLHUP) {
4528 /*
4529 * If the event has been detached at cgroup removal, we
4530 * can simply return knowing the other side will cleanup
4531 * for us.
4532 *
4533 * We can't race against event freeing since the other
4534 * side will require wqh->lock via remove_wait_queue(),
4535 * which we hold.
4536 */
4537 spin_lock(&memcg->event_list_lock);
4538 if (!list_empty(&event->list)) {
4539 list_del_init(&event->list);
4540 /*
4541 * We are in atomic context, but cgroup_event_remove()
4542 * may sleep, so we have to call it in workqueue.
4543 */
4544 schedule_work(&event->remove);
4545 }
4546 spin_unlock(&memcg->event_list_lock);
4547 }
4548
4549 return 0;
4550 }
4551
4552 static void memcg_event_ptable_queue_proc(struct file *file,
4553 wait_queue_head_t *wqh, poll_table *pt)
4554 {
4555 struct mem_cgroup_event *event =
4556 container_of(pt, struct mem_cgroup_event, pt);
4557
4558 event->wqh = wqh;
4559 add_wait_queue(wqh, &event->wait);
4560 }
4561
4562 /*
4563 * DO NOT USE IN NEW FILES.
4564 *
4565 * Parse input and register new cgroup event handler.
4566 *
4567 * Input must be in format '<event_fd> <control_fd> <args>'.
4568 * Interpretation of args is defined by control file implementation.
4569 */
4570 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4571 char *buf, size_t nbytes, loff_t off)
4572 {
4573 struct cgroup_subsys_state *css = of_css(of);
4574 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4575 struct mem_cgroup_event *event;
4576 struct cgroup_subsys_state *cfile_css;
4577 unsigned int efd, cfd;
4578 struct fd efile;
4579 struct fd cfile;
4580 const char *name;
4581 char *endp;
4582 int ret;
4583
4584 buf = strstrip(buf);
4585
4586 efd = simple_strtoul(buf, &endp, 10);
4587 if (*endp != ' ')
4588 return -EINVAL;
4589 buf = endp + 1;
4590
4591 cfd = simple_strtoul(buf, &endp, 10);
4592 if ((*endp != ' ') && (*endp != '\0'))
4593 return -EINVAL;
4594 buf = endp + 1;
4595
4596 event = kzalloc(sizeof(*event), GFP_KERNEL);
4597 if (!event)
4598 return -ENOMEM;
4599
4600 event->memcg = memcg;
4601 INIT_LIST_HEAD(&event->list);
4602 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4603 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4604 INIT_WORK(&event->remove, memcg_event_remove);
4605
4606 efile = fdget(efd);
4607 if (!efile.file) {
4608 ret = -EBADF;
4609 goto out_kfree;
4610 }
4611
4612 event->eventfd = eventfd_ctx_fileget(efile.file);
4613 if (IS_ERR(event->eventfd)) {
4614 ret = PTR_ERR(event->eventfd);
4615 goto out_put_efile;
4616 }
4617
4618 cfile = fdget(cfd);
4619 if (!cfile.file) {
4620 ret = -EBADF;
4621 goto out_put_eventfd;
4622 }
4623
4624 /* the process need read permission on control file */
4625 /* AV: shouldn't we check that it's been opened for read instead? */
4626 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4627 if (ret < 0)
4628 goto out_put_cfile;
4629
4630 /*
4631 * Determine the event callbacks and set them in @event. This used
4632 * to be done via struct cftype but cgroup core no longer knows
4633 * about these events. The following is crude but the whole thing
4634 * is for compatibility anyway.
4635 *
4636 * DO NOT ADD NEW FILES.
4637 */
4638 name = cfile.file->f_path.dentry->d_name.name;
4639
4640 if (!strcmp(name, "memory.usage_in_bytes")) {
4641 event->register_event = mem_cgroup_usage_register_event;
4642 event->unregister_event = mem_cgroup_usage_unregister_event;
4643 } else if (!strcmp(name, "memory.oom_control")) {
4644 event->register_event = mem_cgroup_oom_register_event;
4645 event->unregister_event = mem_cgroup_oom_unregister_event;
4646 } else if (!strcmp(name, "memory.pressure_level")) {
4647 event->register_event = vmpressure_register_event;
4648 event->unregister_event = vmpressure_unregister_event;
4649 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4650 event->register_event = memsw_cgroup_usage_register_event;
4651 event->unregister_event = memsw_cgroup_usage_unregister_event;
4652 } else {
4653 ret = -EINVAL;
4654 goto out_put_cfile;
4655 }
4656
4657 /*
4658 * Verify @cfile should belong to @css. Also, remaining events are
4659 * automatically removed on cgroup destruction but the removal is
4660 * asynchronous, so take an extra ref on @css.
4661 */
4662 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4663 &memory_cgrp_subsys);
4664 ret = -EINVAL;
4665 if (IS_ERR(cfile_css))
4666 goto out_put_cfile;
4667 if (cfile_css != css) {
4668 css_put(cfile_css);
4669 goto out_put_cfile;
4670 }
4671
4672 ret = event->register_event(memcg, event->eventfd, buf);
4673 if (ret)
4674 goto out_put_css;
4675
4676 vfs_poll(efile.file, &event->pt);
4677
4678 spin_lock(&memcg->event_list_lock);
4679 list_add(&event->list, &memcg->event_list);
4680 spin_unlock(&memcg->event_list_lock);
4681
4682 fdput(cfile);
4683 fdput(efile);
4684
4685 return nbytes;
4686
4687 out_put_css:
4688 css_put(css);
4689 out_put_cfile:
4690 fdput(cfile);
4691 out_put_eventfd:
4692 eventfd_ctx_put(event->eventfd);
4693 out_put_efile:
4694 fdput(efile);
4695 out_kfree:
4696 kfree(event);
4697
4698 return ret;
4699 }
4700
4701 static struct cftype mem_cgroup_legacy_files[] = {
4702 {
4703 .name = "usage_in_bytes",
4704 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4705 .read_u64 = mem_cgroup_read_u64,
4706 },
4707 {
4708 .name = "max_usage_in_bytes",
4709 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4710 .write = mem_cgroup_reset,
4711 .read_u64 = mem_cgroup_read_u64,
4712 },
4713 {
4714 .name = "limit_in_bytes",
4715 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4716 .write = mem_cgroup_write,
4717 .read_u64 = mem_cgroup_read_u64,
4718 },
4719 {
4720 .name = "soft_limit_in_bytes",
4721 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4722 .write = mem_cgroup_write,
4723 .read_u64 = mem_cgroup_read_u64,
4724 },
4725 {
4726 .name = "failcnt",
4727 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4728 .write = mem_cgroup_reset,
4729 .read_u64 = mem_cgroup_read_u64,
4730 },
4731 {
4732 .name = "stat",
4733 .seq_show = memcg_stat_show,
4734 },
4735 {
4736 .name = "force_empty",
4737 .write = mem_cgroup_force_empty_write,
4738 },
4739 {
4740 .name = "use_hierarchy",
4741 .write_u64 = mem_cgroup_hierarchy_write,
4742 .read_u64 = mem_cgroup_hierarchy_read,
4743 },
4744 {
4745 .name = "cgroup.event_control", /* XXX: for compat */
4746 .write = memcg_write_event_control,
4747 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4748 },
4749 {
4750 .name = "swappiness",
4751 .read_u64 = mem_cgroup_swappiness_read,
4752 .write_u64 = mem_cgroup_swappiness_write,
4753 },
4754 {
4755 .name = "move_charge_at_immigrate",
4756 .read_u64 = mem_cgroup_move_charge_read,
4757 .write_u64 = mem_cgroup_move_charge_write,
4758 },
4759 {
4760 .name = "oom_control",
4761 .seq_show = mem_cgroup_oom_control_read,
4762 .write_u64 = mem_cgroup_oom_control_write,
4763 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4764 },
4765 {
4766 .name = "pressure_level",
4767 },
4768 #ifdef CONFIG_NUMA
4769 {
4770 .name = "numa_stat",
4771 .seq_show = memcg_numa_stat_show,
4772 },
4773 #endif
4774 {
4775 .name = "kmem.limit_in_bytes",
4776 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4777 .write = mem_cgroup_write,
4778 .read_u64 = mem_cgroup_read_u64,
4779 },
4780 {
4781 .name = "kmem.usage_in_bytes",
4782 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4783 .read_u64 = mem_cgroup_read_u64,
4784 },
4785 {
4786 .name = "kmem.failcnt",
4787 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4788 .write = mem_cgroup_reset,
4789 .read_u64 = mem_cgroup_read_u64,
4790 },
4791 {
4792 .name = "kmem.max_usage_in_bytes",
4793 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4794 .write = mem_cgroup_reset,
4795 .read_u64 = mem_cgroup_read_u64,
4796 },
4797 #if defined(CONFIG_MEMCG_KMEM) && \
4798 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4799 {
4800 .name = "kmem.slabinfo",
4801 .seq_start = memcg_slab_start,
4802 .seq_next = memcg_slab_next,
4803 .seq_stop = memcg_slab_stop,
4804 .seq_show = memcg_slab_show,
4805 },
4806 #endif
4807 {
4808 .name = "kmem.tcp.limit_in_bytes",
4809 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4810 .write = mem_cgroup_write,
4811 .read_u64 = mem_cgroup_read_u64,
4812 },
4813 {
4814 .name = "kmem.tcp.usage_in_bytes",
4815 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4816 .read_u64 = mem_cgroup_read_u64,
4817 },
4818 {
4819 .name = "kmem.tcp.failcnt",
4820 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4821 .write = mem_cgroup_reset,
4822 .read_u64 = mem_cgroup_read_u64,
4823 },
4824 {
4825 .name = "kmem.tcp.max_usage_in_bytes",
4826 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4827 .write = mem_cgroup_reset,
4828 .read_u64 = mem_cgroup_read_u64,
4829 },
4830 { }, /* terminate */
4831 };
4832
4833 /*
4834 * Private memory cgroup IDR
4835 *
4836 * Swap-out records and page cache shadow entries need to store memcg
4837 * references in constrained space, so we maintain an ID space that is
4838 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4839 * memory-controlled cgroups to 64k.
4840 *
4841 * However, there usually are many references to the offline CSS after
4842 * the cgroup has been destroyed, such as page cache or reclaimable
4843 * slab objects, that don't need to hang on to the ID. We want to keep
4844 * those dead CSS from occupying IDs, or we might quickly exhaust the
4845 * relatively small ID space and prevent the creation of new cgroups
4846 * even when there are much fewer than 64k cgroups - possibly none.
4847 *
4848 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4849 * be freed and recycled when it's no longer needed, which is usually
4850 * when the CSS is offlined.
4851 *
4852 * The only exception to that are records of swapped out tmpfs/shmem
4853 * pages that need to be attributed to live ancestors on swapin. But
4854 * those references are manageable from userspace.
4855 */
4856
4857 static DEFINE_IDR(mem_cgroup_idr);
4858
4859 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4860 {
4861 if (memcg->id.id > 0) {
4862 idr_remove(&mem_cgroup_idr, memcg->id.id);
4863 memcg->id.id = 0;
4864 }
4865 }
4866
4867 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
4868 unsigned int n)
4869 {
4870 refcount_add(n, &memcg->id.ref);
4871 }
4872
4873 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4874 {
4875 if (refcount_sub_and_test(n, &memcg->id.ref)) {
4876 mem_cgroup_id_remove(memcg);
4877
4878 /* Memcg ID pins CSS */
4879 css_put(&memcg->css);
4880 }
4881 }
4882
4883 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4884 {
4885 mem_cgroup_id_put_many(memcg, 1);
4886 }
4887
4888 /**
4889 * mem_cgroup_from_id - look up a memcg from a memcg id
4890 * @id: the memcg id to look up
4891 *
4892 * Caller must hold rcu_read_lock().
4893 */
4894 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4895 {
4896 WARN_ON_ONCE(!rcu_read_lock_held());
4897 return idr_find(&mem_cgroup_idr, id);
4898 }
4899
4900 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4901 {
4902 struct mem_cgroup_per_node *pn;
4903 int tmp = node;
4904 /*
4905 * This routine is called against possible nodes.
4906 * But it's BUG to call kmalloc() against offline node.
4907 *
4908 * TODO: this routine can waste much memory for nodes which will
4909 * never be onlined. It's better to use memory hotplug callback
4910 * function.
4911 */
4912 if (!node_state(node, N_NORMAL_MEMORY))
4913 tmp = -1;
4914 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4915 if (!pn)
4916 return 1;
4917
4918 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4919 if (!pn->lruvec_stat_local) {
4920 kfree(pn);
4921 return 1;
4922 }
4923
4924 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4925 if (!pn->lruvec_stat_cpu) {
4926 free_percpu(pn->lruvec_stat_local);
4927 kfree(pn);
4928 return 1;
4929 }
4930
4931 lruvec_init(&pn->lruvec);
4932 pn->usage_in_excess = 0;
4933 pn->on_tree = false;
4934 pn->memcg = memcg;
4935
4936 memcg->nodeinfo[node] = pn;
4937 return 0;
4938 }
4939
4940 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4941 {
4942 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4943
4944 if (!pn)
4945 return;
4946
4947 free_percpu(pn->lruvec_stat_cpu);
4948 free_percpu(pn->lruvec_stat_local);
4949 kfree(pn);
4950 }
4951
4952 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4953 {
4954 int node;
4955
4956 for_each_node(node)
4957 free_mem_cgroup_per_node_info(memcg, node);
4958 free_percpu(memcg->vmstats_percpu);
4959 free_percpu(memcg->vmstats_local);
4960 kfree(memcg);
4961 }
4962
4963 static void mem_cgroup_free(struct mem_cgroup *memcg)
4964 {
4965 memcg_wb_domain_exit(memcg);
4966 /*
4967 * Flush percpu vmstats and vmevents to guarantee the value correctness
4968 * on parent's and all ancestor levels.
4969 */
4970 memcg_flush_percpu_vmstats(memcg);
4971 memcg_flush_percpu_vmevents(memcg);
4972 __mem_cgroup_free(memcg);
4973 }
4974
4975 static struct mem_cgroup *mem_cgroup_alloc(void)
4976 {
4977 struct mem_cgroup *memcg;
4978 unsigned int size;
4979 int node;
4980 int __maybe_unused i;
4981 long error = -ENOMEM;
4982
4983 size = sizeof(struct mem_cgroup);
4984 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4985
4986 memcg = kzalloc(size, GFP_KERNEL);
4987 if (!memcg)
4988 return ERR_PTR(error);
4989
4990 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4991 1, MEM_CGROUP_ID_MAX,
4992 GFP_KERNEL);
4993 if (memcg->id.id < 0) {
4994 error = memcg->id.id;
4995 goto fail;
4996 }
4997
4998 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4999 if (!memcg->vmstats_local)
5000 goto fail;
5001
5002 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5003 if (!memcg->vmstats_percpu)
5004 goto fail;
5005
5006 for_each_node(node)
5007 if (alloc_mem_cgroup_per_node_info(memcg, node))
5008 goto fail;
5009
5010 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5011 goto fail;
5012
5013 INIT_WORK(&memcg->high_work, high_work_func);
5014 INIT_LIST_HEAD(&memcg->oom_notify);
5015 mutex_init(&memcg->thresholds_lock);
5016 spin_lock_init(&memcg->move_lock);
5017 vmpressure_init(&memcg->vmpressure);
5018 INIT_LIST_HEAD(&memcg->event_list);
5019 spin_lock_init(&memcg->event_list_lock);
5020 memcg->socket_pressure = jiffies;
5021 #ifdef CONFIG_MEMCG_KMEM
5022 memcg->kmemcg_id = -1;
5023 #endif
5024 #ifdef CONFIG_CGROUP_WRITEBACK
5025 INIT_LIST_HEAD(&memcg->cgwb_list);
5026 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5027 memcg->cgwb_frn[i].done =
5028 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5029 #endif
5030 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5031 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5032 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5033 memcg->deferred_split_queue.split_queue_len = 0;
5034 #endif
5035 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5036 return memcg;
5037 fail:
5038 mem_cgroup_id_remove(memcg);
5039 __mem_cgroup_free(memcg);
5040 return ERR_PTR(error);
5041 }
5042
5043 static struct cgroup_subsys_state * __ref
5044 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5045 {
5046 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5047 struct mem_cgroup *memcg;
5048 long error = -ENOMEM;
5049
5050 memcg = mem_cgroup_alloc();
5051 if (IS_ERR(memcg))
5052 return ERR_CAST(memcg);
5053
5054 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5055 memcg->soft_limit = PAGE_COUNTER_MAX;
5056 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5057 if (parent) {
5058 memcg->swappiness = mem_cgroup_swappiness(parent);
5059 memcg->oom_kill_disable = parent->oom_kill_disable;
5060 }
5061 if (parent && parent->use_hierarchy) {
5062 memcg->use_hierarchy = true;
5063 page_counter_init(&memcg->memory, &parent->memory);
5064 page_counter_init(&memcg->swap, &parent->swap);
5065 page_counter_init(&memcg->memsw, &parent->memsw);
5066 page_counter_init(&memcg->kmem, &parent->kmem);
5067 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5068 } else {
5069 page_counter_init(&memcg->memory, NULL);
5070 page_counter_init(&memcg->swap, NULL);
5071 page_counter_init(&memcg->memsw, NULL);
5072 page_counter_init(&memcg->kmem, NULL);
5073 page_counter_init(&memcg->tcpmem, NULL);
5074 /*
5075 * Deeper hierachy with use_hierarchy == false doesn't make
5076 * much sense so let cgroup subsystem know about this
5077 * unfortunate state in our controller.
5078 */
5079 if (parent != root_mem_cgroup)
5080 memory_cgrp_subsys.broken_hierarchy = true;
5081 }
5082
5083 /* The following stuff does not apply to the root */
5084 if (!parent) {
5085 #ifdef CONFIG_MEMCG_KMEM
5086 INIT_LIST_HEAD(&memcg->kmem_caches);
5087 #endif
5088 root_mem_cgroup = memcg;
5089 return &memcg->css;
5090 }
5091
5092 error = memcg_online_kmem(memcg);
5093 if (error)
5094 goto fail;
5095
5096 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5097 static_branch_inc(&memcg_sockets_enabled_key);
5098
5099 return &memcg->css;
5100 fail:
5101 mem_cgroup_id_remove(memcg);
5102 mem_cgroup_free(memcg);
5103 return ERR_PTR(error);
5104 }
5105
5106 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5107 {
5108 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5109
5110 /*
5111 * A memcg must be visible for memcg_expand_shrinker_maps()
5112 * by the time the maps are allocated. So, we allocate maps
5113 * here, when for_each_mem_cgroup() can't skip it.
5114 */
5115 if (memcg_alloc_shrinker_maps(memcg)) {
5116 mem_cgroup_id_remove(memcg);
5117 return -ENOMEM;
5118 }
5119
5120 /* Online state pins memcg ID, memcg ID pins CSS */
5121 refcount_set(&memcg->id.ref, 1);
5122 css_get(css);
5123 return 0;
5124 }
5125
5126 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5127 {
5128 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5129 struct mem_cgroup_event *event, *tmp;
5130
5131 /*
5132 * Unregister events and notify userspace.
5133 * Notify userspace about cgroup removing only after rmdir of cgroup
5134 * directory to avoid race between userspace and kernelspace.
5135 */
5136 spin_lock(&memcg->event_list_lock);
5137 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5138 list_del_init(&event->list);
5139 schedule_work(&event->remove);
5140 }
5141 spin_unlock(&memcg->event_list_lock);
5142
5143 page_counter_set_min(&memcg->memory, 0);
5144 page_counter_set_low(&memcg->memory, 0);
5145
5146 memcg_offline_kmem(memcg);
5147 wb_memcg_offline(memcg);
5148
5149 drain_all_stock(memcg);
5150
5151 mem_cgroup_id_put(memcg);
5152 }
5153
5154 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5155 {
5156 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5157
5158 invalidate_reclaim_iterators(memcg);
5159 }
5160
5161 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5162 {
5163 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5164 int __maybe_unused i;
5165
5166 #ifdef CONFIG_CGROUP_WRITEBACK
5167 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5168 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5169 #endif
5170 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5171 static_branch_dec(&memcg_sockets_enabled_key);
5172
5173 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5174 static_branch_dec(&memcg_sockets_enabled_key);
5175
5176 vmpressure_cleanup(&memcg->vmpressure);
5177 cancel_work_sync(&memcg->high_work);
5178 mem_cgroup_remove_from_trees(memcg);
5179 memcg_free_shrinker_maps(memcg);
5180 memcg_free_kmem(memcg);
5181 mem_cgroup_free(memcg);
5182 }
5183
5184 /**
5185 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5186 * @css: the target css
5187 *
5188 * Reset the states of the mem_cgroup associated with @css. This is
5189 * invoked when the userland requests disabling on the default hierarchy
5190 * but the memcg is pinned through dependency. The memcg should stop
5191 * applying policies and should revert to the vanilla state as it may be
5192 * made visible again.
5193 *
5194 * The current implementation only resets the essential configurations.
5195 * This needs to be expanded to cover all the visible parts.
5196 */
5197 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5198 {
5199 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5200
5201 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5202 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5203 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5204 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5205 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5206 page_counter_set_min(&memcg->memory, 0);
5207 page_counter_set_low(&memcg->memory, 0);
5208 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5209 memcg->soft_limit = PAGE_COUNTER_MAX;
5210 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5211 memcg_wb_domain_size_changed(memcg);
5212 }
5213
5214 #ifdef CONFIG_MMU
5215 /* Handlers for move charge at task migration. */
5216 static int mem_cgroup_do_precharge(unsigned long count)
5217 {
5218 int ret;
5219
5220 /* Try a single bulk charge without reclaim first, kswapd may wake */
5221 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5222 if (!ret) {
5223 mc.precharge += count;
5224 return ret;
5225 }
5226
5227 /* Try charges one by one with reclaim, but do not retry */
5228 while (count--) {
5229 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5230 if (ret)
5231 return ret;
5232 mc.precharge++;
5233 cond_resched();
5234 }
5235 return 0;
5236 }
5237
5238 union mc_target {
5239 struct page *page;
5240 swp_entry_t ent;
5241 };
5242
5243 enum mc_target_type {
5244 MC_TARGET_NONE = 0,
5245 MC_TARGET_PAGE,
5246 MC_TARGET_SWAP,
5247 MC_TARGET_DEVICE,
5248 };
5249
5250 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5251 unsigned long addr, pte_t ptent)
5252 {
5253 struct page *page = vm_normal_page(vma, addr, ptent);
5254
5255 if (!page || !page_mapped(page))
5256 return NULL;
5257 if (PageAnon(page)) {
5258 if (!(mc.flags & MOVE_ANON))
5259 return NULL;
5260 } else {
5261 if (!(mc.flags & MOVE_FILE))
5262 return NULL;
5263 }
5264 if (!get_page_unless_zero(page))
5265 return NULL;
5266
5267 return page;
5268 }
5269
5270 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5271 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5272 pte_t ptent, swp_entry_t *entry)
5273 {
5274 struct page *page = NULL;
5275 swp_entry_t ent = pte_to_swp_entry(ptent);
5276
5277 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5278 return NULL;
5279
5280 /*
5281 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5282 * a device and because they are not accessible by CPU they are store
5283 * as special swap entry in the CPU page table.
5284 */
5285 if (is_device_private_entry(ent)) {
5286 page = device_private_entry_to_page(ent);
5287 /*
5288 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5289 * a refcount of 1 when free (unlike normal page)
5290 */
5291 if (!page_ref_add_unless(page, 1, 1))
5292 return NULL;
5293 return page;
5294 }
5295
5296 /*
5297 * Because lookup_swap_cache() updates some statistics counter,
5298 * we call find_get_page() with swapper_space directly.
5299 */
5300 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5301 entry->val = ent.val;
5302
5303 return page;
5304 }
5305 #else
5306 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5307 pte_t ptent, swp_entry_t *entry)
5308 {
5309 return NULL;
5310 }
5311 #endif
5312
5313 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5314 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5315 {
5316 struct page *page = NULL;
5317 struct address_space *mapping;
5318 pgoff_t pgoff;
5319
5320 if (!vma->vm_file) /* anonymous vma */
5321 return NULL;
5322 if (!(mc.flags & MOVE_FILE))
5323 return NULL;
5324
5325 mapping = vma->vm_file->f_mapping;
5326 pgoff = linear_page_index(vma, addr);
5327
5328 /* page is moved even if it's not RSS of this task(page-faulted). */
5329 #ifdef CONFIG_SWAP
5330 /* shmem/tmpfs may report page out on swap: account for that too. */
5331 if (shmem_mapping(mapping)) {
5332 page = find_get_entry(mapping, pgoff);
5333 if (xa_is_value(page)) {
5334 swp_entry_t swp = radix_to_swp_entry(page);
5335 *entry = swp;
5336 page = find_get_page(swap_address_space(swp),
5337 swp_offset(swp));
5338 }
5339 } else
5340 page = find_get_page(mapping, pgoff);
5341 #else
5342 page = find_get_page(mapping, pgoff);
5343 #endif
5344 return page;
5345 }
5346
5347 /**
5348 * mem_cgroup_move_account - move account of the page
5349 * @page: the page
5350 * @compound: charge the page as compound or small page
5351 * @from: mem_cgroup which the page is moved from.
5352 * @to: mem_cgroup which the page is moved to. @from != @to.
5353 *
5354 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5355 *
5356 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5357 * from old cgroup.
5358 */
5359 static int mem_cgroup_move_account(struct page *page,
5360 bool compound,
5361 struct mem_cgroup *from,
5362 struct mem_cgroup *to)
5363 {
5364 struct lruvec *from_vec, *to_vec;
5365 struct pglist_data *pgdat;
5366 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5367 int ret;
5368
5369 VM_BUG_ON(from == to);
5370 VM_BUG_ON_PAGE(PageLRU(page), page);
5371 VM_BUG_ON(compound && !PageTransHuge(page));
5372
5373 /*
5374 * Prevent mem_cgroup_migrate() from looking at
5375 * page->mem_cgroup of its source page while we change it.
5376 */
5377 ret = -EBUSY;
5378 if (!trylock_page(page))
5379 goto out;
5380
5381 ret = -EINVAL;
5382 if (page->mem_cgroup != from)
5383 goto out_unlock;
5384
5385 pgdat = page_pgdat(page);
5386 from_vec = mem_cgroup_lruvec(from, pgdat);
5387 to_vec = mem_cgroup_lruvec(to, pgdat);
5388
5389 lock_page_memcg(page);
5390
5391 if (PageAnon(page)) {
5392 if (page_mapped(page)) {
5393 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5394 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5395 if (PageTransHuge(page)) {
5396 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5397 -nr_pages);
5398 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5399 nr_pages);
5400 }
5401
5402 }
5403 } else {
5404 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5405 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5406
5407 if (PageSwapBacked(page)) {
5408 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5409 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5410 }
5411
5412 if (page_mapped(page)) {
5413 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5414 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5415 }
5416
5417 if (PageDirty(page)) {
5418 struct address_space *mapping = page_mapping(page);
5419
5420 if (mapping_cap_account_dirty(mapping)) {
5421 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5422 -nr_pages);
5423 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5424 nr_pages);
5425 }
5426 }
5427 }
5428
5429 if (PageWriteback(page)) {
5430 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5431 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5432 }
5433
5434 /*
5435 * All state has been migrated, let's switch to the new memcg.
5436 *
5437 * It is safe to change page->mem_cgroup here because the page
5438 * is referenced, charged, isolated, and locked: we can't race
5439 * with (un)charging, migration, LRU putback, or anything else
5440 * that would rely on a stable page->mem_cgroup.
5441 *
5442 * Note that lock_page_memcg is a memcg lock, not a page lock,
5443 * to save space. As soon as we switch page->mem_cgroup to a
5444 * new memcg that isn't locked, the above state can change
5445 * concurrently again. Make sure we're truly done with it.
5446 */
5447 smp_mb();
5448
5449 page->mem_cgroup = to; /* caller should have done css_get */
5450
5451 __unlock_page_memcg(from);
5452
5453 ret = 0;
5454
5455 local_irq_disable();
5456 mem_cgroup_charge_statistics(to, page, nr_pages);
5457 memcg_check_events(to, page);
5458 mem_cgroup_charge_statistics(from, page, -nr_pages);
5459 memcg_check_events(from, page);
5460 local_irq_enable();
5461 out_unlock:
5462 unlock_page(page);
5463 out:
5464 return ret;
5465 }
5466
5467 /**
5468 * get_mctgt_type - get target type of moving charge
5469 * @vma: the vma the pte to be checked belongs
5470 * @addr: the address corresponding to the pte to be checked
5471 * @ptent: the pte to be checked
5472 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5473 *
5474 * Returns
5475 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5476 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5477 * move charge. if @target is not NULL, the page is stored in target->page
5478 * with extra refcnt got(Callers should handle it).
5479 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5480 * target for charge migration. if @target is not NULL, the entry is stored
5481 * in target->ent.
5482 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5483 * (so ZONE_DEVICE page and thus not on the lru).
5484 * For now we such page is charge like a regular page would be as for all
5485 * intent and purposes it is just special memory taking the place of a
5486 * regular page.
5487 *
5488 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5489 *
5490 * Called with pte lock held.
5491 */
5492
5493 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5494 unsigned long addr, pte_t ptent, union mc_target *target)
5495 {
5496 struct page *page = NULL;
5497 enum mc_target_type ret = MC_TARGET_NONE;
5498 swp_entry_t ent = { .val = 0 };
5499
5500 if (pte_present(ptent))
5501 page = mc_handle_present_pte(vma, addr, ptent);
5502 else if (is_swap_pte(ptent))
5503 page = mc_handle_swap_pte(vma, ptent, &ent);
5504 else if (pte_none(ptent))
5505 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5506
5507 if (!page && !ent.val)
5508 return ret;
5509 if (page) {
5510 /*
5511 * Do only loose check w/o serialization.
5512 * mem_cgroup_move_account() checks the page is valid or
5513 * not under LRU exclusion.
5514 */
5515 if (page->mem_cgroup == mc.from) {
5516 ret = MC_TARGET_PAGE;
5517 if (is_device_private_page(page))
5518 ret = MC_TARGET_DEVICE;
5519 if (target)
5520 target->page = page;
5521 }
5522 if (!ret || !target)
5523 put_page(page);
5524 }
5525 /*
5526 * There is a swap entry and a page doesn't exist or isn't charged.
5527 * But we cannot move a tail-page in a THP.
5528 */
5529 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5530 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5531 ret = MC_TARGET_SWAP;
5532 if (target)
5533 target->ent = ent;
5534 }
5535 return ret;
5536 }
5537
5538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5539 /*
5540 * We don't consider PMD mapped swapping or file mapped pages because THP does
5541 * not support them for now.
5542 * Caller should make sure that pmd_trans_huge(pmd) is true.
5543 */
5544 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5545 unsigned long addr, pmd_t pmd, union mc_target *target)
5546 {
5547 struct page *page = NULL;
5548 enum mc_target_type ret = MC_TARGET_NONE;
5549
5550 if (unlikely(is_swap_pmd(pmd))) {
5551 VM_BUG_ON(thp_migration_supported() &&
5552 !is_pmd_migration_entry(pmd));
5553 return ret;
5554 }
5555 page = pmd_page(pmd);
5556 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5557 if (!(mc.flags & MOVE_ANON))
5558 return ret;
5559 if (page->mem_cgroup == mc.from) {
5560 ret = MC_TARGET_PAGE;
5561 if (target) {
5562 get_page(page);
5563 target->page = page;
5564 }
5565 }
5566 return ret;
5567 }
5568 #else
5569 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5570 unsigned long addr, pmd_t pmd, union mc_target *target)
5571 {
5572 return MC_TARGET_NONE;
5573 }
5574 #endif
5575
5576 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5577 unsigned long addr, unsigned long end,
5578 struct mm_walk *walk)
5579 {
5580 struct vm_area_struct *vma = walk->vma;
5581 pte_t *pte;
5582 spinlock_t *ptl;
5583
5584 ptl = pmd_trans_huge_lock(pmd, vma);
5585 if (ptl) {
5586 /*
5587 * Note their can not be MC_TARGET_DEVICE for now as we do not
5588 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5589 * this might change.
5590 */
5591 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5592 mc.precharge += HPAGE_PMD_NR;
5593 spin_unlock(ptl);
5594 return 0;
5595 }
5596
5597 if (pmd_trans_unstable(pmd))
5598 return 0;
5599 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5600 for (; addr != end; pte++, addr += PAGE_SIZE)
5601 if (get_mctgt_type(vma, addr, *pte, NULL))
5602 mc.precharge++; /* increment precharge temporarily */
5603 pte_unmap_unlock(pte - 1, ptl);
5604 cond_resched();
5605
5606 return 0;
5607 }
5608
5609 static const struct mm_walk_ops precharge_walk_ops = {
5610 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5611 };
5612
5613 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5614 {
5615 unsigned long precharge;
5616
5617 mmap_read_lock(mm);
5618 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5619 mmap_read_unlock(mm);
5620
5621 precharge = mc.precharge;
5622 mc.precharge = 0;
5623
5624 return precharge;
5625 }
5626
5627 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5628 {
5629 unsigned long precharge = mem_cgroup_count_precharge(mm);
5630
5631 VM_BUG_ON(mc.moving_task);
5632 mc.moving_task = current;
5633 return mem_cgroup_do_precharge(precharge);
5634 }
5635
5636 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5637 static void __mem_cgroup_clear_mc(void)
5638 {
5639 struct mem_cgroup *from = mc.from;
5640 struct mem_cgroup *to = mc.to;
5641
5642 /* we must uncharge all the leftover precharges from mc.to */
5643 if (mc.precharge) {
5644 cancel_charge(mc.to, mc.precharge);
5645 mc.precharge = 0;
5646 }
5647 /*
5648 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5649 * we must uncharge here.
5650 */
5651 if (mc.moved_charge) {
5652 cancel_charge(mc.from, mc.moved_charge);
5653 mc.moved_charge = 0;
5654 }
5655 /* we must fixup refcnts and charges */
5656 if (mc.moved_swap) {
5657 /* uncharge swap account from the old cgroup */
5658 if (!mem_cgroup_is_root(mc.from))
5659 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5660
5661 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5662
5663 /*
5664 * we charged both to->memory and to->memsw, so we
5665 * should uncharge to->memory.
5666 */
5667 if (!mem_cgroup_is_root(mc.to))
5668 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5669
5670 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5671 css_put_many(&mc.to->css, mc.moved_swap);
5672
5673 mc.moved_swap = 0;
5674 }
5675 memcg_oom_recover(from);
5676 memcg_oom_recover(to);
5677 wake_up_all(&mc.waitq);
5678 }
5679
5680 static void mem_cgroup_clear_mc(void)
5681 {
5682 struct mm_struct *mm = mc.mm;
5683
5684 /*
5685 * we must clear moving_task before waking up waiters at the end of
5686 * task migration.
5687 */
5688 mc.moving_task = NULL;
5689 __mem_cgroup_clear_mc();
5690 spin_lock(&mc.lock);
5691 mc.from = NULL;
5692 mc.to = NULL;
5693 mc.mm = NULL;
5694 spin_unlock(&mc.lock);
5695
5696 mmput(mm);
5697 }
5698
5699 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5700 {
5701 struct cgroup_subsys_state *css;
5702 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5703 struct mem_cgroup *from;
5704 struct task_struct *leader, *p;
5705 struct mm_struct *mm;
5706 unsigned long move_flags;
5707 int ret = 0;
5708
5709 /* charge immigration isn't supported on the default hierarchy */
5710 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5711 return 0;
5712
5713 /*
5714 * Multi-process migrations only happen on the default hierarchy
5715 * where charge immigration is not used. Perform charge
5716 * immigration if @tset contains a leader and whine if there are
5717 * multiple.
5718 */
5719 p = NULL;
5720 cgroup_taskset_for_each_leader(leader, css, tset) {
5721 WARN_ON_ONCE(p);
5722 p = leader;
5723 memcg = mem_cgroup_from_css(css);
5724 }
5725 if (!p)
5726 return 0;
5727
5728 /*
5729 * We are now commited to this value whatever it is. Changes in this
5730 * tunable will only affect upcoming migrations, not the current one.
5731 * So we need to save it, and keep it going.
5732 */
5733 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5734 if (!move_flags)
5735 return 0;
5736
5737 from = mem_cgroup_from_task(p);
5738
5739 VM_BUG_ON(from == memcg);
5740
5741 mm = get_task_mm(p);
5742 if (!mm)
5743 return 0;
5744 /* We move charges only when we move a owner of the mm */
5745 if (mm->owner == p) {
5746 VM_BUG_ON(mc.from);
5747 VM_BUG_ON(mc.to);
5748 VM_BUG_ON(mc.precharge);
5749 VM_BUG_ON(mc.moved_charge);
5750 VM_BUG_ON(mc.moved_swap);
5751
5752 spin_lock(&mc.lock);
5753 mc.mm = mm;
5754 mc.from = from;
5755 mc.to = memcg;
5756 mc.flags = move_flags;
5757 spin_unlock(&mc.lock);
5758 /* We set mc.moving_task later */
5759
5760 ret = mem_cgroup_precharge_mc(mm);
5761 if (ret)
5762 mem_cgroup_clear_mc();
5763 } else {
5764 mmput(mm);
5765 }
5766 return ret;
5767 }
5768
5769 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5770 {
5771 if (mc.to)
5772 mem_cgroup_clear_mc();
5773 }
5774
5775 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5776 unsigned long addr, unsigned long end,
5777 struct mm_walk *walk)
5778 {
5779 int ret = 0;
5780 struct vm_area_struct *vma = walk->vma;
5781 pte_t *pte;
5782 spinlock_t *ptl;
5783 enum mc_target_type target_type;
5784 union mc_target target;
5785 struct page *page;
5786
5787 ptl = pmd_trans_huge_lock(pmd, vma);
5788 if (ptl) {
5789 if (mc.precharge < HPAGE_PMD_NR) {
5790 spin_unlock(ptl);
5791 return 0;
5792 }
5793 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5794 if (target_type == MC_TARGET_PAGE) {
5795 page = target.page;
5796 if (!isolate_lru_page(page)) {
5797 if (!mem_cgroup_move_account(page, true,
5798 mc.from, mc.to)) {
5799 mc.precharge -= HPAGE_PMD_NR;
5800 mc.moved_charge += HPAGE_PMD_NR;
5801 }
5802 putback_lru_page(page);
5803 }
5804 put_page(page);
5805 } else if (target_type == MC_TARGET_DEVICE) {
5806 page = target.page;
5807 if (!mem_cgroup_move_account(page, true,
5808 mc.from, mc.to)) {
5809 mc.precharge -= HPAGE_PMD_NR;
5810 mc.moved_charge += HPAGE_PMD_NR;
5811 }
5812 put_page(page);
5813 }
5814 spin_unlock(ptl);
5815 return 0;
5816 }
5817
5818 if (pmd_trans_unstable(pmd))
5819 return 0;
5820 retry:
5821 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5822 for (; addr != end; addr += PAGE_SIZE) {
5823 pte_t ptent = *(pte++);
5824 bool device = false;
5825 swp_entry_t ent;
5826
5827 if (!mc.precharge)
5828 break;
5829
5830 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5831 case MC_TARGET_DEVICE:
5832 device = true;
5833 fallthrough;
5834 case MC_TARGET_PAGE:
5835 page = target.page;
5836 /*
5837 * We can have a part of the split pmd here. Moving it
5838 * can be done but it would be too convoluted so simply
5839 * ignore such a partial THP and keep it in original
5840 * memcg. There should be somebody mapping the head.
5841 */
5842 if (PageTransCompound(page))
5843 goto put;
5844 if (!device && isolate_lru_page(page))
5845 goto put;
5846 if (!mem_cgroup_move_account(page, false,
5847 mc.from, mc.to)) {
5848 mc.precharge--;
5849 /* we uncharge from mc.from later. */
5850 mc.moved_charge++;
5851 }
5852 if (!device)
5853 putback_lru_page(page);
5854 put: /* get_mctgt_type() gets the page */
5855 put_page(page);
5856 break;
5857 case MC_TARGET_SWAP:
5858 ent = target.ent;
5859 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5860 mc.precharge--;
5861 /* we fixup refcnts and charges later. */
5862 mc.moved_swap++;
5863 }
5864 break;
5865 default:
5866 break;
5867 }
5868 }
5869 pte_unmap_unlock(pte - 1, ptl);
5870 cond_resched();
5871
5872 if (addr != end) {
5873 /*
5874 * We have consumed all precharges we got in can_attach().
5875 * We try charge one by one, but don't do any additional
5876 * charges to mc.to if we have failed in charge once in attach()
5877 * phase.
5878 */
5879 ret = mem_cgroup_do_precharge(1);
5880 if (!ret)
5881 goto retry;
5882 }
5883
5884 return ret;
5885 }
5886
5887 static const struct mm_walk_ops charge_walk_ops = {
5888 .pmd_entry = mem_cgroup_move_charge_pte_range,
5889 };
5890
5891 static void mem_cgroup_move_charge(void)
5892 {
5893 lru_add_drain_all();
5894 /*
5895 * Signal lock_page_memcg() to take the memcg's move_lock
5896 * while we're moving its pages to another memcg. Then wait
5897 * for already started RCU-only updates to finish.
5898 */
5899 atomic_inc(&mc.from->moving_account);
5900 synchronize_rcu();
5901 retry:
5902 if (unlikely(!mmap_read_trylock(mc.mm))) {
5903 /*
5904 * Someone who are holding the mmap_sem might be waiting in
5905 * waitq. So we cancel all extra charges, wake up all waiters,
5906 * and retry. Because we cancel precharges, we might not be able
5907 * to move enough charges, but moving charge is a best-effort
5908 * feature anyway, so it wouldn't be a big problem.
5909 */
5910 __mem_cgroup_clear_mc();
5911 cond_resched();
5912 goto retry;
5913 }
5914 /*
5915 * When we have consumed all precharges and failed in doing
5916 * additional charge, the page walk just aborts.
5917 */
5918 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5919 NULL);
5920
5921 mmap_read_unlock(mc.mm);
5922 atomic_dec(&mc.from->moving_account);
5923 }
5924
5925 static void mem_cgroup_move_task(void)
5926 {
5927 if (mc.to) {
5928 mem_cgroup_move_charge();
5929 mem_cgroup_clear_mc();
5930 }
5931 }
5932 #else /* !CONFIG_MMU */
5933 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5934 {
5935 return 0;
5936 }
5937 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5938 {
5939 }
5940 static void mem_cgroup_move_task(void)
5941 {
5942 }
5943 #endif
5944
5945 /*
5946 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5947 * to verify whether we're attached to the default hierarchy on each mount
5948 * attempt.
5949 */
5950 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5951 {
5952 /*
5953 * use_hierarchy is forced on the default hierarchy. cgroup core
5954 * guarantees that @root doesn't have any children, so turning it
5955 * on for the root memcg is enough.
5956 */
5957 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5958 root_mem_cgroup->use_hierarchy = true;
5959 else
5960 root_mem_cgroup->use_hierarchy = false;
5961 }
5962
5963 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5964 {
5965 if (value == PAGE_COUNTER_MAX)
5966 seq_puts(m, "max\n");
5967 else
5968 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5969
5970 return 0;
5971 }
5972
5973 static u64 memory_current_read(struct cgroup_subsys_state *css,
5974 struct cftype *cft)
5975 {
5976 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5977
5978 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5979 }
5980
5981 static int memory_min_show(struct seq_file *m, void *v)
5982 {
5983 return seq_puts_memcg_tunable(m,
5984 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5985 }
5986
5987 static ssize_t memory_min_write(struct kernfs_open_file *of,
5988 char *buf, size_t nbytes, loff_t off)
5989 {
5990 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5991 unsigned long min;
5992 int err;
5993
5994 buf = strstrip(buf);
5995 err = page_counter_memparse(buf, "max", &min);
5996 if (err)
5997 return err;
5998
5999 page_counter_set_min(&memcg->memory, min);
6000
6001 return nbytes;
6002 }
6003
6004 static int memory_low_show(struct seq_file *m, void *v)
6005 {
6006 return seq_puts_memcg_tunable(m,
6007 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6008 }
6009
6010 static ssize_t memory_low_write(struct kernfs_open_file *of,
6011 char *buf, size_t nbytes, loff_t off)
6012 {
6013 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6014 unsigned long low;
6015 int err;
6016
6017 buf = strstrip(buf);
6018 err = page_counter_memparse(buf, "max", &low);
6019 if (err)
6020 return err;
6021
6022 page_counter_set_low(&memcg->memory, low);
6023
6024 return nbytes;
6025 }
6026
6027 static int memory_high_show(struct seq_file *m, void *v)
6028 {
6029 return seq_puts_memcg_tunable(m,
6030 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6031 }
6032
6033 static ssize_t memory_high_write(struct kernfs_open_file *of,
6034 char *buf, size_t nbytes, loff_t off)
6035 {
6036 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6037 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6038 bool drained = false;
6039 unsigned long high;
6040 int err;
6041
6042 buf = strstrip(buf);
6043 err = page_counter_memparse(buf, "max", &high);
6044 if (err)
6045 return err;
6046
6047 page_counter_set_high(&memcg->memory, high);
6048
6049 for (;;) {
6050 unsigned long nr_pages = page_counter_read(&memcg->memory);
6051 unsigned long reclaimed;
6052
6053 if (nr_pages <= high)
6054 break;
6055
6056 if (signal_pending(current))
6057 break;
6058
6059 if (!drained) {
6060 drain_all_stock(memcg);
6061 drained = true;
6062 continue;
6063 }
6064
6065 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6066 GFP_KERNEL, true);
6067
6068 if (!reclaimed && !nr_retries--)
6069 break;
6070 }
6071
6072 return nbytes;
6073 }
6074
6075 static int memory_max_show(struct seq_file *m, void *v)
6076 {
6077 return seq_puts_memcg_tunable(m,
6078 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6079 }
6080
6081 static ssize_t memory_max_write(struct kernfs_open_file *of,
6082 char *buf, size_t nbytes, loff_t off)
6083 {
6084 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6085 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6086 bool drained = false;
6087 unsigned long max;
6088 int err;
6089
6090 buf = strstrip(buf);
6091 err = page_counter_memparse(buf, "max", &max);
6092 if (err)
6093 return err;
6094
6095 xchg(&memcg->memory.max, max);
6096
6097 for (;;) {
6098 unsigned long nr_pages = page_counter_read(&memcg->memory);
6099
6100 if (nr_pages <= max)
6101 break;
6102
6103 if (signal_pending(current))
6104 break;
6105
6106 if (!drained) {
6107 drain_all_stock(memcg);
6108 drained = true;
6109 continue;
6110 }
6111
6112 if (nr_reclaims) {
6113 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6114 GFP_KERNEL, true))
6115 nr_reclaims--;
6116 continue;
6117 }
6118
6119 memcg_memory_event(memcg, MEMCG_OOM);
6120 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6121 break;
6122 }
6123
6124 memcg_wb_domain_size_changed(memcg);
6125 return nbytes;
6126 }
6127
6128 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6129 {
6130 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6131 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6132 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6133 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6134 seq_printf(m, "oom_kill %lu\n",
6135 atomic_long_read(&events[MEMCG_OOM_KILL]));
6136 }
6137
6138 static int memory_events_show(struct seq_file *m, void *v)
6139 {
6140 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6141
6142 __memory_events_show(m, memcg->memory_events);
6143 return 0;
6144 }
6145
6146 static int memory_events_local_show(struct seq_file *m, void *v)
6147 {
6148 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6149
6150 __memory_events_show(m, memcg->memory_events_local);
6151 return 0;
6152 }
6153
6154 static int memory_stat_show(struct seq_file *m, void *v)
6155 {
6156 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6157 char *buf;
6158
6159 buf = memory_stat_format(memcg);
6160 if (!buf)
6161 return -ENOMEM;
6162 seq_puts(m, buf);
6163 kfree(buf);
6164 return 0;
6165 }
6166
6167 static int memory_oom_group_show(struct seq_file *m, void *v)
6168 {
6169 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6170
6171 seq_printf(m, "%d\n", memcg->oom_group);
6172
6173 return 0;
6174 }
6175
6176 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6177 char *buf, size_t nbytes, loff_t off)
6178 {
6179 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6180 int ret, oom_group;
6181
6182 buf = strstrip(buf);
6183 if (!buf)
6184 return -EINVAL;
6185
6186 ret = kstrtoint(buf, 0, &oom_group);
6187 if (ret)
6188 return ret;
6189
6190 if (oom_group != 0 && oom_group != 1)
6191 return -EINVAL;
6192
6193 memcg->oom_group = oom_group;
6194
6195 return nbytes;
6196 }
6197
6198 static struct cftype memory_files[] = {
6199 {
6200 .name = "current",
6201 .flags = CFTYPE_NOT_ON_ROOT,
6202 .read_u64 = memory_current_read,
6203 },
6204 {
6205 .name = "min",
6206 .flags = CFTYPE_NOT_ON_ROOT,
6207 .seq_show = memory_min_show,
6208 .write = memory_min_write,
6209 },
6210 {
6211 .name = "low",
6212 .flags = CFTYPE_NOT_ON_ROOT,
6213 .seq_show = memory_low_show,
6214 .write = memory_low_write,
6215 },
6216 {
6217 .name = "high",
6218 .flags = CFTYPE_NOT_ON_ROOT,
6219 .seq_show = memory_high_show,
6220 .write = memory_high_write,
6221 },
6222 {
6223 .name = "max",
6224 .flags = CFTYPE_NOT_ON_ROOT,
6225 .seq_show = memory_max_show,
6226 .write = memory_max_write,
6227 },
6228 {
6229 .name = "events",
6230 .flags = CFTYPE_NOT_ON_ROOT,
6231 .file_offset = offsetof(struct mem_cgroup, events_file),
6232 .seq_show = memory_events_show,
6233 },
6234 {
6235 .name = "events.local",
6236 .flags = CFTYPE_NOT_ON_ROOT,
6237 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6238 .seq_show = memory_events_local_show,
6239 },
6240 {
6241 .name = "stat",
6242 .seq_show = memory_stat_show,
6243 },
6244 {
6245 .name = "oom.group",
6246 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6247 .seq_show = memory_oom_group_show,
6248 .write = memory_oom_group_write,
6249 },
6250 { } /* terminate */
6251 };
6252
6253 struct cgroup_subsys memory_cgrp_subsys = {
6254 .css_alloc = mem_cgroup_css_alloc,
6255 .css_online = mem_cgroup_css_online,
6256 .css_offline = mem_cgroup_css_offline,
6257 .css_released = mem_cgroup_css_released,
6258 .css_free = mem_cgroup_css_free,
6259 .css_reset = mem_cgroup_css_reset,
6260 .can_attach = mem_cgroup_can_attach,
6261 .cancel_attach = mem_cgroup_cancel_attach,
6262 .post_attach = mem_cgroup_move_task,
6263 .bind = mem_cgroup_bind,
6264 .dfl_cftypes = memory_files,
6265 .legacy_cftypes = mem_cgroup_legacy_files,
6266 .early_init = 0,
6267 };
6268
6269 /*
6270 * This function calculates an individual cgroup's effective
6271 * protection which is derived from its own memory.min/low, its
6272 * parent's and siblings' settings, as well as the actual memory
6273 * distribution in the tree.
6274 *
6275 * The following rules apply to the effective protection values:
6276 *
6277 * 1. At the first level of reclaim, effective protection is equal to
6278 * the declared protection in memory.min and memory.low.
6279 *
6280 * 2. To enable safe delegation of the protection configuration, at
6281 * subsequent levels the effective protection is capped to the
6282 * parent's effective protection.
6283 *
6284 * 3. To make complex and dynamic subtrees easier to configure, the
6285 * user is allowed to overcommit the declared protection at a given
6286 * level. If that is the case, the parent's effective protection is
6287 * distributed to the children in proportion to how much protection
6288 * they have declared and how much of it they are utilizing.
6289 *
6290 * This makes distribution proportional, but also work-conserving:
6291 * if one cgroup claims much more protection than it uses memory,
6292 * the unused remainder is available to its siblings.
6293 *
6294 * 4. Conversely, when the declared protection is undercommitted at a
6295 * given level, the distribution of the larger parental protection
6296 * budget is NOT proportional. A cgroup's protection from a sibling
6297 * is capped to its own memory.min/low setting.
6298 *
6299 * 5. However, to allow protecting recursive subtrees from each other
6300 * without having to declare each individual cgroup's fixed share
6301 * of the ancestor's claim to protection, any unutilized -
6302 * "floating" - protection from up the tree is distributed in
6303 * proportion to each cgroup's *usage*. This makes the protection
6304 * neutral wrt sibling cgroups and lets them compete freely over
6305 * the shared parental protection budget, but it protects the
6306 * subtree as a whole from neighboring subtrees.
6307 *
6308 * Note that 4. and 5. are not in conflict: 4. is about protecting
6309 * against immediate siblings whereas 5. is about protecting against
6310 * neighboring subtrees.
6311 */
6312 static unsigned long effective_protection(unsigned long usage,
6313 unsigned long parent_usage,
6314 unsigned long setting,
6315 unsigned long parent_effective,
6316 unsigned long siblings_protected)
6317 {
6318 unsigned long protected;
6319 unsigned long ep;
6320
6321 protected = min(usage, setting);
6322 /*
6323 * If all cgroups at this level combined claim and use more
6324 * protection then what the parent affords them, distribute
6325 * shares in proportion to utilization.
6326 *
6327 * We are using actual utilization rather than the statically
6328 * claimed protection in order to be work-conserving: claimed
6329 * but unused protection is available to siblings that would
6330 * otherwise get a smaller chunk than what they claimed.
6331 */
6332 if (siblings_protected > parent_effective)
6333 return protected * parent_effective / siblings_protected;
6334
6335 /*
6336 * Ok, utilized protection of all children is within what the
6337 * parent affords them, so we know whatever this child claims
6338 * and utilizes is effectively protected.
6339 *
6340 * If there is unprotected usage beyond this value, reclaim
6341 * will apply pressure in proportion to that amount.
6342 *
6343 * If there is unutilized protection, the cgroup will be fully
6344 * shielded from reclaim, but we do return a smaller value for
6345 * protection than what the group could enjoy in theory. This
6346 * is okay. With the overcommit distribution above, effective
6347 * protection is always dependent on how memory is actually
6348 * consumed among the siblings anyway.
6349 */
6350 ep = protected;
6351
6352 /*
6353 * If the children aren't claiming (all of) the protection
6354 * afforded to them by the parent, distribute the remainder in
6355 * proportion to the (unprotected) memory of each cgroup. That
6356 * way, cgroups that aren't explicitly prioritized wrt each
6357 * other compete freely over the allowance, but they are
6358 * collectively protected from neighboring trees.
6359 *
6360 * We're using unprotected memory for the weight so that if
6361 * some cgroups DO claim explicit protection, we don't protect
6362 * the same bytes twice.
6363 */
6364 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6365 return ep;
6366
6367 if (parent_effective > siblings_protected && usage > protected) {
6368 unsigned long unclaimed;
6369
6370 unclaimed = parent_effective - siblings_protected;
6371 unclaimed *= usage - protected;
6372 unclaimed /= parent_usage - siblings_protected;
6373
6374 ep += unclaimed;
6375 }
6376
6377 return ep;
6378 }
6379
6380 /**
6381 * mem_cgroup_protected - check if memory consumption is in the normal range
6382 * @root: the top ancestor of the sub-tree being checked
6383 * @memcg: the memory cgroup to check
6384 *
6385 * WARNING: This function is not stateless! It can only be used as part
6386 * of a top-down tree iteration, not for isolated queries.
6387 *
6388 * Returns one of the following:
6389 * MEMCG_PROT_NONE: cgroup memory is not protected
6390 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6391 * an unprotected supply of reclaimable memory from other cgroups.
6392 * MEMCG_PROT_MIN: cgroup memory is protected
6393 */
6394 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6395 struct mem_cgroup *memcg)
6396 {
6397 unsigned long usage, parent_usage;
6398 struct mem_cgroup *parent;
6399
6400 if (mem_cgroup_disabled())
6401 return MEMCG_PROT_NONE;
6402
6403 if (!root)
6404 root = root_mem_cgroup;
6405 if (memcg == root)
6406 return MEMCG_PROT_NONE;
6407
6408 usage = page_counter_read(&memcg->memory);
6409 if (!usage)
6410 return MEMCG_PROT_NONE;
6411
6412 parent = parent_mem_cgroup(memcg);
6413 /* No parent means a non-hierarchical mode on v1 memcg */
6414 if (!parent)
6415 return MEMCG_PROT_NONE;
6416
6417 if (parent == root) {
6418 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6419 memcg->memory.elow = memcg->memory.low;
6420 goto out;
6421 }
6422
6423 parent_usage = page_counter_read(&parent->memory);
6424
6425 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6426 READ_ONCE(memcg->memory.min),
6427 READ_ONCE(parent->memory.emin),
6428 atomic_long_read(&parent->memory.children_min_usage)));
6429
6430 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6431 memcg->memory.low, READ_ONCE(parent->memory.elow),
6432 atomic_long_read(&parent->memory.children_low_usage)));
6433
6434 out:
6435 if (usage <= memcg->memory.emin)
6436 return MEMCG_PROT_MIN;
6437 else if (usage <= memcg->memory.elow)
6438 return MEMCG_PROT_LOW;
6439 else
6440 return MEMCG_PROT_NONE;
6441 }
6442
6443 /**
6444 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6445 * @page: page to charge
6446 * @mm: mm context of the victim
6447 * @gfp_mask: reclaim mode
6448 *
6449 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6450 * pages according to @gfp_mask if necessary.
6451 *
6452 * Returns 0 on success. Otherwise, an error code is returned.
6453 */
6454 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6455 {
6456 unsigned int nr_pages = hpage_nr_pages(page);
6457 struct mem_cgroup *memcg = NULL;
6458 int ret = 0;
6459
6460 if (mem_cgroup_disabled())
6461 goto out;
6462
6463 if (PageSwapCache(page)) {
6464 swp_entry_t ent = { .val = page_private(page), };
6465 unsigned short id;
6466
6467 /*
6468 * Every swap fault against a single page tries to charge the
6469 * page, bail as early as possible. shmem_unuse() encounters
6470 * already charged pages, too. page->mem_cgroup is protected
6471 * by the page lock, which serializes swap cache removal, which
6472 * in turn serializes uncharging.
6473 */
6474 VM_BUG_ON_PAGE(!PageLocked(page), page);
6475 if (compound_head(page)->mem_cgroup)
6476 goto out;
6477
6478 id = lookup_swap_cgroup_id(ent);
6479 rcu_read_lock();
6480 memcg = mem_cgroup_from_id(id);
6481 if (memcg && !css_tryget_online(&memcg->css))
6482 memcg = NULL;
6483 rcu_read_unlock();
6484 }
6485
6486 if (!memcg)
6487 memcg = get_mem_cgroup_from_mm(mm);
6488
6489 ret = try_charge(memcg, gfp_mask, nr_pages);
6490 if (ret)
6491 goto out_put;
6492
6493 commit_charge(page, memcg);
6494
6495 local_irq_disable();
6496 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6497 memcg_check_events(memcg, page);
6498 local_irq_enable();
6499
6500 if (PageSwapCache(page)) {
6501 swp_entry_t entry = { .val = page_private(page) };
6502 /*
6503 * The swap entry might not get freed for a long time,
6504 * let's not wait for it. The page already received a
6505 * memory+swap charge, drop the swap entry duplicate.
6506 */
6507 mem_cgroup_uncharge_swap(entry, nr_pages);
6508 }
6509
6510 out_put:
6511 css_put(&memcg->css);
6512 out:
6513 return ret;
6514 }
6515
6516 struct uncharge_gather {
6517 struct mem_cgroup *memcg;
6518 unsigned long nr_pages;
6519 unsigned long pgpgout;
6520 unsigned long nr_kmem;
6521 struct page *dummy_page;
6522 };
6523
6524 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6525 {
6526 memset(ug, 0, sizeof(*ug));
6527 }
6528
6529 static void uncharge_batch(const struct uncharge_gather *ug)
6530 {
6531 unsigned long flags;
6532
6533 if (!mem_cgroup_is_root(ug->memcg)) {
6534 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6535 if (do_memsw_account())
6536 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6537 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6538 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6539 memcg_oom_recover(ug->memcg);
6540 }
6541
6542 local_irq_save(flags);
6543 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6544 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6545 memcg_check_events(ug->memcg, ug->dummy_page);
6546 local_irq_restore(flags);
6547
6548 if (!mem_cgroup_is_root(ug->memcg))
6549 css_put_many(&ug->memcg->css, ug->nr_pages);
6550 }
6551
6552 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6553 {
6554 unsigned long nr_pages;
6555
6556 VM_BUG_ON_PAGE(PageLRU(page), page);
6557
6558 if (!page->mem_cgroup)
6559 return;
6560
6561 /*
6562 * Nobody should be changing or seriously looking at
6563 * page->mem_cgroup at this point, we have fully
6564 * exclusive access to the page.
6565 */
6566
6567 if (ug->memcg != page->mem_cgroup) {
6568 if (ug->memcg) {
6569 uncharge_batch(ug);
6570 uncharge_gather_clear(ug);
6571 }
6572 ug->memcg = page->mem_cgroup;
6573 }
6574
6575 nr_pages = compound_nr(page);
6576 ug->nr_pages += nr_pages;
6577
6578 if (!PageKmemcg(page)) {
6579 ug->pgpgout++;
6580 } else {
6581 ug->nr_kmem += nr_pages;
6582 __ClearPageKmemcg(page);
6583 }
6584
6585 ug->dummy_page = page;
6586 page->mem_cgroup = NULL;
6587 }
6588
6589 static void uncharge_list(struct list_head *page_list)
6590 {
6591 struct uncharge_gather ug;
6592 struct list_head *next;
6593
6594 uncharge_gather_clear(&ug);
6595
6596 /*
6597 * Note that the list can be a single page->lru; hence the
6598 * do-while loop instead of a simple list_for_each_entry().
6599 */
6600 next = page_list->next;
6601 do {
6602 struct page *page;
6603
6604 page = list_entry(next, struct page, lru);
6605 next = page->lru.next;
6606
6607 uncharge_page(page, &ug);
6608 } while (next != page_list);
6609
6610 if (ug.memcg)
6611 uncharge_batch(&ug);
6612 }
6613
6614 /**
6615 * mem_cgroup_uncharge - uncharge a page
6616 * @page: page to uncharge
6617 *
6618 * Uncharge a page previously charged with mem_cgroup_charge().
6619 */
6620 void mem_cgroup_uncharge(struct page *page)
6621 {
6622 struct uncharge_gather ug;
6623
6624 if (mem_cgroup_disabled())
6625 return;
6626
6627 /* Don't touch page->lru of any random page, pre-check: */
6628 if (!page->mem_cgroup)
6629 return;
6630
6631 uncharge_gather_clear(&ug);
6632 uncharge_page(page, &ug);
6633 uncharge_batch(&ug);
6634 }
6635
6636 /**
6637 * mem_cgroup_uncharge_list - uncharge a list of page
6638 * @page_list: list of pages to uncharge
6639 *
6640 * Uncharge a list of pages previously charged with
6641 * mem_cgroup_charge().
6642 */
6643 void mem_cgroup_uncharge_list(struct list_head *page_list)
6644 {
6645 if (mem_cgroup_disabled())
6646 return;
6647
6648 if (!list_empty(page_list))
6649 uncharge_list(page_list);
6650 }
6651
6652 /**
6653 * mem_cgroup_migrate - charge a page's replacement
6654 * @oldpage: currently circulating page
6655 * @newpage: replacement page
6656 *
6657 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6658 * be uncharged upon free.
6659 *
6660 * Both pages must be locked, @newpage->mapping must be set up.
6661 */
6662 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6663 {
6664 struct mem_cgroup *memcg;
6665 unsigned int nr_pages;
6666 unsigned long flags;
6667
6668 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6669 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6670 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6671 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6672 newpage);
6673
6674 if (mem_cgroup_disabled())
6675 return;
6676
6677 /* Page cache replacement: new page already charged? */
6678 if (newpage->mem_cgroup)
6679 return;
6680
6681 /* Swapcache readahead pages can get replaced before being charged */
6682 memcg = oldpage->mem_cgroup;
6683 if (!memcg)
6684 return;
6685
6686 /* Force-charge the new page. The old one will be freed soon */
6687 nr_pages = hpage_nr_pages(newpage);
6688
6689 page_counter_charge(&memcg->memory, nr_pages);
6690 if (do_memsw_account())
6691 page_counter_charge(&memcg->memsw, nr_pages);
6692 css_get_many(&memcg->css, nr_pages);
6693
6694 commit_charge(newpage, memcg);
6695
6696 local_irq_save(flags);
6697 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6698 memcg_check_events(memcg, newpage);
6699 local_irq_restore(flags);
6700 }
6701
6702 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6703 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6704
6705 void mem_cgroup_sk_alloc(struct sock *sk)
6706 {
6707 struct mem_cgroup *memcg;
6708
6709 if (!mem_cgroup_sockets_enabled)
6710 return;
6711
6712 /* Do not associate the sock with unrelated interrupted task's memcg. */
6713 if (in_interrupt())
6714 return;
6715
6716 rcu_read_lock();
6717 memcg = mem_cgroup_from_task(current);
6718 if (memcg == root_mem_cgroup)
6719 goto out;
6720 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6721 goto out;
6722 if (css_tryget(&memcg->css))
6723 sk->sk_memcg = memcg;
6724 out:
6725 rcu_read_unlock();
6726 }
6727
6728 void mem_cgroup_sk_free(struct sock *sk)
6729 {
6730 if (sk->sk_memcg)
6731 css_put(&sk->sk_memcg->css);
6732 }
6733
6734 /**
6735 * mem_cgroup_charge_skmem - charge socket memory
6736 * @memcg: memcg to charge
6737 * @nr_pages: number of pages to charge
6738 *
6739 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6740 * @memcg's configured limit, %false if the charge had to be forced.
6741 */
6742 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6743 {
6744 gfp_t gfp_mask = GFP_KERNEL;
6745
6746 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6747 struct page_counter *fail;
6748
6749 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6750 memcg->tcpmem_pressure = 0;
6751 return true;
6752 }
6753 page_counter_charge(&memcg->tcpmem, nr_pages);
6754 memcg->tcpmem_pressure = 1;
6755 return false;
6756 }
6757
6758 /* Don't block in the packet receive path */
6759 if (in_softirq())
6760 gfp_mask = GFP_NOWAIT;
6761
6762 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6763
6764 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6765 return true;
6766
6767 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6768 return false;
6769 }
6770
6771 /**
6772 * mem_cgroup_uncharge_skmem - uncharge socket memory
6773 * @memcg: memcg to uncharge
6774 * @nr_pages: number of pages to uncharge
6775 */
6776 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6777 {
6778 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6779 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6780 return;
6781 }
6782
6783 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6784
6785 refill_stock(memcg, nr_pages);
6786 }
6787
6788 static int __init cgroup_memory(char *s)
6789 {
6790 char *token;
6791
6792 while ((token = strsep(&s, ",")) != NULL) {
6793 if (!*token)
6794 continue;
6795 if (!strcmp(token, "nosocket"))
6796 cgroup_memory_nosocket = true;
6797 if (!strcmp(token, "nokmem"))
6798 cgroup_memory_nokmem = true;
6799 }
6800 return 0;
6801 }
6802 __setup("cgroup.memory=", cgroup_memory);
6803
6804 /*
6805 * subsys_initcall() for memory controller.
6806 *
6807 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6808 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6809 * basically everything that doesn't depend on a specific mem_cgroup structure
6810 * should be initialized from here.
6811 */
6812 static int __init mem_cgroup_init(void)
6813 {
6814 int cpu, node;
6815
6816 #ifdef CONFIG_MEMCG_KMEM
6817 /*
6818 * Kmem cache creation is mostly done with the slab_mutex held,
6819 * so use a workqueue with limited concurrency to avoid stalling
6820 * all worker threads in case lots of cgroups are created and
6821 * destroyed simultaneously.
6822 */
6823 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6824 BUG_ON(!memcg_kmem_cache_wq);
6825 #endif
6826
6827 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6828 memcg_hotplug_cpu_dead);
6829
6830 for_each_possible_cpu(cpu)
6831 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6832 drain_local_stock);
6833
6834 for_each_node(node) {
6835 struct mem_cgroup_tree_per_node *rtpn;
6836
6837 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6838 node_online(node) ? node : NUMA_NO_NODE);
6839
6840 rtpn->rb_root = RB_ROOT;
6841 rtpn->rb_rightmost = NULL;
6842 spin_lock_init(&rtpn->lock);
6843 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6844 }
6845
6846 return 0;
6847 }
6848 subsys_initcall(mem_cgroup_init);
6849
6850 #ifdef CONFIG_MEMCG_SWAP
6851 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6852 {
6853 while (!refcount_inc_not_zero(&memcg->id.ref)) {
6854 /*
6855 * The root cgroup cannot be destroyed, so it's refcount must
6856 * always be >= 1.
6857 */
6858 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6859 VM_BUG_ON(1);
6860 break;
6861 }
6862 memcg = parent_mem_cgroup(memcg);
6863 if (!memcg)
6864 memcg = root_mem_cgroup;
6865 }
6866 return memcg;
6867 }
6868
6869 /**
6870 * mem_cgroup_swapout - transfer a memsw charge to swap
6871 * @page: page whose memsw charge to transfer
6872 * @entry: swap entry to move the charge to
6873 *
6874 * Transfer the memsw charge of @page to @entry.
6875 */
6876 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6877 {
6878 struct mem_cgroup *memcg, *swap_memcg;
6879 unsigned int nr_entries;
6880 unsigned short oldid;
6881
6882 VM_BUG_ON_PAGE(PageLRU(page), page);
6883 VM_BUG_ON_PAGE(page_count(page), page);
6884
6885 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6886 return;
6887
6888 memcg = page->mem_cgroup;
6889
6890 /* Readahead page, never charged */
6891 if (!memcg)
6892 return;
6893
6894 /*
6895 * In case the memcg owning these pages has been offlined and doesn't
6896 * have an ID allocated to it anymore, charge the closest online
6897 * ancestor for the swap instead and transfer the memory+swap charge.
6898 */
6899 swap_memcg = mem_cgroup_id_get_online(memcg);
6900 nr_entries = hpage_nr_pages(page);
6901 /* Get references for the tail pages, too */
6902 if (nr_entries > 1)
6903 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6904 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6905 nr_entries);
6906 VM_BUG_ON_PAGE(oldid, page);
6907 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6908
6909 page->mem_cgroup = NULL;
6910
6911 if (!mem_cgroup_is_root(memcg))
6912 page_counter_uncharge(&memcg->memory, nr_entries);
6913
6914 if (!cgroup_memory_noswap && memcg != swap_memcg) {
6915 if (!mem_cgroup_is_root(swap_memcg))
6916 page_counter_charge(&swap_memcg->memsw, nr_entries);
6917 page_counter_uncharge(&memcg->memsw, nr_entries);
6918 }
6919
6920 /*
6921 * Interrupts should be disabled here because the caller holds the
6922 * i_pages lock which is taken with interrupts-off. It is
6923 * important here to have the interrupts disabled because it is the
6924 * only synchronisation we have for updating the per-CPU variables.
6925 */
6926 VM_BUG_ON(!irqs_disabled());
6927 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
6928 memcg_check_events(memcg, page);
6929
6930 if (!mem_cgroup_is_root(memcg))
6931 css_put_many(&memcg->css, nr_entries);
6932 }
6933
6934 /**
6935 * mem_cgroup_try_charge_swap - try charging swap space for a page
6936 * @page: page being added to swap
6937 * @entry: swap entry to charge
6938 *
6939 * Try to charge @page's memcg for the swap space at @entry.
6940 *
6941 * Returns 0 on success, -ENOMEM on failure.
6942 */
6943 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6944 {
6945 unsigned int nr_pages = hpage_nr_pages(page);
6946 struct page_counter *counter;
6947 struct mem_cgroup *memcg;
6948 unsigned short oldid;
6949
6950 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
6951 return 0;
6952
6953 memcg = page->mem_cgroup;
6954
6955 /* Readahead page, never charged */
6956 if (!memcg)
6957 return 0;
6958
6959 if (!entry.val) {
6960 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6961 return 0;
6962 }
6963
6964 memcg = mem_cgroup_id_get_online(memcg);
6965
6966 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
6967 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6968 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6969 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6970 mem_cgroup_id_put(memcg);
6971 return -ENOMEM;
6972 }
6973
6974 /* Get references for the tail pages, too */
6975 if (nr_pages > 1)
6976 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6977 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6978 VM_BUG_ON_PAGE(oldid, page);
6979 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6980
6981 return 0;
6982 }
6983
6984 /**
6985 * mem_cgroup_uncharge_swap - uncharge swap space
6986 * @entry: swap entry to uncharge
6987 * @nr_pages: the amount of swap space to uncharge
6988 */
6989 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6990 {
6991 struct mem_cgroup *memcg;
6992 unsigned short id;
6993
6994 id = swap_cgroup_record(entry, 0, nr_pages);
6995 rcu_read_lock();
6996 memcg = mem_cgroup_from_id(id);
6997 if (memcg) {
6998 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
6999 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7000 page_counter_uncharge(&memcg->swap, nr_pages);
7001 else
7002 page_counter_uncharge(&memcg->memsw, nr_pages);
7003 }
7004 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7005 mem_cgroup_id_put_many(memcg, nr_pages);
7006 }
7007 rcu_read_unlock();
7008 }
7009
7010 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7011 {
7012 long nr_swap_pages = get_nr_swap_pages();
7013
7014 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7015 return nr_swap_pages;
7016 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7017 nr_swap_pages = min_t(long, nr_swap_pages,
7018 READ_ONCE(memcg->swap.max) -
7019 page_counter_read(&memcg->swap));
7020 return nr_swap_pages;
7021 }
7022
7023 bool mem_cgroup_swap_full(struct page *page)
7024 {
7025 struct mem_cgroup *memcg;
7026
7027 VM_BUG_ON_PAGE(!PageLocked(page), page);
7028
7029 if (vm_swap_full())
7030 return true;
7031 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7032 return false;
7033
7034 memcg = page->mem_cgroup;
7035 if (!memcg)
7036 return false;
7037
7038 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7039 unsigned long usage = page_counter_read(&memcg->swap);
7040
7041 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7042 usage * 2 >= READ_ONCE(memcg->swap.max))
7043 return true;
7044 }
7045
7046 return false;
7047 }
7048
7049 static int __init setup_swap_account(char *s)
7050 {
7051 if (!strcmp(s, "1"))
7052 cgroup_memory_noswap = 0;
7053 else if (!strcmp(s, "0"))
7054 cgroup_memory_noswap = 1;
7055 return 1;
7056 }
7057 __setup("swapaccount=", setup_swap_account);
7058
7059 static u64 swap_current_read(struct cgroup_subsys_state *css,
7060 struct cftype *cft)
7061 {
7062 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7063
7064 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7065 }
7066
7067 static int swap_high_show(struct seq_file *m, void *v)
7068 {
7069 return seq_puts_memcg_tunable(m,
7070 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7071 }
7072
7073 static ssize_t swap_high_write(struct kernfs_open_file *of,
7074 char *buf, size_t nbytes, loff_t off)
7075 {
7076 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7077 unsigned long high;
7078 int err;
7079
7080 buf = strstrip(buf);
7081 err = page_counter_memparse(buf, "max", &high);
7082 if (err)
7083 return err;
7084
7085 page_counter_set_high(&memcg->swap, high);
7086
7087 return nbytes;
7088 }
7089
7090 static int swap_max_show(struct seq_file *m, void *v)
7091 {
7092 return seq_puts_memcg_tunable(m,
7093 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7094 }
7095
7096 static ssize_t swap_max_write(struct kernfs_open_file *of,
7097 char *buf, size_t nbytes, loff_t off)
7098 {
7099 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7100 unsigned long max;
7101 int err;
7102
7103 buf = strstrip(buf);
7104 err = page_counter_memparse(buf, "max", &max);
7105 if (err)
7106 return err;
7107
7108 xchg(&memcg->swap.max, max);
7109
7110 return nbytes;
7111 }
7112
7113 static int swap_events_show(struct seq_file *m, void *v)
7114 {
7115 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7116
7117 seq_printf(m, "high %lu\n",
7118 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7119 seq_printf(m, "max %lu\n",
7120 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7121 seq_printf(m, "fail %lu\n",
7122 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7123
7124 return 0;
7125 }
7126
7127 static struct cftype swap_files[] = {
7128 {
7129 .name = "swap.current",
7130 .flags = CFTYPE_NOT_ON_ROOT,
7131 .read_u64 = swap_current_read,
7132 },
7133 {
7134 .name = "swap.high",
7135 .flags = CFTYPE_NOT_ON_ROOT,
7136 .seq_show = swap_high_show,
7137 .write = swap_high_write,
7138 },
7139 {
7140 .name = "swap.max",
7141 .flags = CFTYPE_NOT_ON_ROOT,
7142 .seq_show = swap_max_show,
7143 .write = swap_max_write,
7144 },
7145 {
7146 .name = "swap.events",
7147 .flags = CFTYPE_NOT_ON_ROOT,
7148 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7149 .seq_show = swap_events_show,
7150 },
7151 { } /* terminate */
7152 };
7153
7154 static struct cftype memsw_files[] = {
7155 {
7156 .name = "memsw.usage_in_bytes",
7157 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7158 .read_u64 = mem_cgroup_read_u64,
7159 },
7160 {
7161 .name = "memsw.max_usage_in_bytes",
7162 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7163 .write = mem_cgroup_reset,
7164 .read_u64 = mem_cgroup_read_u64,
7165 },
7166 {
7167 .name = "memsw.limit_in_bytes",
7168 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7169 .write = mem_cgroup_write,
7170 .read_u64 = mem_cgroup_read_u64,
7171 },
7172 {
7173 .name = "memsw.failcnt",
7174 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7175 .write = mem_cgroup_reset,
7176 .read_u64 = mem_cgroup_read_u64,
7177 },
7178 { }, /* terminate */
7179 };
7180
7181 static int __init mem_cgroup_swap_init(void)
7182 {
7183 /* No memory control -> no swap control */
7184 if (mem_cgroup_disabled())
7185 cgroup_memory_noswap = true;
7186
7187 if (cgroup_memory_noswap)
7188 return 0;
7189
7190 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7191 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7192
7193 return 0;
7194 }
7195 subsys_initcall(mem_cgroup_swap_init);
7196
7197 #endif /* CONFIG_MEMCG_SWAP */