]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memcontrol.c
Merge tag 's390-5.5-2' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66
67 #include <linux/uaccess.h>
68
69 #include <trace/events/vmscan.h>
70
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75
76 #define MEM_CGROUP_RECLAIM_RETRIES 5
77
78 /* Socket memory accounting disabled? */
79 static bool cgroup_memory_nosocket;
80
81 /* Kernel memory accounting disabled? */
82 static bool cgroup_memory_nokmem;
83
84 /* Whether the swap controller is active */
85 #ifdef CONFIG_MEMCG_SWAP
86 int do_swap_account __read_mostly;
87 #else
88 #define do_swap_account 0
89 #endif
90
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char *const mem_cgroup_lru_names[] = {
102 "inactive_anon",
103 "active_anon",
104 "inactive_file",
105 "active_file",
106 "unevictable",
107 };
108
109 #define THRESHOLDS_EVENTS_TARGET 128
110 #define SOFTLIMIT_EVENTS_TARGET 1024
111
112 /*
113 * Cgroups above their limits are maintained in a RB-Tree, independent of
114 * their hierarchy representation
115 */
116
117 struct mem_cgroup_tree_per_node {
118 struct rb_root rb_root;
119 struct rb_node *rb_rightmost;
120 spinlock_t lock;
121 };
122
123 struct mem_cgroup_tree {
124 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
125 };
126
127 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
128
129 /* for OOM */
130 struct mem_cgroup_eventfd_list {
131 struct list_head list;
132 struct eventfd_ctx *eventfd;
133 };
134
135 /*
136 * cgroup_event represents events which userspace want to receive.
137 */
138 struct mem_cgroup_event {
139 /*
140 * memcg which the event belongs to.
141 */
142 struct mem_cgroup *memcg;
143 /*
144 * eventfd to signal userspace about the event.
145 */
146 struct eventfd_ctx *eventfd;
147 /*
148 * Each of these stored in a list by the cgroup.
149 */
150 struct list_head list;
151 /*
152 * register_event() callback will be used to add new userspace
153 * waiter for changes related to this event. Use eventfd_signal()
154 * on eventfd to send notification to userspace.
155 */
156 int (*register_event)(struct mem_cgroup *memcg,
157 struct eventfd_ctx *eventfd, const char *args);
158 /*
159 * unregister_event() callback will be called when userspace closes
160 * the eventfd or on cgroup removing. This callback must be set,
161 * if you want provide notification functionality.
162 */
163 void (*unregister_event)(struct mem_cgroup *memcg,
164 struct eventfd_ctx *eventfd);
165 /*
166 * All fields below needed to unregister event when
167 * userspace closes eventfd.
168 */
169 poll_table pt;
170 wait_queue_head_t *wqh;
171 wait_queue_entry_t wait;
172 struct work_struct remove;
173 };
174
175 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
176 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
177
178 /* Stuffs for move charges at task migration. */
179 /*
180 * Types of charges to be moved.
181 */
182 #define MOVE_ANON 0x1U
183 #define MOVE_FILE 0x2U
184 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
185
186 /* "mc" and its members are protected by cgroup_mutex */
187 static struct move_charge_struct {
188 spinlock_t lock; /* for from, to */
189 struct mm_struct *mm;
190 struct mem_cgroup *from;
191 struct mem_cgroup *to;
192 unsigned long flags;
193 unsigned long precharge;
194 unsigned long moved_charge;
195 unsigned long moved_swap;
196 struct task_struct *moving_task; /* a task moving charges */
197 wait_queue_head_t waitq; /* a waitq for other context */
198 } mc = {
199 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
200 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
201 };
202
203 /*
204 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
205 * limit reclaim to prevent infinite loops, if they ever occur.
206 */
207 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
208 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
209
210 enum charge_type {
211 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
212 MEM_CGROUP_CHARGE_TYPE_ANON,
213 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
214 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
215 NR_CHARGE_TYPE,
216 };
217
218 /* for encoding cft->private value on file */
219 enum res_type {
220 _MEM,
221 _MEMSWAP,
222 _OOM_TYPE,
223 _KMEM,
224 _TCP,
225 };
226
227 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
228 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
229 #define MEMFILE_ATTR(val) ((val) & 0xffff)
230 /* Used for OOM nofiier */
231 #define OOM_CONTROL (0)
232
233 /*
234 * Iteration constructs for visiting all cgroups (under a tree). If
235 * loops are exited prematurely (break), mem_cgroup_iter_break() must
236 * be used for reference counting.
237 */
238 #define for_each_mem_cgroup_tree(iter, root) \
239 for (iter = mem_cgroup_iter(root, NULL, NULL); \
240 iter != NULL; \
241 iter = mem_cgroup_iter(root, iter, NULL))
242
243 #define for_each_mem_cgroup(iter) \
244 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
245 iter != NULL; \
246 iter = mem_cgroup_iter(NULL, iter, NULL))
247
248 static inline bool should_force_charge(void)
249 {
250 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
251 (current->flags & PF_EXITING);
252 }
253
254 /* Some nice accessors for the vmpressure. */
255 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256 {
257 if (!memcg)
258 memcg = root_mem_cgroup;
259 return &memcg->vmpressure;
260 }
261
262 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263 {
264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265 }
266
267 #ifdef CONFIG_MEMCG_KMEM
268 /*
269 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
270 * The main reason for not using cgroup id for this:
271 * this works better in sparse environments, where we have a lot of memcgs,
272 * but only a few kmem-limited. Or also, if we have, for instance, 200
273 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
274 * 200 entry array for that.
275 *
276 * The current size of the caches array is stored in memcg_nr_cache_ids. It
277 * will double each time we have to increase it.
278 */
279 static DEFINE_IDA(memcg_cache_ida);
280 int memcg_nr_cache_ids;
281
282 /* Protects memcg_nr_cache_ids */
283 static DECLARE_RWSEM(memcg_cache_ids_sem);
284
285 void memcg_get_cache_ids(void)
286 {
287 down_read(&memcg_cache_ids_sem);
288 }
289
290 void memcg_put_cache_ids(void)
291 {
292 up_read(&memcg_cache_ids_sem);
293 }
294
295 /*
296 * MIN_SIZE is different than 1, because we would like to avoid going through
297 * the alloc/free process all the time. In a small machine, 4 kmem-limited
298 * cgroups is a reasonable guess. In the future, it could be a parameter or
299 * tunable, but that is strictly not necessary.
300 *
301 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
302 * this constant directly from cgroup, but it is understandable that this is
303 * better kept as an internal representation in cgroup.c. In any case, the
304 * cgrp_id space is not getting any smaller, and we don't have to necessarily
305 * increase ours as well if it increases.
306 */
307 #define MEMCG_CACHES_MIN_SIZE 4
308 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
309
310 /*
311 * A lot of the calls to the cache allocation functions are expected to be
312 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
313 * conditional to this static branch, we'll have to allow modules that does
314 * kmem_cache_alloc and the such to see this symbol as well
315 */
316 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
317 EXPORT_SYMBOL(memcg_kmem_enabled_key);
318
319 struct workqueue_struct *memcg_kmem_cache_wq;
320 #endif
321
322 static int memcg_shrinker_map_size;
323 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
324
325 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
326 {
327 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
328 }
329
330 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
331 int size, int old_size)
332 {
333 struct memcg_shrinker_map *new, *old;
334 int nid;
335
336 lockdep_assert_held(&memcg_shrinker_map_mutex);
337
338 for_each_node(nid) {
339 old = rcu_dereference_protected(
340 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
341 /* Not yet online memcg */
342 if (!old)
343 return 0;
344
345 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
346 if (!new)
347 return -ENOMEM;
348
349 /* Set all old bits, clear all new bits */
350 memset(new->map, (int)0xff, old_size);
351 memset((void *)new->map + old_size, 0, size - old_size);
352
353 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
354 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
355 }
356
357 return 0;
358 }
359
360 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
361 {
362 struct mem_cgroup_per_node *pn;
363 struct memcg_shrinker_map *map;
364 int nid;
365
366 if (mem_cgroup_is_root(memcg))
367 return;
368
369 for_each_node(nid) {
370 pn = mem_cgroup_nodeinfo(memcg, nid);
371 map = rcu_dereference_protected(pn->shrinker_map, true);
372 if (map)
373 kvfree(map);
374 rcu_assign_pointer(pn->shrinker_map, NULL);
375 }
376 }
377
378 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
379 {
380 struct memcg_shrinker_map *map;
381 int nid, size, ret = 0;
382
383 if (mem_cgroup_is_root(memcg))
384 return 0;
385
386 mutex_lock(&memcg_shrinker_map_mutex);
387 size = memcg_shrinker_map_size;
388 for_each_node(nid) {
389 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
390 if (!map) {
391 memcg_free_shrinker_maps(memcg);
392 ret = -ENOMEM;
393 break;
394 }
395 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
396 }
397 mutex_unlock(&memcg_shrinker_map_mutex);
398
399 return ret;
400 }
401
402 int memcg_expand_shrinker_maps(int new_id)
403 {
404 int size, old_size, ret = 0;
405 struct mem_cgroup *memcg;
406
407 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
408 old_size = memcg_shrinker_map_size;
409 if (size <= old_size)
410 return 0;
411
412 mutex_lock(&memcg_shrinker_map_mutex);
413 if (!root_mem_cgroup)
414 goto unlock;
415
416 for_each_mem_cgroup(memcg) {
417 if (mem_cgroup_is_root(memcg))
418 continue;
419 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
420 if (ret)
421 goto unlock;
422 }
423 unlock:
424 if (!ret)
425 memcg_shrinker_map_size = size;
426 mutex_unlock(&memcg_shrinker_map_mutex);
427 return ret;
428 }
429
430 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
431 {
432 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
433 struct memcg_shrinker_map *map;
434
435 rcu_read_lock();
436 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
437 /* Pairs with smp mb in shrink_slab() */
438 smp_mb__before_atomic();
439 set_bit(shrinker_id, map->map);
440 rcu_read_unlock();
441 }
442 }
443
444 /**
445 * mem_cgroup_css_from_page - css of the memcg associated with a page
446 * @page: page of interest
447 *
448 * If memcg is bound to the default hierarchy, css of the memcg associated
449 * with @page is returned. The returned css remains associated with @page
450 * until it is released.
451 *
452 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
453 * is returned.
454 */
455 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
456 {
457 struct mem_cgroup *memcg;
458
459 memcg = page->mem_cgroup;
460
461 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
462 memcg = root_mem_cgroup;
463
464 return &memcg->css;
465 }
466
467 /**
468 * page_cgroup_ino - return inode number of the memcg a page is charged to
469 * @page: the page
470 *
471 * Look up the closest online ancestor of the memory cgroup @page is charged to
472 * and return its inode number or 0 if @page is not charged to any cgroup. It
473 * is safe to call this function without holding a reference to @page.
474 *
475 * Note, this function is inherently racy, because there is nothing to prevent
476 * the cgroup inode from getting torn down and potentially reallocated a moment
477 * after page_cgroup_ino() returns, so it only should be used by callers that
478 * do not care (such as procfs interfaces).
479 */
480 ino_t page_cgroup_ino(struct page *page)
481 {
482 struct mem_cgroup *memcg;
483 unsigned long ino = 0;
484
485 rcu_read_lock();
486 if (PageSlab(page) && !PageTail(page))
487 memcg = memcg_from_slab_page(page);
488 else
489 memcg = READ_ONCE(page->mem_cgroup);
490 while (memcg && !(memcg->css.flags & CSS_ONLINE))
491 memcg = parent_mem_cgroup(memcg);
492 if (memcg)
493 ino = cgroup_ino(memcg->css.cgroup);
494 rcu_read_unlock();
495 return ino;
496 }
497
498 static struct mem_cgroup_per_node *
499 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
500 {
501 int nid = page_to_nid(page);
502
503 return memcg->nodeinfo[nid];
504 }
505
506 static struct mem_cgroup_tree_per_node *
507 soft_limit_tree_node(int nid)
508 {
509 return soft_limit_tree.rb_tree_per_node[nid];
510 }
511
512 static struct mem_cgroup_tree_per_node *
513 soft_limit_tree_from_page(struct page *page)
514 {
515 int nid = page_to_nid(page);
516
517 return soft_limit_tree.rb_tree_per_node[nid];
518 }
519
520 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
521 struct mem_cgroup_tree_per_node *mctz,
522 unsigned long new_usage_in_excess)
523 {
524 struct rb_node **p = &mctz->rb_root.rb_node;
525 struct rb_node *parent = NULL;
526 struct mem_cgroup_per_node *mz_node;
527 bool rightmost = true;
528
529 if (mz->on_tree)
530 return;
531
532 mz->usage_in_excess = new_usage_in_excess;
533 if (!mz->usage_in_excess)
534 return;
535 while (*p) {
536 parent = *p;
537 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
538 tree_node);
539 if (mz->usage_in_excess < mz_node->usage_in_excess) {
540 p = &(*p)->rb_left;
541 rightmost = false;
542 }
543
544 /*
545 * We can't avoid mem cgroups that are over their soft
546 * limit by the same amount
547 */
548 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
549 p = &(*p)->rb_right;
550 }
551
552 if (rightmost)
553 mctz->rb_rightmost = &mz->tree_node;
554
555 rb_link_node(&mz->tree_node, parent, p);
556 rb_insert_color(&mz->tree_node, &mctz->rb_root);
557 mz->on_tree = true;
558 }
559
560 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
561 struct mem_cgroup_tree_per_node *mctz)
562 {
563 if (!mz->on_tree)
564 return;
565
566 if (&mz->tree_node == mctz->rb_rightmost)
567 mctz->rb_rightmost = rb_prev(&mz->tree_node);
568
569 rb_erase(&mz->tree_node, &mctz->rb_root);
570 mz->on_tree = false;
571 }
572
573 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
574 struct mem_cgroup_tree_per_node *mctz)
575 {
576 unsigned long flags;
577
578 spin_lock_irqsave(&mctz->lock, flags);
579 __mem_cgroup_remove_exceeded(mz, mctz);
580 spin_unlock_irqrestore(&mctz->lock, flags);
581 }
582
583 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
584 {
585 unsigned long nr_pages = page_counter_read(&memcg->memory);
586 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
587 unsigned long excess = 0;
588
589 if (nr_pages > soft_limit)
590 excess = nr_pages - soft_limit;
591
592 return excess;
593 }
594
595 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
596 {
597 unsigned long excess;
598 struct mem_cgroup_per_node *mz;
599 struct mem_cgroup_tree_per_node *mctz;
600
601 mctz = soft_limit_tree_from_page(page);
602 if (!mctz)
603 return;
604 /*
605 * Necessary to update all ancestors when hierarchy is used.
606 * because their event counter is not touched.
607 */
608 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
609 mz = mem_cgroup_page_nodeinfo(memcg, page);
610 excess = soft_limit_excess(memcg);
611 /*
612 * We have to update the tree if mz is on RB-tree or
613 * mem is over its softlimit.
614 */
615 if (excess || mz->on_tree) {
616 unsigned long flags;
617
618 spin_lock_irqsave(&mctz->lock, flags);
619 /* if on-tree, remove it */
620 if (mz->on_tree)
621 __mem_cgroup_remove_exceeded(mz, mctz);
622 /*
623 * Insert again. mz->usage_in_excess will be updated.
624 * If excess is 0, no tree ops.
625 */
626 __mem_cgroup_insert_exceeded(mz, mctz, excess);
627 spin_unlock_irqrestore(&mctz->lock, flags);
628 }
629 }
630 }
631
632 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
633 {
634 struct mem_cgroup_tree_per_node *mctz;
635 struct mem_cgroup_per_node *mz;
636 int nid;
637
638 for_each_node(nid) {
639 mz = mem_cgroup_nodeinfo(memcg, nid);
640 mctz = soft_limit_tree_node(nid);
641 if (mctz)
642 mem_cgroup_remove_exceeded(mz, mctz);
643 }
644 }
645
646 static struct mem_cgroup_per_node *
647 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
648 {
649 struct mem_cgroup_per_node *mz;
650
651 retry:
652 mz = NULL;
653 if (!mctz->rb_rightmost)
654 goto done; /* Nothing to reclaim from */
655
656 mz = rb_entry(mctz->rb_rightmost,
657 struct mem_cgroup_per_node, tree_node);
658 /*
659 * Remove the node now but someone else can add it back,
660 * we will to add it back at the end of reclaim to its correct
661 * position in the tree.
662 */
663 __mem_cgroup_remove_exceeded(mz, mctz);
664 if (!soft_limit_excess(mz->memcg) ||
665 !css_tryget_online(&mz->memcg->css))
666 goto retry;
667 done:
668 return mz;
669 }
670
671 static struct mem_cgroup_per_node *
672 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
673 {
674 struct mem_cgroup_per_node *mz;
675
676 spin_lock_irq(&mctz->lock);
677 mz = __mem_cgroup_largest_soft_limit_node(mctz);
678 spin_unlock_irq(&mctz->lock);
679 return mz;
680 }
681
682 /**
683 * __mod_memcg_state - update cgroup memory statistics
684 * @memcg: the memory cgroup
685 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
686 * @val: delta to add to the counter, can be negative
687 */
688 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
689 {
690 long x;
691
692 if (mem_cgroup_disabled())
693 return;
694
695 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
696 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
697 struct mem_cgroup *mi;
698
699 /*
700 * Batch local counters to keep them in sync with
701 * the hierarchical ones.
702 */
703 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
704 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
705 atomic_long_add(x, &mi->vmstats[idx]);
706 x = 0;
707 }
708 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
709 }
710
711 static struct mem_cgroup_per_node *
712 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
713 {
714 struct mem_cgroup *parent;
715
716 parent = parent_mem_cgroup(pn->memcg);
717 if (!parent)
718 return NULL;
719 return mem_cgroup_nodeinfo(parent, nid);
720 }
721
722 /**
723 * __mod_lruvec_state - update lruvec memory statistics
724 * @lruvec: the lruvec
725 * @idx: the stat item
726 * @val: delta to add to the counter, can be negative
727 *
728 * The lruvec is the intersection of the NUMA node and a cgroup. This
729 * function updates the all three counters that are affected by a
730 * change of state at this level: per-node, per-cgroup, per-lruvec.
731 */
732 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
733 int val)
734 {
735 pg_data_t *pgdat = lruvec_pgdat(lruvec);
736 struct mem_cgroup_per_node *pn;
737 struct mem_cgroup *memcg;
738 long x;
739
740 /* Update node */
741 __mod_node_page_state(pgdat, idx, val);
742
743 if (mem_cgroup_disabled())
744 return;
745
746 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
747 memcg = pn->memcg;
748
749 /* Update memcg */
750 __mod_memcg_state(memcg, idx, val);
751
752 /* Update lruvec */
753 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
754
755 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
756 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
757 struct mem_cgroup_per_node *pi;
758
759 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
760 atomic_long_add(x, &pi->lruvec_stat[idx]);
761 x = 0;
762 }
763 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
764 }
765
766 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
767 {
768 struct page *page = virt_to_head_page(p);
769 pg_data_t *pgdat = page_pgdat(page);
770 struct mem_cgroup *memcg;
771 struct lruvec *lruvec;
772
773 rcu_read_lock();
774 memcg = memcg_from_slab_page(page);
775
776 /* Untracked pages have no memcg, no lruvec. Update only the node */
777 if (!memcg || memcg == root_mem_cgroup) {
778 __mod_node_page_state(pgdat, idx, val);
779 } else {
780 lruvec = mem_cgroup_lruvec(memcg, pgdat);
781 __mod_lruvec_state(lruvec, idx, val);
782 }
783 rcu_read_unlock();
784 }
785
786 /**
787 * __count_memcg_events - account VM events in a cgroup
788 * @memcg: the memory cgroup
789 * @idx: the event item
790 * @count: the number of events that occured
791 */
792 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
793 unsigned long count)
794 {
795 unsigned long x;
796
797 if (mem_cgroup_disabled())
798 return;
799
800 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
801 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
802 struct mem_cgroup *mi;
803
804 /*
805 * Batch local counters to keep them in sync with
806 * the hierarchical ones.
807 */
808 __this_cpu_add(memcg->vmstats_local->events[idx], x);
809 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
810 atomic_long_add(x, &mi->vmevents[idx]);
811 x = 0;
812 }
813 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
814 }
815
816 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
817 {
818 return atomic_long_read(&memcg->vmevents[event]);
819 }
820
821 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
822 {
823 long x = 0;
824 int cpu;
825
826 for_each_possible_cpu(cpu)
827 x += per_cpu(memcg->vmstats_local->events[event], cpu);
828 return x;
829 }
830
831 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
832 struct page *page,
833 bool compound, int nr_pages)
834 {
835 /*
836 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
837 * counted as CACHE even if it's on ANON LRU.
838 */
839 if (PageAnon(page))
840 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
841 else {
842 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
843 if (PageSwapBacked(page))
844 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
845 }
846
847 if (compound) {
848 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
849 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
850 }
851
852 /* pagein of a big page is an event. So, ignore page size */
853 if (nr_pages > 0)
854 __count_memcg_events(memcg, PGPGIN, 1);
855 else {
856 __count_memcg_events(memcg, PGPGOUT, 1);
857 nr_pages = -nr_pages; /* for event */
858 }
859
860 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
861 }
862
863 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
864 enum mem_cgroup_events_target target)
865 {
866 unsigned long val, next;
867
868 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
869 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
870 /* from time_after() in jiffies.h */
871 if ((long)(next - val) < 0) {
872 switch (target) {
873 case MEM_CGROUP_TARGET_THRESH:
874 next = val + THRESHOLDS_EVENTS_TARGET;
875 break;
876 case MEM_CGROUP_TARGET_SOFTLIMIT:
877 next = val + SOFTLIMIT_EVENTS_TARGET;
878 break;
879 default:
880 break;
881 }
882 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
883 return true;
884 }
885 return false;
886 }
887
888 /*
889 * Check events in order.
890 *
891 */
892 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
893 {
894 /* threshold event is triggered in finer grain than soft limit */
895 if (unlikely(mem_cgroup_event_ratelimit(memcg,
896 MEM_CGROUP_TARGET_THRESH))) {
897 bool do_softlimit;
898
899 do_softlimit = mem_cgroup_event_ratelimit(memcg,
900 MEM_CGROUP_TARGET_SOFTLIMIT);
901 mem_cgroup_threshold(memcg);
902 if (unlikely(do_softlimit))
903 mem_cgroup_update_tree(memcg, page);
904 }
905 }
906
907 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
908 {
909 /*
910 * mm_update_next_owner() may clear mm->owner to NULL
911 * if it races with swapoff, page migration, etc.
912 * So this can be called with p == NULL.
913 */
914 if (unlikely(!p))
915 return NULL;
916
917 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
918 }
919 EXPORT_SYMBOL(mem_cgroup_from_task);
920
921 /**
922 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
923 * @mm: mm from which memcg should be extracted. It can be NULL.
924 *
925 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
926 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
927 * returned.
928 */
929 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
930 {
931 struct mem_cgroup *memcg;
932
933 if (mem_cgroup_disabled())
934 return NULL;
935
936 rcu_read_lock();
937 do {
938 /*
939 * Page cache insertions can happen withou an
940 * actual mm context, e.g. during disk probing
941 * on boot, loopback IO, acct() writes etc.
942 */
943 if (unlikely(!mm))
944 memcg = root_mem_cgroup;
945 else {
946 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
947 if (unlikely(!memcg))
948 memcg = root_mem_cgroup;
949 }
950 } while (!css_tryget(&memcg->css));
951 rcu_read_unlock();
952 return memcg;
953 }
954 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
955
956 /**
957 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
958 * @page: page from which memcg should be extracted.
959 *
960 * Obtain a reference on page->memcg and returns it if successful. Otherwise
961 * root_mem_cgroup is returned.
962 */
963 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
964 {
965 struct mem_cgroup *memcg = page->mem_cgroup;
966
967 if (mem_cgroup_disabled())
968 return NULL;
969
970 rcu_read_lock();
971 if (!memcg || !css_tryget_online(&memcg->css))
972 memcg = root_mem_cgroup;
973 rcu_read_unlock();
974 return memcg;
975 }
976 EXPORT_SYMBOL(get_mem_cgroup_from_page);
977
978 /**
979 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
980 */
981 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
982 {
983 if (unlikely(current->active_memcg)) {
984 struct mem_cgroup *memcg = root_mem_cgroup;
985
986 rcu_read_lock();
987 if (css_tryget_online(&current->active_memcg->css))
988 memcg = current->active_memcg;
989 rcu_read_unlock();
990 return memcg;
991 }
992 return get_mem_cgroup_from_mm(current->mm);
993 }
994
995 /**
996 * mem_cgroup_iter - iterate over memory cgroup hierarchy
997 * @root: hierarchy root
998 * @prev: previously returned memcg, NULL on first invocation
999 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1000 *
1001 * Returns references to children of the hierarchy below @root, or
1002 * @root itself, or %NULL after a full round-trip.
1003 *
1004 * Caller must pass the return value in @prev on subsequent
1005 * invocations for reference counting, or use mem_cgroup_iter_break()
1006 * to cancel a hierarchy walk before the round-trip is complete.
1007 *
1008 * Reclaimers can specify a node and a priority level in @reclaim to
1009 * divide up the memcgs in the hierarchy among all concurrent
1010 * reclaimers operating on the same node and priority.
1011 */
1012 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1013 struct mem_cgroup *prev,
1014 struct mem_cgroup_reclaim_cookie *reclaim)
1015 {
1016 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1017 struct cgroup_subsys_state *css = NULL;
1018 struct mem_cgroup *memcg = NULL;
1019 struct mem_cgroup *pos = NULL;
1020
1021 if (mem_cgroup_disabled())
1022 return NULL;
1023
1024 if (!root)
1025 root = root_mem_cgroup;
1026
1027 if (prev && !reclaim)
1028 pos = prev;
1029
1030 if (!root->use_hierarchy && root != root_mem_cgroup) {
1031 if (prev)
1032 goto out;
1033 return root;
1034 }
1035
1036 rcu_read_lock();
1037
1038 if (reclaim) {
1039 struct mem_cgroup_per_node *mz;
1040
1041 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1042 iter = &mz->iter;
1043
1044 if (prev && reclaim->generation != iter->generation)
1045 goto out_unlock;
1046
1047 while (1) {
1048 pos = READ_ONCE(iter->position);
1049 if (!pos || css_tryget(&pos->css))
1050 break;
1051 /*
1052 * css reference reached zero, so iter->position will
1053 * be cleared by ->css_released. However, we should not
1054 * rely on this happening soon, because ->css_released
1055 * is called from a work queue, and by busy-waiting we
1056 * might block it. So we clear iter->position right
1057 * away.
1058 */
1059 (void)cmpxchg(&iter->position, pos, NULL);
1060 }
1061 }
1062
1063 if (pos)
1064 css = &pos->css;
1065
1066 for (;;) {
1067 css = css_next_descendant_pre(css, &root->css);
1068 if (!css) {
1069 /*
1070 * Reclaimers share the hierarchy walk, and a
1071 * new one might jump in right at the end of
1072 * the hierarchy - make sure they see at least
1073 * one group and restart from the beginning.
1074 */
1075 if (!prev)
1076 continue;
1077 break;
1078 }
1079
1080 /*
1081 * Verify the css and acquire a reference. The root
1082 * is provided by the caller, so we know it's alive
1083 * and kicking, and don't take an extra reference.
1084 */
1085 memcg = mem_cgroup_from_css(css);
1086
1087 if (css == &root->css)
1088 break;
1089
1090 if (css_tryget(css))
1091 break;
1092
1093 memcg = NULL;
1094 }
1095
1096 if (reclaim) {
1097 /*
1098 * The position could have already been updated by a competing
1099 * thread, so check that the value hasn't changed since we read
1100 * it to avoid reclaiming from the same cgroup twice.
1101 */
1102 (void)cmpxchg(&iter->position, pos, memcg);
1103
1104 if (pos)
1105 css_put(&pos->css);
1106
1107 if (!memcg)
1108 iter->generation++;
1109 else if (!prev)
1110 reclaim->generation = iter->generation;
1111 }
1112
1113 out_unlock:
1114 rcu_read_unlock();
1115 out:
1116 if (prev && prev != root)
1117 css_put(&prev->css);
1118
1119 return memcg;
1120 }
1121
1122 /**
1123 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1124 * @root: hierarchy root
1125 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1126 */
1127 void mem_cgroup_iter_break(struct mem_cgroup *root,
1128 struct mem_cgroup *prev)
1129 {
1130 if (!root)
1131 root = root_mem_cgroup;
1132 if (prev && prev != root)
1133 css_put(&prev->css);
1134 }
1135
1136 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1137 struct mem_cgroup *dead_memcg)
1138 {
1139 struct mem_cgroup_reclaim_iter *iter;
1140 struct mem_cgroup_per_node *mz;
1141 int nid;
1142
1143 for_each_node(nid) {
1144 mz = mem_cgroup_nodeinfo(from, nid);
1145 iter = &mz->iter;
1146 cmpxchg(&iter->position, dead_memcg, NULL);
1147 }
1148 }
1149
1150 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1151 {
1152 struct mem_cgroup *memcg = dead_memcg;
1153 struct mem_cgroup *last;
1154
1155 do {
1156 __invalidate_reclaim_iterators(memcg, dead_memcg);
1157 last = memcg;
1158 } while ((memcg = parent_mem_cgroup(memcg)));
1159
1160 /*
1161 * When cgruop1 non-hierarchy mode is used,
1162 * parent_mem_cgroup() does not walk all the way up to the
1163 * cgroup root (root_mem_cgroup). So we have to handle
1164 * dead_memcg from cgroup root separately.
1165 */
1166 if (last != root_mem_cgroup)
1167 __invalidate_reclaim_iterators(root_mem_cgroup,
1168 dead_memcg);
1169 }
1170
1171 /**
1172 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1173 * @memcg: hierarchy root
1174 * @fn: function to call for each task
1175 * @arg: argument passed to @fn
1176 *
1177 * This function iterates over tasks attached to @memcg or to any of its
1178 * descendants and calls @fn for each task. If @fn returns a non-zero
1179 * value, the function breaks the iteration loop and returns the value.
1180 * Otherwise, it will iterate over all tasks and return 0.
1181 *
1182 * This function must not be called for the root memory cgroup.
1183 */
1184 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1185 int (*fn)(struct task_struct *, void *), void *arg)
1186 {
1187 struct mem_cgroup *iter;
1188 int ret = 0;
1189
1190 BUG_ON(memcg == root_mem_cgroup);
1191
1192 for_each_mem_cgroup_tree(iter, memcg) {
1193 struct css_task_iter it;
1194 struct task_struct *task;
1195
1196 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1197 while (!ret && (task = css_task_iter_next(&it)))
1198 ret = fn(task, arg);
1199 css_task_iter_end(&it);
1200 if (ret) {
1201 mem_cgroup_iter_break(memcg, iter);
1202 break;
1203 }
1204 }
1205 return ret;
1206 }
1207
1208 /**
1209 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1210 * @page: the page
1211 * @pgdat: pgdat of the page
1212 *
1213 * This function is only safe when following the LRU page isolation
1214 * and putback protocol: the LRU lock must be held, and the page must
1215 * either be PageLRU() or the caller must have isolated/allocated it.
1216 */
1217 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1218 {
1219 struct mem_cgroup_per_node *mz;
1220 struct mem_cgroup *memcg;
1221 struct lruvec *lruvec;
1222
1223 if (mem_cgroup_disabled()) {
1224 lruvec = &pgdat->__lruvec;
1225 goto out;
1226 }
1227
1228 memcg = page->mem_cgroup;
1229 /*
1230 * Swapcache readahead pages are added to the LRU - and
1231 * possibly migrated - before they are charged.
1232 */
1233 if (!memcg)
1234 memcg = root_mem_cgroup;
1235
1236 mz = mem_cgroup_page_nodeinfo(memcg, page);
1237 lruvec = &mz->lruvec;
1238 out:
1239 /*
1240 * Since a node can be onlined after the mem_cgroup was created,
1241 * we have to be prepared to initialize lruvec->zone here;
1242 * and if offlined then reonlined, we need to reinitialize it.
1243 */
1244 if (unlikely(lruvec->pgdat != pgdat))
1245 lruvec->pgdat = pgdat;
1246 return lruvec;
1247 }
1248
1249 /**
1250 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1251 * @lruvec: mem_cgroup per zone lru vector
1252 * @lru: index of lru list the page is sitting on
1253 * @zid: zone id of the accounted pages
1254 * @nr_pages: positive when adding or negative when removing
1255 *
1256 * This function must be called under lru_lock, just before a page is added
1257 * to or just after a page is removed from an lru list (that ordering being
1258 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1259 */
1260 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1261 int zid, int nr_pages)
1262 {
1263 struct mem_cgroup_per_node *mz;
1264 unsigned long *lru_size;
1265 long size;
1266
1267 if (mem_cgroup_disabled())
1268 return;
1269
1270 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1271 lru_size = &mz->lru_zone_size[zid][lru];
1272
1273 if (nr_pages < 0)
1274 *lru_size += nr_pages;
1275
1276 size = *lru_size;
1277 if (WARN_ONCE(size < 0,
1278 "%s(%p, %d, %d): lru_size %ld\n",
1279 __func__, lruvec, lru, nr_pages, size)) {
1280 VM_BUG_ON(1);
1281 *lru_size = 0;
1282 }
1283
1284 if (nr_pages > 0)
1285 *lru_size += nr_pages;
1286 }
1287
1288 /**
1289 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1290 * @memcg: the memory cgroup
1291 *
1292 * Returns the maximum amount of memory @mem can be charged with, in
1293 * pages.
1294 */
1295 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1296 {
1297 unsigned long margin = 0;
1298 unsigned long count;
1299 unsigned long limit;
1300
1301 count = page_counter_read(&memcg->memory);
1302 limit = READ_ONCE(memcg->memory.max);
1303 if (count < limit)
1304 margin = limit - count;
1305
1306 if (do_memsw_account()) {
1307 count = page_counter_read(&memcg->memsw);
1308 limit = READ_ONCE(memcg->memsw.max);
1309 if (count <= limit)
1310 margin = min(margin, limit - count);
1311 else
1312 margin = 0;
1313 }
1314
1315 return margin;
1316 }
1317
1318 /*
1319 * A routine for checking "mem" is under move_account() or not.
1320 *
1321 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1322 * moving cgroups. This is for waiting at high-memory pressure
1323 * caused by "move".
1324 */
1325 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1326 {
1327 struct mem_cgroup *from;
1328 struct mem_cgroup *to;
1329 bool ret = false;
1330 /*
1331 * Unlike task_move routines, we access mc.to, mc.from not under
1332 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1333 */
1334 spin_lock(&mc.lock);
1335 from = mc.from;
1336 to = mc.to;
1337 if (!from)
1338 goto unlock;
1339
1340 ret = mem_cgroup_is_descendant(from, memcg) ||
1341 mem_cgroup_is_descendant(to, memcg);
1342 unlock:
1343 spin_unlock(&mc.lock);
1344 return ret;
1345 }
1346
1347 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1348 {
1349 if (mc.moving_task && current != mc.moving_task) {
1350 if (mem_cgroup_under_move(memcg)) {
1351 DEFINE_WAIT(wait);
1352 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1353 /* moving charge context might have finished. */
1354 if (mc.moving_task)
1355 schedule();
1356 finish_wait(&mc.waitq, &wait);
1357 return true;
1358 }
1359 }
1360 return false;
1361 }
1362
1363 static char *memory_stat_format(struct mem_cgroup *memcg)
1364 {
1365 struct seq_buf s;
1366 int i;
1367
1368 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1369 if (!s.buffer)
1370 return NULL;
1371
1372 /*
1373 * Provide statistics on the state of the memory subsystem as
1374 * well as cumulative event counters that show past behavior.
1375 *
1376 * This list is ordered following a combination of these gradients:
1377 * 1) generic big picture -> specifics and details
1378 * 2) reflecting userspace activity -> reflecting kernel heuristics
1379 *
1380 * Current memory state:
1381 */
1382
1383 seq_buf_printf(&s, "anon %llu\n",
1384 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1385 PAGE_SIZE);
1386 seq_buf_printf(&s, "file %llu\n",
1387 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1388 PAGE_SIZE);
1389 seq_buf_printf(&s, "kernel_stack %llu\n",
1390 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1391 1024);
1392 seq_buf_printf(&s, "slab %llu\n",
1393 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1394 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1395 PAGE_SIZE);
1396 seq_buf_printf(&s, "sock %llu\n",
1397 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1398 PAGE_SIZE);
1399
1400 seq_buf_printf(&s, "shmem %llu\n",
1401 (u64)memcg_page_state(memcg, NR_SHMEM) *
1402 PAGE_SIZE);
1403 seq_buf_printf(&s, "file_mapped %llu\n",
1404 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1405 PAGE_SIZE);
1406 seq_buf_printf(&s, "file_dirty %llu\n",
1407 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1408 PAGE_SIZE);
1409 seq_buf_printf(&s, "file_writeback %llu\n",
1410 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1411 PAGE_SIZE);
1412
1413 /*
1414 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1415 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1416 * arse because it requires migrating the work out of rmap to a place
1417 * where the page->mem_cgroup is set up and stable.
1418 */
1419 seq_buf_printf(&s, "anon_thp %llu\n",
1420 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1421 PAGE_SIZE);
1422
1423 for (i = 0; i < NR_LRU_LISTS; i++)
1424 seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
1425 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1426 PAGE_SIZE);
1427
1428 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1429 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1430 PAGE_SIZE);
1431 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1432 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1433 PAGE_SIZE);
1434
1435 /* Accumulated memory events */
1436
1437 seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
1438 seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
1439
1440 seq_buf_printf(&s, "workingset_refault %lu\n",
1441 memcg_page_state(memcg, WORKINGSET_REFAULT));
1442 seq_buf_printf(&s, "workingset_activate %lu\n",
1443 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1444 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1445 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1446
1447 seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
1448 seq_buf_printf(&s, "pgscan %lu\n",
1449 memcg_events(memcg, PGSCAN_KSWAPD) +
1450 memcg_events(memcg, PGSCAN_DIRECT));
1451 seq_buf_printf(&s, "pgsteal %lu\n",
1452 memcg_events(memcg, PGSTEAL_KSWAPD) +
1453 memcg_events(memcg, PGSTEAL_DIRECT));
1454 seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
1455 seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
1456 seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
1457 seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
1458
1459 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1460 seq_buf_printf(&s, "thp_fault_alloc %lu\n",
1461 memcg_events(memcg, THP_FAULT_ALLOC));
1462 seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
1463 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1464 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1465
1466 /* The above should easily fit into one page */
1467 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1468
1469 return s.buffer;
1470 }
1471
1472 #define K(x) ((x) << (PAGE_SHIFT-10))
1473 /**
1474 * mem_cgroup_print_oom_context: Print OOM information relevant to
1475 * memory controller.
1476 * @memcg: The memory cgroup that went over limit
1477 * @p: Task that is going to be killed
1478 *
1479 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1480 * enabled
1481 */
1482 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1483 {
1484 rcu_read_lock();
1485
1486 if (memcg) {
1487 pr_cont(",oom_memcg=");
1488 pr_cont_cgroup_path(memcg->css.cgroup);
1489 } else
1490 pr_cont(",global_oom");
1491 if (p) {
1492 pr_cont(",task_memcg=");
1493 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1494 }
1495 rcu_read_unlock();
1496 }
1497
1498 /**
1499 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1500 * memory controller.
1501 * @memcg: The memory cgroup that went over limit
1502 */
1503 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1504 {
1505 char *buf;
1506
1507 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1508 K((u64)page_counter_read(&memcg->memory)),
1509 K((u64)memcg->memory.max), memcg->memory.failcnt);
1510 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1511 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1512 K((u64)page_counter_read(&memcg->swap)),
1513 K((u64)memcg->swap.max), memcg->swap.failcnt);
1514 else {
1515 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1516 K((u64)page_counter_read(&memcg->memsw)),
1517 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1518 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1519 K((u64)page_counter_read(&memcg->kmem)),
1520 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1521 }
1522
1523 pr_info("Memory cgroup stats for ");
1524 pr_cont_cgroup_path(memcg->css.cgroup);
1525 pr_cont(":");
1526 buf = memory_stat_format(memcg);
1527 if (!buf)
1528 return;
1529 pr_info("%s", buf);
1530 kfree(buf);
1531 }
1532
1533 /*
1534 * Return the memory (and swap, if configured) limit for a memcg.
1535 */
1536 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1537 {
1538 unsigned long max;
1539
1540 max = memcg->memory.max;
1541 if (mem_cgroup_swappiness(memcg)) {
1542 unsigned long memsw_max;
1543 unsigned long swap_max;
1544
1545 memsw_max = memcg->memsw.max;
1546 swap_max = memcg->swap.max;
1547 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1548 max = min(max + swap_max, memsw_max);
1549 }
1550 return max;
1551 }
1552
1553 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1554 {
1555 return page_counter_read(&memcg->memory);
1556 }
1557
1558 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1559 int order)
1560 {
1561 struct oom_control oc = {
1562 .zonelist = NULL,
1563 .nodemask = NULL,
1564 .memcg = memcg,
1565 .gfp_mask = gfp_mask,
1566 .order = order,
1567 };
1568 bool ret;
1569
1570 if (mutex_lock_killable(&oom_lock))
1571 return true;
1572 /*
1573 * A few threads which were not waiting at mutex_lock_killable() can
1574 * fail to bail out. Therefore, check again after holding oom_lock.
1575 */
1576 ret = should_force_charge() || out_of_memory(&oc);
1577 mutex_unlock(&oom_lock);
1578 return ret;
1579 }
1580
1581 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1582 pg_data_t *pgdat,
1583 gfp_t gfp_mask,
1584 unsigned long *total_scanned)
1585 {
1586 struct mem_cgroup *victim = NULL;
1587 int total = 0;
1588 int loop = 0;
1589 unsigned long excess;
1590 unsigned long nr_scanned;
1591 struct mem_cgroup_reclaim_cookie reclaim = {
1592 .pgdat = pgdat,
1593 };
1594
1595 excess = soft_limit_excess(root_memcg);
1596
1597 while (1) {
1598 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1599 if (!victim) {
1600 loop++;
1601 if (loop >= 2) {
1602 /*
1603 * If we have not been able to reclaim
1604 * anything, it might because there are
1605 * no reclaimable pages under this hierarchy
1606 */
1607 if (!total)
1608 break;
1609 /*
1610 * We want to do more targeted reclaim.
1611 * excess >> 2 is not to excessive so as to
1612 * reclaim too much, nor too less that we keep
1613 * coming back to reclaim from this cgroup
1614 */
1615 if (total >= (excess >> 2) ||
1616 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1617 break;
1618 }
1619 continue;
1620 }
1621 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1622 pgdat, &nr_scanned);
1623 *total_scanned += nr_scanned;
1624 if (!soft_limit_excess(root_memcg))
1625 break;
1626 }
1627 mem_cgroup_iter_break(root_memcg, victim);
1628 return total;
1629 }
1630
1631 #ifdef CONFIG_LOCKDEP
1632 static struct lockdep_map memcg_oom_lock_dep_map = {
1633 .name = "memcg_oom_lock",
1634 };
1635 #endif
1636
1637 static DEFINE_SPINLOCK(memcg_oom_lock);
1638
1639 /*
1640 * Check OOM-Killer is already running under our hierarchy.
1641 * If someone is running, return false.
1642 */
1643 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1644 {
1645 struct mem_cgroup *iter, *failed = NULL;
1646
1647 spin_lock(&memcg_oom_lock);
1648
1649 for_each_mem_cgroup_tree(iter, memcg) {
1650 if (iter->oom_lock) {
1651 /*
1652 * this subtree of our hierarchy is already locked
1653 * so we cannot give a lock.
1654 */
1655 failed = iter;
1656 mem_cgroup_iter_break(memcg, iter);
1657 break;
1658 } else
1659 iter->oom_lock = true;
1660 }
1661
1662 if (failed) {
1663 /*
1664 * OK, we failed to lock the whole subtree so we have
1665 * to clean up what we set up to the failing subtree
1666 */
1667 for_each_mem_cgroup_tree(iter, memcg) {
1668 if (iter == failed) {
1669 mem_cgroup_iter_break(memcg, iter);
1670 break;
1671 }
1672 iter->oom_lock = false;
1673 }
1674 } else
1675 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1676
1677 spin_unlock(&memcg_oom_lock);
1678
1679 return !failed;
1680 }
1681
1682 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1683 {
1684 struct mem_cgroup *iter;
1685
1686 spin_lock(&memcg_oom_lock);
1687 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1688 for_each_mem_cgroup_tree(iter, memcg)
1689 iter->oom_lock = false;
1690 spin_unlock(&memcg_oom_lock);
1691 }
1692
1693 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1694 {
1695 struct mem_cgroup *iter;
1696
1697 spin_lock(&memcg_oom_lock);
1698 for_each_mem_cgroup_tree(iter, memcg)
1699 iter->under_oom++;
1700 spin_unlock(&memcg_oom_lock);
1701 }
1702
1703 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1704 {
1705 struct mem_cgroup *iter;
1706
1707 /*
1708 * When a new child is created while the hierarchy is under oom,
1709 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1710 */
1711 spin_lock(&memcg_oom_lock);
1712 for_each_mem_cgroup_tree(iter, memcg)
1713 if (iter->under_oom > 0)
1714 iter->under_oom--;
1715 spin_unlock(&memcg_oom_lock);
1716 }
1717
1718 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1719
1720 struct oom_wait_info {
1721 struct mem_cgroup *memcg;
1722 wait_queue_entry_t wait;
1723 };
1724
1725 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1726 unsigned mode, int sync, void *arg)
1727 {
1728 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1729 struct mem_cgroup *oom_wait_memcg;
1730 struct oom_wait_info *oom_wait_info;
1731
1732 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1733 oom_wait_memcg = oom_wait_info->memcg;
1734
1735 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1736 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1737 return 0;
1738 return autoremove_wake_function(wait, mode, sync, arg);
1739 }
1740
1741 static void memcg_oom_recover(struct mem_cgroup *memcg)
1742 {
1743 /*
1744 * For the following lockless ->under_oom test, the only required
1745 * guarantee is that it must see the state asserted by an OOM when
1746 * this function is called as a result of userland actions
1747 * triggered by the notification of the OOM. This is trivially
1748 * achieved by invoking mem_cgroup_mark_under_oom() before
1749 * triggering notification.
1750 */
1751 if (memcg && memcg->under_oom)
1752 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1753 }
1754
1755 enum oom_status {
1756 OOM_SUCCESS,
1757 OOM_FAILED,
1758 OOM_ASYNC,
1759 OOM_SKIPPED
1760 };
1761
1762 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1763 {
1764 enum oom_status ret;
1765 bool locked;
1766
1767 if (order > PAGE_ALLOC_COSTLY_ORDER)
1768 return OOM_SKIPPED;
1769
1770 memcg_memory_event(memcg, MEMCG_OOM);
1771
1772 /*
1773 * We are in the middle of the charge context here, so we
1774 * don't want to block when potentially sitting on a callstack
1775 * that holds all kinds of filesystem and mm locks.
1776 *
1777 * cgroup1 allows disabling the OOM killer and waiting for outside
1778 * handling until the charge can succeed; remember the context and put
1779 * the task to sleep at the end of the page fault when all locks are
1780 * released.
1781 *
1782 * On the other hand, in-kernel OOM killer allows for an async victim
1783 * memory reclaim (oom_reaper) and that means that we are not solely
1784 * relying on the oom victim to make a forward progress and we can
1785 * invoke the oom killer here.
1786 *
1787 * Please note that mem_cgroup_out_of_memory might fail to find a
1788 * victim and then we have to bail out from the charge path.
1789 */
1790 if (memcg->oom_kill_disable) {
1791 if (!current->in_user_fault)
1792 return OOM_SKIPPED;
1793 css_get(&memcg->css);
1794 current->memcg_in_oom = memcg;
1795 current->memcg_oom_gfp_mask = mask;
1796 current->memcg_oom_order = order;
1797
1798 return OOM_ASYNC;
1799 }
1800
1801 mem_cgroup_mark_under_oom(memcg);
1802
1803 locked = mem_cgroup_oom_trylock(memcg);
1804
1805 if (locked)
1806 mem_cgroup_oom_notify(memcg);
1807
1808 mem_cgroup_unmark_under_oom(memcg);
1809 if (mem_cgroup_out_of_memory(memcg, mask, order))
1810 ret = OOM_SUCCESS;
1811 else
1812 ret = OOM_FAILED;
1813
1814 if (locked)
1815 mem_cgroup_oom_unlock(memcg);
1816
1817 return ret;
1818 }
1819
1820 /**
1821 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1822 * @handle: actually kill/wait or just clean up the OOM state
1823 *
1824 * This has to be called at the end of a page fault if the memcg OOM
1825 * handler was enabled.
1826 *
1827 * Memcg supports userspace OOM handling where failed allocations must
1828 * sleep on a waitqueue until the userspace task resolves the
1829 * situation. Sleeping directly in the charge context with all kinds
1830 * of locks held is not a good idea, instead we remember an OOM state
1831 * in the task and mem_cgroup_oom_synchronize() has to be called at
1832 * the end of the page fault to complete the OOM handling.
1833 *
1834 * Returns %true if an ongoing memcg OOM situation was detected and
1835 * completed, %false otherwise.
1836 */
1837 bool mem_cgroup_oom_synchronize(bool handle)
1838 {
1839 struct mem_cgroup *memcg = current->memcg_in_oom;
1840 struct oom_wait_info owait;
1841 bool locked;
1842
1843 /* OOM is global, do not handle */
1844 if (!memcg)
1845 return false;
1846
1847 if (!handle)
1848 goto cleanup;
1849
1850 owait.memcg = memcg;
1851 owait.wait.flags = 0;
1852 owait.wait.func = memcg_oom_wake_function;
1853 owait.wait.private = current;
1854 INIT_LIST_HEAD(&owait.wait.entry);
1855
1856 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1857 mem_cgroup_mark_under_oom(memcg);
1858
1859 locked = mem_cgroup_oom_trylock(memcg);
1860
1861 if (locked)
1862 mem_cgroup_oom_notify(memcg);
1863
1864 if (locked && !memcg->oom_kill_disable) {
1865 mem_cgroup_unmark_under_oom(memcg);
1866 finish_wait(&memcg_oom_waitq, &owait.wait);
1867 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1868 current->memcg_oom_order);
1869 } else {
1870 schedule();
1871 mem_cgroup_unmark_under_oom(memcg);
1872 finish_wait(&memcg_oom_waitq, &owait.wait);
1873 }
1874
1875 if (locked) {
1876 mem_cgroup_oom_unlock(memcg);
1877 /*
1878 * There is no guarantee that an OOM-lock contender
1879 * sees the wakeups triggered by the OOM kill
1880 * uncharges. Wake any sleepers explicitely.
1881 */
1882 memcg_oom_recover(memcg);
1883 }
1884 cleanup:
1885 current->memcg_in_oom = NULL;
1886 css_put(&memcg->css);
1887 return true;
1888 }
1889
1890 /**
1891 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1892 * @victim: task to be killed by the OOM killer
1893 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1894 *
1895 * Returns a pointer to a memory cgroup, which has to be cleaned up
1896 * by killing all belonging OOM-killable tasks.
1897 *
1898 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1899 */
1900 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1901 struct mem_cgroup *oom_domain)
1902 {
1903 struct mem_cgroup *oom_group = NULL;
1904 struct mem_cgroup *memcg;
1905
1906 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1907 return NULL;
1908
1909 if (!oom_domain)
1910 oom_domain = root_mem_cgroup;
1911
1912 rcu_read_lock();
1913
1914 memcg = mem_cgroup_from_task(victim);
1915 if (memcg == root_mem_cgroup)
1916 goto out;
1917
1918 /*
1919 * Traverse the memory cgroup hierarchy from the victim task's
1920 * cgroup up to the OOMing cgroup (or root) to find the
1921 * highest-level memory cgroup with oom.group set.
1922 */
1923 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1924 if (memcg->oom_group)
1925 oom_group = memcg;
1926
1927 if (memcg == oom_domain)
1928 break;
1929 }
1930
1931 if (oom_group)
1932 css_get(&oom_group->css);
1933 out:
1934 rcu_read_unlock();
1935
1936 return oom_group;
1937 }
1938
1939 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1940 {
1941 pr_info("Tasks in ");
1942 pr_cont_cgroup_path(memcg->css.cgroup);
1943 pr_cont(" are going to be killed due to memory.oom.group set\n");
1944 }
1945
1946 /**
1947 * lock_page_memcg - lock a page->mem_cgroup binding
1948 * @page: the page
1949 *
1950 * This function protects unlocked LRU pages from being moved to
1951 * another cgroup.
1952 *
1953 * It ensures lifetime of the returned memcg. Caller is responsible
1954 * for the lifetime of the page; __unlock_page_memcg() is available
1955 * when @page might get freed inside the locked section.
1956 */
1957 struct mem_cgroup *lock_page_memcg(struct page *page)
1958 {
1959 struct mem_cgroup *memcg;
1960 unsigned long flags;
1961
1962 /*
1963 * The RCU lock is held throughout the transaction. The fast
1964 * path can get away without acquiring the memcg->move_lock
1965 * because page moving starts with an RCU grace period.
1966 *
1967 * The RCU lock also protects the memcg from being freed when
1968 * the page state that is going to change is the only thing
1969 * preventing the page itself from being freed. E.g. writeback
1970 * doesn't hold a page reference and relies on PG_writeback to
1971 * keep off truncation, migration and so forth.
1972 */
1973 rcu_read_lock();
1974
1975 if (mem_cgroup_disabled())
1976 return NULL;
1977 again:
1978 memcg = page->mem_cgroup;
1979 if (unlikely(!memcg))
1980 return NULL;
1981
1982 if (atomic_read(&memcg->moving_account) <= 0)
1983 return memcg;
1984
1985 spin_lock_irqsave(&memcg->move_lock, flags);
1986 if (memcg != page->mem_cgroup) {
1987 spin_unlock_irqrestore(&memcg->move_lock, flags);
1988 goto again;
1989 }
1990
1991 /*
1992 * When charge migration first begins, we can have locked and
1993 * unlocked page stat updates happening concurrently. Track
1994 * the task who has the lock for unlock_page_memcg().
1995 */
1996 memcg->move_lock_task = current;
1997 memcg->move_lock_flags = flags;
1998
1999 return memcg;
2000 }
2001 EXPORT_SYMBOL(lock_page_memcg);
2002
2003 /**
2004 * __unlock_page_memcg - unlock and unpin a memcg
2005 * @memcg: the memcg
2006 *
2007 * Unlock and unpin a memcg returned by lock_page_memcg().
2008 */
2009 void __unlock_page_memcg(struct mem_cgroup *memcg)
2010 {
2011 if (memcg && memcg->move_lock_task == current) {
2012 unsigned long flags = memcg->move_lock_flags;
2013
2014 memcg->move_lock_task = NULL;
2015 memcg->move_lock_flags = 0;
2016
2017 spin_unlock_irqrestore(&memcg->move_lock, flags);
2018 }
2019
2020 rcu_read_unlock();
2021 }
2022
2023 /**
2024 * unlock_page_memcg - unlock a page->mem_cgroup binding
2025 * @page: the page
2026 */
2027 void unlock_page_memcg(struct page *page)
2028 {
2029 __unlock_page_memcg(page->mem_cgroup);
2030 }
2031 EXPORT_SYMBOL(unlock_page_memcg);
2032
2033 struct memcg_stock_pcp {
2034 struct mem_cgroup *cached; /* this never be root cgroup */
2035 unsigned int nr_pages;
2036 struct work_struct work;
2037 unsigned long flags;
2038 #define FLUSHING_CACHED_CHARGE 0
2039 };
2040 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2041 static DEFINE_MUTEX(percpu_charge_mutex);
2042
2043 /**
2044 * consume_stock: Try to consume stocked charge on this cpu.
2045 * @memcg: memcg to consume from.
2046 * @nr_pages: how many pages to charge.
2047 *
2048 * The charges will only happen if @memcg matches the current cpu's memcg
2049 * stock, and at least @nr_pages are available in that stock. Failure to
2050 * service an allocation will refill the stock.
2051 *
2052 * returns true if successful, false otherwise.
2053 */
2054 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2055 {
2056 struct memcg_stock_pcp *stock;
2057 unsigned long flags;
2058 bool ret = false;
2059
2060 if (nr_pages > MEMCG_CHARGE_BATCH)
2061 return ret;
2062
2063 local_irq_save(flags);
2064
2065 stock = this_cpu_ptr(&memcg_stock);
2066 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2067 stock->nr_pages -= nr_pages;
2068 ret = true;
2069 }
2070
2071 local_irq_restore(flags);
2072
2073 return ret;
2074 }
2075
2076 /*
2077 * Returns stocks cached in percpu and reset cached information.
2078 */
2079 static void drain_stock(struct memcg_stock_pcp *stock)
2080 {
2081 struct mem_cgroup *old = stock->cached;
2082
2083 if (stock->nr_pages) {
2084 page_counter_uncharge(&old->memory, stock->nr_pages);
2085 if (do_memsw_account())
2086 page_counter_uncharge(&old->memsw, stock->nr_pages);
2087 css_put_many(&old->css, stock->nr_pages);
2088 stock->nr_pages = 0;
2089 }
2090 stock->cached = NULL;
2091 }
2092
2093 static void drain_local_stock(struct work_struct *dummy)
2094 {
2095 struct memcg_stock_pcp *stock;
2096 unsigned long flags;
2097
2098 /*
2099 * The only protection from memory hotplug vs. drain_stock races is
2100 * that we always operate on local CPU stock here with IRQ disabled
2101 */
2102 local_irq_save(flags);
2103
2104 stock = this_cpu_ptr(&memcg_stock);
2105 drain_stock(stock);
2106 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2107
2108 local_irq_restore(flags);
2109 }
2110
2111 /*
2112 * Cache charges(val) to local per_cpu area.
2113 * This will be consumed by consume_stock() function, later.
2114 */
2115 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2116 {
2117 struct memcg_stock_pcp *stock;
2118 unsigned long flags;
2119
2120 local_irq_save(flags);
2121
2122 stock = this_cpu_ptr(&memcg_stock);
2123 if (stock->cached != memcg) { /* reset if necessary */
2124 drain_stock(stock);
2125 stock->cached = memcg;
2126 }
2127 stock->nr_pages += nr_pages;
2128
2129 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2130 drain_stock(stock);
2131
2132 local_irq_restore(flags);
2133 }
2134
2135 /*
2136 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2137 * of the hierarchy under it.
2138 */
2139 static void drain_all_stock(struct mem_cgroup *root_memcg)
2140 {
2141 int cpu, curcpu;
2142
2143 /* If someone's already draining, avoid adding running more workers. */
2144 if (!mutex_trylock(&percpu_charge_mutex))
2145 return;
2146 /*
2147 * Notify other cpus that system-wide "drain" is running
2148 * We do not care about races with the cpu hotplug because cpu down
2149 * as well as workers from this path always operate on the local
2150 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2151 */
2152 curcpu = get_cpu();
2153 for_each_online_cpu(cpu) {
2154 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2155 struct mem_cgroup *memcg;
2156 bool flush = false;
2157
2158 rcu_read_lock();
2159 memcg = stock->cached;
2160 if (memcg && stock->nr_pages &&
2161 mem_cgroup_is_descendant(memcg, root_memcg))
2162 flush = true;
2163 rcu_read_unlock();
2164
2165 if (flush &&
2166 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2167 if (cpu == curcpu)
2168 drain_local_stock(&stock->work);
2169 else
2170 schedule_work_on(cpu, &stock->work);
2171 }
2172 }
2173 put_cpu();
2174 mutex_unlock(&percpu_charge_mutex);
2175 }
2176
2177 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2178 {
2179 struct memcg_stock_pcp *stock;
2180 struct mem_cgroup *memcg, *mi;
2181
2182 stock = &per_cpu(memcg_stock, cpu);
2183 drain_stock(stock);
2184
2185 for_each_mem_cgroup(memcg) {
2186 int i;
2187
2188 for (i = 0; i < MEMCG_NR_STAT; i++) {
2189 int nid;
2190 long x;
2191
2192 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2193 if (x)
2194 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2195 atomic_long_add(x, &memcg->vmstats[i]);
2196
2197 if (i >= NR_VM_NODE_STAT_ITEMS)
2198 continue;
2199
2200 for_each_node(nid) {
2201 struct mem_cgroup_per_node *pn;
2202
2203 pn = mem_cgroup_nodeinfo(memcg, nid);
2204 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2205 if (x)
2206 do {
2207 atomic_long_add(x, &pn->lruvec_stat[i]);
2208 } while ((pn = parent_nodeinfo(pn, nid)));
2209 }
2210 }
2211
2212 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2213 long x;
2214
2215 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2216 if (x)
2217 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2218 atomic_long_add(x, &memcg->vmevents[i]);
2219 }
2220 }
2221
2222 return 0;
2223 }
2224
2225 static void reclaim_high(struct mem_cgroup *memcg,
2226 unsigned int nr_pages,
2227 gfp_t gfp_mask)
2228 {
2229 do {
2230 if (page_counter_read(&memcg->memory) <= memcg->high)
2231 continue;
2232 memcg_memory_event(memcg, MEMCG_HIGH);
2233 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2234 } while ((memcg = parent_mem_cgroup(memcg)));
2235 }
2236
2237 static void high_work_func(struct work_struct *work)
2238 {
2239 struct mem_cgroup *memcg;
2240
2241 memcg = container_of(work, struct mem_cgroup, high_work);
2242 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2243 }
2244
2245 /*
2246 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2247 * enough to still cause a significant slowdown in most cases, while still
2248 * allowing diagnostics and tracing to proceed without becoming stuck.
2249 */
2250 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2251
2252 /*
2253 * When calculating the delay, we use these either side of the exponentiation to
2254 * maintain precision and scale to a reasonable number of jiffies (see the table
2255 * below.
2256 *
2257 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2258 * overage ratio to a delay.
2259 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2260 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2261 * to produce a reasonable delay curve.
2262 *
2263 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2264 * reasonable delay curve compared to precision-adjusted overage, not
2265 * penalising heavily at first, but still making sure that growth beyond the
2266 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2267 * example, with a high of 100 megabytes:
2268 *
2269 * +-------+------------------------+
2270 * | usage | time to allocate in ms |
2271 * +-------+------------------------+
2272 * | 100M | 0 |
2273 * | 101M | 6 |
2274 * | 102M | 25 |
2275 * | 103M | 57 |
2276 * | 104M | 102 |
2277 * | 105M | 159 |
2278 * | 106M | 230 |
2279 * | 107M | 313 |
2280 * | 108M | 409 |
2281 * | 109M | 518 |
2282 * | 110M | 639 |
2283 * | 111M | 774 |
2284 * | 112M | 921 |
2285 * | 113M | 1081 |
2286 * | 114M | 1254 |
2287 * | 115M | 1439 |
2288 * | 116M | 1638 |
2289 * | 117M | 1849 |
2290 * | 118M | 2000 |
2291 * | 119M | 2000 |
2292 * | 120M | 2000 |
2293 * +-------+------------------------+
2294 */
2295 #define MEMCG_DELAY_PRECISION_SHIFT 20
2296 #define MEMCG_DELAY_SCALING_SHIFT 14
2297
2298 /*
2299 * Scheduled by try_charge() to be executed from the userland return path
2300 * and reclaims memory over the high limit.
2301 */
2302 void mem_cgroup_handle_over_high(void)
2303 {
2304 unsigned long usage, high, clamped_high;
2305 unsigned long pflags;
2306 unsigned long penalty_jiffies, overage;
2307 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2308 struct mem_cgroup *memcg;
2309
2310 if (likely(!nr_pages))
2311 return;
2312
2313 memcg = get_mem_cgroup_from_mm(current->mm);
2314 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2315 current->memcg_nr_pages_over_high = 0;
2316
2317 /*
2318 * memory.high is breached and reclaim is unable to keep up. Throttle
2319 * allocators proactively to slow down excessive growth.
2320 *
2321 * We use overage compared to memory.high to calculate the number of
2322 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2323 * fairly lenient on small overages, and increasingly harsh when the
2324 * memcg in question makes it clear that it has no intention of stopping
2325 * its crazy behaviour, so we exponentially increase the delay based on
2326 * overage amount.
2327 */
2328
2329 usage = page_counter_read(&memcg->memory);
2330 high = READ_ONCE(memcg->high);
2331
2332 if (usage <= high)
2333 goto out;
2334
2335 /*
2336 * Prevent division by 0 in overage calculation by acting as if it was a
2337 * threshold of 1 page
2338 */
2339 clamped_high = max(high, 1UL);
2340
2341 overage = div_u64((u64)(usage - high) << MEMCG_DELAY_PRECISION_SHIFT,
2342 clamped_high);
2343
2344 penalty_jiffies = ((u64)overage * overage * HZ)
2345 >> (MEMCG_DELAY_PRECISION_SHIFT + MEMCG_DELAY_SCALING_SHIFT);
2346
2347 /*
2348 * Factor in the task's own contribution to the overage, such that four
2349 * N-sized allocations are throttled approximately the same as one
2350 * 4N-sized allocation.
2351 *
2352 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2353 * larger the current charge patch is than that.
2354 */
2355 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2356
2357 /*
2358 * Clamp the max delay per usermode return so as to still keep the
2359 * application moving forwards and also permit diagnostics, albeit
2360 * extremely slowly.
2361 */
2362 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2363
2364 /*
2365 * Don't sleep if the amount of jiffies this memcg owes us is so low
2366 * that it's not even worth doing, in an attempt to be nice to those who
2367 * go only a small amount over their memory.high value and maybe haven't
2368 * been aggressively reclaimed enough yet.
2369 */
2370 if (penalty_jiffies <= HZ / 100)
2371 goto out;
2372
2373 /*
2374 * If we exit early, we're guaranteed to die (since
2375 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2376 * need to account for any ill-begotten jiffies to pay them off later.
2377 */
2378 psi_memstall_enter(&pflags);
2379 schedule_timeout_killable(penalty_jiffies);
2380 psi_memstall_leave(&pflags);
2381
2382 out:
2383 css_put(&memcg->css);
2384 }
2385
2386 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2387 unsigned int nr_pages)
2388 {
2389 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2390 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2391 struct mem_cgroup *mem_over_limit;
2392 struct page_counter *counter;
2393 unsigned long nr_reclaimed;
2394 bool may_swap = true;
2395 bool drained = false;
2396 enum oom_status oom_status;
2397
2398 if (mem_cgroup_is_root(memcg))
2399 return 0;
2400 retry:
2401 if (consume_stock(memcg, nr_pages))
2402 return 0;
2403
2404 if (!do_memsw_account() ||
2405 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2406 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2407 goto done_restock;
2408 if (do_memsw_account())
2409 page_counter_uncharge(&memcg->memsw, batch);
2410 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2411 } else {
2412 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2413 may_swap = false;
2414 }
2415
2416 if (batch > nr_pages) {
2417 batch = nr_pages;
2418 goto retry;
2419 }
2420
2421 /*
2422 * Memcg doesn't have a dedicated reserve for atomic
2423 * allocations. But like the global atomic pool, we need to
2424 * put the burden of reclaim on regular allocation requests
2425 * and let these go through as privileged allocations.
2426 */
2427 if (gfp_mask & __GFP_ATOMIC)
2428 goto force;
2429
2430 /*
2431 * Unlike in global OOM situations, memcg is not in a physical
2432 * memory shortage. Allow dying and OOM-killed tasks to
2433 * bypass the last charges so that they can exit quickly and
2434 * free their memory.
2435 */
2436 if (unlikely(should_force_charge()))
2437 goto force;
2438
2439 /*
2440 * Prevent unbounded recursion when reclaim operations need to
2441 * allocate memory. This might exceed the limits temporarily,
2442 * but we prefer facilitating memory reclaim and getting back
2443 * under the limit over triggering OOM kills in these cases.
2444 */
2445 if (unlikely(current->flags & PF_MEMALLOC))
2446 goto force;
2447
2448 if (unlikely(task_in_memcg_oom(current)))
2449 goto nomem;
2450
2451 if (!gfpflags_allow_blocking(gfp_mask))
2452 goto nomem;
2453
2454 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2455
2456 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2457 gfp_mask, may_swap);
2458
2459 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2460 goto retry;
2461
2462 if (!drained) {
2463 drain_all_stock(mem_over_limit);
2464 drained = true;
2465 goto retry;
2466 }
2467
2468 if (gfp_mask & __GFP_NORETRY)
2469 goto nomem;
2470 /*
2471 * Even though the limit is exceeded at this point, reclaim
2472 * may have been able to free some pages. Retry the charge
2473 * before killing the task.
2474 *
2475 * Only for regular pages, though: huge pages are rather
2476 * unlikely to succeed so close to the limit, and we fall back
2477 * to regular pages anyway in case of failure.
2478 */
2479 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2480 goto retry;
2481 /*
2482 * At task move, charge accounts can be doubly counted. So, it's
2483 * better to wait until the end of task_move if something is going on.
2484 */
2485 if (mem_cgroup_wait_acct_move(mem_over_limit))
2486 goto retry;
2487
2488 if (nr_retries--)
2489 goto retry;
2490
2491 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2492 goto nomem;
2493
2494 if (gfp_mask & __GFP_NOFAIL)
2495 goto force;
2496
2497 if (fatal_signal_pending(current))
2498 goto force;
2499
2500 /*
2501 * keep retrying as long as the memcg oom killer is able to make
2502 * a forward progress or bypass the charge if the oom killer
2503 * couldn't make any progress.
2504 */
2505 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2506 get_order(nr_pages * PAGE_SIZE));
2507 switch (oom_status) {
2508 case OOM_SUCCESS:
2509 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2510 goto retry;
2511 case OOM_FAILED:
2512 goto force;
2513 default:
2514 goto nomem;
2515 }
2516 nomem:
2517 if (!(gfp_mask & __GFP_NOFAIL))
2518 return -ENOMEM;
2519 force:
2520 /*
2521 * The allocation either can't fail or will lead to more memory
2522 * being freed very soon. Allow memory usage go over the limit
2523 * temporarily by force charging it.
2524 */
2525 page_counter_charge(&memcg->memory, nr_pages);
2526 if (do_memsw_account())
2527 page_counter_charge(&memcg->memsw, nr_pages);
2528 css_get_many(&memcg->css, nr_pages);
2529
2530 return 0;
2531
2532 done_restock:
2533 css_get_many(&memcg->css, batch);
2534 if (batch > nr_pages)
2535 refill_stock(memcg, batch - nr_pages);
2536
2537 /*
2538 * If the hierarchy is above the normal consumption range, schedule
2539 * reclaim on returning to userland. We can perform reclaim here
2540 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2541 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2542 * not recorded as it most likely matches current's and won't
2543 * change in the meantime. As high limit is checked again before
2544 * reclaim, the cost of mismatch is negligible.
2545 */
2546 do {
2547 if (page_counter_read(&memcg->memory) > memcg->high) {
2548 /* Don't bother a random interrupted task */
2549 if (in_interrupt()) {
2550 schedule_work(&memcg->high_work);
2551 break;
2552 }
2553 current->memcg_nr_pages_over_high += batch;
2554 set_notify_resume(current);
2555 break;
2556 }
2557 } while ((memcg = parent_mem_cgroup(memcg)));
2558
2559 return 0;
2560 }
2561
2562 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2563 {
2564 if (mem_cgroup_is_root(memcg))
2565 return;
2566
2567 page_counter_uncharge(&memcg->memory, nr_pages);
2568 if (do_memsw_account())
2569 page_counter_uncharge(&memcg->memsw, nr_pages);
2570
2571 css_put_many(&memcg->css, nr_pages);
2572 }
2573
2574 static void lock_page_lru(struct page *page, int *isolated)
2575 {
2576 pg_data_t *pgdat = page_pgdat(page);
2577
2578 spin_lock_irq(&pgdat->lru_lock);
2579 if (PageLRU(page)) {
2580 struct lruvec *lruvec;
2581
2582 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2583 ClearPageLRU(page);
2584 del_page_from_lru_list(page, lruvec, page_lru(page));
2585 *isolated = 1;
2586 } else
2587 *isolated = 0;
2588 }
2589
2590 static void unlock_page_lru(struct page *page, int isolated)
2591 {
2592 pg_data_t *pgdat = page_pgdat(page);
2593
2594 if (isolated) {
2595 struct lruvec *lruvec;
2596
2597 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2598 VM_BUG_ON_PAGE(PageLRU(page), page);
2599 SetPageLRU(page);
2600 add_page_to_lru_list(page, lruvec, page_lru(page));
2601 }
2602 spin_unlock_irq(&pgdat->lru_lock);
2603 }
2604
2605 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2606 bool lrucare)
2607 {
2608 int isolated;
2609
2610 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2611
2612 /*
2613 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2614 * may already be on some other mem_cgroup's LRU. Take care of it.
2615 */
2616 if (lrucare)
2617 lock_page_lru(page, &isolated);
2618
2619 /*
2620 * Nobody should be changing or seriously looking at
2621 * page->mem_cgroup at this point:
2622 *
2623 * - the page is uncharged
2624 *
2625 * - the page is off-LRU
2626 *
2627 * - an anonymous fault has exclusive page access, except for
2628 * a locked page table
2629 *
2630 * - a page cache insertion, a swapin fault, or a migration
2631 * have the page locked
2632 */
2633 page->mem_cgroup = memcg;
2634
2635 if (lrucare)
2636 unlock_page_lru(page, isolated);
2637 }
2638
2639 #ifdef CONFIG_MEMCG_KMEM
2640 static int memcg_alloc_cache_id(void)
2641 {
2642 int id, size;
2643 int err;
2644
2645 id = ida_simple_get(&memcg_cache_ida,
2646 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2647 if (id < 0)
2648 return id;
2649
2650 if (id < memcg_nr_cache_ids)
2651 return id;
2652
2653 /*
2654 * There's no space for the new id in memcg_caches arrays,
2655 * so we have to grow them.
2656 */
2657 down_write(&memcg_cache_ids_sem);
2658
2659 size = 2 * (id + 1);
2660 if (size < MEMCG_CACHES_MIN_SIZE)
2661 size = MEMCG_CACHES_MIN_SIZE;
2662 else if (size > MEMCG_CACHES_MAX_SIZE)
2663 size = MEMCG_CACHES_MAX_SIZE;
2664
2665 err = memcg_update_all_caches(size);
2666 if (!err)
2667 err = memcg_update_all_list_lrus(size);
2668 if (!err)
2669 memcg_nr_cache_ids = size;
2670
2671 up_write(&memcg_cache_ids_sem);
2672
2673 if (err) {
2674 ida_simple_remove(&memcg_cache_ida, id);
2675 return err;
2676 }
2677 return id;
2678 }
2679
2680 static void memcg_free_cache_id(int id)
2681 {
2682 ida_simple_remove(&memcg_cache_ida, id);
2683 }
2684
2685 struct memcg_kmem_cache_create_work {
2686 struct mem_cgroup *memcg;
2687 struct kmem_cache *cachep;
2688 struct work_struct work;
2689 };
2690
2691 static void memcg_kmem_cache_create_func(struct work_struct *w)
2692 {
2693 struct memcg_kmem_cache_create_work *cw =
2694 container_of(w, struct memcg_kmem_cache_create_work, work);
2695 struct mem_cgroup *memcg = cw->memcg;
2696 struct kmem_cache *cachep = cw->cachep;
2697
2698 memcg_create_kmem_cache(memcg, cachep);
2699
2700 css_put(&memcg->css);
2701 kfree(cw);
2702 }
2703
2704 /*
2705 * Enqueue the creation of a per-memcg kmem_cache.
2706 */
2707 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2708 struct kmem_cache *cachep)
2709 {
2710 struct memcg_kmem_cache_create_work *cw;
2711
2712 if (!css_tryget_online(&memcg->css))
2713 return;
2714
2715 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2716 if (!cw)
2717 return;
2718
2719 cw->memcg = memcg;
2720 cw->cachep = cachep;
2721 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2722
2723 queue_work(memcg_kmem_cache_wq, &cw->work);
2724 }
2725
2726 static inline bool memcg_kmem_bypass(void)
2727 {
2728 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2729 return true;
2730 return false;
2731 }
2732
2733 /**
2734 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2735 * @cachep: the original global kmem cache
2736 *
2737 * Return the kmem_cache we're supposed to use for a slab allocation.
2738 * We try to use the current memcg's version of the cache.
2739 *
2740 * If the cache does not exist yet, if we are the first user of it, we
2741 * create it asynchronously in a workqueue and let the current allocation
2742 * go through with the original cache.
2743 *
2744 * This function takes a reference to the cache it returns to assure it
2745 * won't get destroyed while we are working with it. Once the caller is
2746 * done with it, memcg_kmem_put_cache() must be called to release the
2747 * reference.
2748 */
2749 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2750 {
2751 struct mem_cgroup *memcg;
2752 struct kmem_cache *memcg_cachep;
2753 struct memcg_cache_array *arr;
2754 int kmemcg_id;
2755
2756 VM_BUG_ON(!is_root_cache(cachep));
2757
2758 if (memcg_kmem_bypass())
2759 return cachep;
2760
2761 rcu_read_lock();
2762
2763 if (unlikely(current->active_memcg))
2764 memcg = current->active_memcg;
2765 else
2766 memcg = mem_cgroup_from_task(current);
2767
2768 if (!memcg || memcg == root_mem_cgroup)
2769 goto out_unlock;
2770
2771 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2772 if (kmemcg_id < 0)
2773 goto out_unlock;
2774
2775 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2776
2777 /*
2778 * Make sure we will access the up-to-date value. The code updating
2779 * memcg_caches issues a write barrier to match the data dependency
2780 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2781 */
2782 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2783
2784 /*
2785 * If we are in a safe context (can wait, and not in interrupt
2786 * context), we could be be predictable and return right away.
2787 * This would guarantee that the allocation being performed
2788 * already belongs in the new cache.
2789 *
2790 * However, there are some clashes that can arrive from locking.
2791 * For instance, because we acquire the slab_mutex while doing
2792 * memcg_create_kmem_cache, this means no further allocation
2793 * could happen with the slab_mutex held. So it's better to
2794 * defer everything.
2795 *
2796 * If the memcg is dying or memcg_cache is about to be released,
2797 * don't bother creating new kmem_caches. Because memcg_cachep
2798 * is ZEROed as the fist step of kmem offlining, we don't need
2799 * percpu_ref_tryget_live() here. css_tryget_online() check in
2800 * memcg_schedule_kmem_cache_create() will prevent us from
2801 * creation of a new kmem_cache.
2802 */
2803 if (unlikely(!memcg_cachep))
2804 memcg_schedule_kmem_cache_create(memcg, cachep);
2805 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2806 cachep = memcg_cachep;
2807 out_unlock:
2808 rcu_read_unlock();
2809 return cachep;
2810 }
2811
2812 /**
2813 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2814 * @cachep: the cache returned by memcg_kmem_get_cache
2815 */
2816 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2817 {
2818 if (!is_root_cache(cachep))
2819 percpu_ref_put(&cachep->memcg_params.refcnt);
2820 }
2821
2822 /**
2823 * __memcg_kmem_charge_memcg: charge a kmem page
2824 * @page: page to charge
2825 * @gfp: reclaim mode
2826 * @order: allocation order
2827 * @memcg: memory cgroup to charge
2828 *
2829 * Returns 0 on success, an error code on failure.
2830 */
2831 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2832 struct mem_cgroup *memcg)
2833 {
2834 unsigned int nr_pages = 1 << order;
2835 struct page_counter *counter;
2836 int ret;
2837
2838 ret = try_charge(memcg, gfp, nr_pages);
2839 if (ret)
2840 return ret;
2841
2842 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2843 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2844
2845 /*
2846 * Enforce __GFP_NOFAIL allocation because callers are not
2847 * prepared to see failures and likely do not have any failure
2848 * handling code.
2849 */
2850 if (gfp & __GFP_NOFAIL) {
2851 page_counter_charge(&memcg->kmem, nr_pages);
2852 return 0;
2853 }
2854 cancel_charge(memcg, nr_pages);
2855 return -ENOMEM;
2856 }
2857 return 0;
2858 }
2859
2860 /**
2861 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2862 * @page: page to charge
2863 * @gfp: reclaim mode
2864 * @order: allocation order
2865 *
2866 * Returns 0 on success, an error code on failure.
2867 */
2868 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2869 {
2870 struct mem_cgroup *memcg;
2871 int ret = 0;
2872
2873 if (memcg_kmem_bypass())
2874 return 0;
2875
2876 memcg = get_mem_cgroup_from_current();
2877 if (!mem_cgroup_is_root(memcg)) {
2878 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2879 if (!ret) {
2880 page->mem_cgroup = memcg;
2881 __SetPageKmemcg(page);
2882 }
2883 }
2884 css_put(&memcg->css);
2885 return ret;
2886 }
2887
2888 /**
2889 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2890 * @memcg: memcg to uncharge
2891 * @nr_pages: number of pages to uncharge
2892 */
2893 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2894 unsigned int nr_pages)
2895 {
2896 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2897 page_counter_uncharge(&memcg->kmem, nr_pages);
2898
2899 page_counter_uncharge(&memcg->memory, nr_pages);
2900 if (do_memsw_account())
2901 page_counter_uncharge(&memcg->memsw, nr_pages);
2902 }
2903 /**
2904 * __memcg_kmem_uncharge: uncharge a kmem page
2905 * @page: page to uncharge
2906 * @order: allocation order
2907 */
2908 void __memcg_kmem_uncharge(struct page *page, int order)
2909 {
2910 struct mem_cgroup *memcg = page->mem_cgroup;
2911 unsigned int nr_pages = 1 << order;
2912
2913 if (!memcg)
2914 return;
2915
2916 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2917 __memcg_kmem_uncharge_memcg(memcg, nr_pages);
2918 page->mem_cgroup = NULL;
2919
2920 /* slab pages do not have PageKmemcg flag set */
2921 if (PageKmemcg(page))
2922 __ClearPageKmemcg(page);
2923
2924 css_put_many(&memcg->css, nr_pages);
2925 }
2926 #endif /* CONFIG_MEMCG_KMEM */
2927
2928 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2929
2930 /*
2931 * Because tail pages are not marked as "used", set it. We're under
2932 * pgdat->lru_lock and migration entries setup in all page mappings.
2933 */
2934 void mem_cgroup_split_huge_fixup(struct page *head)
2935 {
2936 int i;
2937
2938 if (mem_cgroup_disabled())
2939 return;
2940
2941 for (i = 1; i < HPAGE_PMD_NR; i++)
2942 head[i].mem_cgroup = head->mem_cgroup;
2943
2944 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2945 }
2946 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2947
2948 #ifdef CONFIG_MEMCG_SWAP
2949 /**
2950 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2951 * @entry: swap entry to be moved
2952 * @from: mem_cgroup which the entry is moved from
2953 * @to: mem_cgroup which the entry is moved to
2954 *
2955 * It succeeds only when the swap_cgroup's record for this entry is the same
2956 * as the mem_cgroup's id of @from.
2957 *
2958 * Returns 0 on success, -EINVAL on failure.
2959 *
2960 * The caller must have charged to @to, IOW, called page_counter_charge() about
2961 * both res and memsw, and called css_get().
2962 */
2963 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2964 struct mem_cgroup *from, struct mem_cgroup *to)
2965 {
2966 unsigned short old_id, new_id;
2967
2968 old_id = mem_cgroup_id(from);
2969 new_id = mem_cgroup_id(to);
2970
2971 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2972 mod_memcg_state(from, MEMCG_SWAP, -1);
2973 mod_memcg_state(to, MEMCG_SWAP, 1);
2974 return 0;
2975 }
2976 return -EINVAL;
2977 }
2978 #else
2979 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2980 struct mem_cgroup *from, struct mem_cgroup *to)
2981 {
2982 return -EINVAL;
2983 }
2984 #endif
2985
2986 static DEFINE_MUTEX(memcg_max_mutex);
2987
2988 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2989 unsigned long max, bool memsw)
2990 {
2991 bool enlarge = false;
2992 bool drained = false;
2993 int ret;
2994 bool limits_invariant;
2995 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2996
2997 do {
2998 if (signal_pending(current)) {
2999 ret = -EINTR;
3000 break;
3001 }
3002
3003 mutex_lock(&memcg_max_mutex);
3004 /*
3005 * Make sure that the new limit (memsw or memory limit) doesn't
3006 * break our basic invariant rule memory.max <= memsw.max.
3007 */
3008 limits_invariant = memsw ? max >= memcg->memory.max :
3009 max <= memcg->memsw.max;
3010 if (!limits_invariant) {
3011 mutex_unlock(&memcg_max_mutex);
3012 ret = -EINVAL;
3013 break;
3014 }
3015 if (max > counter->max)
3016 enlarge = true;
3017 ret = page_counter_set_max(counter, max);
3018 mutex_unlock(&memcg_max_mutex);
3019
3020 if (!ret)
3021 break;
3022
3023 if (!drained) {
3024 drain_all_stock(memcg);
3025 drained = true;
3026 continue;
3027 }
3028
3029 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3030 GFP_KERNEL, !memsw)) {
3031 ret = -EBUSY;
3032 break;
3033 }
3034 } while (true);
3035
3036 if (!ret && enlarge)
3037 memcg_oom_recover(memcg);
3038
3039 return ret;
3040 }
3041
3042 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3043 gfp_t gfp_mask,
3044 unsigned long *total_scanned)
3045 {
3046 unsigned long nr_reclaimed = 0;
3047 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3048 unsigned long reclaimed;
3049 int loop = 0;
3050 struct mem_cgroup_tree_per_node *mctz;
3051 unsigned long excess;
3052 unsigned long nr_scanned;
3053
3054 if (order > 0)
3055 return 0;
3056
3057 mctz = soft_limit_tree_node(pgdat->node_id);
3058
3059 /*
3060 * Do not even bother to check the largest node if the root
3061 * is empty. Do it lockless to prevent lock bouncing. Races
3062 * are acceptable as soft limit is best effort anyway.
3063 */
3064 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3065 return 0;
3066
3067 /*
3068 * This loop can run a while, specially if mem_cgroup's continuously
3069 * keep exceeding their soft limit and putting the system under
3070 * pressure
3071 */
3072 do {
3073 if (next_mz)
3074 mz = next_mz;
3075 else
3076 mz = mem_cgroup_largest_soft_limit_node(mctz);
3077 if (!mz)
3078 break;
3079
3080 nr_scanned = 0;
3081 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3082 gfp_mask, &nr_scanned);
3083 nr_reclaimed += reclaimed;
3084 *total_scanned += nr_scanned;
3085 spin_lock_irq(&mctz->lock);
3086 __mem_cgroup_remove_exceeded(mz, mctz);
3087
3088 /*
3089 * If we failed to reclaim anything from this memory cgroup
3090 * it is time to move on to the next cgroup
3091 */
3092 next_mz = NULL;
3093 if (!reclaimed)
3094 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3095
3096 excess = soft_limit_excess(mz->memcg);
3097 /*
3098 * One school of thought says that we should not add
3099 * back the node to the tree if reclaim returns 0.
3100 * But our reclaim could return 0, simply because due
3101 * to priority we are exposing a smaller subset of
3102 * memory to reclaim from. Consider this as a longer
3103 * term TODO.
3104 */
3105 /* If excess == 0, no tree ops */
3106 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3107 spin_unlock_irq(&mctz->lock);
3108 css_put(&mz->memcg->css);
3109 loop++;
3110 /*
3111 * Could not reclaim anything and there are no more
3112 * mem cgroups to try or we seem to be looping without
3113 * reclaiming anything.
3114 */
3115 if (!nr_reclaimed &&
3116 (next_mz == NULL ||
3117 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3118 break;
3119 } while (!nr_reclaimed);
3120 if (next_mz)
3121 css_put(&next_mz->memcg->css);
3122 return nr_reclaimed;
3123 }
3124
3125 /*
3126 * Test whether @memcg has children, dead or alive. Note that this
3127 * function doesn't care whether @memcg has use_hierarchy enabled and
3128 * returns %true if there are child csses according to the cgroup
3129 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3130 */
3131 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3132 {
3133 bool ret;
3134
3135 rcu_read_lock();
3136 ret = css_next_child(NULL, &memcg->css);
3137 rcu_read_unlock();
3138 return ret;
3139 }
3140
3141 /*
3142 * Reclaims as many pages from the given memcg as possible.
3143 *
3144 * Caller is responsible for holding css reference for memcg.
3145 */
3146 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3147 {
3148 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3149
3150 /* we call try-to-free pages for make this cgroup empty */
3151 lru_add_drain_all();
3152
3153 drain_all_stock(memcg);
3154
3155 /* try to free all pages in this cgroup */
3156 while (nr_retries && page_counter_read(&memcg->memory)) {
3157 int progress;
3158
3159 if (signal_pending(current))
3160 return -EINTR;
3161
3162 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3163 GFP_KERNEL, true);
3164 if (!progress) {
3165 nr_retries--;
3166 /* maybe some writeback is necessary */
3167 congestion_wait(BLK_RW_ASYNC, HZ/10);
3168 }
3169
3170 }
3171
3172 return 0;
3173 }
3174
3175 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3176 char *buf, size_t nbytes,
3177 loff_t off)
3178 {
3179 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3180
3181 if (mem_cgroup_is_root(memcg))
3182 return -EINVAL;
3183 return mem_cgroup_force_empty(memcg) ?: nbytes;
3184 }
3185
3186 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3187 struct cftype *cft)
3188 {
3189 return mem_cgroup_from_css(css)->use_hierarchy;
3190 }
3191
3192 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3193 struct cftype *cft, u64 val)
3194 {
3195 int retval = 0;
3196 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3197 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3198
3199 if (memcg->use_hierarchy == val)
3200 return 0;
3201
3202 /*
3203 * If parent's use_hierarchy is set, we can't make any modifications
3204 * in the child subtrees. If it is unset, then the change can
3205 * occur, provided the current cgroup has no children.
3206 *
3207 * For the root cgroup, parent_mem is NULL, we allow value to be
3208 * set if there are no children.
3209 */
3210 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3211 (val == 1 || val == 0)) {
3212 if (!memcg_has_children(memcg))
3213 memcg->use_hierarchy = val;
3214 else
3215 retval = -EBUSY;
3216 } else
3217 retval = -EINVAL;
3218
3219 return retval;
3220 }
3221
3222 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3223 {
3224 unsigned long val;
3225
3226 if (mem_cgroup_is_root(memcg)) {
3227 val = memcg_page_state(memcg, MEMCG_CACHE) +
3228 memcg_page_state(memcg, MEMCG_RSS);
3229 if (swap)
3230 val += memcg_page_state(memcg, MEMCG_SWAP);
3231 } else {
3232 if (!swap)
3233 val = page_counter_read(&memcg->memory);
3234 else
3235 val = page_counter_read(&memcg->memsw);
3236 }
3237 return val;
3238 }
3239
3240 enum {
3241 RES_USAGE,
3242 RES_LIMIT,
3243 RES_MAX_USAGE,
3244 RES_FAILCNT,
3245 RES_SOFT_LIMIT,
3246 };
3247
3248 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3249 struct cftype *cft)
3250 {
3251 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3252 struct page_counter *counter;
3253
3254 switch (MEMFILE_TYPE(cft->private)) {
3255 case _MEM:
3256 counter = &memcg->memory;
3257 break;
3258 case _MEMSWAP:
3259 counter = &memcg->memsw;
3260 break;
3261 case _KMEM:
3262 counter = &memcg->kmem;
3263 break;
3264 case _TCP:
3265 counter = &memcg->tcpmem;
3266 break;
3267 default:
3268 BUG();
3269 }
3270
3271 switch (MEMFILE_ATTR(cft->private)) {
3272 case RES_USAGE:
3273 if (counter == &memcg->memory)
3274 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3275 if (counter == &memcg->memsw)
3276 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3277 return (u64)page_counter_read(counter) * PAGE_SIZE;
3278 case RES_LIMIT:
3279 return (u64)counter->max * PAGE_SIZE;
3280 case RES_MAX_USAGE:
3281 return (u64)counter->watermark * PAGE_SIZE;
3282 case RES_FAILCNT:
3283 return counter->failcnt;
3284 case RES_SOFT_LIMIT:
3285 return (u64)memcg->soft_limit * PAGE_SIZE;
3286 default:
3287 BUG();
3288 }
3289 }
3290
3291 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg, bool slab_only)
3292 {
3293 unsigned long stat[MEMCG_NR_STAT];
3294 struct mem_cgroup *mi;
3295 int node, cpu, i;
3296 int min_idx, max_idx;
3297
3298 if (slab_only) {
3299 min_idx = NR_SLAB_RECLAIMABLE;
3300 max_idx = NR_SLAB_UNRECLAIMABLE;
3301 } else {
3302 min_idx = 0;
3303 max_idx = MEMCG_NR_STAT;
3304 }
3305
3306 for (i = min_idx; i < max_idx; i++)
3307 stat[i] = 0;
3308
3309 for_each_online_cpu(cpu)
3310 for (i = min_idx; i < max_idx; i++)
3311 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3312
3313 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3314 for (i = min_idx; i < max_idx; i++)
3315 atomic_long_add(stat[i], &mi->vmstats[i]);
3316
3317 if (!slab_only)
3318 max_idx = NR_VM_NODE_STAT_ITEMS;
3319
3320 for_each_node(node) {
3321 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3322 struct mem_cgroup_per_node *pi;
3323
3324 for (i = min_idx; i < max_idx; i++)
3325 stat[i] = 0;
3326
3327 for_each_online_cpu(cpu)
3328 for (i = min_idx; i < max_idx; i++)
3329 stat[i] += per_cpu(
3330 pn->lruvec_stat_cpu->count[i], cpu);
3331
3332 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3333 for (i = min_idx; i < max_idx; i++)
3334 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3335 }
3336 }
3337
3338 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3339 {
3340 unsigned long events[NR_VM_EVENT_ITEMS];
3341 struct mem_cgroup *mi;
3342 int cpu, i;
3343
3344 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3345 events[i] = 0;
3346
3347 for_each_online_cpu(cpu)
3348 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3349 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3350 cpu);
3351
3352 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3353 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3354 atomic_long_add(events[i], &mi->vmevents[i]);
3355 }
3356
3357 #ifdef CONFIG_MEMCG_KMEM
3358 static int memcg_online_kmem(struct mem_cgroup *memcg)
3359 {
3360 int memcg_id;
3361
3362 if (cgroup_memory_nokmem)
3363 return 0;
3364
3365 BUG_ON(memcg->kmemcg_id >= 0);
3366 BUG_ON(memcg->kmem_state);
3367
3368 memcg_id = memcg_alloc_cache_id();
3369 if (memcg_id < 0)
3370 return memcg_id;
3371
3372 static_branch_inc(&memcg_kmem_enabled_key);
3373 /*
3374 * A memory cgroup is considered kmem-online as soon as it gets
3375 * kmemcg_id. Setting the id after enabling static branching will
3376 * guarantee no one starts accounting before all call sites are
3377 * patched.
3378 */
3379 memcg->kmemcg_id = memcg_id;
3380 memcg->kmem_state = KMEM_ONLINE;
3381 INIT_LIST_HEAD(&memcg->kmem_caches);
3382
3383 return 0;
3384 }
3385
3386 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3387 {
3388 struct cgroup_subsys_state *css;
3389 struct mem_cgroup *parent, *child;
3390 int kmemcg_id;
3391
3392 if (memcg->kmem_state != KMEM_ONLINE)
3393 return;
3394 /*
3395 * Clear the online state before clearing memcg_caches array
3396 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3397 * guarantees that no cache will be created for this cgroup
3398 * after we are done (see memcg_create_kmem_cache()).
3399 */
3400 memcg->kmem_state = KMEM_ALLOCATED;
3401
3402 parent = parent_mem_cgroup(memcg);
3403 if (!parent)
3404 parent = root_mem_cgroup;
3405
3406 /*
3407 * Deactivate and reparent kmem_caches. Then flush percpu
3408 * slab statistics to have precise values at the parent and
3409 * all ancestor levels. It's required to keep slab stats
3410 * accurate after the reparenting of kmem_caches.
3411 */
3412 memcg_deactivate_kmem_caches(memcg, parent);
3413 memcg_flush_percpu_vmstats(memcg, true);
3414
3415 kmemcg_id = memcg->kmemcg_id;
3416 BUG_ON(kmemcg_id < 0);
3417
3418 /*
3419 * Change kmemcg_id of this cgroup and all its descendants to the
3420 * parent's id, and then move all entries from this cgroup's list_lrus
3421 * to ones of the parent. After we have finished, all list_lrus
3422 * corresponding to this cgroup are guaranteed to remain empty. The
3423 * ordering is imposed by list_lru_node->lock taken by
3424 * memcg_drain_all_list_lrus().
3425 */
3426 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3427 css_for_each_descendant_pre(css, &memcg->css) {
3428 child = mem_cgroup_from_css(css);
3429 BUG_ON(child->kmemcg_id != kmemcg_id);
3430 child->kmemcg_id = parent->kmemcg_id;
3431 if (!memcg->use_hierarchy)
3432 break;
3433 }
3434 rcu_read_unlock();
3435
3436 memcg_drain_all_list_lrus(kmemcg_id, parent);
3437
3438 memcg_free_cache_id(kmemcg_id);
3439 }
3440
3441 static void memcg_free_kmem(struct mem_cgroup *memcg)
3442 {
3443 /* css_alloc() failed, offlining didn't happen */
3444 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3445 memcg_offline_kmem(memcg);
3446
3447 if (memcg->kmem_state == KMEM_ALLOCATED) {
3448 WARN_ON(!list_empty(&memcg->kmem_caches));
3449 static_branch_dec(&memcg_kmem_enabled_key);
3450 }
3451 }
3452 #else
3453 static int memcg_online_kmem(struct mem_cgroup *memcg)
3454 {
3455 return 0;
3456 }
3457 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3458 {
3459 }
3460 static void memcg_free_kmem(struct mem_cgroup *memcg)
3461 {
3462 }
3463 #endif /* CONFIG_MEMCG_KMEM */
3464
3465 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3466 unsigned long max)
3467 {
3468 int ret;
3469
3470 mutex_lock(&memcg_max_mutex);
3471 ret = page_counter_set_max(&memcg->kmem, max);
3472 mutex_unlock(&memcg_max_mutex);
3473 return ret;
3474 }
3475
3476 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3477 {
3478 int ret;
3479
3480 mutex_lock(&memcg_max_mutex);
3481
3482 ret = page_counter_set_max(&memcg->tcpmem, max);
3483 if (ret)
3484 goto out;
3485
3486 if (!memcg->tcpmem_active) {
3487 /*
3488 * The active flag needs to be written after the static_key
3489 * update. This is what guarantees that the socket activation
3490 * function is the last one to run. See mem_cgroup_sk_alloc()
3491 * for details, and note that we don't mark any socket as
3492 * belonging to this memcg until that flag is up.
3493 *
3494 * We need to do this, because static_keys will span multiple
3495 * sites, but we can't control their order. If we mark a socket
3496 * as accounted, but the accounting functions are not patched in
3497 * yet, we'll lose accounting.
3498 *
3499 * We never race with the readers in mem_cgroup_sk_alloc(),
3500 * because when this value change, the code to process it is not
3501 * patched in yet.
3502 */
3503 static_branch_inc(&memcg_sockets_enabled_key);
3504 memcg->tcpmem_active = true;
3505 }
3506 out:
3507 mutex_unlock(&memcg_max_mutex);
3508 return ret;
3509 }
3510
3511 /*
3512 * The user of this function is...
3513 * RES_LIMIT.
3514 */
3515 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3516 char *buf, size_t nbytes, loff_t off)
3517 {
3518 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3519 unsigned long nr_pages;
3520 int ret;
3521
3522 buf = strstrip(buf);
3523 ret = page_counter_memparse(buf, "-1", &nr_pages);
3524 if (ret)
3525 return ret;
3526
3527 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3528 case RES_LIMIT:
3529 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3530 ret = -EINVAL;
3531 break;
3532 }
3533 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3534 case _MEM:
3535 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3536 break;
3537 case _MEMSWAP:
3538 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3539 break;
3540 case _KMEM:
3541 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3542 "Please report your usecase to linux-mm@kvack.org if you "
3543 "depend on this functionality.\n");
3544 ret = memcg_update_kmem_max(memcg, nr_pages);
3545 break;
3546 case _TCP:
3547 ret = memcg_update_tcp_max(memcg, nr_pages);
3548 break;
3549 }
3550 break;
3551 case RES_SOFT_LIMIT:
3552 memcg->soft_limit = nr_pages;
3553 ret = 0;
3554 break;
3555 }
3556 return ret ?: nbytes;
3557 }
3558
3559 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3560 size_t nbytes, loff_t off)
3561 {
3562 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3563 struct page_counter *counter;
3564
3565 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3566 case _MEM:
3567 counter = &memcg->memory;
3568 break;
3569 case _MEMSWAP:
3570 counter = &memcg->memsw;
3571 break;
3572 case _KMEM:
3573 counter = &memcg->kmem;
3574 break;
3575 case _TCP:
3576 counter = &memcg->tcpmem;
3577 break;
3578 default:
3579 BUG();
3580 }
3581
3582 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3583 case RES_MAX_USAGE:
3584 page_counter_reset_watermark(counter);
3585 break;
3586 case RES_FAILCNT:
3587 counter->failcnt = 0;
3588 break;
3589 default:
3590 BUG();
3591 }
3592
3593 return nbytes;
3594 }
3595
3596 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3597 struct cftype *cft)
3598 {
3599 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3600 }
3601
3602 #ifdef CONFIG_MMU
3603 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3604 struct cftype *cft, u64 val)
3605 {
3606 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3607
3608 if (val & ~MOVE_MASK)
3609 return -EINVAL;
3610
3611 /*
3612 * No kind of locking is needed in here, because ->can_attach() will
3613 * check this value once in the beginning of the process, and then carry
3614 * on with stale data. This means that changes to this value will only
3615 * affect task migrations starting after the change.
3616 */
3617 memcg->move_charge_at_immigrate = val;
3618 return 0;
3619 }
3620 #else
3621 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3622 struct cftype *cft, u64 val)
3623 {
3624 return -ENOSYS;
3625 }
3626 #endif
3627
3628 #ifdef CONFIG_NUMA
3629
3630 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3631 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3632 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3633
3634 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3635 int nid, unsigned int lru_mask)
3636 {
3637 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3638 unsigned long nr = 0;
3639 enum lru_list lru;
3640
3641 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3642
3643 for_each_lru(lru) {
3644 if (!(BIT(lru) & lru_mask))
3645 continue;
3646 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3647 }
3648 return nr;
3649 }
3650
3651 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3652 unsigned int lru_mask)
3653 {
3654 unsigned long nr = 0;
3655 enum lru_list lru;
3656
3657 for_each_lru(lru) {
3658 if (!(BIT(lru) & lru_mask))
3659 continue;
3660 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3661 }
3662 return nr;
3663 }
3664
3665 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3666 {
3667 struct numa_stat {
3668 const char *name;
3669 unsigned int lru_mask;
3670 };
3671
3672 static const struct numa_stat stats[] = {
3673 { "total", LRU_ALL },
3674 { "file", LRU_ALL_FILE },
3675 { "anon", LRU_ALL_ANON },
3676 { "unevictable", BIT(LRU_UNEVICTABLE) },
3677 };
3678 const struct numa_stat *stat;
3679 int nid;
3680 unsigned long nr;
3681 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3682
3683 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3684 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3685 seq_printf(m, "%s=%lu", stat->name, nr);
3686 for_each_node_state(nid, N_MEMORY) {
3687 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3688 stat->lru_mask);
3689 seq_printf(m, " N%d=%lu", nid, nr);
3690 }
3691 seq_putc(m, '\n');
3692 }
3693
3694 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3695 struct mem_cgroup *iter;
3696
3697 nr = 0;
3698 for_each_mem_cgroup_tree(iter, memcg)
3699 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3700 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3701 for_each_node_state(nid, N_MEMORY) {
3702 nr = 0;
3703 for_each_mem_cgroup_tree(iter, memcg)
3704 nr += mem_cgroup_node_nr_lru_pages(
3705 iter, nid, stat->lru_mask);
3706 seq_printf(m, " N%d=%lu", nid, nr);
3707 }
3708 seq_putc(m, '\n');
3709 }
3710
3711 return 0;
3712 }
3713 #endif /* CONFIG_NUMA */
3714
3715 static const unsigned int memcg1_stats[] = {
3716 MEMCG_CACHE,
3717 MEMCG_RSS,
3718 MEMCG_RSS_HUGE,
3719 NR_SHMEM,
3720 NR_FILE_MAPPED,
3721 NR_FILE_DIRTY,
3722 NR_WRITEBACK,
3723 MEMCG_SWAP,
3724 };
3725
3726 static const char *const memcg1_stat_names[] = {
3727 "cache",
3728 "rss",
3729 "rss_huge",
3730 "shmem",
3731 "mapped_file",
3732 "dirty",
3733 "writeback",
3734 "swap",
3735 };
3736
3737 /* Universal VM events cgroup1 shows, original sort order */
3738 static const unsigned int memcg1_events[] = {
3739 PGPGIN,
3740 PGPGOUT,
3741 PGFAULT,
3742 PGMAJFAULT,
3743 };
3744
3745 static const char *const memcg1_event_names[] = {
3746 "pgpgin",
3747 "pgpgout",
3748 "pgfault",
3749 "pgmajfault",
3750 };
3751
3752 static int memcg_stat_show(struct seq_file *m, void *v)
3753 {
3754 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3755 unsigned long memory, memsw;
3756 struct mem_cgroup *mi;
3757 unsigned int i;
3758
3759 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3760 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3761
3762 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3763 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3764 continue;
3765 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3766 memcg_page_state_local(memcg, memcg1_stats[i]) *
3767 PAGE_SIZE);
3768 }
3769
3770 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3771 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3772 memcg_events_local(memcg, memcg1_events[i]));
3773
3774 for (i = 0; i < NR_LRU_LISTS; i++)
3775 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3776 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3777 PAGE_SIZE);
3778
3779 /* Hierarchical information */
3780 memory = memsw = PAGE_COUNTER_MAX;
3781 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3782 memory = min(memory, mi->memory.max);
3783 memsw = min(memsw, mi->memsw.max);
3784 }
3785 seq_printf(m, "hierarchical_memory_limit %llu\n",
3786 (u64)memory * PAGE_SIZE);
3787 if (do_memsw_account())
3788 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3789 (u64)memsw * PAGE_SIZE);
3790
3791 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3792 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3793 continue;
3794 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3795 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3796 PAGE_SIZE);
3797 }
3798
3799 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3800 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3801 (u64)memcg_events(memcg, memcg1_events[i]));
3802
3803 for (i = 0; i < NR_LRU_LISTS; i++)
3804 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3805 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3806 PAGE_SIZE);
3807
3808 #ifdef CONFIG_DEBUG_VM
3809 {
3810 pg_data_t *pgdat;
3811 struct mem_cgroup_per_node *mz;
3812 struct zone_reclaim_stat *rstat;
3813 unsigned long recent_rotated[2] = {0, 0};
3814 unsigned long recent_scanned[2] = {0, 0};
3815
3816 for_each_online_pgdat(pgdat) {
3817 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3818 rstat = &mz->lruvec.reclaim_stat;
3819
3820 recent_rotated[0] += rstat->recent_rotated[0];
3821 recent_rotated[1] += rstat->recent_rotated[1];
3822 recent_scanned[0] += rstat->recent_scanned[0];
3823 recent_scanned[1] += rstat->recent_scanned[1];
3824 }
3825 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3826 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3827 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3828 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3829 }
3830 #endif
3831
3832 return 0;
3833 }
3834
3835 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3836 struct cftype *cft)
3837 {
3838 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3839
3840 return mem_cgroup_swappiness(memcg);
3841 }
3842
3843 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3844 struct cftype *cft, u64 val)
3845 {
3846 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3847
3848 if (val > 100)
3849 return -EINVAL;
3850
3851 if (css->parent)
3852 memcg->swappiness = val;
3853 else
3854 vm_swappiness = val;
3855
3856 return 0;
3857 }
3858
3859 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3860 {
3861 struct mem_cgroup_threshold_ary *t;
3862 unsigned long usage;
3863 int i;
3864
3865 rcu_read_lock();
3866 if (!swap)
3867 t = rcu_dereference(memcg->thresholds.primary);
3868 else
3869 t = rcu_dereference(memcg->memsw_thresholds.primary);
3870
3871 if (!t)
3872 goto unlock;
3873
3874 usage = mem_cgroup_usage(memcg, swap);
3875
3876 /*
3877 * current_threshold points to threshold just below or equal to usage.
3878 * If it's not true, a threshold was crossed after last
3879 * call of __mem_cgroup_threshold().
3880 */
3881 i = t->current_threshold;
3882
3883 /*
3884 * Iterate backward over array of thresholds starting from
3885 * current_threshold and check if a threshold is crossed.
3886 * If none of thresholds below usage is crossed, we read
3887 * only one element of the array here.
3888 */
3889 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3890 eventfd_signal(t->entries[i].eventfd, 1);
3891
3892 /* i = current_threshold + 1 */
3893 i++;
3894
3895 /*
3896 * Iterate forward over array of thresholds starting from
3897 * current_threshold+1 and check if a threshold is crossed.
3898 * If none of thresholds above usage is crossed, we read
3899 * only one element of the array here.
3900 */
3901 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3902 eventfd_signal(t->entries[i].eventfd, 1);
3903
3904 /* Update current_threshold */
3905 t->current_threshold = i - 1;
3906 unlock:
3907 rcu_read_unlock();
3908 }
3909
3910 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3911 {
3912 while (memcg) {
3913 __mem_cgroup_threshold(memcg, false);
3914 if (do_memsw_account())
3915 __mem_cgroup_threshold(memcg, true);
3916
3917 memcg = parent_mem_cgroup(memcg);
3918 }
3919 }
3920
3921 static int compare_thresholds(const void *a, const void *b)
3922 {
3923 const struct mem_cgroup_threshold *_a = a;
3924 const struct mem_cgroup_threshold *_b = b;
3925
3926 if (_a->threshold > _b->threshold)
3927 return 1;
3928
3929 if (_a->threshold < _b->threshold)
3930 return -1;
3931
3932 return 0;
3933 }
3934
3935 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3936 {
3937 struct mem_cgroup_eventfd_list *ev;
3938
3939 spin_lock(&memcg_oom_lock);
3940
3941 list_for_each_entry(ev, &memcg->oom_notify, list)
3942 eventfd_signal(ev->eventfd, 1);
3943
3944 spin_unlock(&memcg_oom_lock);
3945 return 0;
3946 }
3947
3948 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3949 {
3950 struct mem_cgroup *iter;
3951
3952 for_each_mem_cgroup_tree(iter, memcg)
3953 mem_cgroup_oom_notify_cb(iter);
3954 }
3955
3956 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3957 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3958 {
3959 struct mem_cgroup_thresholds *thresholds;
3960 struct mem_cgroup_threshold_ary *new;
3961 unsigned long threshold;
3962 unsigned long usage;
3963 int i, size, ret;
3964
3965 ret = page_counter_memparse(args, "-1", &threshold);
3966 if (ret)
3967 return ret;
3968
3969 mutex_lock(&memcg->thresholds_lock);
3970
3971 if (type == _MEM) {
3972 thresholds = &memcg->thresholds;
3973 usage = mem_cgroup_usage(memcg, false);
3974 } else if (type == _MEMSWAP) {
3975 thresholds = &memcg->memsw_thresholds;
3976 usage = mem_cgroup_usage(memcg, true);
3977 } else
3978 BUG();
3979
3980 /* Check if a threshold crossed before adding a new one */
3981 if (thresholds->primary)
3982 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3983
3984 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3985
3986 /* Allocate memory for new array of thresholds */
3987 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3988 if (!new) {
3989 ret = -ENOMEM;
3990 goto unlock;
3991 }
3992 new->size = size;
3993
3994 /* Copy thresholds (if any) to new array */
3995 if (thresholds->primary) {
3996 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3997 sizeof(struct mem_cgroup_threshold));
3998 }
3999
4000 /* Add new threshold */
4001 new->entries[size - 1].eventfd = eventfd;
4002 new->entries[size - 1].threshold = threshold;
4003
4004 /* Sort thresholds. Registering of new threshold isn't time-critical */
4005 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4006 compare_thresholds, NULL);
4007
4008 /* Find current threshold */
4009 new->current_threshold = -1;
4010 for (i = 0; i < size; i++) {
4011 if (new->entries[i].threshold <= usage) {
4012 /*
4013 * new->current_threshold will not be used until
4014 * rcu_assign_pointer(), so it's safe to increment
4015 * it here.
4016 */
4017 ++new->current_threshold;
4018 } else
4019 break;
4020 }
4021
4022 /* Free old spare buffer and save old primary buffer as spare */
4023 kfree(thresholds->spare);
4024 thresholds->spare = thresholds->primary;
4025
4026 rcu_assign_pointer(thresholds->primary, new);
4027
4028 /* To be sure that nobody uses thresholds */
4029 synchronize_rcu();
4030
4031 unlock:
4032 mutex_unlock(&memcg->thresholds_lock);
4033
4034 return ret;
4035 }
4036
4037 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4038 struct eventfd_ctx *eventfd, const char *args)
4039 {
4040 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4041 }
4042
4043 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4044 struct eventfd_ctx *eventfd, const char *args)
4045 {
4046 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4047 }
4048
4049 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4050 struct eventfd_ctx *eventfd, enum res_type type)
4051 {
4052 struct mem_cgroup_thresholds *thresholds;
4053 struct mem_cgroup_threshold_ary *new;
4054 unsigned long usage;
4055 int i, j, size;
4056
4057 mutex_lock(&memcg->thresholds_lock);
4058
4059 if (type == _MEM) {
4060 thresholds = &memcg->thresholds;
4061 usage = mem_cgroup_usage(memcg, false);
4062 } else if (type == _MEMSWAP) {
4063 thresholds = &memcg->memsw_thresholds;
4064 usage = mem_cgroup_usage(memcg, true);
4065 } else
4066 BUG();
4067
4068 if (!thresholds->primary)
4069 goto unlock;
4070
4071 /* Check if a threshold crossed before removing */
4072 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4073
4074 /* Calculate new number of threshold */
4075 size = 0;
4076 for (i = 0; i < thresholds->primary->size; i++) {
4077 if (thresholds->primary->entries[i].eventfd != eventfd)
4078 size++;
4079 }
4080
4081 new = thresholds->spare;
4082
4083 /* Set thresholds array to NULL if we don't have thresholds */
4084 if (!size) {
4085 kfree(new);
4086 new = NULL;
4087 goto swap_buffers;
4088 }
4089
4090 new->size = size;
4091
4092 /* Copy thresholds and find current threshold */
4093 new->current_threshold = -1;
4094 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4095 if (thresholds->primary->entries[i].eventfd == eventfd)
4096 continue;
4097
4098 new->entries[j] = thresholds->primary->entries[i];
4099 if (new->entries[j].threshold <= usage) {
4100 /*
4101 * new->current_threshold will not be used
4102 * until rcu_assign_pointer(), so it's safe to increment
4103 * it here.
4104 */
4105 ++new->current_threshold;
4106 }
4107 j++;
4108 }
4109
4110 swap_buffers:
4111 /* Swap primary and spare array */
4112 thresholds->spare = thresholds->primary;
4113
4114 rcu_assign_pointer(thresholds->primary, new);
4115
4116 /* To be sure that nobody uses thresholds */
4117 synchronize_rcu();
4118
4119 /* If all events are unregistered, free the spare array */
4120 if (!new) {
4121 kfree(thresholds->spare);
4122 thresholds->spare = NULL;
4123 }
4124 unlock:
4125 mutex_unlock(&memcg->thresholds_lock);
4126 }
4127
4128 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4129 struct eventfd_ctx *eventfd)
4130 {
4131 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4132 }
4133
4134 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4135 struct eventfd_ctx *eventfd)
4136 {
4137 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4138 }
4139
4140 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4141 struct eventfd_ctx *eventfd, const char *args)
4142 {
4143 struct mem_cgroup_eventfd_list *event;
4144
4145 event = kmalloc(sizeof(*event), GFP_KERNEL);
4146 if (!event)
4147 return -ENOMEM;
4148
4149 spin_lock(&memcg_oom_lock);
4150
4151 event->eventfd = eventfd;
4152 list_add(&event->list, &memcg->oom_notify);
4153
4154 /* already in OOM ? */
4155 if (memcg->under_oom)
4156 eventfd_signal(eventfd, 1);
4157 spin_unlock(&memcg_oom_lock);
4158
4159 return 0;
4160 }
4161
4162 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4163 struct eventfd_ctx *eventfd)
4164 {
4165 struct mem_cgroup_eventfd_list *ev, *tmp;
4166
4167 spin_lock(&memcg_oom_lock);
4168
4169 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4170 if (ev->eventfd == eventfd) {
4171 list_del(&ev->list);
4172 kfree(ev);
4173 }
4174 }
4175
4176 spin_unlock(&memcg_oom_lock);
4177 }
4178
4179 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4180 {
4181 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4182
4183 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4184 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4185 seq_printf(sf, "oom_kill %lu\n",
4186 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4187 return 0;
4188 }
4189
4190 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4191 struct cftype *cft, u64 val)
4192 {
4193 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4194
4195 /* cannot set to root cgroup and only 0 and 1 are allowed */
4196 if (!css->parent || !((val == 0) || (val == 1)))
4197 return -EINVAL;
4198
4199 memcg->oom_kill_disable = val;
4200 if (!val)
4201 memcg_oom_recover(memcg);
4202
4203 return 0;
4204 }
4205
4206 #ifdef CONFIG_CGROUP_WRITEBACK
4207
4208 #include <trace/events/writeback.h>
4209
4210 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4211 {
4212 return wb_domain_init(&memcg->cgwb_domain, gfp);
4213 }
4214
4215 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4216 {
4217 wb_domain_exit(&memcg->cgwb_domain);
4218 }
4219
4220 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4221 {
4222 wb_domain_size_changed(&memcg->cgwb_domain);
4223 }
4224
4225 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4226 {
4227 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4228
4229 if (!memcg->css.parent)
4230 return NULL;
4231
4232 return &memcg->cgwb_domain;
4233 }
4234
4235 /*
4236 * idx can be of type enum memcg_stat_item or node_stat_item.
4237 * Keep in sync with memcg_exact_page().
4238 */
4239 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4240 {
4241 long x = atomic_long_read(&memcg->vmstats[idx]);
4242 int cpu;
4243
4244 for_each_online_cpu(cpu)
4245 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4246 if (x < 0)
4247 x = 0;
4248 return x;
4249 }
4250
4251 /**
4252 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4253 * @wb: bdi_writeback in question
4254 * @pfilepages: out parameter for number of file pages
4255 * @pheadroom: out parameter for number of allocatable pages according to memcg
4256 * @pdirty: out parameter for number of dirty pages
4257 * @pwriteback: out parameter for number of pages under writeback
4258 *
4259 * Determine the numbers of file, headroom, dirty, and writeback pages in
4260 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4261 * is a bit more involved.
4262 *
4263 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4264 * headroom is calculated as the lowest headroom of itself and the
4265 * ancestors. Note that this doesn't consider the actual amount of
4266 * available memory in the system. The caller should further cap
4267 * *@pheadroom accordingly.
4268 */
4269 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4270 unsigned long *pheadroom, unsigned long *pdirty,
4271 unsigned long *pwriteback)
4272 {
4273 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4274 struct mem_cgroup *parent;
4275
4276 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4277
4278 /* this should eventually include NR_UNSTABLE_NFS */
4279 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4280 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4281 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4282 *pheadroom = PAGE_COUNTER_MAX;
4283
4284 while ((parent = parent_mem_cgroup(memcg))) {
4285 unsigned long ceiling = min(memcg->memory.max, memcg->high);
4286 unsigned long used = page_counter_read(&memcg->memory);
4287
4288 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4289 memcg = parent;
4290 }
4291 }
4292
4293 /*
4294 * Foreign dirty flushing
4295 *
4296 * There's an inherent mismatch between memcg and writeback. The former
4297 * trackes ownership per-page while the latter per-inode. This was a
4298 * deliberate design decision because honoring per-page ownership in the
4299 * writeback path is complicated, may lead to higher CPU and IO overheads
4300 * and deemed unnecessary given that write-sharing an inode across
4301 * different cgroups isn't a common use-case.
4302 *
4303 * Combined with inode majority-writer ownership switching, this works well
4304 * enough in most cases but there are some pathological cases. For
4305 * example, let's say there are two cgroups A and B which keep writing to
4306 * different but confined parts of the same inode. B owns the inode and
4307 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4308 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4309 * triggering background writeback. A will be slowed down without a way to
4310 * make writeback of the dirty pages happen.
4311 *
4312 * Conditions like the above can lead to a cgroup getting repatedly and
4313 * severely throttled after making some progress after each
4314 * dirty_expire_interval while the underyling IO device is almost
4315 * completely idle.
4316 *
4317 * Solving this problem completely requires matching the ownership tracking
4318 * granularities between memcg and writeback in either direction. However,
4319 * the more egregious behaviors can be avoided by simply remembering the
4320 * most recent foreign dirtying events and initiating remote flushes on
4321 * them when local writeback isn't enough to keep the memory clean enough.
4322 *
4323 * The following two functions implement such mechanism. When a foreign
4324 * page - a page whose memcg and writeback ownerships don't match - is
4325 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4326 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4327 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4328 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4329 * foreign bdi_writebacks which haven't expired. Both the numbers of
4330 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4331 * limited to MEMCG_CGWB_FRN_CNT.
4332 *
4333 * The mechanism only remembers IDs and doesn't hold any object references.
4334 * As being wrong occasionally doesn't matter, updates and accesses to the
4335 * records are lockless and racy.
4336 */
4337 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4338 struct bdi_writeback *wb)
4339 {
4340 struct mem_cgroup *memcg = page->mem_cgroup;
4341 struct memcg_cgwb_frn *frn;
4342 u64 now = get_jiffies_64();
4343 u64 oldest_at = now;
4344 int oldest = -1;
4345 int i;
4346
4347 trace_track_foreign_dirty(page, wb);
4348
4349 /*
4350 * Pick the slot to use. If there is already a slot for @wb, keep
4351 * using it. If not replace the oldest one which isn't being
4352 * written out.
4353 */
4354 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4355 frn = &memcg->cgwb_frn[i];
4356 if (frn->bdi_id == wb->bdi->id &&
4357 frn->memcg_id == wb->memcg_css->id)
4358 break;
4359 if (time_before64(frn->at, oldest_at) &&
4360 atomic_read(&frn->done.cnt) == 1) {
4361 oldest = i;
4362 oldest_at = frn->at;
4363 }
4364 }
4365
4366 if (i < MEMCG_CGWB_FRN_CNT) {
4367 /*
4368 * Re-using an existing one. Update timestamp lazily to
4369 * avoid making the cacheline hot. We want them to be
4370 * reasonably up-to-date and significantly shorter than
4371 * dirty_expire_interval as that's what expires the record.
4372 * Use the shorter of 1s and dirty_expire_interval / 8.
4373 */
4374 unsigned long update_intv =
4375 min_t(unsigned long, HZ,
4376 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4377
4378 if (time_before64(frn->at, now - update_intv))
4379 frn->at = now;
4380 } else if (oldest >= 0) {
4381 /* replace the oldest free one */
4382 frn = &memcg->cgwb_frn[oldest];
4383 frn->bdi_id = wb->bdi->id;
4384 frn->memcg_id = wb->memcg_css->id;
4385 frn->at = now;
4386 }
4387 }
4388
4389 /* issue foreign writeback flushes for recorded foreign dirtying events */
4390 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4391 {
4392 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4393 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4394 u64 now = jiffies_64;
4395 int i;
4396
4397 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4398 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4399
4400 /*
4401 * If the record is older than dirty_expire_interval,
4402 * writeback on it has already started. No need to kick it
4403 * off again. Also, don't start a new one if there's
4404 * already one in flight.
4405 */
4406 if (time_after64(frn->at, now - intv) &&
4407 atomic_read(&frn->done.cnt) == 1) {
4408 frn->at = 0;
4409 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4410 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4411 WB_REASON_FOREIGN_FLUSH,
4412 &frn->done);
4413 }
4414 }
4415 }
4416
4417 #else /* CONFIG_CGROUP_WRITEBACK */
4418
4419 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4420 {
4421 return 0;
4422 }
4423
4424 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4425 {
4426 }
4427
4428 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4429 {
4430 }
4431
4432 #endif /* CONFIG_CGROUP_WRITEBACK */
4433
4434 /*
4435 * DO NOT USE IN NEW FILES.
4436 *
4437 * "cgroup.event_control" implementation.
4438 *
4439 * This is way over-engineered. It tries to support fully configurable
4440 * events for each user. Such level of flexibility is completely
4441 * unnecessary especially in the light of the planned unified hierarchy.
4442 *
4443 * Please deprecate this and replace with something simpler if at all
4444 * possible.
4445 */
4446
4447 /*
4448 * Unregister event and free resources.
4449 *
4450 * Gets called from workqueue.
4451 */
4452 static void memcg_event_remove(struct work_struct *work)
4453 {
4454 struct mem_cgroup_event *event =
4455 container_of(work, struct mem_cgroup_event, remove);
4456 struct mem_cgroup *memcg = event->memcg;
4457
4458 remove_wait_queue(event->wqh, &event->wait);
4459
4460 event->unregister_event(memcg, event->eventfd);
4461
4462 /* Notify userspace the event is going away. */
4463 eventfd_signal(event->eventfd, 1);
4464
4465 eventfd_ctx_put(event->eventfd);
4466 kfree(event);
4467 css_put(&memcg->css);
4468 }
4469
4470 /*
4471 * Gets called on EPOLLHUP on eventfd when user closes it.
4472 *
4473 * Called with wqh->lock held and interrupts disabled.
4474 */
4475 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4476 int sync, void *key)
4477 {
4478 struct mem_cgroup_event *event =
4479 container_of(wait, struct mem_cgroup_event, wait);
4480 struct mem_cgroup *memcg = event->memcg;
4481 __poll_t flags = key_to_poll(key);
4482
4483 if (flags & EPOLLHUP) {
4484 /*
4485 * If the event has been detached at cgroup removal, we
4486 * can simply return knowing the other side will cleanup
4487 * for us.
4488 *
4489 * We can't race against event freeing since the other
4490 * side will require wqh->lock via remove_wait_queue(),
4491 * which we hold.
4492 */
4493 spin_lock(&memcg->event_list_lock);
4494 if (!list_empty(&event->list)) {
4495 list_del_init(&event->list);
4496 /*
4497 * We are in atomic context, but cgroup_event_remove()
4498 * may sleep, so we have to call it in workqueue.
4499 */
4500 schedule_work(&event->remove);
4501 }
4502 spin_unlock(&memcg->event_list_lock);
4503 }
4504
4505 return 0;
4506 }
4507
4508 static void memcg_event_ptable_queue_proc(struct file *file,
4509 wait_queue_head_t *wqh, poll_table *pt)
4510 {
4511 struct mem_cgroup_event *event =
4512 container_of(pt, struct mem_cgroup_event, pt);
4513
4514 event->wqh = wqh;
4515 add_wait_queue(wqh, &event->wait);
4516 }
4517
4518 /*
4519 * DO NOT USE IN NEW FILES.
4520 *
4521 * Parse input and register new cgroup event handler.
4522 *
4523 * Input must be in format '<event_fd> <control_fd> <args>'.
4524 * Interpretation of args is defined by control file implementation.
4525 */
4526 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4527 char *buf, size_t nbytes, loff_t off)
4528 {
4529 struct cgroup_subsys_state *css = of_css(of);
4530 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4531 struct mem_cgroup_event *event;
4532 struct cgroup_subsys_state *cfile_css;
4533 unsigned int efd, cfd;
4534 struct fd efile;
4535 struct fd cfile;
4536 const char *name;
4537 char *endp;
4538 int ret;
4539
4540 buf = strstrip(buf);
4541
4542 efd = simple_strtoul(buf, &endp, 10);
4543 if (*endp != ' ')
4544 return -EINVAL;
4545 buf = endp + 1;
4546
4547 cfd = simple_strtoul(buf, &endp, 10);
4548 if ((*endp != ' ') && (*endp != '\0'))
4549 return -EINVAL;
4550 buf = endp + 1;
4551
4552 event = kzalloc(sizeof(*event), GFP_KERNEL);
4553 if (!event)
4554 return -ENOMEM;
4555
4556 event->memcg = memcg;
4557 INIT_LIST_HEAD(&event->list);
4558 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4559 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4560 INIT_WORK(&event->remove, memcg_event_remove);
4561
4562 efile = fdget(efd);
4563 if (!efile.file) {
4564 ret = -EBADF;
4565 goto out_kfree;
4566 }
4567
4568 event->eventfd = eventfd_ctx_fileget(efile.file);
4569 if (IS_ERR(event->eventfd)) {
4570 ret = PTR_ERR(event->eventfd);
4571 goto out_put_efile;
4572 }
4573
4574 cfile = fdget(cfd);
4575 if (!cfile.file) {
4576 ret = -EBADF;
4577 goto out_put_eventfd;
4578 }
4579
4580 /* the process need read permission on control file */
4581 /* AV: shouldn't we check that it's been opened for read instead? */
4582 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4583 if (ret < 0)
4584 goto out_put_cfile;
4585
4586 /*
4587 * Determine the event callbacks and set them in @event. This used
4588 * to be done via struct cftype but cgroup core no longer knows
4589 * about these events. The following is crude but the whole thing
4590 * is for compatibility anyway.
4591 *
4592 * DO NOT ADD NEW FILES.
4593 */
4594 name = cfile.file->f_path.dentry->d_name.name;
4595
4596 if (!strcmp(name, "memory.usage_in_bytes")) {
4597 event->register_event = mem_cgroup_usage_register_event;
4598 event->unregister_event = mem_cgroup_usage_unregister_event;
4599 } else if (!strcmp(name, "memory.oom_control")) {
4600 event->register_event = mem_cgroup_oom_register_event;
4601 event->unregister_event = mem_cgroup_oom_unregister_event;
4602 } else if (!strcmp(name, "memory.pressure_level")) {
4603 event->register_event = vmpressure_register_event;
4604 event->unregister_event = vmpressure_unregister_event;
4605 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4606 event->register_event = memsw_cgroup_usage_register_event;
4607 event->unregister_event = memsw_cgroup_usage_unregister_event;
4608 } else {
4609 ret = -EINVAL;
4610 goto out_put_cfile;
4611 }
4612
4613 /*
4614 * Verify @cfile should belong to @css. Also, remaining events are
4615 * automatically removed on cgroup destruction but the removal is
4616 * asynchronous, so take an extra ref on @css.
4617 */
4618 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4619 &memory_cgrp_subsys);
4620 ret = -EINVAL;
4621 if (IS_ERR(cfile_css))
4622 goto out_put_cfile;
4623 if (cfile_css != css) {
4624 css_put(cfile_css);
4625 goto out_put_cfile;
4626 }
4627
4628 ret = event->register_event(memcg, event->eventfd, buf);
4629 if (ret)
4630 goto out_put_css;
4631
4632 vfs_poll(efile.file, &event->pt);
4633
4634 spin_lock(&memcg->event_list_lock);
4635 list_add(&event->list, &memcg->event_list);
4636 spin_unlock(&memcg->event_list_lock);
4637
4638 fdput(cfile);
4639 fdput(efile);
4640
4641 return nbytes;
4642
4643 out_put_css:
4644 css_put(css);
4645 out_put_cfile:
4646 fdput(cfile);
4647 out_put_eventfd:
4648 eventfd_ctx_put(event->eventfd);
4649 out_put_efile:
4650 fdput(efile);
4651 out_kfree:
4652 kfree(event);
4653
4654 return ret;
4655 }
4656
4657 static struct cftype mem_cgroup_legacy_files[] = {
4658 {
4659 .name = "usage_in_bytes",
4660 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4661 .read_u64 = mem_cgroup_read_u64,
4662 },
4663 {
4664 .name = "max_usage_in_bytes",
4665 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4666 .write = mem_cgroup_reset,
4667 .read_u64 = mem_cgroup_read_u64,
4668 },
4669 {
4670 .name = "limit_in_bytes",
4671 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4672 .write = mem_cgroup_write,
4673 .read_u64 = mem_cgroup_read_u64,
4674 },
4675 {
4676 .name = "soft_limit_in_bytes",
4677 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4678 .write = mem_cgroup_write,
4679 .read_u64 = mem_cgroup_read_u64,
4680 },
4681 {
4682 .name = "failcnt",
4683 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4684 .write = mem_cgroup_reset,
4685 .read_u64 = mem_cgroup_read_u64,
4686 },
4687 {
4688 .name = "stat",
4689 .seq_show = memcg_stat_show,
4690 },
4691 {
4692 .name = "force_empty",
4693 .write = mem_cgroup_force_empty_write,
4694 },
4695 {
4696 .name = "use_hierarchy",
4697 .write_u64 = mem_cgroup_hierarchy_write,
4698 .read_u64 = mem_cgroup_hierarchy_read,
4699 },
4700 {
4701 .name = "cgroup.event_control", /* XXX: for compat */
4702 .write = memcg_write_event_control,
4703 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4704 },
4705 {
4706 .name = "swappiness",
4707 .read_u64 = mem_cgroup_swappiness_read,
4708 .write_u64 = mem_cgroup_swappiness_write,
4709 },
4710 {
4711 .name = "move_charge_at_immigrate",
4712 .read_u64 = mem_cgroup_move_charge_read,
4713 .write_u64 = mem_cgroup_move_charge_write,
4714 },
4715 {
4716 .name = "oom_control",
4717 .seq_show = mem_cgroup_oom_control_read,
4718 .write_u64 = mem_cgroup_oom_control_write,
4719 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4720 },
4721 {
4722 .name = "pressure_level",
4723 },
4724 #ifdef CONFIG_NUMA
4725 {
4726 .name = "numa_stat",
4727 .seq_show = memcg_numa_stat_show,
4728 },
4729 #endif
4730 {
4731 .name = "kmem.limit_in_bytes",
4732 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4733 .write = mem_cgroup_write,
4734 .read_u64 = mem_cgroup_read_u64,
4735 },
4736 {
4737 .name = "kmem.usage_in_bytes",
4738 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4739 .read_u64 = mem_cgroup_read_u64,
4740 },
4741 {
4742 .name = "kmem.failcnt",
4743 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4744 .write = mem_cgroup_reset,
4745 .read_u64 = mem_cgroup_read_u64,
4746 },
4747 {
4748 .name = "kmem.max_usage_in_bytes",
4749 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4750 .write = mem_cgroup_reset,
4751 .read_u64 = mem_cgroup_read_u64,
4752 },
4753 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4754 {
4755 .name = "kmem.slabinfo",
4756 .seq_start = memcg_slab_start,
4757 .seq_next = memcg_slab_next,
4758 .seq_stop = memcg_slab_stop,
4759 .seq_show = memcg_slab_show,
4760 },
4761 #endif
4762 {
4763 .name = "kmem.tcp.limit_in_bytes",
4764 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4765 .write = mem_cgroup_write,
4766 .read_u64 = mem_cgroup_read_u64,
4767 },
4768 {
4769 .name = "kmem.tcp.usage_in_bytes",
4770 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4771 .read_u64 = mem_cgroup_read_u64,
4772 },
4773 {
4774 .name = "kmem.tcp.failcnt",
4775 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4776 .write = mem_cgroup_reset,
4777 .read_u64 = mem_cgroup_read_u64,
4778 },
4779 {
4780 .name = "kmem.tcp.max_usage_in_bytes",
4781 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4782 .write = mem_cgroup_reset,
4783 .read_u64 = mem_cgroup_read_u64,
4784 },
4785 { }, /* terminate */
4786 };
4787
4788 /*
4789 * Private memory cgroup IDR
4790 *
4791 * Swap-out records and page cache shadow entries need to store memcg
4792 * references in constrained space, so we maintain an ID space that is
4793 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4794 * memory-controlled cgroups to 64k.
4795 *
4796 * However, there usually are many references to the oflline CSS after
4797 * the cgroup has been destroyed, such as page cache or reclaimable
4798 * slab objects, that don't need to hang on to the ID. We want to keep
4799 * those dead CSS from occupying IDs, or we might quickly exhaust the
4800 * relatively small ID space and prevent the creation of new cgroups
4801 * even when there are much fewer than 64k cgroups - possibly none.
4802 *
4803 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4804 * be freed and recycled when it's no longer needed, which is usually
4805 * when the CSS is offlined.
4806 *
4807 * The only exception to that are records of swapped out tmpfs/shmem
4808 * pages that need to be attributed to live ancestors on swapin. But
4809 * those references are manageable from userspace.
4810 */
4811
4812 static DEFINE_IDR(mem_cgroup_idr);
4813
4814 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4815 {
4816 if (memcg->id.id > 0) {
4817 idr_remove(&mem_cgroup_idr, memcg->id.id);
4818 memcg->id.id = 0;
4819 }
4820 }
4821
4822 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4823 {
4824 refcount_add(n, &memcg->id.ref);
4825 }
4826
4827 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4828 {
4829 if (refcount_sub_and_test(n, &memcg->id.ref)) {
4830 mem_cgroup_id_remove(memcg);
4831
4832 /* Memcg ID pins CSS */
4833 css_put(&memcg->css);
4834 }
4835 }
4836
4837 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4838 {
4839 mem_cgroup_id_put_many(memcg, 1);
4840 }
4841
4842 /**
4843 * mem_cgroup_from_id - look up a memcg from a memcg id
4844 * @id: the memcg id to look up
4845 *
4846 * Caller must hold rcu_read_lock().
4847 */
4848 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4849 {
4850 WARN_ON_ONCE(!rcu_read_lock_held());
4851 return idr_find(&mem_cgroup_idr, id);
4852 }
4853
4854 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4855 {
4856 struct mem_cgroup_per_node *pn;
4857 int tmp = node;
4858 /*
4859 * This routine is called against possible nodes.
4860 * But it's BUG to call kmalloc() against offline node.
4861 *
4862 * TODO: this routine can waste much memory for nodes which will
4863 * never be onlined. It's better to use memory hotplug callback
4864 * function.
4865 */
4866 if (!node_state(node, N_NORMAL_MEMORY))
4867 tmp = -1;
4868 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4869 if (!pn)
4870 return 1;
4871
4872 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4873 if (!pn->lruvec_stat_local) {
4874 kfree(pn);
4875 return 1;
4876 }
4877
4878 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4879 if (!pn->lruvec_stat_cpu) {
4880 free_percpu(pn->lruvec_stat_local);
4881 kfree(pn);
4882 return 1;
4883 }
4884
4885 lruvec_init(&pn->lruvec);
4886 pn->usage_in_excess = 0;
4887 pn->on_tree = false;
4888 pn->memcg = memcg;
4889
4890 memcg->nodeinfo[node] = pn;
4891 return 0;
4892 }
4893
4894 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4895 {
4896 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4897
4898 if (!pn)
4899 return;
4900
4901 free_percpu(pn->lruvec_stat_cpu);
4902 free_percpu(pn->lruvec_stat_local);
4903 kfree(pn);
4904 }
4905
4906 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4907 {
4908 int node;
4909
4910 for_each_node(node)
4911 free_mem_cgroup_per_node_info(memcg, node);
4912 free_percpu(memcg->vmstats_percpu);
4913 free_percpu(memcg->vmstats_local);
4914 kfree(memcg);
4915 }
4916
4917 static void mem_cgroup_free(struct mem_cgroup *memcg)
4918 {
4919 memcg_wb_domain_exit(memcg);
4920 /*
4921 * Flush percpu vmstats and vmevents to guarantee the value correctness
4922 * on parent's and all ancestor levels.
4923 */
4924 memcg_flush_percpu_vmstats(memcg, false);
4925 memcg_flush_percpu_vmevents(memcg);
4926 __mem_cgroup_free(memcg);
4927 }
4928
4929 static struct mem_cgroup *mem_cgroup_alloc(void)
4930 {
4931 struct mem_cgroup *memcg;
4932 unsigned int size;
4933 int node;
4934 int __maybe_unused i;
4935
4936 size = sizeof(struct mem_cgroup);
4937 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4938
4939 memcg = kzalloc(size, GFP_KERNEL);
4940 if (!memcg)
4941 return NULL;
4942
4943 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4944 1, MEM_CGROUP_ID_MAX,
4945 GFP_KERNEL);
4946 if (memcg->id.id < 0)
4947 goto fail;
4948
4949 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4950 if (!memcg->vmstats_local)
4951 goto fail;
4952
4953 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4954 if (!memcg->vmstats_percpu)
4955 goto fail;
4956
4957 for_each_node(node)
4958 if (alloc_mem_cgroup_per_node_info(memcg, node))
4959 goto fail;
4960
4961 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4962 goto fail;
4963
4964 INIT_WORK(&memcg->high_work, high_work_func);
4965 INIT_LIST_HEAD(&memcg->oom_notify);
4966 mutex_init(&memcg->thresholds_lock);
4967 spin_lock_init(&memcg->move_lock);
4968 vmpressure_init(&memcg->vmpressure);
4969 INIT_LIST_HEAD(&memcg->event_list);
4970 spin_lock_init(&memcg->event_list_lock);
4971 memcg->socket_pressure = jiffies;
4972 #ifdef CONFIG_MEMCG_KMEM
4973 memcg->kmemcg_id = -1;
4974 #endif
4975 #ifdef CONFIG_CGROUP_WRITEBACK
4976 INIT_LIST_HEAD(&memcg->cgwb_list);
4977 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
4978 memcg->cgwb_frn[i].done =
4979 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
4980 #endif
4981 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4982 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
4983 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
4984 memcg->deferred_split_queue.split_queue_len = 0;
4985 #endif
4986 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4987 return memcg;
4988 fail:
4989 mem_cgroup_id_remove(memcg);
4990 __mem_cgroup_free(memcg);
4991 return NULL;
4992 }
4993
4994 static struct cgroup_subsys_state * __ref
4995 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4996 {
4997 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4998 struct mem_cgroup *memcg;
4999 long error = -ENOMEM;
5000
5001 memcg = mem_cgroup_alloc();
5002 if (!memcg)
5003 return ERR_PTR(error);
5004
5005 memcg->high = PAGE_COUNTER_MAX;
5006 memcg->soft_limit = PAGE_COUNTER_MAX;
5007 if (parent) {
5008 memcg->swappiness = mem_cgroup_swappiness(parent);
5009 memcg->oom_kill_disable = parent->oom_kill_disable;
5010 }
5011 if (parent && parent->use_hierarchy) {
5012 memcg->use_hierarchy = true;
5013 page_counter_init(&memcg->memory, &parent->memory);
5014 page_counter_init(&memcg->swap, &parent->swap);
5015 page_counter_init(&memcg->memsw, &parent->memsw);
5016 page_counter_init(&memcg->kmem, &parent->kmem);
5017 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5018 } else {
5019 page_counter_init(&memcg->memory, NULL);
5020 page_counter_init(&memcg->swap, NULL);
5021 page_counter_init(&memcg->memsw, NULL);
5022 page_counter_init(&memcg->kmem, NULL);
5023 page_counter_init(&memcg->tcpmem, NULL);
5024 /*
5025 * Deeper hierachy with use_hierarchy == false doesn't make
5026 * much sense so let cgroup subsystem know about this
5027 * unfortunate state in our controller.
5028 */
5029 if (parent != root_mem_cgroup)
5030 memory_cgrp_subsys.broken_hierarchy = true;
5031 }
5032
5033 /* The following stuff does not apply to the root */
5034 if (!parent) {
5035 #ifdef CONFIG_MEMCG_KMEM
5036 INIT_LIST_HEAD(&memcg->kmem_caches);
5037 #endif
5038 root_mem_cgroup = memcg;
5039 return &memcg->css;
5040 }
5041
5042 error = memcg_online_kmem(memcg);
5043 if (error)
5044 goto fail;
5045
5046 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5047 static_branch_inc(&memcg_sockets_enabled_key);
5048
5049 return &memcg->css;
5050 fail:
5051 mem_cgroup_id_remove(memcg);
5052 mem_cgroup_free(memcg);
5053 return ERR_PTR(-ENOMEM);
5054 }
5055
5056 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5057 {
5058 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5059
5060 /*
5061 * A memcg must be visible for memcg_expand_shrinker_maps()
5062 * by the time the maps are allocated. So, we allocate maps
5063 * here, when for_each_mem_cgroup() can't skip it.
5064 */
5065 if (memcg_alloc_shrinker_maps(memcg)) {
5066 mem_cgroup_id_remove(memcg);
5067 return -ENOMEM;
5068 }
5069
5070 /* Online state pins memcg ID, memcg ID pins CSS */
5071 refcount_set(&memcg->id.ref, 1);
5072 css_get(css);
5073 return 0;
5074 }
5075
5076 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5077 {
5078 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5079 struct mem_cgroup_event *event, *tmp;
5080
5081 /*
5082 * Unregister events and notify userspace.
5083 * Notify userspace about cgroup removing only after rmdir of cgroup
5084 * directory to avoid race between userspace and kernelspace.
5085 */
5086 spin_lock(&memcg->event_list_lock);
5087 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5088 list_del_init(&event->list);
5089 schedule_work(&event->remove);
5090 }
5091 spin_unlock(&memcg->event_list_lock);
5092
5093 page_counter_set_min(&memcg->memory, 0);
5094 page_counter_set_low(&memcg->memory, 0);
5095
5096 memcg_offline_kmem(memcg);
5097 wb_memcg_offline(memcg);
5098
5099 drain_all_stock(memcg);
5100
5101 mem_cgroup_id_put(memcg);
5102 }
5103
5104 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5105 {
5106 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5107
5108 invalidate_reclaim_iterators(memcg);
5109 }
5110
5111 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5112 {
5113 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5114 int __maybe_unused i;
5115
5116 #ifdef CONFIG_CGROUP_WRITEBACK
5117 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5118 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5119 #endif
5120 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5121 static_branch_dec(&memcg_sockets_enabled_key);
5122
5123 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5124 static_branch_dec(&memcg_sockets_enabled_key);
5125
5126 vmpressure_cleanup(&memcg->vmpressure);
5127 cancel_work_sync(&memcg->high_work);
5128 mem_cgroup_remove_from_trees(memcg);
5129 memcg_free_shrinker_maps(memcg);
5130 memcg_free_kmem(memcg);
5131 mem_cgroup_free(memcg);
5132 }
5133
5134 /**
5135 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5136 * @css: the target css
5137 *
5138 * Reset the states of the mem_cgroup associated with @css. This is
5139 * invoked when the userland requests disabling on the default hierarchy
5140 * but the memcg is pinned through dependency. The memcg should stop
5141 * applying policies and should revert to the vanilla state as it may be
5142 * made visible again.
5143 *
5144 * The current implementation only resets the essential configurations.
5145 * This needs to be expanded to cover all the visible parts.
5146 */
5147 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5148 {
5149 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5150
5151 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5152 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5153 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5154 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5155 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5156 page_counter_set_min(&memcg->memory, 0);
5157 page_counter_set_low(&memcg->memory, 0);
5158 memcg->high = PAGE_COUNTER_MAX;
5159 memcg->soft_limit = PAGE_COUNTER_MAX;
5160 memcg_wb_domain_size_changed(memcg);
5161 }
5162
5163 #ifdef CONFIG_MMU
5164 /* Handlers for move charge at task migration. */
5165 static int mem_cgroup_do_precharge(unsigned long count)
5166 {
5167 int ret;
5168
5169 /* Try a single bulk charge without reclaim first, kswapd may wake */
5170 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5171 if (!ret) {
5172 mc.precharge += count;
5173 return ret;
5174 }
5175
5176 /* Try charges one by one with reclaim, but do not retry */
5177 while (count--) {
5178 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5179 if (ret)
5180 return ret;
5181 mc.precharge++;
5182 cond_resched();
5183 }
5184 return 0;
5185 }
5186
5187 union mc_target {
5188 struct page *page;
5189 swp_entry_t ent;
5190 };
5191
5192 enum mc_target_type {
5193 MC_TARGET_NONE = 0,
5194 MC_TARGET_PAGE,
5195 MC_TARGET_SWAP,
5196 MC_TARGET_DEVICE,
5197 };
5198
5199 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5200 unsigned long addr, pte_t ptent)
5201 {
5202 struct page *page = vm_normal_page(vma, addr, ptent);
5203
5204 if (!page || !page_mapped(page))
5205 return NULL;
5206 if (PageAnon(page)) {
5207 if (!(mc.flags & MOVE_ANON))
5208 return NULL;
5209 } else {
5210 if (!(mc.flags & MOVE_FILE))
5211 return NULL;
5212 }
5213 if (!get_page_unless_zero(page))
5214 return NULL;
5215
5216 return page;
5217 }
5218
5219 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5220 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5221 pte_t ptent, swp_entry_t *entry)
5222 {
5223 struct page *page = NULL;
5224 swp_entry_t ent = pte_to_swp_entry(ptent);
5225
5226 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5227 return NULL;
5228
5229 /*
5230 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5231 * a device and because they are not accessible by CPU they are store
5232 * as special swap entry in the CPU page table.
5233 */
5234 if (is_device_private_entry(ent)) {
5235 page = device_private_entry_to_page(ent);
5236 /*
5237 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5238 * a refcount of 1 when free (unlike normal page)
5239 */
5240 if (!page_ref_add_unless(page, 1, 1))
5241 return NULL;
5242 return page;
5243 }
5244
5245 /*
5246 * Because lookup_swap_cache() updates some statistics counter,
5247 * we call find_get_page() with swapper_space directly.
5248 */
5249 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5250 if (do_memsw_account())
5251 entry->val = ent.val;
5252
5253 return page;
5254 }
5255 #else
5256 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5257 pte_t ptent, swp_entry_t *entry)
5258 {
5259 return NULL;
5260 }
5261 #endif
5262
5263 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5264 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5265 {
5266 struct page *page = NULL;
5267 struct address_space *mapping;
5268 pgoff_t pgoff;
5269
5270 if (!vma->vm_file) /* anonymous vma */
5271 return NULL;
5272 if (!(mc.flags & MOVE_FILE))
5273 return NULL;
5274
5275 mapping = vma->vm_file->f_mapping;
5276 pgoff = linear_page_index(vma, addr);
5277
5278 /* page is moved even if it's not RSS of this task(page-faulted). */
5279 #ifdef CONFIG_SWAP
5280 /* shmem/tmpfs may report page out on swap: account for that too. */
5281 if (shmem_mapping(mapping)) {
5282 page = find_get_entry(mapping, pgoff);
5283 if (xa_is_value(page)) {
5284 swp_entry_t swp = radix_to_swp_entry(page);
5285 if (do_memsw_account())
5286 *entry = swp;
5287 page = find_get_page(swap_address_space(swp),
5288 swp_offset(swp));
5289 }
5290 } else
5291 page = find_get_page(mapping, pgoff);
5292 #else
5293 page = find_get_page(mapping, pgoff);
5294 #endif
5295 return page;
5296 }
5297
5298 /**
5299 * mem_cgroup_move_account - move account of the page
5300 * @page: the page
5301 * @compound: charge the page as compound or small page
5302 * @from: mem_cgroup which the page is moved from.
5303 * @to: mem_cgroup which the page is moved to. @from != @to.
5304 *
5305 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5306 *
5307 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5308 * from old cgroup.
5309 */
5310 static int mem_cgroup_move_account(struct page *page,
5311 bool compound,
5312 struct mem_cgroup *from,
5313 struct mem_cgroup *to)
5314 {
5315 struct lruvec *from_vec, *to_vec;
5316 struct pglist_data *pgdat;
5317 unsigned long flags;
5318 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5319 int ret;
5320 bool anon;
5321
5322 VM_BUG_ON(from == to);
5323 VM_BUG_ON_PAGE(PageLRU(page), page);
5324 VM_BUG_ON(compound && !PageTransHuge(page));
5325
5326 /*
5327 * Prevent mem_cgroup_migrate() from looking at
5328 * page->mem_cgroup of its source page while we change it.
5329 */
5330 ret = -EBUSY;
5331 if (!trylock_page(page))
5332 goto out;
5333
5334 ret = -EINVAL;
5335 if (page->mem_cgroup != from)
5336 goto out_unlock;
5337
5338 anon = PageAnon(page);
5339
5340 pgdat = page_pgdat(page);
5341 from_vec = mem_cgroup_lruvec(from, pgdat);
5342 to_vec = mem_cgroup_lruvec(to, pgdat);
5343
5344 spin_lock_irqsave(&from->move_lock, flags);
5345
5346 if (!anon && page_mapped(page)) {
5347 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5348 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5349 }
5350
5351 /*
5352 * move_lock grabbed above and caller set from->moving_account, so
5353 * mod_memcg_page_state will serialize updates to PageDirty.
5354 * So mapping should be stable for dirty pages.
5355 */
5356 if (!anon && PageDirty(page)) {
5357 struct address_space *mapping = page_mapping(page);
5358
5359 if (mapping_cap_account_dirty(mapping)) {
5360 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5361 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
5362 }
5363 }
5364
5365 if (PageWriteback(page)) {
5366 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5367 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5368 }
5369
5370 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5371 if (compound && !list_empty(page_deferred_list(page))) {
5372 spin_lock(&from->deferred_split_queue.split_queue_lock);
5373 list_del_init(page_deferred_list(page));
5374 from->deferred_split_queue.split_queue_len--;
5375 spin_unlock(&from->deferred_split_queue.split_queue_lock);
5376 }
5377 #endif
5378 /*
5379 * It is safe to change page->mem_cgroup here because the page
5380 * is referenced, charged, and isolated - we can't race with
5381 * uncharging, charging, migration, or LRU putback.
5382 */
5383
5384 /* caller should have done css_get */
5385 page->mem_cgroup = to;
5386
5387 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5388 if (compound && list_empty(page_deferred_list(page))) {
5389 spin_lock(&to->deferred_split_queue.split_queue_lock);
5390 list_add_tail(page_deferred_list(page),
5391 &to->deferred_split_queue.split_queue);
5392 to->deferred_split_queue.split_queue_len++;
5393 spin_unlock(&to->deferred_split_queue.split_queue_lock);
5394 }
5395 #endif
5396
5397 spin_unlock_irqrestore(&from->move_lock, flags);
5398
5399 ret = 0;
5400
5401 local_irq_disable();
5402 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5403 memcg_check_events(to, page);
5404 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5405 memcg_check_events(from, page);
5406 local_irq_enable();
5407 out_unlock:
5408 unlock_page(page);
5409 out:
5410 return ret;
5411 }
5412
5413 /**
5414 * get_mctgt_type - get target type of moving charge
5415 * @vma: the vma the pte to be checked belongs
5416 * @addr: the address corresponding to the pte to be checked
5417 * @ptent: the pte to be checked
5418 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5419 *
5420 * Returns
5421 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5422 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5423 * move charge. if @target is not NULL, the page is stored in target->page
5424 * with extra refcnt got(Callers should handle it).
5425 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5426 * target for charge migration. if @target is not NULL, the entry is stored
5427 * in target->ent.
5428 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5429 * (so ZONE_DEVICE page and thus not on the lru).
5430 * For now we such page is charge like a regular page would be as for all
5431 * intent and purposes it is just special memory taking the place of a
5432 * regular page.
5433 *
5434 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5435 *
5436 * Called with pte lock held.
5437 */
5438
5439 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5440 unsigned long addr, pte_t ptent, union mc_target *target)
5441 {
5442 struct page *page = NULL;
5443 enum mc_target_type ret = MC_TARGET_NONE;
5444 swp_entry_t ent = { .val = 0 };
5445
5446 if (pte_present(ptent))
5447 page = mc_handle_present_pte(vma, addr, ptent);
5448 else if (is_swap_pte(ptent))
5449 page = mc_handle_swap_pte(vma, ptent, &ent);
5450 else if (pte_none(ptent))
5451 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5452
5453 if (!page && !ent.val)
5454 return ret;
5455 if (page) {
5456 /*
5457 * Do only loose check w/o serialization.
5458 * mem_cgroup_move_account() checks the page is valid or
5459 * not under LRU exclusion.
5460 */
5461 if (page->mem_cgroup == mc.from) {
5462 ret = MC_TARGET_PAGE;
5463 if (is_device_private_page(page))
5464 ret = MC_TARGET_DEVICE;
5465 if (target)
5466 target->page = page;
5467 }
5468 if (!ret || !target)
5469 put_page(page);
5470 }
5471 /*
5472 * There is a swap entry and a page doesn't exist or isn't charged.
5473 * But we cannot move a tail-page in a THP.
5474 */
5475 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5476 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5477 ret = MC_TARGET_SWAP;
5478 if (target)
5479 target->ent = ent;
5480 }
5481 return ret;
5482 }
5483
5484 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5485 /*
5486 * We don't consider PMD mapped swapping or file mapped pages because THP does
5487 * not support them for now.
5488 * Caller should make sure that pmd_trans_huge(pmd) is true.
5489 */
5490 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5491 unsigned long addr, pmd_t pmd, union mc_target *target)
5492 {
5493 struct page *page = NULL;
5494 enum mc_target_type ret = MC_TARGET_NONE;
5495
5496 if (unlikely(is_swap_pmd(pmd))) {
5497 VM_BUG_ON(thp_migration_supported() &&
5498 !is_pmd_migration_entry(pmd));
5499 return ret;
5500 }
5501 page = pmd_page(pmd);
5502 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5503 if (!(mc.flags & MOVE_ANON))
5504 return ret;
5505 if (page->mem_cgroup == mc.from) {
5506 ret = MC_TARGET_PAGE;
5507 if (target) {
5508 get_page(page);
5509 target->page = page;
5510 }
5511 }
5512 return ret;
5513 }
5514 #else
5515 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5516 unsigned long addr, pmd_t pmd, union mc_target *target)
5517 {
5518 return MC_TARGET_NONE;
5519 }
5520 #endif
5521
5522 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5523 unsigned long addr, unsigned long end,
5524 struct mm_walk *walk)
5525 {
5526 struct vm_area_struct *vma = walk->vma;
5527 pte_t *pte;
5528 spinlock_t *ptl;
5529
5530 ptl = pmd_trans_huge_lock(pmd, vma);
5531 if (ptl) {
5532 /*
5533 * Note their can not be MC_TARGET_DEVICE for now as we do not
5534 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5535 * this might change.
5536 */
5537 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5538 mc.precharge += HPAGE_PMD_NR;
5539 spin_unlock(ptl);
5540 return 0;
5541 }
5542
5543 if (pmd_trans_unstable(pmd))
5544 return 0;
5545 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5546 for (; addr != end; pte++, addr += PAGE_SIZE)
5547 if (get_mctgt_type(vma, addr, *pte, NULL))
5548 mc.precharge++; /* increment precharge temporarily */
5549 pte_unmap_unlock(pte - 1, ptl);
5550 cond_resched();
5551
5552 return 0;
5553 }
5554
5555 static const struct mm_walk_ops precharge_walk_ops = {
5556 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5557 };
5558
5559 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5560 {
5561 unsigned long precharge;
5562
5563 down_read(&mm->mmap_sem);
5564 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5565 up_read(&mm->mmap_sem);
5566
5567 precharge = mc.precharge;
5568 mc.precharge = 0;
5569
5570 return precharge;
5571 }
5572
5573 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5574 {
5575 unsigned long precharge = mem_cgroup_count_precharge(mm);
5576
5577 VM_BUG_ON(mc.moving_task);
5578 mc.moving_task = current;
5579 return mem_cgroup_do_precharge(precharge);
5580 }
5581
5582 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5583 static void __mem_cgroup_clear_mc(void)
5584 {
5585 struct mem_cgroup *from = mc.from;
5586 struct mem_cgroup *to = mc.to;
5587
5588 /* we must uncharge all the leftover precharges from mc.to */
5589 if (mc.precharge) {
5590 cancel_charge(mc.to, mc.precharge);
5591 mc.precharge = 0;
5592 }
5593 /*
5594 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5595 * we must uncharge here.
5596 */
5597 if (mc.moved_charge) {
5598 cancel_charge(mc.from, mc.moved_charge);
5599 mc.moved_charge = 0;
5600 }
5601 /* we must fixup refcnts and charges */
5602 if (mc.moved_swap) {
5603 /* uncharge swap account from the old cgroup */
5604 if (!mem_cgroup_is_root(mc.from))
5605 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5606
5607 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5608
5609 /*
5610 * we charged both to->memory and to->memsw, so we
5611 * should uncharge to->memory.
5612 */
5613 if (!mem_cgroup_is_root(mc.to))
5614 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5615
5616 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5617 css_put_many(&mc.to->css, mc.moved_swap);
5618
5619 mc.moved_swap = 0;
5620 }
5621 memcg_oom_recover(from);
5622 memcg_oom_recover(to);
5623 wake_up_all(&mc.waitq);
5624 }
5625
5626 static void mem_cgroup_clear_mc(void)
5627 {
5628 struct mm_struct *mm = mc.mm;
5629
5630 /*
5631 * we must clear moving_task before waking up waiters at the end of
5632 * task migration.
5633 */
5634 mc.moving_task = NULL;
5635 __mem_cgroup_clear_mc();
5636 spin_lock(&mc.lock);
5637 mc.from = NULL;
5638 mc.to = NULL;
5639 mc.mm = NULL;
5640 spin_unlock(&mc.lock);
5641
5642 mmput(mm);
5643 }
5644
5645 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5646 {
5647 struct cgroup_subsys_state *css;
5648 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5649 struct mem_cgroup *from;
5650 struct task_struct *leader, *p;
5651 struct mm_struct *mm;
5652 unsigned long move_flags;
5653 int ret = 0;
5654
5655 /* charge immigration isn't supported on the default hierarchy */
5656 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5657 return 0;
5658
5659 /*
5660 * Multi-process migrations only happen on the default hierarchy
5661 * where charge immigration is not used. Perform charge
5662 * immigration if @tset contains a leader and whine if there are
5663 * multiple.
5664 */
5665 p = NULL;
5666 cgroup_taskset_for_each_leader(leader, css, tset) {
5667 WARN_ON_ONCE(p);
5668 p = leader;
5669 memcg = mem_cgroup_from_css(css);
5670 }
5671 if (!p)
5672 return 0;
5673
5674 /*
5675 * We are now commited to this value whatever it is. Changes in this
5676 * tunable will only affect upcoming migrations, not the current one.
5677 * So we need to save it, and keep it going.
5678 */
5679 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5680 if (!move_flags)
5681 return 0;
5682
5683 from = mem_cgroup_from_task(p);
5684
5685 VM_BUG_ON(from == memcg);
5686
5687 mm = get_task_mm(p);
5688 if (!mm)
5689 return 0;
5690 /* We move charges only when we move a owner of the mm */
5691 if (mm->owner == p) {
5692 VM_BUG_ON(mc.from);
5693 VM_BUG_ON(mc.to);
5694 VM_BUG_ON(mc.precharge);
5695 VM_BUG_ON(mc.moved_charge);
5696 VM_BUG_ON(mc.moved_swap);
5697
5698 spin_lock(&mc.lock);
5699 mc.mm = mm;
5700 mc.from = from;
5701 mc.to = memcg;
5702 mc.flags = move_flags;
5703 spin_unlock(&mc.lock);
5704 /* We set mc.moving_task later */
5705
5706 ret = mem_cgroup_precharge_mc(mm);
5707 if (ret)
5708 mem_cgroup_clear_mc();
5709 } else {
5710 mmput(mm);
5711 }
5712 return ret;
5713 }
5714
5715 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5716 {
5717 if (mc.to)
5718 mem_cgroup_clear_mc();
5719 }
5720
5721 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5722 unsigned long addr, unsigned long end,
5723 struct mm_walk *walk)
5724 {
5725 int ret = 0;
5726 struct vm_area_struct *vma = walk->vma;
5727 pte_t *pte;
5728 spinlock_t *ptl;
5729 enum mc_target_type target_type;
5730 union mc_target target;
5731 struct page *page;
5732
5733 ptl = pmd_trans_huge_lock(pmd, vma);
5734 if (ptl) {
5735 if (mc.precharge < HPAGE_PMD_NR) {
5736 spin_unlock(ptl);
5737 return 0;
5738 }
5739 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5740 if (target_type == MC_TARGET_PAGE) {
5741 page = target.page;
5742 if (!isolate_lru_page(page)) {
5743 if (!mem_cgroup_move_account(page, true,
5744 mc.from, mc.to)) {
5745 mc.precharge -= HPAGE_PMD_NR;
5746 mc.moved_charge += HPAGE_PMD_NR;
5747 }
5748 putback_lru_page(page);
5749 }
5750 put_page(page);
5751 } else if (target_type == MC_TARGET_DEVICE) {
5752 page = target.page;
5753 if (!mem_cgroup_move_account(page, true,
5754 mc.from, mc.to)) {
5755 mc.precharge -= HPAGE_PMD_NR;
5756 mc.moved_charge += HPAGE_PMD_NR;
5757 }
5758 put_page(page);
5759 }
5760 spin_unlock(ptl);
5761 return 0;
5762 }
5763
5764 if (pmd_trans_unstable(pmd))
5765 return 0;
5766 retry:
5767 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5768 for (; addr != end; addr += PAGE_SIZE) {
5769 pte_t ptent = *(pte++);
5770 bool device = false;
5771 swp_entry_t ent;
5772
5773 if (!mc.precharge)
5774 break;
5775
5776 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5777 case MC_TARGET_DEVICE:
5778 device = true;
5779 /* fall through */
5780 case MC_TARGET_PAGE:
5781 page = target.page;
5782 /*
5783 * We can have a part of the split pmd here. Moving it
5784 * can be done but it would be too convoluted so simply
5785 * ignore such a partial THP and keep it in original
5786 * memcg. There should be somebody mapping the head.
5787 */
5788 if (PageTransCompound(page))
5789 goto put;
5790 if (!device && isolate_lru_page(page))
5791 goto put;
5792 if (!mem_cgroup_move_account(page, false,
5793 mc.from, mc.to)) {
5794 mc.precharge--;
5795 /* we uncharge from mc.from later. */
5796 mc.moved_charge++;
5797 }
5798 if (!device)
5799 putback_lru_page(page);
5800 put: /* get_mctgt_type() gets the page */
5801 put_page(page);
5802 break;
5803 case MC_TARGET_SWAP:
5804 ent = target.ent;
5805 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5806 mc.precharge--;
5807 /* we fixup refcnts and charges later. */
5808 mc.moved_swap++;
5809 }
5810 break;
5811 default:
5812 break;
5813 }
5814 }
5815 pte_unmap_unlock(pte - 1, ptl);
5816 cond_resched();
5817
5818 if (addr != end) {
5819 /*
5820 * We have consumed all precharges we got in can_attach().
5821 * We try charge one by one, but don't do any additional
5822 * charges to mc.to if we have failed in charge once in attach()
5823 * phase.
5824 */
5825 ret = mem_cgroup_do_precharge(1);
5826 if (!ret)
5827 goto retry;
5828 }
5829
5830 return ret;
5831 }
5832
5833 static const struct mm_walk_ops charge_walk_ops = {
5834 .pmd_entry = mem_cgroup_move_charge_pte_range,
5835 };
5836
5837 static void mem_cgroup_move_charge(void)
5838 {
5839 lru_add_drain_all();
5840 /*
5841 * Signal lock_page_memcg() to take the memcg's move_lock
5842 * while we're moving its pages to another memcg. Then wait
5843 * for already started RCU-only updates to finish.
5844 */
5845 atomic_inc(&mc.from->moving_account);
5846 synchronize_rcu();
5847 retry:
5848 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5849 /*
5850 * Someone who are holding the mmap_sem might be waiting in
5851 * waitq. So we cancel all extra charges, wake up all waiters,
5852 * and retry. Because we cancel precharges, we might not be able
5853 * to move enough charges, but moving charge is a best-effort
5854 * feature anyway, so it wouldn't be a big problem.
5855 */
5856 __mem_cgroup_clear_mc();
5857 cond_resched();
5858 goto retry;
5859 }
5860 /*
5861 * When we have consumed all precharges and failed in doing
5862 * additional charge, the page walk just aborts.
5863 */
5864 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5865 NULL);
5866
5867 up_read(&mc.mm->mmap_sem);
5868 atomic_dec(&mc.from->moving_account);
5869 }
5870
5871 static void mem_cgroup_move_task(void)
5872 {
5873 if (mc.to) {
5874 mem_cgroup_move_charge();
5875 mem_cgroup_clear_mc();
5876 }
5877 }
5878 #else /* !CONFIG_MMU */
5879 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5880 {
5881 return 0;
5882 }
5883 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5884 {
5885 }
5886 static void mem_cgroup_move_task(void)
5887 {
5888 }
5889 #endif
5890
5891 /*
5892 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5893 * to verify whether we're attached to the default hierarchy on each mount
5894 * attempt.
5895 */
5896 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5897 {
5898 /*
5899 * use_hierarchy is forced on the default hierarchy. cgroup core
5900 * guarantees that @root doesn't have any children, so turning it
5901 * on for the root memcg is enough.
5902 */
5903 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5904 root_mem_cgroup->use_hierarchy = true;
5905 else
5906 root_mem_cgroup->use_hierarchy = false;
5907 }
5908
5909 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5910 {
5911 if (value == PAGE_COUNTER_MAX)
5912 seq_puts(m, "max\n");
5913 else
5914 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5915
5916 return 0;
5917 }
5918
5919 static u64 memory_current_read(struct cgroup_subsys_state *css,
5920 struct cftype *cft)
5921 {
5922 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5923
5924 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5925 }
5926
5927 static int memory_min_show(struct seq_file *m, void *v)
5928 {
5929 return seq_puts_memcg_tunable(m,
5930 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5931 }
5932
5933 static ssize_t memory_min_write(struct kernfs_open_file *of,
5934 char *buf, size_t nbytes, loff_t off)
5935 {
5936 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5937 unsigned long min;
5938 int err;
5939
5940 buf = strstrip(buf);
5941 err = page_counter_memparse(buf, "max", &min);
5942 if (err)
5943 return err;
5944
5945 page_counter_set_min(&memcg->memory, min);
5946
5947 return nbytes;
5948 }
5949
5950 static int memory_low_show(struct seq_file *m, void *v)
5951 {
5952 return seq_puts_memcg_tunable(m,
5953 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5954 }
5955
5956 static ssize_t memory_low_write(struct kernfs_open_file *of,
5957 char *buf, size_t nbytes, loff_t off)
5958 {
5959 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5960 unsigned long low;
5961 int err;
5962
5963 buf = strstrip(buf);
5964 err = page_counter_memparse(buf, "max", &low);
5965 if (err)
5966 return err;
5967
5968 page_counter_set_low(&memcg->memory, low);
5969
5970 return nbytes;
5971 }
5972
5973 static int memory_high_show(struct seq_file *m, void *v)
5974 {
5975 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5976 }
5977
5978 static ssize_t memory_high_write(struct kernfs_open_file *of,
5979 char *buf, size_t nbytes, loff_t off)
5980 {
5981 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5982 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
5983 bool drained = false;
5984 unsigned long high;
5985 int err;
5986
5987 buf = strstrip(buf);
5988 err = page_counter_memparse(buf, "max", &high);
5989 if (err)
5990 return err;
5991
5992 memcg->high = high;
5993
5994 for (;;) {
5995 unsigned long nr_pages = page_counter_read(&memcg->memory);
5996 unsigned long reclaimed;
5997
5998 if (nr_pages <= high)
5999 break;
6000
6001 if (signal_pending(current))
6002 break;
6003
6004 if (!drained) {
6005 drain_all_stock(memcg);
6006 drained = true;
6007 continue;
6008 }
6009
6010 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6011 GFP_KERNEL, true);
6012
6013 if (!reclaimed && !nr_retries--)
6014 break;
6015 }
6016
6017 return nbytes;
6018 }
6019
6020 static int memory_max_show(struct seq_file *m, void *v)
6021 {
6022 return seq_puts_memcg_tunable(m,
6023 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6024 }
6025
6026 static ssize_t memory_max_write(struct kernfs_open_file *of,
6027 char *buf, size_t nbytes, loff_t off)
6028 {
6029 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6030 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6031 bool drained = false;
6032 unsigned long max;
6033 int err;
6034
6035 buf = strstrip(buf);
6036 err = page_counter_memparse(buf, "max", &max);
6037 if (err)
6038 return err;
6039
6040 xchg(&memcg->memory.max, max);
6041
6042 for (;;) {
6043 unsigned long nr_pages = page_counter_read(&memcg->memory);
6044
6045 if (nr_pages <= max)
6046 break;
6047
6048 if (signal_pending(current))
6049 break;
6050
6051 if (!drained) {
6052 drain_all_stock(memcg);
6053 drained = true;
6054 continue;
6055 }
6056
6057 if (nr_reclaims) {
6058 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6059 GFP_KERNEL, true))
6060 nr_reclaims--;
6061 continue;
6062 }
6063
6064 memcg_memory_event(memcg, MEMCG_OOM);
6065 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6066 break;
6067 }
6068
6069 memcg_wb_domain_size_changed(memcg);
6070 return nbytes;
6071 }
6072
6073 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6074 {
6075 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6076 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6077 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6078 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6079 seq_printf(m, "oom_kill %lu\n",
6080 atomic_long_read(&events[MEMCG_OOM_KILL]));
6081 }
6082
6083 static int memory_events_show(struct seq_file *m, void *v)
6084 {
6085 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6086
6087 __memory_events_show(m, memcg->memory_events);
6088 return 0;
6089 }
6090
6091 static int memory_events_local_show(struct seq_file *m, void *v)
6092 {
6093 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6094
6095 __memory_events_show(m, memcg->memory_events_local);
6096 return 0;
6097 }
6098
6099 static int memory_stat_show(struct seq_file *m, void *v)
6100 {
6101 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6102 char *buf;
6103
6104 buf = memory_stat_format(memcg);
6105 if (!buf)
6106 return -ENOMEM;
6107 seq_puts(m, buf);
6108 kfree(buf);
6109 return 0;
6110 }
6111
6112 static int memory_oom_group_show(struct seq_file *m, void *v)
6113 {
6114 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6115
6116 seq_printf(m, "%d\n", memcg->oom_group);
6117
6118 return 0;
6119 }
6120
6121 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6122 char *buf, size_t nbytes, loff_t off)
6123 {
6124 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6125 int ret, oom_group;
6126
6127 buf = strstrip(buf);
6128 if (!buf)
6129 return -EINVAL;
6130
6131 ret = kstrtoint(buf, 0, &oom_group);
6132 if (ret)
6133 return ret;
6134
6135 if (oom_group != 0 && oom_group != 1)
6136 return -EINVAL;
6137
6138 memcg->oom_group = oom_group;
6139
6140 return nbytes;
6141 }
6142
6143 static struct cftype memory_files[] = {
6144 {
6145 .name = "current",
6146 .flags = CFTYPE_NOT_ON_ROOT,
6147 .read_u64 = memory_current_read,
6148 },
6149 {
6150 .name = "min",
6151 .flags = CFTYPE_NOT_ON_ROOT,
6152 .seq_show = memory_min_show,
6153 .write = memory_min_write,
6154 },
6155 {
6156 .name = "low",
6157 .flags = CFTYPE_NOT_ON_ROOT,
6158 .seq_show = memory_low_show,
6159 .write = memory_low_write,
6160 },
6161 {
6162 .name = "high",
6163 .flags = CFTYPE_NOT_ON_ROOT,
6164 .seq_show = memory_high_show,
6165 .write = memory_high_write,
6166 },
6167 {
6168 .name = "max",
6169 .flags = CFTYPE_NOT_ON_ROOT,
6170 .seq_show = memory_max_show,
6171 .write = memory_max_write,
6172 },
6173 {
6174 .name = "events",
6175 .flags = CFTYPE_NOT_ON_ROOT,
6176 .file_offset = offsetof(struct mem_cgroup, events_file),
6177 .seq_show = memory_events_show,
6178 },
6179 {
6180 .name = "events.local",
6181 .flags = CFTYPE_NOT_ON_ROOT,
6182 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6183 .seq_show = memory_events_local_show,
6184 },
6185 {
6186 .name = "stat",
6187 .flags = CFTYPE_NOT_ON_ROOT,
6188 .seq_show = memory_stat_show,
6189 },
6190 {
6191 .name = "oom.group",
6192 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6193 .seq_show = memory_oom_group_show,
6194 .write = memory_oom_group_write,
6195 },
6196 { } /* terminate */
6197 };
6198
6199 struct cgroup_subsys memory_cgrp_subsys = {
6200 .css_alloc = mem_cgroup_css_alloc,
6201 .css_online = mem_cgroup_css_online,
6202 .css_offline = mem_cgroup_css_offline,
6203 .css_released = mem_cgroup_css_released,
6204 .css_free = mem_cgroup_css_free,
6205 .css_reset = mem_cgroup_css_reset,
6206 .can_attach = mem_cgroup_can_attach,
6207 .cancel_attach = mem_cgroup_cancel_attach,
6208 .post_attach = mem_cgroup_move_task,
6209 .bind = mem_cgroup_bind,
6210 .dfl_cftypes = memory_files,
6211 .legacy_cftypes = mem_cgroup_legacy_files,
6212 .early_init = 0,
6213 };
6214
6215 /**
6216 * mem_cgroup_protected - check if memory consumption is in the normal range
6217 * @root: the top ancestor of the sub-tree being checked
6218 * @memcg: the memory cgroup to check
6219 *
6220 * WARNING: This function is not stateless! It can only be used as part
6221 * of a top-down tree iteration, not for isolated queries.
6222 *
6223 * Returns one of the following:
6224 * MEMCG_PROT_NONE: cgroup memory is not protected
6225 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6226 * an unprotected supply of reclaimable memory from other cgroups.
6227 * MEMCG_PROT_MIN: cgroup memory is protected
6228 *
6229 * @root is exclusive; it is never protected when looked at directly
6230 *
6231 * To provide a proper hierarchical behavior, effective memory.min/low values
6232 * are used. Below is the description of how effective memory.low is calculated.
6233 * Effective memory.min values is calculated in the same way.
6234 *
6235 * Effective memory.low is always equal or less than the original memory.low.
6236 * If there is no memory.low overcommittment (which is always true for
6237 * top-level memory cgroups), these two values are equal.
6238 * Otherwise, it's a part of parent's effective memory.low,
6239 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6240 * memory.low usages, where memory.low usage is the size of actually
6241 * protected memory.
6242 *
6243 * low_usage
6244 * elow = min( memory.low, parent->elow * ------------------ ),
6245 * siblings_low_usage
6246 *
6247 * | memory.current, if memory.current < memory.low
6248 * low_usage = |
6249 * | 0, otherwise.
6250 *
6251 *
6252 * Such definition of the effective memory.low provides the expected
6253 * hierarchical behavior: parent's memory.low value is limiting
6254 * children, unprotected memory is reclaimed first and cgroups,
6255 * which are not using their guarantee do not affect actual memory
6256 * distribution.
6257 *
6258 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6259 *
6260 * A A/memory.low = 2G, A/memory.current = 6G
6261 * //\\
6262 * BC DE B/memory.low = 3G B/memory.current = 2G
6263 * C/memory.low = 1G C/memory.current = 2G
6264 * D/memory.low = 0 D/memory.current = 2G
6265 * E/memory.low = 10G E/memory.current = 0
6266 *
6267 * and the memory pressure is applied, the following memory distribution
6268 * is expected (approximately):
6269 *
6270 * A/memory.current = 2G
6271 *
6272 * B/memory.current = 1.3G
6273 * C/memory.current = 0.6G
6274 * D/memory.current = 0
6275 * E/memory.current = 0
6276 *
6277 * These calculations require constant tracking of the actual low usages
6278 * (see propagate_protected_usage()), as well as recursive calculation of
6279 * effective memory.low values. But as we do call mem_cgroup_protected()
6280 * path for each memory cgroup top-down from the reclaim,
6281 * it's possible to optimize this part, and save calculated elow
6282 * for next usage. This part is intentionally racy, but it's ok,
6283 * as memory.low is a best-effort mechanism.
6284 */
6285 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6286 struct mem_cgroup *memcg)
6287 {
6288 struct mem_cgroup *parent;
6289 unsigned long emin, parent_emin;
6290 unsigned long elow, parent_elow;
6291 unsigned long usage;
6292
6293 if (mem_cgroup_disabled())
6294 return MEMCG_PROT_NONE;
6295
6296 if (!root)
6297 root = root_mem_cgroup;
6298 if (memcg == root)
6299 return MEMCG_PROT_NONE;
6300
6301 usage = page_counter_read(&memcg->memory);
6302 if (!usage)
6303 return MEMCG_PROT_NONE;
6304
6305 emin = memcg->memory.min;
6306 elow = memcg->memory.low;
6307
6308 parent = parent_mem_cgroup(memcg);
6309 /* No parent means a non-hierarchical mode on v1 memcg */
6310 if (!parent)
6311 return MEMCG_PROT_NONE;
6312
6313 if (parent == root)
6314 goto exit;
6315
6316 parent_emin = READ_ONCE(parent->memory.emin);
6317 emin = min(emin, parent_emin);
6318 if (emin && parent_emin) {
6319 unsigned long min_usage, siblings_min_usage;
6320
6321 min_usage = min(usage, memcg->memory.min);
6322 siblings_min_usage = atomic_long_read(
6323 &parent->memory.children_min_usage);
6324
6325 if (min_usage && siblings_min_usage)
6326 emin = min(emin, parent_emin * min_usage /
6327 siblings_min_usage);
6328 }
6329
6330 parent_elow = READ_ONCE(parent->memory.elow);
6331 elow = min(elow, parent_elow);
6332 if (elow && parent_elow) {
6333 unsigned long low_usage, siblings_low_usage;
6334
6335 low_usage = min(usage, memcg->memory.low);
6336 siblings_low_usage = atomic_long_read(
6337 &parent->memory.children_low_usage);
6338
6339 if (low_usage && siblings_low_usage)
6340 elow = min(elow, parent_elow * low_usage /
6341 siblings_low_usage);
6342 }
6343
6344 exit:
6345 memcg->memory.emin = emin;
6346 memcg->memory.elow = elow;
6347
6348 if (usage <= emin)
6349 return MEMCG_PROT_MIN;
6350 else if (usage <= elow)
6351 return MEMCG_PROT_LOW;
6352 else
6353 return MEMCG_PROT_NONE;
6354 }
6355
6356 /**
6357 * mem_cgroup_try_charge - try charging a page
6358 * @page: page to charge
6359 * @mm: mm context of the victim
6360 * @gfp_mask: reclaim mode
6361 * @memcgp: charged memcg return
6362 * @compound: charge the page as compound or small page
6363 *
6364 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6365 * pages according to @gfp_mask if necessary.
6366 *
6367 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6368 * Otherwise, an error code is returned.
6369 *
6370 * After page->mapping has been set up, the caller must finalize the
6371 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6372 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6373 */
6374 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6375 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6376 bool compound)
6377 {
6378 struct mem_cgroup *memcg = NULL;
6379 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6380 int ret = 0;
6381
6382 if (mem_cgroup_disabled())
6383 goto out;
6384
6385 if (PageSwapCache(page)) {
6386 /*
6387 * Every swap fault against a single page tries to charge the
6388 * page, bail as early as possible. shmem_unuse() encounters
6389 * already charged pages, too. The USED bit is protected by
6390 * the page lock, which serializes swap cache removal, which
6391 * in turn serializes uncharging.
6392 */
6393 VM_BUG_ON_PAGE(!PageLocked(page), page);
6394 if (compound_head(page)->mem_cgroup)
6395 goto out;
6396
6397 if (do_swap_account) {
6398 swp_entry_t ent = { .val = page_private(page), };
6399 unsigned short id = lookup_swap_cgroup_id(ent);
6400
6401 rcu_read_lock();
6402 memcg = mem_cgroup_from_id(id);
6403 if (memcg && !css_tryget_online(&memcg->css))
6404 memcg = NULL;
6405 rcu_read_unlock();
6406 }
6407 }
6408
6409 if (!memcg)
6410 memcg = get_mem_cgroup_from_mm(mm);
6411
6412 ret = try_charge(memcg, gfp_mask, nr_pages);
6413
6414 css_put(&memcg->css);
6415 out:
6416 *memcgp = memcg;
6417 return ret;
6418 }
6419
6420 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6421 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6422 bool compound)
6423 {
6424 struct mem_cgroup *memcg;
6425 int ret;
6426
6427 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6428 memcg = *memcgp;
6429 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6430 return ret;
6431 }
6432
6433 /**
6434 * mem_cgroup_commit_charge - commit a page charge
6435 * @page: page to charge
6436 * @memcg: memcg to charge the page to
6437 * @lrucare: page might be on LRU already
6438 * @compound: charge the page as compound or small page
6439 *
6440 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6441 * after page->mapping has been set up. This must happen atomically
6442 * as part of the page instantiation, i.e. under the page table lock
6443 * for anonymous pages, under the page lock for page and swap cache.
6444 *
6445 * In addition, the page must not be on the LRU during the commit, to
6446 * prevent racing with task migration. If it might be, use @lrucare.
6447 *
6448 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6449 */
6450 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6451 bool lrucare, bool compound)
6452 {
6453 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6454
6455 VM_BUG_ON_PAGE(!page->mapping, page);
6456 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6457
6458 if (mem_cgroup_disabled())
6459 return;
6460 /*
6461 * Swap faults will attempt to charge the same page multiple
6462 * times. But reuse_swap_page() might have removed the page
6463 * from swapcache already, so we can't check PageSwapCache().
6464 */
6465 if (!memcg)
6466 return;
6467
6468 commit_charge(page, memcg, lrucare);
6469
6470 local_irq_disable();
6471 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6472 memcg_check_events(memcg, page);
6473 local_irq_enable();
6474
6475 if (do_memsw_account() && PageSwapCache(page)) {
6476 swp_entry_t entry = { .val = page_private(page) };
6477 /*
6478 * The swap entry might not get freed for a long time,
6479 * let's not wait for it. The page already received a
6480 * memory+swap charge, drop the swap entry duplicate.
6481 */
6482 mem_cgroup_uncharge_swap(entry, nr_pages);
6483 }
6484 }
6485
6486 /**
6487 * mem_cgroup_cancel_charge - cancel a page charge
6488 * @page: page to charge
6489 * @memcg: memcg to charge the page to
6490 * @compound: charge the page as compound or small page
6491 *
6492 * Cancel a charge transaction started by mem_cgroup_try_charge().
6493 */
6494 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6495 bool compound)
6496 {
6497 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6498
6499 if (mem_cgroup_disabled())
6500 return;
6501 /*
6502 * Swap faults will attempt to charge the same page multiple
6503 * times. But reuse_swap_page() might have removed the page
6504 * from swapcache already, so we can't check PageSwapCache().
6505 */
6506 if (!memcg)
6507 return;
6508
6509 cancel_charge(memcg, nr_pages);
6510 }
6511
6512 struct uncharge_gather {
6513 struct mem_cgroup *memcg;
6514 unsigned long pgpgout;
6515 unsigned long nr_anon;
6516 unsigned long nr_file;
6517 unsigned long nr_kmem;
6518 unsigned long nr_huge;
6519 unsigned long nr_shmem;
6520 struct page *dummy_page;
6521 };
6522
6523 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6524 {
6525 memset(ug, 0, sizeof(*ug));
6526 }
6527
6528 static void uncharge_batch(const struct uncharge_gather *ug)
6529 {
6530 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6531 unsigned long flags;
6532
6533 if (!mem_cgroup_is_root(ug->memcg)) {
6534 page_counter_uncharge(&ug->memcg->memory, nr_pages);
6535 if (do_memsw_account())
6536 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6537 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6538 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6539 memcg_oom_recover(ug->memcg);
6540 }
6541
6542 local_irq_save(flags);
6543 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6544 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6545 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6546 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6547 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6548 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6549 memcg_check_events(ug->memcg, ug->dummy_page);
6550 local_irq_restore(flags);
6551
6552 if (!mem_cgroup_is_root(ug->memcg))
6553 css_put_many(&ug->memcg->css, nr_pages);
6554 }
6555
6556 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6557 {
6558 VM_BUG_ON_PAGE(PageLRU(page), page);
6559 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6560 !PageHWPoison(page) , page);
6561
6562 if (!page->mem_cgroup)
6563 return;
6564
6565 /*
6566 * Nobody should be changing or seriously looking at
6567 * page->mem_cgroup at this point, we have fully
6568 * exclusive access to the page.
6569 */
6570
6571 if (ug->memcg != page->mem_cgroup) {
6572 if (ug->memcg) {
6573 uncharge_batch(ug);
6574 uncharge_gather_clear(ug);
6575 }
6576 ug->memcg = page->mem_cgroup;
6577 }
6578
6579 if (!PageKmemcg(page)) {
6580 unsigned int nr_pages = 1;
6581
6582 if (PageTransHuge(page)) {
6583 nr_pages = compound_nr(page);
6584 ug->nr_huge += nr_pages;
6585 }
6586 if (PageAnon(page))
6587 ug->nr_anon += nr_pages;
6588 else {
6589 ug->nr_file += nr_pages;
6590 if (PageSwapBacked(page))
6591 ug->nr_shmem += nr_pages;
6592 }
6593 ug->pgpgout++;
6594 } else {
6595 ug->nr_kmem += compound_nr(page);
6596 __ClearPageKmemcg(page);
6597 }
6598
6599 ug->dummy_page = page;
6600 page->mem_cgroup = NULL;
6601 }
6602
6603 static void uncharge_list(struct list_head *page_list)
6604 {
6605 struct uncharge_gather ug;
6606 struct list_head *next;
6607
6608 uncharge_gather_clear(&ug);
6609
6610 /*
6611 * Note that the list can be a single page->lru; hence the
6612 * do-while loop instead of a simple list_for_each_entry().
6613 */
6614 next = page_list->next;
6615 do {
6616 struct page *page;
6617
6618 page = list_entry(next, struct page, lru);
6619 next = page->lru.next;
6620
6621 uncharge_page(page, &ug);
6622 } while (next != page_list);
6623
6624 if (ug.memcg)
6625 uncharge_batch(&ug);
6626 }
6627
6628 /**
6629 * mem_cgroup_uncharge - uncharge a page
6630 * @page: page to uncharge
6631 *
6632 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6633 * mem_cgroup_commit_charge().
6634 */
6635 void mem_cgroup_uncharge(struct page *page)
6636 {
6637 struct uncharge_gather ug;
6638
6639 if (mem_cgroup_disabled())
6640 return;
6641
6642 /* Don't touch page->lru of any random page, pre-check: */
6643 if (!page->mem_cgroup)
6644 return;
6645
6646 uncharge_gather_clear(&ug);
6647 uncharge_page(page, &ug);
6648 uncharge_batch(&ug);
6649 }
6650
6651 /**
6652 * mem_cgroup_uncharge_list - uncharge a list of page
6653 * @page_list: list of pages to uncharge
6654 *
6655 * Uncharge a list of pages previously charged with
6656 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6657 */
6658 void mem_cgroup_uncharge_list(struct list_head *page_list)
6659 {
6660 if (mem_cgroup_disabled())
6661 return;
6662
6663 if (!list_empty(page_list))
6664 uncharge_list(page_list);
6665 }
6666
6667 /**
6668 * mem_cgroup_migrate - charge a page's replacement
6669 * @oldpage: currently circulating page
6670 * @newpage: replacement page
6671 *
6672 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6673 * be uncharged upon free.
6674 *
6675 * Both pages must be locked, @newpage->mapping must be set up.
6676 */
6677 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6678 {
6679 struct mem_cgroup *memcg;
6680 unsigned int nr_pages;
6681 bool compound;
6682 unsigned long flags;
6683
6684 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6685 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6686 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6687 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6688 newpage);
6689
6690 if (mem_cgroup_disabled())
6691 return;
6692
6693 /* Page cache replacement: new page already charged? */
6694 if (newpage->mem_cgroup)
6695 return;
6696
6697 /* Swapcache readahead pages can get replaced before being charged */
6698 memcg = oldpage->mem_cgroup;
6699 if (!memcg)
6700 return;
6701
6702 /* Force-charge the new page. The old one will be freed soon */
6703 compound = PageTransHuge(newpage);
6704 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6705
6706 page_counter_charge(&memcg->memory, nr_pages);
6707 if (do_memsw_account())
6708 page_counter_charge(&memcg->memsw, nr_pages);
6709 css_get_many(&memcg->css, nr_pages);
6710
6711 commit_charge(newpage, memcg, false);
6712
6713 local_irq_save(flags);
6714 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6715 memcg_check_events(memcg, newpage);
6716 local_irq_restore(flags);
6717 }
6718
6719 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6720 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6721
6722 void mem_cgroup_sk_alloc(struct sock *sk)
6723 {
6724 struct mem_cgroup *memcg;
6725
6726 if (!mem_cgroup_sockets_enabled)
6727 return;
6728
6729 /*
6730 * Socket cloning can throw us here with sk_memcg already
6731 * filled. It won't however, necessarily happen from
6732 * process context. So the test for root memcg given
6733 * the current task's memcg won't help us in this case.
6734 *
6735 * Respecting the original socket's memcg is a better
6736 * decision in this case.
6737 */
6738 if (sk->sk_memcg) {
6739 css_get(&sk->sk_memcg->css);
6740 return;
6741 }
6742
6743 rcu_read_lock();
6744 memcg = mem_cgroup_from_task(current);
6745 if (memcg == root_mem_cgroup)
6746 goto out;
6747 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6748 goto out;
6749 if (css_tryget_online(&memcg->css))
6750 sk->sk_memcg = memcg;
6751 out:
6752 rcu_read_unlock();
6753 }
6754
6755 void mem_cgroup_sk_free(struct sock *sk)
6756 {
6757 if (sk->sk_memcg)
6758 css_put(&sk->sk_memcg->css);
6759 }
6760
6761 /**
6762 * mem_cgroup_charge_skmem - charge socket memory
6763 * @memcg: memcg to charge
6764 * @nr_pages: number of pages to charge
6765 *
6766 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6767 * @memcg's configured limit, %false if the charge had to be forced.
6768 */
6769 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6770 {
6771 gfp_t gfp_mask = GFP_KERNEL;
6772
6773 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6774 struct page_counter *fail;
6775
6776 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6777 memcg->tcpmem_pressure = 0;
6778 return true;
6779 }
6780 page_counter_charge(&memcg->tcpmem, nr_pages);
6781 memcg->tcpmem_pressure = 1;
6782 return false;
6783 }
6784
6785 /* Don't block in the packet receive path */
6786 if (in_softirq())
6787 gfp_mask = GFP_NOWAIT;
6788
6789 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6790
6791 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6792 return true;
6793
6794 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6795 return false;
6796 }
6797
6798 /**
6799 * mem_cgroup_uncharge_skmem - uncharge socket memory
6800 * @memcg: memcg to uncharge
6801 * @nr_pages: number of pages to uncharge
6802 */
6803 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6804 {
6805 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6806 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6807 return;
6808 }
6809
6810 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6811
6812 refill_stock(memcg, nr_pages);
6813 }
6814
6815 static int __init cgroup_memory(char *s)
6816 {
6817 char *token;
6818
6819 while ((token = strsep(&s, ",")) != NULL) {
6820 if (!*token)
6821 continue;
6822 if (!strcmp(token, "nosocket"))
6823 cgroup_memory_nosocket = true;
6824 if (!strcmp(token, "nokmem"))
6825 cgroup_memory_nokmem = true;
6826 }
6827 return 0;
6828 }
6829 __setup("cgroup.memory=", cgroup_memory);
6830
6831 /*
6832 * subsys_initcall() for memory controller.
6833 *
6834 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6835 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6836 * basically everything that doesn't depend on a specific mem_cgroup structure
6837 * should be initialized from here.
6838 */
6839 static int __init mem_cgroup_init(void)
6840 {
6841 int cpu, node;
6842
6843 #ifdef CONFIG_MEMCG_KMEM
6844 /*
6845 * Kmem cache creation is mostly done with the slab_mutex held,
6846 * so use a workqueue with limited concurrency to avoid stalling
6847 * all worker threads in case lots of cgroups are created and
6848 * destroyed simultaneously.
6849 */
6850 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6851 BUG_ON(!memcg_kmem_cache_wq);
6852 #endif
6853
6854 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6855 memcg_hotplug_cpu_dead);
6856
6857 for_each_possible_cpu(cpu)
6858 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6859 drain_local_stock);
6860
6861 for_each_node(node) {
6862 struct mem_cgroup_tree_per_node *rtpn;
6863
6864 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6865 node_online(node) ? node : NUMA_NO_NODE);
6866
6867 rtpn->rb_root = RB_ROOT;
6868 rtpn->rb_rightmost = NULL;
6869 spin_lock_init(&rtpn->lock);
6870 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6871 }
6872
6873 return 0;
6874 }
6875 subsys_initcall(mem_cgroup_init);
6876
6877 #ifdef CONFIG_MEMCG_SWAP
6878 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6879 {
6880 while (!refcount_inc_not_zero(&memcg->id.ref)) {
6881 /*
6882 * The root cgroup cannot be destroyed, so it's refcount must
6883 * always be >= 1.
6884 */
6885 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6886 VM_BUG_ON(1);
6887 break;
6888 }
6889 memcg = parent_mem_cgroup(memcg);
6890 if (!memcg)
6891 memcg = root_mem_cgroup;
6892 }
6893 return memcg;
6894 }
6895
6896 /**
6897 * mem_cgroup_swapout - transfer a memsw charge to swap
6898 * @page: page whose memsw charge to transfer
6899 * @entry: swap entry to move the charge to
6900 *
6901 * Transfer the memsw charge of @page to @entry.
6902 */
6903 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6904 {
6905 struct mem_cgroup *memcg, *swap_memcg;
6906 unsigned int nr_entries;
6907 unsigned short oldid;
6908
6909 VM_BUG_ON_PAGE(PageLRU(page), page);
6910 VM_BUG_ON_PAGE(page_count(page), page);
6911
6912 if (!do_memsw_account())
6913 return;
6914
6915 memcg = page->mem_cgroup;
6916
6917 /* Readahead page, never charged */
6918 if (!memcg)
6919 return;
6920
6921 /*
6922 * In case the memcg owning these pages has been offlined and doesn't
6923 * have an ID allocated to it anymore, charge the closest online
6924 * ancestor for the swap instead and transfer the memory+swap charge.
6925 */
6926 swap_memcg = mem_cgroup_id_get_online(memcg);
6927 nr_entries = hpage_nr_pages(page);
6928 /* Get references for the tail pages, too */
6929 if (nr_entries > 1)
6930 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6931 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6932 nr_entries);
6933 VM_BUG_ON_PAGE(oldid, page);
6934 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6935
6936 page->mem_cgroup = NULL;
6937
6938 if (!mem_cgroup_is_root(memcg))
6939 page_counter_uncharge(&memcg->memory, nr_entries);
6940
6941 if (memcg != swap_memcg) {
6942 if (!mem_cgroup_is_root(swap_memcg))
6943 page_counter_charge(&swap_memcg->memsw, nr_entries);
6944 page_counter_uncharge(&memcg->memsw, nr_entries);
6945 }
6946
6947 /*
6948 * Interrupts should be disabled here because the caller holds the
6949 * i_pages lock which is taken with interrupts-off. It is
6950 * important here to have the interrupts disabled because it is the
6951 * only synchronisation we have for updating the per-CPU variables.
6952 */
6953 VM_BUG_ON(!irqs_disabled());
6954 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6955 -nr_entries);
6956 memcg_check_events(memcg, page);
6957
6958 if (!mem_cgroup_is_root(memcg))
6959 css_put_many(&memcg->css, nr_entries);
6960 }
6961
6962 /**
6963 * mem_cgroup_try_charge_swap - try charging swap space for a page
6964 * @page: page being added to swap
6965 * @entry: swap entry to charge
6966 *
6967 * Try to charge @page's memcg for the swap space at @entry.
6968 *
6969 * Returns 0 on success, -ENOMEM on failure.
6970 */
6971 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6972 {
6973 unsigned int nr_pages = hpage_nr_pages(page);
6974 struct page_counter *counter;
6975 struct mem_cgroup *memcg;
6976 unsigned short oldid;
6977
6978 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6979 return 0;
6980
6981 memcg = page->mem_cgroup;
6982
6983 /* Readahead page, never charged */
6984 if (!memcg)
6985 return 0;
6986
6987 if (!entry.val) {
6988 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6989 return 0;
6990 }
6991
6992 memcg = mem_cgroup_id_get_online(memcg);
6993
6994 if (!mem_cgroup_is_root(memcg) &&
6995 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6996 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6997 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6998 mem_cgroup_id_put(memcg);
6999 return -ENOMEM;
7000 }
7001
7002 /* Get references for the tail pages, too */
7003 if (nr_pages > 1)
7004 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7005 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7006 VM_BUG_ON_PAGE(oldid, page);
7007 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7008
7009 return 0;
7010 }
7011
7012 /**
7013 * mem_cgroup_uncharge_swap - uncharge swap space
7014 * @entry: swap entry to uncharge
7015 * @nr_pages: the amount of swap space to uncharge
7016 */
7017 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7018 {
7019 struct mem_cgroup *memcg;
7020 unsigned short id;
7021
7022 if (!do_swap_account)
7023 return;
7024
7025 id = swap_cgroup_record(entry, 0, nr_pages);
7026 rcu_read_lock();
7027 memcg = mem_cgroup_from_id(id);
7028 if (memcg) {
7029 if (!mem_cgroup_is_root(memcg)) {
7030 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7031 page_counter_uncharge(&memcg->swap, nr_pages);
7032 else
7033 page_counter_uncharge(&memcg->memsw, nr_pages);
7034 }
7035 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7036 mem_cgroup_id_put_many(memcg, nr_pages);
7037 }
7038 rcu_read_unlock();
7039 }
7040
7041 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7042 {
7043 long nr_swap_pages = get_nr_swap_pages();
7044
7045 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7046 return nr_swap_pages;
7047 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7048 nr_swap_pages = min_t(long, nr_swap_pages,
7049 READ_ONCE(memcg->swap.max) -
7050 page_counter_read(&memcg->swap));
7051 return nr_swap_pages;
7052 }
7053
7054 bool mem_cgroup_swap_full(struct page *page)
7055 {
7056 struct mem_cgroup *memcg;
7057
7058 VM_BUG_ON_PAGE(!PageLocked(page), page);
7059
7060 if (vm_swap_full())
7061 return true;
7062 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7063 return false;
7064
7065 memcg = page->mem_cgroup;
7066 if (!memcg)
7067 return false;
7068
7069 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7070 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
7071 return true;
7072
7073 return false;
7074 }
7075
7076 /* for remember boot option*/
7077 #ifdef CONFIG_MEMCG_SWAP_ENABLED
7078 static int really_do_swap_account __initdata = 1;
7079 #else
7080 static int really_do_swap_account __initdata;
7081 #endif
7082
7083 static int __init enable_swap_account(char *s)
7084 {
7085 if (!strcmp(s, "1"))
7086 really_do_swap_account = 1;
7087 else if (!strcmp(s, "0"))
7088 really_do_swap_account = 0;
7089 return 1;
7090 }
7091 __setup("swapaccount=", enable_swap_account);
7092
7093 static u64 swap_current_read(struct cgroup_subsys_state *css,
7094 struct cftype *cft)
7095 {
7096 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7097
7098 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7099 }
7100
7101 static int swap_max_show(struct seq_file *m, void *v)
7102 {
7103 return seq_puts_memcg_tunable(m,
7104 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7105 }
7106
7107 static ssize_t swap_max_write(struct kernfs_open_file *of,
7108 char *buf, size_t nbytes, loff_t off)
7109 {
7110 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7111 unsigned long max;
7112 int err;
7113
7114 buf = strstrip(buf);
7115 err = page_counter_memparse(buf, "max", &max);
7116 if (err)
7117 return err;
7118
7119 xchg(&memcg->swap.max, max);
7120
7121 return nbytes;
7122 }
7123
7124 static int swap_events_show(struct seq_file *m, void *v)
7125 {
7126 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7127
7128 seq_printf(m, "max %lu\n",
7129 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7130 seq_printf(m, "fail %lu\n",
7131 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7132
7133 return 0;
7134 }
7135
7136 static struct cftype swap_files[] = {
7137 {
7138 .name = "swap.current",
7139 .flags = CFTYPE_NOT_ON_ROOT,
7140 .read_u64 = swap_current_read,
7141 },
7142 {
7143 .name = "swap.max",
7144 .flags = CFTYPE_NOT_ON_ROOT,
7145 .seq_show = swap_max_show,
7146 .write = swap_max_write,
7147 },
7148 {
7149 .name = "swap.events",
7150 .flags = CFTYPE_NOT_ON_ROOT,
7151 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7152 .seq_show = swap_events_show,
7153 },
7154 { } /* terminate */
7155 };
7156
7157 static struct cftype memsw_cgroup_files[] = {
7158 {
7159 .name = "memsw.usage_in_bytes",
7160 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7161 .read_u64 = mem_cgroup_read_u64,
7162 },
7163 {
7164 .name = "memsw.max_usage_in_bytes",
7165 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7166 .write = mem_cgroup_reset,
7167 .read_u64 = mem_cgroup_read_u64,
7168 },
7169 {
7170 .name = "memsw.limit_in_bytes",
7171 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7172 .write = mem_cgroup_write,
7173 .read_u64 = mem_cgroup_read_u64,
7174 },
7175 {
7176 .name = "memsw.failcnt",
7177 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7178 .write = mem_cgroup_reset,
7179 .read_u64 = mem_cgroup_read_u64,
7180 },
7181 { }, /* terminate */
7182 };
7183
7184 static int __init mem_cgroup_swap_init(void)
7185 {
7186 if (!mem_cgroup_disabled() && really_do_swap_account) {
7187 do_swap_account = 1;
7188 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7189 swap_files));
7190 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7191 memsw_cgroup_files));
7192 }
7193 return 0;
7194 }
7195 subsys_initcall(mem_cgroup_swap_init);
7196
7197 #endif /* CONFIG_MEMCG_SWAP */