]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memcontrol.c
Merge tag 'devprop-5.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/mm.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include "internal.h"
61 #include <net/sock.h>
62 #include <net/ip.h>
63 #include "slab.h"
64
65 #include <linux/uaccess.h>
66
67 #include <trace/events/vmscan.h>
68
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71
72 struct mem_cgroup *root_mem_cgroup __read_mostly;
73
74 #define MEM_CGROUP_RECLAIM_RETRIES 5
75
76 /* Socket memory accounting disabled? */
77 static bool cgroup_memory_nosocket;
78
79 /* Kernel memory accounting disabled? */
80 static bool cgroup_memory_nokmem;
81
82 /* Whether the swap controller is active */
83 #ifdef CONFIG_MEMCG_SWAP
84 int do_swap_account __read_mostly;
85 #else
86 #define do_swap_account 0
87 #endif
88
89 /* Whether legacy memory+swap accounting is active */
90 static bool do_memsw_account(void)
91 {
92 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
93 }
94
95 static const char *const mem_cgroup_lru_names[] = {
96 "inactive_anon",
97 "active_anon",
98 "inactive_file",
99 "active_file",
100 "unevictable",
101 };
102
103 #define THRESHOLDS_EVENTS_TARGET 128
104 #define SOFTLIMIT_EVENTS_TARGET 1024
105 #define NUMAINFO_EVENTS_TARGET 1024
106
107 /*
108 * Cgroups above their limits are maintained in a RB-Tree, independent of
109 * their hierarchy representation
110 */
111
112 struct mem_cgroup_tree_per_node {
113 struct rb_root rb_root;
114 struct rb_node *rb_rightmost;
115 spinlock_t lock;
116 };
117
118 struct mem_cgroup_tree {
119 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
120 };
121
122 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
123
124 /* for OOM */
125 struct mem_cgroup_eventfd_list {
126 struct list_head list;
127 struct eventfd_ctx *eventfd;
128 };
129
130 /*
131 * cgroup_event represents events which userspace want to receive.
132 */
133 struct mem_cgroup_event {
134 /*
135 * memcg which the event belongs to.
136 */
137 struct mem_cgroup *memcg;
138 /*
139 * eventfd to signal userspace about the event.
140 */
141 struct eventfd_ctx *eventfd;
142 /*
143 * Each of these stored in a list by the cgroup.
144 */
145 struct list_head list;
146 /*
147 * register_event() callback will be used to add new userspace
148 * waiter for changes related to this event. Use eventfd_signal()
149 * on eventfd to send notification to userspace.
150 */
151 int (*register_event)(struct mem_cgroup *memcg,
152 struct eventfd_ctx *eventfd, const char *args);
153 /*
154 * unregister_event() callback will be called when userspace closes
155 * the eventfd or on cgroup removing. This callback must be set,
156 * if you want provide notification functionality.
157 */
158 void (*unregister_event)(struct mem_cgroup *memcg,
159 struct eventfd_ctx *eventfd);
160 /*
161 * All fields below needed to unregister event when
162 * userspace closes eventfd.
163 */
164 poll_table pt;
165 wait_queue_head_t *wqh;
166 wait_queue_entry_t wait;
167 struct work_struct remove;
168 };
169
170 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
171 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
172
173 /* Stuffs for move charges at task migration. */
174 /*
175 * Types of charges to be moved.
176 */
177 #define MOVE_ANON 0x1U
178 #define MOVE_FILE 0x2U
179 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
180
181 /* "mc" and its members are protected by cgroup_mutex */
182 static struct move_charge_struct {
183 spinlock_t lock; /* for from, to */
184 struct mm_struct *mm;
185 struct mem_cgroup *from;
186 struct mem_cgroup *to;
187 unsigned long flags;
188 unsigned long precharge;
189 unsigned long moved_charge;
190 unsigned long moved_swap;
191 struct task_struct *moving_task; /* a task moving charges */
192 wait_queue_head_t waitq; /* a waitq for other context */
193 } mc = {
194 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
195 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
196 };
197
198 /*
199 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
200 * limit reclaim to prevent infinite loops, if they ever occur.
201 */
202 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
203 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
204
205 enum charge_type {
206 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
207 MEM_CGROUP_CHARGE_TYPE_ANON,
208 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
209 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
210 NR_CHARGE_TYPE,
211 };
212
213 /* for encoding cft->private value on file */
214 enum res_type {
215 _MEM,
216 _MEMSWAP,
217 _OOM_TYPE,
218 _KMEM,
219 _TCP,
220 };
221
222 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
223 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
224 #define MEMFILE_ATTR(val) ((val) & 0xffff)
225 /* Used for OOM nofiier */
226 #define OOM_CONTROL (0)
227
228 /*
229 * Iteration constructs for visiting all cgroups (under a tree). If
230 * loops are exited prematurely (break), mem_cgroup_iter_break() must
231 * be used for reference counting.
232 */
233 #define for_each_mem_cgroup_tree(iter, root) \
234 for (iter = mem_cgroup_iter(root, NULL, NULL); \
235 iter != NULL; \
236 iter = mem_cgroup_iter(root, iter, NULL))
237
238 #define for_each_mem_cgroup(iter) \
239 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
240 iter != NULL; \
241 iter = mem_cgroup_iter(NULL, iter, NULL))
242
243 static inline bool should_force_charge(void)
244 {
245 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
246 (current->flags & PF_EXITING);
247 }
248
249 /* Some nice accessors for the vmpressure. */
250 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
251 {
252 if (!memcg)
253 memcg = root_mem_cgroup;
254 return &memcg->vmpressure;
255 }
256
257 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
258 {
259 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
260 }
261
262 #ifdef CONFIG_MEMCG_KMEM
263 /*
264 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
265 * The main reason for not using cgroup id for this:
266 * this works better in sparse environments, where we have a lot of memcgs,
267 * but only a few kmem-limited. Or also, if we have, for instance, 200
268 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
269 * 200 entry array for that.
270 *
271 * The current size of the caches array is stored in memcg_nr_cache_ids. It
272 * will double each time we have to increase it.
273 */
274 static DEFINE_IDA(memcg_cache_ida);
275 int memcg_nr_cache_ids;
276
277 /* Protects memcg_nr_cache_ids */
278 static DECLARE_RWSEM(memcg_cache_ids_sem);
279
280 void memcg_get_cache_ids(void)
281 {
282 down_read(&memcg_cache_ids_sem);
283 }
284
285 void memcg_put_cache_ids(void)
286 {
287 up_read(&memcg_cache_ids_sem);
288 }
289
290 /*
291 * MIN_SIZE is different than 1, because we would like to avoid going through
292 * the alloc/free process all the time. In a small machine, 4 kmem-limited
293 * cgroups is a reasonable guess. In the future, it could be a parameter or
294 * tunable, but that is strictly not necessary.
295 *
296 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
297 * this constant directly from cgroup, but it is understandable that this is
298 * better kept as an internal representation in cgroup.c. In any case, the
299 * cgrp_id space is not getting any smaller, and we don't have to necessarily
300 * increase ours as well if it increases.
301 */
302 #define MEMCG_CACHES_MIN_SIZE 4
303 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
304
305 /*
306 * A lot of the calls to the cache allocation functions are expected to be
307 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
308 * conditional to this static branch, we'll have to allow modules that does
309 * kmem_cache_alloc and the such to see this symbol as well
310 */
311 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
312 EXPORT_SYMBOL(memcg_kmem_enabled_key);
313
314 struct workqueue_struct *memcg_kmem_cache_wq;
315
316 static int memcg_shrinker_map_size;
317 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
318
319 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
320 {
321 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
322 }
323
324 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
325 int size, int old_size)
326 {
327 struct memcg_shrinker_map *new, *old;
328 int nid;
329
330 lockdep_assert_held(&memcg_shrinker_map_mutex);
331
332 for_each_node(nid) {
333 old = rcu_dereference_protected(
334 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
335 /* Not yet online memcg */
336 if (!old)
337 return 0;
338
339 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
340 if (!new)
341 return -ENOMEM;
342
343 /* Set all old bits, clear all new bits */
344 memset(new->map, (int)0xff, old_size);
345 memset((void *)new->map + old_size, 0, size - old_size);
346
347 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
348 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
349 }
350
351 return 0;
352 }
353
354 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
355 {
356 struct mem_cgroup_per_node *pn;
357 struct memcg_shrinker_map *map;
358 int nid;
359
360 if (mem_cgroup_is_root(memcg))
361 return;
362
363 for_each_node(nid) {
364 pn = mem_cgroup_nodeinfo(memcg, nid);
365 map = rcu_dereference_protected(pn->shrinker_map, true);
366 if (map)
367 kvfree(map);
368 rcu_assign_pointer(pn->shrinker_map, NULL);
369 }
370 }
371
372 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
373 {
374 struct memcg_shrinker_map *map;
375 int nid, size, ret = 0;
376
377 if (mem_cgroup_is_root(memcg))
378 return 0;
379
380 mutex_lock(&memcg_shrinker_map_mutex);
381 size = memcg_shrinker_map_size;
382 for_each_node(nid) {
383 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
384 if (!map) {
385 memcg_free_shrinker_maps(memcg);
386 ret = -ENOMEM;
387 break;
388 }
389 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
390 }
391 mutex_unlock(&memcg_shrinker_map_mutex);
392
393 return ret;
394 }
395
396 int memcg_expand_shrinker_maps(int new_id)
397 {
398 int size, old_size, ret = 0;
399 struct mem_cgroup *memcg;
400
401 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
402 old_size = memcg_shrinker_map_size;
403 if (size <= old_size)
404 return 0;
405
406 mutex_lock(&memcg_shrinker_map_mutex);
407 if (!root_mem_cgroup)
408 goto unlock;
409
410 for_each_mem_cgroup(memcg) {
411 if (mem_cgroup_is_root(memcg))
412 continue;
413 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
414 if (ret)
415 goto unlock;
416 }
417 unlock:
418 if (!ret)
419 memcg_shrinker_map_size = size;
420 mutex_unlock(&memcg_shrinker_map_mutex);
421 return ret;
422 }
423
424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
425 {
426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 struct memcg_shrinker_map *map;
428
429 rcu_read_lock();
430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 /* Pairs with smp mb in shrink_slab() */
432 smp_mb__before_atomic();
433 set_bit(shrinker_id, map->map);
434 rcu_read_unlock();
435 }
436 }
437
438 #else /* CONFIG_MEMCG_KMEM */
439 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
440 {
441 return 0;
442 }
443 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
444 #endif /* CONFIG_MEMCG_KMEM */
445
446 /**
447 * mem_cgroup_css_from_page - css of the memcg associated with a page
448 * @page: page of interest
449 *
450 * If memcg is bound to the default hierarchy, css of the memcg associated
451 * with @page is returned. The returned css remains associated with @page
452 * until it is released.
453 *
454 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
455 * is returned.
456 */
457 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
458 {
459 struct mem_cgroup *memcg;
460
461 memcg = page->mem_cgroup;
462
463 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
464 memcg = root_mem_cgroup;
465
466 return &memcg->css;
467 }
468
469 /**
470 * page_cgroup_ino - return inode number of the memcg a page is charged to
471 * @page: the page
472 *
473 * Look up the closest online ancestor of the memory cgroup @page is charged to
474 * and return its inode number or 0 if @page is not charged to any cgroup. It
475 * is safe to call this function without holding a reference to @page.
476 *
477 * Note, this function is inherently racy, because there is nothing to prevent
478 * the cgroup inode from getting torn down and potentially reallocated a moment
479 * after page_cgroup_ino() returns, so it only should be used by callers that
480 * do not care (such as procfs interfaces).
481 */
482 ino_t page_cgroup_ino(struct page *page)
483 {
484 struct mem_cgroup *memcg;
485 unsigned long ino = 0;
486
487 rcu_read_lock();
488 memcg = READ_ONCE(page->mem_cgroup);
489 while (memcg && !(memcg->css.flags & CSS_ONLINE))
490 memcg = parent_mem_cgroup(memcg);
491 if (memcg)
492 ino = cgroup_ino(memcg->css.cgroup);
493 rcu_read_unlock();
494 return ino;
495 }
496
497 static struct mem_cgroup_per_node *
498 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
499 {
500 int nid = page_to_nid(page);
501
502 return memcg->nodeinfo[nid];
503 }
504
505 static struct mem_cgroup_tree_per_node *
506 soft_limit_tree_node(int nid)
507 {
508 return soft_limit_tree.rb_tree_per_node[nid];
509 }
510
511 static struct mem_cgroup_tree_per_node *
512 soft_limit_tree_from_page(struct page *page)
513 {
514 int nid = page_to_nid(page);
515
516 return soft_limit_tree.rb_tree_per_node[nid];
517 }
518
519 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
520 struct mem_cgroup_tree_per_node *mctz,
521 unsigned long new_usage_in_excess)
522 {
523 struct rb_node **p = &mctz->rb_root.rb_node;
524 struct rb_node *parent = NULL;
525 struct mem_cgroup_per_node *mz_node;
526 bool rightmost = true;
527
528 if (mz->on_tree)
529 return;
530
531 mz->usage_in_excess = new_usage_in_excess;
532 if (!mz->usage_in_excess)
533 return;
534 while (*p) {
535 parent = *p;
536 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
537 tree_node);
538 if (mz->usage_in_excess < mz_node->usage_in_excess) {
539 p = &(*p)->rb_left;
540 rightmost = false;
541 }
542
543 /*
544 * We can't avoid mem cgroups that are over their soft
545 * limit by the same amount
546 */
547 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
548 p = &(*p)->rb_right;
549 }
550
551 if (rightmost)
552 mctz->rb_rightmost = &mz->tree_node;
553
554 rb_link_node(&mz->tree_node, parent, p);
555 rb_insert_color(&mz->tree_node, &mctz->rb_root);
556 mz->on_tree = true;
557 }
558
559 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
560 struct mem_cgroup_tree_per_node *mctz)
561 {
562 if (!mz->on_tree)
563 return;
564
565 if (&mz->tree_node == mctz->rb_rightmost)
566 mctz->rb_rightmost = rb_prev(&mz->tree_node);
567
568 rb_erase(&mz->tree_node, &mctz->rb_root);
569 mz->on_tree = false;
570 }
571
572 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
573 struct mem_cgroup_tree_per_node *mctz)
574 {
575 unsigned long flags;
576
577 spin_lock_irqsave(&mctz->lock, flags);
578 __mem_cgroup_remove_exceeded(mz, mctz);
579 spin_unlock_irqrestore(&mctz->lock, flags);
580 }
581
582 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
583 {
584 unsigned long nr_pages = page_counter_read(&memcg->memory);
585 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
586 unsigned long excess = 0;
587
588 if (nr_pages > soft_limit)
589 excess = nr_pages - soft_limit;
590
591 return excess;
592 }
593
594 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
595 {
596 unsigned long excess;
597 struct mem_cgroup_per_node *mz;
598 struct mem_cgroup_tree_per_node *mctz;
599
600 mctz = soft_limit_tree_from_page(page);
601 if (!mctz)
602 return;
603 /*
604 * Necessary to update all ancestors when hierarchy is used.
605 * because their event counter is not touched.
606 */
607 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
608 mz = mem_cgroup_page_nodeinfo(memcg, page);
609 excess = soft_limit_excess(memcg);
610 /*
611 * We have to update the tree if mz is on RB-tree or
612 * mem is over its softlimit.
613 */
614 if (excess || mz->on_tree) {
615 unsigned long flags;
616
617 spin_lock_irqsave(&mctz->lock, flags);
618 /* if on-tree, remove it */
619 if (mz->on_tree)
620 __mem_cgroup_remove_exceeded(mz, mctz);
621 /*
622 * Insert again. mz->usage_in_excess will be updated.
623 * If excess is 0, no tree ops.
624 */
625 __mem_cgroup_insert_exceeded(mz, mctz, excess);
626 spin_unlock_irqrestore(&mctz->lock, flags);
627 }
628 }
629 }
630
631 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
632 {
633 struct mem_cgroup_tree_per_node *mctz;
634 struct mem_cgroup_per_node *mz;
635 int nid;
636
637 for_each_node(nid) {
638 mz = mem_cgroup_nodeinfo(memcg, nid);
639 mctz = soft_limit_tree_node(nid);
640 if (mctz)
641 mem_cgroup_remove_exceeded(mz, mctz);
642 }
643 }
644
645 static struct mem_cgroup_per_node *
646 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
647 {
648 struct mem_cgroup_per_node *mz;
649
650 retry:
651 mz = NULL;
652 if (!mctz->rb_rightmost)
653 goto done; /* Nothing to reclaim from */
654
655 mz = rb_entry(mctz->rb_rightmost,
656 struct mem_cgroup_per_node, tree_node);
657 /*
658 * Remove the node now but someone else can add it back,
659 * we will to add it back at the end of reclaim to its correct
660 * position in the tree.
661 */
662 __mem_cgroup_remove_exceeded(mz, mctz);
663 if (!soft_limit_excess(mz->memcg) ||
664 !css_tryget_online(&mz->memcg->css))
665 goto retry;
666 done:
667 return mz;
668 }
669
670 static struct mem_cgroup_per_node *
671 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
672 {
673 struct mem_cgroup_per_node *mz;
674
675 spin_lock_irq(&mctz->lock);
676 mz = __mem_cgroup_largest_soft_limit_node(mctz);
677 spin_unlock_irq(&mctz->lock);
678 return mz;
679 }
680
681 /**
682 * __mod_memcg_state - update cgroup memory statistics
683 * @memcg: the memory cgroup
684 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
685 * @val: delta to add to the counter, can be negative
686 */
687 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
688 {
689 long x;
690
691 if (mem_cgroup_disabled())
692 return;
693
694 __this_cpu_add(memcg->vmstats_local->stat[idx], val);
695
696 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
697 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
698 struct mem_cgroup *mi;
699
700 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
701 atomic_long_add(x, &mi->vmstats[idx]);
702 x = 0;
703 }
704 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
705 }
706
707 static struct mem_cgroup_per_node *
708 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
709 {
710 struct mem_cgroup *parent;
711
712 parent = parent_mem_cgroup(pn->memcg);
713 if (!parent)
714 return NULL;
715 return mem_cgroup_nodeinfo(parent, nid);
716 }
717
718 /**
719 * __mod_lruvec_state - update lruvec memory statistics
720 * @lruvec: the lruvec
721 * @idx: the stat item
722 * @val: delta to add to the counter, can be negative
723 *
724 * The lruvec is the intersection of the NUMA node and a cgroup. This
725 * function updates the all three counters that are affected by a
726 * change of state at this level: per-node, per-cgroup, per-lruvec.
727 */
728 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
729 int val)
730 {
731 pg_data_t *pgdat = lruvec_pgdat(lruvec);
732 struct mem_cgroup_per_node *pn;
733 struct mem_cgroup *memcg;
734 long x;
735
736 /* Update node */
737 __mod_node_page_state(pgdat, idx, val);
738
739 if (mem_cgroup_disabled())
740 return;
741
742 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
743 memcg = pn->memcg;
744
745 /* Update memcg */
746 __mod_memcg_state(memcg, idx, val);
747
748 /* Update lruvec */
749 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
750
751 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
752 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
753 struct mem_cgroup_per_node *pi;
754
755 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
756 atomic_long_add(x, &pi->lruvec_stat[idx]);
757 x = 0;
758 }
759 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
760 }
761
762 /**
763 * __count_memcg_events - account VM events in a cgroup
764 * @memcg: the memory cgroup
765 * @idx: the event item
766 * @count: the number of events that occured
767 */
768 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
769 unsigned long count)
770 {
771 unsigned long x;
772
773 if (mem_cgroup_disabled())
774 return;
775
776 __this_cpu_add(memcg->vmstats_local->events[idx], count);
777
778 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
779 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
780 struct mem_cgroup *mi;
781
782 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
783 atomic_long_add(x, &mi->vmevents[idx]);
784 x = 0;
785 }
786 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
787 }
788
789 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
790 {
791 return atomic_long_read(&memcg->vmevents[event]);
792 }
793
794 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
795 {
796 long x = 0;
797 int cpu;
798
799 for_each_possible_cpu(cpu)
800 x += per_cpu(memcg->vmstats_local->events[event], cpu);
801 return x;
802 }
803
804 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
805 struct page *page,
806 bool compound, int nr_pages)
807 {
808 /*
809 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
810 * counted as CACHE even if it's on ANON LRU.
811 */
812 if (PageAnon(page))
813 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
814 else {
815 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
816 if (PageSwapBacked(page))
817 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
818 }
819
820 if (compound) {
821 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
822 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
823 }
824
825 /* pagein of a big page is an event. So, ignore page size */
826 if (nr_pages > 0)
827 __count_memcg_events(memcg, PGPGIN, 1);
828 else {
829 __count_memcg_events(memcg, PGPGOUT, 1);
830 nr_pages = -nr_pages; /* for event */
831 }
832
833 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
834 }
835
836 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
837 enum mem_cgroup_events_target target)
838 {
839 unsigned long val, next;
840
841 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
842 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
843 /* from time_after() in jiffies.h */
844 if ((long)(next - val) < 0) {
845 switch (target) {
846 case MEM_CGROUP_TARGET_THRESH:
847 next = val + THRESHOLDS_EVENTS_TARGET;
848 break;
849 case MEM_CGROUP_TARGET_SOFTLIMIT:
850 next = val + SOFTLIMIT_EVENTS_TARGET;
851 break;
852 case MEM_CGROUP_TARGET_NUMAINFO:
853 next = val + NUMAINFO_EVENTS_TARGET;
854 break;
855 default:
856 break;
857 }
858 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
859 return true;
860 }
861 return false;
862 }
863
864 /*
865 * Check events in order.
866 *
867 */
868 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
869 {
870 /* threshold event is triggered in finer grain than soft limit */
871 if (unlikely(mem_cgroup_event_ratelimit(memcg,
872 MEM_CGROUP_TARGET_THRESH))) {
873 bool do_softlimit;
874 bool do_numainfo __maybe_unused;
875
876 do_softlimit = mem_cgroup_event_ratelimit(memcg,
877 MEM_CGROUP_TARGET_SOFTLIMIT);
878 #if MAX_NUMNODES > 1
879 do_numainfo = mem_cgroup_event_ratelimit(memcg,
880 MEM_CGROUP_TARGET_NUMAINFO);
881 #endif
882 mem_cgroup_threshold(memcg);
883 if (unlikely(do_softlimit))
884 mem_cgroup_update_tree(memcg, page);
885 #if MAX_NUMNODES > 1
886 if (unlikely(do_numainfo))
887 atomic_inc(&memcg->numainfo_events);
888 #endif
889 }
890 }
891
892 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
893 {
894 /*
895 * mm_update_next_owner() may clear mm->owner to NULL
896 * if it races with swapoff, page migration, etc.
897 * So this can be called with p == NULL.
898 */
899 if (unlikely(!p))
900 return NULL;
901
902 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
903 }
904 EXPORT_SYMBOL(mem_cgroup_from_task);
905
906 /**
907 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
908 * @mm: mm from which memcg should be extracted. It can be NULL.
909 *
910 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
911 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
912 * returned.
913 */
914 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
915 {
916 struct mem_cgroup *memcg;
917
918 if (mem_cgroup_disabled())
919 return NULL;
920
921 rcu_read_lock();
922 do {
923 /*
924 * Page cache insertions can happen withou an
925 * actual mm context, e.g. during disk probing
926 * on boot, loopback IO, acct() writes etc.
927 */
928 if (unlikely(!mm))
929 memcg = root_mem_cgroup;
930 else {
931 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
932 if (unlikely(!memcg))
933 memcg = root_mem_cgroup;
934 }
935 } while (!css_tryget_online(&memcg->css));
936 rcu_read_unlock();
937 return memcg;
938 }
939 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
940
941 /**
942 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
943 * @page: page from which memcg should be extracted.
944 *
945 * Obtain a reference on page->memcg and returns it if successful. Otherwise
946 * root_mem_cgroup is returned.
947 */
948 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
949 {
950 struct mem_cgroup *memcg = page->mem_cgroup;
951
952 if (mem_cgroup_disabled())
953 return NULL;
954
955 rcu_read_lock();
956 if (!memcg || !css_tryget_online(&memcg->css))
957 memcg = root_mem_cgroup;
958 rcu_read_unlock();
959 return memcg;
960 }
961 EXPORT_SYMBOL(get_mem_cgroup_from_page);
962
963 /**
964 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
965 */
966 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
967 {
968 if (unlikely(current->active_memcg)) {
969 struct mem_cgroup *memcg = root_mem_cgroup;
970
971 rcu_read_lock();
972 if (css_tryget_online(&current->active_memcg->css))
973 memcg = current->active_memcg;
974 rcu_read_unlock();
975 return memcg;
976 }
977 return get_mem_cgroup_from_mm(current->mm);
978 }
979
980 /**
981 * mem_cgroup_iter - iterate over memory cgroup hierarchy
982 * @root: hierarchy root
983 * @prev: previously returned memcg, NULL on first invocation
984 * @reclaim: cookie for shared reclaim walks, NULL for full walks
985 *
986 * Returns references to children of the hierarchy below @root, or
987 * @root itself, or %NULL after a full round-trip.
988 *
989 * Caller must pass the return value in @prev on subsequent
990 * invocations for reference counting, or use mem_cgroup_iter_break()
991 * to cancel a hierarchy walk before the round-trip is complete.
992 *
993 * Reclaimers can specify a node and a priority level in @reclaim to
994 * divide up the memcgs in the hierarchy among all concurrent
995 * reclaimers operating on the same node and priority.
996 */
997 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
998 struct mem_cgroup *prev,
999 struct mem_cgroup_reclaim_cookie *reclaim)
1000 {
1001 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1002 struct cgroup_subsys_state *css = NULL;
1003 struct mem_cgroup *memcg = NULL;
1004 struct mem_cgroup *pos = NULL;
1005
1006 if (mem_cgroup_disabled())
1007 return NULL;
1008
1009 if (!root)
1010 root = root_mem_cgroup;
1011
1012 if (prev && !reclaim)
1013 pos = prev;
1014
1015 if (!root->use_hierarchy && root != root_mem_cgroup) {
1016 if (prev)
1017 goto out;
1018 return root;
1019 }
1020
1021 rcu_read_lock();
1022
1023 if (reclaim) {
1024 struct mem_cgroup_per_node *mz;
1025
1026 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1027 iter = &mz->iter[reclaim->priority];
1028
1029 if (prev && reclaim->generation != iter->generation)
1030 goto out_unlock;
1031
1032 while (1) {
1033 pos = READ_ONCE(iter->position);
1034 if (!pos || css_tryget(&pos->css))
1035 break;
1036 /*
1037 * css reference reached zero, so iter->position will
1038 * be cleared by ->css_released. However, we should not
1039 * rely on this happening soon, because ->css_released
1040 * is called from a work queue, and by busy-waiting we
1041 * might block it. So we clear iter->position right
1042 * away.
1043 */
1044 (void)cmpxchg(&iter->position, pos, NULL);
1045 }
1046 }
1047
1048 if (pos)
1049 css = &pos->css;
1050
1051 for (;;) {
1052 css = css_next_descendant_pre(css, &root->css);
1053 if (!css) {
1054 /*
1055 * Reclaimers share the hierarchy walk, and a
1056 * new one might jump in right at the end of
1057 * the hierarchy - make sure they see at least
1058 * one group and restart from the beginning.
1059 */
1060 if (!prev)
1061 continue;
1062 break;
1063 }
1064
1065 /*
1066 * Verify the css and acquire a reference. The root
1067 * is provided by the caller, so we know it's alive
1068 * and kicking, and don't take an extra reference.
1069 */
1070 memcg = mem_cgroup_from_css(css);
1071
1072 if (css == &root->css)
1073 break;
1074
1075 if (css_tryget(css))
1076 break;
1077
1078 memcg = NULL;
1079 }
1080
1081 if (reclaim) {
1082 /*
1083 * The position could have already been updated by a competing
1084 * thread, so check that the value hasn't changed since we read
1085 * it to avoid reclaiming from the same cgroup twice.
1086 */
1087 (void)cmpxchg(&iter->position, pos, memcg);
1088
1089 if (pos)
1090 css_put(&pos->css);
1091
1092 if (!memcg)
1093 iter->generation++;
1094 else if (!prev)
1095 reclaim->generation = iter->generation;
1096 }
1097
1098 out_unlock:
1099 rcu_read_unlock();
1100 out:
1101 if (prev && prev != root)
1102 css_put(&prev->css);
1103
1104 return memcg;
1105 }
1106
1107 /**
1108 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1109 * @root: hierarchy root
1110 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1111 */
1112 void mem_cgroup_iter_break(struct mem_cgroup *root,
1113 struct mem_cgroup *prev)
1114 {
1115 if (!root)
1116 root = root_mem_cgroup;
1117 if (prev && prev != root)
1118 css_put(&prev->css);
1119 }
1120
1121 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1122 {
1123 struct mem_cgroup *memcg = dead_memcg;
1124 struct mem_cgroup_reclaim_iter *iter;
1125 struct mem_cgroup_per_node *mz;
1126 int nid;
1127 int i;
1128
1129 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1130 for_each_node(nid) {
1131 mz = mem_cgroup_nodeinfo(memcg, nid);
1132 for (i = 0; i <= DEF_PRIORITY; i++) {
1133 iter = &mz->iter[i];
1134 cmpxchg(&iter->position,
1135 dead_memcg, NULL);
1136 }
1137 }
1138 }
1139 }
1140
1141 /**
1142 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1143 * @memcg: hierarchy root
1144 * @fn: function to call for each task
1145 * @arg: argument passed to @fn
1146 *
1147 * This function iterates over tasks attached to @memcg or to any of its
1148 * descendants and calls @fn for each task. If @fn returns a non-zero
1149 * value, the function breaks the iteration loop and returns the value.
1150 * Otherwise, it will iterate over all tasks and return 0.
1151 *
1152 * This function must not be called for the root memory cgroup.
1153 */
1154 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1155 int (*fn)(struct task_struct *, void *), void *arg)
1156 {
1157 struct mem_cgroup *iter;
1158 int ret = 0;
1159
1160 BUG_ON(memcg == root_mem_cgroup);
1161
1162 for_each_mem_cgroup_tree(iter, memcg) {
1163 struct css_task_iter it;
1164 struct task_struct *task;
1165
1166 css_task_iter_start(&iter->css, 0, &it);
1167 while (!ret && (task = css_task_iter_next(&it)))
1168 ret = fn(task, arg);
1169 css_task_iter_end(&it);
1170 if (ret) {
1171 mem_cgroup_iter_break(memcg, iter);
1172 break;
1173 }
1174 }
1175 return ret;
1176 }
1177
1178 /**
1179 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1180 * @page: the page
1181 * @pgdat: pgdat of the page
1182 *
1183 * This function is only safe when following the LRU page isolation
1184 * and putback protocol: the LRU lock must be held, and the page must
1185 * either be PageLRU() or the caller must have isolated/allocated it.
1186 */
1187 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1188 {
1189 struct mem_cgroup_per_node *mz;
1190 struct mem_cgroup *memcg;
1191 struct lruvec *lruvec;
1192
1193 if (mem_cgroup_disabled()) {
1194 lruvec = &pgdat->lruvec;
1195 goto out;
1196 }
1197
1198 memcg = page->mem_cgroup;
1199 /*
1200 * Swapcache readahead pages are added to the LRU - and
1201 * possibly migrated - before they are charged.
1202 */
1203 if (!memcg)
1204 memcg = root_mem_cgroup;
1205
1206 mz = mem_cgroup_page_nodeinfo(memcg, page);
1207 lruvec = &mz->lruvec;
1208 out:
1209 /*
1210 * Since a node can be onlined after the mem_cgroup was created,
1211 * we have to be prepared to initialize lruvec->zone here;
1212 * and if offlined then reonlined, we need to reinitialize it.
1213 */
1214 if (unlikely(lruvec->pgdat != pgdat))
1215 lruvec->pgdat = pgdat;
1216 return lruvec;
1217 }
1218
1219 /**
1220 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1221 * @lruvec: mem_cgroup per zone lru vector
1222 * @lru: index of lru list the page is sitting on
1223 * @zid: zone id of the accounted pages
1224 * @nr_pages: positive when adding or negative when removing
1225 *
1226 * This function must be called under lru_lock, just before a page is added
1227 * to or just after a page is removed from an lru list (that ordering being
1228 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1229 */
1230 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1231 int zid, int nr_pages)
1232 {
1233 struct mem_cgroup_per_node *mz;
1234 unsigned long *lru_size;
1235 long size;
1236
1237 if (mem_cgroup_disabled())
1238 return;
1239
1240 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1241 lru_size = &mz->lru_zone_size[zid][lru];
1242
1243 if (nr_pages < 0)
1244 *lru_size += nr_pages;
1245
1246 size = *lru_size;
1247 if (WARN_ONCE(size < 0,
1248 "%s(%p, %d, %d): lru_size %ld\n",
1249 __func__, lruvec, lru, nr_pages, size)) {
1250 VM_BUG_ON(1);
1251 *lru_size = 0;
1252 }
1253
1254 if (nr_pages > 0)
1255 *lru_size += nr_pages;
1256 }
1257
1258 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1259 {
1260 struct mem_cgroup *task_memcg;
1261 struct task_struct *p;
1262 bool ret;
1263
1264 p = find_lock_task_mm(task);
1265 if (p) {
1266 task_memcg = get_mem_cgroup_from_mm(p->mm);
1267 task_unlock(p);
1268 } else {
1269 /*
1270 * All threads may have already detached their mm's, but the oom
1271 * killer still needs to detect if they have already been oom
1272 * killed to prevent needlessly killing additional tasks.
1273 */
1274 rcu_read_lock();
1275 task_memcg = mem_cgroup_from_task(task);
1276 css_get(&task_memcg->css);
1277 rcu_read_unlock();
1278 }
1279 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1280 css_put(&task_memcg->css);
1281 return ret;
1282 }
1283
1284 /**
1285 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1286 * @memcg: the memory cgroup
1287 *
1288 * Returns the maximum amount of memory @mem can be charged with, in
1289 * pages.
1290 */
1291 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1292 {
1293 unsigned long margin = 0;
1294 unsigned long count;
1295 unsigned long limit;
1296
1297 count = page_counter_read(&memcg->memory);
1298 limit = READ_ONCE(memcg->memory.max);
1299 if (count < limit)
1300 margin = limit - count;
1301
1302 if (do_memsw_account()) {
1303 count = page_counter_read(&memcg->memsw);
1304 limit = READ_ONCE(memcg->memsw.max);
1305 if (count <= limit)
1306 margin = min(margin, limit - count);
1307 else
1308 margin = 0;
1309 }
1310
1311 return margin;
1312 }
1313
1314 /*
1315 * A routine for checking "mem" is under move_account() or not.
1316 *
1317 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1318 * moving cgroups. This is for waiting at high-memory pressure
1319 * caused by "move".
1320 */
1321 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1322 {
1323 struct mem_cgroup *from;
1324 struct mem_cgroup *to;
1325 bool ret = false;
1326 /*
1327 * Unlike task_move routines, we access mc.to, mc.from not under
1328 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1329 */
1330 spin_lock(&mc.lock);
1331 from = mc.from;
1332 to = mc.to;
1333 if (!from)
1334 goto unlock;
1335
1336 ret = mem_cgroup_is_descendant(from, memcg) ||
1337 mem_cgroup_is_descendant(to, memcg);
1338 unlock:
1339 spin_unlock(&mc.lock);
1340 return ret;
1341 }
1342
1343 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1344 {
1345 if (mc.moving_task && current != mc.moving_task) {
1346 if (mem_cgroup_under_move(memcg)) {
1347 DEFINE_WAIT(wait);
1348 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1349 /* moving charge context might have finished. */
1350 if (mc.moving_task)
1351 schedule();
1352 finish_wait(&mc.waitq, &wait);
1353 return true;
1354 }
1355 }
1356 return false;
1357 }
1358
1359 static const unsigned int memcg1_stats[] = {
1360 MEMCG_CACHE,
1361 MEMCG_RSS,
1362 MEMCG_RSS_HUGE,
1363 NR_SHMEM,
1364 NR_FILE_MAPPED,
1365 NR_FILE_DIRTY,
1366 NR_WRITEBACK,
1367 MEMCG_SWAP,
1368 };
1369
1370 static const char *const memcg1_stat_names[] = {
1371 "cache",
1372 "rss",
1373 "rss_huge",
1374 "shmem",
1375 "mapped_file",
1376 "dirty",
1377 "writeback",
1378 "swap",
1379 };
1380
1381 #define K(x) ((x) << (PAGE_SHIFT-10))
1382 /**
1383 * mem_cgroup_print_oom_context: Print OOM information relevant to
1384 * memory controller.
1385 * @memcg: The memory cgroup that went over limit
1386 * @p: Task that is going to be killed
1387 *
1388 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1389 * enabled
1390 */
1391 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1392 {
1393 rcu_read_lock();
1394
1395 if (memcg) {
1396 pr_cont(",oom_memcg=");
1397 pr_cont_cgroup_path(memcg->css.cgroup);
1398 } else
1399 pr_cont(",global_oom");
1400 if (p) {
1401 pr_cont(",task_memcg=");
1402 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1403 }
1404 rcu_read_unlock();
1405 }
1406
1407 /**
1408 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1409 * memory controller.
1410 * @memcg: The memory cgroup that went over limit
1411 */
1412 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1413 {
1414 struct mem_cgroup *iter;
1415 unsigned int i;
1416
1417 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1418 K((u64)page_counter_read(&memcg->memory)),
1419 K((u64)memcg->memory.max), memcg->memory.failcnt);
1420 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1421 K((u64)page_counter_read(&memcg->memsw)),
1422 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1423 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1424 K((u64)page_counter_read(&memcg->kmem)),
1425 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1426
1427 for_each_mem_cgroup_tree(iter, memcg) {
1428 pr_info("Memory cgroup stats for ");
1429 pr_cont_cgroup_path(iter->css.cgroup);
1430 pr_cont(":");
1431
1432 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1433 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1434 continue;
1435 pr_cont(" %s:%luKB", memcg1_stat_names[i],
1436 K(memcg_page_state_local(iter,
1437 memcg1_stats[i])));
1438 }
1439
1440 for (i = 0; i < NR_LRU_LISTS; i++)
1441 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1442 K(memcg_page_state_local(iter,
1443 NR_LRU_BASE + i)));
1444
1445 pr_cont("\n");
1446 }
1447 }
1448
1449 /*
1450 * Return the memory (and swap, if configured) limit for a memcg.
1451 */
1452 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1453 {
1454 unsigned long max;
1455
1456 max = memcg->memory.max;
1457 if (mem_cgroup_swappiness(memcg)) {
1458 unsigned long memsw_max;
1459 unsigned long swap_max;
1460
1461 memsw_max = memcg->memsw.max;
1462 swap_max = memcg->swap.max;
1463 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1464 max = min(max + swap_max, memsw_max);
1465 }
1466 return max;
1467 }
1468
1469 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1470 int order)
1471 {
1472 struct oom_control oc = {
1473 .zonelist = NULL,
1474 .nodemask = NULL,
1475 .memcg = memcg,
1476 .gfp_mask = gfp_mask,
1477 .order = order,
1478 };
1479 bool ret;
1480
1481 if (mutex_lock_killable(&oom_lock))
1482 return true;
1483 /*
1484 * A few threads which were not waiting at mutex_lock_killable() can
1485 * fail to bail out. Therefore, check again after holding oom_lock.
1486 */
1487 ret = should_force_charge() || out_of_memory(&oc);
1488 mutex_unlock(&oom_lock);
1489 return ret;
1490 }
1491
1492 #if MAX_NUMNODES > 1
1493
1494 /**
1495 * test_mem_cgroup_node_reclaimable
1496 * @memcg: the target memcg
1497 * @nid: the node ID to be checked.
1498 * @noswap : specify true here if the user wants flle only information.
1499 *
1500 * This function returns whether the specified memcg contains any
1501 * reclaimable pages on a node. Returns true if there are any reclaimable
1502 * pages in the node.
1503 */
1504 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1505 int nid, bool noswap)
1506 {
1507 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1508
1509 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1510 lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1511 return true;
1512 if (noswap || !total_swap_pages)
1513 return false;
1514 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1515 lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1516 return true;
1517 return false;
1518
1519 }
1520
1521 /*
1522 * Always updating the nodemask is not very good - even if we have an empty
1523 * list or the wrong list here, we can start from some node and traverse all
1524 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1525 *
1526 */
1527 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1528 {
1529 int nid;
1530 /*
1531 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1532 * pagein/pageout changes since the last update.
1533 */
1534 if (!atomic_read(&memcg->numainfo_events))
1535 return;
1536 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1537 return;
1538
1539 /* make a nodemask where this memcg uses memory from */
1540 memcg->scan_nodes = node_states[N_MEMORY];
1541
1542 for_each_node_mask(nid, node_states[N_MEMORY]) {
1543
1544 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1545 node_clear(nid, memcg->scan_nodes);
1546 }
1547
1548 atomic_set(&memcg->numainfo_events, 0);
1549 atomic_set(&memcg->numainfo_updating, 0);
1550 }
1551
1552 /*
1553 * Selecting a node where we start reclaim from. Because what we need is just
1554 * reducing usage counter, start from anywhere is O,K. Considering
1555 * memory reclaim from current node, there are pros. and cons.
1556 *
1557 * Freeing memory from current node means freeing memory from a node which
1558 * we'll use or we've used. So, it may make LRU bad. And if several threads
1559 * hit limits, it will see a contention on a node. But freeing from remote
1560 * node means more costs for memory reclaim because of memory latency.
1561 *
1562 * Now, we use round-robin. Better algorithm is welcomed.
1563 */
1564 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1565 {
1566 int node;
1567
1568 mem_cgroup_may_update_nodemask(memcg);
1569 node = memcg->last_scanned_node;
1570
1571 node = next_node_in(node, memcg->scan_nodes);
1572 /*
1573 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1574 * last time it really checked all the LRUs due to rate limiting.
1575 * Fallback to the current node in that case for simplicity.
1576 */
1577 if (unlikely(node == MAX_NUMNODES))
1578 node = numa_node_id();
1579
1580 memcg->last_scanned_node = node;
1581 return node;
1582 }
1583 #else
1584 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1585 {
1586 return 0;
1587 }
1588 #endif
1589
1590 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1591 pg_data_t *pgdat,
1592 gfp_t gfp_mask,
1593 unsigned long *total_scanned)
1594 {
1595 struct mem_cgroup *victim = NULL;
1596 int total = 0;
1597 int loop = 0;
1598 unsigned long excess;
1599 unsigned long nr_scanned;
1600 struct mem_cgroup_reclaim_cookie reclaim = {
1601 .pgdat = pgdat,
1602 .priority = 0,
1603 };
1604
1605 excess = soft_limit_excess(root_memcg);
1606
1607 while (1) {
1608 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1609 if (!victim) {
1610 loop++;
1611 if (loop >= 2) {
1612 /*
1613 * If we have not been able to reclaim
1614 * anything, it might because there are
1615 * no reclaimable pages under this hierarchy
1616 */
1617 if (!total)
1618 break;
1619 /*
1620 * We want to do more targeted reclaim.
1621 * excess >> 2 is not to excessive so as to
1622 * reclaim too much, nor too less that we keep
1623 * coming back to reclaim from this cgroup
1624 */
1625 if (total >= (excess >> 2) ||
1626 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1627 break;
1628 }
1629 continue;
1630 }
1631 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1632 pgdat, &nr_scanned);
1633 *total_scanned += nr_scanned;
1634 if (!soft_limit_excess(root_memcg))
1635 break;
1636 }
1637 mem_cgroup_iter_break(root_memcg, victim);
1638 return total;
1639 }
1640
1641 #ifdef CONFIG_LOCKDEP
1642 static struct lockdep_map memcg_oom_lock_dep_map = {
1643 .name = "memcg_oom_lock",
1644 };
1645 #endif
1646
1647 static DEFINE_SPINLOCK(memcg_oom_lock);
1648
1649 /*
1650 * Check OOM-Killer is already running under our hierarchy.
1651 * If someone is running, return false.
1652 */
1653 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1654 {
1655 struct mem_cgroup *iter, *failed = NULL;
1656
1657 spin_lock(&memcg_oom_lock);
1658
1659 for_each_mem_cgroup_tree(iter, memcg) {
1660 if (iter->oom_lock) {
1661 /*
1662 * this subtree of our hierarchy is already locked
1663 * so we cannot give a lock.
1664 */
1665 failed = iter;
1666 mem_cgroup_iter_break(memcg, iter);
1667 break;
1668 } else
1669 iter->oom_lock = true;
1670 }
1671
1672 if (failed) {
1673 /*
1674 * OK, we failed to lock the whole subtree so we have
1675 * to clean up what we set up to the failing subtree
1676 */
1677 for_each_mem_cgroup_tree(iter, memcg) {
1678 if (iter == failed) {
1679 mem_cgroup_iter_break(memcg, iter);
1680 break;
1681 }
1682 iter->oom_lock = false;
1683 }
1684 } else
1685 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1686
1687 spin_unlock(&memcg_oom_lock);
1688
1689 return !failed;
1690 }
1691
1692 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1693 {
1694 struct mem_cgroup *iter;
1695
1696 spin_lock(&memcg_oom_lock);
1697 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1698 for_each_mem_cgroup_tree(iter, memcg)
1699 iter->oom_lock = false;
1700 spin_unlock(&memcg_oom_lock);
1701 }
1702
1703 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1704 {
1705 struct mem_cgroup *iter;
1706
1707 spin_lock(&memcg_oom_lock);
1708 for_each_mem_cgroup_tree(iter, memcg)
1709 iter->under_oom++;
1710 spin_unlock(&memcg_oom_lock);
1711 }
1712
1713 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1714 {
1715 struct mem_cgroup *iter;
1716
1717 /*
1718 * When a new child is created while the hierarchy is under oom,
1719 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1720 */
1721 spin_lock(&memcg_oom_lock);
1722 for_each_mem_cgroup_tree(iter, memcg)
1723 if (iter->under_oom > 0)
1724 iter->under_oom--;
1725 spin_unlock(&memcg_oom_lock);
1726 }
1727
1728 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1729
1730 struct oom_wait_info {
1731 struct mem_cgroup *memcg;
1732 wait_queue_entry_t wait;
1733 };
1734
1735 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1736 unsigned mode, int sync, void *arg)
1737 {
1738 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1739 struct mem_cgroup *oom_wait_memcg;
1740 struct oom_wait_info *oom_wait_info;
1741
1742 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1743 oom_wait_memcg = oom_wait_info->memcg;
1744
1745 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1746 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1747 return 0;
1748 return autoremove_wake_function(wait, mode, sync, arg);
1749 }
1750
1751 static void memcg_oom_recover(struct mem_cgroup *memcg)
1752 {
1753 /*
1754 * For the following lockless ->under_oom test, the only required
1755 * guarantee is that it must see the state asserted by an OOM when
1756 * this function is called as a result of userland actions
1757 * triggered by the notification of the OOM. This is trivially
1758 * achieved by invoking mem_cgroup_mark_under_oom() before
1759 * triggering notification.
1760 */
1761 if (memcg && memcg->under_oom)
1762 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1763 }
1764
1765 enum oom_status {
1766 OOM_SUCCESS,
1767 OOM_FAILED,
1768 OOM_ASYNC,
1769 OOM_SKIPPED
1770 };
1771
1772 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1773 {
1774 enum oom_status ret;
1775 bool locked;
1776
1777 if (order > PAGE_ALLOC_COSTLY_ORDER)
1778 return OOM_SKIPPED;
1779
1780 memcg_memory_event(memcg, MEMCG_OOM);
1781
1782 /*
1783 * We are in the middle of the charge context here, so we
1784 * don't want to block when potentially sitting on a callstack
1785 * that holds all kinds of filesystem and mm locks.
1786 *
1787 * cgroup1 allows disabling the OOM killer and waiting for outside
1788 * handling until the charge can succeed; remember the context and put
1789 * the task to sleep at the end of the page fault when all locks are
1790 * released.
1791 *
1792 * On the other hand, in-kernel OOM killer allows for an async victim
1793 * memory reclaim (oom_reaper) and that means that we are not solely
1794 * relying on the oom victim to make a forward progress and we can
1795 * invoke the oom killer here.
1796 *
1797 * Please note that mem_cgroup_out_of_memory might fail to find a
1798 * victim and then we have to bail out from the charge path.
1799 */
1800 if (memcg->oom_kill_disable) {
1801 if (!current->in_user_fault)
1802 return OOM_SKIPPED;
1803 css_get(&memcg->css);
1804 current->memcg_in_oom = memcg;
1805 current->memcg_oom_gfp_mask = mask;
1806 current->memcg_oom_order = order;
1807
1808 return OOM_ASYNC;
1809 }
1810
1811 mem_cgroup_mark_under_oom(memcg);
1812
1813 locked = mem_cgroup_oom_trylock(memcg);
1814
1815 if (locked)
1816 mem_cgroup_oom_notify(memcg);
1817
1818 mem_cgroup_unmark_under_oom(memcg);
1819 if (mem_cgroup_out_of_memory(memcg, mask, order))
1820 ret = OOM_SUCCESS;
1821 else
1822 ret = OOM_FAILED;
1823
1824 if (locked)
1825 mem_cgroup_oom_unlock(memcg);
1826
1827 return ret;
1828 }
1829
1830 /**
1831 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1832 * @handle: actually kill/wait or just clean up the OOM state
1833 *
1834 * This has to be called at the end of a page fault if the memcg OOM
1835 * handler was enabled.
1836 *
1837 * Memcg supports userspace OOM handling where failed allocations must
1838 * sleep on a waitqueue until the userspace task resolves the
1839 * situation. Sleeping directly in the charge context with all kinds
1840 * of locks held is not a good idea, instead we remember an OOM state
1841 * in the task and mem_cgroup_oom_synchronize() has to be called at
1842 * the end of the page fault to complete the OOM handling.
1843 *
1844 * Returns %true if an ongoing memcg OOM situation was detected and
1845 * completed, %false otherwise.
1846 */
1847 bool mem_cgroup_oom_synchronize(bool handle)
1848 {
1849 struct mem_cgroup *memcg = current->memcg_in_oom;
1850 struct oom_wait_info owait;
1851 bool locked;
1852
1853 /* OOM is global, do not handle */
1854 if (!memcg)
1855 return false;
1856
1857 if (!handle)
1858 goto cleanup;
1859
1860 owait.memcg = memcg;
1861 owait.wait.flags = 0;
1862 owait.wait.func = memcg_oom_wake_function;
1863 owait.wait.private = current;
1864 INIT_LIST_HEAD(&owait.wait.entry);
1865
1866 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1867 mem_cgroup_mark_under_oom(memcg);
1868
1869 locked = mem_cgroup_oom_trylock(memcg);
1870
1871 if (locked)
1872 mem_cgroup_oom_notify(memcg);
1873
1874 if (locked && !memcg->oom_kill_disable) {
1875 mem_cgroup_unmark_under_oom(memcg);
1876 finish_wait(&memcg_oom_waitq, &owait.wait);
1877 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1878 current->memcg_oom_order);
1879 } else {
1880 schedule();
1881 mem_cgroup_unmark_under_oom(memcg);
1882 finish_wait(&memcg_oom_waitq, &owait.wait);
1883 }
1884
1885 if (locked) {
1886 mem_cgroup_oom_unlock(memcg);
1887 /*
1888 * There is no guarantee that an OOM-lock contender
1889 * sees the wakeups triggered by the OOM kill
1890 * uncharges. Wake any sleepers explicitely.
1891 */
1892 memcg_oom_recover(memcg);
1893 }
1894 cleanup:
1895 current->memcg_in_oom = NULL;
1896 css_put(&memcg->css);
1897 return true;
1898 }
1899
1900 /**
1901 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1902 * @victim: task to be killed by the OOM killer
1903 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1904 *
1905 * Returns a pointer to a memory cgroup, which has to be cleaned up
1906 * by killing all belonging OOM-killable tasks.
1907 *
1908 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1909 */
1910 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1911 struct mem_cgroup *oom_domain)
1912 {
1913 struct mem_cgroup *oom_group = NULL;
1914 struct mem_cgroup *memcg;
1915
1916 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1917 return NULL;
1918
1919 if (!oom_domain)
1920 oom_domain = root_mem_cgroup;
1921
1922 rcu_read_lock();
1923
1924 memcg = mem_cgroup_from_task(victim);
1925 if (memcg == root_mem_cgroup)
1926 goto out;
1927
1928 /*
1929 * Traverse the memory cgroup hierarchy from the victim task's
1930 * cgroup up to the OOMing cgroup (or root) to find the
1931 * highest-level memory cgroup with oom.group set.
1932 */
1933 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1934 if (memcg->oom_group)
1935 oom_group = memcg;
1936
1937 if (memcg == oom_domain)
1938 break;
1939 }
1940
1941 if (oom_group)
1942 css_get(&oom_group->css);
1943 out:
1944 rcu_read_unlock();
1945
1946 return oom_group;
1947 }
1948
1949 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1950 {
1951 pr_info("Tasks in ");
1952 pr_cont_cgroup_path(memcg->css.cgroup);
1953 pr_cont(" are going to be killed due to memory.oom.group set\n");
1954 }
1955
1956 /**
1957 * lock_page_memcg - lock a page->mem_cgroup binding
1958 * @page: the page
1959 *
1960 * This function protects unlocked LRU pages from being moved to
1961 * another cgroup.
1962 *
1963 * It ensures lifetime of the returned memcg. Caller is responsible
1964 * for the lifetime of the page; __unlock_page_memcg() is available
1965 * when @page might get freed inside the locked section.
1966 */
1967 struct mem_cgroup *lock_page_memcg(struct page *page)
1968 {
1969 struct mem_cgroup *memcg;
1970 unsigned long flags;
1971
1972 /*
1973 * The RCU lock is held throughout the transaction. The fast
1974 * path can get away without acquiring the memcg->move_lock
1975 * because page moving starts with an RCU grace period.
1976 *
1977 * The RCU lock also protects the memcg from being freed when
1978 * the page state that is going to change is the only thing
1979 * preventing the page itself from being freed. E.g. writeback
1980 * doesn't hold a page reference and relies on PG_writeback to
1981 * keep off truncation, migration and so forth.
1982 */
1983 rcu_read_lock();
1984
1985 if (mem_cgroup_disabled())
1986 return NULL;
1987 again:
1988 memcg = page->mem_cgroup;
1989 if (unlikely(!memcg))
1990 return NULL;
1991
1992 if (atomic_read(&memcg->moving_account) <= 0)
1993 return memcg;
1994
1995 spin_lock_irqsave(&memcg->move_lock, flags);
1996 if (memcg != page->mem_cgroup) {
1997 spin_unlock_irqrestore(&memcg->move_lock, flags);
1998 goto again;
1999 }
2000
2001 /*
2002 * When charge migration first begins, we can have locked and
2003 * unlocked page stat updates happening concurrently. Track
2004 * the task who has the lock for unlock_page_memcg().
2005 */
2006 memcg->move_lock_task = current;
2007 memcg->move_lock_flags = flags;
2008
2009 return memcg;
2010 }
2011 EXPORT_SYMBOL(lock_page_memcg);
2012
2013 /**
2014 * __unlock_page_memcg - unlock and unpin a memcg
2015 * @memcg: the memcg
2016 *
2017 * Unlock and unpin a memcg returned by lock_page_memcg().
2018 */
2019 void __unlock_page_memcg(struct mem_cgroup *memcg)
2020 {
2021 if (memcg && memcg->move_lock_task == current) {
2022 unsigned long flags = memcg->move_lock_flags;
2023
2024 memcg->move_lock_task = NULL;
2025 memcg->move_lock_flags = 0;
2026
2027 spin_unlock_irqrestore(&memcg->move_lock, flags);
2028 }
2029
2030 rcu_read_unlock();
2031 }
2032
2033 /**
2034 * unlock_page_memcg - unlock a page->mem_cgroup binding
2035 * @page: the page
2036 */
2037 void unlock_page_memcg(struct page *page)
2038 {
2039 __unlock_page_memcg(page->mem_cgroup);
2040 }
2041 EXPORT_SYMBOL(unlock_page_memcg);
2042
2043 struct memcg_stock_pcp {
2044 struct mem_cgroup *cached; /* this never be root cgroup */
2045 unsigned int nr_pages;
2046 struct work_struct work;
2047 unsigned long flags;
2048 #define FLUSHING_CACHED_CHARGE 0
2049 };
2050 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2051 static DEFINE_MUTEX(percpu_charge_mutex);
2052
2053 /**
2054 * consume_stock: Try to consume stocked charge on this cpu.
2055 * @memcg: memcg to consume from.
2056 * @nr_pages: how many pages to charge.
2057 *
2058 * The charges will only happen if @memcg matches the current cpu's memcg
2059 * stock, and at least @nr_pages are available in that stock. Failure to
2060 * service an allocation will refill the stock.
2061 *
2062 * returns true if successful, false otherwise.
2063 */
2064 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2065 {
2066 struct memcg_stock_pcp *stock;
2067 unsigned long flags;
2068 bool ret = false;
2069
2070 if (nr_pages > MEMCG_CHARGE_BATCH)
2071 return ret;
2072
2073 local_irq_save(flags);
2074
2075 stock = this_cpu_ptr(&memcg_stock);
2076 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2077 stock->nr_pages -= nr_pages;
2078 ret = true;
2079 }
2080
2081 local_irq_restore(flags);
2082
2083 return ret;
2084 }
2085
2086 /*
2087 * Returns stocks cached in percpu and reset cached information.
2088 */
2089 static void drain_stock(struct memcg_stock_pcp *stock)
2090 {
2091 struct mem_cgroup *old = stock->cached;
2092
2093 if (stock->nr_pages) {
2094 page_counter_uncharge(&old->memory, stock->nr_pages);
2095 if (do_memsw_account())
2096 page_counter_uncharge(&old->memsw, stock->nr_pages);
2097 css_put_many(&old->css, stock->nr_pages);
2098 stock->nr_pages = 0;
2099 }
2100 stock->cached = NULL;
2101 }
2102
2103 static void drain_local_stock(struct work_struct *dummy)
2104 {
2105 struct memcg_stock_pcp *stock;
2106 unsigned long flags;
2107
2108 /*
2109 * The only protection from memory hotplug vs. drain_stock races is
2110 * that we always operate on local CPU stock here with IRQ disabled
2111 */
2112 local_irq_save(flags);
2113
2114 stock = this_cpu_ptr(&memcg_stock);
2115 drain_stock(stock);
2116 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2117
2118 local_irq_restore(flags);
2119 }
2120
2121 /*
2122 * Cache charges(val) to local per_cpu area.
2123 * This will be consumed by consume_stock() function, later.
2124 */
2125 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2126 {
2127 struct memcg_stock_pcp *stock;
2128 unsigned long flags;
2129
2130 local_irq_save(flags);
2131
2132 stock = this_cpu_ptr(&memcg_stock);
2133 if (stock->cached != memcg) { /* reset if necessary */
2134 drain_stock(stock);
2135 stock->cached = memcg;
2136 }
2137 stock->nr_pages += nr_pages;
2138
2139 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2140 drain_stock(stock);
2141
2142 local_irq_restore(flags);
2143 }
2144
2145 /*
2146 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2147 * of the hierarchy under it.
2148 */
2149 static void drain_all_stock(struct mem_cgroup *root_memcg)
2150 {
2151 int cpu, curcpu;
2152
2153 /* If someone's already draining, avoid adding running more workers. */
2154 if (!mutex_trylock(&percpu_charge_mutex))
2155 return;
2156 /*
2157 * Notify other cpus that system-wide "drain" is running
2158 * We do not care about races with the cpu hotplug because cpu down
2159 * as well as workers from this path always operate on the local
2160 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2161 */
2162 curcpu = get_cpu();
2163 for_each_online_cpu(cpu) {
2164 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2165 struct mem_cgroup *memcg;
2166
2167 memcg = stock->cached;
2168 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2169 continue;
2170 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2171 css_put(&memcg->css);
2172 continue;
2173 }
2174 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2175 if (cpu == curcpu)
2176 drain_local_stock(&stock->work);
2177 else
2178 schedule_work_on(cpu, &stock->work);
2179 }
2180 css_put(&memcg->css);
2181 }
2182 put_cpu();
2183 mutex_unlock(&percpu_charge_mutex);
2184 }
2185
2186 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2187 {
2188 struct memcg_stock_pcp *stock;
2189 struct mem_cgroup *memcg, *mi;
2190
2191 stock = &per_cpu(memcg_stock, cpu);
2192 drain_stock(stock);
2193
2194 for_each_mem_cgroup(memcg) {
2195 int i;
2196
2197 for (i = 0; i < MEMCG_NR_STAT; i++) {
2198 int nid;
2199 long x;
2200
2201 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2202 if (x)
2203 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2204 atomic_long_add(x, &memcg->vmstats[i]);
2205
2206 if (i >= NR_VM_NODE_STAT_ITEMS)
2207 continue;
2208
2209 for_each_node(nid) {
2210 struct mem_cgroup_per_node *pn;
2211
2212 pn = mem_cgroup_nodeinfo(memcg, nid);
2213 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2214 if (x)
2215 do {
2216 atomic_long_add(x, &pn->lruvec_stat[i]);
2217 } while ((pn = parent_nodeinfo(pn, nid)));
2218 }
2219 }
2220
2221 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2222 long x;
2223
2224 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2225 if (x)
2226 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2227 atomic_long_add(x, &memcg->vmevents[i]);
2228 }
2229 }
2230
2231 return 0;
2232 }
2233
2234 static void reclaim_high(struct mem_cgroup *memcg,
2235 unsigned int nr_pages,
2236 gfp_t gfp_mask)
2237 {
2238 do {
2239 if (page_counter_read(&memcg->memory) <= memcg->high)
2240 continue;
2241 memcg_memory_event(memcg, MEMCG_HIGH);
2242 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2243 } while ((memcg = parent_mem_cgroup(memcg)));
2244 }
2245
2246 static void high_work_func(struct work_struct *work)
2247 {
2248 struct mem_cgroup *memcg;
2249
2250 memcg = container_of(work, struct mem_cgroup, high_work);
2251 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2252 }
2253
2254 /*
2255 * Scheduled by try_charge() to be executed from the userland return path
2256 * and reclaims memory over the high limit.
2257 */
2258 void mem_cgroup_handle_over_high(void)
2259 {
2260 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2261 struct mem_cgroup *memcg;
2262
2263 if (likely(!nr_pages))
2264 return;
2265
2266 memcg = get_mem_cgroup_from_mm(current->mm);
2267 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2268 css_put(&memcg->css);
2269 current->memcg_nr_pages_over_high = 0;
2270 }
2271
2272 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2273 unsigned int nr_pages)
2274 {
2275 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2276 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2277 struct mem_cgroup *mem_over_limit;
2278 struct page_counter *counter;
2279 unsigned long nr_reclaimed;
2280 bool may_swap = true;
2281 bool drained = false;
2282 bool oomed = false;
2283 enum oom_status oom_status;
2284
2285 if (mem_cgroup_is_root(memcg))
2286 return 0;
2287 retry:
2288 if (consume_stock(memcg, nr_pages))
2289 return 0;
2290
2291 if (!do_memsw_account() ||
2292 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2293 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2294 goto done_restock;
2295 if (do_memsw_account())
2296 page_counter_uncharge(&memcg->memsw, batch);
2297 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2298 } else {
2299 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2300 may_swap = false;
2301 }
2302
2303 if (batch > nr_pages) {
2304 batch = nr_pages;
2305 goto retry;
2306 }
2307
2308 /*
2309 * Unlike in global OOM situations, memcg is not in a physical
2310 * memory shortage. Allow dying and OOM-killed tasks to
2311 * bypass the last charges so that they can exit quickly and
2312 * free their memory.
2313 */
2314 if (unlikely(should_force_charge()))
2315 goto force;
2316
2317 /*
2318 * Prevent unbounded recursion when reclaim operations need to
2319 * allocate memory. This might exceed the limits temporarily,
2320 * but we prefer facilitating memory reclaim and getting back
2321 * under the limit over triggering OOM kills in these cases.
2322 */
2323 if (unlikely(current->flags & PF_MEMALLOC))
2324 goto force;
2325
2326 if (unlikely(task_in_memcg_oom(current)))
2327 goto nomem;
2328
2329 if (!gfpflags_allow_blocking(gfp_mask))
2330 goto nomem;
2331
2332 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2333
2334 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2335 gfp_mask, may_swap);
2336
2337 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2338 goto retry;
2339
2340 if (!drained) {
2341 drain_all_stock(mem_over_limit);
2342 drained = true;
2343 goto retry;
2344 }
2345
2346 if (gfp_mask & __GFP_NORETRY)
2347 goto nomem;
2348 /*
2349 * Even though the limit is exceeded at this point, reclaim
2350 * may have been able to free some pages. Retry the charge
2351 * before killing the task.
2352 *
2353 * Only for regular pages, though: huge pages are rather
2354 * unlikely to succeed so close to the limit, and we fall back
2355 * to regular pages anyway in case of failure.
2356 */
2357 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2358 goto retry;
2359 /*
2360 * At task move, charge accounts can be doubly counted. So, it's
2361 * better to wait until the end of task_move if something is going on.
2362 */
2363 if (mem_cgroup_wait_acct_move(mem_over_limit))
2364 goto retry;
2365
2366 if (nr_retries--)
2367 goto retry;
2368
2369 if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
2370 goto nomem;
2371
2372 if (gfp_mask & __GFP_NOFAIL)
2373 goto force;
2374
2375 if (fatal_signal_pending(current))
2376 goto force;
2377
2378 /*
2379 * keep retrying as long as the memcg oom killer is able to make
2380 * a forward progress or bypass the charge if the oom killer
2381 * couldn't make any progress.
2382 */
2383 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2384 get_order(nr_pages * PAGE_SIZE));
2385 switch (oom_status) {
2386 case OOM_SUCCESS:
2387 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2388 oomed = true;
2389 goto retry;
2390 case OOM_FAILED:
2391 goto force;
2392 default:
2393 goto nomem;
2394 }
2395 nomem:
2396 if (!(gfp_mask & __GFP_NOFAIL))
2397 return -ENOMEM;
2398 force:
2399 /*
2400 * The allocation either can't fail or will lead to more memory
2401 * being freed very soon. Allow memory usage go over the limit
2402 * temporarily by force charging it.
2403 */
2404 page_counter_charge(&memcg->memory, nr_pages);
2405 if (do_memsw_account())
2406 page_counter_charge(&memcg->memsw, nr_pages);
2407 css_get_many(&memcg->css, nr_pages);
2408
2409 return 0;
2410
2411 done_restock:
2412 css_get_many(&memcg->css, batch);
2413 if (batch > nr_pages)
2414 refill_stock(memcg, batch - nr_pages);
2415
2416 /*
2417 * If the hierarchy is above the normal consumption range, schedule
2418 * reclaim on returning to userland. We can perform reclaim here
2419 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2420 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2421 * not recorded as it most likely matches current's and won't
2422 * change in the meantime. As high limit is checked again before
2423 * reclaim, the cost of mismatch is negligible.
2424 */
2425 do {
2426 if (page_counter_read(&memcg->memory) > memcg->high) {
2427 /* Don't bother a random interrupted task */
2428 if (in_interrupt()) {
2429 schedule_work(&memcg->high_work);
2430 break;
2431 }
2432 current->memcg_nr_pages_over_high += batch;
2433 set_notify_resume(current);
2434 break;
2435 }
2436 } while ((memcg = parent_mem_cgroup(memcg)));
2437
2438 return 0;
2439 }
2440
2441 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2442 {
2443 if (mem_cgroup_is_root(memcg))
2444 return;
2445
2446 page_counter_uncharge(&memcg->memory, nr_pages);
2447 if (do_memsw_account())
2448 page_counter_uncharge(&memcg->memsw, nr_pages);
2449
2450 css_put_many(&memcg->css, nr_pages);
2451 }
2452
2453 static void lock_page_lru(struct page *page, int *isolated)
2454 {
2455 pg_data_t *pgdat = page_pgdat(page);
2456
2457 spin_lock_irq(&pgdat->lru_lock);
2458 if (PageLRU(page)) {
2459 struct lruvec *lruvec;
2460
2461 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2462 ClearPageLRU(page);
2463 del_page_from_lru_list(page, lruvec, page_lru(page));
2464 *isolated = 1;
2465 } else
2466 *isolated = 0;
2467 }
2468
2469 static void unlock_page_lru(struct page *page, int isolated)
2470 {
2471 pg_data_t *pgdat = page_pgdat(page);
2472
2473 if (isolated) {
2474 struct lruvec *lruvec;
2475
2476 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2477 VM_BUG_ON_PAGE(PageLRU(page), page);
2478 SetPageLRU(page);
2479 add_page_to_lru_list(page, lruvec, page_lru(page));
2480 }
2481 spin_unlock_irq(&pgdat->lru_lock);
2482 }
2483
2484 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2485 bool lrucare)
2486 {
2487 int isolated;
2488
2489 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2490
2491 /*
2492 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2493 * may already be on some other mem_cgroup's LRU. Take care of it.
2494 */
2495 if (lrucare)
2496 lock_page_lru(page, &isolated);
2497
2498 /*
2499 * Nobody should be changing or seriously looking at
2500 * page->mem_cgroup at this point:
2501 *
2502 * - the page is uncharged
2503 *
2504 * - the page is off-LRU
2505 *
2506 * - an anonymous fault has exclusive page access, except for
2507 * a locked page table
2508 *
2509 * - a page cache insertion, a swapin fault, or a migration
2510 * have the page locked
2511 */
2512 page->mem_cgroup = memcg;
2513
2514 if (lrucare)
2515 unlock_page_lru(page, isolated);
2516 }
2517
2518 #ifdef CONFIG_MEMCG_KMEM
2519 static int memcg_alloc_cache_id(void)
2520 {
2521 int id, size;
2522 int err;
2523
2524 id = ida_simple_get(&memcg_cache_ida,
2525 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2526 if (id < 0)
2527 return id;
2528
2529 if (id < memcg_nr_cache_ids)
2530 return id;
2531
2532 /*
2533 * There's no space for the new id in memcg_caches arrays,
2534 * so we have to grow them.
2535 */
2536 down_write(&memcg_cache_ids_sem);
2537
2538 size = 2 * (id + 1);
2539 if (size < MEMCG_CACHES_MIN_SIZE)
2540 size = MEMCG_CACHES_MIN_SIZE;
2541 else if (size > MEMCG_CACHES_MAX_SIZE)
2542 size = MEMCG_CACHES_MAX_SIZE;
2543
2544 err = memcg_update_all_caches(size);
2545 if (!err)
2546 err = memcg_update_all_list_lrus(size);
2547 if (!err)
2548 memcg_nr_cache_ids = size;
2549
2550 up_write(&memcg_cache_ids_sem);
2551
2552 if (err) {
2553 ida_simple_remove(&memcg_cache_ida, id);
2554 return err;
2555 }
2556 return id;
2557 }
2558
2559 static void memcg_free_cache_id(int id)
2560 {
2561 ida_simple_remove(&memcg_cache_ida, id);
2562 }
2563
2564 struct memcg_kmem_cache_create_work {
2565 struct mem_cgroup *memcg;
2566 struct kmem_cache *cachep;
2567 struct work_struct work;
2568 };
2569
2570 static void memcg_kmem_cache_create_func(struct work_struct *w)
2571 {
2572 struct memcg_kmem_cache_create_work *cw =
2573 container_of(w, struct memcg_kmem_cache_create_work, work);
2574 struct mem_cgroup *memcg = cw->memcg;
2575 struct kmem_cache *cachep = cw->cachep;
2576
2577 memcg_create_kmem_cache(memcg, cachep);
2578
2579 css_put(&memcg->css);
2580 kfree(cw);
2581 }
2582
2583 /*
2584 * Enqueue the creation of a per-memcg kmem_cache.
2585 */
2586 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2587 struct kmem_cache *cachep)
2588 {
2589 struct memcg_kmem_cache_create_work *cw;
2590
2591 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2592 if (!cw)
2593 return;
2594
2595 css_get(&memcg->css);
2596
2597 cw->memcg = memcg;
2598 cw->cachep = cachep;
2599 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2600
2601 queue_work(memcg_kmem_cache_wq, &cw->work);
2602 }
2603
2604 static inline bool memcg_kmem_bypass(void)
2605 {
2606 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2607 return true;
2608 return false;
2609 }
2610
2611 /**
2612 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2613 * @cachep: the original global kmem cache
2614 *
2615 * Return the kmem_cache we're supposed to use for a slab allocation.
2616 * We try to use the current memcg's version of the cache.
2617 *
2618 * If the cache does not exist yet, if we are the first user of it, we
2619 * create it asynchronously in a workqueue and let the current allocation
2620 * go through with the original cache.
2621 *
2622 * This function takes a reference to the cache it returns to assure it
2623 * won't get destroyed while we are working with it. Once the caller is
2624 * done with it, memcg_kmem_put_cache() must be called to release the
2625 * reference.
2626 */
2627 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2628 {
2629 struct mem_cgroup *memcg;
2630 struct kmem_cache *memcg_cachep;
2631 int kmemcg_id;
2632
2633 VM_BUG_ON(!is_root_cache(cachep));
2634
2635 if (memcg_kmem_bypass())
2636 return cachep;
2637
2638 memcg = get_mem_cgroup_from_current();
2639 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2640 if (kmemcg_id < 0)
2641 goto out;
2642
2643 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2644 if (likely(memcg_cachep))
2645 return memcg_cachep;
2646
2647 /*
2648 * If we are in a safe context (can wait, and not in interrupt
2649 * context), we could be be predictable and return right away.
2650 * This would guarantee that the allocation being performed
2651 * already belongs in the new cache.
2652 *
2653 * However, there are some clashes that can arrive from locking.
2654 * For instance, because we acquire the slab_mutex while doing
2655 * memcg_create_kmem_cache, this means no further allocation
2656 * could happen with the slab_mutex held. So it's better to
2657 * defer everything.
2658 */
2659 memcg_schedule_kmem_cache_create(memcg, cachep);
2660 out:
2661 css_put(&memcg->css);
2662 return cachep;
2663 }
2664
2665 /**
2666 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2667 * @cachep: the cache returned by memcg_kmem_get_cache
2668 */
2669 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2670 {
2671 if (!is_root_cache(cachep))
2672 css_put(&cachep->memcg_params.memcg->css);
2673 }
2674
2675 /**
2676 * __memcg_kmem_charge_memcg: charge a kmem page
2677 * @page: page to charge
2678 * @gfp: reclaim mode
2679 * @order: allocation order
2680 * @memcg: memory cgroup to charge
2681 *
2682 * Returns 0 on success, an error code on failure.
2683 */
2684 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2685 struct mem_cgroup *memcg)
2686 {
2687 unsigned int nr_pages = 1 << order;
2688 struct page_counter *counter;
2689 int ret;
2690
2691 ret = try_charge(memcg, gfp, nr_pages);
2692 if (ret)
2693 return ret;
2694
2695 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2696 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2697 cancel_charge(memcg, nr_pages);
2698 return -ENOMEM;
2699 }
2700
2701 page->mem_cgroup = memcg;
2702
2703 return 0;
2704 }
2705
2706 /**
2707 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2708 * @page: page to charge
2709 * @gfp: reclaim mode
2710 * @order: allocation order
2711 *
2712 * Returns 0 on success, an error code on failure.
2713 */
2714 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2715 {
2716 struct mem_cgroup *memcg;
2717 int ret = 0;
2718
2719 if (memcg_kmem_bypass())
2720 return 0;
2721
2722 memcg = get_mem_cgroup_from_current();
2723 if (!mem_cgroup_is_root(memcg)) {
2724 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2725 if (!ret)
2726 __SetPageKmemcg(page);
2727 }
2728 css_put(&memcg->css);
2729 return ret;
2730 }
2731 /**
2732 * __memcg_kmem_uncharge: uncharge a kmem page
2733 * @page: page to uncharge
2734 * @order: allocation order
2735 */
2736 void __memcg_kmem_uncharge(struct page *page, int order)
2737 {
2738 struct mem_cgroup *memcg = page->mem_cgroup;
2739 unsigned int nr_pages = 1 << order;
2740
2741 if (!memcg)
2742 return;
2743
2744 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2745
2746 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2747 page_counter_uncharge(&memcg->kmem, nr_pages);
2748
2749 page_counter_uncharge(&memcg->memory, nr_pages);
2750 if (do_memsw_account())
2751 page_counter_uncharge(&memcg->memsw, nr_pages);
2752
2753 page->mem_cgroup = NULL;
2754
2755 /* slab pages do not have PageKmemcg flag set */
2756 if (PageKmemcg(page))
2757 __ClearPageKmemcg(page);
2758
2759 css_put_many(&memcg->css, nr_pages);
2760 }
2761 #endif /* CONFIG_MEMCG_KMEM */
2762
2763 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2764
2765 /*
2766 * Because tail pages are not marked as "used", set it. We're under
2767 * pgdat->lru_lock and migration entries setup in all page mappings.
2768 */
2769 void mem_cgroup_split_huge_fixup(struct page *head)
2770 {
2771 int i;
2772
2773 if (mem_cgroup_disabled())
2774 return;
2775
2776 for (i = 1; i < HPAGE_PMD_NR; i++)
2777 head[i].mem_cgroup = head->mem_cgroup;
2778
2779 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2780 }
2781 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2782
2783 #ifdef CONFIG_MEMCG_SWAP
2784 /**
2785 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2786 * @entry: swap entry to be moved
2787 * @from: mem_cgroup which the entry is moved from
2788 * @to: mem_cgroup which the entry is moved to
2789 *
2790 * It succeeds only when the swap_cgroup's record for this entry is the same
2791 * as the mem_cgroup's id of @from.
2792 *
2793 * Returns 0 on success, -EINVAL on failure.
2794 *
2795 * The caller must have charged to @to, IOW, called page_counter_charge() about
2796 * both res and memsw, and called css_get().
2797 */
2798 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2799 struct mem_cgroup *from, struct mem_cgroup *to)
2800 {
2801 unsigned short old_id, new_id;
2802
2803 old_id = mem_cgroup_id(from);
2804 new_id = mem_cgroup_id(to);
2805
2806 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2807 mod_memcg_state(from, MEMCG_SWAP, -1);
2808 mod_memcg_state(to, MEMCG_SWAP, 1);
2809 return 0;
2810 }
2811 return -EINVAL;
2812 }
2813 #else
2814 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2815 struct mem_cgroup *from, struct mem_cgroup *to)
2816 {
2817 return -EINVAL;
2818 }
2819 #endif
2820
2821 static DEFINE_MUTEX(memcg_max_mutex);
2822
2823 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2824 unsigned long max, bool memsw)
2825 {
2826 bool enlarge = false;
2827 bool drained = false;
2828 int ret;
2829 bool limits_invariant;
2830 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2831
2832 do {
2833 if (signal_pending(current)) {
2834 ret = -EINTR;
2835 break;
2836 }
2837
2838 mutex_lock(&memcg_max_mutex);
2839 /*
2840 * Make sure that the new limit (memsw or memory limit) doesn't
2841 * break our basic invariant rule memory.max <= memsw.max.
2842 */
2843 limits_invariant = memsw ? max >= memcg->memory.max :
2844 max <= memcg->memsw.max;
2845 if (!limits_invariant) {
2846 mutex_unlock(&memcg_max_mutex);
2847 ret = -EINVAL;
2848 break;
2849 }
2850 if (max > counter->max)
2851 enlarge = true;
2852 ret = page_counter_set_max(counter, max);
2853 mutex_unlock(&memcg_max_mutex);
2854
2855 if (!ret)
2856 break;
2857
2858 if (!drained) {
2859 drain_all_stock(memcg);
2860 drained = true;
2861 continue;
2862 }
2863
2864 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2865 GFP_KERNEL, !memsw)) {
2866 ret = -EBUSY;
2867 break;
2868 }
2869 } while (true);
2870
2871 if (!ret && enlarge)
2872 memcg_oom_recover(memcg);
2873
2874 return ret;
2875 }
2876
2877 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2878 gfp_t gfp_mask,
2879 unsigned long *total_scanned)
2880 {
2881 unsigned long nr_reclaimed = 0;
2882 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2883 unsigned long reclaimed;
2884 int loop = 0;
2885 struct mem_cgroup_tree_per_node *mctz;
2886 unsigned long excess;
2887 unsigned long nr_scanned;
2888
2889 if (order > 0)
2890 return 0;
2891
2892 mctz = soft_limit_tree_node(pgdat->node_id);
2893
2894 /*
2895 * Do not even bother to check the largest node if the root
2896 * is empty. Do it lockless to prevent lock bouncing. Races
2897 * are acceptable as soft limit is best effort anyway.
2898 */
2899 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2900 return 0;
2901
2902 /*
2903 * This loop can run a while, specially if mem_cgroup's continuously
2904 * keep exceeding their soft limit and putting the system under
2905 * pressure
2906 */
2907 do {
2908 if (next_mz)
2909 mz = next_mz;
2910 else
2911 mz = mem_cgroup_largest_soft_limit_node(mctz);
2912 if (!mz)
2913 break;
2914
2915 nr_scanned = 0;
2916 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2917 gfp_mask, &nr_scanned);
2918 nr_reclaimed += reclaimed;
2919 *total_scanned += nr_scanned;
2920 spin_lock_irq(&mctz->lock);
2921 __mem_cgroup_remove_exceeded(mz, mctz);
2922
2923 /*
2924 * If we failed to reclaim anything from this memory cgroup
2925 * it is time to move on to the next cgroup
2926 */
2927 next_mz = NULL;
2928 if (!reclaimed)
2929 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2930
2931 excess = soft_limit_excess(mz->memcg);
2932 /*
2933 * One school of thought says that we should not add
2934 * back the node to the tree if reclaim returns 0.
2935 * But our reclaim could return 0, simply because due
2936 * to priority we are exposing a smaller subset of
2937 * memory to reclaim from. Consider this as a longer
2938 * term TODO.
2939 */
2940 /* If excess == 0, no tree ops */
2941 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2942 spin_unlock_irq(&mctz->lock);
2943 css_put(&mz->memcg->css);
2944 loop++;
2945 /*
2946 * Could not reclaim anything and there are no more
2947 * mem cgroups to try or we seem to be looping without
2948 * reclaiming anything.
2949 */
2950 if (!nr_reclaimed &&
2951 (next_mz == NULL ||
2952 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2953 break;
2954 } while (!nr_reclaimed);
2955 if (next_mz)
2956 css_put(&next_mz->memcg->css);
2957 return nr_reclaimed;
2958 }
2959
2960 /*
2961 * Test whether @memcg has children, dead or alive. Note that this
2962 * function doesn't care whether @memcg has use_hierarchy enabled and
2963 * returns %true if there are child csses according to the cgroup
2964 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2965 */
2966 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2967 {
2968 bool ret;
2969
2970 rcu_read_lock();
2971 ret = css_next_child(NULL, &memcg->css);
2972 rcu_read_unlock();
2973 return ret;
2974 }
2975
2976 /*
2977 * Reclaims as many pages from the given memcg as possible.
2978 *
2979 * Caller is responsible for holding css reference for memcg.
2980 */
2981 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2982 {
2983 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2984
2985 /* we call try-to-free pages for make this cgroup empty */
2986 lru_add_drain_all();
2987
2988 drain_all_stock(memcg);
2989
2990 /* try to free all pages in this cgroup */
2991 while (nr_retries && page_counter_read(&memcg->memory)) {
2992 int progress;
2993
2994 if (signal_pending(current))
2995 return -EINTR;
2996
2997 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2998 GFP_KERNEL, true);
2999 if (!progress) {
3000 nr_retries--;
3001 /* maybe some writeback is necessary */
3002 congestion_wait(BLK_RW_ASYNC, HZ/10);
3003 }
3004
3005 }
3006
3007 return 0;
3008 }
3009
3010 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3011 char *buf, size_t nbytes,
3012 loff_t off)
3013 {
3014 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3015
3016 if (mem_cgroup_is_root(memcg))
3017 return -EINVAL;
3018 return mem_cgroup_force_empty(memcg) ?: nbytes;
3019 }
3020
3021 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3022 struct cftype *cft)
3023 {
3024 return mem_cgroup_from_css(css)->use_hierarchy;
3025 }
3026
3027 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3028 struct cftype *cft, u64 val)
3029 {
3030 int retval = 0;
3031 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3032 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3033
3034 if (memcg->use_hierarchy == val)
3035 return 0;
3036
3037 /*
3038 * If parent's use_hierarchy is set, we can't make any modifications
3039 * in the child subtrees. If it is unset, then the change can
3040 * occur, provided the current cgroup has no children.
3041 *
3042 * For the root cgroup, parent_mem is NULL, we allow value to be
3043 * set if there are no children.
3044 */
3045 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3046 (val == 1 || val == 0)) {
3047 if (!memcg_has_children(memcg))
3048 memcg->use_hierarchy = val;
3049 else
3050 retval = -EBUSY;
3051 } else
3052 retval = -EINVAL;
3053
3054 return retval;
3055 }
3056
3057 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3058 {
3059 unsigned long val;
3060
3061 if (mem_cgroup_is_root(memcg)) {
3062 val = memcg_page_state(memcg, MEMCG_CACHE) +
3063 memcg_page_state(memcg, MEMCG_RSS);
3064 if (swap)
3065 val += memcg_page_state(memcg, MEMCG_SWAP);
3066 } else {
3067 if (!swap)
3068 val = page_counter_read(&memcg->memory);
3069 else
3070 val = page_counter_read(&memcg->memsw);
3071 }
3072 return val;
3073 }
3074
3075 enum {
3076 RES_USAGE,
3077 RES_LIMIT,
3078 RES_MAX_USAGE,
3079 RES_FAILCNT,
3080 RES_SOFT_LIMIT,
3081 };
3082
3083 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3084 struct cftype *cft)
3085 {
3086 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3087 struct page_counter *counter;
3088
3089 switch (MEMFILE_TYPE(cft->private)) {
3090 case _MEM:
3091 counter = &memcg->memory;
3092 break;
3093 case _MEMSWAP:
3094 counter = &memcg->memsw;
3095 break;
3096 case _KMEM:
3097 counter = &memcg->kmem;
3098 break;
3099 case _TCP:
3100 counter = &memcg->tcpmem;
3101 break;
3102 default:
3103 BUG();
3104 }
3105
3106 switch (MEMFILE_ATTR(cft->private)) {
3107 case RES_USAGE:
3108 if (counter == &memcg->memory)
3109 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3110 if (counter == &memcg->memsw)
3111 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3112 return (u64)page_counter_read(counter) * PAGE_SIZE;
3113 case RES_LIMIT:
3114 return (u64)counter->max * PAGE_SIZE;
3115 case RES_MAX_USAGE:
3116 return (u64)counter->watermark * PAGE_SIZE;
3117 case RES_FAILCNT:
3118 return counter->failcnt;
3119 case RES_SOFT_LIMIT:
3120 return (u64)memcg->soft_limit * PAGE_SIZE;
3121 default:
3122 BUG();
3123 }
3124 }
3125
3126 #ifdef CONFIG_MEMCG_KMEM
3127 static int memcg_online_kmem(struct mem_cgroup *memcg)
3128 {
3129 int memcg_id;
3130
3131 if (cgroup_memory_nokmem)
3132 return 0;
3133
3134 BUG_ON(memcg->kmemcg_id >= 0);
3135 BUG_ON(memcg->kmem_state);
3136
3137 memcg_id = memcg_alloc_cache_id();
3138 if (memcg_id < 0)
3139 return memcg_id;
3140
3141 static_branch_inc(&memcg_kmem_enabled_key);
3142 /*
3143 * A memory cgroup is considered kmem-online as soon as it gets
3144 * kmemcg_id. Setting the id after enabling static branching will
3145 * guarantee no one starts accounting before all call sites are
3146 * patched.
3147 */
3148 memcg->kmemcg_id = memcg_id;
3149 memcg->kmem_state = KMEM_ONLINE;
3150 INIT_LIST_HEAD(&memcg->kmem_caches);
3151
3152 return 0;
3153 }
3154
3155 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3156 {
3157 struct cgroup_subsys_state *css;
3158 struct mem_cgroup *parent, *child;
3159 int kmemcg_id;
3160
3161 if (memcg->kmem_state != KMEM_ONLINE)
3162 return;
3163 /*
3164 * Clear the online state before clearing memcg_caches array
3165 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3166 * guarantees that no cache will be created for this cgroup
3167 * after we are done (see memcg_create_kmem_cache()).
3168 */
3169 memcg->kmem_state = KMEM_ALLOCATED;
3170
3171 memcg_deactivate_kmem_caches(memcg);
3172
3173 kmemcg_id = memcg->kmemcg_id;
3174 BUG_ON(kmemcg_id < 0);
3175
3176 parent = parent_mem_cgroup(memcg);
3177 if (!parent)
3178 parent = root_mem_cgroup;
3179
3180 /*
3181 * Change kmemcg_id of this cgroup and all its descendants to the
3182 * parent's id, and then move all entries from this cgroup's list_lrus
3183 * to ones of the parent. After we have finished, all list_lrus
3184 * corresponding to this cgroup are guaranteed to remain empty. The
3185 * ordering is imposed by list_lru_node->lock taken by
3186 * memcg_drain_all_list_lrus().
3187 */
3188 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3189 css_for_each_descendant_pre(css, &memcg->css) {
3190 child = mem_cgroup_from_css(css);
3191 BUG_ON(child->kmemcg_id != kmemcg_id);
3192 child->kmemcg_id = parent->kmemcg_id;
3193 if (!memcg->use_hierarchy)
3194 break;
3195 }
3196 rcu_read_unlock();
3197
3198 memcg_drain_all_list_lrus(kmemcg_id, parent);
3199
3200 memcg_free_cache_id(kmemcg_id);
3201 }
3202
3203 static void memcg_free_kmem(struct mem_cgroup *memcg)
3204 {
3205 /* css_alloc() failed, offlining didn't happen */
3206 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3207 memcg_offline_kmem(memcg);
3208
3209 if (memcg->kmem_state == KMEM_ALLOCATED) {
3210 memcg_destroy_kmem_caches(memcg);
3211 static_branch_dec(&memcg_kmem_enabled_key);
3212 WARN_ON(page_counter_read(&memcg->kmem));
3213 }
3214 }
3215 #else
3216 static int memcg_online_kmem(struct mem_cgroup *memcg)
3217 {
3218 return 0;
3219 }
3220 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3221 {
3222 }
3223 static void memcg_free_kmem(struct mem_cgroup *memcg)
3224 {
3225 }
3226 #endif /* CONFIG_MEMCG_KMEM */
3227
3228 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3229 unsigned long max)
3230 {
3231 int ret;
3232
3233 mutex_lock(&memcg_max_mutex);
3234 ret = page_counter_set_max(&memcg->kmem, max);
3235 mutex_unlock(&memcg_max_mutex);
3236 return ret;
3237 }
3238
3239 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3240 {
3241 int ret;
3242
3243 mutex_lock(&memcg_max_mutex);
3244
3245 ret = page_counter_set_max(&memcg->tcpmem, max);
3246 if (ret)
3247 goto out;
3248
3249 if (!memcg->tcpmem_active) {
3250 /*
3251 * The active flag needs to be written after the static_key
3252 * update. This is what guarantees that the socket activation
3253 * function is the last one to run. See mem_cgroup_sk_alloc()
3254 * for details, and note that we don't mark any socket as
3255 * belonging to this memcg until that flag is up.
3256 *
3257 * We need to do this, because static_keys will span multiple
3258 * sites, but we can't control their order. If we mark a socket
3259 * as accounted, but the accounting functions are not patched in
3260 * yet, we'll lose accounting.
3261 *
3262 * We never race with the readers in mem_cgroup_sk_alloc(),
3263 * because when this value change, the code to process it is not
3264 * patched in yet.
3265 */
3266 static_branch_inc(&memcg_sockets_enabled_key);
3267 memcg->tcpmem_active = true;
3268 }
3269 out:
3270 mutex_unlock(&memcg_max_mutex);
3271 return ret;
3272 }
3273
3274 /*
3275 * The user of this function is...
3276 * RES_LIMIT.
3277 */
3278 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3279 char *buf, size_t nbytes, loff_t off)
3280 {
3281 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3282 unsigned long nr_pages;
3283 int ret;
3284
3285 buf = strstrip(buf);
3286 ret = page_counter_memparse(buf, "-1", &nr_pages);
3287 if (ret)
3288 return ret;
3289
3290 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3291 case RES_LIMIT:
3292 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3293 ret = -EINVAL;
3294 break;
3295 }
3296 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3297 case _MEM:
3298 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3299 break;
3300 case _MEMSWAP:
3301 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3302 break;
3303 case _KMEM:
3304 ret = memcg_update_kmem_max(memcg, nr_pages);
3305 break;
3306 case _TCP:
3307 ret = memcg_update_tcp_max(memcg, nr_pages);
3308 break;
3309 }
3310 break;
3311 case RES_SOFT_LIMIT:
3312 memcg->soft_limit = nr_pages;
3313 ret = 0;
3314 break;
3315 }
3316 return ret ?: nbytes;
3317 }
3318
3319 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3320 size_t nbytes, loff_t off)
3321 {
3322 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3323 struct page_counter *counter;
3324
3325 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3326 case _MEM:
3327 counter = &memcg->memory;
3328 break;
3329 case _MEMSWAP:
3330 counter = &memcg->memsw;
3331 break;
3332 case _KMEM:
3333 counter = &memcg->kmem;
3334 break;
3335 case _TCP:
3336 counter = &memcg->tcpmem;
3337 break;
3338 default:
3339 BUG();
3340 }
3341
3342 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3343 case RES_MAX_USAGE:
3344 page_counter_reset_watermark(counter);
3345 break;
3346 case RES_FAILCNT:
3347 counter->failcnt = 0;
3348 break;
3349 default:
3350 BUG();
3351 }
3352
3353 return nbytes;
3354 }
3355
3356 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3357 struct cftype *cft)
3358 {
3359 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3360 }
3361
3362 #ifdef CONFIG_MMU
3363 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3364 struct cftype *cft, u64 val)
3365 {
3366 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3367
3368 if (val & ~MOVE_MASK)
3369 return -EINVAL;
3370
3371 /*
3372 * No kind of locking is needed in here, because ->can_attach() will
3373 * check this value once in the beginning of the process, and then carry
3374 * on with stale data. This means that changes to this value will only
3375 * affect task migrations starting after the change.
3376 */
3377 memcg->move_charge_at_immigrate = val;
3378 return 0;
3379 }
3380 #else
3381 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3382 struct cftype *cft, u64 val)
3383 {
3384 return -ENOSYS;
3385 }
3386 #endif
3387
3388 #ifdef CONFIG_NUMA
3389
3390 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3391 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3392 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3393
3394 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3395 int nid, unsigned int lru_mask)
3396 {
3397 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3398 unsigned long nr = 0;
3399 enum lru_list lru;
3400
3401 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3402
3403 for_each_lru(lru) {
3404 if (!(BIT(lru) & lru_mask))
3405 continue;
3406 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3407 }
3408 return nr;
3409 }
3410
3411 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3412 unsigned int lru_mask)
3413 {
3414 unsigned long nr = 0;
3415 enum lru_list lru;
3416
3417 for_each_lru(lru) {
3418 if (!(BIT(lru) & lru_mask))
3419 continue;
3420 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3421 }
3422 return nr;
3423 }
3424
3425 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3426 {
3427 struct numa_stat {
3428 const char *name;
3429 unsigned int lru_mask;
3430 };
3431
3432 static const struct numa_stat stats[] = {
3433 { "total", LRU_ALL },
3434 { "file", LRU_ALL_FILE },
3435 { "anon", LRU_ALL_ANON },
3436 { "unevictable", BIT(LRU_UNEVICTABLE) },
3437 };
3438 const struct numa_stat *stat;
3439 int nid;
3440 unsigned long nr;
3441 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3442
3443 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3444 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3445 seq_printf(m, "%s=%lu", stat->name, nr);
3446 for_each_node_state(nid, N_MEMORY) {
3447 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3448 stat->lru_mask);
3449 seq_printf(m, " N%d=%lu", nid, nr);
3450 }
3451 seq_putc(m, '\n');
3452 }
3453
3454 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3455 struct mem_cgroup *iter;
3456
3457 nr = 0;
3458 for_each_mem_cgroup_tree(iter, memcg)
3459 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3460 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3461 for_each_node_state(nid, N_MEMORY) {
3462 nr = 0;
3463 for_each_mem_cgroup_tree(iter, memcg)
3464 nr += mem_cgroup_node_nr_lru_pages(
3465 iter, nid, stat->lru_mask);
3466 seq_printf(m, " N%d=%lu", nid, nr);
3467 }
3468 seq_putc(m, '\n');
3469 }
3470
3471 return 0;
3472 }
3473 #endif /* CONFIG_NUMA */
3474
3475 /* Universal VM events cgroup1 shows, original sort order */
3476 static const unsigned int memcg1_events[] = {
3477 PGPGIN,
3478 PGPGOUT,
3479 PGFAULT,
3480 PGMAJFAULT,
3481 };
3482
3483 static const char *const memcg1_event_names[] = {
3484 "pgpgin",
3485 "pgpgout",
3486 "pgfault",
3487 "pgmajfault",
3488 };
3489
3490 static int memcg_stat_show(struct seq_file *m, void *v)
3491 {
3492 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3493 unsigned long memory, memsw;
3494 struct mem_cgroup *mi;
3495 unsigned int i;
3496
3497 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3498 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3499
3500 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3501 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3502 continue;
3503 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3504 memcg_page_state_local(memcg, memcg1_stats[i]) *
3505 PAGE_SIZE);
3506 }
3507
3508 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3509 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3510 memcg_events_local(memcg, memcg1_events[i]));
3511
3512 for (i = 0; i < NR_LRU_LISTS; i++)
3513 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3514 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3515 PAGE_SIZE);
3516
3517 /* Hierarchical information */
3518 memory = memsw = PAGE_COUNTER_MAX;
3519 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3520 memory = min(memory, mi->memory.max);
3521 memsw = min(memsw, mi->memsw.max);
3522 }
3523 seq_printf(m, "hierarchical_memory_limit %llu\n",
3524 (u64)memory * PAGE_SIZE);
3525 if (do_memsw_account())
3526 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3527 (u64)memsw * PAGE_SIZE);
3528
3529 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3530 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3531 continue;
3532 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3533 (u64)memcg_page_state(memcg, i) * PAGE_SIZE);
3534 }
3535
3536 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3537 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3538 (u64)memcg_events(memcg, i));
3539
3540 for (i = 0; i < NR_LRU_LISTS; i++)
3541 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3542 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3543 PAGE_SIZE);
3544
3545 #ifdef CONFIG_DEBUG_VM
3546 {
3547 pg_data_t *pgdat;
3548 struct mem_cgroup_per_node *mz;
3549 struct zone_reclaim_stat *rstat;
3550 unsigned long recent_rotated[2] = {0, 0};
3551 unsigned long recent_scanned[2] = {0, 0};
3552
3553 for_each_online_pgdat(pgdat) {
3554 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3555 rstat = &mz->lruvec.reclaim_stat;
3556
3557 recent_rotated[0] += rstat->recent_rotated[0];
3558 recent_rotated[1] += rstat->recent_rotated[1];
3559 recent_scanned[0] += rstat->recent_scanned[0];
3560 recent_scanned[1] += rstat->recent_scanned[1];
3561 }
3562 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3563 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3564 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3565 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3566 }
3567 #endif
3568
3569 return 0;
3570 }
3571
3572 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3573 struct cftype *cft)
3574 {
3575 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3576
3577 return mem_cgroup_swappiness(memcg);
3578 }
3579
3580 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3581 struct cftype *cft, u64 val)
3582 {
3583 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3584
3585 if (val > 100)
3586 return -EINVAL;
3587
3588 if (css->parent)
3589 memcg->swappiness = val;
3590 else
3591 vm_swappiness = val;
3592
3593 return 0;
3594 }
3595
3596 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3597 {
3598 struct mem_cgroup_threshold_ary *t;
3599 unsigned long usage;
3600 int i;
3601
3602 rcu_read_lock();
3603 if (!swap)
3604 t = rcu_dereference(memcg->thresholds.primary);
3605 else
3606 t = rcu_dereference(memcg->memsw_thresholds.primary);
3607
3608 if (!t)
3609 goto unlock;
3610
3611 usage = mem_cgroup_usage(memcg, swap);
3612
3613 /*
3614 * current_threshold points to threshold just below or equal to usage.
3615 * If it's not true, a threshold was crossed after last
3616 * call of __mem_cgroup_threshold().
3617 */
3618 i = t->current_threshold;
3619
3620 /*
3621 * Iterate backward over array of thresholds starting from
3622 * current_threshold and check if a threshold is crossed.
3623 * If none of thresholds below usage is crossed, we read
3624 * only one element of the array here.
3625 */
3626 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3627 eventfd_signal(t->entries[i].eventfd, 1);
3628
3629 /* i = current_threshold + 1 */
3630 i++;
3631
3632 /*
3633 * Iterate forward over array of thresholds starting from
3634 * current_threshold+1 and check if a threshold is crossed.
3635 * If none of thresholds above usage is crossed, we read
3636 * only one element of the array here.
3637 */
3638 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3639 eventfd_signal(t->entries[i].eventfd, 1);
3640
3641 /* Update current_threshold */
3642 t->current_threshold = i - 1;
3643 unlock:
3644 rcu_read_unlock();
3645 }
3646
3647 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3648 {
3649 while (memcg) {
3650 __mem_cgroup_threshold(memcg, false);
3651 if (do_memsw_account())
3652 __mem_cgroup_threshold(memcg, true);
3653
3654 memcg = parent_mem_cgroup(memcg);
3655 }
3656 }
3657
3658 static int compare_thresholds(const void *a, const void *b)
3659 {
3660 const struct mem_cgroup_threshold *_a = a;
3661 const struct mem_cgroup_threshold *_b = b;
3662
3663 if (_a->threshold > _b->threshold)
3664 return 1;
3665
3666 if (_a->threshold < _b->threshold)
3667 return -1;
3668
3669 return 0;
3670 }
3671
3672 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3673 {
3674 struct mem_cgroup_eventfd_list *ev;
3675
3676 spin_lock(&memcg_oom_lock);
3677
3678 list_for_each_entry(ev, &memcg->oom_notify, list)
3679 eventfd_signal(ev->eventfd, 1);
3680
3681 spin_unlock(&memcg_oom_lock);
3682 return 0;
3683 }
3684
3685 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3686 {
3687 struct mem_cgroup *iter;
3688
3689 for_each_mem_cgroup_tree(iter, memcg)
3690 mem_cgroup_oom_notify_cb(iter);
3691 }
3692
3693 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3694 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3695 {
3696 struct mem_cgroup_thresholds *thresholds;
3697 struct mem_cgroup_threshold_ary *new;
3698 unsigned long threshold;
3699 unsigned long usage;
3700 int i, size, ret;
3701
3702 ret = page_counter_memparse(args, "-1", &threshold);
3703 if (ret)
3704 return ret;
3705
3706 mutex_lock(&memcg->thresholds_lock);
3707
3708 if (type == _MEM) {
3709 thresholds = &memcg->thresholds;
3710 usage = mem_cgroup_usage(memcg, false);
3711 } else if (type == _MEMSWAP) {
3712 thresholds = &memcg->memsw_thresholds;
3713 usage = mem_cgroup_usage(memcg, true);
3714 } else
3715 BUG();
3716
3717 /* Check if a threshold crossed before adding a new one */
3718 if (thresholds->primary)
3719 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3720
3721 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3722
3723 /* Allocate memory for new array of thresholds */
3724 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3725 if (!new) {
3726 ret = -ENOMEM;
3727 goto unlock;
3728 }
3729 new->size = size;
3730
3731 /* Copy thresholds (if any) to new array */
3732 if (thresholds->primary) {
3733 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3734 sizeof(struct mem_cgroup_threshold));
3735 }
3736
3737 /* Add new threshold */
3738 new->entries[size - 1].eventfd = eventfd;
3739 new->entries[size - 1].threshold = threshold;
3740
3741 /* Sort thresholds. Registering of new threshold isn't time-critical */
3742 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3743 compare_thresholds, NULL);
3744
3745 /* Find current threshold */
3746 new->current_threshold = -1;
3747 for (i = 0; i < size; i++) {
3748 if (new->entries[i].threshold <= usage) {
3749 /*
3750 * new->current_threshold will not be used until
3751 * rcu_assign_pointer(), so it's safe to increment
3752 * it here.
3753 */
3754 ++new->current_threshold;
3755 } else
3756 break;
3757 }
3758
3759 /* Free old spare buffer and save old primary buffer as spare */
3760 kfree(thresholds->spare);
3761 thresholds->spare = thresholds->primary;
3762
3763 rcu_assign_pointer(thresholds->primary, new);
3764
3765 /* To be sure that nobody uses thresholds */
3766 synchronize_rcu();
3767
3768 unlock:
3769 mutex_unlock(&memcg->thresholds_lock);
3770
3771 return ret;
3772 }
3773
3774 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3775 struct eventfd_ctx *eventfd, const char *args)
3776 {
3777 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3778 }
3779
3780 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3781 struct eventfd_ctx *eventfd, const char *args)
3782 {
3783 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3784 }
3785
3786 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3787 struct eventfd_ctx *eventfd, enum res_type type)
3788 {
3789 struct mem_cgroup_thresholds *thresholds;
3790 struct mem_cgroup_threshold_ary *new;
3791 unsigned long usage;
3792 int i, j, size;
3793
3794 mutex_lock(&memcg->thresholds_lock);
3795
3796 if (type == _MEM) {
3797 thresholds = &memcg->thresholds;
3798 usage = mem_cgroup_usage(memcg, false);
3799 } else if (type == _MEMSWAP) {
3800 thresholds = &memcg->memsw_thresholds;
3801 usage = mem_cgroup_usage(memcg, true);
3802 } else
3803 BUG();
3804
3805 if (!thresholds->primary)
3806 goto unlock;
3807
3808 /* Check if a threshold crossed before removing */
3809 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3810
3811 /* Calculate new number of threshold */
3812 size = 0;
3813 for (i = 0; i < thresholds->primary->size; i++) {
3814 if (thresholds->primary->entries[i].eventfd != eventfd)
3815 size++;
3816 }
3817
3818 new = thresholds->spare;
3819
3820 /* Set thresholds array to NULL if we don't have thresholds */
3821 if (!size) {
3822 kfree(new);
3823 new = NULL;
3824 goto swap_buffers;
3825 }
3826
3827 new->size = size;
3828
3829 /* Copy thresholds and find current threshold */
3830 new->current_threshold = -1;
3831 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3832 if (thresholds->primary->entries[i].eventfd == eventfd)
3833 continue;
3834
3835 new->entries[j] = thresholds->primary->entries[i];
3836 if (new->entries[j].threshold <= usage) {
3837 /*
3838 * new->current_threshold will not be used
3839 * until rcu_assign_pointer(), so it's safe to increment
3840 * it here.
3841 */
3842 ++new->current_threshold;
3843 }
3844 j++;
3845 }
3846
3847 swap_buffers:
3848 /* Swap primary and spare array */
3849 thresholds->spare = thresholds->primary;
3850
3851 rcu_assign_pointer(thresholds->primary, new);
3852
3853 /* To be sure that nobody uses thresholds */
3854 synchronize_rcu();
3855
3856 /* If all events are unregistered, free the spare array */
3857 if (!new) {
3858 kfree(thresholds->spare);
3859 thresholds->spare = NULL;
3860 }
3861 unlock:
3862 mutex_unlock(&memcg->thresholds_lock);
3863 }
3864
3865 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3866 struct eventfd_ctx *eventfd)
3867 {
3868 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3869 }
3870
3871 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3872 struct eventfd_ctx *eventfd)
3873 {
3874 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3875 }
3876
3877 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3878 struct eventfd_ctx *eventfd, const char *args)
3879 {
3880 struct mem_cgroup_eventfd_list *event;
3881
3882 event = kmalloc(sizeof(*event), GFP_KERNEL);
3883 if (!event)
3884 return -ENOMEM;
3885
3886 spin_lock(&memcg_oom_lock);
3887
3888 event->eventfd = eventfd;
3889 list_add(&event->list, &memcg->oom_notify);
3890
3891 /* already in OOM ? */
3892 if (memcg->under_oom)
3893 eventfd_signal(eventfd, 1);
3894 spin_unlock(&memcg_oom_lock);
3895
3896 return 0;
3897 }
3898
3899 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3900 struct eventfd_ctx *eventfd)
3901 {
3902 struct mem_cgroup_eventfd_list *ev, *tmp;
3903
3904 spin_lock(&memcg_oom_lock);
3905
3906 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3907 if (ev->eventfd == eventfd) {
3908 list_del(&ev->list);
3909 kfree(ev);
3910 }
3911 }
3912
3913 spin_unlock(&memcg_oom_lock);
3914 }
3915
3916 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3917 {
3918 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3919
3920 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3921 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3922 seq_printf(sf, "oom_kill %lu\n",
3923 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3924 return 0;
3925 }
3926
3927 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3928 struct cftype *cft, u64 val)
3929 {
3930 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3931
3932 /* cannot set to root cgroup and only 0 and 1 are allowed */
3933 if (!css->parent || !((val == 0) || (val == 1)))
3934 return -EINVAL;
3935
3936 memcg->oom_kill_disable = val;
3937 if (!val)
3938 memcg_oom_recover(memcg);
3939
3940 return 0;
3941 }
3942
3943 #ifdef CONFIG_CGROUP_WRITEBACK
3944
3945 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3946 {
3947 return wb_domain_init(&memcg->cgwb_domain, gfp);
3948 }
3949
3950 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3951 {
3952 wb_domain_exit(&memcg->cgwb_domain);
3953 }
3954
3955 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3956 {
3957 wb_domain_size_changed(&memcg->cgwb_domain);
3958 }
3959
3960 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3961 {
3962 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3963
3964 if (!memcg->css.parent)
3965 return NULL;
3966
3967 return &memcg->cgwb_domain;
3968 }
3969
3970 /*
3971 * idx can be of type enum memcg_stat_item or node_stat_item.
3972 * Keep in sync with memcg_exact_page().
3973 */
3974 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
3975 {
3976 long x = atomic_long_read(&memcg->vmstats[idx]);
3977 int cpu;
3978
3979 for_each_online_cpu(cpu)
3980 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
3981 if (x < 0)
3982 x = 0;
3983 return x;
3984 }
3985
3986 /**
3987 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3988 * @wb: bdi_writeback in question
3989 * @pfilepages: out parameter for number of file pages
3990 * @pheadroom: out parameter for number of allocatable pages according to memcg
3991 * @pdirty: out parameter for number of dirty pages
3992 * @pwriteback: out parameter for number of pages under writeback
3993 *
3994 * Determine the numbers of file, headroom, dirty, and writeback pages in
3995 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3996 * is a bit more involved.
3997 *
3998 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3999 * headroom is calculated as the lowest headroom of itself and the
4000 * ancestors. Note that this doesn't consider the actual amount of
4001 * available memory in the system. The caller should further cap
4002 * *@pheadroom accordingly.
4003 */
4004 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4005 unsigned long *pheadroom, unsigned long *pdirty,
4006 unsigned long *pwriteback)
4007 {
4008 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4009 struct mem_cgroup *parent;
4010
4011 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4012
4013 /* this should eventually include NR_UNSTABLE_NFS */
4014 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4015 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4016 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4017 *pheadroom = PAGE_COUNTER_MAX;
4018
4019 while ((parent = parent_mem_cgroup(memcg))) {
4020 unsigned long ceiling = min(memcg->memory.max, memcg->high);
4021 unsigned long used = page_counter_read(&memcg->memory);
4022
4023 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4024 memcg = parent;
4025 }
4026 }
4027
4028 #else /* CONFIG_CGROUP_WRITEBACK */
4029
4030 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4031 {
4032 return 0;
4033 }
4034
4035 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4036 {
4037 }
4038
4039 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4040 {
4041 }
4042
4043 #endif /* CONFIG_CGROUP_WRITEBACK */
4044
4045 /*
4046 * DO NOT USE IN NEW FILES.
4047 *
4048 * "cgroup.event_control" implementation.
4049 *
4050 * This is way over-engineered. It tries to support fully configurable
4051 * events for each user. Such level of flexibility is completely
4052 * unnecessary especially in the light of the planned unified hierarchy.
4053 *
4054 * Please deprecate this and replace with something simpler if at all
4055 * possible.
4056 */
4057
4058 /*
4059 * Unregister event and free resources.
4060 *
4061 * Gets called from workqueue.
4062 */
4063 static void memcg_event_remove(struct work_struct *work)
4064 {
4065 struct mem_cgroup_event *event =
4066 container_of(work, struct mem_cgroup_event, remove);
4067 struct mem_cgroup *memcg = event->memcg;
4068
4069 remove_wait_queue(event->wqh, &event->wait);
4070
4071 event->unregister_event(memcg, event->eventfd);
4072
4073 /* Notify userspace the event is going away. */
4074 eventfd_signal(event->eventfd, 1);
4075
4076 eventfd_ctx_put(event->eventfd);
4077 kfree(event);
4078 css_put(&memcg->css);
4079 }
4080
4081 /*
4082 * Gets called on EPOLLHUP on eventfd when user closes it.
4083 *
4084 * Called with wqh->lock held and interrupts disabled.
4085 */
4086 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4087 int sync, void *key)
4088 {
4089 struct mem_cgroup_event *event =
4090 container_of(wait, struct mem_cgroup_event, wait);
4091 struct mem_cgroup *memcg = event->memcg;
4092 __poll_t flags = key_to_poll(key);
4093
4094 if (flags & EPOLLHUP) {
4095 /*
4096 * If the event has been detached at cgroup removal, we
4097 * can simply return knowing the other side will cleanup
4098 * for us.
4099 *
4100 * We can't race against event freeing since the other
4101 * side will require wqh->lock via remove_wait_queue(),
4102 * which we hold.
4103 */
4104 spin_lock(&memcg->event_list_lock);
4105 if (!list_empty(&event->list)) {
4106 list_del_init(&event->list);
4107 /*
4108 * We are in atomic context, but cgroup_event_remove()
4109 * may sleep, so we have to call it in workqueue.
4110 */
4111 schedule_work(&event->remove);
4112 }
4113 spin_unlock(&memcg->event_list_lock);
4114 }
4115
4116 return 0;
4117 }
4118
4119 static void memcg_event_ptable_queue_proc(struct file *file,
4120 wait_queue_head_t *wqh, poll_table *pt)
4121 {
4122 struct mem_cgroup_event *event =
4123 container_of(pt, struct mem_cgroup_event, pt);
4124
4125 event->wqh = wqh;
4126 add_wait_queue(wqh, &event->wait);
4127 }
4128
4129 /*
4130 * DO NOT USE IN NEW FILES.
4131 *
4132 * Parse input and register new cgroup event handler.
4133 *
4134 * Input must be in format '<event_fd> <control_fd> <args>'.
4135 * Interpretation of args is defined by control file implementation.
4136 */
4137 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4138 char *buf, size_t nbytes, loff_t off)
4139 {
4140 struct cgroup_subsys_state *css = of_css(of);
4141 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4142 struct mem_cgroup_event *event;
4143 struct cgroup_subsys_state *cfile_css;
4144 unsigned int efd, cfd;
4145 struct fd efile;
4146 struct fd cfile;
4147 const char *name;
4148 char *endp;
4149 int ret;
4150
4151 buf = strstrip(buf);
4152
4153 efd = simple_strtoul(buf, &endp, 10);
4154 if (*endp != ' ')
4155 return -EINVAL;
4156 buf = endp + 1;
4157
4158 cfd = simple_strtoul(buf, &endp, 10);
4159 if ((*endp != ' ') && (*endp != '\0'))
4160 return -EINVAL;
4161 buf = endp + 1;
4162
4163 event = kzalloc(sizeof(*event), GFP_KERNEL);
4164 if (!event)
4165 return -ENOMEM;
4166
4167 event->memcg = memcg;
4168 INIT_LIST_HEAD(&event->list);
4169 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4170 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4171 INIT_WORK(&event->remove, memcg_event_remove);
4172
4173 efile = fdget(efd);
4174 if (!efile.file) {
4175 ret = -EBADF;
4176 goto out_kfree;
4177 }
4178
4179 event->eventfd = eventfd_ctx_fileget(efile.file);
4180 if (IS_ERR(event->eventfd)) {
4181 ret = PTR_ERR(event->eventfd);
4182 goto out_put_efile;
4183 }
4184
4185 cfile = fdget(cfd);
4186 if (!cfile.file) {
4187 ret = -EBADF;
4188 goto out_put_eventfd;
4189 }
4190
4191 /* the process need read permission on control file */
4192 /* AV: shouldn't we check that it's been opened for read instead? */
4193 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4194 if (ret < 0)
4195 goto out_put_cfile;
4196
4197 /*
4198 * Determine the event callbacks and set them in @event. This used
4199 * to be done via struct cftype but cgroup core no longer knows
4200 * about these events. The following is crude but the whole thing
4201 * is for compatibility anyway.
4202 *
4203 * DO NOT ADD NEW FILES.
4204 */
4205 name = cfile.file->f_path.dentry->d_name.name;
4206
4207 if (!strcmp(name, "memory.usage_in_bytes")) {
4208 event->register_event = mem_cgroup_usage_register_event;
4209 event->unregister_event = mem_cgroup_usage_unregister_event;
4210 } else if (!strcmp(name, "memory.oom_control")) {
4211 event->register_event = mem_cgroup_oom_register_event;
4212 event->unregister_event = mem_cgroup_oom_unregister_event;
4213 } else if (!strcmp(name, "memory.pressure_level")) {
4214 event->register_event = vmpressure_register_event;
4215 event->unregister_event = vmpressure_unregister_event;
4216 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4217 event->register_event = memsw_cgroup_usage_register_event;
4218 event->unregister_event = memsw_cgroup_usage_unregister_event;
4219 } else {
4220 ret = -EINVAL;
4221 goto out_put_cfile;
4222 }
4223
4224 /*
4225 * Verify @cfile should belong to @css. Also, remaining events are
4226 * automatically removed on cgroup destruction but the removal is
4227 * asynchronous, so take an extra ref on @css.
4228 */
4229 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4230 &memory_cgrp_subsys);
4231 ret = -EINVAL;
4232 if (IS_ERR(cfile_css))
4233 goto out_put_cfile;
4234 if (cfile_css != css) {
4235 css_put(cfile_css);
4236 goto out_put_cfile;
4237 }
4238
4239 ret = event->register_event(memcg, event->eventfd, buf);
4240 if (ret)
4241 goto out_put_css;
4242
4243 vfs_poll(efile.file, &event->pt);
4244
4245 spin_lock(&memcg->event_list_lock);
4246 list_add(&event->list, &memcg->event_list);
4247 spin_unlock(&memcg->event_list_lock);
4248
4249 fdput(cfile);
4250 fdput(efile);
4251
4252 return nbytes;
4253
4254 out_put_css:
4255 css_put(css);
4256 out_put_cfile:
4257 fdput(cfile);
4258 out_put_eventfd:
4259 eventfd_ctx_put(event->eventfd);
4260 out_put_efile:
4261 fdput(efile);
4262 out_kfree:
4263 kfree(event);
4264
4265 return ret;
4266 }
4267
4268 static struct cftype mem_cgroup_legacy_files[] = {
4269 {
4270 .name = "usage_in_bytes",
4271 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4272 .read_u64 = mem_cgroup_read_u64,
4273 },
4274 {
4275 .name = "max_usage_in_bytes",
4276 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4277 .write = mem_cgroup_reset,
4278 .read_u64 = mem_cgroup_read_u64,
4279 },
4280 {
4281 .name = "limit_in_bytes",
4282 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4283 .write = mem_cgroup_write,
4284 .read_u64 = mem_cgroup_read_u64,
4285 },
4286 {
4287 .name = "soft_limit_in_bytes",
4288 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4289 .write = mem_cgroup_write,
4290 .read_u64 = mem_cgroup_read_u64,
4291 },
4292 {
4293 .name = "failcnt",
4294 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4295 .write = mem_cgroup_reset,
4296 .read_u64 = mem_cgroup_read_u64,
4297 },
4298 {
4299 .name = "stat",
4300 .seq_show = memcg_stat_show,
4301 },
4302 {
4303 .name = "force_empty",
4304 .write = mem_cgroup_force_empty_write,
4305 },
4306 {
4307 .name = "use_hierarchy",
4308 .write_u64 = mem_cgroup_hierarchy_write,
4309 .read_u64 = mem_cgroup_hierarchy_read,
4310 },
4311 {
4312 .name = "cgroup.event_control", /* XXX: for compat */
4313 .write = memcg_write_event_control,
4314 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4315 },
4316 {
4317 .name = "swappiness",
4318 .read_u64 = mem_cgroup_swappiness_read,
4319 .write_u64 = mem_cgroup_swappiness_write,
4320 },
4321 {
4322 .name = "move_charge_at_immigrate",
4323 .read_u64 = mem_cgroup_move_charge_read,
4324 .write_u64 = mem_cgroup_move_charge_write,
4325 },
4326 {
4327 .name = "oom_control",
4328 .seq_show = mem_cgroup_oom_control_read,
4329 .write_u64 = mem_cgroup_oom_control_write,
4330 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4331 },
4332 {
4333 .name = "pressure_level",
4334 },
4335 #ifdef CONFIG_NUMA
4336 {
4337 .name = "numa_stat",
4338 .seq_show = memcg_numa_stat_show,
4339 },
4340 #endif
4341 {
4342 .name = "kmem.limit_in_bytes",
4343 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4344 .write = mem_cgroup_write,
4345 .read_u64 = mem_cgroup_read_u64,
4346 },
4347 {
4348 .name = "kmem.usage_in_bytes",
4349 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4350 .read_u64 = mem_cgroup_read_u64,
4351 },
4352 {
4353 .name = "kmem.failcnt",
4354 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4355 .write = mem_cgroup_reset,
4356 .read_u64 = mem_cgroup_read_u64,
4357 },
4358 {
4359 .name = "kmem.max_usage_in_bytes",
4360 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4361 .write = mem_cgroup_reset,
4362 .read_u64 = mem_cgroup_read_u64,
4363 },
4364 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4365 {
4366 .name = "kmem.slabinfo",
4367 .seq_start = memcg_slab_start,
4368 .seq_next = memcg_slab_next,
4369 .seq_stop = memcg_slab_stop,
4370 .seq_show = memcg_slab_show,
4371 },
4372 #endif
4373 {
4374 .name = "kmem.tcp.limit_in_bytes",
4375 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4376 .write = mem_cgroup_write,
4377 .read_u64 = mem_cgroup_read_u64,
4378 },
4379 {
4380 .name = "kmem.tcp.usage_in_bytes",
4381 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4382 .read_u64 = mem_cgroup_read_u64,
4383 },
4384 {
4385 .name = "kmem.tcp.failcnt",
4386 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4387 .write = mem_cgroup_reset,
4388 .read_u64 = mem_cgroup_read_u64,
4389 },
4390 {
4391 .name = "kmem.tcp.max_usage_in_bytes",
4392 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4393 .write = mem_cgroup_reset,
4394 .read_u64 = mem_cgroup_read_u64,
4395 },
4396 { }, /* terminate */
4397 };
4398
4399 /*
4400 * Private memory cgroup IDR
4401 *
4402 * Swap-out records and page cache shadow entries need to store memcg
4403 * references in constrained space, so we maintain an ID space that is
4404 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4405 * memory-controlled cgroups to 64k.
4406 *
4407 * However, there usually are many references to the oflline CSS after
4408 * the cgroup has been destroyed, such as page cache or reclaimable
4409 * slab objects, that don't need to hang on to the ID. We want to keep
4410 * those dead CSS from occupying IDs, or we might quickly exhaust the
4411 * relatively small ID space and prevent the creation of new cgroups
4412 * even when there are much fewer than 64k cgroups - possibly none.
4413 *
4414 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4415 * be freed and recycled when it's no longer needed, which is usually
4416 * when the CSS is offlined.
4417 *
4418 * The only exception to that are records of swapped out tmpfs/shmem
4419 * pages that need to be attributed to live ancestors on swapin. But
4420 * those references are manageable from userspace.
4421 */
4422
4423 static DEFINE_IDR(mem_cgroup_idr);
4424
4425 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4426 {
4427 if (memcg->id.id > 0) {
4428 idr_remove(&mem_cgroup_idr, memcg->id.id);
4429 memcg->id.id = 0;
4430 }
4431 }
4432
4433 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4434 {
4435 refcount_add(n, &memcg->id.ref);
4436 }
4437
4438 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4439 {
4440 if (refcount_sub_and_test(n, &memcg->id.ref)) {
4441 mem_cgroup_id_remove(memcg);
4442
4443 /* Memcg ID pins CSS */
4444 css_put(&memcg->css);
4445 }
4446 }
4447
4448 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4449 {
4450 mem_cgroup_id_get_many(memcg, 1);
4451 }
4452
4453 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4454 {
4455 mem_cgroup_id_put_many(memcg, 1);
4456 }
4457
4458 /**
4459 * mem_cgroup_from_id - look up a memcg from a memcg id
4460 * @id: the memcg id to look up
4461 *
4462 * Caller must hold rcu_read_lock().
4463 */
4464 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4465 {
4466 WARN_ON_ONCE(!rcu_read_lock_held());
4467 return idr_find(&mem_cgroup_idr, id);
4468 }
4469
4470 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4471 {
4472 struct mem_cgroup_per_node *pn;
4473 int tmp = node;
4474 /*
4475 * This routine is called against possible nodes.
4476 * But it's BUG to call kmalloc() against offline node.
4477 *
4478 * TODO: this routine can waste much memory for nodes which will
4479 * never be onlined. It's better to use memory hotplug callback
4480 * function.
4481 */
4482 if (!node_state(node, N_NORMAL_MEMORY))
4483 tmp = -1;
4484 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4485 if (!pn)
4486 return 1;
4487
4488 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4489 if (!pn->lruvec_stat_local) {
4490 kfree(pn);
4491 return 1;
4492 }
4493
4494 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4495 if (!pn->lruvec_stat_cpu) {
4496 free_percpu(pn->lruvec_stat_local);
4497 kfree(pn);
4498 return 1;
4499 }
4500
4501 lruvec_init(&pn->lruvec);
4502 pn->usage_in_excess = 0;
4503 pn->on_tree = false;
4504 pn->memcg = memcg;
4505
4506 memcg->nodeinfo[node] = pn;
4507 return 0;
4508 }
4509
4510 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4511 {
4512 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4513
4514 if (!pn)
4515 return;
4516
4517 free_percpu(pn->lruvec_stat_cpu);
4518 free_percpu(pn->lruvec_stat_local);
4519 kfree(pn);
4520 }
4521
4522 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4523 {
4524 int node;
4525
4526 for_each_node(node)
4527 free_mem_cgroup_per_node_info(memcg, node);
4528 free_percpu(memcg->vmstats_percpu);
4529 free_percpu(memcg->vmstats_local);
4530 kfree(memcg);
4531 }
4532
4533 static void mem_cgroup_free(struct mem_cgroup *memcg)
4534 {
4535 memcg_wb_domain_exit(memcg);
4536 __mem_cgroup_free(memcg);
4537 }
4538
4539 static struct mem_cgroup *mem_cgroup_alloc(void)
4540 {
4541 struct mem_cgroup *memcg;
4542 unsigned int size;
4543 int node;
4544
4545 size = sizeof(struct mem_cgroup);
4546 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4547
4548 memcg = kzalloc(size, GFP_KERNEL);
4549 if (!memcg)
4550 return NULL;
4551
4552 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4553 1, MEM_CGROUP_ID_MAX,
4554 GFP_KERNEL);
4555 if (memcg->id.id < 0)
4556 goto fail;
4557
4558 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4559 if (!memcg->vmstats_local)
4560 goto fail;
4561
4562 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4563 if (!memcg->vmstats_percpu)
4564 goto fail;
4565
4566 for_each_node(node)
4567 if (alloc_mem_cgroup_per_node_info(memcg, node))
4568 goto fail;
4569
4570 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4571 goto fail;
4572
4573 INIT_WORK(&memcg->high_work, high_work_func);
4574 memcg->last_scanned_node = MAX_NUMNODES;
4575 INIT_LIST_HEAD(&memcg->oom_notify);
4576 mutex_init(&memcg->thresholds_lock);
4577 spin_lock_init(&memcg->move_lock);
4578 vmpressure_init(&memcg->vmpressure);
4579 INIT_LIST_HEAD(&memcg->event_list);
4580 spin_lock_init(&memcg->event_list_lock);
4581 memcg->socket_pressure = jiffies;
4582 #ifdef CONFIG_MEMCG_KMEM
4583 memcg->kmemcg_id = -1;
4584 #endif
4585 #ifdef CONFIG_CGROUP_WRITEBACK
4586 INIT_LIST_HEAD(&memcg->cgwb_list);
4587 #endif
4588 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4589 return memcg;
4590 fail:
4591 mem_cgroup_id_remove(memcg);
4592 __mem_cgroup_free(memcg);
4593 return NULL;
4594 }
4595
4596 static struct cgroup_subsys_state * __ref
4597 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4598 {
4599 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4600 struct mem_cgroup *memcg;
4601 long error = -ENOMEM;
4602
4603 memcg = mem_cgroup_alloc();
4604 if (!memcg)
4605 return ERR_PTR(error);
4606
4607 memcg->high = PAGE_COUNTER_MAX;
4608 memcg->soft_limit = PAGE_COUNTER_MAX;
4609 if (parent) {
4610 memcg->swappiness = mem_cgroup_swappiness(parent);
4611 memcg->oom_kill_disable = parent->oom_kill_disable;
4612 }
4613 if (parent && parent->use_hierarchy) {
4614 memcg->use_hierarchy = true;
4615 page_counter_init(&memcg->memory, &parent->memory);
4616 page_counter_init(&memcg->swap, &parent->swap);
4617 page_counter_init(&memcg->memsw, &parent->memsw);
4618 page_counter_init(&memcg->kmem, &parent->kmem);
4619 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4620 } else {
4621 page_counter_init(&memcg->memory, NULL);
4622 page_counter_init(&memcg->swap, NULL);
4623 page_counter_init(&memcg->memsw, NULL);
4624 page_counter_init(&memcg->kmem, NULL);
4625 page_counter_init(&memcg->tcpmem, NULL);
4626 /*
4627 * Deeper hierachy with use_hierarchy == false doesn't make
4628 * much sense so let cgroup subsystem know about this
4629 * unfortunate state in our controller.
4630 */
4631 if (parent != root_mem_cgroup)
4632 memory_cgrp_subsys.broken_hierarchy = true;
4633 }
4634
4635 /* The following stuff does not apply to the root */
4636 if (!parent) {
4637 root_mem_cgroup = memcg;
4638 return &memcg->css;
4639 }
4640
4641 error = memcg_online_kmem(memcg);
4642 if (error)
4643 goto fail;
4644
4645 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4646 static_branch_inc(&memcg_sockets_enabled_key);
4647
4648 return &memcg->css;
4649 fail:
4650 mem_cgroup_id_remove(memcg);
4651 mem_cgroup_free(memcg);
4652 return ERR_PTR(-ENOMEM);
4653 }
4654
4655 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4656 {
4657 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4658
4659 /*
4660 * A memcg must be visible for memcg_expand_shrinker_maps()
4661 * by the time the maps are allocated. So, we allocate maps
4662 * here, when for_each_mem_cgroup() can't skip it.
4663 */
4664 if (memcg_alloc_shrinker_maps(memcg)) {
4665 mem_cgroup_id_remove(memcg);
4666 return -ENOMEM;
4667 }
4668
4669 /* Online state pins memcg ID, memcg ID pins CSS */
4670 refcount_set(&memcg->id.ref, 1);
4671 css_get(css);
4672 return 0;
4673 }
4674
4675 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4676 {
4677 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4678 struct mem_cgroup_event *event, *tmp;
4679
4680 /*
4681 * Unregister events and notify userspace.
4682 * Notify userspace about cgroup removing only after rmdir of cgroup
4683 * directory to avoid race between userspace and kernelspace.
4684 */
4685 spin_lock(&memcg->event_list_lock);
4686 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4687 list_del_init(&event->list);
4688 schedule_work(&event->remove);
4689 }
4690 spin_unlock(&memcg->event_list_lock);
4691
4692 page_counter_set_min(&memcg->memory, 0);
4693 page_counter_set_low(&memcg->memory, 0);
4694
4695 memcg_offline_kmem(memcg);
4696 wb_memcg_offline(memcg);
4697
4698 drain_all_stock(memcg);
4699
4700 mem_cgroup_id_put(memcg);
4701 }
4702
4703 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4704 {
4705 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4706
4707 invalidate_reclaim_iterators(memcg);
4708 }
4709
4710 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4711 {
4712 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4713
4714 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4715 static_branch_dec(&memcg_sockets_enabled_key);
4716
4717 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4718 static_branch_dec(&memcg_sockets_enabled_key);
4719
4720 vmpressure_cleanup(&memcg->vmpressure);
4721 cancel_work_sync(&memcg->high_work);
4722 mem_cgroup_remove_from_trees(memcg);
4723 memcg_free_shrinker_maps(memcg);
4724 memcg_free_kmem(memcg);
4725 mem_cgroup_free(memcg);
4726 }
4727
4728 /**
4729 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4730 * @css: the target css
4731 *
4732 * Reset the states of the mem_cgroup associated with @css. This is
4733 * invoked when the userland requests disabling on the default hierarchy
4734 * but the memcg is pinned through dependency. The memcg should stop
4735 * applying policies and should revert to the vanilla state as it may be
4736 * made visible again.
4737 *
4738 * The current implementation only resets the essential configurations.
4739 * This needs to be expanded to cover all the visible parts.
4740 */
4741 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4742 {
4743 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4744
4745 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4746 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4747 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4748 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4749 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4750 page_counter_set_min(&memcg->memory, 0);
4751 page_counter_set_low(&memcg->memory, 0);
4752 memcg->high = PAGE_COUNTER_MAX;
4753 memcg->soft_limit = PAGE_COUNTER_MAX;
4754 memcg_wb_domain_size_changed(memcg);
4755 }
4756
4757 #ifdef CONFIG_MMU
4758 /* Handlers for move charge at task migration. */
4759 static int mem_cgroup_do_precharge(unsigned long count)
4760 {
4761 int ret;
4762
4763 /* Try a single bulk charge without reclaim first, kswapd may wake */
4764 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4765 if (!ret) {
4766 mc.precharge += count;
4767 return ret;
4768 }
4769
4770 /* Try charges one by one with reclaim, but do not retry */
4771 while (count--) {
4772 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4773 if (ret)
4774 return ret;
4775 mc.precharge++;
4776 cond_resched();
4777 }
4778 return 0;
4779 }
4780
4781 union mc_target {
4782 struct page *page;
4783 swp_entry_t ent;
4784 };
4785
4786 enum mc_target_type {
4787 MC_TARGET_NONE = 0,
4788 MC_TARGET_PAGE,
4789 MC_TARGET_SWAP,
4790 MC_TARGET_DEVICE,
4791 };
4792
4793 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4794 unsigned long addr, pte_t ptent)
4795 {
4796 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4797
4798 if (!page || !page_mapped(page))
4799 return NULL;
4800 if (PageAnon(page)) {
4801 if (!(mc.flags & MOVE_ANON))
4802 return NULL;
4803 } else {
4804 if (!(mc.flags & MOVE_FILE))
4805 return NULL;
4806 }
4807 if (!get_page_unless_zero(page))
4808 return NULL;
4809
4810 return page;
4811 }
4812
4813 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4814 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4815 pte_t ptent, swp_entry_t *entry)
4816 {
4817 struct page *page = NULL;
4818 swp_entry_t ent = pte_to_swp_entry(ptent);
4819
4820 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4821 return NULL;
4822
4823 /*
4824 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4825 * a device and because they are not accessible by CPU they are store
4826 * as special swap entry in the CPU page table.
4827 */
4828 if (is_device_private_entry(ent)) {
4829 page = device_private_entry_to_page(ent);
4830 /*
4831 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4832 * a refcount of 1 when free (unlike normal page)
4833 */
4834 if (!page_ref_add_unless(page, 1, 1))
4835 return NULL;
4836 return page;
4837 }
4838
4839 /*
4840 * Because lookup_swap_cache() updates some statistics counter,
4841 * we call find_get_page() with swapper_space directly.
4842 */
4843 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4844 if (do_memsw_account())
4845 entry->val = ent.val;
4846
4847 return page;
4848 }
4849 #else
4850 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4851 pte_t ptent, swp_entry_t *entry)
4852 {
4853 return NULL;
4854 }
4855 #endif
4856
4857 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4858 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4859 {
4860 struct page *page = NULL;
4861 struct address_space *mapping;
4862 pgoff_t pgoff;
4863
4864 if (!vma->vm_file) /* anonymous vma */
4865 return NULL;
4866 if (!(mc.flags & MOVE_FILE))
4867 return NULL;
4868
4869 mapping = vma->vm_file->f_mapping;
4870 pgoff = linear_page_index(vma, addr);
4871
4872 /* page is moved even if it's not RSS of this task(page-faulted). */
4873 #ifdef CONFIG_SWAP
4874 /* shmem/tmpfs may report page out on swap: account for that too. */
4875 if (shmem_mapping(mapping)) {
4876 page = find_get_entry(mapping, pgoff);
4877 if (xa_is_value(page)) {
4878 swp_entry_t swp = radix_to_swp_entry(page);
4879 if (do_memsw_account())
4880 *entry = swp;
4881 page = find_get_page(swap_address_space(swp),
4882 swp_offset(swp));
4883 }
4884 } else
4885 page = find_get_page(mapping, pgoff);
4886 #else
4887 page = find_get_page(mapping, pgoff);
4888 #endif
4889 return page;
4890 }
4891
4892 /**
4893 * mem_cgroup_move_account - move account of the page
4894 * @page: the page
4895 * @compound: charge the page as compound or small page
4896 * @from: mem_cgroup which the page is moved from.
4897 * @to: mem_cgroup which the page is moved to. @from != @to.
4898 *
4899 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4900 *
4901 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4902 * from old cgroup.
4903 */
4904 static int mem_cgroup_move_account(struct page *page,
4905 bool compound,
4906 struct mem_cgroup *from,
4907 struct mem_cgroup *to)
4908 {
4909 unsigned long flags;
4910 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4911 int ret;
4912 bool anon;
4913
4914 VM_BUG_ON(from == to);
4915 VM_BUG_ON_PAGE(PageLRU(page), page);
4916 VM_BUG_ON(compound && !PageTransHuge(page));
4917
4918 /*
4919 * Prevent mem_cgroup_migrate() from looking at
4920 * page->mem_cgroup of its source page while we change it.
4921 */
4922 ret = -EBUSY;
4923 if (!trylock_page(page))
4924 goto out;
4925
4926 ret = -EINVAL;
4927 if (page->mem_cgroup != from)
4928 goto out_unlock;
4929
4930 anon = PageAnon(page);
4931
4932 spin_lock_irqsave(&from->move_lock, flags);
4933
4934 if (!anon && page_mapped(page)) {
4935 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4936 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4937 }
4938
4939 /*
4940 * move_lock grabbed above and caller set from->moving_account, so
4941 * mod_memcg_page_state will serialize updates to PageDirty.
4942 * So mapping should be stable for dirty pages.
4943 */
4944 if (!anon && PageDirty(page)) {
4945 struct address_space *mapping = page_mapping(page);
4946
4947 if (mapping_cap_account_dirty(mapping)) {
4948 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4949 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4950 }
4951 }
4952
4953 if (PageWriteback(page)) {
4954 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4955 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4956 }
4957
4958 /*
4959 * It is safe to change page->mem_cgroup here because the page
4960 * is referenced, charged, and isolated - we can't race with
4961 * uncharging, charging, migration, or LRU putback.
4962 */
4963
4964 /* caller should have done css_get */
4965 page->mem_cgroup = to;
4966 spin_unlock_irqrestore(&from->move_lock, flags);
4967
4968 ret = 0;
4969
4970 local_irq_disable();
4971 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4972 memcg_check_events(to, page);
4973 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4974 memcg_check_events(from, page);
4975 local_irq_enable();
4976 out_unlock:
4977 unlock_page(page);
4978 out:
4979 return ret;
4980 }
4981
4982 /**
4983 * get_mctgt_type - get target type of moving charge
4984 * @vma: the vma the pte to be checked belongs
4985 * @addr: the address corresponding to the pte to be checked
4986 * @ptent: the pte to be checked
4987 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4988 *
4989 * Returns
4990 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4991 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4992 * move charge. if @target is not NULL, the page is stored in target->page
4993 * with extra refcnt got(Callers should handle it).
4994 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4995 * target for charge migration. if @target is not NULL, the entry is stored
4996 * in target->ent.
4997 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4998 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4999 * For now we such page is charge like a regular page would be as for all
5000 * intent and purposes it is just special memory taking the place of a
5001 * regular page.
5002 *
5003 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5004 *
5005 * Called with pte lock held.
5006 */
5007
5008 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5009 unsigned long addr, pte_t ptent, union mc_target *target)
5010 {
5011 struct page *page = NULL;
5012 enum mc_target_type ret = MC_TARGET_NONE;
5013 swp_entry_t ent = { .val = 0 };
5014
5015 if (pte_present(ptent))
5016 page = mc_handle_present_pte(vma, addr, ptent);
5017 else if (is_swap_pte(ptent))
5018 page = mc_handle_swap_pte(vma, ptent, &ent);
5019 else if (pte_none(ptent))
5020 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5021
5022 if (!page && !ent.val)
5023 return ret;
5024 if (page) {
5025 /*
5026 * Do only loose check w/o serialization.
5027 * mem_cgroup_move_account() checks the page is valid or
5028 * not under LRU exclusion.
5029 */
5030 if (page->mem_cgroup == mc.from) {
5031 ret = MC_TARGET_PAGE;
5032 if (is_device_private_page(page) ||
5033 is_device_public_page(page))
5034 ret = MC_TARGET_DEVICE;
5035 if (target)
5036 target->page = page;
5037 }
5038 if (!ret || !target)
5039 put_page(page);
5040 }
5041 /*
5042 * There is a swap entry and a page doesn't exist or isn't charged.
5043 * But we cannot move a tail-page in a THP.
5044 */
5045 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5046 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5047 ret = MC_TARGET_SWAP;
5048 if (target)
5049 target->ent = ent;
5050 }
5051 return ret;
5052 }
5053
5054 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5055 /*
5056 * We don't consider PMD mapped swapping or file mapped pages because THP does
5057 * not support them for now.
5058 * Caller should make sure that pmd_trans_huge(pmd) is true.
5059 */
5060 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5061 unsigned long addr, pmd_t pmd, union mc_target *target)
5062 {
5063 struct page *page = NULL;
5064 enum mc_target_type ret = MC_TARGET_NONE;
5065
5066 if (unlikely(is_swap_pmd(pmd))) {
5067 VM_BUG_ON(thp_migration_supported() &&
5068 !is_pmd_migration_entry(pmd));
5069 return ret;
5070 }
5071 page = pmd_page(pmd);
5072 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5073 if (!(mc.flags & MOVE_ANON))
5074 return ret;
5075 if (page->mem_cgroup == mc.from) {
5076 ret = MC_TARGET_PAGE;
5077 if (target) {
5078 get_page(page);
5079 target->page = page;
5080 }
5081 }
5082 return ret;
5083 }
5084 #else
5085 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5086 unsigned long addr, pmd_t pmd, union mc_target *target)
5087 {
5088 return MC_TARGET_NONE;
5089 }
5090 #endif
5091
5092 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5093 unsigned long addr, unsigned long end,
5094 struct mm_walk *walk)
5095 {
5096 struct vm_area_struct *vma = walk->vma;
5097 pte_t *pte;
5098 spinlock_t *ptl;
5099
5100 ptl = pmd_trans_huge_lock(pmd, vma);
5101 if (ptl) {
5102 /*
5103 * Note their can not be MC_TARGET_DEVICE for now as we do not
5104 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
5105 * MEMORY_DEVICE_PRIVATE but this might change.
5106 */
5107 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5108 mc.precharge += HPAGE_PMD_NR;
5109 spin_unlock(ptl);
5110 return 0;
5111 }
5112
5113 if (pmd_trans_unstable(pmd))
5114 return 0;
5115 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5116 for (; addr != end; pte++, addr += PAGE_SIZE)
5117 if (get_mctgt_type(vma, addr, *pte, NULL))
5118 mc.precharge++; /* increment precharge temporarily */
5119 pte_unmap_unlock(pte - 1, ptl);
5120 cond_resched();
5121
5122 return 0;
5123 }
5124
5125 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5126 {
5127 unsigned long precharge;
5128
5129 struct mm_walk mem_cgroup_count_precharge_walk = {
5130 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5131 .mm = mm,
5132 };
5133 down_read(&mm->mmap_sem);
5134 walk_page_range(0, mm->highest_vm_end,
5135 &mem_cgroup_count_precharge_walk);
5136 up_read(&mm->mmap_sem);
5137
5138 precharge = mc.precharge;
5139 mc.precharge = 0;
5140
5141 return precharge;
5142 }
5143
5144 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5145 {
5146 unsigned long precharge = mem_cgroup_count_precharge(mm);
5147
5148 VM_BUG_ON(mc.moving_task);
5149 mc.moving_task = current;
5150 return mem_cgroup_do_precharge(precharge);
5151 }
5152
5153 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5154 static void __mem_cgroup_clear_mc(void)
5155 {
5156 struct mem_cgroup *from = mc.from;
5157 struct mem_cgroup *to = mc.to;
5158
5159 /* we must uncharge all the leftover precharges from mc.to */
5160 if (mc.precharge) {
5161 cancel_charge(mc.to, mc.precharge);
5162 mc.precharge = 0;
5163 }
5164 /*
5165 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5166 * we must uncharge here.
5167 */
5168 if (mc.moved_charge) {
5169 cancel_charge(mc.from, mc.moved_charge);
5170 mc.moved_charge = 0;
5171 }
5172 /* we must fixup refcnts and charges */
5173 if (mc.moved_swap) {
5174 /* uncharge swap account from the old cgroup */
5175 if (!mem_cgroup_is_root(mc.from))
5176 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5177
5178 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5179
5180 /*
5181 * we charged both to->memory and to->memsw, so we
5182 * should uncharge to->memory.
5183 */
5184 if (!mem_cgroup_is_root(mc.to))
5185 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5186
5187 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5188 css_put_many(&mc.to->css, mc.moved_swap);
5189
5190 mc.moved_swap = 0;
5191 }
5192 memcg_oom_recover(from);
5193 memcg_oom_recover(to);
5194 wake_up_all(&mc.waitq);
5195 }
5196
5197 static void mem_cgroup_clear_mc(void)
5198 {
5199 struct mm_struct *mm = mc.mm;
5200
5201 /*
5202 * we must clear moving_task before waking up waiters at the end of
5203 * task migration.
5204 */
5205 mc.moving_task = NULL;
5206 __mem_cgroup_clear_mc();
5207 spin_lock(&mc.lock);
5208 mc.from = NULL;
5209 mc.to = NULL;
5210 mc.mm = NULL;
5211 spin_unlock(&mc.lock);
5212
5213 mmput(mm);
5214 }
5215
5216 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5217 {
5218 struct cgroup_subsys_state *css;
5219 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5220 struct mem_cgroup *from;
5221 struct task_struct *leader, *p;
5222 struct mm_struct *mm;
5223 unsigned long move_flags;
5224 int ret = 0;
5225
5226 /* charge immigration isn't supported on the default hierarchy */
5227 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5228 return 0;
5229
5230 /*
5231 * Multi-process migrations only happen on the default hierarchy
5232 * where charge immigration is not used. Perform charge
5233 * immigration if @tset contains a leader and whine if there are
5234 * multiple.
5235 */
5236 p = NULL;
5237 cgroup_taskset_for_each_leader(leader, css, tset) {
5238 WARN_ON_ONCE(p);
5239 p = leader;
5240 memcg = mem_cgroup_from_css(css);
5241 }
5242 if (!p)
5243 return 0;
5244
5245 /*
5246 * We are now commited to this value whatever it is. Changes in this
5247 * tunable will only affect upcoming migrations, not the current one.
5248 * So we need to save it, and keep it going.
5249 */
5250 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5251 if (!move_flags)
5252 return 0;
5253
5254 from = mem_cgroup_from_task(p);
5255
5256 VM_BUG_ON(from == memcg);
5257
5258 mm = get_task_mm(p);
5259 if (!mm)
5260 return 0;
5261 /* We move charges only when we move a owner of the mm */
5262 if (mm->owner == p) {
5263 VM_BUG_ON(mc.from);
5264 VM_BUG_ON(mc.to);
5265 VM_BUG_ON(mc.precharge);
5266 VM_BUG_ON(mc.moved_charge);
5267 VM_BUG_ON(mc.moved_swap);
5268
5269 spin_lock(&mc.lock);
5270 mc.mm = mm;
5271 mc.from = from;
5272 mc.to = memcg;
5273 mc.flags = move_flags;
5274 spin_unlock(&mc.lock);
5275 /* We set mc.moving_task later */
5276
5277 ret = mem_cgroup_precharge_mc(mm);
5278 if (ret)
5279 mem_cgroup_clear_mc();
5280 } else {
5281 mmput(mm);
5282 }
5283 return ret;
5284 }
5285
5286 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5287 {
5288 if (mc.to)
5289 mem_cgroup_clear_mc();
5290 }
5291
5292 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5293 unsigned long addr, unsigned long end,
5294 struct mm_walk *walk)
5295 {
5296 int ret = 0;
5297 struct vm_area_struct *vma = walk->vma;
5298 pte_t *pte;
5299 spinlock_t *ptl;
5300 enum mc_target_type target_type;
5301 union mc_target target;
5302 struct page *page;
5303
5304 ptl = pmd_trans_huge_lock(pmd, vma);
5305 if (ptl) {
5306 if (mc.precharge < HPAGE_PMD_NR) {
5307 spin_unlock(ptl);
5308 return 0;
5309 }
5310 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5311 if (target_type == MC_TARGET_PAGE) {
5312 page = target.page;
5313 if (!isolate_lru_page(page)) {
5314 if (!mem_cgroup_move_account(page, true,
5315 mc.from, mc.to)) {
5316 mc.precharge -= HPAGE_PMD_NR;
5317 mc.moved_charge += HPAGE_PMD_NR;
5318 }
5319 putback_lru_page(page);
5320 }
5321 put_page(page);
5322 } else if (target_type == MC_TARGET_DEVICE) {
5323 page = target.page;
5324 if (!mem_cgroup_move_account(page, true,
5325 mc.from, mc.to)) {
5326 mc.precharge -= HPAGE_PMD_NR;
5327 mc.moved_charge += HPAGE_PMD_NR;
5328 }
5329 put_page(page);
5330 }
5331 spin_unlock(ptl);
5332 return 0;
5333 }
5334
5335 if (pmd_trans_unstable(pmd))
5336 return 0;
5337 retry:
5338 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5339 for (; addr != end; addr += PAGE_SIZE) {
5340 pte_t ptent = *(pte++);
5341 bool device = false;
5342 swp_entry_t ent;
5343
5344 if (!mc.precharge)
5345 break;
5346
5347 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5348 case MC_TARGET_DEVICE:
5349 device = true;
5350 /* fall through */
5351 case MC_TARGET_PAGE:
5352 page = target.page;
5353 /*
5354 * We can have a part of the split pmd here. Moving it
5355 * can be done but it would be too convoluted so simply
5356 * ignore such a partial THP and keep it in original
5357 * memcg. There should be somebody mapping the head.
5358 */
5359 if (PageTransCompound(page))
5360 goto put;
5361 if (!device && isolate_lru_page(page))
5362 goto put;
5363 if (!mem_cgroup_move_account(page, false,
5364 mc.from, mc.to)) {
5365 mc.precharge--;
5366 /* we uncharge from mc.from later. */
5367 mc.moved_charge++;
5368 }
5369 if (!device)
5370 putback_lru_page(page);
5371 put: /* get_mctgt_type() gets the page */
5372 put_page(page);
5373 break;
5374 case MC_TARGET_SWAP:
5375 ent = target.ent;
5376 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5377 mc.precharge--;
5378 /* we fixup refcnts and charges later. */
5379 mc.moved_swap++;
5380 }
5381 break;
5382 default:
5383 break;
5384 }
5385 }
5386 pte_unmap_unlock(pte - 1, ptl);
5387 cond_resched();
5388
5389 if (addr != end) {
5390 /*
5391 * We have consumed all precharges we got in can_attach().
5392 * We try charge one by one, but don't do any additional
5393 * charges to mc.to if we have failed in charge once in attach()
5394 * phase.
5395 */
5396 ret = mem_cgroup_do_precharge(1);
5397 if (!ret)
5398 goto retry;
5399 }
5400
5401 return ret;
5402 }
5403
5404 static void mem_cgroup_move_charge(void)
5405 {
5406 struct mm_walk mem_cgroup_move_charge_walk = {
5407 .pmd_entry = mem_cgroup_move_charge_pte_range,
5408 .mm = mc.mm,
5409 };
5410
5411 lru_add_drain_all();
5412 /*
5413 * Signal lock_page_memcg() to take the memcg's move_lock
5414 * while we're moving its pages to another memcg. Then wait
5415 * for already started RCU-only updates to finish.
5416 */
5417 atomic_inc(&mc.from->moving_account);
5418 synchronize_rcu();
5419 retry:
5420 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5421 /*
5422 * Someone who are holding the mmap_sem might be waiting in
5423 * waitq. So we cancel all extra charges, wake up all waiters,
5424 * and retry. Because we cancel precharges, we might not be able
5425 * to move enough charges, but moving charge is a best-effort
5426 * feature anyway, so it wouldn't be a big problem.
5427 */
5428 __mem_cgroup_clear_mc();
5429 cond_resched();
5430 goto retry;
5431 }
5432 /*
5433 * When we have consumed all precharges and failed in doing
5434 * additional charge, the page walk just aborts.
5435 */
5436 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5437
5438 up_read(&mc.mm->mmap_sem);
5439 atomic_dec(&mc.from->moving_account);
5440 }
5441
5442 static void mem_cgroup_move_task(void)
5443 {
5444 if (mc.to) {
5445 mem_cgroup_move_charge();
5446 mem_cgroup_clear_mc();
5447 }
5448 }
5449 #else /* !CONFIG_MMU */
5450 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5451 {
5452 return 0;
5453 }
5454 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5455 {
5456 }
5457 static void mem_cgroup_move_task(void)
5458 {
5459 }
5460 #endif
5461
5462 /*
5463 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5464 * to verify whether we're attached to the default hierarchy on each mount
5465 * attempt.
5466 */
5467 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5468 {
5469 /*
5470 * use_hierarchy is forced on the default hierarchy. cgroup core
5471 * guarantees that @root doesn't have any children, so turning it
5472 * on for the root memcg is enough.
5473 */
5474 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5475 root_mem_cgroup->use_hierarchy = true;
5476 else
5477 root_mem_cgroup->use_hierarchy = false;
5478 }
5479
5480 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5481 {
5482 if (value == PAGE_COUNTER_MAX)
5483 seq_puts(m, "max\n");
5484 else
5485 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5486
5487 return 0;
5488 }
5489
5490 static u64 memory_current_read(struct cgroup_subsys_state *css,
5491 struct cftype *cft)
5492 {
5493 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5494
5495 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5496 }
5497
5498 static int memory_min_show(struct seq_file *m, void *v)
5499 {
5500 return seq_puts_memcg_tunable(m,
5501 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5502 }
5503
5504 static ssize_t memory_min_write(struct kernfs_open_file *of,
5505 char *buf, size_t nbytes, loff_t off)
5506 {
5507 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5508 unsigned long min;
5509 int err;
5510
5511 buf = strstrip(buf);
5512 err = page_counter_memparse(buf, "max", &min);
5513 if (err)
5514 return err;
5515
5516 page_counter_set_min(&memcg->memory, min);
5517
5518 return nbytes;
5519 }
5520
5521 static int memory_low_show(struct seq_file *m, void *v)
5522 {
5523 return seq_puts_memcg_tunable(m,
5524 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5525 }
5526
5527 static ssize_t memory_low_write(struct kernfs_open_file *of,
5528 char *buf, size_t nbytes, loff_t off)
5529 {
5530 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5531 unsigned long low;
5532 int err;
5533
5534 buf = strstrip(buf);
5535 err = page_counter_memparse(buf, "max", &low);
5536 if (err)
5537 return err;
5538
5539 page_counter_set_low(&memcg->memory, low);
5540
5541 return nbytes;
5542 }
5543
5544 static int memory_high_show(struct seq_file *m, void *v)
5545 {
5546 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5547 }
5548
5549 static ssize_t memory_high_write(struct kernfs_open_file *of,
5550 char *buf, size_t nbytes, loff_t off)
5551 {
5552 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5553 unsigned long nr_pages;
5554 unsigned long high;
5555 int err;
5556
5557 buf = strstrip(buf);
5558 err = page_counter_memparse(buf, "max", &high);
5559 if (err)
5560 return err;
5561
5562 memcg->high = high;
5563
5564 nr_pages = page_counter_read(&memcg->memory);
5565 if (nr_pages > high)
5566 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5567 GFP_KERNEL, true);
5568
5569 memcg_wb_domain_size_changed(memcg);
5570 return nbytes;
5571 }
5572
5573 static int memory_max_show(struct seq_file *m, void *v)
5574 {
5575 return seq_puts_memcg_tunable(m,
5576 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
5577 }
5578
5579 static ssize_t memory_max_write(struct kernfs_open_file *of,
5580 char *buf, size_t nbytes, loff_t off)
5581 {
5582 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5583 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5584 bool drained = false;
5585 unsigned long max;
5586 int err;
5587
5588 buf = strstrip(buf);
5589 err = page_counter_memparse(buf, "max", &max);
5590 if (err)
5591 return err;
5592
5593 xchg(&memcg->memory.max, max);
5594
5595 for (;;) {
5596 unsigned long nr_pages = page_counter_read(&memcg->memory);
5597
5598 if (nr_pages <= max)
5599 break;
5600
5601 if (signal_pending(current)) {
5602 err = -EINTR;
5603 break;
5604 }
5605
5606 if (!drained) {
5607 drain_all_stock(memcg);
5608 drained = true;
5609 continue;
5610 }
5611
5612 if (nr_reclaims) {
5613 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5614 GFP_KERNEL, true))
5615 nr_reclaims--;
5616 continue;
5617 }
5618
5619 memcg_memory_event(memcg, MEMCG_OOM);
5620 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5621 break;
5622 }
5623
5624 memcg_wb_domain_size_changed(memcg);
5625 return nbytes;
5626 }
5627
5628 static int memory_events_show(struct seq_file *m, void *v)
5629 {
5630 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5631
5632 seq_printf(m, "low %lu\n",
5633 atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5634 seq_printf(m, "high %lu\n",
5635 atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5636 seq_printf(m, "max %lu\n",
5637 atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5638 seq_printf(m, "oom %lu\n",
5639 atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
5640 seq_printf(m, "oom_kill %lu\n",
5641 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
5642
5643 return 0;
5644 }
5645
5646 static int memory_stat_show(struct seq_file *m, void *v)
5647 {
5648 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5649 int i;
5650
5651 /*
5652 * Provide statistics on the state of the memory subsystem as
5653 * well as cumulative event counters that show past behavior.
5654 *
5655 * This list is ordered following a combination of these gradients:
5656 * 1) generic big picture -> specifics and details
5657 * 2) reflecting userspace activity -> reflecting kernel heuristics
5658 *
5659 * Current memory state:
5660 */
5661
5662 seq_printf(m, "anon %llu\n",
5663 (u64)memcg_page_state(memcg, MEMCG_RSS) * PAGE_SIZE);
5664 seq_printf(m, "file %llu\n",
5665 (u64)memcg_page_state(memcg, MEMCG_CACHE) * PAGE_SIZE);
5666 seq_printf(m, "kernel_stack %llu\n",
5667 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) * 1024);
5668 seq_printf(m, "slab %llu\n",
5669 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
5670 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
5671 PAGE_SIZE);
5672 seq_printf(m, "sock %llu\n",
5673 (u64)memcg_page_state(memcg, MEMCG_SOCK) * PAGE_SIZE);
5674
5675 seq_printf(m, "shmem %llu\n",
5676 (u64)memcg_page_state(memcg, NR_SHMEM) * PAGE_SIZE);
5677 seq_printf(m, "file_mapped %llu\n",
5678 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) * PAGE_SIZE);
5679 seq_printf(m, "file_dirty %llu\n",
5680 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) * PAGE_SIZE);
5681 seq_printf(m, "file_writeback %llu\n",
5682 (u64)memcg_page_state(memcg, NR_WRITEBACK) * PAGE_SIZE);
5683
5684 /*
5685 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
5686 * with the NR_ANON_THP vm counter, but right now it's a pain in the
5687 * arse because it requires migrating the work out of rmap to a place
5688 * where the page->mem_cgroup is set up and stable.
5689 */
5690 seq_printf(m, "anon_thp %llu\n",
5691 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) * PAGE_SIZE);
5692
5693 for (i = 0; i < NR_LRU_LISTS; i++)
5694 seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
5695 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
5696 PAGE_SIZE);
5697
5698 seq_printf(m, "slab_reclaimable %llu\n",
5699 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
5700 PAGE_SIZE);
5701 seq_printf(m, "slab_unreclaimable %llu\n",
5702 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
5703 PAGE_SIZE);
5704
5705 /* Accumulated memory events */
5706
5707 seq_printf(m, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
5708 seq_printf(m, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
5709
5710 seq_printf(m, "workingset_refault %lu\n",
5711 memcg_page_state(memcg, WORKINGSET_REFAULT));
5712 seq_printf(m, "workingset_activate %lu\n",
5713 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
5714 seq_printf(m, "workingset_nodereclaim %lu\n",
5715 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
5716
5717 seq_printf(m, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
5718 seq_printf(m, "pgscan %lu\n", memcg_events(memcg, PGSCAN_KSWAPD) +
5719 memcg_events(memcg, PGSCAN_DIRECT));
5720 seq_printf(m, "pgsteal %lu\n", memcg_events(memcg, PGSTEAL_KSWAPD) +
5721 memcg_events(memcg, PGSTEAL_DIRECT));
5722 seq_printf(m, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
5723 seq_printf(m, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
5724 seq_printf(m, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
5725 seq_printf(m, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
5726
5727 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5728 seq_printf(m, "thp_fault_alloc %lu\n",
5729 memcg_events(memcg, THP_FAULT_ALLOC));
5730 seq_printf(m, "thp_collapse_alloc %lu\n",
5731 memcg_events(memcg, THP_COLLAPSE_ALLOC));
5732 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5733
5734 return 0;
5735 }
5736
5737 static int memory_oom_group_show(struct seq_file *m, void *v)
5738 {
5739 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5740
5741 seq_printf(m, "%d\n", memcg->oom_group);
5742
5743 return 0;
5744 }
5745
5746 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5747 char *buf, size_t nbytes, loff_t off)
5748 {
5749 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5750 int ret, oom_group;
5751
5752 buf = strstrip(buf);
5753 if (!buf)
5754 return -EINVAL;
5755
5756 ret = kstrtoint(buf, 0, &oom_group);
5757 if (ret)
5758 return ret;
5759
5760 if (oom_group != 0 && oom_group != 1)
5761 return -EINVAL;
5762
5763 memcg->oom_group = oom_group;
5764
5765 return nbytes;
5766 }
5767
5768 static struct cftype memory_files[] = {
5769 {
5770 .name = "current",
5771 .flags = CFTYPE_NOT_ON_ROOT,
5772 .read_u64 = memory_current_read,
5773 },
5774 {
5775 .name = "min",
5776 .flags = CFTYPE_NOT_ON_ROOT,
5777 .seq_show = memory_min_show,
5778 .write = memory_min_write,
5779 },
5780 {
5781 .name = "low",
5782 .flags = CFTYPE_NOT_ON_ROOT,
5783 .seq_show = memory_low_show,
5784 .write = memory_low_write,
5785 },
5786 {
5787 .name = "high",
5788 .flags = CFTYPE_NOT_ON_ROOT,
5789 .seq_show = memory_high_show,
5790 .write = memory_high_write,
5791 },
5792 {
5793 .name = "max",
5794 .flags = CFTYPE_NOT_ON_ROOT,
5795 .seq_show = memory_max_show,
5796 .write = memory_max_write,
5797 },
5798 {
5799 .name = "events",
5800 .flags = CFTYPE_NOT_ON_ROOT,
5801 .file_offset = offsetof(struct mem_cgroup, events_file),
5802 .seq_show = memory_events_show,
5803 },
5804 {
5805 .name = "stat",
5806 .flags = CFTYPE_NOT_ON_ROOT,
5807 .seq_show = memory_stat_show,
5808 },
5809 {
5810 .name = "oom.group",
5811 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5812 .seq_show = memory_oom_group_show,
5813 .write = memory_oom_group_write,
5814 },
5815 { } /* terminate */
5816 };
5817
5818 struct cgroup_subsys memory_cgrp_subsys = {
5819 .css_alloc = mem_cgroup_css_alloc,
5820 .css_online = mem_cgroup_css_online,
5821 .css_offline = mem_cgroup_css_offline,
5822 .css_released = mem_cgroup_css_released,
5823 .css_free = mem_cgroup_css_free,
5824 .css_reset = mem_cgroup_css_reset,
5825 .can_attach = mem_cgroup_can_attach,
5826 .cancel_attach = mem_cgroup_cancel_attach,
5827 .post_attach = mem_cgroup_move_task,
5828 .bind = mem_cgroup_bind,
5829 .dfl_cftypes = memory_files,
5830 .legacy_cftypes = mem_cgroup_legacy_files,
5831 .early_init = 0,
5832 };
5833
5834 /**
5835 * mem_cgroup_protected - check if memory consumption is in the normal range
5836 * @root: the top ancestor of the sub-tree being checked
5837 * @memcg: the memory cgroup to check
5838 *
5839 * WARNING: This function is not stateless! It can only be used as part
5840 * of a top-down tree iteration, not for isolated queries.
5841 *
5842 * Returns one of the following:
5843 * MEMCG_PROT_NONE: cgroup memory is not protected
5844 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5845 * an unprotected supply of reclaimable memory from other cgroups.
5846 * MEMCG_PROT_MIN: cgroup memory is protected
5847 *
5848 * @root is exclusive; it is never protected when looked at directly
5849 *
5850 * To provide a proper hierarchical behavior, effective memory.min/low values
5851 * are used. Below is the description of how effective memory.low is calculated.
5852 * Effective memory.min values is calculated in the same way.
5853 *
5854 * Effective memory.low is always equal or less than the original memory.low.
5855 * If there is no memory.low overcommittment (which is always true for
5856 * top-level memory cgroups), these two values are equal.
5857 * Otherwise, it's a part of parent's effective memory.low,
5858 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5859 * memory.low usages, where memory.low usage is the size of actually
5860 * protected memory.
5861 *
5862 * low_usage
5863 * elow = min( memory.low, parent->elow * ------------------ ),
5864 * siblings_low_usage
5865 *
5866 * | memory.current, if memory.current < memory.low
5867 * low_usage = |
5868 * | 0, otherwise.
5869 *
5870 *
5871 * Such definition of the effective memory.low provides the expected
5872 * hierarchical behavior: parent's memory.low value is limiting
5873 * children, unprotected memory is reclaimed first and cgroups,
5874 * which are not using their guarantee do not affect actual memory
5875 * distribution.
5876 *
5877 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5878 *
5879 * A A/memory.low = 2G, A/memory.current = 6G
5880 * //\\
5881 * BC DE B/memory.low = 3G B/memory.current = 2G
5882 * C/memory.low = 1G C/memory.current = 2G
5883 * D/memory.low = 0 D/memory.current = 2G
5884 * E/memory.low = 10G E/memory.current = 0
5885 *
5886 * and the memory pressure is applied, the following memory distribution
5887 * is expected (approximately):
5888 *
5889 * A/memory.current = 2G
5890 *
5891 * B/memory.current = 1.3G
5892 * C/memory.current = 0.6G
5893 * D/memory.current = 0
5894 * E/memory.current = 0
5895 *
5896 * These calculations require constant tracking of the actual low usages
5897 * (see propagate_protected_usage()), as well as recursive calculation of
5898 * effective memory.low values. But as we do call mem_cgroup_protected()
5899 * path for each memory cgroup top-down from the reclaim,
5900 * it's possible to optimize this part, and save calculated elow
5901 * for next usage. This part is intentionally racy, but it's ok,
5902 * as memory.low is a best-effort mechanism.
5903 */
5904 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5905 struct mem_cgroup *memcg)
5906 {
5907 struct mem_cgroup *parent;
5908 unsigned long emin, parent_emin;
5909 unsigned long elow, parent_elow;
5910 unsigned long usage;
5911
5912 if (mem_cgroup_disabled())
5913 return MEMCG_PROT_NONE;
5914
5915 if (!root)
5916 root = root_mem_cgroup;
5917 if (memcg == root)
5918 return MEMCG_PROT_NONE;
5919
5920 usage = page_counter_read(&memcg->memory);
5921 if (!usage)
5922 return MEMCG_PROT_NONE;
5923
5924 emin = memcg->memory.min;
5925 elow = memcg->memory.low;
5926
5927 parent = parent_mem_cgroup(memcg);
5928 /* No parent means a non-hierarchical mode on v1 memcg */
5929 if (!parent)
5930 return MEMCG_PROT_NONE;
5931
5932 if (parent == root)
5933 goto exit;
5934
5935 parent_emin = READ_ONCE(parent->memory.emin);
5936 emin = min(emin, parent_emin);
5937 if (emin && parent_emin) {
5938 unsigned long min_usage, siblings_min_usage;
5939
5940 min_usage = min(usage, memcg->memory.min);
5941 siblings_min_usage = atomic_long_read(
5942 &parent->memory.children_min_usage);
5943
5944 if (min_usage && siblings_min_usage)
5945 emin = min(emin, parent_emin * min_usage /
5946 siblings_min_usage);
5947 }
5948
5949 parent_elow = READ_ONCE(parent->memory.elow);
5950 elow = min(elow, parent_elow);
5951 if (elow && parent_elow) {
5952 unsigned long low_usage, siblings_low_usage;
5953
5954 low_usage = min(usage, memcg->memory.low);
5955 siblings_low_usage = atomic_long_read(
5956 &parent->memory.children_low_usage);
5957
5958 if (low_usage && siblings_low_usage)
5959 elow = min(elow, parent_elow * low_usage /
5960 siblings_low_usage);
5961 }
5962
5963 exit:
5964 memcg->memory.emin = emin;
5965 memcg->memory.elow = elow;
5966
5967 if (usage <= emin)
5968 return MEMCG_PROT_MIN;
5969 else if (usage <= elow)
5970 return MEMCG_PROT_LOW;
5971 else
5972 return MEMCG_PROT_NONE;
5973 }
5974
5975 /**
5976 * mem_cgroup_try_charge - try charging a page
5977 * @page: page to charge
5978 * @mm: mm context of the victim
5979 * @gfp_mask: reclaim mode
5980 * @memcgp: charged memcg return
5981 * @compound: charge the page as compound or small page
5982 *
5983 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5984 * pages according to @gfp_mask if necessary.
5985 *
5986 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5987 * Otherwise, an error code is returned.
5988 *
5989 * After page->mapping has been set up, the caller must finalize the
5990 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5991 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5992 */
5993 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5994 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5995 bool compound)
5996 {
5997 struct mem_cgroup *memcg = NULL;
5998 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5999 int ret = 0;
6000
6001 if (mem_cgroup_disabled())
6002 goto out;
6003
6004 if (PageSwapCache(page)) {
6005 /*
6006 * Every swap fault against a single page tries to charge the
6007 * page, bail as early as possible. shmem_unuse() encounters
6008 * already charged pages, too. The USED bit is protected by
6009 * the page lock, which serializes swap cache removal, which
6010 * in turn serializes uncharging.
6011 */
6012 VM_BUG_ON_PAGE(!PageLocked(page), page);
6013 if (compound_head(page)->mem_cgroup)
6014 goto out;
6015
6016 if (do_swap_account) {
6017 swp_entry_t ent = { .val = page_private(page), };
6018 unsigned short id = lookup_swap_cgroup_id(ent);
6019
6020 rcu_read_lock();
6021 memcg = mem_cgroup_from_id(id);
6022 if (memcg && !css_tryget_online(&memcg->css))
6023 memcg = NULL;
6024 rcu_read_unlock();
6025 }
6026 }
6027
6028 if (!memcg)
6029 memcg = get_mem_cgroup_from_mm(mm);
6030
6031 ret = try_charge(memcg, gfp_mask, nr_pages);
6032
6033 css_put(&memcg->css);
6034 out:
6035 *memcgp = memcg;
6036 return ret;
6037 }
6038
6039 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6040 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6041 bool compound)
6042 {
6043 struct mem_cgroup *memcg;
6044 int ret;
6045
6046 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6047 memcg = *memcgp;
6048 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6049 return ret;
6050 }
6051
6052 /**
6053 * mem_cgroup_commit_charge - commit a page charge
6054 * @page: page to charge
6055 * @memcg: memcg to charge the page to
6056 * @lrucare: page might be on LRU already
6057 * @compound: charge the page as compound or small page
6058 *
6059 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6060 * after page->mapping has been set up. This must happen atomically
6061 * as part of the page instantiation, i.e. under the page table lock
6062 * for anonymous pages, under the page lock for page and swap cache.
6063 *
6064 * In addition, the page must not be on the LRU during the commit, to
6065 * prevent racing with task migration. If it might be, use @lrucare.
6066 *
6067 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6068 */
6069 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6070 bool lrucare, bool compound)
6071 {
6072 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6073
6074 VM_BUG_ON_PAGE(!page->mapping, page);
6075 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6076
6077 if (mem_cgroup_disabled())
6078 return;
6079 /*
6080 * Swap faults will attempt to charge the same page multiple
6081 * times. But reuse_swap_page() might have removed the page
6082 * from swapcache already, so we can't check PageSwapCache().
6083 */
6084 if (!memcg)
6085 return;
6086
6087 commit_charge(page, memcg, lrucare);
6088
6089 local_irq_disable();
6090 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6091 memcg_check_events(memcg, page);
6092 local_irq_enable();
6093
6094 if (do_memsw_account() && PageSwapCache(page)) {
6095 swp_entry_t entry = { .val = page_private(page) };
6096 /*
6097 * The swap entry might not get freed for a long time,
6098 * let's not wait for it. The page already received a
6099 * memory+swap charge, drop the swap entry duplicate.
6100 */
6101 mem_cgroup_uncharge_swap(entry, nr_pages);
6102 }
6103 }
6104
6105 /**
6106 * mem_cgroup_cancel_charge - cancel a page charge
6107 * @page: page to charge
6108 * @memcg: memcg to charge the page to
6109 * @compound: charge the page as compound or small page
6110 *
6111 * Cancel a charge transaction started by mem_cgroup_try_charge().
6112 */
6113 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6114 bool compound)
6115 {
6116 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6117
6118 if (mem_cgroup_disabled())
6119 return;
6120 /*
6121 * Swap faults will attempt to charge the same page multiple
6122 * times. But reuse_swap_page() might have removed the page
6123 * from swapcache already, so we can't check PageSwapCache().
6124 */
6125 if (!memcg)
6126 return;
6127
6128 cancel_charge(memcg, nr_pages);
6129 }
6130
6131 struct uncharge_gather {
6132 struct mem_cgroup *memcg;
6133 unsigned long pgpgout;
6134 unsigned long nr_anon;
6135 unsigned long nr_file;
6136 unsigned long nr_kmem;
6137 unsigned long nr_huge;
6138 unsigned long nr_shmem;
6139 struct page *dummy_page;
6140 };
6141
6142 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6143 {
6144 memset(ug, 0, sizeof(*ug));
6145 }
6146
6147 static void uncharge_batch(const struct uncharge_gather *ug)
6148 {
6149 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6150 unsigned long flags;
6151
6152 if (!mem_cgroup_is_root(ug->memcg)) {
6153 page_counter_uncharge(&ug->memcg->memory, nr_pages);
6154 if (do_memsw_account())
6155 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6156 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6157 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6158 memcg_oom_recover(ug->memcg);
6159 }
6160
6161 local_irq_save(flags);
6162 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6163 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6164 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6165 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6166 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6167 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6168 memcg_check_events(ug->memcg, ug->dummy_page);
6169 local_irq_restore(flags);
6170
6171 if (!mem_cgroup_is_root(ug->memcg))
6172 css_put_many(&ug->memcg->css, nr_pages);
6173 }
6174
6175 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6176 {
6177 VM_BUG_ON_PAGE(PageLRU(page), page);
6178 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6179 !PageHWPoison(page) , page);
6180
6181 if (!page->mem_cgroup)
6182 return;
6183
6184 /*
6185 * Nobody should be changing or seriously looking at
6186 * page->mem_cgroup at this point, we have fully
6187 * exclusive access to the page.
6188 */
6189
6190 if (ug->memcg != page->mem_cgroup) {
6191 if (ug->memcg) {
6192 uncharge_batch(ug);
6193 uncharge_gather_clear(ug);
6194 }
6195 ug->memcg = page->mem_cgroup;
6196 }
6197
6198 if (!PageKmemcg(page)) {
6199 unsigned int nr_pages = 1;
6200
6201 if (PageTransHuge(page)) {
6202 nr_pages <<= compound_order(page);
6203 ug->nr_huge += nr_pages;
6204 }
6205 if (PageAnon(page))
6206 ug->nr_anon += nr_pages;
6207 else {
6208 ug->nr_file += nr_pages;
6209 if (PageSwapBacked(page))
6210 ug->nr_shmem += nr_pages;
6211 }
6212 ug->pgpgout++;
6213 } else {
6214 ug->nr_kmem += 1 << compound_order(page);
6215 __ClearPageKmemcg(page);
6216 }
6217
6218 ug->dummy_page = page;
6219 page->mem_cgroup = NULL;
6220 }
6221
6222 static void uncharge_list(struct list_head *page_list)
6223 {
6224 struct uncharge_gather ug;
6225 struct list_head *next;
6226
6227 uncharge_gather_clear(&ug);
6228
6229 /*
6230 * Note that the list can be a single page->lru; hence the
6231 * do-while loop instead of a simple list_for_each_entry().
6232 */
6233 next = page_list->next;
6234 do {
6235 struct page *page;
6236
6237 page = list_entry(next, struct page, lru);
6238 next = page->lru.next;
6239
6240 uncharge_page(page, &ug);
6241 } while (next != page_list);
6242
6243 if (ug.memcg)
6244 uncharge_batch(&ug);
6245 }
6246
6247 /**
6248 * mem_cgroup_uncharge - uncharge a page
6249 * @page: page to uncharge
6250 *
6251 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6252 * mem_cgroup_commit_charge().
6253 */
6254 void mem_cgroup_uncharge(struct page *page)
6255 {
6256 struct uncharge_gather ug;
6257
6258 if (mem_cgroup_disabled())
6259 return;
6260
6261 /* Don't touch page->lru of any random page, pre-check: */
6262 if (!page->mem_cgroup)
6263 return;
6264
6265 uncharge_gather_clear(&ug);
6266 uncharge_page(page, &ug);
6267 uncharge_batch(&ug);
6268 }
6269
6270 /**
6271 * mem_cgroup_uncharge_list - uncharge a list of page
6272 * @page_list: list of pages to uncharge
6273 *
6274 * Uncharge a list of pages previously charged with
6275 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6276 */
6277 void mem_cgroup_uncharge_list(struct list_head *page_list)
6278 {
6279 if (mem_cgroup_disabled())
6280 return;
6281
6282 if (!list_empty(page_list))
6283 uncharge_list(page_list);
6284 }
6285
6286 /**
6287 * mem_cgroup_migrate - charge a page's replacement
6288 * @oldpage: currently circulating page
6289 * @newpage: replacement page
6290 *
6291 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6292 * be uncharged upon free.
6293 *
6294 * Both pages must be locked, @newpage->mapping must be set up.
6295 */
6296 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6297 {
6298 struct mem_cgroup *memcg;
6299 unsigned int nr_pages;
6300 bool compound;
6301 unsigned long flags;
6302
6303 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6304 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6305 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6306 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6307 newpage);
6308
6309 if (mem_cgroup_disabled())
6310 return;
6311
6312 /* Page cache replacement: new page already charged? */
6313 if (newpage->mem_cgroup)
6314 return;
6315
6316 /* Swapcache readahead pages can get replaced before being charged */
6317 memcg = oldpage->mem_cgroup;
6318 if (!memcg)
6319 return;
6320
6321 /* Force-charge the new page. The old one will be freed soon */
6322 compound = PageTransHuge(newpage);
6323 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6324
6325 page_counter_charge(&memcg->memory, nr_pages);
6326 if (do_memsw_account())
6327 page_counter_charge(&memcg->memsw, nr_pages);
6328 css_get_many(&memcg->css, nr_pages);
6329
6330 commit_charge(newpage, memcg, false);
6331
6332 local_irq_save(flags);
6333 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6334 memcg_check_events(memcg, newpage);
6335 local_irq_restore(flags);
6336 }
6337
6338 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6339 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6340
6341 void mem_cgroup_sk_alloc(struct sock *sk)
6342 {
6343 struct mem_cgroup *memcg;
6344
6345 if (!mem_cgroup_sockets_enabled)
6346 return;
6347
6348 /*
6349 * Socket cloning can throw us here with sk_memcg already
6350 * filled. It won't however, necessarily happen from
6351 * process context. So the test for root memcg given
6352 * the current task's memcg won't help us in this case.
6353 *
6354 * Respecting the original socket's memcg is a better
6355 * decision in this case.
6356 */
6357 if (sk->sk_memcg) {
6358 css_get(&sk->sk_memcg->css);
6359 return;
6360 }
6361
6362 rcu_read_lock();
6363 memcg = mem_cgroup_from_task(current);
6364 if (memcg == root_mem_cgroup)
6365 goto out;
6366 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6367 goto out;
6368 if (css_tryget_online(&memcg->css))
6369 sk->sk_memcg = memcg;
6370 out:
6371 rcu_read_unlock();
6372 }
6373
6374 void mem_cgroup_sk_free(struct sock *sk)
6375 {
6376 if (sk->sk_memcg)
6377 css_put(&sk->sk_memcg->css);
6378 }
6379
6380 /**
6381 * mem_cgroup_charge_skmem - charge socket memory
6382 * @memcg: memcg to charge
6383 * @nr_pages: number of pages to charge
6384 *
6385 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6386 * @memcg's configured limit, %false if the charge had to be forced.
6387 */
6388 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6389 {
6390 gfp_t gfp_mask = GFP_KERNEL;
6391
6392 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6393 struct page_counter *fail;
6394
6395 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6396 memcg->tcpmem_pressure = 0;
6397 return true;
6398 }
6399 page_counter_charge(&memcg->tcpmem, nr_pages);
6400 memcg->tcpmem_pressure = 1;
6401 return false;
6402 }
6403
6404 /* Don't block in the packet receive path */
6405 if (in_softirq())
6406 gfp_mask = GFP_NOWAIT;
6407
6408 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6409
6410 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6411 return true;
6412
6413 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6414 return false;
6415 }
6416
6417 /**
6418 * mem_cgroup_uncharge_skmem - uncharge socket memory
6419 * @memcg: memcg to uncharge
6420 * @nr_pages: number of pages to uncharge
6421 */
6422 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6423 {
6424 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6425 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6426 return;
6427 }
6428
6429 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6430
6431 refill_stock(memcg, nr_pages);
6432 }
6433
6434 static int __init cgroup_memory(char *s)
6435 {
6436 char *token;
6437
6438 while ((token = strsep(&s, ",")) != NULL) {
6439 if (!*token)
6440 continue;
6441 if (!strcmp(token, "nosocket"))
6442 cgroup_memory_nosocket = true;
6443 if (!strcmp(token, "nokmem"))
6444 cgroup_memory_nokmem = true;
6445 }
6446 return 0;
6447 }
6448 __setup("cgroup.memory=", cgroup_memory);
6449
6450 /*
6451 * subsys_initcall() for memory controller.
6452 *
6453 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6454 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6455 * basically everything that doesn't depend on a specific mem_cgroup structure
6456 * should be initialized from here.
6457 */
6458 static int __init mem_cgroup_init(void)
6459 {
6460 int cpu, node;
6461
6462 #ifdef CONFIG_MEMCG_KMEM
6463 /*
6464 * Kmem cache creation is mostly done with the slab_mutex held,
6465 * so use a workqueue with limited concurrency to avoid stalling
6466 * all worker threads in case lots of cgroups are created and
6467 * destroyed simultaneously.
6468 */
6469 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6470 BUG_ON(!memcg_kmem_cache_wq);
6471 #endif
6472
6473 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6474 memcg_hotplug_cpu_dead);
6475
6476 for_each_possible_cpu(cpu)
6477 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6478 drain_local_stock);
6479
6480 for_each_node(node) {
6481 struct mem_cgroup_tree_per_node *rtpn;
6482
6483 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6484 node_online(node) ? node : NUMA_NO_NODE);
6485
6486 rtpn->rb_root = RB_ROOT;
6487 rtpn->rb_rightmost = NULL;
6488 spin_lock_init(&rtpn->lock);
6489 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6490 }
6491
6492 return 0;
6493 }
6494 subsys_initcall(mem_cgroup_init);
6495
6496 #ifdef CONFIG_MEMCG_SWAP
6497 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6498 {
6499 while (!refcount_inc_not_zero(&memcg->id.ref)) {
6500 /*
6501 * The root cgroup cannot be destroyed, so it's refcount must
6502 * always be >= 1.
6503 */
6504 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6505 VM_BUG_ON(1);
6506 break;
6507 }
6508 memcg = parent_mem_cgroup(memcg);
6509 if (!memcg)
6510 memcg = root_mem_cgroup;
6511 }
6512 return memcg;
6513 }
6514
6515 /**
6516 * mem_cgroup_swapout - transfer a memsw charge to swap
6517 * @page: page whose memsw charge to transfer
6518 * @entry: swap entry to move the charge to
6519 *
6520 * Transfer the memsw charge of @page to @entry.
6521 */
6522 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6523 {
6524 struct mem_cgroup *memcg, *swap_memcg;
6525 unsigned int nr_entries;
6526 unsigned short oldid;
6527
6528 VM_BUG_ON_PAGE(PageLRU(page), page);
6529 VM_BUG_ON_PAGE(page_count(page), page);
6530
6531 if (!do_memsw_account())
6532 return;
6533
6534 memcg = page->mem_cgroup;
6535
6536 /* Readahead page, never charged */
6537 if (!memcg)
6538 return;
6539
6540 /*
6541 * In case the memcg owning these pages has been offlined and doesn't
6542 * have an ID allocated to it anymore, charge the closest online
6543 * ancestor for the swap instead and transfer the memory+swap charge.
6544 */
6545 swap_memcg = mem_cgroup_id_get_online(memcg);
6546 nr_entries = hpage_nr_pages(page);
6547 /* Get references for the tail pages, too */
6548 if (nr_entries > 1)
6549 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6550 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6551 nr_entries);
6552 VM_BUG_ON_PAGE(oldid, page);
6553 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6554
6555 page->mem_cgroup = NULL;
6556
6557 if (!mem_cgroup_is_root(memcg))
6558 page_counter_uncharge(&memcg->memory, nr_entries);
6559
6560 if (memcg != swap_memcg) {
6561 if (!mem_cgroup_is_root(swap_memcg))
6562 page_counter_charge(&swap_memcg->memsw, nr_entries);
6563 page_counter_uncharge(&memcg->memsw, nr_entries);
6564 }
6565
6566 /*
6567 * Interrupts should be disabled here because the caller holds the
6568 * i_pages lock which is taken with interrupts-off. It is
6569 * important here to have the interrupts disabled because it is the
6570 * only synchronisation we have for updating the per-CPU variables.
6571 */
6572 VM_BUG_ON(!irqs_disabled());
6573 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6574 -nr_entries);
6575 memcg_check_events(memcg, page);
6576
6577 if (!mem_cgroup_is_root(memcg))
6578 css_put_many(&memcg->css, nr_entries);
6579 }
6580
6581 /**
6582 * mem_cgroup_try_charge_swap - try charging swap space for a page
6583 * @page: page being added to swap
6584 * @entry: swap entry to charge
6585 *
6586 * Try to charge @page's memcg for the swap space at @entry.
6587 *
6588 * Returns 0 on success, -ENOMEM on failure.
6589 */
6590 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6591 {
6592 unsigned int nr_pages = hpage_nr_pages(page);
6593 struct page_counter *counter;
6594 struct mem_cgroup *memcg;
6595 unsigned short oldid;
6596
6597 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6598 return 0;
6599
6600 memcg = page->mem_cgroup;
6601
6602 /* Readahead page, never charged */
6603 if (!memcg)
6604 return 0;
6605
6606 if (!entry.val) {
6607 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6608 return 0;
6609 }
6610
6611 memcg = mem_cgroup_id_get_online(memcg);
6612
6613 if (!mem_cgroup_is_root(memcg) &&
6614 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6615 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6616 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6617 mem_cgroup_id_put(memcg);
6618 return -ENOMEM;
6619 }
6620
6621 /* Get references for the tail pages, too */
6622 if (nr_pages > 1)
6623 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6624 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6625 VM_BUG_ON_PAGE(oldid, page);
6626 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6627
6628 return 0;
6629 }
6630
6631 /**
6632 * mem_cgroup_uncharge_swap - uncharge swap space
6633 * @entry: swap entry to uncharge
6634 * @nr_pages: the amount of swap space to uncharge
6635 */
6636 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6637 {
6638 struct mem_cgroup *memcg;
6639 unsigned short id;
6640
6641 if (!do_swap_account)
6642 return;
6643
6644 id = swap_cgroup_record(entry, 0, nr_pages);
6645 rcu_read_lock();
6646 memcg = mem_cgroup_from_id(id);
6647 if (memcg) {
6648 if (!mem_cgroup_is_root(memcg)) {
6649 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6650 page_counter_uncharge(&memcg->swap, nr_pages);
6651 else
6652 page_counter_uncharge(&memcg->memsw, nr_pages);
6653 }
6654 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6655 mem_cgroup_id_put_many(memcg, nr_pages);
6656 }
6657 rcu_read_unlock();
6658 }
6659
6660 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6661 {
6662 long nr_swap_pages = get_nr_swap_pages();
6663
6664 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6665 return nr_swap_pages;
6666 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6667 nr_swap_pages = min_t(long, nr_swap_pages,
6668 READ_ONCE(memcg->swap.max) -
6669 page_counter_read(&memcg->swap));
6670 return nr_swap_pages;
6671 }
6672
6673 bool mem_cgroup_swap_full(struct page *page)
6674 {
6675 struct mem_cgroup *memcg;
6676
6677 VM_BUG_ON_PAGE(!PageLocked(page), page);
6678
6679 if (vm_swap_full())
6680 return true;
6681 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6682 return false;
6683
6684 memcg = page->mem_cgroup;
6685 if (!memcg)
6686 return false;
6687
6688 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6689 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6690 return true;
6691
6692 return false;
6693 }
6694
6695 /* for remember boot option*/
6696 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6697 static int really_do_swap_account __initdata = 1;
6698 #else
6699 static int really_do_swap_account __initdata;
6700 #endif
6701
6702 static int __init enable_swap_account(char *s)
6703 {
6704 if (!strcmp(s, "1"))
6705 really_do_swap_account = 1;
6706 else if (!strcmp(s, "0"))
6707 really_do_swap_account = 0;
6708 return 1;
6709 }
6710 __setup("swapaccount=", enable_swap_account);
6711
6712 static u64 swap_current_read(struct cgroup_subsys_state *css,
6713 struct cftype *cft)
6714 {
6715 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6716
6717 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6718 }
6719
6720 static int swap_max_show(struct seq_file *m, void *v)
6721 {
6722 return seq_puts_memcg_tunable(m,
6723 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
6724 }
6725
6726 static ssize_t swap_max_write(struct kernfs_open_file *of,
6727 char *buf, size_t nbytes, loff_t off)
6728 {
6729 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6730 unsigned long max;
6731 int err;
6732
6733 buf = strstrip(buf);
6734 err = page_counter_memparse(buf, "max", &max);
6735 if (err)
6736 return err;
6737
6738 xchg(&memcg->swap.max, max);
6739
6740 return nbytes;
6741 }
6742
6743 static int swap_events_show(struct seq_file *m, void *v)
6744 {
6745 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6746
6747 seq_printf(m, "max %lu\n",
6748 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6749 seq_printf(m, "fail %lu\n",
6750 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6751
6752 return 0;
6753 }
6754
6755 static struct cftype swap_files[] = {
6756 {
6757 .name = "swap.current",
6758 .flags = CFTYPE_NOT_ON_ROOT,
6759 .read_u64 = swap_current_read,
6760 },
6761 {
6762 .name = "swap.max",
6763 .flags = CFTYPE_NOT_ON_ROOT,
6764 .seq_show = swap_max_show,
6765 .write = swap_max_write,
6766 },
6767 {
6768 .name = "swap.events",
6769 .flags = CFTYPE_NOT_ON_ROOT,
6770 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6771 .seq_show = swap_events_show,
6772 },
6773 { } /* terminate */
6774 };
6775
6776 static struct cftype memsw_cgroup_files[] = {
6777 {
6778 .name = "memsw.usage_in_bytes",
6779 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6780 .read_u64 = mem_cgroup_read_u64,
6781 },
6782 {
6783 .name = "memsw.max_usage_in_bytes",
6784 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6785 .write = mem_cgroup_reset,
6786 .read_u64 = mem_cgroup_read_u64,
6787 },
6788 {
6789 .name = "memsw.limit_in_bytes",
6790 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6791 .write = mem_cgroup_write,
6792 .read_u64 = mem_cgroup_read_u64,
6793 },
6794 {
6795 .name = "memsw.failcnt",
6796 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6797 .write = mem_cgroup_reset,
6798 .read_u64 = mem_cgroup_read_u64,
6799 },
6800 { }, /* terminate */
6801 };
6802
6803 static int __init mem_cgroup_swap_init(void)
6804 {
6805 if (!mem_cgroup_disabled() && really_do_swap_account) {
6806 do_swap_account = 1;
6807 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6808 swap_files));
6809 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6810 memsw_cgroup_files));
6811 }
6812 return 0;
6813 }
6814 subsys_initcall(mem_cgroup_swap_init);
6815
6816 #endif /* CONFIG_MEMCG_SWAP */