]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memcontrol.c
Merge tag 'for-v3.17' of git://git.infradead.org/battery-2.6
[mirror_ubuntu-bionic-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64
65 #include <asm/uaccess.h>
66
67 #include <trace/events/vmscan.h>
68
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata;
84 #endif
85
86 #else
87 #define do_swap_account 0
88 #endif
89
90
91 static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
98 };
99
100 enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS,
106 };
107
108 static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113 };
114
115 static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121 };
122
123 /*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129 enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
138
139 struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145
146 struct mem_cgroup_reclaim_iter {
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
151 struct mem_cgroup *last_visited;
152 int last_dead_count;
153
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156 };
157
158 /*
159 * per-zone information in memory controller.
160 */
161 struct mem_cgroup_per_zone {
162 struct lruvec lruvec;
163 unsigned long lru_size[NR_LRU_LISTS];
164
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
172 /* use container_of */
173 };
174
175 struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177 };
178
179 /*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184 struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187 };
188
189 struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191 };
192
193 struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195 };
196
197 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
199 struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202 };
203
204 /* For threshold */
205 struct mem_cgroup_threshold_ary {
206 /* An array index points to threshold just below or equal to usage. */
207 int current_threshold;
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212 };
213
214 struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223 };
224
225 /* for OOM */
226 struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229 };
230
231 /*
232 * cgroup_event represents events which userspace want to receive.
233 */
234 struct mem_cgroup_event {
235 /*
236 * memcg which the event belongs to.
237 */
238 struct mem_cgroup *memcg;
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
252 int (*register_event)(struct mem_cgroup *memcg,
253 struct eventfd_ctx *eventfd, const char *args);
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
259 void (*unregister_event)(struct mem_cgroup *memcg,
260 struct eventfd_ctx *eventfd);
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269 };
270
271 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273
274 /*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
284 */
285 struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
291
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
299
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309
310 bool oom_lock;
311 atomic_t under_oom;
312 atomic_t oom_wakeups;
313
314 int swappiness;
315 /* OOM-Killer disable */
316 int oom_kill_disable;
317
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
325 struct mem_cgroup_thresholds thresholds;
326
327 /* thresholds for mem+swap usage. RCU-protected */
328 struct mem_cgroup_thresholds memsw_thresholds;
329
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
332
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
337 unsigned long move_charge_at_immigrate;
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
344 /*
345 * percpu counter.
346 */
347 struct mem_cgroup_stat_cpu __percpu *stat;
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
354
355 atomic_t dead_count;
356 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357 struct cg_proto tcp_mem;
358 #endif
359 #if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list, but per-memcg;
361 * protected by memcg_slab_mutex */
362 struct list_head memcg_slab_caches;
363 /* Index in the kmem_cache->memcg_params->memcg_caches array */
364 int kmemcg_id;
365 #endif
366
367 int last_scanned_node;
368 #if MAX_NUMNODES > 1
369 nodemask_t scan_nodes;
370 atomic_t numainfo_events;
371 atomic_t numainfo_updating;
372 #endif
373
374 /* List of events which userspace want to receive */
375 struct list_head event_list;
376 spinlock_t event_list_lock;
377
378 struct mem_cgroup_per_node *nodeinfo[0];
379 /* WARNING: nodeinfo must be the last member here */
380 };
381
382 /* internal only representation about the status of kmem accounting. */
383 enum {
384 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
385 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
386 };
387
388 #ifdef CONFIG_MEMCG_KMEM
389 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
390 {
391 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
392 }
393
394 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
395 {
396 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
397 }
398
399 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
400 {
401 /*
402 * Our caller must use css_get() first, because memcg_uncharge_kmem()
403 * will call css_put() if it sees the memcg is dead.
404 */
405 smp_wmb();
406 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
407 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
408 }
409
410 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
411 {
412 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
413 &memcg->kmem_account_flags);
414 }
415 #endif
416
417 /* Stuffs for move charges at task migration. */
418 /*
419 * Types of charges to be moved. "move_charge_at_immitgrate" and
420 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
421 */
422 enum move_type {
423 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
424 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
425 NR_MOVE_TYPE,
426 };
427
428 /* "mc" and its members are protected by cgroup_mutex */
429 static struct move_charge_struct {
430 spinlock_t lock; /* for from, to */
431 struct mem_cgroup *from;
432 struct mem_cgroup *to;
433 unsigned long immigrate_flags;
434 unsigned long precharge;
435 unsigned long moved_charge;
436 unsigned long moved_swap;
437 struct task_struct *moving_task; /* a task moving charges */
438 wait_queue_head_t waitq; /* a waitq for other context */
439 } mc = {
440 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
441 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
442 };
443
444 static bool move_anon(void)
445 {
446 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
447 }
448
449 static bool move_file(void)
450 {
451 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
452 }
453
454 /*
455 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
456 * limit reclaim to prevent infinite loops, if they ever occur.
457 */
458 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
459 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
460
461 enum charge_type {
462 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
463 MEM_CGROUP_CHARGE_TYPE_ANON,
464 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
465 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
466 NR_CHARGE_TYPE,
467 };
468
469 /* for encoding cft->private value on file */
470 enum res_type {
471 _MEM,
472 _MEMSWAP,
473 _OOM_TYPE,
474 _KMEM,
475 };
476
477 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
478 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
479 #define MEMFILE_ATTR(val) ((val) & 0xffff)
480 /* Used for OOM nofiier */
481 #define OOM_CONTROL (0)
482
483 /*
484 * Reclaim flags for mem_cgroup_hierarchical_reclaim
485 */
486 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
487 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
488 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
489 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
490
491 /*
492 * The memcg_create_mutex will be held whenever a new cgroup is created.
493 * As a consequence, any change that needs to protect against new child cgroups
494 * appearing has to hold it as well.
495 */
496 static DEFINE_MUTEX(memcg_create_mutex);
497
498 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
499 {
500 return s ? container_of(s, struct mem_cgroup, css) : NULL;
501 }
502
503 /* Some nice accessors for the vmpressure. */
504 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
505 {
506 if (!memcg)
507 memcg = root_mem_cgroup;
508 return &memcg->vmpressure;
509 }
510
511 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
512 {
513 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
514 }
515
516 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
517 {
518 return (memcg == root_mem_cgroup);
519 }
520
521 /*
522 * We restrict the id in the range of [1, 65535], so it can fit into
523 * an unsigned short.
524 */
525 #define MEM_CGROUP_ID_MAX USHRT_MAX
526
527 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
528 {
529 return memcg->css.id;
530 }
531
532 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
533 {
534 struct cgroup_subsys_state *css;
535
536 css = css_from_id(id, &memory_cgrp_subsys);
537 return mem_cgroup_from_css(css);
538 }
539
540 /* Writing them here to avoid exposing memcg's inner layout */
541 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
542
543 void sock_update_memcg(struct sock *sk)
544 {
545 if (mem_cgroup_sockets_enabled) {
546 struct mem_cgroup *memcg;
547 struct cg_proto *cg_proto;
548
549 BUG_ON(!sk->sk_prot->proto_cgroup);
550
551 /* Socket cloning can throw us here with sk_cgrp already
552 * filled. It won't however, necessarily happen from
553 * process context. So the test for root memcg given
554 * the current task's memcg won't help us in this case.
555 *
556 * Respecting the original socket's memcg is a better
557 * decision in this case.
558 */
559 if (sk->sk_cgrp) {
560 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
561 css_get(&sk->sk_cgrp->memcg->css);
562 return;
563 }
564
565 rcu_read_lock();
566 memcg = mem_cgroup_from_task(current);
567 cg_proto = sk->sk_prot->proto_cgroup(memcg);
568 if (!mem_cgroup_is_root(memcg) &&
569 memcg_proto_active(cg_proto) &&
570 css_tryget_online(&memcg->css)) {
571 sk->sk_cgrp = cg_proto;
572 }
573 rcu_read_unlock();
574 }
575 }
576 EXPORT_SYMBOL(sock_update_memcg);
577
578 void sock_release_memcg(struct sock *sk)
579 {
580 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
581 struct mem_cgroup *memcg;
582 WARN_ON(!sk->sk_cgrp->memcg);
583 memcg = sk->sk_cgrp->memcg;
584 css_put(&sk->sk_cgrp->memcg->css);
585 }
586 }
587
588 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
589 {
590 if (!memcg || mem_cgroup_is_root(memcg))
591 return NULL;
592
593 return &memcg->tcp_mem;
594 }
595 EXPORT_SYMBOL(tcp_proto_cgroup);
596
597 static void disarm_sock_keys(struct mem_cgroup *memcg)
598 {
599 if (!memcg_proto_activated(&memcg->tcp_mem))
600 return;
601 static_key_slow_dec(&memcg_socket_limit_enabled);
602 }
603 #else
604 static void disarm_sock_keys(struct mem_cgroup *memcg)
605 {
606 }
607 #endif
608
609 #ifdef CONFIG_MEMCG_KMEM
610 /*
611 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
612 * The main reason for not using cgroup id for this:
613 * this works better in sparse environments, where we have a lot of memcgs,
614 * but only a few kmem-limited. Or also, if we have, for instance, 200
615 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
616 * 200 entry array for that.
617 *
618 * The current size of the caches array is stored in
619 * memcg_limited_groups_array_size. It will double each time we have to
620 * increase it.
621 */
622 static DEFINE_IDA(kmem_limited_groups);
623 int memcg_limited_groups_array_size;
624
625 /*
626 * MIN_SIZE is different than 1, because we would like to avoid going through
627 * the alloc/free process all the time. In a small machine, 4 kmem-limited
628 * cgroups is a reasonable guess. In the future, it could be a parameter or
629 * tunable, but that is strictly not necessary.
630 *
631 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
632 * this constant directly from cgroup, but it is understandable that this is
633 * better kept as an internal representation in cgroup.c. In any case, the
634 * cgrp_id space is not getting any smaller, and we don't have to necessarily
635 * increase ours as well if it increases.
636 */
637 #define MEMCG_CACHES_MIN_SIZE 4
638 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
639
640 /*
641 * A lot of the calls to the cache allocation functions are expected to be
642 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
643 * conditional to this static branch, we'll have to allow modules that does
644 * kmem_cache_alloc and the such to see this symbol as well
645 */
646 struct static_key memcg_kmem_enabled_key;
647 EXPORT_SYMBOL(memcg_kmem_enabled_key);
648
649 static void disarm_kmem_keys(struct mem_cgroup *memcg)
650 {
651 if (memcg_kmem_is_active(memcg)) {
652 static_key_slow_dec(&memcg_kmem_enabled_key);
653 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
654 }
655 /*
656 * This check can't live in kmem destruction function,
657 * since the charges will outlive the cgroup
658 */
659 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
660 }
661 #else
662 static void disarm_kmem_keys(struct mem_cgroup *memcg)
663 {
664 }
665 #endif /* CONFIG_MEMCG_KMEM */
666
667 static void disarm_static_keys(struct mem_cgroup *memcg)
668 {
669 disarm_sock_keys(memcg);
670 disarm_kmem_keys(memcg);
671 }
672
673 static void drain_all_stock_async(struct mem_cgroup *memcg);
674
675 static struct mem_cgroup_per_zone *
676 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
677 {
678 int nid = zone_to_nid(zone);
679 int zid = zone_idx(zone);
680
681 return &memcg->nodeinfo[nid]->zoneinfo[zid];
682 }
683
684 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
685 {
686 return &memcg->css;
687 }
688
689 static struct mem_cgroup_per_zone *
690 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
691 {
692 int nid = page_to_nid(page);
693 int zid = page_zonenum(page);
694
695 return &memcg->nodeinfo[nid]->zoneinfo[zid];
696 }
697
698 static struct mem_cgroup_tree_per_zone *
699 soft_limit_tree_node_zone(int nid, int zid)
700 {
701 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
702 }
703
704 static struct mem_cgroup_tree_per_zone *
705 soft_limit_tree_from_page(struct page *page)
706 {
707 int nid = page_to_nid(page);
708 int zid = page_zonenum(page);
709
710 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
711 }
712
713 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
714 struct mem_cgroup_tree_per_zone *mctz,
715 unsigned long long new_usage_in_excess)
716 {
717 struct rb_node **p = &mctz->rb_root.rb_node;
718 struct rb_node *parent = NULL;
719 struct mem_cgroup_per_zone *mz_node;
720
721 if (mz->on_tree)
722 return;
723
724 mz->usage_in_excess = new_usage_in_excess;
725 if (!mz->usage_in_excess)
726 return;
727 while (*p) {
728 parent = *p;
729 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
730 tree_node);
731 if (mz->usage_in_excess < mz_node->usage_in_excess)
732 p = &(*p)->rb_left;
733 /*
734 * We can't avoid mem cgroups that are over their soft
735 * limit by the same amount
736 */
737 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
738 p = &(*p)->rb_right;
739 }
740 rb_link_node(&mz->tree_node, parent, p);
741 rb_insert_color(&mz->tree_node, &mctz->rb_root);
742 mz->on_tree = true;
743 }
744
745 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
746 struct mem_cgroup_tree_per_zone *mctz)
747 {
748 if (!mz->on_tree)
749 return;
750 rb_erase(&mz->tree_node, &mctz->rb_root);
751 mz->on_tree = false;
752 }
753
754 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
755 struct mem_cgroup_tree_per_zone *mctz)
756 {
757 spin_lock(&mctz->lock);
758 __mem_cgroup_remove_exceeded(mz, mctz);
759 spin_unlock(&mctz->lock);
760 }
761
762
763 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
764 {
765 unsigned long long excess;
766 struct mem_cgroup_per_zone *mz;
767 struct mem_cgroup_tree_per_zone *mctz;
768
769 mctz = soft_limit_tree_from_page(page);
770 /*
771 * Necessary to update all ancestors when hierarchy is used.
772 * because their event counter is not touched.
773 */
774 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
775 mz = mem_cgroup_page_zoneinfo(memcg, page);
776 excess = res_counter_soft_limit_excess(&memcg->res);
777 /*
778 * We have to update the tree if mz is on RB-tree or
779 * mem is over its softlimit.
780 */
781 if (excess || mz->on_tree) {
782 spin_lock(&mctz->lock);
783 /* if on-tree, remove it */
784 if (mz->on_tree)
785 __mem_cgroup_remove_exceeded(mz, mctz);
786 /*
787 * Insert again. mz->usage_in_excess will be updated.
788 * If excess is 0, no tree ops.
789 */
790 __mem_cgroup_insert_exceeded(mz, mctz, excess);
791 spin_unlock(&mctz->lock);
792 }
793 }
794 }
795
796 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
797 {
798 struct mem_cgroup_tree_per_zone *mctz;
799 struct mem_cgroup_per_zone *mz;
800 int nid, zid;
801
802 for_each_node(nid) {
803 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
804 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
805 mctz = soft_limit_tree_node_zone(nid, zid);
806 mem_cgroup_remove_exceeded(mz, mctz);
807 }
808 }
809 }
810
811 static struct mem_cgroup_per_zone *
812 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
813 {
814 struct rb_node *rightmost = NULL;
815 struct mem_cgroup_per_zone *mz;
816
817 retry:
818 mz = NULL;
819 rightmost = rb_last(&mctz->rb_root);
820 if (!rightmost)
821 goto done; /* Nothing to reclaim from */
822
823 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
824 /*
825 * Remove the node now but someone else can add it back,
826 * we will to add it back at the end of reclaim to its correct
827 * position in the tree.
828 */
829 __mem_cgroup_remove_exceeded(mz, mctz);
830 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
831 !css_tryget_online(&mz->memcg->css))
832 goto retry;
833 done:
834 return mz;
835 }
836
837 static struct mem_cgroup_per_zone *
838 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
839 {
840 struct mem_cgroup_per_zone *mz;
841
842 spin_lock(&mctz->lock);
843 mz = __mem_cgroup_largest_soft_limit_node(mctz);
844 spin_unlock(&mctz->lock);
845 return mz;
846 }
847
848 /*
849 * Implementation Note: reading percpu statistics for memcg.
850 *
851 * Both of vmstat[] and percpu_counter has threshold and do periodic
852 * synchronization to implement "quick" read. There are trade-off between
853 * reading cost and precision of value. Then, we may have a chance to implement
854 * a periodic synchronizion of counter in memcg's counter.
855 *
856 * But this _read() function is used for user interface now. The user accounts
857 * memory usage by memory cgroup and he _always_ requires exact value because
858 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
859 * have to visit all online cpus and make sum. So, for now, unnecessary
860 * synchronization is not implemented. (just implemented for cpu hotplug)
861 *
862 * If there are kernel internal actions which can make use of some not-exact
863 * value, and reading all cpu value can be performance bottleneck in some
864 * common workload, threashold and synchonization as vmstat[] should be
865 * implemented.
866 */
867 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
868 enum mem_cgroup_stat_index idx)
869 {
870 long val = 0;
871 int cpu;
872
873 get_online_cpus();
874 for_each_online_cpu(cpu)
875 val += per_cpu(memcg->stat->count[idx], cpu);
876 #ifdef CONFIG_HOTPLUG_CPU
877 spin_lock(&memcg->pcp_counter_lock);
878 val += memcg->nocpu_base.count[idx];
879 spin_unlock(&memcg->pcp_counter_lock);
880 #endif
881 put_online_cpus();
882 return val;
883 }
884
885 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
886 bool charge)
887 {
888 int val = (charge) ? 1 : -1;
889 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
890 }
891
892 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
893 enum mem_cgroup_events_index idx)
894 {
895 unsigned long val = 0;
896 int cpu;
897
898 get_online_cpus();
899 for_each_online_cpu(cpu)
900 val += per_cpu(memcg->stat->events[idx], cpu);
901 #ifdef CONFIG_HOTPLUG_CPU
902 spin_lock(&memcg->pcp_counter_lock);
903 val += memcg->nocpu_base.events[idx];
904 spin_unlock(&memcg->pcp_counter_lock);
905 #endif
906 put_online_cpus();
907 return val;
908 }
909
910 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
911 struct page *page,
912 bool anon, int nr_pages)
913 {
914 /*
915 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
916 * counted as CACHE even if it's on ANON LRU.
917 */
918 if (anon)
919 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
920 nr_pages);
921 else
922 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
923 nr_pages);
924
925 if (PageTransHuge(page))
926 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
927 nr_pages);
928
929 /* pagein of a big page is an event. So, ignore page size */
930 if (nr_pages > 0)
931 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
932 else {
933 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
934 nr_pages = -nr_pages; /* for event */
935 }
936
937 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
938 }
939
940 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
941 {
942 struct mem_cgroup_per_zone *mz;
943
944 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
945 return mz->lru_size[lru];
946 }
947
948 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
949 int nid,
950 unsigned int lru_mask)
951 {
952 unsigned long nr = 0;
953 int zid;
954
955 VM_BUG_ON((unsigned)nid >= nr_node_ids);
956
957 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
958 struct mem_cgroup_per_zone *mz;
959 enum lru_list lru;
960
961 for_each_lru(lru) {
962 if (!(BIT(lru) & lru_mask))
963 continue;
964 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
965 nr += mz->lru_size[lru];
966 }
967 }
968 return nr;
969 }
970
971 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
972 unsigned int lru_mask)
973 {
974 unsigned long nr = 0;
975 int nid;
976
977 for_each_node_state(nid, N_MEMORY)
978 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
979 return nr;
980 }
981
982 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
983 enum mem_cgroup_events_target target)
984 {
985 unsigned long val, next;
986
987 val = __this_cpu_read(memcg->stat->nr_page_events);
988 next = __this_cpu_read(memcg->stat->targets[target]);
989 /* from time_after() in jiffies.h */
990 if ((long)next - (long)val < 0) {
991 switch (target) {
992 case MEM_CGROUP_TARGET_THRESH:
993 next = val + THRESHOLDS_EVENTS_TARGET;
994 break;
995 case MEM_CGROUP_TARGET_SOFTLIMIT:
996 next = val + SOFTLIMIT_EVENTS_TARGET;
997 break;
998 case MEM_CGROUP_TARGET_NUMAINFO:
999 next = val + NUMAINFO_EVENTS_TARGET;
1000 break;
1001 default:
1002 break;
1003 }
1004 __this_cpu_write(memcg->stat->targets[target], next);
1005 return true;
1006 }
1007 return false;
1008 }
1009
1010 /*
1011 * Check events in order.
1012 *
1013 */
1014 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1015 {
1016 preempt_disable();
1017 /* threshold event is triggered in finer grain than soft limit */
1018 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1019 MEM_CGROUP_TARGET_THRESH))) {
1020 bool do_softlimit;
1021 bool do_numainfo __maybe_unused;
1022
1023 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1024 MEM_CGROUP_TARGET_SOFTLIMIT);
1025 #if MAX_NUMNODES > 1
1026 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1027 MEM_CGROUP_TARGET_NUMAINFO);
1028 #endif
1029 preempt_enable();
1030
1031 mem_cgroup_threshold(memcg);
1032 if (unlikely(do_softlimit))
1033 mem_cgroup_update_tree(memcg, page);
1034 #if MAX_NUMNODES > 1
1035 if (unlikely(do_numainfo))
1036 atomic_inc(&memcg->numainfo_events);
1037 #endif
1038 } else
1039 preempt_enable();
1040 }
1041
1042 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1043 {
1044 /*
1045 * mm_update_next_owner() may clear mm->owner to NULL
1046 * if it races with swapoff, page migration, etc.
1047 * So this can be called with p == NULL.
1048 */
1049 if (unlikely(!p))
1050 return NULL;
1051
1052 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1053 }
1054
1055 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1056 {
1057 struct mem_cgroup *memcg = NULL;
1058
1059 rcu_read_lock();
1060 do {
1061 /*
1062 * Page cache insertions can happen withou an
1063 * actual mm context, e.g. during disk probing
1064 * on boot, loopback IO, acct() writes etc.
1065 */
1066 if (unlikely(!mm))
1067 memcg = root_mem_cgroup;
1068 else {
1069 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1070 if (unlikely(!memcg))
1071 memcg = root_mem_cgroup;
1072 }
1073 } while (!css_tryget_online(&memcg->css));
1074 rcu_read_unlock();
1075 return memcg;
1076 }
1077
1078 /*
1079 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1080 * ref. count) or NULL if the whole root's subtree has been visited.
1081 *
1082 * helper function to be used by mem_cgroup_iter
1083 */
1084 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1085 struct mem_cgroup *last_visited)
1086 {
1087 struct cgroup_subsys_state *prev_css, *next_css;
1088
1089 prev_css = last_visited ? &last_visited->css : NULL;
1090 skip_node:
1091 next_css = css_next_descendant_pre(prev_css, &root->css);
1092
1093 /*
1094 * Even if we found a group we have to make sure it is
1095 * alive. css && !memcg means that the groups should be
1096 * skipped and we should continue the tree walk.
1097 * last_visited css is safe to use because it is
1098 * protected by css_get and the tree walk is rcu safe.
1099 *
1100 * We do not take a reference on the root of the tree walk
1101 * because we might race with the root removal when it would
1102 * be the only node in the iterated hierarchy and mem_cgroup_iter
1103 * would end up in an endless loop because it expects that at
1104 * least one valid node will be returned. Root cannot disappear
1105 * because caller of the iterator should hold it already so
1106 * skipping css reference should be safe.
1107 */
1108 if (next_css) {
1109 if ((next_css == &root->css) ||
1110 ((next_css->flags & CSS_ONLINE) &&
1111 css_tryget_online(next_css)))
1112 return mem_cgroup_from_css(next_css);
1113
1114 prev_css = next_css;
1115 goto skip_node;
1116 }
1117
1118 return NULL;
1119 }
1120
1121 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1122 {
1123 /*
1124 * When a group in the hierarchy below root is destroyed, the
1125 * hierarchy iterator can no longer be trusted since it might
1126 * have pointed to the destroyed group. Invalidate it.
1127 */
1128 atomic_inc(&root->dead_count);
1129 }
1130
1131 static struct mem_cgroup *
1132 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1133 struct mem_cgroup *root,
1134 int *sequence)
1135 {
1136 struct mem_cgroup *position = NULL;
1137 /*
1138 * A cgroup destruction happens in two stages: offlining and
1139 * release. They are separated by a RCU grace period.
1140 *
1141 * If the iterator is valid, we may still race with an
1142 * offlining. The RCU lock ensures the object won't be
1143 * released, tryget will fail if we lost the race.
1144 */
1145 *sequence = atomic_read(&root->dead_count);
1146 if (iter->last_dead_count == *sequence) {
1147 smp_rmb();
1148 position = iter->last_visited;
1149
1150 /*
1151 * We cannot take a reference to root because we might race
1152 * with root removal and returning NULL would end up in
1153 * an endless loop on the iterator user level when root
1154 * would be returned all the time.
1155 */
1156 if (position && position != root &&
1157 !css_tryget_online(&position->css))
1158 position = NULL;
1159 }
1160 return position;
1161 }
1162
1163 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1164 struct mem_cgroup *last_visited,
1165 struct mem_cgroup *new_position,
1166 struct mem_cgroup *root,
1167 int sequence)
1168 {
1169 /* root reference counting symmetric to mem_cgroup_iter_load */
1170 if (last_visited && last_visited != root)
1171 css_put(&last_visited->css);
1172 /*
1173 * We store the sequence count from the time @last_visited was
1174 * loaded successfully instead of rereading it here so that we
1175 * don't lose destruction events in between. We could have
1176 * raced with the destruction of @new_position after all.
1177 */
1178 iter->last_visited = new_position;
1179 smp_wmb();
1180 iter->last_dead_count = sequence;
1181 }
1182
1183 /**
1184 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1185 * @root: hierarchy root
1186 * @prev: previously returned memcg, NULL on first invocation
1187 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1188 *
1189 * Returns references to children of the hierarchy below @root, or
1190 * @root itself, or %NULL after a full round-trip.
1191 *
1192 * Caller must pass the return value in @prev on subsequent
1193 * invocations for reference counting, or use mem_cgroup_iter_break()
1194 * to cancel a hierarchy walk before the round-trip is complete.
1195 *
1196 * Reclaimers can specify a zone and a priority level in @reclaim to
1197 * divide up the memcgs in the hierarchy among all concurrent
1198 * reclaimers operating on the same zone and priority.
1199 */
1200 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1201 struct mem_cgroup *prev,
1202 struct mem_cgroup_reclaim_cookie *reclaim)
1203 {
1204 struct mem_cgroup *memcg = NULL;
1205 struct mem_cgroup *last_visited = NULL;
1206
1207 if (mem_cgroup_disabled())
1208 return NULL;
1209
1210 if (!root)
1211 root = root_mem_cgroup;
1212
1213 if (prev && !reclaim)
1214 last_visited = prev;
1215
1216 if (!root->use_hierarchy && root != root_mem_cgroup) {
1217 if (prev)
1218 goto out_css_put;
1219 return root;
1220 }
1221
1222 rcu_read_lock();
1223 while (!memcg) {
1224 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1225 int uninitialized_var(seq);
1226
1227 if (reclaim) {
1228 struct mem_cgroup_per_zone *mz;
1229
1230 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1231 iter = &mz->reclaim_iter[reclaim->priority];
1232 if (prev && reclaim->generation != iter->generation) {
1233 iter->last_visited = NULL;
1234 goto out_unlock;
1235 }
1236
1237 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1238 }
1239
1240 memcg = __mem_cgroup_iter_next(root, last_visited);
1241
1242 if (reclaim) {
1243 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1244 seq);
1245
1246 if (!memcg)
1247 iter->generation++;
1248 else if (!prev && memcg)
1249 reclaim->generation = iter->generation;
1250 }
1251
1252 if (prev && !memcg)
1253 goto out_unlock;
1254 }
1255 out_unlock:
1256 rcu_read_unlock();
1257 out_css_put:
1258 if (prev && prev != root)
1259 css_put(&prev->css);
1260
1261 return memcg;
1262 }
1263
1264 /**
1265 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1266 * @root: hierarchy root
1267 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1268 */
1269 void mem_cgroup_iter_break(struct mem_cgroup *root,
1270 struct mem_cgroup *prev)
1271 {
1272 if (!root)
1273 root = root_mem_cgroup;
1274 if (prev && prev != root)
1275 css_put(&prev->css);
1276 }
1277
1278 /*
1279 * Iteration constructs for visiting all cgroups (under a tree). If
1280 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1281 * be used for reference counting.
1282 */
1283 #define for_each_mem_cgroup_tree(iter, root) \
1284 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1285 iter != NULL; \
1286 iter = mem_cgroup_iter(root, iter, NULL))
1287
1288 #define for_each_mem_cgroup(iter) \
1289 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1290 iter != NULL; \
1291 iter = mem_cgroup_iter(NULL, iter, NULL))
1292
1293 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1294 {
1295 struct mem_cgroup *memcg;
1296
1297 rcu_read_lock();
1298 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1299 if (unlikely(!memcg))
1300 goto out;
1301
1302 switch (idx) {
1303 case PGFAULT:
1304 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1305 break;
1306 case PGMAJFAULT:
1307 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1308 break;
1309 default:
1310 BUG();
1311 }
1312 out:
1313 rcu_read_unlock();
1314 }
1315 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1316
1317 /**
1318 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1319 * @zone: zone of the wanted lruvec
1320 * @memcg: memcg of the wanted lruvec
1321 *
1322 * Returns the lru list vector holding pages for the given @zone and
1323 * @mem. This can be the global zone lruvec, if the memory controller
1324 * is disabled.
1325 */
1326 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1327 struct mem_cgroup *memcg)
1328 {
1329 struct mem_cgroup_per_zone *mz;
1330 struct lruvec *lruvec;
1331
1332 if (mem_cgroup_disabled()) {
1333 lruvec = &zone->lruvec;
1334 goto out;
1335 }
1336
1337 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1338 lruvec = &mz->lruvec;
1339 out:
1340 /*
1341 * Since a node can be onlined after the mem_cgroup was created,
1342 * we have to be prepared to initialize lruvec->zone here;
1343 * and if offlined then reonlined, we need to reinitialize it.
1344 */
1345 if (unlikely(lruvec->zone != zone))
1346 lruvec->zone = zone;
1347 return lruvec;
1348 }
1349
1350 /*
1351 * Following LRU functions are allowed to be used without PCG_LOCK.
1352 * Operations are called by routine of global LRU independently from memcg.
1353 * What we have to take care of here is validness of pc->mem_cgroup.
1354 *
1355 * Changes to pc->mem_cgroup happens when
1356 * 1. charge
1357 * 2. moving account
1358 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1359 * It is added to LRU before charge.
1360 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1361 * When moving account, the page is not on LRU. It's isolated.
1362 */
1363
1364 /**
1365 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1366 * @page: the page
1367 * @zone: zone of the page
1368 */
1369 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1370 {
1371 struct mem_cgroup_per_zone *mz;
1372 struct mem_cgroup *memcg;
1373 struct page_cgroup *pc;
1374 struct lruvec *lruvec;
1375
1376 if (mem_cgroup_disabled()) {
1377 lruvec = &zone->lruvec;
1378 goto out;
1379 }
1380
1381 pc = lookup_page_cgroup(page);
1382 memcg = pc->mem_cgroup;
1383
1384 /*
1385 * Surreptitiously switch any uncharged offlist page to root:
1386 * an uncharged page off lru does nothing to secure
1387 * its former mem_cgroup from sudden removal.
1388 *
1389 * Our caller holds lru_lock, and PageCgroupUsed is updated
1390 * under page_cgroup lock: between them, they make all uses
1391 * of pc->mem_cgroup safe.
1392 */
1393 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1394 pc->mem_cgroup = memcg = root_mem_cgroup;
1395
1396 mz = mem_cgroup_page_zoneinfo(memcg, page);
1397 lruvec = &mz->lruvec;
1398 out:
1399 /*
1400 * Since a node can be onlined after the mem_cgroup was created,
1401 * we have to be prepared to initialize lruvec->zone here;
1402 * and if offlined then reonlined, we need to reinitialize it.
1403 */
1404 if (unlikely(lruvec->zone != zone))
1405 lruvec->zone = zone;
1406 return lruvec;
1407 }
1408
1409 /**
1410 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1411 * @lruvec: mem_cgroup per zone lru vector
1412 * @lru: index of lru list the page is sitting on
1413 * @nr_pages: positive when adding or negative when removing
1414 *
1415 * This function must be called when a page is added to or removed from an
1416 * lru list.
1417 */
1418 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1419 int nr_pages)
1420 {
1421 struct mem_cgroup_per_zone *mz;
1422 unsigned long *lru_size;
1423
1424 if (mem_cgroup_disabled())
1425 return;
1426
1427 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1428 lru_size = mz->lru_size + lru;
1429 *lru_size += nr_pages;
1430 VM_BUG_ON((long)(*lru_size) < 0);
1431 }
1432
1433 /*
1434 * Checks whether given mem is same or in the root_mem_cgroup's
1435 * hierarchy subtree
1436 */
1437 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1438 struct mem_cgroup *memcg)
1439 {
1440 if (root_memcg == memcg)
1441 return true;
1442 if (!root_memcg->use_hierarchy || !memcg)
1443 return false;
1444 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1445 }
1446
1447 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1448 struct mem_cgroup *memcg)
1449 {
1450 bool ret;
1451
1452 rcu_read_lock();
1453 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1454 rcu_read_unlock();
1455 return ret;
1456 }
1457
1458 bool task_in_mem_cgroup(struct task_struct *task,
1459 const struct mem_cgroup *memcg)
1460 {
1461 struct mem_cgroup *curr = NULL;
1462 struct task_struct *p;
1463 bool ret;
1464
1465 p = find_lock_task_mm(task);
1466 if (p) {
1467 curr = get_mem_cgroup_from_mm(p->mm);
1468 task_unlock(p);
1469 } else {
1470 /*
1471 * All threads may have already detached their mm's, but the oom
1472 * killer still needs to detect if they have already been oom
1473 * killed to prevent needlessly killing additional tasks.
1474 */
1475 rcu_read_lock();
1476 curr = mem_cgroup_from_task(task);
1477 if (curr)
1478 css_get(&curr->css);
1479 rcu_read_unlock();
1480 }
1481 /*
1482 * We should check use_hierarchy of "memcg" not "curr". Because checking
1483 * use_hierarchy of "curr" here make this function true if hierarchy is
1484 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1485 * hierarchy(even if use_hierarchy is disabled in "memcg").
1486 */
1487 ret = mem_cgroup_same_or_subtree(memcg, curr);
1488 css_put(&curr->css);
1489 return ret;
1490 }
1491
1492 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1493 {
1494 unsigned long inactive_ratio;
1495 unsigned long inactive;
1496 unsigned long active;
1497 unsigned long gb;
1498
1499 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1500 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1501
1502 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1503 if (gb)
1504 inactive_ratio = int_sqrt(10 * gb);
1505 else
1506 inactive_ratio = 1;
1507
1508 return inactive * inactive_ratio < active;
1509 }
1510
1511 #define mem_cgroup_from_res_counter(counter, member) \
1512 container_of(counter, struct mem_cgroup, member)
1513
1514 /**
1515 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1516 * @memcg: the memory cgroup
1517 *
1518 * Returns the maximum amount of memory @mem can be charged with, in
1519 * pages.
1520 */
1521 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1522 {
1523 unsigned long long margin;
1524
1525 margin = res_counter_margin(&memcg->res);
1526 if (do_swap_account)
1527 margin = min(margin, res_counter_margin(&memcg->memsw));
1528 return margin >> PAGE_SHIFT;
1529 }
1530
1531 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1532 {
1533 /* root ? */
1534 if (mem_cgroup_disabled() || !memcg->css.parent)
1535 return vm_swappiness;
1536
1537 return memcg->swappiness;
1538 }
1539
1540 /*
1541 * memcg->moving_account is used for checking possibility that some thread is
1542 * calling move_account(). When a thread on CPU-A starts moving pages under
1543 * a memcg, other threads should check memcg->moving_account under
1544 * rcu_read_lock(), like this:
1545 *
1546 * CPU-A CPU-B
1547 * rcu_read_lock()
1548 * memcg->moving_account+1 if (memcg->mocing_account)
1549 * take heavy locks.
1550 * synchronize_rcu() update something.
1551 * rcu_read_unlock()
1552 * start move here.
1553 */
1554
1555 /* for quick checking without looking up memcg */
1556 atomic_t memcg_moving __read_mostly;
1557
1558 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1559 {
1560 atomic_inc(&memcg_moving);
1561 atomic_inc(&memcg->moving_account);
1562 synchronize_rcu();
1563 }
1564
1565 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1566 {
1567 /*
1568 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1569 * We check NULL in callee rather than caller.
1570 */
1571 if (memcg) {
1572 atomic_dec(&memcg_moving);
1573 atomic_dec(&memcg->moving_account);
1574 }
1575 }
1576
1577 /*
1578 * A routine for checking "mem" is under move_account() or not.
1579 *
1580 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1581 * moving cgroups. This is for waiting at high-memory pressure
1582 * caused by "move".
1583 */
1584 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1585 {
1586 struct mem_cgroup *from;
1587 struct mem_cgroup *to;
1588 bool ret = false;
1589 /*
1590 * Unlike task_move routines, we access mc.to, mc.from not under
1591 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1592 */
1593 spin_lock(&mc.lock);
1594 from = mc.from;
1595 to = mc.to;
1596 if (!from)
1597 goto unlock;
1598
1599 ret = mem_cgroup_same_or_subtree(memcg, from)
1600 || mem_cgroup_same_or_subtree(memcg, to);
1601 unlock:
1602 spin_unlock(&mc.lock);
1603 return ret;
1604 }
1605
1606 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1607 {
1608 if (mc.moving_task && current != mc.moving_task) {
1609 if (mem_cgroup_under_move(memcg)) {
1610 DEFINE_WAIT(wait);
1611 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1612 /* moving charge context might have finished. */
1613 if (mc.moving_task)
1614 schedule();
1615 finish_wait(&mc.waitq, &wait);
1616 return true;
1617 }
1618 }
1619 return false;
1620 }
1621
1622 /*
1623 * Take this lock when
1624 * - a code tries to modify page's memcg while it's USED.
1625 * - a code tries to modify page state accounting in a memcg.
1626 */
1627 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1628 unsigned long *flags)
1629 {
1630 spin_lock_irqsave(&memcg->move_lock, *flags);
1631 }
1632
1633 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1634 unsigned long *flags)
1635 {
1636 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1637 }
1638
1639 #define K(x) ((x) << (PAGE_SHIFT-10))
1640 /**
1641 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1642 * @memcg: The memory cgroup that went over limit
1643 * @p: Task that is going to be killed
1644 *
1645 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1646 * enabled
1647 */
1648 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1649 {
1650 /* oom_info_lock ensures that parallel ooms do not interleave */
1651 static DEFINE_MUTEX(oom_info_lock);
1652 struct mem_cgroup *iter;
1653 unsigned int i;
1654
1655 if (!p)
1656 return;
1657
1658 mutex_lock(&oom_info_lock);
1659 rcu_read_lock();
1660
1661 pr_info("Task in ");
1662 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1663 pr_info(" killed as a result of limit of ");
1664 pr_cont_cgroup_path(memcg->css.cgroup);
1665 pr_info("\n");
1666
1667 rcu_read_unlock();
1668
1669 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1670 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1671 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1672 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1673 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1674 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1675 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1676 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1677 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1678 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1679 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1680 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1681
1682 for_each_mem_cgroup_tree(iter, memcg) {
1683 pr_info("Memory cgroup stats for ");
1684 pr_cont_cgroup_path(iter->css.cgroup);
1685 pr_cont(":");
1686
1687 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1688 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1689 continue;
1690 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1691 K(mem_cgroup_read_stat(iter, i)));
1692 }
1693
1694 for (i = 0; i < NR_LRU_LISTS; i++)
1695 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1696 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1697
1698 pr_cont("\n");
1699 }
1700 mutex_unlock(&oom_info_lock);
1701 }
1702
1703 /*
1704 * This function returns the number of memcg under hierarchy tree. Returns
1705 * 1(self count) if no children.
1706 */
1707 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1708 {
1709 int num = 0;
1710 struct mem_cgroup *iter;
1711
1712 for_each_mem_cgroup_tree(iter, memcg)
1713 num++;
1714 return num;
1715 }
1716
1717 /*
1718 * Return the memory (and swap, if configured) limit for a memcg.
1719 */
1720 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1721 {
1722 u64 limit;
1723
1724 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1725
1726 /*
1727 * Do not consider swap space if we cannot swap due to swappiness
1728 */
1729 if (mem_cgroup_swappiness(memcg)) {
1730 u64 memsw;
1731
1732 limit += total_swap_pages << PAGE_SHIFT;
1733 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1734
1735 /*
1736 * If memsw is finite and limits the amount of swap space
1737 * available to this memcg, return that limit.
1738 */
1739 limit = min(limit, memsw);
1740 }
1741
1742 return limit;
1743 }
1744
1745 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1746 int order)
1747 {
1748 struct mem_cgroup *iter;
1749 unsigned long chosen_points = 0;
1750 unsigned long totalpages;
1751 unsigned int points = 0;
1752 struct task_struct *chosen = NULL;
1753
1754 /*
1755 * If current has a pending SIGKILL or is exiting, then automatically
1756 * select it. The goal is to allow it to allocate so that it may
1757 * quickly exit and free its memory.
1758 */
1759 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1760 set_thread_flag(TIF_MEMDIE);
1761 return;
1762 }
1763
1764 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1765 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1766 for_each_mem_cgroup_tree(iter, memcg) {
1767 struct css_task_iter it;
1768 struct task_struct *task;
1769
1770 css_task_iter_start(&iter->css, &it);
1771 while ((task = css_task_iter_next(&it))) {
1772 switch (oom_scan_process_thread(task, totalpages, NULL,
1773 false)) {
1774 case OOM_SCAN_SELECT:
1775 if (chosen)
1776 put_task_struct(chosen);
1777 chosen = task;
1778 chosen_points = ULONG_MAX;
1779 get_task_struct(chosen);
1780 /* fall through */
1781 case OOM_SCAN_CONTINUE:
1782 continue;
1783 case OOM_SCAN_ABORT:
1784 css_task_iter_end(&it);
1785 mem_cgroup_iter_break(memcg, iter);
1786 if (chosen)
1787 put_task_struct(chosen);
1788 return;
1789 case OOM_SCAN_OK:
1790 break;
1791 };
1792 points = oom_badness(task, memcg, NULL, totalpages);
1793 if (!points || points < chosen_points)
1794 continue;
1795 /* Prefer thread group leaders for display purposes */
1796 if (points == chosen_points &&
1797 thread_group_leader(chosen))
1798 continue;
1799
1800 if (chosen)
1801 put_task_struct(chosen);
1802 chosen = task;
1803 chosen_points = points;
1804 get_task_struct(chosen);
1805 }
1806 css_task_iter_end(&it);
1807 }
1808
1809 if (!chosen)
1810 return;
1811 points = chosen_points * 1000 / totalpages;
1812 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1813 NULL, "Memory cgroup out of memory");
1814 }
1815
1816 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1817 gfp_t gfp_mask,
1818 unsigned long flags)
1819 {
1820 unsigned long total = 0;
1821 bool noswap = false;
1822 int loop;
1823
1824 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1825 noswap = true;
1826 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1827 noswap = true;
1828
1829 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1830 if (loop)
1831 drain_all_stock_async(memcg);
1832 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1833 /*
1834 * Allow limit shrinkers, which are triggered directly
1835 * by userspace, to catch signals and stop reclaim
1836 * after minimal progress, regardless of the margin.
1837 */
1838 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1839 break;
1840 if (mem_cgroup_margin(memcg))
1841 break;
1842 /*
1843 * If nothing was reclaimed after two attempts, there
1844 * may be no reclaimable pages in this hierarchy.
1845 */
1846 if (loop && !total)
1847 break;
1848 }
1849 return total;
1850 }
1851
1852 /**
1853 * test_mem_cgroup_node_reclaimable
1854 * @memcg: the target memcg
1855 * @nid: the node ID to be checked.
1856 * @noswap : specify true here if the user wants flle only information.
1857 *
1858 * This function returns whether the specified memcg contains any
1859 * reclaimable pages on a node. Returns true if there are any reclaimable
1860 * pages in the node.
1861 */
1862 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1863 int nid, bool noswap)
1864 {
1865 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1866 return true;
1867 if (noswap || !total_swap_pages)
1868 return false;
1869 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1870 return true;
1871 return false;
1872
1873 }
1874 #if MAX_NUMNODES > 1
1875
1876 /*
1877 * Always updating the nodemask is not very good - even if we have an empty
1878 * list or the wrong list here, we can start from some node and traverse all
1879 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1880 *
1881 */
1882 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1883 {
1884 int nid;
1885 /*
1886 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1887 * pagein/pageout changes since the last update.
1888 */
1889 if (!atomic_read(&memcg->numainfo_events))
1890 return;
1891 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1892 return;
1893
1894 /* make a nodemask where this memcg uses memory from */
1895 memcg->scan_nodes = node_states[N_MEMORY];
1896
1897 for_each_node_mask(nid, node_states[N_MEMORY]) {
1898
1899 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1900 node_clear(nid, memcg->scan_nodes);
1901 }
1902
1903 atomic_set(&memcg->numainfo_events, 0);
1904 atomic_set(&memcg->numainfo_updating, 0);
1905 }
1906
1907 /*
1908 * Selecting a node where we start reclaim from. Because what we need is just
1909 * reducing usage counter, start from anywhere is O,K. Considering
1910 * memory reclaim from current node, there are pros. and cons.
1911 *
1912 * Freeing memory from current node means freeing memory from a node which
1913 * we'll use or we've used. So, it may make LRU bad. And if several threads
1914 * hit limits, it will see a contention on a node. But freeing from remote
1915 * node means more costs for memory reclaim because of memory latency.
1916 *
1917 * Now, we use round-robin. Better algorithm is welcomed.
1918 */
1919 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1920 {
1921 int node;
1922
1923 mem_cgroup_may_update_nodemask(memcg);
1924 node = memcg->last_scanned_node;
1925
1926 node = next_node(node, memcg->scan_nodes);
1927 if (node == MAX_NUMNODES)
1928 node = first_node(memcg->scan_nodes);
1929 /*
1930 * We call this when we hit limit, not when pages are added to LRU.
1931 * No LRU may hold pages because all pages are UNEVICTABLE or
1932 * memcg is too small and all pages are not on LRU. In that case,
1933 * we use curret node.
1934 */
1935 if (unlikely(node == MAX_NUMNODES))
1936 node = numa_node_id();
1937
1938 memcg->last_scanned_node = node;
1939 return node;
1940 }
1941
1942 /*
1943 * Check all nodes whether it contains reclaimable pages or not.
1944 * For quick scan, we make use of scan_nodes. This will allow us to skip
1945 * unused nodes. But scan_nodes is lazily updated and may not cotain
1946 * enough new information. We need to do double check.
1947 */
1948 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1949 {
1950 int nid;
1951
1952 /*
1953 * quick check...making use of scan_node.
1954 * We can skip unused nodes.
1955 */
1956 if (!nodes_empty(memcg->scan_nodes)) {
1957 for (nid = first_node(memcg->scan_nodes);
1958 nid < MAX_NUMNODES;
1959 nid = next_node(nid, memcg->scan_nodes)) {
1960
1961 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1962 return true;
1963 }
1964 }
1965 /*
1966 * Check rest of nodes.
1967 */
1968 for_each_node_state(nid, N_MEMORY) {
1969 if (node_isset(nid, memcg->scan_nodes))
1970 continue;
1971 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1972 return true;
1973 }
1974 return false;
1975 }
1976
1977 #else
1978 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1979 {
1980 return 0;
1981 }
1982
1983 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1984 {
1985 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1986 }
1987 #endif
1988
1989 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1990 struct zone *zone,
1991 gfp_t gfp_mask,
1992 unsigned long *total_scanned)
1993 {
1994 struct mem_cgroup *victim = NULL;
1995 int total = 0;
1996 int loop = 0;
1997 unsigned long excess;
1998 unsigned long nr_scanned;
1999 struct mem_cgroup_reclaim_cookie reclaim = {
2000 .zone = zone,
2001 .priority = 0,
2002 };
2003
2004 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2005
2006 while (1) {
2007 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2008 if (!victim) {
2009 loop++;
2010 if (loop >= 2) {
2011 /*
2012 * If we have not been able to reclaim
2013 * anything, it might because there are
2014 * no reclaimable pages under this hierarchy
2015 */
2016 if (!total)
2017 break;
2018 /*
2019 * We want to do more targeted reclaim.
2020 * excess >> 2 is not to excessive so as to
2021 * reclaim too much, nor too less that we keep
2022 * coming back to reclaim from this cgroup
2023 */
2024 if (total >= (excess >> 2) ||
2025 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2026 break;
2027 }
2028 continue;
2029 }
2030 if (!mem_cgroup_reclaimable(victim, false))
2031 continue;
2032 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2033 zone, &nr_scanned);
2034 *total_scanned += nr_scanned;
2035 if (!res_counter_soft_limit_excess(&root_memcg->res))
2036 break;
2037 }
2038 mem_cgroup_iter_break(root_memcg, victim);
2039 return total;
2040 }
2041
2042 #ifdef CONFIG_LOCKDEP
2043 static struct lockdep_map memcg_oom_lock_dep_map = {
2044 .name = "memcg_oom_lock",
2045 };
2046 #endif
2047
2048 static DEFINE_SPINLOCK(memcg_oom_lock);
2049
2050 /*
2051 * Check OOM-Killer is already running under our hierarchy.
2052 * If someone is running, return false.
2053 */
2054 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2055 {
2056 struct mem_cgroup *iter, *failed = NULL;
2057
2058 spin_lock(&memcg_oom_lock);
2059
2060 for_each_mem_cgroup_tree(iter, memcg) {
2061 if (iter->oom_lock) {
2062 /*
2063 * this subtree of our hierarchy is already locked
2064 * so we cannot give a lock.
2065 */
2066 failed = iter;
2067 mem_cgroup_iter_break(memcg, iter);
2068 break;
2069 } else
2070 iter->oom_lock = true;
2071 }
2072
2073 if (failed) {
2074 /*
2075 * OK, we failed to lock the whole subtree so we have
2076 * to clean up what we set up to the failing subtree
2077 */
2078 for_each_mem_cgroup_tree(iter, memcg) {
2079 if (iter == failed) {
2080 mem_cgroup_iter_break(memcg, iter);
2081 break;
2082 }
2083 iter->oom_lock = false;
2084 }
2085 } else
2086 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2087
2088 spin_unlock(&memcg_oom_lock);
2089
2090 return !failed;
2091 }
2092
2093 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2094 {
2095 struct mem_cgroup *iter;
2096
2097 spin_lock(&memcg_oom_lock);
2098 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2099 for_each_mem_cgroup_tree(iter, memcg)
2100 iter->oom_lock = false;
2101 spin_unlock(&memcg_oom_lock);
2102 }
2103
2104 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2105 {
2106 struct mem_cgroup *iter;
2107
2108 for_each_mem_cgroup_tree(iter, memcg)
2109 atomic_inc(&iter->under_oom);
2110 }
2111
2112 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2113 {
2114 struct mem_cgroup *iter;
2115
2116 /*
2117 * When a new child is created while the hierarchy is under oom,
2118 * mem_cgroup_oom_lock() may not be called. We have to use
2119 * atomic_add_unless() here.
2120 */
2121 for_each_mem_cgroup_tree(iter, memcg)
2122 atomic_add_unless(&iter->under_oom, -1, 0);
2123 }
2124
2125 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2126
2127 struct oom_wait_info {
2128 struct mem_cgroup *memcg;
2129 wait_queue_t wait;
2130 };
2131
2132 static int memcg_oom_wake_function(wait_queue_t *wait,
2133 unsigned mode, int sync, void *arg)
2134 {
2135 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2136 struct mem_cgroup *oom_wait_memcg;
2137 struct oom_wait_info *oom_wait_info;
2138
2139 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2140 oom_wait_memcg = oom_wait_info->memcg;
2141
2142 /*
2143 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2144 * Then we can use css_is_ancestor without taking care of RCU.
2145 */
2146 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2147 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2148 return 0;
2149 return autoremove_wake_function(wait, mode, sync, arg);
2150 }
2151
2152 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2153 {
2154 atomic_inc(&memcg->oom_wakeups);
2155 /* for filtering, pass "memcg" as argument. */
2156 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2157 }
2158
2159 static void memcg_oom_recover(struct mem_cgroup *memcg)
2160 {
2161 if (memcg && atomic_read(&memcg->under_oom))
2162 memcg_wakeup_oom(memcg);
2163 }
2164
2165 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2166 {
2167 if (!current->memcg_oom.may_oom)
2168 return;
2169 /*
2170 * We are in the middle of the charge context here, so we
2171 * don't want to block when potentially sitting on a callstack
2172 * that holds all kinds of filesystem and mm locks.
2173 *
2174 * Also, the caller may handle a failed allocation gracefully
2175 * (like optional page cache readahead) and so an OOM killer
2176 * invocation might not even be necessary.
2177 *
2178 * That's why we don't do anything here except remember the
2179 * OOM context and then deal with it at the end of the page
2180 * fault when the stack is unwound, the locks are released,
2181 * and when we know whether the fault was overall successful.
2182 */
2183 css_get(&memcg->css);
2184 current->memcg_oom.memcg = memcg;
2185 current->memcg_oom.gfp_mask = mask;
2186 current->memcg_oom.order = order;
2187 }
2188
2189 /**
2190 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2191 * @handle: actually kill/wait or just clean up the OOM state
2192 *
2193 * This has to be called at the end of a page fault if the memcg OOM
2194 * handler was enabled.
2195 *
2196 * Memcg supports userspace OOM handling where failed allocations must
2197 * sleep on a waitqueue until the userspace task resolves the
2198 * situation. Sleeping directly in the charge context with all kinds
2199 * of locks held is not a good idea, instead we remember an OOM state
2200 * in the task and mem_cgroup_oom_synchronize() has to be called at
2201 * the end of the page fault to complete the OOM handling.
2202 *
2203 * Returns %true if an ongoing memcg OOM situation was detected and
2204 * completed, %false otherwise.
2205 */
2206 bool mem_cgroup_oom_synchronize(bool handle)
2207 {
2208 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2209 struct oom_wait_info owait;
2210 bool locked;
2211
2212 /* OOM is global, do not handle */
2213 if (!memcg)
2214 return false;
2215
2216 if (!handle)
2217 goto cleanup;
2218
2219 owait.memcg = memcg;
2220 owait.wait.flags = 0;
2221 owait.wait.func = memcg_oom_wake_function;
2222 owait.wait.private = current;
2223 INIT_LIST_HEAD(&owait.wait.task_list);
2224
2225 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2226 mem_cgroup_mark_under_oom(memcg);
2227
2228 locked = mem_cgroup_oom_trylock(memcg);
2229
2230 if (locked)
2231 mem_cgroup_oom_notify(memcg);
2232
2233 if (locked && !memcg->oom_kill_disable) {
2234 mem_cgroup_unmark_under_oom(memcg);
2235 finish_wait(&memcg_oom_waitq, &owait.wait);
2236 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2237 current->memcg_oom.order);
2238 } else {
2239 schedule();
2240 mem_cgroup_unmark_under_oom(memcg);
2241 finish_wait(&memcg_oom_waitq, &owait.wait);
2242 }
2243
2244 if (locked) {
2245 mem_cgroup_oom_unlock(memcg);
2246 /*
2247 * There is no guarantee that an OOM-lock contender
2248 * sees the wakeups triggered by the OOM kill
2249 * uncharges. Wake any sleepers explicitely.
2250 */
2251 memcg_oom_recover(memcg);
2252 }
2253 cleanup:
2254 current->memcg_oom.memcg = NULL;
2255 css_put(&memcg->css);
2256 return true;
2257 }
2258
2259 /*
2260 * Used to update mapped file or writeback or other statistics.
2261 *
2262 * Notes: Race condition
2263 *
2264 * We usually use lock_page_cgroup() for accessing page_cgroup member but
2265 * it tends to be costly. But considering some conditions, we doesn't need
2266 * to do so _always_.
2267 *
2268 * Considering "charge", lock_page_cgroup() is not required because all
2269 * file-stat operations happen after a page is attached to radix-tree. There
2270 * are no race with "charge".
2271 *
2272 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2273 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2274 * if there are race with "uncharge". Statistics itself is properly handled
2275 * by flags.
2276 *
2277 * Considering "move", this is an only case we see a race. To make the race
2278 * small, we check memcg->moving_account and detect there are possibility
2279 * of race or not. If there is, we take a lock.
2280 */
2281
2282 void __mem_cgroup_begin_update_page_stat(struct page *page,
2283 bool *locked, unsigned long *flags)
2284 {
2285 struct mem_cgroup *memcg;
2286 struct page_cgroup *pc;
2287
2288 pc = lookup_page_cgroup(page);
2289 again:
2290 memcg = pc->mem_cgroup;
2291 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2292 return;
2293 /*
2294 * If this memory cgroup is not under account moving, we don't
2295 * need to take move_lock_mem_cgroup(). Because we already hold
2296 * rcu_read_lock(), any calls to move_account will be delayed until
2297 * rcu_read_unlock().
2298 */
2299 VM_BUG_ON(!rcu_read_lock_held());
2300 if (atomic_read(&memcg->moving_account) <= 0)
2301 return;
2302
2303 move_lock_mem_cgroup(memcg, flags);
2304 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2305 move_unlock_mem_cgroup(memcg, flags);
2306 goto again;
2307 }
2308 *locked = true;
2309 }
2310
2311 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2312 {
2313 struct page_cgroup *pc = lookup_page_cgroup(page);
2314
2315 /*
2316 * It's guaranteed that pc->mem_cgroup never changes while
2317 * lock is held because a routine modifies pc->mem_cgroup
2318 * should take move_lock_mem_cgroup().
2319 */
2320 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2321 }
2322
2323 void mem_cgroup_update_page_stat(struct page *page,
2324 enum mem_cgroup_stat_index idx, int val)
2325 {
2326 struct mem_cgroup *memcg;
2327 struct page_cgroup *pc = lookup_page_cgroup(page);
2328 unsigned long uninitialized_var(flags);
2329
2330 if (mem_cgroup_disabled())
2331 return;
2332
2333 VM_BUG_ON(!rcu_read_lock_held());
2334 memcg = pc->mem_cgroup;
2335 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2336 return;
2337
2338 this_cpu_add(memcg->stat->count[idx], val);
2339 }
2340
2341 /*
2342 * size of first charge trial. "32" comes from vmscan.c's magic value.
2343 * TODO: maybe necessary to use big numbers in big irons.
2344 */
2345 #define CHARGE_BATCH 32U
2346 struct memcg_stock_pcp {
2347 struct mem_cgroup *cached; /* this never be root cgroup */
2348 unsigned int nr_pages;
2349 struct work_struct work;
2350 unsigned long flags;
2351 #define FLUSHING_CACHED_CHARGE 0
2352 };
2353 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2354 static DEFINE_MUTEX(percpu_charge_mutex);
2355
2356 /**
2357 * consume_stock: Try to consume stocked charge on this cpu.
2358 * @memcg: memcg to consume from.
2359 * @nr_pages: how many pages to charge.
2360 *
2361 * The charges will only happen if @memcg matches the current cpu's memcg
2362 * stock, and at least @nr_pages are available in that stock. Failure to
2363 * service an allocation will refill the stock.
2364 *
2365 * returns true if successful, false otherwise.
2366 */
2367 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2368 {
2369 struct memcg_stock_pcp *stock;
2370 bool ret = true;
2371
2372 if (nr_pages > CHARGE_BATCH)
2373 return false;
2374
2375 stock = &get_cpu_var(memcg_stock);
2376 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2377 stock->nr_pages -= nr_pages;
2378 else /* need to call res_counter_charge */
2379 ret = false;
2380 put_cpu_var(memcg_stock);
2381 return ret;
2382 }
2383
2384 /*
2385 * Returns stocks cached in percpu to res_counter and reset cached information.
2386 */
2387 static void drain_stock(struct memcg_stock_pcp *stock)
2388 {
2389 struct mem_cgroup *old = stock->cached;
2390
2391 if (stock->nr_pages) {
2392 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2393
2394 res_counter_uncharge(&old->res, bytes);
2395 if (do_swap_account)
2396 res_counter_uncharge(&old->memsw, bytes);
2397 stock->nr_pages = 0;
2398 }
2399 stock->cached = NULL;
2400 }
2401
2402 /*
2403 * This must be called under preempt disabled or must be called by
2404 * a thread which is pinned to local cpu.
2405 */
2406 static void drain_local_stock(struct work_struct *dummy)
2407 {
2408 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2409 drain_stock(stock);
2410 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2411 }
2412
2413 static void __init memcg_stock_init(void)
2414 {
2415 int cpu;
2416
2417 for_each_possible_cpu(cpu) {
2418 struct memcg_stock_pcp *stock =
2419 &per_cpu(memcg_stock, cpu);
2420 INIT_WORK(&stock->work, drain_local_stock);
2421 }
2422 }
2423
2424 /*
2425 * Cache charges(val) which is from res_counter, to local per_cpu area.
2426 * This will be consumed by consume_stock() function, later.
2427 */
2428 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2429 {
2430 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2431
2432 if (stock->cached != memcg) { /* reset if necessary */
2433 drain_stock(stock);
2434 stock->cached = memcg;
2435 }
2436 stock->nr_pages += nr_pages;
2437 put_cpu_var(memcg_stock);
2438 }
2439
2440 /*
2441 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2442 * of the hierarchy under it. sync flag says whether we should block
2443 * until the work is done.
2444 */
2445 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2446 {
2447 int cpu, curcpu;
2448
2449 /* Notify other cpus that system-wide "drain" is running */
2450 get_online_cpus();
2451 curcpu = get_cpu();
2452 for_each_online_cpu(cpu) {
2453 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2454 struct mem_cgroup *memcg;
2455
2456 memcg = stock->cached;
2457 if (!memcg || !stock->nr_pages)
2458 continue;
2459 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2460 continue;
2461 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2462 if (cpu == curcpu)
2463 drain_local_stock(&stock->work);
2464 else
2465 schedule_work_on(cpu, &stock->work);
2466 }
2467 }
2468 put_cpu();
2469
2470 if (!sync)
2471 goto out;
2472
2473 for_each_online_cpu(cpu) {
2474 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2475 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2476 flush_work(&stock->work);
2477 }
2478 out:
2479 put_online_cpus();
2480 }
2481
2482 /*
2483 * Tries to drain stocked charges in other cpus. This function is asynchronous
2484 * and just put a work per cpu for draining localy on each cpu. Caller can
2485 * expects some charges will be back to res_counter later but cannot wait for
2486 * it.
2487 */
2488 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2489 {
2490 /*
2491 * If someone calls draining, avoid adding more kworker runs.
2492 */
2493 if (!mutex_trylock(&percpu_charge_mutex))
2494 return;
2495 drain_all_stock(root_memcg, false);
2496 mutex_unlock(&percpu_charge_mutex);
2497 }
2498
2499 /* This is a synchronous drain interface. */
2500 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2501 {
2502 /* called when force_empty is called */
2503 mutex_lock(&percpu_charge_mutex);
2504 drain_all_stock(root_memcg, true);
2505 mutex_unlock(&percpu_charge_mutex);
2506 }
2507
2508 /*
2509 * This function drains percpu counter value from DEAD cpu and
2510 * move it to local cpu. Note that this function can be preempted.
2511 */
2512 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2513 {
2514 int i;
2515
2516 spin_lock(&memcg->pcp_counter_lock);
2517 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2518 long x = per_cpu(memcg->stat->count[i], cpu);
2519
2520 per_cpu(memcg->stat->count[i], cpu) = 0;
2521 memcg->nocpu_base.count[i] += x;
2522 }
2523 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2524 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2525
2526 per_cpu(memcg->stat->events[i], cpu) = 0;
2527 memcg->nocpu_base.events[i] += x;
2528 }
2529 spin_unlock(&memcg->pcp_counter_lock);
2530 }
2531
2532 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2533 unsigned long action,
2534 void *hcpu)
2535 {
2536 int cpu = (unsigned long)hcpu;
2537 struct memcg_stock_pcp *stock;
2538 struct mem_cgroup *iter;
2539
2540 if (action == CPU_ONLINE)
2541 return NOTIFY_OK;
2542
2543 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2544 return NOTIFY_OK;
2545
2546 for_each_mem_cgroup(iter)
2547 mem_cgroup_drain_pcp_counter(iter, cpu);
2548
2549 stock = &per_cpu(memcg_stock, cpu);
2550 drain_stock(stock);
2551 return NOTIFY_OK;
2552 }
2553
2554
2555 /* See mem_cgroup_try_charge() for details */
2556 enum {
2557 CHARGE_OK, /* success */
2558 CHARGE_RETRY, /* need to retry but retry is not bad */
2559 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2560 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2561 };
2562
2563 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2564 unsigned int nr_pages, unsigned int min_pages,
2565 bool invoke_oom)
2566 {
2567 unsigned long csize = nr_pages * PAGE_SIZE;
2568 struct mem_cgroup *mem_over_limit;
2569 struct res_counter *fail_res;
2570 unsigned long flags = 0;
2571 int ret;
2572
2573 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2574
2575 if (likely(!ret)) {
2576 if (!do_swap_account)
2577 return CHARGE_OK;
2578 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2579 if (likely(!ret))
2580 return CHARGE_OK;
2581
2582 res_counter_uncharge(&memcg->res, csize);
2583 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2584 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2585 } else
2586 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2587 /*
2588 * Never reclaim on behalf of optional batching, retry with a
2589 * single page instead.
2590 */
2591 if (nr_pages > min_pages)
2592 return CHARGE_RETRY;
2593
2594 if (!(gfp_mask & __GFP_WAIT))
2595 return CHARGE_WOULDBLOCK;
2596
2597 if (gfp_mask & __GFP_NORETRY)
2598 return CHARGE_NOMEM;
2599
2600 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2601 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2602 return CHARGE_RETRY;
2603 /*
2604 * Even though the limit is exceeded at this point, reclaim
2605 * may have been able to free some pages. Retry the charge
2606 * before killing the task.
2607 *
2608 * Only for regular pages, though: huge pages are rather
2609 * unlikely to succeed so close to the limit, and we fall back
2610 * to regular pages anyway in case of failure.
2611 */
2612 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2613 return CHARGE_RETRY;
2614
2615 /*
2616 * At task move, charge accounts can be doubly counted. So, it's
2617 * better to wait until the end of task_move if something is going on.
2618 */
2619 if (mem_cgroup_wait_acct_move(mem_over_limit))
2620 return CHARGE_RETRY;
2621
2622 if (invoke_oom)
2623 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2624
2625 return CHARGE_NOMEM;
2626 }
2627
2628 /**
2629 * mem_cgroup_try_charge - try charging a memcg
2630 * @memcg: memcg to charge
2631 * @nr_pages: number of pages to charge
2632 * @oom: trigger OOM if reclaim fails
2633 *
2634 * Returns 0 if @memcg was charged successfully, -EINTR if the charge
2635 * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed.
2636 */
2637 static int mem_cgroup_try_charge(struct mem_cgroup *memcg,
2638 gfp_t gfp_mask,
2639 unsigned int nr_pages,
2640 bool oom)
2641 {
2642 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2643 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2644 int ret;
2645
2646 if (mem_cgroup_is_root(memcg))
2647 goto done;
2648 /*
2649 * Unlike in global OOM situations, memcg is not in a physical
2650 * memory shortage. Allow dying and OOM-killed tasks to
2651 * bypass the last charges so that they can exit quickly and
2652 * free their memory.
2653 */
2654 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2655 fatal_signal_pending(current) ||
2656 current->flags & PF_EXITING))
2657 goto bypass;
2658
2659 if (unlikely(task_in_memcg_oom(current)))
2660 goto nomem;
2661
2662 if (gfp_mask & __GFP_NOFAIL)
2663 oom = false;
2664 again:
2665 if (consume_stock(memcg, nr_pages))
2666 goto done;
2667
2668 do {
2669 bool invoke_oom = oom && !nr_oom_retries;
2670
2671 /* If killed, bypass charge */
2672 if (fatal_signal_pending(current))
2673 goto bypass;
2674
2675 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2676 nr_pages, invoke_oom);
2677 switch (ret) {
2678 case CHARGE_OK:
2679 break;
2680 case CHARGE_RETRY: /* not in OOM situation but retry */
2681 batch = nr_pages;
2682 goto again;
2683 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2684 goto nomem;
2685 case CHARGE_NOMEM: /* OOM routine works */
2686 if (!oom || invoke_oom)
2687 goto nomem;
2688 nr_oom_retries--;
2689 break;
2690 }
2691 } while (ret != CHARGE_OK);
2692
2693 if (batch > nr_pages)
2694 refill_stock(memcg, batch - nr_pages);
2695 done:
2696 return 0;
2697 nomem:
2698 if (!(gfp_mask & __GFP_NOFAIL))
2699 return -ENOMEM;
2700 bypass:
2701 return -EINTR;
2702 }
2703
2704 /**
2705 * mem_cgroup_try_charge_mm - try charging a mm
2706 * @mm: mm_struct to charge
2707 * @nr_pages: number of pages to charge
2708 * @oom: trigger OOM if reclaim fails
2709 *
2710 * Returns the charged mem_cgroup associated with the given mm_struct or
2711 * NULL the charge failed.
2712 */
2713 static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm,
2714 gfp_t gfp_mask,
2715 unsigned int nr_pages,
2716 bool oom)
2717
2718 {
2719 struct mem_cgroup *memcg;
2720 int ret;
2721
2722 memcg = get_mem_cgroup_from_mm(mm);
2723 ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages, oom);
2724 css_put(&memcg->css);
2725 if (ret == -EINTR)
2726 memcg = root_mem_cgroup;
2727 else if (ret)
2728 memcg = NULL;
2729
2730 return memcg;
2731 }
2732
2733 /*
2734 * Somemtimes we have to undo a charge we got by try_charge().
2735 * This function is for that and do uncharge, put css's refcnt.
2736 * gotten by try_charge().
2737 */
2738 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2739 unsigned int nr_pages)
2740 {
2741 if (!mem_cgroup_is_root(memcg)) {
2742 unsigned long bytes = nr_pages * PAGE_SIZE;
2743
2744 res_counter_uncharge(&memcg->res, bytes);
2745 if (do_swap_account)
2746 res_counter_uncharge(&memcg->memsw, bytes);
2747 }
2748 }
2749
2750 /*
2751 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2752 * This is useful when moving usage to parent cgroup.
2753 */
2754 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2755 unsigned int nr_pages)
2756 {
2757 unsigned long bytes = nr_pages * PAGE_SIZE;
2758
2759 if (mem_cgroup_is_root(memcg))
2760 return;
2761
2762 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2763 if (do_swap_account)
2764 res_counter_uncharge_until(&memcg->memsw,
2765 memcg->memsw.parent, bytes);
2766 }
2767
2768 /*
2769 * A helper function to get mem_cgroup from ID. must be called under
2770 * rcu_read_lock(). The caller is responsible for calling
2771 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2772 * refcnt from swap can be called against removed memcg.)
2773 */
2774 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2775 {
2776 /* ID 0 is unused ID */
2777 if (!id)
2778 return NULL;
2779 return mem_cgroup_from_id(id);
2780 }
2781
2782 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2783 {
2784 struct mem_cgroup *memcg = NULL;
2785 struct page_cgroup *pc;
2786 unsigned short id;
2787 swp_entry_t ent;
2788
2789 VM_BUG_ON_PAGE(!PageLocked(page), page);
2790
2791 pc = lookup_page_cgroup(page);
2792 lock_page_cgroup(pc);
2793 if (PageCgroupUsed(pc)) {
2794 memcg = pc->mem_cgroup;
2795 if (memcg && !css_tryget_online(&memcg->css))
2796 memcg = NULL;
2797 } else if (PageSwapCache(page)) {
2798 ent.val = page_private(page);
2799 id = lookup_swap_cgroup_id(ent);
2800 rcu_read_lock();
2801 memcg = mem_cgroup_lookup(id);
2802 if (memcg && !css_tryget_online(&memcg->css))
2803 memcg = NULL;
2804 rcu_read_unlock();
2805 }
2806 unlock_page_cgroup(pc);
2807 return memcg;
2808 }
2809
2810 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2811 struct page *page,
2812 unsigned int nr_pages,
2813 enum charge_type ctype,
2814 bool lrucare)
2815 {
2816 struct page_cgroup *pc = lookup_page_cgroup(page);
2817 struct zone *uninitialized_var(zone);
2818 struct lruvec *lruvec;
2819 bool was_on_lru = false;
2820 bool anon;
2821
2822 lock_page_cgroup(pc);
2823 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2824 /*
2825 * we don't need page_cgroup_lock about tail pages, becase they are not
2826 * accessed by any other context at this point.
2827 */
2828
2829 /*
2830 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2831 * may already be on some other mem_cgroup's LRU. Take care of it.
2832 */
2833 if (lrucare) {
2834 zone = page_zone(page);
2835 spin_lock_irq(&zone->lru_lock);
2836 if (PageLRU(page)) {
2837 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2838 ClearPageLRU(page);
2839 del_page_from_lru_list(page, lruvec, page_lru(page));
2840 was_on_lru = true;
2841 }
2842 }
2843
2844 pc->mem_cgroup = memcg;
2845 /*
2846 * We access a page_cgroup asynchronously without lock_page_cgroup().
2847 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2848 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2849 * before USED bit, we need memory barrier here.
2850 * See mem_cgroup_add_lru_list(), etc.
2851 */
2852 smp_wmb();
2853 SetPageCgroupUsed(pc);
2854
2855 if (lrucare) {
2856 if (was_on_lru) {
2857 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2858 VM_BUG_ON_PAGE(PageLRU(page), page);
2859 SetPageLRU(page);
2860 add_page_to_lru_list(page, lruvec, page_lru(page));
2861 }
2862 spin_unlock_irq(&zone->lru_lock);
2863 }
2864
2865 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2866 anon = true;
2867 else
2868 anon = false;
2869
2870 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2871 unlock_page_cgroup(pc);
2872
2873 /*
2874 * "charge_statistics" updated event counter. Then, check it.
2875 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2876 * if they exceeds softlimit.
2877 */
2878 memcg_check_events(memcg, page);
2879 }
2880
2881 static DEFINE_MUTEX(set_limit_mutex);
2882
2883 #ifdef CONFIG_MEMCG_KMEM
2884 /*
2885 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2886 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2887 */
2888 static DEFINE_MUTEX(memcg_slab_mutex);
2889
2890 static DEFINE_MUTEX(activate_kmem_mutex);
2891
2892 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2893 {
2894 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2895 memcg_kmem_is_active(memcg);
2896 }
2897
2898 /*
2899 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2900 * in the memcg_cache_params struct.
2901 */
2902 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2903 {
2904 struct kmem_cache *cachep;
2905
2906 VM_BUG_ON(p->is_root_cache);
2907 cachep = p->root_cache;
2908 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2909 }
2910
2911 #ifdef CONFIG_SLABINFO
2912 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2913 {
2914 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2915 struct memcg_cache_params *params;
2916
2917 if (!memcg_can_account_kmem(memcg))
2918 return -EIO;
2919
2920 print_slabinfo_header(m);
2921
2922 mutex_lock(&memcg_slab_mutex);
2923 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2924 cache_show(memcg_params_to_cache(params), m);
2925 mutex_unlock(&memcg_slab_mutex);
2926
2927 return 0;
2928 }
2929 #endif
2930
2931 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2932 {
2933 struct res_counter *fail_res;
2934 int ret = 0;
2935
2936 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2937 if (ret)
2938 return ret;
2939
2940 ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT,
2941 oom_gfp_allowed(gfp));
2942 if (ret == -EINTR) {
2943 /*
2944 * mem_cgroup_try_charge() chosed to bypass to root due to
2945 * OOM kill or fatal signal. Since our only options are to
2946 * either fail the allocation or charge it to this cgroup, do
2947 * it as a temporary condition. But we can't fail. From a
2948 * kmem/slab perspective, the cache has already been selected,
2949 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2950 * our minds.
2951 *
2952 * This condition will only trigger if the task entered
2953 * memcg_charge_kmem in a sane state, but was OOM-killed during
2954 * mem_cgroup_try_charge() above. Tasks that were already
2955 * dying when the allocation triggers should have been already
2956 * directed to the root cgroup in memcontrol.h
2957 */
2958 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2959 if (do_swap_account)
2960 res_counter_charge_nofail(&memcg->memsw, size,
2961 &fail_res);
2962 ret = 0;
2963 } else if (ret)
2964 res_counter_uncharge(&memcg->kmem, size);
2965
2966 return ret;
2967 }
2968
2969 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2970 {
2971 res_counter_uncharge(&memcg->res, size);
2972 if (do_swap_account)
2973 res_counter_uncharge(&memcg->memsw, size);
2974
2975 /* Not down to 0 */
2976 if (res_counter_uncharge(&memcg->kmem, size))
2977 return;
2978
2979 /*
2980 * Releases a reference taken in kmem_cgroup_css_offline in case
2981 * this last uncharge is racing with the offlining code or it is
2982 * outliving the memcg existence.
2983 *
2984 * The memory barrier imposed by test&clear is paired with the
2985 * explicit one in memcg_kmem_mark_dead().
2986 */
2987 if (memcg_kmem_test_and_clear_dead(memcg))
2988 css_put(&memcg->css);
2989 }
2990
2991 /*
2992 * helper for acessing a memcg's index. It will be used as an index in the
2993 * child cache array in kmem_cache, and also to derive its name. This function
2994 * will return -1 when this is not a kmem-limited memcg.
2995 */
2996 int memcg_cache_id(struct mem_cgroup *memcg)
2997 {
2998 return memcg ? memcg->kmemcg_id : -1;
2999 }
3000
3001 static size_t memcg_caches_array_size(int num_groups)
3002 {
3003 ssize_t size;
3004 if (num_groups <= 0)
3005 return 0;
3006
3007 size = 2 * num_groups;
3008 if (size < MEMCG_CACHES_MIN_SIZE)
3009 size = MEMCG_CACHES_MIN_SIZE;
3010 else if (size > MEMCG_CACHES_MAX_SIZE)
3011 size = MEMCG_CACHES_MAX_SIZE;
3012
3013 return size;
3014 }
3015
3016 /*
3017 * We should update the current array size iff all caches updates succeed. This
3018 * can only be done from the slab side. The slab mutex needs to be held when
3019 * calling this.
3020 */
3021 void memcg_update_array_size(int num)
3022 {
3023 if (num > memcg_limited_groups_array_size)
3024 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3025 }
3026
3027 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3028 {
3029 struct memcg_cache_params *cur_params = s->memcg_params;
3030
3031 VM_BUG_ON(!is_root_cache(s));
3032
3033 if (num_groups > memcg_limited_groups_array_size) {
3034 int i;
3035 struct memcg_cache_params *new_params;
3036 ssize_t size = memcg_caches_array_size(num_groups);
3037
3038 size *= sizeof(void *);
3039 size += offsetof(struct memcg_cache_params, memcg_caches);
3040
3041 new_params = kzalloc(size, GFP_KERNEL);
3042 if (!new_params)
3043 return -ENOMEM;
3044
3045 new_params->is_root_cache = true;
3046
3047 /*
3048 * There is the chance it will be bigger than
3049 * memcg_limited_groups_array_size, if we failed an allocation
3050 * in a cache, in which case all caches updated before it, will
3051 * have a bigger array.
3052 *
3053 * But if that is the case, the data after
3054 * memcg_limited_groups_array_size is certainly unused
3055 */
3056 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3057 if (!cur_params->memcg_caches[i])
3058 continue;
3059 new_params->memcg_caches[i] =
3060 cur_params->memcg_caches[i];
3061 }
3062
3063 /*
3064 * Ideally, we would wait until all caches succeed, and only
3065 * then free the old one. But this is not worth the extra
3066 * pointer per-cache we'd have to have for this.
3067 *
3068 * It is not a big deal if some caches are left with a size
3069 * bigger than the others. And all updates will reset this
3070 * anyway.
3071 */
3072 rcu_assign_pointer(s->memcg_params, new_params);
3073 if (cur_params)
3074 kfree_rcu(cur_params, rcu_head);
3075 }
3076 return 0;
3077 }
3078
3079 int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3080 struct kmem_cache *root_cache)
3081 {
3082 size_t size;
3083
3084 if (!memcg_kmem_enabled())
3085 return 0;
3086
3087 if (!memcg) {
3088 size = offsetof(struct memcg_cache_params, memcg_caches);
3089 size += memcg_limited_groups_array_size * sizeof(void *);
3090 } else
3091 size = sizeof(struct memcg_cache_params);
3092
3093 s->memcg_params = kzalloc(size, GFP_KERNEL);
3094 if (!s->memcg_params)
3095 return -ENOMEM;
3096
3097 if (memcg) {
3098 s->memcg_params->memcg = memcg;
3099 s->memcg_params->root_cache = root_cache;
3100 css_get(&memcg->css);
3101 } else
3102 s->memcg_params->is_root_cache = true;
3103
3104 return 0;
3105 }
3106
3107 void memcg_free_cache_params(struct kmem_cache *s)
3108 {
3109 if (!s->memcg_params)
3110 return;
3111 if (!s->memcg_params->is_root_cache)
3112 css_put(&s->memcg_params->memcg->css);
3113 kfree(s->memcg_params);
3114 }
3115
3116 static void memcg_register_cache(struct mem_cgroup *memcg,
3117 struct kmem_cache *root_cache)
3118 {
3119 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
3120 memcg_slab_mutex */
3121 struct kmem_cache *cachep;
3122 int id;
3123
3124 lockdep_assert_held(&memcg_slab_mutex);
3125
3126 id = memcg_cache_id(memcg);
3127
3128 /*
3129 * Since per-memcg caches are created asynchronously on first
3130 * allocation (see memcg_kmem_get_cache()), several threads can try to
3131 * create the same cache, but only one of them may succeed.
3132 */
3133 if (cache_from_memcg_idx(root_cache, id))
3134 return;
3135
3136 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
3137 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
3138 /*
3139 * If we could not create a memcg cache, do not complain, because
3140 * that's not critical at all as we can always proceed with the root
3141 * cache.
3142 */
3143 if (!cachep)
3144 return;
3145
3146 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3147
3148 /*
3149 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3150 * barrier here to ensure nobody will see the kmem_cache partially
3151 * initialized.
3152 */
3153 smp_wmb();
3154
3155 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
3156 root_cache->memcg_params->memcg_caches[id] = cachep;
3157 }
3158
3159 static void memcg_unregister_cache(struct kmem_cache *cachep)
3160 {
3161 struct kmem_cache *root_cache;
3162 struct mem_cgroup *memcg;
3163 int id;
3164
3165 lockdep_assert_held(&memcg_slab_mutex);
3166
3167 BUG_ON(is_root_cache(cachep));
3168
3169 root_cache = cachep->memcg_params->root_cache;
3170 memcg = cachep->memcg_params->memcg;
3171 id = memcg_cache_id(memcg);
3172
3173 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
3174 root_cache->memcg_params->memcg_caches[id] = NULL;
3175
3176 list_del(&cachep->memcg_params->list);
3177
3178 kmem_cache_destroy(cachep);
3179 }
3180
3181 /*
3182 * During the creation a new cache, we need to disable our accounting mechanism
3183 * altogether. This is true even if we are not creating, but rather just
3184 * enqueing new caches to be created.
3185 *
3186 * This is because that process will trigger allocations; some visible, like
3187 * explicit kmallocs to auxiliary data structures, name strings and internal
3188 * cache structures; some well concealed, like INIT_WORK() that can allocate
3189 * objects during debug.
3190 *
3191 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3192 * to it. This may not be a bounded recursion: since the first cache creation
3193 * failed to complete (waiting on the allocation), we'll just try to create the
3194 * cache again, failing at the same point.
3195 *
3196 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3197 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3198 * inside the following two functions.
3199 */
3200 static inline void memcg_stop_kmem_account(void)
3201 {
3202 VM_BUG_ON(!current->mm);
3203 current->memcg_kmem_skip_account++;
3204 }
3205
3206 static inline void memcg_resume_kmem_account(void)
3207 {
3208 VM_BUG_ON(!current->mm);
3209 current->memcg_kmem_skip_account--;
3210 }
3211
3212 int __memcg_cleanup_cache_params(struct kmem_cache *s)
3213 {
3214 struct kmem_cache *c;
3215 int i, failed = 0;
3216
3217 mutex_lock(&memcg_slab_mutex);
3218 for_each_memcg_cache_index(i) {
3219 c = cache_from_memcg_idx(s, i);
3220 if (!c)
3221 continue;
3222
3223 memcg_unregister_cache(c);
3224
3225 if (cache_from_memcg_idx(s, i))
3226 failed++;
3227 }
3228 mutex_unlock(&memcg_slab_mutex);
3229 return failed;
3230 }
3231
3232 static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3233 {
3234 struct kmem_cache *cachep;
3235 struct memcg_cache_params *params, *tmp;
3236
3237 if (!memcg_kmem_is_active(memcg))
3238 return;
3239
3240 mutex_lock(&memcg_slab_mutex);
3241 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
3242 cachep = memcg_params_to_cache(params);
3243 kmem_cache_shrink(cachep);
3244 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3245 memcg_unregister_cache(cachep);
3246 }
3247 mutex_unlock(&memcg_slab_mutex);
3248 }
3249
3250 struct memcg_register_cache_work {
3251 struct mem_cgroup *memcg;
3252 struct kmem_cache *cachep;
3253 struct work_struct work;
3254 };
3255
3256 static void memcg_register_cache_func(struct work_struct *w)
3257 {
3258 struct memcg_register_cache_work *cw =
3259 container_of(w, struct memcg_register_cache_work, work);
3260 struct mem_cgroup *memcg = cw->memcg;
3261 struct kmem_cache *cachep = cw->cachep;
3262
3263 mutex_lock(&memcg_slab_mutex);
3264 memcg_register_cache(memcg, cachep);
3265 mutex_unlock(&memcg_slab_mutex);
3266
3267 css_put(&memcg->css);
3268 kfree(cw);
3269 }
3270
3271 /*
3272 * Enqueue the creation of a per-memcg kmem_cache.
3273 */
3274 static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
3275 struct kmem_cache *cachep)
3276 {
3277 struct memcg_register_cache_work *cw;
3278
3279 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
3280 if (cw == NULL) {
3281 css_put(&memcg->css);
3282 return;
3283 }
3284
3285 cw->memcg = memcg;
3286 cw->cachep = cachep;
3287
3288 INIT_WORK(&cw->work, memcg_register_cache_func);
3289 schedule_work(&cw->work);
3290 }
3291
3292 static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
3293 struct kmem_cache *cachep)
3294 {
3295 /*
3296 * We need to stop accounting when we kmalloc, because if the
3297 * corresponding kmalloc cache is not yet created, the first allocation
3298 * in __memcg_schedule_register_cache will recurse.
3299 *
3300 * However, it is better to enclose the whole function. Depending on
3301 * the debugging options enabled, INIT_WORK(), for instance, can
3302 * trigger an allocation. This too, will make us recurse. Because at
3303 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3304 * the safest choice is to do it like this, wrapping the whole function.
3305 */
3306 memcg_stop_kmem_account();
3307 __memcg_schedule_register_cache(memcg, cachep);
3308 memcg_resume_kmem_account();
3309 }
3310
3311 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
3312 {
3313 int res;
3314
3315 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
3316 PAGE_SIZE << order);
3317 if (!res)
3318 atomic_add(1 << order, &cachep->memcg_params->nr_pages);
3319 return res;
3320 }
3321
3322 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
3323 {
3324 memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
3325 atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
3326 }
3327
3328 /*
3329 * Return the kmem_cache we're supposed to use for a slab allocation.
3330 * We try to use the current memcg's version of the cache.
3331 *
3332 * If the cache does not exist yet, if we are the first user of it,
3333 * we either create it immediately, if possible, or create it asynchronously
3334 * in a workqueue.
3335 * In the latter case, we will let the current allocation go through with
3336 * the original cache.
3337 *
3338 * Can't be called in interrupt context or from kernel threads.
3339 * This function needs to be called with rcu_read_lock() held.
3340 */
3341 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3342 gfp_t gfp)
3343 {
3344 struct mem_cgroup *memcg;
3345 struct kmem_cache *memcg_cachep;
3346
3347 VM_BUG_ON(!cachep->memcg_params);
3348 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3349
3350 if (!current->mm || current->memcg_kmem_skip_account)
3351 return cachep;
3352
3353 rcu_read_lock();
3354 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3355
3356 if (!memcg_can_account_kmem(memcg))
3357 goto out;
3358
3359 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3360 if (likely(memcg_cachep)) {
3361 cachep = memcg_cachep;
3362 goto out;
3363 }
3364
3365 /* The corresponding put will be done in the workqueue. */
3366 if (!css_tryget_online(&memcg->css))
3367 goto out;
3368 rcu_read_unlock();
3369
3370 /*
3371 * If we are in a safe context (can wait, and not in interrupt
3372 * context), we could be be predictable and return right away.
3373 * This would guarantee that the allocation being performed
3374 * already belongs in the new cache.
3375 *
3376 * However, there are some clashes that can arrive from locking.
3377 * For instance, because we acquire the slab_mutex while doing
3378 * memcg_create_kmem_cache, this means no further allocation
3379 * could happen with the slab_mutex held. So it's better to
3380 * defer everything.
3381 */
3382 memcg_schedule_register_cache(memcg, cachep);
3383 return cachep;
3384 out:
3385 rcu_read_unlock();
3386 return cachep;
3387 }
3388
3389 /*
3390 * We need to verify if the allocation against current->mm->owner's memcg is
3391 * possible for the given order. But the page is not allocated yet, so we'll
3392 * need a further commit step to do the final arrangements.
3393 *
3394 * It is possible for the task to switch cgroups in this mean time, so at
3395 * commit time, we can't rely on task conversion any longer. We'll then use
3396 * the handle argument to return to the caller which cgroup we should commit
3397 * against. We could also return the memcg directly and avoid the pointer
3398 * passing, but a boolean return value gives better semantics considering
3399 * the compiled-out case as well.
3400 *
3401 * Returning true means the allocation is possible.
3402 */
3403 bool
3404 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3405 {
3406 struct mem_cgroup *memcg;
3407 int ret;
3408
3409 *_memcg = NULL;
3410
3411 /*
3412 * Disabling accounting is only relevant for some specific memcg
3413 * internal allocations. Therefore we would initially not have such
3414 * check here, since direct calls to the page allocator that are
3415 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3416 * outside memcg core. We are mostly concerned with cache allocations,
3417 * and by having this test at memcg_kmem_get_cache, we are already able
3418 * to relay the allocation to the root cache and bypass the memcg cache
3419 * altogether.
3420 *
3421 * There is one exception, though: the SLUB allocator does not create
3422 * large order caches, but rather service large kmallocs directly from
3423 * the page allocator. Therefore, the following sequence when backed by
3424 * the SLUB allocator:
3425 *
3426 * memcg_stop_kmem_account();
3427 * kmalloc(<large_number>)
3428 * memcg_resume_kmem_account();
3429 *
3430 * would effectively ignore the fact that we should skip accounting,
3431 * since it will drive us directly to this function without passing
3432 * through the cache selector memcg_kmem_get_cache. Such large
3433 * allocations are extremely rare but can happen, for instance, for the
3434 * cache arrays. We bring this test here.
3435 */
3436 if (!current->mm || current->memcg_kmem_skip_account)
3437 return true;
3438
3439 memcg = get_mem_cgroup_from_mm(current->mm);
3440
3441 if (!memcg_can_account_kmem(memcg)) {
3442 css_put(&memcg->css);
3443 return true;
3444 }
3445
3446 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3447 if (!ret)
3448 *_memcg = memcg;
3449
3450 css_put(&memcg->css);
3451 return (ret == 0);
3452 }
3453
3454 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3455 int order)
3456 {
3457 struct page_cgroup *pc;
3458
3459 VM_BUG_ON(mem_cgroup_is_root(memcg));
3460
3461 /* The page allocation failed. Revert */
3462 if (!page) {
3463 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3464 return;
3465 }
3466
3467 pc = lookup_page_cgroup(page);
3468 lock_page_cgroup(pc);
3469 pc->mem_cgroup = memcg;
3470 SetPageCgroupUsed(pc);
3471 unlock_page_cgroup(pc);
3472 }
3473
3474 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3475 {
3476 struct mem_cgroup *memcg = NULL;
3477 struct page_cgroup *pc;
3478
3479
3480 pc = lookup_page_cgroup(page);
3481 /*
3482 * Fast unlocked return. Theoretically might have changed, have to
3483 * check again after locking.
3484 */
3485 if (!PageCgroupUsed(pc))
3486 return;
3487
3488 lock_page_cgroup(pc);
3489 if (PageCgroupUsed(pc)) {
3490 memcg = pc->mem_cgroup;
3491 ClearPageCgroupUsed(pc);
3492 }
3493 unlock_page_cgroup(pc);
3494
3495 /*
3496 * We trust that only if there is a memcg associated with the page, it
3497 * is a valid allocation
3498 */
3499 if (!memcg)
3500 return;
3501
3502 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3503 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3504 }
3505 #else
3506 static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3507 {
3508 }
3509 #endif /* CONFIG_MEMCG_KMEM */
3510
3511 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3512
3513 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3514 /*
3515 * Because tail pages are not marked as "used", set it. We're under
3516 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3517 * charge/uncharge will be never happen and move_account() is done under
3518 * compound_lock(), so we don't have to take care of races.
3519 */
3520 void mem_cgroup_split_huge_fixup(struct page *head)
3521 {
3522 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3523 struct page_cgroup *pc;
3524 struct mem_cgroup *memcg;
3525 int i;
3526
3527 if (mem_cgroup_disabled())
3528 return;
3529
3530 memcg = head_pc->mem_cgroup;
3531 for (i = 1; i < HPAGE_PMD_NR; i++) {
3532 pc = head_pc + i;
3533 pc->mem_cgroup = memcg;
3534 smp_wmb();/* see __commit_charge() */
3535 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3536 }
3537 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3538 HPAGE_PMD_NR);
3539 }
3540 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3541
3542 /**
3543 * mem_cgroup_move_account - move account of the page
3544 * @page: the page
3545 * @nr_pages: number of regular pages (>1 for huge pages)
3546 * @pc: page_cgroup of the page.
3547 * @from: mem_cgroup which the page is moved from.
3548 * @to: mem_cgroup which the page is moved to. @from != @to.
3549 *
3550 * The caller must confirm following.
3551 * - page is not on LRU (isolate_page() is useful.)
3552 * - compound_lock is held when nr_pages > 1
3553 *
3554 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3555 * from old cgroup.
3556 */
3557 static int mem_cgroup_move_account(struct page *page,
3558 unsigned int nr_pages,
3559 struct page_cgroup *pc,
3560 struct mem_cgroup *from,
3561 struct mem_cgroup *to)
3562 {
3563 unsigned long flags;
3564 int ret;
3565 bool anon = PageAnon(page);
3566
3567 VM_BUG_ON(from == to);
3568 VM_BUG_ON_PAGE(PageLRU(page), page);
3569 /*
3570 * The page is isolated from LRU. So, collapse function
3571 * will not handle this page. But page splitting can happen.
3572 * Do this check under compound_page_lock(). The caller should
3573 * hold it.
3574 */
3575 ret = -EBUSY;
3576 if (nr_pages > 1 && !PageTransHuge(page))
3577 goto out;
3578
3579 lock_page_cgroup(pc);
3580
3581 ret = -EINVAL;
3582 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3583 goto unlock;
3584
3585 move_lock_mem_cgroup(from, &flags);
3586
3587 if (!anon && page_mapped(page)) {
3588 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3589 nr_pages);
3590 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3591 nr_pages);
3592 }
3593
3594 if (PageWriteback(page)) {
3595 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3596 nr_pages);
3597 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3598 nr_pages);
3599 }
3600
3601 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3602
3603 /* caller should have done css_get */
3604 pc->mem_cgroup = to;
3605 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3606 move_unlock_mem_cgroup(from, &flags);
3607 ret = 0;
3608 unlock:
3609 unlock_page_cgroup(pc);
3610 /*
3611 * check events
3612 */
3613 memcg_check_events(to, page);
3614 memcg_check_events(from, page);
3615 out:
3616 return ret;
3617 }
3618
3619 /**
3620 * mem_cgroup_move_parent - moves page to the parent group
3621 * @page: the page to move
3622 * @pc: page_cgroup of the page
3623 * @child: page's cgroup
3624 *
3625 * move charges to its parent or the root cgroup if the group has no
3626 * parent (aka use_hierarchy==0).
3627 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3628 * mem_cgroup_move_account fails) the failure is always temporary and
3629 * it signals a race with a page removal/uncharge or migration. In the
3630 * first case the page is on the way out and it will vanish from the LRU
3631 * on the next attempt and the call should be retried later.
3632 * Isolation from the LRU fails only if page has been isolated from
3633 * the LRU since we looked at it and that usually means either global
3634 * reclaim or migration going on. The page will either get back to the
3635 * LRU or vanish.
3636 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3637 * (!PageCgroupUsed) or moved to a different group. The page will
3638 * disappear in the next attempt.
3639 */
3640 static int mem_cgroup_move_parent(struct page *page,
3641 struct page_cgroup *pc,
3642 struct mem_cgroup *child)
3643 {
3644 struct mem_cgroup *parent;
3645 unsigned int nr_pages;
3646 unsigned long uninitialized_var(flags);
3647 int ret;
3648
3649 VM_BUG_ON(mem_cgroup_is_root(child));
3650
3651 ret = -EBUSY;
3652 if (!get_page_unless_zero(page))
3653 goto out;
3654 if (isolate_lru_page(page))
3655 goto put;
3656
3657 nr_pages = hpage_nr_pages(page);
3658
3659 parent = parent_mem_cgroup(child);
3660 /*
3661 * If no parent, move charges to root cgroup.
3662 */
3663 if (!parent)
3664 parent = root_mem_cgroup;
3665
3666 if (nr_pages > 1) {
3667 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3668 flags = compound_lock_irqsave(page);
3669 }
3670
3671 ret = mem_cgroup_move_account(page, nr_pages,
3672 pc, child, parent);
3673 if (!ret)
3674 __mem_cgroup_cancel_local_charge(child, nr_pages);
3675
3676 if (nr_pages > 1)
3677 compound_unlock_irqrestore(page, flags);
3678 putback_lru_page(page);
3679 put:
3680 put_page(page);
3681 out:
3682 return ret;
3683 }
3684
3685 int mem_cgroup_charge_anon(struct page *page,
3686 struct mm_struct *mm, gfp_t gfp_mask)
3687 {
3688 unsigned int nr_pages = 1;
3689 struct mem_cgroup *memcg;
3690 bool oom = true;
3691
3692 if (mem_cgroup_disabled())
3693 return 0;
3694
3695 VM_BUG_ON_PAGE(page_mapped(page), page);
3696 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3697 VM_BUG_ON(!mm);
3698
3699 if (PageTransHuge(page)) {
3700 nr_pages <<= compound_order(page);
3701 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3702 /*
3703 * Never OOM-kill a process for a huge page. The
3704 * fault handler will fall back to regular pages.
3705 */
3706 oom = false;
3707 }
3708
3709 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages, oom);
3710 if (!memcg)
3711 return -ENOMEM;
3712 __mem_cgroup_commit_charge(memcg, page, nr_pages,
3713 MEM_CGROUP_CHARGE_TYPE_ANON, false);
3714 return 0;
3715 }
3716
3717 /*
3718 * While swap-in, try_charge -> commit or cancel, the page is locked.
3719 * And when try_charge() successfully returns, one refcnt to memcg without
3720 * struct page_cgroup is acquired. This refcnt will be consumed by
3721 * "commit()" or removed by "cancel()"
3722 */
3723 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3724 struct page *page,
3725 gfp_t mask,
3726 struct mem_cgroup **memcgp)
3727 {
3728 struct mem_cgroup *memcg = NULL;
3729 struct page_cgroup *pc;
3730 int ret;
3731
3732 pc = lookup_page_cgroup(page);
3733 /*
3734 * Every swap fault against a single page tries to charge the
3735 * page, bail as early as possible. shmem_unuse() encounters
3736 * already charged pages, too. The USED bit is protected by
3737 * the page lock, which serializes swap cache removal, which
3738 * in turn serializes uncharging.
3739 */
3740 if (PageCgroupUsed(pc))
3741 goto out;
3742 if (do_swap_account)
3743 memcg = try_get_mem_cgroup_from_page(page);
3744 if (!memcg)
3745 memcg = get_mem_cgroup_from_mm(mm);
3746 ret = mem_cgroup_try_charge(memcg, mask, 1, true);
3747 css_put(&memcg->css);
3748 if (ret == -EINTR)
3749 memcg = root_mem_cgroup;
3750 else if (ret)
3751 return ret;
3752 out:
3753 *memcgp = memcg;
3754 return 0;
3755 }
3756
3757 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3758 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3759 {
3760 if (mem_cgroup_disabled()) {
3761 *memcgp = NULL;
3762 return 0;
3763 }
3764 /*
3765 * A racing thread's fault, or swapoff, may have already
3766 * updated the pte, and even removed page from swap cache: in
3767 * those cases unuse_pte()'s pte_same() test will fail; but
3768 * there's also a KSM case which does need to charge the page.
3769 */
3770 if (!PageSwapCache(page)) {
3771 struct mem_cgroup *memcg;
3772
3773 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3774 if (!memcg)
3775 return -ENOMEM;
3776 *memcgp = memcg;
3777 return 0;
3778 }
3779 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3780 }
3781
3782 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3783 {
3784 if (mem_cgroup_disabled())
3785 return;
3786 if (!memcg)
3787 return;
3788 __mem_cgroup_cancel_charge(memcg, 1);
3789 }
3790
3791 static void
3792 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3793 enum charge_type ctype)
3794 {
3795 if (mem_cgroup_disabled())
3796 return;
3797 if (!memcg)
3798 return;
3799
3800 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3801 /*
3802 * Now swap is on-memory. This means this page may be
3803 * counted both as mem and swap....double count.
3804 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3805 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3806 * may call delete_from_swap_cache() before reach here.
3807 */
3808 if (do_swap_account && PageSwapCache(page)) {
3809 swp_entry_t ent = {.val = page_private(page)};
3810 mem_cgroup_uncharge_swap(ent);
3811 }
3812 }
3813
3814 void mem_cgroup_commit_charge_swapin(struct page *page,
3815 struct mem_cgroup *memcg)
3816 {
3817 __mem_cgroup_commit_charge_swapin(page, memcg,
3818 MEM_CGROUP_CHARGE_TYPE_ANON);
3819 }
3820
3821 int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm,
3822 gfp_t gfp_mask)
3823 {
3824 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3825 struct mem_cgroup *memcg;
3826 int ret;
3827
3828 if (mem_cgroup_disabled())
3829 return 0;
3830 if (PageCompound(page))
3831 return 0;
3832
3833 if (PageSwapCache(page)) { /* shmem */
3834 ret = __mem_cgroup_try_charge_swapin(mm, page,
3835 gfp_mask, &memcg);
3836 if (ret)
3837 return ret;
3838 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3839 return 0;
3840 }
3841
3842 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3843 if (!memcg)
3844 return -ENOMEM;
3845 __mem_cgroup_commit_charge(memcg, page, 1, type, false);
3846 return 0;
3847 }
3848
3849 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3850 unsigned int nr_pages,
3851 const enum charge_type ctype)
3852 {
3853 struct memcg_batch_info *batch = NULL;
3854 bool uncharge_memsw = true;
3855
3856 /* If swapout, usage of swap doesn't decrease */
3857 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3858 uncharge_memsw = false;
3859
3860 batch = &current->memcg_batch;
3861 /*
3862 * In usual, we do css_get() when we remember memcg pointer.
3863 * But in this case, we keep res->usage until end of a series of
3864 * uncharges. Then, it's ok to ignore memcg's refcnt.
3865 */
3866 if (!batch->memcg)
3867 batch->memcg = memcg;
3868 /*
3869 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3870 * In those cases, all pages freed continuously can be expected to be in
3871 * the same cgroup and we have chance to coalesce uncharges.
3872 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3873 * because we want to do uncharge as soon as possible.
3874 */
3875
3876 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3877 goto direct_uncharge;
3878
3879 if (nr_pages > 1)
3880 goto direct_uncharge;
3881
3882 /*
3883 * In typical case, batch->memcg == mem. This means we can
3884 * merge a series of uncharges to an uncharge of res_counter.
3885 * If not, we uncharge res_counter ony by one.
3886 */
3887 if (batch->memcg != memcg)
3888 goto direct_uncharge;
3889 /* remember freed charge and uncharge it later */
3890 batch->nr_pages++;
3891 if (uncharge_memsw)
3892 batch->memsw_nr_pages++;
3893 return;
3894 direct_uncharge:
3895 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3896 if (uncharge_memsw)
3897 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3898 if (unlikely(batch->memcg != memcg))
3899 memcg_oom_recover(memcg);
3900 }
3901
3902 /*
3903 * uncharge if !page_mapped(page)
3904 */
3905 static struct mem_cgroup *
3906 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3907 bool end_migration)
3908 {
3909 struct mem_cgroup *memcg = NULL;
3910 unsigned int nr_pages = 1;
3911 struct page_cgroup *pc;
3912 bool anon;
3913
3914 if (mem_cgroup_disabled())
3915 return NULL;
3916
3917 if (PageTransHuge(page)) {
3918 nr_pages <<= compound_order(page);
3919 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3920 }
3921 /*
3922 * Check if our page_cgroup is valid
3923 */
3924 pc = lookup_page_cgroup(page);
3925 if (unlikely(!PageCgroupUsed(pc)))
3926 return NULL;
3927
3928 lock_page_cgroup(pc);
3929
3930 memcg = pc->mem_cgroup;
3931
3932 if (!PageCgroupUsed(pc))
3933 goto unlock_out;
3934
3935 anon = PageAnon(page);
3936
3937 switch (ctype) {
3938 case MEM_CGROUP_CHARGE_TYPE_ANON:
3939 /*
3940 * Generally PageAnon tells if it's the anon statistics to be
3941 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3942 * used before page reached the stage of being marked PageAnon.
3943 */
3944 anon = true;
3945 /* fallthrough */
3946 case MEM_CGROUP_CHARGE_TYPE_DROP:
3947 /* See mem_cgroup_prepare_migration() */
3948 if (page_mapped(page))
3949 goto unlock_out;
3950 /*
3951 * Pages under migration may not be uncharged. But
3952 * end_migration() /must/ be the one uncharging the
3953 * unused post-migration page and so it has to call
3954 * here with the migration bit still set. See the
3955 * res_counter handling below.
3956 */
3957 if (!end_migration && PageCgroupMigration(pc))
3958 goto unlock_out;
3959 break;
3960 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3961 if (!PageAnon(page)) { /* Shared memory */
3962 if (page->mapping && !page_is_file_cache(page))
3963 goto unlock_out;
3964 } else if (page_mapped(page)) /* Anon */
3965 goto unlock_out;
3966 break;
3967 default:
3968 break;
3969 }
3970
3971 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
3972
3973 ClearPageCgroupUsed(pc);
3974 /*
3975 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3976 * freed from LRU. This is safe because uncharged page is expected not
3977 * to be reused (freed soon). Exception is SwapCache, it's handled by
3978 * special functions.
3979 */
3980
3981 unlock_page_cgroup(pc);
3982 /*
3983 * even after unlock, we have memcg->res.usage here and this memcg
3984 * will never be freed, so it's safe to call css_get().
3985 */
3986 memcg_check_events(memcg, page);
3987 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3988 mem_cgroup_swap_statistics(memcg, true);
3989 css_get(&memcg->css);
3990 }
3991 /*
3992 * Migration does not charge the res_counter for the
3993 * replacement page, so leave it alone when phasing out the
3994 * page that is unused after the migration.
3995 */
3996 if (!end_migration && !mem_cgroup_is_root(memcg))
3997 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3998
3999 return memcg;
4000
4001 unlock_out:
4002 unlock_page_cgroup(pc);
4003 return NULL;
4004 }
4005
4006 void mem_cgroup_uncharge_page(struct page *page)
4007 {
4008 /* early check. */
4009 if (page_mapped(page))
4010 return;
4011 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
4012 /*
4013 * If the page is in swap cache, uncharge should be deferred
4014 * to the swap path, which also properly accounts swap usage
4015 * and handles memcg lifetime.
4016 *
4017 * Note that this check is not stable and reclaim may add the
4018 * page to swap cache at any time after this. However, if the
4019 * page is not in swap cache by the time page->mapcount hits
4020 * 0, there won't be any page table references to the swap
4021 * slot, and reclaim will free it and not actually write the
4022 * page to disk.
4023 */
4024 if (PageSwapCache(page))
4025 return;
4026 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4027 }
4028
4029 void mem_cgroup_uncharge_cache_page(struct page *page)
4030 {
4031 VM_BUG_ON_PAGE(page_mapped(page), page);
4032 VM_BUG_ON_PAGE(page->mapping, page);
4033 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4034 }
4035
4036 /*
4037 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4038 * In that cases, pages are freed continuously and we can expect pages
4039 * are in the same memcg. All these calls itself limits the number of
4040 * pages freed at once, then uncharge_start/end() is called properly.
4041 * This may be called prural(2) times in a context,
4042 */
4043
4044 void mem_cgroup_uncharge_start(void)
4045 {
4046 current->memcg_batch.do_batch++;
4047 /* We can do nest. */
4048 if (current->memcg_batch.do_batch == 1) {
4049 current->memcg_batch.memcg = NULL;
4050 current->memcg_batch.nr_pages = 0;
4051 current->memcg_batch.memsw_nr_pages = 0;
4052 }
4053 }
4054
4055 void mem_cgroup_uncharge_end(void)
4056 {
4057 struct memcg_batch_info *batch = &current->memcg_batch;
4058
4059 if (!batch->do_batch)
4060 return;
4061
4062 batch->do_batch--;
4063 if (batch->do_batch) /* If stacked, do nothing. */
4064 return;
4065
4066 if (!batch->memcg)
4067 return;
4068 /*
4069 * This "batch->memcg" is valid without any css_get/put etc...
4070 * bacause we hide charges behind us.
4071 */
4072 if (batch->nr_pages)
4073 res_counter_uncharge(&batch->memcg->res,
4074 batch->nr_pages * PAGE_SIZE);
4075 if (batch->memsw_nr_pages)
4076 res_counter_uncharge(&batch->memcg->memsw,
4077 batch->memsw_nr_pages * PAGE_SIZE);
4078 memcg_oom_recover(batch->memcg);
4079 /* forget this pointer (for sanity check) */
4080 batch->memcg = NULL;
4081 }
4082
4083 #ifdef CONFIG_SWAP
4084 /*
4085 * called after __delete_from_swap_cache() and drop "page" account.
4086 * memcg information is recorded to swap_cgroup of "ent"
4087 */
4088 void
4089 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4090 {
4091 struct mem_cgroup *memcg;
4092 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4093
4094 if (!swapout) /* this was a swap cache but the swap is unused ! */
4095 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4096
4097 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4098
4099 /*
4100 * record memcg information, if swapout && memcg != NULL,
4101 * css_get() was called in uncharge().
4102 */
4103 if (do_swap_account && swapout && memcg)
4104 swap_cgroup_record(ent, mem_cgroup_id(memcg));
4105 }
4106 #endif
4107
4108 #ifdef CONFIG_MEMCG_SWAP
4109 /*
4110 * called from swap_entry_free(). remove record in swap_cgroup and
4111 * uncharge "memsw" account.
4112 */
4113 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4114 {
4115 struct mem_cgroup *memcg;
4116 unsigned short id;
4117
4118 if (!do_swap_account)
4119 return;
4120
4121 id = swap_cgroup_record(ent, 0);
4122 rcu_read_lock();
4123 memcg = mem_cgroup_lookup(id);
4124 if (memcg) {
4125 /*
4126 * We uncharge this because swap is freed. This memcg can
4127 * be obsolete one. We avoid calling css_tryget_online().
4128 */
4129 if (!mem_cgroup_is_root(memcg))
4130 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4131 mem_cgroup_swap_statistics(memcg, false);
4132 css_put(&memcg->css);
4133 }
4134 rcu_read_unlock();
4135 }
4136
4137 /**
4138 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4139 * @entry: swap entry to be moved
4140 * @from: mem_cgroup which the entry is moved from
4141 * @to: mem_cgroup which the entry is moved to
4142 *
4143 * It succeeds only when the swap_cgroup's record for this entry is the same
4144 * as the mem_cgroup's id of @from.
4145 *
4146 * Returns 0 on success, -EINVAL on failure.
4147 *
4148 * The caller must have charged to @to, IOW, called res_counter_charge() about
4149 * both res and memsw, and called css_get().
4150 */
4151 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4152 struct mem_cgroup *from, struct mem_cgroup *to)
4153 {
4154 unsigned short old_id, new_id;
4155
4156 old_id = mem_cgroup_id(from);
4157 new_id = mem_cgroup_id(to);
4158
4159 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4160 mem_cgroup_swap_statistics(from, false);
4161 mem_cgroup_swap_statistics(to, true);
4162 /*
4163 * This function is only called from task migration context now.
4164 * It postpones res_counter and refcount handling till the end
4165 * of task migration(mem_cgroup_clear_mc()) for performance
4166 * improvement. But we cannot postpone css_get(to) because if
4167 * the process that has been moved to @to does swap-in, the
4168 * refcount of @to might be decreased to 0.
4169 *
4170 * We are in attach() phase, so the cgroup is guaranteed to be
4171 * alive, so we can just call css_get().
4172 */
4173 css_get(&to->css);
4174 return 0;
4175 }
4176 return -EINVAL;
4177 }
4178 #else
4179 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4180 struct mem_cgroup *from, struct mem_cgroup *to)
4181 {
4182 return -EINVAL;
4183 }
4184 #endif
4185
4186 /*
4187 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4188 * page belongs to.
4189 */
4190 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4191 struct mem_cgroup **memcgp)
4192 {
4193 struct mem_cgroup *memcg = NULL;
4194 unsigned int nr_pages = 1;
4195 struct page_cgroup *pc;
4196 enum charge_type ctype;
4197
4198 *memcgp = NULL;
4199
4200 if (mem_cgroup_disabled())
4201 return;
4202
4203 if (PageTransHuge(page))
4204 nr_pages <<= compound_order(page);
4205
4206 pc = lookup_page_cgroup(page);
4207 lock_page_cgroup(pc);
4208 if (PageCgroupUsed(pc)) {
4209 memcg = pc->mem_cgroup;
4210 css_get(&memcg->css);
4211 /*
4212 * At migrating an anonymous page, its mapcount goes down
4213 * to 0 and uncharge() will be called. But, even if it's fully
4214 * unmapped, migration may fail and this page has to be
4215 * charged again. We set MIGRATION flag here and delay uncharge
4216 * until end_migration() is called
4217 *
4218 * Corner Case Thinking
4219 * A)
4220 * When the old page was mapped as Anon and it's unmap-and-freed
4221 * while migration was ongoing.
4222 * If unmap finds the old page, uncharge() of it will be delayed
4223 * until end_migration(). If unmap finds a new page, it's
4224 * uncharged when it make mapcount to be 1->0. If unmap code
4225 * finds swap_migration_entry, the new page will not be mapped
4226 * and end_migration() will find it(mapcount==0).
4227 *
4228 * B)
4229 * When the old page was mapped but migraion fails, the kernel
4230 * remaps it. A charge for it is kept by MIGRATION flag even
4231 * if mapcount goes down to 0. We can do remap successfully
4232 * without charging it again.
4233 *
4234 * C)
4235 * The "old" page is under lock_page() until the end of
4236 * migration, so, the old page itself will not be swapped-out.
4237 * If the new page is swapped out before end_migraton, our
4238 * hook to usual swap-out path will catch the event.
4239 */
4240 if (PageAnon(page))
4241 SetPageCgroupMigration(pc);
4242 }
4243 unlock_page_cgroup(pc);
4244 /*
4245 * If the page is not charged at this point,
4246 * we return here.
4247 */
4248 if (!memcg)
4249 return;
4250
4251 *memcgp = memcg;
4252 /*
4253 * We charge new page before it's used/mapped. So, even if unlock_page()
4254 * is called before end_migration, we can catch all events on this new
4255 * page. In the case new page is migrated but not remapped, new page's
4256 * mapcount will be finally 0 and we call uncharge in end_migration().
4257 */
4258 if (PageAnon(page))
4259 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4260 else
4261 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4262 /*
4263 * The page is committed to the memcg, but it's not actually
4264 * charged to the res_counter since we plan on replacing the
4265 * old one and only one page is going to be left afterwards.
4266 */
4267 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4268 }
4269
4270 /* remove redundant charge if migration failed*/
4271 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4272 struct page *oldpage, struct page *newpage, bool migration_ok)
4273 {
4274 struct page *used, *unused;
4275 struct page_cgroup *pc;
4276 bool anon;
4277
4278 if (!memcg)
4279 return;
4280
4281 if (!migration_ok) {
4282 used = oldpage;
4283 unused = newpage;
4284 } else {
4285 used = newpage;
4286 unused = oldpage;
4287 }
4288 anon = PageAnon(used);
4289 __mem_cgroup_uncharge_common(unused,
4290 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4291 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4292 true);
4293 css_put(&memcg->css);
4294 /*
4295 * We disallowed uncharge of pages under migration because mapcount
4296 * of the page goes down to zero, temporarly.
4297 * Clear the flag and check the page should be charged.
4298 */
4299 pc = lookup_page_cgroup(oldpage);
4300 lock_page_cgroup(pc);
4301 ClearPageCgroupMigration(pc);
4302 unlock_page_cgroup(pc);
4303
4304 /*
4305 * If a page is a file cache, radix-tree replacement is very atomic
4306 * and we can skip this check. When it was an Anon page, its mapcount
4307 * goes down to 0. But because we added MIGRATION flage, it's not
4308 * uncharged yet. There are several case but page->mapcount check
4309 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4310 * check. (see prepare_charge() also)
4311 */
4312 if (anon)
4313 mem_cgroup_uncharge_page(used);
4314 }
4315
4316 /*
4317 * At replace page cache, newpage is not under any memcg but it's on
4318 * LRU. So, this function doesn't touch res_counter but handles LRU
4319 * in correct way. Both pages are locked so we cannot race with uncharge.
4320 */
4321 void mem_cgroup_replace_page_cache(struct page *oldpage,
4322 struct page *newpage)
4323 {
4324 struct mem_cgroup *memcg = NULL;
4325 struct page_cgroup *pc;
4326 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4327
4328 if (mem_cgroup_disabled())
4329 return;
4330
4331 pc = lookup_page_cgroup(oldpage);
4332 /* fix accounting on old pages */
4333 lock_page_cgroup(pc);
4334 if (PageCgroupUsed(pc)) {
4335 memcg = pc->mem_cgroup;
4336 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4337 ClearPageCgroupUsed(pc);
4338 }
4339 unlock_page_cgroup(pc);
4340
4341 /*
4342 * When called from shmem_replace_page(), in some cases the
4343 * oldpage has already been charged, and in some cases not.
4344 */
4345 if (!memcg)
4346 return;
4347 /*
4348 * Even if newpage->mapping was NULL before starting replacement,
4349 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4350 * LRU while we overwrite pc->mem_cgroup.
4351 */
4352 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4353 }
4354
4355 #ifdef CONFIG_DEBUG_VM
4356 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4357 {
4358 struct page_cgroup *pc;
4359
4360 pc = lookup_page_cgroup(page);
4361 /*
4362 * Can be NULL while feeding pages into the page allocator for
4363 * the first time, i.e. during boot or memory hotplug;
4364 * or when mem_cgroup_disabled().
4365 */
4366 if (likely(pc) && PageCgroupUsed(pc))
4367 return pc;
4368 return NULL;
4369 }
4370
4371 bool mem_cgroup_bad_page_check(struct page *page)
4372 {
4373 if (mem_cgroup_disabled())
4374 return false;
4375
4376 return lookup_page_cgroup_used(page) != NULL;
4377 }
4378
4379 void mem_cgroup_print_bad_page(struct page *page)
4380 {
4381 struct page_cgroup *pc;
4382
4383 pc = lookup_page_cgroup_used(page);
4384 if (pc) {
4385 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4386 pc, pc->flags, pc->mem_cgroup);
4387 }
4388 }
4389 #endif
4390
4391 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4392 unsigned long long val)
4393 {
4394 int retry_count;
4395 u64 memswlimit, memlimit;
4396 int ret = 0;
4397 int children = mem_cgroup_count_children(memcg);
4398 u64 curusage, oldusage;
4399 int enlarge;
4400
4401 /*
4402 * For keeping hierarchical_reclaim simple, how long we should retry
4403 * is depends on callers. We set our retry-count to be function
4404 * of # of children which we should visit in this loop.
4405 */
4406 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4407
4408 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4409
4410 enlarge = 0;
4411 while (retry_count) {
4412 if (signal_pending(current)) {
4413 ret = -EINTR;
4414 break;
4415 }
4416 /*
4417 * Rather than hide all in some function, I do this in
4418 * open coded manner. You see what this really does.
4419 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4420 */
4421 mutex_lock(&set_limit_mutex);
4422 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4423 if (memswlimit < val) {
4424 ret = -EINVAL;
4425 mutex_unlock(&set_limit_mutex);
4426 break;
4427 }
4428
4429 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4430 if (memlimit < val)
4431 enlarge = 1;
4432
4433 ret = res_counter_set_limit(&memcg->res, val);
4434 if (!ret) {
4435 if (memswlimit == val)
4436 memcg->memsw_is_minimum = true;
4437 else
4438 memcg->memsw_is_minimum = false;
4439 }
4440 mutex_unlock(&set_limit_mutex);
4441
4442 if (!ret)
4443 break;
4444
4445 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4446 MEM_CGROUP_RECLAIM_SHRINK);
4447 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4448 /* Usage is reduced ? */
4449 if (curusage >= oldusage)
4450 retry_count--;
4451 else
4452 oldusage = curusage;
4453 }
4454 if (!ret && enlarge)
4455 memcg_oom_recover(memcg);
4456
4457 return ret;
4458 }
4459
4460 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4461 unsigned long long val)
4462 {
4463 int retry_count;
4464 u64 memlimit, memswlimit, oldusage, curusage;
4465 int children = mem_cgroup_count_children(memcg);
4466 int ret = -EBUSY;
4467 int enlarge = 0;
4468
4469 /* see mem_cgroup_resize_res_limit */
4470 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4471 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4472 while (retry_count) {
4473 if (signal_pending(current)) {
4474 ret = -EINTR;
4475 break;
4476 }
4477 /*
4478 * Rather than hide all in some function, I do this in
4479 * open coded manner. You see what this really does.
4480 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4481 */
4482 mutex_lock(&set_limit_mutex);
4483 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4484 if (memlimit > val) {
4485 ret = -EINVAL;
4486 mutex_unlock(&set_limit_mutex);
4487 break;
4488 }
4489 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4490 if (memswlimit < val)
4491 enlarge = 1;
4492 ret = res_counter_set_limit(&memcg->memsw, val);
4493 if (!ret) {
4494 if (memlimit == val)
4495 memcg->memsw_is_minimum = true;
4496 else
4497 memcg->memsw_is_minimum = false;
4498 }
4499 mutex_unlock(&set_limit_mutex);
4500
4501 if (!ret)
4502 break;
4503
4504 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4505 MEM_CGROUP_RECLAIM_NOSWAP |
4506 MEM_CGROUP_RECLAIM_SHRINK);
4507 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4508 /* Usage is reduced ? */
4509 if (curusage >= oldusage)
4510 retry_count--;
4511 else
4512 oldusage = curusage;
4513 }
4514 if (!ret && enlarge)
4515 memcg_oom_recover(memcg);
4516 return ret;
4517 }
4518
4519 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4520 gfp_t gfp_mask,
4521 unsigned long *total_scanned)
4522 {
4523 unsigned long nr_reclaimed = 0;
4524 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4525 unsigned long reclaimed;
4526 int loop = 0;
4527 struct mem_cgroup_tree_per_zone *mctz;
4528 unsigned long long excess;
4529 unsigned long nr_scanned;
4530
4531 if (order > 0)
4532 return 0;
4533
4534 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4535 /*
4536 * This loop can run a while, specially if mem_cgroup's continuously
4537 * keep exceeding their soft limit and putting the system under
4538 * pressure
4539 */
4540 do {
4541 if (next_mz)
4542 mz = next_mz;
4543 else
4544 mz = mem_cgroup_largest_soft_limit_node(mctz);
4545 if (!mz)
4546 break;
4547
4548 nr_scanned = 0;
4549 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4550 gfp_mask, &nr_scanned);
4551 nr_reclaimed += reclaimed;
4552 *total_scanned += nr_scanned;
4553 spin_lock(&mctz->lock);
4554
4555 /*
4556 * If we failed to reclaim anything from this memory cgroup
4557 * it is time to move on to the next cgroup
4558 */
4559 next_mz = NULL;
4560 if (!reclaimed) {
4561 do {
4562 /*
4563 * Loop until we find yet another one.
4564 *
4565 * By the time we get the soft_limit lock
4566 * again, someone might have aded the
4567 * group back on the RB tree. Iterate to
4568 * make sure we get a different mem.
4569 * mem_cgroup_largest_soft_limit_node returns
4570 * NULL if no other cgroup is present on
4571 * the tree
4572 */
4573 next_mz =
4574 __mem_cgroup_largest_soft_limit_node(mctz);
4575 if (next_mz == mz)
4576 css_put(&next_mz->memcg->css);
4577 else /* next_mz == NULL or other memcg */
4578 break;
4579 } while (1);
4580 }
4581 __mem_cgroup_remove_exceeded(mz, mctz);
4582 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4583 /*
4584 * One school of thought says that we should not add
4585 * back the node to the tree if reclaim returns 0.
4586 * But our reclaim could return 0, simply because due
4587 * to priority we are exposing a smaller subset of
4588 * memory to reclaim from. Consider this as a longer
4589 * term TODO.
4590 */
4591 /* If excess == 0, no tree ops */
4592 __mem_cgroup_insert_exceeded(mz, mctz, excess);
4593 spin_unlock(&mctz->lock);
4594 css_put(&mz->memcg->css);
4595 loop++;
4596 /*
4597 * Could not reclaim anything and there are no more
4598 * mem cgroups to try or we seem to be looping without
4599 * reclaiming anything.
4600 */
4601 if (!nr_reclaimed &&
4602 (next_mz == NULL ||
4603 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4604 break;
4605 } while (!nr_reclaimed);
4606 if (next_mz)
4607 css_put(&next_mz->memcg->css);
4608 return nr_reclaimed;
4609 }
4610
4611 /**
4612 * mem_cgroup_force_empty_list - clears LRU of a group
4613 * @memcg: group to clear
4614 * @node: NUMA node
4615 * @zid: zone id
4616 * @lru: lru to to clear
4617 *
4618 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4619 * reclaim the pages page themselves - pages are moved to the parent (or root)
4620 * group.
4621 */
4622 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4623 int node, int zid, enum lru_list lru)
4624 {
4625 struct lruvec *lruvec;
4626 unsigned long flags;
4627 struct list_head *list;
4628 struct page *busy;
4629 struct zone *zone;
4630
4631 zone = &NODE_DATA(node)->node_zones[zid];
4632 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4633 list = &lruvec->lists[lru];
4634
4635 busy = NULL;
4636 do {
4637 struct page_cgroup *pc;
4638 struct page *page;
4639
4640 spin_lock_irqsave(&zone->lru_lock, flags);
4641 if (list_empty(list)) {
4642 spin_unlock_irqrestore(&zone->lru_lock, flags);
4643 break;
4644 }
4645 page = list_entry(list->prev, struct page, lru);
4646 if (busy == page) {
4647 list_move(&page->lru, list);
4648 busy = NULL;
4649 spin_unlock_irqrestore(&zone->lru_lock, flags);
4650 continue;
4651 }
4652 spin_unlock_irqrestore(&zone->lru_lock, flags);
4653
4654 pc = lookup_page_cgroup(page);
4655
4656 if (mem_cgroup_move_parent(page, pc, memcg)) {
4657 /* found lock contention or "pc" is obsolete. */
4658 busy = page;
4659 } else
4660 busy = NULL;
4661 cond_resched();
4662 } while (!list_empty(list));
4663 }
4664
4665 /*
4666 * make mem_cgroup's charge to be 0 if there is no task by moving
4667 * all the charges and pages to the parent.
4668 * This enables deleting this mem_cgroup.
4669 *
4670 * Caller is responsible for holding css reference on the memcg.
4671 */
4672 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4673 {
4674 int node, zid;
4675 u64 usage;
4676
4677 do {
4678 /* This is for making all *used* pages to be on LRU. */
4679 lru_add_drain_all();
4680 drain_all_stock_sync(memcg);
4681 mem_cgroup_start_move(memcg);
4682 for_each_node_state(node, N_MEMORY) {
4683 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4684 enum lru_list lru;
4685 for_each_lru(lru) {
4686 mem_cgroup_force_empty_list(memcg,
4687 node, zid, lru);
4688 }
4689 }
4690 }
4691 mem_cgroup_end_move(memcg);
4692 memcg_oom_recover(memcg);
4693 cond_resched();
4694
4695 /*
4696 * Kernel memory may not necessarily be trackable to a specific
4697 * process. So they are not migrated, and therefore we can't
4698 * expect their value to drop to 0 here.
4699 * Having res filled up with kmem only is enough.
4700 *
4701 * This is a safety check because mem_cgroup_force_empty_list
4702 * could have raced with mem_cgroup_replace_page_cache callers
4703 * so the lru seemed empty but the page could have been added
4704 * right after the check. RES_USAGE should be safe as we always
4705 * charge before adding to the LRU.
4706 */
4707 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4708 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4709 } while (usage > 0);
4710 }
4711
4712 /*
4713 * Test whether @memcg has children, dead or alive. Note that this
4714 * function doesn't care whether @memcg has use_hierarchy enabled and
4715 * returns %true if there are child csses according to the cgroup
4716 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
4717 */
4718 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4719 {
4720 bool ret;
4721
4722 /*
4723 * The lock does not prevent addition or deletion of children, but
4724 * it prevents a new child from being initialized based on this
4725 * parent in css_online(), so it's enough to decide whether
4726 * hierarchically inherited attributes can still be changed or not.
4727 */
4728 lockdep_assert_held(&memcg_create_mutex);
4729
4730 rcu_read_lock();
4731 ret = css_next_child(NULL, &memcg->css);
4732 rcu_read_unlock();
4733 return ret;
4734 }
4735
4736 /*
4737 * Reclaims as many pages from the given memcg as possible and moves
4738 * the rest to the parent.
4739 *
4740 * Caller is responsible for holding css reference for memcg.
4741 */
4742 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4743 {
4744 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4745
4746 /* we call try-to-free pages for make this cgroup empty */
4747 lru_add_drain_all();
4748 /* try to free all pages in this cgroup */
4749 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4750 int progress;
4751
4752 if (signal_pending(current))
4753 return -EINTR;
4754
4755 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4756 false);
4757 if (!progress) {
4758 nr_retries--;
4759 /* maybe some writeback is necessary */
4760 congestion_wait(BLK_RW_ASYNC, HZ/10);
4761 }
4762
4763 }
4764
4765 return 0;
4766 }
4767
4768 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
4769 char *buf, size_t nbytes,
4770 loff_t off)
4771 {
4772 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4773
4774 if (mem_cgroup_is_root(memcg))
4775 return -EINVAL;
4776 return mem_cgroup_force_empty(memcg) ?: nbytes;
4777 }
4778
4779 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4780 struct cftype *cft)
4781 {
4782 return mem_cgroup_from_css(css)->use_hierarchy;
4783 }
4784
4785 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4786 struct cftype *cft, u64 val)
4787 {
4788 int retval = 0;
4789 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4790 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
4791
4792 mutex_lock(&memcg_create_mutex);
4793
4794 if (memcg->use_hierarchy == val)
4795 goto out;
4796
4797 /*
4798 * If parent's use_hierarchy is set, we can't make any modifications
4799 * in the child subtrees. If it is unset, then the change can
4800 * occur, provided the current cgroup has no children.
4801 *
4802 * For the root cgroup, parent_mem is NULL, we allow value to be
4803 * set if there are no children.
4804 */
4805 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4806 (val == 1 || val == 0)) {
4807 if (!memcg_has_children(memcg))
4808 memcg->use_hierarchy = val;
4809 else
4810 retval = -EBUSY;
4811 } else
4812 retval = -EINVAL;
4813
4814 out:
4815 mutex_unlock(&memcg_create_mutex);
4816
4817 return retval;
4818 }
4819
4820
4821 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4822 enum mem_cgroup_stat_index idx)
4823 {
4824 struct mem_cgroup *iter;
4825 long val = 0;
4826
4827 /* Per-cpu values can be negative, use a signed accumulator */
4828 for_each_mem_cgroup_tree(iter, memcg)
4829 val += mem_cgroup_read_stat(iter, idx);
4830
4831 if (val < 0) /* race ? */
4832 val = 0;
4833 return val;
4834 }
4835
4836 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4837 {
4838 u64 val;
4839
4840 if (!mem_cgroup_is_root(memcg)) {
4841 if (!swap)
4842 return res_counter_read_u64(&memcg->res, RES_USAGE);
4843 else
4844 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4845 }
4846
4847 /*
4848 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4849 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4850 */
4851 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4852 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4853
4854 if (swap)
4855 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4856
4857 return val << PAGE_SHIFT;
4858 }
4859
4860 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4861 struct cftype *cft)
4862 {
4863 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4864 u64 val;
4865 int name;
4866 enum res_type type;
4867
4868 type = MEMFILE_TYPE(cft->private);
4869 name = MEMFILE_ATTR(cft->private);
4870
4871 switch (type) {
4872 case _MEM:
4873 if (name == RES_USAGE)
4874 val = mem_cgroup_usage(memcg, false);
4875 else
4876 val = res_counter_read_u64(&memcg->res, name);
4877 break;
4878 case _MEMSWAP:
4879 if (name == RES_USAGE)
4880 val = mem_cgroup_usage(memcg, true);
4881 else
4882 val = res_counter_read_u64(&memcg->memsw, name);
4883 break;
4884 case _KMEM:
4885 val = res_counter_read_u64(&memcg->kmem, name);
4886 break;
4887 default:
4888 BUG();
4889 }
4890
4891 return val;
4892 }
4893
4894 #ifdef CONFIG_MEMCG_KMEM
4895 /* should be called with activate_kmem_mutex held */
4896 static int __memcg_activate_kmem(struct mem_cgroup *memcg,
4897 unsigned long long limit)
4898 {
4899 int err = 0;
4900 int memcg_id;
4901
4902 if (memcg_kmem_is_active(memcg))
4903 return 0;
4904
4905 /*
4906 * We are going to allocate memory for data shared by all memory
4907 * cgroups so let's stop accounting here.
4908 */
4909 memcg_stop_kmem_account();
4910
4911 /*
4912 * For simplicity, we won't allow this to be disabled. It also can't
4913 * be changed if the cgroup has children already, or if tasks had
4914 * already joined.
4915 *
4916 * If tasks join before we set the limit, a person looking at
4917 * kmem.usage_in_bytes will have no way to determine when it took
4918 * place, which makes the value quite meaningless.
4919 *
4920 * After it first became limited, changes in the value of the limit are
4921 * of course permitted.
4922 */
4923 mutex_lock(&memcg_create_mutex);
4924 if (cgroup_has_tasks(memcg->css.cgroup) ||
4925 (memcg->use_hierarchy && memcg_has_children(memcg)))
4926 err = -EBUSY;
4927 mutex_unlock(&memcg_create_mutex);
4928 if (err)
4929 goto out;
4930
4931 memcg_id = ida_simple_get(&kmem_limited_groups,
4932 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
4933 if (memcg_id < 0) {
4934 err = memcg_id;
4935 goto out;
4936 }
4937
4938 /*
4939 * Make sure we have enough space for this cgroup in each root cache's
4940 * memcg_params.
4941 */
4942 mutex_lock(&memcg_slab_mutex);
4943 err = memcg_update_all_caches(memcg_id + 1);
4944 mutex_unlock(&memcg_slab_mutex);
4945 if (err)
4946 goto out_rmid;
4947
4948 memcg->kmemcg_id = memcg_id;
4949 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
4950
4951 /*
4952 * We couldn't have accounted to this cgroup, because it hasn't got the
4953 * active bit set yet, so this should succeed.
4954 */
4955 err = res_counter_set_limit(&memcg->kmem, limit);
4956 VM_BUG_ON(err);
4957
4958 static_key_slow_inc(&memcg_kmem_enabled_key);
4959 /*
4960 * Setting the active bit after enabling static branching will
4961 * guarantee no one starts accounting before all call sites are
4962 * patched.
4963 */
4964 memcg_kmem_set_active(memcg);
4965 out:
4966 memcg_resume_kmem_account();
4967 return err;
4968
4969 out_rmid:
4970 ida_simple_remove(&kmem_limited_groups, memcg_id);
4971 goto out;
4972 }
4973
4974 static int memcg_activate_kmem(struct mem_cgroup *memcg,
4975 unsigned long long limit)
4976 {
4977 int ret;
4978
4979 mutex_lock(&activate_kmem_mutex);
4980 ret = __memcg_activate_kmem(memcg, limit);
4981 mutex_unlock(&activate_kmem_mutex);
4982 return ret;
4983 }
4984
4985 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4986 unsigned long long val)
4987 {
4988 int ret;
4989
4990 if (!memcg_kmem_is_active(memcg))
4991 ret = memcg_activate_kmem(memcg, val);
4992 else
4993 ret = res_counter_set_limit(&memcg->kmem, val);
4994 return ret;
4995 }
4996
4997 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4998 {
4999 int ret = 0;
5000 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5001
5002 if (!parent)
5003 return 0;
5004
5005 mutex_lock(&activate_kmem_mutex);
5006 /*
5007 * If the parent cgroup is not kmem-active now, it cannot be activated
5008 * after this point, because it has at least one child already.
5009 */
5010 if (memcg_kmem_is_active(parent))
5011 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
5012 mutex_unlock(&activate_kmem_mutex);
5013 return ret;
5014 }
5015 #else
5016 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5017 unsigned long long val)
5018 {
5019 return -EINVAL;
5020 }
5021 #endif /* CONFIG_MEMCG_KMEM */
5022
5023 /*
5024 * The user of this function is...
5025 * RES_LIMIT.
5026 */
5027 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
5028 char *buf, size_t nbytes, loff_t off)
5029 {
5030 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5031 enum res_type type;
5032 int name;
5033 unsigned long long val;
5034 int ret;
5035
5036 buf = strstrip(buf);
5037 type = MEMFILE_TYPE(of_cft(of)->private);
5038 name = MEMFILE_ATTR(of_cft(of)->private);
5039
5040 switch (name) {
5041 case RES_LIMIT:
5042 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5043 ret = -EINVAL;
5044 break;
5045 }
5046 /* This function does all necessary parse...reuse it */
5047 ret = res_counter_memparse_write_strategy(buf, &val);
5048 if (ret)
5049 break;
5050 if (type == _MEM)
5051 ret = mem_cgroup_resize_limit(memcg, val);
5052 else if (type == _MEMSWAP)
5053 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5054 else if (type == _KMEM)
5055 ret = memcg_update_kmem_limit(memcg, val);
5056 else
5057 return -EINVAL;
5058 break;
5059 case RES_SOFT_LIMIT:
5060 ret = res_counter_memparse_write_strategy(buf, &val);
5061 if (ret)
5062 break;
5063 /*
5064 * For memsw, soft limits are hard to implement in terms
5065 * of semantics, for now, we support soft limits for
5066 * control without swap
5067 */
5068 if (type == _MEM)
5069 ret = res_counter_set_soft_limit(&memcg->res, val);
5070 else
5071 ret = -EINVAL;
5072 break;
5073 default:
5074 ret = -EINVAL; /* should be BUG() ? */
5075 break;
5076 }
5077 return ret ?: nbytes;
5078 }
5079
5080 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5081 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5082 {
5083 unsigned long long min_limit, min_memsw_limit, tmp;
5084
5085 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5086 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5087 if (!memcg->use_hierarchy)
5088 goto out;
5089
5090 while (memcg->css.parent) {
5091 memcg = mem_cgroup_from_css(memcg->css.parent);
5092 if (!memcg->use_hierarchy)
5093 break;
5094 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5095 min_limit = min(min_limit, tmp);
5096 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5097 min_memsw_limit = min(min_memsw_limit, tmp);
5098 }
5099 out:
5100 *mem_limit = min_limit;
5101 *memsw_limit = min_memsw_limit;
5102 }
5103
5104 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
5105 size_t nbytes, loff_t off)
5106 {
5107 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5108 int name;
5109 enum res_type type;
5110
5111 type = MEMFILE_TYPE(of_cft(of)->private);
5112 name = MEMFILE_ATTR(of_cft(of)->private);
5113
5114 switch (name) {
5115 case RES_MAX_USAGE:
5116 if (type == _MEM)
5117 res_counter_reset_max(&memcg->res);
5118 else if (type == _MEMSWAP)
5119 res_counter_reset_max(&memcg->memsw);
5120 else if (type == _KMEM)
5121 res_counter_reset_max(&memcg->kmem);
5122 else
5123 return -EINVAL;
5124 break;
5125 case RES_FAILCNT:
5126 if (type == _MEM)
5127 res_counter_reset_failcnt(&memcg->res);
5128 else if (type == _MEMSWAP)
5129 res_counter_reset_failcnt(&memcg->memsw);
5130 else if (type == _KMEM)
5131 res_counter_reset_failcnt(&memcg->kmem);
5132 else
5133 return -EINVAL;
5134 break;
5135 }
5136
5137 return nbytes;
5138 }
5139
5140 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5141 struct cftype *cft)
5142 {
5143 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5144 }
5145
5146 #ifdef CONFIG_MMU
5147 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5148 struct cftype *cft, u64 val)
5149 {
5150 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5151
5152 if (val >= (1 << NR_MOVE_TYPE))
5153 return -EINVAL;
5154
5155 /*
5156 * No kind of locking is needed in here, because ->can_attach() will
5157 * check this value once in the beginning of the process, and then carry
5158 * on with stale data. This means that changes to this value will only
5159 * affect task migrations starting after the change.
5160 */
5161 memcg->move_charge_at_immigrate = val;
5162 return 0;
5163 }
5164 #else
5165 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5166 struct cftype *cft, u64 val)
5167 {
5168 return -ENOSYS;
5169 }
5170 #endif
5171
5172 #ifdef CONFIG_NUMA
5173 static int memcg_numa_stat_show(struct seq_file *m, void *v)
5174 {
5175 struct numa_stat {
5176 const char *name;
5177 unsigned int lru_mask;
5178 };
5179
5180 static const struct numa_stat stats[] = {
5181 { "total", LRU_ALL },
5182 { "file", LRU_ALL_FILE },
5183 { "anon", LRU_ALL_ANON },
5184 { "unevictable", BIT(LRU_UNEVICTABLE) },
5185 };
5186 const struct numa_stat *stat;
5187 int nid;
5188 unsigned long nr;
5189 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5190
5191 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5192 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5193 seq_printf(m, "%s=%lu", stat->name, nr);
5194 for_each_node_state(nid, N_MEMORY) {
5195 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5196 stat->lru_mask);
5197 seq_printf(m, " N%d=%lu", nid, nr);
5198 }
5199 seq_putc(m, '\n');
5200 }
5201
5202 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5203 struct mem_cgroup *iter;
5204
5205 nr = 0;
5206 for_each_mem_cgroup_tree(iter, memcg)
5207 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5208 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5209 for_each_node_state(nid, N_MEMORY) {
5210 nr = 0;
5211 for_each_mem_cgroup_tree(iter, memcg)
5212 nr += mem_cgroup_node_nr_lru_pages(
5213 iter, nid, stat->lru_mask);
5214 seq_printf(m, " N%d=%lu", nid, nr);
5215 }
5216 seq_putc(m, '\n');
5217 }
5218
5219 return 0;
5220 }
5221 #endif /* CONFIG_NUMA */
5222
5223 static inline void mem_cgroup_lru_names_not_uptodate(void)
5224 {
5225 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5226 }
5227
5228 static int memcg_stat_show(struct seq_file *m, void *v)
5229 {
5230 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5231 struct mem_cgroup *mi;
5232 unsigned int i;
5233
5234 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5235 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5236 continue;
5237 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5238 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5239 }
5240
5241 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5242 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5243 mem_cgroup_read_events(memcg, i));
5244
5245 for (i = 0; i < NR_LRU_LISTS; i++)
5246 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5247 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5248
5249 /* Hierarchical information */
5250 {
5251 unsigned long long limit, memsw_limit;
5252 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5253 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5254 if (do_swap_account)
5255 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5256 memsw_limit);
5257 }
5258
5259 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5260 long long val = 0;
5261
5262 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5263 continue;
5264 for_each_mem_cgroup_tree(mi, memcg)
5265 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5266 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5267 }
5268
5269 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5270 unsigned long long val = 0;
5271
5272 for_each_mem_cgroup_tree(mi, memcg)
5273 val += mem_cgroup_read_events(mi, i);
5274 seq_printf(m, "total_%s %llu\n",
5275 mem_cgroup_events_names[i], val);
5276 }
5277
5278 for (i = 0; i < NR_LRU_LISTS; i++) {
5279 unsigned long long val = 0;
5280
5281 for_each_mem_cgroup_tree(mi, memcg)
5282 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5283 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5284 }
5285
5286 #ifdef CONFIG_DEBUG_VM
5287 {
5288 int nid, zid;
5289 struct mem_cgroup_per_zone *mz;
5290 struct zone_reclaim_stat *rstat;
5291 unsigned long recent_rotated[2] = {0, 0};
5292 unsigned long recent_scanned[2] = {0, 0};
5293
5294 for_each_online_node(nid)
5295 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5296 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
5297 rstat = &mz->lruvec.reclaim_stat;
5298
5299 recent_rotated[0] += rstat->recent_rotated[0];
5300 recent_rotated[1] += rstat->recent_rotated[1];
5301 recent_scanned[0] += rstat->recent_scanned[0];
5302 recent_scanned[1] += rstat->recent_scanned[1];
5303 }
5304 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5305 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5306 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5307 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5308 }
5309 #endif
5310
5311 return 0;
5312 }
5313
5314 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5315 struct cftype *cft)
5316 {
5317 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5318
5319 return mem_cgroup_swappiness(memcg);
5320 }
5321
5322 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5323 struct cftype *cft, u64 val)
5324 {
5325 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5326
5327 if (val > 100)
5328 return -EINVAL;
5329
5330 if (css->parent)
5331 memcg->swappiness = val;
5332 else
5333 vm_swappiness = val;
5334
5335 return 0;
5336 }
5337
5338 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5339 {
5340 struct mem_cgroup_threshold_ary *t;
5341 u64 usage;
5342 int i;
5343
5344 rcu_read_lock();
5345 if (!swap)
5346 t = rcu_dereference(memcg->thresholds.primary);
5347 else
5348 t = rcu_dereference(memcg->memsw_thresholds.primary);
5349
5350 if (!t)
5351 goto unlock;
5352
5353 usage = mem_cgroup_usage(memcg, swap);
5354
5355 /*
5356 * current_threshold points to threshold just below or equal to usage.
5357 * If it's not true, a threshold was crossed after last
5358 * call of __mem_cgroup_threshold().
5359 */
5360 i = t->current_threshold;
5361
5362 /*
5363 * Iterate backward over array of thresholds starting from
5364 * current_threshold and check if a threshold is crossed.
5365 * If none of thresholds below usage is crossed, we read
5366 * only one element of the array here.
5367 */
5368 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5369 eventfd_signal(t->entries[i].eventfd, 1);
5370
5371 /* i = current_threshold + 1 */
5372 i++;
5373
5374 /*
5375 * Iterate forward over array of thresholds starting from
5376 * current_threshold+1 and check if a threshold is crossed.
5377 * If none of thresholds above usage is crossed, we read
5378 * only one element of the array here.
5379 */
5380 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5381 eventfd_signal(t->entries[i].eventfd, 1);
5382
5383 /* Update current_threshold */
5384 t->current_threshold = i - 1;
5385 unlock:
5386 rcu_read_unlock();
5387 }
5388
5389 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5390 {
5391 while (memcg) {
5392 __mem_cgroup_threshold(memcg, false);
5393 if (do_swap_account)
5394 __mem_cgroup_threshold(memcg, true);
5395
5396 memcg = parent_mem_cgroup(memcg);
5397 }
5398 }
5399
5400 static int compare_thresholds(const void *a, const void *b)
5401 {
5402 const struct mem_cgroup_threshold *_a = a;
5403 const struct mem_cgroup_threshold *_b = b;
5404
5405 if (_a->threshold > _b->threshold)
5406 return 1;
5407
5408 if (_a->threshold < _b->threshold)
5409 return -1;
5410
5411 return 0;
5412 }
5413
5414 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5415 {
5416 struct mem_cgroup_eventfd_list *ev;
5417
5418 spin_lock(&memcg_oom_lock);
5419
5420 list_for_each_entry(ev, &memcg->oom_notify, list)
5421 eventfd_signal(ev->eventfd, 1);
5422
5423 spin_unlock(&memcg_oom_lock);
5424 return 0;
5425 }
5426
5427 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5428 {
5429 struct mem_cgroup *iter;
5430
5431 for_each_mem_cgroup_tree(iter, memcg)
5432 mem_cgroup_oom_notify_cb(iter);
5433 }
5434
5435 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5436 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5437 {
5438 struct mem_cgroup_thresholds *thresholds;
5439 struct mem_cgroup_threshold_ary *new;
5440 u64 threshold, usage;
5441 int i, size, ret;
5442
5443 ret = res_counter_memparse_write_strategy(args, &threshold);
5444 if (ret)
5445 return ret;
5446
5447 mutex_lock(&memcg->thresholds_lock);
5448
5449 if (type == _MEM)
5450 thresholds = &memcg->thresholds;
5451 else if (type == _MEMSWAP)
5452 thresholds = &memcg->memsw_thresholds;
5453 else
5454 BUG();
5455
5456 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5457
5458 /* Check if a threshold crossed before adding a new one */
5459 if (thresholds->primary)
5460 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5461
5462 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5463
5464 /* Allocate memory for new array of thresholds */
5465 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5466 GFP_KERNEL);
5467 if (!new) {
5468 ret = -ENOMEM;
5469 goto unlock;
5470 }
5471 new->size = size;
5472
5473 /* Copy thresholds (if any) to new array */
5474 if (thresholds->primary) {
5475 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5476 sizeof(struct mem_cgroup_threshold));
5477 }
5478
5479 /* Add new threshold */
5480 new->entries[size - 1].eventfd = eventfd;
5481 new->entries[size - 1].threshold = threshold;
5482
5483 /* Sort thresholds. Registering of new threshold isn't time-critical */
5484 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5485 compare_thresholds, NULL);
5486
5487 /* Find current threshold */
5488 new->current_threshold = -1;
5489 for (i = 0; i < size; i++) {
5490 if (new->entries[i].threshold <= usage) {
5491 /*
5492 * new->current_threshold will not be used until
5493 * rcu_assign_pointer(), so it's safe to increment
5494 * it here.
5495 */
5496 ++new->current_threshold;
5497 } else
5498 break;
5499 }
5500
5501 /* Free old spare buffer and save old primary buffer as spare */
5502 kfree(thresholds->spare);
5503 thresholds->spare = thresholds->primary;
5504
5505 rcu_assign_pointer(thresholds->primary, new);
5506
5507 /* To be sure that nobody uses thresholds */
5508 synchronize_rcu();
5509
5510 unlock:
5511 mutex_unlock(&memcg->thresholds_lock);
5512
5513 return ret;
5514 }
5515
5516 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5517 struct eventfd_ctx *eventfd, const char *args)
5518 {
5519 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
5520 }
5521
5522 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
5523 struct eventfd_ctx *eventfd, const char *args)
5524 {
5525 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
5526 }
5527
5528 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5529 struct eventfd_ctx *eventfd, enum res_type type)
5530 {
5531 struct mem_cgroup_thresholds *thresholds;
5532 struct mem_cgroup_threshold_ary *new;
5533 u64 usage;
5534 int i, j, size;
5535
5536 mutex_lock(&memcg->thresholds_lock);
5537 if (type == _MEM)
5538 thresholds = &memcg->thresholds;
5539 else if (type == _MEMSWAP)
5540 thresholds = &memcg->memsw_thresholds;
5541 else
5542 BUG();
5543
5544 if (!thresholds->primary)
5545 goto unlock;
5546
5547 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5548
5549 /* Check if a threshold crossed before removing */
5550 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5551
5552 /* Calculate new number of threshold */
5553 size = 0;
5554 for (i = 0; i < thresholds->primary->size; i++) {
5555 if (thresholds->primary->entries[i].eventfd != eventfd)
5556 size++;
5557 }
5558
5559 new = thresholds->spare;
5560
5561 /* Set thresholds array to NULL if we don't have thresholds */
5562 if (!size) {
5563 kfree(new);
5564 new = NULL;
5565 goto swap_buffers;
5566 }
5567
5568 new->size = size;
5569
5570 /* Copy thresholds and find current threshold */
5571 new->current_threshold = -1;
5572 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5573 if (thresholds->primary->entries[i].eventfd == eventfd)
5574 continue;
5575
5576 new->entries[j] = thresholds->primary->entries[i];
5577 if (new->entries[j].threshold <= usage) {
5578 /*
5579 * new->current_threshold will not be used
5580 * until rcu_assign_pointer(), so it's safe to increment
5581 * it here.
5582 */
5583 ++new->current_threshold;
5584 }
5585 j++;
5586 }
5587
5588 swap_buffers:
5589 /* Swap primary and spare array */
5590 thresholds->spare = thresholds->primary;
5591 /* If all events are unregistered, free the spare array */
5592 if (!new) {
5593 kfree(thresholds->spare);
5594 thresholds->spare = NULL;
5595 }
5596
5597 rcu_assign_pointer(thresholds->primary, new);
5598
5599 /* To be sure that nobody uses thresholds */
5600 synchronize_rcu();
5601 unlock:
5602 mutex_unlock(&memcg->thresholds_lock);
5603 }
5604
5605 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5606 struct eventfd_ctx *eventfd)
5607 {
5608 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
5609 }
5610
5611 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5612 struct eventfd_ctx *eventfd)
5613 {
5614 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
5615 }
5616
5617 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
5618 struct eventfd_ctx *eventfd, const char *args)
5619 {
5620 struct mem_cgroup_eventfd_list *event;
5621
5622 event = kmalloc(sizeof(*event), GFP_KERNEL);
5623 if (!event)
5624 return -ENOMEM;
5625
5626 spin_lock(&memcg_oom_lock);
5627
5628 event->eventfd = eventfd;
5629 list_add(&event->list, &memcg->oom_notify);
5630
5631 /* already in OOM ? */
5632 if (atomic_read(&memcg->under_oom))
5633 eventfd_signal(eventfd, 1);
5634 spin_unlock(&memcg_oom_lock);
5635
5636 return 0;
5637 }
5638
5639 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
5640 struct eventfd_ctx *eventfd)
5641 {
5642 struct mem_cgroup_eventfd_list *ev, *tmp;
5643
5644 spin_lock(&memcg_oom_lock);
5645
5646 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5647 if (ev->eventfd == eventfd) {
5648 list_del(&ev->list);
5649 kfree(ev);
5650 }
5651 }
5652
5653 spin_unlock(&memcg_oom_lock);
5654 }
5655
5656 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5657 {
5658 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5659
5660 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5661 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5662 return 0;
5663 }
5664
5665 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5666 struct cftype *cft, u64 val)
5667 {
5668 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5669
5670 /* cannot set to root cgroup and only 0 and 1 are allowed */
5671 if (!css->parent || !((val == 0) || (val == 1)))
5672 return -EINVAL;
5673
5674 memcg->oom_kill_disable = val;
5675 if (!val)
5676 memcg_oom_recover(memcg);
5677
5678 return 0;
5679 }
5680
5681 #ifdef CONFIG_MEMCG_KMEM
5682 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5683 {
5684 int ret;
5685
5686 memcg->kmemcg_id = -1;
5687 ret = memcg_propagate_kmem(memcg);
5688 if (ret)
5689 return ret;
5690
5691 return mem_cgroup_sockets_init(memcg, ss);
5692 }
5693
5694 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5695 {
5696 mem_cgroup_sockets_destroy(memcg);
5697 }
5698
5699 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5700 {
5701 if (!memcg_kmem_is_active(memcg))
5702 return;
5703
5704 /*
5705 * kmem charges can outlive the cgroup. In the case of slab
5706 * pages, for instance, a page contain objects from various
5707 * processes. As we prevent from taking a reference for every
5708 * such allocation we have to be careful when doing uncharge
5709 * (see memcg_uncharge_kmem) and here during offlining.
5710 *
5711 * The idea is that that only the _last_ uncharge which sees
5712 * the dead memcg will drop the last reference. An additional
5713 * reference is taken here before the group is marked dead
5714 * which is then paired with css_put during uncharge resp. here.
5715 *
5716 * Although this might sound strange as this path is called from
5717 * css_offline() when the referencemight have dropped down to 0 and
5718 * shouldn't be incremented anymore (css_tryget_online() would
5719 * fail) we do not have other options because of the kmem
5720 * allocations lifetime.
5721 */
5722 css_get(&memcg->css);
5723
5724 memcg_kmem_mark_dead(memcg);
5725
5726 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5727 return;
5728
5729 if (memcg_kmem_test_and_clear_dead(memcg))
5730 css_put(&memcg->css);
5731 }
5732 #else
5733 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5734 {
5735 return 0;
5736 }
5737
5738 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5739 {
5740 }
5741
5742 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5743 {
5744 }
5745 #endif
5746
5747 /*
5748 * DO NOT USE IN NEW FILES.
5749 *
5750 * "cgroup.event_control" implementation.
5751 *
5752 * This is way over-engineered. It tries to support fully configurable
5753 * events for each user. Such level of flexibility is completely
5754 * unnecessary especially in the light of the planned unified hierarchy.
5755 *
5756 * Please deprecate this and replace with something simpler if at all
5757 * possible.
5758 */
5759
5760 /*
5761 * Unregister event and free resources.
5762 *
5763 * Gets called from workqueue.
5764 */
5765 static void memcg_event_remove(struct work_struct *work)
5766 {
5767 struct mem_cgroup_event *event =
5768 container_of(work, struct mem_cgroup_event, remove);
5769 struct mem_cgroup *memcg = event->memcg;
5770
5771 remove_wait_queue(event->wqh, &event->wait);
5772
5773 event->unregister_event(memcg, event->eventfd);
5774
5775 /* Notify userspace the event is going away. */
5776 eventfd_signal(event->eventfd, 1);
5777
5778 eventfd_ctx_put(event->eventfd);
5779 kfree(event);
5780 css_put(&memcg->css);
5781 }
5782
5783 /*
5784 * Gets called on POLLHUP on eventfd when user closes it.
5785 *
5786 * Called with wqh->lock held and interrupts disabled.
5787 */
5788 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
5789 int sync, void *key)
5790 {
5791 struct mem_cgroup_event *event =
5792 container_of(wait, struct mem_cgroup_event, wait);
5793 struct mem_cgroup *memcg = event->memcg;
5794 unsigned long flags = (unsigned long)key;
5795
5796 if (flags & POLLHUP) {
5797 /*
5798 * If the event has been detached at cgroup removal, we
5799 * can simply return knowing the other side will cleanup
5800 * for us.
5801 *
5802 * We can't race against event freeing since the other
5803 * side will require wqh->lock via remove_wait_queue(),
5804 * which we hold.
5805 */
5806 spin_lock(&memcg->event_list_lock);
5807 if (!list_empty(&event->list)) {
5808 list_del_init(&event->list);
5809 /*
5810 * We are in atomic context, but cgroup_event_remove()
5811 * may sleep, so we have to call it in workqueue.
5812 */
5813 schedule_work(&event->remove);
5814 }
5815 spin_unlock(&memcg->event_list_lock);
5816 }
5817
5818 return 0;
5819 }
5820
5821 static void memcg_event_ptable_queue_proc(struct file *file,
5822 wait_queue_head_t *wqh, poll_table *pt)
5823 {
5824 struct mem_cgroup_event *event =
5825 container_of(pt, struct mem_cgroup_event, pt);
5826
5827 event->wqh = wqh;
5828 add_wait_queue(wqh, &event->wait);
5829 }
5830
5831 /*
5832 * DO NOT USE IN NEW FILES.
5833 *
5834 * Parse input and register new cgroup event handler.
5835 *
5836 * Input must be in format '<event_fd> <control_fd> <args>'.
5837 * Interpretation of args is defined by control file implementation.
5838 */
5839 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5840 char *buf, size_t nbytes, loff_t off)
5841 {
5842 struct cgroup_subsys_state *css = of_css(of);
5843 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5844 struct mem_cgroup_event *event;
5845 struct cgroup_subsys_state *cfile_css;
5846 unsigned int efd, cfd;
5847 struct fd efile;
5848 struct fd cfile;
5849 const char *name;
5850 char *endp;
5851 int ret;
5852
5853 buf = strstrip(buf);
5854
5855 efd = simple_strtoul(buf, &endp, 10);
5856 if (*endp != ' ')
5857 return -EINVAL;
5858 buf = endp + 1;
5859
5860 cfd = simple_strtoul(buf, &endp, 10);
5861 if ((*endp != ' ') && (*endp != '\0'))
5862 return -EINVAL;
5863 buf = endp + 1;
5864
5865 event = kzalloc(sizeof(*event), GFP_KERNEL);
5866 if (!event)
5867 return -ENOMEM;
5868
5869 event->memcg = memcg;
5870 INIT_LIST_HEAD(&event->list);
5871 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5872 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5873 INIT_WORK(&event->remove, memcg_event_remove);
5874
5875 efile = fdget(efd);
5876 if (!efile.file) {
5877 ret = -EBADF;
5878 goto out_kfree;
5879 }
5880
5881 event->eventfd = eventfd_ctx_fileget(efile.file);
5882 if (IS_ERR(event->eventfd)) {
5883 ret = PTR_ERR(event->eventfd);
5884 goto out_put_efile;
5885 }
5886
5887 cfile = fdget(cfd);
5888 if (!cfile.file) {
5889 ret = -EBADF;
5890 goto out_put_eventfd;
5891 }
5892
5893 /* the process need read permission on control file */
5894 /* AV: shouldn't we check that it's been opened for read instead? */
5895 ret = inode_permission(file_inode(cfile.file), MAY_READ);
5896 if (ret < 0)
5897 goto out_put_cfile;
5898
5899 /*
5900 * Determine the event callbacks and set them in @event. This used
5901 * to be done via struct cftype but cgroup core no longer knows
5902 * about these events. The following is crude but the whole thing
5903 * is for compatibility anyway.
5904 *
5905 * DO NOT ADD NEW FILES.
5906 */
5907 name = cfile.file->f_dentry->d_name.name;
5908
5909 if (!strcmp(name, "memory.usage_in_bytes")) {
5910 event->register_event = mem_cgroup_usage_register_event;
5911 event->unregister_event = mem_cgroup_usage_unregister_event;
5912 } else if (!strcmp(name, "memory.oom_control")) {
5913 event->register_event = mem_cgroup_oom_register_event;
5914 event->unregister_event = mem_cgroup_oom_unregister_event;
5915 } else if (!strcmp(name, "memory.pressure_level")) {
5916 event->register_event = vmpressure_register_event;
5917 event->unregister_event = vmpressure_unregister_event;
5918 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5919 event->register_event = memsw_cgroup_usage_register_event;
5920 event->unregister_event = memsw_cgroup_usage_unregister_event;
5921 } else {
5922 ret = -EINVAL;
5923 goto out_put_cfile;
5924 }
5925
5926 /*
5927 * Verify @cfile should belong to @css. Also, remaining events are
5928 * automatically removed on cgroup destruction but the removal is
5929 * asynchronous, so take an extra ref on @css.
5930 */
5931 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
5932 &memory_cgrp_subsys);
5933 ret = -EINVAL;
5934 if (IS_ERR(cfile_css))
5935 goto out_put_cfile;
5936 if (cfile_css != css) {
5937 css_put(cfile_css);
5938 goto out_put_cfile;
5939 }
5940
5941 ret = event->register_event(memcg, event->eventfd, buf);
5942 if (ret)
5943 goto out_put_css;
5944
5945 efile.file->f_op->poll(efile.file, &event->pt);
5946
5947 spin_lock(&memcg->event_list_lock);
5948 list_add(&event->list, &memcg->event_list);
5949 spin_unlock(&memcg->event_list_lock);
5950
5951 fdput(cfile);
5952 fdput(efile);
5953
5954 return nbytes;
5955
5956 out_put_css:
5957 css_put(css);
5958 out_put_cfile:
5959 fdput(cfile);
5960 out_put_eventfd:
5961 eventfd_ctx_put(event->eventfd);
5962 out_put_efile:
5963 fdput(efile);
5964 out_kfree:
5965 kfree(event);
5966
5967 return ret;
5968 }
5969
5970 static struct cftype mem_cgroup_files[] = {
5971 {
5972 .name = "usage_in_bytes",
5973 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5974 .read_u64 = mem_cgroup_read_u64,
5975 },
5976 {
5977 .name = "max_usage_in_bytes",
5978 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5979 .write = mem_cgroup_reset,
5980 .read_u64 = mem_cgroup_read_u64,
5981 },
5982 {
5983 .name = "limit_in_bytes",
5984 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5985 .write = mem_cgroup_write,
5986 .read_u64 = mem_cgroup_read_u64,
5987 },
5988 {
5989 .name = "soft_limit_in_bytes",
5990 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5991 .write = mem_cgroup_write,
5992 .read_u64 = mem_cgroup_read_u64,
5993 },
5994 {
5995 .name = "failcnt",
5996 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5997 .write = mem_cgroup_reset,
5998 .read_u64 = mem_cgroup_read_u64,
5999 },
6000 {
6001 .name = "stat",
6002 .seq_show = memcg_stat_show,
6003 },
6004 {
6005 .name = "force_empty",
6006 .write = mem_cgroup_force_empty_write,
6007 },
6008 {
6009 .name = "use_hierarchy",
6010 .write_u64 = mem_cgroup_hierarchy_write,
6011 .read_u64 = mem_cgroup_hierarchy_read,
6012 },
6013 {
6014 .name = "cgroup.event_control", /* XXX: for compat */
6015 .write = memcg_write_event_control,
6016 .flags = CFTYPE_NO_PREFIX,
6017 .mode = S_IWUGO,
6018 },
6019 {
6020 .name = "swappiness",
6021 .read_u64 = mem_cgroup_swappiness_read,
6022 .write_u64 = mem_cgroup_swappiness_write,
6023 },
6024 {
6025 .name = "move_charge_at_immigrate",
6026 .read_u64 = mem_cgroup_move_charge_read,
6027 .write_u64 = mem_cgroup_move_charge_write,
6028 },
6029 {
6030 .name = "oom_control",
6031 .seq_show = mem_cgroup_oom_control_read,
6032 .write_u64 = mem_cgroup_oom_control_write,
6033 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6034 },
6035 {
6036 .name = "pressure_level",
6037 },
6038 #ifdef CONFIG_NUMA
6039 {
6040 .name = "numa_stat",
6041 .seq_show = memcg_numa_stat_show,
6042 },
6043 #endif
6044 #ifdef CONFIG_MEMCG_KMEM
6045 {
6046 .name = "kmem.limit_in_bytes",
6047 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6048 .write = mem_cgroup_write,
6049 .read_u64 = mem_cgroup_read_u64,
6050 },
6051 {
6052 .name = "kmem.usage_in_bytes",
6053 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6054 .read_u64 = mem_cgroup_read_u64,
6055 },
6056 {
6057 .name = "kmem.failcnt",
6058 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6059 .write = mem_cgroup_reset,
6060 .read_u64 = mem_cgroup_read_u64,
6061 },
6062 {
6063 .name = "kmem.max_usage_in_bytes",
6064 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6065 .write = mem_cgroup_reset,
6066 .read_u64 = mem_cgroup_read_u64,
6067 },
6068 #ifdef CONFIG_SLABINFO
6069 {
6070 .name = "kmem.slabinfo",
6071 .seq_show = mem_cgroup_slabinfo_read,
6072 },
6073 #endif
6074 #endif
6075 { }, /* terminate */
6076 };
6077
6078 #ifdef CONFIG_MEMCG_SWAP
6079 static struct cftype memsw_cgroup_files[] = {
6080 {
6081 .name = "memsw.usage_in_bytes",
6082 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6083 .read_u64 = mem_cgroup_read_u64,
6084 },
6085 {
6086 .name = "memsw.max_usage_in_bytes",
6087 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6088 .write = mem_cgroup_reset,
6089 .read_u64 = mem_cgroup_read_u64,
6090 },
6091 {
6092 .name = "memsw.limit_in_bytes",
6093 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6094 .write = mem_cgroup_write,
6095 .read_u64 = mem_cgroup_read_u64,
6096 },
6097 {
6098 .name = "memsw.failcnt",
6099 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6100 .write = mem_cgroup_reset,
6101 .read_u64 = mem_cgroup_read_u64,
6102 },
6103 { }, /* terminate */
6104 };
6105 #endif
6106 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6107 {
6108 struct mem_cgroup_per_node *pn;
6109 struct mem_cgroup_per_zone *mz;
6110 int zone, tmp = node;
6111 /*
6112 * This routine is called against possible nodes.
6113 * But it's BUG to call kmalloc() against offline node.
6114 *
6115 * TODO: this routine can waste much memory for nodes which will
6116 * never be onlined. It's better to use memory hotplug callback
6117 * function.
6118 */
6119 if (!node_state(node, N_NORMAL_MEMORY))
6120 tmp = -1;
6121 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6122 if (!pn)
6123 return 1;
6124
6125 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6126 mz = &pn->zoneinfo[zone];
6127 lruvec_init(&mz->lruvec);
6128 mz->usage_in_excess = 0;
6129 mz->on_tree = false;
6130 mz->memcg = memcg;
6131 }
6132 memcg->nodeinfo[node] = pn;
6133 return 0;
6134 }
6135
6136 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6137 {
6138 kfree(memcg->nodeinfo[node]);
6139 }
6140
6141 static struct mem_cgroup *mem_cgroup_alloc(void)
6142 {
6143 struct mem_cgroup *memcg;
6144 size_t size;
6145
6146 size = sizeof(struct mem_cgroup);
6147 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6148
6149 memcg = kzalloc(size, GFP_KERNEL);
6150 if (!memcg)
6151 return NULL;
6152
6153 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6154 if (!memcg->stat)
6155 goto out_free;
6156 spin_lock_init(&memcg->pcp_counter_lock);
6157 return memcg;
6158
6159 out_free:
6160 kfree(memcg);
6161 return NULL;
6162 }
6163
6164 /*
6165 * At destroying mem_cgroup, references from swap_cgroup can remain.
6166 * (scanning all at force_empty is too costly...)
6167 *
6168 * Instead of clearing all references at force_empty, we remember
6169 * the number of reference from swap_cgroup and free mem_cgroup when
6170 * it goes down to 0.
6171 *
6172 * Removal of cgroup itself succeeds regardless of refs from swap.
6173 */
6174
6175 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6176 {
6177 int node;
6178
6179 mem_cgroup_remove_from_trees(memcg);
6180
6181 for_each_node(node)
6182 free_mem_cgroup_per_zone_info(memcg, node);
6183
6184 free_percpu(memcg->stat);
6185
6186 /*
6187 * We need to make sure that (at least for now), the jump label
6188 * destruction code runs outside of the cgroup lock. This is because
6189 * get_online_cpus(), which is called from the static_branch update,
6190 * can't be called inside the cgroup_lock. cpusets are the ones
6191 * enforcing this dependency, so if they ever change, we might as well.
6192 *
6193 * schedule_work() will guarantee this happens. Be careful if you need
6194 * to move this code around, and make sure it is outside
6195 * the cgroup_lock.
6196 */
6197 disarm_static_keys(memcg);
6198 kfree(memcg);
6199 }
6200
6201 /*
6202 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6203 */
6204 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6205 {
6206 if (!memcg->res.parent)
6207 return NULL;
6208 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6209 }
6210 EXPORT_SYMBOL(parent_mem_cgroup);
6211
6212 static void __init mem_cgroup_soft_limit_tree_init(void)
6213 {
6214 struct mem_cgroup_tree_per_node *rtpn;
6215 struct mem_cgroup_tree_per_zone *rtpz;
6216 int tmp, node, zone;
6217
6218 for_each_node(node) {
6219 tmp = node;
6220 if (!node_state(node, N_NORMAL_MEMORY))
6221 tmp = -1;
6222 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6223 BUG_ON(!rtpn);
6224
6225 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6226
6227 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6228 rtpz = &rtpn->rb_tree_per_zone[zone];
6229 rtpz->rb_root = RB_ROOT;
6230 spin_lock_init(&rtpz->lock);
6231 }
6232 }
6233 }
6234
6235 static struct cgroup_subsys_state * __ref
6236 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6237 {
6238 struct mem_cgroup *memcg;
6239 long error = -ENOMEM;
6240 int node;
6241
6242 memcg = mem_cgroup_alloc();
6243 if (!memcg)
6244 return ERR_PTR(error);
6245
6246 for_each_node(node)
6247 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6248 goto free_out;
6249
6250 /* root ? */
6251 if (parent_css == NULL) {
6252 root_mem_cgroup = memcg;
6253 res_counter_init(&memcg->res, NULL);
6254 res_counter_init(&memcg->memsw, NULL);
6255 res_counter_init(&memcg->kmem, NULL);
6256 }
6257
6258 memcg->last_scanned_node = MAX_NUMNODES;
6259 INIT_LIST_HEAD(&memcg->oom_notify);
6260 memcg->move_charge_at_immigrate = 0;
6261 mutex_init(&memcg->thresholds_lock);
6262 spin_lock_init(&memcg->move_lock);
6263 vmpressure_init(&memcg->vmpressure);
6264 INIT_LIST_HEAD(&memcg->event_list);
6265 spin_lock_init(&memcg->event_list_lock);
6266
6267 return &memcg->css;
6268
6269 free_out:
6270 __mem_cgroup_free(memcg);
6271 return ERR_PTR(error);
6272 }
6273
6274 static int
6275 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6276 {
6277 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6278 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
6279
6280 if (css->id > MEM_CGROUP_ID_MAX)
6281 return -ENOSPC;
6282
6283 if (!parent)
6284 return 0;
6285
6286 mutex_lock(&memcg_create_mutex);
6287
6288 memcg->use_hierarchy = parent->use_hierarchy;
6289 memcg->oom_kill_disable = parent->oom_kill_disable;
6290 memcg->swappiness = mem_cgroup_swappiness(parent);
6291
6292 if (parent->use_hierarchy) {
6293 res_counter_init(&memcg->res, &parent->res);
6294 res_counter_init(&memcg->memsw, &parent->memsw);
6295 res_counter_init(&memcg->kmem, &parent->kmem);
6296
6297 /*
6298 * No need to take a reference to the parent because cgroup
6299 * core guarantees its existence.
6300 */
6301 } else {
6302 res_counter_init(&memcg->res, NULL);
6303 res_counter_init(&memcg->memsw, NULL);
6304 res_counter_init(&memcg->kmem, NULL);
6305 /*
6306 * Deeper hierachy with use_hierarchy == false doesn't make
6307 * much sense so let cgroup subsystem know about this
6308 * unfortunate state in our controller.
6309 */
6310 if (parent != root_mem_cgroup)
6311 memory_cgrp_subsys.broken_hierarchy = true;
6312 }
6313 mutex_unlock(&memcg_create_mutex);
6314
6315 return memcg_init_kmem(memcg, &memory_cgrp_subsys);
6316 }
6317
6318 /*
6319 * Announce all parents that a group from their hierarchy is gone.
6320 */
6321 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6322 {
6323 struct mem_cgroup *parent = memcg;
6324
6325 while ((parent = parent_mem_cgroup(parent)))
6326 mem_cgroup_iter_invalidate(parent);
6327
6328 /*
6329 * if the root memcg is not hierarchical we have to check it
6330 * explicitely.
6331 */
6332 if (!root_mem_cgroup->use_hierarchy)
6333 mem_cgroup_iter_invalidate(root_mem_cgroup);
6334 }
6335
6336 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6337 {
6338 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6339 struct mem_cgroup_event *event, *tmp;
6340 struct cgroup_subsys_state *iter;
6341
6342 /*
6343 * Unregister events and notify userspace.
6344 * Notify userspace about cgroup removing only after rmdir of cgroup
6345 * directory to avoid race between userspace and kernelspace.
6346 */
6347 spin_lock(&memcg->event_list_lock);
6348 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6349 list_del_init(&event->list);
6350 schedule_work(&event->remove);
6351 }
6352 spin_unlock(&memcg->event_list_lock);
6353
6354 kmem_cgroup_css_offline(memcg);
6355
6356 mem_cgroup_invalidate_reclaim_iterators(memcg);
6357
6358 /*
6359 * This requires that offlining is serialized. Right now that is
6360 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6361 */
6362 css_for_each_descendant_post(iter, css)
6363 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
6364
6365 memcg_unregister_all_caches(memcg);
6366 vmpressure_cleanup(&memcg->vmpressure);
6367 }
6368
6369 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6370 {
6371 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6372 /*
6373 * XXX: css_offline() would be where we should reparent all
6374 * memory to prepare the cgroup for destruction. However,
6375 * memcg does not do css_tryget_online() and res_counter charging
6376 * under the same RCU lock region, which means that charging
6377 * could race with offlining. Offlining only happens to
6378 * cgroups with no tasks in them but charges can show up
6379 * without any tasks from the swapin path when the target
6380 * memcg is looked up from the swapout record and not from the
6381 * current task as it usually is. A race like this can leak
6382 * charges and put pages with stale cgroup pointers into
6383 * circulation:
6384 *
6385 * #0 #1
6386 * lookup_swap_cgroup_id()
6387 * rcu_read_lock()
6388 * mem_cgroup_lookup()
6389 * css_tryget_online()
6390 * rcu_read_unlock()
6391 * disable css_tryget_online()
6392 * call_rcu()
6393 * offline_css()
6394 * reparent_charges()
6395 * res_counter_charge()
6396 * css_put()
6397 * css_free()
6398 * pc->mem_cgroup = dead memcg
6399 * add page to lru
6400 *
6401 * The bulk of the charges are still moved in offline_css() to
6402 * avoid pinning a lot of pages in case a long-term reference
6403 * like a swapout record is deferring the css_free() to long
6404 * after offlining. But this makes sure we catch any charges
6405 * made after offlining:
6406 */
6407 mem_cgroup_reparent_charges(memcg);
6408
6409 memcg_destroy_kmem(memcg);
6410 __mem_cgroup_free(memcg);
6411 }
6412
6413 /**
6414 * mem_cgroup_css_reset - reset the states of a mem_cgroup
6415 * @css: the target css
6416 *
6417 * Reset the states of the mem_cgroup associated with @css. This is
6418 * invoked when the userland requests disabling on the default hierarchy
6419 * but the memcg is pinned through dependency. The memcg should stop
6420 * applying policies and should revert to the vanilla state as it may be
6421 * made visible again.
6422 *
6423 * The current implementation only resets the essential configurations.
6424 * This needs to be expanded to cover all the visible parts.
6425 */
6426 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
6427 {
6428 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6429
6430 mem_cgroup_resize_limit(memcg, ULLONG_MAX);
6431 mem_cgroup_resize_memsw_limit(memcg, ULLONG_MAX);
6432 memcg_update_kmem_limit(memcg, ULLONG_MAX);
6433 res_counter_set_soft_limit(&memcg->res, ULLONG_MAX);
6434 }
6435
6436 #ifdef CONFIG_MMU
6437 /* Handlers for move charge at task migration. */
6438 #define PRECHARGE_COUNT_AT_ONCE 256
6439 static int mem_cgroup_do_precharge(unsigned long count)
6440 {
6441 int ret = 0;
6442 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6443 struct mem_cgroup *memcg = mc.to;
6444
6445 if (mem_cgroup_is_root(memcg)) {
6446 mc.precharge += count;
6447 /* we don't need css_get for root */
6448 return ret;
6449 }
6450 /* try to charge at once */
6451 if (count > 1) {
6452 struct res_counter *dummy;
6453 /*
6454 * "memcg" cannot be under rmdir() because we've already checked
6455 * by cgroup_lock_live_cgroup() that it is not removed and we
6456 * are still under the same cgroup_mutex. So we can postpone
6457 * css_get().
6458 */
6459 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6460 goto one_by_one;
6461 if (do_swap_account && res_counter_charge(&memcg->memsw,
6462 PAGE_SIZE * count, &dummy)) {
6463 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6464 goto one_by_one;
6465 }
6466 mc.precharge += count;
6467 return ret;
6468 }
6469 one_by_one:
6470 /* fall back to one by one charge */
6471 while (count--) {
6472 if (signal_pending(current)) {
6473 ret = -EINTR;
6474 break;
6475 }
6476 if (!batch_count--) {
6477 batch_count = PRECHARGE_COUNT_AT_ONCE;
6478 cond_resched();
6479 }
6480 ret = mem_cgroup_try_charge(memcg, GFP_KERNEL, 1, false);
6481 if (ret)
6482 /* mem_cgroup_clear_mc() will do uncharge later */
6483 return ret;
6484 mc.precharge++;
6485 }
6486 return ret;
6487 }
6488
6489 /**
6490 * get_mctgt_type - get target type of moving charge
6491 * @vma: the vma the pte to be checked belongs
6492 * @addr: the address corresponding to the pte to be checked
6493 * @ptent: the pte to be checked
6494 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6495 *
6496 * Returns
6497 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6498 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6499 * move charge. if @target is not NULL, the page is stored in target->page
6500 * with extra refcnt got(Callers should handle it).
6501 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6502 * target for charge migration. if @target is not NULL, the entry is stored
6503 * in target->ent.
6504 *
6505 * Called with pte lock held.
6506 */
6507 union mc_target {
6508 struct page *page;
6509 swp_entry_t ent;
6510 };
6511
6512 enum mc_target_type {
6513 MC_TARGET_NONE = 0,
6514 MC_TARGET_PAGE,
6515 MC_TARGET_SWAP,
6516 };
6517
6518 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6519 unsigned long addr, pte_t ptent)
6520 {
6521 struct page *page = vm_normal_page(vma, addr, ptent);
6522
6523 if (!page || !page_mapped(page))
6524 return NULL;
6525 if (PageAnon(page)) {
6526 /* we don't move shared anon */
6527 if (!move_anon())
6528 return NULL;
6529 } else if (!move_file())
6530 /* we ignore mapcount for file pages */
6531 return NULL;
6532 if (!get_page_unless_zero(page))
6533 return NULL;
6534
6535 return page;
6536 }
6537
6538 #ifdef CONFIG_SWAP
6539 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6540 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6541 {
6542 struct page *page = NULL;
6543 swp_entry_t ent = pte_to_swp_entry(ptent);
6544
6545 if (!move_anon() || non_swap_entry(ent))
6546 return NULL;
6547 /*
6548 * Because lookup_swap_cache() updates some statistics counter,
6549 * we call find_get_page() with swapper_space directly.
6550 */
6551 page = find_get_page(swap_address_space(ent), ent.val);
6552 if (do_swap_account)
6553 entry->val = ent.val;
6554
6555 return page;
6556 }
6557 #else
6558 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6559 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6560 {
6561 return NULL;
6562 }
6563 #endif
6564
6565 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6566 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6567 {
6568 struct page *page = NULL;
6569 struct address_space *mapping;
6570 pgoff_t pgoff;
6571
6572 if (!vma->vm_file) /* anonymous vma */
6573 return NULL;
6574 if (!move_file())
6575 return NULL;
6576
6577 mapping = vma->vm_file->f_mapping;
6578 if (pte_none(ptent))
6579 pgoff = linear_page_index(vma, addr);
6580 else /* pte_file(ptent) is true */
6581 pgoff = pte_to_pgoff(ptent);
6582
6583 /* page is moved even if it's not RSS of this task(page-faulted). */
6584 #ifdef CONFIG_SWAP
6585 /* shmem/tmpfs may report page out on swap: account for that too. */
6586 if (shmem_mapping(mapping)) {
6587 page = find_get_entry(mapping, pgoff);
6588 if (radix_tree_exceptional_entry(page)) {
6589 swp_entry_t swp = radix_to_swp_entry(page);
6590 if (do_swap_account)
6591 *entry = swp;
6592 page = find_get_page(swap_address_space(swp), swp.val);
6593 }
6594 } else
6595 page = find_get_page(mapping, pgoff);
6596 #else
6597 page = find_get_page(mapping, pgoff);
6598 #endif
6599 return page;
6600 }
6601
6602 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6603 unsigned long addr, pte_t ptent, union mc_target *target)
6604 {
6605 struct page *page = NULL;
6606 struct page_cgroup *pc;
6607 enum mc_target_type ret = MC_TARGET_NONE;
6608 swp_entry_t ent = { .val = 0 };
6609
6610 if (pte_present(ptent))
6611 page = mc_handle_present_pte(vma, addr, ptent);
6612 else if (is_swap_pte(ptent))
6613 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6614 else if (pte_none(ptent) || pte_file(ptent))
6615 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6616
6617 if (!page && !ent.val)
6618 return ret;
6619 if (page) {
6620 pc = lookup_page_cgroup(page);
6621 /*
6622 * Do only loose check w/o page_cgroup lock.
6623 * mem_cgroup_move_account() checks the pc is valid or not under
6624 * the lock.
6625 */
6626 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6627 ret = MC_TARGET_PAGE;
6628 if (target)
6629 target->page = page;
6630 }
6631 if (!ret || !target)
6632 put_page(page);
6633 }
6634 /* There is a swap entry and a page doesn't exist or isn't charged */
6635 if (ent.val && !ret &&
6636 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6637 ret = MC_TARGET_SWAP;
6638 if (target)
6639 target->ent = ent;
6640 }
6641 return ret;
6642 }
6643
6644 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6645 /*
6646 * We don't consider swapping or file mapped pages because THP does not
6647 * support them for now.
6648 * Caller should make sure that pmd_trans_huge(pmd) is true.
6649 */
6650 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6651 unsigned long addr, pmd_t pmd, union mc_target *target)
6652 {
6653 struct page *page = NULL;
6654 struct page_cgroup *pc;
6655 enum mc_target_type ret = MC_TARGET_NONE;
6656
6657 page = pmd_page(pmd);
6658 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6659 if (!move_anon())
6660 return ret;
6661 pc = lookup_page_cgroup(page);
6662 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6663 ret = MC_TARGET_PAGE;
6664 if (target) {
6665 get_page(page);
6666 target->page = page;
6667 }
6668 }
6669 return ret;
6670 }
6671 #else
6672 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6673 unsigned long addr, pmd_t pmd, union mc_target *target)
6674 {
6675 return MC_TARGET_NONE;
6676 }
6677 #endif
6678
6679 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6680 unsigned long addr, unsigned long end,
6681 struct mm_walk *walk)
6682 {
6683 struct vm_area_struct *vma = walk->private;
6684 pte_t *pte;
6685 spinlock_t *ptl;
6686
6687 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6688 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6689 mc.precharge += HPAGE_PMD_NR;
6690 spin_unlock(ptl);
6691 return 0;
6692 }
6693
6694 if (pmd_trans_unstable(pmd))
6695 return 0;
6696 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6697 for (; addr != end; pte++, addr += PAGE_SIZE)
6698 if (get_mctgt_type(vma, addr, *pte, NULL))
6699 mc.precharge++; /* increment precharge temporarily */
6700 pte_unmap_unlock(pte - 1, ptl);
6701 cond_resched();
6702
6703 return 0;
6704 }
6705
6706 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6707 {
6708 unsigned long precharge;
6709 struct vm_area_struct *vma;
6710
6711 down_read(&mm->mmap_sem);
6712 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6713 struct mm_walk mem_cgroup_count_precharge_walk = {
6714 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6715 .mm = mm,
6716 .private = vma,
6717 };
6718 if (is_vm_hugetlb_page(vma))
6719 continue;
6720 walk_page_range(vma->vm_start, vma->vm_end,
6721 &mem_cgroup_count_precharge_walk);
6722 }
6723 up_read(&mm->mmap_sem);
6724
6725 precharge = mc.precharge;
6726 mc.precharge = 0;
6727
6728 return precharge;
6729 }
6730
6731 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6732 {
6733 unsigned long precharge = mem_cgroup_count_precharge(mm);
6734
6735 VM_BUG_ON(mc.moving_task);
6736 mc.moving_task = current;
6737 return mem_cgroup_do_precharge(precharge);
6738 }
6739
6740 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6741 static void __mem_cgroup_clear_mc(void)
6742 {
6743 struct mem_cgroup *from = mc.from;
6744 struct mem_cgroup *to = mc.to;
6745 int i;
6746
6747 /* we must uncharge all the leftover precharges from mc.to */
6748 if (mc.precharge) {
6749 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6750 mc.precharge = 0;
6751 }
6752 /*
6753 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6754 * we must uncharge here.
6755 */
6756 if (mc.moved_charge) {
6757 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6758 mc.moved_charge = 0;
6759 }
6760 /* we must fixup refcnts and charges */
6761 if (mc.moved_swap) {
6762 /* uncharge swap account from the old cgroup */
6763 if (!mem_cgroup_is_root(mc.from))
6764 res_counter_uncharge(&mc.from->memsw,
6765 PAGE_SIZE * mc.moved_swap);
6766
6767 for (i = 0; i < mc.moved_swap; i++)
6768 css_put(&mc.from->css);
6769
6770 if (!mem_cgroup_is_root(mc.to)) {
6771 /*
6772 * we charged both to->res and to->memsw, so we should
6773 * uncharge to->res.
6774 */
6775 res_counter_uncharge(&mc.to->res,
6776 PAGE_SIZE * mc.moved_swap);
6777 }
6778 /* we've already done css_get(mc.to) */
6779 mc.moved_swap = 0;
6780 }
6781 memcg_oom_recover(from);
6782 memcg_oom_recover(to);
6783 wake_up_all(&mc.waitq);
6784 }
6785
6786 static void mem_cgroup_clear_mc(void)
6787 {
6788 struct mem_cgroup *from = mc.from;
6789
6790 /*
6791 * we must clear moving_task before waking up waiters at the end of
6792 * task migration.
6793 */
6794 mc.moving_task = NULL;
6795 __mem_cgroup_clear_mc();
6796 spin_lock(&mc.lock);
6797 mc.from = NULL;
6798 mc.to = NULL;
6799 spin_unlock(&mc.lock);
6800 mem_cgroup_end_move(from);
6801 }
6802
6803 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6804 struct cgroup_taskset *tset)
6805 {
6806 struct task_struct *p = cgroup_taskset_first(tset);
6807 int ret = 0;
6808 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6809 unsigned long move_charge_at_immigrate;
6810
6811 /*
6812 * We are now commited to this value whatever it is. Changes in this
6813 * tunable will only affect upcoming migrations, not the current one.
6814 * So we need to save it, and keep it going.
6815 */
6816 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6817 if (move_charge_at_immigrate) {
6818 struct mm_struct *mm;
6819 struct mem_cgroup *from = mem_cgroup_from_task(p);
6820
6821 VM_BUG_ON(from == memcg);
6822
6823 mm = get_task_mm(p);
6824 if (!mm)
6825 return 0;
6826 /* We move charges only when we move a owner of the mm */
6827 if (mm->owner == p) {
6828 VM_BUG_ON(mc.from);
6829 VM_BUG_ON(mc.to);
6830 VM_BUG_ON(mc.precharge);
6831 VM_BUG_ON(mc.moved_charge);
6832 VM_BUG_ON(mc.moved_swap);
6833 mem_cgroup_start_move(from);
6834 spin_lock(&mc.lock);
6835 mc.from = from;
6836 mc.to = memcg;
6837 mc.immigrate_flags = move_charge_at_immigrate;
6838 spin_unlock(&mc.lock);
6839 /* We set mc.moving_task later */
6840
6841 ret = mem_cgroup_precharge_mc(mm);
6842 if (ret)
6843 mem_cgroup_clear_mc();
6844 }
6845 mmput(mm);
6846 }
6847 return ret;
6848 }
6849
6850 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6851 struct cgroup_taskset *tset)
6852 {
6853 mem_cgroup_clear_mc();
6854 }
6855
6856 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6857 unsigned long addr, unsigned long end,
6858 struct mm_walk *walk)
6859 {
6860 int ret = 0;
6861 struct vm_area_struct *vma = walk->private;
6862 pte_t *pte;
6863 spinlock_t *ptl;
6864 enum mc_target_type target_type;
6865 union mc_target target;
6866 struct page *page;
6867 struct page_cgroup *pc;
6868
6869 /*
6870 * We don't take compound_lock() here but no race with splitting thp
6871 * happens because:
6872 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6873 * under splitting, which means there's no concurrent thp split,
6874 * - if another thread runs into split_huge_page() just after we
6875 * entered this if-block, the thread must wait for page table lock
6876 * to be unlocked in __split_huge_page_splitting(), where the main
6877 * part of thp split is not executed yet.
6878 */
6879 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6880 if (mc.precharge < HPAGE_PMD_NR) {
6881 spin_unlock(ptl);
6882 return 0;
6883 }
6884 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6885 if (target_type == MC_TARGET_PAGE) {
6886 page = target.page;
6887 if (!isolate_lru_page(page)) {
6888 pc = lookup_page_cgroup(page);
6889 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6890 pc, mc.from, mc.to)) {
6891 mc.precharge -= HPAGE_PMD_NR;
6892 mc.moved_charge += HPAGE_PMD_NR;
6893 }
6894 putback_lru_page(page);
6895 }
6896 put_page(page);
6897 }
6898 spin_unlock(ptl);
6899 return 0;
6900 }
6901
6902 if (pmd_trans_unstable(pmd))
6903 return 0;
6904 retry:
6905 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6906 for (; addr != end; addr += PAGE_SIZE) {
6907 pte_t ptent = *(pte++);
6908 swp_entry_t ent;
6909
6910 if (!mc.precharge)
6911 break;
6912
6913 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6914 case MC_TARGET_PAGE:
6915 page = target.page;
6916 if (isolate_lru_page(page))
6917 goto put;
6918 pc = lookup_page_cgroup(page);
6919 if (!mem_cgroup_move_account(page, 1, pc,
6920 mc.from, mc.to)) {
6921 mc.precharge--;
6922 /* we uncharge from mc.from later. */
6923 mc.moved_charge++;
6924 }
6925 putback_lru_page(page);
6926 put: /* get_mctgt_type() gets the page */
6927 put_page(page);
6928 break;
6929 case MC_TARGET_SWAP:
6930 ent = target.ent;
6931 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6932 mc.precharge--;
6933 /* we fixup refcnts and charges later. */
6934 mc.moved_swap++;
6935 }
6936 break;
6937 default:
6938 break;
6939 }
6940 }
6941 pte_unmap_unlock(pte - 1, ptl);
6942 cond_resched();
6943
6944 if (addr != end) {
6945 /*
6946 * We have consumed all precharges we got in can_attach().
6947 * We try charge one by one, but don't do any additional
6948 * charges to mc.to if we have failed in charge once in attach()
6949 * phase.
6950 */
6951 ret = mem_cgroup_do_precharge(1);
6952 if (!ret)
6953 goto retry;
6954 }
6955
6956 return ret;
6957 }
6958
6959 static void mem_cgroup_move_charge(struct mm_struct *mm)
6960 {
6961 struct vm_area_struct *vma;
6962
6963 lru_add_drain_all();
6964 retry:
6965 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6966 /*
6967 * Someone who are holding the mmap_sem might be waiting in
6968 * waitq. So we cancel all extra charges, wake up all waiters,
6969 * and retry. Because we cancel precharges, we might not be able
6970 * to move enough charges, but moving charge is a best-effort
6971 * feature anyway, so it wouldn't be a big problem.
6972 */
6973 __mem_cgroup_clear_mc();
6974 cond_resched();
6975 goto retry;
6976 }
6977 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6978 int ret;
6979 struct mm_walk mem_cgroup_move_charge_walk = {
6980 .pmd_entry = mem_cgroup_move_charge_pte_range,
6981 .mm = mm,
6982 .private = vma,
6983 };
6984 if (is_vm_hugetlb_page(vma))
6985 continue;
6986 ret = walk_page_range(vma->vm_start, vma->vm_end,
6987 &mem_cgroup_move_charge_walk);
6988 if (ret)
6989 /*
6990 * means we have consumed all precharges and failed in
6991 * doing additional charge. Just abandon here.
6992 */
6993 break;
6994 }
6995 up_read(&mm->mmap_sem);
6996 }
6997
6998 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6999 struct cgroup_taskset *tset)
7000 {
7001 struct task_struct *p = cgroup_taskset_first(tset);
7002 struct mm_struct *mm = get_task_mm(p);
7003
7004 if (mm) {
7005 if (mc.to)
7006 mem_cgroup_move_charge(mm);
7007 mmput(mm);
7008 }
7009 if (mc.to)
7010 mem_cgroup_clear_mc();
7011 }
7012 #else /* !CONFIG_MMU */
7013 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7014 struct cgroup_taskset *tset)
7015 {
7016 return 0;
7017 }
7018 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7019 struct cgroup_taskset *tset)
7020 {
7021 }
7022 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7023 struct cgroup_taskset *tset)
7024 {
7025 }
7026 #endif
7027
7028 /*
7029 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7030 * to verify whether we're attached to the default hierarchy on each mount
7031 * attempt.
7032 */
7033 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7034 {
7035 /*
7036 * use_hierarchy is forced on the default hierarchy. cgroup core
7037 * guarantees that @root doesn't have any children, so turning it
7038 * on for the root memcg is enough.
7039 */
7040 if (cgroup_on_dfl(root_css->cgroup))
7041 mem_cgroup_from_css(root_css)->use_hierarchy = true;
7042 }
7043
7044 struct cgroup_subsys memory_cgrp_subsys = {
7045 .css_alloc = mem_cgroup_css_alloc,
7046 .css_online = mem_cgroup_css_online,
7047 .css_offline = mem_cgroup_css_offline,
7048 .css_free = mem_cgroup_css_free,
7049 .css_reset = mem_cgroup_css_reset,
7050 .can_attach = mem_cgroup_can_attach,
7051 .cancel_attach = mem_cgroup_cancel_attach,
7052 .attach = mem_cgroup_move_task,
7053 .bind = mem_cgroup_bind,
7054 .legacy_cftypes = mem_cgroup_files,
7055 .early_init = 0,
7056 };
7057
7058 #ifdef CONFIG_MEMCG_SWAP
7059 static int __init enable_swap_account(char *s)
7060 {
7061 if (!strcmp(s, "1"))
7062 really_do_swap_account = 1;
7063 else if (!strcmp(s, "0"))
7064 really_do_swap_account = 0;
7065 return 1;
7066 }
7067 __setup("swapaccount=", enable_swap_account);
7068
7069 static void __init memsw_file_init(void)
7070 {
7071 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7072 memsw_cgroup_files));
7073 }
7074
7075 static void __init enable_swap_cgroup(void)
7076 {
7077 if (!mem_cgroup_disabled() && really_do_swap_account) {
7078 do_swap_account = 1;
7079 memsw_file_init();
7080 }
7081 }
7082
7083 #else
7084 static void __init enable_swap_cgroup(void)
7085 {
7086 }
7087 #endif
7088
7089 /*
7090 * subsys_initcall() for memory controller.
7091 *
7092 * Some parts like hotcpu_notifier() have to be initialized from this context
7093 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7094 * everything that doesn't depend on a specific mem_cgroup structure should
7095 * be initialized from here.
7096 */
7097 static int __init mem_cgroup_init(void)
7098 {
7099 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7100 enable_swap_cgroup();
7101 mem_cgroup_soft_limit_tree_init();
7102 memcg_stock_init();
7103 return 0;
7104 }
7105 subsys_initcall(mem_cgroup_init);