]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memcontrol.c
mm: memcontrol: use root_mem_cgroup res_counter
[mirror_ubuntu-bionic-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64
65 #include <asm/uaccess.h>
66
67 #include <trace/events/vmscan.h>
68
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata;
84 #endif
85
86 #else
87 #define do_swap_account 0
88 #endif
89
90
91 static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
98 };
99
100 enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS,
106 };
107
108 static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113 };
114
115 static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121 };
122
123 /*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129 enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
138
139 struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145
146 struct mem_cgroup_reclaim_iter {
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
151 struct mem_cgroup *last_visited;
152 int last_dead_count;
153
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156 };
157
158 /*
159 * per-zone information in memory controller.
160 */
161 struct mem_cgroup_per_zone {
162 struct lruvec lruvec;
163 unsigned long lru_size[NR_LRU_LISTS];
164
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
172 /* use container_of */
173 };
174
175 struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177 };
178
179 /*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184 struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187 };
188
189 struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191 };
192
193 struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195 };
196
197 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
199 struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202 };
203
204 /* For threshold */
205 struct mem_cgroup_threshold_ary {
206 /* An array index points to threshold just below or equal to usage. */
207 int current_threshold;
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212 };
213
214 struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223 };
224
225 /* for OOM */
226 struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229 };
230
231 /*
232 * cgroup_event represents events which userspace want to receive.
233 */
234 struct mem_cgroup_event {
235 /*
236 * memcg which the event belongs to.
237 */
238 struct mem_cgroup *memcg;
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
252 int (*register_event)(struct mem_cgroup *memcg,
253 struct eventfd_ctx *eventfd, const char *args);
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
259 void (*unregister_event)(struct mem_cgroup *memcg,
260 struct eventfd_ctx *eventfd);
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269 };
270
271 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273
274 /*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
284 */
285 struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
291
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
299
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309
310 bool oom_lock;
311 atomic_t under_oom;
312 atomic_t oom_wakeups;
313
314 int swappiness;
315 /* OOM-Killer disable */
316 int oom_kill_disable;
317
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
325 struct mem_cgroup_thresholds thresholds;
326
327 /* thresholds for mem+swap usage. RCU-protected */
328 struct mem_cgroup_thresholds memsw_thresholds;
329
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
332
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
337 unsigned long move_charge_at_immigrate;
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
344 /*
345 * percpu counter.
346 */
347 struct mem_cgroup_stat_cpu __percpu *stat;
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
354
355 atomic_t dead_count;
356 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357 struct cg_proto tcp_mem;
358 #endif
359 #if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list, but per-memcg;
361 * protected by memcg_slab_mutex */
362 struct list_head memcg_slab_caches;
363 /* Index in the kmem_cache->memcg_params->memcg_caches array */
364 int kmemcg_id;
365 #endif
366
367 int last_scanned_node;
368 #if MAX_NUMNODES > 1
369 nodemask_t scan_nodes;
370 atomic_t numainfo_events;
371 atomic_t numainfo_updating;
372 #endif
373
374 /* List of events which userspace want to receive */
375 struct list_head event_list;
376 spinlock_t event_list_lock;
377
378 struct mem_cgroup_per_node *nodeinfo[0];
379 /* WARNING: nodeinfo must be the last member here */
380 };
381
382 /* internal only representation about the status of kmem accounting. */
383 enum {
384 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
385 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
386 };
387
388 #ifdef CONFIG_MEMCG_KMEM
389 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
390 {
391 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
392 }
393
394 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
395 {
396 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
397 }
398
399 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
400 {
401 /*
402 * Our caller must use css_get() first, because memcg_uncharge_kmem()
403 * will call css_put() if it sees the memcg is dead.
404 */
405 smp_wmb();
406 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
407 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
408 }
409
410 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
411 {
412 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
413 &memcg->kmem_account_flags);
414 }
415 #endif
416
417 /* Stuffs for move charges at task migration. */
418 /*
419 * Types of charges to be moved. "move_charge_at_immitgrate" and
420 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
421 */
422 enum move_type {
423 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
424 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
425 NR_MOVE_TYPE,
426 };
427
428 /* "mc" and its members are protected by cgroup_mutex */
429 static struct move_charge_struct {
430 spinlock_t lock; /* for from, to */
431 struct mem_cgroup *from;
432 struct mem_cgroup *to;
433 unsigned long immigrate_flags;
434 unsigned long precharge;
435 unsigned long moved_charge;
436 unsigned long moved_swap;
437 struct task_struct *moving_task; /* a task moving charges */
438 wait_queue_head_t waitq; /* a waitq for other context */
439 } mc = {
440 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
441 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
442 };
443
444 static bool move_anon(void)
445 {
446 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
447 }
448
449 static bool move_file(void)
450 {
451 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
452 }
453
454 /*
455 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
456 * limit reclaim to prevent infinite loops, if they ever occur.
457 */
458 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
459 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
460
461 enum charge_type {
462 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
463 MEM_CGROUP_CHARGE_TYPE_ANON,
464 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
465 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
466 NR_CHARGE_TYPE,
467 };
468
469 /* for encoding cft->private value on file */
470 enum res_type {
471 _MEM,
472 _MEMSWAP,
473 _OOM_TYPE,
474 _KMEM,
475 };
476
477 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
478 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
479 #define MEMFILE_ATTR(val) ((val) & 0xffff)
480 /* Used for OOM nofiier */
481 #define OOM_CONTROL (0)
482
483 /*
484 * Reclaim flags for mem_cgroup_hierarchical_reclaim
485 */
486 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
487 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
488 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
489 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
490
491 /*
492 * The memcg_create_mutex will be held whenever a new cgroup is created.
493 * As a consequence, any change that needs to protect against new child cgroups
494 * appearing has to hold it as well.
495 */
496 static DEFINE_MUTEX(memcg_create_mutex);
497
498 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
499 {
500 return s ? container_of(s, struct mem_cgroup, css) : NULL;
501 }
502
503 /* Some nice accessors for the vmpressure. */
504 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
505 {
506 if (!memcg)
507 memcg = root_mem_cgroup;
508 return &memcg->vmpressure;
509 }
510
511 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
512 {
513 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
514 }
515
516 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
517 {
518 return (memcg == root_mem_cgroup);
519 }
520
521 /*
522 * We restrict the id in the range of [1, 65535], so it can fit into
523 * an unsigned short.
524 */
525 #define MEM_CGROUP_ID_MAX USHRT_MAX
526
527 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
528 {
529 return memcg->css.id;
530 }
531
532 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
533 {
534 struct cgroup_subsys_state *css;
535
536 css = css_from_id(id, &memory_cgrp_subsys);
537 return mem_cgroup_from_css(css);
538 }
539
540 /* Writing them here to avoid exposing memcg's inner layout */
541 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
542
543 void sock_update_memcg(struct sock *sk)
544 {
545 if (mem_cgroup_sockets_enabled) {
546 struct mem_cgroup *memcg;
547 struct cg_proto *cg_proto;
548
549 BUG_ON(!sk->sk_prot->proto_cgroup);
550
551 /* Socket cloning can throw us here with sk_cgrp already
552 * filled. It won't however, necessarily happen from
553 * process context. So the test for root memcg given
554 * the current task's memcg won't help us in this case.
555 *
556 * Respecting the original socket's memcg is a better
557 * decision in this case.
558 */
559 if (sk->sk_cgrp) {
560 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
561 css_get(&sk->sk_cgrp->memcg->css);
562 return;
563 }
564
565 rcu_read_lock();
566 memcg = mem_cgroup_from_task(current);
567 cg_proto = sk->sk_prot->proto_cgroup(memcg);
568 if (!mem_cgroup_is_root(memcg) &&
569 memcg_proto_active(cg_proto) &&
570 css_tryget_online(&memcg->css)) {
571 sk->sk_cgrp = cg_proto;
572 }
573 rcu_read_unlock();
574 }
575 }
576 EXPORT_SYMBOL(sock_update_memcg);
577
578 void sock_release_memcg(struct sock *sk)
579 {
580 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
581 struct mem_cgroup *memcg;
582 WARN_ON(!sk->sk_cgrp->memcg);
583 memcg = sk->sk_cgrp->memcg;
584 css_put(&sk->sk_cgrp->memcg->css);
585 }
586 }
587
588 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
589 {
590 if (!memcg || mem_cgroup_is_root(memcg))
591 return NULL;
592
593 return &memcg->tcp_mem;
594 }
595 EXPORT_SYMBOL(tcp_proto_cgroup);
596
597 static void disarm_sock_keys(struct mem_cgroup *memcg)
598 {
599 if (!memcg_proto_activated(&memcg->tcp_mem))
600 return;
601 static_key_slow_dec(&memcg_socket_limit_enabled);
602 }
603 #else
604 static void disarm_sock_keys(struct mem_cgroup *memcg)
605 {
606 }
607 #endif
608
609 #ifdef CONFIG_MEMCG_KMEM
610 /*
611 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
612 * The main reason for not using cgroup id for this:
613 * this works better in sparse environments, where we have a lot of memcgs,
614 * but only a few kmem-limited. Or also, if we have, for instance, 200
615 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
616 * 200 entry array for that.
617 *
618 * The current size of the caches array is stored in
619 * memcg_limited_groups_array_size. It will double each time we have to
620 * increase it.
621 */
622 static DEFINE_IDA(kmem_limited_groups);
623 int memcg_limited_groups_array_size;
624
625 /*
626 * MIN_SIZE is different than 1, because we would like to avoid going through
627 * the alloc/free process all the time. In a small machine, 4 kmem-limited
628 * cgroups is a reasonable guess. In the future, it could be a parameter or
629 * tunable, but that is strictly not necessary.
630 *
631 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
632 * this constant directly from cgroup, but it is understandable that this is
633 * better kept as an internal representation in cgroup.c. In any case, the
634 * cgrp_id space is not getting any smaller, and we don't have to necessarily
635 * increase ours as well if it increases.
636 */
637 #define MEMCG_CACHES_MIN_SIZE 4
638 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
639
640 /*
641 * A lot of the calls to the cache allocation functions are expected to be
642 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
643 * conditional to this static branch, we'll have to allow modules that does
644 * kmem_cache_alloc and the such to see this symbol as well
645 */
646 struct static_key memcg_kmem_enabled_key;
647 EXPORT_SYMBOL(memcg_kmem_enabled_key);
648
649 static void disarm_kmem_keys(struct mem_cgroup *memcg)
650 {
651 if (memcg_kmem_is_active(memcg)) {
652 static_key_slow_dec(&memcg_kmem_enabled_key);
653 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
654 }
655 /*
656 * This check can't live in kmem destruction function,
657 * since the charges will outlive the cgroup
658 */
659 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
660 }
661 #else
662 static void disarm_kmem_keys(struct mem_cgroup *memcg)
663 {
664 }
665 #endif /* CONFIG_MEMCG_KMEM */
666
667 static void disarm_static_keys(struct mem_cgroup *memcg)
668 {
669 disarm_sock_keys(memcg);
670 disarm_kmem_keys(memcg);
671 }
672
673 static void drain_all_stock_async(struct mem_cgroup *memcg);
674
675 static struct mem_cgroup_per_zone *
676 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
677 {
678 int nid = zone_to_nid(zone);
679 int zid = zone_idx(zone);
680
681 return &memcg->nodeinfo[nid]->zoneinfo[zid];
682 }
683
684 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
685 {
686 return &memcg->css;
687 }
688
689 static struct mem_cgroup_per_zone *
690 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
691 {
692 int nid = page_to_nid(page);
693 int zid = page_zonenum(page);
694
695 return &memcg->nodeinfo[nid]->zoneinfo[zid];
696 }
697
698 static struct mem_cgroup_tree_per_zone *
699 soft_limit_tree_node_zone(int nid, int zid)
700 {
701 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
702 }
703
704 static struct mem_cgroup_tree_per_zone *
705 soft_limit_tree_from_page(struct page *page)
706 {
707 int nid = page_to_nid(page);
708 int zid = page_zonenum(page);
709
710 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
711 }
712
713 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
714 struct mem_cgroup_tree_per_zone *mctz,
715 unsigned long long new_usage_in_excess)
716 {
717 struct rb_node **p = &mctz->rb_root.rb_node;
718 struct rb_node *parent = NULL;
719 struct mem_cgroup_per_zone *mz_node;
720
721 if (mz->on_tree)
722 return;
723
724 mz->usage_in_excess = new_usage_in_excess;
725 if (!mz->usage_in_excess)
726 return;
727 while (*p) {
728 parent = *p;
729 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
730 tree_node);
731 if (mz->usage_in_excess < mz_node->usage_in_excess)
732 p = &(*p)->rb_left;
733 /*
734 * We can't avoid mem cgroups that are over their soft
735 * limit by the same amount
736 */
737 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
738 p = &(*p)->rb_right;
739 }
740 rb_link_node(&mz->tree_node, parent, p);
741 rb_insert_color(&mz->tree_node, &mctz->rb_root);
742 mz->on_tree = true;
743 }
744
745 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
746 struct mem_cgroup_tree_per_zone *mctz)
747 {
748 if (!mz->on_tree)
749 return;
750 rb_erase(&mz->tree_node, &mctz->rb_root);
751 mz->on_tree = false;
752 }
753
754 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
755 struct mem_cgroup_tree_per_zone *mctz)
756 {
757 spin_lock(&mctz->lock);
758 __mem_cgroup_remove_exceeded(mz, mctz);
759 spin_unlock(&mctz->lock);
760 }
761
762
763 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
764 {
765 unsigned long long excess;
766 struct mem_cgroup_per_zone *mz;
767 struct mem_cgroup_tree_per_zone *mctz;
768
769 mctz = soft_limit_tree_from_page(page);
770 /*
771 * Necessary to update all ancestors when hierarchy is used.
772 * because their event counter is not touched.
773 */
774 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
775 mz = mem_cgroup_page_zoneinfo(memcg, page);
776 excess = res_counter_soft_limit_excess(&memcg->res);
777 /*
778 * We have to update the tree if mz is on RB-tree or
779 * mem is over its softlimit.
780 */
781 if (excess || mz->on_tree) {
782 spin_lock(&mctz->lock);
783 /* if on-tree, remove it */
784 if (mz->on_tree)
785 __mem_cgroup_remove_exceeded(mz, mctz);
786 /*
787 * Insert again. mz->usage_in_excess will be updated.
788 * If excess is 0, no tree ops.
789 */
790 __mem_cgroup_insert_exceeded(mz, mctz, excess);
791 spin_unlock(&mctz->lock);
792 }
793 }
794 }
795
796 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
797 {
798 struct mem_cgroup_tree_per_zone *mctz;
799 struct mem_cgroup_per_zone *mz;
800 int nid, zid;
801
802 for_each_node(nid) {
803 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
804 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
805 mctz = soft_limit_tree_node_zone(nid, zid);
806 mem_cgroup_remove_exceeded(mz, mctz);
807 }
808 }
809 }
810
811 static struct mem_cgroup_per_zone *
812 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
813 {
814 struct rb_node *rightmost = NULL;
815 struct mem_cgroup_per_zone *mz;
816
817 retry:
818 mz = NULL;
819 rightmost = rb_last(&mctz->rb_root);
820 if (!rightmost)
821 goto done; /* Nothing to reclaim from */
822
823 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
824 /*
825 * Remove the node now but someone else can add it back,
826 * we will to add it back at the end of reclaim to its correct
827 * position in the tree.
828 */
829 __mem_cgroup_remove_exceeded(mz, mctz);
830 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
831 !css_tryget_online(&mz->memcg->css))
832 goto retry;
833 done:
834 return mz;
835 }
836
837 static struct mem_cgroup_per_zone *
838 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
839 {
840 struct mem_cgroup_per_zone *mz;
841
842 spin_lock(&mctz->lock);
843 mz = __mem_cgroup_largest_soft_limit_node(mctz);
844 spin_unlock(&mctz->lock);
845 return mz;
846 }
847
848 /*
849 * Implementation Note: reading percpu statistics for memcg.
850 *
851 * Both of vmstat[] and percpu_counter has threshold and do periodic
852 * synchronization to implement "quick" read. There are trade-off between
853 * reading cost and precision of value. Then, we may have a chance to implement
854 * a periodic synchronizion of counter in memcg's counter.
855 *
856 * But this _read() function is used for user interface now. The user accounts
857 * memory usage by memory cgroup and he _always_ requires exact value because
858 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
859 * have to visit all online cpus and make sum. So, for now, unnecessary
860 * synchronization is not implemented. (just implemented for cpu hotplug)
861 *
862 * If there are kernel internal actions which can make use of some not-exact
863 * value, and reading all cpu value can be performance bottleneck in some
864 * common workload, threashold and synchonization as vmstat[] should be
865 * implemented.
866 */
867 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
868 enum mem_cgroup_stat_index idx)
869 {
870 long val = 0;
871 int cpu;
872
873 get_online_cpus();
874 for_each_online_cpu(cpu)
875 val += per_cpu(memcg->stat->count[idx], cpu);
876 #ifdef CONFIG_HOTPLUG_CPU
877 spin_lock(&memcg->pcp_counter_lock);
878 val += memcg->nocpu_base.count[idx];
879 spin_unlock(&memcg->pcp_counter_lock);
880 #endif
881 put_online_cpus();
882 return val;
883 }
884
885 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
886 bool charge)
887 {
888 int val = (charge) ? 1 : -1;
889 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
890 }
891
892 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
893 enum mem_cgroup_events_index idx)
894 {
895 unsigned long val = 0;
896 int cpu;
897
898 get_online_cpus();
899 for_each_online_cpu(cpu)
900 val += per_cpu(memcg->stat->events[idx], cpu);
901 #ifdef CONFIG_HOTPLUG_CPU
902 spin_lock(&memcg->pcp_counter_lock);
903 val += memcg->nocpu_base.events[idx];
904 spin_unlock(&memcg->pcp_counter_lock);
905 #endif
906 put_online_cpus();
907 return val;
908 }
909
910 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
911 struct page *page,
912 bool anon, int nr_pages)
913 {
914 /*
915 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
916 * counted as CACHE even if it's on ANON LRU.
917 */
918 if (anon)
919 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
920 nr_pages);
921 else
922 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
923 nr_pages);
924
925 if (PageTransHuge(page))
926 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
927 nr_pages);
928
929 /* pagein of a big page is an event. So, ignore page size */
930 if (nr_pages > 0)
931 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
932 else {
933 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
934 nr_pages = -nr_pages; /* for event */
935 }
936
937 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
938 }
939
940 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
941 {
942 struct mem_cgroup_per_zone *mz;
943
944 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
945 return mz->lru_size[lru];
946 }
947
948 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
949 int nid,
950 unsigned int lru_mask)
951 {
952 unsigned long nr = 0;
953 int zid;
954
955 VM_BUG_ON((unsigned)nid >= nr_node_ids);
956
957 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
958 struct mem_cgroup_per_zone *mz;
959 enum lru_list lru;
960
961 for_each_lru(lru) {
962 if (!(BIT(lru) & lru_mask))
963 continue;
964 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
965 nr += mz->lru_size[lru];
966 }
967 }
968 return nr;
969 }
970
971 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
972 unsigned int lru_mask)
973 {
974 unsigned long nr = 0;
975 int nid;
976
977 for_each_node_state(nid, N_MEMORY)
978 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
979 return nr;
980 }
981
982 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
983 enum mem_cgroup_events_target target)
984 {
985 unsigned long val, next;
986
987 val = __this_cpu_read(memcg->stat->nr_page_events);
988 next = __this_cpu_read(memcg->stat->targets[target]);
989 /* from time_after() in jiffies.h */
990 if ((long)next - (long)val < 0) {
991 switch (target) {
992 case MEM_CGROUP_TARGET_THRESH:
993 next = val + THRESHOLDS_EVENTS_TARGET;
994 break;
995 case MEM_CGROUP_TARGET_SOFTLIMIT:
996 next = val + SOFTLIMIT_EVENTS_TARGET;
997 break;
998 case MEM_CGROUP_TARGET_NUMAINFO:
999 next = val + NUMAINFO_EVENTS_TARGET;
1000 break;
1001 default:
1002 break;
1003 }
1004 __this_cpu_write(memcg->stat->targets[target], next);
1005 return true;
1006 }
1007 return false;
1008 }
1009
1010 /*
1011 * Check events in order.
1012 *
1013 */
1014 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1015 {
1016 preempt_disable();
1017 /* threshold event is triggered in finer grain than soft limit */
1018 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1019 MEM_CGROUP_TARGET_THRESH))) {
1020 bool do_softlimit;
1021 bool do_numainfo __maybe_unused;
1022
1023 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1024 MEM_CGROUP_TARGET_SOFTLIMIT);
1025 #if MAX_NUMNODES > 1
1026 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1027 MEM_CGROUP_TARGET_NUMAINFO);
1028 #endif
1029 preempt_enable();
1030
1031 mem_cgroup_threshold(memcg);
1032 if (unlikely(do_softlimit))
1033 mem_cgroup_update_tree(memcg, page);
1034 #if MAX_NUMNODES > 1
1035 if (unlikely(do_numainfo))
1036 atomic_inc(&memcg->numainfo_events);
1037 #endif
1038 } else
1039 preempt_enable();
1040 }
1041
1042 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1043 {
1044 /*
1045 * mm_update_next_owner() may clear mm->owner to NULL
1046 * if it races with swapoff, page migration, etc.
1047 * So this can be called with p == NULL.
1048 */
1049 if (unlikely(!p))
1050 return NULL;
1051
1052 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1053 }
1054
1055 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1056 {
1057 struct mem_cgroup *memcg = NULL;
1058
1059 rcu_read_lock();
1060 do {
1061 /*
1062 * Page cache insertions can happen withou an
1063 * actual mm context, e.g. during disk probing
1064 * on boot, loopback IO, acct() writes etc.
1065 */
1066 if (unlikely(!mm))
1067 memcg = root_mem_cgroup;
1068 else {
1069 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1070 if (unlikely(!memcg))
1071 memcg = root_mem_cgroup;
1072 }
1073 } while (!css_tryget_online(&memcg->css));
1074 rcu_read_unlock();
1075 return memcg;
1076 }
1077
1078 /*
1079 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1080 * ref. count) or NULL if the whole root's subtree has been visited.
1081 *
1082 * helper function to be used by mem_cgroup_iter
1083 */
1084 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1085 struct mem_cgroup *last_visited)
1086 {
1087 struct cgroup_subsys_state *prev_css, *next_css;
1088
1089 prev_css = last_visited ? &last_visited->css : NULL;
1090 skip_node:
1091 next_css = css_next_descendant_pre(prev_css, &root->css);
1092
1093 /*
1094 * Even if we found a group we have to make sure it is
1095 * alive. css && !memcg means that the groups should be
1096 * skipped and we should continue the tree walk.
1097 * last_visited css is safe to use because it is
1098 * protected by css_get and the tree walk is rcu safe.
1099 *
1100 * We do not take a reference on the root of the tree walk
1101 * because we might race with the root removal when it would
1102 * be the only node in the iterated hierarchy and mem_cgroup_iter
1103 * would end up in an endless loop because it expects that at
1104 * least one valid node will be returned. Root cannot disappear
1105 * because caller of the iterator should hold it already so
1106 * skipping css reference should be safe.
1107 */
1108 if (next_css) {
1109 if ((next_css == &root->css) ||
1110 ((next_css->flags & CSS_ONLINE) &&
1111 css_tryget_online(next_css)))
1112 return mem_cgroup_from_css(next_css);
1113
1114 prev_css = next_css;
1115 goto skip_node;
1116 }
1117
1118 return NULL;
1119 }
1120
1121 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1122 {
1123 /*
1124 * When a group in the hierarchy below root is destroyed, the
1125 * hierarchy iterator can no longer be trusted since it might
1126 * have pointed to the destroyed group. Invalidate it.
1127 */
1128 atomic_inc(&root->dead_count);
1129 }
1130
1131 static struct mem_cgroup *
1132 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1133 struct mem_cgroup *root,
1134 int *sequence)
1135 {
1136 struct mem_cgroup *position = NULL;
1137 /*
1138 * A cgroup destruction happens in two stages: offlining and
1139 * release. They are separated by a RCU grace period.
1140 *
1141 * If the iterator is valid, we may still race with an
1142 * offlining. The RCU lock ensures the object won't be
1143 * released, tryget will fail if we lost the race.
1144 */
1145 *sequence = atomic_read(&root->dead_count);
1146 if (iter->last_dead_count == *sequence) {
1147 smp_rmb();
1148 position = iter->last_visited;
1149
1150 /*
1151 * We cannot take a reference to root because we might race
1152 * with root removal and returning NULL would end up in
1153 * an endless loop on the iterator user level when root
1154 * would be returned all the time.
1155 */
1156 if (position && position != root &&
1157 !css_tryget_online(&position->css))
1158 position = NULL;
1159 }
1160 return position;
1161 }
1162
1163 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1164 struct mem_cgroup *last_visited,
1165 struct mem_cgroup *new_position,
1166 struct mem_cgroup *root,
1167 int sequence)
1168 {
1169 /* root reference counting symmetric to mem_cgroup_iter_load */
1170 if (last_visited && last_visited != root)
1171 css_put(&last_visited->css);
1172 /*
1173 * We store the sequence count from the time @last_visited was
1174 * loaded successfully instead of rereading it here so that we
1175 * don't lose destruction events in between. We could have
1176 * raced with the destruction of @new_position after all.
1177 */
1178 iter->last_visited = new_position;
1179 smp_wmb();
1180 iter->last_dead_count = sequence;
1181 }
1182
1183 /**
1184 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1185 * @root: hierarchy root
1186 * @prev: previously returned memcg, NULL on first invocation
1187 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1188 *
1189 * Returns references to children of the hierarchy below @root, or
1190 * @root itself, or %NULL after a full round-trip.
1191 *
1192 * Caller must pass the return value in @prev on subsequent
1193 * invocations for reference counting, or use mem_cgroup_iter_break()
1194 * to cancel a hierarchy walk before the round-trip is complete.
1195 *
1196 * Reclaimers can specify a zone and a priority level in @reclaim to
1197 * divide up the memcgs in the hierarchy among all concurrent
1198 * reclaimers operating on the same zone and priority.
1199 */
1200 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1201 struct mem_cgroup *prev,
1202 struct mem_cgroup_reclaim_cookie *reclaim)
1203 {
1204 struct mem_cgroup *memcg = NULL;
1205 struct mem_cgroup *last_visited = NULL;
1206
1207 if (mem_cgroup_disabled())
1208 return NULL;
1209
1210 if (!root)
1211 root = root_mem_cgroup;
1212
1213 if (prev && !reclaim)
1214 last_visited = prev;
1215
1216 if (!root->use_hierarchy && root != root_mem_cgroup) {
1217 if (prev)
1218 goto out_css_put;
1219 return root;
1220 }
1221
1222 rcu_read_lock();
1223 while (!memcg) {
1224 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1225 int uninitialized_var(seq);
1226
1227 if (reclaim) {
1228 struct mem_cgroup_per_zone *mz;
1229
1230 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1231 iter = &mz->reclaim_iter[reclaim->priority];
1232 if (prev && reclaim->generation != iter->generation) {
1233 iter->last_visited = NULL;
1234 goto out_unlock;
1235 }
1236
1237 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1238 }
1239
1240 memcg = __mem_cgroup_iter_next(root, last_visited);
1241
1242 if (reclaim) {
1243 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1244 seq);
1245
1246 if (!memcg)
1247 iter->generation++;
1248 else if (!prev && memcg)
1249 reclaim->generation = iter->generation;
1250 }
1251
1252 if (prev && !memcg)
1253 goto out_unlock;
1254 }
1255 out_unlock:
1256 rcu_read_unlock();
1257 out_css_put:
1258 if (prev && prev != root)
1259 css_put(&prev->css);
1260
1261 return memcg;
1262 }
1263
1264 /**
1265 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1266 * @root: hierarchy root
1267 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1268 */
1269 void mem_cgroup_iter_break(struct mem_cgroup *root,
1270 struct mem_cgroup *prev)
1271 {
1272 if (!root)
1273 root = root_mem_cgroup;
1274 if (prev && prev != root)
1275 css_put(&prev->css);
1276 }
1277
1278 /*
1279 * Iteration constructs for visiting all cgroups (under a tree). If
1280 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1281 * be used for reference counting.
1282 */
1283 #define for_each_mem_cgroup_tree(iter, root) \
1284 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1285 iter != NULL; \
1286 iter = mem_cgroup_iter(root, iter, NULL))
1287
1288 #define for_each_mem_cgroup(iter) \
1289 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1290 iter != NULL; \
1291 iter = mem_cgroup_iter(NULL, iter, NULL))
1292
1293 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1294 {
1295 struct mem_cgroup *memcg;
1296
1297 rcu_read_lock();
1298 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1299 if (unlikely(!memcg))
1300 goto out;
1301
1302 switch (idx) {
1303 case PGFAULT:
1304 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1305 break;
1306 case PGMAJFAULT:
1307 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1308 break;
1309 default:
1310 BUG();
1311 }
1312 out:
1313 rcu_read_unlock();
1314 }
1315 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1316
1317 /**
1318 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1319 * @zone: zone of the wanted lruvec
1320 * @memcg: memcg of the wanted lruvec
1321 *
1322 * Returns the lru list vector holding pages for the given @zone and
1323 * @mem. This can be the global zone lruvec, if the memory controller
1324 * is disabled.
1325 */
1326 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1327 struct mem_cgroup *memcg)
1328 {
1329 struct mem_cgroup_per_zone *mz;
1330 struct lruvec *lruvec;
1331
1332 if (mem_cgroup_disabled()) {
1333 lruvec = &zone->lruvec;
1334 goto out;
1335 }
1336
1337 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1338 lruvec = &mz->lruvec;
1339 out:
1340 /*
1341 * Since a node can be onlined after the mem_cgroup was created,
1342 * we have to be prepared to initialize lruvec->zone here;
1343 * and if offlined then reonlined, we need to reinitialize it.
1344 */
1345 if (unlikely(lruvec->zone != zone))
1346 lruvec->zone = zone;
1347 return lruvec;
1348 }
1349
1350 /*
1351 * Following LRU functions are allowed to be used without PCG_LOCK.
1352 * Operations are called by routine of global LRU independently from memcg.
1353 * What we have to take care of here is validness of pc->mem_cgroup.
1354 *
1355 * Changes to pc->mem_cgroup happens when
1356 * 1. charge
1357 * 2. moving account
1358 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1359 * It is added to LRU before charge.
1360 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1361 * When moving account, the page is not on LRU. It's isolated.
1362 */
1363
1364 /**
1365 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1366 * @page: the page
1367 * @zone: zone of the page
1368 */
1369 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1370 {
1371 struct mem_cgroup_per_zone *mz;
1372 struct mem_cgroup *memcg;
1373 struct page_cgroup *pc;
1374 struct lruvec *lruvec;
1375
1376 if (mem_cgroup_disabled()) {
1377 lruvec = &zone->lruvec;
1378 goto out;
1379 }
1380
1381 pc = lookup_page_cgroup(page);
1382 memcg = pc->mem_cgroup;
1383
1384 /*
1385 * Surreptitiously switch any uncharged offlist page to root:
1386 * an uncharged page off lru does nothing to secure
1387 * its former mem_cgroup from sudden removal.
1388 *
1389 * Our caller holds lru_lock, and PageCgroupUsed is updated
1390 * under page_cgroup lock: between them, they make all uses
1391 * of pc->mem_cgroup safe.
1392 */
1393 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1394 pc->mem_cgroup = memcg = root_mem_cgroup;
1395
1396 mz = mem_cgroup_page_zoneinfo(memcg, page);
1397 lruvec = &mz->lruvec;
1398 out:
1399 /*
1400 * Since a node can be onlined after the mem_cgroup was created,
1401 * we have to be prepared to initialize lruvec->zone here;
1402 * and if offlined then reonlined, we need to reinitialize it.
1403 */
1404 if (unlikely(lruvec->zone != zone))
1405 lruvec->zone = zone;
1406 return lruvec;
1407 }
1408
1409 /**
1410 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1411 * @lruvec: mem_cgroup per zone lru vector
1412 * @lru: index of lru list the page is sitting on
1413 * @nr_pages: positive when adding or negative when removing
1414 *
1415 * This function must be called when a page is added to or removed from an
1416 * lru list.
1417 */
1418 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1419 int nr_pages)
1420 {
1421 struct mem_cgroup_per_zone *mz;
1422 unsigned long *lru_size;
1423
1424 if (mem_cgroup_disabled())
1425 return;
1426
1427 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1428 lru_size = mz->lru_size + lru;
1429 *lru_size += nr_pages;
1430 VM_BUG_ON((long)(*lru_size) < 0);
1431 }
1432
1433 /*
1434 * Checks whether given mem is same or in the root_mem_cgroup's
1435 * hierarchy subtree
1436 */
1437 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1438 struct mem_cgroup *memcg)
1439 {
1440 if (root_memcg == memcg)
1441 return true;
1442 if (!root_memcg->use_hierarchy || !memcg)
1443 return false;
1444 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1445 }
1446
1447 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1448 struct mem_cgroup *memcg)
1449 {
1450 bool ret;
1451
1452 rcu_read_lock();
1453 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1454 rcu_read_unlock();
1455 return ret;
1456 }
1457
1458 bool task_in_mem_cgroup(struct task_struct *task,
1459 const struct mem_cgroup *memcg)
1460 {
1461 struct mem_cgroup *curr = NULL;
1462 struct task_struct *p;
1463 bool ret;
1464
1465 p = find_lock_task_mm(task);
1466 if (p) {
1467 curr = get_mem_cgroup_from_mm(p->mm);
1468 task_unlock(p);
1469 } else {
1470 /*
1471 * All threads may have already detached their mm's, but the oom
1472 * killer still needs to detect if they have already been oom
1473 * killed to prevent needlessly killing additional tasks.
1474 */
1475 rcu_read_lock();
1476 curr = mem_cgroup_from_task(task);
1477 if (curr)
1478 css_get(&curr->css);
1479 rcu_read_unlock();
1480 }
1481 /*
1482 * We should check use_hierarchy of "memcg" not "curr". Because checking
1483 * use_hierarchy of "curr" here make this function true if hierarchy is
1484 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1485 * hierarchy(even if use_hierarchy is disabled in "memcg").
1486 */
1487 ret = mem_cgroup_same_or_subtree(memcg, curr);
1488 css_put(&curr->css);
1489 return ret;
1490 }
1491
1492 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1493 {
1494 unsigned long inactive_ratio;
1495 unsigned long inactive;
1496 unsigned long active;
1497 unsigned long gb;
1498
1499 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1500 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1501
1502 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1503 if (gb)
1504 inactive_ratio = int_sqrt(10 * gb);
1505 else
1506 inactive_ratio = 1;
1507
1508 return inactive * inactive_ratio < active;
1509 }
1510
1511 #define mem_cgroup_from_res_counter(counter, member) \
1512 container_of(counter, struct mem_cgroup, member)
1513
1514 /**
1515 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1516 * @memcg: the memory cgroup
1517 *
1518 * Returns the maximum amount of memory @mem can be charged with, in
1519 * pages.
1520 */
1521 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1522 {
1523 unsigned long long margin;
1524
1525 margin = res_counter_margin(&memcg->res);
1526 if (do_swap_account)
1527 margin = min(margin, res_counter_margin(&memcg->memsw));
1528 return margin >> PAGE_SHIFT;
1529 }
1530
1531 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1532 {
1533 /* root ? */
1534 if (mem_cgroup_disabled() || !memcg->css.parent)
1535 return vm_swappiness;
1536
1537 return memcg->swappiness;
1538 }
1539
1540 /*
1541 * memcg->moving_account is used for checking possibility that some thread is
1542 * calling move_account(). When a thread on CPU-A starts moving pages under
1543 * a memcg, other threads should check memcg->moving_account under
1544 * rcu_read_lock(), like this:
1545 *
1546 * CPU-A CPU-B
1547 * rcu_read_lock()
1548 * memcg->moving_account+1 if (memcg->mocing_account)
1549 * take heavy locks.
1550 * synchronize_rcu() update something.
1551 * rcu_read_unlock()
1552 * start move here.
1553 */
1554
1555 /* for quick checking without looking up memcg */
1556 atomic_t memcg_moving __read_mostly;
1557
1558 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1559 {
1560 atomic_inc(&memcg_moving);
1561 atomic_inc(&memcg->moving_account);
1562 synchronize_rcu();
1563 }
1564
1565 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1566 {
1567 /*
1568 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1569 * We check NULL in callee rather than caller.
1570 */
1571 if (memcg) {
1572 atomic_dec(&memcg_moving);
1573 atomic_dec(&memcg->moving_account);
1574 }
1575 }
1576
1577 /*
1578 * A routine for checking "mem" is under move_account() or not.
1579 *
1580 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1581 * moving cgroups. This is for waiting at high-memory pressure
1582 * caused by "move".
1583 */
1584 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1585 {
1586 struct mem_cgroup *from;
1587 struct mem_cgroup *to;
1588 bool ret = false;
1589 /*
1590 * Unlike task_move routines, we access mc.to, mc.from not under
1591 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1592 */
1593 spin_lock(&mc.lock);
1594 from = mc.from;
1595 to = mc.to;
1596 if (!from)
1597 goto unlock;
1598
1599 ret = mem_cgroup_same_or_subtree(memcg, from)
1600 || mem_cgroup_same_or_subtree(memcg, to);
1601 unlock:
1602 spin_unlock(&mc.lock);
1603 return ret;
1604 }
1605
1606 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1607 {
1608 if (mc.moving_task && current != mc.moving_task) {
1609 if (mem_cgroup_under_move(memcg)) {
1610 DEFINE_WAIT(wait);
1611 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1612 /* moving charge context might have finished. */
1613 if (mc.moving_task)
1614 schedule();
1615 finish_wait(&mc.waitq, &wait);
1616 return true;
1617 }
1618 }
1619 return false;
1620 }
1621
1622 /*
1623 * Take this lock when
1624 * - a code tries to modify page's memcg while it's USED.
1625 * - a code tries to modify page state accounting in a memcg.
1626 */
1627 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1628 unsigned long *flags)
1629 {
1630 spin_lock_irqsave(&memcg->move_lock, *flags);
1631 }
1632
1633 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1634 unsigned long *flags)
1635 {
1636 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1637 }
1638
1639 #define K(x) ((x) << (PAGE_SHIFT-10))
1640 /**
1641 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1642 * @memcg: The memory cgroup that went over limit
1643 * @p: Task that is going to be killed
1644 *
1645 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1646 * enabled
1647 */
1648 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1649 {
1650 /* oom_info_lock ensures that parallel ooms do not interleave */
1651 static DEFINE_MUTEX(oom_info_lock);
1652 struct mem_cgroup *iter;
1653 unsigned int i;
1654
1655 if (!p)
1656 return;
1657
1658 mutex_lock(&oom_info_lock);
1659 rcu_read_lock();
1660
1661 pr_info("Task in ");
1662 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1663 pr_info(" killed as a result of limit of ");
1664 pr_cont_cgroup_path(memcg->css.cgroup);
1665 pr_info("\n");
1666
1667 rcu_read_unlock();
1668
1669 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1670 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1671 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1672 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1673 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1674 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1675 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1676 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1677 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1678 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1679 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1680 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1681
1682 for_each_mem_cgroup_tree(iter, memcg) {
1683 pr_info("Memory cgroup stats for ");
1684 pr_cont_cgroup_path(iter->css.cgroup);
1685 pr_cont(":");
1686
1687 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1688 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1689 continue;
1690 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1691 K(mem_cgroup_read_stat(iter, i)));
1692 }
1693
1694 for (i = 0; i < NR_LRU_LISTS; i++)
1695 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1696 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1697
1698 pr_cont("\n");
1699 }
1700 mutex_unlock(&oom_info_lock);
1701 }
1702
1703 /*
1704 * This function returns the number of memcg under hierarchy tree. Returns
1705 * 1(self count) if no children.
1706 */
1707 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1708 {
1709 int num = 0;
1710 struct mem_cgroup *iter;
1711
1712 for_each_mem_cgroup_tree(iter, memcg)
1713 num++;
1714 return num;
1715 }
1716
1717 /*
1718 * Return the memory (and swap, if configured) limit for a memcg.
1719 */
1720 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1721 {
1722 u64 limit;
1723
1724 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1725
1726 /*
1727 * Do not consider swap space if we cannot swap due to swappiness
1728 */
1729 if (mem_cgroup_swappiness(memcg)) {
1730 u64 memsw;
1731
1732 limit += total_swap_pages << PAGE_SHIFT;
1733 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1734
1735 /*
1736 * If memsw is finite and limits the amount of swap space
1737 * available to this memcg, return that limit.
1738 */
1739 limit = min(limit, memsw);
1740 }
1741
1742 return limit;
1743 }
1744
1745 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1746 int order)
1747 {
1748 struct mem_cgroup *iter;
1749 unsigned long chosen_points = 0;
1750 unsigned long totalpages;
1751 unsigned int points = 0;
1752 struct task_struct *chosen = NULL;
1753
1754 /*
1755 * If current has a pending SIGKILL or is exiting, then automatically
1756 * select it. The goal is to allow it to allocate so that it may
1757 * quickly exit and free its memory.
1758 */
1759 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1760 set_thread_flag(TIF_MEMDIE);
1761 return;
1762 }
1763
1764 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1765 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1766 for_each_mem_cgroup_tree(iter, memcg) {
1767 struct css_task_iter it;
1768 struct task_struct *task;
1769
1770 css_task_iter_start(&iter->css, &it);
1771 while ((task = css_task_iter_next(&it))) {
1772 switch (oom_scan_process_thread(task, totalpages, NULL,
1773 false)) {
1774 case OOM_SCAN_SELECT:
1775 if (chosen)
1776 put_task_struct(chosen);
1777 chosen = task;
1778 chosen_points = ULONG_MAX;
1779 get_task_struct(chosen);
1780 /* fall through */
1781 case OOM_SCAN_CONTINUE:
1782 continue;
1783 case OOM_SCAN_ABORT:
1784 css_task_iter_end(&it);
1785 mem_cgroup_iter_break(memcg, iter);
1786 if (chosen)
1787 put_task_struct(chosen);
1788 return;
1789 case OOM_SCAN_OK:
1790 break;
1791 };
1792 points = oom_badness(task, memcg, NULL, totalpages);
1793 if (!points || points < chosen_points)
1794 continue;
1795 /* Prefer thread group leaders for display purposes */
1796 if (points == chosen_points &&
1797 thread_group_leader(chosen))
1798 continue;
1799
1800 if (chosen)
1801 put_task_struct(chosen);
1802 chosen = task;
1803 chosen_points = points;
1804 get_task_struct(chosen);
1805 }
1806 css_task_iter_end(&it);
1807 }
1808
1809 if (!chosen)
1810 return;
1811 points = chosen_points * 1000 / totalpages;
1812 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1813 NULL, "Memory cgroup out of memory");
1814 }
1815
1816 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1817 gfp_t gfp_mask,
1818 unsigned long flags)
1819 {
1820 unsigned long total = 0;
1821 bool noswap = false;
1822 int loop;
1823
1824 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1825 noswap = true;
1826 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1827 noswap = true;
1828
1829 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1830 if (loop)
1831 drain_all_stock_async(memcg);
1832 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1833 /*
1834 * Allow limit shrinkers, which are triggered directly
1835 * by userspace, to catch signals and stop reclaim
1836 * after minimal progress, regardless of the margin.
1837 */
1838 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1839 break;
1840 if (mem_cgroup_margin(memcg))
1841 break;
1842 /*
1843 * If nothing was reclaimed after two attempts, there
1844 * may be no reclaimable pages in this hierarchy.
1845 */
1846 if (loop && !total)
1847 break;
1848 }
1849 return total;
1850 }
1851
1852 /**
1853 * test_mem_cgroup_node_reclaimable
1854 * @memcg: the target memcg
1855 * @nid: the node ID to be checked.
1856 * @noswap : specify true here if the user wants flle only information.
1857 *
1858 * This function returns whether the specified memcg contains any
1859 * reclaimable pages on a node. Returns true if there are any reclaimable
1860 * pages in the node.
1861 */
1862 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1863 int nid, bool noswap)
1864 {
1865 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1866 return true;
1867 if (noswap || !total_swap_pages)
1868 return false;
1869 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1870 return true;
1871 return false;
1872
1873 }
1874 #if MAX_NUMNODES > 1
1875
1876 /*
1877 * Always updating the nodemask is not very good - even if we have an empty
1878 * list or the wrong list here, we can start from some node and traverse all
1879 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1880 *
1881 */
1882 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1883 {
1884 int nid;
1885 /*
1886 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1887 * pagein/pageout changes since the last update.
1888 */
1889 if (!atomic_read(&memcg->numainfo_events))
1890 return;
1891 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1892 return;
1893
1894 /* make a nodemask where this memcg uses memory from */
1895 memcg->scan_nodes = node_states[N_MEMORY];
1896
1897 for_each_node_mask(nid, node_states[N_MEMORY]) {
1898
1899 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1900 node_clear(nid, memcg->scan_nodes);
1901 }
1902
1903 atomic_set(&memcg->numainfo_events, 0);
1904 atomic_set(&memcg->numainfo_updating, 0);
1905 }
1906
1907 /*
1908 * Selecting a node where we start reclaim from. Because what we need is just
1909 * reducing usage counter, start from anywhere is O,K. Considering
1910 * memory reclaim from current node, there are pros. and cons.
1911 *
1912 * Freeing memory from current node means freeing memory from a node which
1913 * we'll use or we've used. So, it may make LRU bad. And if several threads
1914 * hit limits, it will see a contention on a node. But freeing from remote
1915 * node means more costs for memory reclaim because of memory latency.
1916 *
1917 * Now, we use round-robin. Better algorithm is welcomed.
1918 */
1919 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1920 {
1921 int node;
1922
1923 mem_cgroup_may_update_nodemask(memcg);
1924 node = memcg->last_scanned_node;
1925
1926 node = next_node(node, memcg->scan_nodes);
1927 if (node == MAX_NUMNODES)
1928 node = first_node(memcg->scan_nodes);
1929 /*
1930 * We call this when we hit limit, not when pages are added to LRU.
1931 * No LRU may hold pages because all pages are UNEVICTABLE or
1932 * memcg is too small and all pages are not on LRU. In that case,
1933 * we use curret node.
1934 */
1935 if (unlikely(node == MAX_NUMNODES))
1936 node = numa_node_id();
1937
1938 memcg->last_scanned_node = node;
1939 return node;
1940 }
1941
1942 /*
1943 * Check all nodes whether it contains reclaimable pages or not.
1944 * For quick scan, we make use of scan_nodes. This will allow us to skip
1945 * unused nodes. But scan_nodes is lazily updated and may not cotain
1946 * enough new information. We need to do double check.
1947 */
1948 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1949 {
1950 int nid;
1951
1952 /*
1953 * quick check...making use of scan_node.
1954 * We can skip unused nodes.
1955 */
1956 if (!nodes_empty(memcg->scan_nodes)) {
1957 for (nid = first_node(memcg->scan_nodes);
1958 nid < MAX_NUMNODES;
1959 nid = next_node(nid, memcg->scan_nodes)) {
1960
1961 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1962 return true;
1963 }
1964 }
1965 /*
1966 * Check rest of nodes.
1967 */
1968 for_each_node_state(nid, N_MEMORY) {
1969 if (node_isset(nid, memcg->scan_nodes))
1970 continue;
1971 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1972 return true;
1973 }
1974 return false;
1975 }
1976
1977 #else
1978 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1979 {
1980 return 0;
1981 }
1982
1983 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1984 {
1985 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1986 }
1987 #endif
1988
1989 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1990 struct zone *zone,
1991 gfp_t gfp_mask,
1992 unsigned long *total_scanned)
1993 {
1994 struct mem_cgroup *victim = NULL;
1995 int total = 0;
1996 int loop = 0;
1997 unsigned long excess;
1998 unsigned long nr_scanned;
1999 struct mem_cgroup_reclaim_cookie reclaim = {
2000 .zone = zone,
2001 .priority = 0,
2002 };
2003
2004 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2005
2006 while (1) {
2007 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2008 if (!victim) {
2009 loop++;
2010 if (loop >= 2) {
2011 /*
2012 * If we have not been able to reclaim
2013 * anything, it might because there are
2014 * no reclaimable pages under this hierarchy
2015 */
2016 if (!total)
2017 break;
2018 /*
2019 * We want to do more targeted reclaim.
2020 * excess >> 2 is not to excessive so as to
2021 * reclaim too much, nor too less that we keep
2022 * coming back to reclaim from this cgroup
2023 */
2024 if (total >= (excess >> 2) ||
2025 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2026 break;
2027 }
2028 continue;
2029 }
2030 if (!mem_cgroup_reclaimable(victim, false))
2031 continue;
2032 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2033 zone, &nr_scanned);
2034 *total_scanned += nr_scanned;
2035 if (!res_counter_soft_limit_excess(&root_memcg->res))
2036 break;
2037 }
2038 mem_cgroup_iter_break(root_memcg, victim);
2039 return total;
2040 }
2041
2042 #ifdef CONFIG_LOCKDEP
2043 static struct lockdep_map memcg_oom_lock_dep_map = {
2044 .name = "memcg_oom_lock",
2045 };
2046 #endif
2047
2048 static DEFINE_SPINLOCK(memcg_oom_lock);
2049
2050 /*
2051 * Check OOM-Killer is already running under our hierarchy.
2052 * If someone is running, return false.
2053 */
2054 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2055 {
2056 struct mem_cgroup *iter, *failed = NULL;
2057
2058 spin_lock(&memcg_oom_lock);
2059
2060 for_each_mem_cgroup_tree(iter, memcg) {
2061 if (iter->oom_lock) {
2062 /*
2063 * this subtree of our hierarchy is already locked
2064 * so we cannot give a lock.
2065 */
2066 failed = iter;
2067 mem_cgroup_iter_break(memcg, iter);
2068 break;
2069 } else
2070 iter->oom_lock = true;
2071 }
2072
2073 if (failed) {
2074 /*
2075 * OK, we failed to lock the whole subtree so we have
2076 * to clean up what we set up to the failing subtree
2077 */
2078 for_each_mem_cgroup_tree(iter, memcg) {
2079 if (iter == failed) {
2080 mem_cgroup_iter_break(memcg, iter);
2081 break;
2082 }
2083 iter->oom_lock = false;
2084 }
2085 } else
2086 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2087
2088 spin_unlock(&memcg_oom_lock);
2089
2090 return !failed;
2091 }
2092
2093 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2094 {
2095 struct mem_cgroup *iter;
2096
2097 spin_lock(&memcg_oom_lock);
2098 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2099 for_each_mem_cgroup_tree(iter, memcg)
2100 iter->oom_lock = false;
2101 spin_unlock(&memcg_oom_lock);
2102 }
2103
2104 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2105 {
2106 struct mem_cgroup *iter;
2107
2108 for_each_mem_cgroup_tree(iter, memcg)
2109 atomic_inc(&iter->under_oom);
2110 }
2111
2112 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2113 {
2114 struct mem_cgroup *iter;
2115
2116 /*
2117 * When a new child is created while the hierarchy is under oom,
2118 * mem_cgroup_oom_lock() may not be called. We have to use
2119 * atomic_add_unless() here.
2120 */
2121 for_each_mem_cgroup_tree(iter, memcg)
2122 atomic_add_unless(&iter->under_oom, -1, 0);
2123 }
2124
2125 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2126
2127 struct oom_wait_info {
2128 struct mem_cgroup *memcg;
2129 wait_queue_t wait;
2130 };
2131
2132 static int memcg_oom_wake_function(wait_queue_t *wait,
2133 unsigned mode, int sync, void *arg)
2134 {
2135 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2136 struct mem_cgroup *oom_wait_memcg;
2137 struct oom_wait_info *oom_wait_info;
2138
2139 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2140 oom_wait_memcg = oom_wait_info->memcg;
2141
2142 /*
2143 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2144 * Then we can use css_is_ancestor without taking care of RCU.
2145 */
2146 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2147 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2148 return 0;
2149 return autoremove_wake_function(wait, mode, sync, arg);
2150 }
2151
2152 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2153 {
2154 atomic_inc(&memcg->oom_wakeups);
2155 /* for filtering, pass "memcg" as argument. */
2156 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2157 }
2158
2159 static void memcg_oom_recover(struct mem_cgroup *memcg)
2160 {
2161 if (memcg && atomic_read(&memcg->under_oom))
2162 memcg_wakeup_oom(memcg);
2163 }
2164
2165 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2166 {
2167 if (!current->memcg_oom.may_oom)
2168 return;
2169 /*
2170 * We are in the middle of the charge context here, so we
2171 * don't want to block when potentially sitting on a callstack
2172 * that holds all kinds of filesystem and mm locks.
2173 *
2174 * Also, the caller may handle a failed allocation gracefully
2175 * (like optional page cache readahead) and so an OOM killer
2176 * invocation might not even be necessary.
2177 *
2178 * That's why we don't do anything here except remember the
2179 * OOM context and then deal with it at the end of the page
2180 * fault when the stack is unwound, the locks are released,
2181 * and when we know whether the fault was overall successful.
2182 */
2183 css_get(&memcg->css);
2184 current->memcg_oom.memcg = memcg;
2185 current->memcg_oom.gfp_mask = mask;
2186 current->memcg_oom.order = order;
2187 }
2188
2189 /**
2190 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2191 * @handle: actually kill/wait or just clean up the OOM state
2192 *
2193 * This has to be called at the end of a page fault if the memcg OOM
2194 * handler was enabled.
2195 *
2196 * Memcg supports userspace OOM handling where failed allocations must
2197 * sleep on a waitqueue until the userspace task resolves the
2198 * situation. Sleeping directly in the charge context with all kinds
2199 * of locks held is not a good idea, instead we remember an OOM state
2200 * in the task and mem_cgroup_oom_synchronize() has to be called at
2201 * the end of the page fault to complete the OOM handling.
2202 *
2203 * Returns %true if an ongoing memcg OOM situation was detected and
2204 * completed, %false otherwise.
2205 */
2206 bool mem_cgroup_oom_synchronize(bool handle)
2207 {
2208 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2209 struct oom_wait_info owait;
2210 bool locked;
2211
2212 /* OOM is global, do not handle */
2213 if (!memcg)
2214 return false;
2215
2216 if (!handle)
2217 goto cleanup;
2218
2219 owait.memcg = memcg;
2220 owait.wait.flags = 0;
2221 owait.wait.func = memcg_oom_wake_function;
2222 owait.wait.private = current;
2223 INIT_LIST_HEAD(&owait.wait.task_list);
2224
2225 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2226 mem_cgroup_mark_under_oom(memcg);
2227
2228 locked = mem_cgroup_oom_trylock(memcg);
2229
2230 if (locked)
2231 mem_cgroup_oom_notify(memcg);
2232
2233 if (locked && !memcg->oom_kill_disable) {
2234 mem_cgroup_unmark_under_oom(memcg);
2235 finish_wait(&memcg_oom_waitq, &owait.wait);
2236 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2237 current->memcg_oom.order);
2238 } else {
2239 schedule();
2240 mem_cgroup_unmark_under_oom(memcg);
2241 finish_wait(&memcg_oom_waitq, &owait.wait);
2242 }
2243
2244 if (locked) {
2245 mem_cgroup_oom_unlock(memcg);
2246 /*
2247 * There is no guarantee that an OOM-lock contender
2248 * sees the wakeups triggered by the OOM kill
2249 * uncharges. Wake any sleepers explicitely.
2250 */
2251 memcg_oom_recover(memcg);
2252 }
2253 cleanup:
2254 current->memcg_oom.memcg = NULL;
2255 css_put(&memcg->css);
2256 return true;
2257 }
2258
2259 /*
2260 * Used to update mapped file or writeback or other statistics.
2261 *
2262 * Notes: Race condition
2263 *
2264 * We usually use lock_page_cgroup() for accessing page_cgroup member but
2265 * it tends to be costly. But considering some conditions, we doesn't need
2266 * to do so _always_.
2267 *
2268 * Considering "charge", lock_page_cgroup() is not required because all
2269 * file-stat operations happen after a page is attached to radix-tree. There
2270 * are no race with "charge".
2271 *
2272 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2273 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2274 * if there are race with "uncharge". Statistics itself is properly handled
2275 * by flags.
2276 *
2277 * Considering "move", this is an only case we see a race. To make the race
2278 * small, we check memcg->moving_account and detect there are possibility
2279 * of race or not. If there is, we take a lock.
2280 */
2281
2282 void __mem_cgroup_begin_update_page_stat(struct page *page,
2283 bool *locked, unsigned long *flags)
2284 {
2285 struct mem_cgroup *memcg;
2286 struct page_cgroup *pc;
2287
2288 pc = lookup_page_cgroup(page);
2289 again:
2290 memcg = pc->mem_cgroup;
2291 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2292 return;
2293 /*
2294 * If this memory cgroup is not under account moving, we don't
2295 * need to take move_lock_mem_cgroup(). Because we already hold
2296 * rcu_read_lock(), any calls to move_account will be delayed until
2297 * rcu_read_unlock().
2298 */
2299 VM_BUG_ON(!rcu_read_lock_held());
2300 if (atomic_read(&memcg->moving_account) <= 0)
2301 return;
2302
2303 move_lock_mem_cgroup(memcg, flags);
2304 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2305 move_unlock_mem_cgroup(memcg, flags);
2306 goto again;
2307 }
2308 *locked = true;
2309 }
2310
2311 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2312 {
2313 struct page_cgroup *pc = lookup_page_cgroup(page);
2314
2315 /*
2316 * It's guaranteed that pc->mem_cgroup never changes while
2317 * lock is held because a routine modifies pc->mem_cgroup
2318 * should take move_lock_mem_cgroup().
2319 */
2320 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2321 }
2322
2323 void mem_cgroup_update_page_stat(struct page *page,
2324 enum mem_cgroup_stat_index idx, int val)
2325 {
2326 struct mem_cgroup *memcg;
2327 struct page_cgroup *pc = lookup_page_cgroup(page);
2328 unsigned long uninitialized_var(flags);
2329
2330 if (mem_cgroup_disabled())
2331 return;
2332
2333 VM_BUG_ON(!rcu_read_lock_held());
2334 memcg = pc->mem_cgroup;
2335 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2336 return;
2337
2338 this_cpu_add(memcg->stat->count[idx], val);
2339 }
2340
2341 /*
2342 * size of first charge trial. "32" comes from vmscan.c's magic value.
2343 * TODO: maybe necessary to use big numbers in big irons.
2344 */
2345 #define CHARGE_BATCH 32U
2346 struct memcg_stock_pcp {
2347 struct mem_cgroup *cached; /* this never be root cgroup */
2348 unsigned int nr_pages;
2349 struct work_struct work;
2350 unsigned long flags;
2351 #define FLUSHING_CACHED_CHARGE 0
2352 };
2353 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2354 static DEFINE_MUTEX(percpu_charge_mutex);
2355
2356 /**
2357 * consume_stock: Try to consume stocked charge on this cpu.
2358 * @memcg: memcg to consume from.
2359 * @nr_pages: how many pages to charge.
2360 *
2361 * The charges will only happen if @memcg matches the current cpu's memcg
2362 * stock, and at least @nr_pages are available in that stock. Failure to
2363 * service an allocation will refill the stock.
2364 *
2365 * returns true if successful, false otherwise.
2366 */
2367 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2368 {
2369 struct memcg_stock_pcp *stock;
2370 bool ret = true;
2371
2372 if (nr_pages > CHARGE_BATCH)
2373 return false;
2374
2375 stock = &get_cpu_var(memcg_stock);
2376 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2377 stock->nr_pages -= nr_pages;
2378 else /* need to call res_counter_charge */
2379 ret = false;
2380 put_cpu_var(memcg_stock);
2381 return ret;
2382 }
2383
2384 /*
2385 * Returns stocks cached in percpu to res_counter and reset cached information.
2386 */
2387 static void drain_stock(struct memcg_stock_pcp *stock)
2388 {
2389 struct mem_cgroup *old = stock->cached;
2390
2391 if (stock->nr_pages) {
2392 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2393
2394 res_counter_uncharge(&old->res, bytes);
2395 if (do_swap_account)
2396 res_counter_uncharge(&old->memsw, bytes);
2397 stock->nr_pages = 0;
2398 }
2399 stock->cached = NULL;
2400 }
2401
2402 /*
2403 * This must be called under preempt disabled or must be called by
2404 * a thread which is pinned to local cpu.
2405 */
2406 static void drain_local_stock(struct work_struct *dummy)
2407 {
2408 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2409 drain_stock(stock);
2410 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2411 }
2412
2413 static void __init memcg_stock_init(void)
2414 {
2415 int cpu;
2416
2417 for_each_possible_cpu(cpu) {
2418 struct memcg_stock_pcp *stock =
2419 &per_cpu(memcg_stock, cpu);
2420 INIT_WORK(&stock->work, drain_local_stock);
2421 }
2422 }
2423
2424 /*
2425 * Cache charges(val) which is from res_counter, to local per_cpu area.
2426 * This will be consumed by consume_stock() function, later.
2427 */
2428 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2429 {
2430 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2431
2432 if (stock->cached != memcg) { /* reset if necessary */
2433 drain_stock(stock);
2434 stock->cached = memcg;
2435 }
2436 stock->nr_pages += nr_pages;
2437 put_cpu_var(memcg_stock);
2438 }
2439
2440 /*
2441 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2442 * of the hierarchy under it. sync flag says whether we should block
2443 * until the work is done.
2444 */
2445 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2446 {
2447 int cpu, curcpu;
2448
2449 /* Notify other cpus that system-wide "drain" is running */
2450 get_online_cpus();
2451 curcpu = get_cpu();
2452 for_each_online_cpu(cpu) {
2453 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2454 struct mem_cgroup *memcg;
2455
2456 memcg = stock->cached;
2457 if (!memcg || !stock->nr_pages)
2458 continue;
2459 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2460 continue;
2461 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2462 if (cpu == curcpu)
2463 drain_local_stock(&stock->work);
2464 else
2465 schedule_work_on(cpu, &stock->work);
2466 }
2467 }
2468 put_cpu();
2469
2470 if (!sync)
2471 goto out;
2472
2473 for_each_online_cpu(cpu) {
2474 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2475 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2476 flush_work(&stock->work);
2477 }
2478 out:
2479 put_online_cpus();
2480 }
2481
2482 /*
2483 * Tries to drain stocked charges in other cpus. This function is asynchronous
2484 * and just put a work per cpu for draining localy on each cpu. Caller can
2485 * expects some charges will be back to res_counter later but cannot wait for
2486 * it.
2487 */
2488 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2489 {
2490 /*
2491 * If someone calls draining, avoid adding more kworker runs.
2492 */
2493 if (!mutex_trylock(&percpu_charge_mutex))
2494 return;
2495 drain_all_stock(root_memcg, false);
2496 mutex_unlock(&percpu_charge_mutex);
2497 }
2498
2499 /* This is a synchronous drain interface. */
2500 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2501 {
2502 /* called when force_empty is called */
2503 mutex_lock(&percpu_charge_mutex);
2504 drain_all_stock(root_memcg, true);
2505 mutex_unlock(&percpu_charge_mutex);
2506 }
2507
2508 /*
2509 * This function drains percpu counter value from DEAD cpu and
2510 * move it to local cpu. Note that this function can be preempted.
2511 */
2512 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2513 {
2514 int i;
2515
2516 spin_lock(&memcg->pcp_counter_lock);
2517 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2518 long x = per_cpu(memcg->stat->count[i], cpu);
2519
2520 per_cpu(memcg->stat->count[i], cpu) = 0;
2521 memcg->nocpu_base.count[i] += x;
2522 }
2523 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2524 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2525
2526 per_cpu(memcg->stat->events[i], cpu) = 0;
2527 memcg->nocpu_base.events[i] += x;
2528 }
2529 spin_unlock(&memcg->pcp_counter_lock);
2530 }
2531
2532 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2533 unsigned long action,
2534 void *hcpu)
2535 {
2536 int cpu = (unsigned long)hcpu;
2537 struct memcg_stock_pcp *stock;
2538 struct mem_cgroup *iter;
2539
2540 if (action == CPU_ONLINE)
2541 return NOTIFY_OK;
2542
2543 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2544 return NOTIFY_OK;
2545
2546 for_each_mem_cgroup(iter)
2547 mem_cgroup_drain_pcp_counter(iter, cpu);
2548
2549 stock = &per_cpu(memcg_stock, cpu);
2550 drain_stock(stock);
2551 return NOTIFY_OK;
2552 }
2553
2554 /**
2555 * mem_cgroup_try_charge - try charging a memcg
2556 * @memcg: memcg to charge
2557 * @nr_pages: number of pages to charge
2558 *
2559 * Returns 0 if @memcg was charged successfully, -EINTR if the charge
2560 * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed.
2561 */
2562 static int mem_cgroup_try_charge(struct mem_cgroup *memcg,
2563 gfp_t gfp_mask,
2564 unsigned int nr_pages)
2565 {
2566 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2567 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2568 struct mem_cgroup *mem_over_limit;
2569 struct res_counter *fail_res;
2570 unsigned long nr_reclaimed;
2571 unsigned long flags = 0;
2572 unsigned long long size;
2573 int ret = 0;
2574
2575 retry:
2576 if (consume_stock(memcg, nr_pages))
2577 goto done;
2578
2579 size = batch * PAGE_SIZE;
2580 if (!res_counter_charge(&memcg->res, size, &fail_res)) {
2581 if (!do_swap_account)
2582 goto done_restock;
2583 if (!res_counter_charge(&memcg->memsw, size, &fail_res))
2584 goto done_restock;
2585 res_counter_uncharge(&memcg->res, size);
2586 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2587 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2588 } else
2589 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2590
2591 if (batch > nr_pages) {
2592 batch = nr_pages;
2593 goto retry;
2594 }
2595
2596 /*
2597 * Unlike in global OOM situations, memcg is not in a physical
2598 * memory shortage. Allow dying and OOM-killed tasks to
2599 * bypass the last charges so that they can exit quickly and
2600 * free their memory.
2601 */
2602 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2603 fatal_signal_pending(current) ||
2604 current->flags & PF_EXITING))
2605 goto bypass;
2606
2607 if (unlikely(task_in_memcg_oom(current)))
2608 goto nomem;
2609
2610 if (!(gfp_mask & __GFP_WAIT))
2611 goto nomem;
2612
2613 nr_reclaimed = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2614
2615 if (mem_cgroup_margin(mem_over_limit) >= batch)
2616 goto retry;
2617
2618 if (gfp_mask & __GFP_NORETRY)
2619 goto nomem;
2620 /*
2621 * Even though the limit is exceeded at this point, reclaim
2622 * may have been able to free some pages. Retry the charge
2623 * before killing the task.
2624 *
2625 * Only for regular pages, though: huge pages are rather
2626 * unlikely to succeed so close to the limit, and we fall back
2627 * to regular pages anyway in case of failure.
2628 */
2629 if (nr_reclaimed && batch <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2630 goto retry;
2631 /*
2632 * At task move, charge accounts can be doubly counted. So, it's
2633 * better to wait until the end of task_move if something is going on.
2634 */
2635 if (mem_cgroup_wait_acct_move(mem_over_limit))
2636 goto retry;
2637
2638 if (nr_retries--)
2639 goto retry;
2640
2641 if (gfp_mask & __GFP_NOFAIL)
2642 goto bypass;
2643
2644 if (fatal_signal_pending(current))
2645 goto bypass;
2646
2647 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(batch));
2648 nomem:
2649 if (!(gfp_mask & __GFP_NOFAIL))
2650 return -ENOMEM;
2651 bypass:
2652 memcg = root_mem_cgroup;
2653 ret = -EINTR;
2654 goto retry;
2655
2656 done_restock:
2657 if (batch > nr_pages)
2658 refill_stock(memcg, batch - nr_pages);
2659 done:
2660 return ret;
2661 }
2662
2663 /**
2664 * mem_cgroup_try_charge_mm - try charging a mm
2665 * @mm: mm_struct to charge
2666 * @nr_pages: number of pages to charge
2667 * @oom: trigger OOM if reclaim fails
2668 *
2669 * Returns the charged mem_cgroup associated with the given mm_struct or
2670 * NULL the charge failed.
2671 */
2672 static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm,
2673 gfp_t gfp_mask,
2674 unsigned int nr_pages)
2675
2676 {
2677 struct mem_cgroup *memcg;
2678 int ret;
2679
2680 memcg = get_mem_cgroup_from_mm(mm);
2681 ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages);
2682 css_put(&memcg->css);
2683 if (ret == -EINTR)
2684 memcg = root_mem_cgroup;
2685 else if (ret)
2686 memcg = NULL;
2687
2688 return memcg;
2689 }
2690
2691 /*
2692 * Somemtimes we have to undo a charge we got by try_charge().
2693 * This function is for that and do uncharge, put css's refcnt.
2694 * gotten by try_charge().
2695 */
2696 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2697 unsigned int nr_pages)
2698 {
2699 unsigned long bytes = nr_pages * PAGE_SIZE;
2700
2701 res_counter_uncharge(&memcg->res, bytes);
2702 if (do_swap_account)
2703 res_counter_uncharge(&memcg->memsw, bytes);
2704 }
2705
2706 /*
2707 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2708 * This is useful when moving usage to parent cgroup.
2709 */
2710 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2711 unsigned int nr_pages)
2712 {
2713 unsigned long bytes = nr_pages * PAGE_SIZE;
2714
2715 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2716 if (do_swap_account)
2717 res_counter_uncharge_until(&memcg->memsw,
2718 memcg->memsw.parent, bytes);
2719 }
2720
2721 /*
2722 * A helper function to get mem_cgroup from ID. must be called under
2723 * rcu_read_lock(). The caller is responsible for calling
2724 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2725 * refcnt from swap can be called against removed memcg.)
2726 */
2727 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2728 {
2729 /* ID 0 is unused ID */
2730 if (!id)
2731 return NULL;
2732 return mem_cgroup_from_id(id);
2733 }
2734
2735 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2736 {
2737 struct mem_cgroup *memcg = NULL;
2738 struct page_cgroup *pc;
2739 unsigned short id;
2740 swp_entry_t ent;
2741
2742 VM_BUG_ON_PAGE(!PageLocked(page), page);
2743
2744 pc = lookup_page_cgroup(page);
2745 lock_page_cgroup(pc);
2746 if (PageCgroupUsed(pc)) {
2747 memcg = pc->mem_cgroup;
2748 if (memcg && !css_tryget_online(&memcg->css))
2749 memcg = NULL;
2750 } else if (PageSwapCache(page)) {
2751 ent.val = page_private(page);
2752 id = lookup_swap_cgroup_id(ent);
2753 rcu_read_lock();
2754 memcg = mem_cgroup_lookup(id);
2755 if (memcg && !css_tryget_online(&memcg->css))
2756 memcg = NULL;
2757 rcu_read_unlock();
2758 }
2759 unlock_page_cgroup(pc);
2760 return memcg;
2761 }
2762
2763 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2764 struct page *page,
2765 unsigned int nr_pages,
2766 enum charge_type ctype,
2767 bool lrucare)
2768 {
2769 struct page_cgroup *pc = lookup_page_cgroup(page);
2770 struct zone *uninitialized_var(zone);
2771 struct lruvec *lruvec;
2772 bool was_on_lru = false;
2773 bool anon;
2774
2775 lock_page_cgroup(pc);
2776 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2777 /*
2778 * we don't need page_cgroup_lock about tail pages, becase they are not
2779 * accessed by any other context at this point.
2780 */
2781
2782 /*
2783 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2784 * may already be on some other mem_cgroup's LRU. Take care of it.
2785 */
2786 if (lrucare) {
2787 zone = page_zone(page);
2788 spin_lock_irq(&zone->lru_lock);
2789 if (PageLRU(page)) {
2790 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2791 ClearPageLRU(page);
2792 del_page_from_lru_list(page, lruvec, page_lru(page));
2793 was_on_lru = true;
2794 }
2795 }
2796
2797 pc->mem_cgroup = memcg;
2798 /*
2799 * We access a page_cgroup asynchronously without lock_page_cgroup().
2800 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2801 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2802 * before USED bit, we need memory barrier here.
2803 * See mem_cgroup_add_lru_list(), etc.
2804 */
2805 smp_wmb();
2806 SetPageCgroupUsed(pc);
2807
2808 if (lrucare) {
2809 if (was_on_lru) {
2810 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2811 VM_BUG_ON_PAGE(PageLRU(page), page);
2812 SetPageLRU(page);
2813 add_page_to_lru_list(page, lruvec, page_lru(page));
2814 }
2815 spin_unlock_irq(&zone->lru_lock);
2816 }
2817
2818 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2819 anon = true;
2820 else
2821 anon = false;
2822
2823 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2824 unlock_page_cgroup(pc);
2825
2826 /*
2827 * "charge_statistics" updated event counter. Then, check it.
2828 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2829 * if they exceeds softlimit.
2830 */
2831 memcg_check_events(memcg, page);
2832 }
2833
2834 static DEFINE_MUTEX(set_limit_mutex);
2835
2836 #ifdef CONFIG_MEMCG_KMEM
2837 /*
2838 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2839 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2840 */
2841 static DEFINE_MUTEX(memcg_slab_mutex);
2842
2843 static DEFINE_MUTEX(activate_kmem_mutex);
2844
2845 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2846 {
2847 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2848 memcg_kmem_is_active(memcg);
2849 }
2850
2851 /*
2852 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2853 * in the memcg_cache_params struct.
2854 */
2855 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2856 {
2857 struct kmem_cache *cachep;
2858
2859 VM_BUG_ON(p->is_root_cache);
2860 cachep = p->root_cache;
2861 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2862 }
2863
2864 #ifdef CONFIG_SLABINFO
2865 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2866 {
2867 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2868 struct memcg_cache_params *params;
2869
2870 if (!memcg_can_account_kmem(memcg))
2871 return -EIO;
2872
2873 print_slabinfo_header(m);
2874
2875 mutex_lock(&memcg_slab_mutex);
2876 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2877 cache_show(memcg_params_to_cache(params), m);
2878 mutex_unlock(&memcg_slab_mutex);
2879
2880 return 0;
2881 }
2882 #endif
2883
2884 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2885 {
2886 struct res_counter *fail_res;
2887 int ret = 0;
2888
2889 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2890 if (ret)
2891 return ret;
2892
2893 ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT);
2894 if (ret == -EINTR) {
2895 /*
2896 * mem_cgroup_try_charge() chosed to bypass to root due to
2897 * OOM kill or fatal signal. Since our only options are to
2898 * either fail the allocation or charge it to this cgroup, do
2899 * it as a temporary condition. But we can't fail. From a
2900 * kmem/slab perspective, the cache has already been selected,
2901 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2902 * our minds.
2903 *
2904 * This condition will only trigger if the task entered
2905 * memcg_charge_kmem in a sane state, but was OOM-killed during
2906 * mem_cgroup_try_charge() above. Tasks that were already
2907 * dying when the allocation triggers should have been already
2908 * directed to the root cgroup in memcontrol.h
2909 */
2910 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2911 if (do_swap_account)
2912 res_counter_charge_nofail(&memcg->memsw, size,
2913 &fail_res);
2914 ret = 0;
2915 } else if (ret)
2916 res_counter_uncharge(&memcg->kmem, size);
2917
2918 return ret;
2919 }
2920
2921 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2922 {
2923 res_counter_uncharge(&memcg->res, size);
2924 if (do_swap_account)
2925 res_counter_uncharge(&memcg->memsw, size);
2926
2927 /* Not down to 0 */
2928 if (res_counter_uncharge(&memcg->kmem, size))
2929 return;
2930
2931 /*
2932 * Releases a reference taken in kmem_cgroup_css_offline in case
2933 * this last uncharge is racing with the offlining code or it is
2934 * outliving the memcg existence.
2935 *
2936 * The memory barrier imposed by test&clear is paired with the
2937 * explicit one in memcg_kmem_mark_dead().
2938 */
2939 if (memcg_kmem_test_and_clear_dead(memcg))
2940 css_put(&memcg->css);
2941 }
2942
2943 /*
2944 * helper for acessing a memcg's index. It will be used as an index in the
2945 * child cache array in kmem_cache, and also to derive its name. This function
2946 * will return -1 when this is not a kmem-limited memcg.
2947 */
2948 int memcg_cache_id(struct mem_cgroup *memcg)
2949 {
2950 return memcg ? memcg->kmemcg_id : -1;
2951 }
2952
2953 static size_t memcg_caches_array_size(int num_groups)
2954 {
2955 ssize_t size;
2956 if (num_groups <= 0)
2957 return 0;
2958
2959 size = 2 * num_groups;
2960 if (size < MEMCG_CACHES_MIN_SIZE)
2961 size = MEMCG_CACHES_MIN_SIZE;
2962 else if (size > MEMCG_CACHES_MAX_SIZE)
2963 size = MEMCG_CACHES_MAX_SIZE;
2964
2965 return size;
2966 }
2967
2968 /*
2969 * We should update the current array size iff all caches updates succeed. This
2970 * can only be done from the slab side. The slab mutex needs to be held when
2971 * calling this.
2972 */
2973 void memcg_update_array_size(int num)
2974 {
2975 if (num > memcg_limited_groups_array_size)
2976 memcg_limited_groups_array_size = memcg_caches_array_size(num);
2977 }
2978
2979 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
2980 {
2981 struct memcg_cache_params *cur_params = s->memcg_params;
2982
2983 VM_BUG_ON(!is_root_cache(s));
2984
2985 if (num_groups > memcg_limited_groups_array_size) {
2986 int i;
2987 struct memcg_cache_params *new_params;
2988 ssize_t size = memcg_caches_array_size(num_groups);
2989
2990 size *= sizeof(void *);
2991 size += offsetof(struct memcg_cache_params, memcg_caches);
2992
2993 new_params = kzalloc(size, GFP_KERNEL);
2994 if (!new_params)
2995 return -ENOMEM;
2996
2997 new_params->is_root_cache = true;
2998
2999 /*
3000 * There is the chance it will be bigger than
3001 * memcg_limited_groups_array_size, if we failed an allocation
3002 * in a cache, in which case all caches updated before it, will
3003 * have a bigger array.
3004 *
3005 * But if that is the case, the data after
3006 * memcg_limited_groups_array_size is certainly unused
3007 */
3008 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3009 if (!cur_params->memcg_caches[i])
3010 continue;
3011 new_params->memcg_caches[i] =
3012 cur_params->memcg_caches[i];
3013 }
3014
3015 /*
3016 * Ideally, we would wait until all caches succeed, and only
3017 * then free the old one. But this is not worth the extra
3018 * pointer per-cache we'd have to have for this.
3019 *
3020 * It is not a big deal if some caches are left with a size
3021 * bigger than the others. And all updates will reset this
3022 * anyway.
3023 */
3024 rcu_assign_pointer(s->memcg_params, new_params);
3025 if (cur_params)
3026 kfree_rcu(cur_params, rcu_head);
3027 }
3028 return 0;
3029 }
3030
3031 int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3032 struct kmem_cache *root_cache)
3033 {
3034 size_t size;
3035
3036 if (!memcg_kmem_enabled())
3037 return 0;
3038
3039 if (!memcg) {
3040 size = offsetof(struct memcg_cache_params, memcg_caches);
3041 size += memcg_limited_groups_array_size * sizeof(void *);
3042 } else
3043 size = sizeof(struct memcg_cache_params);
3044
3045 s->memcg_params = kzalloc(size, GFP_KERNEL);
3046 if (!s->memcg_params)
3047 return -ENOMEM;
3048
3049 if (memcg) {
3050 s->memcg_params->memcg = memcg;
3051 s->memcg_params->root_cache = root_cache;
3052 css_get(&memcg->css);
3053 } else
3054 s->memcg_params->is_root_cache = true;
3055
3056 return 0;
3057 }
3058
3059 void memcg_free_cache_params(struct kmem_cache *s)
3060 {
3061 if (!s->memcg_params)
3062 return;
3063 if (!s->memcg_params->is_root_cache)
3064 css_put(&s->memcg_params->memcg->css);
3065 kfree(s->memcg_params);
3066 }
3067
3068 static void memcg_register_cache(struct mem_cgroup *memcg,
3069 struct kmem_cache *root_cache)
3070 {
3071 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
3072 memcg_slab_mutex */
3073 struct kmem_cache *cachep;
3074 int id;
3075
3076 lockdep_assert_held(&memcg_slab_mutex);
3077
3078 id = memcg_cache_id(memcg);
3079
3080 /*
3081 * Since per-memcg caches are created asynchronously on first
3082 * allocation (see memcg_kmem_get_cache()), several threads can try to
3083 * create the same cache, but only one of them may succeed.
3084 */
3085 if (cache_from_memcg_idx(root_cache, id))
3086 return;
3087
3088 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
3089 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
3090 /*
3091 * If we could not create a memcg cache, do not complain, because
3092 * that's not critical at all as we can always proceed with the root
3093 * cache.
3094 */
3095 if (!cachep)
3096 return;
3097
3098 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3099
3100 /*
3101 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3102 * barrier here to ensure nobody will see the kmem_cache partially
3103 * initialized.
3104 */
3105 smp_wmb();
3106
3107 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
3108 root_cache->memcg_params->memcg_caches[id] = cachep;
3109 }
3110
3111 static void memcg_unregister_cache(struct kmem_cache *cachep)
3112 {
3113 struct kmem_cache *root_cache;
3114 struct mem_cgroup *memcg;
3115 int id;
3116
3117 lockdep_assert_held(&memcg_slab_mutex);
3118
3119 BUG_ON(is_root_cache(cachep));
3120
3121 root_cache = cachep->memcg_params->root_cache;
3122 memcg = cachep->memcg_params->memcg;
3123 id = memcg_cache_id(memcg);
3124
3125 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
3126 root_cache->memcg_params->memcg_caches[id] = NULL;
3127
3128 list_del(&cachep->memcg_params->list);
3129
3130 kmem_cache_destroy(cachep);
3131 }
3132
3133 /*
3134 * During the creation a new cache, we need to disable our accounting mechanism
3135 * altogether. This is true even if we are not creating, but rather just
3136 * enqueing new caches to be created.
3137 *
3138 * This is because that process will trigger allocations; some visible, like
3139 * explicit kmallocs to auxiliary data structures, name strings and internal
3140 * cache structures; some well concealed, like INIT_WORK() that can allocate
3141 * objects during debug.
3142 *
3143 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3144 * to it. This may not be a bounded recursion: since the first cache creation
3145 * failed to complete (waiting on the allocation), we'll just try to create the
3146 * cache again, failing at the same point.
3147 *
3148 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3149 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3150 * inside the following two functions.
3151 */
3152 static inline void memcg_stop_kmem_account(void)
3153 {
3154 VM_BUG_ON(!current->mm);
3155 current->memcg_kmem_skip_account++;
3156 }
3157
3158 static inline void memcg_resume_kmem_account(void)
3159 {
3160 VM_BUG_ON(!current->mm);
3161 current->memcg_kmem_skip_account--;
3162 }
3163
3164 int __memcg_cleanup_cache_params(struct kmem_cache *s)
3165 {
3166 struct kmem_cache *c;
3167 int i, failed = 0;
3168
3169 mutex_lock(&memcg_slab_mutex);
3170 for_each_memcg_cache_index(i) {
3171 c = cache_from_memcg_idx(s, i);
3172 if (!c)
3173 continue;
3174
3175 memcg_unregister_cache(c);
3176
3177 if (cache_from_memcg_idx(s, i))
3178 failed++;
3179 }
3180 mutex_unlock(&memcg_slab_mutex);
3181 return failed;
3182 }
3183
3184 static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3185 {
3186 struct kmem_cache *cachep;
3187 struct memcg_cache_params *params, *tmp;
3188
3189 if (!memcg_kmem_is_active(memcg))
3190 return;
3191
3192 mutex_lock(&memcg_slab_mutex);
3193 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
3194 cachep = memcg_params_to_cache(params);
3195 kmem_cache_shrink(cachep);
3196 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3197 memcg_unregister_cache(cachep);
3198 }
3199 mutex_unlock(&memcg_slab_mutex);
3200 }
3201
3202 struct memcg_register_cache_work {
3203 struct mem_cgroup *memcg;
3204 struct kmem_cache *cachep;
3205 struct work_struct work;
3206 };
3207
3208 static void memcg_register_cache_func(struct work_struct *w)
3209 {
3210 struct memcg_register_cache_work *cw =
3211 container_of(w, struct memcg_register_cache_work, work);
3212 struct mem_cgroup *memcg = cw->memcg;
3213 struct kmem_cache *cachep = cw->cachep;
3214
3215 mutex_lock(&memcg_slab_mutex);
3216 memcg_register_cache(memcg, cachep);
3217 mutex_unlock(&memcg_slab_mutex);
3218
3219 css_put(&memcg->css);
3220 kfree(cw);
3221 }
3222
3223 /*
3224 * Enqueue the creation of a per-memcg kmem_cache.
3225 */
3226 static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
3227 struct kmem_cache *cachep)
3228 {
3229 struct memcg_register_cache_work *cw;
3230
3231 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
3232 if (cw == NULL) {
3233 css_put(&memcg->css);
3234 return;
3235 }
3236
3237 cw->memcg = memcg;
3238 cw->cachep = cachep;
3239
3240 INIT_WORK(&cw->work, memcg_register_cache_func);
3241 schedule_work(&cw->work);
3242 }
3243
3244 static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
3245 struct kmem_cache *cachep)
3246 {
3247 /*
3248 * We need to stop accounting when we kmalloc, because if the
3249 * corresponding kmalloc cache is not yet created, the first allocation
3250 * in __memcg_schedule_register_cache will recurse.
3251 *
3252 * However, it is better to enclose the whole function. Depending on
3253 * the debugging options enabled, INIT_WORK(), for instance, can
3254 * trigger an allocation. This too, will make us recurse. Because at
3255 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3256 * the safest choice is to do it like this, wrapping the whole function.
3257 */
3258 memcg_stop_kmem_account();
3259 __memcg_schedule_register_cache(memcg, cachep);
3260 memcg_resume_kmem_account();
3261 }
3262
3263 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
3264 {
3265 int res;
3266
3267 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
3268 PAGE_SIZE << order);
3269 if (!res)
3270 atomic_add(1 << order, &cachep->memcg_params->nr_pages);
3271 return res;
3272 }
3273
3274 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
3275 {
3276 memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
3277 atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
3278 }
3279
3280 /*
3281 * Return the kmem_cache we're supposed to use for a slab allocation.
3282 * We try to use the current memcg's version of the cache.
3283 *
3284 * If the cache does not exist yet, if we are the first user of it,
3285 * we either create it immediately, if possible, or create it asynchronously
3286 * in a workqueue.
3287 * In the latter case, we will let the current allocation go through with
3288 * the original cache.
3289 *
3290 * Can't be called in interrupt context or from kernel threads.
3291 * This function needs to be called with rcu_read_lock() held.
3292 */
3293 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3294 gfp_t gfp)
3295 {
3296 struct mem_cgroup *memcg;
3297 struct kmem_cache *memcg_cachep;
3298
3299 VM_BUG_ON(!cachep->memcg_params);
3300 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3301
3302 if (!current->mm || current->memcg_kmem_skip_account)
3303 return cachep;
3304
3305 rcu_read_lock();
3306 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3307
3308 if (!memcg_can_account_kmem(memcg))
3309 goto out;
3310
3311 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3312 if (likely(memcg_cachep)) {
3313 cachep = memcg_cachep;
3314 goto out;
3315 }
3316
3317 /* The corresponding put will be done in the workqueue. */
3318 if (!css_tryget_online(&memcg->css))
3319 goto out;
3320 rcu_read_unlock();
3321
3322 /*
3323 * If we are in a safe context (can wait, and not in interrupt
3324 * context), we could be be predictable and return right away.
3325 * This would guarantee that the allocation being performed
3326 * already belongs in the new cache.
3327 *
3328 * However, there are some clashes that can arrive from locking.
3329 * For instance, because we acquire the slab_mutex while doing
3330 * memcg_create_kmem_cache, this means no further allocation
3331 * could happen with the slab_mutex held. So it's better to
3332 * defer everything.
3333 */
3334 memcg_schedule_register_cache(memcg, cachep);
3335 return cachep;
3336 out:
3337 rcu_read_unlock();
3338 return cachep;
3339 }
3340
3341 /*
3342 * We need to verify if the allocation against current->mm->owner's memcg is
3343 * possible for the given order. But the page is not allocated yet, so we'll
3344 * need a further commit step to do the final arrangements.
3345 *
3346 * It is possible for the task to switch cgroups in this mean time, so at
3347 * commit time, we can't rely on task conversion any longer. We'll then use
3348 * the handle argument to return to the caller which cgroup we should commit
3349 * against. We could also return the memcg directly and avoid the pointer
3350 * passing, but a boolean return value gives better semantics considering
3351 * the compiled-out case as well.
3352 *
3353 * Returning true means the allocation is possible.
3354 */
3355 bool
3356 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3357 {
3358 struct mem_cgroup *memcg;
3359 int ret;
3360
3361 *_memcg = NULL;
3362
3363 /*
3364 * Disabling accounting is only relevant for some specific memcg
3365 * internal allocations. Therefore we would initially not have such
3366 * check here, since direct calls to the page allocator that are
3367 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3368 * outside memcg core. We are mostly concerned with cache allocations,
3369 * and by having this test at memcg_kmem_get_cache, we are already able
3370 * to relay the allocation to the root cache and bypass the memcg cache
3371 * altogether.
3372 *
3373 * There is one exception, though: the SLUB allocator does not create
3374 * large order caches, but rather service large kmallocs directly from
3375 * the page allocator. Therefore, the following sequence when backed by
3376 * the SLUB allocator:
3377 *
3378 * memcg_stop_kmem_account();
3379 * kmalloc(<large_number>)
3380 * memcg_resume_kmem_account();
3381 *
3382 * would effectively ignore the fact that we should skip accounting,
3383 * since it will drive us directly to this function without passing
3384 * through the cache selector memcg_kmem_get_cache. Such large
3385 * allocations are extremely rare but can happen, for instance, for the
3386 * cache arrays. We bring this test here.
3387 */
3388 if (!current->mm || current->memcg_kmem_skip_account)
3389 return true;
3390
3391 memcg = get_mem_cgroup_from_mm(current->mm);
3392
3393 if (!memcg_can_account_kmem(memcg)) {
3394 css_put(&memcg->css);
3395 return true;
3396 }
3397
3398 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3399 if (!ret)
3400 *_memcg = memcg;
3401
3402 css_put(&memcg->css);
3403 return (ret == 0);
3404 }
3405
3406 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3407 int order)
3408 {
3409 struct page_cgroup *pc;
3410
3411 VM_BUG_ON(mem_cgroup_is_root(memcg));
3412
3413 /* The page allocation failed. Revert */
3414 if (!page) {
3415 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3416 return;
3417 }
3418
3419 pc = lookup_page_cgroup(page);
3420 lock_page_cgroup(pc);
3421 pc->mem_cgroup = memcg;
3422 SetPageCgroupUsed(pc);
3423 unlock_page_cgroup(pc);
3424 }
3425
3426 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3427 {
3428 struct mem_cgroup *memcg = NULL;
3429 struct page_cgroup *pc;
3430
3431
3432 pc = lookup_page_cgroup(page);
3433 /*
3434 * Fast unlocked return. Theoretically might have changed, have to
3435 * check again after locking.
3436 */
3437 if (!PageCgroupUsed(pc))
3438 return;
3439
3440 lock_page_cgroup(pc);
3441 if (PageCgroupUsed(pc)) {
3442 memcg = pc->mem_cgroup;
3443 ClearPageCgroupUsed(pc);
3444 }
3445 unlock_page_cgroup(pc);
3446
3447 /*
3448 * We trust that only if there is a memcg associated with the page, it
3449 * is a valid allocation
3450 */
3451 if (!memcg)
3452 return;
3453
3454 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3455 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3456 }
3457 #else
3458 static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3459 {
3460 }
3461 #endif /* CONFIG_MEMCG_KMEM */
3462
3463 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3464
3465 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3466 /*
3467 * Because tail pages are not marked as "used", set it. We're under
3468 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3469 * charge/uncharge will be never happen and move_account() is done under
3470 * compound_lock(), so we don't have to take care of races.
3471 */
3472 void mem_cgroup_split_huge_fixup(struct page *head)
3473 {
3474 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3475 struct page_cgroup *pc;
3476 struct mem_cgroup *memcg;
3477 int i;
3478
3479 if (mem_cgroup_disabled())
3480 return;
3481
3482 memcg = head_pc->mem_cgroup;
3483 for (i = 1; i < HPAGE_PMD_NR; i++) {
3484 pc = head_pc + i;
3485 pc->mem_cgroup = memcg;
3486 smp_wmb();/* see __commit_charge() */
3487 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3488 }
3489 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3490 HPAGE_PMD_NR);
3491 }
3492 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3493
3494 /**
3495 * mem_cgroup_move_account - move account of the page
3496 * @page: the page
3497 * @nr_pages: number of regular pages (>1 for huge pages)
3498 * @pc: page_cgroup of the page.
3499 * @from: mem_cgroup which the page is moved from.
3500 * @to: mem_cgroup which the page is moved to. @from != @to.
3501 *
3502 * The caller must confirm following.
3503 * - page is not on LRU (isolate_page() is useful.)
3504 * - compound_lock is held when nr_pages > 1
3505 *
3506 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3507 * from old cgroup.
3508 */
3509 static int mem_cgroup_move_account(struct page *page,
3510 unsigned int nr_pages,
3511 struct page_cgroup *pc,
3512 struct mem_cgroup *from,
3513 struct mem_cgroup *to)
3514 {
3515 unsigned long flags;
3516 int ret;
3517 bool anon = PageAnon(page);
3518
3519 VM_BUG_ON(from == to);
3520 VM_BUG_ON_PAGE(PageLRU(page), page);
3521 /*
3522 * The page is isolated from LRU. So, collapse function
3523 * will not handle this page. But page splitting can happen.
3524 * Do this check under compound_page_lock(). The caller should
3525 * hold it.
3526 */
3527 ret = -EBUSY;
3528 if (nr_pages > 1 && !PageTransHuge(page))
3529 goto out;
3530
3531 lock_page_cgroup(pc);
3532
3533 ret = -EINVAL;
3534 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3535 goto unlock;
3536
3537 move_lock_mem_cgroup(from, &flags);
3538
3539 if (!anon && page_mapped(page)) {
3540 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3541 nr_pages);
3542 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3543 nr_pages);
3544 }
3545
3546 if (PageWriteback(page)) {
3547 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3548 nr_pages);
3549 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3550 nr_pages);
3551 }
3552
3553 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3554
3555 /* caller should have done css_get */
3556 pc->mem_cgroup = to;
3557 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3558 move_unlock_mem_cgroup(from, &flags);
3559 ret = 0;
3560 unlock:
3561 unlock_page_cgroup(pc);
3562 /*
3563 * check events
3564 */
3565 memcg_check_events(to, page);
3566 memcg_check_events(from, page);
3567 out:
3568 return ret;
3569 }
3570
3571 /**
3572 * mem_cgroup_move_parent - moves page to the parent group
3573 * @page: the page to move
3574 * @pc: page_cgroup of the page
3575 * @child: page's cgroup
3576 *
3577 * move charges to its parent or the root cgroup if the group has no
3578 * parent (aka use_hierarchy==0).
3579 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3580 * mem_cgroup_move_account fails) the failure is always temporary and
3581 * it signals a race with a page removal/uncharge or migration. In the
3582 * first case the page is on the way out and it will vanish from the LRU
3583 * on the next attempt and the call should be retried later.
3584 * Isolation from the LRU fails only if page has been isolated from
3585 * the LRU since we looked at it and that usually means either global
3586 * reclaim or migration going on. The page will either get back to the
3587 * LRU or vanish.
3588 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3589 * (!PageCgroupUsed) or moved to a different group. The page will
3590 * disappear in the next attempt.
3591 */
3592 static int mem_cgroup_move_parent(struct page *page,
3593 struct page_cgroup *pc,
3594 struct mem_cgroup *child)
3595 {
3596 struct mem_cgroup *parent;
3597 unsigned int nr_pages;
3598 unsigned long uninitialized_var(flags);
3599 int ret;
3600
3601 VM_BUG_ON(mem_cgroup_is_root(child));
3602
3603 ret = -EBUSY;
3604 if (!get_page_unless_zero(page))
3605 goto out;
3606 if (isolate_lru_page(page))
3607 goto put;
3608
3609 nr_pages = hpage_nr_pages(page);
3610
3611 parent = parent_mem_cgroup(child);
3612 /*
3613 * If no parent, move charges to root cgroup.
3614 */
3615 if (!parent)
3616 parent = root_mem_cgroup;
3617
3618 if (nr_pages > 1) {
3619 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3620 flags = compound_lock_irqsave(page);
3621 }
3622
3623 ret = mem_cgroup_move_account(page, nr_pages,
3624 pc, child, parent);
3625 if (!ret)
3626 __mem_cgroup_cancel_local_charge(child, nr_pages);
3627
3628 if (nr_pages > 1)
3629 compound_unlock_irqrestore(page, flags);
3630 putback_lru_page(page);
3631 put:
3632 put_page(page);
3633 out:
3634 return ret;
3635 }
3636
3637 int mem_cgroup_charge_anon(struct page *page,
3638 struct mm_struct *mm, gfp_t gfp_mask)
3639 {
3640 unsigned int nr_pages = 1;
3641 struct mem_cgroup *memcg;
3642
3643 if (mem_cgroup_disabled())
3644 return 0;
3645
3646 VM_BUG_ON_PAGE(page_mapped(page), page);
3647 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3648 VM_BUG_ON(!mm);
3649
3650 if (PageTransHuge(page)) {
3651 nr_pages <<= compound_order(page);
3652 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3653 }
3654
3655 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages);
3656 if (!memcg)
3657 return -ENOMEM;
3658 __mem_cgroup_commit_charge(memcg, page, nr_pages,
3659 MEM_CGROUP_CHARGE_TYPE_ANON, false);
3660 return 0;
3661 }
3662
3663 /*
3664 * While swap-in, try_charge -> commit or cancel, the page is locked.
3665 * And when try_charge() successfully returns, one refcnt to memcg without
3666 * struct page_cgroup is acquired. This refcnt will be consumed by
3667 * "commit()" or removed by "cancel()"
3668 */
3669 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3670 struct page *page,
3671 gfp_t mask,
3672 struct mem_cgroup **memcgp)
3673 {
3674 struct mem_cgroup *memcg = NULL;
3675 struct page_cgroup *pc;
3676 int ret;
3677
3678 pc = lookup_page_cgroup(page);
3679 /*
3680 * Every swap fault against a single page tries to charge the
3681 * page, bail as early as possible. shmem_unuse() encounters
3682 * already charged pages, too. The USED bit is protected by
3683 * the page lock, which serializes swap cache removal, which
3684 * in turn serializes uncharging.
3685 */
3686 if (PageCgroupUsed(pc))
3687 goto out;
3688 if (do_swap_account)
3689 memcg = try_get_mem_cgroup_from_page(page);
3690 if (!memcg)
3691 memcg = get_mem_cgroup_from_mm(mm);
3692 ret = mem_cgroup_try_charge(memcg, mask, 1);
3693 css_put(&memcg->css);
3694 if (ret == -EINTR)
3695 memcg = root_mem_cgroup;
3696 else if (ret)
3697 return ret;
3698 out:
3699 *memcgp = memcg;
3700 return 0;
3701 }
3702
3703 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3704 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3705 {
3706 if (mem_cgroup_disabled()) {
3707 *memcgp = NULL;
3708 return 0;
3709 }
3710 /*
3711 * A racing thread's fault, or swapoff, may have already
3712 * updated the pte, and even removed page from swap cache: in
3713 * those cases unuse_pte()'s pte_same() test will fail; but
3714 * there's also a KSM case which does need to charge the page.
3715 */
3716 if (!PageSwapCache(page)) {
3717 struct mem_cgroup *memcg;
3718
3719 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1);
3720 if (!memcg)
3721 return -ENOMEM;
3722 *memcgp = memcg;
3723 return 0;
3724 }
3725 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3726 }
3727
3728 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3729 {
3730 if (mem_cgroup_disabled())
3731 return;
3732 if (!memcg)
3733 return;
3734 __mem_cgroup_cancel_charge(memcg, 1);
3735 }
3736
3737 static void
3738 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3739 enum charge_type ctype)
3740 {
3741 if (mem_cgroup_disabled())
3742 return;
3743 if (!memcg)
3744 return;
3745
3746 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3747 /*
3748 * Now swap is on-memory. This means this page may be
3749 * counted both as mem and swap....double count.
3750 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3751 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3752 * may call delete_from_swap_cache() before reach here.
3753 */
3754 if (do_swap_account && PageSwapCache(page)) {
3755 swp_entry_t ent = {.val = page_private(page)};
3756 mem_cgroup_uncharge_swap(ent);
3757 }
3758 }
3759
3760 void mem_cgroup_commit_charge_swapin(struct page *page,
3761 struct mem_cgroup *memcg)
3762 {
3763 __mem_cgroup_commit_charge_swapin(page, memcg,
3764 MEM_CGROUP_CHARGE_TYPE_ANON);
3765 }
3766
3767 int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm,
3768 gfp_t gfp_mask)
3769 {
3770 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3771 struct mem_cgroup *memcg;
3772 int ret;
3773
3774 if (mem_cgroup_disabled())
3775 return 0;
3776 if (PageCompound(page))
3777 return 0;
3778
3779 if (PageSwapCache(page)) { /* shmem */
3780 ret = __mem_cgroup_try_charge_swapin(mm, page,
3781 gfp_mask, &memcg);
3782 if (ret)
3783 return ret;
3784 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3785 return 0;
3786 }
3787
3788 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1);
3789 if (!memcg)
3790 return -ENOMEM;
3791 __mem_cgroup_commit_charge(memcg, page, 1, type, false);
3792 return 0;
3793 }
3794
3795 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3796 unsigned int nr_pages,
3797 const enum charge_type ctype)
3798 {
3799 struct memcg_batch_info *batch = NULL;
3800 bool uncharge_memsw = true;
3801
3802 /* If swapout, usage of swap doesn't decrease */
3803 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3804 uncharge_memsw = false;
3805
3806 batch = &current->memcg_batch;
3807 /*
3808 * In usual, we do css_get() when we remember memcg pointer.
3809 * But in this case, we keep res->usage until end of a series of
3810 * uncharges. Then, it's ok to ignore memcg's refcnt.
3811 */
3812 if (!batch->memcg)
3813 batch->memcg = memcg;
3814 /*
3815 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3816 * In those cases, all pages freed continuously can be expected to be in
3817 * the same cgroup and we have chance to coalesce uncharges.
3818 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3819 * because we want to do uncharge as soon as possible.
3820 */
3821
3822 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3823 goto direct_uncharge;
3824
3825 if (nr_pages > 1)
3826 goto direct_uncharge;
3827
3828 /*
3829 * In typical case, batch->memcg == mem. This means we can
3830 * merge a series of uncharges to an uncharge of res_counter.
3831 * If not, we uncharge res_counter ony by one.
3832 */
3833 if (batch->memcg != memcg)
3834 goto direct_uncharge;
3835 /* remember freed charge and uncharge it later */
3836 batch->nr_pages++;
3837 if (uncharge_memsw)
3838 batch->memsw_nr_pages++;
3839 return;
3840 direct_uncharge:
3841 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3842 if (uncharge_memsw)
3843 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3844 if (unlikely(batch->memcg != memcg))
3845 memcg_oom_recover(memcg);
3846 }
3847
3848 /*
3849 * uncharge if !page_mapped(page)
3850 */
3851 static struct mem_cgroup *
3852 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3853 bool end_migration)
3854 {
3855 struct mem_cgroup *memcg = NULL;
3856 unsigned int nr_pages = 1;
3857 struct page_cgroup *pc;
3858 bool anon;
3859
3860 if (mem_cgroup_disabled())
3861 return NULL;
3862
3863 if (PageTransHuge(page)) {
3864 nr_pages <<= compound_order(page);
3865 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3866 }
3867 /*
3868 * Check if our page_cgroup is valid
3869 */
3870 pc = lookup_page_cgroup(page);
3871 if (unlikely(!PageCgroupUsed(pc)))
3872 return NULL;
3873
3874 lock_page_cgroup(pc);
3875
3876 memcg = pc->mem_cgroup;
3877
3878 if (!PageCgroupUsed(pc))
3879 goto unlock_out;
3880
3881 anon = PageAnon(page);
3882
3883 switch (ctype) {
3884 case MEM_CGROUP_CHARGE_TYPE_ANON:
3885 /*
3886 * Generally PageAnon tells if it's the anon statistics to be
3887 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3888 * used before page reached the stage of being marked PageAnon.
3889 */
3890 anon = true;
3891 /* fallthrough */
3892 case MEM_CGROUP_CHARGE_TYPE_DROP:
3893 /* See mem_cgroup_prepare_migration() */
3894 if (page_mapped(page))
3895 goto unlock_out;
3896 /*
3897 * Pages under migration may not be uncharged. But
3898 * end_migration() /must/ be the one uncharging the
3899 * unused post-migration page and so it has to call
3900 * here with the migration bit still set. See the
3901 * res_counter handling below.
3902 */
3903 if (!end_migration && PageCgroupMigration(pc))
3904 goto unlock_out;
3905 break;
3906 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3907 if (!PageAnon(page)) { /* Shared memory */
3908 if (page->mapping && !page_is_file_cache(page))
3909 goto unlock_out;
3910 } else if (page_mapped(page)) /* Anon */
3911 goto unlock_out;
3912 break;
3913 default:
3914 break;
3915 }
3916
3917 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
3918
3919 ClearPageCgroupUsed(pc);
3920 /*
3921 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3922 * freed from LRU. This is safe because uncharged page is expected not
3923 * to be reused (freed soon). Exception is SwapCache, it's handled by
3924 * special functions.
3925 */
3926
3927 unlock_page_cgroup(pc);
3928 /*
3929 * even after unlock, we have memcg->res.usage here and this memcg
3930 * will never be freed, so it's safe to call css_get().
3931 */
3932 memcg_check_events(memcg, page);
3933 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3934 mem_cgroup_swap_statistics(memcg, true);
3935 css_get(&memcg->css);
3936 }
3937 /*
3938 * Migration does not charge the res_counter for the
3939 * replacement page, so leave it alone when phasing out the
3940 * page that is unused after the migration.
3941 */
3942 if (!end_migration)
3943 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3944
3945 return memcg;
3946
3947 unlock_out:
3948 unlock_page_cgroup(pc);
3949 return NULL;
3950 }
3951
3952 void mem_cgroup_uncharge_page(struct page *page)
3953 {
3954 /* early check. */
3955 if (page_mapped(page))
3956 return;
3957 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3958 /*
3959 * If the page is in swap cache, uncharge should be deferred
3960 * to the swap path, which also properly accounts swap usage
3961 * and handles memcg lifetime.
3962 *
3963 * Note that this check is not stable and reclaim may add the
3964 * page to swap cache at any time after this. However, if the
3965 * page is not in swap cache by the time page->mapcount hits
3966 * 0, there won't be any page table references to the swap
3967 * slot, and reclaim will free it and not actually write the
3968 * page to disk.
3969 */
3970 if (PageSwapCache(page))
3971 return;
3972 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3973 }
3974
3975 void mem_cgroup_uncharge_cache_page(struct page *page)
3976 {
3977 VM_BUG_ON_PAGE(page_mapped(page), page);
3978 VM_BUG_ON_PAGE(page->mapping, page);
3979 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3980 }
3981
3982 /*
3983 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3984 * In that cases, pages are freed continuously and we can expect pages
3985 * are in the same memcg. All these calls itself limits the number of
3986 * pages freed at once, then uncharge_start/end() is called properly.
3987 * This may be called prural(2) times in a context,
3988 */
3989
3990 void mem_cgroup_uncharge_start(void)
3991 {
3992 current->memcg_batch.do_batch++;
3993 /* We can do nest. */
3994 if (current->memcg_batch.do_batch == 1) {
3995 current->memcg_batch.memcg = NULL;
3996 current->memcg_batch.nr_pages = 0;
3997 current->memcg_batch.memsw_nr_pages = 0;
3998 }
3999 }
4000
4001 void mem_cgroup_uncharge_end(void)
4002 {
4003 struct memcg_batch_info *batch = &current->memcg_batch;
4004
4005 if (!batch->do_batch)
4006 return;
4007
4008 batch->do_batch--;
4009 if (batch->do_batch) /* If stacked, do nothing. */
4010 return;
4011
4012 if (!batch->memcg)
4013 return;
4014 /*
4015 * This "batch->memcg" is valid without any css_get/put etc...
4016 * bacause we hide charges behind us.
4017 */
4018 if (batch->nr_pages)
4019 res_counter_uncharge(&batch->memcg->res,
4020 batch->nr_pages * PAGE_SIZE);
4021 if (batch->memsw_nr_pages)
4022 res_counter_uncharge(&batch->memcg->memsw,
4023 batch->memsw_nr_pages * PAGE_SIZE);
4024 memcg_oom_recover(batch->memcg);
4025 /* forget this pointer (for sanity check) */
4026 batch->memcg = NULL;
4027 }
4028
4029 #ifdef CONFIG_SWAP
4030 /*
4031 * called after __delete_from_swap_cache() and drop "page" account.
4032 * memcg information is recorded to swap_cgroup of "ent"
4033 */
4034 void
4035 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4036 {
4037 struct mem_cgroup *memcg;
4038 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4039
4040 if (!swapout) /* this was a swap cache but the swap is unused ! */
4041 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4042
4043 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4044
4045 /*
4046 * record memcg information, if swapout && memcg != NULL,
4047 * css_get() was called in uncharge().
4048 */
4049 if (do_swap_account && swapout && memcg)
4050 swap_cgroup_record(ent, mem_cgroup_id(memcg));
4051 }
4052 #endif
4053
4054 #ifdef CONFIG_MEMCG_SWAP
4055 /*
4056 * called from swap_entry_free(). remove record in swap_cgroup and
4057 * uncharge "memsw" account.
4058 */
4059 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4060 {
4061 struct mem_cgroup *memcg;
4062 unsigned short id;
4063
4064 if (!do_swap_account)
4065 return;
4066
4067 id = swap_cgroup_record(ent, 0);
4068 rcu_read_lock();
4069 memcg = mem_cgroup_lookup(id);
4070 if (memcg) {
4071 /*
4072 * We uncharge this because swap is freed. This memcg can
4073 * be obsolete one. We avoid calling css_tryget_online().
4074 */
4075 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4076 mem_cgroup_swap_statistics(memcg, false);
4077 css_put(&memcg->css);
4078 }
4079 rcu_read_unlock();
4080 }
4081
4082 /**
4083 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4084 * @entry: swap entry to be moved
4085 * @from: mem_cgroup which the entry is moved from
4086 * @to: mem_cgroup which the entry is moved to
4087 *
4088 * It succeeds only when the swap_cgroup's record for this entry is the same
4089 * as the mem_cgroup's id of @from.
4090 *
4091 * Returns 0 on success, -EINVAL on failure.
4092 *
4093 * The caller must have charged to @to, IOW, called res_counter_charge() about
4094 * both res and memsw, and called css_get().
4095 */
4096 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4097 struct mem_cgroup *from, struct mem_cgroup *to)
4098 {
4099 unsigned short old_id, new_id;
4100
4101 old_id = mem_cgroup_id(from);
4102 new_id = mem_cgroup_id(to);
4103
4104 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4105 mem_cgroup_swap_statistics(from, false);
4106 mem_cgroup_swap_statistics(to, true);
4107 /*
4108 * This function is only called from task migration context now.
4109 * It postpones res_counter and refcount handling till the end
4110 * of task migration(mem_cgroup_clear_mc()) for performance
4111 * improvement. But we cannot postpone css_get(to) because if
4112 * the process that has been moved to @to does swap-in, the
4113 * refcount of @to might be decreased to 0.
4114 *
4115 * We are in attach() phase, so the cgroup is guaranteed to be
4116 * alive, so we can just call css_get().
4117 */
4118 css_get(&to->css);
4119 return 0;
4120 }
4121 return -EINVAL;
4122 }
4123 #else
4124 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4125 struct mem_cgroup *from, struct mem_cgroup *to)
4126 {
4127 return -EINVAL;
4128 }
4129 #endif
4130
4131 /*
4132 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4133 * page belongs to.
4134 */
4135 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4136 struct mem_cgroup **memcgp)
4137 {
4138 struct mem_cgroup *memcg = NULL;
4139 unsigned int nr_pages = 1;
4140 struct page_cgroup *pc;
4141 enum charge_type ctype;
4142
4143 *memcgp = NULL;
4144
4145 if (mem_cgroup_disabled())
4146 return;
4147
4148 if (PageTransHuge(page))
4149 nr_pages <<= compound_order(page);
4150
4151 pc = lookup_page_cgroup(page);
4152 lock_page_cgroup(pc);
4153 if (PageCgroupUsed(pc)) {
4154 memcg = pc->mem_cgroup;
4155 css_get(&memcg->css);
4156 /*
4157 * At migrating an anonymous page, its mapcount goes down
4158 * to 0 and uncharge() will be called. But, even if it's fully
4159 * unmapped, migration may fail and this page has to be
4160 * charged again. We set MIGRATION flag here and delay uncharge
4161 * until end_migration() is called
4162 *
4163 * Corner Case Thinking
4164 * A)
4165 * When the old page was mapped as Anon and it's unmap-and-freed
4166 * while migration was ongoing.
4167 * If unmap finds the old page, uncharge() of it will be delayed
4168 * until end_migration(). If unmap finds a new page, it's
4169 * uncharged when it make mapcount to be 1->0. If unmap code
4170 * finds swap_migration_entry, the new page will not be mapped
4171 * and end_migration() will find it(mapcount==0).
4172 *
4173 * B)
4174 * When the old page was mapped but migraion fails, the kernel
4175 * remaps it. A charge for it is kept by MIGRATION flag even
4176 * if mapcount goes down to 0. We can do remap successfully
4177 * without charging it again.
4178 *
4179 * C)
4180 * The "old" page is under lock_page() until the end of
4181 * migration, so, the old page itself will not be swapped-out.
4182 * If the new page is swapped out before end_migraton, our
4183 * hook to usual swap-out path will catch the event.
4184 */
4185 if (PageAnon(page))
4186 SetPageCgroupMigration(pc);
4187 }
4188 unlock_page_cgroup(pc);
4189 /*
4190 * If the page is not charged at this point,
4191 * we return here.
4192 */
4193 if (!memcg)
4194 return;
4195
4196 *memcgp = memcg;
4197 /*
4198 * We charge new page before it's used/mapped. So, even if unlock_page()
4199 * is called before end_migration, we can catch all events on this new
4200 * page. In the case new page is migrated but not remapped, new page's
4201 * mapcount will be finally 0 and we call uncharge in end_migration().
4202 */
4203 if (PageAnon(page))
4204 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4205 else
4206 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4207 /*
4208 * The page is committed to the memcg, but it's not actually
4209 * charged to the res_counter since we plan on replacing the
4210 * old one and only one page is going to be left afterwards.
4211 */
4212 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4213 }
4214
4215 /* remove redundant charge if migration failed*/
4216 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4217 struct page *oldpage, struct page *newpage, bool migration_ok)
4218 {
4219 struct page *used, *unused;
4220 struct page_cgroup *pc;
4221 bool anon;
4222
4223 if (!memcg)
4224 return;
4225
4226 if (!migration_ok) {
4227 used = oldpage;
4228 unused = newpage;
4229 } else {
4230 used = newpage;
4231 unused = oldpage;
4232 }
4233 anon = PageAnon(used);
4234 __mem_cgroup_uncharge_common(unused,
4235 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4236 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4237 true);
4238 css_put(&memcg->css);
4239 /*
4240 * We disallowed uncharge of pages under migration because mapcount
4241 * of the page goes down to zero, temporarly.
4242 * Clear the flag and check the page should be charged.
4243 */
4244 pc = lookup_page_cgroup(oldpage);
4245 lock_page_cgroup(pc);
4246 ClearPageCgroupMigration(pc);
4247 unlock_page_cgroup(pc);
4248
4249 /*
4250 * If a page is a file cache, radix-tree replacement is very atomic
4251 * and we can skip this check. When it was an Anon page, its mapcount
4252 * goes down to 0. But because we added MIGRATION flage, it's not
4253 * uncharged yet. There are several case but page->mapcount check
4254 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4255 * check. (see prepare_charge() also)
4256 */
4257 if (anon)
4258 mem_cgroup_uncharge_page(used);
4259 }
4260
4261 /*
4262 * At replace page cache, newpage is not under any memcg but it's on
4263 * LRU. So, this function doesn't touch res_counter but handles LRU
4264 * in correct way. Both pages are locked so we cannot race with uncharge.
4265 */
4266 void mem_cgroup_replace_page_cache(struct page *oldpage,
4267 struct page *newpage)
4268 {
4269 struct mem_cgroup *memcg = NULL;
4270 struct page_cgroup *pc;
4271 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4272
4273 if (mem_cgroup_disabled())
4274 return;
4275
4276 pc = lookup_page_cgroup(oldpage);
4277 /* fix accounting on old pages */
4278 lock_page_cgroup(pc);
4279 if (PageCgroupUsed(pc)) {
4280 memcg = pc->mem_cgroup;
4281 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4282 ClearPageCgroupUsed(pc);
4283 }
4284 unlock_page_cgroup(pc);
4285
4286 /*
4287 * When called from shmem_replace_page(), in some cases the
4288 * oldpage has already been charged, and in some cases not.
4289 */
4290 if (!memcg)
4291 return;
4292 /*
4293 * Even if newpage->mapping was NULL before starting replacement,
4294 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4295 * LRU while we overwrite pc->mem_cgroup.
4296 */
4297 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4298 }
4299
4300 #ifdef CONFIG_DEBUG_VM
4301 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4302 {
4303 struct page_cgroup *pc;
4304
4305 pc = lookup_page_cgroup(page);
4306 /*
4307 * Can be NULL while feeding pages into the page allocator for
4308 * the first time, i.e. during boot or memory hotplug;
4309 * or when mem_cgroup_disabled().
4310 */
4311 if (likely(pc) && PageCgroupUsed(pc))
4312 return pc;
4313 return NULL;
4314 }
4315
4316 bool mem_cgroup_bad_page_check(struct page *page)
4317 {
4318 if (mem_cgroup_disabled())
4319 return false;
4320
4321 return lookup_page_cgroup_used(page) != NULL;
4322 }
4323
4324 void mem_cgroup_print_bad_page(struct page *page)
4325 {
4326 struct page_cgroup *pc;
4327
4328 pc = lookup_page_cgroup_used(page);
4329 if (pc) {
4330 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4331 pc, pc->flags, pc->mem_cgroup);
4332 }
4333 }
4334 #endif
4335
4336 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4337 unsigned long long val)
4338 {
4339 int retry_count;
4340 u64 memswlimit, memlimit;
4341 int ret = 0;
4342 int children = mem_cgroup_count_children(memcg);
4343 u64 curusage, oldusage;
4344 int enlarge;
4345
4346 /*
4347 * For keeping hierarchical_reclaim simple, how long we should retry
4348 * is depends on callers. We set our retry-count to be function
4349 * of # of children which we should visit in this loop.
4350 */
4351 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4352
4353 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4354
4355 enlarge = 0;
4356 while (retry_count) {
4357 if (signal_pending(current)) {
4358 ret = -EINTR;
4359 break;
4360 }
4361 /*
4362 * Rather than hide all in some function, I do this in
4363 * open coded manner. You see what this really does.
4364 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4365 */
4366 mutex_lock(&set_limit_mutex);
4367 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4368 if (memswlimit < val) {
4369 ret = -EINVAL;
4370 mutex_unlock(&set_limit_mutex);
4371 break;
4372 }
4373
4374 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4375 if (memlimit < val)
4376 enlarge = 1;
4377
4378 ret = res_counter_set_limit(&memcg->res, val);
4379 if (!ret) {
4380 if (memswlimit == val)
4381 memcg->memsw_is_minimum = true;
4382 else
4383 memcg->memsw_is_minimum = false;
4384 }
4385 mutex_unlock(&set_limit_mutex);
4386
4387 if (!ret)
4388 break;
4389
4390 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4391 MEM_CGROUP_RECLAIM_SHRINK);
4392 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4393 /* Usage is reduced ? */
4394 if (curusage >= oldusage)
4395 retry_count--;
4396 else
4397 oldusage = curusage;
4398 }
4399 if (!ret && enlarge)
4400 memcg_oom_recover(memcg);
4401
4402 return ret;
4403 }
4404
4405 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4406 unsigned long long val)
4407 {
4408 int retry_count;
4409 u64 memlimit, memswlimit, oldusage, curusage;
4410 int children = mem_cgroup_count_children(memcg);
4411 int ret = -EBUSY;
4412 int enlarge = 0;
4413
4414 /* see mem_cgroup_resize_res_limit */
4415 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4416 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4417 while (retry_count) {
4418 if (signal_pending(current)) {
4419 ret = -EINTR;
4420 break;
4421 }
4422 /*
4423 * Rather than hide all in some function, I do this in
4424 * open coded manner. You see what this really does.
4425 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4426 */
4427 mutex_lock(&set_limit_mutex);
4428 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4429 if (memlimit > val) {
4430 ret = -EINVAL;
4431 mutex_unlock(&set_limit_mutex);
4432 break;
4433 }
4434 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4435 if (memswlimit < val)
4436 enlarge = 1;
4437 ret = res_counter_set_limit(&memcg->memsw, val);
4438 if (!ret) {
4439 if (memlimit == val)
4440 memcg->memsw_is_minimum = true;
4441 else
4442 memcg->memsw_is_minimum = false;
4443 }
4444 mutex_unlock(&set_limit_mutex);
4445
4446 if (!ret)
4447 break;
4448
4449 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4450 MEM_CGROUP_RECLAIM_NOSWAP |
4451 MEM_CGROUP_RECLAIM_SHRINK);
4452 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4453 /* Usage is reduced ? */
4454 if (curusage >= oldusage)
4455 retry_count--;
4456 else
4457 oldusage = curusage;
4458 }
4459 if (!ret && enlarge)
4460 memcg_oom_recover(memcg);
4461 return ret;
4462 }
4463
4464 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4465 gfp_t gfp_mask,
4466 unsigned long *total_scanned)
4467 {
4468 unsigned long nr_reclaimed = 0;
4469 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4470 unsigned long reclaimed;
4471 int loop = 0;
4472 struct mem_cgroup_tree_per_zone *mctz;
4473 unsigned long long excess;
4474 unsigned long nr_scanned;
4475
4476 if (order > 0)
4477 return 0;
4478
4479 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4480 /*
4481 * This loop can run a while, specially if mem_cgroup's continuously
4482 * keep exceeding their soft limit and putting the system under
4483 * pressure
4484 */
4485 do {
4486 if (next_mz)
4487 mz = next_mz;
4488 else
4489 mz = mem_cgroup_largest_soft_limit_node(mctz);
4490 if (!mz)
4491 break;
4492
4493 nr_scanned = 0;
4494 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4495 gfp_mask, &nr_scanned);
4496 nr_reclaimed += reclaimed;
4497 *total_scanned += nr_scanned;
4498 spin_lock(&mctz->lock);
4499
4500 /*
4501 * If we failed to reclaim anything from this memory cgroup
4502 * it is time to move on to the next cgroup
4503 */
4504 next_mz = NULL;
4505 if (!reclaimed) {
4506 do {
4507 /*
4508 * Loop until we find yet another one.
4509 *
4510 * By the time we get the soft_limit lock
4511 * again, someone might have aded the
4512 * group back on the RB tree. Iterate to
4513 * make sure we get a different mem.
4514 * mem_cgroup_largest_soft_limit_node returns
4515 * NULL if no other cgroup is present on
4516 * the tree
4517 */
4518 next_mz =
4519 __mem_cgroup_largest_soft_limit_node(mctz);
4520 if (next_mz == mz)
4521 css_put(&next_mz->memcg->css);
4522 else /* next_mz == NULL or other memcg */
4523 break;
4524 } while (1);
4525 }
4526 __mem_cgroup_remove_exceeded(mz, mctz);
4527 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4528 /*
4529 * One school of thought says that we should not add
4530 * back the node to the tree if reclaim returns 0.
4531 * But our reclaim could return 0, simply because due
4532 * to priority we are exposing a smaller subset of
4533 * memory to reclaim from. Consider this as a longer
4534 * term TODO.
4535 */
4536 /* If excess == 0, no tree ops */
4537 __mem_cgroup_insert_exceeded(mz, mctz, excess);
4538 spin_unlock(&mctz->lock);
4539 css_put(&mz->memcg->css);
4540 loop++;
4541 /*
4542 * Could not reclaim anything and there are no more
4543 * mem cgroups to try or we seem to be looping without
4544 * reclaiming anything.
4545 */
4546 if (!nr_reclaimed &&
4547 (next_mz == NULL ||
4548 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4549 break;
4550 } while (!nr_reclaimed);
4551 if (next_mz)
4552 css_put(&next_mz->memcg->css);
4553 return nr_reclaimed;
4554 }
4555
4556 /**
4557 * mem_cgroup_force_empty_list - clears LRU of a group
4558 * @memcg: group to clear
4559 * @node: NUMA node
4560 * @zid: zone id
4561 * @lru: lru to to clear
4562 *
4563 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4564 * reclaim the pages page themselves - pages are moved to the parent (or root)
4565 * group.
4566 */
4567 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4568 int node, int zid, enum lru_list lru)
4569 {
4570 struct lruvec *lruvec;
4571 unsigned long flags;
4572 struct list_head *list;
4573 struct page *busy;
4574 struct zone *zone;
4575
4576 zone = &NODE_DATA(node)->node_zones[zid];
4577 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4578 list = &lruvec->lists[lru];
4579
4580 busy = NULL;
4581 do {
4582 struct page_cgroup *pc;
4583 struct page *page;
4584
4585 spin_lock_irqsave(&zone->lru_lock, flags);
4586 if (list_empty(list)) {
4587 spin_unlock_irqrestore(&zone->lru_lock, flags);
4588 break;
4589 }
4590 page = list_entry(list->prev, struct page, lru);
4591 if (busy == page) {
4592 list_move(&page->lru, list);
4593 busy = NULL;
4594 spin_unlock_irqrestore(&zone->lru_lock, flags);
4595 continue;
4596 }
4597 spin_unlock_irqrestore(&zone->lru_lock, flags);
4598
4599 pc = lookup_page_cgroup(page);
4600
4601 if (mem_cgroup_move_parent(page, pc, memcg)) {
4602 /* found lock contention or "pc" is obsolete. */
4603 busy = page;
4604 } else
4605 busy = NULL;
4606 cond_resched();
4607 } while (!list_empty(list));
4608 }
4609
4610 /*
4611 * make mem_cgroup's charge to be 0 if there is no task by moving
4612 * all the charges and pages to the parent.
4613 * This enables deleting this mem_cgroup.
4614 *
4615 * Caller is responsible for holding css reference on the memcg.
4616 */
4617 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4618 {
4619 int node, zid;
4620 u64 usage;
4621
4622 do {
4623 /* This is for making all *used* pages to be on LRU. */
4624 lru_add_drain_all();
4625 drain_all_stock_sync(memcg);
4626 mem_cgroup_start_move(memcg);
4627 for_each_node_state(node, N_MEMORY) {
4628 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4629 enum lru_list lru;
4630 for_each_lru(lru) {
4631 mem_cgroup_force_empty_list(memcg,
4632 node, zid, lru);
4633 }
4634 }
4635 }
4636 mem_cgroup_end_move(memcg);
4637 memcg_oom_recover(memcg);
4638 cond_resched();
4639
4640 /*
4641 * Kernel memory may not necessarily be trackable to a specific
4642 * process. So they are not migrated, and therefore we can't
4643 * expect their value to drop to 0 here.
4644 * Having res filled up with kmem only is enough.
4645 *
4646 * This is a safety check because mem_cgroup_force_empty_list
4647 * could have raced with mem_cgroup_replace_page_cache callers
4648 * so the lru seemed empty but the page could have been added
4649 * right after the check. RES_USAGE should be safe as we always
4650 * charge before adding to the LRU.
4651 */
4652 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4653 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4654 } while (usage > 0);
4655 }
4656
4657 /*
4658 * Test whether @memcg has children, dead or alive. Note that this
4659 * function doesn't care whether @memcg has use_hierarchy enabled and
4660 * returns %true if there are child csses according to the cgroup
4661 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
4662 */
4663 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4664 {
4665 bool ret;
4666
4667 /*
4668 * The lock does not prevent addition or deletion of children, but
4669 * it prevents a new child from being initialized based on this
4670 * parent in css_online(), so it's enough to decide whether
4671 * hierarchically inherited attributes can still be changed or not.
4672 */
4673 lockdep_assert_held(&memcg_create_mutex);
4674
4675 rcu_read_lock();
4676 ret = css_next_child(NULL, &memcg->css);
4677 rcu_read_unlock();
4678 return ret;
4679 }
4680
4681 /*
4682 * Reclaims as many pages from the given memcg as possible and moves
4683 * the rest to the parent.
4684 *
4685 * Caller is responsible for holding css reference for memcg.
4686 */
4687 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4688 {
4689 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4690
4691 /* we call try-to-free pages for make this cgroup empty */
4692 lru_add_drain_all();
4693 /* try to free all pages in this cgroup */
4694 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4695 int progress;
4696
4697 if (signal_pending(current))
4698 return -EINTR;
4699
4700 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4701 false);
4702 if (!progress) {
4703 nr_retries--;
4704 /* maybe some writeback is necessary */
4705 congestion_wait(BLK_RW_ASYNC, HZ/10);
4706 }
4707
4708 }
4709
4710 return 0;
4711 }
4712
4713 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
4714 char *buf, size_t nbytes,
4715 loff_t off)
4716 {
4717 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4718
4719 if (mem_cgroup_is_root(memcg))
4720 return -EINVAL;
4721 return mem_cgroup_force_empty(memcg) ?: nbytes;
4722 }
4723
4724 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4725 struct cftype *cft)
4726 {
4727 return mem_cgroup_from_css(css)->use_hierarchy;
4728 }
4729
4730 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4731 struct cftype *cft, u64 val)
4732 {
4733 int retval = 0;
4734 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4735 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
4736
4737 mutex_lock(&memcg_create_mutex);
4738
4739 if (memcg->use_hierarchy == val)
4740 goto out;
4741
4742 /*
4743 * If parent's use_hierarchy is set, we can't make any modifications
4744 * in the child subtrees. If it is unset, then the change can
4745 * occur, provided the current cgroup has no children.
4746 *
4747 * For the root cgroup, parent_mem is NULL, we allow value to be
4748 * set if there are no children.
4749 */
4750 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4751 (val == 1 || val == 0)) {
4752 if (!memcg_has_children(memcg))
4753 memcg->use_hierarchy = val;
4754 else
4755 retval = -EBUSY;
4756 } else
4757 retval = -EINVAL;
4758
4759 out:
4760 mutex_unlock(&memcg_create_mutex);
4761
4762 return retval;
4763 }
4764
4765 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4766 struct cftype *cft)
4767 {
4768 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4769 enum res_type type = MEMFILE_TYPE(cft->private);
4770 int name = MEMFILE_ATTR(cft->private);
4771
4772 switch (type) {
4773 case _MEM:
4774 return res_counter_read_u64(&memcg->res, name);
4775 case _MEMSWAP:
4776 return res_counter_read_u64(&memcg->memsw, name);
4777 case _KMEM:
4778 return res_counter_read_u64(&memcg->kmem, name);
4779 break;
4780 default:
4781 BUG();
4782 }
4783 }
4784
4785 #ifdef CONFIG_MEMCG_KMEM
4786 /* should be called with activate_kmem_mutex held */
4787 static int __memcg_activate_kmem(struct mem_cgroup *memcg,
4788 unsigned long long limit)
4789 {
4790 int err = 0;
4791 int memcg_id;
4792
4793 if (memcg_kmem_is_active(memcg))
4794 return 0;
4795
4796 /*
4797 * We are going to allocate memory for data shared by all memory
4798 * cgroups so let's stop accounting here.
4799 */
4800 memcg_stop_kmem_account();
4801
4802 /*
4803 * For simplicity, we won't allow this to be disabled. It also can't
4804 * be changed if the cgroup has children already, or if tasks had
4805 * already joined.
4806 *
4807 * If tasks join before we set the limit, a person looking at
4808 * kmem.usage_in_bytes will have no way to determine when it took
4809 * place, which makes the value quite meaningless.
4810 *
4811 * After it first became limited, changes in the value of the limit are
4812 * of course permitted.
4813 */
4814 mutex_lock(&memcg_create_mutex);
4815 if (cgroup_has_tasks(memcg->css.cgroup) ||
4816 (memcg->use_hierarchy && memcg_has_children(memcg)))
4817 err = -EBUSY;
4818 mutex_unlock(&memcg_create_mutex);
4819 if (err)
4820 goto out;
4821
4822 memcg_id = ida_simple_get(&kmem_limited_groups,
4823 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
4824 if (memcg_id < 0) {
4825 err = memcg_id;
4826 goto out;
4827 }
4828
4829 /*
4830 * Make sure we have enough space for this cgroup in each root cache's
4831 * memcg_params.
4832 */
4833 mutex_lock(&memcg_slab_mutex);
4834 err = memcg_update_all_caches(memcg_id + 1);
4835 mutex_unlock(&memcg_slab_mutex);
4836 if (err)
4837 goto out_rmid;
4838
4839 memcg->kmemcg_id = memcg_id;
4840 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
4841
4842 /*
4843 * We couldn't have accounted to this cgroup, because it hasn't got the
4844 * active bit set yet, so this should succeed.
4845 */
4846 err = res_counter_set_limit(&memcg->kmem, limit);
4847 VM_BUG_ON(err);
4848
4849 static_key_slow_inc(&memcg_kmem_enabled_key);
4850 /*
4851 * Setting the active bit after enabling static branching will
4852 * guarantee no one starts accounting before all call sites are
4853 * patched.
4854 */
4855 memcg_kmem_set_active(memcg);
4856 out:
4857 memcg_resume_kmem_account();
4858 return err;
4859
4860 out_rmid:
4861 ida_simple_remove(&kmem_limited_groups, memcg_id);
4862 goto out;
4863 }
4864
4865 static int memcg_activate_kmem(struct mem_cgroup *memcg,
4866 unsigned long long limit)
4867 {
4868 int ret;
4869
4870 mutex_lock(&activate_kmem_mutex);
4871 ret = __memcg_activate_kmem(memcg, limit);
4872 mutex_unlock(&activate_kmem_mutex);
4873 return ret;
4874 }
4875
4876 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4877 unsigned long long val)
4878 {
4879 int ret;
4880
4881 if (!memcg_kmem_is_active(memcg))
4882 ret = memcg_activate_kmem(memcg, val);
4883 else
4884 ret = res_counter_set_limit(&memcg->kmem, val);
4885 return ret;
4886 }
4887
4888 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4889 {
4890 int ret = 0;
4891 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4892
4893 if (!parent)
4894 return 0;
4895
4896 mutex_lock(&activate_kmem_mutex);
4897 /*
4898 * If the parent cgroup is not kmem-active now, it cannot be activated
4899 * after this point, because it has at least one child already.
4900 */
4901 if (memcg_kmem_is_active(parent))
4902 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
4903 mutex_unlock(&activate_kmem_mutex);
4904 return ret;
4905 }
4906 #else
4907 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4908 unsigned long long val)
4909 {
4910 return -EINVAL;
4911 }
4912 #endif /* CONFIG_MEMCG_KMEM */
4913
4914 /*
4915 * The user of this function is...
4916 * RES_LIMIT.
4917 */
4918 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4919 char *buf, size_t nbytes, loff_t off)
4920 {
4921 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4922 enum res_type type;
4923 int name;
4924 unsigned long long val;
4925 int ret;
4926
4927 buf = strstrip(buf);
4928 type = MEMFILE_TYPE(of_cft(of)->private);
4929 name = MEMFILE_ATTR(of_cft(of)->private);
4930
4931 switch (name) {
4932 case RES_LIMIT:
4933 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4934 ret = -EINVAL;
4935 break;
4936 }
4937 /* This function does all necessary parse...reuse it */
4938 ret = res_counter_memparse_write_strategy(buf, &val);
4939 if (ret)
4940 break;
4941 if (type == _MEM)
4942 ret = mem_cgroup_resize_limit(memcg, val);
4943 else if (type == _MEMSWAP)
4944 ret = mem_cgroup_resize_memsw_limit(memcg, val);
4945 else if (type == _KMEM)
4946 ret = memcg_update_kmem_limit(memcg, val);
4947 else
4948 return -EINVAL;
4949 break;
4950 case RES_SOFT_LIMIT:
4951 ret = res_counter_memparse_write_strategy(buf, &val);
4952 if (ret)
4953 break;
4954 /*
4955 * For memsw, soft limits are hard to implement in terms
4956 * of semantics, for now, we support soft limits for
4957 * control without swap
4958 */
4959 if (type == _MEM)
4960 ret = res_counter_set_soft_limit(&memcg->res, val);
4961 else
4962 ret = -EINVAL;
4963 break;
4964 default:
4965 ret = -EINVAL; /* should be BUG() ? */
4966 break;
4967 }
4968 return ret ?: nbytes;
4969 }
4970
4971 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4972 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4973 {
4974 unsigned long long min_limit, min_memsw_limit, tmp;
4975
4976 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4977 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4978 if (!memcg->use_hierarchy)
4979 goto out;
4980
4981 while (memcg->css.parent) {
4982 memcg = mem_cgroup_from_css(memcg->css.parent);
4983 if (!memcg->use_hierarchy)
4984 break;
4985 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4986 min_limit = min(min_limit, tmp);
4987 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4988 min_memsw_limit = min(min_memsw_limit, tmp);
4989 }
4990 out:
4991 *mem_limit = min_limit;
4992 *memsw_limit = min_memsw_limit;
4993 }
4994
4995 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4996 size_t nbytes, loff_t off)
4997 {
4998 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4999 int name;
5000 enum res_type type;
5001
5002 type = MEMFILE_TYPE(of_cft(of)->private);
5003 name = MEMFILE_ATTR(of_cft(of)->private);
5004
5005 switch (name) {
5006 case RES_MAX_USAGE:
5007 if (type == _MEM)
5008 res_counter_reset_max(&memcg->res);
5009 else if (type == _MEMSWAP)
5010 res_counter_reset_max(&memcg->memsw);
5011 else if (type == _KMEM)
5012 res_counter_reset_max(&memcg->kmem);
5013 else
5014 return -EINVAL;
5015 break;
5016 case RES_FAILCNT:
5017 if (type == _MEM)
5018 res_counter_reset_failcnt(&memcg->res);
5019 else if (type == _MEMSWAP)
5020 res_counter_reset_failcnt(&memcg->memsw);
5021 else if (type == _KMEM)
5022 res_counter_reset_failcnt(&memcg->kmem);
5023 else
5024 return -EINVAL;
5025 break;
5026 }
5027
5028 return nbytes;
5029 }
5030
5031 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5032 struct cftype *cft)
5033 {
5034 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5035 }
5036
5037 #ifdef CONFIG_MMU
5038 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5039 struct cftype *cft, u64 val)
5040 {
5041 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5042
5043 if (val >= (1 << NR_MOVE_TYPE))
5044 return -EINVAL;
5045
5046 /*
5047 * No kind of locking is needed in here, because ->can_attach() will
5048 * check this value once in the beginning of the process, and then carry
5049 * on with stale data. This means that changes to this value will only
5050 * affect task migrations starting after the change.
5051 */
5052 memcg->move_charge_at_immigrate = val;
5053 return 0;
5054 }
5055 #else
5056 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5057 struct cftype *cft, u64 val)
5058 {
5059 return -ENOSYS;
5060 }
5061 #endif
5062
5063 #ifdef CONFIG_NUMA
5064 static int memcg_numa_stat_show(struct seq_file *m, void *v)
5065 {
5066 struct numa_stat {
5067 const char *name;
5068 unsigned int lru_mask;
5069 };
5070
5071 static const struct numa_stat stats[] = {
5072 { "total", LRU_ALL },
5073 { "file", LRU_ALL_FILE },
5074 { "anon", LRU_ALL_ANON },
5075 { "unevictable", BIT(LRU_UNEVICTABLE) },
5076 };
5077 const struct numa_stat *stat;
5078 int nid;
5079 unsigned long nr;
5080 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5081
5082 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5083 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5084 seq_printf(m, "%s=%lu", stat->name, nr);
5085 for_each_node_state(nid, N_MEMORY) {
5086 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5087 stat->lru_mask);
5088 seq_printf(m, " N%d=%lu", nid, nr);
5089 }
5090 seq_putc(m, '\n');
5091 }
5092
5093 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5094 struct mem_cgroup *iter;
5095
5096 nr = 0;
5097 for_each_mem_cgroup_tree(iter, memcg)
5098 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5099 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5100 for_each_node_state(nid, N_MEMORY) {
5101 nr = 0;
5102 for_each_mem_cgroup_tree(iter, memcg)
5103 nr += mem_cgroup_node_nr_lru_pages(
5104 iter, nid, stat->lru_mask);
5105 seq_printf(m, " N%d=%lu", nid, nr);
5106 }
5107 seq_putc(m, '\n');
5108 }
5109
5110 return 0;
5111 }
5112 #endif /* CONFIG_NUMA */
5113
5114 static inline void mem_cgroup_lru_names_not_uptodate(void)
5115 {
5116 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5117 }
5118
5119 static int memcg_stat_show(struct seq_file *m, void *v)
5120 {
5121 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5122 struct mem_cgroup *mi;
5123 unsigned int i;
5124
5125 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5126 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5127 continue;
5128 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5129 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5130 }
5131
5132 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5133 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5134 mem_cgroup_read_events(memcg, i));
5135
5136 for (i = 0; i < NR_LRU_LISTS; i++)
5137 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5138 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5139
5140 /* Hierarchical information */
5141 {
5142 unsigned long long limit, memsw_limit;
5143 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5144 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5145 if (do_swap_account)
5146 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5147 memsw_limit);
5148 }
5149
5150 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5151 long long val = 0;
5152
5153 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5154 continue;
5155 for_each_mem_cgroup_tree(mi, memcg)
5156 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5157 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5158 }
5159
5160 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5161 unsigned long long val = 0;
5162
5163 for_each_mem_cgroup_tree(mi, memcg)
5164 val += mem_cgroup_read_events(mi, i);
5165 seq_printf(m, "total_%s %llu\n",
5166 mem_cgroup_events_names[i], val);
5167 }
5168
5169 for (i = 0; i < NR_LRU_LISTS; i++) {
5170 unsigned long long val = 0;
5171
5172 for_each_mem_cgroup_tree(mi, memcg)
5173 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5174 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5175 }
5176
5177 #ifdef CONFIG_DEBUG_VM
5178 {
5179 int nid, zid;
5180 struct mem_cgroup_per_zone *mz;
5181 struct zone_reclaim_stat *rstat;
5182 unsigned long recent_rotated[2] = {0, 0};
5183 unsigned long recent_scanned[2] = {0, 0};
5184
5185 for_each_online_node(nid)
5186 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5187 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
5188 rstat = &mz->lruvec.reclaim_stat;
5189
5190 recent_rotated[0] += rstat->recent_rotated[0];
5191 recent_rotated[1] += rstat->recent_rotated[1];
5192 recent_scanned[0] += rstat->recent_scanned[0];
5193 recent_scanned[1] += rstat->recent_scanned[1];
5194 }
5195 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5196 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5197 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5198 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5199 }
5200 #endif
5201
5202 return 0;
5203 }
5204
5205 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5206 struct cftype *cft)
5207 {
5208 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5209
5210 return mem_cgroup_swappiness(memcg);
5211 }
5212
5213 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5214 struct cftype *cft, u64 val)
5215 {
5216 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5217
5218 if (val > 100)
5219 return -EINVAL;
5220
5221 if (css->parent)
5222 memcg->swappiness = val;
5223 else
5224 vm_swappiness = val;
5225
5226 return 0;
5227 }
5228
5229 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5230 {
5231 struct mem_cgroup_threshold_ary *t;
5232 u64 usage;
5233 int i;
5234
5235 rcu_read_lock();
5236 if (!swap)
5237 t = rcu_dereference(memcg->thresholds.primary);
5238 else
5239 t = rcu_dereference(memcg->memsw_thresholds.primary);
5240
5241 if (!t)
5242 goto unlock;
5243
5244 if (!swap)
5245 usage = res_counter_read_u64(&memcg->res, RES_USAGE);
5246 else
5247 usage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
5248
5249 /*
5250 * current_threshold points to threshold just below or equal to usage.
5251 * If it's not true, a threshold was crossed after last
5252 * call of __mem_cgroup_threshold().
5253 */
5254 i = t->current_threshold;
5255
5256 /*
5257 * Iterate backward over array of thresholds starting from
5258 * current_threshold and check if a threshold is crossed.
5259 * If none of thresholds below usage is crossed, we read
5260 * only one element of the array here.
5261 */
5262 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5263 eventfd_signal(t->entries[i].eventfd, 1);
5264
5265 /* i = current_threshold + 1 */
5266 i++;
5267
5268 /*
5269 * Iterate forward over array of thresholds starting from
5270 * current_threshold+1 and check if a threshold is crossed.
5271 * If none of thresholds above usage is crossed, we read
5272 * only one element of the array here.
5273 */
5274 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5275 eventfd_signal(t->entries[i].eventfd, 1);
5276
5277 /* Update current_threshold */
5278 t->current_threshold = i - 1;
5279 unlock:
5280 rcu_read_unlock();
5281 }
5282
5283 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5284 {
5285 while (memcg) {
5286 __mem_cgroup_threshold(memcg, false);
5287 if (do_swap_account)
5288 __mem_cgroup_threshold(memcg, true);
5289
5290 memcg = parent_mem_cgroup(memcg);
5291 }
5292 }
5293
5294 static int compare_thresholds(const void *a, const void *b)
5295 {
5296 const struct mem_cgroup_threshold *_a = a;
5297 const struct mem_cgroup_threshold *_b = b;
5298
5299 if (_a->threshold > _b->threshold)
5300 return 1;
5301
5302 if (_a->threshold < _b->threshold)
5303 return -1;
5304
5305 return 0;
5306 }
5307
5308 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5309 {
5310 struct mem_cgroup_eventfd_list *ev;
5311
5312 spin_lock(&memcg_oom_lock);
5313
5314 list_for_each_entry(ev, &memcg->oom_notify, list)
5315 eventfd_signal(ev->eventfd, 1);
5316
5317 spin_unlock(&memcg_oom_lock);
5318 return 0;
5319 }
5320
5321 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5322 {
5323 struct mem_cgroup *iter;
5324
5325 for_each_mem_cgroup_tree(iter, memcg)
5326 mem_cgroup_oom_notify_cb(iter);
5327 }
5328
5329 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5330 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5331 {
5332 struct mem_cgroup_thresholds *thresholds;
5333 struct mem_cgroup_threshold_ary *new;
5334 u64 threshold, usage;
5335 int i, size, ret;
5336
5337 ret = res_counter_memparse_write_strategy(args, &threshold);
5338 if (ret)
5339 return ret;
5340
5341 mutex_lock(&memcg->thresholds_lock);
5342
5343 if (type == _MEM) {
5344 thresholds = &memcg->thresholds;
5345 usage = res_counter_read_u64(&memcg->res, RES_USAGE);
5346 } else if (type == _MEMSWAP) {
5347 thresholds = &memcg->memsw_thresholds;
5348 usage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
5349 } else
5350 BUG();
5351
5352 /* Check if a threshold crossed before adding a new one */
5353 if (thresholds->primary)
5354 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5355
5356 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5357
5358 /* Allocate memory for new array of thresholds */
5359 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5360 GFP_KERNEL);
5361 if (!new) {
5362 ret = -ENOMEM;
5363 goto unlock;
5364 }
5365 new->size = size;
5366
5367 /* Copy thresholds (if any) to new array */
5368 if (thresholds->primary) {
5369 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5370 sizeof(struct mem_cgroup_threshold));
5371 }
5372
5373 /* Add new threshold */
5374 new->entries[size - 1].eventfd = eventfd;
5375 new->entries[size - 1].threshold = threshold;
5376
5377 /* Sort thresholds. Registering of new threshold isn't time-critical */
5378 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5379 compare_thresholds, NULL);
5380
5381 /* Find current threshold */
5382 new->current_threshold = -1;
5383 for (i = 0; i < size; i++) {
5384 if (new->entries[i].threshold <= usage) {
5385 /*
5386 * new->current_threshold will not be used until
5387 * rcu_assign_pointer(), so it's safe to increment
5388 * it here.
5389 */
5390 ++new->current_threshold;
5391 } else
5392 break;
5393 }
5394
5395 /* Free old spare buffer and save old primary buffer as spare */
5396 kfree(thresholds->spare);
5397 thresholds->spare = thresholds->primary;
5398
5399 rcu_assign_pointer(thresholds->primary, new);
5400
5401 /* To be sure that nobody uses thresholds */
5402 synchronize_rcu();
5403
5404 unlock:
5405 mutex_unlock(&memcg->thresholds_lock);
5406
5407 return ret;
5408 }
5409
5410 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5411 struct eventfd_ctx *eventfd, const char *args)
5412 {
5413 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
5414 }
5415
5416 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
5417 struct eventfd_ctx *eventfd, const char *args)
5418 {
5419 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
5420 }
5421
5422 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5423 struct eventfd_ctx *eventfd, enum res_type type)
5424 {
5425 struct mem_cgroup_thresholds *thresholds;
5426 struct mem_cgroup_threshold_ary *new;
5427 u64 usage;
5428 int i, j, size;
5429
5430 mutex_lock(&memcg->thresholds_lock);
5431
5432 if (type == _MEM) {
5433 thresholds = &memcg->thresholds;
5434 usage = res_counter_read_u64(&memcg->res, RES_USAGE);
5435 } else if (type == _MEMSWAP) {
5436 thresholds = &memcg->memsw_thresholds;
5437 usage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
5438 } else
5439 BUG();
5440
5441 if (!thresholds->primary)
5442 goto unlock;
5443
5444 /* Check if a threshold crossed before removing */
5445 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5446
5447 /* Calculate new number of threshold */
5448 size = 0;
5449 for (i = 0; i < thresholds->primary->size; i++) {
5450 if (thresholds->primary->entries[i].eventfd != eventfd)
5451 size++;
5452 }
5453
5454 new = thresholds->spare;
5455
5456 /* Set thresholds array to NULL if we don't have thresholds */
5457 if (!size) {
5458 kfree(new);
5459 new = NULL;
5460 goto swap_buffers;
5461 }
5462
5463 new->size = size;
5464
5465 /* Copy thresholds and find current threshold */
5466 new->current_threshold = -1;
5467 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5468 if (thresholds->primary->entries[i].eventfd == eventfd)
5469 continue;
5470
5471 new->entries[j] = thresholds->primary->entries[i];
5472 if (new->entries[j].threshold <= usage) {
5473 /*
5474 * new->current_threshold will not be used
5475 * until rcu_assign_pointer(), so it's safe to increment
5476 * it here.
5477 */
5478 ++new->current_threshold;
5479 }
5480 j++;
5481 }
5482
5483 swap_buffers:
5484 /* Swap primary and spare array */
5485 thresholds->spare = thresholds->primary;
5486 /* If all events are unregistered, free the spare array */
5487 if (!new) {
5488 kfree(thresholds->spare);
5489 thresholds->spare = NULL;
5490 }
5491
5492 rcu_assign_pointer(thresholds->primary, new);
5493
5494 /* To be sure that nobody uses thresholds */
5495 synchronize_rcu();
5496 unlock:
5497 mutex_unlock(&memcg->thresholds_lock);
5498 }
5499
5500 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5501 struct eventfd_ctx *eventfd)
5502 {
5503 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
5504 }
5505
5506 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5507 struct eventfd_ctx *eventfd)
5508 {
5509 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
5510 }
5511
5512 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
5513 struct eventfd_ctx *eventfd, const char *args)
5514 {
5515 struct mem_cgroup_eventfd_list *event;
5516
5517 event = kmalloc(sizeof(*event), GFP_KERNEL);
5518 if (!event)
5519 return -ENOMEM;
5520
5521 spin_lock(&memcg_oom_lock);
5522
5523 event->eventfd = eventfd;
5524 list_add(&event->list, &memcg->oom_notify);
5525
5526 /* already in OOM ? */
5527 if (atomic_read(&memcg->under_oom))
5528 eventfd_signal(eventfd, 1);
5529 spin_unlock(&memcg_oom_lock);
5530
5531 return 0;
5532 }
5533
5534 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
5535 struct eventfd_ctx *eventfd)
5536 {
5537 struct mem_cgroup_eventfd_list *ev, *tmp;
5538
5539 spin_lock(&memcg_oom_lock);
5540
5541 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5542 if (ev->eventfd == eventfd) {
5543 list_del(&ev->list);
5544 kfree(ev);
5545 }
5546 }
5547
5548 spin_unlock(&memcg_oom_lock);
5549 }
5550
5551 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5552 {
5553 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5554
5555 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5556 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5557 return 0;
5558 }
5559
5560 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5561 struct cftype *cft, u64 val)
5562 {
5563 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5564
5565 /* cannot set to root cgroup and only 0 and 1 are allowed */
5566 if (!css->parent || !((val == 0) || (val == 1)))
5567 return -EINVAL;
5568
5569 memcg->oom_kill_disable = val;
5570 if (!val)
5571 memcg_oom_recover(memcg);
5572
5573 return 0;
5574 }
5575
5576 #ifdef CONFIG_MEMCG_KMEM
5577 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5578 {
5579 int ret;
5580
5581 memcg->kmemcg_id = -1;
5582 ret = memcg_propagate_kmem(memcg);
5583 if (ret)
5584 return ret;
5585
5586 return mem_cgroup_sockets_init(memcg, ss);
5587 }
5588
5589 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5590 {
5591 mem_cgroup_sockets_destroy(memcg);
5592 }
5593
5594 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5595 {
5596 if (!memcg_kmem_is_active(memcg))
5597 return;
5598
5599 /*
5600 * kmem charges can outlive the cgroup. In the case of slab
5601 * pages, for instance, a page contain objects from various
5602 * processes. As we prevent from taking a reference for every
5603 * such allocation we have to be careful when doing uncharge
5604 * (see memcg_uncharge_kmem) and here during offlining.
5605 *
5606 * The idea is that that only the _last_ uncharge which sees
5607 * the dead memcg will drop the last reference. An additional
5608 * reference is taken here before the group is marked dead
5609 * which is then paired with css_put during uncharge resp. here.
5610 *
5611 * Although this might sound strange as this path is called from
5612 * css_offline() when the referencemight have dropped down to 0 and
5613 * shouldn't be incremented anymore (css_tryget_online() would
5614 * fail) we do not have other options because of the kmem
5615 * allocations lifetime.
5616 */
5617 css_get(&memcg->css);
5618
5619 memcg_kmem_mark_dead(memcg);
5620
5621 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5622 return;
5623
5624 if (memcg_kmem_test_and_clear_dead(memcg))
5625 css_put(&memcg->css);
5626 }
5627 #else
5628 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5629 {
5630 return 0;
5631 }
5632
5633 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5634 {
5635 }
5636
5637 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5638 {
5639 }
5640 #endif
5641
5642 /*
5643 * DO NOT USE IN NEW FILES.
5644 *
5645 * "cgroup.event_control" implementation.
5646 *
5647 * This is way over-engineered. It tries to support fully configurable
5648 * events for each user. Such level of flexibility is completely
5649 * unnecessary especially in the light of the planned unified hierarchy.
5650 *
5651 * Please deprecate this and replace with something simpler if at all
5652 * possible.
5653 */
5654
5655 /*
5656 * Unregister event and free resources.
5657 *
5658 * Gets called from workqueue.
5659 */
5660 static void memcg_event_remove(struct work_struct *work)
5661 {
5662 struct mem_cgroup_event *event =
5663 container_of(work, struct mem_cgroup_event, remove);
5664 struct mem_cgroup *memcg = event->memcg;
5665
5666 remove_wait_queue(event->wqh, &event->wait);
5667
5668 event->unregister_event(memcg, event->eventfd);
5669
5670 /* Notify userspace the event is going away. */
5671 eventfd_signal(event->eventfd, 1);
5672
5673 eventfd_ctx_put(event->eventfd);
5674 kfree(event);
5675 css_put(&memcg->css);
5676 }
5677
5678 /*
5679 * Gets called on POLLHUP on eventfd when user closes it.
5680 *
5681 * Called with wqh->lock held and interrupts disabled.
5682 */
5683 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
5684 int sync, void *key)
5685 {
5686 struct mem_cgroup_event *event =
5687 container_of(wait, struct mem_cgroup_event, wait);
5688 struct mem_cgroup *memcg = event->memcg;
5689 unsigned long flags = (unsigned long)key;
5690
5691 if (flags & POLLHUP) {
5692 /*
5693 * If the event has been detached at cgroup removal, we
5694 * can simply return knowing the other side will cleanup
5695 * for us.
5696 *
5697 * We can't race against event freeing since the other
5698 * side will require wqh->lock via remove_wait_queue(),
5699 * which we hold.
5700 */
5701 spin_lock(&memcg->event_list_lock);
5702 if (!list_empty(&event->list)) {
5703 list_del_init(&event->list);
5704 /*
5705 * We are in atomic context, but cgroup_event_remove()
5706 * may sleep, so we have to call it in workqueue.
5707 */
5708 schedule_work(&event->remove);
5709 }
5710 spin_unlock(&memcg->event_list_lock);
5711 }
5712
5713 return 0;
5714 }
5715
5716 static void memcg_event_ptable_queue_proc(struct file *file,
5717 wait_queue_head_t *wqh, poll_table *pt)
5718 {
5719 struct mem_cgroup_event *event =
5720 container_of(pt, struct mem_cgroup_event, pt);
5721
5722 event->wqh = wqh;
5723 add_wait_queue(wqh, &event->wait);
5724 }
5725
5726 /*
5727 * DO NOT USE IN NEW FILES.
5728 *
5729 * Parse input and register new cgroup event handler.
5730 *
5731 * Input must be in format '<event_fd> <control_fd> <args>'.
5732 * Interpretation of args is defined by control file implementation.
5733 */
5734 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5735 char *buf, size_t nbytes, loff_t off)
5736 {
5737 struct cgroup_subsys_state *css = of_css(of);
5738 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5739 struct mem_cgroup_event *event;
5740 struct cgroup_subsys_state *cfile_css;
5741 unsigned int efd, cfd;
5742 struct fd efile;
5743 struct fd cfile;
5744 const char *name;
5745 char *endp;
5746 int ret;
5747
5748 buf = strstrip(buf);
5749
5750 efd = simple_strtoul(buf, &endp, 10);
5751 if (*endp != ' ')
5752 return -EINVAL;
5753 buf = endp + 1;
5754
5755 cfd = simple_strtoul(buf, &endp, 10);
5756 if ((*endp != ' ') && (*endp != '\0'))
5757 return -EINVAL;
5758 buf = endp + 1;
5759
5760 event = kzalloc(sizeof(*event), GFP_KERNEL);
5761 if (!event)
5762 return -ENOMEM;
5763
5764 event->memcg = memcg;
5765 INIT_LIST_HEAD(&event->list);
5766 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5767 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5768 INIT_WORK(&event->remove, memcg_event_remove);
5769
5770 efile = fdget(efd);
5771 if (!efile.file) {
5772 ret = -EBADF;
5773 goto out_kfree;
5774 }
5775
5776 event->eventfd = eventfd_ctx_fileget(efile.file);
5777 if (IS_ERR(event->eventfd)) {
5778 ret = PTR_ERR(event->eventfd);
5779 goto out_put_efile;
5780 }
5781
5782 cfile = fdget(cfd);
5783 if (!cfile.file) {
5784 ret = -EBADF;
5785 goto out_put_eventfd;
5786 }
5787
5788 /* the process need read permission on control file */
5789 /* AV: shouldn't we check that it's been opened for read instead? */
5790 ret = inode_permission(file_inode(cfile.file), MAY_READ);
5791 if (ret < 0)
5792 goto out_put_cfile;
5793
5794 /*
5795 * Determine the event callbacks and set them in @event. This used
5796 * to be done via struct cftype but cgroup core no longer knows
5797 * about these events. The following is crude but the whole thing
5798 * is for compatibility anyway.
5799 *
5800 * DO NOT ADD NEW FILES.
5801 */
5802 name = cfile.file->f_dentry->d_name.name;
5803
5804 if (!strcmp(name, "memory.usage_in_bytes")) {
5805 event->register_event = mem_cgroup_usage_register_event;
5806 event->unregister_event = mem_cgroup_usage_unregister_event;
5807 } else if (!strcmp(name, "memory.oom_control")) {
5808 event->register_event = mem_cgroup_oom_register_event;
5809 event->unregister_event = mem_cgroup_oom_unregister_event;
5810 } else if (!strcmp(name, "memory.pressure_level")) {
5811 event->register_event = vmpressure_register_event;
5812 event->unregister_event = vmpressure_unregister_event;
5813 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5814 event->register_event = memsw_cgroup_usage_register_event;
5815 event->unregister_event = memsw_cgroup_usage_unregister_event;
5816 } else {
5817 ret = -EINVAL;
5818 goto out_put_cfile;
5819 }
5820
5821 /*
5822 * Verify @cfile should belong to @css. Also, remaining events are
5823 * automatically removed on cgroup destruction but the removal is
5824 * asynchronous, so take an extra ref on @css.
5825 */
5826 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
5827 &memory_cgrp_subsys);
5828 ret = -EINVAL;
5829 if (IS_ERR(cfile_css))
5830 goto out_put_cfile;
5831 if (cfile_css != css) {
5832 css_put(cfile_css);
5833 goto out_put_cfile;
5834 }
5835
5836 ret = event->register_event(memcg, event->eventfd, buf);
5837 if (ret)
5838 goto out_put_css;
5839
5840 efile.file->f_op->poll(efile.file, &event->pt);
5841
5842 spin_lock(&memcg->event_list_lock);
5843 list_add(&event->list, &memcg->event_list);
5844 spin_unlock(&memcg->event_list_lock);
5845
5846 fdput(cfile);
5847 fdput(efile);
5848
5849 return nbytes;
5850
5851 out_put_css:
5852 css_put(css);
5853 out_put_cfile:
5854 fdput(cfile);
5855 out_put_eventfd:
5856 eventfd_ctx_put(event->eventfd);
5857 out_put_efile:
5858 fdput(efile);
5859 out_kfree:
5860 kfree(event);
5861
5862 return ret;
5863 }
5864
5865 static struct cftype mem_cgroup_files[] = {
5866 {
5867 .name = "usage_in_bytes",
5868 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5869 .read_u64 = mem_cgroup_read_u64,
5870 },
5871 {
5872 .name = "max_usage_in_bytes",
5873 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5874 .write = mem_cgroup_reset,
5875 .read_u64 = mem_cgroup_read_u64,
5876 },
5877 {
5878 .name = "limit_in_bytes",
5879 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5880 .write = mem_cgroup_write,
5881 .read_u64 = mem_cgroup_read_u64,
5882 },
5883 {
5884 .name = "soft_limit_in_bytes",
5885 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5886 .write = mem_cgroup_write,
5887 .read_u64 = mem_cgroup_read_u64,
5888 },
5889 {
5890 .name = "failcnt",
5891 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5892 .write = mem_cgroup_reset,
5893 .read_u64 = mem_cgroup_read_u64,
5894 },
5895 {
5896 .name = "stat",
5897 .seq_show = memcg_stat_show,
5898 },
5899 {
5900 .name = "force_empty",
5901 .write = mem_cgroup_force_empty_write,
5902 },
5903 {
5904 .name = "use_hierarchy",
5905 .write_u64 = mem_cgroup_hierarchy_write,
5906 .read_u64 = mem_cgroup_hierarchy_read,
5907 },
5908 {
5909 .name = "cgroup.event_control", /* XXX: for compat */
5910 .write = memcg_write_event_control,
5911 .flags = CFTYPE_NO_PREFIX,
5912 .mode = S_IWUGO,
5913 },
5914 {
5915 .name = "swappiness",
5916 .read_u64 = mem_cgroup_swappiness_read,
5917 .write_u64 = mem_cgroup_swappiness_write,
5918 },
5919 {
5920 .name = "move_charge_at_immigrate",
5921 .read_u64 = mem_cgroup_move_charge_read,
5922 .write_u64 = mem_cgroup_move_charge_write,
5923 },
5924 {
5925 .name = "oom_control",
5926 .seq_show = mem_cgroup_oom_control_read,
5927 .write_u64 = mem_cgroup_oom_control_write,
5928 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5929 },
5930 {
5931 .name = "pressure_level",
5932 },
5933 #ifdef CONFIG_NUMA
5934 {
5935 .name = "numa_stat",
5936 .seq_show = memcg_numa_stat_show,
5937 },
5938 #endif
5939 #ifdef CONFIG_MEMCG_KMEM
5940 {
5941 .name = "kmem.limit_in_bytes",
5942 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5943 .write = mem_cgroup_write,
5944 .read_u64 = mem_cgroup_read_u64,
5945 },
5946 {
5947 .name = "kmem.usage_in_bytes",
5948 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5949 .read_u64 = mem_cgroup_read_u64,
5950 },
5951 {
5952 .name = "kmem.failcnt",
5953 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5954 .write = mem_cgroup_reset,
5955 .read_u64 = mem_cgroup_read_u64,
5956 },
5957 {
5958 .name = "kmem.max_usage_in_bytes",
5959 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5960 .write = mem_cgroup_reset,
5961 .read_u64 = mem_cgroup_read_u64,
5962 },
5963 #ifdef CONFIG_SLABINFO
5964 {
5965 .name = "kmem.slabinfo",
5966 .seq_show = mem_cgroup_slabinfo_read,
5967 },
5968 #endif
5969 #endif
5970 { }, /* terminate */
5971 };
5972
5973 #ifdef CONFIG_MEMCG_SWAP
5974 static struct cftype memsw_cgroup_files[] = {
5975 {
5976 .name = "memsw.usage_in_bytes",
5977 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5978 .read_u64 = mem_cgroup_read_u64,
5979 },
5980 {
5981 .name = "memsw.max_usage_in_bytes",
5982 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5983 .write = mem_cgroup_reset,
5984 .read_u64 = mem_cgroup_read_u64,
5985 },
5986 {
5987 .name = "memsw.limit_in_bytes",
5988 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5989 .write = mem_cgroup_write,
5990 .read_u64 = mem_cgroup_read_u64,
5991 },
5992 {
5993 .name = "memsw.failcnt",
5994 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5995 .write = mem_cgroup_reset,
5996 .read_u64 = mem_cgroup_read_u64,
5997 },
5998 { }, /* terminate */
5999 };
6000 #endif
6001 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6002 {
6003 struct mem_cgroup_per_node *pn;
6004 struct mem_cgroup_per_zone *mz;
6005 int zone, tmp = node;
6006 /*
6007 * This routine is called against possible nodes.
6008 * But it's BUG to call kmalloc() against offline node.
6009 *
6010 * TODO: this routine can waste much memory for nodes which will
6011 * never be onlined. It's better to use memory hotplug callback
6012 * function.
6013 */
6014 if (!node_state(node, N_NORMAL_MEMORY))
6015 tmp = -1;
6016 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6017 if (!pn)
6018 return 1;
6019
6020 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6021 mz = &pn->zoneinfo[zone];
6022 lruvec_init(&mz->lruvec);
6023 mz->usage_in_excess = 0;
6024 mz->on_tree = false;
6025 mz->memcg = memcg;
6026 }
6027 memcg->nodeinfo[node] = pn;
6028 return 0;
6029 }
6030
6031 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6032 {
6033 kfree(memcg->nodeinfo[node]);
6034 }
6035
6036 static struct mem_cgroup *mem_cgroup_alloc(void)
6037 {
6038 struct mem_cgroup *memcg;
6039 size_t size;
6040
6041 size = sizeof(struct mem_cgroup);
6042 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6043
6044 memcg = kzalloc(size, GFP_KERNEL);
6045 if (!memcg)
6046 return NULL;
6047
6048 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6049 if (!memcg->stat)
6050 goto out_free;
6051 spin_lock_init(&memcg->pcp_counter_lock);
6052 return memcg;
6053
6054 out_free:
6055 kfree(memcg);
6056 return NULL;
6057 }
6058
6059 /*
6060 * At destroying mem_cgroup, references from swap_cgroup can remain.
6061 * (scanning all at force_empty is too costly...)
6062 *
6063 * Instead of clearing all references at force_empty, we remember
6064 * the number of reference from swap_cgroup and free mem_cgroup when
6065 * it goes down to 0.
6066 *
6067 * Removal of cgroup itself succeeds regardless of refs from swap.
6068 */
6069
6070 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6071 {
6072 int node;
6073
6074 mem_cgroup_remove_from_trees(memcg);
6075
6076 for_each_node(node)
6077 free_mem_cgroup_per_zone_info(memcg, node);
6078
6079 free_percpu(memcg->stat);
6080
6081 /*
6082 * We need to make sure that (at least for now), the jump label
6083 * destruction code runs outside of the cgroup lock. This is because
6084 * get_online_cpus(), which is called from the static_branch update,
6085 * can't be called inside the cgroup_lock. cpusets are the ones
6086 * enforcing this dependency, so if they ever change, we might as well.
6087 *
6088 * schedule_work() will guarantee this happens. Be careful if you need
6089 * to move this code around, and make sure it is outside
6090 * the cgroup_lock.
6091 */
6092 disarm_static_keys(memcg);
6093 kfree(memcg);
6094 }
6095
6096 /*
6097 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6098 */
6099 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6100 {
6101 if (!memcg->res.parent)
6102 return NULL;
6103 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6104 }
6105 EXPORT_SYMBOL(parent_mem_cgroup);
6106
6107 static void __init mem_cgroup_soft_limit_tree_init(void)
6108 {
6109 struct mem_cgroup_tree_per_node *rtpn;
6110 struct mem_cgroup_tree_per_zone *rtpz;
6111 int tmp, node, zone;
6112
6113 for_each_node(node) {
6114 tmp = node;
6115 if (!node_state(node, N_NORMAL_MEMORY))
6116 tmp = -1;
6117 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6118 BUG_ON(!rtpn);
6119
6120 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6121
6122 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6123 rtpz = &rtpn->rb_tree_per_zone[zone];
6124 rtpz->rb_root = RB_ROOT;
6125 spin_lock_init(&rtpz->lock);
6126 }
6127 }
6128 }
6129
6130 static struct cgroup_subsys_state * __ref
6131 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6132 {
6133 struct mem_cgroup *memcg;
6134 long error = -ENOMEM;
6135 int node;
6136
6137 memcg = mem_cgroup_alloc();
6138 if (!memcg)
6139 return ERR_PTR(error);
6140
6141 for_each_node(node)
6142 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6143 goto free_out;
6144
6145 /* root ? */
6146 if (parent_css == NULL) {
6147 root_mem_cgroup = memcg;
6148 res_counter_init(&memcg->res, NULL);
6149 res_counter_init(&memcg->memsw, NULL);
6150 res_counter_init(&memcg->kmem, NULL);
6151 }
6152
6153 memcg->last_scanned_node = MAX_NUMNODES;
6154 INIT_LIST_HEAD(&memcg->oom_notify);
6155 memcg->move_charge_at_immigrate = 0;
6156 mutex_init(&memcg->thresholds_lock);
6157 spin_lock_init(&memcg->move_lock);
6158 vmpressure_init(&memcg->vmpressure);
6159 INIT_LIST_HEAD(&memcg->event_list);
6160 spin_lock_init(&memcg->event_list_lock);
6161
6162 return &memcg->css;
6163
6164 free_out:
6165 __mem_cgroup_free(memcg);
6166 return ERR_PTR(error);
6167 }
6168
6169 static int
6170 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6171 {
6172 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6173 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
6174
6175 if (css->id > MEM_CGROUP_ID_MAX)
6176 return -ENOSPC;
6177
6178 if (!parent)
6179 return 0;
6180
6181 mutex_lock(&memcg_create_mutex);
6182
6183 memcg->use_hierarchy = parent->use_hierarchy;
6184 memcg->oom_kill_disable = parent->oom_kill_disable;
6185 memcg->swappiness = mem_cgroup_swappiness(parent);
6186
6187 if (parent->use_hierarchy) {
6188 res_counter_init(&memcg->res, &parent->res);
6189 res_counter_init(&memcg->memsw, &parent->memsw);
6190 res_counter_init(&memcg->kmem, &parent->kmem);
6191
6192 /*
6193 * No need to take a reference to the parent because cgroup
6194 * core guarantees its existence.
6195 */
6196 } else {
6197 res_counter_init(&memcg->res, &root_mem_cgroup->res);
6198 res_counter_init(&memcg->memsw, &root_mem_cgroup->memsw);
6199 res_counter_init(&memcg->kmem, &root_mem_cgroup->kmem);
6200 /*
6201 * Deeper hierachy with use_hierarchy == false doesn't make
6202 * much sense so let cgroup subsystem know about this
6203 * unfortunate state in our controller.
6204 */
6205 if (parent != root_mem_cgroup)
6206 memory_cgrp_subsys.broken_hierarchy = true;
6207 }
6208 mutex_unlock(&memcg_create_mutex);
6209
6210 return memcg_init_kmem(memcg, &memory_cgrp_subsys);
6211 }
6212
6213 /*
6214 * Announce all parents that a group from their hierarchy is gone.
6215 */
6216 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6217 {
6218 struct mem_cgroup *parent = memcg;
6219
6220 while ((parent = parent_mem_cgroup(parent)))
6221 mem_cgroup_iter_invalidate(parent);
6222
6223 /*
6224 * if the root memcg is not hierarchical we have to check it
6225 * explicitely.
6226 */
6227 if (!root_mem_cgroup->use_hierarchy)
6228 mem_cgroup_iter_invalidate(root_mem_cgroup);
6229 }
6230
6231 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6232 {
6233 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6234 struct mem_cgroup_event *event, *tmp;
6235 struct cgroup_subsys_state *iter;
6236
6237 /*
6238 * Unregister events and notify userspace.
6239 * Notify userspace about cgroup removing only after rmdir of cgroup
6240 * directory to avoid race between userspace and kernelspace.
6241 */
6242 spin_lock(&memcg->event_list_lock);
6243 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6244 list_del_init(&event->list);
6245 schedule_work(&event->remove);
6246 }
6247 spin_unlock(&memcg->event_list_lock);
6248
6249 kmem_cgroup_css_offline(memcg);
6250
6251 mem_cgroup_invalidate_reclaim_iterators(memcg);
6252
6253 /*
6254 * This requires that offlining is serialized. Right now that is
6255 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6256 */
6257 css_for_each_descendant_post(iter, css)
6258 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
6259
6260 memcg_unregister_all_caches(memcg);
6261 vmpressure_cleanup(&memcg->vmpressure);
6262 }
6263
6264 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6265 {
6266 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6267 /*
6268 * XXX: css_offline() would be where we should reparent all
6269 * memory to prepare the cgroup for destruction. However,
6270 * memcg does not do css_tryget_online() and res_counter charging
6271 * under the same RCU lock region, which means that charging
6272 * could race with offlining. Offlining only happens to
6273 * cgroups with no tasks in them but charges can show up
6274 * without any tasks from the swapin path when the target
6275 * memcg is looked up from the swapout record and not from the
6276 * current task as it usually is. A race like this can leak
6277 * charges and put pages with stale cgroup pointers into
6278 * circulation:
6279 *
6280 * #0 #1
6281 * lookup_swap_cgroup_id()
6282 * rcu_read_lock()
6283 * mem_cgroup_lookup()
6284 * css_tryget_online()
6285 * rcu_read_unlock()
6286 * disable css_tryget_online()
6287 * call_rcu()
6288 * offline_css()
6289 * reparent_charges()
6290 * res_counter_charge()
6291 * css_put()
6292 * css_free()
6293 * pc->mem_cgroup = dead memcg
6294 * add page to lru
6295 *
6296 * The bulk of the charges are still moved in offline_css() to
6297 * avoid pinning a lot of pages in case a long-term reference
6298 * like a swapout record is deferring the css_free() to long
6299 * after offlining. But this makes sure we catch any charges
6300 * made after offlining:
6301 */
6302 mem_cgroup_reparent_charges(memcg);
6303
6304 memcg_destroy_kmem(memcg);
6305 __mem_cgroup_free(memcg);
6306 }
6307
6308 /**
6309 * mem_cgroup_css_reset - reset the states of a mem_cgroup
6310 * @css: the target css
6311 *
6312 * Reset the states of the mem_cgroup associated with @css. This is
6313 * invoked when the userland requests disabling on the default hierarchy
6314 * but the memcg is pinned through dependency. The memcg should stop
6315 * applying policies and should revert to the vanilla state as it may be
6316 * made visible again.
6317 *
6318 * The current implementation only resets the essential configurations.
6319 * This needs to be expanded to cover all the visible parts.
6320 */
6321 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
6322 {
6323 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6324
6325 mem_cgroup_resize_limit(memcg, ULLONG_MAX);
6326 mem_cgroup_resize_memsw_limit(memcg, ULLONG_MAX);
6327 memcg_update_kmem_limit(memcg, ULLONG_MAX);
6328 res_counter_set_soft_limit(&memcg->res, ULLONG_MAX);
6329 }
6330
6331 #ifdef CONFIG_MMU
6332 /* Handlers for move charge at task migration. */
6333 static int mem_cgroup_do_precharge(unsigned long count)
6334 {
6335 int ret;
6336
6337 /* Try a single bulk charge without reclaim first */
6338 ret = mem_cgroup_try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
6339 if (!ret) {
6340 mc.precharge += count;
6341 return ret;
6342 }
6343 if (ret == -EINTR) {
6344 __mem_cgroup_cancel_charge(root_mem_cgroup, count);
6345 return ret;
6346 }
6347
6348 /* Try charges one by one with reclaim */
6349 while (count--) {
6350 ret = mem_cgroup_try_charge(mc.to,
6351 GFP_KERNEL & ~__GFP_NORETRY, 1);
6352 /*
6353 * In case of failure, any residual charges against
6354 * mc.to will be dropped by mem_cgroup_clear_mc()
6355 * later on. However, cancel any charges that are
6356 * bypassed to root right away or they'll be lost.
6357 */
6358 if (ret == -EINTR)
6359 __mem_cgroup_cancel_charge(root_mem_cgroup, 1);
6360 if (ret)
6361 return ret;
6362 mc.precharge++;
6363 cond_resched();
6364 }
6365 return 0;
6366 }
6367
6368 /**
6369 * get_mctgt_type - get target type of moving charge
6370 * @vma: the vma the pte to be checked belongs
6371 * @addr: the address corresponding to the pte to be checked
6372 * @ptent: the pte to be checked
6373 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6374 *
6375 * Returns
6376 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6377 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6378 * move charge. if @target is not NULL, the page is stored in target->page
6379 * with extra refcnt got(Callers should handle it).
6380 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6381 * target for charge migration. if @target is not NULL, the entry is stored
6382 * in target->ent.
6383 *
6384 * Called with pte lock held.
6385 */
6386 union mc_target {
6387 struct page *page;
6388 swp_entry_t ent;
6389 };
6390
6391 enum mc_target_type {
6392 MC_TARGET_NONE = 0,
6393 MC_TARGET_PAGE,
6394 MC_TARGET_SWAP,
6395 };
6396
6397 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6398 unsigned long addr, pte_t ptent)
6399 {
6400 struct page *page = vm_normal_page(vma, addr, ptent);
6401
6402 if (!page || !page_mapped(page))
6403 return NULL;
6404 if (PageAnon(page)) {
6405 /* we don't move shared anon */
6406 if (!move_anon())
6407 return NULL;
6408 } else if (!move_file())
6409 /* we ignore mapcount for file pages */
6410 return NULL;
6411 if (!get_page_unless_zero(page))
6412 return NULL;
6413
6414 return page;
6415 }
6416
6417 #ifdef CONFIG_SWAP
6418 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6419 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6420 {
6421 struct page *page = NULL;
6422 swp_entry_t ent = pte_to_swp_entry(ptent);
6423
6424 if (!move_anon() || non_swap_entry(ent))
6425 return NULL;
6426 /*
6427 * Because lookup_swap_cache() updates some statistics counter,
6428 * we call find_get_page() with swapper_space directly.
6429 */
6430 page = find_get_page(swap_address_space(ent), ent.val);
6431 if (do_swap_account)
6432 entry->val = ent.val;
6433
6434 return page;
6435 }
6436 #else
6437 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6438 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6439 {
6440 return NULL;
6441 }
6442 #endif
6443
6444 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6445 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6446 {
6447 struct page *page = NULL;
6448 struct address_space *mapping;
6449 pgoff_t pgoff;
6450
6451 if (!vma->vm_file) /* anonymous vma */
6452 return NULL;
6453 if (!move_file())
6454 return NULL;
6455
6456 mapping = vma->vm_file->f_mapping;
6457 if (pte_none(ptent))
6458 pgoff = linear_page_index(vma, addr);
6459 else /* pte_file(ptent) is true */
6460 pgoff = pte_to_pgoff(ptent);
6461
6462 /* page is moved even if it's not RSS of this task(page-faulted). */
6463 #ifdef CONFIG_SWAP
6464 /* shmem/tmpfs may report page out on swap: account for that too. */
6465 if (shmem_mapping(mapping)) {
6466 page = find_get_entry(mapping, pgoff);
6467 if (radix_tree_exceptional_entry(page)) {
6468 swp_entry_t swp = radix_to_swp_entry(page);
6469 if (do_swap_account)
6470 *entry = swp;
6471 page = find_get_page(swap_address_space(swp), swp.val);
6472 }
6473 } else
6474 page = find_get_page(mapping, pgoff);
6475 #else
6476 page = find_get_page(mapping, pgoff);
6477 #endif
6478 return page;
6479 }
6480
6481 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6482 unsigned long addr, pte_t ptent, union mc_target *target)
6483 {
6484 struct page *page = NULL;
6485 struct page_cgroup *pc;
6486 enum mc_target_type ret = MC_TARGET_NONE;
6487 swp_entry_t ent = { .val = 0 };
6488
6489 if (pte_present(ptent))
6490 page = mc_handle_present_pte(vma, addr, ptent);
6491 else if (is_swap_pte(ptent))
6492 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6493 else if (pte_none(ptent) || pte_file(ptent))
6494 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6495
6496 if (!page && !ent.val)
6497 return ret;
6498 if (page) {
6499 pc = lookup_page_cgroup(page);
6500 /*
6501 * Do only loose check w/o page_cgroup lock.
6502 * mem_cgroup_move_account() checks the pc is valid or not under
6503 * the lock.
6504 */
6505 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6506 ret = MC_TARGET_PAGE;
6507 if (target)
6508 target->page = page;
6509 }
6510 if (!ret || !target)
6511 put_page(page);
6512 }
6513 /* There is a swap entry and a page doesn't exist or isn't charged */
6514 if (ent.val && !ret &&
6515 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6516 ret = MC_TARGET_SWAP;
6517 if (target)
6518 target->ent = ent;
6519 }
6520 return ret;
6521 }
6522
6523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6524 /*
6525 * We don't consider swapping or file mapped pages because THP does not
6526 * support them for now.
6527 * Caller should make sure that pmd_trans_huge(pmd) is true.
6528 */
6529 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6530 unsigned long addr, pmd_t pmd, union mc_target *target)
6531 {
6532 struct page *page = NULL;
6533 struct page_cgroup *pc;
6534 enum mc_target_type ret = MC_TARGET_NONE;
6535
6536 page = pmd_page(pmd);
6537 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6538 if (!move_anon())
6539 return ret;
6540 pc = lookup_page_cgroup(page);
6541 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6542 ret = MC_TARGET_PAGE;
6543 if (target) {
6544 get_page(page);
6545 target->page = page;
6546 }
6547 }
6548 return ret;
6549 }
6550 #else
6551 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6552 unsigned long addr, pmd_t pmd, union mc_target *target)
6553 {
6554 return MC_TARGET_NONE;
6555 }
6556 #endif
6557
6558 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6559 unsigned long addr, unsigned long end,
6560 struct mm_walk *walk)
6561 {
6562 struct vm_area_struct *vma = walk->private;
6563 pte_t *pte;
6564 spinlock_t *ptl;
6565
6566 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6567 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6568 mc.precharge += HPAGE_PMD_NR;
6569 spin_unlock(ptl);
6570 return 0;
6571 }
6572
6573 if (pmd_trans_unstable(pmd))
6574 return 0;
6575 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6576 for (; addr != end; pte++, addr += PAGE_SIZE)
6577 if (get_mctgt_type(vma, addr, *pte, NULL))
6578 mc.precharge++; /* increment precharge temporarily */
6579 pte_unmap_unlock(pte - 1, ptl);
6580 cond_resched();
6581
6582 return 0;
6583 }
6584
6585 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6586 {
6587 unsigned long precharge;
6588 struct vm_area_struct *vma;
6589
6590 down_read(&mm->mmap_sem);
6591 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6592 struct mm_walk mem_cgroup_count_precharge_walk = {
6593 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6594 .mm = mm,
6595 .private = vma,
6596 };
6597 if (is_vm_hugetlb_page(vma))
6598 continue;
6599 walk_page_range(vma->vm_start, vma->vm_end,
6600 &mem_cgroup_count_precharge_walk);
6601 }
6602 up_read(&mm->mmap_sem);
6603
6604 precharge = mc.precharge;
6605 mc.precharge = 0;
6606
6607 return precharge;
6608 }
6609
6610 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6611 {
6612 unsigned long precharge = mem_cgroup_count_precharge(mm);
6613
6614 VM_BUG_ON(mc.moving_task);
6615 mc.moving_task = current;
6616 return mem_cgroup_do_precharge(precharge);
6617 }
6618
6619 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6620 static void __mem_cgroup_clear_mc(void)
6621 {
6622 struct mem_cgroup *from = mc.from;
6623 struct mem_cgroup *to = mc.to;
6624 int i;
6625
6626 /* we must uncharge all the leftover precharges from mc.to */
6627 if (mc.precharge) {
6628 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6629 mc.precharge = 0;
6630 }
6631 /*
6632 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6633 * we must uncharge here.
6634 */
6635 if (mc.moved_charge) {
6636 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6637 mc.moved_charge = 0;
6638 }
6639 /* we must fixup refcnts and charges */
6640 if (mc.moved_swap) {
6641 /* uncharge swap account from the old cgroup */
6642 res_counter_uncharge(&mc.from->memsw,
6643 PAGE_SIZE * mc.moved_swap);
6644
6645 for (i = 0; i < mc.moved_swap; i++)
6646 css_put(&mc.from->css);
6647
6648 /*
6649 * we charged both to->res and to->memsw, so we should
6650 * uncharge to->res.
6651 */
6652 res_counter_uncharge(&mc.to->res,
6653 PAGE_SIZE * mc.moved_swap);
6654 /* we've already done css_get(mc.to) */
6655 mc.moved_swap = 0;
6656 }
6657 memcg_oom_recover(from);
6658 memcg_oom_recover(to);
6659 wake_up_all(&mc.waitq);
6660 }
6661
6662 static void mem_cgroup_clear_mc(void)
6663 {
6664 struct mem_cgroup *from = mc.from;
6665
6666 /*
6667 * we must clear moving_task before waking up waiters at the end of
6668 * task migration.
6669 */
6670 mc.moving_task = NULL;
6671 __mem_cgroup_clear_mc();
6672 spin_lock(&mc.lock);
6673 mc.from = NULL;
6674 mc.to = NULL;
6675 spin_unlock(&mc.lock);
6676 mem_cgroup_end_move(from);
6677 }
6678
6679 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6680 struct cgroup_taskset *tset)
6681 {
6682 struct task_struct *p = cgroup_taskset_first(tset);
6683 int ret = 0;
6684 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6685 unsigned long move_charge_at_immigrate;
6686
6687 /*
6688 * We are now commited to this value whatever it is. Changes in this
6689 * tunable will only affect upcoming migrations, not the current one.
6690 * So we need to save it, and keep it going.
6691 */
6692 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6693 if (move_charge_at_immigrate) {
6694 struct mm_struct *mm;
6695 struct mem_cgroup *from = mem_cgroup_from_task(p);
6696
6697 VM_BUG_ON(from == memcg);
6698
6699 mm = get_task_mm(p);
6700 if (!mm)
6701 return 0;
6702 /* We move charges only when we move a owner of the mm */
6703 if (mm->owner == p) {
6704 VM_BUG_ON(mc.from);
6705 VM_BUG_ON(mc.to);
6706 VM_BUG_ON(mc.precharge);
6707 VM_BUG_ON(mc.moved_charge);
6708 VM_BUG_ON(mc.moved_swap);
6709 mem_cgroup_start_move(from);
6710 spin_lock(&mc.lock);
6711 mc.from = from;
6712 mc.to = memcg;
6713 mc.immigrate_flags = move_charge_at_immigrate;
6714 spin_unlock(&mc.lock);
6715 /* We set mc.moving_task later */
6716
6717 ret = mem_cgroup_precharge_mc(mm);
6718 if (ret)
6719 mem_cgroup_clear_mc();
6720 }
6721 mmput(mm);
6722 }
6723 return ret;
6724 }
6725
6726 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6727 struct cgroup_taskset *tset)
6728 {
6729 mem_cgroup_clear_mc();
6730 }
6731
6732 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6733 unsigned long addr, unsigned long end,
6734 struct mm_walk *walk)
6735 {
6736 int ret = 0;
6737 struct vm_area_struct *vma = walk->private;
6738 pte_t *pte;
6739 spinlock_t *ptl;
6740 enum mc_target_type target_type;
6741 union mc_target target;
6742 struct page *page;
6743 struct page_cgroup *pc;
6744
6745 /*
6746 * We don't take compound_lock() here but no race with splitting thp
6747 * happens because:
6748 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6749 * under splitting, which means there's no concurrent thp split,
6750 * - if another thread runs into split_huge_page() just after we
6751 * entered this if-block, the thread must wait for page table lock
6752 * to be unlocked in __split_huge_page_splitting(), where the main
6753 * part of thp split is not executed yet.
6754 */
6755 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6756 if (mc.precharge < HPAGE_PMD_NR) {
6757 spin_unlock(ptl);
6758 return 0;
6759 }
6760 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6761 if (target_type == MC_TARGET_PAGE) {
6762 page = target.page;
6763 if (!isolate_lru_page(page)) {
6764 pc = lookup_page_cgroup(page);
6765 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6766 pc, mc.from, mc.to)) {
6767 mc.precharge -= HPAGE_PMD_NR;
6768 mc.moved_charge += HPAGE_PMD_NR;
6769 }
6770 putback_lru_page(page);
6771 }
6772 put_page(page);
6773 }
6774 spin_unlock(ptl);
6775 return 0;
6776 }
6777
6778 if (pmd_trans_unstable(pmd))
6779 return 0;
6780 retry:
6781 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6782 for (; addr != end; addr += PAGE_SIZE) {
6783 pte_t ptent = *(pte++);
6784 swp_entry_t ent;
6785
6786 if (!mc.precharge)
6787 break;
6788
6789 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6790 case MC_TARGET_PAGE:
6791 page = target.page;
6792 if (isolate_lru_page(page))
6793 goto put;
6794 pc = lookup_page_cgroup(page);
6795 if (!mem_cgroup_move_account(page, 1, pc,
6796 mc.from, mc.to)) {
6797 mc.precharge--;
6798 /* we uncharge from mc.from later. */
6799 mc.moved_charge++;
6800 }
6801 putback_lru_page(page);
6802 put: /* get_mctgt_type() gets the page */
6803 put_page(page);
6804 break;
6805 case MC_TARGET_SWAP:
6806 ent = target.ent;
6807 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6808 mc.precharge--;
6809 /* we fixup refcnts and charges later. */
6810 mc.moved_swap++;
6811 }
6812 break;
6813 default:
6814 break;
6815 }
6816 }
6817 pte_unmap_unlock(pte - 1, ptl);
6818 cond_resched();
6819
6820 if (addr != end) {
6821 /*
6822 * We have consumed all precharges we got in can_attach().
6823 * We try charge one by one, but don't do any additional
6824 * charges to mc.to if we have failed in charge once in attach()
6825 * phase.
6826 */
6827 ret = mem_cgroup_do_precharge(1);
6828 if (!ret)
6829 goto retry;
6830 }
6831
6832 return ret;
6833 }
6834
6835 static void mem_cgroup_move_charge(struct mm_struct *mm)
6836 {
6837 struct vm_area_struct *vma;
6838
6839 lru_add_drain_all();
6840 retry:
6841 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6842 /*
6843 * Someone who are holding the mmap_sem might be waiting in
6844 * waitq. So we cancel all extra charges, wake up all waiters,
6845 * and retry. Because we cancel precharges, we might not be able
6846 * to move enough charges, but moving charge is a best-effort
6847 * feature anyway, so it wouldn't be a big problem.
6848 */
6849 __mem_cgroup_clear_mc();
6850 cond_resched();
6851 goto retry;
6852 }
6853 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6854 int ret;
6855 struct mm_walk mem_cgroup_move_charge_walk = {
6856 .pmd_entry = mem_cgroup_move_charge_pte_range,
6857 .mm = mm,
6858 .private = vma,
6859 };
6860 if (is_vm_hugetlb_page(vma))
6861 continue;
6862 ret = walk_page_range(vma->vm_start, vma->vm_end,
6863 &mem_cgroup_move_charge_walk);
6864 if (ret)
6865 /*
6866 * means we have consumed all precharges and failed in
6867 * doing additional charge. Just abandon here.
6868 */
6869 break;
6870 }
6871 up_read(&mm->mmap_sem);
6872 }
6873
6874 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6875 struct cgroup_taskset *tset)
6876 {
6877 struct task_struct *p = cgroup_taskset_first(tset);
6878 struct mm_struct *mm = get_task_mm(p);
6879
6880 if (mm) {
6881 if (mc.to)
6882 mem_cgroup_move_charge(mm);
6883 mmput(mm);
6884 }
6885 if (mc.to)
6886 mem_cgroup_clear_mc();
6887 }
6888 #else /* !CONFIG_MMU */
6889 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6890 struct cgroup_taskset *tset)
6891 {
6892 return 0;
6893 }
6894 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6895 struct cgroup_taskset *tset)
6896 {
6897 }
6898 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6899 struct cgroup_taskset *tset)
6900 {
6901 }
6902 #endif
6903
6904 /*
6905 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6906 * to verify whether we're attached to the default hierarchy on each mount
6907 * attempt.
6908 */
6909 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6910 {
6911 /*
6912 * use_hierarchy is forced on the default hierarchy. cgroup core
6913 * guarantees that @root doesn't have any children, so turning it
6914 * on for the root memcg is enough.
6915 */
6916 if (cgroup_on_dfl(root_css->cgroup))
6917 mem_cgroup_from_css(root_css)->use_hierarchy = true;
6918 }
6919
6920 struct cgroup_subsys memory_cgrp_subsys = {
6921 .css_alloc = mem_cgroup_css_alloc,
6922 .css_online = mem_cgroup_css_online,
6923 .css_offline = mem_cgroup_css_offline,
6924 .css_free = mem_cgroup_css_free,
6925 .css_reset = mem_cgroup_css_reset,
6926 .can_attach = mem_cgroup_can_attach,
6927 .cancel_attach = mem_cgroup_cancel_attach,
6928 .attach = mem_cgroup_move_task,
6929 .bind = mem_cgroup_bind,
6930 .legacy_cftypes = mem_cgroup_files,
6931 .early_init = 0,
6932 };
6933
6934 #ifdef CONFIG_MEMCG_SWAP
6935 static int __init enable_swap_account(char *s)
6936 {
6937 if (!strcmp(s, "1"))
6938 really_do_swap_account = 1;
6939 else if (!strcmp(s, "0"))
6940 really_do_swap_account = 0;
6941 return 1;
6942 }
6943 __setup("swapaccount=", enable_swap_account);
6944
6945 static void __init memsw_file_init(void)
6946 {
6947 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6948 memsw_cgroup_files));
6949 }
6950
6951 static void __init enable_swap_cgroup(void)
6952 {
6953 if (!mem_cgroup_disabled() && really_do_swap_account) {
6954 do_swap_account = 1;
6955 memsw_file_init();
6956 }
6957 }
6958
6959 #else
6960 static void __init enable_swap_cgroup(void)
6961 {
6962 }
6963 #endif
6964
6965 /*
6966 * subsys_initcall() for memory controller.
6967 *
6968 * Some parts like hotcpu_notifier() have to be initialized from this context
6969 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6970 * everything that doesn't depend on a specific mem_cgroup structure should
6971 * be initialized from here.
6972 */
6973 static int __init mem_cgroup_init(void)
6974 {
6975 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6976 enable_swap_cgroup();
6977 mem_cgroup_soft_limit_tree_init();
6978 memcg_stock_init();
6979 return 0;
6980 }
6981 subsys_initcall(mem_cgroup_init);