]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memcontrol.c
Merge tag 'arm-drivers-5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[mirror_ubuntu-jammy-kernel.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/file.h>
62 #include <linux/tracehook.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include "slab.h"
69
70 #include <linux/uaccess.h>
71
72 #include <trace/events/vmscan.h>
73
74 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75 EXPORT_SYMBOL(memory_cgrp_subsys);
76
77 struct mem_cgroup *root_mem_cgroup __read_mostly;
78
79 /* Active memory cgroup to use from an interrupt context */
80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
82
83 /* Socket memory accounting disabled? */
84 static bool cgroup_memory_nosocket __ro_after_init;
85
86 /* Kernel memory accounting disabled? */
87 bool cgroup_memory_nokmem __ro_after_init;
88
89 /* Whether the swap controller is active */
90 #ifdef CONFIG_MEMCG_SWAP
91 bool cgroup_memory_noswap __ro_after_init;
92 #else
93 #define cgroup_memory_noswap 1
94 #endif
95
96 #ifdef CONFIG_CGROUP_WRITEBACK
97 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98 #endif
99
100 /* Whether legacy memory+swap accounting is active */
101 static bool do_memsw_account(void)
102 {
103 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
104 }
105
106 #define THRESHOLDS_EVENTS_TARGET 128
107 #define SOFTLIMIT_EVENTS_TARGET 1024
108
109 /*
110 * Cgroups above their limits are maintained in a RB-Tree, independent of
111 * their hierarchy representation
112 */
113
114 struct mem_cgroup_tree_per_node {
115 struct rb_root rb_root;
116 struct rb_node *rb_rightmost;
117 spinlock_t lock;
118 };
119
120 struct mem_cgroup_tree {
121 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
122 };
123
124 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
125
126 /* for OOM */
127 struct mem_cgroup_eventfd_list {
128 struct list_head list;
129 struct eventfd_ctx *eventfd;
130 };
131
132 /*
133 * cgroup_event represents events which userspace want to receive.
134 */
135 struct mem_cgroup_event {
136 /*
137 * memcg which the event belongs to.
138 */
139 struct mem_cgroup *memcg;
140 /*
141 * eventfd to signal userspace about the event.
142 */
143 struct eventfd_ctx *eventfd;
144 /*
145 * Each of these stored in a list by the cgroup.
146 */
147 struct list_head list;
148 /*
149 * register_event() callback will be used to add new userspace
150 * waiter for changes related to this event. Use eventfd_signal()
151 * on eventfd to send notification to userspace.
152 */
153 int (*register_event)(struct mem_cgroup *memcg,
154 struct eventfd_ctx *eventfd, const char *args);
155 /*
156 * unregister_event() callback will be called when userspace closes
157 * the eventfd or on cgroup removing. This callback must be set,
158 * if you want provide notification functionality.
159 */
160 void (*unregister_event)(struct mem_cgroup *memcg,
161 struct eventfd_ctx *eventfd);
162 /*
163 * All fields below needed to unregister event when
164 * userspace closes eventfd.
165 */
166 poll_table pt;
167 wait_queue_head_t *wqh;
168 wait_queue_entry_t wait;
169 struct work_struct remove;
170 };
171
172 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
173 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
174
175 /* Stuffs for move charges at task migration. */
176 /*
177 * Types of charges to be moved.
178 */
179 #define MOVE_ANON 0x1U
180 #define MOVE_FILE 0x2U
181 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
182
183 /* "mc" and its members are protected by cgroup_mutex */
184 static struct move_charge_struct {
185 spinlock_t lock; /* for from, to */
186 struct mm_struct *mm;
187 struct mem_cgroup *from;
188 struct mem_cgroup *to;
189 unsigned long flags;
190 unsigned long precharge;
191 unsigned long moved_charge;
192 unsigned long moved_swap;
193 struct task_struct *moving_task; /* a task moving charges */
194 wait_queue_head_t waitq; /* a waitq for other context */
195 } mc = {
196 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
197 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
198 };
199
200 /*
201 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
202 * limit reclaim to prevent infinite loops, if they ever occur.
203 */
204 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
205 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
206
207 /* for encoding cft->private value on file */
208 enum res_type {
209 _MEM,
210 _MEMSWAP,
211 _OOM_TYPE,
212 _KMEM,
213 _TCP,
214 };
215
216 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
217 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
218 #define MEMFILE_ATTR(val) ((val) & 0xffff)
219 /* Used for OOM notifier */
220 #define OOM_CONTROL (0)
221
222 /*
223 * Iteration constructs for visiting all cgroups (under a tree). If
224 * loops are exited prematurely (break), mem_cgroup_iter_break() must
225 * be used for reference counting.
226 */
227 #define for_each_mem_cgroup_tree(iter, root) \
228 for (iter = mem_cgroup_iter(root, NULL, NULL); \
229 iter != NULL; \
230 iter = mem_cgroup_iter(root, iter, NULL))
231
232 #define for_each_mem_cgroup(iter) \
233 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
234 iter != NULL; \
235 iter = mem_cgroup_iter(NULL, iter, NULL))
236
237 static inline bool should_force_charge(void)
238 {
239 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
240 (current->flags & PF_EXITING);
241 }
242
243 /* Some nice accessors for the vmpressure. */
244 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
245 {
246 if (!memcg)
247 memcg = root_mem_cgroup;
248 return &memcg->vmpressure;
249 }
250
251 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
252 {
253 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
254 }
255
256 #ifdef CONFIG_MEMCG_KMEM
257 extern spinlock_t css_set_lock;
258
259 bool mem_cgroup_kmem_disabled(void)
260 {
261 return cgroup_memory_nokmem;
262 }
263
264 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
265 unsigned int nr_pages);
266
267 static void obj_cgroup_release(struct percpu_ref *ref)
268 {
269 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
270 unsigned int nr_bytes;
271 unsigned int nr_pages;
272 unsigned long flags;
273
274 /*
275 * At this point all allocated objects are freed, and
276 * objcg->nr_charged_bytes can't have an arbitrary byte value.
277 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
278 *
279 * The following sequence can lead to it:
280 * 1) CPU0: objcg == stock->cached_objcg
281 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
282 * PAGE_SIZE bytes are charged
283 * 3) CPU1: a process from another memcg is allocating something,
284 * the stock if flushed,
285 * objcg->nr_charged_bytes = PAGE_SIZE - 92
286 * 5) CPU0: we do release this object,
287 * 92 bytes are added to stock->nr_bytes
288 * 6) CPU0: stock is flushed,
289 * 92 bytes are added to objcg->nr_charged_bytes
290 *
291 * In the result, nr_charged_bytes == PAGE_SIZE.
292 * This page will be uncharged in obj_cgroup_release().
293 */
294 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
295 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
296 nr_pages = nr_bytes >> PAGE_SHIFT;
297
298 if (nr_pages)
299 obj_cgroup_uncharge_pages(objcg, nr_pages);
300
301 spin_lock_irqsave(&css_set_lock, flags);
302 list_del(&objcg->list);
303 spin_unlock_irqrestore(&css_set_lock, flags);
304
305 percpu_ref_exit(ref);
306 kfree_rcu(objcg, rcu);
307 }
308
309 static struct obj_cgroup *obj_cgroup_alloc(void)
310 {
311 struct obj_cgroup *objcg;
312 int ret;
313
314 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
315 if (!objcg)
316 return NULL;
317
318 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
319 GFP_KERNEL);
320 if (ret) {
321 kfree(objcg);
322 return NULL;
323 }
324 INIT_LIST_HEAD(&objcg->list);
325 return objcg;
326 }
327
328 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
329 struct mem_cgroup *parent)
330 {
331 struct obj_cgroup *objcg, *iter;
332
333 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
334
335 spin_lock_irq(&css_set_lock);
336
337 /* 1) Ready to reparent active objcg. */
338 list_add(&objcg->list, &memcg->objcg_list);
339 /* 2) Reparent active objcg and already reparented objcgs to parent. */
340 list_for_each_entry(iter, &memcg->objcg_list, list)
341 WRITE_ONCE(iter->memcg, parent);
342 /* 3) Move already reparented objcgs to the parent's list */
343 list_splice(&memcg->objcg_list, &parent->objcg_list);
344
345 spin_unlock_irq(&css_set_lock);
346
347 percpu_ref_kill(&objcg->refcnt);
348 }
349
350 /*
351 * This will be used as a shrinker list's index.
352 * The main reason for not using cgroup id for this:
353 * this works better in sparse environments, where we have a lot of memcgs,
354 * but only a few kmem-limited. Or also, if we have, for instance, 200
355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
356 * 200 entry array for that.
357 *
358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
359 * will double each time we have to increase it.
360 */
361 static DEFINE_IDA(memcg_cache_ida);
362 int memcg_nr_cache_ids;
363
364 /* Protects memcg_nr_cache_ids */
365 static DECLARE_RWSEM(memcg_cache_ids_sem);
366
367 void memcg_get_cache_ids(void)
368 {
369 down_read(&memcg_cache_ids_sem);
370 }
371
372 void memcg_put_cache_ids(void)
373 {
374 up_read(&memcg_cache_ids_sem);
375 }
376
377 /*
378 * MIN_SIZE is different than 1, because we would like to avoid going through
379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
380 * cgroups is a reasonable guess. In the future, it could be a parameter or
381 * tunable, but that is strictly not necessary.
382 *
383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384 * this constant directly from cgroup, but it is understandable that this is
385 * better kept as an internal representation in cgroup.c. In any case, the
386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
387 * increase ours as well if it increases.
388 */
389 #define MEMCG_CACHES_MIN_SIZE 4
390 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391
392 /*
393 * A lot of the calls to the cache allocation functions are expected to be
394 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
395 * conditional to this static branch, we'll have to allow modules that does
396 * kmem_cache_alloc and the such to see this symbol as well
397 */
398 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
399 EXPORT_SYMBOL(memcg_kmem_enabled_key);
400 #endif
401
402 /**
403 * mem_cgroup_css_from_page - css of the memcg associated with a page
404 * @page: page of interest
405 *
406 * If memcg is bound to the default hierarchy, css of the memcg associated
407 * with @page is returned. The returned css remains associated with @page
408 * until it is released.
409 *
410 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
411 * is returned.
412 */
413 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
414 {
415 struct mem_cgroup *memcg;
416
417 memcg = page_memcg(page);
418
419 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
420 memcg = root_mem_cgroup;
421
422 return &memcg->css;
423 }
424
425 /**
426 * page_cgroup_ino - return inode number of the memcg a page is charged to
427 * @page: the page
428 *
429 * Look up the closest online ancestor of the memory cgroup @page is charged to
430 * and return its inode number or 0 if @page is not charged to any cgroup. It
431 * is safe to call this function without holding a reference to @page.
432 *
433 * Note, this function is inherently racy, because there is nothing to prevent
434 * the cgroup inode from getting torn down and potentially reallocated a moment
435 * after page_cgroup_ino() returns, so it only should be used by callers that
436 * do not care (such as procfs interfaces).
437 */
438 ino_t page_cgroup_ino(struct page *page)
439 {
440 struct mem_cgroup *memcg;
441 unsigned long ino = 0;
442
443 rcu_read_lock();
444 memcg = page_memcg_check(page);
445
446 while (memcg && !(memcg->css.flags & CSS_ONLINE))
447 memcg = parent_mem_cgroup(memcg);
448 if (memcg)
449 ino = cgroup_ino(memcg->css.cgroup);
450 rcu_read_unlock();
451 return ino;
452 }
453
454 static struct mem_cgroup_per_node *
455 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
456 {
457 int nid = page_to_nid(page);
458
459 return memcg->nodeinfo[nid];
460 }
461
462 static struct mem_cgroup_tree_per_node *
463 soft_limit_tree_node(int nid)
464 {
465 return soft_limit_tree.rb_tree_per_node[nid];
466 }
467
468 static struct mem_cgroup_tree_per_node *
469 soft_limit_tree_from_page(struct page *page)
470 {
471 int nid = page_to_nid(page);
472
473 return soft_limit_tree.rb_tree_per_node[nid];
474 }
475
476 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
477 struct mem_cgroup_tree_per_node *mctz,
478 unsigned long new_usage_in_excess)
479 {
480 struct rb_node **p = &mctz->rb_root.rb_node;
481 struct rb_node *parent = NULL;
482 struct mem_cgroup_per_node *mz_node;
483 bool rightmost = true;
484
485 if (mz->on_tree)
486 return;
487
488 mz->usage_in_excess = new_usage_in_excess;
489 if (!mz->usage_in_excess)
490 return;
491 while (*p) {
492 parent = *p;
493 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
494 tree_node);
495 if (mz->usage_in_excess < mz_node->usage_in_excess) {
496 p = &(*p)->rb_left;
497 rightmost = false;
498 } else {
499 p = &(*p)->rb_right;
500 }
501 }
502
503 if (rightmost)
504 mctz->rb_rightmost = &mz->tree_node;
505
506 rb_link_node(&mz->tree_node, parent, p);
507 rb_insert_color(&mz->tree_node, &mctz->rb_root);
508 mz->on_tree = true;
509 }
510
511 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
512 struct mem_cgroup_tree_per_node *mctz)
513 {
514 if (!mz->on_tree)
515 return;
516
517 if (&mz->tree_node == mctz->rb_rightmost)
518 mctz->rb_rightmost = rb_prev(&mz->tree_node);
519
520 rb_erase(&mz->tree_node, &mctz->rb_root);
521 mz->on_tree = false;
522 }
523
524 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
525 struct mem_cgroup_tree_per_node *mctz)
526 {
527 unsigned long flags;
528
529 spin_lock_irqsave(&mctz->lock, flags);
530 __mem_cgroup_remove_exceeded(mz, mctz);
531 spin_unlock_irqrestore(&mctz->lock, flags);
532 }
533
534 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
535 {
536 unsigned long nr_pages = page_counter_read(&memcg->memory);
537 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
538 unsigned long excess = 0;
539
540 if (nr_pages > soft_limit)
541 excess = nr_pages - soft_limit;
542
543 return excess;
544 }
545
546 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
547 {
548 unsigned long excess;
549 struct mem_cgroup_per_node *mz;
550 struct mem_cgroup_tree_per_node *mctz;
551
552 mctz = soft_limit_tree_from_page(page);
553 if (!mctz)
554 return;
555 /*
556 * Necessary to update all ancestors when hierarchy is used.
557 * because their event counter is not touched.
558 */
559 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
560 mz = mem_cgroup_page_nodeinfo(memcg, page);
561 excess = soft_limit_excess(memcg);
562 /*
563 * We have to update the tree if mz is on RB-tree or
564 * mem is over its softlimit.
565 */
566 if (excess || mz->on_tree) {
567 unsigned long flags;
568
569 spin_lock_irqsave(&mctz->lock, flags);
570 /* if on-tree, remove it */
571 if (mz->on_tree)
572 __mem_cgroup_remove_exceeded(mz, mctz);
573 /*
574 * Insert again. mz->usage_in_excess will be updated.
575 * If excess is 0, no tree ops.
576 */
577 __mem_cgroup_insert_exceeded(mz, mctz, excess);
578 spin_unlock_irqrestore(&mctz->lock, flags);
579 }
580 }
581 }
582
583 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
584 {
585 struct mem_cgroup_tree_per_node *mctz;
586 struct mem_cgroup_per_node *mz;
587 int nid;
588
589 for_each_node(nid) {
590 mz = memcg->nodeinfo[nid];
591 mctz = soft_limit_tree_node(nid);
592 if (mctz)
593 mem_cgroup_remove_exceeded(mz, mctz);
594 }
595 }
596
597 static struct mem_cgroup_per_node *
598 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
599 {
600 struct mem_cgroup_per_node *mz;
601
602 retry:
603 mz = NULL;
604 if (!mctz->rb_rightmost)
605 goto done; /* Nothing to reclaim from */
606
607 mz = rb_entry(mctz->rb_rightmost,
608 struct mem_cgroup_per_node, tree_node);
609 /*
610 * Remove the node now but someone else can add it back,
611 * we will to add it back at the end of reclaim to its correct
612 * position in the tree.
613 */
614 __mem_cgroup_remove_exceeded(mz, mctz);
615 if (!soft_limit_excess(mz->memcg) ||
616 !css_tryget(&mz->memcg->css))
617 goto retry;
618 done:
619 return mz;
620 }
621
622 static struct mem_cgroup_per_node *
623 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
624 {
625 struct mem_cgroup_per_node *mz;
626
627 spin_lock_irq(&mctz->lock);
628 mz = __mem_cgroup_largest_soft_limit_node(mctz);
629 spin_unlock_irq(&mctz->lock);
630 return mz;
631 }
632
633 /**
634 * __mod_memcg_state - update cgroup memory statistics
635 * @memcg: the memory cgroup
636 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
637 * @val: delta to add to the counter, can be negative
638 */
639 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
640 {
641 if (mem_cgroup_disabled())
642 return;
643
644 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
645 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
646 }
647
648 /* idx can be of type enum memcg_stat_item or node_stat_item. */
649 static unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
650 {
651 long x = READ_ONCE(memcg->vmstats.state[idx]);
652 #ifdef CONFIG_SMP
653 if (x < 0)
654 x = 0;
655 #endif
656 return x;
657 }
658
659 /* idx can be of type enum memcg_stat_item or node_stat_item. */
660 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
661 {
662 long x = 0;
663 int cpu;
664
665 for_each_possible_cpu(cpu)
666 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
667 #ifdef CONFIG_SMP
668 if (x < 0)
669 x = 0;
670 #endif
671 return x;
672 }
673
674 static struct mem_cgroup_per_node *
675 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
676 {
677 struct mem_cgroup *parent;
678
679 parent = parent_mem_cgroup(pn->memcg);
680 if (!parent)
681 return NULL;
682 return parent->nodeinfo[nid];
683 }
684
685 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
686 int val)
687 {
688 struct mem_cgroup_per_node *pn;
689 struct mem_cgroup *memcg;
690 long x, threshold = MEMCG_CHARGE_BATCH;
691
692 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
693 memcg = pn->memcg;
694
695 /* Update memcg */
696 __mod_memcg_state(memcg, idx, val);
697
698 /* Update lruvec */
699 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
700
701 if (vmstat_item_in_bytes(idx))
702 threshold <<= PAGE_SHIFT;
703
704 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
705 if (unlikely(abs(x) > threshold)) {
706 pg_data_t *pgdat = lruvec_pgdat(lruvec);
707 struct mem_cgroup_per_node *pi;
708
709 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
710 atomic_long_add(x, &pi->lruvec_stat[idx]);
711 x = 0;
712 }
713 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
714 }
715
716 /**
717 * __mod_lruvec_state - update lruvec memory statistics
718 * @lruvec: the lruvec
719 * @idx: the stat item
720 * @val: delta to add to the counter, can be negative
721 *
722 * The lruvec is the intersection of the NUMA node and a cgroup. This
723 * function updates the all three counters that are affected by a
724 * change of state at this level: per-node, per-cgroup, per-lruvec.
725 */
726 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 int val)
728 {
729 /* Update node */
730 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
731
732 /* Update memcg and lruvec */
733 if (!mem_cgroup_disabled())
734 __mod_memcg_lruvec_state(lruvec, idx, val);
735 }
736
737 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
738 int val)
739 {
740 struct page *head = compound_head(page); /* rmap on tail pages */
741 struct mem_cgroup *memcg;
742 pg_data_t *pgdat = page_pgdat(page);
743 struct lruvec *lruvec;
744
745 rcu_read_lock();
746 memcg = page_memcg(head);
747 /* Untracked pages have no memcg, no lruvec. Update only the node */
748 if (!memcg) {
749 rcu_read_unlock();
750 __mod_node_page_state(pgdat, idx, val);
751 return;
752 }
753
754 lruvec = mem_cgroup_lruvec(memcg, pgdat);
755 __mod_lruvec_state(lruvec, idx, val);
756 rcu_read_unlock();
757 }
758 EXPORT_SYMBOL(__mod_lruvec_page_state);
759
760 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
761 {
762 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
763 struct mem_cgroup *memcg;
764 struct lruvec *lruvec;
765
766 rcu_read_lock();
767 memcg = mem_cgroup_from_obj(p);
768
769 /*
770 * Untracked pages have no memcg, no lruvec. Update only the
771 * node. If we reparent the slab objects to the root memcg,
772 * when we free the slab object, we need to update the per-memcg
773 * vmstats to keep it correct for the root memcg.
774 */
775 if (!memcg) {
776 __mod_node_page_state(pgdat, idx, val);
777 } else {
778 lruvec = mem_cgroup_lruvec(memcg, pgdat);
779 __mod_lruvec_state(lruvec, idx, val);
780 }
781 rcu_read_unlock();
782 }
783
784 /*
785 * mod_objcg_mlstate() may be called with irq enabled, so
786 * mod_memcg_lruvec_state() should be used.
787 */
788 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
789 struct pglist_data *pgdat,
790 enum node_stat_item idx, int nr)
791 {
792 struct mem_cgroup *memcg;
793 struct lruvec *lruvec;
794
795 rcu_read_lock();
796 memcg = obj_cgroup_memcg(objcg);
797 lruvec = mem_cgroup_lruvec(memcg, pgdat);
798 mod_memcg_lruvec_state(lruvec, idx, nr);
799 rcu_read_unlock();
800 }
801
802 /**
803 * __count_memcg_events - account VM events in a cgroup
804 * @memcg: the memory cgroup
805 * @idx: the event item
806 * @count: the number of events that occurred
807 */
808 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
809 unsigned long count)
810 {
811 if (mem_cgroup_disabled())
812 return;
813
814 __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
815 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
816 }
817
818 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
819 {
820 return READ_ONCE(memcg->vmstats.events[event]);
821 }
822
823 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
824 {
825 long x = 0;
826 int cpu;
827
828 for_each_possible_cpu(cpu)
829 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
830 return x;
831 }
832
833 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
834 struct page *page,
835 int nr_pages)
836 {
837 /* pagein of a big page is an event. So, ignore page size */
838 if (nr_pages > 0)
839 __count_memcg_events(memcg, PGPGIN, 1);
840 else {
841 __count_memcg_events(memcg, PGPGOUT, 1);
842 nr_pages = -nr_pages; /* for event */
843 }
844
845 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
846 }
847
848 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
849 enum mem_cgroup_events_target target)
850 {
851 unsigned long val, next;
852
853 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
854 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
855 /* from time_after() in jiffies.h */
856 if ((long)(next - val) < 0) {
857 switch (target) {
858 case MEM_CGROUP_TARGET_THRESH:
859 next = val + THRESHOLDS_EVENTS_TARGET;
860 break;
861 case MEM_CGROUP_TARGET_SOFTLIMIT:
862 next = val + SOFTLIMIT_EVENTS_TARGET;
863 break;
864 default:
865 break;
866 }
867 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
868 return true;
869 }
870 return false;
871 }
872
873 /*
874 * Check events in order.
875 *
876 */
877 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
878 {
879 /* threshold event is triggered in finer grain than soft limit */
880 if (unlikely(mem_cgroup_event_ratelimit(memcg,
881 MEM_CGROUP_TARGET_THRESH))) {
882 bool do_softlimit;
883
884 do_softlimit = mem_cgroup_event_ratelimit(memcg,
885 MEM_CGROUP_TARGET_SOFTLIMIT);
886 mem_cgroup_threshold(memcg);
887 if (unlikely(do_softlimit))
888 mem_cgroup_update_tree(memcg, page);
889 }
890 }
891
892 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
893 {
894 /*
895 * mm_update_next_owner() may clear mm->owner to NULL
896 * if it races with swapoff, page migration, etc.
897 * So this can be called with p == NULL.
898 */
899 if (unlikely(!p))
900 return NULL;
901
902 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
903 }
904 EXPORT_SYMBOL(mem_cgroup_from_task);
905
906 static __always_inline struct mem_cgroup *active_memcg(void)
907 {
908 if (in_interrupt())
909 return this_cpu_read(int_active_memcg);
910 else
911 return current->active_memcg;
912 }
913
914 /**
915 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
916 * @mm: mm from which memcg should be extracted. It can be NULL.
917 *
918 * Obtain a reference on mm->memcg and returns it if successful. If mm
919 * is NULL, then the memcg is chosen as follows:
920 * 1) The active memcg, if set.
921 * 2) current->mm->memcg, if available
922 * 3) root memcg
923 * If mem_cgroup is disabled, NULL is returned.
924 */
925 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
926 {
927 struct mem_cgroup *memcg;
928
929 if (mem_cgroup_disabled())
930 return NULL;
931
932 /*
933 * Page cache insertions can happen without an
934 * actual mm context, e.g. during disk probing
935 * on boot, loopback IO, acct() writes etc.
936 *
937 * No need to css_get on root memcg as the reference
938 * counting is disabled on the root level in the
939 * cgroup core. See CSS_NO_REF.
940 */
941 if (unlikely(!mm)) {
942 memcg = active_memcg();
943 if (unlikely(memcg)) {
944 /* remote memcg must hold a ref */
945 css_get(&memcg->css);
946 return memcg;
947 }
948 mm = current->mm;
949 if (unlikely(!mm))
950 return root_mem_cgroup;
951 }
952
953 rcu_read_lock();
954 do {
955 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
956 if (unlikely(!memcg))
957 memcg = root_mem_cgroup;
958 } while (!css_tryget(&memcg->css));
959 rcu_read_unlock();
960 return memcg;
961 }
962 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
963
964 static __always_inline bool memcg_kmem_bypass(void)
965 {
966 /* Allow remote memcg charging from any context. */
967 if (unlikely(active_memcg()))
968 return false;
969
970 /* Memcg to charge can't be determined. */
971 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
972 return true;
973
974 return false;
975 }
976
977 /**
978 * mem_cgroup_iter - iterate over memory cgroup hierarchy
979 * @root: hierarchy root
980 * @prev: previously returned memcg, NULL on first invocation
981 * @reclaim: cookie for shared reclaim walks, NULL for full walks
982 *
983 * Returns references to children of the hierarchy below @root, or
984 * @root itself, or %NULL after a full round-trip.
985 *
986 * Caller must pass the return value in @prev on subsequent
987 * invocations for reference counting, or use mem_cgroup_iter_break()
988 * to cancel a hierarchy walk before the round-trip is complete.
989 *
990 * Reclaimers can specify a node in @reclaim to divide up the memcgs
991 * in the hierarchy among all concurrent reclaimers operating on the
992 * same node.
993 */
994 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
995 struct mem_cgroup *prev,
996 struct mem_cgroup_reclaim_cookie *reclaim)
997 {
998 struct mem_cgroup_reclaim_iter *iter;
999 struct cgroup_subsys_state *css = NULL;
1000 struct mem_cgroup *memcg = NULL;
1001 struct mem_cgroup *pos = NULL;
1002
1003 if (mem_cgroup_disabled())
1004 return NULL;
1005
1006 if (!root)
1007 root = root_mem_cgroup;
1008
1009 if (prev && !reclaim)
1010 pos = prev;
1011
1012 rcu_read_lock();
1013
1014 if (reclaim) {
1015 struct mem_cgroup_per_node *mz;
1016
1017 mz = root->nodeinfo[reclaim->pgdat->node_id];
1018 iter = &mz->iter;
1019
1020 if (prev && reclaim->generation != iter->generation)
1021 goto out_unlock;
1022
1023 while (1) {
1024 pos = READ_ONCE(iter->position);
1025 if (!pos || css_tryget(&pos->css))
1026 break;
1027 /*
1028 * css reference reached zero, so iter->position will
1029 * be cleared by ->css_released. However, we should not
1030 * rely on this happening soon, because ->css_released
1031 * is called from a work queue, and by busy-waiting we
1032 * might block it. So we clear iter->position right
1033 * away.
1034 */
1035 (void)cmpxchg(&iter->position, pos, NULL);
1036 }
1037 }
1038
1039 if (pos)
1040 css = &pos->css;
1041
1042 for (;;) {
1043 css = css_next_descendant_pre(css, &root->css);
1044 if (!css) {
1045 /*
1046 * Reclaimers share the hierarchy walk, and a
1047 * new one might jump in right at the end of
1048 * the hierarchy - make sure they see at least
1049 * one group and restart from the beginning.
1050 */
1051 if (!prev)
1052 continue;
1053 break;
1054 }
1055
1056 /*
1057 * Verify the css and acquire a reference. The root
1058 * is provided by the caller, so we know it's alive
1059 * and kicking, and don't take an extra reference.
1060 */
1061 memcg = mem_cgroup_from_css(css);
1062
1063 if (css == &root->css)
1064 break;
1065
1066 if (css_tryget(css))
1067 break;
1068
1069 memcg = NULL;
1070 }
1071
1072 if (reclaim) {
1073 /*
1074 * The position could have already been updated by a competing
1075 * thread, so check that the value hasn't changed since we read
1076 * it to avoid reclaiming from the same cgroup twice.
1077 */
1078 (void)cmpxchg(&iter->position, pos, memcg);
1079
1080 if (pos)
1081 css_put(&pos->css);
1082
1083 if (!memcg)
1084 iter->generation++;
1085 else if (!prev)
1086 reclaim->generation = iter->generation;
1087 }
1088
1089 out_unlock:
1090 rcu_read_unlock();
1091 if (prev && prev != root)
1092 css_put(&prev->css);
1093
1094 return memcg;
1095 }
1096
1097 /**
1098 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1099 * @root: hierarchy root
1100 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1101 */
1102 void mem_cgroup_iter_break(struct mem_cgroup *root,
1103 struct mem_cgroup *prev)
1104 {
1105 if (!root)
1106 root = root_mem_cgroup;
1107 if (prev && prev != root)
1108 css_put(&prev->css);
1109 }
1110
1111 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1112 struct mem_cgroup *dead_memcg)
1113 {
1114 struct mem_cgroup_reclaim_iter *iter;
1115 struct mem_cgroup_per_node *mz;
1116 int nid;
1117
1118 for_each_node(nid) {
1119 mz = from->nodeinfo[nid];
1120 iter = &mz->iter;
1121 cmpxchg(&iter->position, dead_memcg, NULL);
1122 }
1123 }
1124
1125 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1126 {
1127 struct mem_cgroup *memcg = dead_memcg;
1128 struct mem_cgroup *last;
1129
1130 do {
1131 __invalidate_reclaim_iterators(memcg, dead_memcg);
1132 last = memcg;
1133 } while ((memcg = parent_mem_cgroup(memcg)));
1134
1135 /*
1136 * When cgruop1 non-hierarchy mode is used,
1137 * parent_mem_cgroup() does not walk all the way up to the
1138 * cgroup root (root_mem_cgroup). So we have to handle
1139 * dead_memcg from cgroup root separately.
1140 */
1141 if (last != root_mem_cgroup)
1142 __invalidate_reclaim_iterators(root_mem_cgroup,
1143 dead_memcg);
1144 }
1145
1146 /**
1147 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1148 * @memcg: hierarchy root
1149 * @fn: function to call for each task
1150 * @arg: argument passed to @fn
1151 *
1152 * This function iterates over tasks attached to @memcg or to any of its
1153 * descendants and calls @fn for each task. If @fn returns a non-zero
1154 * value, the function breaks the iteration loop and returns the value.
1155 * Otherwise, it will iterate over all tasks and return 0.
1156 *
1157 * This function must not be called for the root memory cgroup.
1158 */
1159 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1160 int (*fn)(struct task_struct *, void *), void *arg)
1161 {
1162 struct mem_cgroup *iter;
1163 int ret = 0;
1164
1165 BUG_ON(memcg == root_mem_cgroup);
1166
1167 for_each_mem_cgroup_tree(iter, memcg) {
1168 struct css_task_iter it;
1169 struct task_struct *task;
1170
1171 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1172 while (!ret && (task = css_task_iter_next(&it)))
1173 ret = fn(task, arg);
1174 css_task_iter_end(&it);
1175 if (ret) {
1176 mem_cgroup_iter_break(memcg, iter);
1177 break;
1178 }
1179 }
1180 return ret;
1181 }
1182
1183 #ifdef CONFIG_DEBUG_VM
1184 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1185 {
1186 struct mem_cgroup *memcg;
1187
1188 if (mem_cgroup_disabled())
1189 return;
1190
1191 memcg = page_memcg(page);
1192
1193 if (!memcg)
1194 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1195 else
1196 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1197 }
1198 #endif
1199
1200 /**
1201 * lock_page_lruvec - lock and return lruvec for a given page.
1202 * @page: the page
1203 *
1204 * These functions are safe to use under any of the following conditions:
1205 * - page locked
1206 * - PageLRU cleared
1207 * - lock_page_memcg()
1208 * - page->_refcount is zero
1209 */
1210 struct lruvec *lock_page_lruvec(struct page *page)
1211 {
1212 struct lruvec *lruvec;
1213
1214 lruvec = mem_cgroup_page_lruvec(page);
1215 spin_lock(&lruvec->lru_lock);
1216
1217 lruvec_memcg_debug(lruvec, page);
1218
1219 return lruvec;
1220 }
1221
1222 struct lruvec *lock_page_lruvec_irq(struct page *page)
1223 {
1224 struct lruvec *lruvec;
1225
1226 lruvec = mem_cgroup_page_lruvec(page);
1227 spin_lock_irq(&lruvec->lru_lock);
1228
1229 lruvec_memcg_debug(lruvec, page);
1230
1231 return lruvec;
1232 }
1233
1234 struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1235 {
1236 struct lruvec *lruvec;
1237
1238 lruvec = mem_cgroup_page_lruvec(page);
1239 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1240
1241 lruvec_memcg_debug(lruvec, page);
1242
1243 return lruvec;
1244 }
1245
1246 /**
1247 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1248 * @lruvec: mem_cgroup per zone lru vector
1249 * @lru: index of lru list the page is sitting on
1250 * @zid: zone id of the accounted pages
1251 * @nr_pages: positive when adding or negative when removing
1252 *
1253 * This function must be called under lru_lock, just before a page is added
1254 * to or just after a page is removed from an lru list (that ordering being
1255 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1256 */
1257 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1258 int zid, int nr_pages)
1259 {
1260 struct mem_cgroup_per_node *mz;
1261 unsigned long *lru_size;
1262 long size;
1263
1264 if (mem_cgroup_disabled())
1265 return;
1266
1267 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1268 lru_size = &mz->lru_zone_size[zid][lru];
1269
1270 if (nr_pages < 0)
1271 *lru_size += nr_pages;
1272
1273 size = *lru_size;
1274 if (WARN_ONCE(size < 0,
1275 "%s(%p, %d, %d): lru_size %ld\n",
1276 __func__, lruvec, lru, nr_pages, size)) {
1277 VM_BUG_ON(1);
1278 *lru_size = 0;
1279 }
1280
1281 if (nr_pages > 0)
1282 *lru_size += nr_pages;
1283 }
1284
1285 /**
1286 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1287 * @memcg: the memory cgroup
1288 *
1289 * Returns the maximum amount of memory @mem can be charged with, in
1290 * pages.
1291 */
1292 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1293 {
1294 unsigned long margin = 0;
1295 unsigned long count;
1296 unsigned long limit;
1297
1298 count = page_counter_read(&memcg->memory);
1299 limit = READ_ONCE(memcg->memory.max);
1300 if (count < limit)
1301 margin = limit - count;
1302
1303 if (do_memsw_account()) {
1304 count = page_counter_read(&memcg->memsw);
1305 limit = READ_ONCE(memcg->memsw.max);
1306 if (count < limit)
1307 margin = min(margin, limit - count);
1308 else
1309 margin = 0;
1310 }
1311
1312 return margin;
1313 }
1314
1315 /*
1316 * A routine for checking "mem" is under move_account() or not.
1317 *
1318 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1319 * moving cgroups. This is for waiting at high-memory pressure
1320 * caused by "move".
1321 */
1322 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1323 {
1324 struct mem_cgroup *from;
1325 struct mem_cgroup *to;
1326 bool ret = false;
1327 /*
1328 * Unlike task_move routines, we access mc.to, mc.from not under
1329 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1330 */
1331 spin_lock(&mc.lock);
1332 from = mc.from;
1333 to = mc.to;
1334 if (!from)
1335 goto unlock;
1336
1337 ret = mem_cgroup_is_descendant(from, memcg) ||
1338 mem_cgroup_is_descendant(to, memcg);
1339 unlock:
1340 spin_unlock(&mc.lock);
1341 return ret;
1342 }
1343
1344 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1345 {
1346 if (mc.moving_task && current != mc.moving_task) {
1347 if (mem_cgroup_under_move(memcg)) {
1348 DEFINE_WAIT(wait);
1349 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1350 /* moving charge context might have finished. */
1351 if (mc.moving_task)
1352 schedule();
1353 finish_wait(&mc.waitq, &wait);
1354 return true;
1355 }
1356 }
1357 return false;
1358 }
1359
1360 struct memory_stat {
1361 const char *name;
1362 unsigned int idx;
1363 };
1364
1365 static const struct memory_stat memory_stats[] = {
1366 { "anon", NR_ANON_MAPPED },
1367 { "file", NR_FILE_PAGES },
1368 { "kernel_stack", NR_KERNEL_STACK_KB },
1369 { "pagetables", NR_PAGETABLE },
1370 { "percpu", MEMCG_PERCPU_B },
1371 { "sock", MEMCG_SOCK },
1372 { "shmem", NR_SHMEM },
1373 { "file_mapped", NR_FILE_MAPPED },
1374 { "file_dirty", NR_FILE_DIRTY },
1375 { "file_writeback", NR_WRITEBACK },
1376 #ifdef CONFIG_SWAP
1377 { "swapcached", NR_SWAPCACHE },
1378 #endif
1379 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1380 { "anon_thp", NR_ANON_THPS },
1381 { "file_thp", NR_FILE_THPS },
1382 { "shmem_thp", NR_SHMEM_THPS },
1383 #endif
1384 { "inactive_anon", NR_INACTIVE_ANON },
1385 { "active_anon", NR_ACTIVE_ANON },
1386 { "inactive_file", NR_INACTIVE_FILE },
1387 { "active_file", NR_ACTIVE_FILE },
1388 { "unevictable", NR_UNEVICTABLE },
1389 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1390 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1391
1392 /* The memory events */
1393 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1394 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1395 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1396 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1397 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1398 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1399 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1400 };
1401
1402 /* Translate stat items to the correct unit for memory.stat output */
1403 static int memcg_page_state_unit(int item)
1404 {
1405 switch (item) {
1406 case MEMCG_PERCPU_B:
1407 case NR_SLAB_RECLAIMABLE_B:
1408 case NR_SLAB_UNRECLAIMABLE_B:
1409 case WORKINGSET_REFAULT_ANON:
1410 case WORKINGSET_REFAULT_FILE:
1411 case WORKINGSET_ACTIVATE_ANON:
1412 case WORKINGSET_ACTIVATE_FILE:
1413 case WORKINGSET_RESTORE_ANON:
1414 case WORKINGSET_RESTORE_FILE:
1415 case WORKINGSET_NODERECLAIM:
1416 return 1;
1417 case NR_KERNEL_STACK_KB:
1418 return SZ_1K;
1419 default:
1420 return PAGE_SIZE;
1421 }
1422 }
1423
1424 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1425 int item)
1426 {
1427 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1428 }
1429
1430 static char *memory_stat_format(struct mem_cgroup *memcg)
1431 {
1432 struct seq_buf s;
1433 int i;
1434
1435 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1436 if (!s.buffer)
1437 return NULL;
1438
1439 /*
1440 * Provide statistics on the state of the memory subsystem as
1441 * well as cumulative event counters that show past behavior.
1442 *
1443 * This list is ordered following a combination of these gradients:
1444 * 1) generic big picture -> specifics and details
1445 * 2) reflecting userspace activity -> reflecting kernel heuristics
1446 *
1447 * Current memory state:
1448 */
1449 cgroup_rstat_flush(memcg->css.cgroup);
1450
1451 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1452 u64 size;
1453
1454 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1455 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1456
1457 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1458 size += memcg_page_state_output(memcg,
1459 NR_SLAB_RECLAIMABLE_B);
1460 seq_buf_printf(&s, "slab %llu\n", size);
1461 }
1462 }
1463
1464 /* Accumulated memory events */
1465
1466 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1467 memcg_events(memcg, PGFAULT));
1468 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1469 memcg_events(memcg, PGMAJFAULT));
1470 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1471 memcg_events(memcg, PGREFILL));
1472 seq_buf_printf(&s, "pgscan %lu\n",
1473 memcg_events(memcg, PGSCAN_KSWAPD) +
1474 memcg_events(memcg, PGSCAN_DIRECT));
1475 seq_buf_printf(&s, "pgsteal %lu\n",
1476 memcg_events(memcg, PGSTEAL_KSWAPD) +
1477 memcg_events(memcg, PGSTEAL_DIRECT));
1478 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1479 memcg_events(memcg, PGACTIVATE));
1480 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1481 memcg_events(memcg, PGDEACTIVATE));
1482 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1483 memcg_events(memcg, PGLAZYFREE));
1484 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1485 memcg_events(memcg, PGLAZYFREED));
1486
1487 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1488 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1489 memcg_events(memcg, THP_FAULT_ALLOC));
1490 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1491 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1492 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1493
1494 /* The above should easily fit into one page */
1495 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1496
1497 return s.buffer;
1498 }
1499
1500 #define K(x) ((x) << (PAGE_SHIFT-10))
1501 /**
1502 * mem_cgroup_print_oom_context: Print OOM information relevant to
1503 * memory controller.
1504 * @memcg: The memory cgroup that went over limit
1505 * @p: Task that is going to be killed
1506 *
1507 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1508 * enabled
1509 */
1510 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1511 {
1512 rcu_read_lock();
1513
1514 if (memcg) {
1515 pr_cont(",oom_memcg=");
1516 pr_cont_cgroup_path(memcg->css.cgroup);
1517 } else
1518 pr_cont(",global_oom");
1519 if (p) {
1520 pr_cont(",task_memcg=");
1521 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1522 }
1523 rcu_read_unlock();
1524 }
1525
1526 /**
1527 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1528 * memory controller.
1529 * @memcg: The memory cgroup that went over limit
1530 */
1531 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1532 {
1533 char *buf;
1534
1535 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1536 K((u64)page_counter_read(&memcg->memory)),
1537 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1538 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1539 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1540 K((u64)page_counter_read(&memcg->swap)),
1541 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1542 else {
1543 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1544 K((u64)page_counter_read(&memcg->memsw)),
1545 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1546 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1547 K((u64)page_counter_read(&memcg->kmem)),
1548 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1549 }
1550
1551 pr_info("Memory cgroup stats for ");
1552 pr_cont_cgroup_path(memcg->css.cgroup);
1553 pr_cont(":");
1554 buf = memory_stat_format(memcg);
1555 if (!buf)
1556 return;
1557 pr_info("%s", buf);
1558 kfree(buf);
1559 }
1560
1561 /*
1562 * Return the memory (and swap, if configured) limit for a memcg.
1563 */
1564 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1565 {
1566 unsigned long max = READ_ONCE(memcg->memory.max);
1567
1568 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1569 if (mem_cgroup_swappiness(memcg))
1570 max += min(READ_ONCE(memcg->swap.max),
1571 (unsigned long)total_swap_pages);
1572 } else { /* v1 */
1573 if (mem_cgroup_swappiness(memcg)) {
1574 /* Calculate swap excess capacity from memsw limit */
1575 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1576
1577 max += min(swap, (unsigned long)total_swap_pages);
1578 }
1579 }
1580 return max;
1581 }
1582
1583 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1584 {
1585 return page_counter_read(&memcg->memory);
1586 }
1587
1588 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1589 int order)
1590 {
1591 struct oom_control oc = {
1592 .zonelist = NULL,
1593 .nodemask = NULL,
1594 .memcg = memcg,
1595 .gfp_mask = gfp_mask,
1596 .order = order,
1597 };
1598 bool ret = true;
1599
1600 if (mutex_lock_killable(&oom_lock))
1601 return true;
1602
1603 if (mem_cgroup_margin(memcg) >= (1 << order))
1604 goto unlock;
1605
1606 /*
1607 * A few threads which were not waiting at mutex_lock_killable() can
1608 * fail to bail out. Therefore, check again after holding oom_lock.
1609 */
1610 ret = should_force_charge() || out_of_memory(&oc);
1611
1612 unlock:
1613 mutex_unlock(&oom_lock);
1614 return ret;
1615 }
1616
1617 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1618 pg_data_t *pgdat,
1619 gfp_t gfp_mask,
1620 unsigned long *total_scanned)
1621 {
1622 struct mem_cgroup *victim = NULL;
1623 int total = 0;
1624 int loop = 0;
1625 unsigned long excess;
1626 unsigned long nr_scanned;
1627 struct mem_cgroup_reclaim_cookie reclaim = {
1628 .pgdat = pgdat,
1629 };
1630
1631 excess = soft_limit_excess(root_memcg);
1632
1633 while (1) {
1634 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1635 if (!victim) {
1636 loop++;
1637 if (loop >= 2) {
1638 /*
1639 * If we have not been able to reclaim
1640 * anything, it might because there are
1641 * no reclaimable pages under this hierarchy
1642 */
1643 if (!total)
1644 break;
1645 /*
1646 * We want to do more targeted reclaim.
1647 * excess >> 2 is not to excessive so as to
1648 * reclaim too much, nor too less that we keep
1649 * coming back to reclaim from this cgroup
1650 */
1651 if (total >= (excess >> 2) ||
1652 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1653 break;
1654 }
1655 continue;
1656 }
1657 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1658 pgdat, &nr_scanned);
1659 *total_scanned += nr_scanned;
1660 if (!soft_limit_excess(root_memcg))
1661 break;
1662 }
1663 mem_cgroup_iter_break(root_memcg, victim);
1664 return total;
1665 }
1666
1667 #ifdef CONFIG_LOCKDEP
1668 static struct lockdep_map memcg_oom_lock_dep_map = {
1669 .name = "memcg_oom_lock",
1670 };
1671 #endif
1672
1673 static DEFINE_SPINLOCK(memcg_oom_lock);
1674
1675 /*
1676 * Check OOM-Killer is already running under our hierarchy.
1677 * If someone is running, return false.
1678 */
1679 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1680 {
1681 struct mem_cgroup *iter, *failed = NULL;
1682
1683 spin_lock(&memcg_oom_lock);
1684
1685 for_each_mem_cgroup_tree(iter, memcg) {
1686 if (iter->oom_lock) {
1687 /*
1688 * this subtree of our hierarchy is already locked
1689 * so we cannot give a lock.
1690 */
1691 failed = iter;
1692 mem_cgroup_iter_break(memcg, iter);
1693 break;
1694 } else
1695 iter->oom_lock = true;
1696 }
1697
1698 if (failed) {
1699 /*
1700 * OK, we failed to lock the whole subtree so we have
1701 * to clean up what we set up to the failing subtree
1702 */
1703 for_each_mem_cgroup_tree(iter, memcg) {
1704 if (iter == failed) {
1705 mem_cgroup_iter_break(memcg, iter);
1706 break;
1707 }
1708 iter->oom_lock = false;
1709 }
1710 } else
1711 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1712
1713 spin_unlock(&memcg_oom_lock);
1714
1715 return !failed;
1716 }
1717
1718 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1719 {
1720 struct mem_cgroup *iter;
1721
1722 spin_lock(&memcg_oom_lock);
1723 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1724 for_each_mem_cgroup_tree(iter, memcg)
1725 iter->oom_lock = false;
1726 spin_unlock(&memcg_oom_lock);
1727 }
1728
1729 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1730 {
1731 struct mem_cgroup *iter;
1732
1733 spin_lock(&memcg_oom_lock);
1734 for_each_mem_cgroup_tree(iter, memcg)
1735 iter->under_oom++;
1736 spin_unlock(&memcg_oom_lock);
1737 }
1738
1739 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1740 {
1741 struct mem_cgroup *iter;
1742
1743 /*
1744 * Be careful about under_oom underflows because a child memcg
1745 * could have been added after mem_cgroup_mark_under_oom.
1746 */
1747 spin_lock(&memcg_oom_lock);
1748 for_each_mem_cgroup_tree(iter, memcg)
1749 if (iter->under_oom > 0)
1750 iter->under_oom--;
1751 spin_unlock(&memcg_oom_lock);
1752 }
1753
1754 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1755
1756 struct oom_wait_info {
1757 struct mem_cgroup *memcg;
1758 wait_queue_entry_t wait;
1759 };
1760
1761 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1762 unsigned mode, int sync, void *arg)
1763 {
1764 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1765 struct mem_cgroup *oom_wait_memcg;
1766 struct oom_wait_info *oom_wait_info;
1767
1768 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1769 oom_wait_memcg = oom_wait_info->memcg;
1770
1771 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1772 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1773 return 0;
1774 return autoremove_wake_function(wait, mode, sync, arg);
1775 }
1776
1777 static void memcg_oom_recover(struct mem_cgroup *memcg)
1778 {
1779 /*
1780 * For the following lockless ->under_oom test, the only required
1781 * guarantee is that it must see the state asserted by an OOM when
1782 * this function is called as a result of userland actions
1783 * triggered by the notification of the OOM. This is trivially
1784 * achieved by invoking mem_cgroup_mark_under_oom() before
1785 * triggering notification.
1786 */
1787 if (memcg && memcg->under_oom)
1788 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1789 }
1790
1791 enum oom_status {
1792 OOM_SUCCESS,
1793 OOM_FAILED,
1794 OOM_ASYNC,
1795 OOM_SKIPPED
1796 };
1797
1798 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1799 {
1800 enum oom_status ret;
1801 bool locked;
1802
1803 if (order > PAGE_ALLOC_COSTLY_ORDER)
1804 return OOM_SKIPPED;
1805
1806 memcg_memory_event(memcg, MEMCG_OOM);
1807
1808 /*
1809 * We are in the middle of the charge context here, so we
1810 * don't want to block when potentially sitting on a callstack
1811 * that holds all kinds of filesystem and mm locks.
1812 *
1813 * cgroup1 allows disabling the OOM killer and waiting for outside
1814 * handling until the charge can succeed; remember the context and put
1815 * the task to sleep at the end of the page fault when all locks are
1816 * released.
1817 *
1818 * On the other hand, in-kernel OOM killer allows for an async victim
1819 * memory reclaim (oom_reaper) and that means that we are not solely
1820 * relying on the oom victim to make a forward progress and we can
1821 * invoke the oom killer here.
1822 *
1823 * Please note that mem_cgroup_out_of_memory might fail to find a
1824 * victim and then we have to bail out from the charge path.
1825 */
1826 if (memcg->oom_kill_disable) {
1827 if (!current->in_user_fault)
1828 return OOM_SKIPPED;
1829 css_get(&memcg->css);
1830 current->memcg_in_oom = memcg;
1831 current->memcg_oom_gfp_mask = mask;
1832 current->memcg_oom_order = order;
1833
1834 return OOM_ASYNC;
1835 }
1836
1837 mem_cgroup_mark_under_oom(memcg);
1838
1839 locked = mem_cgroup_oom_trylock(memcg);
1840
1841 if (locked)
1842 mem_cgroup_oom_notify(memcg);
1843
1844 mem_cgroup_unmark_under_oom(memcg);
1845 if (mem_cgroup_out_of_memory(memcg, mask, order))
1846 ret = OOM_SUCCESS;
1847 else
1848 ret = OOM_FAILED;
1849
1850 if (locked)
1851 mem_cgroup_oom_unlock(memcg);
1852
1853 return ret;
1854 }
1855
1856 /**
1857 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1858 * @handle: actually kill/wait or just clean up the OOM state
1859 *
1860 * This has to be called at the end of a page fault if the memcg OOM
1861 * handler was enabled.
1862 *
1863 * Memcg supports userspace OOM handling where failed allocations must
1864 * sleep on a waitqueue until the userspace task resolves the
1865 * situation. Sleeping directly in the charge context with all kinds
1866 * of locks held is not a good idea, instead we remember an OOM state
1867 * in the task and mem_cgroup_oom_synchronize() has to be called at
1868 * the end of the page fault to complete the OOM handling.
1869 *
1870 * Returns %true if an ongoing memcg OOM situation was detected and
1871 * completed, %false otherwise.
1872 */
1873 bool mem_cgroup_oom_synchronize(bool handle)
1874 {
1875 struct mem_cgroup *memcg = current->memcg_in_oom;
1876 struct oom_wait_info owait;
1877 bool locked;
1878
1879 /* OOM is global, do not handle */
1880 if (!memcg)
1881 return false;
1882
1883 if (!handle)
1884 goto cleanup;
1885
1886 owait.memcg = memcg;
1887 owait.wait.flags = 0;
1888 owait.wait.func = memcg_oom_wake_function;
1889 owait.wait.private = current;
1890 INIT_LIST_HEAD(&owait.wait.entry);
1891
1892 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1893 mem_cgroup_mark_under_oom(memcg);
1894
1895 locked = mem_cgroup_oom_trylock(memcg);
1896
1897 if (locked)
1898 mem_cgroup_oom_notify(memcg);
1899
1900 if (locked && !memcg->oom_kill_disable) {
1901 mem_cgroup_unmark_under_oom(memcg);
1902 finish_wait(&memcg_oom_waitq, &owait.wait);
1903 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1904 current->memcg_oom_order);
1905 } else {
1906 schedule();
1907 mem_cgroup_unmark_under_oom(memcg);
1908 finish_wait(&memcg_oom_waitq, &owait.wait);
1909 }
1910
1911 if (locked) {
1912 mem_cgroup_oom_unlock(memcg);
1913 /*
1914 * There is no guarantee that an OOM-lock contender
1915 * sees the wakeups triggered by the OOM kill
1916 * uncharges. Wake any sleepers explicitly.
1917 */
1918 memcg_oom_recover(memcg);
1919 }
1920 cleanup:
1921 current->memcg_in_oom = NULL;
1922 css_put(&memcg->css);
1923 return true;
1924 }
1925
1926 /**
1927 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1928 * @victim: task to be killed by the OOM killer
1929 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1930 *
1931 * Returns a pointer to a memory cgroup, which has to be cleaned up
1932 * by killing all belonging OOM-killable tasks.
1933 *
1934 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1935 */
1936 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1937 struct mem_cgroup *oom_domain)
1938 {
1939 struct mem_cgroup *oom_group = NULL;
1940 struct mem_cgroup *memcg;
1941
1942 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1943 return NULL;
1944
1945 if (!oom_domain)
1946 oom_domain = root_mem_cgroup;
1947
1948 rcu_read_lock();
1949
1950 memcg = mem_cgroup_from_task(victim);
1951 if (memcg == root_mem_cgroup)
1952 goto out;
1953
1954 /*
1955 * If the victim task has been asynchronously moved to a different
1956 * memory cgroup, we might end up killing tasks outside oom_domain.
1957 * In this case it's better to ignore memory.group.oom.
1958 */
1959 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1960 goto out;
1961
1962 /*
1963 * Traverse the memory cgroup hierarchy from the victim task's
1964 * cgroup up to the OOMing cgroup (or root) to find the
1965 * highest-level memory cgroup with oom.group set.
1966 */
1967 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1968 if (memcg->oom_group)
1969 oom_group = memcg;
1970
1971 if (memcg == oom_domain)
1972 break;
1973 }
1974
1975 if (oom_group)
1976 css_get(&oom_group->css);
1977 out:
1978 rcu_read_unlock();
1979
1980 return oom_group;
1981 }
1982
1983 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1984 {
1985 pr_info("Tasks in ");
1986 pr_cont_cgroup_path(memcg->css.cgroup);
1987 pr_cont(" are going to be killed due to memory.oom.group set\n");
1988 }
1989
1990 /**
1991 * lock_page_memcg - lock a page and memcg binding
1992 * @page: the page
1993 *
1994 * This function protects unlocked LRU pages from being moved to
1995 * another cgroup.
1996 *
1997 * It ensures lifetime of the locked memcg. Caller is responsible
1998 * for the lifetime of the page.
1999 */
2000 void lock_page_memcg(struct page *page)
2001 {
2002 struct page *head = compound_head(page); /* rmap on tail pages */
2003 struct mem_cgroup *memcg;
2004 unsigned long flags;
2005
2006 /*
2007 * The RCU lock is held throughout the transaction. The fast
2008 * path can get away without acquiring the memcg->move_lock
2009 * because page moving starts with an RCU grace period.
2010 */
2011 rcu_read_lock();
2012
2013 if (mem_cgroup_disabled())
2014 return;
2015 again:
2016 memcg = page_memcg(head);
2017 if (unlikely(!memcg))
2018 return;
2019
2020 #ifdef CONFIG_PROVE_LOCKING
2021 local_irq_save(flags);
2022 might_lock(&memcg->move_lock);
2023 local_irq_restore(flags);
2024 #endif
2025
2026 if (atomic_read(&memcg->moving_account) <= 0)
2027 return;
2028
2029 spin_lock_irqsave(&memcg->move_lock, flags);
2030 if (memcg != page_memcg(head)) {
2031 spin_unlock_irqrestore(&memcg->move_lock, flags);
2032 goto again;
2033 }
2034
2035 /*
2036 * When charge migration first begins, we can have multiple
2037 * critical sections holding the fast-path RCU lock and one
2038 * holding the slowpath move_lock. Track the task who has the
2039 * move_lock for unlock_page_memcg().
2040 */
2041 memcg->move_lock_task = current;
2042 memcg->move_lock_flags = flags;
2043 }
2044 EXPORT_SYMBOL(lock_page_memcg);
2045
2046 static void __unlock_page_memcg(struct mem_cgroup *memcg)
2047 {
2048 if (memcg && memcg->move_lock_task == current) {
2049 unsigned long flags = memcg->move_lock_flags;
2050
2051 memcg->move_lock_task = NULL;
2052 memcg->move_lock_flags = 0;
2053
2054 spin_unlock_irqrestore(&memcg->move_lock, flags);
2055 }
2056
2057 rcu_read_unlock();
2058 }
2059
2060 /**
2061 * unlock_page_memcg - unlock a page and memcg binding
2062 * @page: the page
2063 */
2064 void unlock_page_memcg(struct page *page)
2065 {
2066 struct page *head = compound_head(page);
2067
2068 __unlock_page_memcg(page_memcg(head));
2069 }
2070 EXPORT_SYMBOL(unlock_page_memcg);
2071
2072 struct obj_stock {
2073 #ifdef CONFIG_MEMCG_KMEM
2074 struct obj_cgroup *cached_objcg;
2075 struct pglist_data *cached_pgdat;
2076 unsigned int nr_bytes;
2077 int nr_slab_reclaimable_b;
2078 int nr_slab_unreclaimable_b;
2079 #else
2080 int dummy[0];
2081 #endif
2082 };
2083
2084 struct memcg_stock_pcp {
2085 struct mem_cgroup *cached; /* this never be root cgroup */
2086 unsigned int nr_pages;
2087 struct obj_stock task_obj;
2088 struct obj_stock irq_obj;
2089
2090 struct work_struct work;
2091 unsigned long flags;
2092 #define FLUSHING_CACHED_CHARGE 0
2093 };
2094 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2095 static DEFINE_MUTEX(percpu_charge_mutex);
2096
2097 #ifdef CONFIG_MEMCG_KMEM
2098 static void drain_obj_stock(struct obj_stock *stock);
2099 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2100 struct mem_cgroup *root_memcg);
2101
2102 #else
2103 static inline void drain_obj_stock(struct obj_stock *stock)
2104 {
2105 }
2106 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2107 struct mem_cgroup *root_memcg)
2108 {
2109 return false;
2110 }
2111 #endif
2112
2113 /*
2114 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2115 * sequence used in this case to access content from object stock is slow.
2116 * To optimize for user context access, there are now two object stocks for
2117 * task context and interrupt context access respectively.
2118 *
2119 * The task context object stock can be accessed by disabling preemption only
2120 * which is cheap in non-preempt kernel. The interrupt context object stock
2121 * can only be accessed after disabling interrupt. User context code can
2122 * access interrupt object stock, but not vice versa.
2123 */
2124 static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2125 {
2126 struct memcg_stock_pcp *stock;
2127
2128 if (likely(in_task())) {
2129 *pflags = 0UL;
2130 preempt_disable();
2131 stock = this_cpu_ptr(&memcg_stock);
2132 return &stock->task_obj;
2133 }
2134
2135 local_irq_save(*pflags);
2136 stock = this_cpu_ptr(&memcg_stock);
2137 return &stock->irq_obj;
2138 }
2139
2140 static inline void put_obj_stock(unsigned long flags)
2141 {
2142 if (likely(in_task()))
2143 preempt_enable();
2144 else
2145 local_irq_restore(flags);
2146 }
2147
2148 /**
2149 * consume_stock: Try to consume stocked charge on this cpu.
2150 * @memcg: memcg to consume from.
2151 * @nr_pages: how many pages to charge.
2152 *
2153 * The charges will only happen if @memcg matches the current cpu's memcg
2154 * stock, and at least @nr_pages are available in that stock. Failure to
2155 * service an allocation will refill the stock.
2156 *
2157 * returns true if successful, false otherwise.
2158 */
2159 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2160 {
2161 struct memcg_stock_pcp *stock;
2162 unsigned long flags;
2163 bool ret = false;
2164
2165 if (nr_pages > MEMCG_CHARGE_BATCH)
2166 return ret;
2167
2168 local_irq_save(flags);
2169
2170 stock = this_cpu_ptr(&memcg_stock);
2171 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2172 stock->nr_pages -= nr_pages;
2173 ret = true;
2174 }
2175
2176 local_irq_restore(flags);
2177
2178 return ret;
2179 }
2180
2181 /*
2182 * Returns stocks cached in percpu and reset cached information.
2183 */
2184 static void drain_stock(struct memcg_stock_pcp *stock)
2185 {
2186 struct mem_cgroup *old = stock->cached;
2187
2188 if (!old)
2189 return;
2190
2191 if (stock->nr_pages) {
2192 page_counter_uncharge(&old->memory, stock->nr_pages);
2193 if (do_memsw_account())
2194 page_counter_uncharge(&old->memsw, stock->nr_pages);
2195 stock->nr_pages = 0;
2196 }
2197
2198 css_put(&old->css);
2199 stock->cached = NULL;
2200 }
2201
2202 static void drain_local_stock(struct work_struct *dummy)
2203 {
2204 struct memcg_stock_pcp *stock;
2205 unsigned long flags;
2206
2207 /*
2208 * The only protection from memory hotplug vs. drain_stock races is
2209 * that we always operate on local CPU stock here with IRQ disabled
2210 */
2211 local_irq_save(flags);
2212
2213 stock = this_cpu_ptr(&memcg_stock);
2214 drain_obj_stock(&stock->irq_obj);
2215 if (in_task())
2216 drain_obj_stock(&stock->task_obj);
2217 drain_stock(stock);
2218 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2219
2220 local_irq_restore(flags);
2221 }
2222
2223 /*
2224 * Cache charges(val) to local per_cpu area.
2225 * This will be consumed by consume_stock() function, later.
2226 */
2227 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2228 {
2229 struct memcg_stock_pcp *stock;
2230 unsigned long flags;
2231
2232 local_irq_save(flags);
2233
2234 stock = this_cpu_ptr(&memcg_stock);
2235 if (stock->cached != memcg) { /* reset if necessary */
2236 drain_stock(stock);
2237 css_get(&memcg->css);
2238 stock->cached = memcg;
2239 }
2240 stock->nr_pages += nr_pages;
2241
2242 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2243 drain_stock(stock);
2244
2245 local_irq_restore(flags);
2246 }
2247
2248 /*
2249 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2250 * of the hierarchy under it.
2251 */
2252 static void drain_all_stock(struct mem_cgroup *root_memcg)
2253 {
2254 int cpu, curcpu;
2255
2256 /* If someone's already draining, avoid adding running more workers. */
2257 if (!mutex_trylock(&percpu_charge_mutex))
2258 return;
2259 /*
2260 * Notify other cpus that system-wide "drain" is running
2261 * We do not care about races with the cpu hotplug because cpu down
2262 * as well as workers from this path always operate on the local
2263 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2264 */
2265 curcpu = get_cpu();
2266 for_each_online_cpu(cpu) {
2267 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2268 struct mem_cgroup *memcg;
2269 bool flush = false;
2270
2271 rcu_read_lock();
2272 memcg = stock->cached;
2273 if (memcg && stock->nr_pages &&
2274 mem_cgroup_is_descendant(memcg, root_memcg))
2275 flush = true;
2276 if (obj_stock_flush_required(stock, root_memcg))
2277 flush = true;
2278 rcu_read_unlock();
2279
2280 if (flush &&
2281 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2282 if (cpu == curcpu)
2283 drain_local_stock(&stock->work);
2284 else
2285 schedule_work_on(cpu, &stock->work);
2286 }
2287 }
2288 put_cpu();
2289 mutex_unlock(&percpu_charge_mutex);
2290 }
2291
2292 static void memcg_flush_lruvec_page_state(struct mem_cgroup *memcg, int cpu)
2293 {
2294 int nid;
2295
2296 for_each_node(nid) {
2297 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
2298 unsigned long stat[NR_VM_NODE_STAT_ITEMS];
2299 struct batched_lruvec_stat *lstatc;
2300 int i;
2301
2302 lstatc = per_cpu_ptr(pn->lruvec_stat_cpu, cpu);
2303 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
2304 stat[i] = lstatc->count[i];
2305 lstatc->count[i] = 0;
2306 }
2307
2308 do {
2309 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
2310 atomic_long_add(stat[i], &pn->lruvec_stat[i]);
2311 } while ((pn = parent_nodeinfo(pn, nid)));
2312 }
2313 }
2314
2315 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2316 {
2317 struct memcg_stock_pcp *stock;
2318 struct mem_cgroup *memcg;
2319
2320 stock = &per_cpu(memcg_stock, cpu);
2321 drain_stock(stock);
2322
2323 for_each_mem_cgroup(memcg)
2324 memcg_flush_lruvec_page_state(memcg, cpu);
2325
2326 return 0;
2327 }
2328
2329 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2330 unsigned int nr_pages,
2331 gfp_t gfp_mask)
2332 {
2333 unsigned long nr_reclaimed = 0;
2334
2335 do {
2336 unsigned long pflags;
2337
2338 if (page_counter_read(&memcg->memory) <=
2339 READ_ONCE(memcg->memory.high))
2340 continue;
2341
2342 memcg_memory_event(memcg, MEMCG_HIGH);
2343
2344 psi_memstall_enter(&pflags);
2345 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2346 gfp_mask, true);
2347 psi_memstall_leave(&pflags);
2348 } while ((memcg = parent_mem_cgroup(memcg)) &&
2349 !mem_cgroup_is_root(memcg));
2350
2351 return nr_reclaimed;
2352 }
2353
2354 static void high_work_func(struct work_struct *work)
2355 {
2356 struct mem_cgroup *memcg;
2357
2358 memcg = container_of(work, struct mem_cgroup, high_work);
2359 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2360 }
2361
2362 /*
2363 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2364 * enough to still cause a significant slowdown in most cases, while still
2365 * allowing diagnostics and tracing to proceed without becoming stuck.
2366 */
2367 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2368
2369 /*
2370 * When calculating the delay, we use these either side of the exponentiation to
2371 * maintain precision and scale to a reasonable number of jiffies (see the table
2372 * below.
2373 *
2374 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2375 * overage ratio to a delay.
2376 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2377 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2378 * to produce a reasonable delay curve.
2379 *
2380 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2381 * reasonable delay curve compared to precision-adjusted overage, not
2382 * penalising heavily at first, but still making sure that growth beyond the
2383 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2384 * example, with a high of 100 megabytes:
2385 *
2386 * +-------+------------------------+
2387 * | usage | time to allocate in ms |
2388 * +-------+------------------------+
2389 * | 100M | 0 |
2390 * | 101M | 6 |
2391 * | 102M | 25 |
2392 * | 103M | 57 |
2393 * | 104M | 102 |
2394 * | 105M | 159 |
2395 * | 106M | 230 |
2396 * | 107M | 313 |
2397 * | 108M | 409 |
2398 * | 109M | 518 |
2399 * | 110M | 639 |
2400 * | 111M | 774 |
2401 * | 112M | 921 |
2402 * | 113M | 1081 |
2403 * | 114M | 1254 |
2404 * | 115M | 1439 |
2405 * | 116M | 1638 |
2406 * | 117M | 1849 |
2407 * | 118M | 2000 |
2408 * | 119M | 2000 |
2409 * | 120M | 2000 |
2410 * +-------+------------------------+
2411 */
2412 #define MEMCG_DELAY_PRECISION_SHIFT 20
2413 #define MEMCG_DELAY_SCALING_SHIFT 14
2414
2415 static u64 calculate_overage(unsigned long usage, unsigned long high)
2416 {
2417 u64 overage;
2418
2419 if (usage <= high)
2420 return 0;
2421
2422 /*
2423 * Prevent division by 0 in overage calculation by acting as if
2424 * it was a threshold of 1 page
2425 */
2426 high = max(high, 1UL);
2427
2428 overage = usage - high;
2429 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2430 return div64_u64(overage, high);
2431 }
2432
2433 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2434 {
2435 u64 overage, max_overage = 0;
2436
2437 do {
2438 overage = calculate_overage(page_counter_read(&memcg->memory),
2439 READ_ONCE(memcg->memory.high));
2440 max_overage = max(overage, max_overage);
2441 } while ((memcg = parent_mem_cgroup(memcg)) &&
2442 !mem_cgroup_is_root(memcg));
2443
2444 return max_overage;
2445 }
2446
2447 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2448 {
2449 u64 overage, max_overage = 0;
2450
2451 do {
2452 overage = calculate_overage(page_counter_read(&memcg->swap),
2453 READ_ONCE(memcg->swap.high));
2454 if (overage)
2455 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2456 max_overage = max(overage, max_overage);
2457 } while ((memcg = parent_mem_cgroup(memcg)) &&
2458 !mem_cgroup_is_root(memcg));
2459
2460 return max_overage;
2461 }
2462
2463 /*
2464 * Get the number of jiffies that we should penalise a mischievous cgroup which
2465 * is exceeding its memory.high by checking both it and its ancestors.
2466 */
2467 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2468 unsigned int nr_pages,
2469 u64 max_overage)
2470 {
2471 unsigned long penalty_jiffies;
2472
2473 if (!max_overage)
2474 return 0;
2475
2476 /*
2477 * We use overage compared to memory.high to calculate the number of
2478 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2479 * fairly lenient on small overages, and increasingly harsh when the
2480 * memcg in question makes it clear that it has no intention of stopping
2481 * its crazy behaviour, so we exponentially increase the delay based on
2482 * overage amount.
2483 */
2484 penalty_jiffies = max_overage * max_overage * HZ;
2485 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2486 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2487
2488 /*
2489 * Factor in the task's own contribution to the overage, such that four
2490 * N-sized allocations are throttled approximately the same as one
2491 * 4N-sized allocation.
2492 *
2493 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2494 * larger the current charge patch is than that.
2495 */
2496 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2497 }
2498
2499 /*
2500 * Scheduled by try_charge() to be executed from the userland return path
2501 * and reclaims memory over the high limit.
2502 */
2503 void mem_cgroup_handle_over_high(void)
2504 {
2505 unsigned long penalty_jiffies;
2506 unsigned long pflags;
2507 unsigned long nr_reclaimed;
2508 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2509 int nr_retries = MAX_RECLAIM_RETRIES;
2510 struct mem_cgroup *memcg;
2511 bool in_retry = false;
2512
2513 if (likely(!nr_pages))
2514 return;
2515
2516 memcg = get_mem_cgroup_from_mm(current->mm);
2517 current->memcg_nr_pages_over_high = 0;
2518
2519 retry_reclaim:
2520 /*
2521 * The allocating task should reclaim at least the batch size, but for
2522 * subsequent retries we only want to do what's necessary to prevent oom
2523 * or breaching resource isolation.
2524 *
2525 * This is distinct from memory.max or page allocator behaviour because
2526 * memory.high is currently batched, whereas memory.max and the page
2527 * allocator run every time an allocation is made.
2528 */
2529 nr_reclaimed = reclaim_high(memcg,
2530 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2531 GFP_KERNEL);
2532
2533 /*
2534 * memory.high is breached and reclaim is unable to keep up. Throttle
2535 * allocators proactively to slow down excessive growth.
2536 */
2537 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2538 mem_find_max_overage(memcg));
2539
2540 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2541 swap_find_max_overage(memcg));
2542
2543 /*
2544 * Clamp the max delay per usermode return so as to still keep the
2545 * application moving forwards and also permit diagnostics, albeit
2546 * extremely slowly.
2547 */
2548 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2549
2550 /*
2551 * Don't sleep if the amount of jiffies this memcg owes us is so low
2552 * that it's not even worth doing, in an attempt to be nice to those who
2553 * go only a small amount over their memory.high value and maybe haven't
2554 * been aggressively reclaimed enough yet.
2555 */
2556 if (penalty_jiffies <= HZ / 100)
2557 goto out;
2558
2559 /*
2560 * If reclaim is making forward progress but we're still over
2561 * memory.high, we want to encourage that rather than doing allocator
2562 * throttling.
2563 */
2564 if (nr_reclaimed || nr_retries--) {
2565 in_retry = true;
2566 goto retry_reclaim;
2567 }
2568
2569 /*
2570 * If we exit early, we're guaranteed to die (since
2571 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2572 * need to account for any ill-begotten jiffies to pay them off later.
2573 */
2574 psi_memstall_enter(&pflags);
2575 schedule_timeout_killable(penalty_jiffies);
2576 psi_memstall_leave(&pflags);
2577
2578 out:
2579 css_put(&memcg->css);
2580 }
2581
2582 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2583 unsigned int nr_pages)
2584 {
2585 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2586 int nr_retries = MAX_RECLAIM_RETRIES;
2587 struct mem_cgroup *mem_over_limit;
2588 struct page_counter *counter;
2589 enum oom_status oom_status;
2590 unsigned long nr_reclaimed;
2591 bool may_swap = true;
2592 bool drained = false;
2593 unsigned long pflags;
2594
2595 retry:
2596 if (consume_stock(memcg, nr_pages))
2597 return 0;
2598
2599 if (!do_memsw_account() ||
2600 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2601 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2602 goto done_restock;
2603 if (do_memsw_account())
2604 page_counter_uncharge(&memcg->memsw, batch);
2605 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2606 } else {
2607 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2608 may_swap = false;
2609 }
2610
2611 if (batch > nr_pages) {
2612 batch = nr_pages;
2613 goto retry;
2614 }
2615
2616 /*
2617 * Memcg doesn't have a dedicated reserve for atomic
2618 * allocations. But like the global atomic pool, we need to
2619 * put the burden of reclaim on regular allocation requests
2620 * and let these go through as privileged allocations.
2621 */
2622 if (gfp_mask & __GFP_ATOMIC)
2623 goto force;
2624
2625 /*
2626 * Unlike in global OOM situations, memcg is not in a physical
2627 * memory shortage. Allow dying and OOM-killed tasks to
2628 * bypass the last charges so that they can exit quickly and
2629 * free their memory.
2630 */
2631 if (unlikely(should_force_charge()))
2632 goto force;
2633
2634 /*
2635 * Prevent unbounded recursion when reclaim operations need to
2636 * allocate memory. This might exceed the limits temporarily,
2637 * but we prefer facilitating memory reclaim and getting back
2638 * under the limit over triggering OOM kills in these cases.
2639 */
2640 if (unlikely(current->flags & PF_MEMALLOC))
2641 goto force;
2642
2643 if (unlikely(task_in_memcg_oom(current)))
2644 goto nomem;
2645
2646 if (!gfpflags_allow_blocking(gfp_mask))
2647 goto nomem;
2648
2649 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2650
2651 psi_memstall_enter(&pflags);
2652 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2653 gfp_mask, may_swap);
2654 psi_memstall_leave(&pflags);
2655
2656 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2657 goto retry;
2658
2659 if (!drained) {
2660 drain_all_stock(mem_over_limit);
2661 drained = true;
2662 goto retry;
2663 }
2664
2665 if (gfp_mask & __GFP_NORETRY)
2666 goto nomem;
2667 /*
2668 * Even though the limit is exceeded at this point, reclaim
2669 * may have been able to free some pages. Retry the charge
2670 * before killing the task.
2671 *
2672 * Only for regular pages, though: huge pages are rather
2673 * unlikely to succeed so close to the limit, and we fall back
2674 * to regular pages anyway in case of failure.
2675 */
2676 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2677 goto retry;
2678 /*
2679 * At task move, charge accounts can be doubly counted. So, it's
2680 * better to wait until the end of task_move if something is going on.
2681 */
2682 if (mem_cgroup_wait_acct_move(mem_over_limit))
2683 goto retry;
2684
2685 if (nr_retries--)
2686 goto retry;
2687
2688 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2689 goto nomem;
2690
2691 if (fatal_signal_pending(current))
2692 goto force;
2693
2694 /*
2695 * keep retrying as long as the memcg oom killer is able to make
2696 * a forward progress or bypass the charge if the oom killer
2697 * couldn't make any progress.
2698 */
2699 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2700 get_order(nr_pages * PAGE_SIZE));
2701 switch (oom_status) {
2702 case OOM_SUCCESS:
2703 nr_retries = MAX_RECLAIM_RETRIES;
2704 goto retry;
2705 case OOM_FAILED:
2706 goto force;
2707 default:
2708 goto nomem;
2709 }
2710 nomem:
2711 if (!(gfp_mask & __GFP_NOFAIL))
2712 return -ENOMEM;
2713 force:
2714 /*
2715 * The allocation either can't fail or will lead to more memory
2716 * being freed very soon. Allow memory usage go over the limit
2717 * temporarily by force charging it.
2718 */
2719 page_counter_charge(&memcg->memory, nr_pages);
2720 if (do_memsw_account())
2721 page_counter_charge(&memcg->memsw, nr_pages);
2722
2723 return 0;
2724
2725 done_restock:
2726 if (batch > nr_pages)
2727 refill_stock(memcg, batch - nr_pages);
2728
2729 /*
2730 * If the hierarchy is above the normal consumption range, schedule
2731 * reclaim on returning to userland. We can perform reclaim here
2732 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2733 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2734 * not recorded as it most likely matches current's and won't
2735 * change in the meantime. As high limit is checked again before
2736 * reclaim, the cost of mismatch is negligible.
2737 */
2738 do {
2739 bool mem_high, swap_high;
2740
2741 mem_high = page_counter_read(&memcg->memory) >
2742 READ_ONCE(memcg->memory.high);
2743 swap_high = page_counter_read(&memcg->swap) >
2744 READ_ONCE(memcg->swap.high);
2745
2746 /* Don't bother a random interrupted task */
2747 if (in_interrupt()) {
2748 if (mem_high) {
2749 schedule_work(&memcg->high_work);
2750 break;
2751 }
2752 continue;
2753 }
2754
2755 if (mem_high || swap_high) {
2756 /*
2757 * The allocating tasks in this cgroup will need to do
2758 * reclaim or be throttled to prevent further growth
2759 * of the memory or swap footprints.
2760 *
2761 * Target some best-effort fairness between the tasks,
2762 * and distribute reclaim work and delay penalties
2763 * based on how much each task is actually allocating.
2764 */
2765 current->memcg_nr_pages_over_high += batch;
2766 set_notify_resume(current);
2767 break;
2768 }
2769 } while ((memcg = parent_mem_cgroup(memcg)));
2770
2771 return 0;
2772 }
2773
2774 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2775 unsigned int nr_pages)
2776 {
2777 if (mem_cgroup_is_root(memcg))
2778 return 0;
2779
2780 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2781 }
2782
2783 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2784 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2785 {
2786 if (mem_cgroup_is_root(memcg))
2787 return;
2788
2789 page_counter_uncharge(&memcg->memory, nr_pages);
2790 if (do_memsw_account())
2791 page_counter_uncharge(&memcg->memsw, nr_pages);
2792 }
2793 #endif
2794
2795 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2796 {
2797 VM_BUG_ON_PAGE(page_memcg(page), page);
2798 /*
2799 * Any of the following ensures page's memcg stability:
2800 *
2801 * - the page lock
2802 * - LRU isolation
2803 * - lock_page_memcg()
2804 * - exclusive reference
2805 */
2806 page->memcg_data = (unsigned long)memcg;
2807 }
2808
2809 static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2810 {
2811 struct mem_cgroup *memcg;
2812
2813 rcu_read_lock();
2814 retry:
2815 memcg = obj_cgroup_memcg(objcg);
2816 if (unlikely(!css_tryget(&memcg->css)))
2817 goto retry;
2818 rcu_read_unlock();
2819
2820 return memcg;
2821 }
2822
2823 #ifdef CONFIG_MEMCG_KMEM
2824 /*
2825 * The allocated objcg pointers array is not accounted directly.
2826 * Moreover, it should not come from DMA buffer and is not readily
2827 * reclaimable. So those GFP bits should be masked off.
2828 */
2829 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2830
2831 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2832 gfp_t gfp, bool new_page)
2833 {
2834 unsigned int objects = objs_per_slab_page(s, page);
2835 unsigned long memcg_data;
2836 void *vec;
2837
2838 gfp &= ~OBJCGS_CLEAR_MASK;
2839 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2840 page_to_nid(page));
2841 if (!vec)
2842 return -ENOMEM;
2843
2844 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2845 if (new_page) {
2846 /*
2847 * If the slab page is brand new and nobody can yet access
2848 * it's memcg_data, no synchronization is required and
2849 * memcg_data can be simply assigned.
2850 */
2851 page->memcg_data = memcg_data;
2852 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2853 /*
2854 * If the slab page is already in use, somebody can allocate
2855 * and assign obj_cgroups in parallel. In this case the existing
2856 * objcg vector should be reused.
2857 */
2858 kfree(vec);
2859 return 0;
2860 }
2861
2862 kmemleak_not_leak(vec);
2863 return 0;
2864 }
2865
2866 /*
2867 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2868 *
2869 * A passed kernel object can be a slab object or a generic kernel page, so
2870 * different mechanisms for getting the memory cgroup pointer should be used.
2871 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2872 * can not know for sure how the kernel object is implemented.
2873 * mem_cgroup_from_obj() can be safely used in such cases.
2874 *
2875 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2876 * cgroup_mutex, etc.
2877 */
2878 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2879 {
2880 struct page *page;
2881
2882 if (mem_cgroup_disabled())
2883 return NULL;
2884
2885 page = virt_to_head_page(p);
2886
2887 /*
2888 * Slab objects are accounted individually, not per-page.
2889 * Memcg membership data for each individual object is saved in
2890 * the page->obj_cgroups.
2891 */
2892 if (page_objcgs_check(page)) {
2893 struct obj_cgroup *objcg;
2894 unsigned int off;
2895
2896 off = obj_to_index(page->slab_cache, page, p);
2897 objcg = page_objcgs(page)[off];
2898 if (objcg)
2899 return obj_cgroup_memcg(objcg);
2900
2901 return NULL;
2902 }
2903
2904 /*
2905 * page_memcg_check() is used here, because page_has_obj_cgroups()
2906 * check above could fail because the object cgroups vector wasn't set
2907 * at that moment, but it can be set concurrently.
2908 * page_memcg_check(page) will guarantee that a proper memory
2909 * cgroup pointer or NULL will be returned.
2910 */
2911 return page_memcg_check(page);
2912 }
2913
2914 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2915 {
2916 struct obj_cgroup *objcg = NULL;
2917 struct mem_cgroup *memcg;
2918
2919 if (memcg_kmem_bypass())
2920 return NULL;
2921
2922 rcu_read_lock();
2923 if (unlikely(active_memcg()))
2924 memcg = active_memcg();
2925 else
2926 memcg = mem_cgroup_from_task(current);
2927
2928 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2929 objcg = rcu_dereference(memcg->objcg);
2930 if (objcg && obj_cgroup_tryget(objcg))
2931 break;
2932 objcg = NULL;
2933 }
2934 rcu_read_unlock();
2935
2936 return objcg;
2937 }
2938
2939 static int memcg_alloc_cache_id(void)
2940 {
2941 int id, size;
2942 int err;
2943
2944 id = ida_simple_get(&memcg_cache_ida,
2945 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2946 if (id < 0)
2947 return id;
2948
2949 if (id < memcg_nr_cache_ids)
2950 return id;
2951
2952 /*
2953 * There's no space for the new id in memcg_caches arrays,
2954 * so we have to grow them.
2955 */
2956 down_write(&memcg_cache_ids_sem);
2957
2958 size = 2 * (id + 1);
2959 if (size < MEMCG_CACHES_MIN_SIZE)
2960 size = MEMCG_CACHES_MIN_SIZE;
2961 else if (size > MEMCG_CACHES_MAX_SIZE)
2962 size = MEMCG_CACHES_MAX_SIZE;
2963
2964 err = memcg_update_all_list_lrus(size);
2965 if (!err)
2966 memcg_nr_cache_ids = size;
2967
2968 up_write(&memcg_cache_ids_sem);
2969
2970 if (err) {
2971 ida_simple_remove(&memcg_cache_ida, id);
2972 return err;
2973 }
2974 return id;
2975 }
2976
2977 static void memcg_free_cache_id(int id)
2978 {
2979 ida_simple_remove(&memcg_cache_ida, id);
2980 }
2981
2982 /*
2983 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2984 * @objcg: object cgroup to uncharge
2985 * @nr_pages: number of pages to uncharge
2986 */
2987 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2988 unsigned int nr_pages)
2989 {
2990 struct mem_cgroup *memcg;
2991
2992 memcg = get_mem_cgroup_from_objcg(objcg);
2993
2994 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2995 page_counter_uncharge(&memcg->kmem, nr_pages);
2996 refill_stock(memcg, nr_pages);
2997
2998 css_put(&memcg->css);
2999 }
3000
3001 /*
3002 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3003 * @objcg: object cgroup to charge
3004 * @gfp: reclaim mode
3005 * @nr_pages: number of pages to charge
3006 *
3007 * Returns 0 on success, an error code on failure.
3008 */
3009 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3010 unsigned int nr_pages)
3011 {
3012 struct page_counter *counter;
3013 struct mem_cgroup *memcg;
3014 int ret;
3015
3016 memcg = get_mem_cgroup_from_objcg(objcg);
3017
3018 ret = try_charge_memcg(memcg, gfp, nr_pages);
3019 if (ret)
3020 goto out;
3021
3022 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3023 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3024
3025 /*
3026 * Enforce __GFP_NOFAIL allocation because callers are not
3027 * prepared to see failures and likely do not have any failure
3028 * handling code.
3029 */
3030 if (gfp & __GFP_NOFAIL) {
3031 page_counter_charge(&memcg->kmem, nr_pages);
3032 goto out;
3033 }
3034 cancel_charge(memcg, nr_pages);
3035 ret = -ENOMEM;
3036 }
3037 out:
3038 css_put(&memcg->css);
3039
3040 return ret;
3041 }
3042
3043 /**
3044 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3045 * @page: page to charge
3046 * @gfp: reclaim mode
3047 * @order: allocation order
3048 *
3049 * Returns 0 on success, an error code on failure.
3050 */
3051 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3052 {
3053 struct obj_cgroup *objcg;
3054 int ret = 0;
3055
3056 objcg = get_obj_cgroup_from_current();
3057 if (objcg) {
3058 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3059 if (!ret) {
3060 page->memcg_data = (unsigned long)objcg |
3061 MEMCG_DATA_KMEM;
3062 return 0;
3063 }
3064 obj_cgroup_put(objcg);
3065 }
3066 return ret;
3067 }
3068
3069 /**
3070 * __memcg_kmem_uncharge_page: uncharge a kmem page
3071 * @page: page to uncharge
3072 * @order: allocation order
3073 */
3074 void __memcg_kmem_uncharge_page(struct page *page, int order)
3075 {
3076 struct obj_cgroup *objcg;
3077 unsigned int nr_pages = 1 << order;
3078
3079 if (!PageMemcgKmem(page))
3080 return;
3081
3082 objcg = __page_objcg(page);
3083 obj_cgroup_uncharge_pages(objcg, nr_pages);
3084 page->memcg_data = 0;
3085 obj_cgroup_put(objcg);
3086 }
3087
3088 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3089 enum node_stat_item idx, int nr)
3090 {
3091 unsigned long flags;
3092 struct obj_stock *stock = get_obj_stock(&flags);
3093 int *bytes;
3094
3095 /*
3096 * Save vmstat data in stock and skip vmstat array update unless
3097 * accumulating over a page of vmstat data or when pgdat or idx
3098 * changes.
3099 */
3100 if (stock->cached_objcg != objcg) {
3101 drain_obj_stock(stock);
3102 obj_cgroup_get(objcg);
3103 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3104 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3105 stock->cached_objcg = objcg;
3106 stock->cached_pgdat = pgdat;
3107 } else if (stock->cached_pgdat != pgdat) {
3108 /* Flush the existing cached vmstat data */
3109 if (stock->nr_slab_reclaimable_b) {
3110 mod_objcg_mlstate(objcg, pgdat, NR_SLAB_RECLAIMABLE_B,
3111 stock->nr_slab_reclaimable_b);
3112 stock->nr_slab_reclaimable_b = 0;
3113 }
3114 if (stock->nr_slab_unreclaimable_b) {
3115 mod_objcg_mlstate(objcg, pgdat, NR_SLAB_UNRECLAIMABLE_B,
3116 stock->nr_slab_unreclaimable_b);
3117 stock->nr_slab_unreclaimable_b = 0;
3118 }
3119 stock->cached_pgdat = pgdat;
3120 }
3121
3122 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3123 : &stock->nr_slab_unreclaimable_b;
3124 /*
3125 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3126 * cached locally at least once before pushing it out.
3127 */
3128 if (!*bytes) {
3129 *bytes = nr;
3130 nr = 0;
3131 } else {
3132 *bytes += nr;
3133 if (abs(*bytes) > PAGE_SIZE) {
3134 nr = *bytes;
3135 *bytes = 0;
3136 } else {
3137 nr = 0;
3138 }
3139 }
3140 if (nr)
3141 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3142
3143 put_obj_stock(flags);
3144 }
3145
3146 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3147 {
3148 unsigned long flags;
3149 struct obj_stock *stock = get_obj_stock(&flags);
3150 bool ret = false;
3151
3152 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3153 stock->nr_bytes -= nr_bytes;
3154 ret = true;
3155 }
3156
3157 put_obj_stock(flags);
3158
3159 return ret;
3160 }
3161
3162 static void drain_obj_stock(struct obj_stock *stock)
3163 {
3164 struct obj_cgroup *old = stock->cached_objcg;
3165
3166 if (!old)
3167 return;
3168
3169 if (stock->nr_bytes) {
3170 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3171 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3172
3173 if (nr_pages)
3174 obj_cgroup_uncharge_pages(old, nr_pages);
3175
3176 /*
3177 * The leftover is flushed to the centralized per-memcg value.
3178 * On the next attempt to refill obj stock it will be moved
3179 * to a per-cpu stock (probably, on an other CPU), see
3180 * refill_obj_stock().
3181 *
3182 * How often it's flushed is a trade-off between the memory
3183 * limit enforcement accuracy and potential CPU contention,
3184 * so it might be changed in the future.
3185 */
3186 atomic_add(nr_bytes, &old->nr_charged_bytes);
3187 stock->nr_bytes = 0;
3188 }
3189
3190 /*
3191 * Flush the vmstat data in current stock
3192 */
3193 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3194 if (stock->nr_slab_reclaimable_b) {
3195 mod_objcg_mlstate(old, stock->cached_pgdat,
3196 NR_SLAB_RECLAIMABLE_B,
3197 stock->nr_slab_reclaimable_b);
3198 stock->nr_slab_reclaimable_b = 0;
3199 }
3200 if (stock->nr_slab_unreclaimable_b) {
3201 mod_objcg_mlstate(old, stock->cached_pgdat,
3202 NR_SLAB_UNRECLAIMABLE_B,
3203 stock->nr_slab_unreclaimable_b);
3204 stock->nr_slab_unreclaimable_b = 0;
3205 }
3206 stock->cached_pgdat = NULL;
3207 }
3208
3209 obj_cgroup_put(old);
3210 stock->cached_objcg = NULL;
3211 }
3212
3213 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3214 struct mem_cgroup *root_memcg)
3215 {
3216 struct mem_cgroup *memcg;
3217
3218 if (in_task() && stock->task_obj.cached_objcg) {
3219 memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3220 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3221 return true;
3222 }
3223 if (stock->irq_obj.cached_objcg) {
3224 memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
3225 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3226 return true;
3227 }
3228
3229 return false;
3230 }
3231
3232 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3233 bool allow_uncharge)
3234 {
3235 unsigned long flags;
3236 struct obj_stock *stock = get_obj_stock(&flags);
3237 unsigned int nr_pages = 0;
3238
3239 if (stock->cached_objcg != objcg) { /* reset if necessary */
3240 drain_obj_stock(stock);
3241 obj_cgroup_get(objcg);
3242 stock->cached_objcg = objcg;
3243 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3244 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3245 allow_uncharge = true; /* Allow uncharge when objcg changes */
3246 }
3247 stock->nr_bytes += nr_bytes;
3248
3249 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3250 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3251 stock->nr_bytes &= (PAGE_SIZE - 1);
3252 }
3253
3254 put_obj_stock(flags);
3255
3256 if (nr_pages)
3257 obj_cgroup_uncharge_pages(objcg, nr_pages);
3258 }
3259
3260 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3261 {
3262 unsigned int nr_pages, nr_bytes;
3263 int ret;
3264
3265 if (consume_obj_stock(objcg, size))
3266 return 0;
3267
3268 /*
3269 * In theory, objcg->nr_charged_bytes can have enough
3270 * pre-charged bytes to satisfy the allocation. However,
3271 * flushing objcg->nr_charged_bytes requires two atomic
3272 * operations, and objcg->nr_charged_bytes can't be big.
3273 * The shared objcg->nr_charged_bytes can also become a
3274 * performance bottleneck if all tasks of the same memcg are
3275 * trying to update it. So it's better to ignore it and try
3276 * grab some new pages. The stock's nr_bytes will be flushed to
3277 * objcg->nr_charged_bytes later on when objcg changes.
3278 *
3279 * The stock's nr_bytes may contain enough pre-charged bytes
3280 * to allow one less page from being charged, but we can't rely
3281 * on the pre-charged bytes not being changed outside of
3282 * consume_obj_stock() or refill_obj_stock(). So ignore those
3283 * pre-charged bytes as well when charging pages. To avoid a
3284 * page uncharge right after a page charge, we set the
3285 * allow_uncharge flag to false when calling refill_obj_stock()
3286 * to temporarily allow the pre-charged bytes to exceed the page
3287 * size limit. The maximum reachable value of the pre-charged
3288 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3289 * race.
3290 */
3291 nr_pages = size >> PAGE_SHIFT;
3292 nr_bytes = size & (PAGE_SIZE - 1);
3293
3294 if (nr_bytes)
3295 nr_pages += 1;
3296
3297 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3298 if (!ret && nr_bytes)
3299 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3300
3301 return ret;
3302 }
3303
3304 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3305 {
3306 refill_obj_stock(objcg, size, true);
3307 }
3308
3309 #endif /* CONFIG_MEMCG_KMEM */
3310
3311 /*
3312 * Because page_memcg(head) is not set on tails, set it now.
3313 */
3314 void split_page_memcg(struct page *head, unsigned int nr)
3315 {
3316 struct mem_cgroup *memcg = page_memcg(head);
3317 int i;
3318
3319 if (mem_cgroup_disabled() || !memcg)
3320 return;
3321
3322 for (i = 1; i < nr; i++)
3323 head[i].memcg_data = head->memcg_data;
3324
3325 if (PageMemcgKmem(head))
3326 obj_cgroup_get_many(__page_objcg(head), nr - 1);
3327 else
3328 css_get_many(&memcg->css, nr - 1);
3329 }
3330
3331 #ifdef CONFIG_MEMCG_SWAP
3332 /**
3333 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3334 * @entry: swap entry to be moved
3335 * @from: mem_cgroup which the entry is moved from
3336 * @to: mem_cgroup which the entry is moved to
3337 *
3338 * It succeeds only when the swap_cgroup's record for this entry is the same
3339 * as the mem_cgroup's id of @from.
3340 *
3341 * Returns 0 on success, -EINVAL on failure.
3342 *
3343 * The caller must have charged to @to, IOW, called page_counter_charge() about
3344 * both res and memsw, and called css_get().
3345 */
3346 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3347 struct mem_cgroup *from, struct mem_cgroup *to)
3348 {
3349 unsigned short old_id, new_id;
3350
3351 old_id = mem_cgroup_id(from);
3352 new_id = mem_cgroup_id(to);
3353
3354 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3355 mod_memcg_state(from, MEMCG_SWAP, -1);
3356 mod_memcg_state(to, MEMCG_SWAP, 1);
3357 return 0;
3358 }
3359 return -EINVAL;
3360 }
3361 #else
3362 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3363 struct mem_cgroup *from, struct mem_cgroup *to)
3364 {
3365 return -EINVAL;
3366 }
3367 #endif
3368
3369 static DEFINE_MUTEX(memcg_max_mutex);
3370
3371 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3372 unsigned long max, bool memsw)
3373 {
3374 bool enlarge = false;
3375 bool drained = false;
3376 int ret;
3377 bool limits_invariant;
3378 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3379
3380 do {
3381 if (signal_pending(current)) {
3382 ret = -EINTR;
3383 break;
3384 }
3385
3386 mutex_lock(&memcg_max_mutex);
3387 /*
3388 * Make sure that the new limit (memsw or memory limit) doesn't
3389 * break our basic invariant rule memory.max <= memsw.max.
3390 */
3391 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3392 max <= memcg->memsw.max;
3393 if (!limits_invariant) {
3394 mutex_unlock(&memcg_max_mutex);
3395 ret = -EINVAL;
3396 break;
3397 }
3398 if (max > counter->max)
3399 enlarge = true;
3400 ret = page_counter_set_max(counter, max);
3401 mutex_unlock(&memcg_max_mutex);
3402
3403 if (!ret)
3404 break;
3405
3406 if (!drained) {
3407 drain_all_stock(memcg);
3408 drained = true;
3409 continue;
3410 }
3411
3412 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3413 GFP_KERNEL, !memsw)) {
3414 ret = -EBUSY;
3415 break;
3416 }
3417 } while (true);
3418
3419 if (!ret && enlarge)
3420 memcg_oom_recover(memcg);
3421
3422 return ret;
3423 }
3424
3425 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3426 gfp_t gfp_mask,
3427 unsigned long *total_scanned)
3428 {
3429 unsigned long nr_reclaimed = 0;
3430 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3431 unsigned long reclaimed;
3432 int loop = 0;
3433 struct mem_cgroup_tree_per_node *mctz;
3434 unsigned long excess;
3435 unsigned long nr_scanned;
3436
3437 if (order > 0)
3438 return 0;
3439
3440 mctz = soft_limit_tree_node(pgdat->node_id);
3441
3442 /*
3443 * Do not even bother to check the largest node if the root
3444 * is empty. Do it lockless to prevent lock bouncing. Races
3445 * are acceptable as soft limit is best effort anyway.
3446 */
3447 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3448 return 0;
3449
3450 /*
3451 * This loop can run a while, specially if mem_cgroup's continuously
3452 * keep exceeding their soft limit and putting the system under
3453 * pressure
3454 */
3455 do {
3456 if (next_mz)
3457 mz = next_mz;
3458 else
3459 mz = mem_cgroup_largest_soft_limit_node(mctz);
3460 if (!mz)
3461 break;
3462
3463 nr_scanned = 0;
3464 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3465 gfp_mask, &nr_scanned);
3466 nr_reclaimed += reclaimed;
3467 *total_scanned += nr_scanned;
3468 spin_lock_irq(&mctz->lock);
3469 __mem_cgroup_remove_exceeded(mz, mctz);
3470
3471 /*
3472 * If we failed to reclaim anything from this memory cgroup
3473 * it is time to move on to the next cgroup
3474 */
3475 next_mz = NULL;
3476 if (!reclaimed)
3477 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3478
3479 excess = soft_limit_excess(mz->memcg);
3480 /*
3481 * One school of thought says that we should not add
3482 * back the node to the tree if reclaim returns 0.
3483 * But our reclaim could return 0, simply because due
3484 * to priority we are exposing a smaller subset of
3485 * memory to reclaim from. Consider this as a longer
3486 * term TODO.
3487 */
3488 /* If excess == 0, no tree ops */
3489 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3490 spin_unlock_irq(&mctz->lock);
3491 css_put(&mz->memcg->css);
3492 loop++;
3493 /*
3494 * Could not reclaim anything and there are no more
3495 * mem cgroups to try or we seem to be looping without
3496 * reclaiming anything.
3497 */
3498 if (!nr_reclaimed &&
3499 (next_mz == NULL ||
3500 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3501 break;
3502 } while (!nr_reclaimed);
3503 if (next_mz)
3504 css_put(&next_mz->memcg->css);
3505 return nr_reclaimed;
3506 }
3507
3508 /*
3509 * Reclaims as many pages from the given memcg as possible.
3510 *
3511 * Caller is responsible for holding css reference for memcg.
3512 */
3513 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3514 {
3515 int nr_retries = MAX_RECLAIM_RETRIES;
3516
3517 /* we call try-to-free pages for make this cgroup empty */
3518 lru_add_drain_all();
3519
3520 drain_all_stock(memcg);
3521
3522 /* try to free all pages in this cgroup */
3523 while (nr_retries && page_counter_read(&memcg->memory)) {
3524 int progress;
3525
3526 if (signal_pending(current))
3527 return -EINTR;
3528
3529 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3530 GFP_KERNEL, true);
3531 if (!progress) {
3532 nr_retries--;
3533 /* maybe some writeback is necessary */
3534 congestion_wait(BLK_RW_ASYNC, HZ/10);
3535 }
3536
3537 }
3538
3539 return 0;
3540 }
3541
3542 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3543 char *buf, size_t nbytes,
3544 loff_t off)
3545 {
3546 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3547
3548 if (mem_cgroup_is_root(memcg))
3549 return -EINVAL;
3550 return mem_cgroup_force_empty(memcg) ?: nbytes;
3551 }
3552
3553 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3554 struct cftype *cft)
3555 {
3556 return 1;
3557 }
3558
3559 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3560 struct cftype *cft, u64 val)
3561 {
3562 if (val == 1)
3563 return 0;
3564
3565 pr_warn_once("Non-hierarchical mode is deprecated. "
3566 "Please report your usecase to linux-mm@kvack.org if you "
3567 "depend on this functionality.\n");
3568
3569 return -EINVAL;
3570 }
3571
3572 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3573 {
3574 unsigned long val;
3575
3576 if (mem_cgroup_is_root(memcg)) {
3577 cgroup_rstat_flush(memcg->css.cgroup);
3578 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3579 memcg_page_state(memcg, NR_ANON_MAPPED);
3580 if (swap)
3581 val += memcg_page_state(memcg, MEMCG_SWAP);
3582 } else {
3583 if (!swap)
3584 val = page_counter_read(&memcg->memory);
3585 else
3586 val = page_counter_read(&memcg->memsw);
3587 }
3588 return val;
3589 }
3590
3591 enum {
3592 RES_USAGE,
3593 RES_LIMIT,
3594 RES_MAX_USAGE,
3595 RES_FAILCNT,
3596 RES_SOFT_LIMIT,
3597 };
3598
3599 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3600 struct cftype *cft)
3601 {
3602 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3603 struct page_counter *counter;
3604
3605 switch (MEMFILE_TYPE(cft->private)) {
3606 case _MEM:
3607 counter = &memcg->memory;
3608 break;
3609 case _MEMSWAP:
3610 counter = &memcg->memsw;
3611 break;
3612 case _KMEM:
3613 counter = &memcg->kmem;
3614 break;
3615 case _TCP:
3616 counter = &memcg->tcpmem;
3617 break;
3618 default:
3619 BUG();
3620 }
3621
3622 switch (MEMFILE_ATTR(cft->private)) {
3623 case RES_USAGE:
3624 if (counter == &memcg->memory)
3625 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3626 if (counter == &memcg->memsw)
3627 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3628 return (u64)page_counter_read(counter) * PAGE_SIZE;
3629 case RES_LIMIT:
3630 return (u64)counter->max * PAGE_SIZE;
3631 case RES_MAX_USAGE:
3632 return (u64)counter->watermark * PAGE_SIZE;
3633 case RES_FAILCNT:
3634 return counter->failcnt;
3635 case RES_SOFT_LIMIT:
3636 return (u64)memcg->soft_limit * PAGE_SIZE;
3637 default:
3638 BUG();
3639 }
3640 }
3641
3642 #ifdef CONFIG_MEMCG_KMEM
3643 static int memcg_online_kmem(struct mem_cgroup *memcg)
3644 {
3645 struct obj_cgroup *objcg;
3646 int memcg_id;
3647
3648 if (cgroup_memory_nokmem)
3649 return 0;
3650
3651 BUG_ON(memcg->kmemcg_id >= 0);
3652 BUG_ON(memcg->kmem_state);
3653
3654 memcg_id = memcg_alloc_cache_id();
3655 if (memcg_id < 0)
3656 return memcg_id;
3657
3658 objcg = obj_cgroup_alloc();
3659 if (!objcg) {
3660 memcg_free_cache_id(memcg_id);
3661 return -ENOMEM;
3662 }
3663 objcg->memcg = memcg;
3664 rcu_assign_pointer(memcg->objcg, objcg);
3665
3666 static_branch_enable(&memcg_kmem_enabled_key);
3667
3668 memcg->kmemcg_id = memcg_id;
3669 memcg->kmem_state = KMEM_ONLINE;
3670
3671 return 0;
3672 }
3673
3674 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3675 {
3676 struct cgroup_subsys_state *css;
3677 struct mem_cgroup *parent, *child;
3678 int kmemcg_id;
3679
3680 if (memcg->kmem_state != KMEM_ONLINE)
3681 return;
3682
3683 memcg->kmem_state = KMEM_ALLOCATED;
3684
3685 parent = parent_mem_cgroup(memcg);
3686 if (!parent)
3687 parent = root_mem_cgroup;
3688
3689 memcg_reparent_objcgs(memcg, parent);
3690
3691 kmemcg_id = memcg->kmemcg_id;
3692 BUG_ON(kmemcg_id < 0);
3693
3694 /*
3695 * Change kmemcg_id of this cgroup and all its descendants to the
3696 * parent's id, and then move all entries from this cgroup's list_lrus
3697 * to ones of the parent. After we have finished, all list_lrus
3698 * corresponding to this cgroup are guaranteed to remain empty. The
3699 * ordering is imposed by list_lru_node->lock taken by
3700 * memcg_drain_all_list_lrus().
3701 */
3702 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3703 css_for_each_descendant_pre(css, &memcg->css) {
3704 child = mem_cgroup_from_css(css);
3705 BUG_ON(child->kmemcg_id != kmemcg_id);
3706 child->kmemcg_id = parent->kmemcg_id;
3707 }
3708 rcu_read_unlock();
3709
3710 memcg_drain_all_list_lrus(kmemcg_id, parent);
3711
3712 memcg_free_cache_id(kmemcg_id);
3713 }
3714
3715 static void memcg_free_kmem(struct mem_cgroup *memcg)
3716 {
3717 /* css_alloc() failed, offlining didn't happen */
3718 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3719 memcg_offline_kmem(memcg);
3720 }
3721 #else
3722 static int memcg_online_kmem(struct mem_cgroup *memcg)
3723 {
3724 return 0;
3725 }
3726 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3727 {
3728 }
3729 static void memcg_free_kmem(struct mem_cgroup *memcg)
3730 {
3731 }
3732 #endif /* CONFIG_MEMCG_KMEM */
3733
3734 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3735 unsigned long max)
3736 {
3737 int ret;
3738
3739 mutex_lock(&memcg_max_mutex);
3740 ret = page_counter_set_max(&memcg->kmem, max);
3741 mutex_unlock(&memcg_max_mutex);
3742 return ret;
3743 }
3744
3745 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3746 {
3747 int ret;
3748
3749 mutex_lock(&memcg_max_mutex);
3750
3751 ret = page_counter_set_max(&memcg->tcpmem, max);
3752 if (ret)
3753 goto out;
3754
3755 if (!memcg->tcpmem_active) {
3756 /*
3757 * The active flag needs to be written after the static_key
3758 * update. This is what guarantees that the socket activation
3759 * function is the last one to run. See mem_cgroup_sk_alloc()
3760 * for details, and note that we don't mark any socket as
3761 * belonging to this memcg until that flag is up.
3762 *
3763 * We need to do this, because static_keys will span multiple
3764 * sites, but we can't control their order. If we mark a socket
3765 * as accounted, but the accounting functions are not patched in
3766 * yet, we'll lose accounting.
3767 *
3768 * We never race with the readers in mem_cgroup_sk_alloc(),
3769 * because when this value change, the code to process it is not
3770 * patched in yet.
3771 */
3772 static_branch_inc(&memcg_sockets_enabled_key);
3773 memcg->tcpmem_active = true;
3774 }
3775 out:
3776 mutex_unlock(&memcg_max_mutex);
3777 return ret;
3778 }
3779
3780 /*
3781 * The user of this function is...
3782 * RES_LIMIT.
3783 */
3784 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3785 char *buf, size_t nbytes, loff_t off)
3786 {
3787 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3788 unsigned long nr_pages;
3789 int ret;
3790
3791 buf = strstrip(buf);
3792 ret = page_counter_memparse(buf, "-1", &nr_pages);
3793 if (ret)
3794 return ret;
3795
3796 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3797 case RES_LIMIT:
3798 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3799 ret = -EINVAL;
3800 break;
3801 }
3802 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3803 case _MEM:
3804 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3805 break;
3806 case _MEMSWAP:
3807 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3808 break;
3809 case _KMEM:
3810 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3811 "Please report your usecase to linux-mm@kvack.org if you "
3812 "depend on this functionality.\n");
3813 ret = memcg_update_kmem_max(memcg, nr_pages);
3814 break;
3815 case _TCP:
3816 ret = memcg_update_tcp_max(memcg, nr_pages);
3817 break;
3818 }
3819 break;
3820 case RES_SOFT_LIMIT:
3821 memcg->soft_limit = nr_pages;
3822 ret = 0;
3823 break;
3824 }
3825 return ret ?: nbytes;
3826 }
3827
3828 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3829 size_t nbytes, loff_t off)
3830 {
3831 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3832 struct page_counter *counter;
3833
3834 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3835 case _MEM:
3836 counter = &memcg->memory;
3837 break;
3838 case _MEMSWAP:
3839 counter = &memcg->memsw;
3840 break;
3841 case _KMEM:
3842 counter = &memcg->kmem;
3843 break;
3844 case _TCP:
3845 counter = &memcg->tcpmem;
3846 break;
3847 default:
3848 BUG();
3849 }
3850
3851 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3852 case RES_MAX_USAGE:
3853 page_counter_reset_watermark(counter);
3854 break;
3855 case RES_FAILCNT:
3856 counter->failcnt = 0;
3857 break;
3858 default:
3859 BUG();
3860 }
3861
3862 return nbytes;
3863 }
3864
3865 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3866 struct cftype *cft)
3867 {
3868 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3869 }
3870
3871 #ifdef CONFIG_MMU
3872 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3873 struct cftype *cft, u64 val)
3874 {
3875 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3876
3877 if (val & ~MOVE_MASK)
3878 return -EINVAL;
3879
3880 /*
3881 * No kind of locking is needed in here, because ->can_attach() will
3882 * check this value once in the beginning of the process, and then carry
3883 * on with stale data. This means that changes to this value will only
3884 * affect task migrations starting after the change.
3885 */
3886 memcg->move_charge_at_immigrate = val;
3887 return 0;
3888 }
3889 #else
3890 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3891 struct cftype *cft, u64 val)
3892 {
3893 return -ENOSYS;
3894 }
3895 #endif
3896
3897 #ifdef CONFIG_NUMA
3898
3899 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3900 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3901 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3902
3903 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3904 int nid, unsigned int lru_mask, bool tree)
3905 {
3906 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3907 unsigned long nr = 0;
3908 enum lru_list lru;
3909
3910 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3911
3912 for_each_lru(lru) {
3913 if (!(BIT(lru) & lru_mask))
3914 continue;
3915 if (tree)
3916 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3917 else
3918 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3919 }
3920 return nr;
3921 }
3922
3923 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3924 unsigned int lru_mask,
3925 bool tree)
3926 {
3927 unsigned long nr = 0;
3928 enum lru_list lru;
3929
3930 for_each_lru(lru) {
3931 if (!(BIT(lru) & lru_mask))
3932 continue;
3933 if (tree)
3934 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3935 else
3936 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3937 }
3938 return nr;
3939 }
3940
3941 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3942 {
3943 struct numa_stat {
3944 const char *name;
3945 unsigned int lru_mask;
3946 };
3947
3948 static const struct numa_stat stats[] = {
3949 { "total", LRU_ALL },
3950 { "file", LRU_ALL_FILE },
3951 { "anon", LRU_ALL_ANON },
3952 { "unevictable", BIT(LRU_UNEVICTABLE) },
3953 };
3954 const struct numa_stat *stat;
3955 int nid;
3956 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3957
3958 cgroup_rstat_flush(memcg->css.cgroup);
3959
3960 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3961 seq_printf(m, "%s=%lu", stat->name,
3962 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3963 false));
3964 for_each_node_state(nid, N_MEMORY)
3965 seq_printf(m, " N%d=%lu", nid,
3966 mem_cgroup_node_nr_lru_pages(memcg, nid,
3967 stat->lru_mask, false));
3968 seq_putc(m, '\n');
3969 }
3970
3971 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3972
3973 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3974 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3975 true));
3976 for_each_node_state(nid, N_MEMORY)
3977 seq_printf(m, " N%d=%lu", nid,
3978 mem_cgroup_node_nr_lru_pages(memcg, nid,
3979 stat->lru_mask, true));
3980 seq_putc(m, '\n');
3981 }
3982
3983 return 0;
3984 }
3985 #endif /* CONFIG_NUMA */
3986
3987 static const unsigned int memcg1_stats[] = {
3988 NR_FILE_PAGES,
3989 NR_ANON_MAPPED,
3990 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3991 NR_ANON_THPS,
3992 #endif
3993 NR_SHMEM,
3994 NR_FILE_MAPPED,
3995 NR_FILE_DIRTY,
3996 NR_WRITEBACK,
3997 MEMCG_SWAP,
3998 };
3999
4000 static const char *const memcg1_stat_names[] = {
4001 "cache",
4002 "rss",
4003 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4004 "rss_huge",
4005 #endif
4006 "shmem",
4007 "mapped_file",
4008 "dirty",
4009 "writeback",
4010 "swap",
4011 };
4012
4013 /* Universal VM events cgroup1 shows, original sort order */
4014 static const unsigned int memcg1_events[] = {
4015 PGPGIN,
4016 PGPGOUT,
4017 PGFAULT,
4018 PGMAJFAULT,
4019 };
4020
4021 static int memcg_stat_show(struct seq_file *m, void *v)
4022 {
4023 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4024 unsigned long memory, memsw;
4025 struct mem_cgroup *mi;
4026 unsigned int i;
4027
4028 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4029
4030 cgroup_rstat_flush(memcg->css.cgroup);
4031
4032 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4033 unsigned long nr;
4034
4035 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4036 continue;
4037 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4038 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4039 }
4040
4041 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4042 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4043 memcg_events_local(memcg, memcg1_events[i]));
4044
4045 for (i = 0; i < NR_LRU_LISTS; i++)
4046 seq_printf(m, "%s %lu\n", lru_list_name(i),
4047 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4048 PAGE_SIZE);
4049
4050 /* Hierarchical information */
4051 memory = memsw = PAGE_COUNTER_MAX;
4052 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4053 memory = min(memory, READ_ONCE(mi->memory.max));
4054 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4055 }
4056 seq_printf(m, "hierarchical_memory_limit %llu\n",
4057 (u64)memory * PAGE_SIZE);
4058 if (do_memsw_account())
4059 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4060 (u64)memsw * PAGE_SIZE);
4061
4062 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4063 unsigned long nr;
4064
4065 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4066 continue;
4067 nr = memcg_page_state(memcg, memcg1_stats[i]);
4068 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4069 (u64)nr * PAGE_SIZE);
4070 }
4071
4072 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4073 seq_printf(m, "total_%s %llu\n",
4074 vm_event_name(memcg1_events[i]),
4075 (u64)memcg_events(memcg, memcg1_events[i]));
4076
4077 for (i = 0; i < NR_LRU_LISTS; i++)
4078 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4079 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4080 PAGE_SIZE);
4081
4082 #ifdef CONFIG_DEBUG_VM
4083 {
4084 pg_data_t *pgdat;
4085 struct mem_cgroup_per_node *mz;
4086 unsigned long anon_cost = 0;
4087 unsigned long file_cost = 0;
4088
4089 for_each_online_pgdat(pgdat) {
4090 mz = memcg->nodeinfo[pgdat->node_id];
4091
4092 anon_cost += mz->lruvec.anon_cost;
4093 file_cost += mz->lruvec.file_cost;
4094 }
4095 seq_printf(m, "anon_cost %lu\n", anon_cost);
4096 seq_printf(m, "file_cost %lu\n", file_cost);
4097 }
4098 #endif
4099
4100 return 0;
4101 }
4102
4103 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4104 struct cftype *cft)
4105 {
4106 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4107
4108 return mem_cgroup_swappiness(memcg);
4109 }
4110
4111 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4112 struct cftype *cft, u64 val)
4113 {
4114 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4115
4116 if (val > 100)
4117 return -EINVAL;
4118
4119 if (!mem_cgroup_is_root(memcg))
4120 memcg->swappiness = val;
4121 else
4122 vm_swappiness = val;
4123
4124 return 0;
4125 }
4126
4127 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4128 {
4129 struct mem_cgroup_threshold_ary *t;
4130 unsigned long usage;
4131 int i;
4132
4133 rcu_read_lock();
4134 if (!swap)
4135 t = rcu_dereference(memcg->thresholds.primary);
4136 else
4137 t = rcu_dereference(memcg->memsw_thresholds.primary);
4138
4139 if (!t)
4140 goto unlock;
4141
4142 usage = mem_cgroup_usage(memcg, swap);
4143
4144 /*
4145 * current_threshold points to threshold just below or equal to usage.
4146 * If it's not true, a threshold was crossed after last
4147 * call of __mem_cgroup_threshold().
4148 */
4149 i = t->current_threshold;
4150
4151 /*
4152 * Iterate backward over array of thresholds starting from
4153 * current_threshold and check if a threshold is crossed.
4154 * If none of thresholds below usage is crossed, we read
4155 * only one element of the array here.
4156 */
4157 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4158 eventfd_signal(t->entries[i].eventfd, 1);
4159
4160 /* i = current_threshold + 1 */
4161 i++;
4162
4163 /*
4164 * Iterate forward over array of thresholds starting from
4165 * current_threshold+1 and check if a threshold is crossed.
4166 * If none of thresholds above usage is crossed, we read
4167 * only one element of the array here.
4168 */
4169 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4170 eventfd_signal(t->entries[i].eventfd, 1);
4171
4172 /* Update current_threshold */
4173 t->current_threshold = i - 1;
4174 unlock:
4175 rcu_read_unlock();
4176 }
4177
4178 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4179 {
4180 while (memcg) {
4181 __mem_cgroup_threshold(memcg, false);
4182 if (do_memsw_account())
4183 __mem_cgroup_threshold(memcg, true);
4184
4185 memcg = parent_mem_cgroup(memcg);
4186 }
4187 }
4188
4189 static int compare_thresholds(const void *a, const void *b)
4190 {
4191 const struct mem_cgroup_threshold *_a = a;
4192 const struct mem_cgroup_threshold *_b = b;
4193
4194 if (_a->threshold > _b->threshold)
4195 return 1;
4196
4197 if (_a->threshold < _b->threshold)
4198 return -1;
4199
4200 return 0;
4201 }
4202
4203 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4204 {
4205 struct mem_cgroup_eventfd_list *ev;
4206
4207 spin_lock(&memcg_oom_lock);
4208
4209 list_for_each_entry(ev, &memcg->oom_notify, list)
4210 eventfd_signal(ev->eventfd, 1);
4211
4212 spin_unlock(&memcg_oom_lock);
4213 return 0;
4214 }
4215
4216 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4217 {
4218 struct mem_cgroup *iter;
4219
4220 for_each_mem_cgroup_tree(iter, memcg)
4221 mem_cgroup_oom_notify_cb(iter);
4222 }
4223
4224 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4225 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4226 {
4227 struct mem_cgroup_thresholds *thresholds;
4228 struct mem_cgroup_threshold_ary *new;
4229 unsigned long threshold;
4230 unsigned long usage;
4231 int i, size, ret;
4232
4233 ret = page_counter_memparse(args, "-1", &threshold);
4234 if (ret)
4235 return ret;
4236
4237 mutex_lock(&memcg->thresholds_lock);
4238
4239 if (type == _MEM) {
4240 thresholds = &memcg->thresholds;
4241 usage = mem_cgroup_usage(memcg, false);
4242 } else if (type == _MEMSWAP) {
4243 thresholds = &memcg->memsw_thresholds;
4244 usage = mem_cgroup_usage(memcg, true);
4245 } else
4246 BUG();
4247
4248 /* Check if a threshold crossed before adding a new one */
4249 if (thresholds->primary)
4250 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4251
4252 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4253
4254 /* Allocate memory for new array of thresholds */
4255 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4256 if (!new) {
4257 ret = -ENOMEM;
4258 goto unlock;
4259 }
4260 new->size = size;
4261
4262 /* Copy thresholds (if any) to new array */
4263 if (thresholds->primary)
4264 memcpy(new->entries, thresholds->primary->entries,
4265 flex_array_size(new, entries, size - 1));
4266
4267 /* Add new threshold */
4268 new->entries[size - 1].eventfd = eventfd;
4269 new->entries[size - 1].threshold = threshold;
4270
4271 /* Sort thresholds. Registering of new threshold isn't time-critical */
4272 sort(new->entries, size, sizeof(*new->entries),
4273 compare_thresholds, NULL);
4274
4275 /* Find current threshold */
4276 new->current_threshold = -1;
4277 for (i = 0; i < size; i++) {
4278 if (new->entries[i].threshold <= usage) {
4279 /*
4280 * new->current_threshold will not be used until
4281 * rcu_assign_pointer(), so it's safe to increment
4282 * it here.
4283 */
4284 ++new->current_threshold;
4285 } else
4286 break;
4287 }
4288
4289 /* Free old spare buffer and save old primary buffer as spare */
4290 kfree(thresholds->spare);
4291 thresholds->spare = thresholds->primary;
4292
4293 rcu_assign_pointer(thresholds->primary, new);
4294
4295 /* To be sure that nobody uses thresholds */
4296 synchronize_rcu();
4297
4298 unlock:
4299 mutex_unlock(&memcg->thresholds_lock);
4300
4301 return ret;
4302 }
4303
4304 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4305 struct eventfd_ctx *eventfd, const char *args)
4306 {
4307 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4308 }
4309
4310 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4311 struct eventfd_ctx *eventfd, const char *args)
4312 {
4313 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4314 }
4315
4316 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4317 struct eventfd_ctx *eventfd, enum res_type type)
4318 {
4319 struct mem_cgroup_thresholds *thresholds;
4320 struct mem_cgroup_threshold_ary *new;
4321 unsigned long usage;
4322 int i, j, size, entries;
4323
4324 mutex_lock(&memcg->thresholds_lock);
4325
4326 if (type == _MEM) {
4327 thresholds = &memcg->thresholds;
4328 usage = mem_cgroup_usage(memcg, false);
4329 } else if (type == _MEMSWAP) {
4330 thresholds = &memcg->memsw_thresholds;
4331 usage = mem_cgroup_usage(memcg, true);
4332 } else
4333 BUG();
4334
4335 if (!thresholds->primary)
4336 goto unlock;
4337
4338 /* Check if a threshold crossed before removing */
4339 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4340
4341 /* Calculate new number of threshold */
4342 size = entries = 0;
4343 for (i = 0; i < thresholds->primary->size; i++) {
4344 if (thresholds->primary->entries[i].eventfd != eventfd)
4345 size++;
4346 else
4347 entries++;
4348 }
4349
4350 new = thresholds->spare;
4351
4352 /* If no items related to eventfd have been cleared, nothing to do */
4353 if (!entries)
4354 goto unlock;
4355
4356 /* Set thresholds array to NULL if we don't have thresholds */
4357 if (!size) {
4358 kfree(new);
4359 new = NULL;
4360 goto swap_buffers;
4361 }
4362
4363 new->size = size;
4364
4365 /* Copy thresholds and find current threshold */
4366 new->current_threshold = -1;
4367 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4368 if (thresholds->primary->entries[i].eventfd == eventfd)
4369 continue;
4370
4371 new->entries[j] = thresholds->primary->entries[i];
4372 if (new->entries[j].threshold <= usage) {
4373 /*
4374 * new->current_threshold will not be used
4375 * until rcu_assign_pointer(), so it's safe to increment
4376 * it here.
4377 */
4378 ++new->current_threshold;
4379 }
4380 j++;
4381 }
4382
4383 swap_buffers:
4384 /* Swap primary and spare array */
4385 thresholds->spare = thresholds->primary;
4386
4387 rcu_assign_pointer(thresholds->primary, new);
4388
4389 /* To be sure that nobody uses thresholds */
4390 synchronize_rcu();
4391
4392 /* If all events are unregistered, free the spare array */
4393 if (!new) {
4394 kfree(thresholds->spare);
4395 thresholds->spare = NULL;
4396 }
4397 unlock:
4398 mutex_unlock(&memcg->thresholds_lock);
4399 }
4400
4401 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4402 struct eventfd_ctx *eventfd)
4403 {
4404 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4405 }
4406
4407 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4408 struct eventfd_ctx *eventfd)
4409 {
4410 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4411 }
4412
4413 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4414 struct eventfd_ctx *eventfd, const char *args)
4415 {
4416 struct mem_cgroup_eventfd_list *event;
4417
4418 event = kmalloc(sizeof(*event), GFP_KERNEL);
4419 if (!event)
4420 return -ENOMEM;
4421
4422 spin_lock(&memcg_oom_lock);
4423
4424 event->eventfd = eventfd;
4425 list_add(&event->list, &memcg->oom_notify);
4426
4427 /* already in OOM ? */
4428 if (memcg->under_oom)
4429 eventfd_signal(eventfd, 1);
4430 spin_unlock(&memcg_oom_lock);
4431
4432 return 0;
4433 }
4434
4435 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4436 struct eventfd_ctx *eventfd)
4437 {
4438 struct mem_cgroup_eventfd_list *ev, *tmp;
4439
4440 spin_lock(&memcg_oom_lock);
4441
4442 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4443 if (ev->eventfd == eventfd) {
4444 list_del(&ev->list);
4445 kfree(ev);
4446 }
4447 }
4448
4449 spin_unlock(&memcg_oom_lock);
4450 }
4451
4452 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4453 {
4454 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4455
4456 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4457 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4458 seq_printf(sf, "oom_kill %lu\n",
4459 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4460 return 0;
4461 }
4462
4463 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4464 struct cftype *cft, u64 val)
4465 {
4466 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4467
4468 /* cannot set to root cgroup and only 0 and 1 are allowed */
4469 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4470 return -EINVAL;
4471
4472 memcg->oom_kill_disable = val;
4473 if (!val)
4474 memcg_oom_recover(memcg);
4475
4476 return 0;
4477 }
4478
4479 #ifdef CONFIG_CGROUP_WRITEBACK
4480
4481 #include <trace/events/writeback.h>
4482
4483 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4484 {
4485 return wb_domain_init(&memcg->cgwb_domain, gfp);
4486 }
4487
4488 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4489 {
4490 wb_domain_exit(&memcg->cgwb_domain);
4491 }
4492
4493 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4494 {
4495 wb_domain_size_changed(&memcg->cgwb_domain);
4496 }
4497
4498 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4499 {
4500 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4501
4502 if (!memcg->css.parent)
4503 return NULL;
4504
4505 return &memcg->cgwb_domain;
4506 }
4507
4508 /**
4509 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4510 * @wb: bdi_writeback in question
4511 * @pfilepages: out parameter for number of file pages
4512 * @pheadroom: out parameter for number of allocatable pages according to memcg
4513 * @pdirty: out parameter for number of dirty pages
4514 * @pwriteback: out parameter for number of pages under writeback
4515 *
4516 * Determine the numbers of file, headroom, dirty, and writeback pages in
4517 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4518 * is a bit more involved.
4519 *
4520 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4521 * headroom is calculated as the lowest headroom of itself and the
4522 * ancestors. Note that this doesn't consider the actual amount of
4523 * available memory in the system. The caller should further cap
4524 * *@pheadroom accordingly.
4525 */
4526 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4527 unsigned long *pheadroom, unsigned long *pdirty,
4528 unsigned long *pwriteback)
4529 {
4530 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4531 struct mem_cgroup *parent;
4532
4533 cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4534
4535 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4536 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4537 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4538 memcg_page_state(memcg, NR_ACTIVE_FILE);
4539
4540 *pheadroom = PAGE_COUNTER_MAX;
4541 while ((parent = parent_mem_cgroup(memcg))) {
4542 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4543 READ_ONCE(memcg->memory.high));
4544 unsigned long used = page_counter_read(&memcg->memory);
4545
4546 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4547 memcg = parent;
4548 }
4549 }
4550
4551 /*
4552 * Foreign dirty flushing
4553 *
4554 * There's an inherent mismatch between memcg and writeback. The former
4555 * tracks ownership per-page while the latter per-inode. This was a
4556 * deliberate design decision because honoring per-page ownership in the
4557 * writeback path is complicated, may lead to higher CPU and IO overheads
4558 * and deemed unnecessary given that write-sharing an inode across
4559 * different cgroups isn't a common use-case.
4560 *
4561 * Combined with inode majority-writer ownership switching, this works well
4562 * enough in most cases but there are some pathological cases. For
4563 * example, let's say there are two cgroups A and B which keep writing to
4564 * different but confined parts of the same inode. B owns the inode and
4565 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4566 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4567 * triggering background writeback. A will be slowed down without a way to
4568 * make writeback of the dirty pages happen.
4569 *
4570 * Conditions like the above can lead to a cgroup getting repeatedly and
4571 * severely throttled after making some progress after each
4572 * dirty_expire_interval while the underlying IO device is almost
4573 * completely idle.
4574 *
4575 * Solving this problem completely requires matching the ownership tracking
4576 * granularities between memcg and writeback in either direction. However,
4577 * the more egregious behaviors can be avoided by simply remembering the
4578 * most recent foreign dirtying events and initiating remote flushes on
4579 * them when local writeback isn't enough to keep the memory clean enough.
4580 *
4581 * The following two functions implement such mechanism. When a foreign
4582 * page - a page whose memcg and writeback ownerships don't match - is
4583 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4584 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4585 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4586 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4587 * foreign bdi_writebacks which haven't expired. Both the numbers of
4588 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4589 * limited to MEMCG_CGWB_FRN_CNT.
4590 *
4591 * The mechanism only remembers IDs and doesn't hold any object references.
4592 * As being wrong occasionally doesn't matter, updates and accesses to the
4593 * records are lockless and racy.
4594 */
4595 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4596 struct bdi_writeback *wb)
4597 {
4598 struct mem_cgroup *memcg = page_memcg(page);
4599 struct memcg_cgwb_frn *frn;
4600 u64 now = get_jiffies_64();
4601 u64 oldest_at = now;
4602 int oldest = -1;
4603 int i;
4604
4605 trace_track_foreign_dirty(page, wb);
4606
4607 /*
4608 * Pick the slot to use. If there is already a slot for @wb, keep
4609 * using it. If not replace the oldest one which isn't being
4610 * written out.
4611 */
4612 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4613 frn = &memcg->cgwb_frn[i];
4614 if (frn->bdi_id == wb->bdi->id &&
4615 frn->memcg_id == wb->memcg_css->id)
4616 break;
4617 if (time_before64(frn->at, oldest_at) &&
4618 atomic_read(&frn->done.cnt) == 1) {
4619 oldest = i;
4620 oldest_at = frn->at;
4621 }
4622 }
4623
4624 if (i < MEMCG_CGWB_FRN_CNT) {
4625 /*
4626 * Re-using an existing one. Update timestamp lazily to
4627 * avoid making the cacheline hot. We want them to be
4628 * reasonably up-to-date and significantly shorter than
4629 * dirty_expire_interval as that's what expires the record.
4630 * Use the shorter of 1s and dirty_expire_interval / 8.
4631 */
4632 unsigned long update_intv =
4633 min_t(unsigned long, HZ,
4634 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4635
4636 if (time_before64(frn->at, now - update_intv))
4637 frn->at = now;
4638 } else if (oldest >= 0) {
4639 /* replace the oldest free one */
4640 frn = &memcg->cgwb_frn[oldest];
4641 frn->bdi_id = wb->bdi->id;
4642 frn->memcg_id = wb->memcg_css->id;
4643 frn->at = now;
4644 }
4645 }
4646
4647 /* issue foreign writeback flushes for recorded foreign dirtying events */
4648 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4649 {
4650 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4651 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4652 u64 now = jiffies_64;
4653 int i;
4654
4655 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4656 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4657
4658 /*
4659 * If the record is older than dirty_expire_interval,
4660 * writeback on it has already started. No need to kick it
4661 * off again. Also, don't start a new one if there's
4662 * already one in flight.
4663 */
4664 if (time_after64(frn->at, now - intv) &&
4665 atomic_read(&frn->done.cnt) == 1) {
4666 frn->at = 0;
4667 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4668 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4669 WB_REASON_FOREIGN_FLUSH,
4670 &frn->done);
4671 }
4672 }
4673 }
4674
4675 #else /* CONFIG_CGROUP_WRITEBACK */
4676
4677 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4678 {
4679 return 0;
4680 }
4681
4682 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4683 {
4684 }
4685
4686 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4687 {
4688 }
4689
4690 #endif /* CONFIG_CGROUP_WRITEBACK */
4691
4692 /*
4693 * DO NOT USE IN NEW FILES.
4694 *
4695 * "cgroup.event_control" implementation.
4696 *
4697 * This is way over-engineered. It tries to support fully configurable
4698 * events for each user. Such level of flexibility is completely
4699 * unnecessary especially in the light of the planned unified hierarchy.
4700 *
4701 * Please deprecate this and replace with something simpler if at all
4702 * possible.
4703 */
4704
4705 /*
4706 * Unregister event and free resources.
4707 *
4708 * Gets called from workqueue.
4709 */
4710 static void memcg_event_remove(struct work_struct *work)
4711 {
4712 struct mem_cgroup_event *event =
4713 container_of(work, struct mem_cgroup_event, remove);
4714 struct mem_cgroup *memcg = event->memcg;
4715
4716 remove_wait_queue(event->wqh, &event->wait);
4717
4718 event->unregister_event(memcg, event->eventfd);
4719
4720 /* Notify userspace the event is going away. */
4721 eventfd_signal(event->eventfd, 1);
4722
4723 eventfd_ctx_put(event->eventfd);
4724 kfree(event);
4725 css_put(&memcg->css);
4726 }
4727
4728 /*
4729 * Gets called on EPOLLHUP on eventfd when user closes it.
4730 *
4731 * Called with wqh->lock held and interrupts disabled.
4732 */
4733 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4734 int sync, void *key)
4735 {
4736 struct mem_cgroup_event *event =
4737 container_of(wait, struct mem_cgroup_event, wait);
4738 struct mem_cgroup *memcg = event->memcg;
4739 __poll_t flags = key_to_poll(key);
4740
4741 if (flags & EPOLLHUP) {
4742 /*
4743 * If the event has been detached at cgroup removal, we
4744 * can simply return knowing the other side will cleanup
4745 * for us.
4746 *
4747 * We can't race against event freeing since the other
4748 * side will require wqh->lock via remove_wait_queue(),
4749 * which we hold.
4750 */
4751 spin_lock(&memcg->event_list_lock);
4752 if (!list_empty(&event->list)) {
4753 list_del_init(&event->list);
4754 /*
4755 * We are in atomic context, but cgroup_event_remove()
4756 * may sleep, so we have to call it in workqueue.
4757 */
4758 schedule_work(&event->remove);
4759 }
4760 spin_unlock(&memcg->event_list_lock);
4761 }
4762
4763 return 0;
4764 }
4765
4766 static void memcg_event_ptable_queue_proc(struct file *file,
4767 wait_queue_head_t *wqh, poll_table *pt)
4768 {
4769 struct mem_cgroup_event *event =
4770 container_of(pt, struct mem_cgroup_event, pt);
4771
4772 event->wqh = wqh;
4773 add_wait_queue(wqh, &event->wait);
4774 }
4775
4776 /*
4777 * DO NOT USE IN NEW FILES.
4778 *
4779 * Parse input and register new cgroup event handler.
4780 *
4781 * Input must be in format '<event_fd> <control_fd> <args>'.
4782 * Interpretation of args is defined by control file implementation.
4783 */
4784 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4785 char *buf, size_t nbytes, loff_t off)
4786 {
4787 struct cgroup_subsys_state *css = of_css(of);
4788 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4789 struct mem_cgroup_event *event;
4790 struct cgroup_subsys_state *cfile_css;
4791 unsigned int efd, cfd;
4792 struct fd efile;
4793 struct fd cfile;
4794 const char *name;
4795 char *endp;
4796 int ret;
4797
4798 buf = strstrip(buf);
4799
4800 efd = simple_strtoul(buf, &endp, 10);
4801 if (*endp != ' ')
4802 return -EINVAL;
4803 buf = endp + 1;
4804
4805 cfd = simple_strtoul(buf, &endp, 10);
4806 if ((*endp != ' ') && (*endp != '\0'))
4807 return -EINVAL;
4808 buf = endp + 1;
4809
4810 event = kzalloc(sizeof(*event), GFP_KERNEL);
4811 if (!event)
4812 return -ENOMEM;
4813
4814 event->memcg = memcg;
4815 INIT_LIST_HEAD(&event->list);
4816 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4817 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4818 INIT_WORK(&event->remove, memcg_event_remove);
4819
4820 efile = fdget(efd);
4821 if (!efile.file) {
4822 ret = -EBADF;
4823 goto out_kfree;
4824 }
4825
4826 event->eventfd = eventfd_ctx_fileget(efile.file);
4827 if (IS_ERR(event->eventfd)) {
4828 ret = PTR_ERR(event->eventfd);
4829 goto out_put_efile;
4830 }
4831
4832 cfile = fdget(cfd);
4833 if (!cfile.file) {
4834 ret = -EBADF;
4835 goto out_put_eventfd;
4836 }
4837
4838 /* the process need read permission on control file */
4839 /* AV: shouldn't we check that it's been opened for read instead? */
4840 ret = file_permission(cfile.file, MAY_READ);
4841 if (ret < 0)
4842 goto out_put_cfile;
4843
4844 /*
4845 * Determine the event callbacks and set them in @event. This used
4846 * to be done via struct cftype but cgroup core no longer knows
4847 * about these events. The following is crude but the whole thing
4848 * is for compatibility anyway.
4849 *
4850 * DO NOT ADD NEW FILES.
4851 */
4852 name = cfile.file->f_path.dentry->d_name.name;
4853
4854 if (!strcmp(name, "memory.usage_in_bytes")) {
4855 event->register_event = mem_cgroup_usage_register_event;
4856 event->unregister_event = mem_cgroup_usage_unregister_event;
4857 } else if (!strcmp(name, "memory.oom_control")) {
4858 event->register_event = mem_cgroup_oom_register_event;
4859 event->unregister_event = mem_cgroup_oom_unregister_event;
4860 } else if (!strcmp(name, "memory.pressure_level")) {
4861 event->register_event = vmpressure_register_event;
4862 event->unregister_event = vmpressure_unregister_event;
4863 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4864 event->register_event = memsw_cgroup_usage_register_event;
4865 event->unregister_event = memsw_cgroup_usage_unregister_event;
4866 } else {
4867 ret = -EINVAL;
4868 goto out_put_cfile;
4869 }
4870
4871 /*
4872 * Verify @cfile should belong to @css. Also, remaining events are
4873 * automatically removed on cgroup destruction but the removal is
4874 * asynchronous, so take an extra ref on @css.
4875 */
4876 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4877 &memory_cgrp_subsys);
4878 ret = -EINVAL;
4879 if (IS_ERR(cfile_css))
4880 goto out_put_cfile;
4881 if (cfile_css != css) {
4882 css_put(cfile_css);
4883 goto out_put_cfile;
4884 }
4885
4886 ret = event->register_event(memcg, event->eventfd, buf);
4887 if (ret)
4888 goto out_put_css;
4889
4890 vfs_poll(efile.file, &event->pt);
4891
4892 spin_lock(&memcg->event_list_lock);
4893 list_add(&event->list, &memcg->event_list);
4894 spin_unlock(&memcg->event_list_lock);
4895
4896 fdput(cfile);
4897 fdput(efile);
4898
4899 return nbytes;
4900
4901 out_put_css:
4902 css_put(css);
4903 out_put_cfile:
4904 fdput(cfile);
4905 out_put_eventfd:
4906 eventfd_ctx_put(event->eventfd);
4907 out_put_efile:
4908 fdput(efile);
4909 out_kfree:
4910 kfree(event);
4911
4912 return ret;
4913 }
4914
4915 static struct cftype mem_cgroup_legacy_files[] = {
4916 {
4917 .name = "usage_in_bytes",
4918 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4919 .read_u64 = mem_cgroup_read_u64,
4920 },
4921 {
4922 .name = "max_usage_in_bytes",
4923 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4924 .write = mem_cgroup_reset,
4925 .read_u64 = mem_cgroup_read_u64,
4926 },
4927 {
4928 .name = "limit_in_bytes",
4929 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4930 .write = mem_cgroup_write,
4931 .read_u64 = mem_cgroup_read_u64,
4932 },
4933 {
4934 .name = "soft_limit_in_bytes",
4935 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4936 .write = mem_cgroup_write,
4937 .read_u64 = mem_cgroup_read_u64,
4938 },
4939 {
4940 .name = "failcnt",
4941 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4942 .write = mem_cgroup_reset,
4943 .read_u64 = mem_cgroup_read_u64,
4944 },
4945 {
4946 .name = "stat",
4947 .seq_show = memcg_stat_show,
4948 },
4949 {
4950 .name = "force_empty",
4951 .write = mem_cgroup_force_empty_write,
4952 },
4953 {
4954 .name = "use_hierarchy",
4955 .write_u64 = mem_cgroup_hierarchy_write,
4956 .read_u64 = mem_cgroup_hierarchy_read,
4957 },
4958 {
4959 .name = "cgroup.event_control", /* XXX: for compat */
4960 .write = memcg_write_event_control,
4961 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4962 },
4963 {
4964 .name = "swappiness",
4965 .read_u64 = mem_cgroup_swappiness_read,
4966 .write_u64 = mem_cgroup_swappiness_write,
4967 },
4968 {
4969 .name = "move_charge_at_immigrate",
4970 .read_u64 = mem_cgroup_move_charge_read,
4971 .write_u64 = mem_cgroup_move_charge_write,
4972 },
4973 {
4974 .name = "oom_control",
4975 .seq_show = mem_cgroup_oom_control_read,
4976 .write_u64 = mem_cgroup_oom_control_write,
4977 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4978 },
4979 {
4980 .name = "pressure_level",
4981 },
4982 #ifdef CONFIG_NUMA
4983 {
4984 .name = "numa_stat",
4985 .seq_show = memcg_numa_stat_show,
4986 },
4987 #endif
4988 {
4989 .name = "kmem.limit_in_bytes",
4990 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4991 .write = mem_cgroup_write,
4992 .read_u64 = mem_cgroup_read_u64,
4993 },
4994 {
4995 .name = "kmem.usage_in_bytes",
4996 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4997 .read_u64 = mem_cgroup_read_u64,
4998 },
4999 {
5000 .name = "kmem.failcnt",
5001 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5002 .write = mem_cgroup_reset,
5003 .read_u64 = mem_cgroup_read_u64,
5004 },
5005 {
5006 .name = "kmem.max_usage_in_bytes",
5007 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5008 .write = mem_cgroup_reset,
5009 .read_u64 = mem_cgroup_read_u64,
5010 },
5011 #if defined(CONFIG_MEMCG_KMEM) && \
5012 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5013 {
5014 .name = "kmem.slabinfo",
5015 .seq_show = memcg_slab_show,
5016 },
5017 #endif
5018 {
5019 .name = "kmem.tcp.limit_in_bytes",
5020 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5021 .write = mem_cgroup_write,
5022 .read_u64 = mem_cgroup_read_u64,
5023 },
5024 {
5025 .name = "kmem.tcp.usage_in_bytes",
5026 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5027 .read_u64 = mem_cgroup_read_u64,
5028 },
5029 {
5030 .name = "kmem.tcp.failcnt",
5031 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5032 .write = mem_cgroup_reset,
5033 .read_u64 = mem_cgroup_read_u64,
5034 },
5035 {
5036 .name = "kmem.tcp.max_usage_in_bytes",
5037 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5038 .write = mem_cgroup_reset,
5039 .read_u64 = mem_cgroup_read_u64,
5040 },
5041 { }, /* terminate */
5042 };
5043
5044 /*
5045 * Private memory cgroup IDR
5046 *
5047 * Swap-out records and page cache shadow entries need to store memcg
5048 * references in constrained space, so we maintain an ID space that is
5049 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5050 * memory-controlled cgroups to 64k.
5051 *
5052 * However, there usually are many references to the offline CSS after
5053 * the cgroup has been destroyed, such as page cache or reclaimable
5054 * slab objects, that don't need to hang on to the ID. We want to keep
5055 * those dead CSS from occupying IDs, or we might quickly exhaust the
5056 * relatively small ID space and prevent the creation of new cgroups
5057 * even when there are much fewer than 64k cgroups - possibly none.
5058 *
5059 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5060 * be freed and recycled when it's no longer needed, which is usually
5061 * when the CSS is offlined.
5062 *
5063 * The only exception to that are records of swapped out tmpfs/shmem
5064 * pages that need to be attributed to live ancestors on swapin. But
5065 * those references are manageable from userspace.
5066 */
5067
5068 static DEFINE_IDR(mem_cgroup_idr);
5069
5070 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5071 {
5072 if (memcg->id.id > 0) {
5073 idr_remove(&mem_cgroup_idr, memcg->id.id);
5074 memcg->id.id = 0;
5075 }
5076 }
5077
5078 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5079 unsigned int n)
5080 {
5081 refcount_add(n, &memcg->id.ref);
5082 }
5083
5084 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5085 {
5086 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5087 mem_cgroup_id_remove(memcg);
5088
5089 /* Memcg ID pins CSS */
5090 css_put(&memcg->css);
5091 }
5092 }
5093
5094 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5095 {
5096 mem_cgroup_id_put_many(memcg, 1);
5097 }
5098
5099 /**
5100 * mem_cgroup_from_id - look up a memcg from a memcg id
5101 * @id: the memcg id to look up
5102 *
5103 * Caller must hold rcu_read_lock().
5104 */
5105 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5106 {
5107 WARN_ON_ONCE(!rcu_read_lock_held());
5108 return idr_find(&mem_cgroup_idr, id);
5109 }
5110
5111 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5112 {
5113 struct mem_cgroup_per_node *pn;
5114 int tmp = node;
5115 /*
5116 * This routine is called against possible nodes.
5117 * But it's BUG to call kmalloc() against offline node.
5118 *
5119 * TODO: this routine can waste much memory for nodes which will
5120 * never be onlined. It's better to use memory hotplug callback
5121 * function.
5122 */
5123 if (!node_state(node, N_NORMAL_MEMORY))
5124 tmp = -1;
5125 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5126 if (!pn)
5127 return 1;
5128
5129 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5130 GFP_KERNEL_ACCOUNT);
5131 if (!pn->lruvec_stat_local) {
5132 kfree(pn);
5133 return 1;
5134 }
5135
5136 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
5137 GFP_KERNEL_ACCOUNT);
5138 if (!pn->lruvec_stat_cpu) {
5139 free_percpu(pn->lruvec_stat_local);
5140 kfree(pn);
5141 return 1;
5142 }
5143
5144 lruvec_init(&pn->lruvec);
5145 pn->usage_in_excess = 0;
5146 pn->on_tree = false;
5147 pn->memcg = memcg;
5148
5149 memcg->nodeinfo[node] = pn;
5150 return 0;
5151 }
5152
5153 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5154 {
5155 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5156
5157 if (!pn)
5158 return;
5159
5160 free_percpu(pn->lruvec_stat_cpu);
5161 free_percpu(pn->lruvec_stat_local);
5162 kfree(pn);
5163 }
5164
5165 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5166 {
5167 int node;
5168
5169 for_each_node(node)
5170 free_mem_cgroup_per_node_info(memcg, node);
5171 free_percpu(memcg->vmstats_percpu);
5172 kfree(memcg);
5173 }
5174
5175 static void mem_cgroup_free(struct mem_cgroup *memcg)
5176 {
5177 int cpu;
5178
5179 memcg_wb_domain_exit(memcg);
5180 /*
5181 * Flush percpu lruvec stats to guarantee the value
5182 * correctness on parent's and all ancestor levels.
5183 */
5184 for_each_online_cpu(cpu)
5185 memcg_flush_lruvec_page_state(memcg, cpu);
5186 __mem_cgroup_free(memcg);
5187 }
5188
5189 static struct mem_cgroup *mem_cgroup_alloc(void)
5190 {
5191 struct mem_cgroup *memcg;
5192 unsigned int size;
5193 int node;
5194 int __maybe_unused i;
5195 long error = -ENOMEM;
5196
5197 size = sizeof(struct mem_cgroup);
5198 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5199
5200 memcg = kzalloc(size, GFP_KERNEL);
5201 if (!memcg)
5202 return ERR_PTR(error);
5203
5204 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5205 1, MEM_CGROUP_ID_MAX,
5206 GFP_KERNEL);
5207 if (memcg->id.id < 0) {
5208 error = memcg->id.id;
5209 goto fail;
5210 }
5211
5212 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5213 GFP_KERNEL_ACCOUNT);
5214 if (!memcg->vmstats_percpu)
5215 goto fail;
5216
5217 for_each_node(node)
5218 if (alloc_mem_cgroup_per_node_info(memcg, node))
5219 goto fail;
5220
5221 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5222 goto fail;
5223
5224 INIT_WORK(&memcg->high_work, high_work_func);
5225 INIT_LIST_HEAD(&memcg->oom_notify);
5226 mutex_init(&memcg->thresholds_lock);
5227 spin_lock_init(&memcg->move_lock);
5228 vmpressure_init(&memcg->vmpressure);
5229 INIT_LIST_HEAD(&memcg->event_list);
5230 spin_lock_init(&memcg->event_list_lock);
5231 memcg->socket_pressure = jiffies;
5232 #ifdef CONFIG_MEMCG_KMEM
5233 memcg->kmemcg_id = -1;
5234 INIT_LIST_HEAD(&memcg->objcg_list);
5235 #endif
5236 #ifdef CONFIG_CGROUP_WRITEBACK
5237 INIT_LIST_HEAD(&memcg->cgwb_list);
5238 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5239 memcg->cgwb_frn[i].done =
5240 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5241 #endif
5242 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5243 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5244 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5245 memcg->deferred_split_queue.split_queue_len = 0;
5246 #endif
5247 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5248 return memcg;
5249 fail:
5250 mem_cgroup_id_remove(memcg);
5251 __mem_cgroup_free(memcg);
5252 return ERR_PTR(error);
5253 }
5254
5255 static struct cgroup_subsys_state * __ref
5256 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5257 {
5258 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5259 struct mem_cgroup *memcg, *old_memcg;
5260 long error = -ENOMEM;
5261
5262 old_memcg = set_active_memcg(parent);
5263 memcg = mem_cgroup_alloc();
5264 set_active_memcg(old_memcg);
5265 if (IS_ERR(memcg))
5266 return ERR_CAST(memcg);
5267
5268 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5269 memcg->soft_limit = PAGE_COUNTER_MAX;
5270 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5271 if (parent) {
5272 memcg->swappiness = mem_cgroup_swappiness(parent);
5273 memcg->oom_kill_disable = parent->oom_kill_disable;
5274
5275 page_counter_init(&memcg->memory, &parent->memory);
5276 page_counter_init(&memcg->swap, &parent->swap);
5277 page_counter_init(&memcg->kmem, &parent->kmem);
5278 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5279 } else {
5280 page_counter_init(&memcg->memory, NULL);
5281 page_counter_init(&memcg->swap, NULL);
5282 page_counter_init(&memcg->kmem, NULL);
5283 page_counter_init(&memcg->tcpmem, NULL);
5284
5285 root_mem_cgroup = memcg;
5286 return &memcg->css;
5287 }
5288
5289 /* The following stuff does not apply to the root */
5290 error = memcg_online_kmem(memcg);
5291 if (error)
5292 goto fail;
5293
5294 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5295 static_branch_inc(&memcg_sockets_enabled_key);
5296
5297 return &memcg->css;
5298 fail:
5299 mem_cgroup_id_remove(memcg);
5300 mem_cgroup_free(memcg);
5301 return ERR_PTR(error);
5302 }
5303
5304 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5305 {
5306 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5307
5308 /*
5309 * A memcg must be visible for expand_shrinker_info()
5310 * by the time the maps are allocated. So, we allocate maps
5311 * here, when for_each_mem_cgroup() can't skip it.
5312 */
5313 if (alloc_shrinker_info(memcg)) {
5314 mem_cgroup_id_remove(memcg);
5315 return -ENOMEM;
5316 }
5317
5318 /* Online state pins memcg ID, memcg ID pins CSS */
5319 refcount_set(&memcg->id.ref, 1);
5320 css_get(css);
5321 return 0;
5322 }
5323
5324 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5325 {
5326 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5327 struct mem_cgroup_event *event, *tmp;
5328
5329 /*
5330 * Unregister events and notify userspace.
5331 * Notify userspace about cgroup removing only after rmdir of cgroup
5332 * directory to avoid race between userspace and kernelspace.
5333 */
5334 spin_lock(&memcg->event_list_lock);
5335 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5336 list_del_init(&event->list);
5337 schedule_work(&event->remove);
5338 }
5339 spin_unlock(&memcg->event_list_lock);
5340
5341 page_counter_set_min(&memcg->memory, 0);
5342 page_counter_set_low(&memcg->memory, 0);
5343
5344 memcg_offline_kmem(memcg);
5345 reparent_shrinker_deferred(memcg);
5346 wb_memcg_offline(memcg);
5347
5348 drain_all_stock(memcg);
5349
5350 mem_cgroup_id_put(memcg);
5351 }
5352
5353 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5354 {
5355 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5356
5357 invalidate_reclaim_iterators(memcg);
5358 }
5359
5360 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5361 {
5362 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5363 int __maybe_unused i;
5364
5365 #ifdef CONFIG_CGROUP_WRITEBACK
5366 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5367 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5368 #endif
5369 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5370 static_branch_dec(&memcg_sockets_enabled_key);
5371
5372 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5373 static_branch_dec(&memcg_sockets_enabled_key);
5374
5375 vmpressure_cleanup(&memcg->vmpressure);
5376 cancel_work_sync(&memcg->high_work);
5377 mem_cgroup_remove_from_trees(memcg);
5378 free_shrinker_info(memcg);
5379 memcg_free_kmem(memcg);
5380 mem_cgroup_free(memcg);
5381 }
5382
5383 /**
5384 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5385 * @css: the target css
5386 *
5387 * Reset the states of the mem_cgroup associated with @css. This is
5388 * invoked when the userland requests disabling on the default hierarchy
5389 * but the memcg is pinned through dependency. The memcg should stop
5390 * applying policies and should revert to the vanilla state as it may be
5391 * made visible again.
5392 *
5393 * The current implementation only resets the essential configurations.
5394 * This needs to be expanded to cover all the visible parts.
5395 */
5396 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5397 {
5398 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5399
5400 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5401 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5402 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5403 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5404 page_counter_set_min(&memcg->memory, 0);
5405 page_counter_set_low(&memcg->memory, 0);
5406 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5407 memcg->soft_limit = PAGE_COUNTER_MAX;
5408 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5409 memcg_wb_domain_size_changed(memcg);
5410 }
5411
5412 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5413 {
5414 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5415 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5416 struct memcg_vmstats_percpu *statc;
5417 long delta, v;
5418 int i;
5419
5420 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5421
5422 for (i = 0; i < MEMCG_NR_STAT; i++) {
5423 /*
5424 * Collect the aggregated propagation counts of groups
5425 * below us. We're in a per-cpu loop here and this is
5426 * a global counter, so the first cycle will get them.
5427 */
5428 delta = memcg->vmstats.state_pending[i];
5429 if (delta)
5430 memcg->vmstats.state_pending[i] = 0;
5431
5432 /* Add CPU changes on this level since the last flush */
5433 v = READ_ONCE(statc->state[i]);
5434 if (v != statc->state_prev[i]) {
5435 delta += v - statc->state_prev[i];
5436 statc->state_prev[i] = v;
5437 }
5438
5439 if (!delta)
5440 continue;
5441
5442 /* Aggregate counts on this level and propagate upwards */
5443 memcg->vmstats.state[i] += delta;
5444 if (parent)
5445 parent->vmstats.state_pending[i] += delta;
5446 }
5447
5448 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5449 delta = memcg->vmstats.events_pending[i];
5450 if (delta)
5451 memcg->vmstats.events_pending[i] = 0;
5452
5453 v = READ_ONCE(statc->events[i]);
5454 if (v != statc->events_prev[i]) {
5455 delta += v - statc->events_prev[i];
5456 statc->events_prev[i] = v;
5457 }
5458
5459 if (!delta)
5460 continue;
5461
5462 memcg->vmstats.events[i] += delta;
5463 if (parent)
5464 parent->vmstats.events_pending[i] += delta;
5465 }
5466 }
5467
5468 #ifdef CONFIG_MMU
5469 /* Handlers for move charge at task migration. */
5470 static int mem_cgroup_do_precharge(unsigned long count)
5471 {
5472 int ret;
5473
5474 /* Try a single bulk charge without reclaim first, kswapd may wake */
5475 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5476 if (!ret) {
5477 mc.precharge += count;
5478 return ret;
5479 }
5480
5481 /* Try charges one by one with reclaim, but do not retry */
5482 while (count--) {
5483 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5484 if (ret)
5485 return ret;
5486 mc.precharge++;
5487 cond_resched();
5488 }
5489 return 0;
5490 }
5491
5492 union mc_target {
5493 struct page *page;
5494 swp_entry_t ent;
5495 };
5496
5497 enum mc_target_type {
5498 MC_TARGET_NONE = 0,
5499 MC_TARGET_PAGE,
5500 MC_TARGET_SWAP,
5501 MC_TARGET_DEVICE,
5502 };
5503
5504 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5505 unsigned long addr, pte_t ptent)
5506 {
5507 struct page *page = vm_normal_page(vma, addr, ptent);
5508
5509 if (!page || !page_mapped(page))
5510 return NULL;
5511 if (PageAnon(page)) {
5512 if (!(mc.flags & MOVE_ANON))
5513 return NULL;
5514 } else {
5515 if (!(mc.flags & MOVE_FILE))
5516 return NULL;
5517 }
5518 if (!get_page_unless_zero(page))
5519 return NULL;
5520
5521 return page;
5522 }
5523
5524 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5525 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5526 pte_t ptent, swp_entry_t *entry)
5527 {
5528 struct page *page = NULL;
5529 swp_entry_t ent = pte_to_swp_entry(ptent);
5530
5531 if (!(mc.flags & MOVE_ANON))
5532 return NULL;
5533
5534 /*
5535 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5536 * a device and because they are not accessible by CPU they are store
5537 * as special swap entry in the CPU page table.
5538 */
5539 if (is_device_private_entry(ent)) {
5540 page = pfn_swap_entry_to_page(ent);
5541 /*
5542 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5543 * a refcount of 1 when free (unlike normal page)
5544 */
5545 if (!page_ref_add_unless(page, 1, 1))
5546 return NULL;
5547 return page;
5548 }
5549
5550 if (non_swap_entry(ent))
5551 return NULL;
5552
5553 /*
5554 * Because lookup_swap_cache() updates some statistics counter,
5555 * we call find_get_page() with swapper_space directly.
5556 */
5557 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5558 entry->val = ent.val;
5559
5560 return page;
5561 }
5562 #else
5563 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5564 pte_t ptent, swp_entry_t *entry)
5565 {
5566 return NULL;
5567 }
5568 #endif
5569
5570 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5571 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5572 {
5573 if (!vma->vm_file) /* anonymous vma */
5574 return NULL;
5575 if (!(mc.flags & MOVE_FILE))
5576 return NULL;
5577
5578 /* page is moved even if it's not RSS of this task(page-faulted). */
5579 /* shmem/tmpfs may report page out on swap: account for that too. */
5580 return find_get_incore_page(vma->vm_file->f_mapping,
5581 linear_page_index(vma, addr));
5582 }
5583
5584 /**
5585 * mem_cgroup_move_account - move account of the page
5586 * @page: the page
5587 * @compound: charge the page as compound or small page
5588 * @from: mem_cgroup which the page is moved from.
5589 * @to: mem_cgroup which the page is moved to. @from != @to.
5590 *
5591 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5592 *
5593 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5594 * from old cgroup.
5595 */
5596 static int mem_cgroup_move_account(struct page *page,
5597 bool compound,
5598 struct mem_cgroup *from,
5599 struct mem_cgroup *to)
5600 {
5601 struct lruvec *from_vec, *to_vec;
5602 struct pglist_data *pgdat;
5603 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5604 int ret;
5605
5606 VM_BUG_ON(from == to);
5607 VM_BUG_ON_PAGE(PageLRU(page), page);
5608 VM_BUG_ON(compound && !PageTransHuge(page));
5609
5610 /*
5611 * Prevent mem_cgroup_migrate() from looking at
5612 * page's memory cgroup of its source page while we change it.
5613 */
5614 ret = -EBUSY;
5615 if (!trylock_page(page))
5616 goto out;
5617
5618 ret = -EINVAL;
5619 if (page_memcg(page) != from)
5620 goto out_unlock;
5621
5622 pgdat = page_pgdat(page);
5623 from_vec = mem_cgroup_lruvec(from, pgdat);
5624 to_vec = mem_cgroup_lruvec(to, pgdat);
5625
5626 lock_page_memcg(page);
5627
5628 if (PageAnon(page)) {
5629 if (page_mapped(page)) {
5630 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5631 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5632 if (PageTransHuge(page)) {
5633 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5634 -nr_pages);
5635 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5636 nr_pages);
5637 }
5638 }
5639 } else {
5640 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5641 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5642
5643 if (PageSwapBacked(page)) {
5644 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5645 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5646 }
5647
5648 if (page_mapped(page)) {
5649 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5650 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5651 }
5652
5653 if (PageDirty(page)) {
5654 struct address_space *mapping = page_mapping(page);
5655
5656 if (mapping_can_writeback(mapping)) {
5657 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5658 -nr_pages);
5659 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5660 nr_pages);
5661 }
5662 }
5663 }
5664
5665 if (PageWriteback(page)) {
5666 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5667 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5668 }
5669
5670 /*
5671 * All state has been migrated, let's switch to the new memcg.
5672 *
5673 * It is safe to change page's memcg here because the page
5674 * is referenced, charged, isolated, and locked: we can't race
5675 * with (un)charging, migration, LRU putback, or anything else
5676 * that would rely on a stable page's memory cgroup.
5677 *
5678 * Note that lock_page_memcg is a memcg lock, not a page lock,
5679 * to save space. As soon as we switch page's memory cgroup to a
5680 * new memcg that isn't locked, the above state can change
5681 * concurrently again. Make sure we're truly done with it.
5682 */
5683 smp_mb();
5684
5685 css_get(&to->css);
5686 css_put(&from->css);
5687
5688 page->memcg_data = (unsigned long)to;
5689
5690 __unlock_page_memcg(from);
5691
5692 ret = 0;
5693
5694 local_irq_disable();
5695 mem_cgroup_charge_statistics(to, page, nr_pages);
5696 memcg_check_events(to, page);
5697 mem_cgroup_charge_statistics(from, page, -nr_pages);
5698 memcg_check_events(from, page);
5699 local_irq_enable();
5700 out_unlock:
5701 unlock_page(page);
5702 out:
5703 return ret;
5704 }
5705
5706 /**
5707 * get_mctgt_type - get target type of moving charge
5708 * @vma: the vma the pte to be checked belongs
5709 * @addr: the address corresponding to the pte to be checked
5710 * @ptent: the pte to be checked
5711 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5712 *
5713 * Returns
5714 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5715 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5716 * move charge. if @target is not NULL, the page is stored in target->page
5717 * with extra refcnt got(Callers should handle it).
5718 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5719 * target for charge migration. if @target is not NULL, the entry is stored
5720 * in target->ent.
5721 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5722 * (so ZONE_DEVICE page and thus not on the lru).
5723 * For now we such page is charge like a regular page would be as for all
5724 * intent and purposes it is just special memory taking the place of a
5725 * regular page.
5726 *
5727 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5728 *
5729 * Called with pte lock held.
5730 */
5731
5732 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5733 unsigned long addr, pte_t ptent, union mc_target *target)
5734 {
5735 struct page *page = NULL;
5736 enum mc_target_type ret = MC_TARGET_NONE;
5737 swp_entry_t ent = { .val = 0 };
5738
5739 if (pte_present(ptent))
5740 page = mc_handle_present_pte(vma, addr, ptent);
5741 else if (is_swap_pte(ptent))
5742 page = mc_handle_swap_pte(vma, ptent, &ent);
5743 else if (pte_none(ptent))
5744 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5745
5746 if (!page && !ent.val)
5747 return ret;
5748 if (page) {
5749 /*
5750 * Do only loose check w/o serialization.
5751 * mem_cgroup_move_account() checks the page is valid or
5752 * not under LRU exclusion.
5753 */
5754 if (page_memcg(page) == mc.from) {
5755 ret = MC_TARGET_PAGE;
5756 if (is_device_private_page(page))
5757 ret = MC_TARGET_DEVICE;
5758 if (target)
5759 target->page = page;
5760 }
5761 if (!ret || !target)
5762 put_page(page);
5763 }
5764 /*
5765 * There is a swap entry and a page doesn't exist or isn't charged.
5766 * But we cannot move a tail-page in a THP.
5767 */
5768 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5769 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5770 ret = MC_TARGET_SWAP;
5771 if (target)
5772 target->ent = ent;
5773 }
5774 return ret;
5775 }
5776
5777 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5778 /*
5779 * We don't consider PMD mapped swapping or file mapped pages because THP does
5780 * not support them for now.
5781 * Caller should make sure that pmd_trans_huge(pmd) is true.
5782 */
5783 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5784 unsigned long addr, pmd_t pmd, union mc_target *target)
5785 {
5786 struct page *page = NULL;
5787 enum mc_target_type ret = MC_TARGET_NONE;
5788
5789 if (unlikely(is_swap_pmd(pmd))) {
5790 VM_BUG_ON(thp_migration_supported() &&
5791 !is_pmd_migration_entry(pmd));
5792 return ret;
5793 }
5794 page = pmd_page(pmd);
5795 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5796 if (!(mc.flags & MOVE_ANON))
5797 return ret;
5798 if (page_memcg(page) == mc.from) {
5799 ret = MC_TARGET_PAGE;
5800 if (target) {
5801 get_page(page);
5802 target->page = page;
5803 }
5804 }
5805 return ret;
5806 }
5807 #else
5808 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5809 unsigned long addr, pmd_t pmd, union mc_target *target)
5810 {
5811 return MC_TARGET_NONE;
5812 }
5813 #endif
5814
5815 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5816 unsigned long addr, unsigned long end,
5817 struct mm_walk *walk)
5818 {
5819 struct vm_area_struct *vma = walk->vma;
5820 pte_t *pte;
5821 spinlock_t *ptl;
5822
5823 ptl = pmd_trans_huge_lock(pmd, vma);
5824 if (ptl) {
5825 /*
5826 * Note their can not be MC_TARGET_DEVICE for now as we do not
5827 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5828 * this might change.
5829 */
5830 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5831 mc.precharge += HPAGE_PMD_NR;
5832 spin_unlock(ptl);
5833 return 0;
5834 }
5835
5836 if (pmd_trans_unstable(pmd))
5837 return 0;
5838 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5839 for (; addr != end; pte++, addr += PAGE_SIZE)
5840 if (get_mctgt_type(vma, addr, *pte, NULL))
5841 mc.precharge++; /* increment precharge temporarily */
5842 pte_unmap_unlock(pte - 1, ptl);
5843 cond_resched();
5844
5845 return 0;
5846 }
5847
5848 static const struct mm_walk_ops precharge_walk_ops = {
5849 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5850 };
5851
5852 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5853 {
5854 unsigned long precharge;
5855
5856 mmap_read_lock(mm);
5857 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5858 mmap_read_unlock(mm);
5859
5860 precharge = mc.precharge;
5861 mc.precharge = 0;
5862
5863 return precharge;
5864 }
5865
5866 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5867 {
5868 unsigned long precharge = mem_cgroup_count_precharge(mm);
5869
5870 VM_BUG_ON(mc.moving_task);
5871 mc.moving_task = current;
5872 return mem_cgroup_do_precharge(precharge);
5873 }
5874
5875 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5876 static void __mem_cgroup_clear_mc(void)
5877 {
5878 struct mem_cgroup *from = mc.from;
5879 struct mem_cgroup *to = mc.to;
5880
5881 /* we must uncharge all the leftover precharges from mc.to */
5882 if (mc.precharge) {
5883 cancel_charge(mc.to, mc.precharge);
5884 mc.precharge = 0;
5885 }
5886 /*
5887 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5888 * we must uncharge here.
5889 */
5890 if (mc.moved_charge) {
5891 cancel_charge(mc.from, mc.moved_charge);
5892 mc.moved_charge = 0;
5893 }
5894 /* we must fixup refcnts and charges */
5895 if (mc.moved_swap) {
5896 /* uncharge swap account from the old cgroup */
5897 if (!mem_cgroup_is_root(mc.from))
5898 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5899
5900 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5901
5902 /*
5903 * we charged both to->memory and to->memsw, so we
5904 * should uncharge to->memory.
5905 */
5906 if (!mem_cgroup_is_root(mc.to))
5907 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5908
5909 mc.moved_swap = 0;
5910 }
5911 memcg_oom_recover(from);
5912 memcg_oom_recover(to);
5913 wake_up_all(&mc.waitq);
5914 }
5915
5916 static void mem_cgroup_clear_mc(void)
5917 {
5918 struct mm_struct *mm = mc.mm;
5919
5920 /*
5921 * we must clear moving_task before waking up waiters at the end of
5922 * task migration.
5923 */
5924 mc.moving_task = NULL;
5925 __mem_cgroup_clear_mc();
5926 spin_lock(&mc.lock);
5927 mc.from = NULL;
5928 mc.to = NULL;
5929 mc.mm = NULL;
5930 spin_unlock(&mc.lock);
5931
5932 mmput(mm);
5933 }
5934
5935 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5936 {
5937 struct cgroup_subsys_state *css;
5938 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5939 struct mem_cgroup *from;
5940 struct task_struct *leader, *p;
5941 struct mm_struct *mm;
5942 unsigned long move_flags;
5943 int ret = 0;
5944
5945 /* charge immigration isn't supported on the default hierarchy */
5946 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5947 return 0;
5948
5949 /*
5950 * Multi-process migrations only happen on the default hierarchy
5951 * where charge immigration is not used. Perform charge
5952 * immigration if @tset contains a leader and whine if there are
5953 * multiple.
5954 */
5955 p = NULL;
5956 cgroup_taskset_for_each_leader(leader, css, tset) {
5957 WARN_ON_ONCE(p);
5958 p = leader;
5959 memcg = mem_cgroup_from_css(css);
5960 }
5961 if (!p)
5962 return 0;
5963
5964 /*
5965 * We are now committed to this value whatever it is. Changes in this
5966 * tunable will only affect upcoming migrations, not the current one.
5967 * So we need to save it, and keep it going.
5968 */
5969 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5970 if (!move_flags)
5971 return 0;
5972
5973 from = mem_cgroup_from_task(p);
5974
5975 VM_BUG_ON(from == memcg);
5976
5977 mm = get_task_mm(p);
5978 if (!mm)
5979 return 0;
5980 /* We move charges only when we move a owner of the mm */
5981 if (mm->owner == p) {
5982 VM_BUG_ON(mc.from);
5983 VM_BUG_ON(mc.to);
5984 VM_BUG_ON(mc.precharge);
5985 VM_BUG_ON(mc.moved_charge);
5986 VM_BUG_ON(mc.moved_swap);
5987
5988 spin_lock(&mc.lock);
5989 mc.mm = mm;
5990 mc.from = from;
5991 mc.to = memcg;
5992 mc.flags = move_flags;
5993 spin_unlock(&mc.lock);
5994 /* We set mc.moving_task later */
5995
5996 ret = mem_cgroup_precharge_mc(mm);
5997 if (ret)
5998 mem_cgroup_clear_mc();
5999 } else {
6000 mmput(mm);
6001 }
6002 return ret;
6003 }
6004
6005 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6006 {
6007 if (mc.to)
6008 mem_cgroup_clear_mc();
6009 }
6010
6011 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6012 unsigned long addr, unsigned long end,
6013 struct mm_walk *walk)
6014 {
6015 int ret = 0;
6016 struct vm_area_struct *vma = walk->vma;
6017 pte_t *pte;
6018 spinlock_t *ptl;
6019 enum mc_target_type target_type;
6020 union mc_target target;
6021 struct page *page;
6022
6023 ptl = pmd_trans_huge_lock(pmd, vma);
6024 if (ptl) {
6025 if (mc.precharge < HPAGE_PMD_NR) {
6026 spin_unlock(ptl);
6027 return 0;
6028 }
6029 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6030 if (target_type == MC_TARGET_PAGE) {
6031 page = target.page;
6032 if (!isolate_lru_page(page)) {
6033 if (!mem_cgroup_move_account(page, true,
6034 mc.from, mc.to)) {
6035 mc.precharge -= HPAGE_PMD_NR;
6036 mc.moved_charge += HPAGE_PMD_NR;
6037 }
6038 putback_lru_page(page);
6039 }
6040 put_page(page);
6041 } else if (target_type == MC_TARGET_DEVICE) {
6042 page = target.page;
6043 if (!mem_cgroup_move_account(page, true,
6044 mc.from, mc.to)) {
6045 mc.precharge -= HPAGE_PMD_NR;
6046 mc.moved_charge += HPAGE_PMD_NR;
6047 }
6048 put_page(page);
6049 }
6050 spin_unlock(ptl);
6051 return 0;
6052 }
6053
6054 if (pmd_trans_unstable(pmd))
6055 return 0;
6056 retry:
6057 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6058 for (; addr != end; addr += PAGE_SIZE) {
6059 pte_t ptent = *(pte++);
6060 bool device = false;
6061 swp_entry_t ent;
6062
6063 if (!mc.precharge)
6064 break;
6065
6066 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6067 case MC_TARGET_DEVICE:
6068 device = true;
6069 fallthrough;
6070 case MC_TARGET_PAGE:
6071 page = target.page;
6072 /*
6073 * We can have a part of the split pmd here. Moving it
6074 * can be done but it would be too convoluted so simply
6075 * ignore such a partial THP and keep it in original
6076 * memcg. There should be somebody mapping the head.
6077 */
6078 if (PageTransCompound(page))
6079 goto put;
6080 if (!device && isolate_lru_page(page))
6081 goto put;
6082 if (!mem_cgroup_move_account(page, false,
6083 mc.from, mc.to)) {
6084 mc.precharge--;
6085 /* we uncharge from mc.from later. */
6086 mc.moved_charge++;
6087 }
6088 if (!device)
6089 putback_lru_page(page);
6090 put: /* get_mctgt_type() gets the page */
6091 put_page(page);
6092 break;
6093 case MC_TARGET_SWAP:
6094 ent = target.ent;
6095 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6096 mc.precharge--;
6097 mem_cgroup_id_get_many(mc.to, 1);
6098 /* we fixup other refcnts and charges later. */
6099 mc.moved_swap++;
6100 }
6101 break;
6102 default:
6103 break;
6104 }
6105 }
6106 pte_unmap_unlock(pte - 1, ptl);
6107 cond_resched();
6108
6109 if (addr != end) {
6110 /*
6111 * We have consumed all precharges we got in can_attach().
6112 * We try charge one by one, but don't do any additional
6113 * charges to mc.to if we have failed in charge once in attach()
6114 * phase.
6115 */
6116 ret = mem_cgroup_do_precharge(1);
6117 if (!ret)
6118 goto retry;
6119 }
6120
6121 return ret;
6122 }
6123
6124 static const struct mm_walk_ops charge_walk_ops = {
6125 .pmd_entry = mem_cgroup_move_charge_pte_range,
6126 };
6127
6128 static void mem_cgroup_move_charge(void)
6129 {
6130 lru_add_drain_all();
6131 /*
6132 * Signal lock_page_memcg() to take the memcg's move_lock
6133 * while we're moving its pages to another memcg. Then wait
6134 * for already started RCU-only updates to finish.
6135 */
6136 atomic_inc(&mc.from->moving_account);
6137 synchronize_rcu();
6138 retry:
6139 if (unlikely(!mmap_read_trylock(mc.mm))) {
6140 /*
6141 * Someone who are holding the mmap_lock might be waiting in
6142 * waitq. So we cancel all extra charges, wake up all waiters,
6143 * and retry. Because we cancel precharges, we might not be able
6144 * to move enough charges, but moving charge is a best-effort
6145 * feature anyway, so it wouldn't be a big problem.
6146 */
6147 __mem_cgroup_clear_mc();
6148 cond_resched();
6149 goto retry;
6150 }
6151 /*
6152 * When we have consumed all precharges and failed in doing
6153 * additional charge, the page walk just aborts.
6154 */
6155 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6156 NULL);
6157
6158 mmap_read_unlock(mc.mm);
6159 atomic_dec(&mc.from->moving_account);
6160 }
6161
6162 static void mem_cgroup_move_task(void)
6163 {
6164 if (mc.to) {
6165 mem_cgroup_move_charge();
6166 mem_cgroup_clear_mc();
6167 }
6168 }
6169 #else /* !CONFIG_MMU */
6170 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6171 {
6172 return 0;
6173 }
6174 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6175 {
6176 }
6177 static void mem_cgroup_move_task(void)
6178 {
6179 }
6180 #endif
6181
6182 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6183 {
6184 if (value == PAGE_COUNTER_MAX)
6185 seq_puts(m, "max\n");
6186 else
6187 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6188
6189 return 0;
6190 }
6191
6192 static u64 memory_current_read(struct cgroup_subsys_state *css,
6193 struct cftype *cft)
6194 {
6195 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6196
6197 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6198 }
6199
6200 static int memory_min_show(struct seq_file *m, void *v)
6201 {
6202 return seq_puts_memcg_tunable(m,
6203 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6204 }
6205
6206 static ssize_t memory_min_write(struct kernfs_open_file *of,
6207 char *buf, size_t nbytes, loff_t off)
6208 {
6209 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6210 unsigned long min;
6211 int err;
6212
6213 buf = strstrip(buf);
6214 err = page_counter_memparse(buf, "max", &min);
6215 if (err)
6216 return err;
6217
6218 page_counter_set_min(&memcg->memory, min);
6219
6220 return nbytes;
6221 }
6222
6223 static int memory_low_show(struct seq_file *m, void *v)
6224 {
6225 return seq_puts_memcg_tunable(m,
6226 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6227 }
6228
6229 static ssize_t memory_low_write(struct kernfs_open_file *of,
6230 char *buf, size_t nbytes, loff_t off)
6231 {
6232 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6233 unsigned long low;
6234 int err;
6235
6236 buf = strstrip(buf);
6237 err = page_counter_memparse(buf, "max", &low);
6238 if (err)
6239 return err;
6240
6241 page_counter_set_low(&memcg->memory, low);
6242
6243 return nbytes;
6244 }
6245
6246 static int memory_high_show(struct seq_file *m, void *v)
6247 {
6248 return seq_puts_memcg_tunable(m,
6249 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6250 }
6251
6252 static ssize_t memory_high_write(struct kernfs_open_file *of,
6253 char *buf, size_t nbytes, loff_t off)
6254 {
6255 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6256 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6257 bool drained = false;
6258 unsigned long high;
6259 int err;
6260
6261 buf = strstrip(buf);
6262 err = page_counter_memparse(buf, "max", &high);
6263 if (err)
6264 return err;
6265
6266 page_counter_set_high(&memcg->memory, high);
6267
6268 for (;;) {
6269 unsigned long nr_pages = page_counter_read(&memcg->memory);
6270 unsigned long reclaimed;
6271
6272 if (nr_pages <= high)
6273 break;
6274
6275 if (signal_pending(current))
6276 break;
6277
6278 if (!drained) {
6279 drain_all_stock(memcg);
6280 drained = true;
6281 continue;
6282 }
6283
6284 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6285 GFP_KERNEL, true);
6286
6287 if (!reclaimed && !nr_retries--)
6288 break;
6289 }
6290
6291 memcg_wb_domain_size_changed(memcg);
6292 return nbytes;
6293 }
6294
6295 static int memory_max_show(struct seq_file *m, void *v)
6296 {
6297 return seq_puts_memcg_tunable(m,
6298 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6299 }
6300
6301 static ssize_t memory_max_write(struct kernfs_open_file *of,
6302 char *buf, size_t nbytes, loff_t off)
6303 {
6304 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6305 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6306 bool drained = false;
6307 unsigned long max;
6308 int err;
6309
6310 buf = strstrip(buf);
6311 err = page_counter_memparse(buf, "max", &max);
6312 if (err)
6313 return err;
6314
6315 xchg(&memcg->memory.max, max);
6316
6317 for (;;) {
6318 unsigned long nr_pages = page_counter_read(&memcg->memory);
6319
6320 if (nr_pages <= max)
6321 break;
6322
6323 if (signal_pending(current))
6324 break;
6325
6326 if (!drained) {
6327 drain_all_stock(memcg);
6328 drained = true;
6329 continue;
6330 }
6331
6332 if (nr_reclaims) {
6333 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6334 GFP_KERNEL, true))
6335 nr_reclaims--;
6336 continue;
6337 }
6338
6339 memcg_memory_event(memcg, MEMCG_OOM);
6340 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6341 break;
6342 }
6343
6344 memcg_wb_domain_size_changed(memcg);
6345 return nbytes;
6346 }
6347
6348 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6349 {
6350 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6351 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6352 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6353 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6354 seq_printf(m, "oom_kill %lu\n",
6355 atomic_long_read(&events[MEMCG_OOM_KILL]));
6356 }
6357
6358 static int memory_events_show(struct seq_file *m, void *v)
6359 {
6360 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6361
6362 __memory_events_show(m, memcg->memory_events);
6363 return 0;
6364 }
6365
6366 static int memory_events_local_show(struct seq_file *m, void *v)
6367 {
6368 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6369
6370 __memory_events_show(m, memcg->memory_events_local);
6371 return 0;
6372 }
6373
6374 static int memory_stat_show(struct seq_file *m, void *v)
6375 {
6376 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6377 char *buf;
6378
6379 buf = memory_stat_format(memcg);
6380 if (!buf)
6381 return -ENOMEM;
6382 seq_puts(m, buf);
6383 kfree(buf);
6384 return 0;
6385 }
6386
6387 #ifdef CONFIG_NUMA
6388 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6389 int item)
6390 {
6391 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6392 }
6393
6394 static int memory_numa_stat_show(struct seq_file *m, void *v)
6395 {
6396 int i;
6397 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6398
6399 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6400 int nid;
6401
6402 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6403 continue;
6404
6405 seq_printf(m, "%s", memory_stats[i].name);
6406 for_each_node_state(nid, N_MEMORY) {
6407 u64 size;
6408 struct lruvec *lruvec;
6409
6410 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6411 size = lruvec_page_state_output(lruvec,
6412 memory_stats[i].idx);
6413 seq_printf(m, " N%d=%llu", nid, size);
6414 }
6415 seq_putc(m, '\n');
6416 }
6417
6418 return 0;
6419 }
6420 #endif
6421
6422 static int memory_oom_group_show(struct seq_file *m, void *v)
6423 {
6424 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6425
6426 seq_printf(m, "%d\n", memcg->oom_group);
6427
6428 return 0;
6429 }
6430
6431 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6432 char *buf, size_t nbytes, loff_t off)
6433 {
6434 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6435 int ret, oom_group;
6436
6437 buf = strstrip(buf);
6438 if (!buf)
6439 return -EINVAL;
6440
6441 ret = kstrtoint(buf, 0, &oom_group);
6442 if (ret)
6443 return ret;
6444
6445 if (oom_group != 0 && oom_group != 1)
6446 return -EINVAL;
6447
6448 memcg->oom_group = oom_group;
6449
6450 return nbytes;
6451 }
6452
6453 static struct cftype memory_files[] = {
6454 {
6455 .name = "current",
6456 .flags = CFTYPE_NOT_ON_ROOT,
6457 .read_u64 = memory_current_read,
6458 },
6459 {
6460 .name = "min",
6461 .flags = CFTYPE_NOT_ON_ROOT,
6462 .seq_show = memory_min_show,
6463 .write = memory_min_write,
6464 },
6465 {
6466 .name = "low",
6467 .flags = CFTYPE_NOT_ON_ROOT,
6468 .seq_show = memory_low_show,
6469 .write = memory_low_write,
6470 },
6471 {
6472 .name = "high",
6473 .flags = CFTYPE_NOT_ON_ROOT,
6474 .seq_show = memory_high_show,
6475 .write = memory_high_write,
6476 },
6477 {
6478 .name = "max",
6479 .flags = CFTYPE_NOT_ON_ROOT,
6480 .seq_show = memory_max_show,
6481 .write = memory_max_write,
6482 },
6483 {
6484 .name = "events",
6485 .flags = CFTYPE_NOT_ON_ROOT,
6486 .file_offset = offsetof(struct mem_cgroup, events_file),
6487 .seq_show = memory_events_show,
6488 },
6489 {
6490 .name = "events.local",
6491 .flags = CFTYPE_NOT_ON_ROOT,
6492 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6493 .seq_show = memory_events_local_show,
6494 },
6495 {
6496 .name = "stat",
6497 .seq_show = memory_stat_show,
6498 },
6499 #ifdef CONFIG_NUMA
6500 {
6501 .name = "numa_stat",
6502 .seq_show = memory_numa_stat_show,
6503 },
6504 #endif
6505 {
6506 .name = "oom.group",
6507 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6508 .seq_show = memory_oom_group_show,
6509 .write = memory_oom_group_write,
6510 },
6511 { } /* terminate */
6512 };
6513
6514 struct cgroup_subsys memory_cgrp_subsys = {
6515 .css_alloc = mem_cgroup_css_alloc,
6516 .css_online = mem_cgroup_css_online,
6517 .css_offline = mem_cgroup_css_offline,
6518 .css_released = mem_cgroup_css_released,
6519 .css_free = mem_cgroup_css_free,
6520 .css_reset = mem_cgroup_css_reset,
6521 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6522 .can_attach = mem_cgroup_can_attach,
6523 .cancel_attach = mem_cgroup_cancel_attach,
6524 .post_attach = mem_cgroup_move_task,
6525 .dfl_cftypes = memory_files,
6526 .legacy_cftypes = mem_cgroup_legacy_files,
6527 .early_init = 0,
6528 };
6529
6530 /*
6531 * This function calculates an individual cgroup's effective
6532 * protection which is derived from its own memory.min/low, its
6533 * parent's and siblings' settings, as well as the actual memory
6534 * distribution in the tree.
6535 *
6536 * The following rules apply to the effective protection values:
6537 *
6538 * 1. At the first level of reclaim, effective protection is equal to
6539 * the declared protection in memory.min and memory.low.
6540 *
6541 * 2. To enable safe delegation of the protection configuration, at
6542 * subsequent levels the effective protection is capped to the
6543 * parent's effective protection.
6544 *
6545 * 3. To make complex and dynamic subtrees easier to configure, the
6546 * user is allowed to overcommit the declared protection at a given
6547 * level. If that is the case, the parent's effective protection is
6548 * distributed to the children in proportion to how much protection
6549 * they have declared and how much of it they are utilizing.
6550 *
6551 * This makes distribution proportional, but also work-conserving:
6552 * if one cgroup claims much more protection than it uses memory,
6553 * the unused remainder is available to its siblings.
6554 *
6555 * 4. Conversely, when the declared protection is undercommitted at a
6556 * given level, the distribution of the larger parental protection
6557 * budget is NOT proportional. A cgroup's protection from a sibling
6558 * is capped to its own memory.min/low setting.
6559 *
6560 * 5. However, to allow protecting recursive subtrees from each other
6561 * without having to declare each individual cgroup's fixed share
6562 * of the ancestor's claim to protection, any unutilized -
6563 * "floating" - protection from up the tree is distributed in
6564 * proportion to each cgroup's *usage*. This makes the protection
6565 * neutral wrt sibling cgroups and lets them compete freely over
6566 * the shared parental protection budget, but it protects the
6567 * subtree as a whole from neighboring subtrees.
6568 *
6569 * Note that 4. and 5. are not in conflict: 4. is about protecting
6570 * against immediate siblings whereas 5. is about protecting against
6571 * neighboring subtrees.
6572 */
6573 static unsigned long effective_protection(unsigned long usage,
6574 unsigned long parent_usage,
6575 unsigned long setting,
6576 unsigned long parent_effective,
6577 unsigned long siblings_protected)
6578 {
6579 unsigned long protected;
6580 unsigned long ep;
6581
6582 protected = min(usage, setting);
6583 /*
6584 * If all cgroups at this level combined claim and use more
6585 * protection then what the parent affords them, distribute
6586 * shares in proportion to utilization.
6587 *
6588 * We are using actual utilization rather than the statically
6589 * claimed protection in order to be work-conserving: claimed
6590 * but unused protection is available to siblings that would
6591 * otherwise get a smaller chunk than what they claimed.
6592 */
6593 if (siblings_protected > parent_effective)
6594 return protected * parent_effective / siblings_protected;
6595
6596 /*
6597 * Ok, utilized protection of all children is within what the
6598 * parent affords them, so we know whatever this child claims
6599 * and utilizes is effectively protected.
6600 *
6601 * If there is unprotected usage beyond this value, reclaim
6602 * will apply pressure in proportion to that amount.
6603 *
6604 * If there is unutilized protection, the cgroup will be fully
6605 * shielded from reclaim, but we do return a smaller value for
6606 * protection than what the group could enjoy in theory. This
6607 * is okay. With the overcommit distribution above, effective
6608 * protection is always dependent on how memory is actually
6609 * consumed among the siblings anyway.
6610 */
6611 ep = protected;
6612
6613 /*
6614 * If the children aren't claiming (all of) the protection
6615 * afforded to them by the parent, distribute the remainder in
6616 * proportion to the (unprotected) memory of each cgroup. That
6617 * way, cgroups that aren't explicitly prioritized wrt each
6618 * other compete freely over the allowance, but they are
6619 * collectively protected from neighboring trees.
6620 *
6621 * We're using unprotected memory for the weight so that if
6622 * some cgroups DO claim explicit protection, we don't protect
6623 * the same bytes twice.
6624 *
6625 * Check both usage and parent_usage against the respective
6626 * protected values. One should imply the other, but they
6627 * aren't read atomically - make sure the division is sane.
6628 */
6629 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6630 return ep;
6631 if (parent_effective > siblings_protected &&
6632 parent_usage > siblings_protected &&
6633 usage > protected) {
6634 unsigned long unclaimed;
6635
6636 unclaimed = parent_effective - siblings_protected;
6637 unclaimed *= usage - protected;
6638 unclaimed /= parent_usage - siblings_protected;
6639
6640 ep += unclaimed;
6641 }
6642
6643 return ep;
6644 }
6645
6646 /**
6647 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6648 * @root: the top ancestor of the sub-tree being checked
6649 * @memcg: the memory cgroup to check
6650 *
6651 * WARNING: This function is not stateless! It can only be used as part
6652 * of a top-down tree iteration, not for isolated queries.
6653 */
6654 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6655 struct mem_cgroup *memcg)
6656 {
6657 unsigned long usage, parent_usage;
6658 struct mem_cgroup *parent;
6659
6660 if (mem_cgroup_disabled())
6661 return;
6662
6663 if (!root)
6664 root = root_mem_cgroup;
6665
6666 /*
6667 * Effective values of the reclaim targets are ignored so they
6668 * can be stale. Have a look at mem_cgroup_protection for more
6669 * details.
6670 * TODO: calculation should be more robust so that we do not need
6671 * that special casing.
6672 */
6673 if (memcg == root)
6674 return;
6675
6676 usage = page_counter_read(&memcg->memory);
6677 if (!usage)
6678 return;
6679
6680 parent = parent_mem_cgroup(memcg);
6681 /* No parent means a non-hierarchical mode on v1 memcg */
6682 if (!parent)
6683 return;
6684
6685 if (parent == root) {
6686 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6687 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6688 return;
6689 }
6690
6691 parent_usage = page_counter_read(&parent->memory);
6692
6693 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6694 READ_ONCE(memcg->memory.min),
6695 READ_ONCE(parent->memory.emin),
6696 atomic_long_read(&parent->memory.children_min_usage)));
6697
6698 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6699 READ_ONCE(memcg->memory.low),
6700 READ_ONCE(parent->memory.elow),
6701 atomic_long_read(&parent->memory.children_low_usage)));
6702 }
6703
6704 static int __mem_cgroup_charge(struct page *page, struct mem_cgroup *memcg,
6705 gfp_t gfp)
6706 {
6707 unsigned int nr_pages = thp_nr_pages(page);
6708 int ret;
6709
6710 ret = try_charge(memcg, gfp, nr_pages);
6711 if (ret)
6712 goto out;
6713
6714 css_get(&memcg->css);
6715 commit_charge(page, memcg);
6716
6717 local_irq_disable();
6718 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6719 memcg_check_events(memcg, page);
6720 local_irq_enable();
6721 out:
6722 return ret;
6723 }
6724
6725 /**
6726 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6727 * @page: page to charge
6728 * @mm: mm context of the victim
6729 * @gfp_mask: reclaim mode
6730 *
6731 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6732 * pages according to @gfp_mask if necessary. if @mm is NULL, try to
6733 * charge to the active memcg.
6734 *
6735 * Do not use this for pages allocated for swapin.
6736 *
6737 * Returns 0 on success. Otherwise, an error code is returned.
6738 */
6739 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6740 {
6741 struct mem_cgroup *memcg;
6742 int ret;
6743
6744 if (mem_cgroup_disabled())
6745 return 0;
6746
6747 memcg = get_mem_cgroup_from_mm(mm);
6748 ret = __mem_cgroup_charge(page, memcg, gfp_mask);
6749 css_put(&memcg->css);
6750
6751 return ret;
6752 }
6753
6754 /**
6755 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6756 * @page: page to charge
6757 * @mm: mm context of the victim
6758 * @gfp: reclaim mode
6759 * @entry: swap entry for which the page is allocated
6760 *
6761 * This function charges a page allocated for swapin. Please call this before
6762 * adding the page to the swapcache.
6763 *
6764 * Returns 0 on success. Otherwise, an error code is returned.
6765 */
6766 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6767 gfp_t gfp, swp_entry_t entry)
6768 {
6769 struct mem_cgroup *memcg;
6770 unsigned short id;
6771 int ret;
6772
6773 if (mem_cgroup_disabled())
6774 return 0;
6775
6776 id = lookup_swap_cgroup_id(entry);
6777 rcu_read_lock();
6778 memcg = mem_cgroup_from_id(id);
6779 if (!memcg || !css_tryget_online(&memcg->css))
6780 memcg = get_mem_cgroup_from_mm(mm);
6781 rcu_read_unlock();
6782
6783 ret = __mem_cgroup_charge(page, memcg, gfp);
6784
6785 css_put(&memcg->css);
6786 return ret;
6787 }
6788
6789 /*
6790 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6791 * @entry: swap entry for which the page is charged
6792 *
6793 * Call this function after successfully adding the charged page to swapcache.
6794 *
6795 * Note: This function assumes the page for which swap slot is being uncharged
6796 * is order 0 page.
6797 */
6798 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6799 {
6800 /*
6801 * Cgroup1's unified memory+swap counter has been charged with the
6802 * new swapcache page, finish the transfer by uncharging the swap
6803 * slot. The swap slot would also get uncharged when it dies, but
6804 * it can stick around indefinitely and we'd count the page twice
6805 * the entire time.
6806 *
6807 * Cgroup2 has separate resource counters for memory and swap,
6808 * so this is a non-issue here. Memory and swap charge lifetimes
6809 * correspond 1:1 to page and swap slot lifetimes: we charge the
6810 * page to memory here, and uncharge swap when the slot is freed.
6811 */
6812 if (!mem_cgroup_disabled() && do_memsw_account()) {
6813 /*
6814 * The swap entry might not get freed for a long time,
6815 * let's not wait for it. The page already received a
6816 * memory+swap charge, drop the swap entry duplicate.
6817 */
6818 mem_cgroup_uncharge_swap(entry, 1);
6819 }
6820 }
6821
6822 struct uncharge_gather {
6823 struct mem_cgroup *memcg;
6824 unsigned long nr_memory;
6825 unsigned long pgpgout;
6826 unsigned long nr_kmem;
6827 struct page *dummy_page;
6828 };
6829
6830 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6831 {
6832 memset(ug, 0, sizeof(*ug));
6833 }
6834
6835 static void uncharge_batch(const struct uncharge_gather *ug)
6836 {
6837 unsigned long flags;
6838
6839 if (ug->nr_memory) {
6840 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6841 if (do_memsw_account())
6842 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6843 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6844 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6845 memcg_oom_recover(ug->memcg);
6846 }
6847
6848 local_irq_save(flags);
6849 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6850 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6851 memcg_check_events(ug->memcg, ug->dummy_page);
6852 local_irq_restore(flags);
6853
6854 /* drop reference from uncharge_page */
6855 css_put(&ug->memcg->css);
6856 }
6857
6858 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6859 {
6860 unsigned long nr_pages;
6861 struct mem_cgroup *memcg;
6862 struct obj_cgroup *objcg;
6863 bool use_objcg = PageMemcgKmem(page);
6864
6865 VM_BUG_ON_PAGE(PageLRU(page), page);
6866
6867 /*
6868 * Nobody should be changing or seriously looking at
6869 * page memcg or objcg at this point, we have fully
6870 * exclusive access to the page.
6871 */
6872 if (use_objcg) {
6873 objcg = __page_objcg(page);
6874 /*
6875 * This get matches the put at the end of the function and
6876 * kmem pages do not hold memcg references anymore.
6877 */
6878 memcg = get_mem_cgroup_from_objcg(objcg);
6879 } else {
6880 memcg = __page_memcg(page);
6881 }
6882
6883 if (!memcg)
6884 return;
6885
6886 if (ug->memcg != memcg) {
6887 if (ug->memcg) {
6888 uncharge_batch(ug);
6889 uncharge_gather_clear(ug);
6890 }
6891 ug->memcg = memcg;
6892 ug->dummy_page = page;
6893
6894 /* pairs with css_put in uncharge_batch */
6895 css_get(&memcg->css);
6896 }
6897
6898 nr_pages = compound_nr(page);
6899
6900 if (use_objcg) {
6901 ug->nr_memory += nr_pages;
6902 ug->nr_kmem += nr_pages;
6903
6904 page->memcg_data = 0;
6905 obj_cgroup_put(objcg);
6906 } else {
6907 /* LRU pages aren't accounted at the root level */
6908 if (!mem_cgroup_is_root(memcg))
6909 ug->nr_memory += nr_pages;
6910 ug->pgpgout++;
6911
6912 page->memcg_data = 0;
6913 }
6914
6915 css_put(&memcg->css);
6916 }
6917
6918 /**
6919 * mem_cgroup_uncharge - uncharge a page
6920 * @page: page to uncharge
6921 *
6922 * Uncharge a page previously charged with mem_cgroup_charge().
6923 */
6924 void mem_cgroup_uncharge(struct page *page)
6925 {
6926 struct uncharge_gather ug;
6927
6928 if (mem_cgroup_disabled())
6929 return;
6930
6931 /* Don't touch page->lru of any random page, pre-check: */
6932 if (!page_memcg(page))
6933 return;
6934
6935 uncharge_gather_clear(&ug);
6936 uncharge_page(page, &ug);
6937 uncharge_batch(&ug);
6938 }
6939
6940 /**
6941 * mem_cgroup_uncharge_list - uncharge a list of page
6942 * @page_list: list of pages to uncharge
6943 *
6944 * Uncharge a list of pages previously charged with
6945 * mem_cgroup_charge().
6946 */
6947 void mem_cgroup_uncharge_list(struct list_head *page_list)
6948 {
6949 struct uncharge_gather ug;
6950 struct page *page;
6951
6952 if (mem_cgroup_disabled())
6953 return;
6954
6955 uncharge_gather_clear(&ug);
6956 list_for_each_entry(page, page_list, lru)
6957 uncharge_page(page, &ug);
6958 if (ug.memcg)
6959 uncharge_batch(&ug);
6960 }
6961
6962 /**
6963 * mem_cgroup_migrate - charge a page's replacement
6964 * @oldpage: currently circulating page
6965 * @newpage: replacement page
6966 *
6967 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6968 * be uncharged upon free.
6969 *
6970 * Both pages must be locked, @newpage->mapping must be set up.
6971 */
6972 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6973 {
6974 struct mem_cgroup *memcg;
6975 unsigned int nr_pages;
6976 unsigned long flags;
6977
6978 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6979 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6980 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6981 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6982 newpage);
6983
6984 if (mem_cgroup_disabled())
6985 return;
6986
6987 /* Page cache replacement: new page already charged? */
6988 if (page_memcg(newpage))
6989 return;
6990
6991 memcg = page_memcg(oldpage);
6992 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6993 if (!memcg)
6994 return;
6995
6996 /* Force-charge the new page. The old one will be freed soon */
6997 nr_pages = thp_nr_pages(newpage);
6998
6999 if (!mem_cgroup_is_root(memcg)) {
7000 page_counter_charge(&memcg->memory, nr_pages);
7001 if (do_memsw_account())
7002 page_counter_charge(&memcg->memsw, nr_pages);
7003 }
7004
7005 css_get(&memcg->css);
7006 commit_charge(newpage, memcg);
7007
7008 local_irq_save(flags);
7009 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7010 memcg_check_events(memcg, newpage);
7011 local_irq_restore(flags);
7012 }
7013
7014 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7015 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7016
7017 void mem_cgroup_sk_alloc(struct sock *sk)
7018 {
7019 struct mem_cgroup *memcg;
7020
7021 if (!mem_cgroup_sockets_enabled)
7022 return;
7023
7024 /* Do not associate the sock with unrelated interrupted task's memcg. */
7025 if (in_interrupt())
7026 return;
7027
7028 rcu_read_lock();
7029 memcg = mem_cgroup_from_task(current);
7030 if (memcg == root_mem_cgroup)
7031 goto out;
7032 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7033 goto out;
7034 if (css_tryget(&memcg->css))
7035 sk->sk_memcg = memcg;
7036 out:
7037 rcu_read_unlock();
7038 }
7039
7040 void mem_cgroup_sk_free(struct sock *sk)
7041 {
7042 if (sk->sk_memcg)
7043 css_put(&sk->sk_memcg->css);
7044 }
7045
7046 /**
7047 * mem_cgroup_charge_skmem - charge socket memory
7048 * @memcg: memcg to charge
7049 * @nr_pages: number of pages to charge
7050 *
7051 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7052 * @memcg's configured limit, %false if the charge had to be forced.
7053 */
7054 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7055 {
7056 gfp_t gfp_mask = GFP_KERNEL;
7057
7058 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7059 struct page_counter *fail;
7060
7061 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7062 memcg->tcpmem_pressure = 0;
7063 return true;
7064 }
7065 page_counter_charge(&memcg->tcpmem, nr_pages);
7066 memcg->tcpmem_pressure = 1;
7067 return false;
7068 }
7069
7070 /* Don't block in the packet receive path */
7071 if (in_softirq())
7072 gfp_mask = GFP_NOWAIT;
7073
7074 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7075
7076 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7077 return true;
7078
7079 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7080 return false;
7081 }
7082
7083 /**
7084 * mem_cgroup_uncharge_skmem - uncharge socket memory
7085 * @memcg: memcg to uncharge
7086 * @nr_pages: number of pages to uncharge
7087 */
7088 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7089 {
7090 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7091 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7092 return;
7093 }
7094
7095 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7096
7097 refill_stock(memcg, nr_pages);
7098 }
7099
7100 static int __init cgroup_memory(char *s)
7101 {
7102 char *token;
7103
7104 while ((token = strsep(&s, ",")) != NULL) {
7105 if (!*token)
7106 continue;
7107 if (!strcmp(token, "nosocket"))
7108 cgroup_memory_nosocket = true;
7109 if (!strcmp(token, "nokmem"))
7110 cgroup_memory_nokmem = true;
7111 }
7112 return 0;
7113 }
7114 __setup("cgroup.memory=", cgroup_memory);
7115
7116 /*
7117 * subsys_initcall() for memory controller.
7118 *
7119 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7120 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7121 * basically everything that doesn't depend on a specific mem_cgroup structure
7122 * should be initialized from here.
7123 */
7124 static int __init mem_cgroup_init(void)
7125 {
7126 int cpu, node;
7127
7128 /*
7129 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7130 * used for per-memcg-per-cpu caching of per-node statistics. In order
7131 * to work fine, we should make sure that the overfill threshold can't
7132 * exceed S32_MAX / PAGE_SIZE.
7133 */
7134 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7135
7136 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7137 memcg_hotplug_cpu_dead);
7138
7139 for_each_possible_cpu(cpu)
7140 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7141 drain_local_stock);
7142
7143 for_each_node(node) {
7144 struct mem_cgroup_tree_per_node *rtpn;
7145
7146 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7147 node_online(node) ? node : NUMA_NO_NODE);
7148
7149 rtpn->rb_root = RB_ROOT;
7150 rtpn->rb_rightmost = NULL;
7151 spin_lock_init(&rtpn->lock);
7152 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7153 }
7154
7155 return 0;
7156 }
7157 subsys_initcall(mem_cgroup_init);
7158
7159 #ifdef CONFIG_MEMCG_SWAP
7160 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7161 {
7162 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7163 /*
7164 * The root cgroup cannot be destroyed, so it's refcount must
7165 * always be >= 1.
7166 */
7167 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7168 VM_BUG_ON(1);
7169 break;
7170 }
7171 memcg = parent_mem_cgroup(memcg);
7172 if (!memcg)
7173 memcg = root_mem_cgroup;
7174 }
7175 return memcg;
7176 }
7177
7178 /**
7179 * mem_cgroup_swapout - transfer a memsw charge to swap
7180 * @page: page whose memsw charge to transfer
7181 * @entry: swap entry to move the charge to
7182 *
7183 * Transfer the memsw charge of @page to @entry.
7184 */
7185 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7186 {
7187 struct mem_cgroup *memcg, *swap_memcg;
7188 unsigned int nr_entries;
7189 unsigned short oldid;
7190
7191 VM_BUG_ON_PAGE(PageLRU(page), page);
7192 VM_BUG_ON_PAGE(page_count(page), page);
7193
7194 if (mem_cgroup_disabled())
7195 return;
7196
7197 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7198 return;
7199
7200 memcg = page_memcg(page);
7201
7202 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7203 if (!memcg)
7204 return;
7205
7206 /*
7207 * In case the memcg owning these pages has been offlined and doesn't
7208 * have an ID allocated to it anymore, charge the closest online
7209 * ancestor for the swap instead and transfer the memory+swap charge.
7210 */
7211 swap_memcg = mem_cgroup_id_get_online(memcg);
7212 nr_entries = thp_nr_pages(page);
7213 /* Get references for the tail pages, too */
7214 if (nr_entries > 1)
7215 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7216 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7217 nr_entries);
7218 VM_BUG_ON_PAGE(oldid, page);
7219 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7220
7221 page->memcg_data = 0;
7222
7223 if (!mem_cgroup_is_root(memcg))
7224 page_counter_uncharge(&memcg->memory, nr_entries);
7225
7226 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7227 if (!mem_cgroup_is_root(swap_memcg))
7228 page_counter_charge(&swap_memcg->memsw, nr_entries);
7229 page_counter_uncharge(&memcg->memsw, nr_entries);
7230 }
7231
7232 /*
7233 * Interrupts should be disabled here because the caller holds the
7234 * i_pages lock which is taken with interrupts-off. It is
7235 * important here to have the interrupts disabled because it is the
7236 * only synchronisation we have for updating the per-CPU variables.
7237 */
7238 VM_BUG_ON(!irqs_disabled());
7239 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7240 memcg_check_events(memcg, page);
7241
7242 css_put(&memcg->css);
7243 }
7244
7245 /**
7246 * mem_cgroup_try_charge_swap - try charging swap space for a page
7247 * @page: page being added to swap
7248 * @entry: swap entry to charge
7249 *
7250 * Try to charge @page's memcg for the swap space at @entry.
7251 *
7252 * Returns 0 on success, -ENOMEM on failure.
7253 */
7254 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7255 {
7256 unsigned int nr_pages = thp_nr_pages(page);
7257 struct page_counter *counter;
7258 struct mem_cgroup *memcg;
7259 unsigned short oldid;
7260
7261 if (mem_cgroup_disabled())
7262 return 0;
7263
7264 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7265 return 0;
7266
7267 memcg = page_memcg(page);
7268
7269 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7270 if (!memcg)
7271 return 0;
7272
7273 if (!entry.val) {
7274 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7275 return 0;
7276 }
7277
7278 memcg = mem_cgroup_id_get_online(memcg);
7279
7280 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7281 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7282 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7283 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7284 mem_cgroup_id_put(memcg);
7285 return -ENOMEM;
7286 }
7287
7288 /* Get references for the tail pages, too */
7289 if (nr_pages > 1)
7290 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7291 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7292 VM_BUG_ON_PAGE(oldid, page);
7293 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7294
7295 return 0;
7296 }
7297
7298 /**
7299 * mem_cgroup_uncharge_swap - uncharge swap space
7300 * @entry: swap entry to uncharge
7301 * @nr_pages: the amount of swap space to uncharge
7302 */
7303 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7304 {
7305 struct mem_cgroup *memcg;
7306 unsigned short id;
7307
7308 id = swap_cgroup_record(entry, 0, nr_pages);
7309 rcu_read_lock();
7310 memcg = mem_cgroup_from_id(id);
7311 if (memcg) {
7312 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7313 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7314 page_counter_uncharge(&memcg->swap, nr_pages);
7315 else
7316 page_counter_uncharge(&memcg->memsw, nr_pages);
7317 }
7318 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7319 mem_cgroup_id_put_many(memcg, nr_pages);
7320 }
7321 rcu_read_unlock();
7322 }
7323
7324 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7325 {
7326 long nr_swap_pages = get_nr_swap_pages();
7327
7328 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7329 return nr_swap_pages;
7330 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7331 nr_swap_pages = min_t(long, nr_swap_pages,
7332 READ_ONCE(memcg->swap.max) -
7333 page_counter_read(&memcg->swap));
7334 return nr_swap_pages;
7335 }
7336
7337 bool mem_cgroup_swap_full(struct page *page)
7338 {
7339 struct mem_cgroup *memcg;
7340
7341 VM_BUG_ON_PAGE(!PageLocked(page), page);
7342
7343 if (vm_swap_full())
7344 return true;
7345 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7346 return false;
7347
7348 memcg = page_memcg(page);
7349 if (!memcg)
7350 return false;
7351
7352 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7353 unsigned long usage = page_counter_read(&memcg->swap);
7354
7355 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7356 usage * 2 >= READ_ONCE(memcg->swap.max))
7357 return true;
7358 }
7359
7360 return false;
7361 }
7362
7363 static int __init setup_swap_account(char *s)
7364 {
7365 if (!strcmp(s, "1"))
7366 cgroup_memory_noswap = false;
7367 else if (!strcmp(s, "0"))
7368 cgroup_memory_noswap = true;
7369 return 1;
7370 }
7371 __setup("swapaccount=", setup_swap_account);
7372
7373 static u64 swap_current_read(struct cgroup_subsys_state *css,
7374 struct cftype *cft)
7375 {
7376 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7377
7378 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7379 }
7380
7381 static int swap_high_show(struct seq_file *m, void *v)
7382 {
7383 return seq_puts_memcg_tunable(m,
7384 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7385 }
7386
7387 static ssize_t swap_high_write(struct kernfs_open_file *of,
7388 char *buf, size_t nbytes, loff_t off)
7389 {
7390 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7391 unsigned long high;
7392 int err;
7393
7394 buf = strstrip(buf);
7395 err = page_counter_memparse(buf, "max", &high);
7396 if (err)
7397 return err;
7398
7399 page_counter_set_high(&memcg->swap, high);
7400
7401 return nbytes;
7402 }
7403
7404 static int swap_max_show(struct seq_file *m, void *v)
7405 {
7406 return seq_puts_memcg_tunable(m,
7407 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7408 }
7409
7410 static ssize_t swap_max_write(struct kernfs_open_file *of,
7411 char *buf, size_t nbytes, loff_t off)
7412 {
7413 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7414 unsigned long max;
7415 int err;
7416
7417 buf = strstrip(buf);
7418 err = page_counter_memparse(buf, "max", &max);
7419 if (err)
7420 return err;
7421
7422 xchg(&memcg->swap.max, max);
7423
7424 return nbytes;
7425 }
7426
7427 static int swap_events_show(struct seq_file *m, void *v)
7428 {
7429 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7430
7431 seq_printf(m, "high %lu\n",
7432 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7433 seq_printf(m, "max %lu\n",
7434 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7435 seq_printf(m, "fail %lu\n",
7436 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7437
7438 return 0;
7439 }
7440
7441 static struct cftype swap_files[] = {
7442 {
7443 .name = "swap.current",
7444 .flags = CFTYPE_NOT_ON_ROOT,
7445 .read_u64 = swap_current_read,
7446 },
7447 {
7448 .name = "swap.high",
7449 .flags = CFTYPE_NOT_ON_ROOT,
7450 .seq_show = swap_high_show,
7451 .write = swap_high_write,
7452 },
7453 {
7454 .name = "swap.max",
7455 .flags = CFTYPE_NOT_ON_ROOT,
7456 .seq_show = swap_max_show,
7457 .write = swap_max_write,
7458 },
7459 {
7460 .name = "swap.events",
7461 .flags = CFTYPE_NOT_ON_ROOT,
7462 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7463 .seq_show = swap_events_show,
7464 },
7465 { } /* terminate */
7466 };
7467
7468 static struct cftype memsw_files[] = {
7469 {
7470 .name = "memsw.usage_in_bytes",
7471 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7472 .read_u64 = mem_cgroup_read_u64,
7473 },
7474 {
7475 .name = "memsw.max_usage_in_bytes",
7476 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7477 .write = mem_cgroup_reset,
7478 .read_u64 = mem_cgroup_read_u64,
7479 },
7480 {
7481 .name = "memsw.limit_in_bytes",
7482 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7483 .write = mem_cgroup_write,
7484 .read_u64 = mem_cgroup_read_u64,
7485 },
7486 {
7487 .name = "memsw.failcnt",
7488 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7489 .write = mem_cgroup_reset,
7490 .read_u64 = mem_cgroup_read_u64,
7491 },
7492 { }, /* terminate */
7493 };
7494
7495 /*
7496 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7497 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7498 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7499 * boot parameter. This may result in premature OOPS inside
7500 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7501 */
7502 static int __init mem_cgroup_swap_init(void)
7503 {
7504 /* No memory control -> no swap control */
7505 if (mem_cgroup_disabled())
7506 cgroup_memory_noswap = true;
7507
7508 if (cgroup_memory_noswap)
7509 return 0;
7510
7511 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7512 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7513
7514 return 0;
7515 }
7516 core_initcall(mem_cgroup_swap_init);
7517
7518 #endif /* CONFIG_MEMCG_SWAP */