]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memcontrol.c
mm: workingset: make shadow node shrinker memcg aware
[mirror_ubuntu-bionic-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account 0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
129
130 /*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135 struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143
144 struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154 };
155
156 /*
157 * cgroup_event represents events which userspace want to receive.
158 */
159 struct mem_cgroup_event {
160 /*
161 * memcg which the event belongs to.
162 */
163 struct mem_cgroup *memcg;
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
177 int (*register_event)(struct mem_cgroup *memcg,
178 struct eventfd_ctx *eventfd, const char *args);
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
184 void (*unregister_event)(struct mem_cgroup *memcg,
185 struct eventfd_ctx *eventfd);
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194 };
195
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199 /* Stuffs for move charges at task migration. */
200 /*
201 * Types of charges to be moved.
202 */
203 #define MOVE_ANON 0x1U
204 #define MOVE_FILE 0x2U
205 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
206
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209 spinlock_t lock; /* for from, to */
210 struct mem_cgroup *from;
211 struct mem_cgroup *to;
212 unsigned long flags;
213 unsigned long precharge;
214 unsigned long moved_charge;
215 unsigned long moved_swap;
216 struct task_struct *moving_task; /* a task moving charges */
217 wait_queue_head_t waitq; /* a waitq for other context */
218 } mc = {
219 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
220 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
221 };
222
223 /*
224 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
225 * limit reclaim to prevent infinite loops, if they ever occur.
226 */
227 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
228 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
229
230 enum charge_type {
231 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
232 MEM_CGROUP_CHARGE_TYPE_ANON,
233 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
234 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
235 NR_CHARGE_TYPE,
236 };
237
238 /* for encoding cft->private value on file */
239 enum res_type {
240 _MEM,
241 _MEMSWAP,
242 _OOM_TYPE,
243 _KMEM,
244 _TCP,
245 };
246
247 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
248 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
249 #define MEMFILE_ATTR(val) ((val) & 0xffff)
250 /* Used for OOM nofiier */
251 #define OOM_CONTROL (0)
252
253 /* Some nice accessors for the vmpressure. */
254 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
255 {
256 if (!memcg)
257 memcg = root_mem_cgroup;
258 return &memcg->vmpressure;
259 }
260
261 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
262 {
263 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
264 }
265
266 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
267 {
268 return (memcg == root_mem_cgroup);
269 }
270
271 #ifndef CONFIG_SLOB
272 /*
273 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
274 * The main reason for not using cgroup id for this:
275 * this works better in sparse environments, where we have a lot of memcgs,
276 * but only a few kmem-limited. Or also, if we have, for instance, 200
277 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
278 * 200 entry array for that.
279 *
280 * The current size of the caches array is stored in memcg_nr_cache_ids. It
281 * will double each time we have to increase it.
282 */
283 static DEFINE_IDA(memcg_cache_ida);
284 int memcg_nr_cache_ids;
285
286 /* Protects memcg_nr_cache_ids */
287 static DECLARE_RWSEM(memcg_cache_ids_sem);
288
289 void memcg_get_cache_ids(void)
290 {
291 down_read(&memcg_cache_ids_sem);
292 }
293
294 void memcg_put_cache_ids(void)
295 {
296 up_read(&memcg_cache_ids_sem);
297 }
298
299 /*
300 * MIN_SIZE is different than 1, because we would like to avoid going through
301 * the alloc/free process all the time. In a small machine, 4 kmem-limited
302 * cgroups is a reasonable guess. In the future, it could be a parameter or
303 * tunable, but that is strictly not necessary.
304 *
305 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
306 * this constant directly from cgroup, but it is understandable that this is
307 * better kept as an internal representation in cgroup.c. In any case, the
308 * cgrp_id space is not getting any smaller, and we don't have to necessarily
309 * increase ours as well if it increases.
310 */
311 #define MEMCG_CACHES_MIN_SIZE 4
312 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
313
314 /*
315 * A lot of the calls to the cache allocation functions are expected to be
316 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
317 * conditional to this static branch, we'll have to allow modules that does
318 * kmem_cache_alloc and the such to see this symbol as well
319 */
320 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
321 EXPORT_SYMBOL(memcg_kmem_enabled_key);
322
323 #endif /* !CONFIG_SLOB */
324
325 static struct mem_cgroup_per_zone *
326 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
327 {
328 int nid = zone_to_nid(zone);
329 int zid = zone_idx(zone);
330
331 return &memcg->nodeinfo[nid]->zoneinfo[zid];
332 }
333
334 /**
335 * mem_cgroup_css_from_page - css of the memcg associated with a page
336 * @page: page of interest
337 *
338 * If memcg is bound to the default hierarchy, css of the memcg associated
339 * with @page is returned. The returned css remains associated with @page
340 * until it is released.
341 *
342 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
343 * is returned.
344 */
345 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
346 {
347 struct mem_cgroup *memcg;
348
349 memcg = page->mem_cgroup;
350
351 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
352 memcg = root_mem_cgroup;
353
354 return &memcg->css;
355 }
356
357 /**
358 * page_cgroup_ino - return inode number of the memcg a page is charged to
359 * @page: the page
360 *
361 * Look up the closest online ancestor of the memory cgroup @page is charged to
362 * and return its inode number or 0 if @page is not charged to any cgroup. It
363 * is safe to call this function without holding a reference to @page.
364 *
365 * Note, this function is inherently racy, because there is nothing to prevent
366 * the cgroup inode from getting torn down and potentially reallocated a moment
367 * after page_cgroup_ino() returns, so it only should be used by callers that
368 * do not care (such as procfs interfaces).
369 */
370 ino_t page_cgroup_ino(struct page *page)
371 {
372 struct mem_cgroup *memcg;
373 unsigned long ino = 0;
374
375 rcu_read_lock();
376 memcg = READ_ONCE(page->mem_cgroup);
377 while (memcg && !(memcg->css.flags & CSS_ONLINE))
378 memcg = parent_mem_cgroup(memcg);
379 if (memcg)
380 ino = cgroup_ino(memcg->css.cgroup);
381 rcu_read_unlock();
382 return ino;
383 }
384
385 static struct mem_cgroup_per_zone *
386 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
387 {
388 int nid = page_to_nid(page);
389 int zid = page_zonenum(page);
390
391 return &memcg->nodeinfo[nid]->zoneinfo[zid];
392 }
393
394 static struct mem_cgroup_tree_per_zone *
395 soft_limit_tree_node_zone(int nid, int zid)
396 {
397 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
398 }
399
400 static struct mem_cgroup_tree_per_zone *
401 soft_limit_tree_from_page(struct page *page)
402 {
403 int nid = page_to_nid(page);
404 int zid = page_zonenum(page);
405
406 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
407 }
408
409 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
410 struct mem_cgroup_tree_per_zone *mctz,
411 unsigned long new_usage_in_excess)
412 {
413 struct rb_node **p = &mctz->rb_root.rb_node;
414 struct rb_node *parent = NULL;
415 struct mem_cgroup_per_zone *mz_node;
416
417 if (mz->on_tree)
418 return;
419
420 mz->usage_in_excess = new_usage_in_excess;
421 if (!mz->usage_in_excess)
422 return;
423 while (*p) {
424 parent = *p;
425 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
426 tree_node);
427 if (mz->usage_in_excess < mz_node->usage_in_excess)
428 p = &(*p)->rb_left;
429 /*
430 * We can't avoid mem cgroups that are over their soft
431 * limit by the same amount
432 */
433 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
434 p = &(*p)->rb_right;
435 }
436 rb_link_node(&mz->tree_node, parent, p);
437 rb_insert_color(&mz->tree_node, &mctz->rb_root);
438 mz->on_tree = true;
439 }
440
441 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
442 struct mem_cgroup_tree_per_zone *mctz)
443 {
444 if (!mz->on_tree)
445 return;
446 rb_erase(&mz->tree_node, &mctz->rb_root);
447 mz->on_tree = false;
448 }
449
450 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
451 struct mem_cgroup_tree_per_zone *mctz)
452 {
453 unsigned long flags;
454
455 spin_lock_irqsave(&mctz->lock, flags);
456 __mem_cgroup_remove_exceeded(mz, mctz);
457 spin_unlock_irqrestore(&mctz->lock, flags);
458 }
459
460 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
461 {
462 unsigned long nr_pages = page_counter_read(&memcg->memory);
463 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
464 unsigned long excess = 0;
465
466 if (nr_pages > soft_limit)
467 excess = nr_pages - soft_limit;
468
469 return excess;
470 }
471
472 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
473 {
474 unsigned long excess;
475 struct mem_cgroup_per_zone *mz;
476 struct mem_cgroup_tree_per_zone *mctz;
477
478 mctz = soft_limit_tree_from_page(page);
479 /*
480 * Necessary to update all ancestors when hierarchy is used.
481 * because their event counter is not touched.
482 */
483 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
484 mz = mem_cgroup_page_zoneinfo(memcg, page);
485 excess = soft_limit_excess(memcg);
486 /*
487 * We have to update the tree if mz is on RB-tree or
488 * mem is over its softlimit.
489 */
490 if (excess || mz->on_tree) {
491 unsigned long flags;
492
493 spin_lock_irqsave(&mctz->lock, flags);
494 /* if on-tree, remove it */
495 if (mz->on_tree)
496 __mem_cgroup_remove_exceeded(mz, mctz);
497 /*
498 * Insert again. mz->usage_in_excess will be updated.
499 * If excess is 0, no tree ops.
500 */
501 __mem_cgroup_insert_exceeded(mz, mctz, excess);
502 spin_unlock_irqrestore(&mctz->lock, flags);
503 }
504 }
505 }
506
507 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
508 {
509 struct mem_cgroup_tree_per_zone *mctz;
510 struct mem_cgroup_per_zone *mz;
511 int nid, zid;
512
513 for_each_node(nid) {
514 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
515 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
516 mctz = soft_limit_tree_node_zone(nid, zid);
517 mem_cgroup_remove_exceeded(mz, mctz);
518 }
519 }
520 }
521
522 static struct mem_cgroup_per_zone *
523 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
524 {
525 struct rb_node *rightmost = NULL;
526 struct mem_cgroup_per_zone *mz;
527
528 retry:
529 mz = NULL;
530 rightmost = rb_last(&mctz->rb_root);
531 if (!rightmost)
532 goto done; /* Nothing to reclaim from */
533
534 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
535 /*
536 * Remove the node now but someone else can add it back,
537 * we will to add it back at the end of reclaim to its correct
538 * position in the tree.
539 */
540 __mem_cgroup_remove_exceeded(mz, mctz);
541 if (!soft_limit_excess(mz->memcg) ||
542 !css_tryget_online(&mz->memcg->css))
543 goto retry;
544 done:
545 return mz;
546 }
547
548 static struct mem_cgroup_per_zone *
549 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
550 {
551 struct mem_cgroup_per_zone *mz;
552
553 spin_lock_irq(&mctz->lock);
554 mz = __mem_cgroup_largest_soft_limit_node(mctz);
555 spin_unlock_irq(&mctz->lock);
556 return mz;
557 }
558
559 /*
560 * Return page count for single (non recursive) @memcg.
561 *
562 * Implementation Note: reading percpu statistics for memcg.
563 *
564 * Both of vmstat[] and percpu_counter has threshold and do periodic
565 * synchronization to implement "quick" read. There are trade-off between
566 * reading cost and precision of value. Then, we may have a chance to implement
567 * a periodic synchronization of counter in memcg's counter.
568 *
569 * But this _read() function is used for user interface now. The user accounts
570 * memory usage by memory cgroup and he _always_ requires exact value because
571 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
572 * have to visit all online cpus and make sum. So, for now, unnecessary
573 * synchronization is not implemented. (just implemented for cpu hotplug)
574 *
575 * If there are kernel internal actions which can make use of some not-exact
576 * value, and reading all cpu value can be performance bottleneck in some
577 * common workload, threshold and synchronization as vmstat[] should be
578 * implemented.
579 */
580 static unsigned long
581 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
582 {
583 long val = 0;
584 int cpu;
585
586 /* Per-cpu values can be negative, use a signed accumulator */
587 for_each_possible_cpu(cpu)
588 val += per_cpu(memcg->stat->count[idx], cpu);
589 /*
590 * Summing races with updates, so val may be negative. Avoid exposing
591 * transient negative values.
592 */
593 if (val < 0)
594 val = 0;
595 return val;
596 }
597
598 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
599 enum mem_cgroup_events_index idx)
600 {
601 unsigned long val = 0;
602 int cpu;
603
604 for_each_possible_cpu(cpu)
605 val += per_cpu(memcg->stat->events[idx], cpu);
606 return val;
607 }
608
609 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
610 struct page *page,
611 bool compound, int nr_pages)
612 {
613 /*
614 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
615 * counted as CACHE even if it's on ANON LRU.
616 */
617 if (PageAnon(page))
618 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
619 nr_pages);
620 else
621 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
622 nr_pages);
623
624 if (compound) {
625 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
626 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
627 nr_pages);
628 }
629
630 /* pagein of a big page is an event. So, ignore page size */
631 if (nr_pages > 0)
632 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
633 else {
634 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
635 nr_pages = -nr_pages; /* for event */
636 }
637
638 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
639 }
640
641 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
642 int nid, unsigned int lru_mask)
643 {
644 unsigned long nr = 0;
645 int zid;
646
647 VM_BUG_ON((unsigned)nid >= nr_node_ids);
648
649 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
650 struct mem_cgroup_per_zone *mz;
651 enum lru_list lru;
652
653 for_each_lru(lru) {
654 if (!(BIT(lru) & lru_mask))
655 continue;
656 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
657 nr += mz->lru_size[lru];
658 }
659 }
660 return nr;
661 }
662
663 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
664 unsigned int lru_mask)
665 {
666 unsigned long nr = 0;
667 int nid;
668
669 for_each_node_state(nid, N_MEMORY)
670 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
671 return nr;
672 }
673
674 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
675 enum mem_cgroup_events_target target)
676 {
677 unsigned long val, next;
678
679 val = __this_cpu_read(memcg->stat->nr_page_events);
680 next = __this_cpu_read(memcg->stat->targets[target]);
681 /* from time_after() in jiffies.h */
682 if ((long)next - (long)val < 0) {
683 switch (target) {
684 case MEM_CGROUP_TARGET_THRESH:
685 next = val + THRESHOLDS_EVENTS_TARGET;
686 break;
687 case MEM_CGROUP_TARGET_SOFTLIMIT:
688 next = val + SOFTLIMIT_EVENTS_TARGET;
689 break;
690 case MEM_CGROUP_TARGET_NUMAINFO:
691 next = val + NUMAINFO_EVENTS_TARGET;
692 break;
693 default:
694 break;
695 }
696 __this_cpu_write(memcg->stat->targets[target], next);
697 return true;
698 }
699 return false;
700 }
701
702 /*
703 * Check events in order.
704 *
705 */
706 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
707 {
708 /* threshold event is triggered in finer grain than soft limit */
709 if (unlikely(mem_cgroup_event_ratelimit(memcg,
710 MEM_CGROUP_TARGET_THRESH))) {
711 bool do_softlimit;
712 bool do_numainfo __maybe_unused;
713
714 do_softlimit = mem_cgroup_event_ratelimit(memcg,
715 MEM_CGROUP_TARGET_SOFTLIMIT);
716 #if MAX_NUMNODES > 1
717 do_numainfo = mem_cgroup_event_ratelimit(memcg,
718 MEM_CGROUP_TARGET_NUMAINFO);
719 #endif
720 mem_cgroup_threshold(memcg);
721 if (unlikely(do_softlimit))
722 mem_cgroup_update_tree(memcg, page);
723 #if MAX_NUMNODES > 1
724 if (unlikely(do_numainfo))
725 atomic_inc(&memcg->numainfo_events);
726 #endif
727 }
728 }
729
730 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
731 {
732 /*
733 * mm_update_next_owner() may clear mm->owner to NULL
734 * if it races with swapoff, page migration, etc.
735 * So this can be called with p == NULL.
736 */
737 if (unlikely(!p))
738 return NULL;
739
740 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
741 }
742 EXPORT_SYMBOL(mem_cgroup_from_task);
743
744 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
745 {
746 struct mem_cgroup *memcg = NULL;
747
748 rcu_read_lock();
749 do {
750 /*
751 * Page cache insertions can happen withou an
752 * actual mm context, e.g. during disk probing
753 * on boot, loopback IO, acct() writes etc.
754 */
755 if (unlikely(!mm))
756 memcg = root_mem_cgroup;
757 else {
758 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
759 if (unlikely(!memcg))
760 memcg = root_mem_cgroup;
761 }
762 } while (!css_tryget_online(&memcg->css));
763 rcu_read_unlock();
764 return memcg;
765 }
766
767 /**
768 * mem_cgroup_iter - iterate over memory cgroup hierarchy
769 * @root: hierarchy root
770 * @prev: previously returned memcg, NULL on first invocation
771 * @reclaim: cookie for shared reclaim walks, NULL for full walks
772 *
773 * Returns references to children of the hierarchy below @root, or
774 * @root itself, or %NULL after a full round-trip.
775 *
776 * Caller must pass the return value in @prev on subsequent
777 * invocations for reference counting, or use mem_cgroup_iter_break()
778 * to cancel a hierarchy walk before the round-trip is complete.
779 *
780 * Reclaimers can specify a zone and a priority level in @reclaim to
781 * divide up the memcgs in the hierarchy among all concurrent
782 * reclaimers operating on the same zone and priority.
783 */
784 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
785 struct mem_cgroup *prev,
786 struct mem_cgroup_reclaim_cookie *reclaim)
787 {
788 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
789 struct cgroup_subsys_state *css = NULL;
790 struct mem_cgroup *memcg = NULL;
791 struct mem_cgroup *pos = NULL;
792
793 if (mem_cgroup_disabled())
794 return NULL;
795
796 if (!root)
797 root = root_mem_cgroup;
798
799 if (prev && !reclaim)
800 pos = prev;
801
802 if (!root->use_hierarchy && root != root_mem_cgroup) {
803 if (prev)
804 goto out;
805 return root;
806 }
807
808 rcu_read_lock();
809
810 if (reclaim) {
811 struct mem_cgroup_per_zone *mz;
812
813 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
814 iter = &mz->iter[reclaim->priority];
815
816 if (prev && reclaim->generation != iter->generation)
817 goto out_unlock;
818
819 while (1) {
820 pos = READ_ONCE(iter->position);
821 if (!pos || css_tryget(&pos->css))
822 break;
823 /*
824 * css reference reached zero, so iter->position will
825 * be cleared by ->css_released. However, we should not
826 * rely on this happening soon, because ->css_released
827 * is called from a work queue, and by busy-waiting we
828 * might block it. So we clear iter->position right
829 * away.
830 */
831 (void)cmpxchg(&iter->position, pos, NULL);
832 }
833 }
834
835 if (pos)
836 css = &pos->css;
837
838 for (;;) {
839 css = css_next_descendant_pre(css, &root->css);
840 if (!css) {
841 /*
842 * Reclaimers share the hierarchy walk, and a
843 * new one might jump in right at the end of
844 * the hierarchy - make sure they see at least
845 * one group and restart from the beginning.
846 */
847 if (!prev)
848 continue;
849 break;
850 }
851
852 /*
853 * Verify the css and acquire a reference. The root
854 * is provided by the caller, so we know it's alive
855 * and kicking, and don't take an extra reference.
856 */
857 memcg = mem_cgroup_from_css(css);
858
859 if (css == &root->css)
860 break;
861
862 if (css_tryget(css))
863 break;
864
865 memcg = NULL;
866 }
867
868 if (reclaim) {
869 /*
870 * The position could have already been updated by a competing
871 * thread, so check that the value hasn't changed since we read
872 * it to avoid reclaiming from the same cgroup twice.
873 */
874 (void)cmpxchg(&iter->position, pos, memcg);
875
876 if (pos)
877 css_put(&pos->css);
878
879 if (!memcg)
880 iter->generation++;
881 else if (!prev)
882 reclaim->generation = iter->generation;
883 }
884
885 out_unlock:
886 rcu_read_unlock();
887 out:
888 if (prev && prev != root)
889 css_put(&prev->css);
890
891 return memcg;
892 }
893
894 /**
895 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
896 * @root: hierarchy root
897 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
898 */
899 void mem_cgroup_iter_break(struct mem_cgroup *root,
900 struct mem_cgroup *prev)
901 {
902 if (!root)
903 root = root_mem_cgroup;
904 if (prev && prev != root)
905 css_put(&prev->css);
906 }
907
908 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
909 {
910 struct mem_cgroup *memcg = dead_memcg;
911 struct mem_cgroup_reclaim_iter *iter;
912 struct mem_cgroup_per_zone *mz;
913 int nid, zid;
914 int i;
915
916 while ((memcg = parent_mem_cgroup(memcg))) {
917 for_each_node(nid) {
918 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
919 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
920 for (i = 0; i <= DEF_PRIORITY; i++) {
921 iter = &mz->iter[i];
922 cmpxchg(&iter->position,
923 dead_memcg, NULL);
924 }
925 }
926 }
927 }
928 }
929
930 /*
931 * Iteration constructs for visiting all cgroups (under a tree). If
932 * loops are exited prematurely (break), mem_cgroup_iter_break() must
933 * be used for reference counting.
934 */
935 #define for_each_mem_cgroup_tree(iter, root) \
936 for (iter = mem_cgroup_iter(root, NULL, NULL); \
937 iter != NULL; \
938 iter = mem_cgroup_iter(root, iter, NULL))
939
940 #define for_each_mem_cgroup(iter) \
941 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
942 iter != NULL; \
943 iter = mem_cgroup_iter(NULL, iter, NULL))
944
945 /**
946 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
947 * @zone: zone of the wanted lruvec
948 * @memcg: memcg of the wanted lruvec
949 *
950 * Returns the lru list vector holding pages for the given @zone and
951 * @mem. This can be the global zone lruvec, if the memory controller
952 * is disabled.
953 */
954 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
955 struct mem_cgroup *memcg)
956 {
957 struct mem_cgroup_per_zone *mz;
958 struct lruvec *lruvec;
959
960 if (mem_cgroup_disabled()) {
961 lruvec = &zone->lruvec;
962 goto out;
963 }
964
965 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
966 lruvec = &mz->lruvec;
967 out:
968 /*
969 * Since a node can be onlined after the mem_cgroup was created,
970 * we have to be prepared to initialize lruvec->zone here;
971 * and if offlined then reonlined, we need to reinitialize it.
972 */
973 if (unlikely(lruvec->zone != zone))
974 lruvec->zone = zone;
975 return lruvec;
976 }
977
978 /**
979 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
980 * @page: the page
981 * @zone: zone of the page
982 *
983 * This function is only safe when following the LRU page isolation
984 * and putback protocol: the LRU lock must be held, and the page must
985 * either be PageLRU() or the caller must have isolated/allocated it.
986 */
987 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
988 {
989 struct mem_cgroup_per_zone *mz;
990 struct mem_cgroup *memcg;
991 struct lruvec *lruvec;
992
993 if (mem_cgroup_disabled()) {
994 lruvec = &zone->lruvec;
995 goto out;
996 }
997
998 memcg = page->mem_cgroup;
999 /*
1000 * Swapcache readahead pages are added to the LRU - and
1001 * possibly migrated - before they are charged.
1002 */
1003 if (!memcg)
1004 memcg = root_mem_cgroup;
1005
1006 mz = mem_cgroup_page_zoneinfo(memcg, page);
1007 lruvec = &mz->lruvec;
1008 out:
1009 /*
1010 * Since a node can be onlined after the mem_cgroup was created,
1011 * we have to be prepared to initialize lruvec->zone here;
1012 * and if offlined then reonlined, we need to reinitialize it.
1013 */
1014 if (unlikely(lruvec->zone != zone))
1015 lruvec->zone = zone;
1016 return lruvec;
1017 }
1018
1019 /**
1020 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1021 * @lruvec: mem_cgroup per zone lru vector
1022 * @lru: index of lru list the page is sitting on
1023 * @nr_pages: positive when adding or negative when removing
1024 *
1025 * This function must be called when a page is added to or removed from an
1026 * lru list.
1027 */
1028 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1029 int nr_pages)
1030 {
1031 struct mem_cgroup_per_zone *mz;
1032 unsigned long *lru_size;
1033
1034 if (mem_cgroup_disabled())
1035 return;
1036
1037 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1038 lru_size = mz->lru_size + lru;
1039 *lru_size += nr_pages;
1040 VM_BUG_ON((long)(*lru_size) < 0);
1041 }
1042
1043 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1044 {
1045 struct mem_cgroup *task_memcg;
1046 struct task_struct *p;
1047 bool ret;
1048
1049 p = find_lock_task_mm(task);
1050 if (p) {
1051 task_memcg = get_mem_cgroup_from_mm(p->mm);
1052 task_unlock(p);
1053 } else {
1054 /*
1055 * All threads may have already detached their mm's, but the oom
1056 * killer still needs to detect if they have already been oom
1057 * killed to prevent needlessly killing additional tasks.
1058 */
1059 rcu_read_lock();
1060 task_memcg = mem_cgroup_from_task(task);
1061 css_get(&task_memcg->css);
1062 rcu_read_unlock();
1063 }
1064 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1065 css_put(&task_memcg->css);
1066 return ret;
1067 }
1068
1069 /**
1070 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1071 * @memcg: the memory cgroup
1072 *
1073 * Returns the maximum amount of memory @mem can be charged with, in
1074 * pages.
1075 */
1076 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1077 {
1078 unsigned long margin = 0;
1079 unsigned long count;
1080 unsigned long limit;
1081
1082 count = page_counter_read(&memcg->memory);
1083 limit = READ_ONCE(memcg->memory.limit);
1084 if (count < limit)
1085 margin = limit - count;
1086
1087 if (do_memsw_account()) {
1088 count = page_counter_read(&memcg->memsw);
1089 limit = READ_ONCE(memcg->memsw.limit);
1090 if (count <= limit)
1091 margin = min(margin, limit - count);
1092 }
1093
1094 return margin;
1095 }
1096
1097 /*
1098 * A routine for checking "mem" is under move_account() or not.
1099 *
1100 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1101 * moving cgroups. This is for waiting at high-memory pressure
1102 * caused by "move".
1103 */
1104 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1105 {
1106 struct mem_cgroup *from;
1107 struct mem_cgroup *to;
1108 bool ret = false;
1109 /*
1110 * Unlike task_move routines, we access mc.to, mc.from not under
1111 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1112 */
1113 spin_lock(&mc.lock);
1114 from = mc.from;
1115 to = mc.to;
1116 if (!from)
1117 goto unlock;
1118
1119 ret = mem_cgroup_is_descendant(from, memcg) ||
1120 mem_cgroup_is_descendant(to, memcg);
1121 unlock:
1122 spin_unlock(&mc.lock);
1123 return ret;
1124 }
1125
1126 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1127 {
1128 if (mc.moving_task && current != mc.moving_task) {
1129 if (mem_cgroup_under_move(memcg)) {
1130 DEFINE_WAIT(wait);
1131 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1132 /* moving charge context might have finished. */
1133 if (mc.moving_task)
1134 schedule();
1135 finish_wait(&mc.waitq, &wait);
1136 return true;
1137 }
1138 }
1139 return false;
1140 }
1141
1142 #define K(x) ((x) << (PAGE_SHIFT-10))
1143 /**
1144 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1145 * @memcg: The memory cgroup that went over limit
1146 * @p: Task that is going to be killed
1147 *
1148 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1149 * enabled
1150 */
1151 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1152 {
1153 /* oom_info_lock ensures that parallel ooms do not interleave */
1154 static DEFINE_MUTEX(oom_info_lock);
1155 struct mem_cgroup *iter;
1156 unsigned int i;
1157
1158 mutex_lock(&oom_info_lock);
1159 rcu_read_lock();
1160
1161 if (p) {
1162 pr_info("Task in ");
1163 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1164 pr_cont(" killed as a result of limit of ");
1165 } else {
1166 pr_info("Memory limit reached of cgroup ");
1167 }
1168
1169 pr_cont_cgroup_path(memcg->css.cgroup);
1170 pr_cont("\n");
1171
1172 rcu_read_unlock();
1173
1174 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1175 K((u64)page_counter_read(&memcg->memory)),
1176 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1177 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1178 K((u64)page_counter_read(&memcg->memsw)),
1179 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1180 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1181 K((u64)page_counter_read(&memcg->kmem)),
1182 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1183
1184 for_each_mem_cgroup_tree(iter, memcg) {
1185 pr_info("Memory cgroup stats for ");
1186 pr_cont_cgroup_path(iter->css.cgroup);
1187 pr_cont(":");
1188
1189 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1190 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1191 continue;
1192 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1193 K(mem_cgroup_read_stat(iter, i)));
1194 }
1195
1196 for (i = 0; i < NR_LRU_LISTS; i++)
1197 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1198 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1199
1200 pr_cont("\n");
1201 }
1202 mutex_unlock(&oom_info_lock);
1203 }
1204
1205 /*
1206 * This function returns the number of memcg under hierarchy tree. Returns
1207 * 1(self count) if no children.
1208 */
1209 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1210 {
1211 int num = 0;
1212 struct mem_cgroup *iter;
1213
1214 for_each_mem_cgroup_tree(iter, memcg)
1215 num++;
1216 return num;
1217 }
1218
1219 /*
1220 * Return the memory (and swap, if configured) limit for a memcg.
1221 */
1222 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1223 {
1224 unsigned long limit;
1225
1226 limit = memcg->memory.limit;
1227 if (mem_cgroup_swappiness(memcg)) {
1228 unsigned long memsw_limit;
1229 unsigned long swap_limit;
1230
1231 memsw_limit = memcg->memsw.limit;
1232 swap_limit = memcg->swap.limit;
1233 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1234 limit = min(limit + swap_limit, memsw_limit);
1235 }
1236 return limit;
1237 }
1238
1239 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1240 int order)
1241 {
1242 struct oom_control oc = {
1243 .zonelist = NULL,
1244 .nodemask = NULL,
1245 .gfp_mask = gfp_mask,
1246 .order = order,
1247 };
1248 struct mem_cgroup *iter;
1249 unsigned long chosen_points = 0;
1250 unsigned long totalpages;
1251 unsigned int points = 0;
1252 struct task_struct *chosen = NULL;
1253
1254 mutex_lock(&oom_lock);
1255
1256 /*
1257 * If current has a pending SIGKILL or is exiting, then automatically
1258 * select it. The goal is to allow it to allocate so that it may
1259 * quickly exit and free its memory.
1260 */
1261 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1262 mark_oom_victim(current);
1263 goto unlock;
1264 }
1265
1266 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1267 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1268 for_each_mem_cgroup_tree(iter, memcg) {
1269 struct css_task_iter it;
1270 struct task_struct *task;
1271
1272 css_task_iter_start(&iter->css, &it);
1273 while ((task = css_task_iter_next(&it))) {
1274 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1275 case OOM_SCAN_SELECT:
1276 if (chosen)
1277 put_task_struct(chosen);
1278 chosen = task;
1279 chosen_points = ULONG_MAX;
1280 get_task_struct(chosen);
1281 /* fall through */
1282 case OOM_SCAN_CONTINUE:
1283 continue;
1284 case OOM_SCAN_ABORT:
1285 css_task_iter_end(&it);
1286 mem_cgroup_iter_break(memcg, iter);
1287 if (chosen)
1288 put_task_struct(chosen);
1289 goto unlock;
1290 case OOM_SCAN_OK:
1291 break;
1292 };
1293 points = oom_badness(task, memcg, NULL, totalpages);
1294 if (!points || points < chosen_points)
1295 continue;
1296 /* Prefer thread group leaders for display purposes */
1297 if (points == chosen_points &&
1298 thread_group_leader(chosen))
1299 continue;
1300
1301 if (chosen)
1302 put_task_struct(chosen);
1303 chosen = task;
1304 chosen_points = points;
1305 get_task_struct(chosen);
1306 }
1307 css_task_iter_end(&it);
1308 }
1309
1310 if (chosen) {
1311 points = chosen_points * 1000 / totalpages;
1312 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1313 "Memory cgroup out of memory");
1314 }
1315 unlock:
1316 mutex_unlock(&oom_lock);
1317 }
1318
1319 #if MAX_NUMNODES > 1
1320
1321 /**
1322 * test_mem_cgroup_node_reclaimable
1323 * @memcg: the target memcg
1324 * @nid: the node ID to be checked.
1325 * @noswap : specify true here if the user wants flle only information.
1326 *
1327 * This function returns whether the specified memcg contains any
1328 * reclaimable pages on a node. Returns true if there are any reclaimable
1329 * pages in the node.
1330 */
1331 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1332 int nid, bool noswap)
1333 {
1334 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1335 return true;
1336 if (noswap || !total_swap_pages)
1337 return false;
1338 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1339 return true;
1340 return false;
1341
1342 }
1343
1344 /*
1345 * Always updating the nodemask is not very good - even if we have an empty
1346 * list or the wrong list here, we can start from some node and traverse all
1347 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1348 *
1349 */
1350 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1351 {
1352 int nid;
1353 /*
1354 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1355 * pagein/pageout changes since the last update.
1356 */
1357 if (!atomic_read(&memcg->numainfo_events))
1358 return;
1359 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1360 return;
1361
1362 /* make a nodemask where this memcg uses memory from */
1363 memcg->scan_nodes = node_states[N_MEMORY];
1364
1365 for_each_node_mask(nid, node_states[N_MEMORY]) {
1366
1367 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1368 node_clear(nid, memcg->scan_nodes);
1369 }
1370
1371 atomic_set(&memcg->numainfo_events, 0);
1372 atomic_set(&memcg->numainfo_updating, 0);
1373 }
1374
1375 /*
1376 * Selecting a node where we start reclaim from. Because what we need is just
1377 * reducing usage counter, start from anywhere is O,K. Considering
1378 * memory reclaim from current node, there are pros. and cons.
1379 *
1380 * Freeing memory from current node means freeing memory from a node which
1381 * we'll use or we've used. So, it may make LRU bad. And if several threads
1382 * hit limits, it will see a contention on a node. But freeing from remote
1383 * node means more costs for memory reclaim because of memory latency.
1384 *
1385 * Now, we use round-robin. Better algorithm is welcomed.
1386 */
1387 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1388 {
1389 int node;
1390
1391 mem_cgroup_may_update_nodemask(memcg);
1392 node = memcg->last_scanned_node;
1393
1394 node = next_node(node, memcg->scan_nodes);
1395 if (node == MAX_NUMNODES)
1396 node = first_node(memcg->scan_nodes);
1397 /*
1398 * We call this when we hit limit, not when pages are added to LRU.
1399 * No LRU may hold pages because all pages are UNEVICTABLE or
1400 * memcg is too small and all pages are not on LRU. In that case,
1401 * we use curret node.
1402 */
1403 if (unlikely(node == MAX_NUMNODES))
1404 node = numa_node_id();
1405
1406 memcg->last_scanned_node = node;
1407 return node;
1408 }
1409 #else
1410 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1411 {
1412 return 0;
1413 }
1414 #endif
1415
1416 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1417 struct zone *zone,
1418 gfp_t gfp_mask,
1419 unsigned long *total_scanned)
1420 {
1421 struct mem_cgroup *victim = NULL;
1422 int total = 0;
1423 int loop = 0;
1424 unsigned long excess;
1425 unsigned long nr_scanned;
1426 struct mem_cgroup_reclaim_cookie reclaim = {
1427 .zone = zone,
1428 .priority = 0,
1429 };
1430
1431 excess = soft_limit_excess(root_memcg);
1432
1433 while (1) {
1434 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1435 if (!victim) {
1436 loop++;
1437 if (loop >= 2) {
1438 /*
1439 * If we have not been able to reclaim
1440 * anything, it might because there are
1441 * no reclaimable pages under this hierarchy
1442 */
1443 if (!total)
1444 break;
1445 /*
1446 * We want to do more targeted reclaim.
1447 * excess >> 2 is not to excessive so as to
1448 * reclaim too much, nor too less that we keep
1449 * coming back to reclaim from this cgroup
1450 */
1451 if (total >= (excess >> 2) ||
1452 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1453 break;
1454 }
1455 continue;
1456 }
1457 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1458 zone, &nr_scanned);
1459 *total_scanned += nr_scanned;
1460 if (!soft_limit_excess(root_memcg))
1461 break;
1462 }
1463 mem_cgroup_iter_break(root_memcg, victim);
1464 return total;
1465 }
1466
1467 #ifdef CONFIG_LOCKDEP
1468 static struct lockdep_map memcg_oom_lock_dep_map = {
1469 .name = "memcg_oom_lock",
1470 };
1471 #endif
1472
1473 static DEFINE_SPINLOCK(memcg_oom_lock);
1474
1475 /*
1476 * Check OOM-Killer is already running under our hierarchy.
1477 * If someone is running, return false.
1478 */
1479 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1480 {
1481 struct mem_cgroup *iter, *failed = NULL;
1482
1483 spin_lock(&memcg_oom_lock);
1484
1485 for_each_mem_cgroup_tree(iter, memcg) {
1486 if (iter->oom_lock) {
1487 /*
1488 * this subtree of our hierarchy is already locked
1489 * so we cannot give a lock.
1490 */
1491 failed = iter;
1492 mem_cgroup_iter_break(memcg, iter);
1493 break;
1494 } else
1495 iter->oom_lock = true;
1496 }
1497
1498 if (failed) {
1499 /*
1500 * OK, we failed to lock the whole subtree so we have
1501 * to clean up what we set up to the failing subtree
1502 */
1503 for_each_mem_cgroup_tree(iter, memcg) {
1504 if (iter == failed) {
1505 mem_cgroup_iter_break(memcg, iter);
1506 break;
1507 }
1508 iter->oom_lock = false;
1509 }
1510 } else
1511 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1512
1513 spin_unlock(&memcg_oom_lock);
1514
1515 return !failed;
1516 }
1517
1518 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1519 {
1520 struct mem_cgroup *iter;
1521
1522 spin_lock(&memcg_oom_lock);
1523 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1524 for_each_mem_cgroup_tree(iter, memcg)
1525 iter->oom_lock = false;
1526 spin_unlock(&memcg_oom_lock);
1527 }
1528
1529 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1530 {
1531 struct mem_cgroup *iter;
1532
1533 spin_lock(&memcg_oom_lock);
1534 for_each_mem_cgroup_tree(iter, memcg)
1535 iter->under_oom++;
1536 spin_unlock(&memcg_oom_lock);
1537 }
1538
1539 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1540 {
1541 struct mem_cgroup *iter;
1542
1543 /*
1544 * When a new child is created while the hierarchy is under oom,
1545 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1546 */
1547 spin_lock(&memcg_oom_lock);
1548 for_each_mem_cgroup_tree(iter, memcg)
1549 if (iter->under_oom > 0)
1550 iter->under_oom--;
1551 spin_unlock(&memcg_oom_lock);
1552 }
1553
1554 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1555
1556 struct oom_wait_info {
1557 struct mem_cgroup *memcg;
1558 wait_queue_t wait;
1559 };
1560
1561 static int memcg_oom_wake_function(wait_queue_t *wait,
1562 unsigned mode, int sync, void *arg)
1563 {
1564 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1565 struct mem_cgroup *oom_wait_memcg;
1566 struct oom_wait_info *oom_wait_info;
1567
1568 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1569 oom_wait_memcg = oom_wait_info->memcg;
1570
1571 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1572 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1573 return 0;
1574 return autoremove_wake_function(wait, mode, sync, arg);
1575 }
1576
1577 static void memcg_oom_recover(struct mem_cgroup *memcg)
1578 {
1579 /*
1580 * For the following lockless ->under_oom test, the only required
1581 * guarantee is that it must see the state asserted by an OOM when
1582 * this function is called as a result of userland actions
1583 * triggered by the notification of the OOM. This is trivially
1584 * achieved by invoking mem_cgroup_mark_under_oom() before
1585 * triggering notification.
1586 */
1587 if (memcg && memcg->under_oom)
1588 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1589 }
1590
1591 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1592 {
1593 if (!current->memcg_may_oom)
1594 return;
1595 /*
1596 * We are in the middle of the charge context here, so we
1597 * don't want to block when potentially sitting on a callstack
1598 * that holds all kinds of filesystem and mm locks.
1599 *
1600 * Also, the caller may handle a failed allocation gracefully
1601 * (like optional page cache readahead) and so an OOM killer
1602 * invocation might not even be necessary.
1603 *
1604 * That's why we don't do anything here except remember the
1605 * OOM context and then deal with it at the end of the page
1606 * fault when the stack is unwound, the locks are released,
1607 * and when we know whether the fault was overall successful.
1608 */
1609 css_get(&memcg->css);
1610 current->memcg_in_oom = memcg;
1611 current->memcg_oom_gfp_mask = mask;
1612 current->memcg_oom_order = order;
1613 }
1614
1615 /**
1616 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1617 * @handle: actually kill/wait or just clean up the OOM state
1618 *
1619 * This has to be called at the end of a page fault if the memcg OOM
1620 * handler was enabled.
1621 *
1622 * Memcg supports userspace OOM handling where failed allocations must
1623 * sleep on a waitqueue until the userspace task resolves the
1624 * situation. Sleeping directly in the charge context with all kinds
1625 * of locks held is not a good idea, instead we remember an OOM state
1626 * in the task and mem_cgroup_oom_synchronize() has to be called at
1627 * the end of the page fault to complete the OOM handling.
1628 *
1629 * Returns %true if an ongoing memcg OOM situation was detected and
1630 * completed, %false otherwise.
1631 */
1632 bool mem_cgroup_oom_synchronize(bool handle)
1633 {
1634 struct mem_cgroup *memcg = current->memcg_in_oom;
1635 struct oom_wait_info owait;
1636 bool locked;
1637
1638 /* OOM is global, do not handle */
1639 if (!memcg)
1640 return false;
1641
1642 if (!handle || oom_killer_disabled)
1643 goto cleanup;
1644
1645 owait.memcg = memcg;
1646 owait.wait.flags = 0;
1647 owait.wait.func = memcg_oom_wake_function;
1648 owait.wait.private = current;
1649 INIT_LIST_HEAD(&owait.wait.task_list);
1650
1651 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1652 mem_cgroup_mark_under_oom(memcg);
1653
1654 locked = mem_cgroup_oom_trylock(memcg);
1655
1656 if (locked)
1657 mem_cgroup_oom_notify(memcg);
1658
1659 if (locked && !memcg->oom_kill_disable) {
1660 mem_cgroup_unmark_under_oom(memcg);
1661 finish_wait(&memcg_oom_waitq, &owait.wait);
1662 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1663 current->memcg_oom_order);
1664 } else {
1665 schedule();
1666 mem_cgroup_unmark_under_oom(memcg);
1667 finish_wait(&memcg_oom_waitq, &owait.wait);
1668 }
1669
1670 if (locked) {
1671 mem_cgroup_oom_unlock(memcg);
1672 /*
1673 * There is no guarantee that an OOM-lock contender
1674 * sees the wakeups triggered by the OOM kill
1675 * uncharges. Wake any sleepers explicitely.
1676 */
1677 memcg_oom_recover(memcg);
1678 }
1679 cleanup:
1680 current->memcg_in_oom = NULL;
1681 css_put(&memcg->css);
1682 return true;
1683 }
1684
1685 /**
1686 * lock_page_memcg - lock a page->mem_cgroup binding
1687 * @page: the page
1688 *
1689 * This function protects unlocked LRU pages from being moved to
1690 * another cgroup and stabilizes their page->mem_cgroup binding.
1691 */
1692 void lock_page_memcg(struct page *page)
1693 {
1694 struct mem_cgroup *memcg;
1695 unsigned long flags;
1696
1697 /*
1698 * The RCU lock is held throughout the transaction. The fast
1699 * path can get away without acquiring the memcg->move_lock
1700 * because page moving starts with an RCU grace period.
1701 */
1702 rcu_read_lock();
1703
1704 if (mem_cgroup_disabled())
1705 return;
1706 again:
1707 memcg = page->mem_cgroup;
1708 if (unlikely(!memcg))
1709 return;
1710
1711 if (atomic_read(&memcg->moving_account) <= 0)
1712 return;
1713
1714 spin_lock_irqsave(&memcg->move_lock, flags);
1715 if (memcg != page->mem_cgroup) {
1716 spin_unlock_irqrestore(&memcg->move_lock, flags);
1717 goto again;
1718 }
1719
1720 /*
1721 * When charge migration first begins, we can have locked and
1722 * unlocked page stat updates happening concurrently. Track
1723 * the task who has the lock for unlock_page_memcg().
1724 */
1725 memcg->move_lock_task = current;
1726 memcg->move_lock_flags = flags;
1727
1728 return;
1729 }
1730 EXPORT_SYMBOL(lock_page_memcg);
1731
1732 /**
1733 * unlock_page_memcg - unlock a page->mem_cgroup binding
1734 * @page: the page
1735 */
1736 void unlock_page_memcg(struct page *page)
1737 {
1738 struct mem_cgroup *memcg = page->mem_cgroup;
1739
1740 if (memcg && memcg->move_lock_task == current) {
1741 unsigned long flags = memcg->move_lock_flags;
1742
1743 memcg->move_lock_task = NULL;
1744 memcg->move_lock_flags = 0;
1745
1746 spin_unlock_irqrestore(&memcg->move_lock, flags);
1747 }
1748
1749 rcu_read_unlock();
1750 }
1751 EXPORT_SYMBOL(unlock_page_memcg);
1752
1753 /*
1754 * size of first charge trial. "32" comes from vmscan.c's magic value.
1755 * TODO: maybe necessary to use big numbers in big irons.
1756 */
1757 #define CHARGE_BATCH 32U
1758 struct memcg_stock_pcp {
1759 struct mem_cgroup *cached; /* this never be root cgroup */
1760 unsigned int nr_pages;
1761 struct work_struct work;
1762 unsigned long flags;
1763 #define FLUSHING_CACHED_CHARGE 0
1764 };
1765 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1766 static DEFINE_MUTEX(percpu_charge_mutex);
1767
1768 /**
1769 * consume_stock: Try to consume stocked charge on this cpu.
1770 * @memcg: memcg to consume from.
1771 * @nr_pages: how many pages to charge.
1772 *
1773 * The charges will only happen if @memcg matches the current cpu's memcg
1774 * stock, and at least @nr_pages are available in that stock. Failure to
1775 * service an allocation will refill the stock.
1776 *
1777 * returns true if successful, false otherwise.
1778 */
1779 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1780 {
1781 struct memcg_stock_pcp *stock;
1782 bool ret = false;
1783
1784 if (nr_pages > CHARGE_BATCH)
1785 return ret;
1786
1787 stock = &get_cpu_var(memcg_stock);
1788 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1789 stock->nr_pages -= nr_pages;
1790 ret = true;
1791 }
1792 put_cpu_var(memcg_stock);
1793 return ret;
1794 }
1795
1796 /*
1797 * Returns stocks cached in percpu and reset cached information.
1798 */
1799 static void drain_stock(struct memcg_stock_pcp *stock)
1800 {
1801 struct mem_cgroup *old = stock->cached;
1802
1803 if (stock->nr_pages) {
1804 page_counter_uncharge(&old->memory, stock->nr_pages);
1805 if (do_memsw_account())
1806 page_counter_uncharge(&old->memsw, stock->nr_pages);
1807 css_put_many(&old->css, stock->nr_pages);
1808 stock->nr_pages = 0;
1809 }
1810 stock->cached = NULL;
1811 }
1812
1813 /*
1814 * This must be called under preempt disabled or must be called by
1815 * a thread which is pinned to local cpu.
1816 */
1817 static void drain_local_stock(struct work_struct *dummy)
1818 {
1819 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1820 drain_stock(stock);
1821 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1822 }
1823
1824 /*
1825 * Cache charges(val) to local per_cpu area.
1826 * This will be consumed by consume_stock() function, later.
1827 */
1828 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1829 {
1830 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1831
1832 if (stock->cached != memcg) { /* reset if necessary */
1833 drain_stock(stock);
1834 stock->cached = memcg;
1835 }
1836 stock->nr_pages += nr_pages;
1837 put_cpu_var(memcg_stock);
1838 }
1839
1840 /*
1841 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1842 * of the hierarchy under it.
1843 */
1844 static void drain_all_stock(struct mem_cgroup *root_memcg)
1845 {
1846 int cpu, curcpu;
1847
1848 /* If someone's already draining, avoid adding running more workers. */
1849 if (!mutex_trylock(&percpu_charge_mutex))
1850 return;
1851 /* Notify other cpus that system-wide "drain" is running */
1852 get_online_cpus();
1853 curcpu = get_cpu();
1854 for_each_online_cpu(cpu) {
1855 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1856 struct mem_cgroup *memcg;
1857
1858 memcg = stock->cached;
1859 if (!memcg || !stock->nr_pages)
1860 continue;
1861 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1862 continue;
1863 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1864 if (cpu == curcpu)
1865 drain_local_stock(&stock->work);
1866 else
1867 schedule_work_on(cpu, &stock->work);
1868 }
1869 }
1870 put_cpu();
1871 put_online_cpus();
1872 mutex_unlock(&percpu_charge_mutex);
1873 }
1874
1875 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1876 unsigned long action,
1877 void *hcpu)
1878 {
1879 int cpu = (unsigned long)hcpu;
1880 struct memcg_stock_pcp *stock;
1881
1882 if (action == CPU_ONLINE)
1883 return NOTIFY_OK;
1884
1885 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1886 return NOTIFY_OK;
1887
1888 stock = &per_cpu(memcg_stock, cpu);
1889 drain_stock(stock);
1890 return NOTIFY_OK;
1891 }
1892
1893 static void reclaim_high(struct mem_cgroup *memcg,
1894 unsigned int nr_pages,
1895 gfp_t gfp_mask)
1896 {
1897 do {
1898 if (page_counter_read(&memcg->memory) <= memcg->high)
1899 continue;
1900 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1901 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1902 } while ((memcg = parent_mem_cgroup(memcg)));
1903 }
1904
1905 static void high_work_func(struct work_struct *work)
1906 {
1907 struct mem_cgroup *memcg;
1908
1909 memcg = container_of(work, struct mem_cgroup, high_work);
1910 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1911 }
1912
1913 /*
1914 * Scheduled by try_charge() to be executed from the userland return path
1915 * and reclaims memory over the high limit.
1916 */
1917 void mem_cgroup_handle_over_high(void)
1918 {
1919 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1920 struct mem_cgroup *memcg;
1921
1922 if (likely(!nr_pages))
1923 return;
1924
1925 memcg = get_mem_cgroup_from_mm(current->mm);
1926 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1927 css_put(&memcg->css);
1928 current->memcg_nr_pages_over_high = 0;
1929 }
1930
1931 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1932 unsigned int nr_pages)
1933 {
1934 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1935 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1936 struct mem_cgroup *mem_over_limit;
1937 struct page_counter *counter;
1938 unsigned long nr_reclaimed;
1939 bool may_swap = true;
1940 bool drained = false;
1941
1942 if (mem_cgroup_is_root(memcg))
1943 return 0;
1944 retry:
1945 if (consume_stock(memcg, nr_pages))
1946 return 0;
1947
1948 if (!do_memsw_account() ||
1949 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1950 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1951 goto done_restock;
1952 if (do_memsw_account())
1953 page_counter_uncharge(&memcg->memsw, batch);
1954 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1955 } else {
1956 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1957 may_swap = false;
1958 }
1959
1960 if (batch > nr_pages) {
1961 batch = nr_pages;
1962 goto retry;
1963 }
1964
1965 /*
1966 * Unlike in global OOM situations, memcg is not in a physical
1967 * memory shortage. Allow dying and OOM-killed tasks to
1968 * bypass the last charges so that they can exit quickly and
1969 * free their memory.
1970 */
1971 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1972 fatal_signal_pending(current) ||
1973 current->flags & PF_EXITING))
1974 goto force;
1975
1976 if (unlikely(task_in_memcg_oom(current)))
1977 goto nomem;
1978
1979 if (!gfpflags_allow_blocking(gfp_mask))
1980 goto nomem;
1981
1982 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1983
1984 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1985 gfp_mask, may_swap);
1986
1987 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1988 goto retry;
1989
1990 if (!drained) {
1991 drain_all_stock(mem_over_limit);
1992 drained = true;
1993 goto retry;
1994 }
1995
1996 if (gfp_mask & __GFP_NORETRY)
1997 goto nomem;
1998 /*
1999 * Even though the limit is exceeded at this point, reclaim
2000 * may have been able to free some pages. Retry the charge
2001 * before killing the task.
2002 *
2003 * Only for regular pages, though: huge pages are rather
2004 * unlikely to succeed so close to the limit, and we fall back
2005 * to regular pages anyway in case of failure.
2006 */
2007 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2008 goto retry;
2009 /*
2010 * At task move, charge accounts can be doubly counted. So, it's
2011 * better to wait until the end of task_move if something is going on.
2012 */
2013 if (mem_cgroup_wait_acct_move(mem_over_limit))
2014 goto retry;
2015
2016 if (nr_retries--)
2017 goto retry;
2018
2019 if (gfp_mask & __GFP_NOFAIL)
2020 goto force;
2021
2022 if (fatal_signal_pending(current))
2023 goto force;
2024
2025 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2026
2027 mem_cgroup_oom(mem_over_limit, gfp_mask,
2028 get_order(nr_pages * PAGE_SIZE));
2029 nomem:
2030 if (!(gfp_mask & __GFP_NOFAIL))
2031 return -ENOMEM;
2032 force:
2033 /*
2034 * The allocation either can't fail or will lead to more memory
2035 * being freed very soon. Allow memory usage go over the limit
2036 * temporarily by force charging it.
2037 */
2038 page_counter_charge(&memcg->memory, nr_pages);
2039 if (do_memsw_account())
2040 page_counter_charge(&memcg->memsw, nr_pages);
2041 css_get_many(&memcg->css, nr_pages);
2042
2043 return 0;
2044
2045 done_restock:
2046 css_get_many(&memcg->css, batch);
2047 if (batch > nr_pages)
2048 refill_stock(memcg, batch - nr_pages);
2049
2050 /*
2051 * If the hierarchy is above the normal consumption range, schedule
2052 * reclaim on returning to userland. We can perform reclaim here
2053 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2054 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2055 * not recorded as it most likely matches current's and won't
2056 * change in the meantime. As high limit is checked again before
2057 * reclaim, the cost of mismatch is negligible.
2058 */
2059 do {
2060 if (page_counter_read(&memcg->memory) > memcg->high) {
2061 /* Don't bother a random interrupted task */
2062 if (in_interrupt()) {
2063 schedule_work(&memcg->high_work);
2064 break;
2065 }
2066 current->memcg_nr_pages_over_high += batch;
2067 set_notify_resume(current);
2068 break;
2069 }
2070 } while ((memcg = parent_mem_cgroup(memcg)));
2071
2072 return 0;
2073 }
2074
2075 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2076 {
2077 if (mem_cgroup_is_root(memcg))
2078 return;
2079
2080 page_counter_uncharge(&memcg->memory, nr_pages);
2081 if (do_memsw_account())
2082 page_counter_uncharge(&memcg->memsw, nr_pages);
2083
2084 css_put_many(&memcg->css, nr_pages);
2085 }
2086
2087 static void lock_page_lru(struct page *page, int *isolated)
2088 {
2089 struct zone *zone = page_zone(page);
2090
2091 spin_lock_irq(&zone->lru_lock);
2092 if (PageLRU(page)) {
2093 struct lruvec *lruvec;
2094
2095 lruvec = mem_cgroup_page_lruvec(page, zone);
2096 ClearPageLRU(page);
2097 del_page_from_lru_list(page, lruvec, page_lru(page));
2098 *isolated = 1;
2099 } else
2100 *isolated = 0;
2101 }
2102
2103 static void unlock_page_lru(struct page *page, int isolated)
2104 {
2105 struct zone *zone = page_zone(page);
2106
2107 if (isolated) {
2108 struct lruvec *lruvec;
2109
2110 lruvec = mem_cgroup_page_lruvec(page, zone);
2111 VM_BUG_ON_PAGE(PageLRU(page), page);
2112 SetPageLRU(page);
2113 add_page_to_lru_list(page, lruvec, page_lru(page));
2114 }
2115 spin_unlock_irq(&zone->lru_lock);
2116 }
2117
2118 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2119 bool lrucare)
2120 {
2121 int isolated;
2122
2123 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2124
2125 /*
2126 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2127 * may already be on some other mem_cgroup's LRU. Take care of it.
2128 */
2129 if (lrucare)
2130 lock_page_lru(page, &isolated);
2131
2132 /*
2133 * Nobody should be changing or seriously looking at
2134 * page->mem_cgroup at this point:
2135 *
2136 * - the page is uncharged
2137 *
2138 * - the page is off-LRU
2139 *
2140 * - an anonymous fault has exclusive page access, except for
2141 * a locked page table
2142 *
2143 * - a page cache insertion, a swapin fault, or a migration
2144 * have the page locked
2145 */
2146 page->mem_cgroup = memcg;
2147
2148 if (lrucare)
2149 unlock_page_lru(page, isolated);
2150 }
2151
2152 #ifndef CONFIG_SLOB
2153 static int memcg_alloc_cache_id(void)
2154 {
2155 int id, size;
2156 int err;
2157
2158 id = ida_simple_get(&memcg_cache_ida,
2159 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2160 if (id < 0)
2161 return id;
2162
2163 if (id < memcg_nr_cache_ids)
2164 return id;
2165
2166 /*
2167 * There's no space for the new id in memcg_caches arrays,
2168 * so we have to grow them.
2169 */
2170 down_write(&memcg_cache_ids_sem);
2171
2172 size = 2 * (id + 1);
2173 if (size < MEMCG_CACHES_MIN_SIZE)
2174 size = MEMCG_CACHES_MIN_SIZE;
2175 else if (size > MEMCG_CACHES_MAX_SIZE)
2176 size = MEMCG_CACHES_MAX_SIZE;
2177
2178 err = memcg_update_all_caches(size);
2179 if (!err)
2180 err = memcg_update_all_list_lrus(size);
2181 if (!err)
2182 memcg_nr_cache_ids = size;
2183
2184 up_write(&memcg_cache_ids_sem);
2185
2186 if (err) {
2187 ida_simple_remove(&memcg_cache_ida, id);
2188 return err;
2189 }
2190 return id;
2191 }
2192
2193 static void memcg_free_cache_id(int id)
2194 {
2195 ida_simple_remove(&memcg_cache_ida, id);
2196 }
2197
2198 struct memcg_kmem_cache_create_work {
2199 struct mem_cgroup *memcg;
2200 struct kmem_cache *cachep;
2201 struct work_struct work;
2202 };
2203
2204 static void memcg_kmem_cache_create_func(struct work_struct *w)
2205 {
2206 struct memcg_kmem_cache_create_work *cw =
2207 container_of(w, struct memcg_kmem_cache_create_work, work);
2208 struct mem_cgroup *memcg = cw->memcg;
2209 struct kmem_cache *cachep = cw->cachep;
2210
2211 memcg_create_kmem_cache(memcg, cachep);
2212
2213 css_put(&memcg->css);
2214 kfree(cw);
2215 }
2216
2217 /*
2218 * Enqueue the creation of a per-memcg kmem_cache.
2219 */
2220 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2221 struct kmem_cache *cachep)
2222 {
2223 struct memcg_kmem_cache_create_work *cw;
2224
2225 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2226 if (!cw)
2227 return;
2228
2229 css_get(&memcg->css);
2230
2231 cw->memcg = memcg;
2232 cw->cachep = cachep;
2233 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2234
2235 schedule_work(&cw->work);
2236 }
2237
2238 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2239 struct kmem_cache *cachep)
2240 {
2241 /*
2242 * We need to stop accounting when we kmalloc, because if the
2243 * corresponding kmalloc cache is not yet created, the first allocation
2244 * in __memcg_schedule_kmem_cache_create will recurse.
2245 *
2246 * However, it is better to enclose the whole function. Depending on
2247 * the debugging options enabled, INIT_WORK(), for instance, can
2248 * trigger an allocation. This too, will make us recurse. Because at
2249 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2250 * the safest choice is to do it like this, wrapping the whole function.
2251 */
2252 current->memcg_kmem_skip_account = 1;
2253 __memcg_schedule_kmem_cache_create(memcg, cachep);
2254 current->memcg_kmem_skip_account = 0;
2255 }
2256
2257 /*
2258 * Return the kmem_cache we're supposed to use for a slab allocation.
2259 * We try to use the current memcg's version of the cache.
2260 *
2261 * If the cache does not exist yet, if we are the first user of it,
2262 * we either create it immediately, if possible, or create it asynchronously
2263 * in a workqueue.
2264 * In the latter case, we will let the current allocation go through with
2265 * the original cache.
2266 *
2267 * Can't be called in interrupt context or from kernel threads.
2268 * This function needs to be called with rcu_read_lock() held.
2269 */
2270 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2271 {
2272 struct mem_cgroup *memcg;
2273 struct kmem_cache *memcg_cachep;
2274 int kmemcg_id;
2275
2276 VM_BUG_ON(!is_root_cache(cachep));
2277
2278 if (cachep->flags & SLAB_ACCOUNT)
2279 gfp |= __GFP_ACCOUNT;
2280
2281 if (!(gfp & __GFP_ACCOUNT))
2282 return cachep;
2283
2284 if (current->memcg_kmem_skip_account)
2285 return cachep;
2286
2287 memcg = get_mem_cgroup_from_mm(current->mm);
2288 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2289 if (kmemcg_id < 0)
2290 goto out;
2291
2292 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2293 if (likely(memcg_cachep))
2294 return memcg_cachep;
2295
2296 /*
2297 * If we are in a safe context (can wait, and not in interrupt
2298 * context), we could be be predictable and return right away.
2299 * This would guarantee that the allocation being performed
2300 * already belongs in the new cache.
2301 *
2302 * However, there are some clashes that can arrive from locking.
2303 * For instance, because we acquire the slab_mutex while doing
2304 * memcg_create_kmem_cache, this means no further allocation
2305 * could happen with the slab_mutex held. So it's better to
2306 * defer everything.
2307 */
2308 memcg_schedule_kmem_cache_create(memcg, cachep);
2309 out:
2310 css_put(&memcg->css);
2311 return cachep;
2312 }
2313
2314 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2315 {
2316 if (!is_root_cache(cachep))
2317 css_put(&cachep->memcg_params.memcg->css);
2318 }
2319
2320 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2321 struct mem_cgroup *memcg)
2322 {
2323 unsigned int nr_pages = 1 << order;
2324 struct page_counter *counter;
2325 int ret;
2326
2327 ret = try_charge(memcg, gfp, nr_pages);
2328 if (ret)
2329 return ret;
2330
2331 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2332 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2333 cancel_charge(memcg, nr_pages);
2334 return -ENOMEM;
2335 }
2336
2337 page->mem_cgroup = memcg;
2338
2339 return 0;
2340 }
2341
2342 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2343 {
2344 struct mem_cgroup *memcg;
2345 int ret = 0;
2346
2347 memcg = get_mem_cgroup_from_mm(current->mm);
2348 if (!mem_cgroup_is_root(memcg))
2349 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2350 css_put(&memcg->css);
2351 return ret;
2352 }
2353
2354 void __memcg_kmem_uncharge(struct page *page, int order)
2355 {
2356 struct mem_cgroup *memcg = page->mem_cgroup;
2357 unsigned int nr_pages = 1 << order;
2358
2359 if (!memcg)
2360 return;
2361
2362 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2363
2364 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2365 page_counter_uncharge(&memcg->kmem, nr_pages);
2366
2367 page_counter_uncharge(&memcg->memory, nr_pages);
2368 if (do_memsw_account())
2369 page_counter_uncharge(&memcg->memsw, nr_pages);
2370
2371 page->mem_cgroup = NULL;
2372 css_put_many(&memcg->css, nr_pages);
2373 }
2374 #endif /* !CONFIG_SLOB */
2375
2376 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2377
2378 /*
2379 * Because tail pages are not marked as "used", set it. We're under
2380 * zone->lru_lock and migration entries setup in all page mappings.
2381 */
2382 void mem_cgroup_split_huge_fixup(struct page *head)
2383 {
2384 int i;
2385
2386 if (mem_cgroup_disabled())
2387 return;
2388
2389 for (i = 1; i < HPAGE_PMD_NR; i++)
2390 head[i].mem_cgroup = head->mem_cgroup;
2391
2392 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2393 HPAGE_PMD_NR);
2394 }
2395 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2396
2397 #ifdef CONFIG_MEMCG_SWAP
2398 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2399 bool charge)
2400 {
2401 int val = (charge) ? 1 : -1;
2402 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2403 }
2404
2405 /**
2406 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2407 * @entry: swap entry to be moved
2408 * @from: mem_cgroup which the entry is moved from
2409 * @to: mem_cgroup which the entry is moved to
2410 *
2411 * It succeeds only when the swap_cgroup's record for this entry is the same
2412 * as the mem_cgroup's id of @from.
2413 *
2414 * Returns 0 on success, -EINVAL on failure.
2415 *
2416 * The caller must have charged to @to, IOW, called page_counter_charge() about
2417 * both res and memsw, and called css_get().
2418 */
2419 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2420 struct mem_cgroup *from, struct mem_cgroup *to)
2421 {
2422 unsigned short old_id, new_id;
2423
2424 old_id = mem_cgroup_id(from);
2425 new_id = mem_cgroup_id(to);
2426
2427 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2428 mem_cgroup_swap_statistics(from, false);
2429 mem_cgroup_swap_statistics(to, true);
2430 return 0;
2431 }
2432 return -EINVAL;
2433 }
2434 #else
2435 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2436 struct mem_cgroup *from, struct mem_cgroup *to)
2437 {
2438 return -EINVAL;
2439 }
2440 #endif
2441
2442 static DEFINE_MUTEX(memcg_limit_mutex);
2443
2444 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2445 unsigned long limit)
2446 {
2447 unsigned long curusage;
2448 unsigned long oldusage;
2449 bool enlarge = false;
2450 int retry_count;
2451 int ret;
2452
2453 /*
2454 * For keeping hierarchical_reclaim simple, how long we should retry
2455 * is depends on callers. We set our retry-count to be function
2456 * of # of children which we should visit in this loop.
2457 */
2458 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2459 mem_cgroup_count_children(memcg);
2460
2461 oldusage = page_counter_read(&memcg->memory);
2462
2463 do {
2464 if (signal_pending(current)) {
2465 ret = -EINTR;
2466 break;
2467 }
2468
2469 mutex_lock(&memcg_limit_mutex);
2470 if (limit > memcg->memsw.limit) {
2471 mutex_unlock(&memcg_limit_mutex);
2472 ret = -EINVAL;
2473 break;
2474 }
2475 if (limit > memcg->memory.limit)
2476 enlarge = true;
2477 ret = page_counter_limit(&memcg->memory, limit);
2478 mutex_unlock(&memcg_limit_mutex);
2479
2480 if (!ret)
2481 break;
2482
2483 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2484
2485 curusage = page_counter_read(&memcg->memory);
2486 /* Usage is reduced ? */
2487 if (curusage >= oldusage)
2488 retry_count--;
2489 else
2490 oldusage = curusage;
2491 } while (retry_count);
2492
2493 if (!ret && enlarge)
2494 memcg_oom_recover(memcg);
2495
2496 return ret;
2497 }
2498
2499 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2500 unsigned long limit)
2501 {
2502 unsigned long curusage;
2503 unsigned long oldusage;
2504 bool enlarge = false;
2505 int retry_count;
2506 int ret;
2507
2508 /* see mem_cgroup_resize_res_limit */
2509 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2510 mem_cgroup_count_children(memcg);
2511
2512 oldusage = page_counter_read(&memcg->memsw);
2513
2514 do {
2515 if (signal_pending(current)) {
2516 ret = -EINTR;
2517 break;
2518 }
2519
2520 mutex_lock(&memcg_limit_mutex);
2521 if (limit < memcg->memory.limit) {
2522 mutex_unlock(&memcg_limit_mutex);
2523 ret = -EINVAL;
2524 break;
2525 }
2526 if (limit > memcg->memsw.limit)
2527 enlarge = true;
2528 ret = page_counter_limit(&memcg->memsw, limit);
2529 mutex_unlock(&memcg_limit_mutex);
2530
2531 if (!ret)
2532 break;
2533
2534 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2535
2536 curusage = page_counter_read(&memcg->memsw);
2537 /* Usage is reduced ? */
2538 if (curusage >= oldusage)
2539 retry_count--;
2540 else
2541 oldusage = curusage;
2542 } while (retry_count);
2543
2544 if (!ret && enlarge)
2545 memcg_oom_recover(memcg);
2546
2547 return ret;
2548 }
2549
2550 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2551 gfp_t gfp_mask,
2552 unsigned long *total_scanned)
2553 {
2554 unsigned long nr_reclaimed = 0;
2555 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2556 unsigned long reclaimed;
2557 int loop = 0;
2558 struct mem_cgroup_tree_per_zone *mctz;
2559 unsigned long excess;
2560 unsigned long nr_scanned;
2561
2562 if (order > 0)
2563 return 0;
2564
2565 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2566 /*
2567 * This loop can run a while, specially if mem_cgroup's continuously
2568 * keep exceeding their soft limit and putting the system under
2569 * pressure
2570 */
2571 do {
2572 if (next_mz)
2573 mz = next_mz;
2574 else
2575 mz = mem_cgroup_largest_soft_limit_node(mctz);
2576 if (!mz)
2577 break;
2578
2579 nr_scanned = 0;
2580 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2581 gfp_mask, &nr_scanned);
2582 nr_reclaimed += reclaimed;
2583 *total_scanned += nr_scanned;
2584 spin_lock_irq(&mctz->lock);
2585 __mem_cgroup_remove_exceeded(mz, mctz);
2586
2587 /*
2588 * If we failed to reclaim anything from this memory cgroup
2589 * it is time to move on to the next cgroup
2590 */
2591 next_mz = NULL;
2592 if (!reclaimed)
2593 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2594
2595 excess = soft_limit_excess(mz->memcg);
2596 /*
2597 * One school of thought says that we should not add
2598 * back the node to the tree if reclaim returns 0.
2599 * But our reclaim could return 0, simply because due
2600 * to priority we are exposing a smaller subset of
2601 * memory to reclaim from. Consider this as a longer
2602 * term TODO.
2603 */
2604 /* If excess == 0, no tree ops */
2605 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2606 spin_unlock_irq(&mctz->lock);
2607 css_put(&mz->memcg->css);
2608 loop++;
2609 /*
2610 * Could not reclaim anything and there are no more
2611 * mem cgroups to try or we seem to be looping without
2612 * reclaiming anything.
2613 */
2614 if (!nr_reclaimed &&
2615 (next_mz == NULL ||
2616 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2617 break;
2618 } while (!nr_reclaimed);
2619 if (next_mz)
2620 css_put(&next_mz->memcg->css);
2621 return nr_reclaimed;
2622 }
2623
2624 /*
2625 * Test whether @memcg has children, dead or alive. Note that this
2626 * function doesn't care whether @memcg has use_hierarchy enabled and
2627 * returns %true if there are child csses according to the cgroup
2628 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2629 */
2630 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2631 {
2632 bool ret;
2633
2634 rcu_read_lock();
2635 ret = css_next_child(NULL, &memcg->css);
2636 rcu_read_unlock();
2637 return ret;
2638 }
2639
2640 /*
2641 * Reclaims as many pages from the given memcg as possible and moves
2642 * the rest to the parent.
2643 *
2644 * Caller is responsible for holding css reference for memcg.
2645 */
2646 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2647 {
2648 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2649
2650 /* we call try-to-free pages for make this cgroup empty */
2651 lru_add_drain_all();
2652 /* try to free all pages in this cgroup */
2653 while (nr_retries && page_counter_read(&memcg->memory)) {
2654 int progress;
2655
2656 if (signal_pending(current))
2657 return -EINTR;
2658
2659 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2660 GFP_KERNEL, true);
2661 if (!progress) {
2662 nr_retries--;
2663 /* maybe some writeback is necessary */
2664 congestion_wait(BLK_RW_ASYNC, HZ/10);
2665 }
2666
2667 }
2668
2669 return 0;
2670 }
2671
2672 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2673 char *buf, size_t nbytes,
2674 loff_t off)
2675 {
2676 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2677
2678 if (mem_cgroup_is_root(memcg))
2679 return -EINVAL;
2680 return mem_cgroup_force_empty(memcg) ?: nbytes;
2681 }
2682
2683 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2684 struct cftype *cft)
2685 {
2686 return mem_cgroup_from_css(css)->use_hierarchy;
2687 }
2688
2689 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2690 struct cftype *cft, u64 val)
2691 {
2692 int retval = 0;
2693 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2694 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2695
2696 if (memcg->use_hierarchy == val)
2697 return 0;
2698
2699 /*
2700 * If parent's use_hierarchy is set, we can't make any modifications
2701 * in the child subtrees. If it is unset, then the change can
2702 * occur, provided the current cgroup has no children.
2703 *
2704 * For the root cgroup, parent_mem is NULL, we allow value to be
2705 * set if there are no children.
2706 */
2707 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2708 (val == 1 || val == 0)) {
2709 if (!memcg_has_children(memcg))
2710 memcg->use_hierarchy = val;
2711 else
2712 retval = -EBUSY;
2713 } else
2714 retval = -EINVAL;
2715
2716 return retval;
2717 }
2718
2719 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2720 {
2721 struct mem_cgroup *iter;
2722 int i;
2723
2724 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2725
2726 for_each_mem_cgroup_tree(iter, memcg) {
2727 for (i = 0; i < MEMCG_NR_STAT; i++)
2728 stat[i] += mem_cgroup_read_stat(iter, i);
2729 }
2730 }
2731
2732 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2733 {
2734 struct mem_cgroup *iter;
2735 int i;
2736
2737 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2738
2739 for_each_mem_cgroup_tree(iter, memcg) {
2740 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2741 events[i] += mem_cgroup_read_events(iter, i);
2742 }
2743 }
2744
2745 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2746 {
2747 unsigned long val = 0;
2748
2749 if (mem_cgroup_is_root(memcg)) {
2750 struct mem_cgroup *iter;
2751
2752 for_each_mem_cgroup_tree(iter, memcg) {
2753 val += mem_cgroup_read_stat(iter,
2754 MEM_CGROUP_STAT_CACHE);
2755 val += mem_cgroup_read_stat(iter,
2756 MEM_CGROUP_STAT_RSS);
2757 if (swap)
2758 val += mem_cgroup_read_stat(iter,
2759 MEM_CGROUP_STAT_SWAP);
2760 }
2761 } else {
2762 if (!swap)
2763 val = page_counter_read(&memcg->memory);
2764 else
2765 val = page_counter_read(&memcg->memsw);
2766 }
2767 return val;
2768 }
2769
2770 enum {
2771 RES_USAGE,
2772 RES_LIMIT,
2773 RES_MAX_USAGE,
2774 RES_FAILCNT,
2775 RES_SOFT_LIMIT,
2776 };
2777
2778 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2779 struct cftype *cft)
2780 {
2781 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2782 struct page_counter *counter;
2783
2784 switch (MEMFILE_TYPE(cft->private)) {
2785 case _MEM:
2786 counter = &memcg->memory;
2787 break;
2788 case _MEMSWAP:
2789 counter = &memcg->memsw;
2790 break;
2791 case _KMEM:
2792 counter = &memcg->kmem;
2793 break;
2794 case _TCP:
2795 counter = &memcg->tcpmem;
2796 break;
2797 default:
2798 BUG();
2799 }
2800
2801 switch (MEMFILE_ATTR(cft->private)) {
2802 case RES_USAGE:
2803 if (counter == &memcg->memory)
2804 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2805 if (counter == &memcg->memsw)
2806 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2807 return (u64)page_counter_read(counter) * PAGE_SIZE;
2808 case RES_LIMIT:
2809 return (u64)counter->limit * PAGE_SIZE;
2810 case RES_MAX_USAGE:
2811 return (u64)counter->watermark * PAGE_SIZE;
2812 case RES_FAILCNT:
2813 return counter->failcnt;
2814 case RES_SOFT_LIMIT:
2815 return (u64)memcg->soft_limit * PAGE_SIZE;
2816 default:
2817 BUG();
2818 }
2819 }
2820
2821 #ifndef CONFIG_SLOB
2822 static int memcg_online_kmem(struct mem_cgroup *memcg)
2823 {
2824 int memcg_id;
2825
2826 if (cgroup_memory_nokmem)
2827 return 0;
2828
2829 BUG_ON(memcg->kmemcg_id >= 0);
2830 BUG_ON(memcg->kmem_state);
2831
2832 memcg_id = memcg_alloc_cache_id();
2833 if (memcg_id < 0)
2834 return memcg_id;
2835
2836 static_branch_inc(&memcg_kmem_enabled_key);
2837 /*
2838 * A memory cgroup is considered kmem-online as soon as it gets
2839 * kmemcg_id. Setting the id after enabling static branching will
2840 * guarantee no one starts accounting before all call sites are
2841 * patched.
2842 */
2843 memcg->kmemcg_id = memcg_id;
2844 memcg->kmem_state = KMEM_ONLINE;
2845
2846 return 0;
2847 }
2848
2849 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2850 {
2851 struct cgroup_subsys_state *css;
2852 struct mem_cgroup *parent, *child;
2853 int kmemcg_id;
2854
2855 if (memcg->kmem_state != KMEM_ONLINE)
2856 return;
2857 /*
2858 * Clear the online state before clearing memcg_caches array
2859 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2860 * guarantees that no cache will be created for this cgroup
2861 * after we are done (see memcg_create_kmem_cache()).
2862 */
2863 memcg->kmem_state = KMEM_ALLOCATED;
2864
2865 memcg_deactivate_kmem_caches(memcg);
2866
2867 kmemcg_id = memcg->kmemcg_id;
2868 BUG_ON(kmemcg_id < 0);
2869
2870 parent = parent_mem_cgroup(memcg);
2871 if (!parent)
2872 parent = root_mem_cgroup;
2873
2874 /*
2875 * Change kmemcg_id of this cgroup and all its descendants to the
2876 * parent's id, and then move all entries from this cgroup's list_lrus
2877 * to ones of the parent. After we have finished, all list_lrus
2878 * corresponding to this cgroup are guaranteed to remain empty. The
2879 * ordering is imposed by list_lru_node->lock taken by
2880 * memcg_drain_all_list_lrus().
2881 */
2882 css_for_each_descendant_pre(css, &memcg->css) {
2883 child = mem_cgroup_from_css(css);
2884 BUG_ON(child->kmemcg_id != kmemcg_id);
2885 child->kmemcg_id = parent->kmemcg_id;
2886 if (!memcg->use_hierarchy)
2887 break;
2888 }
2889 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2890
2891 memcg_free_cache_id(kmemcg_id);
2892 }
2893
2894 static void memcg_free_kmem(struct mem_cgroup *memcg)
2895 {
2896 /* css_alloc() failed, offlining didn't happen */
2897 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2898 memcg_offline_kmem(memcg);
2899
2900 if (memcg->kmem_state == KMEM_ALLOCATED) {
2901 memcg_destroy_kmem_caches(memcg);
2902 static_branch_dec(&memcg_kmem_enabled_key);
2903 WARN_ON(page_counter_read(&memcg->kmem));
2904 }
2905 }
2906 #else
2907 static int memcg_online_kmem(struct mem_cgroup *memcg)
2908 {
2909 return 0;
2910 }
2911 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2912 {
2913 }
2914 static void memcg_free_kmem(struct mem_cgroup *memcg)
2915 {
2916 }
2917 #endif /* !CONFIG_SLOB */
2918
2919 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2920 unsigned long limit)
2921 {
2922 int ret;
2923
2924 mutex_lock(&memcg_limit_mutex);
2925 ret = page_counter_limit(&memcg->kmem, limit);
2926 mutex_unlock(&memcg_limit_mutex);
2927 return ret;
2928 }
2929
2930 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2931 {
2932 int ret;
2933
2934 mutex_lock(&memcg_limit_mutex);
2935
2936 ret = page_counter_limit(&memcg->tcpmem, limit);
2937 if (ret)
2938 goto out;
2939
2940 if (!memcg->tcpmem_active) {
2941 /*
2942 * The active flag needs to be written after the static_key
2943 * update. This is what guarantees that the socket activation
2944 * function is the last one to run. See sock_update_memcg() for
2945 * details, and note that we don't mark any socket as belonging
2946 * to this memcg until that flag is up.
2947 *
2948 * We need to do this, because static_keys will span multiple
2949 * sites, but we can't control their order. If we mark a socket
2950 * as accounted, but the accounting functions are not patched in
2951 * yet, we'll lose accounting.
2952 *
2953 * We never race with the readers in sock_update_memcg(),
2954 * because when this value change, the code to process it is not
2955 * patched in yet.
2956 */
2957 static_branch_inc(&memcg_sockets_enabled_key);
2958 memcg->tcpmem_active = true;
2959 }
2960 out:
2961 mutex_unlock(&memcg_limit_mutex);
2962 return ret;
2963 }
2964
2965 /*
2966 * The user of this function is...
2967 * RES_LIMIT.
2968 */
2969 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2970 char *buf, size_t nbytes, loff_t off)
2971 {
2972 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2973 unsigned long nr_pages;
2974 int ret;
2975
2976 buf = strstrip(buf);
2977 ret = page_counter_memparse(buf, "-1", &nr_pages);
2978 if (ret)
2979 return ret;
2980
2981 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2982 case RES_LIMIT:
2983 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2984 ret = -EINVAL;
2985 break;
2986 }
2987 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2988 case _MEM:
2989 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2990 break;
2991 case _MEMSWAP:
2992 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2993 break;
2994 case _KMEM:
2995 ret = memcg_update_kmem_limit(memcg, nr_pages);
2996 break;
2997 case _TCP:
2998 ret = memcg_update_tcp_limit(memcg, nr_pages);
2999 break;
3000 }
3001 break;
3002 case RES_SOFT_LIMIT:
3003 memcg->soft_limit = nr_pages;
3004 ret = 0;
3005 break;
3006 }
3007 return ret ?: nbytes;
3008 }
3009
3010 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3011 size_t nbytes, loff_t off)
3012 {
3013 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3014 struct page_counter *counter;
3015
3016 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3017 case _MEM:
3018 counter = &memcg->memory;
3019 break;
3020 case _MEMSWAP:
3021 counter = &memcg->memsw;
3022 break;
3023 case _KMEM:
3024 counter = &memcg->kmem;
3025 break;
3026 case _TCP:
3027 counter = &memcg->tcpmem;
3028 break;
3029 default:
3030 BUG();
3031 }
3032
3033 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3034 case RES_MAX_USAGE:
3035 page_counter_reset_watermark(counter);
3036 break;
3037 case RES_FAILCNT:
3038 counter->failcnt = 0;
3039 break;
3040 default:
3041 BUG();
3042 }
3043
3044 return nbytes;
3045 }
3046
3047 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3048 struct cftype *cft)
3049 {
3050 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3051 }
3052
3053 #ifdef CONFIG_MMU
3054 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3055 struct cftype *cft, u64 val)
3056 {
3057 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3058
3059 if (val & ~MOVE_MASK)
3060 return -EINVAL;
3061
3062 /*
3063 * No kind of locking is needed in here, because ->can_attach() will
3064 * check this value once in the beginning of the process, and then carry
3065 * on with stale data. This means that changes to this value will only
3066 * affect task migrations starting after the change.
3067 */
3068 memcg->move_charge_at_immigrate = val;
3069 return 0;
3070 }
3071 #else
3072 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3073 struct cftype *cft, u64 val)
3074 {
3075 return -ENOSYS;
3076 }
3077 #endif
3078
3079 #ifdef CONFIG_NUMA
3080 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3081 {
3082 struct numa_stat {
3083 const char *name;
3084 unsigned int lru_mask;
3085 };
3086
3087 static const struct numa_stat stats[] = {
3088 { "total", LRU_ALL },
3089 { "file", LRU_ALL_FILE },
3090 { "anon", LRU_ALL_ANON },
3091 { "unevictable", BIT(LRU_UNEVICTABLE) },
3092 };
3093 const struct numa_stat *stat;
3094 int nid;
3095 unsigned long nr;
3096 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3097
3098 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3099 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3100 seq_printf(m, "%s=%lu", stat->name, nr);
3101 for_each_node_state(nid, N_MEMORY) {
3102 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3103 stat->lru_mask);
3104 seq_printf(m, " N%d=%lu", nid, nr);
3105 }
3106 seq_putc(m, '\n');
3107 }
3108
3109 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3110 struct mem_cgroup *iter;
3111
3112 nr = 0;
3113 for_each_mem_cgroup_tree(iter, memcg)
3114 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3115 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3116 for_each_node_state(nid, N_MEMORY) {
3117 nr = 0;
3118 for_each_mem_cgroup_tree(iter, memcg)
3119 nr += mem_cgroup_node_nr_lru_pages(
3120 iter, nid, stat->lru_mask);
3121 seq_printf(m, " N%d=%lu", nid, nr);
3122 }
3123 seq_putc(m, '\n');
3124 }
3125
3126 return 0;
3127 }
3128 #endif /* CONFIG_NUMA */
3129
3130 static int memcg_stat_show(struct seq_file *m, void *v)
3131 {
3132 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3133 unsigned long memory, memsw;
3134 struct mem_cgroup *mi;
3135 unsigned int i;
3136
3137 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3138 MEM_CGROUP_STAT_NSTATS);
3139 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3140 MEM_CGROUP_EVENTS_NSTATS);
3141 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3142
3143 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3144 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3145 continue;
3146 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3147 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3148 }
3149
3150 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3151 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3152 mem_cgroup_read_events(memcg, i));
3153
3154 for (i = 0; i < NR_LRU_LISTS; i++)
3155 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3156 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3157
3158 /* Hierarchical information */
3159 memory = memsw = PAGE_COUNTER_MAX;
3160 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3161 memory = min(memory, mi->memory.limit);
3162 memsw = min(memsw, mi->memsw.limit);
3163 }
3164 seq_printf(m, "hierarchical_memory_limit %llu\n",
3165 (u64)memory * PAGE_SIZE);
3166 if (do_memsw_account())
3167 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3168 (u64)memsw * PAGE_SIZE);
3169
3170 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3171 unsigned long long val = 0;
3172
3173 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3174 continue;
3175 for_each_mem_cgroup_tree(mi, memcg)
3176 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3177 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3178 }
3179
3180 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3181 unsigned long long val = 0;
3182
3183 for_each_mem_cgroup_tree(mi, memcg)
3184 val += mem_cgroup_read_events(mi, i);
3185 seq_printf(m, "total_%s %llu\n",
3186 mem_cgroup_events_names[i], val);
3187 }
3188
3189 for (i = 0; i < NR_LRU_LISTS; i++) {
3190 unsigned long long val = 0;
3191
3192 for_each_mem_cgroup_tree(mi, memcg)
3193 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3194 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3195 }
3196
3197 #ifdef CONFIG_DEBUG_VM
3198 {
3199 int nid, zid;
3200 struct mem_cgroup_per_zone *mz;
3201 struct zone_reclaim_stat *rstat;
3202 unsigned long recent_rotated[2] = {0, 0};
3203 unsigned long recent_scanned[2] = {0, 0};
3204
3205 for_each_online_node(nid)
3206 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3207 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3208 rstat = &mz->lruvec.reclaim_stat;
3209
3210 recent_rotated[0] += rstat->recent_rotated[0];
3211 recent_rotated[1] += rstat->recent_rotated[1];
3212 recent_scanned[0] += rstat->recent_scanned[0];
3213 recent_scanned[1] += rstat->recent_scanned[1];
3214 }
3215 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3216 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3217 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3218 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3219 }
3220 #endif
3221
3222 return 0;
3223 }
3224
3225 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3226 struct cftype *cft)
3227 {
3228 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3229
3230 return mem_cgroup_swappiness(memcg);
3231 }
3232
3233 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3234 struct cftype *cft, u64 val)
3235 {
3236 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3237
3238 if (val > 100)
3239 return -EINVAL;
3240
3241 if (css->parent)
3242 memcg->swappiness = val;
3243 else
3244 vm_swappiness = val;
3245
3246 return 0;
3247 }
3248
3249 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3250 {
3251 struct mem_cgroup_threshold_ary *t;
3252 unsigned long usage;
3253 int i;
3254
3255 rcu_read_lock();
3256 if (!swap)
3257 t = rcu_dereference(memcg->thresholds.primary);
3258 else
3259 t = rcu_dereference(memcg->memsw_thresholds.primary);
3260
3261 if (!t)
3262 goto unlock;
3263
3264 usage = mem_cgroup_usage(memcg, swap);
3265
3266 /*
3267 * current_threshold points to threshold just below or equal to usage.
3268 * If it's not true, a threshold was crossed after last
3269 * call of __mem_cgroup_threshold().
3270 */
3271 i = t->current_threshold;
3272
3273 /*
3274 * Iterate backward over array of thresholds starting from
3275 * current_threshold and check if a threshold is crossed.
3276 * If none of thresholds below usage is crossed, we read
3277 * only one element of the array here.
3278 */
3279 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3280 eventfd_signal(t->entries[i].eventfd, 1);
3281
3282 /* i = current_threshold + 1 */
3283 i++;
3284
3285 /*
3286 * Iterate forward over array of thresholds starting from
3287 * current_threshold+1 and check if a threshold is crossed.
3288 * If none of thresholds above usage is crossed, we read
3289 * only one element of the array here.
3290 */
3291 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3292 eventfd_signal(t->entries[i].eventfd, 1);
3293
3294 /* Update current_threshold */
3295 t->current_threshold = i - 1;
3296 unlock:
3297 rcu_read_unlock();
3298 }
3299
3300 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3301 {
3302 while (memcg) {
3303 __mem_cgroup_threshold(memcg, false);
3304 if (do_memsw_account())
3305 __mem_cgroup_threshold(memcg, true);
3306
3307 memcg = parent_mem_cgroup(memcg);
3308 }
3309 }
3310
3311 static int compare_thresholds(const void *a, const void *b)
3312 {
3313 const struct mem_cgroup_threshold *_a = a;
3314 const struct mem_cgroup_threshold *_b = b;
3315
3316 if (_a->threshold > _b->threshold)
3317 return 1;
3318
3319 if (_a->threshold < _b->threshold)
3320 return -1;
3321
3322 return 0;
3323 }
3324
3325 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3326 {
3327 struct mem_cgroup_eventfd_list *ev;
3328
3329 spin_lock(&memcg_oom_lock);
3330
3331 list_for_each_entry(ev, &memcg->oom_notify, list)
3332 eventfd_signal(ev->eventfd, 1);
3333
3334 spin_unlock(&memcg_oom_lock);
3335 return 0;
3336 }
3337
3338 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3339 {
3340 struct mem_cgroup *iter;
3341
3342 for_each_mem_cgroup_tree(iter, memcg)
3343 mem_cgroup_oom_notify_cb(iter);
3344 }
3345
3346 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3347 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3348 {
3349 struct mem_cgroup_thresholds *thresholds;
3350 struct mem_cgroup_threshold_ary *new;
3351 unsigned long threshold;
3352 unsigned long usage;
3353 int i, size, ret;
3354
3355 ret = page_counter_memparse(args, "-1", &threshold);
3356 if (ret)
3357 return ret;
3358
3359 mutex_lock(&memcg->thresholds_lock);
3360
3361 if (type == _MEM) {
3362 thresholds = &memcg->thresholds;
3363 usage = mem_cgroup_usage(memcg, false);
3364 } else if (type == _MEMSWAP) {
3365 thresholds = &memcg->memsw_thresholds;
3366 usage = mem_cgroup_usage(memcg, true);
3367 } else
3368 BUG();
3369
3370 /* Check if a threshold crossed before adding a new one */
3371 if (thresholds->primary)
3372 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3373
3374 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3375
3376 /* Allocate memory for new array of thresholds */
3377 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3378 GFP_KERNEL);
3379 if (!new) {
3380 ret = -ENOMEM;
3381 goto unlock;
3382 }
3383 new->size = size;
3384
3385 /* Copy thresholds (if any) to new array */
3386 if (thresholds->primary) {
3387 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3388 sizeof(struct mem_cgroup_threshold));
3389 }
3390
3391 /* Add new threshold */
3392 new->entries[size - 1].eventfd = eventfd;
3393 new->entries[size - 1].threshold = threshold;
3394
3395 /* Sort thresholds. Registering of new threshold isn't time-critical */
3396 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3397 compare_thresholds, NULL);
3398
3399 /* Find current threshold */
3400 new->current_threshold = -1;
3401 for (i = 0; i < size; i++) {
3402 if (new->entries[i].threshold <= usage) {
3403 /*
3404 * new->current_threshold will not be used until
3405 * rcu_assign_pointer(), so it's safe to increment
3406 * it here.
3407 */
3408 ++new->current_threshold;
3409 } else
3410 break;
3411 }
3412
3413 /* Free old spare buffer and save old primary buffer as spare */
3414 kfree(thresholds->spare);
3415 thresholds->spare = thresholds->primary;
3416
3417 rcu_assign_pointer(thresholds->primary, new);
3418
3419 /* To be sure that nobody uses thresholds */
3420 synchronize_rcu();
3421
3422 unlock:
3423 mutex_unlock(&memcg->thresholds_lock);
3424
3425 return ret;
3426 }
3427
3428 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3429 struct eventfd_ctx *eventfd, const char *args)
3430 {
3431 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3432 }
3433
3434 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3435 struct eventfd_ctx *eventfd, const char *args)
3436 {
3437 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3438 }
3439
3440 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3441 struct eventfd_ctx *eventfd, enum res_type type)
3442 {
3443 struct mem_cgroup_thresholds *thresholds;
3444 struct mem_cgroup_threshold_ary *new;
3445 unsigned long usage;
3446 int i, j, size;
3447
3448 mutex_lock(&memcg->thresholds_lock);
3449
3450 if (type == _MEM) {
3451 thresholds = &memcg->thresholds;
3452 usage = mem_cgroup_usage(memcg, false);
3453 } else if (type == _MEMSWAP) {
3454 thresholds = &memcg->memsw_thresholds;
3455 usage = mem_cgroup_usage(memcg, true);
3456 } else
3457 BUG();
3458
3459 if (!thresholds->primary)
3460 goto unlock;
3461
3462 /* Check if a threshold crossed before removing */
3463 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3464
3465 /* Calculate new number of threshold */
3466 size = 0;
3467 for (i = 0; i < thresholds->primary->size; i++) {
3468 if (thresholds->primary->entries[i].eventfd != eventfd)
3469 size++;
3470 }
3471
3472 new = thresholds->spare;
3473
3474 /* Set thresholds array to NULL if we don't have thresholds */
3475 if (!size) {
3476 kfree(new);
3477 new = NULL;
3478 goto swap_buffers;
3479 }
3480
3481 new->size = size;
3482
3483 /* Copy thresholds and find current threshold */
3484 new->current_threshold = -1;
3485 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3486 if (thresholds->primary->entries[i].eventfd == eventfd)
3487 continue;
3488
3489 new->entries[j] = thresholds->primary->entries[i];
3490 if (new->entries[j].threshold <= usage) {
3491 /*
3492 * new->current_threshold will not be used
3493 * until rcu_assign_pointer(), so it's safe to increment
3494 * it here.
3495 */
3496 ++new->current_threshold;
3497 }
3498 j++;
3499 }
3500
3501 swap_buffers:
3502 /* Swap primary and spare array */
3503 thresholds->spare = thresholds->primary;
3504
3505 rcu_assign_pointer(thresholds->primary, new);
3506
3507 /* To be sure that nobody uses thresholds */
3508 synchronize_rcu();
3509
3510 /* If all events are unregistered, free the spare array */
3511 if (!new) {
3512 kfree(thresholds->spare);
3513 thresholds->spare = NULL;
3514 }
3515 unlock:
3516 mutex_unlock(&memcg->thresholds_lock);
3517 }
3518
3519 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3520 struct eventfd_ctx *eventfd)
3521 {
3522 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3523 }
3524
3525 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3526 struct eventfd_ctx *eventfd)
3527 {
3528 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3529 }
3530
3531 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3532 struct eventfd_ctx *eventfd, const char *args)
3533 {
3534 struct mem_cgroup_eventfd_list *event;
3535
3536 event = kmalloc(sizeof(*event), GFP_KERNEL);
3537 if (!event)
3538 return -ENOMEM;
3539
3540 spin_lock(&memcg_oom_lock);
3541
3542 event->eventfd = eventfd;
3543 list_add(&event->list, &memcg->oom_notify);
3544
3545 /* already in OOM ? */
3546 if (memcg->under_oom)
3547 eventfd_signal(eventfd, 1);
3548 spin_unlock(&memcg_oom_lock);
3549
3550 return 0;
3551 }
3552
3553 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3554 struct eventfd_ctx *eventfd)
3555 {
3556 struct mem_cgroup_eventfd_list *ev, *tmp;
3557
3558 spin_lock(&memcg_oom_lock);
3559
3560 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3561 if (ev->eventfd == eventfd) {
3562 list_del(&ev->list);
3563 kfree(ev);
3564 }
3565 }
3566
3567 spin_unlock(&memcg_oom_lock);
3568 }
3569
3570 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3571 {
3572 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3573
3574 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3575 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3576 return 0;
3577 }
3578
3579 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3580 struct cftype *cft, u64 val)
3581 {
3582 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3583
3584 /* cannot set to root cgroup and only 0 and 1 are allowed */
3585 if (!css->parent || !((val == 0) || (val == 1)))
3586 return -EINVAL;
3587
3588 memcg->oom_kill_disable = val;
3589 if (!val)
3590 memcg_oom_recover(memcg);
3591
3592 return 0;
3593 }
3594
3595 #ifdef CONFIG_CGROUP_WRITEBACK
3596
3597 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3598 {
3599 return &memcg->cgwb_list;
3600 }
3601
3602 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3603 {
3604 return wb_domain_init(&memcg->cgwb_domain, gfp);
3605 }
3606
3607 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3608 {
3609 wb_domain_exit(&memcg->cgwb_domain);
3610 }
3611
3612 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3613 {
3614 wb_domain_size_changed(&memcg->cgwb_domain);
3615 }
3616
3617 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3618 {
3619 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3620
3621 if (!memcg->css.parent)
3622 return NULL;
3623
3624 return &memcg->cgwb_domain;
3625 }
3626
3627 /**
3628 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3629 * @wb: bdi_writeback in question
3630 * @pfilepages: out parameter for number of file pages
3631 * @pheadroom: out parameter for number of allocatable pages according to memcg
3632 * @pdirty: out parameter for number of dirty pages
3633 * @pwriteback: out parameter for number of pages under writeback
3634 *
3635 * Determine the numbers of file, headroom, dirty, and writeback pages in
3636 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3637 * is a bit more involved.
3638 *
3639 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3640 * headroom is calculated as the lowest headroom of itself and the
3641 * ancestors. Note that this doesn't consider the actual amount of
3642 * available memory in the system. The caller should further cap
3643 * *@pheadroom accordingly.
3644 */
3645 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3646 unsigned long *pheadroom, unsigned long *pdirty,
3647 unsigned long *pwriteback)
3648 {
3649 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3650 struct mem_cgroup *parent;
3651
3652 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3653
3654 /* this should eventually include NR_UNSTABLE_NFS */
3655 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3656 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3657 (1 << LRU_ACTIVE_FILE));
3658 *pheadroom = PAGE_COUNTER_MAX;
3659
3660 while ((parent = parent_mem_cgroup(memcg))) {
3661 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3662 unsigned long used = page_counter_read(&memcg->memory);
3663
3664 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3665 memcg = parent;
3666 }
3667 }
3668
3669 #else /* CONFIG_CGROUP_WRITEBACK */
3670
3671 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3672 {
3673 return 0;
3674 }
3675
3676 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3677 {
3678 }
3679
3680 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3681 {
3682 }
3683
3684 #endif /* CONFIG_CGROUP_WRITEBACK */
3685
3686 /*
3687 * DO NOT USE IN NEW FILES.
3688 *
3689 * "cgroup.event_control" implementation.
3690 *
3691 * This is way over-engineered. It tries to support fully configurable
3692 * events for each user. Such level of flexibility is completely
3693 * unnecessary especially in the light of the planned unified hierarchy.
3694 *
3695 * Please deprecate this and replace with something simpler if at all
3696 * possible.
3697 */
3698
3699 /*
3700 * Unregister event and free resources.
3701 *
3702 * Gets called from workqueue.
3703 */
3704 static void memcg_event_remove(struct work_struct *work)
3705 {
3706 struct mem_cgroup_event *event =
3707 container_of(work, struct mem_cgroup_event, remove);
3708 struct mem_cgroup *memcg = event->memcg;
3709
3710 remove_wait_queue(event->wqh, &event->wait);
3711
3712 event->unregister_event(memcg, event->eventfd);
3713
3714 /* Notify userspace the event is going away. */
3715 eventfd_signal(event->eventfd, 1);
3716
3717 eventfd_ctx_put(event->eventfd);
3718 kfree(event);
3719 css_put(&memcg->css);
3720 }
3721
3722 /*
3723 * Gets called on POLLHUP on eventfd when user closes it.
3724 *
3725 * Called with wqh->lock held and interrupts disabled.
3726 */
3727 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3728 int sync, void *key)
3729 {
3730 struct mem_cgroup_event *event =
3731 container_of(wait, struct mem_cgroup_event, wait);
3732 struct mem_cgroup *memcg = event->memcg;
3733 unsigned long flags = (unsigned long)key;
3734
3735 if (flags & POLLHUP) {
3736 /*
3737 * If the event has been detached at cgroup removal, we
3738 * can simply return knowing the other side will cleanup
3739 * for us.
3740 *
3741 * We can't race against event freeing since the other
3742 * side will require wqh->lock via remove_wait_queue(),
3743 * which we hold.
3744 */
3745 spin_lock(&memcg->event_list_lock);
3746 if (!list_empty(&event->list)) {
3747 list_del_init(&event->list);
3748 /*
3749 * We are in atomic context, but cgroup_event_remove()
3750 * may sleep, so we have to call it in workqueue.
3751 */
3752 schedule_work(&event->remove);
3753 }
3754 spin_unlock(&memcg->event_list_lock);
3755 }
3756
3757 return 0;
3758 }
3759
3760 static void memcg_event_ptable_queue_proc(struct file *file,
3761 wait_queue_head_t *wqh, poll_table *pt)
3762 {
3763 struct mem_cgroup_event *event =
3764 container_of(pt, struct mem_cgroup_event, pt);
3765
3766 event->wqh = wqh;
3767 add_wait_queue(wqh, &event->wait);
3768 }
3769
3770 /*
3771 * DO NOT USE IN NEW FILES.
3772 *
3773 * Parse input and register new cgroup event handler.
3774 *
3775 * Input must be in format '<event_fd> <control_fd> <args>'.
3776 * Interpretation of args is defined by control file implementation.
3777 */
3778 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3779 char *buf, size_t nbytes, loff_t off)
3780 {
3781 struct cgroup_subsys_state *css = of_css(of);
3782 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3783 struct mem_cgroup_event *event;
3784 struct cgroup_subsys_state *cfile_css;
3785 unsigned int efd, cfd;
3786 struct fd efile;
3787 struct fd cfile;
3788 const char *name;
3789 char *endp;
3790 int ret;
3791
3792 buf = strstrip(buf);
3793
3794 efd = simple_strtoul(buf, &endp, 10);
3795 if (*endp != ' ')
3796 return -EINVAL;
3797 buf = endp + 1;
3798
3799 cfd = simple_strtoul(buf, &endp, 10);
3800 if ((*endp != ' ') && (*endp != '\0'))
3801 return -EINVAL;
3802 buf = endp + 1;
3803
3804 event = kzalloc(sizeof(*event), GFP_KERNEL);
3805 if (!event)
3806 return -ENOMEM;
3807
3808 event->memcg = memcg;
3809 INIT_LIST_HEAD(&event->list);
3810 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3811 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3812 INIT_WORK(&event->remove, memcg_event_remove);
3813
3814 efile = fdget(efd);
3815 if (!efile.file) {
3816 ret = -EBADF;
3817 goto out_kfree;
3818 }
3819
3820 event->eventfd = eventfd_ctx_fileget(efile.file);
3821 if (IS_ERR(event->eventfd)) {
3822 ret = PTR_ERR(event->eventfd);
3823 goto out_put_efile;
3824 }
3825
3826 cfile = fdget(cfd);
3827 if (!cfile.file) {
3828 ret = -EBADF;
3829 goto out_put_eventfd;
3830 }
3831
3832 /* the process need read permission on control file */
3833 /* AV: shouldn't we check that it's been opened for read instead? */
3834 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3835 if (ret < 0)
3836 goto out_put_cfile;
3837
3838 /*
3839 * Determine the event callbacks and set them in @event. This used
3840 * to be done via struct cftype but cgroup core no longer knows
3841 * about these events. The following is crude but the whole thing
3842 * is for compatibility anyway.
3843 *
3844 * DO NOT ADD NEW FILES.
3845 */
3846 name = cfile.file->f_path.dentry->d_name.name;
3847
3848 if (!strcmp(name, "memory.usage_in_bytes")) {
3849 event->register_event = mem_cgroup_usage_register_event;
3850 event->unregister_event = mem_cgroup_usage_unregister_event;
3851 } else if (!strcmp(name, "memory.oom_control")) {
3852 event->register_event = mem_cgroup_oom_register_event;
3853 event->unregister_event = mem_cgroup_oom_unregister_event;
3854 } else if (!strcmp(name, "memory.pressure_level")) {
3855 event->register_event = vmpressure_register_event;
3856 event->unregister_event = vmpressure_unregister_event;
3857 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3858 event->register_event = memsw_cgroup_usage_register_event;
3859 event->unregister_event = memsw_cgroup_usage_unregister_event;
3860 } else {
3861 ret = -EINVAL;
3862 goto out_put_cfile;
3863 }
3864
3865 /*
3866 * Verify @cfile should belong to @css. Also, remaining events are
3867 * automatically removed on cgroup destruction but the removal is
3868 * asynchronous, so take an extra ref on @css.
3869 */
3870 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3871 &memory_cgrp_subsys);
3872 ret = -EINVAL;
3873 if (IS_ERR(cfile_css))
3874 goto out_put_cfile;
3875 if (cfile_css != css) {
3876 css_put(cfile_css);
3877 goto out_put_cfile;
3878 }
3879
3880 ret = event->register_event(memcg, event->eventfd, buf);
3881 if (ret)
3882 goto out_put_css;
3883
3884 efile.file->f_op->poll(efile.file, &event->pt);
3885
3886 spin_lock(&memcg->event_list_lock);
3887 list_add(&event->list, &memcg->event_list);
3888 spin_unlock(&memcg->event_list_lock);
3889
3890 fdput(cfile);
3891 fdput(efile);
3892
3893 return nbytes;
3894
3895 out_put_css:
3896 css_put(css);
3897 out_put_cfile:
3898 fdput(cfile);
3899 out_put_eventfd:
3900 eventfd_ctx_put(event->eventfd);
3901 out_put_efile:
3902 fdput(efile);
3903 out_kfree:
3904 kfree(event);
3905
3906 return ret;
3907 }
3908
3909 static struct cftype mem_cgroup_legacy_files[] = {
3910 {
3911 .name = "usage_in_bytes",
3912 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3913 .read_u64 = mem_cgroup_read_u64,
3914 },
3915 {
3916 .name = "max_usage_in_bytes",
3917 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3918 .write = mem_cgroup_reset,
3919 .read_u64 = mem_cgroup_read_u64,
3920 },
3921 {
3922 .name = "limit_in_bytes",
3923 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3924 .write = mem_cgroup_write,
3925 .read_u64 = mem_cgroup_read_u64,
3926 },
3927 {
3928 .name = "soft_limit_in_bytes",
3929 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3930 .write = mem_cgroup_write,
3931 .read_u64 = mem_cgroup_read_u64,
3932 },
3933 {
3934 .name = "failcnt",
3935 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3936 .write = mem_cgroup_reset,
3937 .read_u64 = mem_cgroup_read_u64,
3938 },
3939 {
3940 .name = "stat",
3941 .seq_show = memcg_stat_show,
3942 },
3943 {
3944 .name = "force_empty",
3945 .write = mem_cgroup_force_empty_write,
3946 },
3947 {
3948 .name = "use_hierarchy",
3949 .write_u64 = mem_cgroup_hierarchy_write,
3950 .read_u64 = mem_cgroup_hierarchy_read,
3951 },
3952 {
3953 .name = "cgroup.event_control", /* XXX: for compat */
3954 .write = memcg_write_event_control,
3955 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3956 },
3957 {
3958 .name = "swappiness",
3959 .read_u64 = mem_cgroup_swappiness_read,
3960 .write_u64 = mem_cgroup_swappiness_write,
3961 },
3962 {
3963 .name = "move_charge_at_immigrate",
3964 .read_u64 = mem_cgroup_move_charge_read,
3965 .write_u64 = mem_cgroup_move_charge_write,
3966 },
3967 {
3968 .name = "oom_control",
3969 .seq_show = mem_cgroup_oom_control_read,
3970 .write_u64 = mem_cgroup_oom_control_write,
3971 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3972 },
3973 {
3974 .name = "pressure_level",
3975 },
3976 #ifdef CONFIG_NUMA
3977 {
3978 .name = "numa_stat",
3979 .seq_show = memcg_numa_stat_show,
3980 },
3981 #endif
3982 {
3983 .name = "kmem.limit_in_bytes",
3984 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3985 .write = mem_cgroup_write,
3986 .read_u64 = mem_cgroup_read_u64,
3987 },
3988 {
3989 .name = "kmem.usage_in_bytes",
3990 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3991 .read_u64 = mem_cgroup_read_u64,
3992 },
3993 {
3994 .name = "kmem.failcnt",
3995 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3996 .write = mem_cgroup_reset,
3997 .read_u64 = mem_cgroup_read_u64,
3998 },
3999 {
4000 .name = "kmem.max_usage_in_bytes",
4001 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4002 .write = mem_cgroup_reset,
4003 .read_u64 = mem_cgroup_read_u64,
4004 },
4005 #ifdef CONFIG_SLABINFO
4006 {
4007 .name = "kmem.slabinfo",
4008 .seq_start = slab_start,
4009 .seq_next = slab_next,
4010 .seq_stop = slab_stop,
4011 .seq_show = memcg_slab_show,
4012 },
4013 #endif
4014 {
4015 .name = "kmem.tcp.limit_in_bytes",
4016 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4017 .write = mem_cgroup_write,
4018 .read_u64 = mem_cgroup_read_u64,
4019 },
4020 {
4021 .name = "kmem.tcp.usage_in_bytes",
4022 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4023 .read_u64 = mem_cgroup_read_u64,
4024 },
4025 {
4026 .name = "kmem.tcp.failcnt",
4027 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4028 .write = mem_cgroup_reset,
4029 .read_u64 = mem_cgroup_read_u64,
4030 },
4031 {
4032 .name = "kmem.tcp.max_usage_in_bytes",
4033 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4034 .write = mem_cgroup_reset,
4035 .read_u64 = mem_cgroup_read_u64,
4036 },
4037 { }, /* terminate */
4038 };
4039
4040 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4041 {
4042 struct mem_cgroup_per_node *pn;
4043 struct mem_cgroup_per_zone *mz;
4044 int zone, tmp = node;
4045 /*
4046 * This routine is called against possible nodes.
4047 * But it's BUG to call kmalloc() against offline node.
4048 *
4049 * TODO: this routine can waste much memory for nodes which will
4050 * never be onlined. It's better to use memory hotplug callback
4051 * function.
4052 */
4053 if (!node_state(node, N_NORMAL_MEMORY))
4054 tmp = -1;
4055 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4056 if (!pn)
4057 return 1;
4058
4059 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4060 mz = &pn->zoneinfo[zone];
4061 lruvec_init(&mz->lruvec);
4062 mz->usage_in_excess = 0;
4063 mz->on_tree = false;
4064 mz->memcg = memcg;
4065 }
4066 memcg->nodeinfo[node] = pn;
4067 return 0;
4068 }
4069
4070 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4071 {
4072 kfree(memcg->nodeinfo[node]);
4073 }
4074
4075 static void mem_cgroup_free(struct mem_cgroup *memcg)
4076 {
4077 int node;
4078
4079 memcg_wb_domain_exit(memcg);
4080 for_each_node(node)
4081 free_mem_cgroup_per_zone_info(memcg, node);
4082 free_percpu(memcg->stat);
4083 kfree(memcg);
4084 }
4085
4086 static struct mem_cgroup *mem_cgroup_alloc(void)
4087 {
4088 struct mem_cgroup *memcg;
4089 size_t size;
4090 int node;
4091
4092 size = sizeof(struct mem_cgroup);
4093 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4094
4095 memcg = kzalloc(size, GFP_KERNEL);
4096 if (!memcg)
4097 return NULL;
4098
4099 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4100 if (!memcg->stat)
4101 goto fail;
4102
4103 for_each_node(node)
4104 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4105 goto fail;
4106
4107 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4108 goto fail;
4109
4110 INIT_WORK(&memcg->high_work, high_work_func);
4111 memcg->last_scanned_node = MAX_NUMNODES;
4112 INIT_LIST_HEAD(&memcg->oom_notify);
4113 mutex_init(&memcg->thresholds_lock);
4114 spin_lock_init(&memcg->move_lock);
4115 vmpressure_init(&memcg->vmpressure);
4116 INIT_LIST_HEAD(&memcg->event_list);
4117 spin_lock_init(&memcg->event_list_lock);
4118 memcg->socket_pressure = jiffies;
4119 #ifndef CONFIG_SLOB
4120 memcg->kmemcg_id = -1;
4121 #endif
4122 #ifdef CONFIG_CGROUP_WRITEBACK
4123 INIT_LIST_HEAD(&memcg->cgwb_list);
4124 #endif
4125 return memcg;
4126 fail:
4127 mem_cgroup_free(memcg);
4128 return NULL;
4129 }
4130
4131 static struct cgroup_subsys_state * __ref
4132 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4133 {
4134 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4135 struct mem_cgroup *memcg;
4136 long error = -ENOMEM;
4137
4138 memcg = mem_cgroup_alloc();
4139 if (!memcg)
4140 return ERR_PTR(error);
4141
4142 memcg->high = PAGE_COUNTER_MAX;
4143 memcg->soft_limit = PAGE_COUNTER_MAX;
4144 if (parent) {
4145 memcg->swappiness = mem_cgroup_swappiness(parent);
4146 memcg->oom_kill_disable = parent->oom_kill_disable;
4147 }
4148 if (parent && parent->use_hierarchy) {
4149 memcg->use_hierarchy = true;
4150 page_counter_init(&memcg->memory, &parent->memory);
4151 page_counter_init(&memcg->swap, &parent->swap);
4152 page_counter_init(&memcg->memsw, &parent->memsw);
4153 page_counter_init(&memcg->kmem, &parent->kmem);
4154 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4155 } else {
4156 page_counter_init(&memcg->memory, NULL);
4157 page_counter_init(&memcg->swap, NULL);
4158 page_counter_init(&memcg->memsw, NULL);
4159 page_counter_init(&memcg->kmem, NULL);
4160 page_counter_init(&memcg->tcpmem, NULL);
4161 /*
4162 * Deeper hierachy with use_hierarchy == false doesn't make
4163 * much sense so let cgroup subsystem know about this
4164 * unfortunate state in our controller.
4165 */
4166 if (parent != root_mem_cgroup)
4167 memory_cgrp_subsys.broken_hierarchy = true;
4168 }
4169
4170 /* The following stuff does not apply to the root */
4171 if (!parent) {
4172 root_mem_cgroup = memcg;
4173 return &memcg->css;
4174 }
4175
4176 error = memcg_online_kmem(memcg);
4177 if (error)
4178 goto fail;
4179
4180 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4181 static_branch_inc(&memcg_sockets_enabled_key);
4182
4183 return &memcg->css;
4184 fail:
4185 mem_cgroup_free(memcg);
4186 return NULL;
4187 }
4188
4189 static int
4190 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4191 {
4192 if (css->id > MEM_CGROUP_ID_MAX)
4193 return -ENOSPC;
4194
4195 return 0;
4196 }
4197
4198 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4199 {
4200 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4201 struct mem_cgroup_event *event, *tmp;
4202
4203 /*
4204 * Unregister events and notify userspace.
4205 * Notify userspace about cgroup removing only after rmdir of cgroup
4206 * directory to avoid race between userspace and kernelspace.
4207 */
4208 spin_lock(&memcg->event_list_lock);
4209 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4210 list_del_init(&event->list);
4211 schedule_work(&event->remove);
4212 }
4213 spin_unlock(&memcg->event_list_lock);
4214
4215 memcg_offline_kmem(memcg);
4216 wb_memcg_offline(memcg);
4217 }
4218
4219 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4220 {
4221 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4222
4223 invalidate_reclaim_iterators(memcg);
4224 }
4225
4226 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4227 {
4228 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4229
4230 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4231 static_branch_dec(&memcg_sockets_enabled_key);
4232
4233 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4234 static_branch_dec(&memcg_sockets_enabled_key);
4235
4236 vmpressure_cleanup(&memcg->vmpressure);
4237 cancel_work_sync(&memcg->high_work);
4238 mem_cgroup_remove_from_trees(memcg);
4239 memcg_free_kmem(memcg);
4240 mem_cgroup_free(memcg);
4241 }
4242
4243 /**
4244 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4245 * @css: the target css
4246 *
4247 * Reset the states of the mem_cgroup associated with @css. This is
4248 * invoked when the userland requests disabling on the default hierarchy
4249 * but the memcg is pinned through dependency. The memcg should stop
4250 * applying policies and should revert to the vanilla state as it may be
4251 * made visible again.
4252 *
4253 * The current implementation only resets the essential configurations.
4254 * This needs to be expanded to cover all the visible parts.
4255 */
4256 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4257 {
4258 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4259
4260 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4261 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4262 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4263 memcg->low = 0;
4264 memcg->high = PAGE_COUNTER_MAX;
4265 memcg->soft_limit = PAGE_COUNTER_MAX;
4266 memcg_wb_domain_size_changed(memcg);
4267 }
4268
4269 #ifdef CONFIG_MMU
4270 /* Handlers for move charge at task migration. */
4271 static int mem_cgroup_do_precharge(unsigned long count)
4272 {
4273 int ret;
4274
4275 /* Try a single bulk charge without reclaim first, kswapd may wake */
4276 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4277 if (!ret) {
4278 mc.precharge += count;
4279 return ret;
4280 }
4281
4282 /* Try charges one by one with reclaim */
4283 while (count--) {
4284 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4285 if (ret)
4286 return ret;
4287 mc.precharge++;
4288 cond_resched();
4289 }
4290 return 0;
4291 }
4292
4293 /**
4294 * get_mctgt_type - get target type of moving charge
4295 * @vma: the vma the pte to be checked belongs
4296 * @addr: the address corresponding to the pte to be checked
4297 * @ptent: the pte to be checked
4298 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4299 *
4300 * Returns
4301 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4302 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4303 * move charge. if @target is not NULL, the page is stored in target->page
4304 * with extra refcnt got(Callers should handle it).
4305 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4306 * target for charge migration. if @target is not NULL, the entry is stored
4307 * in target->ent.
4308 *
4309 * Called with pte lock held.
4310 */
4311 union mc_target {
4312 struct page *page;
4313 swp_entry_t ent;
4314 };
4315
4316 enum mc_target_type {
4317 MC_TARGET_NONE = 0,
4318 MC_TARGET_PAGE,
4319 MC_TARGET_SWAP,
4320 };
4321
4322 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4323 unsigned long addr, pte_t ptent)
4324 {
4325 struct page *page = vm_normal_page(vma, addr, ptent);
4326
4327 if (!page || !page_mapped(page))
4328 return NULL;
4329 if (PageAnon(page)) {
4330 if (!(mc.flags & MOVE_ANON))
4331 return NULL;
4332 } else {
4333 if (!(mc.flags & MOVE_FILE))
4334 return NULL;
4335 }
4336 if (!get_page_unless_zero(page))
4337 return NULL;
4338
4339 return page;
4340 }
4341
4342 #ifdef CONFIG_SWAP
4343 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4344 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4345 {
4346 struct page *page = NULL;
4347 swp_entry_t ent = pte_to_swp_entry(ptent);
4348
4349 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4350 return NULL;
4351 /*
4352 * Because lookup_swap_cache() updates some statistics counter,
4353 * we call find_get_page() with swapper_space directly.
4354 */
4355 page = find_get_page(swap_address_space(ent), ent.val);
4356 if (do_memsw_account())
4357 entry->val = ent.val;
4358
4359 return page;
4360 }
4361 #else
4362 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4363 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4364 {
4365 return NULL;
4366 }
4367 #endif
4368
4369 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4370 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4371 {
4372 struct page *page = NULL;
4373 struct address_space *mapping;
4374 pgoff_t pgoff;
4375
4376 if (!vma->vm_file) /* anonymous vma */
4377 return NULL;
4378 if (!(mc.flags & MOVE_FILE))
4379 return NULL;
4380
4381 mapping = vma->vm_file->f_mapping;
4382 pgoff = linear_page_index(vma, addr);
4383
4384 /* page is moved even if it's not RSS of this task(page-faulted). */
4385 #ifdef CONFIG_SWAP
4386 /* shmem/tmpfs may report page out on swap: account for that too. */
4387 if (shmem_mapping(mapping)) {
4388 page = find_get_entry(mapping, pgoff);
4389 if (radix_tree_exceptional_entry(page)) {
4390 swp_entry_t swp = radix_to_swp_entry(page);
4391 if (do_memsw_account())
4392 *entry = swp;
4393 page = find_get_page(swap_address_space(swp), swp.val);
4394 }
4395 } else
4396 page = find_get_page(mapping, pgoff);
4397 #else
4398 page = find_get_page(mapping, pgoff);
4399 #endif
4400 return page;
4401 }
4402
4403 /**
4404 * mem_cgroup_move_account - move account of the page
4405 * @page: the page
4406 * @nr_pages: number of regular pages (>1 for huge pages)
4407 * @from: mem_cgroup which the page is moved from.
4408 * @to: mem_cgroup which the page is moved to. @from != @to.
4409 *
4410 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4411 *
4412 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4413 * from old cgroup.
4414 */
4415 static int mem_cgroup_move_account(struct page *page,
4416 bool compound,
4417 struct mem_cgroup *from,
4418 struct mem_cgroup *to)
4419 {
4420 unsigned long flags;
4421 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4422 int ret;
4423 bool anon;
4424
4425 VM_BUG_ON(from == to);
4426 VM_BUG_ON_PAGE(PageLRU(page), page);
4427 VM_BUG_ON(compound && !PageTransHuge(page));
4428
4429 /*
4430 * Prevent mem_cgroup_migrate() from looking at
4431 * page->mem_cgroup of its source page while we change it.
4432 */
4433 ret = -EBUSY;
4434 if (!trylock_page(page))
4435 goto out;
4436
4437 ret = -EINVAL;
4438 if (page->mem_cgroup != from)
4439 goto out_unlock;
4440
4441 anon = PageAnon(page);
4442
4443 spin_lock_irqsave(&from->move_lock, flags);
4444
4445 if (!anon && page_mapped(page)) {
4446 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4447 nr_pages);
4448 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4449 nr_pages);
4450 }
4451
4452 /*
4453 * move_lock grabbed above and caller set from->moving_account, so
4454 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4455 * So mapping should be stable for dirty pages.
4456 */
4457 if (!anon && PageDirty(page)) {
4458 struct address_space *mapping = page_mapping(page);
4459
4460 if (mapping_cap_account_dirty(mapping)) {
4461 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4462 nr_pages);
4463 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4464 nr_pages);
4465 }
4466 }
4467
4468 if (PageWriteback(page)) {
4469 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4470 nr_pages);
4471 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4472 nr_pages);
4473 }
4474
4475 /*
4476 * It is safe to change page->mem_cgroup here because the page
4477 * is referenced, charged, and isolated - we can't race with
4478 * uncharging, charging, migration, or LRU putback.
4479 */
4480
4481 /* caller should have done css_get */
4482 page->mem_cgroup = to;
4483 spin_unlock_irqrestore(&from->move_lock, flags);
4484
4485 ret = 0;
4486
4487 local_irq_disable();
4488 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4489 memcg_check_events(to, page);
4490 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4491 memcg_check_events(from, page);
4492 local_irq_enable();
4493 out_unlock:
4494 unlock_page(page);
4495 out:
4496 return ret;
4497 }
4498
4499 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4500 unsigned long addr, pte_t ptent, union mc_target *target)
4501 {
4502 struct page *page = NULL;
4503 enum mc_target_type ret = MC_TARGET_NONE;
4504 swp_entry_t ent = { .val = 0 };
4505
4506 if (pte_present(ptent))
4507 page = mc_handle_present_pte(vma, addr, ptent);
4508 else if (is_swap_pte(ptent))
4509 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4510 else if (pte_none(ptent))
4511 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4512
4513 if (!page && !ent.val)
4514 return ret;
4515 if (page) {
4516 /*
4517 * Do only loose check w/o serialization.
4518 * mem_cgroup_move_account() checks the page is valid or
4519 * not under LRU exclusion.
4520 */
4521 if (page->mem_cgroup == mc.from) {
4522 ret = MC_TARGET_PAGE;
4523 if (target)
4524 target->page = page;
4525 }
4526 if (!ret || !target)
4527 put_page(page);
4528 }
4529 /* There is a swap entry and a page doesn't exist or isn't charged */
4530 if (ent.val && !ret &&
4531 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4532 ret = MC_TARGET_SWAP;
4533 if (target)
4534 target->ent = ent;
4535 }
4536 return ret;
4537 }
4538
4539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4540 /*
4541 * We don't consider swapping or file mapped pages because THP does not
4542 * support them for now.
4543 * Caller should make sure that pmd_trans_huge(pmd) is true.
4544 */
4545 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4546 unsigned long addr, pmd_t pmd, union mc_target *target)
4547 {
4548 struct page *page = NULL;
4549 enum mc_target_type ret = MC_TARGET_NONE;
4550
4551 page = pmd_page(pmd);
4552 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4553 if (!(mc.flags & MOVE_ANON))
4554 return ret;
4555 if (page->mem_cgroup == mc.from) {
4556 ret = MC_TARGET_PAGE;
4557 if (target) {
4558 get_page(page);
4559 target->page = page;
4560 }
4561 }
4562 return ret;
4563 }
4564 #else
4565 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4566 unsigned long addr, pmd_t pmd, union mc_target *target)
4567 {
4568 return MC_TARGET_NONE;
4569 }
4570 #endif
4571
4572 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4573 unsigned long addr, unsigned long end,
4574 struct mm_walk *walk)
4575 {
4576 struct vm_area_struct *vma = walk->vma;
4577 pte_t *pte;
4578 spinlock_t *ptl;
4579
4580 ptl = pmd_trans_huge_lock(pmd, vma);
4581 if (ptl) {
4582 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4583 mc.precharge += HPAGE_PMD_NR;
4584 spin_unlock(ptl);
4585 return 0;
4586 }
4587
4588 if (pmd_trans_unstable(pmd))
4589 return 0;
4590 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4591 for (; addr != end; pte++, addr += PAGE_SIZE)
4592 if (get_mctgt_type(vma, addr, *pte, NULL))
4593 mc.precharge++; /* increment precharge temporarily */
4594 pte_unmap_unlock(pte - 1, ptl);
4595 cond_resched();
4596
4597 return 0;
4598 }
4599
4600 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4601 {
4602 unsigned long precharge;
4603
4604 struct mm_walk mem_cgroup_count_precharge_walk = {
4605 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4606 .mm = mm,
4607 };
4608 down_read(&mm->mmap_sem);
4609 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4610 up_read(&mm->mmap_sem);
4611
4612 precharge = mc.precharge;
4613 mc.precharge = 0;
4614
4615 return precharge;
4616 }
4617
4618 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4619 {
4620 unsigned long precharge = mem_cgroup_count_precharge(mm);
4621
4622 VM_BUG_ON(mc.moving_task);
4623 mc.moving_task = current;
4624 return mem_cgroup_do_precharge(precharge);
4625 }
4626
4627 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4628 static void __mem_cgroup_clear_mc(void)
4629 {
4630 struct mem_cgroup *from = mc.from;
4631 struct mem_cgroup *to = mc.to;
4632
4633 /* we must uncharge all the leftover precharges from mc.to */
4634 if (mc.precharge) {
4635 cancel_charge(mc.to, mc.precharge);
4636 mc.precharge = 0;
4637 }
4638 /*
4639 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4640 * we must uncharge here.
4641 */
4642 if (mc.moved_charge) {
4643 cancel_charge(mc.from, mc.moved_charge);
4644 mc.moved_charge = 0;
4645 }
4646 /* we must fixup refcnts and charges */
4647 if (mc.moved_swap) {
4648 /* uncharge swap account from the old cgroup */
4649 if (!mem_cgroup_is_root(mc.from))
4650 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4651
4652 /*
4653 * we charged both to->memory and to->memsw, so we
4654 * should uncharge to->memory.
4655 */
4656 if (!mem_cgroup_is_root(mc.to))
4657 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4658
4659 css_put_many(&mc.from->css, mc.moved_swap);
4660
4661 /* we've already done css_get(mc.to) */
4662 mc.moved_swap = 0;
4663 }
4664 memcg_oom_recover(from);
4665 memcg_oom_recover(to);
4666 wake_up_all(&mc.waitq);
4667 }
4668
4669 static void mem_cgroup_clear_mc(void)
4670 {
4671 /*
4672 * we must clear moving_task before waking up waiters at the end of
4673 * task migration.
4674 */
4675 mc.moving_task = NULL;
4676 __mem_cgroup_clear_mc();
4677 spin_lock(&mc.lock);
4678 mc.from = NULL;
4679 mc.to = NULL;
4680 spin_unlock(&mc.lock);
4681 }
4682
4683 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4684 {
4685 struct cgroup_subsys_state *css;
4686 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4687 struct mem_cgroup *from;
4688 struct task_struct *leader, *p;
4689 struct mm_struct *mm;
4690 unsigned long move_flags;
4691 int ret = 0;
4692
4693 /* charge immigration isn't supported on the default hierarchy */
4694 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4695 return 0;
4696
4697 /*
4698 * Multi-process migrations only happen on the default hierarchy
4699 * where charge immigration is not used. Perform charge
4700 * immigration if @tset contains a leader and whine if there are
4701 * multiple.
4702 */
4703 p = NULL;
4704 cgroup_taskset_for_each_leader(leader, css, tset) {
4705 WARN_ON_ONCE(p);
4706 p = leader;
4707 memcg = mem_cgroup_from_css(css);
4708 }
4709 if (!p)
4710 return 0;
4711
4712 /*
4713 * We are now commited to this value whatever it is. Changes in this
4714 * tunable will only affect upcoming migrations, not the current one.
4715 * So we need to save it, and keep it going.
4716 */
4717 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4718 if (!move_flags)
4719 return 0;
4720
4721 from = mem_cgroup_from_task(p);
4722
4723 VM_BUG_ON(from == memcg);
4724
4725 mm = get_task_mm(p);
4726 if (!mm)
4727 return 0;
4728 /* We move charges only when we move a owner of the mm */
4729 if (mm->owner == p) {
4730 VM_BUG_ON(mc.from);
4731 VM_BUG_ON(mc.to);
4732 VM_BUG_ON(mc.precharge);
4733 VM_BUG_ON(mc.moved_charge);
4734 VM_BUG_ON(mc.moved_swap);
4735
4736 spin_lock(&mc.lock);
4737 mc.from = from;
4738 mc.to = memcg;
4739 mc.flags = move_flags;
4740 spin_unlock(&mc.lock);
4741 /* We set mc.moving_task later */
4742
4743 ret = mem_cgroup_precharge_mc(mm);
4744 if (ret)
4745 mem_cgroup_clear_mc();
4746 }
4747 mmput(mm);
4748 return ret;
4749 }
4750
4751 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4752 {
4753 if (mc.to)
4754 mem_cgroup_clear_mc();
4755 }
4756
4757 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4758 unsigned long addr, unsigned long end,
4759 struct mm_walk *walk)
4760 {
4761 int ret = 0;
4762 struct vm_area_struct *vma = walk->vma;
4763 pte_t *pte;
4764 spinlock_t *ptl;
4765 enum mc_target_type target_type;
4766 union mc_target target;
4767 struct page *page;
4768
4769 ptl = pmd_trans_huge_lock(pmd, vma);
4770 if (ptl) {
4771 if (mc.precharge < HPAGE_PMD_NR) {
4772 spin_unlock(ptl);
4773 return 0;
4774 }
4775 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4776 if (target_type == MC_TARGET_PAGE) {
4777 page = target.page;
4778 if (!isolate_lru_page(page)) {
4779 if (!mem_cgroup_move_account(page, true,
4780 mc.from, mc.to)) {
4781 mc.precharge -= HPAGE_PMD_NR;
4782 mc.moved_charge += HPAGE_PMD_NR;
4783 }
4784 putback_lru_page(page);
4785 }
4786 put_page(page);
4787 }
4788 spin_unlock(ptl);
4789 return 0;
4790 }
4791
4792 if (pmd_trans_unstable(pmd))
4793 return 0;
4794 retry:
4795 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4796 for (; addr != end; addr += PAGE_SIZE) {
4797 pte_t ptent = *(pte++);
4798 swp_entry_t ent;
4799
4800 if (!mc.precharge)
4801 break;
4802
4803 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4804 case MC_TARGET_PAGE:
4805 page = target.page;
4806 /*
4807 * We can have a part of the split pmd here. Moving it
4808 * can be done but it would be too convoluted so simply
4809 * ignore such a partial THP and keep it in original
4810 * memcg. There should be somebody mapping the head.
4811 */
4812 if (PageTransCompound(page))
4813 goto put;
4814 if (isolate_lru_page(page))
4815 goto put;
4816 if (!mem_cgroup_move_account(page, false,
4817 mc.from, mc.to)) {
4818 mc.precharge--;
4819 /* we uncharge from mc.from later. */
4820 mc.moved_charge++;
4821 }
4822 putback_lru_page(page);
4823 put: /* get_mctgt_type() gets the page */
4824 put_page(page);
4825 break;
4826 case MC_TARGET_SWAP:
4827 ent = target.ent;
4828 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4829 mc.precharge--;
4830 /* we fixup refcnts and charges later. */
4831 mc.moved_swap++;
4832 }
4833 break;
4834 default:
4835 break;
4836 }
4837 }
4838 pte_unmap_unlock(pte - 1, ptl);
4839 cond_resched();
4840
4841 if (addr != end) {
4842 /*
4843 * We have consumed all precharges we got in can_attach().
4844 * We try charge one by one, but don't do any additional
4845 * charges to mc.to if we have failed in charge once in attach()
4846 * phase.
4847 */
4848 ret = mem_cgroup_do_precharge(1);
4849 if (!ret)
4850 goto retry;
4851 }
4852
4853 return ret;
4854 }
4855
4856 static void mem_cgroup_move_charge(struct mm_struct *mm)
4857 {
4858 struct mm_walk mem_cgroup_move_charge_walk = {
4859 .pmd_entry = mem_cgroup_move_charge_pte_range,
4860 .mm = mm,
4861 };
4862
4863 lru_add_drain_all();
4864 /*
4865 * Signal lock_page_memcg() to take the memcg's move_lock
4866 * while we're moving its pages to another memcg. Then wait
4867 * for already started RCU-only updates to finish.
4868 */
4869 atomic_inc(&mc.from->moving_account);
4870 synchronize_rcu();
4871 retry:
4872 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4873 /*
4874 * Someone who are holding the mmap_sem might be waiting in
4875 * waitq. So we cancel all extra charges, wake up all waiters,
4876 * and retry. Because we cancel precharges, we might not be able
4877 * to move enough charges, but moving charge is a best-effort
4878 * feature anyway, so it wouldn't be a big problem.
4879 */
4880 __mem_cgroup_clear_mc();
4881 cond_resched();
4882 goto retry;
4883 }
4884 /*
4885 * When we have consumed all precharges and failed in doing
4886 * additional charge, the page walk just aborts.
4887 */
4888 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4889 up_read(&mm->mmap_sem);
4890 atomic_dec(&mc.from->moving_account);
4891 }
4892
4893 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4894 {
4895 struct cgroup_subsys_state *css;
4896 struct task_struct *p = cgroup_taskset_first(tset, &css);
4897 struct mm_struct *mm = get_task_mm(p);
4898
4899 if (mm) {
4900 if (mc.to)
4901 mem_cgroup_move_charge(mm);
4902 mmput(mm);
4903 }
4904 if (mc.to)
4905 mem_cgroup_clear_mc();
4906 }
4907 #else /* !CONFIG_MMU */
4908 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4909 {
4910 return 0;
4911 }
4912 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4913 {
4914 }
4915 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4916 {
4917 }
4918 #endif
4919
4920 /*
4921 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4922 * to verify whether we're attached to the default hierarchy on each mount
4923 * attempt.
4924 */
4925 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4926 {
4927 /*
4928 * use_hierarchy is forced on the default hierarchy. cgroup core
4929 * guarantees that @root doesn't have any children, so turning it
4930 * on for the root memcg is enough.
4931 */
4932 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4933 root_mem_cgroup->use_hierarchy = true;
4934 else
4935 root_mem_cgroup->use_hierarchy = false;
4936 }
4937
4938 static u64 memory_current_read(struct cgroup_subsys_state *css,
4939 struct cftype *cft)
4940 {
4941 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4942
4943 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4944 }
4945
4946 static int memory_low_show(struct seq_file *m, void *v)
4947 {
4948 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4949 unsigned long low = READ_ONCE(memcg->low);
4950
4951 if (low == PAGE_COUNTER_MAX)
4952 seq_puts(m, "max\n");
4953 else
4954 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4955
4956 return 0;
4957 }
4958
4959 static ssize_t memory_low_write(struct kernfs_open_file *of,
4960 char *buf, size_t nbytes, loff_t off)
4961 {
4962 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4963 unsigned long low;
4964 int err;
4965
4966 buf = strstrip(buf);
4967 err = page_counter_memparse(buf, "max", &low);
4968 if (err)
4969 return err;
4970
4971 memcg->low = low;
4972
4973 return nbytes;
4974 }
4975
4976 static int memory_high_show(struct seq_file *m, void *v)
4977 {
4978 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4979 unsigned long high = READ_ONCE(memcg->high);
4980
4981 if (high == PAGE_COUNTER_MAX)
4982 seq_puts(m, "max\n");
4983 else
4984 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
4985
4986 return 0;
4987 }
4988
4989 static ssize_t memory_high_write(struct kernfs_open_file *of,
4990 char *buf, size_t nbytes, loff_t off)
4991 {
4992 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4993 unsigned long high;
4994 int err;
4995
4996 buf = strstrip(buf);
4997 err = page_counter_memparse(buf, "max", &high);
4998 if (err)
4999 return err;
5000
5001 memcg->high = high;
5002
5003 memcg_wb_domain_size_changed(memcg);
5004 return nbytes;
5005 }
5006
5007 static int memory_max_show(struct seq_file *m, void *v)
5008 {
5009 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5010 unsigned long max = READ_ONCE(memcg->memory.limit);
5011
5012 if (max == PAGE_COUNTER_MAX)
5013 seq_puts(m, "max\n");
5014 else
5015 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5016
5017 return 0;
5018 }
5019
5020 static ssize_t memory_max_write(struct kernfs_open_file *of,
5021 char *buf, size_t nbytes, loff_t off)
5022 {
5023 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5024 unsigned long max;
5025 int err;
5026
5027 buf = strstrip(buf);
5028 err = page_counter_memparse(buf, "max", &max);
5029 if (err)
5030 return err;
5031
5032 err = mem_cgroup_resize_limit(memcg, max);
5033 if (err)
5034 return err;
5035
5036 memcg_wb_domain_size_changed(memcg);
5037 return nbytes;
5038 }
5039
5040 static int memory_events_show(struct seq_file *m, void *v)
5041 {
5042 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5043
5044 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5045 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5046 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5047 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5048
5049 return 0;
5050 }
5051
5052 static int memory_stat_show(struct seq_file *m, void *v)
5053 {
5054 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5055 unsigned long stat[MEMCG_NR_STAT];
5056 unsigned long events[MEMCG_NR_EVENTS];
5057 int i;
5058
5059 /*
5060 * Provide statistics on the state of the memory subsystem as
5061 * well as cumulative event counters that show past behavior.
5062 *
5063 * This list is ordered following a combination of these gradients:
5064 * 1) generic big picture -> specifics and details
5065 * 2) reflecting userspace activity -> reflecting kernel heuristics
5066 *
5067 * Current memory state:
5068 */
5069
5070 tree_stat(memcg, stat);
5071 tree_events(memcg, events);
5072
5073 seq_printf(m, "anon %llu\n",
5074 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5075 seq_printf(m, "file %llu\n",
5076 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5077 seq_printf(m, "kernel_stack %llu\n",
5078 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5079 seq_printf(m, "slab %llu\n",
5080 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5081 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5082 seq_printf(m, "sock %llu\n",
5083 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5084
5085 seq_printf(m, "file_mapped %llu\n",
5086 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5087 seq_printf(m, "file_dirty %llu\n",
5088 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5089 seq_printf(m, "file_writeback %llu\n",
5090 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5091
5092 for (i = 0; i < NR_LRU_LISTS; i++) {
5093 struct mem_cgroup *mi;
5094 unsigned long val = 0;
5095
5096 for_each_mem_cgroup_tree(mi, memcg)
5097 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5098 seq_printf(m, "%s %llu\n",
5099 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5100 }
5101
5102 seq_printf(m, "slab_reclaimable %llu\n",
5103 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5104 seq_printf(m, "slab_unreclaimable %llu\n",
5105 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5106
5107 /* Accumulated memory events */
5108
5109 seq_printf(m, "pgfault %lu\n",
5110 events[MEM_CGROUP_EVENTS_PGFAULT]);
5111 seq_printf(m, "pgmajfault %lu\n",
5112 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5113
5114 return 0;
5115 }
5116
5117 static struct cftype memory_files[] = {
5118 {
5119 .name = "current",
5120 .flags = CFTYPE_NOT_ON_ROOT,
5121 .read_u64 = memory_current_read,
5122 },
5123 {
5124 .name = "low",
5125 .flags = CFTYPE_NOT_ON_ROOT,
5126 .seq_show = memory_low_show,
5127 .write = memory_low_write,
5128 },
5129 {
5130 .name = "high",
5131 .flags = CFTYPE_NOT_ON_ROOT,
5132 .seq_show = memory_high_show,
5133 .write = memory_high_write,
5134 },
5135 {
5136 .name = "max",
5137 .flags = CFTYPE_NOT_ON_ROOT,
5138 .seq_show = memory_max_show,
5139 .write = memory_max_write,
5140 },
5141 {
5142 .name = "events",
5143 .flags = CFTYPE_NOT_ON_ROOT,
5144 .file_offset = offsetof(struct mem_cgroup, events_file),
5145 .seq_show = memory_events_show,
5146 },
5147 {
5148 .name = "stat",
5149 .flags = CFTYPE_NOT_ON_ROOT,
5150 .seq_show = memory_stat_show,
5151 },
5152 { } /* terminate */
5153 };
5154
5155 struct cgroup_subsys memory_cgrp_subsys = {
5156 .css_alloc = mem_cgroup_css_alloc,
5157 .css_online = mem_cgroup_css_online,
5158 .css_offline = mem_cgroup_css_offline,
5159 .css_released = mem_cgroup_css_released,
5160 .css_free = mem_cgroup_css_free,
5161 .css_reset = mem_cgroup_css_reset,
5162 .can_attach = mem_cgroup_can_attach,
5163 .cancel_attach = mem_cgroup_cancel_attach,
5164 .attach = mem_cgroup_move_task,
5165 .bind = mem_cgroup_bind,
5166 .dfl_cftypes = memory_files,
5167 .legacy_cftypes = mem_cgroup_legacy_files,
5168 .early_init = 0,
5169 };
5170
5171 /**
5172 * mem_cgroup_low - check if memory consumption is below the normal range
5173 * @root: the highest ancestor to consider
5174 * @memcg: the memory cgroup to check
5175 *
5176 * Returns %true if memory consumption of @memcg, and that of all
5177 * configurable ancestors up to @root, is below the normal range.
5178 */
5179 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5180 {
5181 if (mem_cgroup_disabled())
5182 return false;
5183
5184 /*
5185 * The toplevel group doesn't have a configurable range, so
5186 * it's never low when looked at directly, and it is not
5187 * considered an ancestor when assessing the hierarchy.
5188 */
5189
5190 if (memcg == root_mem_cgroup)
5191 return false;
5192
5193 if (page_counter_read(&memcg->memory) >= memcg->low)
5194 return false;
5195
5196 while (memcg != root) {
5197 memcg = parent_mem_cgroup(memcg);
5198
5199 if (memcg == root_mem_cgroup)
5200 break;
5201
5202 if (page_counter_read(&memcg->memory) >= memcg->low)
5203 return false;
5204 }
5205 return true;
5206 }
5207
5208 /**
5209 * mem_cgroup_try_charge - try charging a page
5210 * @page: page to charge
5211 * @mm: mm context of the victim
5212 * @gfp_mask: reclaim mode
5213 * @memcgp: charged memcg return
5214 *
5215 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5216 * pages according to @gfp_mask if necessary.
5217 *
5218 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5219 * Otherwise, an error code is returned.
5220 *
5221 * After page->mapping has been set up, the caller must finalize the
5222 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5223 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5224 */
5225 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5226 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5227 bool compound)
5228 {
5229 struct mem_cgroup *memcg = NULL;
5230 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5231 int ret = 0;
5232
5233 if (mem_cgroup_disabled())
5234 goto out;
5235
5236 if (PageSwapCache(page)) {
5237 /*
5238 * Every swap fault against a single page tries to charge the
5239 * page, bail as early as possible. shmem_unuse() encounters
5240 * already charged pages, too. The USED bit is protected by
5241 * the page lock, which serializes swap cache removal, which
5242 * in turn serializes uncharging.
5243 */
5244 VM_BUG_ON_PAGE(!PageLocked(page), page);
5245 if (page->mem_cgroup)
5246 goto out;
5247
5248 if (do_swap_account) {
5249 swp_entry_t ent = { .val = page_private(page), };
5250 unsigned short id = lookup_swap_cgroup_id(ent);
5251
5252 rcu_read_lock();
5253 memcg = mem_cgroup_from_id(id);
5254 if (memcg && !css_tryget_online(&memcg->css))
5255 memcg = NULL;
5256 rcu_read_unlock();
5257 }
5258 }
5259
5260 if (!memcg)
5261 memcg = get_mem_cgroup_from_mm(mm);
5262
5263 ret = try_charge(memcg, gfp_mask, nr_pages);
5264
5265 css_put(&memcg->css);
5266 out:
5267 *memcgp = memcg;
5268 return ret;
5269 }
5270
5271 /**
5272 * mem_cgroup_commit_charge - commit a page charge
5273 * @page: page to charge
5274 * @memcg: memcg to charge the page to
5275 * @lrucare: page might be on LRU already
5276 *
5277 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5278 * after page->mapping has been set up. This must happen atomically
5279 * as part of the page instantiation, i.e. under the page table lock
5280 * for anonymous pages, under the page lock for page and swap cache.
5281 *
5282 * In addition, the page must not be on the LRU during the commit, to
5283 * prevent racing with task migration. If it might be, use @lrucare.
5284 *
5285 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5286 */
5287 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5288 bool lrucare, bool compound)
5289 {
5290 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5291
5292 VM_BUG_ON_PAGE(!page->mapping, page);
5293 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5294
5295 if (mem_cgroup_disabled())
5296 return;
5297 /*
5298 * Swap faults will attempt to charge the same page multiple
5299 * times. But reuse_swap_page() might have removed the page
5300 * from swapcache already, so we can't check PageSwapCache().
5301 */
5302 if (!memcg)
5303 return;
5304
5305 commit_charge(page, memcg, lrucare);
5306
5307 local_irq_disable();
5308 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5309 memcg_check_events(memcg, page);
5310 local_irq_enable();
5311
5312 if (do_memsw_account() && PageSwapCache(page)) {
5313 swp_entry_t entry = { .val = page_private(page) };
5314 /*
5315 * The swap entry might not get freed for a long time,
5316 * let's not wait for it. The page already received a
5317 * memory+swap charge, drop the swap entry duplicate.
5318 */
5319 mem_cgroup_uncharge_swap(entry);
5320 }
5321 }
5322
5323 /**
5324 * mem_cgroup_cancel_charge - cancel a page charge
5325 * @page: page to charge
5326 * @memcg: memcg to charge the page to
5327 *
5328 * Cancel a charge transaction started by mem_cgroup_try_charge().
5329 */
5330 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5331 bool compound)
5332 {
5333 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5334
5335 if (mem_cgroup_disabled())
5336 return;
5337 /*
5338 * Swap faults will attempt to charge the same page multiple
5339 * times. But reuse_swap_page() might have removed the page
5340 * from swapcache already, so we can't check PageSwapCache().
5341 */
5342 if (!memcg)
5343 return;
5344
5345 cancel_charge(memcg, nr_pages);
5346 }
5347
5348 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5349 unsigned long nr_anon, unsigned long nr_file,
5350 unsigned long nr_huge, struct page *dummy_page)
5351 {
5352 unsigned long nr_pages = nr_anon + nr_file;
5353 unsigned long flags;
5354
5355 if (!mem_cgroup_is_root(memcg)) {
5356 page_counter_uncharge(&memcg->memory, nr_pages);
5357 if (do_memsw_account())
5358 page_counter_uncharge(&memcg->memsw, nr_pages);
5359 memcg_oom_recover(memcg);
5360 }
5361
5362 local_irq_save(flags);
5363 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5364 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5365 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5366 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5367 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5368 memcg_check_events(memcg, dummy_page);
5369 local_irq_restore(flags);
5370
5371 if (!mem_cgroup_is_root(memcg))
5372 css_put_many(&memcg->css, nr_pages);
5373 }
5374
5375 static void uncharge_list(struct list_head *page_list)
5376 {
5377 struct mem_cgroup *memcg = NULL;
5378 unsigned long nr_anon = 0;
5379 unsigned long nr_file = 0;
5380 unsigned long nr_huge = 0;
5381 unsigned long pgpgout = 0;
5382 struct list_head *next;
5383 struct page *page;
5384
5385 next = page_list->next;
5386 do {
5387 unsigned int nr_pages = 1;
5388
5389 page = list_entry(next, struct page, lru);
5390 next = page->lru.next;
5391
5392 VM_BUG_ON_PAGE(PageLRU(page), page);
5393 VM_BUG_ON_PAGE(page_count(page), page);
5394
5395 if (!page->mem_cgroup)
5396 continue;
5397
5398 /*
5399 * Nobody should be changing or seriously looking at
5400 * page->mem_cgroup at this point, we have fully
5401 * exclusive access to the page.
5402 */
5403
5404 if (memcg != page->mem_cgroup) {
5405 if (memcg) {
5406 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5407 nr_huge, page);
5408 pgpgout = nr_anon = nr_file = nr_huge = 0;
5409 }
5410 memcg = page->mem_cgroup;
5411 }
5412
5413 if (PageTransHuge(page)) {
5414 nr_pages <<= compound_order(page);
5415 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5416 nr_huge += nr_pages;
5417 }
5418
5419 if (PageAnon(page))
5420 nr_anon += nr_pages;
5421 else
5422 nr_file += nr_pages;
5423
5424 page->mem_cgroup = NULL;
5425
5426 pgpgout++;
5427 } while (next != page_list);
5428
5429 if (memcg)
5430 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5431 nr_huge, page);
5432 }
5433
5434 /**
5435 * mem_cgroup_uncharge - uncharge a page
5436 * @page: page to uncharge
5437 *
5438 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5439 * mem_cgroup_commit_charge().
5440 */
5441 void mem_cgroup_uncharge(struct page *page)
5442 {
5443 if (mem_cgroup_disabled())
5444 return;
5445
5446 /* Don't touch page->lru of any random page, pre-check: */
5447 if (!page->mem_cgroup)
5448 return;
5449
5450 INIT_LIST_HEAD(&page->lru);
5451 uncharge_list(&page->lru);
5452 }
5453
5454 /**
5455 * mem_cgroup_uncharge_list - uncharge a list of page
5456 * @page_list: list of pages to uncharge
5457 *
5458 * Uncharge a list of pages previously charged with
5459 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5460 */
5461 void mem_cgroup_uncharge_list(struct list_head *page_list)
5462 {
5463 if (mem_cgroup_disabled())
5464 return;
5465
5466 if (!list_empty(page_list))
5467 uncharge_list(page_list);
5468 }
5469
5470 /**
5471 * mem_cgroup_migrate - charge a page's replacement
5472 * @oldpage: currently circulating page
5473 * @newpage: replacement page
5474 *
5475 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5476 * be uncharged upon free.
5477 *
5478 * Both pages must be locked, @newpage->mapping must be set up.
5479 */
5480 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5481 {
5482 struct mem_cgroup *memcg;
5483 unsigned int nr_pages;
5484 bool compound;
5485
5486 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5487 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5488 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5489 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5490 newpage);
5491
5492 if (mem_cgroup_disabled())
5493 return;
5494
5495 /* Page cache replacement: new page already charged? */
5496 if (newpage->mem_cgroup)
5497 return;
5498
5499 /* Swapcache readahead pages can get replaced before being charged */
5500 memcg = oldpage->mem_cgroup;
5501 if (!memcg)
5502 return;
5503
5504 /* Force-charge the new page. The old one will be freed soon */
5505 compound = PageTransHuge(newpage);
5506 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5507
5508 page_counter_charge(&memcg->memory, nr_pages);
5509 if (do_memsw_account())
5510 page_counter_charge(&memcg->memsw, nr_pages);
5511 css_get_many(&memcg->css, nr_pages);
5512
5513 commit_charge(newpage, memcg, false);
5514
5515 local_irq_disable();
5516 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5517 memcg_check_events(memcg, newpage);
5518 local_irq_enable();
5519 }
5520
5521 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5522 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5523
5524 void sock_update_memcg(struct sock *sk)
5525 {
5526 struct mem_cgroup *memcg;
5527
5528 /* Socket cloning can throw us here with sk_cgrp already
5529 * filled. It won't however, necessarily happen from
5530 * process context. So the test for root memcg given
5531 * the current task's memcg won't help us in this case.
5532 *
5533 * Respecting the original socket's memcg is a better
5534 * decision in this case.
5535 */
5536 if (sk->sk_memcg) {
5537 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5538 css_get(&sk->sk_memcg->css);
5539 return;
5540 }
5541
5542 rcu_read_lock();
5543 memcg = mem_cgroup_from_task(current);
5544 if (memcg == root_mem_cgroup)
5545 goto out;
5546 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5547 goto out;
5548 if (css_tryget_online(&memcg->css))
5549 sk->sk_memcg = memcg;
5550 out:
5551 rcu_read_unlock();
5552 }
5553 EXPORT_SYMBOL(sock_update_memcg);
5554
5555 void sock_release_memcg(struct sock *sk)
5556 {
5557 WARN_ON(!sk->sk_memcg);
5558 css_put(&sk->sk_memcg->css);
5559 }
5560
5561 /**
5562 * mem_cgroup_charge_skmem - charge socket memory
5563 * @memcg: memcg to charge
5564 * @nr_pages: number of pages to charge
5565 *
5566 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5567 * @memcg's configured limit, %false if the charge had to be forced.
5568 */
5569 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5570 {
5571 gfp_t gfp_mask = GFP_KERNEL;
5572
5573 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5574 struct page_counter *fail;
5575
5576 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5577 memcg->tcpmem_pressure = 0;
5578 return true;
5579 }
5580 page_counter_charge(&memcg->tcpmem, nr_pages);
5581 memcg->tcpmem_pressure = 1;
5582 return false;
5583 }
5584
5585 /* Don't block in the packet receive path */
5586 if (in_softirq())
5587 gfp_mask = GFP_NOWAIT;
5588
5589 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5590
5591 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5592 return true;
5593
5594 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5595 return false;
5596 }
5597
5598 /**
5599 * mem_cgroup_uncharge_skmem - uncharge socket memory
5600 * @memcg - memcg to uncharge
5601 * @nr_pages - number of pages to uncharge
5602 */
5603 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5604 {
5605 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5606 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5607 return;
5608 }
5609
5610 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5611
5612 page_counter_uncharge(&memcg->memory, nr_pages);
5613 css_put_many(&memcg->css, nr_pages);
5614 }
5615
5616 static int __init cgroup_memory(char *s)
5617 {
5618 char *token;
5619
5620 while ((token = strsep(&s, ",")) != NULL) {
5621 if (!*token)
5622 continue;
5623 if (!strcmp(token, "nosocket"))
5624 cgroup_memory_nosocket = true;
5625 if (!strcmp(token, "nokmem"))
5626 cgroup_memory_nokmem = true;
5627 }
5628 return 0;
5629 }
5630 __setup("cgroup.memory=", cgroup_memory);
5631
5632 /*
5633 * subsys_initcall() for memory controller.
5634 *
5635 * Some parts like hotcpu_notifier() have to be initialized from this context
5636 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5637 * everything that doesn't depend on a specific mem_cgroup structure should
5638 * be initialized from here.
5639 */
5640 static int __init mem_cgroup_init(void)
5641 {
5642 int cpu, node;
5643
5644 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5645
5646 for_each_possible_cpu(cpu)
5647 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5648 drain_local_stock);
5649
5650 for_each_node(node) {
5651 struct mem_cgroup_tree_per_node *rtpn;
5652 int zone;
5653
5654 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5655 node_online(node) ? node : NUMA_NO_NODE);
5656
5657 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5658 struct mem_cgroup_tree_per_zone *rtpz;
5659
5660 rtpz = &rtpn->rb_tree_per_zone[zone];
5661 rtpz->rb_root = RB_ROOT;
5662 spin_lock_init(&rtpz->lock);
5663 }
5664 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5665 }
5666
5667 return 0;
5668 }
5669 subsys_initcall(mem_cgroup_init);
5670
5671 #ifdef CONFIG_MEMCG_SWAP
5672 /**
5673 * mem_cgroup_swapout - transfer a memsw charge to swap
5674 * @page: page whose memsw charge to transfer
5675 * @entry: swap entry to move the charge to
5676 *
5677 * Transfer the memsw charge of @page to @entry.
5678 */
5679 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5680 {
5681 struct mem_cgroup *memcg;
5682 unsigned short oldid;
5683
5684 VM_BUG_ON_PAGE(PageLRU(page), page);
5685 VM_BUG_ON_PAGE(page_count(page), page);
5686
5687 if (!do_memsw_account())
5688 return;
5689
5690 memcg = page->mem_cgroup;
5691
5692 /* Readahead page, never charged */
5693 if (!memcg)
5694 return;
5695
5696 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5697 VM_BUG_ON_PAGE(oldid, page);
5698 mem_cgroup_swap_statistics(memcg, true);
5699
5700 page->mem_cgroup = NULL;
5701
5702 if (!mem_cgroup_is_root(memcg))
5703 page_counter_uncharge(&memcg->memory, 1);
5704
5705 /*
5706 * Interrupts should be disabled here because the caller holds the
5707 * mapping->tree_lock lock which is taken with interrupts-off. It is
5708 * important here to have the interrupts disabled because it is the
5709 * only synchronisation we have for udpating the per-CPU variables.
5710 */
5711 VM_BUG_ON(!irqs_disabled());
5712 mem_cgroup_charge_statistics(memcg, page, false, -1);
5713 memcg_check_events(memcg, page);
5714 }
5715
5716 /*
5717 * mem_cgroup_try_charge_swap - try charging a swap entry
5718 * @page: page being added to swap
5719 * @entry: swap entry to charge
5720 *
5721 * Try to charge @entry to the memcg that @page belongs to.
5722 *
5723 * Returns 0 on success, -ENOMEM on failure.
5724 */
5725 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5726 {
5727 struct mem_cgroup *memcg;
5728 struct page_counter *counter;
5729 unsigned short oldid;
5730
5731 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5732 return 0;
5733
5734 memcg = page->mem_cgroup;
5735
5736 /* Readahead page, never charged */
5737 if (!memcg)
5738 return 0;
5739
5740 if (!mem_cgroup_is_root(memcg) &&
5741 !page_counter_try_charge(&memcg->swap, 1, &counter))
5742 return -ENOMEM;
5743
5744 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5745 VM_BUG_ON_PAGE(oldid, page);
5746 mem_cgroup_swap_statistics(memcg, true);
5747
5748 css_get(&memcg->css);
5749 return 0;
5750 }
5751
5752 /**
5753 * mem_cgroup_uncharge_swap - uncharge a swap entry
5754 * @entry: swap entry to uncharge
5755 *
5756 * Drop the swap charge associated with @entry.
5757 */
5758 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5759 {
5760 struct mem_cgroup *memcg;
5761 unsigned short id;
5762
5763 if (!do_swap_account)
5764 return;
5765
5766 id = swap_cgroup_record(entry, 0);
5767 rcu_read_lock();
5768 memcg = mem_cgroup_from_id(id);
5769 if (memcg) {
5770 if (!mem_cgroup_is_root(memcg)) {
5771 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5772 page_counter_uncharge(&memcg->swap, 1);
5773 else
5774 page_counter_uncharge(&memcg->memsw, 1);
5775 }
5776 mem_cgroup_swap_statistics(memcg, false);
5777 css_put(&memcg->css);
5778 }
5779 rcu_read_unlock();
5780 }
5781
5782 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5783 {
5784 long nr_swap_pages = get_nr_swap_pages();
5785
5786 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5787 return nr_swap_pages;
5788 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5789 nr_swap_pages = min_t(long, nr_swap_pages,
5790 READ_ONCE(memcg->swap.limit) -
5791 page_counter_read(&memcg->swap));
5792 return nr_swap_pages;
5793 }
5794
5795 bool mem_cgroup_swap_full(struct page *page)
5796 {
5797 struct mem_cgroup *memcg;
5798
5799 VM_BUG_ON_PAGE(!PageLocked(page), page);
5800
5801 if (vm_swap_full())
5802 return true;
5803 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5804 return false;
5805
5806 memcg = page->mem_cgroup;
5807 if (!memcg)
5808 return false;
5809
5810 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5811 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5812 return true;
5813
5814 return false;
5815 }
5816
5817 /* for remember boot option*/
5818 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5819 static int really_do_swap_account __initdata = 1;
5820 #else
5821 static int really_do_swap_account __initdata;
5822 #endif
5823
5824 static int __init enable_swap_account(char *s)
5825 {
5826 if (!strcmp(s, "1"))
5827 really_do_swap_account = 1;
5828 else if (!strcmp(s, "0"))
5829 really_do_swap_account = 0;
5830 return 1;
5831 }
5832 __setup("swapaccount=", enable_swap_account);
5833
5834 static u64 swap_current_read(struct cgroup_subsys_state *css,
5835 struct cftype *cft)
5836 {
5837 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5838
5839 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5840 }
5841
5842 static int swap_max_show(struct seq_file *m, void *v)
5843 {
5844 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5845 unsigned long max = READ_ONCE(memcg->swap.limit);
5846
5847 if (max == PAGE_COUNTER_MAX)
5848 seq_puts(m, "max\n");
5849 else
5850 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5851
5852 return 0;
5853 }
5854
5855 static ssize_t swap_max_write(struct kernfs_open_file *of,
5856 char *buf, size_t nbytes, loff_t off)
5857 {
5858 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5859 unsigned long max;
5860 int err;
5861
5862 buf = strstrip(buf);
5863 err = page_counter_memparse(buf, "max", &max);
5864 if (err)
5865 return err;
5866
5867 mutex_lock(&memcg_limit_mutex);
5868 err = page_counter_limit(&memcg->swap, max);
5869 mutex_unlock(&memcg_limit_mutex);
5870 if (err)
5871 return err;
5872
5873 return nbytes;
5874 }
5875
5876 static struct cftype swap_files[] = {
5877 {
5878 .name = "swap.current",
5879 .flags = CFTYPE_NOT_ON_ROOT,
5880 .read_u64 = swap_current_read,
5881 },
5882 {
5883 .name = "swap.max",
5884 .flags = CFTYPE_NOT_ON_ROOT,
5885 .seq_show = swap_max_show,
5886 .write = swap_max_write,
5887 },
5888 { } /* terminate */
5889 };
5890
5891 static struct cftype memsw_cgroup_files[] = {
5892 {
5893 .name = "memsw.usage_in_bytes",
5894 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5895 .read_u64 = mem_cgroup_read_u64,
5896 },
5897 {
5898 .name = "memsw.max_usage_in_bytes",
5899 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5900 .write = mem_cgroup_reset,
5901 .read_u64 = mem_cgroup_read_u64,
5902 },
5903 {
5904 .name = "memsw.limit_in_bytes",
5905 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5906 .write = mem_cgroup_write,
5907 .read_u64 = mem_cgroup_read_u64,
5908 },
5909 {
5910 .name = "memsw.failcnt",
5911 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5912 .write = mem_cgroup_reset,
5913 .read_u64 = mem_cgroup_read_u64,
5914 },
5915 { }, /* terminate */
5916 };
5917
5918 static int __init mem_cgroup_swap_init(void)
5919 {
5920 if (!mem_cgroup_disabled() && really_do_swap_account) {
5921 do_swap_account = 1;
5922 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5923 swap_files));
5924 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5925 memsw_cgroup_files));
5926 }
5927 return 0;
5928 }
5929 subsys_initcall(mem_cgroup_swap_init);
5930
5931 #endif /* CONFIG_MEMCG_SWAP */