]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - mm/memcontrol.c
Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-eoan-kernel.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/mm.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/seq_buf.h>
61 #include "internal.h"
62 #include <net/sock.h>
63 #include <net/ip.h>
64 #include "slab.h"
65
66 #include <linux/uaccess.h>
67
68 #include <trace/events/vmscan.h>
69
70 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
71 EXPORT_SYMBOL(memory_cgrp_subsys);
72
73 struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75 #define MEM_CGROUP_RECLAIM_RETRIES 5
76
77 /* Socket memory accounting disabled? */
78 static bool cgroup_memory_nosocket;
79
80 /* Kernel memory accounting disabled? */
81 static bool cgroup_memory_nokmem;
82
83 /* Whether the swap controller is active */
84 #ifdef CONFIG_MEMCG_SWAP
85 int do_swap_account __read_mostly;
86 #else
87 #define do_swap_account 0
88 #endif
89
90 /* Whether legacy memory+swap accounting is active */
91 static bool do_memsw_account(void)
92 {
93 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
94 }
95
96 static const char *const mem_cgroup_lru_names[] = {
97 "inactive_anon",
98 "active_anon",
99 "inactive_file",
100 "active_file",
101 "unevictable",
102 };
103
104 #define THRESHOLDS_EVENTS_TARGET 128
105 #define SOFTLIMIT_EVENTS_TARGET 1024
106 #define NUMAINFO_EVENTS_TARGET 1024
107
108 /*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
113 struct mem_cgroup_tree_per_node {
114 struct rb_root rb_root;
115 struct rb_node *rb_rightmost;
116 spinlock_t lock;
117 };
118
119 struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129 };
130
131 /*
132 * cgroup_event represents events which userspace want to receive.
133 */
134 struct mem_cgroup_event {
135 /*
136 * memcg which the event belongs to.
137 */
138 struct mem_cgroup *memcg;
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
152 int (*register_event)(struct mem_cgroup *memcg,
153 struct eventfd_ctx *eventfd, const char *args);
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
159 void (*unregister_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd);
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
167 wait_queue_entry_t wait;
168 struct work_struct remove;
169 };
170
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173
174 /* Stuffs for move charges at task migration. */
175 /*
176 * Types of charges to be moved.
177 */
178 #define MOVE_ANON 0x1U
179 #define MOVE_FILE 0x2U
180 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
181
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184 spinlock_t lock; /* for from, to */
185 struct mm_struct *mm;
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
188 unsigned long flags;
189 unsigned long precharge;
190 unsigned long moved_charge;
191 unsigned long moved_swap;
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194 } mc = {
195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198
199 /*
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
205
206 enum charge_type {
207 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
208 MEM_CGROUP_CHARGE_TYPE_ANON,
209 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
210 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
211 NR_CHARGE_TYPE,
212 };
213
214 /* for encoding cft->private value on file */
215 enum res_type {
216 _MEM,
217 _MEMSWAP,
218 _OOM_TYPE,
219 _KMEM,
220 _TCP,
221 };
222
223 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
224 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
225 #define MEMFILE_ATTR(val) ((val) & 0xffff)
226 /* Used for OOM nofiier */
227 #define OOM_CONTROL (0)
228
229 /*
230 * Iteration constructs for visiting all cgroups (under a tree). If
231 * loops are exited prematurely (break), mem_cgroup_iter_break() must
232 * be used for reference counting.
233 */
234 #define for_each_mem_cgroup_tree(iter, root) \
235 for (iter = mem_cgroup_iter(root, NULL, NULL); \
236 iter != NULL; \
237 iter = mem_cgroup_iter(root, iter, NULL))
238
239 #define for_each_mem_cgroup(iter) \
240 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
241 iter != NULL; \
242 iter = mem_cgroup_iter(NULL, iter, NULL))
243
244 static inline bool should_force_charge(void)
245 {
246 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
247 (current->flags & PF_EXITING);
248 }
249
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252 {
253 if (!memcg)
254 memcg = root_mem_cgroup;
255 return &memcg->vmpressure;
256 }
257
258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259 {
260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261 }
262
263 #ifdef CONFIG_MEMCG_KMEM
264 /*
265 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
266 * The main reason for not using cgroup id for this:
267 * this works better in sparse environments, where we have a lot of memcgs,
268 * but only a few kmem-limited. Or also, if we have, for instance, 200
269 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
270 * 200 entry array for that.
271 *
272 * The current size of the caches array is stored in memcg_nr_cache_ids. It
273 * will double each time we have to increase it.
274 */
275 static DEFINE_IDA(memcg_cache_ida);
276 int memcg_nr_cache_ids;
277
278 /* Protects memcg_nr_cache_ids */
279 static DECLARE_RWSEM(memcg_cache_ids_sem);
280
281 void memcg_get_cache_ids(void)
282 {
283 down_read(&memcg_cache_ids_sem);
284 }
285
286 void memcg_put_cache_ids(void)
287 {
288 up_read(&memcg_cache_ids_sem);
289 }
290
291 /*
292 * MIN_SIZE is different than 1, because we would like to avoid going through
293 * the alloc/free process all the time. In a small machine, 4 kmem-limited
294 * cgroups is a reasonable guess. In the future, it could be a parameter or
295 * tunable, but that is strictly not necessary.
296 *
297 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
298 * this constant directly from cgroup, but it is understandable that this is
299 * better kept as an internal representation in cgroup.c. In any case, the
300 * cgrp_id space is not getting any smaller, and we don't have to necessarily
301 * increase ours as well if it increases.
302 */
303 #define MEMCG_CACHES_MIN_SIZE 4
304 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
305
306 /*
307 * A lot of the calls to the cache allocation functions are expected to be
308 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
309 * conditional to this static branch, we'll have to allow modules that does
310 * kmem_cache_alloc and the such to see this symbol as well
311 */
312 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
313 EXPORT_SYMBOL(memcg_kmem_enabled_key);
314
315 struct workqueue_struct *memcg_kmem_cache_wq;
316
317 static int memcg_shrinker_map_size;
318 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
319
320 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
321 {
322 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
323 }
324
325 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
326 int size, int old_size)
327 {
328 struct memcg_shrinker_map *new, *old;
329 int nid;
330
331 lockdep_assert_held(&memcg_shrinker_map_mutex);
332
333 for_each_node(nid) {
334 old = rcu_dereference_protected(
335 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
336 /* Not yet online memcg */
337 if (!old)
338 return 0;
339
340 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
341 if (!new)
342 return -ENOMEM;
343
344 /* Set all old bits, clear all new bits */
345 memset(new->map, (int)0xff, old_size);
346 memset((void *)new->map + old_size, 0, size - old_size);
347
348 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
349 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
350 }
351
352 return 0;
353 }
354
355 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
356 {
357 struct mem_cgroup_per_node *pn;
358 struct memcg_shrinker_map *map;
359 int nid;
360
361 if (mem_cgroup_is_root(memcg))
362 return;
363
364 for_each_node(nid) {
365 pn = mem_cgroup_nodeinfo(memcg, nid);
366 map = rcu_dereference_protected(pn->shrinker_map, true);
367 if (map)
368 kvfree(map);
369 rcu_assign_pointer(pn->shrinker_map, NULL);
370 }
371 }
372
373 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
374 {
375 struct memcg_shrinker_map *map;
376 int nid, size, ret = 0;
377
378 if (mem_cgroup_is_root(memcg))
379 return 0;
380
381 mutex_lock(&memcg_shrinker_map_mutex);
382 size = memcg_shrinker_map_size;
383 for_each_node(nid) {
384 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
385 if (!map) {
386 memcg_free_shrinker_maps(memcg);
387 ret = -ENOMEM;
388 break;
389 }
390 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
391 }
392 mutex_unlock(&memcg_shrinker_map_mutex);
393
394 return ret;
395 }
396
397 int memcg_expand_shrinker_maps(int new_id)
398 {
399 int size, old_size, ret = 0;
400 struct mem_cgroup *memcg;
401
402 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
403 old_size = memcg_shrinker_map_size;
404 if (size <= old_size)
405 return 0;
406
407 mutex_lock(&memcg_shrinker_map_mutex);
408 if (!root_mem_cgroup)
409 goto unlock;
410
411 for_each_mem_cgroup(memcg) {
412 if (mem_cgroup_is_root(memcg))
413 continue;
414 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
415 if (ret)
416 goto unlock;
417 }
418 unlock:
419 if (!ret)
420 memcg_shrinker_map_size = size;
421 mutex_unlock(&memcg_shrinker_map_mutex);
422 return ret;
423 }
424
425 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
426 {
427 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
428 struct memcg_shrinker_map *map;
429
430 rcu_read_lock();
431 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
432 /* Pairs with smp mb in shrink_slab() */
433 smp_mb__before_atomic();
434 set_bit(shrinker_id, map->map);
435 rcu_read_unlock();
436 }
437 }
438
439 #else /* CONFIG_MEMCG_KMEM */
440 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
441 {
442 return 0;
443 }
444 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
445 #endif /* CONFIG_MEMCG_KMEM */
446
447 /**
448 * mem_cgroup_css_from_page - css of the memcg associated with a page
449 * @page: page of interest
450 *
451 * If memcg is bound to the default hierarchy, css of the memcg associated
452 * with @page is returned. The returned css remains associated with @page
453 * until it is released.
454 *
455 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
456 * is returned.
457 */
458 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
459 {
460 struct mem_cgroup *memcg;
461
462 memcg = page->mem_cgroup;
463
464 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
465 memcg = root_mem_cgroup;
466
467 return &memcg->css;
468 }
469
470 /**
471 * page_cgroup_ino - return inode number of the memcg a page is charged to
472 * @page: the page
473 *
474 * Look up the closest online ancestor of the memory cgroup @page is charged to
475 * and return its inode number or 0 if @page is not charged to any cgroup. It
476 * is safe to call this function without holding a reference to @page.
477 *
478 * Note, this function is inherently racy, because there is nothing to prevent
479 * the cgroup inode from getting torn down and potentially reallocated a moment
480 * after page_cgroup_ino() returns, so it only should be used by callers that
481 * do not care (such as procfs interfaces).
482 */
483 ino_t page_cgroup_ino(struct page *page)
484 {
485 struct mem_cgroup *memcg;
486 unsigned long ino = 0;
487
488 rcu_read_lock();
489 if (PageHead(page) && PageSlab(page))
490 memcg = memcg_from_slab_page(page);
491 else
492 memcg = READ_ONCE(page->mem_cgroup);
493 while (memcg && !(memcg->css.flags & CSS_ONLINE))
494 memcg = parent_mem_cgroup(memcg);
495 if (memcg)
496 ino = cgroup_ino(memcg->css.cgroup);
497 rcu_read_unlock();
498 return ino;
499 }
500
501 static struct mem_cgroup_per_node *
502 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
503 {
504 int nid = page_to_nid(page);
505
506 return memcg->nodeinfo[nid];
507 }
508
509 static struct mem_cgroup_tree_per_node *
510 soft_limit_tree_node(int nid)
511 {
512 return soft_limit_tree.rb_tree_per_node[nid];
513 }
514
515 static struct mem_cgroup_tree_per_node *
516 soft_limit_tree_from_page(struct page *page)
517 {
518 int nid = page_to_nid(page);
519
520 return soft_limit_tree.rb_tree_per_node[nid];
521 }
522
523 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
524 struct mem_cgroup_tree_per_node *mctz,
525 unsigned long new_usage_in_excess)
526 {
527 struct rb_node **p = &mctz->rb_root.rb_node;
528 struct rb_node *parent = NULL;
529 struct mem_cgroup_per_node *mz_node;
530 bool rightmost = true;
531
532 if (mz->on_tree)
533 return;
534
535 mz->usage_in_excess = new_usage_in_excess;
536 if (!mz->usage_in_excess)
537 return;
538 while (*p) {
539 parent = *p;
540 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
541 tree_node);
542 if (mz->usage_in_excess < mz_node->usage_in_excess) {
543 p = &(*p)->rb_left;
544 rightmost = false;
545 }
546
547 /*
548 * We can't avoid mem cgroups that are over their soft
549 * limit by the same amount
550 */
551 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
552 p = &(*p)->rb_right;
553 }
554
555 if (rightmost)
556 mctz->rb_rightmost = &mz->tree_node;
557
558 rb_link_node(&mz->tree_node, parent, p);
559 rb_insert_color(&mz->tree_node, &mctz->rb_root);
560 mz->on_tree = true;
561 }
562
563 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
564 struct mem_cgroup_tree_per_node *mctz)
565 {
566 if (!mz->on_tree)
567 return;
568
569 if (&mz->tree_node == mctz->rb_rightmost)
570 mctz->rb_rightmost = rb_prev(&mz->tree_node);
571
572 rb_erase(&mz->tree_node, &mctz->rb_root);
573 mz->on_tree = false;
574 }
575
576 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
577 struct mem_cgroup_tree_per_node *mctz)
578 {
579 unsigned long flags;
580
581 spin_lock_irqsave(&mctz->lock, flags);
582 __mem_cgroup_remove_exceeded(mz, mctz);
583 spin_unlock_irqrestore(&mctz->lock, flags);
584 }
585
586 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
587 {
588 unsigned long nr_pages = page_counter_read(&memcg->memory);
589 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
590 unsigned long excess = 0;
591
592 if (nr_pages > soft_limit)
593 excess = nr_pages - soft_limit;
594
595 return excess;
596 }
597
598 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
599 {
600 unsigned long excess;
601 struct mem_cgroup_per_node *mz;
602 struct mem_cgroup_tree_per_node *mctz;
603
604 mctz = soft_limit_tree_from_page(page);
605 if (!mctz)
606 return;
607 /*
608 * Necessary to update all ancestors when hierarchy is used.
609 * because their event counter is not touched.
610 */
611 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
612 mz = mem_cgroup_page_nodeinfo(memcg, page);
613 excess = soft_limit_excess(memcg);
614 /*
615 * We have to update the tree if mz is on RB-tree or
616 * mem is over its softlimit.
617 */
618 if (excess || mz->on_tree) {
619 unsigned long flags;
620
621 spin_lock_irqsave(&mctz->lock, flags);
622 /* if on-tree, remove it */
623 if (mz->on_tree)
624 __mem_cgroup_remove_exceeded(mz, mctz);
625 /*
626 * Insert again. mz->usage_in_excess will be updated.
627 * If excess is 0, no tree ops.
628 */
629 __mem_cgroup_insert_exceeded(mz, mctz, excess);
630 spin_unlock_irqrestore(&mctz->lock, flags);
631 }
632 }
633 }
634
635 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
636 {
637 struct mem_cgroup_tree_per_node *mctz;
638 struct mem_cgroup_per_node *mz;
639 int nid;
640
641 for_each_node(nid) {
642 mz = mem_cgroup_nodeinfo(memcg, nid);
643 mctz = soft_limit_tree_node(nid);
644 if (mctz)
645 mem_cgroup_remove_exceeded(mz, mctz);
646 }
647 }
648
649 static struct mem_cgroup_per_node *
650 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
651 {
652 struct mem_cgroup_per_node *mz;
653
654 retry:
655 mz = NULL;
656 if (!mctz->rb_rightmost)
657 goto done; /* Nothing to reclaim from */
658
659 mz = rb_entry(mctz->rb_rightmost,
660 struct mem_cgroup_per_node, tree_node);
661 /*
662 * Remove the node now but someone else can add it back,
663 * we will to add it back at the end of reclaim to its correct
664 * position in the tree.
665 */
666 __mem_cgroup_remove_exceeded(mz, mctz);
667 if (!soft_limit_excess(mz->memcg) ||
668 !css_tryget_online(&mz->memcg->css))
669 goto retry;
670 done:
671 return mz;
672 }
673
674 static struct mem_cgroup_per_node *
675 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
676 {
677 struct mem_cgroup_per_node *mz;
678
679 spin_lock_irq(&mctz->lock);
680 mz = __mem_cgroup_largest_soft_limit_node(mctz);
681 spin_unlock_irq(&mctz->lock);
682 return mz;
683 }
684
685 /**
686 * __mod_memcg_state - update cgroup memory statistics
687 * @memcg: the memory cgroup
688 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
689 * @val: delta to add to the counter, can be negative
690 */
691 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
692 {
693 long x;
694
695 if (mem_cgroup_disabled())
696 return;
697
698 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
699 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
700 struct mem_cgroup *mi;
701
702 /*
703 * Batch local counters to keep them in sync with
704 * the hierarchical ones.
705 */
706 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
707 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
708 atomic_long_add(x, &mi->vmstats[idx]);
709 x = 0;
710 }
711 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
712 }
713
714 static struct mem_cgroup_per_node *
715 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
716 {
717 struct mem_cgroup *parent;
718
719 parent = parent_mem_cgroup(pn->memcg);
720 if (!parent)
721 return NULL;
722 return mem_cgroup_nodeinfo(parent, nid);
723 }
724
725 /**
726 * __mod_lruvec_state - update lruvec memory statistics
727 * @lruvec: the lruvec
728 * @idx: the stat item
729 * @val: delta to add to the counter, can be negative
730 *
731 * The lruvec is the intersection of the NUMA node and a cgroup. This
732 * function updates the all three counters that are affected by a
733 * change of state at this level: per-node, per-cgroup, per-lruvec.
734 */
735 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
736 int val)
737 {
738 pg_data_t *pgdat = lruvec_pgdat(lruvec);
739 struct mem_cgroup_per_node *pn;
740 struct mem_cgroup *memcg;
741 long x;
742
743 /* Update node */
744 __mod_node_page_state(pgdat, idx, val);
745
746 if (mem_cgroup_disabled())
747 return;
748
749 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
750 memcg = pn->memcg;
751
752 /* Update memcg */
753 __mod_memcg_state(memcg, idx, val);
754
755 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
756 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
757 struct mem_cgroup_per_node *pi;
758
759 /*
760 * Batch local counters to keep them in sync with
761 * the hierarchical ones.
762 */
763 __this_cpu_add(pn->lruvec_stat_local->count[idx], x);
764 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
765 atomic_long_add(x, &pi->lruvec_stat[idx]);
766 x = 0;
767 }
768 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
769 }
770
771 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
772 {
773 struct page *page = virt_to_head_page(p);
774 pg_data_t *pgdat = page_pgdat(page);
775 struct mem_cgroup *memcg;
776 struct lruvec *lruvec;
777
778 rcu_read_lock();
779 memcg = memcg_from_slab_page(page);
780
781 /* Untracked pages have no memcg, no lruvec. Update only the node */
782 if (!memcg || memcg == root_mem_cgroup) {
783 __mod_node_page_state(pgdat, idx, val);
784 } else {
785 lruvec = mem_cgroup_lruvec(pgdat, memcg);
786 __mod_lruvec_state(lruvec, idx, val);
787 }
788 rcu_read_unlock();
789 }
790
791 /**
792 * __count_memcg_events - account VM events in a cgroup
793 * @memcg: the memory cgroup
794 * @idx: the event item
795 * @count: the number of events that occured
796 */
797 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
798 unsigned long count)
799 {
800 unsigned long x;
801
802 if (mem_cgroup_disabled())
803 return;
804
805 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
806 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
807 struct mem_cgroup *mi;
808
809 /*
810 * Batch local counters to keep them in sync with
811 * the hierarchical ones.
812 */
813 __this_cpu_add(memcg->vmstats_local->events[idx], x);
814 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
815 atomic_long_add(x, &mi->vmevents[idx]);
816 x = 0;
817 }
818 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
819 }
820
821 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
822 {
823 return atomic_long_read(&memcg->vmevents[event]);
824 }
825
826 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
827 {
828 long x = 0;
829 int cpu;
830
831 for_each_possible_cpu(cpu)
832 x += per_cpu(memcg->vmstats_local->events[event], cpu);
833 return x;
834 }
835
836 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
837 struct page *page,
838 bool compound, int nr_pages)
839 {
840 /*
841 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
842 * counted as CACHE even if it's on ANON LRU.
843 */
844 if (PageAnon(page))
845 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
846 else {
847 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
848 if (PageSwapBacked(page))
849 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
850 }
851
852 if (compound) {
853 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
854 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
855 }
856
857 /* pagein of a big page is an event. So, ignore page size */
858 if (nr_pages > 0)
859 __count_memcg_events(memcg, PGPGIN, 1);
860 else {
861 __count_memcg_events(memcg, PGPGOUT, 1);
862 nr_pages = -nr_pages; /* for event */
863 }
864
865 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
866 }
867
868 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
869 enum mem_cgroup_events_target target)
870 {
871 unsigned long val, next;
872
873 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
874 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
875 /* from time_after() in jiffies.h */
876 if ((long)(next - val) < 0) {
877 switch (target) {
878 case MEM_CGROUP_TARGET_THRESH:
879 next = val + THRESHOLDS_EVENTS_TARGET;
880 break;
881 case MEM_CGROUP_TARGET_SOFTLIMIT:
882 next = val + SOFTLIMIT_EVENTS_TARGET;
883 break;
884 case MEM_CGROUP_TARGET_NUMAINFO:
885 next = val + NUMAINFO_EVENTS_TARGET;
886 break;
887 default:
888 break;
889 }
890 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
891 return true;
892 }
893 return false;
894 }
895
896 /*
897 * Check events in order.
898 *
899 */
900 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
901 {
902 /* threshold event is triggered in finer grain than soft limit */
903 if (unlikely(mem_cgroup_event_ratelimit(memcg,
904 MEM_CGROUP_TARGET_THRESH))) {
905 bool do_softlimit;
906 bool do_numainfo __maybe_unused;
907
908 do_softlimit = mem_cgroup_event_ratelimit(memcg,
909 MEM_CGROUP_TARGET_SOFTLIMIT);
910 #if MAX_NUMNODES > 1
911 do_numainfo = mem_cgroup_event_ratelimit(memcg,
912 MEM_CGROUP_TARGET_NUMAINFO);
913 #endif
914 mem_cgroup_threshold(memcg);
915 if (unlikely(do_softlimit))
916 mem_cgroup_update_tree(memcg, page);
917 #if MAX_NUMNODES > 1
918 if (unlikely(do_numainfo))
919 atomic_inc(&memcg->numainfo_events);
920 #endif
921 }
922 }
923
924 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
925 {
926 /*
927 * mm_update_next_owner() may clear mm->owner to NULL
928 * if it races with swapoff, page migration, etc.
929 * So this can be called with p == NULL.
930 */
931 if (unlikely(!p))
932 return NULL;
933
934 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
935 }
936 EXPORT_SYMBOL(mem_cgroup_from_task);
937
938 /**
939 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
940 * @mm: mm from which memcg should be extracted. It can be NULL.
941 *
942 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
943 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
944 * returned.
945 */
946 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
947 {
948 struct mem_cgroup *memcg;
949
950 if (mem_cgroup_disabled())
951 return NULL;
952
953 rcu_read_lock();
954 do {
955 /*
956 * Page cache insertions can happen withou an
957 * actual mm context, e.g. during disk probing
958 * on boot, loopback IO, acct() writes etc.
959 */
960 if (unlikely(!mm))
961 memcg = root_mem_cgroup;
962 else {
963 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
964 if (unlikely(!memcg))
965 memcg = root_mem_cgroup;
966 }
967 } while (!css_tryget_online(&memcg->css));
968 rcu_read_unlock();
969 return memcg;
970 }
971 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
972
973 /**
974 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
975 * @page: page from which memcg should be extracted.
976 *
977 * Obtain a reference on page->memcg and returns it if successful. Otherwise
978 * root_mem_cgroup is returned.
979 */
980 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
981 {
982 struct mem_cgroup *memcg = page->mem_cgroup;
983
984 if (mem_cgroup_disabled())
985 return NULL;
986
987 rcu_read_lock();
988 if (!memcg || !css_tryget_online(&memcg->css))
989 memcg = root_mem_cgroup;
990 rcu_read_unlock();
991 return memcg;
992 }
993 EXPORT_SYMBOL(get_mem_cgroup_from_page);
994
995 /**
996 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
997 */
998 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
999 {
1000 if (unlikely(current->active_memcg)) {
1001 struct mem_cgroup *memcg = root_mem_cgroup;
1002
1003 rcu_read_lock();
1004 if (css_tryget_online(&current->active_memcg->css))
1005 memcg = current->active_memcg;
1006 rcu_read_unlock();
1007 return memcg;
1008 }
1009 return get_mem_cgroup_from_mm(current->mm);
1010 }
1011
1012 /**
1013 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1014 * @root: hierarchy root
1015 * @prev: previously returned memcg, NULL on first invocation
1016 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1017 *
1018 * Returns references to children of the hierarchy below @root, or
1019 * @root itself, or %NULL after a full round-trip.
1020 *
1021 * Caller must pass the return value in @prev on subsequent
1022 * invocations for reference counting, or use mem_cgroup_iter_break()
1023 * to cancel a hierarchy walk before the round-trip is complete.
1024 *
1025 * Reclaimers can specify a node and a priority level in @reclaim to
1026 * divide up the memcgs in the hierarchy among all concurrent
1027 * reclaimers operating on the same node and priority.
1028 */
1029 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1030 struct mem_cgroup *prev,
1031 struct mem_cgroup_reclaim_cookie *reclaim)
1032 {
1033 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1034 struct cgroup_subsys_state *css = NULL;
1035 struct mem_cgroup *memcg = NULL;
1036 struct mem_cgroup *pos = NULL;
1037
1038 if (mem_cgroup_disabled())
1039 return NULL;
1040
1041 if (!root)
1042 root = root_mem_cgroup;
1043
1044 if (prev && !reclaim)
1045 pos = prev;
1046
1047 if (!root->use_hierarchy && root != root_mem_cgroup) {
1048 if (prev)
1049 goto out;
1050 return root;
1051 }
1052
1053 rcu_read_lock();
1054
1055 if (reclaim) {
1056 struct mem_cgroup_per_node *mz;
1057
1058 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1059 iter = &mz->iter[reclaim->priority];
1060
1061 if (prev && reclaim->generation != iter->generation)
1062 goto out_unlock;
1063
1064 while (1) {
1065 pos = READ_ONCE(iter->position);
1066 if (!pos || css_tryget(&pos->css))
1067 break;
1068 /*
1069 * css reference reached zero, so iter->position will
1070 * be cleared by ->css_released. However, we should not
1071 * rely on this happening soon, because ->css_released
1072 * is called from a work queue, and by busy-waiting we
1073 * might block it. So we clear iter->position right
1074 * away.
1075 */
1076 (void)cmpxchg(&iter->position, pos, NULL);
1077 }
1078 }
1079
1080 if (pos)
1081 css = &pos->css;
1082
1083 for (;;) {
1084 css = css_next_descendant_pre(css, &root->css);
1085 if (!css) {
1086 /*
1087 * Reclaimers share the hierarchy walk, and a
1088 * new one might jump in right at the end of
1089 * the hierarchy - make sure they see at least
1090 * one group and restart from the beginning.
1091 */
1092 if (!prev)
1093 continue;
1094 break;
1095 }
1096
1097 /*
1098 * Verify the css and acquire a reference. The root
1099 * is provided by the caller, so we know it's alive
1100 * and kicking, and don't take an extra reference.
1101 */
1102 memcg = mem_cgroup_from_css(css);
1103
1104 if (css == &root->css)
1105 break;
1106
1107 if (css_tryget(css))
1108 break;
1109
1110 memcg = NULL;
1111 }
1112
1113 if (reclaim) {
1114 /*
1115 * The position could have already been updated by a competing
1116 * thread, so check that the value hasn't changed since we read
1117 * it to avoid reclaiming from the same cgroup twice.
1118 */
1119 (void)cmpxchg(&iter->position, pos, memcg);
1120
1121 if (pos)
1122 css_put(&pos->css);
1123
1124 if (!memcg)
1125 iter->generation++;
1126 else if (!prev)
1127 reclaim->generation = iter->generation;
1128 }
1129
1130 out_unlock:
1131 rcu_read_unlock();
1132 out:
1133 if (prev && prev != root)
1134 css_put(&prev->css);
1135
1136 return memcg;
1137 }
1138
1139 /**
1140 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1141 * @root: hierarchy root
1142 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1143 */
1144 void mem_cgroup_iter_break(struct mem_cgroup *root,
1145 struct mem_cgroup *prev)
1146 {
1147 if (!root)
1148 root = root_mem_cgroup;
1149 if (prev && prev != root)
1150 css_put(&prev->css);
1151 }
1152
1153 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1154 struct mem_cgroup *dead_memcg)
1155 {
1156 struct mem_cgroup_reclaim_iter *iter;
1157 struct mem_cgroup_per_node *mz;
1158 int nid;
1159 int i;
1160
1161 for_each_node(nid) {
1162 mz = mem_cgroup_nodeinfo(from, nid);
1163 for (i = 0; i <= DEF_PRIORITY; i++) {
1164 iter = &mz->iter[i];
1165 cmpxchg(&iter->position,
1166 dead_memcg, NULL);
1167 }
1168 }
1169 }
1170
1171 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1172 {
1173 struct mem_cgroup *memcg = dead_memcg;
1174 struct mem_cgroup *last;
1175
1176 do {
1177 __invalidate_reclaim_iterators(memcg, dead_memcg);
1178 last = memcg;
1179 } while ((memcg = parent_mem_cgroup(memcg)));
1180
1181 /*
1182 * When cgruop1 non-hierarchy mode is used,
1183 * parent_mem_cgroup() does not walk all the way up to the
1184 * cgroup root (root_mem_cgroup). So we have to handle
1185 * dead_memcg from cgroup root separately.
1186 */
1187 if (last != root_mem_cgroup)
1188 __invalidate_reclaim_iterators(root_mem_cgroup,
1189 dead_memcg);
1190 }
1191
1192 /**
1193 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1194 * @memcg: hierarchy root
1195 * @fn: function to call for each task
1196 * @arg: argument passed to @fn
1197 *
1198 * This function iterates over tasks attached to @memcg or to any of its
1199 * descendants and calls @fn for each task. If @fn returns a non-zero
1200 * value, the function breaks the iteration loop and returns the value.
1201 * Otherwise, it will iterate over all tasks and return 0.
1202 *
1203 * This function must not be called for the root memory cgroup.
1204 */
1205 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1206 int (*fn)(struct task_struct *, void *), void *arg)
1207 {
1208 struct mem_cgroup *iter;
1209 int ret = 0;
1210
1211 BUG_ON(memcg == root_mem_cgroup);
1212
1213 for_each_mem_cgroup_tree(iter, memcg) {
1214 struct css_task_iter it;
1215 struct task_struct *task;
1216
1217 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1218 while (!ret && (task = css_task_iter_next(&it)))
1219 ret = fn(task, arg);
1220 css_task_iter_end(&it);
1221 if (ret) {
1222 mem_cgroup_iter_break(memcg, iter);
1223 break;
1224 }
1225 }
1226 return ret;
1227 }
1228
1229 /**
1230 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1231 * @page: the page
1232 * @pgdat: pgdat of the page
1233 *
1234 * This function is only safe when following the LRU page isolation
1235 * and putback protocol: the LRU lock must be held, and the page must
1236 * either be PageLRU() or the caller must have isolated/allocated it.
1237 */
1238 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1239 {
1240 struct mem_cgroup_per_node *mz;
1241 struct mem_cgroup *memcg;
1242 struct lruvec *lruvec;
1243
1244 if (mem_cgroup_disabled()) {
1245 lruvec = &pgdat->lruvec;
1246 goto out;
1247 }
1248
1249 memcg = page->mem_cgroup;
1250 /*
1251 * Swapcache readahead pages are added to the LRU - and
1252 * possibly migrated - before they are charged.
1253 */
1254 if (!memcg)
1255 memcg = root_mem_cgroup;
1256
1257 mz = mem_cgroup_page_nodeinfo(memcg, page);
1258 lruvec = &mz->lruvec;
1259 out:
1260 /*
1261 * Since a node can be onlined after the mem_cgroup was created,
1262 * we have to be prepared to initialize lruvec->zone here;
1263 * and if offlined then reonlined, we need to reinitialize it.
1264 */
1265 if (unlikely(lruvec->pgdat != pgdat))
1266 lruvec->pgdat = pgdat;
1267 return lruvec;
1268 }
1269
1270 /**
1271 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1272 * @lruvec: mem_cgroup per zone lru vector
1273 * @lru: index of lru list the page is sitting on
1274 * @zid: zone id of the accounted pages
1275 * @nr_pages: positive when adding or negative when removing
1276 *
1277 * This function must be called under lru_lock, just before a page is added
1278 * to or just after a page is removed from an lru list (that ordering being
1279 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1280 */
1281 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1282 int zid, int nr_pages)
1283 {
1284 struct mem_cgroup_per_node *mz;
1285 unsigned long *lru_size;
1286 long size;
1287
1288 if (mem_cgroup_disabled())
1289 return;
1290
1291 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1292 lru_size = &mz->lru_zone_size[zid][lru];
1293
1294 if (nr_pages < 0)
1295 *lru_size += nr_pages;
1296
1297 size = *lru_size;
1298 if (WARN_ONCE(size < 0,
1299 "%s(%p, %d, %d): lru_size %ld\n",
1300 __func__, lruvec, lru, nr_pages, size)) {
1301 VM_BUG_ON(1);
1302 *lru_size = 0;
1303 }
1304
1305 if (nr_pages > 0)
1306 *lru_size += nr_pages;
1307 }
1308
1309 /**
1310 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1311 * @memcg: the memory cgroup
1312 *
1313 * Returns the maximum amount of memory @mem can be charged with, in
1314 * pages.
1315 */
1316 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1317 {
1318 unsigned long margin = 0;
1319 unsigned long count;
1320 unsigned long limit;
1321
1322 count = page_counter_read(&memcg->memory);
1323 limit = READ_ONCE(memcg->memory.max);
1324 if (count < limit)
1325 margin = limit - count;
1326
1327 if (do_memsw_account()) {
1328 count = page_counter_read(&memcg->memsw);
1329 limit = READ_ONCE(memcg->memsw.max);
1330 if (count <= limit)
1331 margin = min(margin, limit - count);
1332 else
1333 margin = 0;
1334 }
1335
1336 return margin;
1337 }
1338
1339 /*
1340 * A routine for checking "mem" is under move_account() or not.
1341 *
1342 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1343 * moving cgroups. This is for waiting at high-memory pressure
1344 * caused by "move".
1345 */
1346 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1347 {
1348 struct mem_cgroup *from;
1349 struct mem_cgroup *to;
1350 bool ret = false;
1351 /*
1352 * Unlike task_move routines, we access mc.to, mc.from not under
1353 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1354 */
1355 spin_lock(&mc.lock);
1356 from = mc.from;
1357 to = mc.to;
1358 if (!from)
1359 goto unlock;
1360
1361 ret = mem_cgroup_is_descendant(from, memcg) ||
1362 mem_cgroup_is_descendant(to, memcg);
1363 unlock:
1364 spin_unlock(&mc.lock);
1365 return ret;
1366 }
1367
1368 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1369 {
1370 if (mc.moving_task && current != mc.moving_task) {
1371 if (mem_cgroup_under_move(memcg)) {
1372 DEFINE_WAIT(wait);
1373 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1374 /* moving charge context might have finished. */
1375 if (mc.moving_task)
1376 schedule();
1377 finish_wait(&mc.waitq, &wait);
1378 return true;
1379 }
1380 }
1381 return false;
1382 }
1383
1384 static char *memory_stat_format(struct mem_cgroup *memcg)
1385 {
1386 struct seq_buf s;
1387 int i;
1388
1389 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1390 if (!s.buffer)
1391 return NULL;
1392
1393 /*
1394 * Provide statistics on the state of the memory subsystem as
1395 * well as cumulative event counters that show past behavior.
1396 *
1397 * This list is ordered following a combination of these gradients:
1398 * 1) generic big picture -> specifics and details
1399 * 2) reflecting userspace activity -> reflecting kernel heuristics
1400 *
1401 * Current memory state:
1402 */
1403
1404 seq_buf_printf(&s, "anon %llu\n",
1405 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1406 PAGE_SIZE);
1407 seq_buf_printf(&s, "file %llu\n",
1408 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1409 PAGE_SIZE);
1410 seq_buf_printf(&s, "kernel_stack %llu\n",
1411 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1412 1024);
1413 seq_buf_printf(&s, "slab %llu\n",
1414 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1415 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1416 PAGE_SIZE);
1417 seq_buf_printf(&s, "sock %llu\n",
1418 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1419 PAGE_SIZE);
1420
1421 seq_buf_printf(&s, "shmem %llu\n",
1422 (u64)memcg_page_state(memcg, NR_SHMEM) *
1423 PAGE_SIZE);
1424 seq_buf_printf(&s, "file_mapped %llu\n",
1425 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1426 PAGE_SIZE);
1427 seq_buf_printf(&s, "file_dirty %llu\n",
1428 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1429 PAGE_SIZE);
1430 seq_buf_printf(&s, "file_writeback %llu\n",
1431 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1432 PAGE_SIZE);
1433
1434 /*
1435 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1436 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1437 * arse because it requires migrating the work out of rmap to a place
1438 * where the page->mem_cgroup is set up and stable.
1439 */
1440 seq_buf_printf(&s, "anon_thp %llu\n",
1441 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1442 PAGE_SIZE);
1443
1444 for (i = 0; i < NR_LRU_LISTS; i++)
1445 seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
1446 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1447 PAGE_SIZE);
1448
1449 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1450 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1451 PAGE_SIZE);
1452 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1453 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1454 PAGE_SIZE);
1455
1456 /* Accumulated memory events */
1457
1458 seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
1459 seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
1460
1461 seq_buf_printf(&s, "workingset_refault %lu\n",
1462 memcg_page_state(memcg, WORKINGSET_REFAULT));
1463 seq_buf_printf(&s, "workingset_activate %lu\n",
1464 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1465 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1466 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1467
1468 seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
1469 seq_buf_printf(&s, "pgscan %lu\n",
1470 memcg_events(memcg, PGSCAN_KSWAPD) +
1471 memcg_events(memcg, PGSCAN_DIRECT));
1472 seq_buf_printf(&s, "pgsteal %lu\n",
1473 memcg_events(memcg, PGSTEAL_KSWAPD) +
1474 memcg_events(memcg, PGSTEAL_DIRECT));
1475 seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
1476 seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
1477 seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
1478 seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
1479
1480 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1481 seq_buf_printf(&s, "thp_fault_alloc %lu\n",
1482 memcg_events(memcg, THP_FAULT_ALLOC));
1483 seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
1484 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1485 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1486
1487 /* The above should easily fit into one page */
1488 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1489
1490 return s.buffer;
1491 }
1492
1493 #define K(x) ((x) << (PAGE_SHIFT-10))
1494 /**
1495 * mem_cgroup_print_oom_context: Print OOM information relevant to
1496 * memory controller.
1497 * @memcg: The memory cgroup that went over limit
1498 * @p: Task that is going to be killed
1499 *
1500 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1501 * enabled
1502 */
1503 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1504 {
1505 rcu_read_lock();
1506
1507 if (memcg) {
1508 pr_cont(",oom_memcg=");
1509 pr_cont_cgroup_path(memcg->css.cgroup);
1510 } else
1511 pr_cont(",global_oom");
1512 if (p) {
1513 pr_cont(",task_memcg=");
1514 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1515 }
1516 rcu_read_unlock();
1517 }
1518
1519 /**
1520 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1521 * memory controller.
1522 * @memcg: The memory cgroup that went over limit
1523 */
1524 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1525 {
1526 char *buf;
1527
1528 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1529 K((u64)page_counter_read(&memcg->memory)),
1530 K((u64)memcg->memory.max), memcg->memory.failcnt);
1531 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1532 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1533 K((u64)page_counter_read(&memcg->swap)),
1534 K((u64)memcg->swap.max), memcg->swap.failcnt);
1535 else {
1536 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1537 K((u64)page_counter_read(&memcg->memsw)),
1538 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1539 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1540 K((u64)page_counter_read(&memcg->kmem)),
1541 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1542 }
1543
1544 pr_info("Memory cgroup stats for ");
1545 pr_cont_cgroup_path(memcg->css.cgroup);
1546 pr_cont(":");
1547 buf = memory_stat_format(memcg);
1548 if (!buf)
1549 return;
1550 pr_info("%s", buf);
1551 kfree(buf);
1552 }
1553
1554 /*
1555 * Return the memory (and swap, if configured) limit for a memcg.
1556 */
1557 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1558 {
1559 unsigned long max;
1560
1561 max = memcg->memory.max;
1562 if (mem_cgroup_swappiness(memcg)) {
1563 unsigned long memsw_max;
1564 unsigned long swap_max;
1565
1566 memsw_max = memcg->memsw.max;
1567 swap_max = memcg->swap.max;
1568 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1569 max = min(max + swap_max, memsw_max);
1570 }
1571 return max;
1572 }
1573
1574 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1575 int order)
1576 {
1577 struct oom_control oc = {
1578 .zonelist = NULL,
1579 .nodemask = NULL,
1580 .memcg = memcg,
1581 .gfp_mask = gfp_mask,
1582 .order = order,
1583 };
1584 bool ret;
1585
1586 if (mutex_lock_killable(&oom_lock))
1587 return true;
1588 /*
1589 * A few threads which were not waiting at mutex_lock_killable() can
1590 * fail to bail out. Therefore, check again after holding oom_lock.
1591 */
1592 ret = should_force_charge() || out_of_memory(&oc);
1593 mutex_unlock(&oom_lock);
1594 return ret;
1595 }
1596
1597 #if MAX_NUMNODES > 1
1598
1599 /**
1600 * test_mem_cgroup_node_reclaimable
1601 * @memcg: the target memcg
1602 * @nid: the node ID to be checked.
1603 * @noswap : specify true here if the user wants flle only information.
1604 *
1605 * This function returns whether the specified memcg contains any
1606 * reclaimable pages on a node. Returns true if there are any reclaimable
1607 * pages in the node.
1608 */
1609 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1610 int nid, bool noswap)
1611 {
1612 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1613
1614 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1615 lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1616 return true;
1617 if (noswap || !total_swap_pages)
1618 return false;
1619 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1620 lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1621 return true;
1622 return false;
1623
1624 }
1625
1626 /*
1627 * Always updating the nodemask is not very good - even if we have an empty
1628 * list or the wrong list here, we can start from some node and traverse all
1629 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1630 *
1631 */
1632 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1633 {
1634 int nid;
1635 /*
1636 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1637 * pagein/pageout changes since the last update.
1638 */
1639 if (!atomic_read(&memcg->numainfo_events))
1640 return;
1641 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1642 return;
1643
1644 /* make a nodemask where this memcg uses memory from */
1645 memcg->scan_nodes = node_states[N_MEMORY];
1646
1647 for_each_node_mask(nid, node_states[N_MEMORY]) {
1648
1649 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1650 node_clear(nid, memcg->scan_nodes);
1651 }
1652
1653 atomic_set(&memcg->numainfo_events, 0);
1654 atomic_set(&memcg->numainfo_updating, 0);
1655 }
1656
1657 /*
1658 * Selecting a node where we start reclaim from. Because what we need is just
1659 * reducing usage counter, start from anywhere is O,K. Considering
1660 * memory reclaim from current node, there are pros. and cons.
1661 *
1662 * Freeing memory from current node means freeing memory from a node which
1663 * we'll use or we've used. So, it may make LRU bad. And if several threads
1664 * hit limits, it will see a contention on a node. But freeing from remote
1665 * node means more costs for memory reclaim because of memory latency.
1666 *
1667 * Now, we use round-robin. Better algorithm is welcomed.
1668 */
1669 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1670 {
1671 int node;
1672
1673 mem_cgroup_may_update_nodemask(memcg);
1674 node = memcg->last_scanned_node;
1675
1676 node = next_node_in(node, memcg->scan_nodes);
1677 /*
1678 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1679 * last time it really checked all the LRUs due to rate limiting.
1680 * Fallback to the current node in that case for simplicity.
1681 */
1682 if (unlikely(node == MAX_NUMNODES))
1683 node = numa_node_id();
1684
1685 memcg->last_scanned_node = node;
1686 return node;
1687 }
1688 #else
1689 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1690 {
1691 return 0;
1692 }
1693 #endif
1694
1695 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1696 pg_data_t *pgdat,
1697 gfp_t gfp_mask,
1698 unsigned long *total_scanned)
1699 {
1700 struct mem_cgroup *victim = NULL;
1701 int total = 0;
1702 int loop = 0;
1703 unsigned long excess;
1704 unsigned long nr_scanned;
1705 struct mem_cgroup_reclaim_cookie reclaim = {
1706 .pgdat = pgdat,
1707 .priority = 0,
1708 };
1709
1710 excess = soft_limit_excess(root_memcg);
1711
1712 while (1) {
1713 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1714 if (!victim) {
1715 loop++;
1716 if (loop >= 2) {
1717 /*
1718 * If we have not been able to reclaim
1719 * anything, it might because there are
1720 * no reclaimable pages under this hierarchy
1721 */
1722 if (!total)
1723 break;
1724 /*
1725 * We want to do more targeted reclaim.
1726 * excess >> 2 is not to excessive so as to
1727 * reclaim too much, nor too less that we keep
1728 * coming back to reclaim from this cgroup
1729 */
1730 if (total >= (excess >> 2) ||
1731 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1732 break;
1733 }
1734 continue;
1735 }
1736 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1737 pgdat, &nr_scanned);
1738 *total_scanned += nr_scanned;
1739 if (!soft_limit_excess(root_memcg))
1740 break;
1741 }
1742 mem_cgroup_iter_break(root_memcg, victim);
1743 return total;
1744 }
1745
1746 #ifdef CONFIG_LOCKDEP
1747 static struct lockdep_map memcg_oom_lock_dep_map = {
1748 .name = "memcg_oom_lock",
1749 };
1750 #endif
1751
1752 static DEFINE_SPINLOCK(memcg_oom_lock);
1753
1754 /*
1755 * Check OOM-Killer is already running under our hierarchy.
1756 * If someone is running, return false.
1757 */
1758 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1759 {
1760 struct mem_cgroup *iter, *failed = NULL;
1761
1762 spin_lock(&memcg_oom_lock);
1763
1764 for_each_mem_cgroup_tree(iter, memcg) {
1765 if (iter->oom_lock) {
1766 /*
1767 * this subtree of our hierarchy is already locked
1768 * so we cannot give a lock.
1769 */
1770 failed = iter;
1771 mem_cgroup_iter_break(memcg, iter);
1772 break;
1773 } else
1774 iter->oom_lock = true;
1775 }
1776
1777 if (failed) {
1778 /*
1779 * OK, we failed to lock the whole subtree so we have
1780 * to clean up what we set up to the failing subtree
1781 */
1782 for_each_mem_cgroup_tree(iter, memcg) {
1783 if (iter == failed) {
1784 mem_cgroup_iter_break(memcg, iter);
1785 break;
1786 }
1787 iter->oom_lock = false;
1788 }
1789 } else
1790 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1791
1792 spin_unlock(&memcg_oom_lock);
1793
1794 return !failed;
1795 }
1796
1797 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1798 {
1799 struct mem_cgroup *iter;
1800
1801 spin_lock(&memcg_oom_lock);
1802 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1803 for_each_mem_cgroup_tree(iter, memcg)
1804 iter->oom_lock = false;
1805 spin_unlock(&memcg_oom_lock);
1806 }
1807
1808 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1809 {
1810 struct mem_cgroup *iter;
1811
1812 spin_lock(&memcg_oom_lock);
1813 for_each_mem_cgroup_tree(iter, memcg)
1814 iter->under_oom++;
1815 spin_unlock(&memcg_oom_lock);
1816 }
1817
1818 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1819 {
1820 struct mem_cgroup *iter;
1821
1822 /*
1823 * When a new child is created while the hierarchy is under oom,
1824 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1825 */
1826 spin_lock(&memcg_oom_lock);
1827 for_each_mem_cgroup_tree(iter, memcg)
1828 if (iter->under_oom > 0)
1829 iter->under_oom--;
1830 spin_unlock(&memcg_oom_lock);
1831 }
1832
1833 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1834
1835 struct oom_wait_info {
1836 struct mem_cgroup *memcg;
1837 wait_queue_entry_t wait;
1838 };
1839
1840 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1841 unsigned mode, int sync, void *arg)
1842 {
1843 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1844 struct mem_cgroup *oom_wait_memcg;
1845 struct oom_wait_info *oom_wait_info;
1846
1847 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1848 oom_wait_memcg = oom_wait_info->memcg;
1849
1850 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1851 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1852 return 0;
1853 return autoremove_wake_function(wait, mode, sync, arg);
1854 }
1855
1856 static void memcg_oom_recover(struct mem_cgroup *memcg)
1857 {
1858 /*
1859 * For the following lockless ->under_oom test, the only required
1860 * guarantee is that it must see the state asserted by an OOM when
1861 * this function is called as a result of userland actions
1862 * triggered by the notification of the OOM. This is trivially
1863 * achieved by invoking mem_cgroup_mark_under_oom() before
1864 * triggering notification.
1865 */
1866 if (memcg && memcg->under_oom)
1867 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1868 }
1869
1870 enum oom_status {
1871 OOM_SUCCESS,
1872 OOM_FAILED,
1873 OOM_ASYNC,
1874 OOM_SKIPPED
1875 };
1876
1877 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1878 {
1879 enum oom_status ret;
1880 bool locked;
1881
1882 if (order > PAGE_ALLOC_COSTLY_ORDER)
1883 return OOM_SKIPPED;
1884
1885 memcg_memory_event(memcg, MEMCG_OOM);
1886
1887 /*
1888 * We are in the middle of the charge context here, so we
1889 * don't want to block when potentially sitting on a callstack
1890 * that holds all kinds of filesystem and mm locks.
1891 *
1892 * cgroup1 allows disabling the OOM killer and waiting for outside
1893 * handling until the charge can succeed; remember the context and put
1894 * the task to sleep at the end of the page fault when all locks are
1895 * released.
1896 *
1897 * On the other hand, in-kernel OOM killer allows for an async victim
1898 * memory reclaim (oom_reaper) and that means that we are not solely
1899 * relying on the oom victim to make a forward progress and we can
1900 * invoke the oom killer here.
1901 *
1902 * Please note that mem_cgroup_out_of_memory might fail to find a
1903 * victim and then we have to bail out from the charge path.
1904 */
1905 if (memcg->oom_kill_disable) {
1906 if (!current->in_user_fault)
1907 return OOM_SKIPPED;
1908 css_get(&memcg->css);
1909 current->memcg_in_oom = memcg;
1910 current->memcg_oom_gfp_mask = mask;
1911 current->memcg_oom_order = order;
1912
1913 return OOM_ASYNC;
1914 }
1915
1916 mem_cgroup_mark_under_oom(memcg);
1917
1918 locked = mem_cgroup_oom_trylock(memcg);
1919
1920 if (locked)
1921 mem_cgroup_oom_notify(memcg);
1922
1923 mem_cgroup_unmark_under_oom(memcg);
1924 if (mem_cgroup_out_of_memory(memcg, mask, order))
1925 ret = OOM_SUCCESS;
1926 else
1927 ret = OOM_FAILED;
1928
1929 if (locked)
1930 mem_cgroup_oom_unlock(memcg);
1931
1932 return ret;
1933 }
1934
1935 /**
1936 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1937 * @handle: actually kill/wait or just clean up the OOM state
1938 *
1939 * This has to be called at the end of a page fault if the memcg OOM
1940 * handler was enabled.
1941 *
1942 * Memcg supports userspace OOM handling where failed allocations must
1943 * sleep on a waitqueue until the userspace task resolves the
1944 * situation. Sleeping directly in the charge context with all kinds
1945 * of locks held is not a good idea, instead we remember an OOM state
1946 * in the task and mem_cgroup_oom_synchronize() has to be called at
1947 * the end of the page fault to complete the OOM handling.
1948 *
1949 * Returns %true if an ongoing memcg OOM situation was detected and
1950 * completed, %false otherwise.
1951 */
1952 bool mem_cgroup_oom_synchronize(bool handle)
1953 {
1954 struct mem_cgroup *memcg = current->memcg_in_oom;
1955 struct oom_wait_info owait;
1956 bool locked;
1957
1958 /* OOM is global, do not handle */
1959 if (!memcg)
1960 return false;
1961
1962 if (!handle)
1963 goto cleanup;
1964
1965 owait.memcg = memcg;
1966 owait.wait.flags = 0;
1967 owait.wait.func = memcg_oom_wake_function;
1968 owait.wait.private = current;
1969 INIT_LIST_HEAD(&owait.wait.entry);
1970
1971 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1972 mem_cgroup_mark_under_oom(memcg);
1973
1974 locked = mem_cgroup_oom_trylock(memcg);
1975
1976 if (locked)
1977 mem_cgroup_oom_notify(memcg);
1978
1979 if (locked && !memcg->oom_kill_disable) {
1980 mem_cgroup_unmark_under_oom(memcg);
1981 finish_wait(&memcg_oom_waitq, &owait.wait);
1982 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1983 current->memcg_oom_order);
1984 } else {
1985 schedule();
1986 mem_cgroup_unmark_under_oom(memcg);
1987 finish_wait(&memcg_oom_waitq, &owait.wait);
1988 }
1989
1990 if (locked) {
1991 mem_cgroup_oom_unlock(memcg);
1992 /*
1993 * There is no guarantee that an OOM-lock contender
1994 * sees the wakeups triggered by the OOM kill
1995 * uncharges. Wake any sleepers explicitely.
1996 */
1997 memcg_oom_recover(memcg);
1998 }
1999 cleanup:
2000 current->memcg_in_oom = NULL;
2001 css_put(&memcg->css);
2002 return true;
2003 }
2004
2005 /**
2006 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2007 * @victim: task to be killed by the OOM killer
2008 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2009 *
2010 * Returns a pointer to a memory cgroup, which has to be cleaned up
2011 * by killing all belonging OOM-killable tasks.
2012 *
2013 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2014 */
2015 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2016 struct mem_cgroup *oom_domain)
2017 {
2018 struct mem_cgroup *oom_group = NULL;
2019 struct mem_cgroup *memcg;
2020
2021 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2022 return NULL;
2023
2024 if (!oom_domain)
2025 oom_domain = root_mem_cgroup;
2026
2027 rcu_read_lock();
2028
2029 memcg = mem_cgroup_from_task(victim);
2030 if (memcg == root_mem_cgroup)
2031 goto out;
2032
2033 /*
2034 * Traverse the memory cgroup hierarchy from the victim task's
2035 * cgroup up to the OOMing cgroup (or root) to find the
2036 * highest-level memory cgroup with oom.group set.
2037 */
2038 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2039 if (memcg->oom_group)
2040 oom_group = memcg;
2041
2042 if (memcg == oom_domain)
2043 break;
2044 }
2045
2046 if (oom_group)
2047 css_get(&oom_group->css);
2048 out:
2049 rcu_read_unlock();
2050
2051 return oom_group;
2052 }
2053
2054 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2055 {
2056 pr_info("Tasks in ");
2057 pr_cont_cgroup_path(memcg->css.cgroup);
2058 pr_cont(" are going to be killed due to memory.oom.group set\n");
2059 }
2060
2061 /**
2062 * lock_page_memcg - lock a page->mem_cgroup binding
2063 * @page: the page
2064 *
2065 * This function protects unlocked LRU pages from being moved to
2066 * another cgroup.
2067 *
2068 * It ensures lifetime of the returned memcg. Caller is responsible
2069 * for the lifetime of the page; __unlock_page_memcg() is available
2070 * when @page might get freed inside the locked section.
2071 */
2072 struct mem_cgroup *lock_page_memcg(struct page *page)
2073 {
2074 struct mem_cgroup *memcg;
2075 unsigned long flags;
2076
2077 /*
2078 * The RCU lock is held throughout the transaction. The fast
2079 * path can get away without acquiring the memcg->move_lock
2080 * because page moving starts with an RCU grace period.
2081 *
2082 * The RCU lock also protects the memcg from being freed when
2083 * the page state that is going to change is the only thing
2084 * preventing the page itself from being freed. E.g. writeback
2085 * doesn't hold a page reference and relies on PG_writeback to
2086 * keep off truncation, migration and so forth.
2087 */
2088 rcu_read_lock();
2089
2090 if (mem_cgroup_disabled())
2091 return NULL;
2092 again:
2093 memcg = page->mem_cgroup;
2094 if (unlikely(!memcg))
2095 return NULL;
2096
2097 if (atomic_read(&memcg->moving_account) <= 0)
2098 return memcg;
2099
2100 spin_lock_irqsave(&memcg->move_lock, flags);
2101 if (memcg != page->mem_cgroup) {
2102 spin_unlock_irqrestore(&memcg->move_lock, flags);
2103 goto again;
2104 }
2105
2106 /*
2107 * When charge migration first begins, we can have locked and
2108 * unlocked page stat updates happening concurrently. Track
2109 * the task who has the lock for unlock_page_memcg().
2110 */
2111 memcg->move_lock_task = current;
2112 memcg->move_lock_flags = flags;
2113
2114 return memcg;
2115 }
2116 EXPORT_SYMBOL(lock_page_memcg);
2117
2118 /**
2119 * __unlock_page_memcg - unlock and unpin a memcg
2120 * @memcg: the memcg
2121 *
2122 * Unlock and unpin a memcg returned by lock_page_memcg().
2123 */
2124 void __unlock_page_memcg(struct mem_cgroup *memcg)
2125 {
2126 if (memcg && memcg->move_lock_task == current) {
2127 unsigned long flags = memcg->move_lock_flags;
2128
2129 memcg->move_lock_task = NULL;
2130 memcg->move_lock_flags = 0;
2131
2132 spin_unlock_irqrestore(&memcg->move_lock, flags);
2133 }
2134
2135 rcu_read_unlock();
2136 }
2137
2138 /**
2139 * unlock_page_memcg - unlock a page->mem_cgroup binding
2140 * @page: the page
2141 */
2142 void unlock_page_memcg(struct page *page)
2143 {
2144 __unlock_page_memcg(page->mem_cgroup);
2145 }
2146 EXPORT_SYMBOL(unlock_page_memcg);
2147
2148 struct memcg_stock_pcp {
2149 struct mem_cgroup *cached; /* this never be root cgroup */
2150 unsigned int nr_pages;
2151 struct work_struct work;
2152 unsigned long flags;
2153 #define FLUSHING_CACHED_CHARGE 0
2154 };
2155 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2156 static DEFINE_MUTEX(percpu_charge_mutex);
2157
2158 /**
2159 * consume_stock: Try to consume stocked charge on this cpu.
2160 * @memcg: memcg to consume from.
2161 * @nr_pages: how many pages to charge.
2162 *
2163 * The charges will only happen if @memcg matches the current cpu's memcg
2164 * stock, and at least @nr_pages are available in that stock. Failure to
2165 * service an allocation will refill the stock.
2166 *
2167 * returns true if successful, false otherwise.
2168 */
2169 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2170 {
2171 struct memcg_stock_pcp *stock;
2172 unsigned long flags;
2173 bool ret = false;
2174
2175 if (nr_pages > MEMCG_CHARGE_BATCH)
2176 return ret;
2177
2178 local_irq_save(flags);
2179
2180 stock = this_cpu_ptr(&memcg_stock);
2181 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2182 stock->nr_pages -= nr_pages;
2183 ret = true;
2184 }
2185
2186 local_irq_restore(flags);
2187
2188 return ret;
2189 }
2190
2191 /*
2192 * Returns stocks cached in percpu and reset cached information.
2193 */
2194 static void drain_stock(struct memcg_stock_pcp *stock)
2195 {
2196 struct mem_cgroup *old = stock->cached;
2197
2198 if (stock->nr_pages) {
2199 page_counter_uncharge(&old->memory, stock->nr_pages);
2200 if (do_memsw_account())
2201 page_counter_uncharge(&old->memsw, stock->nr_pages);
2202 css_put_many(&old->css, stock->nr_pages);
2203 stock->nr_pages = 0;
2204 }
2205 stock->cached = NULL;
2206 }
2207
2208 static void drain_local_stock(struct work_struct *dummy)
2209 {
2210 struct memcg_stock_pcp *stock;
2211 unsigned long flags;
2212
2213 /*
2214 * The only protection from memory hotplug vs. drain_stock races is
2215 * that we always operate on local CPU stock here with IRQ disabled
2216 */
2217 local_irq_save(flags);
2218
2219 stock = this_cpu_ptr(&memcg_stock);
2220 drain_stock(stock);
2221 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2222
2223 local_irq_restore(flags);
2224 }
2225
2226 /*
2227 * Cache charges(val) to local per_cpu area.
2228 * This will be consumed by consume_stock() function, later.
2229 */
2230 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2231 {
2232 struct memcg_stock_pcp *stock;
2233 unsigned long flags;
2234
2235 local_irq_save(flags);
2236
2237 stock = this_cpu_ptr(&memcg_stock);
2238 if (stock->cached != memcg) { /* reset if necessary */
2239 drain_stock(stock);
2240 stock->cached = memcg;
2241 }
2242 stock->nr_pages += nr_pages;
2243
2244 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2245 drain_stock(stock);
2246
2247 local_irq_restore(flags);
2248 }
2249
2250 /*
2251 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2252 * of the hierarchy under it.
2253 */
2254 static void drain_all_stock(struct mem_cgroup *root_memcg)
2255 {
2256 int cpu, curcpu;
2257
2258 /* If someone's already draining, avoid adding running more workers. */
2259 if (!mutex_trylock(&percpu_charge_mutex))
2260 return;
2261 /*
2262 * Notify other cpus that system-wide "drain" is running
2263 * We do not care about races with the cpu hotplug because cpu down
2264 * as well as workers from this path always operate on the local
2265 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2266 */
2267 curcpu = get_cpu();
2268 for_each_online_cpu(cpu) {
2269 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2270 struct mem_cgroup *memcg;
2271
2272 memcg = stock->cached;
2273 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2274 continue;
2275 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2276 css_put(&memcg->css);
2277 continue;
2278 }
2279 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2280 if (cpu == curcpu)
2281 drain_local_stock(&stock->work);
2282 else
2283 schedule_work_on(cpu, &stock->work);
2284 }
2285 css_put(&memcg->css);
2286 }
2287 put_cpu();
2288 mutex_unlock(&percpu_charge_mutex);
2289 }
2290
2291 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2292 {
2293 struct memcg_stock_pcp *stock;
2294 struct mem_cgroup *memcg, *mi;
2295
2296 stock = &per_cpu(memcg_stock, cpu);
2297 drain_stock(stock);
2298
2299 for_each_mem_cgroup(memcg) {
2300 int i;
2301
2302 for (i = 0; i < MEMCG_NR_STAT; i++) {
2303 int nid;
2304 long x;
2305
2306 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2307 if (x)
2308 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2309 atomic_long_add(x, &memcg->vmstats[i]);
2310
2311 if (i >= NR_VM_NODE_STAT_ITEMS)
2312 continue;
2313
2314 for_each_node(nid) {
2315 struct mem_cgroup_per_node *pn;
2316
2317 pn = mem_cgroup_nodeinfo(memcg, nid);
2318 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2319 if (x)
2320 do {
2321 atomic_long_add(x, &pn->lruvec_stat[i]);
2322 } while ((pn = parent_nodeinfo(pn, nid)));
2323 }
2324 }
2325
2326 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2327 long x;
2328
2329 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2330 if (x)
2331 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2332 atomic_long_add(x, &memcg->vmevents[i]);
2333 }
2334 }
2335
2336 return 0;
2337 }
2338
2339 static void reclaim_high(struct mem_cgroup *memcg,
2340 unsigned int nr_pages,
2341 gfp_t gfp_mask)
2342 {
2343 do {
2344 if (page_counter_read(&memcg->memory) <= memcg->high)
2345 continue;
2346 memcg_memory_event(memcg, MEMCG_HIGH);
2347 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2348 } while ((memcg = parent_mem_cgroup(memcg)));
2349 }
2350
2351 static void high_work_func(struct work_struct *work)
2352 {
2353 struct mem_cgroup *memcg;
2354
2355 memcg = container_of(work, struct mem_cgroup, high_work);
2356 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2357 }
2358
2359 /*
2360 * Scheduled by try_charge() to be executed from the userland return path
2361 * and reclaims memory over the high limit.
2362 */
2363 void mem_cgroup_handle_over_high(void)
2364 {
2365 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2366 struct mem_cgroup *memcg;
2367
2368 if (likely(!nr_pages))
2369 return;
2370
2371 memcg = get_mem_cgroup_from_mm(current->mm);
2372 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2373 css_put(&memcg->css);
2374 current->memcg_nr_pages_over_high = 0;
2375 }
2376
2377 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2378 unsigned int nr_pages)
2379 {
2380 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2381 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2382 struct mem_cgroup *mem_over_limit;
2383 struct page_counter *counter;
2384 unsigned long nr_reclaimed;
2385 bool may_swap = true;
2386 bool drained = false;
2387 enum oom_status oom_status;
2388
2389 if (mem_cgroup_is_root(memcg))
2390 return 0;
2391 retry:
2392 if (consume_stock(memcg, nr_pages))
2393 return 0;
2394
2395 if (!do_memsw_account() ||
2396 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2397 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2398 goto done_restock;
2399 if (do_memsw_account())
2400 page_counter_uncharge(&memcg->memsw, batch);
2401 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2402 } else {
2403 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2404 may_swap = false;
2405 }
2406
2407 if (batch > nr_pages) {
2408 batch = nr_pages;
2409 goto retry;
2410 }
2411
2412 /*
2413 * Unlike in global OOM situations, memcg is not in a physical
2414 * memory shortage. Allow dying and OOM-killed tasks to
2415 * bypass the last charges so that they can exit quickly and
2416 * free their memory.
2417 */
2418 if (unlikely(should_force_charge()))
2419 goto force;
2420
2421 /*
2422 * Prevent unbounded recursion when reclaim operations need to
2423 * allocate memory. This might exceed the limits temporarily,
2424 * but we prefer facilitating memory reclaim and getting back
2425 * under the limit over triggering OOM kills in these cases.
2426 */
2427 if (unlikely(current->flags & PF_MEMALLOC))
2428 goto force;
2429
2430 if (unlikely(task_in_memcg_oom(current)))
2431 goto nomem;
2432
2433 if (!gfpflags_allow_blocking(gfp_mask))
2434 goto nomem;
2435
2436 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2437
2438 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2439 gfp_mask, may_swap);
2440
2441 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2442 goto retry;
2443
2444 if (!drained) {
2445 drain_all_stock(mem_over_limit);
2446 drained = true;
2447 goto retry;
2448 }
2449
2450 if (gfp_mask & __GFP_NORETRY)
2451 goto nomem;
2452 /*
2453 * Even though the limit is exceeded at this point, reclaim
2454 * may have been able to free some pages. Retry the charge
2455 * before killing the task.
2456 *
2457 * Only for regular pages, though: huge pages are rather
2458 * unlikely to succeed so close to the limit, and we fall back
2459 * to regular pages anyway in case of failure.
2460 */
2461 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2462 goto retry;
2463 /*
2464 * At task move, charge accounts can be doubly counted. So, it's
2465 * better to wait until the end of task_move if something is going on.
2466 */
2467 if (mem_cgroup_wait_acct_move(mem_over_limit))
2468 goto retry;
2469
2470 if (nr_retries--)
2471 goto retry;
2472
2473 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2474 goto nomem;
2475
2476 if (gfp_mask & __GFP_NOFAIL)
2477 goto force;
2478
2479 if (fatal_signal_pending(current))
2480 goto force;
2481
2482 /*
2483 * keep retrying as long as the memcg oom killer is able to make
2484 * a forward progress or bypass the charge if the oom killer
2485 * couldn't make any progress.
2486 */
2487 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2488 get_order(nr_pages * PAGE_SIZE));
2489 switch (oom_status) {
2490 case OOM_SUCCESS:
2491 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2492 goto retry;
2493 case OOM_FAILED:
2494 goto force;
2495 default:
2496 goto nomem;
2497 }
2498 nomem:
2499 if (!(gfp_mask & __GFP_NOFAIL))
2500 return -ENOMEM;
2501 force:
2502 /*
2503 * The allocation either can't fail or will lead to more memory
2504 * being freed very soon. Allow memory usage go over the limit
2505 * temporarily by force charging it.
2506 */
2507 page_counter_charge(&memcg->memory, nr_pages);
2508 if (do_memsw_account())
2509 page_counter_charge(&memcg->memsw, nr_pages);
2510 css_get_many(&memcg->css, nr_pages);
2511
2512 return 0;
2513
2514 done_restock:
2515 css_get_many(&memcg->css, batch);
2516 if (batch > nr_pages)
2517 refill_stock(memcg, batch - nr_pages);
2518
2519 /*
2520 * If the hierarchy is above the normal consumption range, schedule
2521 * reclaim on returning to userland. We can perform reclaim here
2522 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2523 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2524 * not recorded as it most likely matches current's and won't
2525 * change in the meantime. As high limit is checked again before
2526 * reclaim, the cost of mismatch is negligible.
2527 */
2528 do {
2529 if (page_counter_read(&memcg->memory) > memcg->high) {
2530 /* Don't bother a random interrupted task */
2531 if (in_interrupt()) {
2532 schedule_work(&memcg->high_work);
2533 break;
2534 }
2535 current->memcg_nr_pages_over_high += batch;
2536 set_notify_resume(current);
2537 break;
2538 }
2539 } while ((memcg = parent_mem_cgroup(memcg)));
2540
2541 return 0;
2542 }
2543
2544 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2545 {
2546 if (mem_cgroup_is_root(memcg))
2547 return;
2548
2549 page_counter_uncharge(&memcg->memory, nr_pages);
2550 if (do_memsw_account())
2551 page_counter_uncharge(&memcg->memsw, nr_pages);
2552
2553 css_put_many(&memcg->css, nr_pages);
2554 }
2555
2556 static void lock_page_lru(struct page *page, int *isolated)
2557 {
2558 pg_data_t *pgdat = page_pgdat(page);
2559
2560 spin_lock_irq(&pgdat->lru_lock);
2561 if (PageLRU(page)) {
2562 struct lruvec *lruvec;
2563
2564 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2565 ClearPageLRU(page);
2566 del_page_from_lru_list(page, lruvec, page_lru(page));
2567 *isolated = 1;
2568 } else
2569 *isolated = 0;
2570 }
2571
2572 static void unlock_page_lru(struct page *page, int isolated)
2573 {
2574 pg_data_t *pgdat = page_pgdat(page);
2575
2576 if (isolated) {
2577 struct lruvec *lruvec;
2578
2579 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2580 VM_BUG_ON_PAGE(PageLRU(page), page);
2581 SetPageLRU(page);
2582 add_page_to_lru_list(page, lruvec, page_lru(page));
2583 }
2584 spin_unlock_irq(&pgdat->lru_lock);
2585 }
2586
2587 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2588 bool lrucare)
2589 {
2590 int isolated;
2591
2592 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2593
2594 /*
2595 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2596 * may already be on some other mem_cgroup's LRU. Take care of it.
2597 */
2598 if (lrucare)
2599 lock_page_lru(page, &isolated);
2600
2601 /*
2602 * Nobody should be changing or seriously looking at
2603 * page->mem_cgroup at this point:
2604 *
2605 * - the page is uncharged
2606 *
2607 * - the page is off-LRU
2608 *
2609 * - an anonymous fault has exclusive page access, except for
2610 * a locked page table
2611 *
2612 * - a page cache insertion, a swapin fault, or a migration
2613 * have the page locked
2614 */
2615 page->mem_cgroup = memcg;
2616
2617 if (lrucare)
2618 unlock_page_lru(page, isolated);
2619 }
2620
2621 #ifdef CONFIG_MEMCG_KMEM
2622 static int memcg_alloc_cache_id(void)
2623 {
2624 int id, size;
2625 int err;
2626
2627 id = ida_simple_get(&memcg_cache_ida,
2628 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2629 if (id < 0)
2630 return id;
2631
2632 if (id < memcg_nr_cache_ids)
2633 return id;
2634
2635 /*
2636 * There's no space for the new id in memcg_caches arrays,
2637 * so we have to grow them.
2638 */
2639 down_write(&memcg_cache_ids_sem);
2640
2641 size = 2 * (id + 1);
2642 if (size < MEMCG_CACHES_MIN_SIZE)
2643 size = MEMCG_CACHES_MIN_SIZE;
2644 else if (size > MEMCG_CACHES_MAX_SIZE)
2645 size = MEMCG_CACHES_MAX_SIZE;
2646
2647 err = memcg_update_all_caches(size);
2648 if (!err)
2649 err = memcg_update_all_list_lrus(size);
2650 if (!err)
2651 memcg_nr_cache_ids = size;
2652
2653 up_write(&memcg_cache_ids_sem);
2654
2655 if (err) {
2656 ida_simple_remove(&memcg_cache_ida, id);
2657 return err;
2658 }
2659 return id;
2660 }
2661
2662 static void memcg_free_cache_id(int id)
2663 {
2664 ida_simple_remove(&memcg_cache_ida, id);
2665 }
2666
2667 struct memcg_kmem_cache_create_work {
2668 struct mem_cgroup *memcg;
2669 struct kmem_cache *cachep;
2670 struct work_struct work;
2671 };
2672
2673 static void memcg_kmem_cache_create_func(struct work_struct *w)
2674 {
2675 struct memcg_kmem_cache_create_work *cw =
2676 container_of(w, struct memcg_kmem_cache_create_work, work);
2677 struct mem_cgroup *memcg = cw->memcg;
2678 struct kmem_cache *cachep = cw->cachep;
2679
2680 memcg_create_kmem_cache(memcg, cachep);
2681
2682 css_put(&memcg->css);
2683 kfree(cw);
2684 }
2685
2686 /*
2687 * Enqueue the creation of a per-memcg kmem_cache.
2688 */
2689 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2690 struct kmem_cache *cachep)
2691 {
2692 struct memcg_kmem_cache_create_work *cw;
2693
2694 if (!css_tryget_online(&memcg->css))
2695 return;
2696
2697 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2698 if (!cw)
2699 return;
2700
2701 cw->memcg = memcg;
2702 cw->cachep = cachep;
2703 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2704
2705 queue_work(memcg_kmem_cache_wq, &cw->work);
2706 }
2707
2708 static inline bool memcg_kmem_bypass(void)
2709 {
2710 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2711 return true;
2712 return false;
2713 }
2714
2715 /**
2716 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2717 * @cachep: the original global kmem cache
2718 *
2719 * Return the kmem_cache we're supposed to use for a slab allocation.
2720 * We try to use the current memcg's version of the cache.
2721 *
2722 * If the cache does not exist yet, if we are the first user of it, we
2723 * create it asynchronously in a workqueue and let the current allocation
2724 * go through with the original cache.
2725 *
2726 * This function takes a reference to the cache it returns to assure it
2727 * won't get destroyed while we are working with it. Once the caller is
2728 * done with it, memcg_kmem_put_cache() must be called to release the
2729 * reference.
2730 */
2731 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2732 {
2733 struct mem_cgroup *memcg;
2734 struct kmem_cache *memcg_cachep;
2735 struct memcg_cache_array *arr;
2736 int kmemcg_id;
2737
2738 VM_BUG_ON(!is_root_cache(cachep));
2739
2740 if (memcg_kmem_bypass())
2741 return cachep;
2742
2743 rcu_read_lock();
2744
2745 if (unlikely(current->active_memcg))
2746 memcg = current->active_memcg;
2747 else
2748 memcg = mem_cgroup_from_task(current);
2749
2750 if (!memcg || memcg == root_mem_cgroup)
2751 goto out_unlock;
2752
2753 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2754 if (kmemcg_id < 0)
2755 goto out_unlock;
2756
2757 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2758
2759 /*
2760 * Make sure we will access the up-to-date value. The code updating
2761 * memcg_caches issues a write barrier to match the data dependency
2762 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2763 */
2764 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2765
2766 /*
2767 * If we are in a safe context (can wait, and not in interrupt
2768 * context), we could be be predictable and return right away.
2769 * This would guarantee that the allocation being performed
2770 * already belongs in the new cache.
2771 *
2772 * However, there are some clashes that can arrive from locking.
2773 * For instance, because we acquire the slab_mutex while doing
2774 * memcg_create_kmem_cache, this means no further allocation
2775 * could happen with the slab_mutex held. So it's better to
2776 * defer everything.
2777 *
2778 * If the memcg is dying or memcg_cache is about to be released,
2779 * don't bother creating new kmem_caches. Because memcg_cachep
2780 * is ZEROed as the fist step of kmem offlining, we don't need
2781 * percpu_ref_tryget_live() here. css_tryget_online() check in
2782 * memcg_schedule_kmem_cache_create() will prevent us from
2783 * creation of a new kmem_cache.
2784 */
2785 if (unlikely(!memcg_cachep))
2786 memcg_schedule_kmem_cache_create(memcg, cachep);
2787 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2788 cachep = memcg_cachep;
2789 out_unlock:
2790 rcu_read_unlock();
2791 return cachep;
2792 }
2793
2794 /**
2795 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2796 * @cachep: the cache returned by memcg_kmem_get_cache
2797 */
2798 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2799 {
2800 if (!is_root_cache(cachep))
2801 percpu_ref_put(&cachep->memcg_params.refcnt);
2802 }
2803
2804 /**
2805 * __memcg_kmem_charge_memcg: charge a kmem page
2806 * @page: page to charge
2807 * @gfp: reclaim mode
2808 * @order: allocation order
2809 * @memcg: memory cgroup to charge
2810 *
2811 * Returns 0 on success, an error code on failure.
2812 */
2813 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2814 struct mem_cgroup *memcg)
2815 {
2816 unsigned int nr_pages = 1 << order;
2817 struct page_counter *counter;
2818 int ret;
2819
2820 ret = try_charge(memcg, gfp, nr_pages);
2821 if (ret)
2822 return ret;
2823
2824 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2825 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2826 cancel_charge(memcg, nr_pages);
2827 return -ENOMEM;
2828 }
2829 return 0;
2830 }
2831
2832 /**
2833 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2834 * @page: page to charge
2835 * @gfp: reclaim mode
2836 * @order: allocation order
2837 *
2838 * Returns 0 on success, an error code on failure.
2839 */
2840 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2841 {
2842 struct mem_cgroup *memcg;
2843 int ret = 0;
2844
2845 if (memcg_kmem_bypass())
2846 return 0;
2847
2848 memcg = get_mem_cgroup_from_current();
2849 if (!mem_cgroup_is_root(memcg)) {
2850 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2851 if (!ret) {
2852 page->mem_cgroup = memcg;
2853 __SetPageKmemcg(page);
2854 }
2855 }
2856 css_put(&memcg->css);
2857 return ret;
2858 }
2859
2860 /**
2861 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2862 * @memcg: memcg to uncharge
2863 * @nr_pages: number of pages to uncharge
2864 */
2865 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2866 unsigned int nr_pages)
2867 {
2868 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2869 page_counter_uncharge(&memcg->kmem, nr_pages);
2870
2871 page_counter_uncharge(&memcg->memory, nr_pages);
2872 if (do_memsw_account())
2873 page_counter_uncharge(&memcg->memsw, nr_pages);
2874 }
2875 /**
2876 * __memcg_kmem_uncharge: uncharge a kmem page
2877 * @page: page to uncharge
2878 * @order: allocation order
2879 */
2880 void __memcg_kmem_uncharge(struct page *page, int order)
2881 {
2882 struct mem_cgroup *memcg = page->mem_cgroup;
2883 unsigned int nr_pages = 1 << order;
2884
2885 if (!memcg)
2886 return;
2887
2888 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2889 __memcg_kmem_uncharge_memcg(memcg, nr_pages);
2890 page->mem_cgroup = NULL;
2891
2892 /* slab pages do not have PageKmemcg flag set */
2893 if (PageKmemcg(page))
2894 __ClearPageKmemcg(page);
2895
2896 css_put_many(&memcg->css, nr_pages);
2897 }
2898 #endif /* CONFIG_MEMCG_KMEM */
2899
2900 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2901
2902 /*
2903 * Because tail pages are not marked as "used", set it. We're under
2904 * pgdat->lru_lock and migration entries setup in all page mappings.
2905 */
2906 void mem_cgroup_split_huge_fixup(struct page *head)
2907 {
2908 int i;
2909
2910 if (mem_cgroup_disabled())
2911 return;
2912
2913 for (i = 1; i < HPAGE_PMD_NR; i++)
2914 head[i].mem_cgroup = head->mem_cgroup;
2915
2916 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2917 }
2918 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2919
2920 #ifdef CONFIG_MEMCG_SWAP
2921 /**
2922 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2923 * @entry: swap entry to be moved
2924 * @from: mem_cgroup which the entry is moved from
2925 * @to: mem_cgroup which the entry is moved to
2926 *
2927 * It succeeds only when the swap_cgroup's record for this entry is the same
2928 * as the mem_cgroup's id of @from.
2929 *
2930 * Returns 0 on success, -EINVAL on failure.
2931 *
2932 * The caller must have charged to @to, IOW, called page_counter_charge() about
2933 * both res and memsw, and called css_get().
2934 */
2935 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2936 struct mem_cgroup *from, struct mem_cgroup *to)
2937 {
2938 unsigned short old_id, new_id;
2939
2940 old_id = mem_cgroup_id(from);
2941 new_id = mem_cgroup_id(to);
2942
2943 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2944 mod_memcg_state(from, MEMCG_SWAP, -1);
2945 mod_memcg_state(to, MEMCG_SWAP, 1);
2946 return 0;
2947 }
2948 return -EINVAL;
2949 }
2950 #else
2951 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2952 struct mem_cgroup *from, struct mem_cgroup *to)
2953 {
2954 return -EINVAL;
2955 }
2956 #endif
2957
2958 static DEFINE_MUTEX(memcg_max_mutex);
2959
2960 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2961 unsigned long max, bool memsw)
2962 {
2963 bool enlarge = false;
2964 bool drained = false;
2965 int ret;
2966 bool limits_invariant;
2967 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2968
2969 do {
2970 if (signal_pending(current)) {
2971 ret = -EINTR;
2972 break;
2973 }
2974
2975 mutex_lock(&memcg_max_mutex);
2976 /*
2977 * Make sure that the new limit (memsw or memory limit) doesn't
2978 * break our basic invariant rule memory.max <= memsw.max.
2979 */
2980 limits_invariant = memsw ? max >= memcg->memory.max :
2981 max <= memcg->memsw.max;
2982 if (!limits_invariant) {
2983 mutex_unlock(&memcg_max_mutex);
2984 ret = -EINVAL;
2985 break;
2986 }
2987 if (max > counter->max)
2988 enlarge = true;
2989 ret = page_counter_set_max(counter, max);
2990 mutex_unlock(&memcg_max_mutex);
2991
2992 if (!ret)
2993 break;
2994
2995 if (!drained) {
2996 drain_all_stock(memcg);
2997 drained = true;
2998 continue;
2999 }
3000
3001 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3002 GFP_KERNEL, !memsw)) {
3003 ret = -EBUSY;
3004 break;
3005 }
3006 } while (true);
3007
3008 if (!ret && enlarge)
3009 memcg_oom_recover(memcg);
3010
3011 return ret;
3012 }
3013
3014 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3015 gfp_t gfp_mask,
3016 unsigned long *total_scanned)
3017 {
3018 unsigned long nr_reclaimed = 0;
3019 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3020 unsigned long reclaimed;
3021 int loop = 0;
3022 struct mem_cgroup_tree_per_node *mctz;
3023 unsigned long excess;
3024 unsigned long nr_scanned;
3025
3026 if (order > 0)
3027 return 0;
3028
3029 mctz = soft_limit_tree_node(pgdat->node_id);
3030
3031 /*
3032 * Do not even bother to check the largest node if the root
3033 * is empty. Do it lockless to prevent lock bouncing. Races
3034 * are acceptable as soft limit is best effort anyway.
3035 */
3036 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3037 return 0;
3038
3039 /*
3040 * This loop can run a while, specially if mem_cgroup's continuously
3041 * keep exceeding their soft limit and putting the system under
3042 * pressure
3043 */
3044 do {
3045 if (next_mz)
3046 mz = next_mz;
3047 else
3048 mz = mem_cgroup_largest_soft_limit_node(mctz);
3049 if (!mz)
3050 break;
3051
3052 nr_scanned = 0;
3053 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3054 gfp_mask, &nr_scanned);
3055 nr_reclaimed += reclaimed;
3056 *total_scanned += nr_scanned;
3057 spin_lock_irq(&mctz->lock);
3058 __mem_cgroup_remove_exceeded(mz, mctz);
3059
3060 /*
3061 * If we failed to reclaim anything from this memory cgroup
3062 * it is time to move on to the next cgroup
3063 */
3064 next_mz = NULL;
3065 if (!reclaimed)
3066 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3067
3068 excess = soft_limit_excess(mz->memcg);
3069 /*
3070 * One school of thought says that we should not add
3071 * back the node to the tree if reclaim returns 0.
3072 * But our reclaim could return 0, simply because due
3073 * to priority we are exposing a smaller subset of
3074 * memory to reclaim from. Consider this as a longer
3075 * term TODO.
3076 */
3077 /* If excess == 0, no tree ops */
3078 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3079 spin_unlock_irq(&mctz->lock);
3080 css_put(&mz->memcg->css);
3081 loop++;
3082 /*
3083 * Could not reclaim anything and there are no more
3084 * mem cgroups to try or we seem to be looping without
3085 * reclaiming anything.
3086 */
3087 if (!nr_reclaimed &&
3088 (next_mz == NULL ||
3089 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3090 break;
3091 } while (!nr_reclaimed);
3092 if (next_mz)
3093 css_put(&next_mz->memcg->css);
3094 return nr_reclaimed;
3095 }
3096
3097 /*
3098 * Test whether @memcg has children, dead or alive. Note that this
3099 * function doesn't care whether @memcg has use_hierarchy enabled and
3100 * returns %true if there are child csses according to the cgroup
3101 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3102 */
3103 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3104 {
3105 bool ret;
3106
3107 rcu_read_lock();
3108 ret = css_next_child(NULL, &memcg->css);
3109 rcu_read_unlock();
3110 return ret;
3111 }
3112
3113 /*
3114 * Reclaims as many pages from the given memcg as possible.
3115 *
3116 * Caller is responsible for holding css reference for memcg.
3117 */
3118 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3119 {
3120 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3121
3122 /* we call try-to-free pages for make this cgroup empty */
3123 lru_add_drain_all();
3124
3125 drain_all_stock(memcg);
3126
3127 /* try to free all pages in this cgroup */
3128 while (nr_retries && page_counter_read(&memcg->memory)) {
3129 int progress;
3130
3131 if (signal_pending(current))
3132 return -EINTR;
3133
3134 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3135 GFP_KERNEL, true);
3136 if (!progress) {
3137 nr_retries--;
3138 /* maybe some writeback is necessary */
3139 congestion_wait(BLK_RW_ASYNC, HZ/10);
3140 }
3141
3142 }
3143
3144 return 0;
3145 }
3146
3147 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3148 char *buf, size_t nbytes,
3149 loff_t off)
3150 {
3151 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3152
3153 if (mem_cgroup_is_root(memcg))
3154 return -EINVAL;
3155 return mem_cgroup_force_empty(memcg) ?: nbytes;
3156 }
3157
3158 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3159 struct cftype *cft)
3160 {
3161 return mem_cgroup_from_css(css)->use_hierarchy;
3162 }
3163
3164 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3165 struct cftype *cft, u64 val)
3166 {
3167 int retval = 0;
3168 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3169 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3170
3171 if (memcg->use_hierarchy == val)
3172 return 0;
3173
3174 /*
3175 * If parent's use_hierarchy is set, we can't make any modifications
3176 * in the child subtrees. If it is unset, then the change can
3177 * occur, provided the current cgroup has no children.
3178 *
3179 * For the root cgroup, parent_mem is NULL, we allow value to be
3180 * set if there are no children.
3181 */
3182 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3183 (val == 1 || val == 0)) {
3184 if (!memcg_has_children(memcg))
3185 memcg->use_hierarchy = val;
3186 else
3187 retval = -EBUSY;
3188 } else
3189 retval = -EINVAL;
3190
3191 return retval;
3192 }
3193
3194 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3195 {
3196 unsigned long val;
3197
3198 if (mem_cgroup_is_root(memcg)) {
3199 val = memcg_page_state(memcg, MEMCG_CACHE) +
3200 memcg_page_state(memcg, MEMCG_RSS);
3201 if (swap)
3202 val += memcg_page_state(memcg, MEMCG_SWAP);
3203 } else {
3204 if (!swap)
3205 val = page_counter_read(&memcg->memory);
3206 else
3207 val = page_counter_read(&memcg->memsw);
3208 }
3209 return val;
3210 }
3211
3212 enum {
3213 RES_USAGE,
3214 RES_LIMIT,
3215 RES_MAX_USAGE,
3216 RES_FAILCNT,
3217 RES_SOFT_LIMIT,
3218 };
3219
3220 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3221 struct cftype *cft)
3222 {
3223 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3224 struct page_counter *counter;
3225
3226 switch (MEMFILE_TYPE(cft->private)) {
3227 case _MEM:
3228 counter = &memcg->memory;
3229 break;
3230 case _MEMSWAP:
3231 counter = &memcg->memsw;
3232 break;
3233 case _KMEM:
3234 counter = &memcg->kmem;
3235 break;
3236 case _TCP:
3237 counter = &memcg->tcpmem;
3238 break;
3239 default:
3240 BUG();
3241 }
3242
3243 switch (MEMFILE_ATTR(cft->private)) {
3244 case RES_USAGE:
3245 if (counter == &memcg->memory)
3246 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3247 if (counter == &memcg->memsw)
3248 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3249 return (u64)page_counter_read(counter) * PAGE_SIZE;
3250 case RES_LIMIT:
3251 return (u64)counter->max * PAGE_SIZE;
3252 case RES_MAX_USAGE:
3253 return (u64)counter->watermark * PAGE_SIZE;
3254 case RES_FAILCNT:
3255 return counter->failcnt;
3256 case RES_SOFT_LIMIT:
3257 return (u64)memcg->soft_limit * PAGE_SIZE;
3258 default:
3259 BUG();
3260 }
3261 }
3262
3263 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3264 {
3265 unsigned long stat[MEMCG_NR_STAT];
3266 struct mem_cgroup *mi;
3267 int node, cpu, i;
3268
3269 for (i = 0; i < MEMCG_NR_STAT; i++)
3270 stat[i] = 0;
3271
3272 for_each_online_cpu(cpu)
3273 for (i = 0; i < MEMCG_NR_STAT; i++)
3274 stat[i] += raw_cpu_read(memcg->vmstats_percpu->stat[i]);
3275
3276 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3277 for (i = 0; i < MEMCG_NR_STAT; i++)
3278 atomic_long_add(stat[i], &mi->vmstats[i]);
3279
3280 for_each_node(node) {
3281 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3282 struct mem_cgroup_per_node *pi;
3283
3284 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3285 stat[i] = 0;
3286
3287 for_each_online_cpu(cpu)
3288 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3289 stat[i] += raw_cpu_read(
3290 pn->lruvec_stat_cpu->count[i]);
3291
3292 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3293 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3294 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3295 }
3296 }
3297
3298 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3299 {
3300 unsigned long events[NR_VM_EVENT_ITEMS];
3301 struct mem_cgroup *mi;
3302 int cpu, i;
3303
3304 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3305 events[i] = 0;
3306
3307 for_each_online_cpu(cpu)
3308 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3309 events[i] += raw_cpu_read(
3310 memcg->vmstats_percpu->events[i]);
3311
3312 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3313 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3314 atomic_long_add(events[i], &mi->vmevents[i]);
3315 }
3316
3317 #ifdef CONFIG_MEMCG_KMEM
3318 static int memcg_online_kmem(struct mem_cgroup *memcg)
3319 {
3320 int memcg_id;
3321
3322 if (cgroup_memory_nokmem)
3323 return 0;
3324
3325 BUG_ON(memcg->kmemcg_id >= 0);
3326 BUG_ON(memcg->kmem_state);
3327
3328 memcg_id = memcg_alloc_cache_id();
3329 if (memcg_id < 0)
3330 return memcg_id;
3331
3332 static_branch_inc(&memcg_kmem_enabled_key);
3333 /*
3334 * A memory cgroup is considered kmem-online as soon as it gets
3335 * kmemcg_id. Setting the id after enabling static branching will
3336 * guarantee no one starts accounting before all call sites are
3337 * patched.
3338 */
3339 memcg->kmemcg_id = memcg_id;
3340 memcg->kmem_state = KMEM_ONLINE;
3341 INIT_LIST_HEAD(&memcg->kmem_caches);
3342
3343 return 0;
3344 }
3345
3346 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3347 {
3348 struct cgroup_subsys_state *css;
3349 struct mem_cgroup *parent, *child;
3350 int kmemcg_id;
3351
3352 if (memcg->kmem_state != KMEM_ONLINE)
3353 return;
3354 /*
3355 * Clear the online state before clearing memcg_caches array
3356 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3357 * guarantees that no cache will be created for this cgroup
3358 * after we are done (see memcg_create_kmem_cache()).
3359 */
3360 memcg->kmem_state = KMEM_ALLOCATED;
3361
3362 parent = parent_mem_cgroup(memcg);
3363 if (!parent)
3364 parent = root_mem_cgroup;
3365
3366 memcg_deactivate_kmem_caches(memcg, parent);
3367
3368 kmemcg_id = memcg->kmemcg_id;
3369 BUG_ON(kmemcg_id < 0);
3370
3371 /*
3372 * Change kmemcg_id of this cgroup and all its descendants to the
3373 * parent's id, and then move all entries from this cgroup's list_lrus
3374 * to ones of the parent. After we have finished, all list_lrus
3375 * corresponding to this cgroup are guaranteed to remain empty. The
3376 * ordering is imposed by list_lru_node->lock taken by
3377 * memcg_drain_all_list_lrus().
3378 */
3379 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3380 css_for_each_descendant_pre(css, &memcg->css) {
3381 child = mem_cgroup_from_css(css);
3382 BUG_ON(child->kmemcg_id != kmemcg_id);
3383 child->kmemcg_id = parent->kmemcg_id;
3384 if (!memcg->use_hierarchy)
3385 break;
3386 }
3387 rcu_read_unlock();
3388
3389 memcg_drain_all_list_lrus(kmemcg_id, parent);
3390
3391 memcg_free_cache_id(kmemcg_id);
3392 }
3393
3394 static void memcg_free_kmem(struct mem_cgroup *memcg)
3395 {
3396 /* css_alloc() failed, offlining didn't happen */
3397 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3398 memcg_offline_kmem(memcg);
3399
3400 if (memcg->kmem_state == KMEM_ALLOCATED) {
3401 WARN_ON(!list_empty(&memcg->kmem_caches));
3402 static_branch_dec(&memcg_kmem_enabled_key);
3403 }
3404 }
3405 #else
3406 static int memcg_online_kmem(struct mem_cgroup *memcg)
3407 {
3408 return 0;
3409 }
3410 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3411 {
3412 }
3413 static void memcg_free_kmem(struct mem_cgroup *memcg)
3414 {
3415 }
3416 #endif /* CONFIG_MEMCG_KMEM */
3417
3418 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3419 unsigned long max)
3420 {
3421 int ret;
3422
3423 mutex_lock(&memcg_max_mutex);
3424 ret = page_counter_set_max(&memcg->kmem, max);
3425 mutex_unlock(&memcg_max_mutex);
3426 return ret;
3427 }
3428
3429 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3430 {
3431 int ret;
3432
3433 mutex_lock(&memcg_max_mutex);
3434
3435 ret = page_counter_set_max(&memcg->tcpmem, max);
3436 if (ret)
3437 goto out;
3438
3439 if (!memcg->tcpmem_active) {
3440 /*
3441 * The active flag needs to be written after the static_key
3442 * update. This is what guarantees that the socket activation
3443 * function is the last one to run. See mem_cgroup_sk_alloc()
3444 * for details, and note that we don't mark any socket as
3445 * belonging to this memcg until that flag is up.
3446 *
3447 * We need to do this, because static_keys will span multiple
3448 * sites, but we can't control their order. If we mark a socket
3449 * as accounted, but the accounting functions are not patched in
3450 * yet, we'll lose accounting.
3451 *
3452 * We never race with the readers in mem_cgroup_sk_alloc(),
3453 * because when this value change, the code to process it is not
3454 * patched in yet.
3455 */
3456 static_branch_inc(&memcg_sockets_enabled_key);
3457 memcg->tcpmem_active = true;
3458 }
3459 out:
3460 mutex_unlock(&memcg_max_mutex);
3461 return ret;
3462 }
3463
3464 /*
3465 * The user of this function is...
3466 * RES_LIMIT.
3467 */
3468 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3469 char *buf, size_t nbytes, loff_t off)
3470 {
3471 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3472 unsigned long nr_pages;
3473 int ret;
3474
3475 buf = strstrip(buf);
3476 ret = page_counter_memparse(buf, "-1", &nr_pages);
3477 if (ret)
3478 return ret;
3479
3480 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3481 case RES_LIMIT:
3482 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3483 ret = -EINVAL;
3484 break;
3485 }
3486 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3487 case _MEM:
3488 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3489 break;
3490 case _MEMSWAP:
3491 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3492 break;
3493 case _KMEM:
3494 ret = memcg_update_kmem_max(memcg, nr_pages);
3495 break;
3496 case _TCP:
3497 ret = memcg_update_tcp_max(memcg, nr_pages);
3498 break;
3499 }
3500 break;
3501 case RES_SOFT_LIMIT:
3502 memcg->soft_limit = nr_pages;
3503 ret = 0;
3504 break;
3505 }
3506 return ret ?: nbytes;
3507 }
3508
3509 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3510 size_t nbytes, loff_t off)
3511 {
3512 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3513 struct page_counter *counter;
3514
3515 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3516 case _MEM:
3517 counter = &memcg->memory;
3518 break;
3519 case _MEMSWAP:
3520 counter = &memcg->memsw;
3521 break;
3522 case _KMEM:
3523 counter = &memcg->kmem;
3524 break;
3525 case _TCP:
3526 counter = &memcg->tcpmem;
3527 break;
3528 default:
3529 BUG();
3530 }
3531
3532 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3533 case RES_MAX_USAGE:
3534 page_counter_reset_watermark(counter);
3535 break;
3536 case RES_FAILCNT:
3537 counter->failcnt = 0;
3538 break;
3539 default:
3540 BUG();
3541 }
3542
3543 return nbytes;
3544 }
3545
3546 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3547 struct cftype *cft)
3548 {
3549 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3550 }
3551
3552 #ifdef CONFIG_MMU
3553 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3554 struct cftype *cft, u64 val)
3555 {
3556 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3557
3558 if (val & ~MOVE_MASK)
3559 return -EINVAL;
3560
3561 /*
3562 * No kind of locking is needed in here, because ->can_attach() will
3563 * check this value once in the beginning of the process, and then carry
3564 * on with stale data. This means that changes to this value will only
3565 * affect task migrations starting after the change.
3566 */
3567 memcg->move_charge_at_immigrate = val;
3568 return 0;
3569 }
3570 #else
3571 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3572 struct cftype *cft, u64 val)
3573 {
3574 return -ENOSYS;
3575 }
3576 #endif
3577
3578 #ifdef CONFIG_NUMA
3579
3580 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3581 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3582 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3583
3584 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3585 int nid, unsigned int lru_mask)
3586 {
3587 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3588 unsigned long nr = 0;
3589 enum lru_list lru;
3590
3591 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3592
3593 for_each_lru(lru) {
3594 if (!(BIT(lru) & lru_mask))
3595 continue;
3596 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3597 }
3598 return nr;
3599 }
3600
3601 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3602 unsigned int lru_mask)
3603 {
3604 unsigned long nr = 0;
3605 enum lru_list lru;
3606
3607 for_each_lru(lru) {
3608 if (!(BIT(lru) & lru_mask))
3609 continue;
3610 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3611 }
3612 return nr;
3613 }
3614
3615 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3616 {
3617 struct numa_stat {
3618 const char *name;
3619 unsigned int lru_mask;
3620 };
3621
3622 static const struct numa_stat stats[] = {
3623 { "total", LRU_ALL },
3624 { "file", LRU_ALL_FILE },
3625 { "anon", LRU_ALL_ANON },
3626 { "unevictable", BIT(LRU_UNEVICTABLE) },
3627 };
3628 const struct numa_stat *stat;
3629 int nid;
3630 unsigned long nr;
3631 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3632
3633 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3634 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3635 seq_printf(m, "%s=%lu", stat->name, nr);
3636 for_each_node_state(nid, N_MEMORY) {
3637 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3638 stat->lru_mask);
3639 seq_printf(m, " N%d=%lu", nid, nr);
3640 }
3641 seq_putc(m, '\n');
3642 }
3643
3644 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3645 struct mem_cgroup *iter;
3646
3647 nr = 0;
3648 for_each_mem_cgroup_tree(iter, memcg)
3649 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3650 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3651 for_each_node_state(nid, N_MEMORY) {
3652 nr = 0;
3653 for_each_mem_cgroup_tree(iter, memcg)
3654 nr += mem_cgroup_node_nr_lru_pages(
3655 iter, nid, stat->lru_mask);
3656 seq_printf(m, " N%d=%lu", nid, nr);
3657 }
3658 seq_putc(m, '\n');
3659 }
3660
3661 return 0;
3662 }
3663 #endif /* CONFIG_NUMA */
3664
3665 static const unsigned int memcg1_stats[] = {
3666 MEMCG_CACHE,
3667 MEMCG_RSS,
3668 MEMCG_RSS_HUGE,
3669 NR_SHMEM,
3670 NR_FILE_MAPPED,
3671 NR_FILE_DIRTY,
3672 NR_WRITEBACK,
3673 MEMCG_SWAP,
3674 };
3675
3676 static const char *const memcg1_stat_names[] = {
3677 "cache",
3678 "rss",
3679 "rss_huge",
3680 "shmem",
3681 "mapped_file",
3682 "dirty",
3683 "writeback",
3684 "swap",
3685 };
3686
3687 /* Universal VM events cgroup1 shows, original sort order */
3688 static const unsigned int memcg1_events[] = {
3689 PGPGIN,
3690 PGPGOUT,
3691 PGFAULT,
3692 PGMAJFAULT,
3693 };
3694
3695 static const char *const memcg1_event_names[] = {
3696 "pgpgin",
3697 "pgpgout",
3698 "pgfault",
3699 "pgmajfault",
3700 };
3701
3702 static int memcg_stat_show(struct seq_file *m, void *v)
3703 {
3704 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3705 unsigned long memory, memsw;
3706 struct mem_cgroup *mi;
3707 unsigned int i;
3708
3709 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3710 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3711
3712 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3713 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3714 continue;
3715 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3716 memcg_page_state_local(memcg, memcg1_stats[i]) *
3717 PAGE_SIZE);
3718 }
3719
3720 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3721 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3722 memcg_events_local(memcg, memcg1_events[i]));
3723
3724 for (i = 0; i < NR_LRU_LISTS; i++)
3725 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3726 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3727 PAGE_SIZE);
3728
3729 /* Hierarchical information */
3730 memory = memsw = PAGE_COUNTER_MAX;
3731 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3732 memory = min(memory, mi->memory.max);
3733 memsw = min(memsw, mi->memsw.max);
3734 }
3735 seq_printf(m, "hierarchical_memory_limit %llu\n",
3736 (u64)memory * PAGE_SIZE);
3737 if (do_memsw_account())
3738 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3739 (u64)memsw * PAGE_SIZE);
3740
3741 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3742 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3743 continue;
3744 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3745 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3746 PAGE_SIZE);
3747 }
3748
3749 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3750 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3751 (u64)memcg_events(memcg, memcg1_events[i]));
3752
3753 for (i = 0; i < NR_LRU_LISTS; i++)
3754 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3755 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3756 PAGE_SIZE);
3757
3758 #ifdef CONFIG_DEBUG_VM
3759 {
3760 pg_data_t *pgdat;
3761 struct mem_cgroup_per_node *mz;
3762 struct zone_reclaim_stat *rstat;
3763 unsigned long recent_rotated[2] = {0, 0};
3764 unsigned long recent_scanned[2] = {0, 0};
3765
3766 for_each_online_pgdat(pgdat) {
3767 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3768 rstat = &mz->lruvec.reclaim_stat;
3769
3770 recent_rotated[0] += rstat->recent_rotated[0];
3771 recent_rotated[1] += rstat->recent_rotated[1];
3772 recent_scanned[0] += rstat->recent_scanned[0];
3773 recent_scanned[1] += rstat->recent_scanned[1];
3774 }
3775 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3776 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3777 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3778 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3779 }
3780 #endif
3781
3782 return 0;
3783 }
3784
3785 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3786 struct cftype *cft)
3787 {
3788 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3789
3790 return mem_cgroup_swappiness(memcg);
3791 }
3792
3793 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3794 struct cftype *cft, u64 val)
3795 {
3796 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3797
3798 if (val > 100)
3799 return -EINVAL;
3800
3801 if (css->parent)
3802 memcg->swappiness = val;
3803 else
3804 vm_swappiness = val;
3805
3806 return 0;
3807 }
3808
3809 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3810 {
3811 struct mem_cgroup_threshold_ary *t;
3812 unsigned long usage;
3813 int i;
3814
3815 rcu_read_lock();
3816 if (!swap)
3817 t = rcu_dereference(memcg->thresholds.primary);
3818 else
3819 t = rcu_dereference(memcg->memsw_thresholds.primary);
3820
3821 if (!t)
3822 goto unlock;
3823
3824 usage = mem_cgroup_usage(memcg, swap);
3825
3826 /*
3827 * current_threshold points to threshold just below or equal to usage.
3828 * If it's not true, a threshold was crossed after last
3829 * call of __mem_cgroup_threshold().
3830 */
3831 i = t->current_threshold;
3832
3833 /*
3834 * Iterate backward over array of thresholds starting from
3835 * current_threshold and check if a threshold is crossed.
3836 * If none of thresholds below usage is crossed, we read
3837 * only one element of the array here.
3838 */
3839 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3840 eventfd_signal(t->entries[i].eventfd, 1);
3841
3842 /* i = current_threshold + 1 */
3843 i++;
3844
3845 /*
3846 * Iterate forward over array of thresholds starting from
3847 * current_threshold+1 and check if a threshold is crossed.
3848 * If none of thresholds above usage is crossed, we read
3849 * only one element of the array here.
3850 */
3851 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3852 eventfd_signal(t->entries[i].eventfd, 1);
3853
3854 /* Update current_threshold */
3855 t->current_threshold = i - 1;
3856 unlock:
3857 rcu_read_unlock();
3858 }
3859
3860 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3861 {
3862 while (memcg) {
3863 __mem_cgroup_threshold(memcg, false);
3864 if (do_memsw_account())
3865 __mem_cgroup_threshold(memcg, true);
3866
3867 memcg = parent_mem_cgroup(memcg);
3868 }
3869 }
3870
3871 static int compare_thresholds(const void *a, const void *b)
3872 {
3873 const struct mem_cgroup_threshold *_a = a;
3874 const struct mem_cgroup_threshold *_b = b;
3875
3876 if (_a->threshold > _b->threshold)
3877 return 1;
3878
3879 if (_a->threshold < _b->threshold)
3880 return -1;
3881
3882 return 0;
3883 }
3884
3885 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3886 {
3887 struct mem_cgroup_eventfd_list *ev;
3888
3889 spin_lock(&memcg_oom_lock);
3890
3891 list_for_each_entry(ev, &memcg->oom_notify, list)
3892 eventfd_signal(ev->eventfd, 1);
3893
3894 spin_unlock(&memcg_oom_lock);
3895 return 0;
3896 }
3897
3898 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3899 {
3900 struct mem_cgroup *iter;
3901
3902 for_each_mem_cgroup_tree(iter, memcg)
3903 mem_cgroup_oom_notify_cb(iter);
3904 }
3905
3906 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3907 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3908 {
3909 struct mem_cgroup_thresholds *thresholds;
3910 struct mem_cgroup_threshold_ary *new;
3911 unsigned long threshold;
3912 unsigned long usage;
3913 int i, size, ret;
3914
3915 ret = page_counter_memparse(args, "-1", &threshold);
3916 if (ret)
3917 return ret;
3918
3919 mutex_lock(&memcg->thresholds_lock);
3920
3921 if (type == _MEM) {
3922 thresholds = &memcg->thresholds;
3923 usage = mem_cgroup_usage(memcg, false);
3924 } else if (type == _MEMSWAP) {
3925 thresholds = &memcg->memsw_thresholds;
3926 usage = mem_cgroup_usage(memcg, true);
3927 } else
3928 BUG();
3929
3930 /* Check if a threshold crossed before adding a new one */
3931 if (thresholds->primary)
3932 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3933
3934 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3935
3936 /* Allocate memory for new array of thresholds */
3937 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3938 if (!new) {
3939 ret = -ENOMEM;
3940 goto unlock;
3941 }
3942 new->size = size;
3943
3944 /* Copy thresholds (if any) to new array */
3945 if (thresholds->primary) {
3946 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3947 sizeof(struct mem_cgroup_threshold));
3948 }
3949
3950 /* Add new threshold */
3951 new->entries[size - 1].eventfd = eventfd;
3952 new->entries[size - 1].threshold = threshold;
3953
3954 /* Sort thresholds. Registering of new threshold isn't time-critical */
3955 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3956 compare_thresholds, NULL);
3957
3958 /* Find current threshold */
3959 new->current_threshold = -1;
3960 for (i = 0; i < size; i++) {
3961 if (new->entries[i].threshold <= usage) {
3962 /*
3963 * new->current_threshold will not be used until
3964 * rcu_assign_pointer(), so it's safe to increment
3965 * it here.
3966 */
3967 ++new->current_threshold;
3968 } else
3969 break;
3970 }
3971
3972 /* Free old spare buffer and save old primary buffer as spare */
3973 kfree(thresholds->spare);
3974 thresholds->spare = thresholds->primary;
3975
3976 rcu_assign_pointer(thresholds->primary, new);
3977
3978 /* To be sure that nobody uses thresholds */
3979 synchronize_rcu();
3980
3981 unlock:
3982 mutex_unlock(&memcg->thresholds_lock);
3983
3984 return ret;
3985 }
3986
3987 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3988 struct eventfd_ctx *eventfd, const char *args)
3989 {
3990 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3991 }
3992
3993 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3994 struct eventfd_ctx *eventfd, const char *args)
3995 {
3996 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3997 }
3998
3999 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4000 struct eventfd_ctx *eventfd, enum res_type type)
4001 {
4002 struct mem_cgroup_thresholds *thresholds;
4003 struct mem_cgroup_threshold_ary *new;
4004 unsigned long usage;
4005 int i, j, size;
4006
4007 mutex_lock(&memcg->thresholds_lock);
4008
4009 if (type == _MEM) {
4010 thresholds = &memcg->thresholds;
4011 usage = mem_cgroup_usage(memcg, false);
4012 } else if (type == _MEMSWAP) {
4013 thresholds = &memcg->memsw_thresholds;
4014 usage = mem_cgroup_usage(memcg, true);
4015 } else
4016 BUG();
4017
4018 if (!thresholds->primary)
4019 goto unlock;
4020
4021 /* Check if a threshold crossed before removing */
4022 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4023
4024 /* Calculate new number of threshold */
4025 size = 0;
4026 for (i = 0; i < thresholds->primary->size; i++) {
4027 if (thresholds->primary->entries[i].eventfd != eventfd)
4028 size++;
4029 }
4030
4031 new = thresholds->spare;
4032
4033 /* Set thresholds array to NULL if we don't have thresholds */
4034 if (!size) {
4035 kfree(new);
4036 new = NULL;
4037 goto swap_buffers;
4038 }
4039
4040 new->size = size;
4041
4042 /* Copy thresholds and find current threshold */
4043 new->current_threshold = -1;
4044 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4045 if (thresholds->primary->entries[i].eventfd == eventfd)
4046 continue;
4047
4048 new->entries[j] = thresholds->primary->entries[i];
4049 if (new->entries[j].threshold <= usage) {
4050 /*
4051 * new->current_threshold will not be used
4052 * until rcu_assign_pointer(), so it's safe to increment
4053 * it here.
4054 */
4055 ++new->current_threshold;
4056 }
4057 j++;
4058 }
4059
4060 swap_buffers:
4061 /* Swap primary and spare array */
4062 thresholds->spare = thresholds->primary;
4063
4064 rcu_assign_pointer(thresholds->primary, new);
4065
4066 /* To be sure that nobody uses thresholds */
4067 synchronize_rcu();
4068
4069 /* If all events are unregistered, free the spare array */
4070 if (!new) {
4071 kfree(thresholds->spare);
4072 thresholds->spare = NULL;
4073 }
4074 unlock:
4075 mutex_unlock(&memcg->thresholds_lock);
4076 }
4077
4078 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4079 struct eventfd_ctx *eventfd)
4080 {
4081 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4082 }
4083
4084 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4085 struct eventfd_ctx *eventfd)
4086 {
4087 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4088 }
4089
4090 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4091 struct eventfd_ctx *eventfd, const char *args)
4092 {
4093 struct mem_cgroup_eventfd_list *event;
4094
4095 event = kmalloc(sizeof(*event), GFP_KERNEL);
4096 if (!event)
4097 return -ENOMEM;
4098
4099 spin_lock(&memcg_oom_lock);
4100
4101 event->eventfd = eventfd;
4102 list_add(&event->list, &memcg->oom_notify);
4103
4104 /* already in OOM ? */
4105 if (memcg->under_oom)
4106 eventfd_signal(eventfd, 1);
4107 spin_unlock(&memcg_oom_lock);
4108
4109 return 0;
4110 }
4111
4112 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4113 struct eventfd_ctx *eventfd)
4114 {
4115 struct mem_cgroup_eventfd_list *ev, *tmp;
4116
4117 spin_lock(&memcg_oom_lock);
4118
4119 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4120 if (ev->eventfd == eventfd) {
4121 list_del(&ev->list);
4122 kfree(ev);
4123 }
4124 }
4125
4126 spin_unlock(&memcg_oom_lock);
4127 }
4128
4129 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4130 {
4131 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4132
4133 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4134 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4135 seq_printf(sf, "oom_kill %lu\n",
4136 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4137 return 0;
4138 }
4139
4140 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4141 struct cftype *cft, u64 val)
4142 {
4143 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4144
4145 /* cannot set to root cgroup and only 0 and 1 are allowed */
4146 if (!css->parent || !((val == 0) || (val == 1)))
4147 return -EINVAL;
4148
4149 memcg->oom_kill_disable = val;
4150 if (!val)
4151 memcg_oom_recover(memcg);
4152
4153 return 0;
4154 }
4155
4156 #ifdef CONFIG_CGROUP_WRITEBACK
4157
4158 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4159 {
4160 return wb_domain_init(&memcg->cgwb_domain, gfp);
4161 }
4162
4163 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4164 {
4165 wb_domain_exit(&memcg->cgwb_domain);
4166 }
4167
4168 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4169 {
4170 wb_domain_size_changed(&memcg->cgwb_domain);
4171 }
4172
4173 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4174 {
4175 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4176
4177 if (!memcg->css.parent)
4178 return NULL;
4179
4180 return &memcg->cgwb_domain;
4181 }
4182
4183 /*
4184 * idx can be of type enum memcg_stat_item or node_stat_item.
4185 * Keep in sync with memcg_exact_page().
4186 */
4187 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4188 {
4189 long x = atomic_long_read(&memcg->vmstats[idx]);
4190 int cpu;
4191
4192 for_each_online_cpu(cpu)
4193 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4194 if (x < 0)
4195 x = 0;
4196 return x;
4197 }
4198
4199 /**
4200 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4201 * @wb: bdi_writeback in question
4202 * @pfilepages: out parameter for number of file pages
4203 * @pheadroom: out parameter for number of allocatable pages according to memcg
4204 * @pdirty: out parameter for number of dirty pages
4205 * @pwriteback: out parameter for number of pages under writeback
4206 *
4207 * Determine the numbers of file, headroom, dirty, and writeback pages in
4208 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4209 * is a bit more involved.
4210 *
4211 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4212 * headroom is calculated as the lowest headroom of itself and the
4213 * ancestors. Note that this doesn't consider the actual amount of
4214 * available memory in the system. The caller should further cap
4215 * *@pheadroom accordingly.
4216 */
4217 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4218 unsigned long *pheadroom, unsigned long *pdirty,
4219 unsigned long *pwriteback)
4220 {
4221 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4222 struct mem_cgroup *parent;
4223
4224 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4225
4226 /* this should eventually include NR_UNSTABLE_NFS */
4227 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4228 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4229 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4230 *pheadroom = PAGE_COUNTER_MAX;
4231
4232 while ((parent = parent_mem_cgroup(memcg))) {
4233 unsigned long ceiling = min(memcg->memory.max, memcg->high);
4234 unsigned long used = page_counter_read(&memcg->memory);
4235
4236 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4237 memcg = parent;
4238 }
4239 }
4240
4241 #else /* CONFIG_CGROUP_WRITEBACK */
4242
4243 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4244 {
4245 return 0;
4246 }
4247
4248 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4249 {
4250 }
4251
4252 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4253 {
4254 }
4255
4256 #endif /* CONFIG_CGROUP_WRITEBACK */
4257
4258 /*
4259 * DO NOT USE IN NEW FILES.
4260 *
4261 * "cgroup.event_control" implementation.
4262 *
4263 * This is way over-engineered. It tries to support fully configurable
4264 * events for each user. Such level of flexibility is completely
4265 * unnecessary especially in the light of the planned unified hierarchy.
4266 *
4267 * Please deprecate this and replace with something simpler if at all
4268 * possible.
4269 */
4270
4271 /*
4272 * Unregister event and free resources.
4273 *
4274 * Gets called from workqueue.
4275 */
4276 static void memcg_event_remove(struct work_struct *work)
4277 {
4278 struct mem_cgroup_event *event =
4279 container_of(work, struct mem_cgroup_event, remove);
4280 struct mem_cgroup *memcg = event->memcg;
4281
4282 remove_wait_queue(event->wqh, &event->wait);
4283
4284 event->unregister_event(memcg, event->eventfd);
4285
4286 /* Notify userspace the event is going away. */
4287 eventfd_signal(event->eventfd, 1);
4288
4289 eventfd_ctx_put(event->eventfd);
4290 kfree(event);
4291 css_put(&memcg->css);
4292 }
4293
4294 /*
4295 * Gets called on EPOLLHUP on eventfd when user closes it.
4296 *
4297 * Called with wqh->lock held and interrupts disabled.
4298 */
4299 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4300 int sync, void *key)
4301 {
4302 struct mem_cgroup_event *event =
4303 container_of(wait, struct mem_cgroup_event, wait);
4304 struct mem_cgroup *memcg = event->memcg;
4305 __poll_t flags = key_to_poll(key);
4306
4307 if (flags & EPOLLHUP) {
4308 /*
4309 * If the event has been detached at cgroup removal, we
4310 * can simply return knowing the other side will cleanup
4311 * for us.
4312 *
4313 * We can't race against event freeing since the other
4314 * side will require wqh->lock via remove_wait_queue(),
4315 * which we hold.
4316 */
4317 spin_lock(&memcg->event_list_lock);
4318 if (!list_empty(&event->list)) {
4319 list_del_init(&event->list);
4320 /*
4321 * We are in atomic context, but cgroup_event_remove()
4322 * may sleep, so we have to call it in workqueue.
4323 */
4324 schedule_work(&event->remove);
4325 }
4326 spin_unlock(&memcg->event_list_lock);
4327 }
4328
4329 return 0;
4330 }
4331
4332 static void memcg_event_ptable_queue_proc(struct file *file,
4333 wait_queue_head_t *wqh, poll_table *pt)
4334 {
4335 struct mem_cgroup_event *event =
4336 container_of(pt, struct mem_cgroup_event, pt);
4337
4338 event->wqh = wqh;
4339 add_wait_queue(wqh, &event->wait);
4340 }
4341
4342 /*
4343 * DO NOT USE IN NEW FILES.
4344 *
4345 * Parse input and register new cgroup event handler.
4346 *
4347 * Input must be in format '<event_fd> <control_fd> <args>'.
4348 * Interpretation of args is defined by control file implementation.
4349 */
4350 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4351 char *buf, size_t nbytes, loff_t off)
4352 {
4353 struct cgroup_subsys_state *css = of_css(of);
4354 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4355 struct mem_cgroup_event *event;
4356 struct cgroup_subsys_state *cfile_css;
4357 unsigned int efd, cfd;
4358 struct fd efile;
4359 struct fd cfile;
4360 const char *name;
4361 char *endp;
4362 int ret;
4363
4364 buf = strstrip(buf);
4365
4366 efd = simple_strtoul(buf, &endp, 10);
4367 if (*endp != ' ')
4368 return -EINVAL;
4369 buf = endp + 1;
4370
4371 cfd = simple_strtoul(buf, &endp, 10);
4372 if ((*endp != ' ') && (*endp != '\0'))
4373 return -EINVAL;
4374 buf = endp + 1;
4375
4376 event = kzalloc(sizeof(*event), GFP_KERNEL);
4377 if (!event)
4378 return -ENOMEM;
4379
4380 event->memcg = memcg;
4381 INIT_LIST_HEAD(&event->list);
4382 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4383 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4384 INIT_WORK(&event->remove, memcg_event_remove);
4385
4386 efile = fdget(efd);
4387 if (!efile.file) {
4388 ret = -EBADF;
4389 goto out_kfree;
4390 }
4391
4392 event->eventfd = eventfd_ctx_fileget(efile.file);
4393 if (IS_ERR(event->eventfd)) {
4394 ret = PTR_ERR(event->eventfd);
4395 goto out_put_efile;
4396 }
4397
4398 cfile = fdget(cfd);
4399 if (!cfile.file) {
4400 ret = -EBADF;
4401 goto out_put_eventfd;
4402 }
4403
4404 /* the process need read permission on control file */
4405 /* AV: shouldn't we check that it's been opened for read instead? */
4406 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4407 if (ret < 0)
4408 goto out_put_cfile;
4409
4410 /*
4411 * Determine the event callbacks and set them in @event. This used
4412 * to be done via struct cftype but cgroup core no longer knows
4413 * about these events. The following is crude but the whole thing
4414 * is for compatibility anyway.
4415 *
4416 * DO NOT ADD NEW FILES.
4417 */
4418 name = cfile.file->f_path.dentry->d_name.name;
4419
4420 if (!strcmp(name, "memory.usage_in_bytes")) {
4421 event->register_event = mem_cgroup_usage_register_event;
4422 event->unregister_event = mem_cgroup_usage_unregister_event;
4423 } else if (!strcmp(name, "memory.oom_control")) {
4424 event->register_event = mem_cgroup_oom_register_event;
4425 event->unregister_event = mem_cgroup_oom_unregister_event;
4426 } else if (!strcmp(name, "memory.pressure_level")) {
4427 event->register_event = vmpressure_register_event;
4428 event->unregister_event = vmpressure_unregister_event;
4429 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4430 event->register_event = memsw_cgroup_usage_register_event;
4431 event->unregister_event = memsw_cgroup_usage_unregister_event;
4432 } else {
4433 ret = -EINVAL;
4434 goto out_put_cfile;
4435 }
4436
4437 /*
4438 * Verify @cfile should belong to @css. Also, remaining events are
4439 * automatically removed on cgroup destruction but the removal is
4440 * asynchronous, so take an extra ref on @css.
4441 */
4442 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4443 &memory_cgrp_subsys);
4444 ret = -EINVAL;
4445 if (IS_ERR(cfile_css))
4446 goto out_put_cfile;
4447 if (cfile_css != css) {
4448 css_put(cfile_css);
4449 goto out_put_cfile;
4450 }
4451
4452 ret = event->register_event(memcg, event->eventfd, buf);
4453 if (ret)
4454 goto out_put_css;
4455
4456 vfs_poll(efile.file, &event->pt);
4457
4458 spin_lock(&memcg->event_list_lock);
4459 list_add(&event->list, &memcg->event_list);
4460 spin_unlock(&memcg->event_list_lock);
4461
4462 fdput(cfile);
4463 fdput(efile);
4464
4465 return nbytes;
4466
4467 out_put_css:
4468 css_put(css);
4469 out_put_cfile:
4470 fdput(cfile);
4471 out_put_eventfd:
4472 eventfd_ctx_put(event->eventfd);
4473 out_put_efile:
4474 fdput(efile);
4475 out_kfree:
4476 kfree(event);
4477
4478 return ret;
4479 }
4480
4481 static struct cftype mem_cgroup_legacy_files[] = {
4482 {
4483 .name = "usage_in_bytes",
4484 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4485 .read_u64 = mem_cgroup_read_u64,
4486 },
4487 {
4488 .name = "max_usage_in_bytes",
4489 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4490 .write = mem_cgroup_reset,
4491 .read_u64 = mem_cgroup_read_u64,
4492 },
4493 {
4494 .name = "limit_in_bytes",
4495 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4496 .write = mem_cgroup_write,
4497 .read_u64 = mem_cgroup_read_u64,
4498 },
4499 {
4500 .name = "soft_limit_in_bytes",
4501 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4502 .write = mem_cgroup_write,
4503 .read_u64 = mem_cgroup_read_u64,
4504 },
4505 {
4506 .name = "failcnt",
4507 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4508 .write = mem_cgroup_reset,
4509 .read_u64 = mem_cgroup_read_u64,
4510 },
4511 {
4512 .name = "stat",
4513 .seq_show = memcg_stat_show,
4514 },
4515 {
4516 .name = "force_empty",
4517 .write = mem_cgroup_force_empty_write,
4518 },
4519 {
4520 .name = "use_hierarchy",
4521 .write_u64 = mem_cgroup_hierarchy_write,
4522 .read_u64 = mem_cgroup_hierarchy_read,
4523 },
4524 {
4525 .name = "cgroup.event_control", /* XXX: for compat */
4526 .write = memcg_write_event_control,
4527 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4528 },
4529 {
4530 .name = "swappiness",
4531 .read_u64 = mem_cgroup_swappiness_read,
4532 .write_u64 = mem_cgroup_swappiness_write,
4533 },
4534 {
4535 .name = "move_charge_at_immigrate",
4536 .read_u64 = mem_cgroup_move_charge_read,
4537 .write_u64 = mem_cgroup_move_charge_write,
4538 },
4539 {
4540 .name = "oom_control",
4541 .seq_show = mem_cgroup_oom_control_read,
4542 .write_u64 = mem_cgroup_oom_control_write,
4543 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4544 },
4545 {
4546 .name = "pressure_level",
4547 },
4548 #ifdef CONFIG_NUMA
4549 {
4550 .name = "numa_stat",
4551 .seq_show = memcg_numa_stat_show,
4552 },
4553 #endif
4554 {
4555 .name = "kmem.limit_in_bytes",
4556 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4557 .write = mem_cgroup_write,
4558 .read_u64 = mem_cgroup_read_u64,
4559 },
4560 {
4561 .name = "kmem.usage_in_bytes",
4562 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4563 .read_u64 = mem_cgroup_read_u64,
4564 },
4565 {
4566 .name = "kmem.failcnt",
4567 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4568 .write = mem_cgroup_reset,
4569 .read_u64 = mem_cgroup_read_u64,
4570 },
4571 {
4572 .name = "kmem.max_usage_in_bytes",
4573 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4574 .write = mem_cgroup_reset,
4575 .read_u64 = mem_cgroup_read_u64,
4576 },
4577 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4578 {
4579 .name = "kmem.slabinfo",
4580 .seq_start = memcg_slab_start,
4581 .seq_next = memcg_slab_next,
4582 .seq_stop = memcg_slab_stop,
4583 .seq_show = memcg_slab_show,
4584 },
4585 #endif
4586 {
4587 .name = "kmem.tcp.limit_in_bytes",
4588 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4589 .write = mem_cgroup_write,
4590 .read_u64 = mem_cgroup_read_u64,
4591 },
4592 {
4593 .name = "kmem.tcp.usage_in_bytes",
4594 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4595 .read_u64 = mem_cgroup_read_u64,
4596 },
4597 {
4598 .name = "kmem.tcp.failcnt",
4599 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4600 .write = mem_cgroup_reset,
4601 .read_u64 = mem_cgroup_read_u64,
4602 },
4603 {
4604 .name = "kmem.tcp.max_usage_in_bytes",
4605 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4606 .write = mem_cgroup_reset,
4607 .read_u64 = mem_cgroup_read_u64,
4608 },
4609 { }, /* terminate */
4610 };
4611
4612 /*
4613 * Private memory cgroup IDR
4614 *
4615 * Swap-out records and page cache shadow entries need to store memcg
4616 * references in constrained space, so we maintain an ID space that is
4617 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4618 * memory-controlled cgroups to 64k.
4619 *
4620 * However, there usually are many references to the oflline CSS after
4621 * the cgroup has been destroyed, such as page cache or reclaimable
4622 * slab objects, that don't need to hang on to the ID. We want to keep
4623 * those dead CSS from occupying IDs, or we might quickly exhaust the
4624 * relatively small ID space and prevent the creation of new cgroups
4625 * even when there are much fewer than 64k cgroups - possibly none.
4626 *
4627 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4628 * be freed and recycled when it's no longer needed, which is usually
4629 * when the CSS is offlined.
4630 *
4631 * The only exception to that are records of swapped out tmpfs/shmem
4632 * pages that need to be attributed to live ancestors on swapin. But
4633 * those references are manageable from userspace.
4634 */
4635
4636 static DEFINE_IDR(mem_cgroup_idr);
4637
4638 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4639 {
4640 if (memcg->id.id > 0) {
4641 idr_remove(&mem_cgroup_idr, memcg->id.id);
4642 memcg->id.id = 0;
4643 }
4644 }
4645
4646 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4647 {
4648 refcount_add(n, &memcg->id.ref);
4649 }
4650
4651 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4652 {
4653 if (refcount_sub_and_test(n, &memcg->id.ref)) {
4654 mem_cgroup_id_remove(memcg);
4655
4656 /* Memcg ID pins CSS */
4657 css_put(&memcg->css);
4658 }
4659 }
4660
4661 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4662 {
4663 mem_cgroup_id_get_many(memcg, 1);
4664 }
4665
4666 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4667 {
4668 mem_cgroup_id_put_many(memcg, 1);
4669 }
4670
4671 /**
4672 * mem_cgroup_from_id - look up a memcg from a memcg id
4673 * @id: the memcg id to look up
4674 *
4675 * Caller must hold rcu_read_lock().
4676 */
4677 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4678 {
4679 WARN_ON_ONCE(!rcu_read_lock_held());
4680 return idr_find(&mem_cgroup_idr, id);
4681 }
4682
4683 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4684 {
4685 struct mem_cgroup_per_node *pn;
4686 int tmp = node;
4687 /*
4688 * This routine is called against possible nodes.
4689 * But it's BUG to call kmalloc() against offline node.
4690 *
4691 * TODO: this routine can waste much memory for nodes which will
4692 * never be onlined. It's better to use memory hotplug callback
4693 * function.
4694 */
4695 if (!node_state(node, N_NORMAL_MEMORY))
4696 tmp = -1;
4697 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4698 if (!pn)
4699 return 1;
4700
4701 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4702 if (!pn->lruvec_stat_local) {
4703 kfree(pn);
4704 return 1;
4705 }
4706
4707 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4708 if (!pn->lruvec_stat_cpu) {
4709 free_percpu(pn->lruvec_stat_local);
4710 kfree(pn);
4711 return 1;
4712 }
4713
4714 lruvec_init(&pn->lruvec);
4715 pn->usage_in_excess = 0;
4716 pn->on_tree = false;
4717 pn->memcg = memcg;
4718
4719 memcg->nodeinfo[node] = pn;
4720 return 0;
4721 }
4722
4723 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4724 {
4725 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4726
4727 if (!pn)
4728 return;
4729
4730 free_percpu(pn->lruvec_stat_cpu);
4731 free_percpu(pn->lruvec_stat_local);
4732 kfree(pn);
4733 }
4734
4735 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4736 {
4737 int node;
4738
4739 /*
4740 * Flush percpu vmstats and vmevents to guarantee the value correctness
4741 * on parent's and all ancestor levels.
4742 */
4743 memcg_flush_percpu_vmstats(memcg);
4744 memcg_flush_percpu_vmevents(memcg);
4745 for_each_node(node)
4746 free_mem_cgroup_per_node_info(memcg, node);
4747 free_percpu(memcg->vmstats_percpu);
4748 free_percpu(memcg->vmstats_local);
4749 kfree(memcg);
4750 }
4751
4752 static void mem_cgroup_free(struct mem_cgroup *memcg)
4753 {
4754 memcg_wb_domain_exit(memcg);
4755 __mem_cgroup_free(memcg);
4756 }
4757
4758 static struct mem_cgroup *mem_cgroup_alloc(void)
4759 {
4760 struct mem_cgroup *memcg;
4761 unsigned int size;
4762 int node;
4763
4764 size = sizeof(struct mem_cgroup);
4765 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4766
4767 memcg = kzalloc(size, GFP_KERNEL);
4768 if (!memcg)
4769 return NULL;
4770
4771 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4772 1, MEM_CGROUP_ID_MAX,
4773 GFP_KERNEL);
4774 if (memcg->id.id < 0)
4775 goto fail;
4776
4777 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4778 if (!memcg->vmstats_local)
4779 goto fail;
4780
4781 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4782 if (!memcg->vmstats_percpu)
4783 goto fail;
4784
4785 for_each_node(node)
4786 if (alloc_mem_cgroup_per_node_info(memcg, node))
4787 goto fail;
4788
4789 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4790 goto fail;
4791
4792 INIT_WORK(&memcg->high_work, high_work_func);
4793 memcg->last_scanned_node = MAX_NUMNODES;
4794 INIT_LIST_HEAD(&memcg->oom_notify);
4795 mutex_init(&memcg->thresholds_lock);
4796 spin_lock_init(&memcg->move_lock);
4797 vmpressure_init(&memcg->vmpressure);
4798 INIT_LIST_HEAD(&memcg->event_list);
4799 spin_lock_init(&memcg->event_list_lock);
4800 memcg->socket_pressure = jiffies;
4801 #ifdef CONFIG_MEMCG_KMEM
4802 memcg->kmemcg_id = -1;
4803 #endif
4804 #ifdef CONFIG_CGROUP_WRITEBACK
4805 INIT_LIST_HEAD(&memcg->cgwb_list);
4806 #endif
4807 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4808 return memcg;
4809 fail:
4810 mem_cgroup_id_remove(memcg);
4811 __mem_cgroup_free(memcg);
4812 return NULL;
4813 }
4814
4815 static struct cgroup_subsys_state * __ref
4816 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4817 {
4818 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4819 struct mem_cgroup *memcg;
4820 long error = -ENOMEM;
4821
4822 memcg = mem_cgroup_alloc();
4823 if (!memcg)
4824 return ERR_PTR(error);
4825
4826 memcg->high = PAGE_COUNTER_MAX;
4827 memcg->soft_limit = PAGE_COUNTER_MAX;
4828 if (parent) {
4829 memcg->swappiness = mem_cgroup_swappiness(parent);
4830 memcg->oom_kill_disable = parent->oom_kill_disable;
4831 }
4832 if (parent && parent->use_hierarchy) {
4833 memcg->use_hierarchy = true;
4834 page_counter_init(&memcg->memory, &parent->memory);
4835 page_counter_init(&memcg->swap, &parent->swap);
4836 page_counter_init(&memcg->memsw, &parent->memsw);
4837 page_counter_init(&memcg->kmem, &parent->kmem);
4838 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4839 } else {
4840 page_counter_init(&memcg->memory, NULL);
4841 page_counter_init(&memcg->swap, NULL);
4842 page_counter_init(&memcg->memsw, NULL);
4843 page_counter_init(&memcg->kmem, NULL);
4844 page_counter_init(&memcg->tcpmem, NULL);
4845 /*
4846 * Deeper hierachy with use_hierarchy == false doesn't make
4847 * much sense so let cgroup subsystem know about this
4848 * unfortunate state in our controller.
4849 */
4850 if (parent != root_mem_cgroup)
4851 memory_cgrp_subsys.broken_hierarchy = true;
4852 }
4853
4854 /* The following stuff does not apply to the root */
4855 if (!parent) {
4856 #ifdef CONFIG_MEMCG_KMEM
4857 INIT_LIST_HEAD(&memcg->kmem_caches);
4858 #endif
4859 root_mem_cgroup = memcg;
4860 return &memcg->css;
4861 }
4862
4863 error = memcg_online_kmem(memcg);
4864 if (error)
4865 goto fail;
4866
4867 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4868 static_branch_inc(&memcg_sockets_enabled_key);
4869
4870 return &memcg->css;
4871 fail:
4872 mem_cgroup_id_remove(memcg);
4873 mem_cgroup_free(memcg);
4874 return ERR_PTR(-ENOMEM);
4875 }
4876
4877 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4878 {
4879 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4880
4881 /*
4882 * A memcg must be visible for memcg_expand_shrinker_maps()
4883 * by the time the maps are allocated. So, we allocate maps
4884 * here, when for_each_mem_cgroup() can't skip it.
4885 */
4886 if (memcg_alloc_shrinker_maps(memcg)) {
4887 mem_cgroup_id_remove(memcg);
4888 return -ENOMEM;
4889 }
4890
4891 /* Online state pins memcg ID, memcg ID pins CSS */
4892 refcount_set(&memcg->id.ref, 1);
4893 css_get(css);
4894 return 0;
4895 }
4896
4897 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4898 {
4899 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4900 struct mem_cgroup_event *event, *tmp;
4901
4902 /*
4903 * Unregister events and notify userspace.
4904 * Notify userspace about cgroup removing only after rmdir of cgroup
4905 * directory to avoid race between userspace and kernelspace.
4906 */
4907 spin_lock(&memcg->event_list_lock);
4908 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4909 list_del_init(&event->list);
4910 schedule_work(&event->remove);
4911 }
4912 spin_unlock(&memcg->event_list_lock);
4913
4914 page_counter_set_min(&memcg->memory, 0);
4915 page_counter_set_low(&memcg->memory, 0);
4916
4917 memcg_offline_kmem(memcg);
4918 wb_memcg_offline(memcg);
4919
4920 drain_all_stock(memcg);
4921
4922 mem_cgroup_id_put(memcg);
4923 }
4924
4925 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4926 {
4927 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4928
4929 invalidate_reclaim_iterators(memcg);
4930 }
4931
4932 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4933 {
4934 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4935
4936 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4937 static_branch_dec(&memcg_sockets_enabled_key);
4938
4939 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4940 static_branch_dec(&memcg_sockets_enabled_key);
4941
4942 vmpressure_cleanup(&memcg->vmpressure);
4943 cancel_work_sync(&memcg->high_work);
4944 mem_cgroup_remove_from_trees(memcg);
4945 memcg_free_shrinker_maps(memcg);
4946 memcg_free_kmem(memcg);
4947 mem_cgroup_free(memcg);
4948 }
4949
4950 /**
4951 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4952 * @css: the target css
4953 *
4954 * Reset the states of the mem_cgroup associated with @css. This is
4955 * invoked when the userland requests disabling on the default hierarchy
4956 * but the memcg is pinned through dependency. The memcg should stop
4957 * applying policies and should revert to the vanilla state as it may be
4958 * made visible again.
4959 *
4960 * The current implementation only resets the essential configurations.
4961 * This needs to be expanded to cover all the visible parts.
4962 */
4963 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4964 {
4965 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4966
4967 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4968 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4969 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4970 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4971 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4972 page_counter_set_min(&memcg->memory, 0);
4973 page_counter_set_low(&memcg->memory, 0);
4974 memcg->high = PAGE_COUNTER_MAX;
4975 memcg->soft_limit = PAGE_COUNTER_MAX;
4976 memcg_wb_domain_size_changed(memcg);
4977 }
4978
4979 #ifdef CONFIG_MMU
4980 /* Handlers for move charge at task migration. */
4981 static int mem_cgroup_do_precharge(unsigned long count)
4982 {
4983 int ret;
4984
4985 /* Try a single bulk charge without reclaim first, kswapd may wake */
4986 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4987 if (!ret) {
4988 mc.precharge += count;
4989 return ret;
4990 }
4991
4992 /* Try charges one by one with reclaim, but do not retry */
4993 while (count--) {
4994 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4995 if (ret)
4996 return ret;
4997 mc.precharge++;
4998 cond_resched();
4999 }
5000 return 0;
5001 }
5002
5003 union mc_target {
5004 struct page *page;
5005 swp_entry_t ent;
5006 };
5007
5008 enum mc_target_type {
5009 MC_TARGET_NONE = 0,
5010 MC_TARGET_PAGE,
5011 MC_TARGET_SWAP,
5012 MC_TARGET_DEVICE,
5013 };
5014
5015 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5016 unsigned long addr, pte_t ptent)
5017 {
5018 struct page *page = vm_normal_page(vma, addr, ptent);
5019
5020 if (!page || !page_mapped(page))
5021 return NULL;
5022 if (PageAnon(page)) {
5023 if (!(mc.flags & MOVE_ANON))
5024 return NULL;
5025 } else {
5026 if (!(mc.flags & MOVE_FILE))
5027 return NULL;
5028 }
5029 if (!get_page_unless_zero(page))
5030 return NULL;
5031
5032 return page;
5033 }
5034
5035 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5036 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5037 pte_t ptent, swp_entry_t *entry)
5038 {
5039 struct page *page = NULL;
5040 swp_entry_t ent = pte_to_swp_entry(ptent);
5041
5042 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5043 return NULL;
5044
5045 /*
5046 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5047 * a device and because they are not accessible by CPU they are store
5048 * as special swap entry in the CPU page table.
5049 */
5050 if (is_device_private_entry(ent)) {
5051 page = device_private_entry_to_page(ent);
5052 /*
5053 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5054 * a refcount of 1 when free (unlike normal page)
5055 */
5056 if (!page_ref_add_unless(page, 1, 1))
5057 return NULL;
5058 return page;
5059 }
5060
5061 /*
5062 * Because lookup_swap_cache() updates some statistics counter,
5063 * we call find_get_page() with swapper_space directly.
5064 */
5065 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5066 if (do_memsw_account())
5067 entry->val = ent.val;
5068
5069 return page;
5070 }
5071 #else
5072 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5073 pte_t ptent, swp_entry_t *entry)
5074 {
5075 return NULL;
5076 }
5077 #endif
5078
5079 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5080 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5081 {
5082 struct page *page = NULL;
5083 struct address_space *mapping;
5084 pgoff_t pgoff;
5085
5086 if (!vma->vm_file) /* anonymous vma */
5087 return NULL;
5088 if (!(mc.flags & MOVE_FILE))
5089 return NULL;
5090
5091 mapping = vma->vm_file->f_mapping;
5092 pgoff = linear_page_index(vma, addr);
5093
5094 /* page is moved even if it's not RSS of this task(page-faulted). */
5095 #ifdef CONFIG_SWAP
5096 /* shmem/tmpfs may report page out on swap: account for that too. */
5097 if (shmem_mapping(mapping)) {
5098 page = find_get_entry(mapping, pgoff);
5099 if (xa_is_value(page)) {
5100 swp_entry_t swp = radix_to_swp_entry(page);
5101 if (do_memsw_account())
5102 *entry = swp;
5103 page = find_get_page(swap_address_space(swp),
5104 swp_offset(swp));
5105 }
5106 } else
5107 page = find_get_page(mapping, pgoff);
5108 #else
5109 page = find_get_page(mapping, pgoff);
5110 #endif
5111 return page;
5112 }
5113
5114 /**
5115 * mem_cgroup_move_account - move account of the page
5116 * @page: the page
5117 * @compound: charge the page as compound or small page
5118 * @from: mem_cgroup which the page is moved from.
5119 * @to: mem_cgroup which the page is moved to. @from != @to.
5120 *
5121 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5122 *
5123 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5124 * from old cgroup.
5125 */
5126 static int mem_cgroup_move_account(struct page *page,
5127 bool compound,
5128 struct mem_cgroup *from,
5129 struct mem_cgroup *to)
5130 {
5131 unsigned long flags;
5132 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5133 int ret;
5134 bool anon;
5135
5136 VM_BUG_ON(from == to);
5137 VM_BUG_ON_PAGE(PageLRU(page), page);
5138 VM_BUG_ON(compound && !PageTransHuge(page));
5139
5140 /*
5141 * Prevent mem_cgroup_migrate() from looking at
5142 * page->mem_cgroup of its source page while we change it.
5143 */
5144 ret = -EBUSY;
5145 if (!trylock_page(page))
5146 goto out;
5147
5148 ret = -EINVAL;
5149 if (page->mem_cgroup != from)
5150 goto out_unlock;
5151
5152 anon = PageAnon(page);
5153
5154 spin_lock_irqsave(&from->move_lock, flags);
5155
5156 if (!anon && page_mapped(page)) {
5157 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
5158 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
5159 }
5160
5161 /*
5162 * move_lock grabbed above and caller set from->moving_account, so
5163 * mod_memcg_page_state will serialize updates to PageDirty.
5164 * So mapping should be stable for dirty pages.
5165 */
5166 if (!anon && PageDirty(page)) {
5167 struct address_space *mapping = page_mapping(page);
5168
5169 if (mapping_cap_account_dirty(mapping)) {
5170 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
5171 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
5172 }
5173 }
5174
5175 if (PageWriteback(page)) {
5176 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
5177 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
5178 }
5179
5180 /*
5181 * It is safe to change page->mem_cgroup here because the page
5182 * is referenced, charged, and isolated - we can't race with
5183 * uncharging, charging, migration, or LRU putback.
5184 */
5185
5186 /* caller should have done css_get */
5187 page->mem_cgroup = to;
5188 spin_unlock_irqrestore(&from->move_lock, flags);
5189
5190 ret = 0;
5191
5192 local_irq_disable();
5193 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5194 memcg_check_events(to, page);
5195 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5196 memcg_check_events(from, page);
5197 local_irq_enable();
5198 out_unlock:
5199 unlock_page(page);
5200 out:
5201 return ret;
5202 }
5203
5204 /**
5205 * get_mctgt_type - get target type of moving charge
5206 * @vma: the vma the pte to be checked belongs
5207 * @addr: the address corresponding to the pte to be checked
5208 * @ptent: the pte to be checked
5209 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5210 *
5211 * Returns
5212 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5213 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5214 * move charge. if @target is not NULL, the page is stored in target->page
5215 * with extra refcnt got(Callers should handle it).
5216 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5217 * target for charge migration. if @target is not NULL, the entry is stored
5218 * in target->ent.
5219 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5220 * (so ZONE_DEVICE page and thus not on the lru).
5221 * For now we such page is charge like a regular page would be as for all
5222 * intent and purposes it is just special memory taking the place of a
5223 * regular page.
5224 *
5225 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5226 *
5227 * Called with pte lock held.
5228 */
5229
5230 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5231 unsigned long addr, pte_t ptent, union mc_target *target)
5232 {
5233 struct page *page = NULL;
5234 enum mc_target_type ret = MC_TARGET_NONE;
5235 swp_entry_t ent = { .val = 0 };
5236
5237 if (pte_present(ptent))
5238 page = mc_handle_present_pte(vma, addr, ptent);
5239 else if (is_swap_pte(ptent))
5240 page = mc_handle_swap_pte(vma, ptent, &ent);
5241 else if (pte_none(ptent))
5242 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5243
5244 if (!page && !ent.val)
5245 return ret;
5246 if (page) {
5247 /*
5248 * Do only loose check w/o serialization.
5249 * mem_cgroup_move_account() checks the page is valid or
5250 * not under LRU exclusion.
5251 */
5252 if (page->mem_cgroup == mc.from) {
5253 ret = MC_TARGET_PAGE;
5254 if (is_device_private_page(page))
5255 ret = MC_TARGET_DEVICE;
5256 if (target)
5257 target->page = page;
5258 }
5259 if (!ret || !target)
5260 put_page(page);
5261 }
5262 /*
5263 * There is a swap entry and a page doesn't exist or isn't charged.
5264 * But we cannot move a tail-page in a THP.
5265 */
5266 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5267 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5268 ret = MC_TARGET_SWAP;
5269 if (target)
5270 target->ent = ent;
5271 }
5272 return ret;
5273 }
5274
5275 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5276 /*
5277 * We don't consider PMD mapped swapping or file mapped pages because THP does
5278 * not support them for now.
5279 * Caller should make sure that pmd_trans_huge(pmd) is true.
5280 */
5281 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5282 unsigned long addr, pmd_t pmd, union mc_target *target)
5283 {
5284 struct page *page = NULL;
5285 enum mc_target_type ret = MC_TARGET_NONE;
5286
5287 if (unlikely(is_swap_pmd(pmd))) {
5288 VM_BUG_ON(thp_migration_supported() &&
5289 !is_pmd_migration_entry(pmd));
5290 return ret;
5291 }
5292 page = pmd_page(pmd);
5293 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5294 if (!(mc.flags & MOVE_ANON))
5295 return ret;
5296 if (page->mem_cgroup == mc.from) {
5297 ret = MC_TARGET_PAGE;
5298 if (target) {
5299 get_page(page);
5300 target->page = page;
5301 }
5302 }
5303 return ret;
5304 }
5305 #else
5306 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5307 unsigned long addr, pmd_t pmd, union mc_target *target)
5308 {
5309 return MC_TARGET_NONE;
5310 }
5311 #endif
5312
5313 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5314 unsigned long addr, unsigned long end,
5315 struct mm_walk *walk)
5316 {
5317 struct vm_area_struct *vma = walk->vma;
5318 pte_t *pte;
5319 spinlock_t *ptl;
5320
5321 ptl = pmd_trans_huge_lock(pmd, vma);
5322 if (ptl) {
5323 /*
5324 * Note their can not be MC_TARGET_DEVICE for now as we do not
5325 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5326 * this might change.
5327 */
5328 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5329 mc.precharge += HPAGE_PMD_NR;
5330 spin_unlock(ptl);
5331 return 0;
5332 }
5333
5334 if (pmd_trans_unstable(pmd))
5335 return 0;
5336 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5337 for (; addr != end; pte++, addr += PAGE_SIZE)
5338 if (get_mctgt_type(vma, addr, *pte, NULL))
5339 mc.precharge++; /* increment precharge temporarily */
5340 pte_unmap_unlock(pte - 1, ptl);
5341 cond_resched();
5342
5343 return 0;
5344 }
5345
5346 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5347 {
5348 unsigned long precharge;
5349
5350 struct mm_walk mem_cgroup_count_precharge_walk = {
5351 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5352 .mm = mm,
5353 };
5354 down_read(&mm->mmap_sem);
5355 walk_page_range(0, mm->highest_vm_end,
5356 &mem_cgroup_count_precharge_walk);
5357 up_read(&mm->mmap_sem);
5358
5359 precharge = mc.precharge;
5360 mc.precharge = 0;
5361
5362 return precharge;
5363 }
5364
5365 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5366 {
5367 unsigned long precharge = mem_cgroup_count_precharge(mm);
5368
5369 VM_BUG_ON(mc.moving_task);
5370 mc.moving_task = current;
5371 return mem_cgroup_do_precharge(precharge);
5372 }
5373
5374 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5375 static void __mem_cgroup_clear_mc(void)
5376 {
5377 struct mem_cgroup *from = mc.from;
5378 struct mem_cgroup *to = mc.to;
5379
5380 /* we must uncharge all the leftover precharges from mc.to */
5381 if (mc.precharge) {
5382 cancel_charge(mc.to, mc.precharge);
5383 mc.precharge = 0;
5384 }
5385 /*
5386 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5387 * we must uncharge here.
5388 */
5389 if (mc.moved_charge) {
5390 cancel_charge(mc.from, mc.moved_charge);
5391 mc.moved_charge = 0;
5392 }
5393 /* we must fixup refcnts and charges */
5394 if (mc.moved_swap) {
5395 /* uncharge swap account from the old cgroup */
5396 if (!mem_cgroup_is_root(mc.from))
5397 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5398
5399 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5400
5401 /*
5402 * we charged both to->memory and to->memsw, so we
5403 * should uncharge to->memory.
5404 */
5405 if (!mem_cgroup_is_root(mc.to))
5406 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5407
5408 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5409 css_put_many(&mc.to->css, mc.moved_swap);
5410
5411 mc.moved_swap = 0;
5412 }
5413 memcg_oom_recover(from);
5414 memcg_oom_recover(to);
5415 wake_up_all(&mc.waitq);
5416 }
5417
5418 static void mem_cgroup_clear_mc(void)
5419 {
5420 struct mm_struct *mm = mc.mm;
5421
5422 /*
5423 * we must clear moving_task before waking up waiters at the end of
5424 * task migration.
5425 */
5426 mc.moving_task = NULL;
5427 __mem_cgroup_clear_mc();
5428 spin_lock(&mc.lock);
5429 mc.from = NULL;
5430 mc.to = NULL;
5431 mc.mm = NULL;
5432 spin_unlock(&mc.lock);
5433
5434 mmput(mm);
5435 }
5436
5437 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5438 {
5439 struct cgroup_subsys_state *css;
5440 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5441 struct mem_cgroup *from;
5442 struct task_struct *leader, *p;
5443 struct mm_struct *mm;
5444 unsigned long move_flags;
5445 int ret = 0;
5446
5447 /* charge immigration isn't supported on the default hierarchy */
5448 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5449 return 0;
5450
5451 /*
5452 * Multi-process migrations only happen on the default hierarchy
5453 * where charge immigration is not used. Perform charge
5454 * immigration if @tset contains a leader and whine if there are
5455 * multiple.
5456 */
5457 p = NULL;
5458 cgroup_taskset_for_each_leader(leader, css, tset) {
5459 WARN_ON_ONCE(p);
5460 p = leader;
5461 memcg = mem_cgroup_from_css(css);
5462 }
5463 if (!p)
5464 return 0;
5465
5466 /*
5467 * We are now commited to this value whatever it is. Changes in this
5468 * tunable will only affect upcoming migrations, not the current one.
5469 * So we need to save it, and keep it going.
5470 */
5471 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5472 if (!move_flags)
5473 return 0;
5474
5475 from = mem_cgroup_from_task(p);
5476
5477 VM_BUG_ON(from == memcg);
5478
5479 mm = get_task_mm(p);
5480 if (!mm)
5481 return 0;
5482 /* We move charges only when we move a owner of the mm */
5483 if (mm->owner == p) {
5484 VM_BUG_ON(mc.from);
5485 VM_BUG_ON(mc.to);
5486 VM_BUG_ON(mc.precharge);
5487 VM_BUG_ON(mc.moved_charge);
5488 VM_BUG_ON(mc.moved_swap);
5489
5490 spin_lock(&mc.lock);
5491 mc.mm = mm;
5492 mc.from = from;
5493 mc.to = memcg;
5494 mc.flags = move_flags;
5495 spin_unlock(&mc.lock);
5496 /* We set mc.moving_task later */
5497
5498 ret = mem_cgroup_precharge_mc(mm);
5499 if (ret)
5500 mem_cgroup_clear_mc();
5501 } else {
5502 mmput(mm);
5503 }
5504 return ret;
5505 }
5506
5507 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5508 {
5509 if (mc.to)
5510 mem_cgroup_clear_mc();
5511 }
5512
5513 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5514 unsigned long addr, unsigned long end,
5515 struct mm_walk *walk)
5516 {
5517 int ret = 0;
5518 struct vm_area_struct *vma = walk->vma;
5519 pte_t *pte;
5520 spinlock_t *ptl;
5521 enum mc_target_type target_type;
5522 union mc_target target;
5523 struct page *page;
5524
5525 ptl = pmd_trans_huge_lock(pmd, vma);
5526 if (ptl) {
5527 if (mc.precharge < HPAGE_PMD_NR) {
5528 spin_unlock(ptl);
5529 return 0;
5530 }
5531 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5532 if (target_type == MC_TARGET_PAGE) {
5533 page = target.page;
5534 if (!isolate_lru_page(page)) {
5535 if (!mem_cgroup_move_account(page, true,
5536 mc.from, mc.to)) {
5537 mc.precharge -= HPAGE_PMD_NR;
5538 mc.moved_charge += HPAGE_PMD_NR;
5539 }
5540 putback_lru_page(page);
5541 }
5542 put_page(page);
5543 } else if (target_type == MC_TARGET_DEVICE) {
5544 page = target.page;
5545 if (!mem_cgroup_move_account(page, true,
5546 mc.from, mc.to)) {
5547 mc.precharge -= HPAGE_PMD_NR;
5548 mc.moved_charge += HPAGE_PMD_NR;
5549 }
5550 put_page(page);
5551 }
5552 spin_unlock(ptl);
5553 return 0;
5554 }
5555
5556 if (pmd_trans_unstable(pmd))
5557 return 0;
5558 retry:
5559 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5560 for (; addr != end; addr += PAGE_SIZE) {
5561 pte_t ptent = *(pte++);
5562 bool device = false;
5563 swp_entry_t ent;
5564
5565 if (!mc.precharge)
5566 break;
5567
5568 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5569 case MC_TARGET_DEVICE:
5570 device = true;
5571 /* fall through */
5572 case MC_TARGET_PAGE:
5573 page = target.page;
5574 /*
5575 * We can have a part of the split pmd here. Moving it
5576 * can be done but it would be too convoluted so simply
5577 * ignore such a partial THP and keep it in original
5578 * memcg. There should be somebody mapping the head.
5579 */
5580 if (PageTransCompound(page))
5581 goto put;
5582 if (!device && isolate_lru_page(page))
5583 goto put;
5584 if (!mem_cgroup_move_account(page, false,
5585 mc.from, mc.to)) {
5586 mc.precharge--;
5587 /* we uncharge from mc.from later. */
5588 mc.moved_charge++;
5589 }
5590 if (!device)
5591 putback_lru_page(page);
5592 put: /* get_mctgt_type() gets the page */
5593 put_page(page);
5594 break;
5595 case MC_TARGET_SWAP:
5596 ent = target.ent;
5597 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5598 mc.precharge--;
5599 /* we fixup refcnts and charges later. */
5600 mc.moved_swap++;
5601 }
5602 break;
5603 default:
5604 break;
5605 }
5606 }
5607 pte_unmap_unlock(pte - 1, ptl);
5608 cond_resched();
5609
5610 if (addr != end) {
5611 /*
5612 * We have consumed all precharges we got in can_attach().
5613 * We try charge one by one, but don't do any additional
5614 * charges to mc.to if we have failed in charge once in attach()
5615 * phase.
5616 */
5617 ret = mem_cgroup_do_precharge(1);
5618 if (!ret)
5619 goto retry;
5620 }
5621
5622 return ret;
5623 }
5624
5625 static void mem_cgroup_move_charge(void)
5626 {
5627 struct mm_walk mem_cgroup_move_charge_walk = {
5628 .pmd_entry = mem_cgroup_move_charge_pte_range,
5629 .mm = mc.mm,
5630 };
5631
5632 lru_add_drain_all();
5633 /*
5634 * Signal lock_page_memcg() to take the memcg's move_lock
5635 * while we're moving its pages to another memcg. Then wait
5636 * for already started RCU-only updates to finish.
5637 */
5638 atomic_inc(&mc.from->moving_account);
5639 synchronize_rcu();
5640 retry:
5641 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5642 /*
5643 * Someone who are holding the mmap_sem might be waiting in
5644 * waitq. So we cancel all extra charges, wake up all waiters,
5645 * and retry. Because we cancel precharges, we might not be able
5646 * to move enough charges, but moving charge is a best-effort
5647 * feature anyway, so it wouldn't be a big problem.
5648 */
5649 __mem_cgroup_clear_mc();
5650 cond_resched();
5651 goto retry;
5652 }
5653 /*
5654 * When we have consumed all precharges and failed in doing
5655 * additional charge, the page walk just aborts.
5656 */
5657 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5658
5659 up_read(&mc.mm->mmap_sem);
5660 atomic_dec(&mc.from->moving_account);
5661 }
5662
5663 static void mem_cgroup_move_task(void)
5664 {
5665 if (mc.to) {
5666 mem_cgroup_move_charge();
5667 mem_cgroup_clear_mc();
5668 }
5669 }
5670 #else /* !CONFIG_MMU */
5671 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5672 {
5673 return 0;
5674 }
5675 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5676 {
5677 }
5678 static void mem_cgroup_move_task(void)
5679 {
5680 }
5681 #endif
5682
5683 /*
5684 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5685 * to verify whether we're attached to the default hierarchy on each mount
5686 * attempt.
5687 */
5688 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5689 {
5690 /*
5691 * use_hierarchy is forced on the default hierarchy. cgroup core
5692 * guarantees that @root doesn't have any children, so turning it
5693 * on for the root memcg is enough.
5694 */
5695 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5696 root_mem_cgroup->use_hierarchy = true;
5697 else
5698 root_mem_cgroup->use_hierarchy = false;
5699 }
5700
5701 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5702 {
5703 if (value == PAGE_COUNTER_MAX)
5704 seq_puts(m, "max\n");
5705 else
5706 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5707
5708 return 0;
5709 }
5710
5711 static u64 memory_current_read(struct cgroup_subsys_state *css,
5712 struct cftype *cft)
5713 {
5714 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5715
5716 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5717 }
5718
5719 static int memory_min_show(struct seq_file *m, void *v)
5720 {
5721 return seq_puts_memcg_tunable(m,
5722 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5723 }
5724
5725 static ssize_t memory_min_write(struct kernfs_open_file *of,
5726 char *buf, size_t nbytes, loff_t off)
5727 {
5728 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5729 unsigned long min;
5730 int err;
5731
5732 buf = strstrip(buf);
5733 err = page_counter_memparse(buf, "max", &min);
5734 if (err)
5735 return err;
5736
5737 page_counter_set_min(&memcg->memory, min);
5738
5739 return nbytes;
5740 }
5741
5742 static int memory_low_show(struct seq_file *m, void *v)
5743 {
5744 return seq_puts_memcg_tunable(m,
5745 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5746 }
5747
5748 static ssize_t memory_low_write(struct kernfs_open_file *of,
5749 char *buf, size_t nbytes, loff_t off)
5750 {
5751 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5752 unsigned long low;
5753 int err;
5754
5755 buf = strstrip(buf);
5756 err = page_counter_memparse(buf, "max", &low);
5757 if (err)
5758 return err;
5759
5760 page_counter_set_low(&memcg->memory, low);
5761
5762 return nbytes;
5763 }
5764
5765 static int memory_high_show(struct seq_file *m, void *v)
5766 {
5767 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5768 }
5769
5770 static ssize_t memory_high_write(struct kernfs_open_file *of,
5771 char *buf, size_t nbytes, loff_t off)
5772 {
5773 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5774 unsigned long nr_pages;
5775 unsigned long high;
5776 int err;
5777
5778 buf = strstrip(buf);
5779 err = page_counter_memparse(buf, "max", &high);
5780 if (err)
5781 return err;
5782
5783 memcg->high = high;
5784
5785 nr_pages = page_counter_read(&memcg->memory);
5786 if (nr_pages > high)
5787 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5788 GFP_KERNEL, true);
5789
5790 memcg_wb_domain_size_changed(memcg);
5791 return nbytes;
5792 }
5793
5794 static int memory_max_show(struct seq_file *m, void *v)
5795 {
5796 return seq_puts_memcg_tunable(m,
5797 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
5798 }
5799
5800 static ssize_t memory_max_write(struct kernfs_open_file *of,
5801 char *buf, size_t nbytes, loff_t off)
5802 {
5803 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5804 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5805 bool drained = false;
5806 unsigned long max;
5807 int err;
5808
5809 buf = strstrip(buf);
5810 err = page_counter_memparse(buf, "max", &max);
5811 if (err)
5812 return err;
5813
5814 xchg(&memcg->memory.max, max);
5815
5816 for (;;) {
5817 unsigned long nr_pages = page_counter_read(&memcg->memory);
5818
5819 if (nr_pages <= max)
5820 break;
5821
5822 if (signal_pending(current)) {
5823 err = -EINTR;
5824 break;
5825 }
5826
5827 if (!drained) {
5828 drain_all_stock(memcg);
5829 drained = true;
5830 continue;
5831 }
5832
5833 if (nr_reclaims) {
5834 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5835 GFP_KERNEL, true))
5836 nr_reclaims--;
5837 continue;
5838 }
5839
5840 memcg_memory_event(memcg, MEMCG_OOM);
5841 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5842 break;
5843 }
5844
5845 memcg_wb_domain_size_changed(memcg);
5846 return nbytes;
5847 }
5848
5849 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
5850 {
5851 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
5852 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
5853 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
5854 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
5855 seq_printf(m, "oom_kill %lu\n",
5856 atomic_long_read(&events[MEMCG_OOM_KILL]));
5857 }
5858
5859 static int memory_events_show(struct seq_file *m, void *v)
5860 {
5861 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5862
5863 __memory_events_show(m, memcg->memory_events);
5864 return 0;
5865 }
5866
5867 static int memory_events_local_show(struct seq_file *m, void *v)
5868 {
5869 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5870
5871 __memory_events_show(m, memcg->memory_events_local);
5872 return 0;
5873 }
5874
5875 static int memory_stat_show(struct seq_file *m, void *v)
5876 {
5877 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5878 char *buf;
5879
5880 buf = memory_stat_format(memcg);
5881 if (!buf)
5882 return -ENOMEM;
5883 seq_puts(m, buf);
5884 kfree(buf);
5885 return 0;
5886 }
5887
5888 static int memory_oom_group_show(struct seq_file *m, void *v)
5889 {
5890 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5891
5892 seq_printf(m, "%d\n", memcg->oom_group);
5893
5894 return 0;
5895 }
5896
5897 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5898 char *buf, size_t nbytes, loff_t off)
5899 {
5900 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5901 int ret, oom_group;
5902
5903 buf = strstrip(buf);
5904 if (!buf)
5905 return -EINVAL;
5906
5907 ret = kstrtoint(buf, 0, &oom_group);
5908 if (ret)
5909 return ret;
5910
5911 if (oom_group != 0 && oom_group != 1)
5912 return -EINVAL;
5913
5914 memcg->oom_group = oom_group;
5915
5916 return nbytes;
5917 }
5918
5919 static struct cftype memory_files[] = {
5920 {
5921 .name = "current",
5922 .flags = CFTYPE_NOT_ON_ROOT,
5923 .read_u64 = memory_current_read,
5924 },
5925 {
5926 .name = "min",
5927 .flags = CFTYPE_NOT_ON_ROOT,
5928 .seq_show = memory_min_show,
5929 .write = memory_min_write,
5930 },
5931 {
5932 .name = "low",
5933 .flags = CFTYPE_NOT_ON_ROOT,
5934 .seq_show = memory_low_show,
5935 .write = memory_low_write,
5936 },
5937 {
5938 .name = "high",
5939 .flags = CFTYPE_NOT_ON_ROOT,
5940 .seq_show = memory_high_show,
5941 .write = memory_high_write,
5942 },
5943 {
5944 .name = "max",
5945 .flags = CFTYPE_NOT_ON_ROOT,
5946 .seq_show = memory_max_show,
5947 .write = memory_max_write,
5948 },
5949 {
5950 .name = "events",
5951 .flags = CFTYPE_NOT_ON_ROOT,
5952 .file_offset = offsetof(struct mem_cgroup, events_file),
5953 .seq_show = memory_events_show,
5954 },
5955 {
5956 .name = "events.local",
5957 .flags = CFTYPE_NOT_ON_ROOT,
5958 .file_offset = offsetof(struct mem_cgroup, events_local_file),
5959 .seq_show = memory_events_local_show,
5960 },
5961 {
5962 .name = "stat",
5963 .flags = CFTYPE_NOT_ON_ROOT,
5964 .seq_show = memory_stat_show,
5965 },
5966 {
5967 .name = "oom.group",
5968 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5969 .seq_show = memory_oom_group_show,
5970 .write = memory_oom_group_write,
5971 },
5972 { } /* terminate */
5973 };
5974
5975 struct cgroup_subsys memory_cgrp_subsys = {
5976 .css_alloc = mem_cgroup_css_alloc,
5977 .css_online = mem_cgroup_css_online,
5978 .css_offline = mem_cgroup_css_offline,
5979 .css_released = mem_cgroup_css_released,
5980 .css_free = mem_cgroup_css_free,
5981 .css_reset = mem_cgroup_css_reset,
5982 .can_attach = mem_cgroup_can_attach,
5983 .cancel_attach = mem_cgroup_cancel_attach,
5984 .post_attach = mem_cgroup_move_task,
5985 .bind = mem_cgroup_bind,
5986 .dfl_cftypes = memory_files,
5987 .legacy_cftypes = mem_cgroup_legacy_files,
5988 .early_init = 0,
5989 };
5990
5991 /**
5992 * mem_cgroup_protected - check if memory consumption is in the normal range
5993 * @root: the top ancestor of the sub-tree being checked
5994 * @memcg: the memory cgroup to check
5995 *
5996 * WARNING: This function is not stateless! It can only be used as part
5997 * of a top-down tree iteration, not for isolated queries.
5998 *
5999 * Returns one of the following:
6000 * MEMCG_PROT_NONE: cgroup memory is not protected
6001 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6002 * an unprotected supply of reclaimable memory from other cgroups.
6003 * MEMCG_PROT_MIN: cgroup memory is protected
6004 *
6005 * @root is exclusive; it is never protected when looked at directly
6006 *
6007 * To provide a proper hierarchical behavior, effective memory.min/low values
6008 * are used. Below is the description of how effective memory.low is calculated.
6009 * Effective memory.min values is calculated in the same way.
6010 *
6011 * Effective memory.low is always equal or less than the original memory.low.
6012 * If there is no memory.low overcommittment (which is always true for
6013 * top-level memory cgroups), these two values are equal.
6014 * Otherwise, it's a part of parent's effective memory.low,
6015 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6016 * memory.low usages, where memory.low usage is the size of actually
6017 * protected memory.
6018 *
6019 * low_usage
6020 * elow = min( memory.low, parent->elow * ------------------ ),
6021 * siblings_low_usage
6022 *
6023 * | memory.current, if memory.current < memory.low
6024 * low_usage = |
6025 * | 0, otherwise.
6026 *
6027 *
6028 * Such definition of the effective memory.low provides the expected
6029 * hierarchical behavior: parent's memory.low value is limiting
6030 * children, unprotected memory is reclaimed first and cgroups,
6031 * which are not using their guarantee do not affect actual memory
6032 * distribution.
6033 *
6034 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6035 *
6036 * A A/memory.low = 2G, A/memory.current = 6G
6037 * //\\
6038 * BC DE B/memory.low = 3G B/memory.current = 2G
6039 * C/memory.low = 1G C/memory.current = 2G
6040 * D/memory.low = 0 D/memory.current = 2G
6041 * E/memory.low = 10G E/memory.current = 0
6042 *
6043 * and the memory pressure is applied, the following memory distribution
6044 * is expected (approximately):
6045 *
6046 * A/memory.current = 2G
6047 *
6048 * B/memory.current = 1.3G
6049 * C/memory.current = 0.6G
6050 * D/memory.current = 0
6051 * E/memory.current = 0
6052 *
6053 * These calculations require constant tracking of the actual low usages
6054 * (see propagate_protected_usage()), as well as recursive calculation of
6055 * effective memory.low values. But as we do call mem_cgroup_protected()
6056 * path for each memory cgroup top-down from the reclaim,
6057 * it's possible to optimize this part, and save calculated elow
6058 * for next usage. This part is intentionally racy, but it's ok,
6059 * as memory.low is a best-effort mechanism.
6060 */
6061 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6062 struct mem_cgroup *memcg)
6063 {
6064 struct mem_cgroup *parent;
6065 unsigned long emin, parent_emin;
6066 unsigned long elow, parent_elow;
6067 unsigned long usage;
6068
6069 if (mem_cgroup_disabled())
6070 return MEMCG_PROT_NONE;
6071
6072 if (!root)
6073 root = root_mem_cgroup;
6074 if (memcg == root)
6075 return MEMCG_PROT_NONE;
6076
6077 usage = page_counter_read(&memcg->memory);
6078 if (!usage)
6079 return MEMCG_PROT_NONE;
6080
6081 emin = memcg->memory.min;
6082 elow = memcg->memory.low;
6083
6084 parent = parent_mem_cgroup(memcg);
6085 /* No parent means a non-hierarchical mode on v1 memcg */
6086 if (!parent)
6087 return MEMCG_PROT_NONE;
6088
6089 if (parent == root)
6090 goto exit;
6091
6092 parent_emin = READ_ONCE(parent->memory.emin);
6093 emin = min(emin, parent_emin);
6094 if (emin && parent_emin) {
6095 unsigned long min_usage, siblings_min_usage;
6096
6097 min_usage = min(usage, memcg->memory.min);
6098 siblings_min_usage = atomic_long_read(
6099 &parent->memory.children_min_usage);
6100
6101 if (min_usage && siblings_min_usage)
6102 emin = min(emin, parent_emin * min_usage /
6103 siblings_min_usage);
6104 }
6105
6106 parent_elow = READ_ONCE(parent->memory.elow);
6107 elow = min(elow, parent_elow);
6108 if (elow && parent_elow) {
6109 unsigned long low_usage, siblings_low_usage;
6110
6111 low_usage = min(usage, memcg->memory.low);
6112 siblings_low_usage = atomic_long_read(
6113 &parent->memory.children_low_usage);
6114
6115 if (low_usage && siblings_low_usage)
6116 elow = min(elow, parent_elow * low_usage /
6117 siblings_low_usage);
6118 }
6119
6120 exit:
6121 memcg->memory.emin = emin;
6122 memcg->memory.elow = elow;
6123
6124 if (usage <= emin)
6125 return MEMCG_PROT_MIN;
6126 else if (usage <= elow)
6127 return MEMCG_PROT_LOW;
6128 else
6129 return MEMCG_PROT_NONE;
6130 }
6131
6132 /**
6133 * mem_cgroup_try_charge - try charging a page
6134 * @page: page to charge
6135 * @mm: mm context of the victim
6136 * @gfp_mask: reclaim mode
6137 * @memcgp: charged memcg return
6138 * @compound: charge the page as compound or small page
6139 *
6140 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6141 * pages according to @gfp_mask if necessary.
6142 *
6143 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6144 * Otherwise, an error code is returned.
6145 *
6146 * After page->mapping has been set up, the caller must finalize the
6147 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6148 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6149 */
6150 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6151 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6152 bool compound)
6153 {
6154 struct mem_cgroup *memcg = NULL;
6155 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6156 int ret = 0;
6157
6158 if (mem_cgroup_disabled())
6159 goto out;
6160
6161 if (PageSwapCache(page)) {
6162 /*
6163 * Every swap fault against a single page tries to charge the
6164 * page, bail as early as possible. shmem_unuse() encounters
6165 * already charged pages, too. The USED bit is protected by
6166 * the page lock, which serializes swap cache removal, which
6167 * in turn serializes uncharging.
6168 */
6169 VM_BUG_ON_PAGE(!PageLocked(page), page);
6170 if (compound_head(page)->mem_cgroup)
6171 goto out;
6172
6173 if (do_swap_account) {
6174 swp_entry_t ent = { .val = page_private(page), };
6175 unsigned short id = lookup_swap_cgroup_id(ent);
6176
6177 rcu_read_lock();
6178 memcg = mem_cgroup_from_id(id);
6179 if (memcg && !css_tryget_online(&memcg->css))
6180 memcg = NULL;
6181 rcu_read_unlock();
6182 }
6183 }
6184
6185 if (!memcg)
6186 memcg = get_mem_cgroup_from_mm(mm);
6187
6188 ret = try_charge(memcg, gfp_mask, nr_pages);
6189
6190 css_put(&memcg->css);
6191 out:
6192 *memcgp = memcg;
6193 return ret;
6194 }
6195
6196 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6197 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6198 bool compound)
6199 {
6200 struct mem_cgroup *memcg;
6201 int ret;
6202
6203 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6204 memcg = *memcgp;
6205 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6206 return ret;
6207 }
6208
6209 /**
6210 * mem_cgroup_commit_charge - commit a page charge
6211 * @page: page to charge
6212 * @memcg: memcg to charge the page to
6213 * @lrucare: page might be on LRU already
6214 * @compound: charge the page as compound or small page
6215 *
6216 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6217 * after page->mapping has been set up. This must happen atomically
6218 * as part of the page instantiation, i.e. under the page table lock
6219 * for anonymous pages, under the page lock for page and swap cache.
6220 *
6221 * In addition, the page must not be on the LRU during the commit, to
6222 * prevent racing with task migration. If it might be, use @lrucare.
6223 *
6224 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6225 */
6226 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6227 bool lrucare, bool compound)
6228 {
6229 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6230
6231 VM_BUG_ON_PAGE(!page->mapping, page);
6232 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6233
6234 if (mem_cgroup_disabled())
6235 return;
6236 /*
6237 * Swap faults will attempt to charge the same page multiple
6238 * times. But reuse_swap_page() might have removed the page
6239 * from swapcache already, so we can't check PageSwapCache().
6240 */
6241 if (!memcg)
6242 return;
6243
6244 commit_charge(page, memcg, lrucare);
6245
6246 local_irq_disable();
6247 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6248 memcg_check_events(memcg, page);
6249 local_irq_enable();
6250
6251 if (do_memsw_account() && PageSwapCache(page)) {
6252 swp_entry_t entry = { .val = page_private(page) };
6253 /*
6254 * The swap entry might not get freed for a long time,
6255 * let's not wait for it. The page already received a
6256 * memory+swap charge, drop the swap entry duplicate.
6257 */
6258 mem_cgroup_uncharge_swap(entry, nr_pages);
6259 }
6260 }
6261
6262 /**
6263 * mem_cgroup_cancel_charge - cancel a page charge
6264 * @page: page to charge
6265 * @memcg: memcg to charge the page to
6266 * @compound: charge the page as compound or small page
6267 *
6268 * Cancel a charge transaction started by mem_cgroup_try_charge().
6269 */
6270 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6271 bool compound)
6272 {
6273 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6274
6275 if (mem_cgroup_disabled())
6276 return;
6277 /*
6278 * Swap faults will attempt to charge the same page multiple
6279 * times. But reuse_swap_page() might have removed the page
6280 * from swapcache already, so we can't check PageSwapCache().
6281 */
6282 if (!memcg)
6283 return;
6284
6285 cancel_charge(memcg, nr_pages);
6286 }
6287
6288 struct uncharge_gather {
6289 struct mem_cgroup *memcg;
6290 unsigned long pgpgout;
6291 unsigned long nr_anon;
6292 unsigned long nr_file;
6293 unsigned long nr_kmem;
6294 unsigned long nr_huge;
6295 unsigned long nr_shmem;
6296 struct page *dummy_page;
6297 };
6298
6299 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6300 {
6301 memset(ug, 0, sizeof(*ug));
6302 }
6303
6304 static void uncharge_batch(const struct uncharge_gather *ug)
6305 {
6306 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6307 unsigned long flags;
6308
6309 if (!mem_cgroup_is_root(ug->memcg)) {
6310 page_counter_uncharge(&ug->memcg->memory, nr_pages);
6311 if (do_memsw_account())
6312 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6313 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6314 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6315 memcg_oom_recover(ug->memcg);
6316 }
6317
6318 local_irq_save(flags);
6319 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6320 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6321 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6322 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6323 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6324 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6325 memcg_check_events(ug->memcg, ug->dummy_page);
6326 local_irq_restore(flags);
6327
6328 if (!mem_cgroup_is_root(ug->memcg))
6329 css_put_many(&ug->memcg->css, nr_pages);
6330 }
6331
6332 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6333 {
6334 VM_BUG_ON_PAGE(PageLRU(page), page);
6335 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6336 !PageHWPoison(page) , page);
6337
6338 if (!page->mem_cgroup)
6339 return;
6340
6341 /*
6342 * Nobody should be changing or seriously looking at
6343 * page->mem_cgroup at this point, we have fully
6344 * exclusive access to the page.
6345 */
6346
6347 if (ug->memcg != page->mem_cgroup) {
6348 if (ug->memcg) {
6349 uncharge_batch(ug);
6350 uncharge_gather_clear(ug);
6351 }
6352 ug->memcg = page->mem_cgroup;
6353 }
6354
6355 if (!PageKmemcg(page)) {
6356 unsigned int nr_pages = 1;
6357
6358 if (PageTransHuge(page)) {
6359 nr_pages <<= compound_order(page);
6360 ug->nr_huge += nr_pages;
6361 }
6362 if (PageAnon(page))
6363 ug->nr_anon += nr_pages;
6364 else {
6365 ug->nr_file += nr_pages;
6366 if (PageSwapBacked(page))
6367 ug->nr_shmem += nr_pages;
6368 }
6369 ug->pgpgout++;
6370 } else {
6371 ug->nr_kmem += 1 << compound_order(page);
6372 __ClearPageKmemcg(page);
6373 }
6374
6375 ug->dummy_page = page;
6376 page->mem_cgroup = NULL;
6377 }
6378
6379 static void uncharge_list(struct list_head *page_list)
6380 {
6381 struct uncharge_gather ug;
6382 struct list_head *next;
6383
6384 uncharge_gather_clear(&ug);
6385
6386 /*
6387 * Note that the list can be a single page->lru; hence the
6388 * do-while loop instead of a simple list_for_each_entry().
6389 */
6390 next = page_list->next;
6391 do {
6392 struct page *page;
6393
6394 page = list_entry(next, struct page, lru);
6395 next = page->lru.next;
6396
6397 uncharge_page(page, &ug);
6398 } while (next != page_list);
6399
6400 if (ug.memcg)
6401 uncharge_batch(&ug);
6402 }
6403
6404 /**
6405 * mem_cgroup_uncharge - uncharge a page
6406 * @page: page to uncharge
6407 *
6408 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6409 * mem_cgroup_commit_charge().
6410 */
6411 void mem_cgroup_uncharge(struct page *page)
6412 {
6413 struct uncharge_gather ug;
6414
6415 if (mem_cgroup_disabled())
6416 return;
6417
6418 /* Don't touch page->lru of any random page, pre-check: */
6419 if (!page->mem_cgroup)
6420 return;
6421
6422 uncharge_gather_clear(&ug);
6423 uncharge_page(page, &ug);
6424 uncharge_batch(&ug);
6425 }
6426
6427 /**
6428 * mem_cgroup_uncharge_list - uncharge a list of page
6429 * @page_list: list of pages to uncharge
6430 *
6431 * Uncharge a list of pages previously charged with
6432 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6433 */
6434 void mem_cgroup_uncharge_list(struct list_head *page_list)
6435 {
6436 if (mem_cgroup_disabled())
6437 return;
6438
6439 if (!list_empty(page_list))
6440 uncharge_list(page_list);
6441 }
6442
6443 /**
6444 * mem_cgroup_migrate - charge a page's replacement
6445 * @oldpage: currently circulating page
6446 * @newpage: replacement page
6447 *
6448 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6449 * be uncharged upon free.
6450 *
6451 * Both pages must be locked, @newpage->mapping must be set up.
6452 */
6453 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6454 {
6455 struct mem_cgroup *memcg;
6456 unsigned int nr_pages;
6457 bool compound;
6458 unsigned long flags;
6459
6460 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6461 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6462 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6463 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6464 newpage);
6465
6466 if (mem_cgroup_disabled())
6467 return;
6468
6469 /* Page cache replacement: new page already charged? */
6470 if (newpage->mem_cgroup)
6471 return;
6472
6473 /* Swapcache readahead pages can get replaced before being charged */
6474 memcg = oldpage->mem_cgroup;
6475 if (!memcg)
6476 return;
6477
6478 /* Force-charge the new page. The old one will be freed soon */
6479 compound = PageTransHuge(newpage);
6480 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6481
6482 page_counter_charge(&memcg->memory, nr_pages);
6483 if (do_memsw_account())
6484 page_counter_charge(&memcg->memsw, nr_pages);
6485 css_get_many(&memcg->css, nr_pages);
6486
6487 commit_charge(newpage, memcg, false);
6488
6489 local_irq_save(flags);
6490 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6491 memcg_check_events(memcg, newpage);
6492 local_irq_restore(flags);
6493 }
6494
6495 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6496 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6497
6498 void mem_cgroup_sk_alloc(struct sock *sk)
6499 {
6500 struct mem_cgroup *memcg;
6501
6502 if (!mem_cgroup_sockets_enabled)
6503 return;
6504
6505 /*
6506 * Socket cloning can throw us here with sk_memcg already
6507 * filled. It won't however, necessarily happen from
6508 * process context. So the test for root memcg given
6509 * the current task's memcg won't help us in this case.
6510 *
6511 * Respecting the original socket's memcg is a better
6512 * decision in this case.
6513 */
6514 if (sk->sk_memcg) {
6515 css_get(&sk->sk_memcg->css);
6516 return;
6517 }
6518
6519 rcu_read_lock();
6520 memcg = mem_cgroup_from_task(current);
6521 if (memcg == root_mem_cgroup)
6522 goto out;
6523 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6524 goto out;
6525 if (css_tryget_online(&memcg->css))
6526 sk->sk_memcg = memcg;
6527 out:
6528 rcu_read_unlock();
6529 }
6530
6531 void mem_cgroup_sk_free(struct sock *sk)
6532 {
6533 if (sk->sk_memcg)
6534 css_put(&sk->sk_memcg->css);
6535 }
6536
6537 /**
6538 * mem_cgroup_charge_skmem - charge socket memory
6539 * @memcg: memcg to charge
6540 * @nr_pages: number of pages to charge
6541 *
6542 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6543 * @memcg's configured limit, %false if the charge had to be forced.
6544 */
6545 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6546 {
6547 gfp_t gfp_mask = GFP_KERNEL;
6548
6549 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6550 struct page_counter *fail;
6551
6552 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6553 memcg->tcpmem_pressure = 0;
6554 return true;
6555 }
6556 page_counter_charge(&memcg->tcpmem, nr_pages);
6557 memcg->tcpmem_pressure = 1;
6558 return false;
6559 }
6560
6561 /* Don't block in the packet receive path */
6562 if (in_softirq())
6563 gfp_mask = GFP_NOWAIT;
6564
6565 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6566
6567 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6568 return true;
6569
6570 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6571 return false;
6572 }
6573
6574 /**
6575 * mem_cgroup_uncharge_skmem - uncharge socket memory
6576 * @memcg: memcg to uncharge
6577 * @nr_pages: number of pages to uncharge
6578 */
6579 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6580 {
6581 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6582 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6583 return;
6584 }
6585
6586 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6587
6588 refill_stock(memcg, nr_pages);
6589 }
6590
6591 static int __init cgroup_memory(char *s)
6592 {
6593 char *token;
6594
6595 while ((token = strsep(&s, ",")) != NULL) {
6596 if (!*token)
6597 continue;
6598 if (!strcmp(token, "nosocket"))
6599 cgroup_memory_nosocket = true;
6600 if (!strcmp(token, "nokmem"))
6601 cgroup_memory_nokmem = true;
6602 }
6603 return 0;
6604 }
6605 __setup("cgroup.memory=", cgroup_memory);
6606
6607 /*
6608 * subsys_initcall() for memory controller.
6609 *
6610 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6611 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6612 * basically everything that doesn't depend on a specific mem_cgroup structure
6613 * should be initialized from here.
6614 */
6615 static int __init mem_cgroup_init(void)
6616 {
6617 int cpu, node;
6618
6619 #ifdef CONFIG_MEMCG_KMEM
6620 /*
6621 * Kmem cache creation is mostly done with the slab_mutex held,
6622 * so use a workqueue with limited concurrency to avoid stalling
6623 * all worker threads in case lots of cgroups are created and
6624 * destroyed simultaneously.
6625 */
6626 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6627 BUG_ON(!memcg_kmem_cache_wq);
6628 #endif
6629
6630 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6631 memcg_hotplug_cpu_dead);
6632
6633 for_each_possible_cpu(cpu)
6634 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6635 drain_local_stock);
6636
6637 for_each_node(node) {
6638 struct mem_cgroup_tree_per_node *rtpn;
6639
6640 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6641 node_online(node) ? node : NUMA_NO_NODE);
6642
6643 rtpn->rb_root = RB_ROOT;
6644 rtpn->rb_rightmost = NULL;
6645 spin_lock_init(&rtpn->lock);
6646 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6647 }
6648
6649 return 0;
6650 }
6651 subsys_initcall(mem_cgroup_init);
6652
6653 #ifdef CONFIG_MEMCG_SWAP
6654 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6655 {
6656 while (!refcount_inc_not_zero(&memcg->id.ref)) {
6657 /*
6658 * The root cgroup cannot be destroyed, so it's refcount must
6659 * always be >= 1.
6660 */
6661 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6662 VM_BUG_ON(1);
6663 break;
6664 }
6665 memcg = parent_mem_cgroup(memcg);
6666 if (!memcg)
6667 memcg = root_mem_cgroup;
6668 }
6669 return memcg;
6670 }
6671
6672 /**
6673 * mem_cgroup_swapout - transfer a memsw charge to swap
6674 * @page: page whose memsw charge to transfer
6675 * @entry: swap entry to move the charge to
6676 *
6677 * Transfer the memsw charge of @page to @entry.
6678 */
6679 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6680 {
6681 struct mem_cgroup *memcg, *swap_memcg;
6682 unsigned int nr_entries;
6683 unsigned short oldid;
6684
6685 VM_BUG_ON_PAGE(PageLRU(page), page);
6686 VM_BUG_ON_PAGE(page_count(page), page);
6687
6688 if (!do_memsw_account())
6689 return;
6690
6691 memcg = page->mem_cgroup;
6692
6693 /* Readahead page, never charged */
6694 if (!memcg)
6695 return;
6696
6697 /*
6698 * In case the memcg owning these pages has been offlined and doesn't
6699 * have an ID allocated to it anymore, charge the closest online
6700 * ancestor for the swap instead and transfer the memory+swap charge.
6701 */
6702 swap_memcg = mem_cgroup_id_get_online(memcg);
6703 nr_entries = hpage_nr_pages(page);
6704 /* Get references for the tail pages, too */
6705 if (nr_entries > 1)
6706 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6707 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6708 nr_entries);
6709 VM_BUG_ON_PAGE(oldid, page);
6710 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6711
6712 page->mem_cgroup = NULL;
6713
6714 if (!mem_cgroup_is_root(memcg))
6715 page_counter_uncharge(&memcg->memory, nr_entries);
6716
6717 if (memcg != swap_memcg) {
6718 if (!mem_cgroup_is_root(swap_memcg))
6719 page_counter_charge(&swap_memcg->memsw, nr_entries);
6720 page_counter_uncharge(&memcg->memsw, nr_entries);
6721 }
6722
6723 /*
6724 * Interrupts should be disabled here because the caller holds the
6725 * i_pages lock which is taken with interrupts-off. It is
6726 * important here to have the interrupts disabled because it is the
6727 * only synchronisation we have for updating the per-CPU variables.
6728 */
6729 VM_BUG_ON(!irqs_disabled());
6730 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6731 -nr_entries);
6732 memcg_check_events(memcg, page);
6733
6734 if (!mem_cgroup_is_root(memcg))
6735 css_put_many(&memcg->css, nr_entries);
6736 }
6737
6738 /**
6739 * mem_cgroup_try_charge_swap - try charging swap space for a page
6740 * @page: page being added to swap
6741 * @entry: swap entry to charge
6742 *
6743 * Try to charge @page's memcg for the swap space at @entry.
6744 *
6745 * Returns 0 on success, -ENOMEM on failure.
6746 */
6747 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6748 {
6749 unsigned int nr_pages = hpage_nr_pages(page);
6750 struct page_counter *counter;
6751 struct mem_cgroup *memcg;
6752 unsigned short oldid;
6753
6754 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6755 return 0;
6756
6757 memcg = page->mem_cgroup;
6758
6759 /* Readahead page, never charged */
6760 if (!memcg)
6761 return 0;
6762
6763 if (!entry.val) {
6764 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6765 return 0;
6766 }
6767
6768 memcg = mem_cgroup_id_get_online(memcg);
6769
6770 if (!mem_cgroup_is_root(memcg) &&
6771 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6772 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6773 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6774 mem_cgroup_id_put(memcg);
6775 return -ENOMEM;
6776 }
6777
6778 /* Get references for the tail pages, too */
6779 if (nr_pages > 1)
6780 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6781 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6782 VM_BUG_ON_PAGE(oldid, page);
6783 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6784
6785 return 0;
6786 }
6787
6788 /**
6789 * mem_cgroup_uncharge_swap - uncharge swap space
6790 * @entry: swap entry to uncharge
6791 * @nr_pages: the amount of swap space to uncharge
6792 */
6793 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6794 {
6795 struct mem_cgroup *memcg;
6796 unsigned short id;
6797
6798 if (!do_swap_account)
6799 return;
6800
6801 id = swap_cgroup_record(entry, 0, nr_pages);
6802 rcu_read_lock();
6803 memcg = mem_cgroup_from_id(id);
6804 if (memcg) {
6805 if (!mem_cgroup_is_root(memcg)) {
6806 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6807 page_counter_uncharge(&memcg->swap, nr_pages);
6808 else
6809 page_counter_uncharge(&memcg->memsw, nr_pages);
6810 }
6811 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6812 mem_cgroup_id_put_many(memcg, nr_pages);
6813 }
6814 rcu_read_unlock();
6815 }
6816
6817 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6818 {
6819 long nr_swap_pages = get_nr_swap_pages();
6820
6821 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6822 return nr_swap_pages;
6823 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6824 nr_swap_pages = min_t(long, nr_swap_pages,
6825 READ_ONCE(memcg->swap.max) -
6826 page_counter_read(&memcg->swap));
6827 return nr_swap_pages;
6828 }
6829
6830 bool mem_cgroup_swap_full(struct page *page)
6831 {
6832 struct mem_cgroup *memcg;
6833
6834 VM_BUG_ON_PAGE(!PageLocked(page), page);
6835
6836 if (vm_swap_full())
6837 return true;
6838 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6839 return false;
6840
6841 memcg = page->mem_cgroup;
6842 if (!memcg)
6843 return false;
6844
6845 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6846 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6847 return true;
6848
6849 return false;
6850 }
6851
6852 /* for remember boot option*/
6853 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6854 static int really_do_swap_account __initdata = 1;
6855 #else
6856 static int really_do_swap_account __initdata;
6857 #endif
6858
6859 static int __init enable_swap_account(char *s)
6860 {
6861 if (!strcmp(s, "1"))
6862 really_do_swap_account = 1;
6863 else if (!strcmp(s, "0"))
6864 really_do_swap_account = 0;
6865 return 1;
6866 }
6867 __setup("swapaccount=", enable_swap_account);
6868
6869 static u64 swap_current_read(struct cgroup_subsys_state *css,
6870 struct cftype *cft)
6871 {
6872 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6873
6874 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6875 }
6876
6877 static int swap_max_show(struct seq_file *m, void *v)
6878 {
6879 return seq_puts_memcg_tunable(m,
6880 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
6881 }
6882
6883 static ssize_t swap_max_write(struct kernfs_open_file *of,
6884 char *buf, size_t nbytes, loff_t off)
6885 {
6886 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6887 unsigned long max;
6888 int err;
6889
6890 buf = strstrip(buf);
6891 err = page_counter_memparse(buf, "max", &max);
6892 if (err)
6893 return err;
6894
6895 xchg(&memcg->swap.max, max);
6896
6897 return nbytes;
6898 }
6899
6900 static int swap_events_show(struct seq_file *m, void *v)
6901 {
6902 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6903
6904 seq_printf(m, "max %lu\n",
6905 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6906 seq_printf(m, "fail %lu\n",
6907 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6908
6909 return 0;
6910 }
6911
6912 static struct cftype swap_files[] = {
6913 {
6914 .name = "swap.current",
6915 .flags = CFTYPE_NOT_ON_ROOT,
6916 .read_u64 = swap_current_read,
6917 },
6918 {
6919 .name = "swap.max",
6920 .flags = CFTYPE_NOT_ON_ROOT,
6921 .seq_show = swap_max_show,
6922 .write = swap_max_write,
6923 },
6924 {
6925 .name = "swap.events",
6926 .flags = CFTYPE_NOT_ON_ROOT,
6927 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6928 .seq_show = swap_events_show,
6929 },
6930 { } /* terminate */
6931 };
6932
6933 static struct cftype memsw_cgroup_files[] = {
6934 {
6935 .name = "memsw.usage_in_bytes",
6936 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6937 .read_u64 = mem_cgroup_read_u64,
6938 },
6939 {
6940 .name = "memsw.max_usage_in_bytes",
6941 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6942 .write = mem_cgroup_reset,
6943 .read_u64 = mem_cgroup_read_u64,
6944 },
6945 {
6946 .name = "memsw.limit_in_bytes",
6947 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6948 .write = mem_cgroup_write,
6949 .read_u64 = mem_cgroup_read_u64,
6950 },
6951 {
6952 .name = "memsw.failcnt",
6953 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6954 .write = mem_cgroup_reset,
6955 .read_u64 = mem_cgroup_read_u64,
6956 },
6957 { }, /* terminate */
6958 };
6959
6960 static int __init mem_cgroup_swap_init(void)
6961 {
6962 if (!mem_cgroup_disabled() && really_do_swap_account) {
6963 do_swap_account = 1;
6964 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6965 swap_files));
6966 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6967 memsw_cgroup_files));
6968 }
6969 return 0;
6970 }
6971 subsys_initcall(mem_cgroup_swap_init);
6972
6973 #endif /* CONFIG_MEMCG_SWAP */