]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memcontrol.c
mm: memcontrol: remove unused mod_memcg_obj_state()
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66
67 #include <linux/uaccess.h>
68
69 #include <trace/events/vmscan.h>
70
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75
76 /* Active memory cgroup to use from an interrupt context */
77 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
78
79 /* Socket memory accounting disabled? */
80 static bool cgroup_memory_nosocket;
81
82 /* Kernel memory accounting disabled? */
83 static bool cgroup_memory_nokmem;
84
85 /* Whether the swap controller is active */
86 #ifdef CONFIG_MEMCG_SWAP
87 bool cgroup_memory_noswap __read_mostly;
88 #else
89 #define cgroup_memory_noswap 1
90 #endif
91
92 #ifdef CONFIG_CGROUP_WRITEBACK
93 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
94 #endif
95
96 /* Whether legacy memory+swap accounting is active */
97 static bool do_memsw_account(void)
98 {
99 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
100 }
101
102 #define THRESHOLDS_EVENTS_TARGET 128
103 #define SOFTLIMIT_EVENTS_TARGET 1024
104
105 /*
106 * Cgroups above their limits are maintained in a RB-Tree, independent of
107 * their hierarchy representation
108 */
109
110 struct mem_cgroup_tree_per_node {
111 struct rb_root rb_root;
112 struct rb_node *rb_rightmost;
113 spinlock_t lock;
114 };
115
116 struct mem_cgroup_tree {
117 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
118 };
119
120 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
121
122 /* for OOM */
123 struct mem_cgroup_eventfd_list {
124 struct list_head list;
125 struct eventfd_ctx *eventfd;
126 };
127
128 /*
129 * cgroup_event represents events which userspace want to receive.
130 */
131 struct mem_cgroup_event {
132 /*
133 * memcg which the event belongs to.
134 */
135 struct mem_cgroup *memcg;
136 /*
137 * eventfd to signal userspace about the event.
138 */
139 struct eventfd_ctx *eventfd;
140 /*
141 * Each of these stored in a list by the cgroup.
142 */
143 struct list_head list;
144 /*
145 * register_event() callback will be used to add new userspace
146 * waiter for changes related to this event. Use eventfd_signal()
147 * on eventfd to send notification to userspace.
148 */
149 int (*register_event)(struct mem_cgroup *memcg,
150 struct eventfd_ctx *eventfd, const char *args);
151 /*
152 * unregister_event() callback will be called when userspace closes
153 * the eventfd or on cgroup removing. This callback must be set,
154 * if you want provide notification functionality.
155 */
156 void (*unregister_event)(struct mem_cgroup *memcg,
157 struct eventfd_ctx *eventfd);
158 /*
159 * All fields below needed to unregister event when
160 * userspace closes eventfd.
161 */
162 poll_table pt;
163 wait_queue_head_t *wqh;
164 wait_queue_entry_t wait;
165 struct work_struct remove;
166 };
167
168 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
169 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
170
171 /* Stuffs for move charges at task migration. */
172 /*
173 * Types of charges to be moved.
174 */
175 #define MOVE_ANON 0x1U
176 #define MOVE_FILE 0x2U
177 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
178
179 /* "mc" and its members are protected by cgroup_mutex */
180 static struct move_charge_struct {
181 spinlock_t lock; /* for from, to */
182 struct mm_struct *mm;
183 struct mem_cgroup *from;
184 struct mem_cgroup *to;
185 unsigned long flags;
186 unsigned long precharge;
187 unsigned long moved_charge;
188 unsigned long moved_swap;
189 struct task_struct *moving_task; /* a task moving charges */
190 wait_queue_head_t waitq; /* a waitq for other context */
191 } mc = {
192 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
193 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
194 };
195
196 /*
197 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
198 * limit reclaim to prevent infinite loops, if they ever occur.
199 */
200 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
201 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
202
203 /* for encoding cft->private value on file */
204 enum res_type {
205 _MEM,
206 _MEMSWAP,
207 _OOM_TYPE,
208 _KMEM,
209 _TCP,
210 };
211
212 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
213 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
214 #define MEMFILE_ATTR(val) ((val) & 0xffff)
215 /* Used for OOM nofiier */
216 #define OOM_CONTROL (0)
217
218 /*
219 * Iteration constructs for visiting all cgroups (under a tree). If
220 * loops are exited prematurely (break), mem_cgroup_iter_break() must
221 * be used for reference counting.
222 */
223 #define for_each_mem_cgroup_tree(iter, root) \
224 for (iter = mem_cgroup_iter(root, NULL, NULL); \
225 iter != NULL; \
226 iter = mem_cgroup_iter(root, iter, NULL))
227
228 #define for_each_mem_cgroup(iter) \
229 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(NULL, iter, NULL))
232
233 static inline bool should_force_charge(void)
234 {
235 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 (current->flags & PF_EXITING);
237 }
238
239 /* Some nice accessors for the vmpressure. */
240 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241 {
242 if (!memcg)
243 memcg = root_mem_cgroup;
244 return &memcg->vmpressure;
245 }
246
247 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
248 {
249 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
250 }
251
252 #ifdef CONFIG_MEMCG_KMEM
253 extern spinlock_t css_set_lock;
254
255 static void obj_cgroup_release(struct percpu_ref *ref)
256 {
257 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
258 struct mem_cgroup *memcg;
259 unsigned int nr_bytes;
260 unsigned int nr_pages;
261 unsigned long flags;
262
263 /*
264 * At this point all allocated objects are freed, and
265 * objcg->nr_charged_bytes can't have an arbitrary byte value.
266 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
267 *
268 * The following sequence can lead to it:
269 * 1) CPU0: objcg == stock->cached_objcg
270 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
271 * PAGE_SIZE bytes are charged
272 * 3) CPU1: a process from another memcg is allocating something,
273 * the stock if flushed,
274 * objcg->nr_charged_bytes = PAGE_SIZE - 92
275 * 5) CPU0: we do release this object,
276 * 92 bytes are added to stock->nr_bytes
277 * 6) CPU0: stock is flushed,
278 * 92 bytes are added to objcg->nr_charged_bytes
279 *
280 * In the result, nr_charged_bytes == PAGE_SIZE.
281 * This page will be uncharged in obj_cgroup_release().
282 */
283 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
284 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
285 nr_pages = nr_bytes >> PAGE_SHIFT;
286
287 spin_lock_irqsave(&css_set_lock, flags);
288 memcg = obj_cgroup_memcg(objcg);
289 if (nr_pages)
290 __memcg_kmem_uncharge(memcg, nr_pages);
291 list_del(&objcg->list);
292 mem_cgroup_put(memcg);
293 spin_unlock_irqrestore(&css_set_lock, flags);
294
295 percpu_ref_exit(ref);
296 kfree_rcu(objcg, rcu);
297 }
298
299 static struct obj_cgroup *obj_cgroup_alloc(void)
300 {
301 struct obj_cgroup *objcg;
302 int ret;
303
304 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
305 if (!objcg)
306 return NULL;
307
308 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
309 GFP_KERNEL);
310 if (ret) {
311 kfree(objcg);
312 return NULL;
313 }
314 INIT_LIST_HEAD(&objcg->list);
315 return objcg;
316 }
317
318 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
319 struct mem_cgroup *parent)
320 {
321 struct obj_cgroup *objcg, *iter;
322
323 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
324
325 spin_lock_irq(&css_set_lock);
326
327 /* Move active objcg to the parent's list */
328 xchg(&objcg->memcg, parent);
329 css_get(&parent->css);
330 list_add(&objcg->list, &parent->objcg_list);
331
332 /* Move already reparented objcgs to the parent's list */
333 list_for_each_entry(iter, &memcg->objcg_list, list) {
334 css_get(&parent->css);
335 xchg(&iter->memcg, parent);
336 css_put(&memcg->css);
337 }
338 list_splice(&memcg->objcg_list, &parent->objcg_list);
339
340 spin_unlock_irq(&css_set_lock);
341
342 percpu_ref_kill(&objcg->refcnt);
343 }
344
345 /*
346 * This will be used as a shrinker list's index.
347 * The main reason for not using cgroup id for this:
348 * this works better in sparse environments, where we have a lot of memcgs,
349 * but only a few kmem-limited. Or also, if we have, for instance, 200
350 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
351 * 200 entry array for that.
352 *
353 * The current size of the caches array is stored in memcg_nr_cache_ids. It
354 * will double each time we have to increase it.
355 */
356 static DEFINE_IDA(memcg_cache_ida);
357 int memcg_nr_cache_ids;
358
359 /* Protects memcg_nr_cache_ids */
360 static DECLARE_RWSEM(memcg_cache_ids_sem);
361
362 void memcg_get_cache_ids(void)
363 {
364 down_read(&memcg_cache_ids_sem);
365 }
366
367 void memcg_put_cache_ids(void)
368 {
369 up_read(&memcg_cache_ids_sem);
370 }
371
372 /*
373 * MIN_SIZE is different than 1, because we would like to avoid going through
374 * the alloc/free process all the time. In a small machine, 4 kmem-limited
375 * cgroups is a reasonable guess. In the future, it could be a parameter or
376 * tunable, but that is strictly not necessary.
377 *
378 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
379 * this constant directly from cgroup, but it is understandable that this is
380 * better kept as an internal representation in cgroup.c. In any case, the
381 * cgrp_id space is not getting any smaller, and we don't have to necessarily
382 * increase ours as well if it increases.
383 */
384 #define MEMCG_CACHES_MIN_SIZE 4
385 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
386
387 /*
388 * A lot of the calls to the cache allocation functions are expected to be
389 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
390 * conditional to this static branch, we'll have to allow modules that does
391 * kmem_cache_alloc and the such to see this symbol as well
392 */
393 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
394 EXPORT_SYMBOL(memcg_kmem_enabled_key);
395 #endif
396
397 static int memcg_shrinker_map_size;
398 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
399
400 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
401 {
402 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
403 }
404
405 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
406 int size, int old_size)
407 {
408 struct memcg_shrinker_map *new, *old;
409 int nid;
410
411 lockdep_assert_held(&memcg_shrinker_map_mutex);
412
413 for_each_node(nid) {
414 old = rcu_dereference_protected(
415 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
416 /* Not yet online memcg */
417 if (!old)
418 return 0;
419
420 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
421 if (!new)
422 return -ENOMEM;
423
424 /* Set all old bits, clear all new bits */
425 memset(new->map, (int)0xff, old_size);
426 memset((void *)new->map + old_size, 0, size - old_size);
427
428 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
429 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
430 }
431
432 return 0;
433 }
434
435 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
436 {
437 struct mem_cgroup_per_node *pn;
438 struct memcg_shrinker_map *map;
439 int nid;
440
441 if (mem_cgroup_is_root(memcg))
442 return;
443
444 for_each_node(nid) {
445 pn = mem_cgroup_nodeinfo(memcg, nid);
446 map = rcu_dereference_protected(pn->shrinker_map, true);
447 if (map)
448 kvfree(map);
449 rcu_assign_pointer(pn->shrinker_map, NULL);
450 }
451 }
452
453 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
454 {
455 struct memcg_shrinker_map *map;
456 int nid, size, ret = 0;
457
458 if (mem_cgroup_is_root(memcg))
459 return 0;
460
461 mutex_lock(&memcg_shrinker_map_mutex);
462 size = memcg_shrinker_map_size;
463 for_each_node(nid) {
464 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
465 if (!map) {
466 memcg_free_shrinker_maps(memcg);
467 ret = -ENOMEM;
468 break;
469 }
470 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
471 }
472 mutex_unlock(&memcg_shrinker_map_mutex);
473
474 return ret;
475 }
476
477 int memcg_expand_shrinker_maps(int new_id)
478 {
479 int size, old_size, ret = 0;
480 struct mem_cgroup *memcg;
481
482 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
483 old_size = memcg_shrinker_map_size;
484 if (size <= old_size)
485 return 0;
486
487 mutex_lock(&memcg_shrinker_map_mutex);
488 if (!root_mem_cgroup)
489 goto unlock;
490
491 for_each_mem_cgroup(memcg) {
492 if (mem_cgroup_is_root(memcg))
493 continue;
494 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
495 if (ret) {
496 mem_cgroup_iter_break(NULL, memcg);
497 goto unlock;
498 }
499 }
500 unlock:
501 if (!ret)
502 memcg_shrinker_map_size = size;
503 mutex_unlock(&memcg_shrinker_map_mutex);
504 return ret;
505 }
506
507 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
508 {
509 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
510 struct memcg_shrinker_map *map;
511
512 rcu_read_lock();
513 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
514 /* Pairs with smp mb in shrink_slab() */
515 smp_mb__before_atomic();
516 set_bit(shrinker_id, map->map);
517 rcu_read_unlock();
518 }
519 }
520
521 /**
522 * mem_cgroup_css_from_page - css of the memcg associated with a page
523 * @page: page of interest
524 *
525 * If memcg is bound to the default hierarchy, css of the memcg associated
526 * with @page is returned. The returned css remains associated with @page
527 * until it is released.
528 *
529 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
530 * is returned.
531 */
532 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
533 {
534 struct mem_cgroup *memcg;
535
536 memcg = page->mem_cgroup;
537
538 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
539 memcg = root_mem_cgroup;
540
541 return &memcg->css;
542 }
543
544 /**
545 * page_cgroup_ino - return inode number of the memcg a page is charged to
546 * @page: the page
547 *
548 * Look up the closest online ancestor of the memory cgroup @page is charged to
549 * and return its inode number or 0 if @page is not charged to any cgroup. It
550 * is safe to call this function without holding a reference to @page.
551 *
552 * Note, this function is inherently racy, because there is nothing to prevent
553 * the cgroup inode from getting torn down and potentially reallocated a moment
554 * after page_cgroup_ino() returns, so it only should be used by callers that
555 * do not care (such as procfs interfaces).
556 */
557 ino_t page_cgroup_ino(struct page *page)
558 {
559 struct mem_cgroup *memcg;
560 unsigned long ino = 0;
561
562 rcu_read_lock();
563 memcg = page->mem_cgroup;
564
565 /*
566 * The lowest bit set means that memcg isn't a valid
567 * memcg pointer, but a obj_cgroups pointer.
568 * In this case the page is shared and doesn't belong
569 * to any specific memory cgroup.
570 */
571 if ((unsigned long) memcg & 0x1UL)
572 memcg = NULL;
573
574 while (memcg && !(memcg->css.flags & CSS_ONLINE))
575 memcg = parent_mem_cgroup(memcg);
576 if (memcg)
577 ino = cgroup_ino(memcg->css.cgroup);
578 rcu_read_unlock();
579 return ino;
580 }
581
582 static struct mem_cgroup_per_node *
583 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
584 {
585 int nid = page_to_nid(page);
586
587 return memcg->nodeinfo[nid];
588 }
589
590 static struct mem_cgroup_tree_per_node *
591 soft_limit_tree_node(int nid)
592 {
593 return soft_limit_tree.rb_tree_per_node[nid];
594 }
595
596 static struct mem_cgroup_tree_per_node *
597 soft_limit_tree_from_page(struct page *page)
598 {
599 int nid = page_to_nid(page);
600
601 return soft_limit_tree.rb_tree_per_node[nid];
602 }
603
604 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
605 struct mem_cgroup_tree_per_node *mctz,
606 unsigned long new_usage_in_excess)
607 {
608 struct rb_node **p = &mctz->rb_root.rb_node;
609 struct rb_node *parent = NULL;
610 struct mem_cgroup_per_node *mz_node;
611 bool rightmost = true;
612
613 if (mz->on_tree)
614 return;
615
616 mz->usage_in_excess = new_usage_in_excess;
617 if (!mz->usage_in_excess)
618 return;
619 while (*p) {
620 parent = *p;
621 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
622 tree_node);
623 if (mz->usage_in_excess < mz_node->usage_in_excess) {
624 p = &(*p)->rb_left;
625 rightmost = false;
626 }
627
628 /*
629 * We can't avoid mem cgroups that are over their soft
630 * limit by the same amount
631 */
632 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
633 p = &(*p)->rb_right;
634 }
635
636 if (rightmost)
637 mctz->rb_rightmost = &mz->tree_node;
638
639 rb_link_node(&mz->tree_node, parent, p);
640 rb_insert_color(&mz->tree_node, &mctz->rb_root);
641 mz->on_tree = true;
642 }
643
644 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
645 struct mem_cgroup_tree_per_node *mctz)
646 {
647 if (!mz->on_tree)
648 return;
649
650 if (&mz->tree_node == mctz->rb_rightmost)
651 mctz->rb_rightmost = rb_prev(&mz->tree_node);
652
653 rb_erase(&mz->tree_node, &mctz->rb_root);
654 mz->on_tree = false;
655 }
656
657 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
658 struct mem_cgroup_tree_per_node *mctz)
659 {
660 unsigned long flags;
661
662 spin_lock_irqsave(&mctz->lock, flags);
663 __mem_cgroup_remove_exceeded(mz, mctz);
664 spin_unlock_irqrestore(&mctz->lock, flags);
665 }
666
667 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
668 {
669 unsigned long nr_pages = page_counter_read(&memcg->memory);
670 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
671 unsigned long excess = 0;
672
673 if (nr_pages > soft_limit)
674 excess = nr_pages - soft_limit;
675
676 return excess;
677 }
678
679 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
680 {
681 unsigned long excess;
682 struct mem_cgroup_per_node *mz;
683 struct mem_cgroup_tree_per_node *mctz;
684
685 mctz = soft_limit_tree_from_page(page);
686 if (!mctz)
687 return;
688 /*
689 * Necessary to update all ancestors when hierarchy is used.
690 * because their event counter is not touched.
691 */
692 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
693 mz = mem_cgroup_page_nodeinfo(memcg, page);
694 excess = soft_limit_excess(memcg);
695 /*
696 * We have to update the tree if mz is on RB-tree or
697 * mem is over its softlimit.
698 */
699 if (excess || mz->on_tree) {
700 unsigned long flags;
701
702 spin_lock_irqsave(&mctz->lock, flags);
703 /* if on-tree, remove it */
704 if (mz->on_tree)
705 __mem_cgroup_remove_exceeded(mz, mctz);
706 /*
707 * Insert again. mz->usage_in_excess will be updated.
708 * If excess is 0, no tree ops.
709 */
710 __mem_cgroup_insert_exceeded(mz, mctz, excess);
711 spin_unlock_irqrestore(&mctz->lock, flags);
712 }
713 }
714 }
715
716 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
717 {
718 struct mem_cgroup_tree_per_node *mctz;
719 struct mem_cgroup_per_node *mz;
720 int nid;
721
722 for_each_node(nid) {
723 mz = mem_cgroup_nodeinfo(memcg, nid);
724 mctz = soft_limit_tree_node(nid);
725 if (mctz)
726 mem_cgroup_remove_exceeded(mz, mctz);
727 }
728 }
729
730 static struct mem_cgroup_per_node *
731 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
732 {
733 struct mem_cgroup_per_node *mz;
734
735 retry:
736 mz = NULL;
737 if (!mctz->rb_rightmost)
738 goto done; /* Nothing to reclaim from */
739
740 mz = rb_entry(mctz->rb_rightmost,
741 struct mem_cgroup_per_node, tree_node);
742 /*
743 * Remove the node now but someone else can add it back,
744 * we will to add it back at the end of reclaim to its correct
745 * position in the tree.
746 */
747 __mem_cgroup_remove_exceeded(mz, mctz);
748 if (!soft_limit_excess(mz->memcg) ||
749 !css_tryget(&mz->memcg->css))
750 goto retry;
751 done:
752 return mz;
753 }
754
755 static struct mem_cgroup_per_node *
756 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
757 {
758 struct mem_cgroup_per_node *mz;
759
760 spin_lock_irq(&mctz->lock);
761 mz = __mem_cgroup_largest_soft_limit_node(mctz);
762 spin_unlock_irq(&mctz->lock);
763 return mz;
764 }
765
766 /**
767 * __mod_memcg_state - update cgroup memory statistics
768 * @memcg: the memory cgroup
769 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
770 * @val: delta to add to the counter, can be negative
771 */
772 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
773 {
774 long x, threshold = MEMCG_CHARGE_BATCH;
775
776 if (mem_cgroup_disabled())
777 return;
778
779 if (memcg_stat_item_in_bytes(idx))
780 threshold <<= PAGE_SHIFT;
781
782 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
783 if (unlikely(abs(x) > threshold)) {
784 struct mem_cgroup *mi;
785
786 /*
787 * Batch local counters to keep them in sync with
788 * the hierarchical ones.
789 */
790 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
791 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
792 atomic_long_add(x, &mi->vmstats[idx]);
793 x = 0;
794 }
795 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
796 }
797
798 static struct mem_cgroup_per_node *
799 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
800 {
801 struct mem_cgroup *parent;
802
803 parent = parent_mem_cgroup(pn->memcg);
804 if (!parent)
805 return NULL;
806 return mem_cgroup_nodeinfo(parent, nid);
807 }
808
809 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
810 int val)
811 {
812 struct mem_cgroup_per_node *pn;
813 struct mem_cgroup *memcg;
814 long x, threshold = MEMCG_CHARGE_BATCH;
815
816 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
817 memcg = pn->memcg;
818
819 /* Update memcg */
820 __mod_memcg_state(memcg, idx, val);
821
822 /* Update lruvec */
823 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
824
825 if (vmstat_item_in_bytes(idx))
826 threshold <<= PAGE_SHIFT;
827
828 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
829 if (unlikely(abs(x) > threshold)) {
830 pg_data_t *pgdat = lruvec_pgdat(lruvec);
831 struct mem_cgroup_per_node *pi;
832
833 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
834 atomic_long_add(x, &pi->lruvec_stat[idx]);
835 x = 0;
836 }
837 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
838 }
839
840 /**
841 * __mod_lruvec_state - update lruvec memory statistics
842 * @lruvec: the lruvec
843 * @idx: the stat item
844 * @val: delta to add to the counter, can be negative
845 *
846 * The lruvec is the intersection of the NUMA node and a cgroup. This
847 * function updates the all three counters that are affected by a
848 * change of state at this level: per-node, per-cgroup, per-lruvec.
849 */
850 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
851 int val)
852 {
853 /* Update node */
854 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
855
856 /* Update memcg and lruvec */
857 if (!mem_cgroup_disabled())
858 __mod_memcg_lruvec_state(lruvec, idx, val);
859 }
860
861 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
862 {
863 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
864 struct mem_cgroup *memcg;
865 struct lruvec *lruvec;
866
867 rcu_read_lock();
868 memcg = mem_cgroup_from_obj(p);
869
870 /*
871 * Untracked pages have no memcg, no lruvec. Update only the
872 * node. If we reparent the slab objects to the root memcg,
873 * when we free the slab object, we need to update the per-memcg
874 * vmstats to keep it correct for the root memcg.
875 */
876 if (!memcg) {
877 __mod_node_page_state(pgdat, idx, val);
878 } else {
879 lruvec = mem_cgroup_lruvec(memcg, pgdat);
880 __mod_lruvec_state(lruvec, idx, val);
881 }
882 rcu_read_unlock();
883 }
884
885 /**
886 * __count_memcg_events - account VM events in a cgroup
887 * @memcg: the memory cgroup
888 * @idx: the event item
889 * @count: the number of events that occured
890 */
891 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
892 unsigned long count)
893 {
894 unsigned long x;
895
896 if (mem_cgroup_disabled())
897 return;
898
899 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
900 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
901 struct mem_cgroup *mi;
902
903 /*
904 * Batch local counters to keep them in sync with
905 * the hierarchical ones.
906 */
907 __this_cpu_add(memcg->vmstats_local->events[idx], x);
908 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
909 atomic_long_add(x, &mi->vmevents[idx]);
910 x = 0;
911 }
912 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
913 }
914
915 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
916 {
917 return atomic_long_read(&memcg->vmevents[event]);
918 }
919
920 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
921 {
922 long x = 0;
923 int cpu;
924
925 for_each_possible_cpu(cpu)
926 x += per_cpu(memcg->vmstats_local->events[event], cpu);
927 return x;
928 }
929
930 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
931 struct page *page,
932 int nr_pages)
933 {
934 /* pagein of a big page is an event. So, ignore page size */
935 if (nr_pages > 0)
936 __count_memcg_events(memcg, PGPGIN, 1);
937 else {
938 __count_memcg_events(memcg, PGPGOUT, 1);
939 nr_pages = -nr_pages; /* for event */
940 }
941
942 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
943 }
944
945 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
946 enum mem_cgroup_events_target target)
947 {
948 unsigned long val, next;
949
950 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
951 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
952 /* from time_after() in jiffies.h */
953 if ((long)(next - val) < 0) {
954 switch (target) {
955 case MEM_CGROUP_TARGET_THRESH:
956 next = val + THRESHOLDS_EVENTS_TARGET;
957 break;
958 case MEM_CGROUP_TARGET_SOFTLIMIT:
959 next = val + SOFTLIMIT_EVENTS_TARGET;
960 break;
961 default:
962 break;
963 }
964 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
965 return true;
966 }
967 return false;
968 }
969
970 /*
971 * Check events in order.
972 *
973 */
974 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
975 {
976 /* threshold event is triggered in finer grain than soft limit */
977 if (unlikely(mem_cgroup_event_ratelimit(memcg,
978 MEM_CGROUP_TARGET_THRESH))) {
979 bool do_softlimit;
980
981 do_softlimit = mem_cgroup_event_ratelimit(memcg,
982 MEM_CGROUP_TARGET_SOFTLIMIT);
983 mem_cgroup_threshold(memcg);
984 if (unlikely(do_softlimit))
985 mem_cgroup_update_tree(memcg, page);
986 }
987 }
988
989 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
990 {
991 /*
992 * mm_update_next_owner() may clear mm->owner to NULL
993 * if it races with swapoff, page migration, etc.
994 * So this can be called with p == NULL.
995 */
996 if (unlikely(!p))
997 return NULL;
998
999 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1000 }
1001 EXPORT_SYMBOL(mem_cgroup_from_task);
1002
1003 /**
1004 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1005 * @mm: mm from which memcg should be extracted. It can be NULL.
1006 *
1007 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1008 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1009 * returned.
1010 */
1011 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1012 {
1013 struct mem_cgroup *memcg;
1014
1015 if (mem_cgroup_disabled())
1016 return NULL;
1017
1018 rcu_read_lock();
1019 do {
1020 /*
1021 * Page cache insertions can happen withou an
1022 * actual mm context, e.g. during disk probing
1023 * on boot, loopback IO, acct() writes etc.
1024 */
1025 if (unlikely(!mm))
1026 memcg = root_mem_cgroup;
1027 else {
1028 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1029 if (unlikely(!memcg))
1030 memcg = root_mem_cgroup;
1031 }
1032 } while (!css_tryget(&memcg->css));
1033 rcu_read_unlock();
1034 return memcg;
1035 }
1036 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1037
1038 /**
1039 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1040 * @page: page from which memcg should be extracted.
1041 *
1042 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1043 * root_mem_cgroup is returned.
1044 */
1045 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1046 {
1047 struct mem_cgroup *memcg = page->mem_cgroup;
1048
1049 if (mem_cgroup_disabled())
1050 return NULL;
1051
1052 rcu_read_lock();
1053 /* Page should not get uncharged and freed memcg under us. */
1054 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1055 memcg = root_mem_cgroup;
1056 rcu_read_unlock();
1057 return memcg;
1058 }
1059 EXPORT_SYMBOL(get_mem_cgroup_from_page);
1060
1061 static __always_inline struct mem_cgroup *active_memcg(void)
1062 {
1063 if (in_interrupt())
1064 return this_cpu_read(int_active_memcg);
1065 else
1066 return current->active_memcg;
1067 }
1068
1069 static __always_inline struct mem_cgroup *get_active_memcg(void)
1070 {
1071 struct mem_cgroup *memcg;
1072
1073 rcu_read_lock();
1074 memcg = active_memcg();
1075 if (memcg) {
1076 /* current->active_memcg must hold a ref. */
1077 if (WARN_ON_ONCE(!css_tryget(&memcg->css)))
1078 memcg = root_mem_cgroup;
1079 else
1080 memcg = current->active_memcg;
1081 }
1082 rcu_read_unlock();
1083
1084 return memcg;
1085 }
1086
1087 static __always_inline bool memcg_kmem_bypass(void)
1088 {
1089 /* Allow remote memcg charging from any context. */
1090 if (unlikely(active_memcg()))
1091 return false;
1092
1093 /* Memcg to charge can't be determined. */
1094 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1095 return true;
1096
1097 return false;
1098 }
1099
1100 /**
1101 * If active memcg is set, do not fallback to current->mm->memcg.
1102 */
1103 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1104 {
1105 if (memcg_kmem_bypass())
1106 return NULL;
1107
1108 if (unlikely(active_memcg()))
1109 return get_active_memcg();
1110
1111 return get_mem_cgroup_from_mm(current->mm);
1112 }
1113
1114 /**
1115 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1116 * @root: hierarchy root
1117 * @prev: previously returned memcg, NULL on first invocation
1118 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1119 *
1120 * Returns references to children of the hierarchy below @root, or
1121 * @root itself, or %NULL after a full round-trip.
1122 *
1123 * Caller must pass the return value in @prev on subsequent
1124 * invocations for reference counting, or use mem_cgroup_iter_break()
1125 * to cancel a hierarchy walk before the round-trip is complete.
1126 *
1127 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1128 * in the hierarchy among all concurrent reclaimers operating on the
1129 * same node.
1130 */
1131 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1132 struct mem_cgroup *prev,
1133 struct mem_cgroup_reclaim_cookie *reclaim)
1134 {
1135 struct mem_cgroup_reclaim_iter *iter;
1136 struct cgroup_subsys_state *css = NULL;
1137 struct mem_cgroup *memcg = NULL;
1138 struct mem_cgroup *pos = NULL;
1139
1140 if (mem_cgroup_disabled())
1141 return NULL;
1142
1143 if (!root)
1144 root = root_mem_cgroup;
1145
1146 if (prev && !reclaim)
1147 pos = prev;
1148
1149 if (!root->use_hierarchy && root != root_mem_cgroup) {
1150 if (prev)
1151 goto out;
1152 return root;
1153 }
1154
1155 rcu_read_lock();
1156
1157 if (reclaim) {
1158 struct mem_cgroup_per_node *mz;
1159
1160 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1161 iter = &mz->iter;
1162
1163 if (prev && reclaim->generation != iter->generation)
1164 goto out_unlock;
1165
1166 while (1) {
1167 pos = READ_ONCE(iter->position);
1168 if (!pos || css_tryget(&pos->css))
1169 break;
1170 /*
1171 * css reference reached zero, so iter->position will
1172 * be cleared by ->css_released. However, we should not
1173 * rely on this happening soon, because ->css_released
1174 * is called from a work queue, and by busy-waiting we
1175 * might block it. So we clear iter->position right
1176 * away.
1177 */
1178 (void)cmpxchg(&iter->position, pos, NULL);
1179 }
1180 }
1181
1182 if (pos)
1183 css = &pos->css;
1184
1185 for (;;) {
1186 css = css_next_descendant_pre(css, &root->css);
1187 if (!css) {
1188 /*
1189 * Reclaimers share the hierarchy walk, and a
1190 * new one might jump in right at the end of
1191 * the hierarchy - make sure they see at least
1192 * one group and restart from the beginning.
1193 */
1194 if (!prev)
1195 continue;
1196 break;
1197 }
1198
1199 /*
1200 * Verify the css and acquire a reference. The root
1201 * is provided by the caller, so we know it's alive
1202 * and kicking, and don't take an extra reference.
1203 */
1204 memcg = mem_cgroup_from_css(css);
1205
1206 if (css == &root->css)
1207 break;
1208
1209 if (css_tryget(css))
1210 break;
1211
1212 memcg = NULL;
1213 }
1214
1215 if (reclaim) {
1216 /*
1217 * The position could have already been updated by a competing
1218 * thread, so check that the value hasn't changed since we read
1219 * it to avoid reclaiming from the same cgroup twice.
1220 */
1221 (void)cmpxchg(&iter->position, pos, memcg);
1222
1223 if (pos)
1224 css_put(&pos->css);
1225
1226 if (!memcg)
1227 iter->generation++;
1228 else if (!prev)
1229 reclaim->generation = iter->generation;
1230 }
1231
1232 out_unlock:
1233 rcu_read_unlock();
1234 out:
1235 if (prev && prev != root)
1236 css_put(&prev->css);
1237
1238 return memcg;
1239 }
1240
1241 /**
1242 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1243 * @root: hierarchy root
1244 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1245 */
1246 void mem_cgroup_iter_break(struct mem_cgroup *root,
1247 struct mem_cgroup *prev)
1248 {
1249 if (!root)
1250 root = root_mem_cgroup;
1251 if (prev && prev != root)
1252 css_put(&prev->css);
1253 }
1254
1255 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1256 struct mem_cgroup *dead_memcg)
1257 {
1258 struct mem_cgroup_reclaim_iter *iter;
1259 struct mem_cgroup_per_node *mz;
1260 int nid;
1261
1262 for_each_node(nid) {
1263 mz = mem_cgroup_nodeinfo(from, nid);
1264 iter = &mz->iter;
1265 cmpxchg(&iter->position, dead_memcg, NULL);
1266 }
1267 }
1268
1269 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1270 {
1271 struct mem_cgroup *memcg = dead_memcg;
1272 struct mem_cgroup *last;
1273
1274 do {
1275 __invalidate_reclaim_iterators(memcg, dead_memcg);
1276 last = memcg;
1277 } while ((memcg = parent_mem_cgroup(memcg)));
1278
1279 /*
1280 * When cgruop1 non-hierarchy mode is used,
1281 * parent_mem_cgroup() does not walk all the way up to the
1282 * cgroup root (root_mem_cgroup). So we have to handle
1283 * dead_memcg from cgroup root separately.
1284 */
1285 if (last != root_mem_cgroup)
1286 __invalidate_reclaim_iterators(root_mem_cgroup,
1287 dead_memcg);
1288 }
1289
1290 /**
1291 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1292 * @memcg: hierarchy root
1293 * @fn: function to call for each task
1294 * @arg: argument passed to @fn
1295 *
1296 * This function iterates over tasks attached to @memcg or to any of its
1297 * descendants and calls @fn for each task. If @fn returns a non-zero
1298 * value, the function breaks the iteration loop and returns the value.
1299 * Otherwise, it will iterate over all tasks and return 0.
1300 *
1301 * This function must not be called for the root memory cgroup.
1302 */
1303 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1304 int (*fn)(struct task_struct *, void *), void *arg)
1305 {
1306 struct mem_cgroup *iter;
1307 int ret = 0;
1308
1309 BUG_ON(memcg == root_mem_cgroup);
1310
1311 for_each_mem_cgroup_tree(iter, memcg) {
1312 struct css_task_iter it;
1313 struct task_struct *task;
1314
1315 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1316 while (!ret && (task = css_task_iter_next(&it)))
1317 ret = fn(task, arg);
1318 css_task_iter_end(&it);
1319 if (ret) {
1320 mem_cgroup_iter_break(memcg, iter);
1321 break;
1322 }
1323 }
1324 return ret;
1325 }
1326
1327 /**
1328 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1329 * @page: the page
1330 * @pgdat: pgdat of the page
1331 *
1332 * This function relies on page->mem_cgroup being stable - see the
1333 * access rules in commit_charge().
1334 */
1335 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1336 {
1337 struct mem_cgroup_per_node *mz;
1338 struct mem_cgroup *memcg;
1339 struct lruvec *lruvec;
1340
1341 if (mem_cgroup_disabled()) {
1342 lruvec = &pgdat->__lruvec;
1343 goto out;
1344 }
1345
1346 memcg = page->mem_cgroup;
1347 /*
1348 * Swapcache readahead pages are added to the LRU - and
1349 * possibly migrated - before they are charged.
1350 */
1351 if (!memcg)
1352 memcg = root_mem_cgroup;
1353
1354 mz = mem_cgroup_page_nodeinfo(memcg, page);
1355 lruvec = &mz->lruvec;
1356 out:
1357 /*
1358 * Since a node can be onlined after the mem_cgroup was created,
1359 * we have to be prepared to initialize lruvec->zone here;
1360 * and if offlined then reonlined, we need to reinitialize it.
1361 */
1362 if (unlikely(lruvec->pgdat != pgdat))
1363 lruvec->pgdat = pgdat;
1364 return lruvec;
1365 }
1366
1367 /**
1368 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1369 * @lruvec: mem_cgroup per zone lru vector
1370 * @lru: index of lru list the page is sitting on
1371 * @zid: zone id of the accounted pages
1372 * @nr_pages: positive when adding or negative when removing
1373 *
1374 * This function must be called under lru_lock, just before a page is added
1375 * to or just after a page is removed from an lru list (that ordering being
1376 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1377 */
1378 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1379 int zid, int nr_pages)
1380 {
1381 struct mem_cgroup_per_node *mz;
1382 unsigned long *lru_size;
1383 long size;
1384
1385 if (mem_cgroup_disabled())
1386 return;
1387
1388 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1389 lru_size = &mz->lru_zone_size[zid][lru];
1390
1391 if (nr_pages < 0)
1392 *lru_size += nr_pages;
1393
1394 size = *lru_size;
1395 if (WARN_ONCE(size < 0,
1396 "%s(%p, %d, %d): lru_size %ld\n",
1397 __func__, lruvec, lru, nr_pages, size)) {
1398 VM_BUG_ON(1);
1399 *lru_size = 0;
1400 }
1401
1402 if (nr_pages > 0)
1403 *lru_size += nr_pages;
1404 }
1405
1406 /**
1407 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1408 * @memcg: the memory cgroup
1409 *
1410 * Returns the maximum amount of memory @mem can be charged with, in
1411 * pages.
1412 */
1413 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1414 {
1415 unsigned long margin = 0;
1416 unsigned long count;
1417 unsigned long limit;
1418
1419 count = page_counter_read(&memcg->memory);
1420 limit = READ_ONCE(memcg->memory.max);
1421 if (count < limit)
1422 margin = limit - count;
1423
1424 if (do_memsw_account()) {
1425 count = page_counter_read(&memcg->memsw);
1426 limit = READ_ONCE(memcg->memsw.max);
1427 if (count < limit)
1428 margin = min(margin, limit - count);
1429 else
1430 margin = 0;
1431 }
1432
1433 return margin;
1434 }
1435
1436 /*
1437 * A routine for checking "mem" is under move_account() or not.
1438 *
1439 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1440 * moving cgroups. This is for waiting at high-memory pressure
1441 * caused by "move".
1442 */
1443 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1444 {
1445 struct mem_cgroup *from;
1446 struct mem_cgroup *to;
1447 bool ret = false;
1448 /*
1449 * Unlike task_move routines, we access mc.to, mc.from not under
1450 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1451 */
1452 spin_lock(&mc.lock);
1453 from = mc.from;
1454 to = mc.to;
1455 if (!from)
1456 goto unlock;
1457
1458 ret = mem_cgroup_is_descendant(from, memcg) ||
1459 mem_cgroup_is_descendant(to, memcg);
1460 unlock:
1461 spin_unlock(&mc.lock);
1462 return ret;
1463 }
1464
1465 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1466 {
1467 if (mc.moving_task && current != mc.moving_task) {
1468 if (mem_cgroup_under_move(memcg)) {
1469 DEFINE_WAIT(wait);
1470 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1471 /* moving charge context might have finished. */
1472 if (mc.moving_task)
1473 schedule();
1474 finish_wait(&mc.waitq, &wait);
1475 return true;
1476 }
1477 }
1478 return false;
1479 }
1480
1481 struct memory_stat {
1482 const char *name;
1483 unsigned int ratio;
1484 unsigned int idx;
1485 };
1486
1487 static struct memory_stat memory_stats[] = {
1488 { "anon", PAGE_SIZE, NR_ANON_MAPPED },
1489 { "file", PAGE_SIZE, NR_FILE_PAGES },
1490 { "kernel_stack", 1024, NR_KERNEL_STACK_KB },
1491 { "percpu", 1, MEMCG_PERCPU_B },
1492 { "sock", PAGE_SIZE, MEMCG_SOCK },
1493 { "shmem", PAGE_SIZE, NR_SHMEM },
1494 { "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
1495 { "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
1496 { "file_writeback", PAGE_SIZE, NR_WRITEBACK },
1497 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1498 /*
1499 * The ratio will be initialized in memory_stats_init(). Because
1500 * on some architectures, the macro of HPAGE_PMD_SIZE is not
1501 * constant(e.g. powerpc).
1502 */
1503 { "anon_thp", 0, NR_ANON_THPS },
1504 { "file_thp", 0, NR_FILE_THPS },
1505 { "shmem_thp", 0, NR_SHMEM_THPS },
1506 #endif
1507 { "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
1508 { "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
1509 { "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
1510 { "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
1511 { "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
1512
1513 /*
1514 * Note: The slab_reclaimable and slab_unreclaimable must be
1515 * together and slab_reclaimable must be in front.
1516 */
1517 { "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
1518 { "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
1519
1520 /* The memory events */
1521 { "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
1522 { "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
1523 { "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
1524 { "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
1525 { "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
1526 { "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
1527 { "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
1528 };
1529
1530 static int __init memory_stats_init(void)
1531 {
1532 int i;
1533
1534 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1535 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1536 if (memory_stats[i].idx == NR_ANON_THPS ||
1537 memory_stats[i].idx == NR_FILE_THPS ||
1538 memory_stats[i].idx == NR_SHMEM_THPS)
1539 memory_stats[i].ratio = HPAGE_PMD_SIZE;
1540 #endif
1541 VM_BUG_ON(!memory_stats[i].ratio);
1542 VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
1543 }
1544
1545 return 0;
1546 }
1547 pure_initcall(memory_stats_init);
1548
1549 static char *memory_stat_format(struct mem_cgroup *memcg)
1550 {
1551 struct seq_buf s;
1552 int i;
1553
1554 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1555 if (!s.buffer)
1556 return NULL;
1557
1558 /*
1559 * Provide statistics on the state of the memory subsystem as
1560 * well as cumulative event counters that show past behavior.
1561 *
1562 * This list is ordered following a combination of these gradients:
1563 * 1) generic big picture -> specifics and details
1564 * 2) reflecting userspace activity -> reflecting kernel heuristics
1565 *
1566 * Current memory state:
1567 */
1568
1569 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1570 u64 size;
1571
1572 size = memcg_page_state(memcg, memory_stats[i].idx);
1573 size *= memory_stats[i].ratio;
1574 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1575
1576 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1577 size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1578 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
1579 seq_buf_printf(&s, "slab %llu\n", size);
1580 }
1581 }
1582
1583 /* Accumulated memory events */
1584
1585 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1586 memcg_events(memcg, PGFAULT));
1587 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1588 memcg_events(memcg, PGMAJFAULT));
1589 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1590 memcg_events(memcg, PGREFILL));
1591 seq_buf_printf(&s, "pgscan %lu\n",
1592 memcg_events(memcg, PGSCAN_KSWAPD) +
1593 memcg_events(memcg, PGSCAN_DIRECT));
1594 seq_buf_printf(&s, "pgsteal %lu\n",
1595 memcg_events(memcg, PGSTEAL_KSWAPD) +
1596 memcg_events(memcg, PGSTEAL_DIRECT));
1597 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1598 memcg_events(memcg, PGACTIVATE));
1599 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1600 memcg_events(memcg, PGDEACTIVATE));
1601 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1602 memcg_events(memcg, PGLAZYFREE));
1603 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1604 memcg_events(memcg, PGLAZYFREED));
1605
1606 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1607 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1608 memcg_events(memcg, THP_FAULT_ALLOC));
1609 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1610 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1611 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1612
1613 /* The above should easily fit into one page */
1614 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1615
1616 return s.buffer;
1617 }
1618
1619 #define K(x) ((x) << (PAGE_SHIFT-10))
1620 /**
1621 * mem_cgroup_print_oom_context: Print OOM information relevant to
1622 * memory controller.
1623 * @memcg: The memory cgroup that went over limit
1624 * @p: Task that is going to be killed
1625 *
1626 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1627 * enabled
1628 */
1629 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1630 {
1631 rcu_read_lock();
1632
1633 if (memcg) {
1634 pr_cont(",oom_memcg=");
1635 pr_cont_cgroup_path(memcg->css.cgroup);
1636 } else
1637 pr_cont(",global_oom");
1638 if (p) {
1639 pr_cont(",task_memcg=");
1640 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1641 }
1642 rcu_read_unlock();
1643 }
1644
1645 /**
1646 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1647 * memory controller.
1648 * @memcg: The memory cgroup that went over limit
1649 */
1650 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1651 {
1652 char *buf;
1653
1654 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1655 K((u64)page_counter_read(&memcg->memory)),
1656 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1657 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1658 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1659 K((u64)page_counter_read(&memcg->swap)),
1660 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1661 else {
1662 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1663 K((u64)page_counter_read(&memcg->memsw)),
1664 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1665 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1666 K((u64)page_counter_read(&memcg->kmem)),
1667 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1668 }
1669
1670 pr_info("Memory cgroup stats for ");
1671 pr_cont_cgroup_path(memcg->css.cgroup);
1672 pr_cont(":");
1673 buf = memory_stat_format(memcg);
1674 if (!buf)
1675 return;
1676 pr_info("%s", buf);
1677 kfree(buf);
1678 }
1679
1680 /*
1681 * Return the memory (and swap, if configured) limit for a memcg.
1682 */
1683 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1684 {
1685 unsigned long max = READ_ONCE(memcg->memory.max);
1686
1687 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1688 if (mem_cgroup_swappiness(memcg))
1689 max += min(READ_ONCE(memcg->swap.max),
1690 (unsigned long)total_swap_pages);
1691 } else { /* v1 */
1692 if (mem_cgroup_swappiness(memcg)) {
1693 /* Calculate swap excess capacity from memsw limit */
1694 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1695
1696 max += min(swap, (unsigned long)total_swap_pages);
1697 }
1698 }
1699 return max;
1700 }
1701
1702 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1703 {
1704 return page_counter_read(&memcg->memory);
1705 }
1706
1707 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1708 int order)
1709 {
1710 struct oom_control oc = {
1711 .zonelist = NULL,
1712 .nodemask = NULL,
1713 .memcg = memcg,
1714 .gfp_mask = gfp_mask,
1715 .order = order,
1716 };
1717 bool ret = true;
1718
1719 if (mutex_lock_killable(&oom_lock))
1720 return true;
1721
1722 if (mem_cgroup_margin(memcg) >= (1 << order))
1723 goto unlock;
1724
1725 /*
1726 * A few threads which were not waiting at mutex_lock_killable() can
1727 * fail to bail out. Therefore, check again after holding oom_lock.
1728 */
1729 ret = should_force_charge() || out_of_memory(&oc);
1730
1731 unlock:
1732 mutex_unlock(&oom_lock);
1733 return ret;
1734 }
1735
1736 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1737 pg_data_t *pgdat,
1738 gfp_t gfp_mask,
1739 unsigned long *total_scanned)
1740 {
1741 struct mem_cgroup *victim = NULL;
1742 int total = 0;
1743 int loop = 0;
1744 unsigned long excess;
1745 unsigned long nr_scanned;
1746 struct mem_cgroup_reclaim_cookie reclaim = {
1747 .pgdat = pgdat,
1748 };
1749
1750 excess = soft_limit_excess(root_memcg);
1751
1752 while (1) {
1753 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1754 if (!victim) {
1755 loop++;
1756 if (loop >= 2) {
1757 /*
1758 * If we have not been able to reclaim
1759 * anything, it might because there are
1760 * no reclaimable pages under this hierarchy
1761 */
1762 if (!total)
1763 break;
1764 /*
1765 * We want to do more targeted reclaim.
1766 * excess >> 2 is not to excessive so as to
1767 * reclaim too much, nor too less that we keep
1768 * coming back to reclaim from this cgroup
1769 */
1770 if (total >= (excess >> 2) ||
1771 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1772 break;
1773 }
1774 continue;
1775 }
1776 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1777 pgdat, &nr_scanned);
1778 *total_scanned += nr_scanned;
1779 if (!soft_limit_excess(root_memcg))
1780 break;
1781 }
1782 mem_cgroup_iter_break(root_memcg, victim);
1783 return total;
1784 }
1785
1786 #ifdef CONFIG_LOCKDEP
1787 static struct lockdep_map memcg_oom_lock_dep_map = {
1788 .name = "memcg_oom_lock",
1789 };
1790 #endif
1791
1792 static DEFINE_SPINLOCK(memcg_oom_lock);
1793
1794 /*
1795 * Check OOM-Killer is already running under our hierarchy.
1796 * If someone is running, return false.
1797 */
1798 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1799 {
1800 struct mem_cgroup *iter, *failed = NULL;
1801
1802 spin_lock(&memcg_oom_lock);
1803
1804 for_each_mem_cgroup_tree(iter, memcg) {
1805 if (iter->oom_lock) {
1806 /*
1807 * this subtree of our hierarchy is already locked
1808 * so we cannot give a lock.
1809 */
1810 failed = iter;
1811 mem_cgroup_iter_break(memcg, iter);
1812 break;
1813 } else
1814 iter->oom_lock = true;
1815 }
1816
1817 if (failed) {
1818 /*
1819 * OK, we failed to lock the whole subtree so we have
1820 * to clean up what we set up to the failing subtree
1821 */
1822 for_each_mem_cgroup_tree(iter, memcg) {
1823 if (iter == failed) {
1824 mem_cgroup_iter_break(memcg, iter);
1825 break;
1826 }
1827 iter->oom_lock = false;
1828 }
1829 } else
1830 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1831
1832 spin_unlock(&memcg_oom_lock);
1833
1834 return !failed;
1835 }
1836
1837 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1838 {
1839 struct mem_cgroup *iter;
1840
1841 spin_lock(&memcg_oom_lock);
1842 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1843 for_each_mem_cgroup_tree(iter, memcg)
1844 iter->oom_lock = false;
1845 spin_unlock(&memcg_oom_lock);
1846 }
1847
1848 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1849 {
1850 struct mem_cgroup *iter;
1851
1852 spin_lock(&memcg_oom_lock);
1853 for_each_mem_cgroup_tree(iter, memcg)
1854 iter->under_oom++;
1855 spin_unlock(&memcg_oom_lock);
1856 }
1857
1858 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1859 {
1860 struct mem_cgroup *iter;
1861
1862 /*
1863 * Be careful about under_oom underflows becase a child memcg
1864 * could have been added after mem_cgroup_mark_under_oom.
1865 */
1866 spin_lock(&memcg_oom_lock);
1867 for_each_mem_cgroup_tree(iter, memcg)
1868 if (iter->under_oom > 0)
1869 iter->under_oom--;
1870 spin_unlock(&memcg_oom_lock);
1871 }
1872
1873 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1874
1875 struct oom_wait_info {
1876 struct mem_cgroup *memcg;
1877 wait_queue_entry_t wait;
1878 };
1879
1880 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1881 unsigned mode, int sync, void *arg)
1882 {
1883 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1884 struct mem_cgroup *oom_wait_memcg;
1885 struct oom_wait_info *oom_wait_info;
1886
1887 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1888 oom_wait_memcg = oom_wait_info->memcg;
1889
1890 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1891 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1892 return 0;
1893 return autoremove_wake_function(wait, mode, sync, arg);
1894 }
1895
1896 static void memcg_oom_recover(struct mem_cgroup *memcg)
1897 {
1898 /*
1899 * For the following lockless ->under_oom test, the only required
1900 * guarantee is that it must see the state asserted by an OOM when
1901 * this function is called as a result of userland actions
1902 * triggered by the notification of the OOM. This is trivially
1903 * achieved by invoking mem_cgroup_mark_under_oom() before
1904 * triggering notification.
1905 */
1906 if (memcg && memcg->under_oom)
1907 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1908 }
1909
1910 enum oom_status {
1911 OOM_SUCCESS,
1912 OOM_FAILED,
1913 OOM_ASYNC,
1914 OOM_SKIPPED
1915 };
1916
1917 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1918 {
1919 enum oom_status ret;
1920 bool locked;
1921
1922 if (order > PAGE_ALLOC_COSTLY_ORDER)
1923 return OOM_SKIPPED;
1924
1925 memcg_memory_event(memcg, MEMCG_OOM);
1926
1927 /*
1928 * We are in the middle of the charge context here, so we
1929 * don't want to block when potentially sitting on a callstack
1930 * that holds all kinds of filesystem and mm locks.
1931 *
1932 * cgroup1 allows disabling the OOM killer and waiting for outside
1933 * handling until the charge can succeed; remember the context and put
1934 * the task to sleep at the end of the page fault when all locks are
1935 * released.
1936 *
1937 * On the other hand, in-kernel OOM killer allows for an async victim
1938 * memory reclaim (oom_reaper) and that means that we are not solely
1939 * relying on the oom victim to make a forward progress and we can
1940 * invoke the oom killer here.
1941 *
1942 * Please note that mem_cgroup_out_of_memory might fail to find a
1943 * victim and then we have to bail out from the charge path.
1944 */
1945 if (memcg->oom_kill_disable) {
1946 if (!current->in_user_fault)
1947 return OOM_SKIPPED;
1948 css_get(&memcg->css);
1949 current->memcg_in_oom = memcg;
1950 current->memcg_oom_gfp_mask = mask;
1951 current->memcg_oom_order = order;
1952
1953 return OOM_ASYNC;
1954 }
1955
1956 mem_cgroup_mark_under_oom(memcg);
1957
1958 locked = mem_cgroup_oom_trylock(memcg);
1959
1960 if (locked)
1961 mem_cgroup_oom_notify(memcg);
1962
1963 mem_cgroup_unmark_under_oom(memcg);
1964 if (mem_cgroup_out_of_memory(memcg, mask, order))
1965 ret = OOM_SUCCESS;
1966 else
1967 ret = OOM_FAILED;
1968
1969 if (locked)
1970 mem_cgroup_oom_unlock(memcg);
1971
1972 return ret;
1973 }
1974
1975 /**
1976 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1977 * @handle: actually kill/wait or just clean up the OOM state
1978 *
1979 * This has to be called at the end of a page fault if the memcg OOM
1980 * handler was enabled.
1981 *
1982 * Memcg supports userspace OOM handling where failed allocations must
1983 * sleep on a waitqueue until the userspace task resolves the
1984 * situation. Sleeping directly in the charge context with all kinds
1985 * of locks held is not a good idea, instead we remember an OOM state
1986 * in the task and mem_cgroup_oom_synchronize() has to be called at
1987 * the end of the page fault to complete the OOM handling.
1988 *
1989 * Returns %true if an ongoing memcg OOM situation was detected and
1990 * completed, %false otherwise.
1991 */
1992 bool mem_cgroup_oom_synchronize(bool handle)
1993 {
1994 struct mem_cgroup *memcg = current->memcg_in_oom;
1995 struct oom_wait_info owait;
1996 bool locked;
1997
1998 /* OOM is global, do not handle */
1999 if (!memcg)
2000 return false;
2001
2002 if (!handle)
2003 goto cleanup;
2004
2005 owait.memcg = memcg;
2006 owait.wait.flags = 0;
2007 owait.wait.func = memcg_oom_wake_function;
2008 owait.wait.private = current;
2009 INIT_LIST_HEAD(&owait.wait.entry);
2010
2011 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2012 mem_cgroup_mark_under_oom(memcg);
2013
2014 locked = mem_cgroup_oom_trylock(memcg);
2015
2016 if (locked)
2017 mem_cgroup_oom_notify(memcg);
2018
2019 if (locked && !memcg->oom_kill_disable) {
2020 mem_cgroup_unmark_under_oom(memcg);
2021 finish_wait(&memcg_oom_waitq, &owait.wait);
2022 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2023 current->memcg_oom_order);
2024 } else {
2025 schedule();
2026 mem_cgroup_unmark_under_oom(memcg);
2027 finish_wait(&memcg_oom_waitq, &owait.wait);
2028 }
2029
2030 if (locked) {
2031 mem_cgroup_oom_unlock(memcg);
2032 /*
2033 * There is no guarantee that an OOM-lock contender
2034 * sees the wakeups triggered by the OOM kill
2035 * uncharges. Wake any sleepers explicitely.
2036 */
2037 memcg_oom_recover(memcg);
2038 }
2039 cleanup:
2040 current->memcg_in_oom = NULL;
2041 css_put(&memcg->css);
2042 return true;
2043 }
2044
2045 /**
2046 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2047 * @victim: task to be killed by the OOM killer
2048 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2049 *
2050 * Returns a pointer to a memory cgroup, which has to be cleaned up
2051 * by killing all belonging OOM-killable tasks.
2052 *
2053 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2054 */
2055 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2056 struct mem_cgroup *oom_domain)
2057 {
2058 struct mem_cgroup *oom_group = NULL;
2059 struct mem_cgroup *memcg;
2060
2061 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2062 return NULL;
2063
2064 if (!oom_domain)
2065 oom_domain = root_mem_cgroup;
2066
2067 rcu_read_lock();
2068
2069 memcg = mem_cgroup_from_task(victim);
2070 if (memcg == root_mem_cgroup)
2071 goto out;
2072
2073 /*
2074 * If the victim task has been asynchronously moved to a different
2075 * memory cgroup, we might end up killing tasks outside oom_domain.
2076 * In this case it's better to ignore memory.group.oom.
2077 */
2078 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2079 goto out;
2080
2081 /*
2082 * Traverse the memory cgroup hierarchy from the victim task's
2083 * cgroup up to the OOMing cgroup (or root) to find the
2084 * highest-level memory cgroup with oom.group set.
2085 */
2086 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2087 if (memcg->oom_group)
2088 oom_group = memcg;
2089
2090 if (memcg == oom_domain)
2091 break;
2092 }
2093
2094 if (oom_group)
2095 css_get(&oom_group->css);
2096 out:
2097 rcu_read_unlock();
2098
2099 return oom_group;
2100 }
2101
2102 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2103 {
2104 pr_info("Tasks in ");
2105 pr_cont_cgroup_path(memcg->css.cgroup);
2106 pr_cont(" are going to be killed due to memory.oom.group set\n");
2107 }
2108
2109 /**
2110 * lock_page_memcg - lock a page->mem_cgroup binding
2111 * @page: the page
2112 *
2113 * This function protects unlocked LRU pages from being moved to
2114 * another cgroup.
2115 *
2116 * It ensures lifetime of the returned memcg. Caller is responsible
2117 * for the lifetime of the page; __unlock_page_memcg() is available
2118 * when @page might get freed inside the locked section.
2119 */
2120 struct mem_cgroup *lock_page_memcg(struct page *page)
2121 {
2122 struct page *head = compound_head(page); /* rmap on tail pages */
2123 struct mem_cgroup *memcg;
2124 unsigned long flags;
2125
2126 /*
2127 * The RCU lock is held throughout the transaction. The fast
2128 * path can get away without acquiring the memcg->move_lock
2129 * because page moving starts with an RCU grace period.
2130 *
2131 * The RCU lock also protects the memcg from being freed when
2132 * the page state that is going to change is the only thing
2133 * preventing the page itself from being freed. E.g. writeback
2134 * doesn't hold a page reference and relies on PG_writeback to
2135 * keep off truncation, migration and so forth.
2136 */
2137 rcu_read_lock();
2138
2139 if (mem_cgroup_disabled())
2140 return NULL;
2141 again:
2142 memcg = head->mem_cgroup;
2143 if (unlikely(!memcg))
2144 return NULL;
2145
2146 if (atomic_read(&memcg->moving_account) <= 0)
2147 return memcg;
2148
2149 spin_lock_irqsave(&memcg->move_lock, flags);
2150 if (memcg != head->mem_cgroup) {
2151 spin_unlock_irqrestore(&memcg->move_lock, flags);
2152 goto again;
2153 }
2154
2155 /*
2156 * When charge migration first begins, we can have locked and
2157 * unlocked page stat updates happening concurrently. Track
2158 * the task who has the lock for unlock_page_memcg().
2159 */
2160 memcg->move_lock_task = current;
2161 memcg->move_lock_flags = flags;
2162
2163 return memcg;
2164 }
2165 EXPORT_SYMBOL(lock_page_memcg);
2166
2167 /**
2168 * __unlock_page_memcg - unlock and unpin a memcg
2169 * @memcg: the memcg
2170 *
2171 * Unlock and unpin a memcg returned by lock_page_memcg().
2172 */
2173 void __unlock_page_memcg(struct mem_cgroup *memcg)
2174 {
2175 if (memcg && memcg->move_lock_task == current) {
2176 unsigned long flags = memcg->move_lock_flags;
2177
2178 memcg->move_lock_task = NULL;
2179 memcg->move_lock_flags = 0;
2180
2181 spin_unlock_irqrestore(&memcg->move_lock, flags);
2182 }
2183
2184 rcu_read_unlock();
2185 }
2186
2187 /**
2188 * unlock_page_memcg - unlock a page->mem_cgroup binding
2189 * @page: the page
2190 */
2191 void unlock_page_memcg(struct page *page)
2192 {
2193 struct page *head = compound_head(page);
2194
2195 __unlock_page_memcg(head->mem_cgroup);
2196 }
2197 EXPORT_SYMBOL(unlock_page_memcg);
2198
2199 struct memcg_stock_pcp {
2200 struct mem_cgroup *cached; /* this never be root cgroup */
2201 unsigned int nr_pages;
2202
2203 #ifdef CONFIG_MEMCG_KMEM
2204 struct obj_cgroup *cached_objcg;
2205 unsigned int nr_bytes;
2206 #endif
2207
2208 struct work_struct work;
2209 unsigned long flags;
2210 #define FLUSHING_CACHED_CHARGE 0
2211 };
2212 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2213 static DEFINE_MUTEX(percpu_charge_mutex);
2214
2215 #ifdef CONFIG_MEMCG_KMEM
2216 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2217 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2218 struct mem_cgroup *root_memcg);
2219
2220 #else
2221 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2222 {
2223 }
2224 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2225 struct mem_cgroup *root_memcg)
2226 {
2227 return false;
2228 }
2229 #endif
2230
2231 /**
2232 * consume_stock: Try to consume stocked charge on this cpu.
2233 * @memcg: memcg to consume from.
2234 * @nr_pages: how many pages to charge.
2235 *
2236 * The charges will only happen if @memcg matches the current cpu's memcg
2237 * stock, and at least @nr_pages are available in that stock. Failure to
2238 * service an allocation will refill the stock.
2239 *
2240 * returns true if successful, false otherwise.
2241 */
2242 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2243 {
2244 struct memcg_stock_pcp *stock;
2245 unsigned long flags;
2246 bool ret = false;
2247
2248 if (nr_pages > MEMCG_CHARGE_BATCH)
2249 return ret;
2250
2251 local_irq_save(flags);
2252
2253 stock = this_cpu_ptr(&memcg_stock);
2254 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2255 stock->nr_pages -= nr_pages;
2256 ret = true;
2257 }
2258
2259 local_irq_restore(flags);
2260
2261 return ret;
2262 }
2263
2264 /*
2265 * Returns stocks cached in percpu and reset cached information.
2266 */
2267 static void drain_stock(struct memcg_stock_pcp *stock)
2268 {
2269 struct mem_cgroup *old = stock->cached;
2270
2271 if (!old)
2272 return;
2273
2274 if (stock->nr_pages) {
2275 page_counter_uncharge(&old->memory, stock->nr_pages);
2276 if (do_memsw_account())
2277 page_counter_uncharge(&old->memsw, stock->nr_pages);
2278 stock->nr_pages = 0;
2279 }
2280
2281 css_put(&old->css);
2282 stock->cached = NULL;
2283 }
2284
2285 static void drain_local_stock(struct work_struct *dummy)
2286 {
2287 struct memcg_stock_pcp *stock;
2288 unsigned long flags;
2289
2290 /*
2291 * The only protection from memory hotplug vs. drain_stock races is
2292 * that we always operate on local CPU stock here with IRQ disabled
2293 */
2294 local_irq_save(flags);
2295
2296 stock = this_cpu_ptr(&memcg_stock);
2297 drain_obj_stock(stock);
2298 drain_stock(stock);
2299 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2300
2301 local_irq_restore(flags);
2302 }
2303
2304 /*
2305 * Cache charges(val) to local per_cpu area.
2306 * This will be consumed by consume_stock() function, later.
2307 */
2308 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2309 {
2310 struct memcg_stock_pcp *stock;
2311 unsigned long flags;
2312
2313 local_irq_save(flags);
2314
2315 stock = this_cpu_ptr(&memcg_stock);
2316 if (stock->cached != memcg) { /* reset if necessary */
2317 drain_stock(stock);
2318 css_get(&memcg->css);
2319 stock->cached = memcg;
2320 }
2321 stock->nr_pages += nr_pages;
2322
2323 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2324 drain_stock(stock);
2325
2326 local_irq_restore(flags);
2327 }
2328
2329 /*
2330 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2331 * of the hierarchy under it.
2332 */
2333 static void drain_all_stock(struct mem_cgroup *root_memcg)
2334 {
2335 int cpu, curcpu;
2336
2337 /* If someone's already draining, avoid adding running more workers. */
2338 if (!mutex_trylock(&percpu_charge_mutex))
2339 return;
2340 /*
2341 * Notify other cpus that system-wide "drain" is running
2342 * We do not care about races with the cpu hotplug because cpu down
2343 * as well as workers from this path always operate on the local
2344 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2345 */
2346 curcpu = get_cpu();
2347 for_each_online_cpu(cpu) {
2348 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2349 struct mem_cgroup *memcg;
2350 bool flush = false;
2351
2352 rcu_read_lock();
2353 memcg = stock->cached;
2354 if (memcg && stock->nr_pages &&
2355 mem_cgroup_is_descendant(memcg, root_memcg))
2356 flush = true;
2357 if (obj_stock_flush_required(stock, root_memcg))
2358 flush = true;
2359 rcu_read_unlock();
2360
2361 if (flush &&
2362 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2363 if (cpu == curcpu)
2364 drain_local_stock(&stock->work);
2365 else
2366 schedule_work_on(cpu, &stock->work);
2367 }
2368 }
2369 put_cpu();
2370 mutex_unlock(&percpu_charge_mutex);
2371 }
2372
2373 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2374 {
2375 struct memcg_stock_pcp *stock;
2376 struct mem_cgroup *memcg, *mi;
2377
2378 stock = &per_cpu(memcg_stock, cpu);
2379 drain_stock(stock);
2380
2381 for_each_mem_cgroup(memcg) {
2382 int i;
2383
2384 for (i = 0; i < MEMCG_NR_STAT; i++) {
2385 int nid;
2386 long x;
2387
2388 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2389 if (x)
2390 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2391 atomic_long_add(x, &memcg->vmstats[i]);
2392
2393 if (i >= NR_VM_NODE_STAT_ITEMS)
2394 continue;
2395
2396 for_each_node(nid) {
2397 struct mem_cgroup_per_node *pn;
2398
2399 pn = mem_cgroup_nodeinfo(memcg, nid);
2400 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2401 if (x)
2402 do {
2403 atomic_long_add(x, &pn->lruvec_stat[i]);
2404 } while ((pn = parent_nodeinfo(pn, nid)));
2405 }
2406 }
2407
2408 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2409 long x;
2410
2411 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2412 if (x)
2413 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2414 atomic_long_add(x, &memcg->vmevents[i]);
2415 }
2416 }
2417
2418 return 0;
2419 }
2420
2421 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2422 unsigned int nr_pages,
2423 gfp_t gfp_mask)
2424 {
2425 unsigned long nr_reclaimed = 0;
2426
2427 do {
2428 unsigned long pflags;
2429
2430 if (page_counter_read(&memcg->memory) <=
2431 READ_ONCE(memcg->memory.high))
2432 continue;
2433
2434 memcg_memory_event(memcg, MEMCG_HIGH);
2435
2436 psi_memstall_enter(&pflags);
2437 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2438 gfp_mask, true);
2439 psi_memstall_leave(&pflags);
2440 } while ((memcg = parent_mem_cgroup(memcg)) &&
2441 !mem_cgroup_is_root(memcg));
2442
2443 return nr_reclaimed;
2444 }
2445
2446 static void high_work_func(struct work_struct *work)
2447 {
2448 struct mem_cgroup *memcg;
2449
2450 memcg = container_of(work, struct mem_cgroup, high_work);
2451 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2452 }
2453
2454 /*
2455 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2456 * enough to still cause a significant slowdown in most cases, while still
2457 * allowing diagnostics and tracing to proceed without becoming stuck.
2458 */
2459 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2460
2461 /*
2462 * When calculating the delay, we use these either side of the exponentiation to
2463 * maintain precision and scale to a reasonable number of jiffies (see the table
2464 * below.
2465 *
2466 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2467 * overage ratio to a delay.
2468 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2469 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2470 * to produce a reasonable delay curve.
2471 *
2472 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2473 * reasonable delay curve compared to precision-adjusted overage, not
2474 * penalising heavily at first, but still making sure that growth beyond the
2475 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2476 * example, with a high of 100 megabytes:
2477 *
2478 * +-------+------------------------+
2479 * | usage | time to allocate in ms |
2480 * +-------+------------------------+
2481 * | 100M | 0 |
2482 * | 101M | 6 |
2483 * | 102M | 25 |
2484 * | 103M | 57 |
2485 * | 104M | 102 |
2486 * | 105M | 159 |
2487 * | 106M | 230 |
2488 * | 107M | 313 |
2489 * | 108M | 409 |
2490 * | 109M | 518 |
2491 * | 110M | 639 |
2492 * | 111M | 774 |
2493 * | 112M | 921 |
2494 * | 113M | 1081 |
2495 * | 114M | 1254 |
2496 * | 115M | 1439 |
2497 * | 116M | 1638 |
2498 * | 117M | 1849 |
2499 * | 118M | 2000 |
2500 * | 119M | 2000 |
2501 * | 120M | 2000 |
2502 * +-------+------------------------+
2503 */
2504 #define MEMCG_DELAY_PRECISION_SHIFT 20
2505 #define MEMCG_DELAY_SCALING_SHIFT 14
2506
2507 static u64 calculate_overage(unsigned long usage, unsigned long high)
2508 {
2509 u64 overage;
2510
2511 if (usage <= high)
2512 return 0;
2513
2514 /*
2515 * Prevent division by 0 in overage calculation by acting as if
2516 * it was a threshold of 1 page
2517 */
2518 high = max(high, 1UL);
2519
2520 overage = usage - high;
2521 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2522 return div64_u64(overage, high);
2523 }
2524
2525 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2526 {
2527 u64 overage, max_overage = 0;
2528
2529 do {
2530 overage = calculate_overage(page_counter_read(&memcg->memory),
2531 READ_ONCE(memcg->memory.high));
2532 max_overage = max(overage, max_overage);
2533 } while ((memcg = parent_mem_cgroup(memcg)) &&
2534 !mem_cgroup_is_root(memcg));
2535
2536 return max_overage;
2537 }
2538
2539 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2540 {
2541 u64 overage, max_overage = 0;
2542
2543 do {
2544 overage = calculate_overage(page_counter_read(&memcg->swap),
2545 READ_ONCE(memcg->swap.high));
2546 if (overage)
2547 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2548 max_overage = max(overage, max_overage);
2549 } while ((memcg = parent_mem_cgroup(memcg)) &&
2550 !mem_cgroup_is_root(memcg));
2551
2552 return max_overage;
2553 }
2554
2555 /*
2556 * Get the number of jiffies that we should penalise a mischievous cgroup which
2557 * is exceeding its memory.high by checking both it and its ancestors.
2558 */
2559 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2560 unsigned int nr_pages,
2561 u64 max_overage)
2562 {
2563 unsigned long penalty_jiffies;
2564
2565 if (!max_overage)
2566 return 0;
2567
2568 /*
2569 * We use overage compared to memory.high to calculate the number of
2570 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2571 * fairly lenient on small overages, and increasingly harsh when the
2572 * memcg in question makes it clear that it has no intention of stopping
2573 * its crazy behaviour, so we exponentially increase the delay based on
2574 * overage amount.
2575 */
2576 penalty_jiffies = max_overage * max_overage * HZ;
2577 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2578 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2579
2580 /*
2581 * Factor in the task's own contribution to the overage, such that four
2582 * N-sized allocations are throttled approximately the same as one
2583 * 4N-sized allocation.
2584 *
2585 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2586 * larger the current charge patch is than that.
2587 */
2588 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2589 }
2590
2591 /*
2592 * Scheduled by try_charge() to be executed from the userland return path
2593 * and reclaims memory over the high limit.
2594 */
2595 void mem_cgroup_handle_over_high(void)
2596 {
2597 unsigned long penalty_jiffies;
2598 unsigned long pflags;
2599 unsigned long nr_reclaimed;
2600 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2601 int nr_retries = MAX_RECLAIM_RETRIES;
2602 struct mem_cgroup *memcg;
2603 bool in_retry = false;
2604
2605 if (likely(!nr_pages))
2606 return;
2607
2608 memcg = get_mem_cgroup_from_mm(current->mm);
2609 current->memcg_nr_pages_over_high = 0;
2610
2611 retry_reclaim:
2612 /*
2613 * The allocating task should reclaim at least the batch size, but for
2614 * subsequent retries we only want to do what's necessary to prevent oom
2615 * or breaching resource isolation.
2616 *
2617 * This is distinct from memory.max or page allocator behaviour because
2618 * memory.high is currently batched, whereas memory.max and the page
2619 * allocator run every time an allocation is made.
2620 */
2621 nr_reclaimed = reclaim_high(memcg,
2622 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2623 GFP_KERNEL);
2624
2625 /*
2626 * memory.high is breached and reclaim is unable to keep up. Throttle
2627 * allocators proactively to slow down excessive growth.
2628 */
2629 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2630 mem_find_max_overage(memcg));
2631
2632 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2633 swap_find_max_overage(memcg));
2634
2635 /*
2636 * Clamp the max delay per usermode return so as to still keep the
2637 * application moving forwards and also permit diagnostics, albeit
2638 * extremely slowly.
2639 */
2640 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2641
2642 /*
2643 * Don't sleep if the amount of jiffies this memcg owes us is so low
2644 * that it's not even worth doing, in an attempt to be nice to those who
2645 * go only a small amount over their memory.high value and maybe haven't
2646 * been aggressively reclaimed enough yet.
2647 */
2648 if (penalty_jiffies <= HZ / 100)
2649 goto out;
2650
2651 /*
2652 * If reclaim is making forward progress but we're still over
2653 * memory.high, we want to encourage that rather than doing allocator
2654 * throttling.
2655 */
2656 if (nr_reclaimed || nr_retries--) {
2657 in_retry = true;
2658 goto retry_reclaim;
2659 }
2660
2661 /*
2662 * If we exit early, we're guaranteed to die (since
2663 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2664 * need to account for any ill-begotten jiffies to pay them off later.
2665 */
2666 psi_memstall_enter(&pflags);
2667 schedule_timeout_killable(penalty_jiffies);
2668 psi_memstall_leave(&pflags);
2669
2670 out:
2671 css_put(&memcg->css);
2672 }
2673
2674 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2675 unsigned int nr_pages)
2676 {
2677 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2678 int nr_retries = MAX_RECLAIM_RETRIES;
2679 struct mem_cgroup *mem_over_limit;
2680 struct page_counter *counter;
2681 enum oom_status oom_status;
2682 unsigned long nr_reclaimed;
2683 bool may_swap = true;
2684 bool drained = false;
2685 unsigned long pflags;
2686
2687 if (mem_cgroup_is_root(memcg))
2688 return 0;
2689 retry:
2690 if (consume_stock(memcg, nr_pages))
2691 return 0;
2692
2693 if (!do_memsw_account() ||
2694 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2695 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2696 goto done_restock;
2697 if (do_memsw_account())
2698 page_counter_uncharge(&memcg->memsw, batch);
2699 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2700 } else {
2701 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2702 may_swap = false;
2703 }
2704
2705 if (batch > nr_pages) {
2706 batch = nr_pages;
2707 goto retry;
2708 }
2709
2710 /*
2711 * Memcg doesn't have a dedicated reserve for atomic
2712 * allocations. But like the global atomic pool, we need to
2713 * put the burden of reclaim on regular allocation requests
2714 * and let these go through as privileged allocations.
2715 */
2716 if (gfp_mask & __GFP_ATOMIC)
2717 goto force;
2718
2719 /*
2720 * Unlike in global OOM situations, memcg is not in a physical
2721 * memory shortage. Allow dying and OOM-killed tasks to
2722 * bypass the last charges so that they can exit quickly and
2723 * free their memory.
2724 */
2725 if (unlikely(should_force_charge()))
2726 goto force;
2727
2728 /*
2729 * Prevent unbounded recursion when reclaim operations need to
2730 * allocate memory. This might exceed the limits temporarily,
2731 * but we prefer facilitating memory reclaim and getting back
2732 * under the limit over triggering OOM kills in these cases.
2733 */
2734 if (unlikely(current->flags & PF_MEMALLOC))
2735 goto force;
2736
2737 if (unlikely(task_in_memcg_oom(current)))
2738 goto nomem;
2739
2740 if (!gfpflags_allow_blocking(gfp_mask))
2741 goto nomem;
2742
2743 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2744
2745 psi_memstall_enter(&pflags);
2746 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2747 gfp_mask, may_swap);
2748 psi_memstall_leave(&pflags);
2749
2750 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2751 goto retry;
2752
2753 if (!drained) {
2754 drain_all_stock(mem_over_limit);
2755 drained = true;
2756 goto retry;
2757 }
2758
2759 if (gfp_mask & __GFP_NORETRY)
2760 goto nomem;
2761 /*
2762 * Even though the limit is exceeded at this point, reclaim
2763 * may have been able to free some pages. Retry the charge
2764 * before killing the task.
2765 *
2766 * Only for regular pages, though: huge pages are rather
2767 * unlikely to succeed so close to the limit, and we fall back
2768 * to regular pages anyway in case of failure.
2769 */
2770 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2771 goto retry;
2772 /*
2773 * At task move, charge accounts can be doubly counted. So, it's
2774 * better to wait until the end of task_move if something is going on.
2775 */
2776 if (mem_cgroup_wait_acct_move(mem_over_limit))
2777 goto retry;
2778
2779 if (nr_retries--)
2780 goto retry;
2781
2782 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2783 goto nomem;
2784
2785 if (gfp_mask & __GFP_NOFAIL)
2786 goto force;
2787
2788 if (fatal_signal_pending(current))
2789 goto force;
2790
2791 /*
2792 * keep retrying as long as the memcg oom killer is able to make
2793 * a forward progress or bypass the charge if the oom killer
2794 * couldn't make any progress.
2795 */
2796 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2797 get_order(nr_pages * PAGE_SIZE));
2798 switch (oom_status) {
2799 case OOM_SUCCESS:
2800 nr_retries = MAX_RECLAIM_RETRIES;
2801 goto retry;
2802 case OOM_FAILED:
2803 goto force;
2804 default:
2805 goto nomem;
2806 }
2807 nomem:
2808 if (!(gfp_mask & __GFP_NOFAIL))
2809 return -ENOMEM;
2810 force:
2811 /*
2812 * The allocation either can't fail or will lead to more memory
2813 * being freed very soon. Allow memory usage go over the limit
2814 * temporarily by force charging it.
2815 */
2816 page_counter_charge(&memcg->memory, nr_pages);
2817 if (do_memsw_account())
2818 page_counter_charge(&memcg->memsw, nr_pages);
2819
2820 return 0;
2821
2822 done_restock:
2823 if (batch > nr_pages)
2824 refill_stock(memcg, batch - nr_pages);
2825
2826 /*
2827 * If the hierarchy is above the normal consumption range, schedule
2828 * reclaim on returning to userland. We can perform reclaim here
2829 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2830 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2831 * not recorded as it most likely matches current's and won't
2832 * change in the meantime. As high limit is checked again before
2833 * reclaim, the cost of mismatch is negligible.
2834 */
2835 do {
2836 bool mem_high, swap_high;
2837
2838 mem_high = page_counter_read(&memcg->memory) >
2839 READ_ONCE(memcg->memory.high);
2840 swap_high = page_counter_read(&memcg->swap) >
2841 READ_ONCE(memcg->swap.high);
2842
2843 /* Don't bother a random interrupted task */
2844 if (in_interrupt()) {
2845 if (mem_high) {
2846 schedule_work(&memcg->high_work);
2847 break;
2848 }
2849 continue;
2850 }
2851
2852 if (mem_high || swap_high) {
2853 /*
2854 * The allocating tasks in this cgroup will need to do
2855 * reclaim or be throttled to prevent further growth
2856 * of the memory or swap footprints.
2857 *
2858 * Target some best-effort fairness between the tasks,
2859 * and distribute reclaim work and delay penalties
2860 * based on how much each task is actually allocating.
2861 */
2862 current->memcg_nr_pages_over_high += batch;
2863 set_notify_resume(current);
2864 break;
2865 }
2866 } while ((memcg = parent_mem_cgroup(memcg)));
2867
2868 return 0;
2869 }
2870
2871 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2872 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2873 {
2874 if (mem_cgroup_is_root(memcg))
2875 return;
2876
2877 page_counter_uncharge(&memcg->memory, nr_pages);
2878 if (do_memsw_account())
2879 page_counter_uncharge(&memcg->memsw, nr_pages);
2880 }
2881 #endif
2882
2883 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2884 {
2885 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2886 /*
2887 * Any of the following ensures page->mem_cgroup stability:
2888 *
2889 * - the page lock
2890 * - LRU isolation
2891 * - lock_page_memcg()
2892 * - exclusive reference
2893 */
2894 page->mem_cgroup = memcg;
2895 }
2896
2897 #ifdef CONFIG_MEMCG_KMEM
2898 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2899 gfp_t gfp)
2900 {
2901 unsigned int objects = objs_per_slab_page(s, page);
2902 void *vec;
2903
2904 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2905 page_to_nid(page));
2906 if (!vec)
2907 return -ENOMEM;
2908
2909 if (cmpxchg(&page->obj_cgroups, NULL,
2910 (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
2911 kfree(vec);
2912 else
2913 kmemleak_not_leak(vec);
2914
2915 return 0;
2916 }
2917
2918 /*
2919 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2920 *
2921 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2922 * cgroup_mutex, etc.
2923 */
2924 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2925 {
2926 struct page *page;
2927
2928 if (mem_cgroup_disabled())
2929 return NULL;
2930
2931 page = virt_to_head_page(p);
2932
2933 /*
2934 * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer
2935 * or a pointer to obj_cgroup vector. In the latter case the lowest
2936 * bit of the pointer is set.
2937 * The page->mem_cgroup pointer can be asynchronously changed
2938 * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed
2939 * from a valid memcg pointer to objcg vector or back.
2940 */
2941 if (!page->mem_cgroup)
2942 return NULL;
2943
2944 /*
2945 * Slab objects are accounted individually, not per-page.
2946 * Memcg membership data for each individual object is saved in
2947 * the page->obj_cgroups.
2948 */
2949 if (page_has_obj_cgroups(page)) {
2950 struct obj_cgroup *objcg;
2951 unsigned int off;
2952
2953 off = obj_to_index(page->slab_cache, page, p);
2954 objcg = page_obj_cgroups(page)[off];
2955 if (objcg)
2956 return obj_cgroup_memcg(objcg);
2957
2958 return NULL;
2959 }
2960
2961 /* All other pages use page->mem_cgroup */
2962 return page->mem_cgroup;
2963 }
2964
2965 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2966 {
2967 struct obj_cgroup *objcg = NULL;
2968 struct mem_cgroup *memcg;
2969
2970 if (memcg_kmem_bypass())
2971 return NULL;
2972
2973 rcu_read_lock();
2974 if (unlikely(active_memcg()))
2975 memcg = active_memcg();
2976 else
2977 memcg = mem_cgroup_from_task(current);
2978
2979 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2980 objcg = rcu_dereference(memcg->objcg);
2981 if (objcg && obj_cgroup_tryget(objcg))
2982 break;
2983 }
2984 rcu_read_unlock();
2985
2986 return objcg;
2987 }
2988
2989 static int memcg_alloc_cache_id(void)
2990 {
2991 int id, size;
2992 int err;
2993
2994 id = ida_simple_get(&memcg_cache_ida,
2995 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2996 if (id < 0)
2997 return id;
2998
2999 if (id < memcg_nr_cache_ids)
3000 return id;
3001
3002 /*
3003 * There's no space for the new id in memcg_caches arrays,
3004 * so we have to grow them.
3005 */
3006 down_write(&memcg_cache_ids_sem);
3007
3008 size = 2 * (id + 1);
3009 if (size < MEMCG_CACHES_MIN_SIZE)
3010 size = MEMCG_CACHES_MIN_SIZE;
3011 else if (size > MEMCG_CACHES_MAX_SIZE)
3012 size = MEMCG_CACHES_MAX_SIZE;
3013
3014 err = memcg_update_all_list_lrus(size);
3015 if (!err)
3016 memcg_nr_cache_ids = size;
3017
3018 up_write(&memcg_cache_ids_sem);
3019
3020 if (err) {
3021 ida_simple_remove(&memcg_cache_ida, id);
3022 return err;
3023 }
3024 return id;
3025 }
3026
3027 static void memcg_free_cache_id(int id)
3028 {
3029 ida_simple_remove(&memcg_cache_ida, id);
3030 }
3031
3032 /**
3033 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3034 * @memcg: memory cgroup to charge
3035 * @gfp: reclaim mode
3036 * @nr_pages: number of pages to charge
3037 *
3038 * Returns 0 on success, an error code on failure.
3039 */
3040 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3041 unsigned int nr_pages)
3042 {
3043 struct page_counter *counter;
3044 int ret;
3045
3046 ret = try_charge(memcg, gfp, nr_pages);
3047 if (ret)
3048 return ret;
3049
3050 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3051 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3052
3053 /*
3054 * Enforce __GFP_NOFAIL allocation because callers are not
3055 * prepared to see failures and likely do not have any failure
3056 * handling code.
3057 */
3058 if (gfp & __GFP_NOFAIL) {
3059 page_counter_charge(&memcg->kmem, nr_pages);
3060 return 0;
3061 }
3062 cancel_charge(memcg, nr_pages);
3063 return -ENOMEM;
3064 }
3065 return 0;
3066 }
3067
3068 /**
3069 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3070 * @memcg: memcg to uncharge
3071 * @nr_pages: number of pages to uncharge
3072 */
3073 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3074 {
3075 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3076 page_counter_uncharge(&memcg->kmem, nr_pages);
3077
3078 page_counter_uncharge(&memcg->memory, nr_pages);
3079 if (do_memsw_account())
3080 page_counter_uncharge(&memcg->memsw, nr_pages);
3081 }
3082
3083 /**
3084 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3085 * @page: page to charge
3086 * @gfp: reclaim mode
3087 * @order: allocation order
3088 *
3089 * Returns 0 on success, an error code on failure.
3090 */
3091 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3092 {
3093 struct mem_cgroup *memcg;
3094 int ret = 0;
3095
3096 memcg = get_mem_cgroup_from_current();
3097 if (memcg && !mem_cgroup_is_root(memcg)) {
3098 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3099 if (!ret) {
3100 page->mem_cgroup = memcg;
3101 __SetPageKmemcg(page);
3102 return 0;
3103 }
3104 css_put(&memcg->css);
3105 }
3106 return ret;
3107 }
3108
3109 /**
3110 * __memcg_kmem_uncharge_page: uncharge a kmem page
3111 * @page: page to uncharge
3112 * @order: allocation order
3113 */
3114 void __memcg_kmem_uncharge_page(struct page *page, int order)
3115 {
3116 struct mem_cgroup *memcg = page->mem_cgroup;
3117 unsigned int nr_pages = 1 << order;
3118
3119 if (!memcg)
3120 return;
3121
3122 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3123 __memcg_kmem_uncharge(memcg, nr_pages);
3124 page->mem_cgroup = NULL;
3125 css_put(&memcg->css);
3126
3127 /* slab pages do not have PageKmemcg flag set */
3128 if (PageKmemcg(page))
3129 __ClearPageKmemcg(page);
3130 }
3131
3132 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3133 {
3134 struct memcg_stock_pcp *stock;
3135 unsigned long flags;
3136 bool ret = false;
3137
3138 local_irq_save(flags);
3139
3140 stock = this_cpu_ptr(&memcg_stock);
3141 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3142 stock->nr_bytes -= nr_bytes;
3143 ret = true;
3144 }
3145
3146 local_irq_restore(flags);
3147
3148 return ret;
3149 }
3150
3151 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3152 {
3153 struct obj_cgroup *old = stock->cached_objcg;
3154
3155 if (!old)
3156 return;
3157
3158 if (stock->nr_bytes) {
3159 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3160 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3161
3162 if (nr_pages) {
3163 rcu_read_lock();
3164 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3165 rcu_read_unlock();
3166 }
3167
3168 /*
3169 * The leftover is flushed to the centralized per-memcg value.
3170 * On the next attempt to refill obj stock it will be moved
3171 * to a per-cpu stock (probably, on an other CPU), see
3172 * refill_obj_stock().
3173 *
3174 * How often it's flushed is a trade-off between the memory
3175 * limit enforcement accuracy and potential CPU contention,
3176 * so it might be changed in the future.
3177 */
3178 atomic_add(nr_bytes, &old->nr_charged_bytes);
3179 stock->nr_bytes = 0;
3180 }
3181
3182 obj_cgroup_put(old);
3183 stock->cached_objcg = NULL;
3184 }
3185
3186 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3187 struct mem_cgroup *root_memcg)
3188 {
3189 struct mem_cgroup *memcg;
3190
3191 if (stock->cached_objcg) {
3192 memcg = obj_cgroup_memcg(stock->cached_objcg);
3193 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3194 return true;
3195 }
3196
3197 return false;
3198 }
3199
3200 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3201 {
3202 struct memcg_stock_pcp *stock;
3203 unsigned long flags;
3204
3205 local_irq_save(flags);
3206
3207 stock = this_cpu_ptr(&memcg_stock);
3208 if (stock->cached_objcg != objcg) { /* reset if necessary */
3209 drain_obj_stock(stock);
3210 obj_cgroup_get(objcg);
3211 stock->cached_objcg = objcg;
3212 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3213 }
3214 stock->nr_bytes += nr_bytes;
3215
3216 if (stock->nr_bytes > PAGE_SIZE)
3217 drain_obj_stock(stock);
3218
3219 local_irq_restore(flags);
3220 }
3221
3222 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3223 {
3224 struct mem_cgroup *memcg;
3225 unsigned int nr_pages, nr_bytes;
3226 int ret;
3227
3228 if (consume_obj_stock(objcg, size))
3229 return 0;
3230
3231 /*
3232 * In theory, memcg->nr_charged_bytes can have enough
3233 * pre-charged bytes to satisfy the allocation. However,
3234 * flushing memcg->nr_charged_bytes requires two atomic
3235 * operations, and memcg->nr_charged_bytes can't be big,
3236 * so it's better to ignore it and try grab some new pages.
3237 * memcg->nr_charged_bytes will be flushed in
3238 * refill_obj_stock(), called from this function or
3239 * independently later.
3240 */
3241 rcu_read_lock();
3242 memcg = obj_cgroup_memcg(objcg);
3243 css_get(&memcg->css);
3244 rcu_read_unlock();
3245
3246 nr_pages = size >> PAGE_SHIFT;
3247 nr_bytes = size & (PAGE_SIZE - 1);
3248
3249 if (nr_bytes)
3250 nr_pages += 1;
3251
3252 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3253 if (!ret && nr_bytes)
3254 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3255
3256 css_put(&memcg->css);
3257 return ret;
3258 }
3259
3260 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3261 {
3262 refill_obj_stock(objcg, size);
3263 }
3264
3265 #endif /* CONFIG_MEMCG_KMEM */
3266
3267 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3268
3269 /*
3270 * Because tail pages are not marked as "used", set it. We're under
3271 * pgdat->lru_lock and migration entries setup in all page mappings.
3272 */
3273 void mem_cgroup_split_huge_fixup(struct page *head)
3274 {
3275 struct mem_cgroup *memcg = head->mem_cgroup;
3276 int i;
3277
3278 if (mem_cgroup_disabled())
3279 return;
3280
3281 for (i = 1; i < HPAGE_PMD_NR; i++) {
3282 css_get(&memcg->css);
3283 head[i].mem_cgroup = memcg;
3284 }
3285 }
3286 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3287
3288 #ifdef CONFIG_MEMCG_SWAP
3289 /**
3290 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3291 * @entry: swap entry to be moved
3292 * @from: mem_cgroup which the entry is moved from
3293 * @to: mem_cgroup which the entry is moved to
3294 *
3295 * It succeeds only when the swap_cgroup's record for this entry is the same
3296 * as the mem_cgroup's id of @from.
3297 *
3298 * Returns 0 on success, -EINVAL on failure.
3299 *
3300 * The caller must have charged to @to, IOW, called page_counter_charge() about
3301 * both res and memsw, and called css_get().
3302 */
3303 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3304 struct mem_cgroup *from, struct mem_cgroup *to)
3305 {
3306 unsigned short old_id, new_id;
3307
3308 old_id = mem_cgroup_id(from);
3309 new_id = mem_cgroup_id(to);
3310
3311 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3312 mod_memcg_state(from, MEMCG_SWAP, -1);
3313 mod_memcg_state(to, MEMCG_SWAP, 1);
3314 return 0;
3315 }
3316 return -EINVAL;
3317 }
3318 #else
3319 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3320 struct mem_cgroup *from, struct mem_cgroup *to)
3321 {
3322 return -EINVAL;
3323 }
3324 #endif
3325
3326 static DEFINE_MUTEX(memcg_max_mutex);
3327
3328 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3329 unsigned long max, bool memsw)
3330 {
3331 bool enlarge = false;
3332 bool drained = false;
3333 int ret;
3334 bool limits_invariant;
3335 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3336
3337 do {
3338 if (signal_pending(current)) {
3339 ret = -EINTR;
3340 break;
3341 }
3342
3343 mutex_lock(&memcg_max_mutex);
3344 /*
3345 * Make sure that the new limit (memsw or memory limit) doesn't
3346 * break our basic invariant rule memory.max <= memsw.max.
3347 */
3348 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3349 max <= memcg->memsw.max;
3350 if (!limits_invariant) {
3351 mutex_unlock(&memcg_max_mutex);
3352 ret = -EINVAL;
3353 break;
3354 }
3355 if (max > counter->max)
3356 enlarge = true;
3357 ret = page_counter_set_max(counter, max);
3358 mutex_unlock(&memcg_max_mutex);
3359
3360 if (!ret)
3361 break;
3362
3363 if (!drained) {
3364 drain_all_stock(memcg);
3365 drained = true;
3366 continue;
3367 }
3368
3369 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3370 GFP_KERNEL, !memsw)) {
3371 ret = -EBUSY;
3372 break;
3373 }
3374 } while (true);
3375
3376 if (!ret && enlarge)
3377 memcg_oom_recover(memcg);
3378
3379 return ret;
3380 }
3381
3382 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3383 gfp_t gfp_mask,
3384 unsigned long *total_scanned)
3385 {
3386 unsigned long nr_reclaimed = 0;
3387 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3388 unsigned long reclaimed;
3389 int loop = 0;
3390 struct mem_cgroup_tree_per_node *mctz;
3391 unsigned long excess;
3392 unsigned long nr_scanned;
3393
3394 if (order > 0)
3395 return 0;
3396
3397 mctz = soft_limit_tree_node(pgdat->node_id);
3398
3399 /*
3400 * Do not even bother to check the largest node if the root
3401 * is empty. Do it lockless to prevent lock bouncing. Races
3402 * are acceptable as soft limit is best effort anyway.
3403 */
3404 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3405 return 0;
3406
3407 /*
3408 * This loop can run a while, specially if mem_cgroup's continuously
3409 * keep exceeding their soft limit and putting the system under
3410 * pressure
3411 */
3412 do {
3413 if (next_mz)
3414 mz = next_mz;
3415 else
3416 mz = mem_cgroup_largest_soft_limit_node(mctz);
3417 if (!mz)
3418 break;
3419
3420 nr_scanned = 0;
3421 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3422 gfp_mask, &nr_scanned);
3423 nr_reclaimed += reclaimed;
3424 *total_scanned += nr_scanned;
3425 spin_lock_irq(&mctz->lock);
3426 __mem_cgroup_remove_exceeded(mz, mctz);
3427
3428 /*
3429 * If we failed to reclaim anything from this memory cgroup
3430 * it is time to move on to the next cgroup
3431 */
3432 next_mz = NULL;
3433 if (!reclaimed)
3434 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3435
3436 excess = soft_limit_excess(mz->memcg);
3437 /*
3438 * One school of thought says that we should not add
3439 * back the node to the tree if reclaim returns 0.
3440 * But our reclaim could return 0, simply because due
3441 * to priority we are exposing a smaller subset of
3442 * memory to reclaim from. Consider this as a longer
3443 * term TODO.
3444 */
3445 /* If excess == 0, no tree ops */
3446 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3447 spin_unlock_irq(&mctz->lock);
3448 css_put(&mz->memcg->css);
3449 loop++;
3450 /*
3451 * Could not reclaim anything and there are no more
3452 * mem cgroups to try or we seem to be looping without
3453 * reclaiming anything.
3454 */
3455 if (!nr_reclaimed &&
3456 (next_mz == NULL ||
3457 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3458 break;
3459 } while (!nr_reclaimed);
3460 if (next_mz)
3461 css_put(&next_mz->memcg->css);
3462 return nr_reclaimed;
3463 }
3464
3465 /*
3466 * Test whether @memcg has children, dead or alive. Note that this
3467 * function doesn't care whether @memcg has use_hierarchy enabled and
3468 * returns %true if there are child csses according to the cgroup
3469 * hierarchy. Testing use_hierarchy is the caller's responsibility.
3470 */
3471 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3472 {
3473 bool ret;
3474
3475 rcu_read_lock();
3476 ret = css_next_child(NULL, &memcg->css);
3477 rcu_read_unlock();
3478 return ret;
3479 }
3480
3481 /*
3482 * Reclaims as many pages from the given memcg as possible.
3483 *
3484 * Caller is responsible for holding css reference for memcg.
3485 */
3486 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3487 {
3488 int nr_retries = MAX_RECLAIM_RETRIES;
3489
3490 /* we call try-to-free pages for make this cgroup empty */
3491 lru_add_drain_all();
3492
3493 drain_all_stock(memcg);
3494
3495 /* try to free all pages in this cgroup */
3496 while (nr_retries && page_counter_read(&memcg->memory)) {
3497 int progress;
3498
3499 if (signal_pending(current))
3500 return -EINTR;
3501
3502 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3503 GFP_KERNEL, true);
3504 if (!progress) {
3505 nr_retries--;
3506 /* maybe some writeback is necessary */
3507 congestion_wait(BLK_RW_ASYNC, HZ/10);
3508 }
3509
3510 }
3511
3512 return 0;
3513 }
3514
3515 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3516 char *buf, size_t nbytes,
3517 loff_t off)
3518 {
3519 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3520
3521 if (mem_cgroup_is_root(memcg))
3522 return -EINVAL;
3523 return mem_cgroup_force_empty(memcg) ?: nbytes;
3524 }
3525
3526 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3527 struct cftype *cft)
3528 {
3529 return mem_cgroup_from_css(css)->use_hierarchy;
3530 }
3531
3532 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3533 struct cftype *cft, u64 val)
3534 {
3535 int retval = 0;
3536 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3537 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3538
3539 if (memcg->use_hierarchy == val)
3540 return 0;
3541
3542 /*
3543 * If parent's use_hierarchy is set, we can't make any modifications
3544 * in the child subtrees. If it is unset, then the change can
3545 * occur, provided the current cgroup has no children.
3546 *
3547 * For the root cgroup, parent_mem is NULL, we allow value to be
3548 * set if there are no children.
3549 */
3550 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3551 (val == 1 || val == 0)) {
3552 if (!memcg_has_children(memcg))
3553 memcg->use_hierarchy = val;
3554 else
3555 retval = -EBUSY;
3556 } else
3557 retval = -EINVAL;
3558
3559 return retval;
3560 }
3561
3562 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3563 {
3564 unsigned long val;
3565
3566 if (mem_cgroup_is_root(memcg)) {
3567 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3568 memcg_page_state(memcg, NR_ANON_MAPPED);
3569 if (swap)
3570 val += memcg_page_state(memcg, MEMCG_SWAP);
3571 } else {
3572 if (!swap)
3573 val = page_counter_read(&memcg->memory);
3574 else
3575 val = page_counter_read(&memcg->memsw);
3576 }
3577 return val;
3578 }
3579
3580 enum {
3581 RES_USAGE,
3582 RES_LIMIT,
3583 RES_MAX_USAGE,
3584 RES_FAILCNT,
3585 RES_SOFT_LIMIT,
3586 };
3587
3588 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3589 struct cftype *cft)
3590 {
3591 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3592 struct page_counter *counter;
3593
3594 switch (MEMFILE_TYPE(cft->private)) {
3595 case _MEM:
3596 counter = &memcg->memory;
3597 break;
3598 case _MEMSWAP:
3599 counter = &memcg->memsw;
3600 break;
3601 case _KMEM:
3602 counter = &memcg->kmem;
3603 break;
3604 case _TCP:
3605 counter = &memcg->tcpmem;
3606 break;
3607 default:
3608 BUG();
3609 }
3610
3611 switch (MEMFILE_ATTR(cft->private)) {
3612 case RES_USAGE:
3613 if (counter == &memcg->memory)
3614 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3615 if (counter == &memcg->memsw)
3616 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3617 return (u64)page_counter_read(counter) * PAGE_SIZE;
3618 case RES_LIMIT:
3619 return (u64)counter->max * PAGE_SIZE;
3620 case RES_MAX_USAGE:
3621 return (u64)counter->watermark * PAGE_SIZE;
3622 case RES_FAILCNT:
3623 return counter->failcnt;
3624 case RES_SOFT_LIMIT:
3625 return (u64)memcg->soft_limit * PAGE_SIZE;
3626 default:
3627 BUG();
3628 }
3629 }
3630
3631 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3632 {
3633 unsigned long stat[MEMCG_NR_STAT] = {0};
3634 struct mem_cgroup *mi;
3635 int node, cpu, i;
3636
3637 for_each_online_cpu(cpu)
3638 for (i = 0; i < MEMCG_NR_STAT; i++)
3639 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3640
3641 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3642 for (i = 0; i < MEMCG_NR_STAT; i++)
3643 atomic_long_add(stat[i], &mi->vmstats[i]);
3644
3645 for_each_node(node) {
3646 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3647 struct mem_cgroup_per_node *pi;
3648
3649 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3650 stat[i] = 0;
3651
3652 for_each_online_cpu(cpu)
3653 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3654 stat[i] += per_cpu(
3655 pn->lruvec_stat_cpu->count[i], cpu);
3656
3657 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3658 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3659 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3660 }
3661 }
3662
3663 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3664 {
3665 unsigned long events[NR_VM_EVENT_ITEMS];
3666 struct mem_cgroup *mi;
3667 int cpu, i;
3668
3669 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3670 events[i] = 0;
3671
3672 for_each_online_cpu(cpu)
3673 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3674 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3675 cpu);
3676
3677 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3678 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3679 atomic_long_add(events[i], &mi->vmevents[i]);
3680 }
3681
3682 #ifdef CONFIG_MEMCG_KMEM
3683 static int memcg_online_kmem(struct mem_cgroup *memcg)
3684 {
3685 struct obj_cgroup *objcg;
3686 int memcg_id;
3687
3688 if (cgroup_memory_nokmem)
3689 return 0;
3690
3691 BUG_ON(memcg->kmemcg_id >= 0);
3692 BUG_ON(memcg->kmem_state);
3693
3694 memcg_id = memcg_alloc_cache_id();
3695 if (memcg_id < 0)
3696 return memcg_id;
3697
3698 objcg = obj_cgroup_alloc();
3699 if (!objcg) {
3700 memcg_free_cache_id(memcg_id);
3701 return -ENOMEM;
3702 }
3703 objcg->memcg = memcg;
3704 rcu_assign_pointer(memcg->objcg, objcg);
3705
3706 static_branch_enable(&memcg_kmem_enabled_key);
3707
3708 /*
3709 * A memory cgroup is considered kmem-online as soon as it gets
3710 * kmemcg_id. Setting the id after enabling static branching will
3711 * guarantee no one starts accounting before all call sites are
3712 * patched.
3713 */
3714 memcg->kmemcg_id = memcg_id;
3715 memcg->kmem_state = KMEM_ONLINE;
3716
3717 return 0;
3718 }
3719
3720 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3721 {
3722 struct cgroup_subsys_state *css;
3723 struct mem_cgroup *parent, *child;
3724 int kmemcg_id;
3725
3726 if (memcg->kmem_state != KMEM_ONLINE)
3727 return;
3728
3729 memcg->kmem_state = KMEM_ALLOCATED;
3730
3731 parent = parent_mem_cgroup(memcg);
3732 if (!parent)
3733 parent = root_mem_cgroup;
3734
3735 memcg_reparent_objcgs(memcg, parent);
3736
3737 kmemcg_id = memcg->kmemcg_id;
3738 BUG_ON(kmemcg_id < 0);
3739
3740 /*
3741 * Change kmemcg_id of this cgroup and all its descendants to the
3742 * parent's id, and then move all entries from this cgroup's list_lrus
3743 * to ones of the parent. After we have finished, all list_lrus
3744 * corresponding to this cgroup are guaranteed to remain empty. The
3745 * ordering is imposed by list_lru_node->lock taken by
3746 * memcg_drain_all_list_lrus().
3747 */
3748 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3749 css_for_each_descendant_pre(css, &memcg->css) {
3750 child = mem_cgroup_from_css(css);
3751 BUG_ON(child->kmemcg_id != kmemcg_id);
3752 child->kmemcg_id = parent->kmemcg_id;
3753 if (!memcg->use_hierarchy)
3754 break;
3755 }
3756 rcu_read_unlock();
3757
3758 memcg_drain_all_list_lrus(kmemcg_id, parent);
3759
3760 memcg_free_cache_id(kmemcg_id);
3761 }
3762
3763 static void memcg_free_kmem(struct mem_cgroup *memcg)
3764 {
3765 /* css_alloc() failed, offlining didn't happen */
3766 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3767 memcg_offline_kmem(memcg);
3768 }
3769 #else
3770 static int memcg_online_kmem(struct mem_cgroup *memcg)
3771 {
3772 return 0;
3773 }
3774 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3775 {
3776 }
3777 static void memcg_free_kmem(struct mem_cgroup *memcg)
3778 {
3779 }
3780 #endif /* CONFIG_MEMCG_KMEM */
3781
3782 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3783 unsigned long max)
3784 {
3785 int ret;
3786
3787 mutex_lock(&memcg_max_mutex);
3788 ret = page_counter_set_max(&memcg->kmem, max);
3789 mutex_unlock(&memcg_max_mutex);
3790 return ret;
3791 }
3792
3793 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3794 {
3795 int ret;
3796
3797 mutex_lock(&memcg_max_mutex);
3798
3799 ret = page_counter_set_max(&memcg->tcpmem, max);
3800 if (ret)
3801 goto out;
3802
3803 if (!memcg->tcpmem_active) {
3804 /*
3805 * The active flag needs to be written after the static_key
3806 * update. This is what guarantees that the socket activation
3807 * function is the last one to run. See mem_cgroup_sk_alloc()
3808 * for details, and note that we don't mark any socket as
3809 * belonging to this memcg until that flag is up.
3810 *
3811 * We need to do this, because static_keys will span multiple
3812 * sites, but we can't control their order. If we mark a socket
3813 * as accounted, but the accounting functions are not patched in
3814 * yet, we'll lose accounting.
3815 *
3816 * We never race with the readers in mem_cgroup_sk_alloc(),
3817 * because when this value change, the code to process it is not
3818 * patched in yet.
3819 */
3820 static_branch_inc(&memcg_sockets_enabled_key);
3821 memcg->tcpmem_active = true;
3822 }
3823 out:
3824 mutex_unlock(&memcg_max_mutex);
3825 return ret;
3826 }
3827
3828 /*
3829 * The user of this function is...
3830 * RES_LIMIT.
3831 */
3832 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3833 char *buf, size_t nbytes, loff_t off)
3834 {
3835 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3836 unsigned long nr_pages;
3837 int ret;
3838
3839 buf = strstrip(buf);
3840 ret = page_counter_memparse(buf, "-1", &nr_pages);
3841 if (ret)
3842 return ret;
3843
3844 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3845 case RES_LIMIT:
3846 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3847 ret = -EINVAL;
3848 break;
3849 }
3850 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3851 case _MEM:
3852 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3853 break;
3854 case _MEMSWAP:
3855 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3856 break;
3857 case _KMEM:
3858 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3859 "Please report your usecase to linux-mm@kvack.org if you "
3860 "depend on this functionality.\n");
3861 ret = memcg_update_kmem_max(memcg, nr_pages);
3862 break;
3863 case _TCP:
3864 ret = memcg_update_tcp_max(memcg, nr_pages);
3865 break;
3866 }
3867 break;
3868 case RES_SOFT_LIMIT:
3869 memcg->soft_limit = nr_pages;
3870 ret = 0;
3871 break;
3872 }
3873 return ret ?: nbytes;
3874 }
3875
3876 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3877 size_t nbytes, loff_t off)
3878 {
3879 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3880 struct page_counter *counter;
3881
3882 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3883 case _MEM:
3884 counter = &memcg->memory;
3885 break;
3886 case _MEMSWAP:
3887 counter = &memcg->memsw;
3888 break;
3889 case _KMEM:
3890 counter = &memcg->kmem;
3891 break;
3892 case _TCP:
3893 counter = &memcg->tcpmem;
3894 break;
3895 default:
3896 BUG();
3897 }
3898
3899 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3900 case RES_MAX_USAGE:
3901 page_counter_reset_watermark(counter);
3902 break;
3903 case RES_FAILCNT:
3904 counter->failcnt = 0;
3905 break;
3906 default:
3907 BUG();
3908 }
3909
3910 return nbytes;
3911 }
3912
3913 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3914 struct cftype *cft)
3915 {
3916 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3917 }
3918
3919 #ifdef CONFIG_MMU
3920 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3921 struct cftype *cft, u64 val)
3922 {
3923 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3924
3925 if (val & ~MOVE_MASK)
3926 return -EINVAL;
3927
3928 /*
3929 * No kind of locking is needed in here, because ->can_attach() will
3930 * check this value once in the beginning of the process, and then carry
3931 * on with stale data. This means that changes to this value will only
3932 * affect task migrations starting after the change.
3933 */
3934 memcg->move_charge_at_immigrate = val;
3935 return 0;
3936 }
3937 #else
3938 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3939 struct cftype *cft, u64 val)
3940 {
3941 return -ENOSYS;
3942 }
3943 #endif
3944
3945 #ifdef CONFIG_NUMA
3946
3947 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3948 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3949 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3950
3951 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3952 int nid, unsigned int lru_mask, bool tree)
3953 {
3954 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3955 unsigned long nr = 0;
3956 enum lru_list lru;
3957
3958 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3959
3960 for_each_lru(lru) {
3961 if (!(BIT(lru) & lru_mask))
3962 continue;
3963 if (tree)
3964 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3965 else
3966 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3967 }
3968 return nr;
3969 }
3970
3971 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3972 unsigned int lru_mask,
3973 bool tree)
3974 {
3975 unsigned long nr = 0;
3976 enum lru_list lru;
3977
3978 for_each_lru(lru) {
3979 if (!(BIT(lru) & lru_mask))
3980 continue;
3981 if (tree)
3982 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3983 else
3984 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3985 }
3986 return nr;
3987 }
3988
3989 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3990 {
3991 struct numa_stat {
3992 const char *name;
3993 unsigned int lru_mask;
3994 };
3995
3996 static const struct numa_stat stats[] = {
3997 { "total", LRU_ALL },
3998 { "file", LRU_ALL_FILE },
3999 { "anon", LRU_ALL_ANON },
4000 { "unevictable", BIT(LRU_UNEVICTABLE) },
4001 };
4002 const struct numa_stat *stat;
4003 int nid;
4004 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4005
4006 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4007 seq_printf(m, "%s=%lu", stat->name,
4008 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4009 false));
4010 for_each_node_state(nid, N_MEMORY)
4011 seq_printf(m, " N%d=%lu", nid,
4012 mem_cgroup_node_nr_lru_pages(memcg, nid,
4013 stat->lru_mask, false));
4014 seq_putc(m, '\n');
4015 }
4016
4017 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4018
4019 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4020 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4021 true));
4022 for_each_node_state(nid, N_MEMORY)
4023 seq_printf(m, " N%d=%lu", nid,
4024 mem_cgroup_node_nr_lru_pages(memcg, nid,
4025 stat->lru_mask, true));
4026 seq_putc(m, '\n');
4027 }
4028
4029 return 0;
4030 }
4031 #endif /* CONFIG_NUMA */
4032
4033 static const unsigned int memcg1_stats[] = {
4034 NR_FILE_PAGES,
4035 NR_ANON_MAPPED,
4036 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4037 NR_ANON_THPS,
4038 #endif
4039 NR_SHMEM,
4040 NR_FILE_MAPPED,
4041 NR_FILE_DIRTY,
4042 NR_WRITEBACK,
4043 MEMCG_SWAP,
4044 };
4045
4046 static const char *const memcg1_stat_names[] = {
4047 "cache",
4048 "rss",
4049 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4050 "rss_huge",
4051 #endif
4052 "shmem",
4053 "mapped_file",
4054 "dirty",
4055 "writeback",
4056 "swap",
4057 };
4058
4059 /* Universal VM events cgroup1 shows, original sort order */
4060 static const unsigned int memcg1_events[] = {
4061 PGPGIN,
4062 PGPGOUT,
4063 PGFAULT,
4064 PGMAJFAULT,
4065 };
4066
4067 static int memcg_stat_show(struct seq_file *m, void *v)
4068 {
4069 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4070 unsigned long memory, memsw;
4071 struct mem_cgroup *mi;
4072 unsigned int i;
4073
4074 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4075
4076 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4077 unsigned long nr;
4078
4079 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4080 continue;
4081 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4082 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4083 if (memcg1_stats[i] == NR_ANON_THPS)
4084 nr *= HPAGE_PMD_NR;
4085 #endif
4086 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4087 }
4088
4089 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4090 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4091 memcg_events_local(memcg, memcg1_events[i]));
4092
4093 for (i = 0; i < NR_LRU_LISTS; i++)
4094 seq_printf(m, "%s %lu\n", lru_list_name(i),
4095 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4096 PAGE_SIZE);
4097
4098 /* Hierarchical information */
4099 memory = memsw = PAGE_COUNTER_MAX;
4100 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4101 memory = min(memory, READ_ONCE(mi->memory.max));
4102 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4103 }
4104 seq_printf(m, "hierarchical_memory_limit %llu\n",
4105 (u64)memory * PAGE_SIZE);
4106 if (do_memsw_account())
4107 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4108 (u64)memsw * PAGE_SIZE);
4109
4110 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4111 unsigned long nr;
4112
4113 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4114 continue;
4115 nr = memcg_page_state(memcg, memcg1_stats[i]);
4116 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4117 if (memcg1_stats[i] == NR_ANON_THPS)
4118 nr *= HPAGE_PMD_NR;
4119 #endif
4120 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4121 (u64)nr * PAGE_SIZE);
4122 }
4123
4124 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4125 seq_printf(m, "total_%s %llu\n",
4126 vm_event_name(memcg1_events[i]),
4127 (u64)memcg_events(memcg, memcg1_events[i]));
4128
4129 for (i = 0; i < NR_LRU_LISTS; i++)
4130 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4131 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4132 PAGE_SIZE);
4133
4134 #ifdef CONFIG_DEBUG_VM
4135 {
4136 pg_data_t *pgdat;
4137 struct mem_cgroup_per_node *mz;
4138 unsigned long anon_cost = 0;
4139 unsigned long file_cost = 0;
4140
4141 for_each_online_pgdat(pgdat) {
4142 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4143
4144 anon_cost += mz->lruvec.anon_cost;
4145 file_cost += mz->lruvec.file_cost;
4146 }
4147 seq_printf(m, "anon_cost %lu\n", anon_cost);
4148 seq_printf(m, "file_cost %lu\n", file_cost);
4149 }
4150 #endif
4151
4152 return 0;
4153 }
4154
4155 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4156 struct cftype *cft)
4157 {
4158 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4159
4160 return mem_cgroup_swappiness(memcg);
4161 }
4162
4163 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4164 struct cftype *cft, u64 val)
4165 {
4166 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4167
4168 if (val > 100)
4169 return -EINVAL;
4170
4171 if (css->parent)
4172 memcg->swappiness = val;
4173 else
4174 vm_swappiness = val;
4175
4176 return 0;
4177 }
4178
4179 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4180 {
4181 struct mem_cgroup_threshold_ary *t;
4182 unsigned long usage;
4183 int i;
4184
4185 rcu_read_lock();
4186 if (!swap)
4187 t = rcu_dereference(memcg->thresholds.primary);
4188 else
4189 t = rcu_dereference(memcg->memsw_thresholds.primary);
4190
4191 if (!t)
4192 goto unlock;
4193
4194 usage = mem_cgroup_usage(memcg, swap);
4195
4196 /*
4197 * current_threshold points to threshold just below or equal to usage.
4198 * If it's not true, a threshold was crossed after last
4199 * call of __mem_cgroup_threshold().
4200 */
4201 i = t->current_threshold;
4202
4203 /*
4204 * Iterate backward over array of thresholds starting from
4205 * current_threshold and check if a threshold is crossed.
4206 * If none of thresholds below usage is crossed, we read
4207 * only one element of the array here.
4208 */
4209 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4210 eventfd_signal(t->entries[i].eventfd, 1);
4211
4212 /* i = current_threshold + 1 */
4213 i++;
4214
4215 /*
4216 * Iterate forward over array of thresholds starting from
4217 * current_threshold+1 and check if a threshold is crossed.
4218 * If none of thresholds above usage is crossed, we read
4219 * only one element of the array here.
4220 */
4221 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4222 eventfd_signal(t->entries[i].eventfd, 1);
4223
4224 /* Update current_threshold */
4225 t->current_threshold = i - 1;
4226 unlock:
4227 rcu_read_unlock();
4228 }
4229
4230 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4231 {
4232 while (memcg) {
4233 __mem_cgroup_threshold(memcg, false);
4234 if (do_memsw_account())
4235 __mem_cgroup_threshold(memcg, true);
4236
4237 memcg = parent_mem_cgroup(memcg);
4238 }
4239 }
4240
4241 static int compare_thresholds(const void *a, const void *b)
4242 {
4243 const struct mem_cgroup_threshold *_a = a;
4244 const struct mem_cgroup_threshold *_b = b;
4245
4246 if (_a->threshold > _b->threshold)
4247 return 1;
4248
4249 if (_a->threshold < _b->threshold)
4250 return -1;
4251
4252 return 0;
4253 }
4254
4255 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4256 {
4257 struct mem_cgroup_eventfd_list *ev;
4258
4259 spin_lock(&memcg_oom_lock);
4260
4261 list_for_each_entry(ev, &memcg->oom_notify, list)
4262 eventfd_signal(ev->eventfd, 1);
4263
4264 spin_unlock(&memcg_oom_lock);
4265 return 0;
4266 }
4267
4268 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4269 {
4270 struct mem_cgroup *iter;
4271
4272 for_each_mem_cgroup_tree(iter, memcg)
4273 mem_cgroup_oom_notify_cb(iter);
4274 }
4275
4276 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4277 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4278 {
4279 struct mem_cgroup_thresholds *thresholds;
4280 struct mem_cgroup_threshold_ary *new;
4281 unsigned long threshold;
4282 unsigned long usage;
4283 int i, size, ret;
4284
4285 ret = page_counter_memparse(args, "-1", &threshold);
4286 if (ret)
4287 return ret;
4288
4289 mutex_lock(&memcg->thresholds_lock);
4290
4291 if (type == _MEM) {
4292 thresholds = &memcg->thresholds;
4293 usage = mem_cgroup_usage(memcg, false);
4294 } else if (type == _MEMSWAP) {
4295 thresholds = &memcg->memsw_thresholds;
4296 usage = mem_cgroup_usage(memcg, true);
4297 } else
4298 BUG();
4299
4300 /* Check if a threshold crossed before adding a new one */
4301 if (thresholds->primary)
4302 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4303
4304 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4305
4306 /* Allocate memory for new array of thresholds */
4307 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4308 if (!new) {
4309 ret = -ENOMEM;
4310 goto unlock;
4311 }
4312 new->size = size;
4313
4314 /* Copy thresholds (if any) to new array */
4315 if (thresholds->primary)
4316 memcpy(new->entries, thresholds->primary->entries,
4317 flex_array_size(new, entries, size - 1));
4318
4319 /* Add new threshold */
4320 new->entries[size - 1].eventfd = eventfd;
4321 new->entries[size - 1].threshold = threshold;
4322
4323 /* Sort thresholds. Registering of new threshold isn't time-critical */
4324 sort(new->entries, size, sizeof(*new->entries),
4325 compare_thresholds, NULL);
4326
4327 /* Find current threshold */
4328 new->current_threshold = -1;
4329 for (i = 0; i < size; i++) {
4330 if (new->entries[i].threshold <= usage) {
4331 /*
4332 * new->current_threshold will not be used until
4333 * rcu_assign_pointer(), so it's safe to increment
4334 * it here.
4335 */
4336 ++new->current_threshold;
4337 } else
4338 break;
4339 }
4340
4341 /* Free old spare buffer and save old primary buffer as spare */
4342 kfree(thresholds->spare);
4343 thresholds->spare = thresholds->primary;
4344
4345 rcu_assign_pointer(thresholds->primary, new);
4346
4347 /* To be sure that nobody uses thresholds */
4348 synchronize_rcu();
4349
4350 unlock:
4351 mutex_unlock(&memcg->thresholds_lock);
4352
4353 return ret;
4354 }
4355
4356 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4357 struct eventfd_ctx *eventfd, const char *args)
4358 {
4359 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4360 }
4361
4362 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4363 struct eventfd_ctx *eventfd, const char *args)
4364 {
4365 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4366 }
4367
4368 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4369 struct eventfd_ctx *eventfd, enum res_type type)
4370 {
4371 struct mem_cgroup_thresholds *thresholds;
4372 struct mem_cgroup_threshold_ary *new;
4373 unsigned long usage;
4374 int i, j, size, entries;
4375
4376 mutex_lock(&memcg->thresholds_lock);
4377
4378 if (type == _MEM) {
4379 thresholds = &memcg->thresholds;
4380 usage = mem_cgroup_usage(memcg, false);
4381 } else if (type == _MEMSWAP) {
4382 thresholds = &memcg->memsw_thresholds;
4383 usage = mem_cgroup_usage(memcg, true);
4384 } else
4385 BUG();
4386
4387 if (!thresholds->primary)
4388 goto unlock;
4389
4390 /* Check if a threshold crossed before removing */
4391 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4392
4393 /* Calculate new number of threshold */
4394 size = entries = 0;
4395 for (i = 0; i < thresholds->primary->size; i++) {
4396 if (thresholds->primary->entries[i].eventfd != eventfd)
4397 size++;
4398 else
4399 entries++;
4400 }
4401
4402 new = thresholds->spare;
4403
4404 /* If no items related to eventfd have been cleared, nothing to do */
4405 if (!entries)
4406 goto unlock;
4407
4408 /* Set thresholds array to NULL if we don't have thresholds */
4409 if (!size) {
4410 kfree(new);
4411 new = NULL;
4412 goto swap_buffers;
4413 }
4414
4415 new->size = size;
4416
4417 /* Copy thresholds and find current threshold */
4418 new->current_threshold = -1;
4419 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4420 if (thresholds->primary->entries[i].eventfd == eventfd)
4421 continue;
4422
4423 new->entries[j] = thresholds->primary->entries[i];
4424 if (new->entries[j].threshold <= usage) {
4425 /*
4426 * new->current_threshold will not be used
4427 * until rcu_assign_pointer(), so it's safe to increment
4428 * it here.
4429 */
4430 ++new->current_threshold;
4431 }
4432 j++;
4433 }
4434
4435 swap_buffers:
4436 /* Swap primary and spare array */
4437 thresholds->spare = thresholds->primary;
4438
4439 rcu_assign_pointer(thresholds->primary, new);
4440
4441 /* To be sure that nobody uses thresholds */
4442 synchronize_rcu();
4443
4444 /* If all events are unregistered, free the spare array */
4445 if (!new) {
4446 kfree(thresholds->spare);
4447 thresholds->spare = NULL;
4448 }
4449 unlock:
4450 mutex_unlock(&memcg->thresholds_lock);
4451 }
4452
4453 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4454 struct eventfd_ctx *eventfd)
4455 {
4456 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4457 }
4458
4459 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4460 struct eventfd_ctx *eventfd)
4461 {
4462 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4463 }
4464
4465 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4466 struct eventfd_ctx *eventfd, const char *args)
4467 {
4468 struct mem_cgroup_eventfd_list *event;
4469
4470 event = kmalloc(sizeof(*event), GFP_KERNEL);
4471 if (!event)
4472 return -ENOMEM;
4473
4474 spin_lock(&memcg_oom_lock);
4475
4476 event->eventfd = eventfd;
4477 list_add(&event->list, &memcg->oom_notify);
4478
4479 /* already in OOM ? */
4480 if (memcg->under_oom)
4481 eventfd_signal(eventfd, 1);
4482 spin_unlock(&memcg_oom_lock);
4483
4484 return 0;
4485 }
4486
4487 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4488 struct eventfd_ctx *eventfd)
4489 {
4490 struct mem_cgroup_eventfd_list *ev, *tmp;
4491
4492 spin_lock(&memcg_oom_lock);
4493
4494 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4495 if (ev->eventfd == eventfd) {
4496 list_del(&ev->list);
4497 kfree(ev);
4498 }
4499 }
4500
4501 spin_unlock(&memcg_oom_lock);
4502 }
4503
4504 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4505 {
4506 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4507
4508 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4509 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4510 seq_printf(sf, "oom_kill %lu\n",
4511 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4512 return 0;
4513 }
4514
4515 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4516 struct cftype *cft, u64 val)
4517 {
4518 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4519
4520 /* cannot set to root cgroup and only 0 and 1 are allowed */
4521 if (!css->parent || !((val == 0) || (val == 1)))
4522 return -EINVAL;
4523
4524 memcg->oom_kill_disable = val;
4525 if (!val)
4526 memcg_oom_recover(memcg);
4527
4528 return 0;
4529 }
4530
4531 #ifdef CONFIG_CGROUP_WRITEBACK
4532
4533 #include <trace/events/writeback.h>
4534
4535 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4536 {
4537 return wb_domain_init(&memcg->cgwb_domain, gfp);
4538 }
4539
4540 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4541 {
4542 wb_domain_exit(&memcg->cgwb_domain);
4543 }
4544
4545 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4546 {
4547 wb_domain_size_changed(&memcg->cgwb_domain);
4548 }
4549
4550 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4551 {
4552 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4553
4554 if (!memcg->css.parent)
4555 return NULL;
4556
4557 return &memcg->cgwb_domain;
4558 }
4559
4560 /*
4561 * idx can be of type enum memcg_stat_item or node_stat_item.
4562 * Keep in sync with memcg_exact_page().
4563 */
4564 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4565 {
4566 long x = atomic_long_read(&memcg->vmstats[idx]);
4567 int cpu;
4568
4569 for_each_online_cpu(cpu)
4570 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4571 if (x < 0)
4572 x = 0;
4573 return x;
4574 }
4575
4576 /**
4577 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4578 * @wb: bdi_writeback in question
4579 * @pfilepages: out parameter for number of file pages
4580 * @pheadroom: out parameter for number of allocatable pages according to memcg
4581 * @pdirty: out parameter for number of dirty pages
4582 * @pwriteback: out parameter for number of pages under writeback
4583 *
4584 * Determine the numbers of file, headroom, dirty, and writeback pages in
4585 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4586 * is a bit more involved.
4587 *
4588 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4589 * headroom is calculated as the lowest headroom of itself and the
4590 * ancestors. Note that this doesn't consider the actual amount of
4591 * available memory in the system. The caller should further cap
4592 * *@pheadroom accordingly.
4593 */
4594 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4595 unsigned long *pheadroom, unsigned long *pdirty,
4596 unsigned long *pwriteback)
4597 {
4598 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4599 struct mem_cgroup *parent;
4600
4601 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4602
4603 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4604 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4605 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4606 *pheadroom = PAGE_COUNTER_MAX;
4607
4608 while ((parent = parent_mem_cgroup(memcg))) {
4609 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4610 READ_ONCE(memcg->memory.high));
4611 unsigned long used = page_counter_read(&memcg->memory);
4612
4613 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4614 memcg = parent;
4615 }
4616 }
4617
4618 /*
4619 * Foreign dirty flushing
4620 *
4621 * There's an inherent mismatch between memcg and writeback. The former
4622 * trackes ownership per-page while the latter per-inode. This was a
4623 * deliberate design decision because honoring per-page ownership in the
4624 * writeback path is complicated, may lead to higher CPU and IO overheads
4625 * and deemed unnecessary given that write-sharing an inode across
4626 * different cgroups isn't a common use-case.
4627 *
4628 * Combined with inode majority-writer ownership switching, this works well
4629 * enough in most cases but there are some pathological cases. For
4630 * example, let's say there are two cgroups A and B which keep writing to
4631 * different but confined parts of the same inode. B owns the inode and
4632 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4633 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4634 * triggering background writeback. A will be slowed down without a way to
4635 * make writeback of the dirty pages happen.
4636 *
4637 * Conditions like the above can lead to a cgroup getting repatedly and
4638 * severely throttled after making some progress after each
4639 * dirty_expire_interval while the underyling IO device is almost
4640 * completely idle.
4641 *
4642 * Solving this problem completely requires matching the ownership tracking
4643 * granularities between memcg and writeback in either direction. However,
4644 * the more egregious behaviors can be avoided by simply remembering the
4645 * most recent foreign dirtying events and initiating remote flushes on
4646 * them when local writeback isn't enough to keep the memory clean enough.
4647 *
4648 * The following two functions implement such mechanism. When a foreign
4649 * page - a page whose memcg and writeback ownerships don't match - is
4650 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4651 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4652 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4653 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4654 * foreign bdi_writebacks which haven't expired. Both the numbers of
4655 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4656 * limited to MEMCG_CGWB_FRN_CNT.
4657 *
4658 * The mechanism only remembers IDs and doesn't hold any object references.
4659 * As being wrong occasionally doesn't matter, updates and accesses to the
4660 * records are lockless and racy.
4661 */
4662 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4663 struct bdi_writeback *wb)
4664 {
4665 struct mem_cgroup *memcg = page->mem_cgroup;
4666 struct memcg_cgwb_frn *frn;
4667 u64 now = get_jiffies_64();
4668 u64 oldest_at = now;
4669 int oldest = -1;
4670 int i;
4671
4672 trace_track_foreign_dirty(page, wb);
4673
4674 /*
4675 * Pick the slot to use. If there is already a slot for @wb, keep
4676 * using it. If not replace the oldest one which isn't being
4677 * written out.
4678 */
4679 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4680 frn = &memcg->cgwb_frn[i];
4681 if (frn->bdi_id == wb->bdi->id &&
4682 frn->memcg_id == wb->memcg_css->id)
4683 break;
4684 if (time_before64(frn->at, oldest_at) &&
4685 atomic_read(&frn->done.cnt) == 1) {
4686 oldest = i;
4687 oldest_at = frn->at;
4688 }
4689 }
4690
4691 if (i < MEMCG_CGWB_FRN_CNT) {
4692 /*
4693 * Re-using an existing one. Update timestamp lazily to
4694 * avoid making the cacheline hot. We want them to be
4695 * reasonably up-to-date and significantly shorter than
4696 * dirty_expire_interval as that's what expires the record.
4697 * Use the shorter of 1s and dirty_expire_interval / 8.
4698 */
4699 unsigned long update_intv =
4700 min_t(unsigned long, HZ,
4701 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4702
4703 if (time_before64(frn->at, now - update_intv))
4704 frn->at = now;
4705 } else if (oldest >= 0) {
4706 /* replace the oldest free one */
4707 frn = &memcg->cgwb_frn[oldest];
4708 frn->bdi_id = wb->bdi->id;
4709 frn->memcg_id = wb->memcg_css->id;
4710 frn->at = now;
4711 }
4712 }
4713
4714 /* issue foreign writeback flushes for recorded foreign dirtying events */
4715 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4716 {
4717 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4718 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4719 u64 now = jiffies_64;
4720 int i;
4721
4722 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4723 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4724
4725 /*
4726 * If the record is older than dirty_expire_interval,
4727 * writeback on it has already started. No need to kick it
4728 * off again. Also, don't start a new one if there's
4729 * already one in flight.
4730 */
4731 if (time_after64(frn->at, now - intv) &&
4732 atomic_read(&frn->done.cnt) == 1) {
4733 frn->at = 0;
4734 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4735 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4736 WB_REASON_FOREIGN_FLUSH,
4737 &frn->done);
4738 }
4739 }
4740 }
4741
4742 #else /* CONFIG_CGROUP_WRITEBACK */
4743
4744 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4745 {
4746 return 0;
4747 }
4748
4749 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4750 {
4751 }
4752
4753 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4754 {
4755 }
4756
4757 #endif /* CONFIG_CGROUP_WRITEBACK */
4758
4759 /*
4760 * DO NOT USE IN NEW FILES.
4761 *
4762 * "cgroup.event_control" implementation.
4763 *
4764 * This is way over-engineered. It tries to support fully configurable
4765 * events for each user. Such level of flexibility is completely
4766 * unnecessary especially in the light of the planned unified hierarchy.
4767 *
4768 * Please deprecate this and replace with something simpler if at all
4769 * possible.
4770 */
4771
4772 /*
4773 * Unregister event and free resources.
4774 *
4775 * Gets called from workqueue.
4776 */
4777 static void memcg_event_remove(struct work_struct *work)
4778 {
4779 struct mem_cgroup_event *event =
4780 container_of(work, struct mem_cgroup_event, remove);
4781 struct mem_cgroup *memcg = event->memcg;
4782
4783 remove_wait_queue(event->wqh, &event->wait);
4784
4785 event->unregister_event(memcg, event->eventfd);
4786
4787 /* Notify userspace the event is going away. */
4788 eventfd_signal(event->eventfd, 1);
4789
4790 eventfd_ctx_put(event->eventfd);
4791 kfree(event);
4792 css_put(&memcg->css);
4793 }
4794
4795 /*
4796 * Gets called on EPOLLHUP on eventfd when user closes it.
4797 *
4798 * Called with wqh->lock held and interrupts disabled.
4799 */
4800 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4801 int sync, void *key)
4802 {
4803 struct mem_cgroup_event *event =
4804 container_of(wait, struct mem_cgroup_event, wait);
4805 struct mem_cgroup *memcg = event->memcg;
4806 __poll_t flags = key_to_poll(key);
4807
4808 if (flags & EPOLLHUP) {
4809 /*
4810 * If the event has been detached at cgroup removal, we
4811 * can simply return knowing the other side will cleanup
4812 * for us.
4813 *
4814 * We can't race against event freeing since the other
4815 * side will require wqh->lock via remove_wait_queue(),
4816 * which we hold.
4817 */
4818 spin_lock(&memcg->event_list_lock);
4819 if (!list_empty(&event->list)) {
4820 list_del_init(&event->list);
4821 /*
4822 * We are in atomic context, but cgroup_event_remove()
4823 * may sleep, so we have to call it in workqueue.
4824 */
4825 schedule_work(&event->remove);
4826 }
4827 spin_unlock(&memcg->event_list_lock);
4828 }
4829
4830 return 0;
4831 }
4832
4833 static void memcg_event_ptable_queue_proc(struct file *file,
4834 wait_queue_head_t *wqh, poll_table *pt)
4835 {
4836 struct mem_cgroup_event *event =
4837 container_of(pt, struct mem_cgroup_event, pt);
4838
4839 event->wqh = wqh;
4840 add_wait_queue(wqh, &event->wait);
4841 }
4842
4843 /*
4844 * DO NOT USE IN NEW FILES.
4845 *
4846 * Parse input and register new cgroup event handler.
4847 *
4848 * Input must be in format '<event_fd> <control_fd> <args>'.
4849 * Interpretation of args is defined by control file implementation.
4850 */
4851 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4852 char *buf, size_t nbytes, loff_t off)
4853 {
4854 struct cgroup_subsys_state *css = of_css(of);
4855 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4856 struct mem_cgroup_event *event;
4857 struct cgroup_subsys_state *cfile_css;
4858 unsigned int efd, cfd;
4859 struct fd efile;
4860 struct fd cfile;
4861 const char *name;
4862 char *endp;
4863 int ret;
4864
4865 buf = strstrip(buf);
4866
4867 efd = simple_strtoul(buf, &endp, 10);
4868 if (*endp != ' ')
4869 return -EINVAL;
4870 buf = endp + 1;
4871
4872 cfd = simple_strtoul(buf, &endp, 10);
4873 if ((*endp != ' ') && (*endp != '\0'))
4874 return -EINVAL;
4875 buf = endp + 1;
4876
4877 event = kzalloc(sizeof(*event), GFP_KERNEL);
4878 if (!event)
4879 return -ENOMEM;
4880
4881 event->memcg = memcg;
4882 INIT_LIST_HEAD(&event->list);
4883 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4884 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4885 INIT_WORK(&event->remove, memcg_event_remove);
4886
4887 efile = fdget(efd);
4888 if (!efile.file) {
4889 ret = -EBADF;
4890 goto out_kfree;
4891 }
4892
4893 event->eventfd = eventfd_ctx_fileget(efile.file);
4894 if (IS_ERR(event->eventfd)) {
4895 ret = PTR_ERR(event->eventfd);
4896 goto out_put_efile;
4897 }
4898
4899 cfile = fdget(cfd);
4900 if (!cfile.file) {
4901 ret = -EBADF;
4902 goto out_put_eventfd;
4903 }
4904
4905 /* the process need read permission on control file */
4906 /* AV: shouldn't we check that it's been opened for read instead? */
4907 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4908 if (ret < 0)
4909 goto out_put_cfile;
4910
4911 /*
4912 * Determine the event callbacks and set them in @event. This used
4913 * to be done via struct cftype but cgroup core no longer knows
4914 * about these events. The following is crude but the whole thing
4915 * is for compatibility anyway.
4916 *
4917 * DO NOT ADD NEW FILES.
4918 */
4919 name = cfile.file->f_path.dentry->d_name.name;
4920
4921 if (!strcmp(name, "memory.usage_in_bytes")) {
4922 event->register_event = mem_cgroup_usage_register_event;
4923 event->unregister_event = mem_cgroup_usage_unregister_event;
4924 } else if (!strcmp(name, "memory.oom_control")) {
4925 event->register_event = mem_cgroup_oom_register_event;
4926 event->unregister_event = mem_cgroup_oom_unregister_event;
4927 } else if (!strcmp(name, "memory.pressure_level")) {
4928 event->register_event = vmpressure_register_event;
4929 event->unregister_event = vmpressure_unregister_event;
4930 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4931 event->register_event = memsw_cgroup_usage_register_event;
4932 event->unregister_event = memsw_cgroup_usage_unregister_event;
4933 } else {
4934 ret = -EINVAL;
4935 goto out_put_cfile;
4936 }
4937
4938 /*
4939 * Verify @cfile should belong to @css. Also, remaining events are
4940 * automatically removed on cgroup destruction but the removal is
4941 * asynchronous, so take an extra ref on @css.
4942 */
4943 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4944 &memory_cgrp_subsys);
4945 ret = -EINVAL;
4946 if (IS_ERR(cfile_css))
4947 goto out_put_cfile;
4948 if (cfile_css != css) {
4949 css_put(cfile_css);
4950 goto out_put_cfile;
4951 }
4952
4953 ret = event->register_event(memcg, event->eventfd, buf);
4954 if (ret)
4955 goto out_put_css;
4956
4957 vfs_poll(efile.file, &event->pt);
4958
4959 spin_lock(&memcg->event_list_lock);
4960 list_add(&event->list, &memcg->event_list);
4961 spin_unlock(&memcg->event_list_lock);
4962
4963 fdput(cfile);
4964 fdput(efile);
4965
4966 return nbytes;
4967
4968 out_put_css:
4969 css_put(css);
4970 out_put_cfile:
4971 fdput(cfile);
4972 out_put_eventfd:
4973 eventfd_ctx_put(event->eventfd);
4974 out_put_efile:
4975 fdput(efile);
4976 out_kfree:
4977 kfree(event);
4978
4979 return ret;
4980 }
4981
4982 static struct cftype mem_cgroup_legacy_files[] = {
4983 {
4984 .name = "usage_in_bytes",
4985 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4986 .read_u64 = mem_cgroup_read_u64,
4987 },
4988 {
4989 .name = "max_usage_in_bytes",
4990 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4991 .write = mem_cgroup_reset,
4992 .read_u64 = mem_cgroup_read_u64,
4993 },
4994 {
4995 .name = "limit_in_bytes",
4996 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4997 .write = mem_cgroup_write,
4998 .read_u64 = mem_cgroup_read_u64,
4999 },
5000 {
5001 .name = "soft_limit_in_bytes",
5002 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5003 .write = mem_cgroup_write,
5004 .read_u64 = mem_cgroup_read_u64,
5005 },
5006 {
5007 .name = "failcnt",
5008 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5009 .write = mem_cgroup_reset,
5010 .read_u64 = mem_cgroup_read_u64,
5011 },
5012 {
5013 .name = "stat",
5014 .seq_show = memcg_stat_show,
5015 },
5016 {
5017 .name = "force_empty",
5018 .write = mem_cgroup_force_empty_write,
5019 },
5020 {
5021 .name = "use_hierarchy",
5022 .write_u64 = mem_cgroup_hierarchy_write,
5023 .read_u64 = mem_cgroup_hierarchy_read,
5024 },
5025 {
5026 .name = "cgroup.event_control", /* XXX: for compat */
5027 .write = memcg_write_event_control,
5028 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5029 },
5030 {
5031 .name = "swappiness",
5032 .read_u64 = mem_cgroup_swappiness_read,
5033 .write_u64 = mem_cgroup_swappiness_write,
5034 },
5035 {
5036 .name = "move_charge_at_immigrate",
5037 .read_u64 = mem_cgroup_move_charge_read,
5038 .write_u64 = mem_cgroup_move_charge_write,
5039 },
5040 {
5041 .name = "oom_control",
5042 .seq_show = mem_cgroup_oom_control_read,
5043 .write_u64 = mem_cgroup_oom_control_write,
5044 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5045 },
5046 {
5047 .name = "pressure_level",
5048 },
5049 #ifdef CONFIG_NUMA
5050 {
5051 .name = "numa_stat",
5052 .seq_show = memcg_numa_stat_show,
5053 },
5054 #endif
5055 {
5056 .name = "kmem.limit_in_bytes",
5057 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5058 .write = mem_cgroup_write,
5059 .read_u64 = mem_cgroup_read_u64,
5060 },
5061 {
5062 .name = "kmem.usage_in_bytes",
5063 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5064 .read_u64 = mem_cgroup_read_u64,
5065 },
5066 {
5067 .name = "kmem.failcnt",
5068 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5069 .write = mem_cgroup_reset,
5070 .read_u64 = mem_cgroup_read_u64,
5071 },
5072 {
5073 .name = "kmem.max_usage_in_bytes",
5074 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5075 .write = mem_cgroup_reset,
5076 .read_u64 = mem_cgroup_read_u64,
5077 },
5078 #if defined(CONFIG_MEMCG_KMEM) && \
5079 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5080 {
5081 .name = "kmem.slabinfo",
5082 .seq_show = memcg_slab_show,
5083 },
5084 #endif
5085 {
5086 .name = "kmem.tcp.limit_in_bytes",
5087 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5088 .write = mem_cgroup_write,
5089 .read_u64 = mem_cgroup_read_u64,
5090 },
5091 {
5092 .name = "kmem.tcp.usage_in_bytes",
5093 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5094 .read_u64 = mem_cgroup_read_u64,
5095 },
5096 {
5097 .name = "kmem.tcp.failcnt",
5098 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5099 .write = mem_cgroup_reset,
5100 .read_u64 = mem_cgroup_read_u64,
5101 },
5102 {
5103 .name = "kmem.tcp.max_usage_in_bytes",
5104 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5105 .write = mem_cgroup_reset,
5106 .read_u64 = mem_cgroup_read_u64,
5107 },
5108 { }, /* terminate */
5109 };
5110
5111 /*
5112 * Private memory cgroup IDR
5113 *
5114 * Swap-out records and page cache shadow entries need to store memcg
5115 * references in constrained space, so we maintain an ID space that is
5116 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5117 * memory-controlled cgroups to 64k.
5118 *
5119 * However, there usually are many references to the offline CSS after
5120 * the cgroup has been destroyed, such as page cache or reclaimable
5121 * slab objects, that don't need to hang on to the ID. We want to keep
5122 * those dead CSS from occupying IDs, or we might quickly exhaust the
5123 * relatively small ID space and prevent the creation of new cgroups
5124 * even when there are much fewer than 64k cgroups - possibly none.
5125 *
5126 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5127 * be freed and recycled when it's no longer needed, which is usually
5128 * when the CSS is offlined.
5129 *
5130 * The only exception to that are records of swapped out tmpfs/shmem
5131 * pages that need to be attributed to live ancestors on swapin. But
5132 * those references are manageable from userspace.
5133 */
5134
5135 static DEFINE_IDR(mem_cgroup_idr);
5136
5137 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5138 {
5139 if (memcg->id.id > 0) {
5140 idr_remove(&mem_cgroup_idr, memcg->id.id);
5141 memcg->id.id = 0;
5142 }
5143 }
5144
5145 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5146 unsigned int n)
5147 {
5148 refcount_add(n, &memcg->id.ref);
5149 }
5150
5151 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5152 {
5153 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5154 mem_cgroup_id_remove(memcg);
5155
5156 /* Memcg ID pins CSS */
5157 css_put(&memcg->css);
5158 }
5159 }
5160
5161 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5162 {
5163 mem_cgroup_id_put_many(memcg, 1);
5164 }
5165
5166 /**
5167 * mem_cgroup_from_id - look up a memcg from a memcg id
5168 * @id: the memcg id to look up
5169 *
5170 * Caller must hold rcu_read_lock().
5171 */
5172 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5173 {
5174 WARN_ON_ONCE(!rcu_read_lock_held());
5175 return idr_find(&mem_cgroup_idr, id);
5176 }
5177
5178 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5179 {
5180 struct mem_cgroup_per_node *pn;
5181 int tmp = node;
5182 /*
5183 * This routine is called against possible nodes.
5184 * But it's BUG to call kmalloc() against offline node.
5185 *
5186 * TODO: this routine can waste much memory for nodes which will
5187 * never be onlined. It's better to use memory hotplug callback
5188 * function.
5189 */
5190 if (!node_state(node, N_NORMAL_MEMORY))
5191 tmp = -1;
5192 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5193 if (!pn)
5194 return 1;
5195
5196 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5197 GFP_KERNEL_ACCOUNT);
5198 if (!pn->lruvec_stat_local) {
5199 kfree(pn);
5200 return 1;
5201 }
5202
5203 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5204 GFP_KERNEL_ACCOUNT);
5205 if (!pn->lruvec_stat_cpu) {
5206 free_percpu(pn->lruvec_stat_local);
5207 kfree(pn);
5208 return 1;
5209 }
5210
5211 lruvec_init(&pn->lruvec);
5212 pn->usage_in_excess = 0;
5213 pn->on_tree = false;
5214 pn->memcg = memcg;
5215
5216 memcg->nodeinfo[node] = pn;
5217 return 0;
5218 }
5219
5220 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5221 {
5222 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5223
5224 if (!pn)
5225 return;
5226
5227 free_percpu(pn->lruvec_stat_cpu);
5228 free_percpu(pn->lruvec_stat_local);
5229 kfree(pn);
5230 }
5231
5232 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5233 {
5234 int node;
5235
5236 for_each_node(node)
5237 free_mem_cgroup_per_node_info(memcg, node);
5238 free_percpu(memcg->vmstats_percpu);
5239 free_percpu(memcg->vmstats_local);
5240 kfree(memcg);
5241 }
5242
5243 static void mem_cgroup_free(struct mem_cgroup *memcg)
5244 {
5245 memcg_wb_domain_exit(memcg);
5246 /*
5247 * Flush percpu vmstats and vmevents to guarantee the value correctness
5248 * on parent's and all ancestor levels.
5249 */
5250 memcg_flush_percpu_vmstats(memcg);
5251 memcg_flush_percpu_vmevents(memcg);
5252 __mem_cgroup_free(memcg);
5253 }
5254
5255 static struct mem_cgroup *mem_cgroup_alloc(void)
5256 {
5257 struct mem_cgroup *memcg;
5258 unsigned int size;
5259 int node;
5260 int __maybe_unused i;
5261 long error = -ENOMEM;
5262
5263 size = sizeof(struct mem_cgroup);
5264 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5265
5266 memcg = kzalloc(size, GFP_KERNEL);
5267 if (!memcg)
5268 return ERR_PTR(error);
5269
5270 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5271 1, MEM_CGROUP_ID_MAX,
5272 GFP_KERNEL);
5273 if (memcg->id.id < 0) {
5274 error = memcg->id.id;
5275 goto fail;
5276 }
5277
5278 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5279 GFP_KERNEL_ACCOUNT);
5280 if (!memcg->vmstats_local)
5281 goto fail;
5282
5283 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5284 GFP_KERNEL_ACCOUNT);
5285 if (!memcg->vmstats_percpu)
5286 goto fail;
5287
5288 for_each_node(node)
5289 if (alloc_mem_cgroup_per_node_info(memcg, node))
5290 goto fail;
5291
5292 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5293 goto fail;
5294
5295 INIT_WORK(&memcg->high_work, high_work_func);
5296 INIT_LIST_HEAD(&memcg->oom_notify);
5297 mutex_init(&memcg->thresholds_lock);
5298 spin_lock_init(&memcg->move_lock);
5299 vmpressure_init(&memcg->vmpressure);
5300 INIT_LIST_HEAD(&memcg->event_list);
5301 spin_lock_init(&memcg->event_list_lock);
5302 memcg->socket_pressure = jiffies;
5303 #ifdef CONFIG_MEMCG_KMEM
5304 memcg->kmemcg_id = -1;
5305 INIT_LIST_HEAD(&memcg->objcg_list);
5306 #endif
5307 #ifdef CONFIG_CGROUP_WRITEBACK
5308 INIT_LIST_HEAD(&memcg->cgwb_list);
5309 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5310 memcg->cgwb_frn[i].done =
5311 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5312 #endif
5313 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5314 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5315 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5316 memcg->deferred_split_queue.split_queue_len = 0;
5317 #endif
5318 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5319 return memcg;
5320 fail:
5321 mem_cgroup_id_remove(memcg);
5322 __mem_cgroup_free(memcg);
5323 return ERR_PTR(error);
5324 }
5325
5326 static struct cgroup_subsys_state * __ref
5327 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5328 {
5329 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5330 struct mem_cgroup *memcg, *old_memcg;
5331 long error = -ENOMEM;
5332
5333 old_memcg = set_active_memcg(parent);
5334 memcg = mem_cgroup_alloc();
5335 set_active_memcg(old_memcg);
5336 if (IS_ERR(memcg))
5337 return ERR_CAST(memcg);
5338
5339 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5340 memcg->soft_limit = PAGE_COUNTER_MAX;
5341 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5342 if (parent) {
5343 memcg->swappiness = mem_cgroup_swappiness(parent);
5344 memcg->oom_kill_disable = parent->oom_kill_disable;
5345 }
5346 if (!parent) {
5347 page_counter_init(&memcg->memory, NULL);
5348 page_counter_init(&memcg->swap, NULL);
5349 page_counter_init(&memcg->kmem, NULL);
5350 page_counter_init(&memcg->tcpmem, NULL);
5351 } else if (parent->use_hierarchy) {
5352 memcg->use_hierarchy = true;
5353 page_counter_init(&memcg->memory, &parent->memory);
5354 page_counter_init(&memcg->swap, &parent->swap);
5355 page_counter_init(&memcg->kmem, &parent->kmem);
5356 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5357 } else {
5358 page_counter_init(&memcg->memory, &root_mem_cgroup->memory);
5359 page_counter_init(&memcg->swap, &root_mem_cgroup->swap);
5360 page_counter_init(&memcg->kmem, &root_mem_cgroup->kmem);
5361 page_counter_init(&memcg->tcpmem, &root_mem_cgroup->tcpmem);
5362 /*
5363 * Deeper hierachy with use_hierarchy == false doesn't make
5364 * much sense so let cgroup subsystem know about this
5365 * unfortunate state in our controller.
5366 */
5367 if (parent != root_mem_cgroup)
5368 memory_cgrp_subsys.broken_hierarchy = true;
5369 }
5370
5371 /* The following stuff does not apply to the root */
5372 if (!parent) {
5373 root_mem_cgroup = memcg;
5374 return &memcg->css;
5375 }
5376
5377 error = memcg_online_kmem(memcg);
5378 if (error)
5379 goto fail;
5380
5381 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5382 static_branch_inc(&memcg_sockets_enabled_key);
5383
5384 return &memcg->css;
5385 fail:
5386 mem_cgroup_id_remove(memcg);
5387 mem_cgroup_free(memcg);
5388 return ERR_PTR(error);
5389 }
5390
5391 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5392 {
5393 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5394
5395 /*
5396 * A memcg must be visible for memcg_expand_shrinker_maps()
5397 * by the time the maps are allocated. So, we allocate maps
5398 * here, when for_each_mem_cgroup() can't skip it.
5399 */
5400 if (memcg_alloc_shrinker_maps(memcg)) {
5401 mem_cgroup_id_remove(memcg);
5402 return -ENOMEM;
5403 }
5404
5405 /* Online state pins memcg ID, memcg ID pins CSS */
5406 refcount_set(&memcg->id.ref, 1);
5407 css_get(css);
5408 return 0;
5409 }
5410
5411 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5412 {
5413 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5414 struct mem_cgroup_event *event, *tmp;
5415
5416 /*
5417 * Unregister events and notify userspace.
5418 * Notify userspace about cgroup removing only after rmdir of cgroup
5419 * directory to avoid race between userspace and kernelspace.
5420 */
5421 spin_lock(&memcg->event_list_lock);
5422 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5423 list_del_init(&event->list);
5424 schedule_work(&event->remove);
5425 }
5426 spin_unlock(&memcg->event_list_lock);
5427
5428 page_counter_set_min(&memcg->memory, 0);
5429 page_counter_set_low(&memcg->memory, 0);
5430
5431 memcg_offline_kmem(memcg);
5432 wb_memcg_offline(memcg);
5433
5434 drain_all_stock(memcg);
5435
5436 mem_cgroup_id_put(memcg);
5437 }
5438
5439 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5440 {
5441 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5442
5443 invalidate_reclaim_iterators(memcg);
5444 }
5445
5446 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5447 {
5448 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5449 int __maybe_unused i;
5450
5451 #ifdef CONFIG_CGROUP_WRITEBACK
5452 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5453 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5454 #endif
5455 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5456 static_branch_dec(&memcg_sockets_enabled_key);
5457
5458 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5459 static_branch_dec(&memcg_sockets_enabled_key);
5460
5461 vmpressure_cleanup(&memcg->vmpressure);
5462 cancel_work_sync(&memcg->high_work);
5463 mem_cgroup_remove_from_trees(memcg);
5464 memcg_free_shrinker_maps(memcg);
5465 memcg_free_kmem(memcg);
5466 mem_cgroup_free(memcg);
5467 }
5468
5469 /**
5470 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5471 * @css: the target css
5472 *
5473 * Reset the states of the mem_cgroup associated with @css. This is
5474 * invoked when the userland requests disabling on the default hierarchy
5475 * but the memcg is pinned through dependency. The memcg should stop
5476 * applying policies and should revert to the vanilla state as it may be
5477 * made visible again.
5478 *
5479 * The current implementation only resets the essential configurations.
5480 * This needs to be expanded to cover all the visible parts.
5481 */
5482 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5483 {
5484 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5485
5486 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5487 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5488 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5489 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5490 page_counter_set_min(&memcg->memory, 0);
5491 page_counter_set_low(&memcg->memory, 0);
5492 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5493 memcg->soft_limit = PAGE_COUNTER_MAX;
5494 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5495 memcg_wb_domain_size_changed(memcg);
5496 }
5497
5498 #ifdef CONFIG_MMU
5499 /* Handlers for move charge at task migration. */
5500 static int mem_cgroup_do_precharge(unsigned long count)
5501 {
5502 int ret;
5503
5504 /* Try a single bulk charge without reclaim first, kswapd may wake */
5505 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5506 if (!ret) {
5507 mc.precharge += count;
5508 return ret;
5509 }
5510
5511 /* Try charges one by one with reclaim, but do not retry */
5512 while (count--) {
5513 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5514 if (ret)
5515 return ret;
5516 mc.precharge++;
5517 cond_resched();
5518 }
5519 return 0;
5520 }
5521
5522 union mc_target {
5523 struct page *page;
5524 swp_entry_t ent;
5525 };
5526
5527 enum mc_target_type {
5528 MC_TARGET_NONE = 0,
5529 MC_TARGET_PAGE,
5530 MC_TARGET_SWAP,
5531 MC_TARGET_DEVICE,
5532 };
5533
5534 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5535 unsigned long addr, pte_t ptent)
5536 {
5537 struct page *page = vm_normal_page(vma, addr, ptent);
5538
5539 if (!page || !page_mapped(page))
5540 return NULL;
5541 if (PageAnon(page)) {
5542 if (!(mc.flags & MOVE_ANON))
5543 return NULL;
5544 } else {
5545 if (!(mc.flags & MOVE_FILE))
5546 return NULL;
5547 }
5548 if (!get_page_unless_zero(page))
5549 return NULL;
5550
5551 return page;
5552 }
5553
5554 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5555 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5556 pte_t ptent, swp_entry_t *entry)
5557 {
5558 struct page *page = NULL;
5559 swp_entry_t ent = pte_to_swp_entry(ptent);
5560
5561 if (!(mc.flags & MOVE_ANON))
5562 return NULL;
5563
5564 /*
5565 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5566 * a device and because they are not accessible by CPU they are store
5567 * as special swap entry in the CPU page table.
5568 */
5569 if (is_device_private_entry(ent)) {
5570 page = device_private_entry_to_page(ent);
5571 /*
5572 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5573 * a refcount of 1 when free (unlike normal page)
5574 */
5575 if (!page_ref_add_unless(page, 1, 1))
5576 return NULL;
5577 return page;
5578 }
5579
5580 if (non_swap_entry(ent))
5581 return NULL;
5582
5583 /*
5584 * Because lookup_swap_cache() updates some statistics counter,
5585 * we call find_get_page() with swapper_space directly.
5586 */
5587 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5588 entry->val = ent.val;
5589
5590 return page;
5591 }
5592 #else
5593 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5594 pte_t ptent, swp_entry_t *entry)
5595 {
5596 return NULL;
5597 }
5598 #endif
5599
5600 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5601 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5602 {
5603 if (!vma->vm_file) /* anonymous vma */
5604 return NULL;
5605 if (!(mc.flags & MOVE_FILE))
5606 return NULL;
5607
5608 /* page is moved even if it's not RSS of this task(page-faulted). */
5609 /* shmem/tmpfs may report page out on swap: account for that too. */
5610 return find_get_incore_page(vma->vm_file->f_mapping,
5611 linear_page_index(vma, addr));
5612 }
5613
5614 /**
5615 * mem_cgroup_move_account - move account of the page
5616 * @page: the page
5617 * @compound: charge the page as compound or small page
5618 * @from: mem_cgroup which the page is moved from.
5619 * @to: mem_cgroup which the page is moved to. @from != @to.
5620 *
5621 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5622 *
5623 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5624 * from old cgroup.
5625 */
5626 static int mem_cgroup_move_account(struct page *page,
5627 bool compound,
5628 struct mem_cgroup *from,
5629 struct mem_cgroup *to)
5630 {
5631 struct lruvec *from_vec, *to_vec;
5632 struct pglist_data *pgdat;
5633 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5634 int ret;
5635
5636 VM_BUG_ON(from == to);
5637 VM_BUG_ON_PAGE(PageLRU(page), page);
5638 VM_BUG_ON(compound && !PageTransHuge(page));
5639
5640 /*
5641 * Prevent mem_cgroup_migrate() from looking at
5642 * page->mem_cgroup of its source page while we change it.
5643 */
5644 ret = -EBUSY;
5645 if (!trylock_page(page))
5646 goto out;
5647
5648 ret = -EINVAL;
5649 if (page->mem_cgroup != from)
5650 goto out_unlock;
5651
5652 pgdat = page_pgdat(page);
5653 from_vec = mem_cgroup_lruvec(from, pgdat);
5654 to_vec = mem_cgroup_lruvec(to, pgdat);
5655
5656 lock_page_memcg(page);
5657
5658 if (PageAnon(page)) {
5659 if (page_mapped(page)) {
5660 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5661 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5662 if (PageTransHuge(page)) {
5663 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5664 -nr_pages);
5665 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5666 nr_pages);
5667 }
5668
5669 }
5670 } else {
5671 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5672 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5673
5674 if (PageSwapBacked(page)) {
5675 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5676 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5677 }
5678
5679 if (page_mapped(page)) {
5680 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5681 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5682 }
5683
5684 if (PageDirty(page)) {
5685 struct address_space *mapping = page_mapping(page);
5686
5687 if (mapping_can_writeback(mapping)) {
5688 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5689 -nr_pages);
5690 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5691 nr_pages);
5692 }
5693 }
5694 }
5695
5696 if (PageWriteback(page)) {
5697 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5698 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5699 }
5700
5701 /*
5702 * All state has been migrated, let's switch to the new memcg.
5703 *
5704 * It is safe to change page->mem_cgroup here because the page
5705 * is referenced, charged, isolated, and locked: we can't race
5706 * with (un)charging, migration, LRU putback, or anything else
5707 * that would rely on a stable page->mem_cgroup.
5708 *
5709 * Note that lock_page_memcg is a memcg lock, not a page lock,
5710 * to save space. As soon as we switch page->mem_cgroup to a
5711 * new memcg that isn't locked, the above state can change
5712 * concurrently again. Make sure we're truly done with it.
5713 */
5714 smp_mb();
5715
5716 css_get(&to->css);
5717 css_put(&from->css);
5718
5719 page->mem_cgroup = to;
5720
5721 __unlock_page_memcg(from);
5722
5723 ret = 0;
5724
5725 local_irq_disable();
5726 mem_cgroup_charge_statistics(to, page, nr_pages);
5727 memcg_check_events(to, page);
5728 mem_cgroup_charge_statistics(from, page, -nr_pages);
5729 memcg_check_events(from, page);
5730 local_irq_enable();
5731 out_unlock:
5732 unlock_page(page);
5733 out:
5734 return ret;
5735 }
5736
5737 /**
5738 * get_mctgt_type - get target type of moving charge
5739 * @vma: the vma the pte to be checked belongs
5740 * @addr: the address corresponding to the pte to be checked
5741 * @ptent: the pte to be checked
5742 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5743 *
5744 * Returns
5745 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5746 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5747 * move charge. if @target is not NULL, the page is stored in target->page
5748 * with extra refcnt got(Callers should handle it).
5749 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5750 * target for charge migration. if @target is not NULL, the entry is stored
5751 * in target->ent.
5752 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5753 * (so ZONE_DEVICE page and thus not on the lru).
5754 * For now we such page is charge like a regular page would be as for all
5755 * intent and purposes it is just special memory taking the place of a
5756 * regular page.
5757 *
5758 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5759 *
5760 * Called with pte lock held.
5761 */
5762
5763 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5764 unsigned long addr, pte_t ptent, union mc_target *target)
5765 {
5766 struct page *page = NULL;
5767 enum mc_target_type ret = MC_TARGET_NONE;
5768 swp_entry_t ent = { .val = 0 };
5769
5770 if (pte_present(ptent))
5771 page = mc_handle_present_pte(vma, addr, ptent);
5772 else if (is_swap_pte(ptent))
5773 page = mc_handle_swap_pte(vma, ptent, &ent);
5774 else if (pte_none(ptent))
5775 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5776
5777 if (!page && !ent.val)
5778 return ret;
5779 if (page) {
5780 /*
5781 * Do only loose check w/o serialization.
5782 * mem_cgroup_move_account() checks the page is valid or
5783 * not under LRU exclusion.
5784 */
5785 if (page->mem_cgroup == mc.from) {
5786 ret = MC_TARGET_PAGE;
5787 if (is_device_private_page(page))
5788 ret = MC_TARGET_DEVICE;
5789 if (target)
5790 target->page = page;
5791 }
5792 if (!ret || !target)
5793 put_page(page);
5794 }
5795 /*
5796 * There is a swap entry and a page doesn't exist or isn't charged.
5797 * But we cannot move a tail-page in a THP.
5798 */
5799 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5800 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5801 ret = MC_TARGET_SWAP;
5802 if (target)
5803 target->ent = ent;
5804 }
5805 return ret;
5806 }
5807
5808 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5809 /*
5810 * We don't consider PMD mapped swapping or file mapped pages because THP does
5811 * not support them for now.
5812 * Caller should make sure that pmd_trans_huge(pmd) is true.
5813 */
5814 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5815 unsigned long addr, pmd_t pmd, union mc_target *target)
5816 {
5817 struct page *page = NULL;
5818 enum mc_target_type ret = MC_TARGET_NONE;
5819
5820 if (unlikely(is_swap_pmd(pmd))) {
5821 VM_BUG_ON(thp_migration_supported() &&
5822 !is_pmd_migration_entry(pmd));
5823 return ret;
5824 }
5825 page = pmd_page(pmd);
5826 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5827 if (!(mc.flags & MOVE_ANON))
5828 return ret;
5829 if (page->mem_cgroup == mc.from) {
5830 ret = MC_TARGET_PAGE;
5831 if (target) {
5832 get_page(page);
5833 target->page = page;
5834 }
5835 }
5836 return ret;
5837 }
5838 #else
5839 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5840 unsigned long addr, pmd_t pmd, union mc_target *target)
5841 {
5842 return MC_TARGET_NONE;
5843 }
5844 #endif
5845
5846 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5847 unsigned long addr, unsigned long end,
5848 struct mm_walk *walk)
5849 {
5850 struct vm_area_struct *vma = walk->vma;
5851 pte_t *pte;
5852 spinlock_t *ptl;
5853
5854 ptl = pmd_trans_huge_lock(pmd, vma);
5855 if (ptl) {
5856 /*
5857 * Note their can not be MC_TARGET_DEVICE for now as we do not
5858 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5859 * this might change.
5860 */
5861 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5862 mc.precharge += HPAGE_PMD_NR;
5863 spin_unlock(ptl);
5864 return 0;
5865 }
5866
5867 if (pmd_trans_unstable(pmd))
5868 return 0;
5869 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5870 for (; addr != end; pte++, addr += PAGE_SIZE)
5871 if (get_mctgt_type(vma, addr, *pte, NULL))
5872 mc.precharge++; /* increment precharge temporarily */
5873 pte_unmap_unlock(pte - 1, ptl);
5874 cond_resched();
5875
5876 return 0;
5877 }
5878
5879 static const struct mm_walk_ops precharge_walk_ops = {
5880 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5881 };
5882
5883 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5884 {
5885 unsigned long precharge;
5886
5887 mmap_read_lock(mm);
5888 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5889 mmap_read_unlock(mm);
5890
5891 precharge = mc.precharge;
5892 mc.precharge = 0;
5893
5894 return precharge;
5895 }
5896
5897 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5898 {
5899 unsigned long precharge = mem_cgroup_count_precharge(mm);
5900
5901 VM_BUG_ON(mc.moving_task);
5902 mc.moving_task = current;
5903 return mem_cgroup_do_precharge(precharge);
5904 }
5905
5906 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5907 static void __mem_cgroup_clear_mc(void)
5908 {
5909 struct mem_cgroup *from = mc.from;
5910 struct mem_cgroup *to = mc.to;
5911
5912 /* we must uncharge all the leftover precharges from mc.to */
5913 if (mc.precharge) {
5914 cancel_charge(mc.to, mc.precharge);
5915 mc.precharge = 0;
5916 }
5917 /*
5918 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5919 * we must uncharge here.
5920 */
5921 if (mc.moved_charge) {
5922 cancel_charge(mc.from, mc.moved_charge);
5923 mc.moved_charge = 0;
5924 }
5925 /* we must fixup refcnts and charges */
5926 if (mc.moved_swap) {
5927 /* uncharge swap account from the old cgroup */
5928 if (!mem_cgroup_is_root(mc.from))
5929 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5930
5931 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5932
5933 /*
5934 * we charged both to->memory and to->memsw, so we
5935 * should uncharge to->memory.
5936 */
5937 if (!mem_cgroup_is_root(mc.to))
5938 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5939
5940 mc.moved_swap = 0;
5941 }
5942 memcg_oom_recover(from);
5943 memcg_oom_recover(to);
5944 wake_up_all(&mc.waitq);
5945 }
5946
5947 static void mem_cgroup_clear_mc(void)
5948 {
5949 struct mm_struct *mm = mc.mm;
5950
5951 /*
5952 * we must clear moving_task before waking up waiters at the end of
5953 * task migration.
5954 */
5955 mc.moving_task = NULL;
5956 __mem_cgroup_clear_mc();
5957 spin_lock(&mc.lock);
5958 mc.from = NULL;
5959 mc.to = NULL;
5960 mc.mm = NULL;
5961 spin_unlock(&mc.lock);
5962
5963 mmput(mm);
5964 }
5965
5966 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5967 {
5968 struct cgroup_subsys_state *css;
5969 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5970 struct mem_cgroup *from;
5971 struct task_struct *leader, *p;
5972 struct mm_struct *mm;
5973 unsigned long move_flags;
5974 int ret = 0;
5975
5976 /* charge immigration isn't supported on the default hierarchy */
5977 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5978 return 0;
5979
5980 /*
5981 * Multi-process migrations only happen on the default hierarchy
5982 * where charge immigration is not used. Perform charge
5983 * immigration if @tset contains a leader and whine if there are
5984 * multiple.
5985 */
5986 p = NULL;
5987 cgroup_taskset_for_each_leader(leader, css, tset) {
5988 WARN_ON_ONCE(p);
5989 p = leader;
5990 memcg = mem_cgroup_from_css(css);
5991 }
5992 if (!p)
5993 return 0;
5994
5995 /*
5996 * We are now commited to this value whatever it is. Changes in this
5997 * tunable will only affect upcoming migrations, not the current one.
5998 * So we need to save it, and keep it going.
5999 */
6000 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6001 if (!move_flags)
6002 return 0;
6003
6004 from = mem_cgroup_from_task(p);
6005
6006 VM_BUG_ON(from == memcg);
6007
6008 mm = get_task_mm(p);
6009 if (!mm)
6010 return 0;
6011 /* We move charges only when we move a owner of the mm */
6012 if (mm->owner == p) {
6013 VM_BUG_ON(mc.from);
6014 VM_BUG_ON(mc.to);
6015 VM_BUG_ON(mc.precharge);
6016 VM_BUG_ON(mc.moved_charge);
6017 VM_BUG_ON(mc.moved_swap);
6018
6019 spin_lock(&mc.lock);
6020 mc.mm = mm;
6021 mc.from = from;
6022 mc.to = memcg;
6023 mc.flags = move_flags;
6024 spin_unlock(&mc.lock);
6025 /* We set mc.moving_task later */
6026
6027 ret = mem_cgroup_precharge_mc(mm);
6028 if (ret)
6029 mem_cgroup_clear_mc();
6030 } else {
6031 mmput(mm);
6032 }
6033 return ret;
6034 }
6035
6036 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6037 {
6038 if (mc.to)
6039 mem_cgroup_clear_mc();
6040 }
6041
6042 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6043 unsigned long addr, unsigned long end,
6044 struct mm_walk *walk)
6045 {
6046 int ret = 0;
6047 struct vm_area_struct *vma = walk->vma;
6048 pte_t *pte;
6049 spinlock_t *ptl;
6050 enum mc_target_type target_type;
6051 union mc_target target;
6052 struct page *page;
6053
6054 ptl = pmd_trans_huge_lock(pmd, vma);
6055 if (ptl) {
6056 if (mc.precharge < HPAGE_PMD_NR) {
6057 spin_unlock(ptl);
6058 return 0;
6059 }
6060 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6061 if (target_type == MC_TARGET_PAGE) {
6062 page = target.page;
6063 if (!isolate_lru_page(page)) {
6064 if (!mem_cgroup_move_account(page, true,
6065 mc.from, mc.to)) {
6066 mc.precharge -= HPAGE_PMD_NR;
6067 mc.moved_charge += HPAGE_PMD_NR;
6068 }
6069 putback_lru_page(page);
6070 }
6071 put_page(page);
6072 } else if (target_type == MC_TARGET_DEVICE) {
6073 page = target.page;
6074 if (!mem_cgroup_move_account(page, true,
6075 mc.from, mc.to)) {
6076 mc.precharge -= HPAGE_PMD_NR;
6077 mc.moved_charge += HPAGE_PMD_NR;
6078 }
6079 put_page(page);
6080 }
6081 spin_unlock(ptl);
6082 return 0;
6083 }
6084
6085 if (pmd_trans_unstable(pmd))
6086 return 0;
6087 retry:
6088 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6089 for (; addr != end; addr += PAGE_SIZE) {
6090 pte_t ptent = *(pte++);
6091 bool device = false;
6092 swp_entry_t ent;
6093
6094 if (!mc.precharge)
6095 break;
6096
6097 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6098 case MC_TARGET_DEVICE:
6099 device = true;
6100 fallthrough;
6101 case MC_TARGET_PAGE:
6102 page = target.page;
6103 /*
6104 * We can have a part of the split pmd here. Moving it
6105 * can be done but it would be too convoluted so simply
6106 * ignore such a partial THP and keep it in original
6107 * memcg. There should be somebody mapping the head.
6108 */
6109 if (PageTransCompound(page))
6110 goto put;
6111 if (!device && isolate_lru_page(page))
6112 goto put;
6113 if (!mem_cgroup_move_account(page, false,
6114 mc.from, mc.to)) {
6115 mc.precharge--;
6116 /* we uncharge from mc.from later. */
6117 mc.moved_charge++;
6118 }
6119 if (!device)
6120 putback_lru_page(page);
6121 put: /* get_mctgt_type() gets the page */
6122 put_page(page);
6123 break;
6124 case MC_TARGET_SWAP:
6125 ent = target.ent;
6126 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6127 mc.precharge--;
6128 mem_cgroup_id_get_many(mc.to, 1);
6129 /* we fixup other refcnts and charges later. */
6130 mc.moved_swap++;
6131 }
6132 break;
6133 default:
6134 break;
6135 }
6136 }
6137 pte_unmap_unlock(pte - 1, ptl);
6138 cond_resched();
6139
6140 if (addr != end) {
6141 /*
6142 * We have consumed all precharges we got in can_attach().
6143 * We try charge one by one, but don't do any additional
6144 * charges to mc.to if we have failed in charge once in attach()
6145 * phase.
6146 */
6147 ret = mem_cgroup_do_precharge(1);
6148 if (!ret)
6149 goto retry;
6150 }
6151
6152 return ret;
6153 }
6154
6155 static const struct mm_walk_ops charge_walk_ops = {
6156 .pmd_entry = mem_cgroup_move_charge_pte_range,
6157 };
6158
6159 static void mem_cgroup_move_charge(void)
6160 {
6161 lru_add_drain_all();
6162 /*
6163 * Signal lock_page_memcg() to take the memcg's move_lock
6164 * while we're moving its pages to another memcg. Then wait
6165 * for already started RCU-only updates to finish.
6166 */
6167 atomic_inc(&mc.from->moving_account);
6168 synchronize_rcu();
6169 retry:
6170 if (unlikely(!mmap_read_trylock(mc.mm))) {
6171 /*
6172 * Someone who are holding the mmap_lock might be waiting in
6173 * waitq. So we cancel all extra charges, wake up all waiters,
6174 * and retry. Because we cancel precharges, we might not be able
6175 * to move enough charges, but moving charge is a best-effort
6176 * feature anyway, so it wouldn't be a big problem.
6177 */
6178 __mem_cgroup_clear_mc();
6179 cond_resched();
6180 goto retry;
6181 }
6182 /*
6183 * When we have consumed all precharges and failed in doing
6184 * additional charge, the page walk just aborts.
6185 */
6186 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6187 NULL);
6188
6189 mmap_read_unlock(mc.mm);
6190 atomic_dec(&mc.from->moving_account);
6191 }
6192
6193 static void mem_cgroup_move_task(void)
6194 {
6195 if (mc.to) {
6196 mem_cgroup_move_charge();
6197 mem_cgroup_clear_mc();
6198 }
6199 }
6200 #else /* !CONFIG_MMU */
6201 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6202 {
6203 return 0;
6204 }
6205 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6206 {
6207 }
6208 static void mem_cgroup_move_task(void)
6209 {
6210 }
6211 #endif
6212
6213 /*
6214 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6215 * to verify whether we're attached to the default hierarchy on each mount
6216 * attempt.
6217 */
6218 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6219 {
6220 /*
6221 * use_hierarchy is forced on the default hierarchy. cgroup core
6222 * guarantees that @root doesn't have any children, so turning it
6223 * on for the root memcg is enough.
6224 */
6225 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6226 root_mem_cgroup->use_hierarchy = true;
6227 else
6228 root_mem_cgroup->use_hierarchy = false;
6229 }
6230
6231 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6232 {
6233 if (value == PAGE_COUNTER_MAX)
6234 seq_puts(m, "max\n");
6235 else
6236 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6237
6238 return 0;
6239 }
6240
6241 static u64 memory_current_read(struct cgroup_subsys_state *css,
6242 struct cftype *cft)
6243 {
6244 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6245
6246 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6247 }
6248
6249 static int memory_min_show(struct seq_file *m, void *v)
6250 {
6251 return seq_puts_memcg_tunable(m,
6252 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6253 }
6254
6255 static ssize_t memory_min_write(struct kernfs_open_file *of,
6256 char *buf, size_t nbytes, loff_t off)
6257 {
6258 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6259 unsigned long min;
6260 int err;
6261
6262 buf = strstrip(buf);
6263 err = page_counter_memparse(buf, "max", &min);
6264 if (err)
6265 return err;
6266
6267 page_counter_set_min(&memcg->memory, min);
6268
6269 return nbytes;
6270 }
6271
6272 static int memory_low_show(struct seq_file *m, void *v)
6273 {
6274 return seq_puts_memcg_tunable(m,
6275 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6276 }
6277
6278 static ssize_t memory_low_write(struct kernfs_open_file *of,
6279 char *buf, size_t nbytes, loff_t off)
6280 {
6281 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6282 unsigned long low;
6283 int err;
6284
6285 buf = strstrip(buf);
6286 err = page_counter_memparse(buf, "max", &low);
6287 if (err)
6288 return err;
6289
6290 page_counter_set_low(&memcg->memory, low);
6291
6292 return nbytes;
6293 }
6294
6295 static int memory_high_show(struct seq_file *m, void *v)
6296 {
6297 return seq_puts_memcg_tunable(m,
6298 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6299 }
6300
6301 static ssize_t memory_high_write(struct kernfs_open_file *of,
6302 char *buf, size_t nbytes, loff_t off)
6303 {
6304 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6305 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6306 bool drained = false;
6307 unsigned long high;
6308 int err;
6309
6310 buf = strstrip(buf);
6311 err = page_counter_memparse(buf, "max", &high);
6312 if (err)
6313 return err;
6314
6315 for (;;) {
6316 unsigned long nr_pages = page_counter_read(&memcg->memory);
6317 unsigned long reclaimed;
6318
6319 if (nr_pages <= high)
6320 break;
6321
6322 if (signal_pending(current))
6323 break;
6324
6325 if (!drained) {
6326 drain_all_stock(memcg);
6327 drained = true;
6328 continue;
6329 }
6330
6331 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6332 GFP_KERNEL, true);
6333
6334 if (!reclaimed && !nr_retries--)
6335 break;
6336 }
6337
6338 page_counter_set_high(&memcg->memory, high);
6339
6340 memcg_wb_domain_size_changed(memcg);
6341
6342 return nbytes;
6343 }
6344
6345 static int memory_max_show(struct seq_file *m, void *v)
6346 {
6347 return seq_puts_memcg_tunable(m,
6348 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6349 }
6350
6351 static ssize_t memory_max_write(struct kernfs_open_file *of,
6352 char *buf, size_t nbytes, loff_t off)
6353 {
6354 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6355 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6356 bool drained = false;
6357 unsigned long max;
6358 int err;
6359
6360 buf = strstrip(buf);
6361 err = page_counter_memparse(buf, "max", &max);
6362 if (err)
6363 return err;
6364
6365 xchg(&memcg->memory.max, max);
6366
6367 for (;;) {
6368 unsigned long nr_pages = page_counter_read(&memcg->memory);
6369
6370 if (nr_pages <= max)
6371 break;
6372
6373 if (signal_pending(current))
6374 break;
6375
6376 if (!drained) {
6377 drain_all_stock(memcg);
6378 drained = true;
6379 continue;
6380 }
6381
6382 if (nr_reclaims) {
6383 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6384 GFP_KERNEL, true))
6385 nr_reclaims--;
6386 continue;
6387 }
6388
6389 memcg_memory_event(memcg, MEMCG_OOM);
6390 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6391 break;
6392 }
6393
6394 memcg_wb_domain_size_changed(memcg);
6395 return nbytes;
6396 }
6397
6398 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6399 {
6400 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6401 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6402 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6403 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6404 seq_printf(m, "oom_kill %lu\n",
6405 atomic_long_read(&events[MEMCG_OOM_KILL]));
6406 }
6407
6408 static int memory_events_show(struct seq_file *m, void *v)
6409 {
6410 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6411
6412 __memory_events_show(m, memcg->memory_events);
6413 return 0;
6414 }
6415
6416 static int memory_events_local_show(struct seq_file *m, void *v)
6417 {
6418 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6419
6420 __memory_events_show(m, memcg->memory_events_local);
6421 return 0;
6422 }
6423
6424 static int memory_stat_show(struct seq_file *m, void *v)
6425 {
6426 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6427 char *buf;
6428
6429 buf = memory_stat_format(memcg);
6430 if (!buf)
6431 return -ENOMEM;
6432 seq_puts(m, buf);
6433 kfree(buf);
6434 return 0;
6435 }
6436
6437 #ifdef CONFIG_NUMA
6438 static int memory_numa_stat_show(struct seq_file *m, void *v)
6439 {
6440 int i;
6441 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6442
6443 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6444 int nid;
6445
6446 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6447 continue;
6448
6449 seq_printf(m, "%s", memory_stats[i].name);
6450 for_each_node_state(nid, N_MEMORY) {
6451 u64 size;
6452 struct lruvec *lruvec;
6453
6454 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6455 size = lruvec_page_state(lruvec, memory_stats[i].idx);
6456 size *= memory_stats[i].ratio;
6457 seq_printf(m, " N%d=%llu", nid, size);
6458 }
6459 seq_putc(m, '\n');
6460 }
6461
6462 return 0;
6463 }
6464 #endif
6465
6466 static int memory_oom_group_show(struct seq_file *m, void *v)
6467 {
6468 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6469
6470 seq_printf(m, "%d\n", memcg->oom_group);
6471
6472 return 0;
6473 }
6474
6475 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6476 char *buf, size_t nbytes, loff_t off)
6477 {
6478 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6479 int ret, oom_group;
6480
6481 buf = strstrip(buf);
6482 if (!buf)
6483 return -EINVAL;
6484
6485 ret = kstrtoint(buf, 0, &oom_group);
6486 if (ret)
6487 return ret;
6488
6489 if (oom_group != 0 && oom_group != 1)
6490 return -EINVAL;
6491
6492 memcg->oom_group = oom_group;
6493
6494 return nbytes;
6495 }
6496
6497 static struct cftype memory_files[] = {
6498 {
6499 .name = "current",
6500 .flags = CFTYPE_NOT_ON_ROOT,
6501 .read_u64 = memory_current_read,
6502 },
6503 {
6504 .name = "min",
6505 .flags = CFTYPE_NOT_ON_ROOT,
6506 .seq_show = memory_min_show,
6507 .write = memory_min_write,
6508 },
6509 {
6510 .name = "low",
6511 .flags = CFTYPE_NOT_ON_ROOT,
6512 .seq_show = memory_low_show,
6513 .write = memory_low_write,
6514 },
6515 {
6516 .name = "high",
6517 .flags = CFTYPE_NOT_ON_ROOT,
6518 .seq_show = memory_high_show,
6519 .write = memory_high_write,
6520 },
6521 {
6522 .name = "max",
6523 .flags = CFTYPE_NOT_ON_ROOT,
6524 .seq_show = memory_max_show,
6525 .write = memory_max_write,
6526 },
6527 {
6528 .name = "events",
6529 .flags = CFTYPE_NOT_ON_ROOT,
6530 .file_offset = offsetof(struct mem_cgroup, events_file),
6531 .seq_show = memory_events_show,
6532 },
6533 {
6534 .name = "events.local",
6535 .flags = CFTYPE_NOT_ON_ROOT,
6536 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6537 .seq_show = memory_events_local_show,
6538 },
6539 {
6540 .name = "stat",
6541 .seq_show = memory_stat_show,
6542 },
6543 #ifdef CONFIG_NUMA
6544 {
6545 .name = "numa_stat",
6546 .seq_show = memory_numa_stat_show,
6547 },
6548 #endif
6549 {
6550 .name = "oom.group",
6551 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6552 .seq_show = memory_oom_group_show,
6553 .write = memory_oom_group_write,
6554 },
6555 { } /* terminate */
6556 };
6557
6558 struct cgroup_subsys memory_cgrp_subsys = {
6559 .css_alloc = mem_cgroup_css_alloc,
6560 .css_online = mem_cgroup_css_online,
6561 .css_offline = mem_cgroup_css_offline,
6562 .css_released = mem_cgroup_css_released,
6563 .css_free = mem_cgroup_css_free,
6564 .css_reset = mem_cgroup_css_reset,
6565 .can_attach = mem_cgroup_can_attach,
6566 .cancel_attach = mem_cgroup_cancel_attach,
6567 .post_attach = mem_cgroup_move_task,
6568 .bind = mem_cgroup_bind,
6569 .dfl_cftypes = memory_files,
6570 .legacy_cftypes = mem_cgroup_legacy_files,
6571 .early_init = 0,
6572 };
6573
6574 /*
6575 * This function calculates an individual cgroup's effective
6576 * protection which is derived from its own memory.min/low, its
6577 * parent's and siblings' settings, as well as the actual memory
6578 * distribution in the tree.
6579 *
6580 * The following rules apply to the effective protection values:
6581 *
6582 * 1. At the first level of reclaim, effective protection is equal to
6583 * the declared protection in memory.min and memory.low.
6584 *
6585 * 2. To enable safe delegation of the protection configuration, at
6586 * subsequent levels the effective protection is capped to the
6587 * parent's effective protection.
6588 *
6589 * 3. To make complex and dynamic subtrees easier to configure, the
6590 * user is allowed to overcommit the declared protection at a given
6591 * level. If that is the case, the parent's effective protection is
6592 * distributed to the children in proportion to how much protection
6593 * they have declared and how much of it they are utilizing.
6594 *
6595 * This makes distribution proportional, but also work-conserving:
6596 * if one cgroup claims much more protection than it uses memory,
6597 * the unused remainder is available to its siblings.
6598 *
6599 * 4. Conversely, when the declared protection is undercommitted at a
6600 * given level, the distribution of the larger parental protection
6601 * budget is NOT proportional. A cgroup's protection from a sibling
6602 * is capped to its own memory.min/low setting.
6603 *
6604 * 5. However, to allow protecting recursive subtrees from each other
6605 * without having to declare each individual cgroup's fixed share
6606 * of the ancestor's claim to protection, any unutilized -
6607 * "floating" - protection from up the tree is distributed in
6608 * proportion to each cgroup's *usage*. This makes the protection
6609 * neutral wrt sibling cgroups and lets them compete freely over
6610 * the shared parental protection budget, but it protects the
6611 * subtree as a whole from neighboring subtrees.
6612 *
6613 * Note that 4. and 5. are not in conflict: 4. is about protecting
6614 * against immediate siblings whereas 5. is about protecting against
6615 * neighboring subtrees.
6616 */
6617 static unsigned long effective_protection(unsigned long usage,
6618 unsigned long parent_usage,
6619 unsigned long setting,
6620 unsigned long parent_effective,
6621 unsigned long siblings_protected)
6622 {
6623 unsigned long protected;
6624 unsigned long ep;
6625
6626 protected = min(usage, setting);
6627 /*
6628 * If all cgroups at this level combined claim and use more
6629 * protection then what the parent affords them, distribute
6630 * shares in proportion to utilization.
6631 *
6632 * We are using actual utilization rather than the statically
6633 * claimed protection in order to be work-conserving: claimed
6634 * but unused protection is available to siblings that would
6635 * otherwise get a smaller chunk than what they claimed.
6636 */
6637 if (siblings_protected > parent_effective)
6638 return protected * parent_effective / siblings_protected;
6639
6640 /*
6641 * Ok, utilized protection of all children is within what the
6642 * parent affords them, so we know whatever this child claims
6643 * and utilizes is effectively protected.
6644 *
6645 * If there is unprotected usage beyond this value, reclaim
6646 * will apply pressure in proportion to that amount.
6647 *
6648 * If there is unutilized protection, the cgroup will be fully
6649 * shielded from reclaim, but we do return a smaller value for
6650 * protection than what the group could enjoy in theory. This
6651 * is okay. With the overcommit distribution above, effective
6652 * protection is always dependent on how memory is actually
6653 * consumed among the siblings anyway.
6654 */
6655 ep = protected;
6656
6657 /*
6658 * If the children aren't claiming (all of) the protection
6659 * afforded to them by the parent, distribute the remainder in
6660 * proportion to the (unprotected) memory of each cgroup. That
6661 * way, cgroups that aren't explicitly prioritized wrt each
6662 * other compete freely over the allowance, but they are
6663 * collectively protected from neighboring trees.
6664 *
6665 * We're using unprotected memory for the weight so that if
6666 * some cgroups DO claim explicit protection, we don't protect
6667 * the same bytes twice.
6668 *
6669 * Check both usage and parent_usage against the respective
6670 * protected values. One should imply the other, but they
6671 * aren't read atomically - make sure the division is sane.
6672 */
6673 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6674 return ep;
6675 if (parent_effective > siblings_protected &&
6676 parent_usage > siblings_protected &&
6677 usage > protected) {
6678 unsigned long unclaimed;
6679
6680 unclaimed = parent_effective - siblings_protected;
6681 unclaimed *= usage - protected;
6682 unclaimed /= parent_usage - siblings_protected;
6683
6684 ep += unclaimed;
6685 }
6686
6687 return ep;
6688 }
6689
6690 /**
6691 * mem_cgroup_protected - check if memory consumption is in the normal range
6692 * @root: the top ancestor of the sub-tree being checked
6693 * @memcg: the memory cgroup to check
6694 *
6695 * WARNING: This function is not stateless! It can only be used as part
6696 * of a top-down tree iteration, not for isolated queries.
6697 */
6698 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6699 struct mem_cgroup *memcg)
6700 {
6701 unsigned long usage, parent_usage;
6702 struct mem_cgroup *parent;
6703
6704 if (mem_cgroup_disabled())
6705 return;
6706
6707 if (!root)
6708 root = root_mem_cgroup;
6709
6710 /*
6711 * Effective values of the reclaim targets are ignored so they
6712 * can be stale. Have a look at mem_cgroup_protection for more
6713 * details.
6714 * TODO: calculation should be more robust so that we do not need
6715 * that special casing.
6716 */
6717 if (memcg == root)
6718 return;
6719
6720 usage = page_counter_read(&memcg->memory);
6721 if (!usage)
6722 return;
6723
6724 parent = parent_mem_cgroup(memcg);
6725 /* No parent means a non-hierarchical mode on v1 memcg */
6726 if (!parent)
6727 return;
6728
6729 if (parent == root) {
6730 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6731 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6732 return;
6733 }
6734
6735 parent_usage = page_counter_read(&parent->memory);
6736
6737 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6738 READ_ONCE(memcg->memory.min),
6739 READ_ONCE(parent->memory.emin),
6740 atomic_long_read(&parent->memory.children_min_usage)));
6741
6742 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6743 READ_ONCE(memcg->memory.low),
6744 READ_ONCE(parent->memory.elow),
6745 atomic_long_read(&parent->memory.children_low_usage)));
6746 }
6747
6748 /**
6749 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6750 * @page: page to charge
6751 * @mm: mm context of the victim
6752 * @gfp_mask: reclaim mode
6753 *
6754 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6755 * pages according to @gfp_mask if necessary.
6756 *
6757 * Returns 0 on success. Otherwise, an error code is returned.
6758 */
6759 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6760 {
6761 unsigned int nr_pages = thp_nr_pages(page);
6762 struct mem_cgroup *memcg = NULL;
6763 int ret = 0;
6764
6765 if (mem_cgroup_disabled())
6766 goto out;
6767
6768 if (PageSwapCache(page)) {
6769 swp_entry_t ent = { .val = page_private(page), };
6770 unsigned short id;
6771
6772 /*
6773 * Every swap fault against a single page tries to charge the
6774 * page, bail as early as possible. shmem_unuse() encounters
6775 * already charged pages, too. page->mem_cgroup is protected
6776 * by the page lock, which serializes swap cache removal, which
6777 * in turn serializes uncharging.
6778 */
6779 VM_BUG_ON_PAGE(!PageLocked(page), page);
6780 if (compound_head(page)->mem_cgroup)
6781 goto out;
6782
6783 id = lookup_swap_cgroup_id(ent);
6784 rcu_read_lock();
6785 memcg = mem_cgroup_from_id(id);
6786 if (memcg && !css_tryget_online(&memcg->css))
6787 memcg = NULL;
6788 rcu_read_unlock();
6789 }
6790
6791 if (!memcg)
6792 memcg = get_mem_cgroup_from_mm(mm);
6793
6794 ret = try_charge(memcg, gfp_mask, nr_pages);
6795 if (ret)
6796 goto out_put;
6797
6798 css_get(&memcg->css);
6799 commit_charge(page, memcg);
6800
6801 local_irq_disable();
6802 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6803 memcg_check_events(memcg, page);
6804 local_irq_enable();
6805
6806 if (PageSwapCache(page)) {
6807 swp_entry_t entry = { .val = page_private(page) };
6808 /*
6809 * The swap entry might not get freed for a long time,
6810 * let's not wait for it. The page already received a
6811 * memory+swap charge, drop the swap entry duplicate.
6812 */
6813 mem_cgroup_uncharge_swap(entry, nr_pages);
6814 }
6815
6816 out_put:
6817 css_put(&memcg->css);
6818 out:
6819 return ret;
6820 }
6821
6822 struct uncharge_gather {
6823 struct mem_cgroup *memcg;
6824 unsigned long nr_pages;
6825 unsigned long pgpgout;
6826 unsigned long nr_kmem;
6827 struct page *dummy_page;
6828 };
6829
6830 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6831 {
6832 memset(ug, 0, sizeof(*ug));
6833 }
6834
6835 static void uncharge_batch(const struct uncharge_gather *ug)
6836 {
6837 unsigned long flags;
6838
6839 if (!mem_cgroup_is_root(ug->memcg)) {
6840 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6841 if (do_memsw_account())
6842 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6843 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6844 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6845 memcg_oom_recover(ug->memcg);
6846 }
6847
6848 local_irq_save(flags);
6849 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6850 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6851 memcg_check_events(ug->memcg, ug->dummy_page);
6852 local_irq_restore(flags);
6853
6854 /* drop reference from uncharge_page */
6855 css_put(&ug->memcg->css);
6856 }
6857
6858 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6859 {
6860 unsigned long nr_pages;
6861
6862 VM_BUG_ON_PAGE(PageLRU(page), page);
6863
6864 if (!page->mem_cgroup)
6865 return;
6866
6867 /*
6868 * Nobody should be changing or seriously looking at
6869 * page->mem_cgroup at this point, we have fully
6870 * exclusive access to the page.
6871 */
6872
6873 if (ug->memcg != page->mem_cgroup) {
6874 if (ug->memcg) {
6875 uncharge_batch(ug);
6876 uncharge_gather_clear(ug);
6877 }
6878 ug->memcg = page->mem_cgroup;
6879
6880 /* pairs with css_put in uncharge_batch */
6881 css_get(&ug->memcg->css);
6882 }
6883
6884 nr_pages = compound_nr(page);
6885 ug->nr_pages += nr_pages;
6886
6887 if (!PageKmemcg(page)) {
6888 ug->pgpgout++;
6889 } else {
6890 ug->nr_kmem += nr_pages;
6891 __ClearPageKmemcg(page);
6892 }
6893
6894 ug->dummy_page = page;
6895 page->mem_cgroup = NULL;
6896 css_put(&ug->memcg->css);
6897 }
6898
6899 static void uncharge_list(struct list_head *page_list)
6900 {
6901 struct uncharge_gather ug;
6902 struct list_head *next;
6903
6904 uncharge_gather_clear(&ug);
6905
6906 /*
6907 * Note that the list can be a single page->lru; hence the
6908 * do-while loop instead of a simple list_for_each_entry().
6909 */
6910 next = page_list->next;
6911 do {
6912 struct page *page;
6913
6914 page = list_entry(next, struct page, lru);
6915 next = page->lru.next;
6916
6917 uncharge_page(page, &ug);
6918 } while (next != page_list);
6919
6920 if (ug.memcg)
6921 uncharge_batch(&ug);
6922 }
6923
6924 /**
6925 * mem_cgroup_uncharge - uncharge a page
6926 * @page: page to uncharge
6927 *
6928 * Uncharge a page previously charged with mem_cgroup_charge().
6929 */
6930 void mem_cgroup_uncharge(struct page *page)
6931 {
6932 struct uncharge_gather ug;
6933
6934 if (mem_cgroup_disabled())
6935 return;
6936
6937 /* Don't touch page->lru of any random page, pre-check: */
6938 if (!page->mem_cgroup)
6939 return;
6940
6941 uncharge_gather_clear(&ug);
6942 uncharge_page(page, &ug);
6943 uncharge_batch(&ug);
6944 }
6945
6946 /**
6947 * mem_cgroup_uncharge_list - uncharge a list of page
6948 * @page_list: list of pages to uncharge
6949 *
6950 * Uncharge a list of pages previously charged with
6951 * mem_cgroup_charge().
6952 */
6953 void mem_cgroup_uncharge_list(struct list_head *page_list)
6954 {
6955 if (mem_cgroup_disabled())
6956 return;
6957
6958 if (!list_empty(page_list))
6959 uncharge_list(page_list);
6960 }
6961
6962 /**
6963 * mem_cgroup_migrate - charge a page's replacement
6964 * @oldpage: currently circulating page
6965 * @newpage: replacement page
6966 *
6967 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6968 * be uncharged upon free.
6969 *
6970 * Both pages must be locked, @newpage->mapping must be set up.
6971 */
6972 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6973 {
6974 struct mem_cgroup *memcg;
6975 unsigned int nr_pages;
6976 unsigned long flags;
6977
6978 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6979 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6980 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6981 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6982 newpage);
6983
6984 if (mem_cgroup_disabled())
6985 return;
6986
6987 /* Page cache replacement: new page already charged? */
6988 if (newpage->mem_cgroup)
6989 return;
6990
6991 /* Swapcache readahead pages can get replaced before being charged */
6992 memcg = oldpage->mem_cgroup;
6993 if (!memcg)
6994 return;
6995
6996 /* Force-charge the new page. The old one will be freed soon */
6997 nr_pages = thp_nr_pages(newpage);
6998
6999 page_counter_charge(&memcg->memory, nr_pages);
7000 if (do_memsw_account())
7001 page_counter_charge(&memcg->memsw, nr_pages);
7002
7003 css_get(&memcg->css);
7004 commit_charge(newpage, memcg);
7005
7006 local_irq_save(flags);
7007 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7008 memcg_check_events(memcg, newpage);
7009 local_irq_restore(flags);
7010 }
7011
7012 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7013 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7014
7015 void mem_cgroup_sk_alloc(struct sock *sk)
7016 {
7017 struct mem_cgroup *memcg;
7018
7019 if (!mem_cgroup_sockets_enabled)
7020 return;
7021
7022 /* Do not associate the sock with unrelated interrupted task's memcg. */
7023 if (in_interrupt())
7024 return;
7025
7026 rcu_read_lock();
7027 memcg = mem_cgroup_from_task(current);
7028 if (memcg == root_mem_cgroup)
7029 goto out;
7030 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7031 goto out;
7032 if (css_tryget(&memcg->css))
7033 sk->sk_memcg = memcg;
7034 out:
7035 rcu_read_unlock();
7036 }
7037
7038 void mem_cgroup_sk_free(struct sock *sk)
7039 {
7040 if (sk->sk_memcg)
7041 css_put(&sk->sk_memcg->css);
7042 }
7043
7044 /**
7045 * mem_cgroup_charge_skmem - charge socket memory
7046 * @memcg: memcg to charge
7047 * @nr_pages: number of pages to charge
7048 *
7049 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7050 * @memcg's configured limit, %false if the charge had to be forced.
7051 */
7052 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7053 {
7054 gfp_t gfp_mask = GFP_KERNEL;
7055
7056 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7057 struct page_counter *fail;
7058
7059 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7060 memcg->tcpmem_pressure = 0;
7061 return true;
7062 }
7063 page_counter_charge(&memcg->tcpmem, nr_pages);
7064 memcg->tcpmem_pressure = 1;
7065 return false;
7066 }
7067
7068 /* Don't block in the packet receive path */
7069 if (in_softirq())
7070 gfp_mask = GFP_NOWAIT;
7071
7072 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7073
7074 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7075 return true;
7076
7077 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7078 return false;
7079 }
7080
7081 /**
7082 * mem_cgroup_uncharge_skmem - uncharge socket memory
7083 * @memcg: memcg to uncharge
7084 * @nr_pages: number of pages to uncharge
7085 */
7086 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7087 {
7088 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7089 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7090 return;
7091 }
7092
7093 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7094
7095 refill_stock(memcg, nr_pages);
7096 }
7097
7098 static int __init cgroup_memory(char *s)
7099 {
7100 char *token;
7101
7102 while ((token = strsep(&s, ",")) != NULL) {
7103 if (!*token)
7104 continue;
7105 if (!strcmp(token, "nosocket"))
7106 cgroup_memory_nosocket = true;
7107 if (!strcmp(token, "nokmem"))
7108 cgroup_memory_nokmem = true;
7109 }
7110 return 0;
7111 }
7112 __setup("cgroup.memory=", cgroup_memory);
7113
7114 /*
7115 * subsys_initcall() for memory controller.
7116 *
7117 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7118 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7119 * basically everything that doesn't depend on a specific mem_cgroup structure
7120 * should be initialized from here.
7121 */
7122 static int __init mem_cgroup_init(void)
7123 {
7124 int cpu, node;
7125
7126 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7127 memcg_hotplug_cpu_dead);
7128
7129 for_each_possible_cpu(cpu)
7130 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7131 drain_local_stock);
7132
7133 for_each_node(node) {
7134 struct mem_cgroup_tree_per_node *rtpn;
7135
7136 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7137 node_online(node) ? node : NUMA_NO_NODE);
7138
7139 rtpn->rb_root = RB_ROOT;
7140 rtpn->rb_rightmost = NULL;
7141 spin_lock_init(&rtpn->lock);
7142 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7143 }
7144
7145 return 0;
7146 }
7147 subsys_initcall(mem_cgroup_init);
7148
7149 #ifdef CONFIG_MEMCG_SWAP
7150 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7151 {
7152 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7153 /*
7154 * The root cgroup cannot be destroyed, so it's refcount must
7155 * always be >= 1.
7156 */
7157 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7158 VM_BUG_ON(1);
7159 break;
7160 }
7161 memcg = parent_mem_cgroup(memcg);
7162 if (!memcg)
7163 memcg = root_mem_cgroup;
7164 }
7165 return memcg;
7166 }
7167
7168 /**
7169 * mem_cgroup_swapout - transfer a memsw charge to swap
7170 * @page: page whose memsw charge to transfer
7171 * @entry: swap entry to move the charge to
7172 *
7173 * Transfer the memsw charge of @page to @entry.
7174 */
7175 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7176 {
7177 struct mem_cgroup *memcg, *swap_memcg;
7178 unsigned int nr_entries;
7179 unsigned short oldid;
7180
7181 VM_BUG_ON_PAGE(PageLRU(page), page);
7182 VM_BUG_ON_PAGE(page_count(page), page);
7183
7184 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7185 return;
7186
7187 memcg = page->mem_cgroup;
7188
7189 /* Readahead page, never charged */
7190 if (!memcg)
7191 return;
7192
7193 /*
7194 * In case the memcg owning these pages has been offlined and doesn't
7195 * have an ID allocated to it anymore, charge the closest online
7196 * ancestor for the swap instead and transfer the memory+swap charge.
7197 */
7198 swap_memcg = mem_cgroup_id_get_online(memcg);
7199 nr_entries = thp_nr_pages(page);
7200 /* Get references for the tail pages, too */
7201 if (nr_entries > 1)
7202 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7203 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7204 nr_entries);
7205 VM_BUG_ON_PAGE(oldid, page);
7206 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7207
7208 page->mem_cgroup = NULL;
7209
7210 if (!mem_cgroup_is_root(memcg))
7211 page_counter_uncharge(&memcg->memory, nr_entries);
7212
7213 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7214 if (!mem_cgroup_is_root(swap_memcg))
7215 page_counter_charge(&swap_memcg->memsw, nr_entries);
7216 page_counter_uncharge(&memcg->memsw, nr_entries);
7217 }
7218
7219 /*
7220 * Interrupts should be disabled here because the caller holds the
7221 * i_pages lock which is taken with interrupts-off. It is
7222 * important here to have the interrupts disabled because it is the
7223 * only synchronisation we have for updating the per-CPU variables.
7224 */
7225 VM_BUG_ON(!irqs_disabled());
7226 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7227 memcg_check_events(memcg, page);
7228
7229 css_put(&memcg->css);
7230 }
7231
7232 /**
7233 * mem_cgroup_try_charge_swap - try charging swap space for a page
7234 * @page: page being added to swap
7235 * @entry: swap entry to charge
7236 *
7237 * Try to charge @page's memcg for the swap space at @entry.
7238 *
7239 * Returns 0 on success, -ENOMEM on failure.
7240 */
7241 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7242 {
7243 unsigned int nr_pages = thp_nr_pages(page);
7244 struct page_counter *counter;
7245 struct mem_cgroup *memcg;
7246 unsigned short oldid;
7247
7248 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7249 return 0;
7250
7251 memcg = page->mem_cgroup;
7252
7253 /* Readahead page, never charged */
7254 if (!memcg)
7255 return 0;
7256
7257 if (!entry.val) {
7258 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7259 return 0;
7260 }
7261
7262 memcg = mem_cgroup_id_get_online(memcg);
7263
7264 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7265 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7266 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7267 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7268 mem_cgroup_id_put(memcg);
7269 return -ENOMEM;
7270 }
7271
7272 /* Get references for the tail pages, too */
7273 if (nr_pages > 1)
7274 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7275 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7276 VM_BUG_ON_PAGE(oldid, page);
7277 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7278
7279 return 0;
7280 }
7281
7282 /**
7283 * mem_cgroup_uncharge_swap - uncharge swap space
7284 * @entry: swap entry to uncharge
7285 * @nr_pages: the amount of swap space to uncharge
7286 */
7287 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7288 {
7289 struct mem_cgroup *memcg;
7290 unsigned short id;
7291
7292 id = swap_cgroup_record(entry, 0, nr_pages);
7293 rcu_read_lock();
7294 memcg = mem_cgroup_from_id(id);
7295 if (memcg) {
7296 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7297 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7298 page_counter_uncharge(&memcg->swap, nr_pages);
7299 else
7300 page_counter_uncharge(&memcg->memsw, nr_pages);
7301 }
7302 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7303 mem_cgroup_id_put_many(memcg, nr_pages);
7304 }
7305 rcu_read_unlock();
7306 }
7307
7308 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7309 {
7310 long nr_swap_pages = get_nr_swap_pages();
7311
7312 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7313 return nr_swap_pages;
7314 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7315 nr_swap_pages = min_t(long, nr_swap_pages,
7316 READ_ONCE(memcg->swap.max) -
7317 page_counter_read(&memcg->swap));
7318 return nr_swap_pages;
7319 }
7320
7321 bool mem_cgroup_swap_full(struct page *page)
7322 {
7323 struct mem_cgroup *memcg;
7324
7325 VM_BUG_ON_PAGE(!PageLocked(page), page);
7326
7327 if (vm_swap_full())
7328 return true;
7329 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7330 return false;
7331
7332 memcg = page->mem_cgroup;
7333 if (!memcg)
7334 return false;
7335
7336 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7337 unsigned long usage = page_counter_read(&memcg->swap);
7338
7339 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7340 usage * 2 >= READ_ONCE(memcg->swap.max))
7341 return true;
7342 }
7343
7344 return false;
7345 }
7346
7347 static int __init setup_swap_account(char *s)
7348 {
7349 if (!strcmp(s, "1"))
7350 cgroup_memory_noswap = 0;
7351 else if (!strcmp(s, "0"))
7352 cgroup_memory_noswap = 1;
7353 return 1;
7354 }
7355 __setup("swapaccount=", setup_swap_account);
7356
7357 static u64 swap_current_read(struct cgroup_subsys_state *css,
7358 struct cftype *cft)
7359 {
7360 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7361
7362 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7363 }
7364
7365 static int swap_high_show(struct seq_file *m, void *v)
7366 {
7367 return seq_puts_memcg_tunable(m,
7368 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7369 }
7370
7371 static ssize_t swap_high_write(struct kernfs_open_file *of,
7372 char *buf, size_t nbytes, loff_t off)
7373 {
7374 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7375 unsigned long high;
7376 int err;
7377
7378 buf = strstrip(buf);
7379 err = page_counter_memparse(buf, "max", &high);
7380 if (err)
7381 return err;
7382
7383 page_counter_set_high(&memcg->swap, high);
7384
7385 return nbytes;
7386 }
7387
7388 static int swap_max_show(struct seq_file *m, void *v)
7389 {
7390 return seq_puts_memcg_tunable(m,
7391 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7392 }
7393
7394 static ssize_t swap_max_write(struct kernfs_open_file *of,
7395 char *buf, size_t nbytes, loff_t off)
7396 {
7397 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7398 unsigned long max;
7399 int err;
7400
7401 buf = strstrip(buf);
7402 err = page_counter_memparse(buf, "max", &max);
7403 if (err)
7404 return err;
7405
7406 xchg(&memcg->swap.max, max);
7407
7408 return nbytes;
7409 }
7410
7411 static int swap_events_show(struct seq_file *m, void *v)
7412 {
7413 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7414
7415 seq_printf(m, "high %lu\n",
7416 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7417 seq_printf(m, "max %lu\n",
7418 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7419 seq_printf(m, "fail %lu\n",
7420 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7421
7422 return 0;
7423 }
7424
7425 static struct cftype swap_files[] = {
7426 {
7427 .name = "swap.current",
7428 .flags = CFTYPE_NOT_ON_ROOT,
7429 .read_u64 = swap_current_read,
7430 },
7431 {
7432 .name = "swap.high",
7433 .flags = CFTYPE_NOT_ON_ROOT,
7434 .seq_show = swap_high_show,
7435 .write = swap_high_write,
7436 },
7437 {
7438 .name = "swap.max",
7439 .flags = CFTYPE_NOT_ON_ROOT,
7440 .seq_show = swap_max_show,
7441 .write = swap_max_write,
7442 },
7443 {
7444 .name = "swap.events",
7445 .flags = CFTYPE_NOT_ON_ROOT,
7446 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7447 .seq_show = swap_events_show,
7448 },
7449 { } /* terminate */
7450 };
7451
7452 static struct cftype memsw_files[] = {
7453 {
7454 .name = "memsw.usage_in_bytes",
7455 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7456 .read_u64 = mem_cgroup_read_u64,
7457 },
7458 {
7459 .name = "memsw.max_usage_in_bytes",
7460 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7461 .write = mem_cgroup_reset,
7462 .read_u64 = mem_cgroup_read_u64,
7463 },
7464 {
7465 .name = "memsw.limit_in_bytes",
7466 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7467 .write = mem_cgroup_write,
7468 .read_u64 = mem_cgroup_read_u64,
7469 },
7470 {
7471 .name = "memsw.failcnt",
7472 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7473 .write = mem_cgroup_reset,
7474 .read_u64 = mem_cgroup_read_u64,
7475 },
7476 { }, /* terminate */
7477 };
7478
7479 /*
7480 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7481 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7482 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7483 * boot parameter. This may result in premature OOPS inside
7484 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7485 */
7486 static int __init mem_cgroup_swap_init(void)
7487 {
7488 /* No memory control -> no swap control */
7489 if (mem_cgroup_disabled())
7490 cgroup_memory_noswap = true;
7491
7492 if (cgroup_memory_noswap)
7493 return 0;
7494
7495 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7496 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7497
7498 return 0;
7499 }
7500 core_initcall(mem_cgroup_swap_init);
7501
7502 #endif /* CONFIG_MEMCG_SWAP */