1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/seq_buf.h>
66 #include <linux/uaccess.h>
68 #include <trace/events/vmscan.h>
70 struct cgroup_subsys memory_cgrp_subsys __read_mostly
;
71 EXPORT_SYMBOL(memory_cgrp_subsys
);
73 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
75 #define MEM_CGROUP_RECLAIM_RETRIES 5
77 /* Socket memory accounting disabled? */
78 static bool cgroup_memory_nosocket
;
80 /* Kernel memory accounting disabled? */
81 static bool cgroup_memory_nokmem
;
83 /* Whether the swap controller is active */
84 #ifdef CONFIG_MEMCG_SWAP
85 int do_swap_account __read_mostly
;
87 #define do_swap_account 0
90 /* Whether legacy memory+swap accounting is active */
91 static bool do_memsw_account(void)
93 return !cgroup_subsys_on_dfl(memory_cgrp_subsys
) && do_swap_account
;
96 static const char *const mem_cgroup_lru_names
[] = {
104 #define THRESHOLDS_EVENTS_TARGET 128
105 #define SOFTLIMIT_EVENTS_TARGET 1024
106 #define NUMAINFO_EVENTS_TARGET 1024
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
113 struct mem_cgroup_tree_per_node
{
114 struct rb_root rb_root
;
115 struct rb_node
*rb_rightmost
;
119 struct mem_cgroup_tree
{
120 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
126 struct mem_cgroup_eventfd_list
{
127 struct list_head list
;
128 struct eventfd_ctx
*eventfd
;
132 * cgroup_event represents events which userspace want to receive.
134 struct mem_cgroup_event
{
136 * memcg which the event belongs to.
138 struct mem_cgroup
*memcg
;
140 * eventfd to signal userspace about the event.
142 struct eventfd_ctx
*eventfd
;
144 * Each of these stored in a list by the cgroup.
146 struct list_head list
;
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
152 int (*register_event
)(struct mem_cgroup
*memcg
,
153 struct eventfd_ctx
*eventfd
, const char *args
);
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
159 void (*unregister_event
)(struct mem_cgroup
*memcg
,
160 struct eventfd_ctx
*eventfd
);
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
166 wait_queue_head_t
*wqh
;
167 wait_queue_entry_t wait
;
168 struct work_struct remove
;
171 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
172 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
174 /* Stuffs for move charges at task migration. */
176 * Types of charges to be moved.
178 #define MOVE_ANON 0x1U
179 #define MOVE_FILE 0x2U
180 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct
{
184 spinlock_t lock
; /* for from, to */
185 struct mm_struct
*mm
;
186 struct mem_cgroup
*from
;
187 struct mem_cgroup
*to
;
189 unsigned long precharge
;
190 unsigned long moved_charge
;
191 unsigned long moved_swap
;
192 struct task_struct
*moving_task
; /* a task moving charges */
193 wait_queue_head_t waitq
; /* a waitq for other context */
195 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
196 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
207 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
208 MEM_CGROUP_CHARGE_TYPE_ANON
,
209 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
210 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
214 /* for encoding cft->private value on file */
223 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
224 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
225 #define MEMFILE_ATTR(val) ((val) & 0xffff)
226 /* Used for OOM nofiier */
227 #define OOM_CONTROL (0)
230 * Iteration constructs for visiting all cgroups (under a tree). If
231 * loops are exited prematurely (break), mem_cgroup_iter_break() must
232 * be used for reference counting.
234 #define for_each_mem_cgroup_tree(iter, root) \
235 for (iter = mem_cgroup_iter(root, NULL, NULL); \
237 iter = mem_cgroup_iter(root, iter, NULL))
239 #define for_each_mem_cgroup(iter) \
240 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
242 iter = mem_cgroup_iter(NULL, iter, NULL))
244 static inline bool should_force_charge(void)
246 return tsk_is_oom_victim(current
) || fatal_signal_pending(current
) ||
247 (current
->flags
& PF_EXITING
);
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure
*memcg_to_vmpressure(struct mem_cgroup
*memcg
)
254 memcg
= root_mem_cgroup
;
255 return &memcg
->vmpressure
;
258 struct cgroup_subsys_state
*vmpressure_to_css(struct vmpressure
*vmpr
)
260 return &container_of(vmpr
, struct mem_cgroup
, vmpressure
)->css
;
263 #ifdef CONFIG_MEMCG_KMEM
265 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
266 * The main reason for not using cgroup id for this:
267 * this works better in sparse environments, where we have a lot of memcgs,
268 * but only a few kmem-limited. Or also, if we have, for instance, 200
269 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
270 * 200 entry array for that.
272 * The current size of the caches array is stored in memcg_nr_cache_ids. It
273 * will double each time we have to increase it.
275 static DEFINE_IDA(memcg_cache_ida
);
276 int memcg_nr_cache_ids
;
278 /* Protects memcg_nr_cache_ids */
279 static DECLARE_RWSEM(memcg_cache_ids_sem
);
281 void memcg_get_cache_ids(void)
283 down_read(&memcg_cache_ids_sem
);
286 void memcg_put_cache_ids(void)
288 up_read(&memcg_cache_ids_sem
);
292 * MIN_SIZE is different than 1, because we would like to avoid going through
293 * the alloc/free process all the time. In a small machine, 4 kmem-limited
294 * cgroups is a reasonable guess. In the future, it could be a parameter or
295 * tunable, but that is strictly not necessary.
297 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
298 * this constant directly from cgroup, but it is understandable that this is
299 * better kept as an internal representation in cgroup.c. In any case, the
300 * cgrp_id space is not getting any smaller, and we don't have to necessarily
301 * increase ours as well if it increases.
303 #define MEMCG_CACHES_MIN_SIZE 4
304 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
307 * A lot of the calls to the cache allocation functions are expected to be
308 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
309 * conditional to this static branch, we'll have to allow modules that does
310 * kmem_cache_alloc and the such to see this symbol as well
312 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key
);
313 EXPORT_SYMBOL(memcg_kmem_enabled_key
);
315 struct workqueue_struct
*memcg_kmem_cache_wq
;
317 static int memcg_shrinker_map_size
;
318 static DEFINE_MUTEX(memcg_shrinker_map_mutex
);
320 static void memcg_free_shrinker_map_rcu(struct rcu_head
*head
)
322 kvfree(container_of(head
, struct memcg_shrinker_map
, rcu
));
325 static int memcg_expand_one_shrinker_map(struct mem_cgroup
*memcg
,
326 int size
, int old_size
)
328 struct memcg_shrinker_map
*new, *old
;
331 lockdep_assert_held(&memcg_shrinker_map_mutex
);
334 old
= rcu_dereference_protected(
335 mem_cgroup_nodeinfo(memcg
, nid
)->shrinker_map
, true);
336 /* Not yet online memcg */
340 new = kvmalloc(sizeof(*new) + size
, GFP_KERNEL
);
344 /* Set all old bits, clear all new bits */
345 memset(new->map
, (int)0xff, old_size
);
346 memset((void *)new->map
+ old_size
, 0, size
- old_size
);
348 rcu_assign_pointer(memcg
->nodeinfo
[nid
]->shrinker_map
, new);
349 call_rcu(&old
->rcu
, memcg_free_shrinker_map_rcu
);
355 static void memcg_free_shrinker_maps(struct mem_cgroup
*memcg
)
357 struct mem_cgroup_per_node
*pn
;
358 struct memcg_shrinker_map
*map
;
361 if (mem_cgroup_is_root(memcg
))
365 pn
= mem_cgroup_nodeinfo(memcg
, nid
);
366 map
= rcu_dereference_protected(pn
->shrinker_map
, true);
369 rcu_assign_pointer(pn
->shrinker_map
, NULL
);
373 static int memcg_alloc_shrinker_maps(struct mem_cgroup
*memcg
)
375 struct memcg_shrinker_map
*map
;
376 int nid
, size
, ret
= 0;
378 if (mem_cgroup_is_root(memcg
))
381 mutex_lock(&memcg_shrinker_map_mutex
);
382 size
= memcg_shrinker_map_size
;
384 map
= kvzalloc(sizeof(*map
) + size
, GFP_KERNEL
);
386 memcg_free_shrinker_maps(memcg
);
390 rcu_assign_pointer(memcg
->nodeinfo
[nid
]->shrinker_map
, map
);
392 mutex_unlock(&memcg_shrinker_map_mutex
);
397 int memcg_expand_shrinker_maps(int new_id
)
399 int size
, old_size
, ret
= 0;
400 struct mem_cgroup
*memcg
;
402 size
= DIV_ROUND_UP(new_id
+ 1, BITS_PER_LONG
) * sizeof(unsigned long);
403 old_size
= memcg_shrinker_map_size
;
404 if (size
<= old_size
)
407 mutex_lock(&memcg_shrinker_map_mutex
);
408 if (!root_mem_cgroup
)
411 for_each_mem_cgroup(memcg
) {
412 if (mem_cgroup_is_root(memcg
))
414 ret
= memcg_expand_one_shrinker_map(memcg
, size
, old_size
);
420 memcg_shrinker_map_size
= size
;
421 mutex_unlock(&memcg_shrinker_map_mutex
);
425 void memcg_set_shrinker_bit(struct mem_cgroup
*memcg
, int nid
, int shrinker_id
)
427 if (shrinker_id
>= 0 && memcg
&& !mem_cgroup_is_root(memcg
)) {
428 struct memcg_shrinker_map
*map
;
431 map
= rcu_dereference(memcg
->nodeinfo
[nid
]->shrinker_map
);
432 /* Pairs with smp mb in shrink_slab() */
433 smp_mb__before_atomic();
434 set_bit(shrinker_id
, map
->map
);
439 #else /* CONFIG_MEMCG_KMEM */
440 static int memcg_alloc_shrinker_maps(struct mem_cgroup
*memcg
)
444 static void memcg_free_shrinker_maps(struct mem_cgroup
*memcg
) { }
445 #endif /* CONFIG_MEMCG_KMEM */
448 * mem_cgroup_css_from_page - css of the memcg associated with a page
449 * @page: page of interest
451 * If memcg is bound to the default hierarchy, css of the memcg associated
452 * with @page is returned. The returned css remains associated with @page
453 * until it is released.
455 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
458 struct cgroup_subsys_state
*mem_cgroup_css_from_page(struct page
*page
)
460 struct mem_cgroup
*memcg
;
462 memcg
= page
->mem_cgroup
;
464 if (!memcg
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
465 memcg
= root_mem_cgroup
;
471 * page_cgroup_ino - return inode number of the memcg a page is charged to
474 * Look up the closest online ancestor of the memory cgroup @page is charged to
475 * and return its inode number or 0 if @page is not charged to any cgroup. It
476 * is safe to call this function without holding a reference to @page.
478 * Note, this function is inherently racy, because there is nothing to prevent
479 * the cgroup inode from getting torn down and potentially reallocated a moment
480 * after page_cgroup_ino() returns, so it only should be used by callers that
481 * do not care (such as procfs interfaces).
483 ino_t
page_cgroup_ino(struct page
*page
)
485 struct mem_cgroup
*memcg
;
486 unsigned long ino
= 0;
489 if (PageHead(page
) && PageSlab(page
))
490 memcg
= memcg_from_slab_page(page
);
492 memcg
= READ_ONCE(page
->mem_cgroup
);
493 while (memcg
&& !(memcg
->css
.flags
& CSS_ONLINE
))
494 memcg
= parent_mem_cgroup(memcg
);
496 ino
= cgroup_ino(memcg
->css
.cgroup
);
501 static struct mem_cgroup_per_node
*
502 mem_cgroup_page_nodeinfo(struct mem_cgroup
*memcg
, struct page
*page
)
504 int nid
= page_to_nid(page
);
506 return memcg
->nodeinfo
[nid
];
509 static struct mem_cgroup_tree_per_node
*
510 soft_limit_tree_node(int nid
)
512 return soft_limit_tree
.rb_tree_per_node
[nid
];
515 static struct mem_cgroup_tree_per_node
*
516 soft_limit_tree_from_page(struct page
*page
)
518 int nid
= page_to_nid(page
);
520 return soft_limit_tree
.rb_tree_per_node
[nid
];
523 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node
*mz
,
524 struct mem_cgroup_tree_per_node
*mctz
,
525 unsigned long new_usage_in_excess
)
527 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
528 struct rb_node
*parent
= NULL
;
529 struct mem_cgroup_per_node
*mz_node
;
530 bool rightmost
= true;
535 mz
->usage_in_excess
= new_usage_in_excess
;
536 if (!mz
->usage_in_excess
)
540 mz_node
= rb_entry(parent
, struct mem_cgroup_per_node
,
542 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
) {
548 * We can't avoid mem cgroups that are over their soft
549 * limit by the same amount
551 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
556 mctz
->rb_rightmost
= &mz
->tree_node
;
558 rb_link_node(&mz
->tree_node
, parent
, p
);
559 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
563 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node
*mz
,
564 struct mem_cgroup_tree_per_node
*mctz
)
569 if (&mz
->tree_node
== mctz
->rb_rightmost
)
570 mctz
->rb_rightmost
= rb_prev(&mz
->tree_node
);
572 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
576 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node
*mz
,
577 struct mem_cgroup_tree_per_node
*mctz
)
581 spin_lock_irqsave(&mctz
->lock
, flags
);
582 __mem_cgroup_remove_exceeded(mz
, mctz
);
583 spin_unlock_irqrestore(&mctz
->lock
, flags
);
586 static unsigned long soft_limit_excess(struct mem_cgroup
*memcg
)
588 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
589 unsigned long soft_limit
= READ_ONCE(memcg
->soft_limit
);
590 unsigned long excess
= 0;
592 if (nr_pages
> soft_limit
)
593 excess
= nr_pages
- soft_limit
;
598 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
600 unsigned long excess
;
601 struct mem_cgroup_per_node
*mz
;
602 struct mem_cgroup_tree_per_node
*mctz
;
604 mctz
= soft_limit_tree_from_page(page
);
608 * Necessary to update all ancestors when hierarchy is used.
609 * because their event counter is not touched.
611 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
612 mz
= mem_cgroup_page_nodeinfo(memcg
, page
);
613 excess
= soft_limit_excess(memcg
);
615 * We have to update the tree if mz is on RB-tree or
616 * mem is over its softlimit.
618 if (excess
|| mz
->on_tree
) {
621 spin_lock_irqsave(&mctz
->lock
, flags
);
622 /* if on-tree, remove it */
624 __mem_cgroup_remove_exceeded(mz
, mctz
);
626 * Insert again. mz->usage_in_excess will be updated.
627 * If excess is 0, no tree ops.
629 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
630 spin_unlock_irqrestore(&mctz
->lock
, flags
);
635 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
637 struct mem_cgroup_tree_per_node
*mctz
;
638 struct mem_cgroup_per_node
*mz
;
642 mz
= mem_cgroup_nodeinfo(memcg
, nid
);
643 mctz
= soft_limit_tree_node(nid
);
645 mem_cgroup_remove_exceeded(mz
, mctz
);
649 static struct mem_cgroup_per_node
*
650 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node
*mctz
)
652 struct mem_cgroup_per_node
*mz
;
656 if (!mctz
->rb_rightmost
)
657 goto done
; /* Nothing to reclaim from */
659 mz
= rb_entry(mctz
->rb_rightmost
,
660 struct mem_cgroup_per_node
, tree_node
);
662 * Remove the node now but someone else can add it back,
663 * we will to add it back at the end of reclaim to its correct
664 * position in the tree.
666 __mem_cgroup_remove_exceeded(mz
, mctz
);
667 if (!soft_limit_excess(mz
->memcg
) ||
668 !css_tryget_online(&mz
->memcg
->css
))
674 static struct mem_cgroup_per_node
*
675 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node
*mctz
)
677 struct mem_cgroup_per_node
*mz
;
679 spin_lock_irq(&mctz
->lock
);
680 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
681 spin_unlock_irq(&mctz
->lock
);
686 * __mod_memcg_state - update cgroup memory statistics
687 * @memcg: the memory cgroup
688 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
689 * @val: delta to add to the counter, can be negative
691 void __mod_memcg_state(struct mem_cgroup
*memcg
, int idx
, int val
)
695 if (mem_cgroup_disabled())
698 x
= val
+ __this_cpu_read(memcg
->vmstats_percpu
->stat
[idx
]);
699 if (unlikely(abs(x
) > MEMCG_CHARGE_BATCH
)) {
700 struct mem_cgroup
*mi
;
703 * Batch local counters to keep them in sync with
704 * the hierarchical ones.
706 __this_cpu_add(memcg
->vmstats_local
->stat
[idx
], x
);
707 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
))
708 atomic_long_add(x
, &mi
->vmstats
[idx
]);
711 __this_cpu_write(memcg
->vmstats_percpu
->stat
[idx
], x
);
714 static struct mem_cgroup_per_node
*
715 parent_nodeinfo(struct mem_cgroup_per_node
*pn
, int nid
)
717 struct mem_cgroup
*parent
;
719 parent
= parent_mem_cgroup(pn
->memcg
);
722 return mem_cgroup_nodeinfo(parent
, nid
);
726 * __mod_lruvec_state - update lruvec memory statistics
727 * @lruvec: the lruvec
728 * @idx: the stat item
729 * @val: delta to add to the counter, can be negative
731 * The lruvec is the intersection of the NUMA node and a cgroup. This
732 * function updates the all three counters that are affected by a
733 * change of state at this level: per-node, per-cgroup, per-lruvec.
735 void __mod_lruvec_state(struct lruvec
*lruvec
, enum node_stat_item idx
,
738 pg_data_t
*pgdat
= lruvec_pgdat(lruvec
);
739 struct mem_cgroup_per_node
*pn
;
740 struct mem_cgroup
*memcg
;
744 __mod_node_page_state(pgdat
, idx
, val
);
746 if (mem_cgroup_disabled())
749 pn
= container_of(lruvec
, struct mem_cgroup_per_node
, lruvec
);
753 __mod_memcg_state(memcg
, idx
, val
);
756 __this_cpu_add(pn
->lruvec_stat_local
->count
[idx
], val
);
758 x
= val
+ __this_cpu_read(pn
->lruvec_stat_cpu
->count
[idx
]);
759 if (unlikely(abs(x
) > MEMCG_CHARGE_BATCH
)) {
760 struct mem_cgroup_per_node
*pi
;
762 for (pi
= pn
; pi
; pi
= parent_nodeinfo(pi
, pgdat
->node_id
))
763 atomic_long_add(x
, &pi
->lruvec_stat
[idx
]);
766 __this_cpu_write(pn
->lruvec_stat_cpu
->count
[idx
], x
);
769 void __mod_lruvec_slab_state(void *p
, enum node_stat_item idx
, int val
)
771 struct page
*page
= virt_to_head_page(p
);
772 pg_data_t
*pgdat
= page_pgdat(page
);
773 struct mem_cgroup
*memcg
;
774 struct lruvec
*lruvec
;
777 memcg
= memcg_from_slab_page(page
);
779 /* Untracked pages have no memcg, no lruvec. Update only the node */
780 if (!memcg
|| memcg
== root_mem_cgroup
) {
781 __mod_node_page_state(pgdat
, idx
, val
);
783 lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
784 __mod_lruvec_state(lruvec
, idx
, val
);
790 * __count_memcg_events - account VM events in a cgroup
791 * @memcg: the memory cgroup
792 * @idx: the event item
793 * @count: the number of events that occured
795 void __count_memcg_events(struct mem_cgroup
*memcg
, enum vm_event_item idx
,
800 if (mem_cgroup_disabled())
803 x
= count
+ __this_cpu_read(memcg
->vmstats_percpu
->events
[idx
]);
804 if (unlikely(x
> MEMCG_CHARGE_BATCH
)) {
805 struct mem_cgroup
*mi
;
808 * Batch local counters to keep them in sync with
809 * the hierarchical ones.
811 __this_cpu_add(memcg
->vmstats_local
->events
[idx
], x
);
812 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
))
813 atomic_long_add(x
, &mi
->vmevents
[idx
]);
816 __this_cpu_write(memcg
->vmstats_percpu
->events
[idx
], x
);
819 static unsigned long memcg_events(struct mem_cgroup
*memcg
, int event
)
821 return atomic_long_read(&memcg
->vmevents
[event
]);
824 static unsigned long memcg_events_local(struct mem_cgroup
*memcg
, int event
)
829 for_each_possible_cpu(cpu
)
830 x
+= per_cpu(memcg
->vmstats_local
->events
[event
], cpu
);
834 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
836 bool compound
, int nr_pages
)
839 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
840 * counted as CACHE even if it's on ANON LRU.
843 __mod_memcg_state(memcg
, MEMCG_RSS
, nr_pages
);
845 __mod_memcg_state(memcg
, MEMCG_CACHE
, nr_pages
);
846 if (PageSwapBacked(page
))
847 __mod_memcg_state(memcg
, NR_SHMEM
, nr_pages
);
851 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
852 __mod_memcg_state(memcg
, MEMCG_RSS_HUGE
, nr_pages
);
855 /* pagein of a big page is an event. So, ignore page size */
857 __count_memcg_events(memcg
, PGPGIN
, 1);
859 __count_memcg_events(memcg
, PGPGOUT
, 1);
860 nr_pages
= -nr_pages
; /* for event */
863 __this_cpu_add(memcg
->vmstats_percpu
->nr_page_events
, nr_pages
);
866 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
867 enum mem_cgroup_events_target target
)
869 unsigned long val
, next
;
871 val
= __this_cpu_read(memcg
->vmstats_percpu
->nr_page_events
);
872 next
= __this_cpu_read(memcg
->vmstats_percpu
->targets
[target
]);
873 /* from time_after() in jiffies.h */
874 if ((long)(next
- val
) < 0) {
876 case MEM_CGROUP_TARGET_THRESH
:
877 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
879 case MEM_CGROUP_TARGET_SOFTLIMIT
:
880 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
882 case MEM_CGROUP_TARGET_NUMAINFO
:
883 next
= val
+ NUMAINFO_EVENTS_TARGET
;
888 __this_cpu_write(memcg
->vmstats_percpu
->targets
[target
], next
);
895 * Check events in order.
898 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
900 /* threshold event is triggered in finer grain than soft limit */
901 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
902 MEM_CGROUP_TARGET_THRESH
))) {
904 bool do_numainfo __maybe_unused
;
906 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
907 MEM_CGROUP_TARGET_SOFTLIMIT
);
909 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
910 MEM_CGROUP_TARGET_NUMAINFO
);
912 mem_cgroup_threshold(memcg
);
913 if (unlikely(do_softlimit
))
914 mem_cgroup_update_tree(memcg
, page
);
916 if (unlikely(do_numainfo
))
917 atomic_inc(&memcg
->numainfo_events
);
922 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
925 * mm_update_next_owner() may clear mm->owner to NULL
926 * if it races with swapoff, page migration, etc.
927 * So this can be called with p == NULL.
932 return mem_cgroup_from_css(task_css(p
, memory_cgrp_id
));
934 EXPORT_SYMBOL(mem_cgroup_from_task
);
937 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
938 * @mm: mm from which memcg should be extracted. It can be NULL.
940 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
941 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
944 struct mem_cgroup
*get_mem_cgroup_from_mm(struct mm_struct
*mm
)
946 struct mem_cgroup
*memcg
;
948 if (mem_cgroup_disabled())
954 * Page cache insertions can happen withou an
955 * actual mm context, e.g. during disk probing
956 * on boot, loopback IO, acct() writes etc.
959 memcg
= root_mem_cgroup
;
961 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
962 if (unlikely(!memcg
))
963 memcg
= root_mem_cgroup
;
965 } while (!css_tryget_online(&memcg
->css
));
969 EXPORT_SYMBOL(get_mem_cgroup_from_mm
);
972 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
973 * @page: page from which memcg should be extracted.
975 * Obtain a reference on page->memcg and returns it if successful. Otherwise
976 * root_mem_cgroup is returned.
978 struct mem_cgroup
*get_mem_cgroup_from_page(struct page
*page
)
980 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
982 if (mem_cgroup_disabled())
986 if (!memcg
|| !css_tryget_online(&memcg
->css
))
987 memcg
= root_mem_cgroup
;
991 EXPORT_SYMBOL(get_mem_cgroup_from_page
);
994 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
996 static __always_inline
struct mem_cgroup
*get_mem_cgroup_from_current(void)
998 if (unlikely(current
->active_memcg
)) {
999 struct mem_cgroup
*memcg
= root_mem_cgroup
;
1002 if (css_tryget_online(¤t
->active_memcg
->css
))
1003 memcg
= current
->active_memcg
;
1007 return get_mem_cgroup_from_mm(current
->mm
);
1011 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1012 * @root: hierarchy root
1013 * @prev: previously returned memcg, NULL on first invocation
1014 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1016 * Returns references to children of the hierarchy below @root, or
1017 * @root itself, or %NULL after a full round-trip.
1019 * Caller must pass the return value in @prev on subsequent
1020 * invocations for reference counting, or use mem_cgroup_iter_break()
1021 * to cancel a hierarchy walk before the round-trip is complete.
1023 * Reclaimers can specify a node and a priority level in @reclaim to
1024 * divide up the memcgs in the hierarchy among all concurrent
1025 * reclaimers operating on the same node and priority.
1027 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
1028 struct mem_cgroup
*prev
,
1029 struct mem_cgroup_reclaim_cookie
*reclaim
)
1031 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
1032 struct cgroup_subsys_state
*css
= NULL
;
1033 struct mem_cgroup
*memcg
= NULL
;
1034 struct mem_cgroup
*pos
= NULL
;
1036 if (mem_cgroup_disabled())
1040 root
= root_mem_cgroup
;
1042 if (prev
&& !reclaim
)
1045 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
1054 struct mem_cgroup_per_node
*mz
;
1056 mz
= mem_cgroup_nodeinfo(root
, reclaim
->pgdat
->node_id
);
1057 iter
= &mz
->iter
[reclaim
->priority
];
1059 if (prev
&& reclaim
->generation
!= iter
->generation
)
1063 pos
= READ_ONCE(iter
->position
);
1064 if (!pos
|| css_tryget(&pos
->css
))
1067 * css reference reached zero, so iter->position will
1068 * be cleared by ->css_released. However, we should not
1069 * rely on this happening soon, because ->css_released
1070 * is called from a work queue, and by busy-waiting we
1071 * might block it. So we clear iter->position right
1074 (void)cmpxchg(&iter
->position
, pos
, NULL
);
1082 css
= css_next_descendant_pre(css
, &root
->css
);
1085 * Reclaimers share the hierarchy walk, and a
1086 * new one might jump in right at the end of
1087 * the hierarchy - make sure they see at least
1088 * one group and restart from the beginning.
1096 * Verify the css and acquire a reference. The root
1097 * is provided by the caller, so we know it's alive
1098 * and kicking, and don't take an extra reference.
1100 memcg
= mem_cgroup_from_css(css
);
1102 if (css
== &root
->css
)
1105 if (css_tryget(css
))
1113 * The position could have already been updated by a competing
1114 * thread, so check that the value hasn't changed since we read
1115 * it to avoid reclaiming from the same cgroup twice.
1117 (void)cmpxchg(&iter
->position
, pos
, memcg
);
1125 reclaim
->generation
= iter
->generation
;
1131 if (prev
&& prev
!= root
)
1132 css_put(&prev
->css
);
1138 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1139 * @root: hierarchy root
1140 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1142 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
1143 struct mem_cgroup
*prev
)
1146 root
= root_mem_cgroup
;
1147 if (prev
&& prev
!= root
)
1148 css_put(&prev
->css
);
1151 static void __invalidate_reclaim_iterators(struct mem_cgroup
*from
,
1152 struct mem_cgroup
*dead_memcg
)
1154 struct mem_cgroup_reclaim_iter
*iter
;
1155 struct mem_cgroup_per_node
*mz
;
1159 for_each_node(nid
) {
1160 mz
= mem_cgroup_nodeinfo(from
, nid
);
1161 for (i
= 0; i
<= DEF_PRIORITY
; i
++) {
1162 iter
= &mz
->iter
[i
];
1163 cmpxchg(&iter
->position
,
1169 static void invalidate_reclaim_iterators(struct mem_cgroup
*dead_memcg
)
1171 struct mem_cgroup
*memcg
= dead_memcg
;
1172 struct mem_cgroup
*last
;
1175 __invalidate_reclaim_iterators(memcg
, dead_memcg
);
1177 } while ((memcg
= parent_mem_cgroup(memcg
)));
1180 * When cgruop1 non-hierarchy mode is used,
1181 * parent_mem_cgroup() does not walk all the way up to the
1182 * cgroup root (root_mem_cgroup). So we have to handle
1183 * dead_memcg from cgroup root separately.
1185 if (last
!= root_mem_cgroup
)
1186 __invalidate_reclaim_iterators(root_mem_cgroup
,
1191 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1192 * @memcg: hierarchy root
1193 * @fn: function to call for each task
1194 * @arg: argument passed to @fn
1196 * This function iterates over tasks attached to @memcg or to any of its
1197 * descendants and calls @fn for each task. If @fn returns a non-zero
1198 * value, the function breaks the iteration loop and returns the value.
1199 * Otherwise, it will iterate over all tasks and return 0.
1201 * This function must not be called for the root memory cgroup.
1203 int mem_cgroup_scan_tasks(struct mem_cgroup
*memcg
,
1204 int (*fn
)(struct task_struct
*, void *), void *arg
)
1206 struct mem_cgroup
*iter
;
1209 BUG_ON(memcg
== root_mem_cgroup
);
1211 for_each_mem_cgroup_tree(iter
, memcg
) {
1212 struct css_task_iter it
;
1213 struct task_struct
*task
;
1215 css_task_iter_start(&iter
->css
, CSS_TASK_ITER_PROCS
, &it
);
1216 while (!ret
&& (task
= css_task_iter_next(&it
)))
1217 ret
= fn(task
, arg
);
1218 css_task_iter_end(&it
);
1220 mem_cgroup_iter_break(memcg
, iter
);
1228 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1230 * @pgdat: pgdat of the page
1232 * This function is only safe when following the LRU page isolation
1233 * and putback protocol: the LRU lock must be held, and the page must
1234 * either be PageLRU() or the caller must have isolated/allocated it.
1236 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct pglist_data
*pgdat
)
1238 struct mem_cgroup_per_node
*mz
;
1239 struct mem_cgroup
*memcg
;
1240 struct lruvec
*lruvec
;
1242 if (mem_cgroup_disabled()) {
1243 lruvec
= &pgdat
->lruvec
;
1247 memcg
= page
->mem_cgroup
;
1249 * Swapcache readahead pages are added to the LRU - and
1250 * possibly migrated - before they are charged.
1253 memcg
= root_mem_cgroup
;
1255 mz
= mem_cgroup_page_nodeinfo(memcg
, page
);
1256 lruvec
= &mz
->lruvec
;
1259 * Since a node can be onlined after the mem_cgroup was created,
1260 * we have to be prepared to initialize lruvec->zone here;
1261 * and if offlined then reonlined, we need to reinitialize it.
1263 if (unlikely(lruvec
->pgdat
!= pgdat
))
1264 lruvec
->pgdat
= pgdat
;
1269 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1270 * @lruvec: mem_cgroup per zone lru vector
1271 * @lru: index of lru list the page is sitting on
1272 * @zid: zone id of the accounted pages
1273 * @nr_pages: positive when adding or negative when removing
1275 * This function must be called under lru_lock, just before a page is added
1276 * to or just after a page is removed from an lru list (that ordering being
1277 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1279 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
1280 int zid
, int nr_pages
)
1282 struct mem_cgroup_per_node
*mz
;
1283 unsigned long *lru_size
;
1286 if (mem_cgroup_disabled())
1289 mz
= container_of(lruvec
, struct mem_cgroup_per_node
, lruvec
);
1290 lru_size
= &mz
->lru_zone_size
[zid
][lru
];
1293 *lru_size
+= nr_pages
;
1296 if (WARN_ONCE(size
< 0,
1297 "%s(%p, %d, %d): lru_size %ld\n",
1298 __func__
, lruvec
, lru
, nr_pages
, size
)) {
1304 *lru_size
+= nr_pages
;
1308 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1309 * @memcg: the memory cgroup
1311 * Returns the maximum amount of memory @mem can be charged with, in
1314 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1316 unsigned long margin
= 0;
1317 unsigned long count
;
1318 unsigned long limit
;
1320 count
= page_counter_read(&memcg
->memory
);
1321 limit
= READ_ONCE(memcg
->memory
.max
);
1323 margin
= limit
- count
;
1325 if (do_memsw_account()) {
1326 count
= page_counter_read(&memcg
->memsw
);
1327 limit
= READ_ONCE(memcg
->memsw
.max
);
1329 margin
= min(margin
, limit
- count
);
1338 * A routine for checking "mem" is under move_account() or not.
1340 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1341 * moving cgroups. This is for waiting at high-memory pressure
1344 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1346 struct mem_cgroup
*from
;
1347 struct mem_cgroup
*to
;
1350 * Unlike task_move routines, we access mc.to, mc.from not under
1351 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1353 spin_lock(&mc
.lock
);
1359 ret
= mem_cgroup_is_descendant(from
, memcg
) ||
1360 mem_cgroup_is_descendant(to
, memcg
);
1362 spin_unlock(&mc
.lock
);
1366 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1368 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1369 if (mem_cgroup_under_move(memcg
)) {
1371 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1372 /* moving charge context might have finished. */
1375 finish_wait(&mc
.waitq
, &wait
);
1382 static char *memory_stat_format(struct mem_cgroup
*memcg
)
1387 seq_buf_init(&s
, kmalloc(PAGE_SIZE
, GFP_KERNEL
), PAGE_SIZE
);
1392 * Provide statistics on the state of the memory subsystem as
1393 * well as cumulative event counters that show past behavior.
1395 * This list is ordered following a combination of these gradients:
1396 * 1) generic big picture -> specifics and details
1397 * 2) reflecting userspace activity -> reflecting kernel heuristics
1399 * Current memory state:
1402 seq_buf_printf(&s
, "anon %llu\n",
1403 (u64
)memcg_page_state(memcg
, MEMCG_RSS
) *
1405 seq_buf_printf(&s
, "file %llu\n",
1406 (u64
)memcg_page_state(memcg
, MEMCG_CACHE
) *
1408 seq_buf_printf(&s
, "kernel_stack %llu\n",
1409 (u64
)memcg_page_state(memcg
, MEMCG_KERNEL_STACK_KB
) *
1411 seq_buf_printf(&s
, "slab %llu\n",
1412 (u64
)(memcg_page_state(memcg
, NR_SLAB_RECLAIMABLE
) +
1413 memcg_page_state(memcg
, NR_SLAB_UNRECLAIMABLE
)) *
1415 seq_buf_printf(&s
, "sock %llu\n",
1416 (u64
)memcg_page_state(memcg
, MEMCG_SOCK
) *
1419 seq_buf_printf(&s
, "shmem %llu\n",
1420 (u64
)memcg_page_state(memcg
, NR_SHMEM
) *
1422 seq_buf_printf(&s
, "file_mapped %llu\n",
1423 (u64
)memcg_page_state(memcg
, NR_FILE_MAPPED
) *
1425 seq_buf_printf(&s
, "file_dirty %llu\n",
1426 (u64
)memcg_page_state(memcg
, NR_FILE_DIRTY
) *
1428 seq_buf_printf(&s
, "file_writeback %llu\n",
1429 (u64
)memcg_page_state(memcg
, NR_WRITEBACK
) *
1433 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1434 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1435 * arse because it requires migrating the work out of rmap to a place
1436 * where the page->mem_cgroup is set up and stable.
1438 seq_buf_printf(&s
, "anon_thp %llu\n",
1439 (u64
)memcg_page_state(memcg
, MEMCG_RSS_HUGE
) *
1442 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
1443 seq_buf_printf(&s
, "%s %llu\n", mem_cgroup_lru_names
[i
],
1444 (u64
)memcg_page_state(memcg
, NR_LRU_BASE
+ i
) *
1447 seq_buf_printf(&s
, "slab_reclaimable %llu\n",
1448 (u64
)memcg_page_state(memcg
, NR_SLAB_RECLAIMABLE
) *
1450 seq_buf_printf(&s
, "slab_unreclaimable %llu\n",
1451 (u64
)memcg_page_state(memcg
, NR_SLAB_UNRECLAIMABLE
) *
1454 /* Accumulated memory events */
1456 seq_buf_printf(&s
, "pgfault %lu\n", memcg_events(memcg
, PGFAULT
));
1457 seq_buf_printf(&s
, "pgmajfault %lu\n", memcg_events(memcg
, PGMAJFAULT
));
1459 seq_buf_printf(&s
, "workingset_refault %lu\n",
1460 memcg_page_state(memcg
, WORKINGSET_REFAULT
));
1461 seq_buf_printf(&s
, "workingset_activate %lu\n",
1462 memcg_page_state(memcg
, WORKINGSET_ACTIVATE
));
1463 seq_buf_printf(&s
, "workingset_nodereclaim %lu\n",
1464 memcg_page_state(memcg
, WORKINGSET_NODERECLAIM
));
1466 seq_buf_printf(&s
, "pgrefill %lu\n", memcg_events(memcg
, PGREFILL
));
1467 seq_buf_printf(&s
, "pgscan %lu\n",
1468 memcg_events(memcg
, PGSCAN_KSWAPD
) +
1469 memcg_events(memcg
, PGSCAN_DIRECT
));
1470 seq_buf_printf(&s
, "pgsteal %lu\n",
1471 memcg_events(memcg
, PGSTEAL_KSWAPD
) +
1472 memcg_events(memcg
, PGSTEAL_DIRECT
));
1473 seq_buf_printf(&s
, "pgactivate %lu\n", memcg_events(memcg
, PGACTIVATE
));
1474 seq_buf_printf(&s
, "pgdeactivate %lu\n", memcg_events(memcg
, PGDEACTIVATE
));
1475 seq_buf_printf(&s
, "pglazyfree %lu\n", memcg_events(memcg
, PGLAZYFREE
));
1476 seq_buf_printf(&s
, "pglazyfreed %lu\n", memcg_events(memcg
, PGLAZYFREED
));
1478 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1479 seq_buf_printf(&s
, "thp_fault_alloc %lu\n",
1480 memcg_events(memcg
, THP_FAULT_ALLOC
));
1481 seq_buf_printf(&s
, "thp_collapse_alloc %lu\n",
1482 memcg_events(memcg
, THP_COLLAPSE_ALLOC
));
1483 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1485 /* The above should easily fit into one page */
1486 WARN_ON_ONCE(seq_buf_has_overflowed(&s
));
1491 #define K(x) ((x) << (PAGE_SHIFT-10))
1493 * mem_cgroup_print_oom_context: Print OOM information relevant to
1494 * memory controller.
1495 * @memcg: The memory cgroup that went over limit
1496 * @p: Task that is going to be killed
1498 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1501 void mem_cgroup_print_oom_context(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1506 pr_cont(",oom_memcg=");
1507 pr_cont_cgroup_path(memcg
->css
.cgroup
);
1509 pr_cont(",global_oom");
1511 pr_cont(",task_memcg=");
1512 pr_cont_cgroup_path(task_cgroup(p
, memory_cgrp_id
));
1518 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1519 * memory controller.
1520 * @memcg: The memory cgroup that went over limit
1522 void mem_cgroup_print_oom_meminfo(struct mem_cgroup
*memcg
)
1526 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1527 K((u64
)page_counter_read(&memcg
->memory
)),
1528 K((u64
)memcg
->memory
.max
), memcg
->memory
.failcnt
);
1529 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
1530 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1531 K((u64
)page_counter_read(&memcg
->swap
)),
1532 K((u64
)memcg
->swap
.max
), memcg
->swap
.failcnt
);
1534 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1535 K((u64
)page_counter_read(&memcg
->memsw
)),
1536 K((u64
)memcg
->memsw
.max
), memcg
->memsw
.failcnt
);
1537 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1538 K((u64
)page_counter_read(&memcg
->kmem
)),
1539 K((u64
)memcg
->kmem
.max
), memcg
->kmem
.failcnt
);
1542 pr_info("Memory cgroup stats for ");
1543 pr_cont_cgroup_path(memcg
->css
.cgroup
);
1545 buf
= memory_stat_format(memcg
);
1553 * Return the memory (and swap, if configured) limit for a memcg.
1555 unsigned long mem_cgroup_get_max(struct mem_cgroup
*memcg
)
1559 max
= memcg
->memory
.max
;
1560 if (mem_cgroup_swappiness(memcg
)) {
1561 unsigned long memsw_max
;
1562 unsigned long swap_max
;
1564 memsw_max
= memcg
->memsw
.max
;
1565 swap_max
= memcg
->swap
.max
;
1566 swap_max
= min(swap_max
, (unsigned long)total_swap_pages
);
1567 max
= min(max
+ swap_max
, memsw_max
);
1572 static bool mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1575 struct oom_control oc
= {
1579 .gfp_mask
= gfp_mask
,
1584 if (mutex_lock_killable(&oom_lock
))
1587 * A few threads which were not waiting at mutex_lock_killable() can
1588 * fail to bail out. Therefore, check again after holding oom_lock.
1590 ret
= should_force_charge() || out_of_memory(&oc
);
1591 mutex_unlock(&oom_lock
);
1595 #if MAX_NUMNODES > 1
1598 * test_mem_cgroup_node_reclaimable
1599 * @memcg: the target memcg
1600 * @nid: the node ID to be checked.
1601 * @noswap : specify true here if the user wants flle only information.
1603 * This function returns whether the specified memcg contains any
1604 * reclaimable pages on a node. Returns true if there are any reclaimable
1605 * pages in the node.
1607 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1608 int nid
, bool noswap
)
1610 struct lruvec
*lruvec
= mem_cgroup_lruvec(NODE_DATA(nid
), memcg
);
1612 if (lruvec_page_state(lruvec
, NR_INACTIVE_FILE
) ||
1613 lruvec_page_state(lruvec
, NR_ACTIVE_FILE
))
1615 if (noswap
|| !total_swap_pages
)
1617 if (lruvec_page_state(lruvec
, NR_INACTIVE_ANON
) ||
1618 lruvec_page_state(lruvec
, NR_ACTIVE_ANON
))
1625 * Always updating the nodemask is not very good - even if we have an empty
1626 * list or the wrong list here, we can start from some node and traverse all
1627 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1630 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1634 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1635 * pagein/pageout changes since the last update.
1637 if (!atomic_read(&memcg
->numainfo_events
))
1639 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1642 /* make a nodemask where this memcg uses memory from */
1643 memcg
->scan_nodes
= node_states
[N_MEMORY
];
1645 for_each_node_mask(nid
, node_states
[N_MEMORY
]) {
1647 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1648 node_clear(nid
, memcg
->scan_nodes
);
1651 atomic_set(&memcg
->numainfo_events
, 0);
1652 atomic_set(&memcg
->numainfo_updating
, 0);
1656 * Selecting a node where we start reclaim from. Because what we need is just
1657 * reducing usage counter, start from anywhere is O,K. Considering
1658 * memory reclaim from current node, there are pros. and cons.
1660 * Freeing memory from current node means freeing memory from a node which
1661 * we'll use or we've used. So, it may make LRU bad. And if several threads
1662 * hit limits, it will see a contention on a node. But freeing from remote
1663 * node means more costs for memory reclaim because of memory latency.
1665 * Now, we use round-robin. Better algorithm is welcomed.
1667 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1671 mem_cgroup_may_update_nodemask(memcg
);
1672 node
= memcg
->last_scanned_node
;
1674 node
= next_node_in(node
, memcg
->scan_nodes
);
1676 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1677 * last time it really checked all the LRUs due to rate limiting.
1678 * Fallback to the current node in that case for simplicity.
1680 if (unlikely(node
== MAX_NUMNODES
))
1681 node
= numa_node_id();
1683 memcg
->last_scanned_node
= node
;
1687 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1693 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
1696 unsigned long *total_scanned
)
1698 struct mem_cgroup
*victim
= NULL
;
1701 unsigned long excess
;
1702 unsigned long nr_scanned
;
1703 struct mem_cgroup_reclaim_cookie reclaim
= {
1708 excess
= soft_limit_excess(root_memcg
);
1711 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
1716 * If we have not been able to reclaim
1717 * anything, it might because there are
1718 * no reclaimable pages under this hierarchy
1723 * We want to do more targeted reclaim.
1724 * excess >> 2 is not to excessive so as to
1725 * reclaim too much, nor too less that we keep
1726 * coming back to reclaim from this cgroup
1728 if (total
>= (excess
>> 2) ||
1729 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
1734 total
+= mem_cgroup_shrink_node(victim
, gfp_mask
, false,
1735 pgdat
, &nr_scanned
);
1736 *total_scanned
+= nr_scanned
;
1737 if (!soft_limit_excess(root_memcg
))
1740 mem_cgroup_iter_break(root_memcg
, victim
);
1744 #ifdef CONFIG_LOCKDEP
1745 static struct lockdep_map memcg_oom_lock_dep_map
= {
1746 .name
= "memcg_oom_lock",
1750 static DEFINE_SPINLOCK(memcg_oom_lock
);
1753 * Check OOM-Killer is already running under our hierarchy.
1754 * If someone is running, return false.
1756 static bool mem_cgroup_oom_trylock(struct mem_cgroup
*memcg
)
1758 struct mem_cgroup
*iter
, *failed
= NULL
;
1760 spin_lock(&memcg_oom_lock
);
1762 for_each_mem_cgroup_tree(iter
, memcg
) {
1763 if (iter
->oom_lock
) {
1765 * this subtree of our hierarchy is already locked
1766 * so we cannot give a lock.
1769 mem_cgroup_iter_break(memcg
, iter
);
1772 iter
->oom_lock
= true;
1777 * OK, we failed to lock the whole subtree so we have
1778 * to clean up what we set up to the failing subtree
1780 for_each_mem_cgroup_tree(iter
, memcg
) {
1781 if (iter
== failed
) {
1782 mem_cgroup_iter_break(memcg
, iter
);
1785 iter
->oom_lock
= false;
1788 mutex_acquire(&memcg_oom_lock_dep_map
, 0, 1, _RET_IP_
);
1790 spin_unlock(&memcg_oom_lock
);
1795 static void mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
1797 struct mem_cgroup
*iter
;
1799 spin_lock(&memcg_oom_lock
);
1800 mutex_release(&memcg_oom_lock_dep_map
, 1, _RET_IP_
);
1801 for_each_mem_cgroup_tree(iter
, memcg
)
1802 iter
->oom_lock
= false;
1803 spin_unlock(&memcg_oom_lock
);
1806 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
1808 struct mem_cgroup
*iter
;
1810 spin_lock(&memcg_oom_lock
);
1811 for_each_mem_cgroup_tree(iter
, memcg
)
1813 spin_unlock(&memcg_oom_lock
);
1816 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
1818 struct mem_cgroup
*iter
;
1821 * When a new child is created while the hierarchy is under oom,
1822 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1824 spin_lock(&memcg_oom_lock
);
1825 for_each_mem_cgroup_tree(iter
, memcg
)
1826 if (iter
->under_oom
> 0)
1828 spin_unlock(&memcg_oom_lock
);
1831 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1833 struct oom_wait_info
{
1834 struct mem_cgroup
*memcg
;
1835 wait_queue_entry_t wait
;
1838 static int memcg_oom_wake_function(wait_queue_entry_t
*wait
,
1839 unsigned mode
, int sync
, void *arg
)
1841 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
1842 struct mem_cgroup
*oom_wait_memcg
;
1843 struct oom_wait_info
*oom_wait_info
;
1845 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1846 oom_wait_memcg
= oom_wait_info
->memcg
;
1848 if (!mem_cgroup_is_descendant(wake_memcg
, oom_wait_memcg
) &&
1849 !mem_cgroup_is_descendant(oom_wait_memcg
, wake_memcg
))
1851 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1854 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
1857 * For the following lockless ->under_oom test, the only required
1858 * guarantee is that it must see the state asserted by an OOM when
1859 * this function is called as a result of userland actions
1860 * triggered by the notification of the OOM. This is trivially
1861 * achieved by invoking mem_cgroup_mark_under_oom() before
1862 * triggering notification.
1864 if (memcg
&& memcg
->under_oom
)
1865 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
1875 static enum oom_status
mem_cgroup_oom(struct mem_cgroup
*memcg
, gfp_t mask
, int order
)
1877 enum oom_status ret
;
1880 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
1883 memcg_memory_event(memcg
, MEMCG_OOM
);
1886 * We are in the middle of the charge context here, so we
1887 * don't want to block when potentially sitting on a callstack
1888 * that holds all kinds of filesystem and mm locks.
1890 * cgroup1 allows disabling the OOM killer and waiting for outside
1891 * handling until the charge can succeed; remember the context and put
1892 * the task to sleep at the end of the page fault when all locks are
1895 * On the other hand, in-kernel OOM killer allows for an async victim
1896 * memory reclaim (oom_reaper) and that means that we are not solely
1897 * relying on the oom victim to make a forward progress and we can
1898 * invoke the oom killer here.
1900 * Please note that mem_cgroup_out_of_memory might fail to find a
1901 * victim and then we have to bail out from the charge path.
1903 if (memcg
->oom_kill_disable
) {
1904 if (!current
->in_user_fault
)
1906 css_get(&memcg
->css
);
1907 current
->memcg_in_oom
= memcg
;
1908 current
->memcg_oom_gfp_mask
= mask
;
1909 current
->memcg_oom_order
= order
;
1914 mem_cgroup_mark_under_oom(memcg
);
1916 locked
= mem_cgroup_oom_trylock(memcg
);
1919 mem_cgroup_oom_notify(memcg
);
1921 mem_cgroup_unmark_under_oom(memcg
);
1922 if (mem_cgroup_out_of_memory(memcg
, mask
, order
))
1928 mem_cgroup_oom_unlock(memcg
);
1934 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1935 * @handle: actually kill/wait or just clean up the OOM state
1937 * This has to be called at the end of a page fault if the memcg OOM
1938 * handler was enabled.
1940 * Memcg supports userspace OOM handling where failed allocations must
1941 * sleep on a waitqueue until the userspace task resolves the
1942 * situation. Sleeping directly in the charge context with all kinds
1943 * of locks held is not a good idea, instead we remember an OOM state
1944 * in the task and mem_cgroup_oom_synchronize() has to be called at
1945 * the end of the page fault to complete the OOM handling.
1947 * Returns %true if an ongoing memcg OOM situation was detected and
1948 * completed, %false otherwise.
1950 bool mem_cgroup_oom_synchronize(bool handle
)
1952 struct mem_cgroup
*memcg
= current
->memcg_in_oom
;
1953 struct oom_wait_info owait
;
1956 /* OOM is global, do not handle */
1963 owait
.memcg
= memcg
;
1964 owait
.wait
.flags
= 0;
1965 owait
.wait
.func
= memcg_oom_wake_function
;
1966 owait
.wait
.private = current
;
1967 INIT_LIST_HEAD(&owait
.wait
.entry
);
1969 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1970 mem_cgroup_mark_under_oom(memcg
);
1972 locked
= mem_cgroup_oom_trylock(memcg
);
1975 mem_cgroup_oom_notify(memcg
);
1977 if (locked
&& !memcg
->oom_kill_disable
) {
1978 mem_cgroup_unmark_under_oom(memcg
);
1979 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1980 mem_cgroup_out_of_memory(memcg
, current
->memcg_oom_gfp_mask
,
1981 current
->memcg_oom_order
);
1984 mem_cgroup_unmark_under_oom(memcg
);
1985 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1989 mem_cgroup_oom_unlock(memcg
);
1991 * There is no guarantee that an OOM-lock contender
1992 * sees the wakeups triggered by the OOM kill
1993 * uncharges. Wake any sleepers explicitely.
1995 memcg_oom_recover(memcg
);
1998 current
->memcg_in_oom
= NULL
;
1999 css_put(&memcg
->css
);
2004 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2005 * @victim: task to be killed by the OOM killer
2006 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2008 * Returns a pointer to a memory cgroup, which has to be cleaned up
2009 * by killing all belonging OOM-killable tasks.
2011 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2013 struct mem_cgroup
*mem_cgroup_get_oom_group(struct task_struct
*victim
,
2014 struct mem_cgroup
*oom_domain
)
2016 struct mem_cgroup
*oom_group
= NULL
;
2017 struct mem_cgroup
*memcg
;
2019 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
))
2023 oom_domain
= root_mem_cgroup
;
2027 memcg
= mem_cgroup_from_task(victim
);
2028 if (memcg
== root_mem_cgroup
)
2032 * Traverse the memory cgroup hierarchy from the victim task's
2033 * cgroup up to the OOMing cgroup (or root) to find the
2034 * highest-level memory cgroup with oom.group set.
2036 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
2037 if (memcg
->oom_group
)
2040 if (memcg
== oom_domain
)
2045 css_get(&oom_group
->css
);
2052 void mem_cgroup_print_oom_group(struct mem_cgroup
*memcg
)
2054 pr_info("Tasks in ");
2055 pr_cont_cgroup_path(memcg
->css
.cgroup
);
2056 pr_cont(" are going to be killed due to memory.oom.group set\n");
2060 * lock_page_memcg - lock a page->mem_cgroup binding
2063 * This function protects unlocked LRU pages from being moved to
2066 * It ensures lifetime of the returned memcg. Caller is responsible
2067 * for the lifetime of the page; __unlock_page_memcg() is available
2068 * when @page might get freed inside the locked section.
2070 struct mem_cgroup
*lock_page_memcg(struct page
*page
)
2072 struct mem_cgroup
*memcg
;
2073 unsigned long flags
;
2076 * The RCU lock is held throughout the transaction. The fast
2077 * path can get away without acquiring the memcg->move_lock
2078 * because page moving starts with an RCU grace period.
2080 * The RCU lock also protects the memcg from being freed when
2081 * the page state that is going to change is the only thing
2082 * preventing the page itself from being freed. E.g. writeback
2083 * doesn't hold a page reference and relies on PG_writeback to
2084 * keep off truncation, migration and so forth.
2088 if (mem_cgroup_disabled())
2091 memcg
= page
->mem_cgroup
;
2092 if (unlikely(!memcg
))
2095 if (atomic_read(&memcg
->moving_account
) <= 0)
2098 spin_lock_irqsave(&memcg
->move_lock
, flags
);
2099 if (memcg
!= page
->mem_cgroup
) {
2100 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
2105 * When charge migration first begins, we can have locked and
2106 * unlocked page stat updates happening concurrently. Track
2107 * the task who has the lock for unlock_page_memcg().
2109 memcg
->move_lock_task
= current
;
2110 memcg
->move_lock_flags
= flags
;
2114 EXPORT_SYMBOL(lock_page_memcg
);
2117 * __unlock_page_memcg - unlock and unpin a memcg
2120 * Unlock and unpin a memcg returned by lock_page_memcg().
2122 void __unlock_page_memcg(struct mem_cgroup
*memcg
)
2124 if (memcg
&& memcg
->move_lock_task
== current
) {
2125 unsigned long flags
= memcg
->move_lock_flags
;
2127 memcg
->move_lock_task
= NULL
;
2128 memcg
->move_lock_flags
= 0;
2130 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
2137 * unlock_page_memcg - unlock a page->mem_cgroup binding
2140 void unlock_page_memcg(struct page
*page
)
2142 __unlock_page_memcg(page
->mem_cgroup
);
2144 EXPORT_SYMBOL(unlock_page_memcg
);
2146 struct memcg_stock_pcp
{
2147 struct mem_cgroup
*cached
; /* this never be root cgroup */
2148 unsigned int nr_pages
;
2149 struct work_struct work
;
2150 unsigned long flags
;
2151 #define FLUSHING_CACHED_CHARGE 0
2153 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
2154 static DEFINE_MUTEX(percpu_charge_mutex
);
2157 * consume_stock: Try to consume stocked charge on this cpu.
2158 * @memcg: memcg to consume from.
2159 * @nr_pages: how many pages to charge.
2161 * The charges will only happen if @memcg matches the current cpu's memcg
2162 * stock, and at least @nr_pages are available in that stock. Failure to
2163 * service an allocation will refill the stock.
2165 * returns true if successful, false otherwise.
2167 static bool consume_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2169 struct memcg_stock_pcp
*stock
;
2170 unsigned long flags
;
2173 if (nr_pages
> MEMCG_CHARGE_BATCH
)
2176 local_irq_save(flags
);
2178 stock
= this_cpu_ptr(&memcg_stock
);
2179 if (memcg
== stock
->cached
&& stock
->nr_pages
>= nr_pages
) {
2180 stock
->nr_pages
-= nr_pages
;
2184 local_irq_restore(flags
);
2190 * Returns stocks cached in percpu and reset cached information.
2192 static void drain_stock(struct memcg_stock_pcp
*stock
)
2194 struct mem_cgroup
*old
= stock
->cached
;
2196 if (stock
->nr_pages
) {
2197 page_counter_uncharge(&old
->memory
, stock
->nr_pages
);
2198 if (do_memsw_account())
2199 page_counter_uncharge(&old
->memsw
, stock
->nr_pages
);
2200 css_put_many(&old
->css
, stock
->nr_pages
);
2201 stock
->nr_pages
= 0;
2203 stock
->cached
= NULL
;
2206 static void drain_local_stock(struct work_struct
*dummy
)
2208 struct memcg_stock_pcp
*stock
;
2209 unsigned long flags
;
2212 * The only protection from memory hotplug vs. drain_stock races is
2213 * that we always operate on local CPU stock here with IRQ disabled
2215 local_irq_save(flags
);
2217 stock
= this_cpu_ptr(&memcg_stock
);
2219 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
2221 local_irq_restore(flags
);
2225 * Cache charges(val) to local per_cpu area.
2226 * This will be consumed by consume_stock() function, later.
2228 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2230 struct memcg_stock_pcp
*stock
;
2231 unsigned long flags
;
2233 local_irq_save(flags
);
2235 stock
= this_cpu_ptr(&memcg_stock
);
2236 if (stock
->cached
!= memcg
) { /* reset if necessary */
2238 stock
->cached
= memcg
;
2240 stock
->nr_pages
+= nr_pages
;
2242 if (stock
->nr_pages
> MEMCG_CHARGE_BATCH
)
2245 local_irq_restore(flags
);
2249 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2250 * of the hierarchy under it.
2252 static void drain_all_stock(struct mem_cgroup
*root_memcg
)
2256 /* If someone's already draining, avoid adding running more workers. */
2257 if (!mutex_trylock(&percpu_charge_mutex
))
2260 * Notify other cpus that system-wide "drain" is running
2261 * We do not care about races with the cpu hotplug because cpu down
2262 * as well as workers from this path always operate on the local
2263 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2266 for_each_online_cpu(cpu
) {
2267 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2268 struct mem_cgroup
*memcg
;
2270 memcg
= stock
->cached
;
2271 if (!memcg
|| !stock
->nr_pages
|| !css_tryget(&memcg
->css
))
2273 if (!mem_cgroup_is_descendant(memcg
, root_memcg
)) {
2274 css_put(&memcg
->css
);
2277 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
2279 drain_local_stock(&stock
->work
);
2281 schedule_work_on(cpu
, &stock
->work
);
2283 css_put(&memcg
->css
);
2286 mutex_unlock(&percpu_charge_mutex
);
2289 static int memcg_hotplug_cpu_dead(unsigned int cpu
)
2291 struct memcg_stock_pcp
*stock
;
2292 struct mem_cgroup
*memcg
, *mi
;
2294 stock
= &per_cpu(memcg_stock
, cpu
);
2297 for_each_mem_cgroup(memcg
) {
2300 for (i
= 0; i
< MEMCG_NR_STAT
; i
++) {
2304 x
= this_cpu_xchg(memcg
->vmstats_percpu
->stat
[i
], 0);
2306 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
))
2307 atomic_long_add(x
, &memcg
->vmstats
[i
]);
2309 if (i
>= NR_VM_NODE_STAT_ITEMS
)
2312 for_each_node(nid
) {
2313 struct mem_cgroup_per_node
*pn
;
2315 pn
= mem_cgroup_nodeinfo(memcg
, nid
);
2316 x
= this_cpu_xchg(pn
->lruvec_stat_cpu
->count
[i
], 0);
2319 atomic_long_add(x
, &pn
->lruvec_stat
[i
]);
2320 } while ((pn
= parent_nodeinfo(pn
, nid
)));
2324 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++) {
2327 x
= this_cpu_xchg(memcg
->vmstats_percpu
->events
[i
], 0);
2329 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
))
2330 atomic_long_add(x
, &memcg
->vmevents
[i
]);
2337 static void reclaim_high(struct mem_cgroup
*memcg
,
2338 unsigned int nr_pages
,
2342 if (page_counter_read(&memcg
->memory
) <= memcg
->high
)
2344 memcg_memory_event(memcg
, MEMCG_HIGH
);
2345 try_to_free_mem_cgroup_pages(memcg
, nr_pages
, gfp_mask
, true);
2346 } while ((memcg
= parent_mem_cgroup(memcg
)));
2349 static void high_work_func(struct work_struct
*work
)
2351 struct mem_cgroup
*memcg
;
2353 memcg
= container_of(work
, struct mem_cgroup
, high_work
);
2354 reclaim_high(memcg
, MEMCG_CHARGE_BATCH
, GFP_KERNEL
);
2358 * Scheduled by try_charge() to be executed from the userland return path
2359 * and reclaims memory over the high limit.
2361 void mem_cgroup_handle_over_high(void)
2363 unsigned int nr_pages
= current
->memcg_nr_pages_over_high
;
2364 struct mem_cgroup
*memcg
;
2366 if (likely(!nr_pages
))
2369 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2370 reclaim_high(memcg
, nr_pages
, GFP_KERNEL
);
2371 css_put(&memcg
->css
);
2372 current
->memcg_nr_pages_over_high
= 0;
2375 static int try_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
2376 unsigned int nr_pages
)
2378 unsigned int batch
= max(MEMCG_CHARGE_BATCH
, nr_pages
);
2379 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2380 struct mem_cgroup
*mem_over_limit
;
2381 struct page_counter
*counter
;
2382 unsigned long nr_reclaimed
;
2383 bool may_swap
= true;
2384 bool drained
= false;
2385 enum oom_status oom_status
;
2387 if (mem_cgroup_is_root(memcg
))
2390 if (consume_stock(memcg
, nr_pages
))
2393 if (!do_memsw_account() ||
2394 page_counter_try_charge(&memcg
->memsw
, batch
, &counter
)) {
2395 if (page_counter_try_charge(&memcg
->memory
, batch
, &counter
))
2397 if (do_memsw_account())
2398 page_counter_uncharge(&memcg
->memsw
, batch
);
2399 mem_over_limit
= mem_cgroup_from_counter(counter
, memory
);
2401 mem_over_limit
= mem_cgroup_from_counter(counter
, memsw
);
2405 if (batch
> nr_pages
) {
2411 * Unlike in global OOM situations, memcg is not in a physical
2412 * memory shortage. Allow dying and OOM-killed tasks to
2413 * bypass the last charges so that they can exit quickly and
2414 * free their memory.
2416 if (unlikely(should_force_charge()))
2420 * Prevent unbounded recursion when reclaim operations need to
2421 * allocate memory. This might exceed the limits temporarily,
2422 * but we prefer facilitating memory reclaim and getting back
2423 * under the limit over triggering OOM kills in these cases.
2425 if (unlikely(current
->flags
& PF_MEMALLOC
))
2428 if (unlikely(task_in_memcg_oom(current
)))
2431 if (!gfpflags_allow_blocking(gfp_mask
))
2434 memcg_memory_event(mem_over_limit
, MEMCG_MAX
);
2436 nr_reclaimed
= try_to_free_mem_cgroup_pages(mem_over_limit
, nr_pages
,
2437 gfp_mask
, may_swap
);
2439 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2443 drain_all_stock(mem_over_limit
);
2448 if (gfp_mask
& __GFP_NORETRY
)
2451 * Even though the limit is exceeded at this point, reclaim
2452 * may have been able to free some pages. Retry the charge
2453 * before killing the task.
2455 * Only for regular pages, though: huge pages are rather
2456 * unlikely to succeed so close to the limit, and we fall back
2457 * to regular pages anyway in case of failure.
2459 if (nr_reclaimed
&& nr_pages
<= (1 << PAGE_ALLOC_COSTLY_ORDER
))
2462 * At task move, charge accounts can be doubly counted. So, it's
2463 * better to wait until the end of task_move if something is going on.
2465 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2471 if (gfp_mask
& __GFP_RETRY_MAYFAIL
)
2474 if (gfp_mask
& __GFP_NOFAIL
)
2477 if (fatal_signal_pending(current
))
2481 * keep retrying as long as the memcg oom killer is able to make
2482 * a forward progress or bypass the charge if the oom killer
2483 * couldn't make any progress.
2485 oom_status
= mem_cgroup_oom(mem_over_limit
, gfp_mask
,
2486 get_order(nr_pages
* PAGE_SIZE
));
2487 switch (oom_status
) {
2489 nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2497 if (!(gfp_mask
& __GFP_NOFAIL
))
2501 * The allocation either can't fail or will lead to more memory
2502 * being freed very soon. Allow memory usage go over the limit
2503 * temporarily by force charging it.
2505 page_counter_charge(&memcg
->memory
, nr_pages
);
2506 if (do_memsw_account())
2507 page_counter_charge(&memcg
->memsw
, nr_pages
);
2508 css_get_many(&memcg
->css
, nr_pages
);
2513 css_get_many(&memcg
->css
, batch
);
2514 if (batch
> nr_pages
)
2515 refill_stock(memcg
, batch
- nr_pages
);
2518 * If the hierarchy is above the normal consumption range, schedule
2519 * reclaim on returning to userland. We can perform reclaim here
2520 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2521 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2522 * not recorded as it most likely matches current's and won't
2523 * change in the meantime. As high limit is checked again before
2524 * reclaim, the cost of mismatch is negligible.
2527 if (page_counter_read(&memcg
->memory
) > memcg
->high
) {
2528 /* Don't bother a random interrupted task */
2529 if (in_interrupt()) {
2530 schedule_work(&memcg
->high_work
);
2533 current
->memcg_nr_pages_over_high
+= batch
;
2534 set_notify_resume(current
);
2537 } while ((memcg
= parent_mem_cgroup(memcg
)));
2542 static void cancel_charge(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2544 if (mem_cgroup_is_root(memcg
))
2547 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2548 if (do_memsw_account())
2549 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2551 css_put_many(&memcg
->css
, nr_pages
);
2554 static void lock_page_lru(struct page
*page
, int *isolated
)
2556 pg_data_t
*pgdat
= page_pgdat(page
);
2558 spin_lock_irq(&pgdat
->lru_lock
);
2559 if (PageLRU(page
)) {
2560 struct lruvec
*lruvec
;
2562 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
2564 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2570 static void unlock_page_lru(struct page
*page
, int isolated
)
2572 pg_data_t
*pgdat
= page_pgdat(page
);
2575 struct lruvec
*lruvec
;
2577 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
2578 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2580 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2582 spin_unlock_irq(&pgdat
->lru_lock
);
2585 static void commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
2590 VM_BUG_ON_PAGE(page
->mem_cgroup
, page
);
2593 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2594 * may already be on some other mem_cgroup's LRU. Take care of it.
2597 lock_page_lru(page
, &isolated
);
2600 * Nobody should be changing or seriously looking at
2601 * page->mem_cgroup at this point:
2603 * - the page is uncharged
2605 * - the page is off-LRU
2607 * - an anonymous fault has exclusive page access, except for
2608 * a locked page table
2610 * - a page cache insertion, a swapin fault, or a migration
2611 * have the page locked
2613 page
->mem_cgroup
= memcg
;
2616 unlock_page_lru(page
, isolated
);
2619 #ifdef CONFIG_MEMCG_KMEM
2620 static int memcg_alloc_cache_id(void)
2625 id
= ida_simple_get(&memcg_cache_ida
,
2626 0, MEMCG_CACHES_MAX_SIZE
, GFP_KERNEL
);
2630 if (id
< memcg_nr_cache_ids
)
2634 * There's no space for the new id in memcg_caches arrays,
2635 * so we have to grow them.
2637 down_write(&memcg_cache_ids_sem
);
2639 size
= 2 * (id
+ 1);
2640 if (size
< MEMCG_CACHES_MIN_SIZE
)
2641 size
= MEMCG_CACHES_MIN_SIZE
;
2642 else if (size
> MEMCG_CACHES_MAX_SIZE
)
2643 size
= MEMCG_CACHES_MAX_SIZE
;
2645 err
= memcg_update_all_caches(size
);
2647 err
= memcg_update_all_list_lrus(size
);
2649 memcg_nr_cache_ids
= size
;
2651 up_write(&memcg_cache_ids_sem
);
2654 ida_simple_remove(&memcg_cache_ida
, id
);
2660 static void memcg_free_cache_id(int id
)
2662 ida_simple_remove(&memcg_cache_ida
, id
);
2665 struct memcg_kmem_cache_create_work
{
2666 struct mem_cgroup
*memcg
;
2667 struct kmem_cache
*cachep
;
2668 struct work_struct work
;
2671 static void memcg_kmem_cache_create_func(struct work_struct
*w
)
2673 struct memcg_kmem_cache_create_work
*cw
=
2674 container_of(w
, struct memcg_kmem_cache_create_work
, work
);
2675 struct mem_cgroup
*memcg
= cw
->memcg
;
2676 struct kmem_cache
*cachep
= cw
->cachep
;
2678 memcg_create_kmem_cache(memcg
, cachep
);
2680 css_put(&memcg
->css
);
2685 * Enqueue the creation of a per-memcg kmem_cache.
2687 static void memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2688 struct kmem_cache
*cachep
)
2690 struct memcg_kmem_cache_create_work
*cw
;
2692 if (!css_tryget_online(&memcg
->css
))
2695 cw
= kmalloc(sizeof(*cw
), GFP_NOWAIT
| __GFP_NOWARN
);
2700 cw
->cachep
= cachep
;
2701 INIT_WORK(&cw
->work
, memcg_kmem_cache_create_func
);
2703 queue_work(memcg_kmem_cache_wq
, &cw
->work
);
2706 static inline bool memcg_kmem_bypass(void)
2708 if (in_interrupt() || !current
->mm
|| (current
->flags
& PF_KTHREAD
))
2714 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2715 * @cachep: the original global kmem cache
2717 * Return the kmem_cache we're supposed to use for a slab allocation.
2718 * We try to use the current memcg's version of the cache.
2720 * If the cache does not exist yet, if we are the first user of it, we
2721 * create it asynchronously in a workqueue and let the current allocation
2722 * go through with the original cache.
2724 * This function takes a reference to the cache it returns to assure it
2725 * won't get destroyed while we are working with it. Once the caller is
2726 * done with it, memcg_kmem_put_cache() must be called to release the
2729 struct kmem_cache
*memcg_kmem_get_cache(struct kmem_cache
*cachep
)
2731 struct mem_cgroup
*memcg
;
2732 struct kmem_cache
*memcg_cachep
;
2733 struct memcg_cache_array
*arr
;
2736 VM_BUG_ON(!is_root_cache(cachep
));
2738 if (memcg_kmem_bypass())
2743 if (unlikely(current
->active_memcg
))
2744 memcg
= current
->active_memcg
;
2746 memcg
= mem_cgroup_from_task(current
);
2748 if (!memcg
|| memcg
== root_mem_cgroup
)
2751 kmemcg_id
= READ_ONCE(memcg
->kmemcg_id
);
2755 arr
= rcu_dereference(cachep
->memcg_params
.memcg_caches
);
2758 * Make sure we will access the up-to-date value. The code updating
2759 * memcg_caches issues a write barrier to match the data dependency
2760 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2762 memcg_cachep
= READ_ONCE(arr
->entries
[kmemcg_id
]);
2765 * If we are in a safe context (can wait, and not in interrupt
2766 * context), we could be be predictable and return right away.
2767 * This would guarantee that the allocation being performed
2768 * already belongs in the new cache.
2770 * However, there are some clashes that can arrive from locking.
2771 * For instance, because we acquire the slab_mutex while doing
2772 * memcg_create_kmem_cache, this means no further allocation
2773 * could happen with the slab_mutex held. So it's better to
2776 * If the memcg is dying or memcg_cache is about to be released,
2777 * don't bother creating new kmem_caches. Because memcg_cachep
2778 * is ZEROed as the fist step of kmem offlining, we don't need
2779 * percpu_ref_tryget_live() here. css_tryget_online() check in
2780 * memcg_schedule_kmem_cache_create() will prevent us from
2781 * creation of a new kmem_cache.
2783 if (unlikely(!memcg_cachep
))
2784 memcg_schedule_kmem_cache_create(memcg
, cachep
);
2785 else if (percpu_ref_tryget(&memcg_cachep
->memcg_params
.refcnt
))
2786 cachep
= memcg_cachep
;
2793 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2794 * @cachep: the cache returned by memcg_kmem_get_cache
2796 void memcg_kmem_put_cache(struct kmem_cache
*cachep
)
2798 if (!is_root_cache(cachep
))
2799 percpu_ref_put(&cachep
->memcg_params
.refcnt
);
2803 * __memcg_kmem_charge_memcg: charge a kmem page
2804 * @page: page to charge
2805 * @gfp: reclaim mode
2806 * @order: allocation order
2807 * @memcg: memory cgroup to charge
2809 * Returns 0 on success, an error code on failure.
2811 int __memcg_kmem_charge_memcg(struct page
*page
, gfp_t gfp
, int order
,
2812 struct mem_cgroup
*memcg
)
2814 unsigned int nr_pages
= 1 << order
;
2815 struct page_counter
*counter
;
2818 ret
= try_charge(memcg
, gfp
, nr_pages
);
2822 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) &&
2823 !page_counter_try_charge(&memcg
->kmem
, nr_pages
, &counter
)) {
2824 cancel_charge(memcg
, nr_pages
);
2831 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2832 * @page: page to charge
2833 * @gfp: reclaim mode
2834 * @order: allocation order
2836 * Returns 0 on success, an error code on failure.
2838 int __memcg_kmem_charge(struct page
*page
, gfp_t gfp
, int order
)
2840 struct mem_cgroup
*memcg
;
2843 if (memcg_kmem_bypass())
2846 memcg
= get_mem_cgroup_from_current();
2847 if (!mem_cgroup_is_root(memcg
)) {
2848 ret
= __memcg_kmem_charge_memcg(page
, gfp
, order
, memcg
);
2850 page
->mem_cgroup
= memcg
;
2851 __SetPageKmemcg(page
);
2854 css_put(&memcg
->css
);
2859 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2860 * @memcg: memcg to uncharge
2861 * @nr_pages: number of pages to uncharge
2863 void __memcg_kmem_uncharge_memcg(struct mem_cgroup
*memcg
,
2864 unsigned int nr_pages
)
2866 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
))
2867 page_counter_uncharge(&memcg
->kmem
, nr_pages
);
2869 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2870 if (do_memsw_account())
2871 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2874 * __memcg_kmem_uncharge: uncharge a kmem page
2875 * @page: page to uncharge
2876 * @order: allocation order
2878 void __memcg_kmem_uncharge(struct page
*page
, int order
)
2880 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
2881 unsigned int nr_pages
= 1 << order
;
2886 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg
), page
);
2887 __memcg_kmem_uncharge_memcg(memcg
, nr_pages
);
2888 page
->mem_cgroup
= NULL
;
2890 /* slab pages do not have PageKmemcg flag set */
2891 if (PageKmemcg(page
))
2892 __ClearPageKmemcg(page
);
2894 css_put_many(&memcg
->css
, nr_pages
);
2896 #endif /* CONFIG_MEMCG_KMEM */
2898 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2901 * Because tail pages are not marked as "used", set it. We're under
2902 * pgdat->lru_lock and migration entries setup in all page mappings.
2904 void mem_cgroup_split_huge_fixup(struct page
*head
)
2908 if (mem_cgroup_disabled())
2911 for (i
= 1; i
< HPAGE_PMD_NR
; i
++)
2912 head
[i
].mem_cgroup
= head
->mem_cgroup
;
2914 __mod_memcg_state(head
->mem_cgroup
, MEMCG_RSS_HUGE
, -HPAGE_PMD_NR
);
2916 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2918 #ifdef CONFIG_MEMCG_SWAP
2920 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2921 * @entry: swap entry to be moved
2922 * @from: mem_cgroup which the entry is moved from
2923 * @to: mem_cgroup which the entry is moved to
2925 * It succeeds only when the swap_cgroup's record for this entry is the same
2926 * as the mem_cgroup's id of @from.
2928 * Returns 0 on success, -EINVAL on failure.
2930 * The caller must have charged to @to, IOW, called page_counter_charge() about
2931 * both res and memsw, and called css_get().
2933 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
2934 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2936 unsigned short old_id
, new_id
;
2938 old_id
= mem_cgroup_id(from
);
2939 new_id
= mem_cgroup_id(to
);
2941 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
2942 mod_memcg_state(from
, MEMCG_SWAP
, -1);
2943 mod_memcg_state(to
, MEMCG_SWAP
, 1);
2949 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
2950 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2956 static DEFINE_MUTEX(memcg_max_mutex
);
2958 static int mem_cgroup_resize_max(struct mem_cgroup
*memcg
,
2959 unsigned long max
, bool memsw
)
2961 bool enlarge
= false;
2962 bool drained
= false;
2964 bool limits_invariant
;
2965 struct page_counter
*counter
= memsw
? &memcg
->memsw
: &memcg
->memory
;
2968 if (signal_pending(current
)) {
2973 mutex_lock(&memcg_max_mutex
);
2975 * Make sure that the new limit (memsw or memory limit) doesn't
2976 * break our basic invariant rule memory.max <= memsw.max.
2978 limits_invariant
= memsw
? max
>= memcg
->memory
.max
:
2979 max
<= memcg
->memsw
.max
;
2980 if (!limits_invariant
) {
2981 mutex_unlock(&memcg_max_mutex
);
2985 if (max
> counter
->max
)
2987 ret
= page_counter_set_max(counter
, max
);
2988 mutex_unlock(&memcg_max_mutex
);
2994 drain_all_stock(memcg
);
2999 if (!try_to_free_mem_cgroup_pages(memcg
, 1,
3000 GFP_KERNEL
, !memsw
)) {
3006 if (!ret
&& enlarge
)
3007 memcg_oom_recover(memcg
);
3012 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t
*pgdat
, int order
,
3014 unsigned long *total_scanned
)
3016 unsigned long nr_reclaimed
= 0;
3017 struct mem_cgroup_per_node
*mz
, *next_mz
= NULL
;
3018 unsigned long reclaimed
;
3020 struct mem_cgroup_tree_per_node
*mctz
;
3021 unsigned long excess
;
3022 unsigned long nr_scanned
;
3027 mctz
= soft_limit_tree_node(pgdat
->node_id
);
3030 * Do not even bother to check the largest node if the root
3031 * is empty. Do it lockless to prevent lock bouncing. Races
3032 * are acceptable as soft limit is best effort anyway.
3034 if (!mctz
|| RB_EMPTY_ROOT(&mctz
->rb_root
))
3038 * This loop can run a while, specially if mem_cgroup's continuously
3039 * keep exceeding their soft limit and putting the system under
3046 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
3051 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, pgdat
,
3052 gfp_mask
, &nr_scanned
);
3053 nr_reclaimed
+= reclaimed
;
3054 *total_scanned
+= nr_scanned
;
3055 spin_lock_irq(&mctz
->lock
);
3056 __mem_cgroup_remove_exceeded(mz
, mctz
);
3059 * If we failed to reclaim anything from this memory cgroup
3060 * it is time to move on to the next cgroup
3064 next_mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
3066 excess
= soft_limit_excess(mz
->memcg
);
3068 * One school of thought says that we should not add
3069 * back the node to the tree if reclaim returns 0.
3070 * But our reclaim could return 0, simply because due
3071 * to priority we are exposing a smaller subset of
3072 * memory to reclaim from. Consider this as a longer
3075 /* If excess == 0, no tree ops */
3076 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
3077 spin_unlock_irq(&mctz
->lock
);
3078 css_put(&mz
->memcg
->css
);
3081 * Could not reclaim anything and there are no more
3082 * mem cgroups to try or we seem to be looping without
3083 * reclaiming anything.
3085 if (!nr_reclaimed
&&
3087 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
3089 } while (!nr_reclaimed
);
3091 css_put(&next_mz
->memcg
->css
);
3092 return nr_reclaimed
;
3096 * Test whether @memcg has children, dead or alive. Note that this
3097 * function doesn't care whether @memcg has use_hierarchy enabled and
3098 * returns %true if there are child csses according to the cgroup
3099 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3101 static inline bool memcg_has_children(struct mem_cgroup
*memcg
)
3106 ret
= css_next_child(NULL
, &memcg
->css
);
3112 * Reclaims as many pages from the given memcg as possible.
3114 * Caller is responsible for holding css reference for memcg.
3116 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
)
3118 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
3120 /* we call try-to-free pages for make this cgroup empty */
3121 lru_add_drain_all();
3123 drain_all_stock(memcg
);
3125 /* try to free all pages in this cgroup */
3126 while (nr_retries
&& page_counter_read(&memcg
->memory
)) {
3129 if (signal_pending(current
))
3132 progress
= try_to_free_mem_cgroup_pages(memcg
, 1,
3136 /* maybe some writeback is necessary */
3137 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3145 static ssize_t
mem_cgroup_force_empty_write(struct kernfs_open_file
*of
,
3146 char *buf
, size_t nbytes
,
3149 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3151 if (mem_cgroup_is_root(memcg
))
3153 return mem_cgroup_force_empty(memcg
) ?: nbytes
;
3156 static u64
mem_cgroup_hierarchy_read(struct cgroup_subsys_state
*css
,
3159 return mem_cgroup_from_css(css
)->use_hierarchy
;
3162 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state
*css
,
3163 struct cftype
*cft
, u64 val
)
3166 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3167 struct mem_cgroup
*parent_memcg
= mem_cgroup_from_css(memcg
->css
.parent
);
3169 if (memcg
->use_hierarchy
== val
)
3173 * If parent's use_hierarchy is set, we can't make any modifications
3174 * in the child subtrees. If it is unset, then the change can
3175 * occur, provided the current cgroup has no children.
3177 * For the root cgroup, parent_mem is NULL, we allow value to be
3178 * set if there are no children.
3180 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
3181 (val
== 1 || val
== 0)) {
3182 if (!memcg_has_children(memcg
))
3183 memcg
->use_hierarchy
= val
;
3192 static unsigned long mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
3196 if (mem_cgroup_is_root(memcg
)) {
3197 val
= memcg_page_state(memcg
, MEMCG_CACHE
) +
3198 memcg_page_state(memcg
, MEMCG_RSS
);
3200 val
+= memcg_page_state(memcg
, MEMCG_SWAP
);
3203 val
= page_counter_read(&memcg
->memory
);
3205 val
= page_counter_read(&memcg
->memsw
);
3218 static u64
mem_cgroup_read_u64(struct cgroup_subsys_state
*css
,
3221 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3222 struct page_counter
*counter
;
3224 switch (MEMFILE_TYPE(cft
->private)) {
3226 counter
= &memcg
->memory
;
3229 counter
= &memcg
->memsw
;
3232 counter
= &memcg
->kmem
;
3235 counter
= &memcg
->tcpmem
;
3241 switch (MEMFILE_ATTR(cft
->private)) {
3243 if (counter
== &memcg
->memory
)
3244 return (u64
)mem_cgroup_usage(memcg
, false) * PAGE_SIZE
;
3245 if (counter
== &memcg
->memsw
)
3246 return (u64
)mem_cgroup_usage(memcg
, true) * PAGE_SIZE
;
3247 return (u64
)page_counter_read(counter
) * PAGE_SIZE
;
3249 return (u64
)counter
->max
* PAGE_SIZE
;
3251 return (u64
)counter
->watermark
* PAGE_SIZE
;
3253 return counter
->failcnt
;
3254 case RES_SOFT_LIMIT
:
3255 return (u64
)memcg
->soft_limit
* PAGE_SIZE
;
3261 static void memcg_flush_percpu_vmstats(struct mem_cgroup
*memcg
, bool slab_only
)
3263 unsigned long stat
[MEMCG_NR_STAT
];
3264 struct mem_cgroup
*mi
;
3266 int min_idx
, max_idx
;
3269 min_idx
= NR_SLAB_RECLAIMABLE
;
3270 max_idx
= NR_SLAB_UNRECLAIMABLE
;
3273 max_idx
= MEMCG_NR_STAT
;
3276 for (i
= min_idx
; i
< max_idx
; i
++)
3279 for_each_online_cpu(cpu
)
3280 for (i
= min_idx
; i
< max_idx
; i
++)
3281 stat
[i
] += per_cpu(memcg
->vmstats_percpu
->stat
[i
], cpu
);
3283 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
))
3284 for (i
= min_idx
; i
< max_idx
; i
++)
3285 atomic_long_add(stat
[i
], &mi
->vmstats
[i
]);
3288 max_idx
= NR_VM_NODE_STAT_ITEMS
;
3290 for_each_node(node
) {
3291 struct mem_cgroup_per_node
*pn
= memcg
->nodeinfo
[node
];
3292 struct mem_cgroup_per_node
*pi
;
3294 for (i
= min_idx
; i
< max_idx
; i
++)
3297 for_each_online_cpu(cpu
)
3298 for (i
= min_idx
; i
< max_idx
; i
++)
3300 pn
->lruvec_stat_cpu
->count
[i
], cpu
);
3302 for (pi
= pn
; pi
; pi
= parent_nodeinfo(pi
, node
))
3303 for (i
= min_idx
; i
< max_idx
; i
++)
3304 atomic_long_add(stat
[i
], &pi
->lruvec_stat
[i
]);
3308 static void memcg_flush_percpu_vmevents(struct mem_cgroup
*memcg
)
3310 unsigned long events
[NR_VM_EVENT_ITEMS
];
3311 struct mem_cgroup
*mi
;
3314 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++)
3317 for_each_online_cpu(cpu
)
3318 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++)
3319 events
[i
] += per_cpu(memcg
->vmstats_percpu
->events
[i
],
3322 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
))
3323 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++)
3324 atomic_long_add(events
[i
], &mi
->vmevents
[i
]);
3327 #ifdef CONFIG_MEMCG_KMEM
3328 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
3332 if (cgroup_memory_nokmem
)
3335 BUG_ON(memcg
->kmemcg_id
>= 0);
3336 BUG_ON(memcg
->kmem_state
);
3338 memcg_id
= memcg_alloc_cache_id();
3342 static_branch_inc(&memcg_kmem_enabled_key
);
3344 * A memory cgroup is considered kmem-online as soon as it gets
3345 * kmemcg_id. Setting the id after enabling static branching will
3346 * guarantee no one starts accounting before all call sites are
3349 memcg
->kmemcg_id
= memcg_id
;
3350 memcg
->kmem_state
= KMEM_ONLINE
;
3351 INIT_LIST_HEAD(&memcg
->kmem_caches
);
3356 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
3358 struct cgroup_subsys_state
*css
;
3359 struct mem_cgroup
*parent
, *child
;
3362 if (memcg
->kmem_state
!= KMEM_ONLINE
)
3365 * Clear the online state before clearing memcg_caches array
3366 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3367 * guarantees that no cache will be created for this cgroup
3368 * after we are done (see memcg_create_kmem_cache()).
3370 memcg
->kmem_state
= KMEM_ALLOCATED
;
3372 parent
= parent_mem_cgroup(memcg
);
3374 parent
= root_mem_cgroup
;
3377 * Deactivate and reparent kmem_caches. Then flush percpu
3378 * slab statistics to have precise values at the parent and
3379 * all ancestor levels. It's required to keep slab stats
3380 * accurate after the reparenting of kmem_caches.
3382 memcg_deactivate_kmem_caches(memcg
, parent
);
3383 memcg_flush_percpu_vmstats(memcg
, true);
3385 kmemcg_id
= memcg
->kmemcg_id
;
3386 BUG_ON(kmemcg_id
< 0);
3389 * Change kmemcg_id of this cgroup and all its descendants to the
3390 * parent's id, and then move all entries from this cgroup's list_lrus
3391 * to ones of the parent. After we have finished, all list_lrus
3392 * corresponding to this cgroup are guaranteed to remain empty. The
3393 * ordering is imposed by list_lru_node->lock taken by
3394 * memcg_drain_all_list_lrus().
3396 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3397 css_for_each_descendant_pre(css
, &memcg
->css
) {
3398 child
= mem_cgroup_from_css(css
);
3399 BUG_ON(child
->kmemcg_id
!= kmemcg_id
);
3400 child
->kmemcg_id
= parent
->kmemcg_id
;
3401 if (!memcg
->use_hierarchy
)
3406 memcg_drain_all_list_lrus(kmemcg_id
, parent
);
3408 memcg_free_cache_id(kmemcg_id
);
3411 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
3413 /* css_alloc() failed, offlining didn't happen */
3414 if (unlikely(memcg
->kmem_state
== KMEM_ONLINE
))
3415 memcg_offline_kmem(memcg
);
3417 if (memcg
->kmem_state
== KMEM_ALLOCATED
) {
3418 WARN_ON(!list_empty(&memcg
->kmem_caches
));
3419 static_branch_dec(&memcg_kmem_enabled_key
);
3423 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
3427 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
3430 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
3433 #endif /* CONFIG_MEMCG_KMEM */
3435 static int memcg_update_kmem_max(struct mem_cgroup
*memcg
,
3440 mutex_lock(&memcg_max_mutex
);
3441 ret
= page_counter_set_max(&memcg
->kmem
, max
);
3442 mutex_unlock(&memcg_max_mutex
);
3446 static int memcg_update_tcp_max(struct mem_cgroup
*memcg
, unsigned long max
)
3450 mutex_lock(&memcg_max_mutex
);
3452 ret
= page_counter_set_max(&memcg
->tcpmem
, max
);
3456 if (!memcg
->tcpmem_active
) {
3458 * The active flag needs to be written after the static_key
3459 * update. This is what guarantees that the socket activation
3460 * function is the last one to run. See mem_cgroup_sk_alloc()
3461 * for details, and note that we don't mark any socket as
3462 * belonging to this memcg until that flag is up.
3464 * We need to do this, because static_keys will span multiple
3465 * sites, but we can't control their order. If we mark a socket
3466 * as accounted, but the accounting functions are not patched in
3467 * yet, we'll lose accounting.
3469 * We never race with the readers in mem_cgroup_sk_alloc(),
3470 * because when this value change, the code to process it is not
3473 static_branch_inc(&memcg_sockets_enabled_key
);
3474 memcg
->tcpmem_active
= true;
3477 mutex_unlock(&memcg_max_mutex
);
3482 * The user of this function is...
3485 static ssize_t
mem_cgroup_write(struct kernfs_open_file
*of
,
3486 char *buf
, size_t nbytes
, loff_t off
)
3488 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3489 unsigned long nr_pages
;
3492 buf
= strstrip(buf
);
3493 ret
= page_counter_memparse(buf
, "-1", &nr_pages
);
3497 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3499 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3503 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3505 ret
= mem_cgroup_resize_max(memcg
, nr_pages
, false);
3508 ret
= mem_cgroup_resize_max(memcg
, nr_pages
, true);
3511 ret
= memcg_update_kmem_max(memcg
, nr_pages
);
3514 ret
= memcg_update_tcp_max(memcg
, nr_pages
);
3518 case RES_SOFT_LIMIT
:
3519 memcg
->soft_limit
= nr_pages
;
3523 return ret
?: nbytes
;
3526 static ssize_t
mem_cgroup_reset(struct kernfs_open_file
*of
, char *buf
,
3527 size_t nbytes
, loff_t off
)
3529 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3530 struct page_counter
*counter
;
3532 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3534 counter
= &memcg
->memory
;
3537 counter
= &memcg
->memsw
;
3540 counter
= &memcg
->kmem
;
3543 counter
= &memcg
->tcpmem
;
3549 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3551 page_counter_reset_watermark(counter
);
3554 counter
->failcnt
= 0;
3563 static u64
mem_cgroup_move_charge_read(struct cgroup_subsys_state
*css
,
3566 return mem_cgroup_from_css(css
)->move_charge_at_immigrate
;
3570 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3571 struct cftype
*cft
, u64 val
)
3573 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3575 if (val
& ~MOVE_MASK
)
3579 * No kind of locking is needed in here, because ->can_attach() will
3580 * check this value once in the beginning of the process, and then carry
3581 * on with stale data. This means that changes to this value will only
3582 * affect task migrations starting after the change.
3584 memcg
->move_charge_at_immigrate
= val
;
3588 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3589 struct cftype
*cft
, u64 val
)
3597 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3598 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3599 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3601 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
3602 int nid
, unsigned int lru_mask
)
3604 struct lruvec
*lruvec
= mem_cgroup_lruvec(NODE_DATA(nid
), memcg
);
3605 unsigned long nr
= 0;
3608 VM_BUG_ON((unsigned)nid
>= nr_node_ids
);
3611 if (!(BIT(lru
) & lru_mask
))
3613 nr
+= lruvec_page_state_local(lruvec
, NR_LRU_BASE
+ lru
);
3618 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
3619 unsigned int lru_mask
)
3621 unsigned long nr
= 0;
3625 if (!(BIT(lru
) & lru_mask
))
3627 nr
+= memcg_page_state_local(memcg
, NR_LRU_BASE
+ lru
);
3632 static int memcg_numa_stat_show(struct seq_file
*m
, void *v
)
3636 unsigned int lru_mask
;
3639 static const struct numa_stat stats
[] = {
3640 { "total", LRU_ALL
},
3641 { "file", LRU_ALL_FILE
},
3642 { "anon", LRU_ALL_ANON
},
3643 { "unevictable", BIT(LRU_UNEVICTABLE
) },
3645 const struct numa_stat
*stat
;
3648 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
3650 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3651 nr
= mem_cgroup_nr_lru_pages(memcg
, stat
->lru_mask
);
3652 seq_printf(m
, "%s=%lu", stat
->name
, nr
);
3653 for_each_node_state(nid
, N_MEMORY
) {
3654 nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
3656 seq_printf(m
, " N%d=%lu", nid
, nr
);
3661 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3662 struct mem_cgroup
*iter
;
3665 for_each_mem_cgroup_tree(iter
, memcg
)
3666 nr
+= mem_cgroup_nr_lru_pages(iter
, stat
->lru_mask
);
3667 seq_printf(m
, "hierarchical_%s=%lu", stat
->name
, nr
);
3668 for_each_node_state(nid
, N_MEMORY
) {
3670 for_each_mem_cgroup_tree(iter
, memcg
)
3671 nr
+= mem_cgroup_node_nr_lru_pages(
3672 iter
, nid
, stat
->lru_mask
);
3673 seq_printf(m
, " N%d=%lu", nid
, nr
);
3680 #endif /* CONFIG_NUMA */
3682 static const unsigned int memcg1_stats
[] = {
3693 static const char *const memcg1_stat_names
[] = {
3704 /* Universal VM events cgroup1 shows, original sort order */
3705 static const unsigned int memcg1_events
[] = {
3712 static const char *const memcg1_event_names
[] = {
3719 static int memcg_stat_show(struct seq_file
*m
, void *v
)
3721 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
3722 unsigned long memory
, memsw
;
3723 struct mem_cgroup
*mi
;
3726 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names
) != ARRAY_SIZE(memcg1_stats
));
3727 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
3729 for (i
= 0; i
< ARRAY_SIZE(memcg1_stats
); i
++) {
3730 if (memcg1_stats
[i
] == MEMCG_SWAP
&& !do_memsw_account())
3732 seq_printf(m
, "%s %lu\n", memcg1_stat_names
[i
],
3733 memcg_page_state_local(memcg
, memcg1_stats
[i
]) *
3737 for (i
= 0; i
< ARRAY_SIZE(memcg1_events
); i
++)
3738 seq_printf(m
, "%s %lu\n", memcg1_event_names
[i
],
3739 memcg_events_local(memcg
, memcg1_events
[i
]));
3741 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
3742 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
3743 memcg_page_state_local(memcg
, NR_LRU_BASE
+ i
) *
3746 /* Hierarchical information */
3747 memory
= memsw
= PAGE_COUNTER_MAX
;
3748 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
)) {
3749 memory
= min(memory
, mi
->memory
.max
);
3750 memsw
= min(memsw
, mi
->memsw
.max
);
3752 seq_printf(m
, "hierarchical_memory_limit %llu\n",
3753 (u64
)memory
* PAGE_SIZE
);
3754 if (do_memsw_account())
3755 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
3756 (u64
)memsw
* PAGE_SIZE
);
3758 for (i
= 0; i
< ARRAY_SIZE(memcg1_stats
); i
++) {
3759 if (memcg1_stats
[i
] == MEMCG_SWAP
&& !do_memsw_account())
3761 seq_printf(m
, "total_%s %llu\n", memcg1_stat_names
[i
],
3762 (u64
)memcg_page_state(memcg
, memcg1_stats
[i
]) *
3766 for (i
= 0; i
< ARRAY_SIZE(memcg1_events
); i
++)
3767 seq_printf(m
, "total_%s %llu\n", memcg1_event_names
[i
],
3768 (u64
)memcg_events(memcg
, memcg1_events
[i
]));
3770 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
3771 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
],
3772 (u64
)memcg_page_state(memcg
, NR_LRU_BASE
+ i
) *
3775 #ifdef CONFIG_DEBUG_VM
3778 struct mem_cgroup_per_node
*mz
;
3779 struct zone_reclaim_stat
*rstat
;
3780 unsigned long recent_rotated
[2] = {0, 0};
3781 unsigned long recent_scanned
[2] = {0, 0};
3783 for_each_online_pgdat(pgdat
) {
3784 mz
= mem_cgroup_nodeinfo(memcg
, pgdat
->node_id
);
3785 rstat
= &mz
->lruvec
.reclaim_stat
;
3787 recent_rotated
[0] += rstat
->recent_rotated
[0];
3788 recent_rotated
[1] += rstat
->recent_rotated
[1];
3789 recent_scanned
[0] += rstat
->recent_scanned
[0];
3790 recent_scanned
[1] += rstat
->recent_scanned
[1];
3792 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
3793 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
3794 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
3795 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
3802 static u64
mem_cgroup_swappiness_read(struct cgroup_subsys_state
*css
,
3805 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3807 return mem_cgroup_swappiness(memcg
);
3810 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state
*css
,
3811 struct cftype
*cft
, u64 val
)
3813 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3819 memcg
->swappiness
= val
;
3821 vm_swappiness
= val
;
3826 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
3828 struct mem_cgroup_threshold_ary
*t
;
3829 unsigned long usage
;
3834 t
= rcu_dereference(memcg
->thresholds
.primary
);
3836 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
3841 usage
= mem_cgroup_usage(memcg
, swap
);
3844 * current_threshold points to threshold just below or equal to usage.
3845 * If it's not true, a threshold was crossed after last
3846 * call of __mem_cgroup_threshold().
3848 i
= t
->current_threshold
;
3851 * Iterate backward over array of thresholds starting from
3852 * current_threshold and check if a threshold is crossed.
3853 * If none of thresholds below usage is crossed, we read
3854 * only one element of the array here.
3856 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
3857 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3859 /* i = current_threshold + 1 */
3863 * Iterate forward over array of thresholds starting from
3864 * current_threshold+1 and check if a threshold is crossed.
3865 * If none of thresholds above usage is crossed, we read
3866 * only one element of the array here.
3868 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
3869 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3871 /* Update current_threshold */
3872 t
->current_threshold
= i
- 1;
3877 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
3880 __mem_cgroup_threshold(memcg
, false);
3881 if (do_memsw_account())
3882 __mem_cgroup_threshold(memcg
, true);
3884 memcg
= parent_mem_cgroup(memcg
);
3888 static int compare_thresholds(const void *a
, const void *b
)
3890 const struct mem_cgroup_threshold
*_a
= a
;
3891 const struct mem_cgroup_threshold
*_b
= b
;
3893 if (_a
->threshold
> _b
->threshold
)
3896 if (_a
->threshold
< _b
->threshold
)
3902 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
3904 struct mem_cgroup_eventfd_list
*ev
;
3906 spin_lock(&memcg_oom_lock
);
3908 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
3909 eventfd_signal(ev
->eventfd
, 1);
3911 spin_unlock(&memcg_oom_lock
);
3915 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
3917 struct mem_cgroup
*iter
;
3919 for_each_mem_cgroup_tree(iter
, memcg
)
3920 mem_cgroup_oom_notify_cb(iter
);
3923 static int __mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3924 struct eventfd_ctx
*eventfd
, const char *args
, enum res_type type
)
3926 struct mem_cgroup_thresholds
*thresholds
;
3927 struct mem_cgroup_threshold_ary
*new;
3928 unsigned long threshold
;
3929 unsigned long usage
;
3932 ret
= page_counter_memparse(args
, "-1", &threshold
);
3936 mutex_lock(&memcg
->thresholds_lock
);
3939 thresholds
= &memcg
->thresholds
;
3940 usage
= mem_cgroup_usage(memcg
, false);
3941 } else if (type
== _MEMSWAP
) {
3942 thresholds
= &memcg
->memsw_thresholds
;
3943 usage
= mem_cgroup_usage(memcg
, true);
3947 /* Check if a threshold crossed before adding a new one */
3948 if (thresholds
->primary
)
3949 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3951 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
3953 /* Allocate memory for new array of thresholds */
3954 new = kmalloc(struct_size(new, entries
, size
), GFP_KERNEL
);
3961 /* Copy thresholds (if any) to new array */
3962 if (thresholds
->primary
) {
3963 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
3964 sizeof(struct mem_cgroup_threshold
));
3967 /* Add new threshold */
3968 new->entries
[size
- 1].eventfd
= eventfd
;
3969 new->entries
[size
- 1].threshold
= threshold
;
3971 /* Sort thresholds. Registering of new threshold isn't time-critical */
3972 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
3973 compare_thresholds
, NULL
);
3975 /* Find current threshold */
3976 new->current_threshold
= -1;
3977 for (i
= 0; i
< size
; i
++) {
3978 if (new->entries
[i
].threshold
<= usage
) {
3980 * new->current_threshold will not be used until
3981 * rcu_assign_pointer(), so it's safe to increment
3984 ++new->current_threshold
;
3989 /* Free old spare buffer and save old primary buffer as spare */
3990 kfree(thresholds
->spare
);
3991 thresholds
->spare
= thresholds
->primary
;
3993 rcu_assign_pointer(thresholds
->primary
, new);
3995 /* To be sure that nobody uses thresholds */
3999 mutex_unlock(&memcg
->thresholds_lock
);
4004 static int mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
4005 struct eventfd_ctx
*eventfd
, const char *args
)
4007 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEM
);
4010 static int memsw_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
4011 struct eventfd_ctx
*eventfd
, const char *args
)
4013 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEMSWAP
);
4016 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
4017 struct eventfd_ctx
*eventfd
, enum res_type type
)
4019 struct mem_cgroup_thresholds
*thresholds
;
4020 struct mem_cgroup_threshold_ary
*new;
4021 unsigned long usage
;
4024 mutex_lock(&memcg
->thresholds_lock
);
4027 thresholds
= &memcg
->thresholds
;
4028 usage
= mem_cgroup_usage(memcg
, false);
4029 } else if (type
== _MEMSWAP
) {
4030 thresholds
= &memcg
->memsw_thresholds
;
4031 usage
= mem_cgroup_usage(memcg
, true);
4035 if (!thresholds
->primary
)
4038 /* Check if a threshold crossed before removing */
4039 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4041 /* Calculate new number of threshold */
4043 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
4044 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
4048 new = thresholds
->spare
;
4050 /* Set thresholds array to NULL if we don't have thresholds */
4059 /* Copy thresholds and find current threshold */
4060 new->current_threshold
= -1;
4061 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
4062 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
4065 new->entries
[j
] = thresholds
->primary
->entries
[i
];
4066 if (new->entries
[j
].threshold
<= usage
) {
4068 * new->current_threshold will not be used
4069 * until rcu_assign_pointer(), so it's safe to increment
4072 ++new->current_threshold
;
4078 /* Swap primary and spare array */
4079 thresholds
->spare
= thresholds
->primary
;
4081 rcu_assign_pointer(thresholds
->primary
, new);
4083 /* To be sure that nobody uses thresholds */
4086 /* If all events are unregistered, free the spare array */
4088 kfree(thresholds
->spare
);
4089 thresholds
->spare
= NULL
;
4092 mutex_unlock(&memcg
->thresholds_lock
);
4095 static void mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
4096 struct eventfd_ctx
*eventfd
)
4098 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEM
);
4101 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
4102 struct eventfd_ctx
*eventfd
)
4104 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEMSWAP
);
4107 static int mem_cgroup_oom_register_event(struct mem_cgroup
*memcg
,
4108 struct eventfd_ctx
*eventfd
, const char *args
)
4110 struct mem_cgroup_eventfd_list
*event
;
4112 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
4116 spin_lock(&memcg_oom_lock
);
4118 event
->eventfd
= eventfd
;
4119 list_add(&event
->list
, &memcg
->oom_notify
);
4121 /* already in OOM ? */
4122 if (memcg
->under_oom
)
4123 eventfd_signal(eventfd
, 1);
4124 spin_unlock(&memcg_oom_lock
);
4129 static void mem_cgroup_oom_unregister_event(struct mem_cgroup
*memcg
,
4130 struct eventfd_ctx
*eventfd
)
4132 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
4134 spin_lock(&memcg_oom_lock
);
4136 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
4137 if (ev
->eventfd
== eventfd
) {
4138 list_del(&ev
->list
);
4143 spin_unlock(&memcg_oom_lock
);
4146 static int mem_cgroup_oom_control_read(struct seq_file
*sf
, void *v
)
4148 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(sf
);
4150 seq_printf(sf
, "oom_kill_disable %d\n", memcg
->oom_kill_disable
);
4151 seq_printf(sf
, "under_oom %d\n", (bool)memcg
->under_oom
);
4152 seq_printf(sf
, "oom_kill %lu\n",
4153 atomic_long_read(&memcg
->memory_events
[MEMCG_OOM_KILL
]));
4157 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state
*css
,
4158 struct cftype
*cft
, u64 val
)
4160 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4162 /* cannot set to root cgroup and only 0 and 1 are allowed */
4163 if (!css
->parent
|| !((val
== 0) || (val
== 1)))
4166 memcg
->oom_kill_disable
= val
;
4168 memcg_oom_recover(memcg
);
4173 #ifdef CONFIG_CGROUP_WRITEBACK
4175 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
4177 return wb_domain_init(&memcg
->cgwb_domain
, gfp
);
4180 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
4182 wb_domain_exit(&memcg
->cgwb_domain
);
4185 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
4187 wb_domain_size_changed(&memcg
->cgwb_domain
);
4190 struct wb_domain
*mem_cgroup_wb_domain(struct bdi_writeback
*wb
)
4192 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
4194 if (!memcg
->css
.parent
)
4197 return &memcg
->cgwb_domain
;
4201 * idx can be of type enum memcg_stat_item or node_stat_item.
4202 * Keep in sync with memcg_exact_page().
4204 static unsigned long memcg_exact_page_state(struct mem_cgroup
*memcg
, int idx
)
4206 long x
= atomic_long_read(&memcg
->vmstats
[idx
]);
4209 for_each_online_cpu(cpu
)
4210 x
+= per_cpu_ptr(memcg
->vmstats_percpu
, cpu
)->stat
[idx
];
4217 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4218 * @wb: bdi_writeback in question
4219 * @pfilepages: out parameter for number of file pages
4220 * @pheadroom: out parameter for number of allocatable pages according to memcg
4221 * @pdirty: out parameter for number of dirty pages
4222 * @pwriteback: out parameter for number of pages under writeback
4224 * Determine the numbers of file, headroom, dirty, and writeback pages in
4225 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4226 * is a bit more involved.
4228 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4229 * headroom is calculated as the lowest headroom of itself and the
4230 * ancestors. Note that this doesn't consider the actual amount of
4231 * available memory in the system. The caller should further cap
4232 * *@pheadroom accordingly.
4234 void mem_cgroup_wb_stats(struct bdi_writeback
*wb
, unsigned long *pfilepages
,
4235 unsigned long *pheadroom
, unsigned long *pdirty
,
4236 unsigned long *pwriteback
)
4238 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
4239 struct mem_cgroup
*parent
;
4241 *pdirty
= memcg_exact_page_state(memcg
, NR_FILE_DIRTY
);
4243 /* this should eventually include NR_UNSTABLE_NFS */
4244 *pwriteback
= memcg_exact_page_state(memcg
, NR_WRITEBACK
);
4245 *pfilepages
= memcg_exact_page_state(memcg
, NR_INACTIVE_FILE
) +
4246 memcg_exact_page_state(memcg
, NR_ACTIVE_FILE
);
4247 *pheadroom
= PAGE_COUNTER_MAX
;
4249 while ((parent
= parent_mem_cgroup(memcg
))) {
4250 unsigned long ceiling
= min(memcg
->memory
.max
, memcg
->high
);
4251 unsigned long used
= page_counter_read(&memcg
->memory
);
4253 *pheadroom
= min(*pheadroom
, ceiling
- min(ceiling
, used
));
4258 #else /* CONFIG_CGROUP_WRITEBACK */
4260 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
4265 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
4269 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
4273 #endif /* CONFIG_CGROUP_WRITEBACK */
4276 * DO NOT USE IN NEW FILES.
4278 * "cgroup.event_control" implementation.
4280 * This is way over-engineered. It tries to support fully configurable
4281 * events for each user. Such level of flexibility is completely
4282 * unnecessary especially in the light of the planned unified hierarchy.
4284 * Please deprecate this and replace with something simpler if at all
4289 * Unregister event and free resources.
4291 * Gets called from workqueue.
4293 static void memcg_event_remove(struct work_struct
*work
)
4295 struct mem_cgroup_event
*event
=
4296 container_of(work
, struct mem_cgroup_event
, remove
);
4297 struct mem_cgroup
*memcg
= event
->memcg
;
4299 remove_wait_queue(event
->wqh
, &event
->wait
);
4301 event
->unregister_event(memcg
, event
->eventfd
);
4303 /* Notify userspace the event is going away. */
4304 eventfd_signal(event
->eventfd
, 1);
4306 eventfd_ctx_put(event
->eventfd
);
4308 css_put(&memcg
->css
);
4312 * Gets called on EPOLLHUP on eventfd when user closes it.
4314 * Called with wqh->lock held and interrupts disabled.
4316 static int memcg_event_wake(wait_queue_entry_t
*wait
, unsigned mode
,
4317 int sync
, void *key
)
4319 struct mem_cgroup_event
*event
=
4320 container_of(wait
, struct mem_cgroup_event
, wait
);
4321 struct mem_cgroup
*memcg
= event
->memcg
;
4322 __poll_t flags
= key_to_poll(key
);
4324 if (flags
& EPOLLHUP
) {
4326 * If the event has been detached at cgroup removal, we
4327 * can simply return knowing the other side will cleanup
4330 * We can't race against event freeing since the other
4331 * side will require wqh->lock via remove_wait_queue(),
4334 spin_lock(&memcg
->event_list_lock
);
4335 if (!list_empty(&event
->list
)) {
4336 list_del_init(&event
->list
);
4338 * We are in atomic context, but cgroup_event_remove()
4339 * may sleep, so we have to call it in workqueue.
4341 schedule_work(&event
->remove
);
4343 spin_unlock(&memcg
->event_list_lock
);
4349 static void memcg_event_ptable_queue_proc(struct file
*file
,
4350 wait_queue_head_t
*wqh
, poll_table
*pt
)
4352 struct mem_cgroup_event
*event
=
4353 container_of(pt
, struct mem_cgroup_event
, pt
);
4356 add_wait_queue(wqh
, &event
->wait
);
4360 * DO NOT USE IN NEW FILES.
4362 * Parse input and register new cgroup event handler.
4364 * Input must be in format '<event_fd> <control_fd> <args>'.
4365 * Interpretation of args is defined by control file implementation.
4367 static ssize_t
memcg_write_event_control(struct kernfs_open_file
*of
,
4368 char *buf
, size_t nbytes
, loff_t off
)
4370 struct cgroup_subsys_state
*css
= of_css(of
);
4371 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4372 struct mem_cgroup_event
*event
;
4373 struct cgroup_subsys_state
*cfile_css
;
4374 unsigned int efd
, cfd
;
4381 buf
= strstrip(buf
);
4383 efd
= simple_strtoul(buf
, &endp
, 10);
4388 cfd
= simple_strtoul(buf
, &endp
, 10);
4389 if ((*endp
!= ' ') && (*endp
!= '\0'))
4393 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
4397 event
->memcg
= memcg
;
4398 INIT_LIST_HEAD(&event
->list
);
4399 init_poll_funcptr(&event
->pt
, memcg_event_ptable_queue_proc
);
4400 init_waitqueue_func_entry(&event
->wait
, memcg_event_wake
);
4401 INIT_WORK(&event
->remove
, memcg_event_remove
);
4409 event
->eventfd
= eventfd_ctx_fileget(efile
.file
);
4410 if (IS_ERR(event
->eventfd
)) {
4411 ret
= PTR_ERR(event
->eventfd
);
4418 goto out_put_eventfd
;
4421 /* the process need read permission on control file */
4422 /* AV: shouldn't we check that it's been opened for read instead? */
4423 ret
= inode_permission(file_inode(cfile
.file
), MAY_READ
);
4428 * Determine the event callbacks and set them in @event. This used
4429 * to be done via struct cftype but cgroup core no longer knows
4430 * about these events. The following is crude but the whole thing
4431 * is for compatibility anyway.
4433 * DO NOT ADD NEW FILES.
4435 name
= cfile
.file
->f_path
.dentry
->d_name
.name
;
4437 if (!strcmp(name
, "memory.usage_in_bytes")) {
4438 event
->register_event
= mem_cgroup_usage_register_event
;
4439 event
->unregister_event
= mem_cgroup_usage_unregister_event
;
4440 } else if (!strcmp(name
, "memory.oom_control")) {
4441 event
->register_event
= mem_cgroup_oom_register_event
;
4442 event
->unregister_event
= mem_cgroup_oom_unregister_event
;
4443 } else if (!strcmp(name
, "memory.pressure_level")) {
4444 event
->register_event
= vmpressure_register_event
;
4445 event
->unregister_event
= vmpressure_unregister_event
;
4446 } else if (!strcmp(name
, "memory.memsw.usage_in_bytes")) {
4447 event
->register_event
= memsw_cgroup_usage_register_event
;
4448 event
->unregister_event
= memsw_cgroup_usage_unregister_event
;
4455 * Verify @cfile should belong to @css. Also, remaining events are
4456 * automatically removed on cgroup destruction but the removal is
4457 * asynchronous, so take an extra ref on @css.
4459 cfile_css
= css_tryget_online_from_dir(cfile
.file
->f_path
.dentry
->d_parent
,
4460 &memory_cgrp_subsys
);
4462 if (IS_ERR(cfile_css
))
4464 if (cfile_css
!= css
) {
4469 ret
= event
->register_event(memcg
, event
->eventfd
, buf
);
4473 vfs_poll(efile
.file
, &event
->pt
);
4475 spin_lock(&memcg
->event_list_lock
);
4476 list_add(&event
->list
, &memcg
->event_list
);
4477 spin_unlock(&memcg
->event_list_lock
);
4489 eventfd_ctx_put(event
->eventfd
);
4498 static struct cftype mem_cgroup_legacy_files
[] = {
4500 .name
= "usage_in_bytes",
4501 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
4502 .read_u64
= mem_cgroup_read_u64
,
4505 .name
= "max_usage_in_bytes",
4506 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
4507 .write
= mem_cgroup_reset
,
4508 .read_u64
= mem_cgroup_read_u64
,
4511 .name
= "limit_in_bytes",
4512 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
4513 .write
= mem_cgroup_write
,
4514 .read_u64
= mem_cgroup_read_u64
,
4517 .name
= "soft_limit_in_bytes",
4518 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
4519 .write
= mem_cgroup_write
,
4520 .read_u64
= mem_cgroup_read_u64
,
4524 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
4525 .write
= mem_cgroup_reset
,
4526 .read_u64
= mem_cgroup_read_u64
,
4530 .seq_show
= memcg_stat_show
,
4533 .name
= "force_empty",
4534 .write
= mem_cgroup_force_empty_write
,
4537 .name
= "use_hierarchy",
4538 .write_u64
= mem_cgroup_hierarchy_write
,
4539 .read_u64
= mem_cgroup_hierarchy_read
,
4542 .name
= "cgroup.event_control", /* XXX: for compat */
4543 .write
= memcg_write_event_control
,
4544 .flags
= CFTYPE_NO_PREFIX
| CFTYPE_WORLD_WRITABLE
,
4547 .name
= "swappiness",
4548 .read_u64
= mem_cgroup_swappiness_read
,
4549 .write_u64
= mem_cgroup_swappiness_write
,
4552 .name
= "move_charge_at_immigrate",
4553 .read_u64
= mem_cgroup_move_charge_read
,
4554 .write_u64
= mem_cgroup_move_charge_write
,
4557 .name
= "oom_control",
4558 .seq_show
= mem_cgroup_oom_control_read
,
4559 .write_u64
= mem_cgroup_oom_control_write
,
4560 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4563 .name
= "pressure_level",
4567 .name
= "numa_stat",
4568 .seq_show
= memcg_numa_stat_show
,
4572 .name
= "kmem.limit_in_bytes",
4573 .private = MEMFILE_PRIVATE(_KMEM
, RES_LIMIT
),
4574 .write
= mem_cgroup_write
,
4575 .read_u64
= mem_cgroup_read_u64
,
4578 .name
= "kmem.usage_in_bytes",
4579 .private = MEMFILE_PRIVATE(_KMEM
, RES_USAGE
),
4580 .read_u64
= mem_cgroup_read_u64
,
4583 .name
= "kmem.failcnt",
4584 .private = MEMFILE_PRIVATE(_KMEM
, RES_FAILCNT
),
4585 .write
= mem_cgroup_reset
,
4586 .read_u64
= mem_cgroup_read_u64
,
4589 .name
= "kmem.max_usage_in_bytes",
4590 .private = MEMFILE_PRIVATE(_KMEM
, RES_MAX_USAGE
),
4591 .write
= mem_cgroup_reset
,
4592 .read_u64
= mem_cgroup_read_u64
,
4594 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4596 .name
= "kmem.slabinfo",
4597 .seq_start
= memcg_slab_start
,
4598 .seq_next
= memcg_slab_next
,
4599 .seq_stop
= memcg_slab_stop
,
4600 .seq_show
= memcg_slab_show
,
4604 .name
= "kmem.tcp.limit_in_bytes",
4605 .private = MEMFILE_PRIVATE(_TCP
, RES_LIMIT
),
4606 .write
= mem_cgroup_write
,
4607 .read_u64
= mem_cgroup_read_u64
,
4610 .name
= "kmem.tcp.usage_in_bytes",
4611 .private = MEMFILE_PRIVATE(_TCP
, RES_USAGE
),
4612 .read_u64
= mem_cgroup_read_u64
,
4615 .name
= "kmem.tcp.failcnt",
4616 .private = MEMFILE_PRIVATE(_TCP
, RES_FAILCNT
),
4617 .write
= mem_cgroup_reset
,
4618 .read_u64
= mem_cgroup_read_u64
,
4621 .name
= "kmem.tcp.max_usage_in_bytes",
4622 .private = MEMFILE_PRIVATE(_TCP
, RES_MAX_USAGE
),
4623 .write
= mem_cgroup_reset
,
4624 .read_u64
= mem_cgroup_read_u64
,
4626 { }, /* terminate */
4630 * Private memory cgroup IDR
4632 * Swap-out records and page cache shadow entries need to store memcg
4633 * references in constrained space, so we maintain an ID space that is
4634 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4635 * memory-controlled cgroups to 64k.
4637 * However, there usually are many references to the oflline CSS after
4638 * the cgroup has been destroyed, such as page cache or reclaimable
4639 * slab objects, that don't need to hang on to the ID. We want to keep
4640 * those dead CSS from occupying IDs, or we might quickly exhaust the
4641 * relatively small ID space and prevent the creation of new cgroups
4642 * even when there are much fewer than 64k cgroups - possibly none.
4644 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4645 * be freed and recycled when it's no longer needed, which is usually
4646 * when the CSS is offlined.
4648 * The only exception to that are records of swapped out tmpfs/shmem
4649 * pages that need to be attributed to live ancestors on swapin. But
4650 * those references are manageable from userspace.
4653 static DEFINE_IDR(mem_cgroup_idr
);
4655 static void mem_cgroup_id_remove(struct mem_cgroup
*memcg
)
4657 if (memcg
->id
.id
> 0) {
4658 idr_remove(&mem_cgroup_idr
, memcg
->id
.id
);
4663 static void mem_cgroup_id_get_many(struct mem_cgroup
*memcg
, unsigned int n
)
4665 refcount_add(n
, &memcg
->id
.ref
);
4668 static void mem_cgroup_id_put_many(struct mem_cgroup
*memcg
, unsigned int n
)
4670 if (refcount_sub_and_test(n
, &memcg
->id
.ref
)) {
4671 mem_cgroup_id_remove(memcg
);
4673 /* Memcg ID pins CSS */
4674 css_put(&memcg
->css
);
4678 static inline void mem_cgroup_id_get(struct mem_cgroup
*memcg
)
4680 mem_cgroup_id_get_many(memcg
, 1);
4683 static inline void mem_cgroup_id_put(struct mem_cgroup
*memcg
)
4685 mem_cgroup_id_put_many(memcg
, 1);
4689 * mem_cgroup_from_id - look up a memcg from a memcg id
4690 * @id: the memcg id to look up
4692 * Caller must hold rcu_read_lock().
4694 struct mem_cgroup
*mem_cgroup_from_id(unsigned short id
)
4696 WARN_ON_ONCE(!rcu_read_lock_held());
4697 return idr_find(&mem_cgroup_idr
, id
);
4700 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup
*memcg
, int node
)
4702 struct mem_cgroup_per_node
*pn
;
4705 * This routine is called against possible nodes.
4706 * But it's BUG to call kmalloc() against offline node.
4708 * TODO: this routine can waste much memory for nodes which will
4709 * never be onlined. It's better to use memory hotplug callback
4712 if (!node_state(node
, N_NORMAL_MEMORY
))
4714 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4718 pn
->lruvec_stat_local
= alloc_percpu(struct lruvec_stat
);
4719 if (!pn
->lruvec_stat_local
) {
4724 pn
->lruvec_stat_cpu
= alloc_percpu(struct lruvec_stat
);
4725 if (!pn
->lruvec_stat_cpu
) {
4726 free_percpu(pn
->lruvec_stat_local
);
4731 lruvec_init(&pn
->lruvec
);
4732 pn
->usage_in_excess
= 0;
4733 pn
->on_tree
= false;
4736 memcg
->nodeinfo
[node
] = pn
;
4740 static void free_mem_cgroup_per_node_info(struct mem_cgroup
*memcg
, int node
)
4742 struct mem_cgroup_per_node
*pn
= memcg
->nodeinfo
[node
];
4747 free_percpu(pn
->lruvec_stat_cpu
);
4748 free_percpu(pn
->lruvec_stat_local
);
4752 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
4757 * Flush percpu vmstats and vmevents to guarantee the value correctness
4758 * on parent's and all ancestor levels.
4760 memcg_flush_percpu_vmstats(memcg
, false);
4761 memcg_flush_percpu_vmevents(memcg
);
4763 free_mem_cgroup_per_node_info(memcg
, node
);
4764 free_percpu(memcg
->vmstats_percpu
);
4765 free_percpu(memcg
->vmstats_local
);
4769 static void mem_cgroup_free(struct mem_cgroup
*memcg
)
4771 memcg_wb_domain_exit(memcg
);
4772 __mem_cgroup_free(memcg
);
4775 static struct mem_cgroup
*mem_cgroup_alloc(void)
4777 struct mem_cgroup
*memcg
;
4781 size
= sizeof(struct mem_cgroup
);
4782 size
+= nr_node_ids
* sizeof(struct mem_cgroup_per_node
*);
4784 memcg
= kzalloc(size
, GFP_KERNEL
);
4788 memcg
->id
.id
= idr_alloc(&mem_cgroup_idr
, NULL
,
4789 1, MEM_CGROUP_ID_MAX
,
4791 if (memcg
->id
.id
< 0)
4794 memcg
->vmstats_local
= alloc_percpu(struct memcg_vmstats_percpu
);
4795 if (!memcg
->vmstats_local
)
4798 memcg
->vmstats_percpu
= alloc_percpu(struct memcg_vmstats_percpu
);
4799 if (!memcg
->vmstats_percpu
)
4803 if (alloc_mem_cgroup_per_node_info(memcg
, node
))
4806 if (memcg_wb_domain_init(memcg
, GFP_KERNEL
))
4809 INIT_WORK(&memcg
->high_work
, high_work_func
);
4810 memcg
->last_scanned_node
= MAX_NUMNODES
;
4811 INIT_LIST_HEAD(&memcg
->oom_notify
);
4812 mutex_init(&memcg
->thresholds_lock
);
4813 spin_lock_init(&memcg
->move_lock
);
4814 vmpressure_init(&memcg
->vmpressure
);
4815 INIT_LIST_HEAD(&memcg
->event_list
);
4816 spin_lock_init(&memcg
->event_list_lock
);
4817 memcg
->socket_pressure
= jiffies
;
4818 #ifdef CONFIG_MEMCG_KMEM
4819 memcg
->kmemcg_id
= -1;
4821 #ifdef CONFIG_CGROUP_WRITEBACK
4822 INIT_LIST_HEAD(&memcg
->cgwb_list
);
4824 idr_replace(&mem_cgroup_idr
, memcg
, memcg
->id
.id
);
4827 mem_cgroup_id_remove(memcg
);
4828 __mem_cgroup_free(memcg
);
4832 static struct cgroup_subsys_state
* __ref
4833 mem_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
4835 struct mem_cgroup
*parent
= mem_cgroup_from_css(parent_css
);
4836 struct mem_cgroup
*memcg
;
4837 long error
= -ENOMEM
;
4839 memcg
= mem_cgroup_alloc();
4841 return ERR_PTR(error
);
4843 memcg
->high
= PAGE_COUNTER_MAX
;
4844 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4846 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
4847 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
4849 if (parent
&& parent
->use_hierarchy
) {
4850 memcg
->use_hierarchy
= true;
4851 page_counter_init(&memcg
->memory
, &parent
->memory
);
4852 page_counter_init(&memcg
->swap
, &parent
->swap
);
4853 page_counter_init(&memcg
->memsw
, &parent
->memsw
);
4854 page_counter_init(&memcg
->kmem
, &parent
->kmem
);
4855 page_counter_init(&memcg
->tcpmem
, &parent
->tcpmem
);
4857 page_counter_init(&memcg
->memory
, NULL
);
4858 page_counter_init(&memcg
->swap
, NULL
);
4859 page_counter_init(&memcg
->memsw
, NULL
);
4860 page_counter_init(&memcg
->kmem
, NULL
);
4861 page_counter_init(&memcg
->tcpmem
, NULL
);
4863 * Deeper hierachy with use_hierarchy == false doesn't make
4864 * much sense so let cgroup subsystem know about this
4865 * unfortunate state in our controller.
4867 if (parent
!= root_mem_cgroup
)
4868 memory_cgrp_subsys
.broken_hierarchy
= true;
4871 /* The following stuff does not apply to the root */
4873 #ifdef CONFIG_MEMCG_KMEM
4874 INIT_LIST_HEAD(&memcg
->kmem_caches
);
4876 root_mem_cgroup
= memcg
;
4880 error
= memcg_online_kmem(memcg
);
4884 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4885 static_branch_inc(&memcg_sockets_enabled_key
);
4889 mem_cgroup_id_remove(memcg
);
4890 mem_cgroup_free(memcg
);
4891 return ERR_PTR(-ENOMEM
);
4894 static int mem_cgroup_css_online(struct cgroup_subsys_state
*css
)
4896 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4899 * A memcg must be visible for memcg_expand_shrinker_maps()
4900 * by the time the maps are allocated. So, we allocate maps
4901 * here, when for_each_mem_cgroup() can't skip it.
4903 if (memcg_alloc_shrinker_maps(memcg
)) {
4904 mem_cgroup_id_remove(memcg
);
4908 /* Online state pins memcg ID, memcg ID pins CSS */
4909 refcount_set(&memcg
->id
.ref
, 1);
4914 static void mem_cgroup_css_offline(struct cgroup_subsys_state
*css
)
4916 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4917 struct mem_cgroup_event
*event
, *tmp
;
4920 * Unregister events and notify userspace.
4921 * Notify userspace about cgroup removing only after rmdir of cgroup
4922 * directory to avoid race between userspace and kernelspace.
4924 spin_lock(&memcg
->event_list_lock
);
4925 list_for_each_entry_safe(event
, tmp
, &memcg
->event_list
, list
) {
4926 list_del_init(&event
->list
);
4927 schedule_work(&event
->remove
);
4929 spin_unlock(&memcg
->event_list_lock
);
4931 page_counter_set_min(&memcg
->memory
, 0);
4932 page_counter_set_low(&memcg
->memory
, 0);
4934 memcg_offline_kmem(memcg
);
4935 wb_memcg_offline(memcg
);
4937 drain_all_stock(memcg
);
4939 mem_cgroup_id_put(memcg
);
4942 static void mem_cgroup_css_released(struct cgroup_subsys_state
*css
)
4944 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4946 invalidate_reclaim_iterators(memcg
);
4949 static void mem_cgroup_css_free(struct cgroup_subsys_state
*css
)
4951 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4953 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4954 static_branch_dec(&memcg_sockets_enabled_key
);
4956 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && memcg
->tcpmem_active
)
4957 static_branch_dec(&memcg_sockets_enabled_key
);
4959 vmpressure_cleanup(&memcg
->vmpressure
);
4960 cancel_work_sync(&memcg
->high_work
);
4961 mem_cgroup_remove_from_trees(memcg
);
4962 memcg_free_shrinker_maps(memcg
);
4963 memcg_free_kmem(memcg
);
4964 mem_cgroup_free(memcg
);
4968 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4969 * @css: the target css
4971 * Reset the states of the mem_cgroup associated with @css. This is
4972 * invoked when the userland requests disabling on the default hierarchy
4973 * but the memcg is pinned through dependency. The memcg should stop
4974 * applying policies and should revert to the vanilla state as it may be
4975 * made visible again.
4977 * The current implementation only resets the essential configurations.
4978 * This needs to be expanded to cover all the visible parts.
4980 static void mem_cgroup_css_reset(struct cgroup_subsys_state
*css
)
4982 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4984 page_counter_set_max(&memcg
->memory
, PAGE_COUNTER_MAX
);
4985 page_counter_set_max(&memcg
->swap
, PAGE_COUNTER_MAX
);
4986 page_counter_set_max(&memcg
->memsw
, PAGE_COUNTER_MAX
);
4987 page_counter_set_max(&memcg
->kmem
, PAGE_COUNTER_MAX
);
4988 page_counter_set_max(&memcg
->tcpmem
, PAGE_COUNTER_MAX
);
4989 page_counter_set_min(&memcg
->memory
, 0);
4990 page_counter_set_low(&memcg
->memory
, 0);
4991 memcg
->high
= PAGE_COUNTER_MAX
;
4992 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4993 memcg_wb_domain_size_changed(memcg
);
4997 /* Handlers for move charge at task migration. */
4998 static int mem_cgroup_do_precharge(unsigned long count
)
5002 /* Try a single bulk charge without reclaim first, kswapd may wake */
5003 ret
= try_charge(mc
.to
, GFP_KERNEL
& ~__GFP_DIRECT_RECLAIM
, count
);
5005 mc
.precharge
+= count
;
5009 /* Try charges one by one with reclaim, but do not retry */
5011 ret
= try_charge(mc
.to
, GFP_KERNEL
| __GFP_NORETRY
, 1);
5025 enum mc_target_type
{
5032 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
5033 unsigned long addr
, pte_t ptent
)
5035 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
5037 if (!page
|| !page_mapped(page
))
5039 if (PageAnon(page
)) {
5040 if (!(mc
.flags
& MOVE_ANON
))
5043 if (!(mc
.flags
& MOVE_FILE
))
5046 if (!get_page_unless_zero(page
))
5052 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5053 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
5054 pte_t ptent
, swp_entry_t
*entry
)
5056 struct page
*page
= NULL
;
5057 swp_entry_t ent
= pte_to_swp_entry(ptent
);
5059 if (!(mc
.flags
& MOVE_ANON
) || non_swap_entry(ent
))
5063 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5064 * a device and because they are not accessible by CPU they are store
5065 * as special swap entry in the CPU page table.
5067 if (is_device_private_entry(ent
)) {
5068 page
= device_private_entry_to_page(ent
);
5070 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5071 * a refcount of 1 when free (unlike normal page)
5073 if (!page_ref_add_unless(page
, 1, 1))
5079 * Because lookup_swap_cache() updates some statistics counter,
5080 * we call find_get_page() with swapper_space directly.
5082 page
= find_get_page(swap_address_space(ent
), swp_offset(ent
));
5083 if (do_memsw_account())
5084 entry
->val
= ent
.val
;
5089 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
5090 pte_t ptent
, swp_entry_t
*entry
)
5096 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
5097 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5099 struct page
*page
= NULL
;
5100 struct address_space
*mapping
;
5103 if (!vma
->vm_file
) /* anonymous vma */
5105 if (!(mc
.flags
& MOVE_FILE
))
5108 mapping
= vma
->vm_file
->f_mapping
;
5109 pgoff
= linear_page_index(vma
, addr
);
5111 /* page is moved even if it's not RSS of this task(page-faulted). */
5113 /* shmem/tmpfs may report page out on swap: account for that too. */
5114 if (shmem_mapping(mapping
)) {
5115 page
= find_get_entry(mapping
, pgoff
);
5116 if (xa_is_value(page
)) {
5117 swp_entry_t swp
= radix_to_swp_entry(page
);
5118 if (do_memsw_account())
5120 page
= find_get_page(swap_address_space(swp
),
5124 page
= find_get_page(mapping
, pgoff
);
5126 page
= find_get_page(mapping
, pgoff
);
5132 * mem_cgroup_move_account - move account of the page
5134 * @compound: charge the page as compound or small page
5135 * @from: mem_cgroup which the page is moved from.
5136 * @to: mem_cgroup which the page is moved to. @from != @to.
5138 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5140 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5143 static int mem_cgroup_move_account(struct page
*page
,
5145 struct mem_cgroup
*from
,
5146 struct mem_cgroup
*to
)
5148 unsigned long flags
;
5149 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5153 VM_BUG_ON(from
== to
);
5154 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5155 VM_BUG_ON(compound
&& !PageTransHuge(page
));
5158 * Prevent mem_cgroup_migrate() from looking at
5159 * page->mem_cgroup of its source page while we change it.
5162 if (!trylock_page(page
))
5166 if (page
->mem_cgroup
!= from
)
5169 anon
= PageAnon(page
);
5171 spin_lock_irqsave(&from
->move_lock
, flags
);
5173 if (!anon
&& page_mapped(page
)) {
5174 __mod_memcg_state(from
, NR_FILE_MAPPED
, -nr_pages
);
5175 __mod_memcg_state(to
, NR_FILE_MAPPED
, nr_pages
);
5179 * move_lock grabbed above and caller set from->moving_account, so
5180 * mod_memcg_page_state will serialize updates to PageDirty.
5181 * So mapping should be stable for dirty pages.
5183 if (!anon
&& PageDirty(page
)) {
5184 struct address_space
*mapping
= page_mapping(page
);
5186 if (mapping_cap_account_dirty(mapping
)) {
5187 __mod_memcg_state(from
, NR_FILE_DIRTY
, -nr_pages
);
5188 __mod_memcg_state(to
, NR_FILE_DIRTY
, nr_pages
);
5192 if (PageWriteback(page
)) {
5193 __mod_memcg_state(from
, NR_WRITEBACK
, -nr_pages
);
5194 __mod_memcg_state(to
, NR_WRITEBACK
, nr_pages
);
5198 * It is safe to change page->mem_cgroup here because the page
5199 * is referenced, charged, and isolated - we can't race with
5200 * uncharging, charging, migration, or LRU putback.
5203 /* caller should have done css_get */
5204 page
->mem_cgroup
= to
;
5205 spin_unlock_irqrestore(&from
->move_lock
, flags
);
5209 local_irq_disable();
5210 mem_cgroup_charge_statistics(to
, page
, compound
, nr_pages
);
5211 memcg_check_events(to
, page
);
5212 mem_cgroup_charge_statistics(from
, page
, compound
, -nr_pages
);
5213 memcg_check_events(from
, page
);
5222 * get_mctgt_type - get target type of moving charge
5223 * @vma: the vma the pte to be checked belongs
5224 * @addr: the address corresponding to the pte to be checked
5225 * @ptent: the pte to be checked
5226 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5229 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5230 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5231 * move charge. if @target is not NULL, the page is stored in target->page
5232 * with extra refcnt got(Callers should handle it).
5233 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5234 * target for charge migration. if @target is not NULL, the entry is stored
5236 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5237 * (so ZONE_DEVICE page and thus not on the lru).
5238 * For now we such page is charge like a regular page would be as for all
5239 * intent and purposes it is just special memory taking the place of a
5242 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5244 * Called with pte lock held.
5247 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
5248 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
5250 struct page
*page
= NULL
;
5251 enum mc_target_type ret
= MC_TARGET_NONE
;
5252 swp_entry_t ent
= { .val
= 0 };
5254 if (pte_present(ptent
))
5255 page
= mc_handle_present_pte(vma
, addr
, ptent
);
5256 else if (is_swap_pte(ptent
))
5257 page
= mc_handle_swap_pte(vma
, ptent
, &ent
);
5258 else if (pte_none(ptent
))
5259 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
5261 if (!page
&& !ent
.val
)
5265 * Do only loose check w/o serialization.
5266 * mem_cgroup_move_account() checks the page is valid or
5267 * not under LRU exclusion.
5269 if (page
->mem_cgroup
== mc
.from
) {
5270 ret
= MC_TARGET_PAGE
;
5271 if (is_device_private_page(page
))
5272 ret
= MC_TARGET_DEVICE
;
5274 target
->page
= page
;
5276 if (!ret
|| !target
)
5280 * There is a swap entry and a page doesn't exist or isn't charged.
5281 * But we cannot move a tail-page in a THP.
5283 if (ent
.val
&& !ret
&& (!page
|| !PageTransCompound(page
)) &&
5284 mem_cgroup_id(mc
.from
) == lookup_swap_cgroup_id(ent
)) {
5285 ret
= MC_TARGET_SWAP
;
5292 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5294 * We don't consider PMD mapped swapping or file mapped pages because THP does
5295 * not support them for now.
5296 * Caller should make sure that pmd_trans_huge(pmd) is true.
5298 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
5299 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
5301 struct page
*page
= NULL
;
5302 enum mc_target_type ret
= MC_TARGET_NONE
;
5304 if (unlikely(is_swap_pmd(pmd
))) {
5305 VM_BUG_ON(thp_migration_supported() &&
5306 !is_pmd_migration_entry(pmd
));
5309 page
= pmd_page(pmd
);
5310 VM_BUG_ON_PAGE(!page
|| !PageHead(page
), page
);
5311 if (!(mc
.flags
& MOVE_ANON
))
5313 if (page
->mem_cgroup
== mc
.from
) {
5314 ret
= MC_TARGET_PAGE
;
5317 target
->page
= page
;
5323 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
5324 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
5326 return MC_TARGET_NONE
;
5330 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
5331 unsigned long addr
, unsigned long end
,
5332 struct mm_walk
*walk
)
5334 struct vm_area_struct
*vma
= walk
->vma
;
5338 ptl
= pmd_trans_huge_lock(pmd
, vma
);
5341 * Note their can not be MC_TARGET_DEVICE for now as we do not
5342 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5343 * this might change.
5345 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
5346 mc
.precharge
+= HPAGE_PMD_NR
;
5351 if (pmd_trans_unstable(pmd
))
5353 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5354 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
5355 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
5356 mc
.precharge
++; /* increment precharge temporarily */
5357 pte_unmap_unlock(pte
- 1, ptl
);
5363 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
5365 unsigned long precharge
;
5367 struct mm_walk mem_cgroup_count_precharge_walk
= {
5368 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
5371 down_read(&mm
->mmap_sem
);
5372 walk_page_range(0, mm
->highest_vm_end
,
5373 &mem_cgroup_count_precharge_walk
);
5374 up_read(&mm
->mmap_sem
);
5376 precharge
= mc
.precharge
;
5382 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
5384 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
5386 VM_BUG_ON(mc
.moving_task
);
5387 mc
.moving_task
= current
;
5388 return mem_cgroup_do_precharge(precharge
);
5391 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5392 static void __mem_cgroup_clear_mc(void)
5394 struct mem_cgroup
*from
= mc
.from
;
5395 struct mem_cgroup
*to
= mc
.to
;
5397 /* we must uncharge all the leftover precharges from mc.to */
5399 cancel_charge(mc
.to
, mc
.precharge
);
5403 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5404 * we must uncharge here.
5406 if (mc
.moved_charge
) {
5407 cancel_charge(mc
.from
, mc
.moved_charge
);
5408 mc
.moved_charge
= 0;
5410 /* we must fixup refcnts and charges */
5411 if (mc
.moved_swap
) {
5412 /* uncharge swap account from the old cgroup */
5413 if (!mem_cgroup_is_root(mc
.from
))
5414 page_counter_uncharge(&mc
.from
->memsw
, mc
.moved_swap
);
5416 mem_cgroup_id_put_many(mc
.from
, mc
.moved_swap
);
5419 * we charged both to->memory and to->memsw, so we
5420 * should uncharge to->memory.
5422 if (!mem_cgroup_is_root(mc
.to
))
5423 page_counter_uncharge(&mc
.to
->memory
, mc
.moved_swap
);
5425 mem_cgroup_id_get_many(mc
.to
, mc
.moved_swap
);
5426 css_put_many(&mc
.to
->css
, mc
.moved_swap
);
5430 memcg_oom_recover(from
);
5431 memcg_oom_recover(to
);
5432 wake_up_all(&mc
.waitq
);
5435 static void mem_cgroup_clear_mc(void)
5437 struct mm_struct
*mm
= mc
.mm
;
5440 * we must clear moving_task before waking up waiters at the end of
5443 mc
.moving_task
= NULL
;
5444 __mem_cgroup_clear_mc();
5445 spin_lock(&mc
.lock
);
5449 spin_unlock(&mc
.lock
);
5454 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
5456 struct cgroup_subsys_state
*css
;
5457 struct mem_cgroup
*memcg
= NULL
; /* unneeded init to make gcc happy */
5458 struct mem_cgroup
*from
;
5459 struct task_struct
*leader
, *p
;
5460 struct mm_struct
*mm
;
5461 unsigned long move_flags
;
5464 /* charge immigration isn't supported on the default hierarchy */
5465 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5469 * Multi-process migrations only happen on the default hierarchy
5470 * where charge immigration is not used. Perform charge
5471 * immigration if @tset contains a leader and whine if there are
5475 cgroup_taskset_for_each_leader(leader
, css
, tset
) {
5478 memcg
= mem_cgroup_from_css(css
);
5484 * We are now commited to this value whatever it is. Changes in this
5485 * tunable will only affect upcoming migrations, not the current one.
5486 * So we need to save it, and keep it going.
5488 move_flags
= READ_ONCE(memcg
->move_charge_at_immigrate
);
5492 from
= mem_cgroup_from_task(p
);
5494 VM_BUG_ON(from
== memcg
);
5496 mm
= get_task_mm(p
);
5499 /* We move charges only when we move a owner of the mm */
5500 if (mm
->owner
== p
) {
5503 VM_BUG_ON(mc
.precharge
);
5504 VM_BUG_ON(mc
.moved_charge
);
5505 VM_BUG_ON(mc
.moved_swap
);
5507 spin_lock(&mc
.lock
);
5511 mc
.flags
= move_flags
;
5512 spin_unlock(&mc
.lock
);
5513 /* We set mc.moving_task later */
5515 ret
= mem_cgroup_precharge_mc(mm
);
5517 mem_cgroup_clear_mc();
5524 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
5527 mem_cgroup_clear_mc();
5530 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
5531 unsigned long addr
, unsigned long end
,
5532 struct mm_walk
*walk
)
5535 struct vm_area_struct
*vma
= walk
->vma
;
5538 enum mc_target_type target_type
;
5539 union mc_target target
;
5542 ptl
= pmd_trans_huge_lock(pmd
, vma
);
5544 if (mc
.precharge
< HPAGE_PMD_NR
) {
5548 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
5549 if (target_type
== MC_TARGET_PAGE
) {
5551 if (!isolate_lru_page(page
)) {
5552 if (!mem_cgroup_move_account(page
, true,
5554 mc
.precharge
-= HPAGE_PMD_NR
;
5555 mc
.moved_charge
+= HPAGE_PMD_NR
;
5557 putback_lru_page(page
);
5560 } else if (target_type
== MC_TARGET_DEVICE
) {
5562 if (!mem_cgroup_move_account(page
, true,
5564 mc
.precharge
-= HPAGE_PMD_NR
;
5565 mc
.moved_charge
+= HPAGE_PMD_NR
;
5573 if (pmd_trans_unstable(pmd
))
5576 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5577 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
5578 pte_t ptent
= *(pte
++);
5579 bool device
= false;
5585 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
5586 case MC_TARGET_DEVICE
:
5589 case MC_TARGET_PAGE
:
5592 * We can have a part of the split pmd here. Moving it
5593 * can be done but it would be too convoluted so simply
5594 * ignore such a partial THP and keep it in original
5595 * memcg. There should be somebody mapping the head.
5597 if (PageTransCompound(page
))
5599 if (!device
&& isolate_lru_page(page
))
5601 if (!mem_cgroup_move_account(page
, false,
5604 /* we uncharge from mc.from later. */
5608 putback_lru_page(page
);
5609 put
: /* get_mctgt_type() gets the page */
5612 case MC_TARGET_SWAP
:
5614 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
5616 /* we fixup refcnts and charges later. */
5624 pte_unmap_unlock(pte
- 1, ptl
);
5629 * We have consumed all precharges we got in can_attach().
5630 * We try charge one by one, but don't do any additional
5631 * charges to mc.to if we have failed in charge once in attach()
5634 ret
= mem_cgroup_do_precharge(1);
5642 static void mem_cgroup_move_charge(void)
5644 struct mm_walk mem_cgroup_move_charge_walk
= {
5645 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
5649 lru_add_drain_all();
5651 * Signal lock_page_memcg() to take the memcg's move_lock
5652 * while we're moving its pages to another memcg. Then wait
5653 * for already started RCU-only updates to finish.
5655 atomic_inc(&mc
.from
->moving_account
);
5658 if (unlikely(!down_read_trylock(&mc
.mm
->mmap_sem
))) {
5660 * Someone who are holding the mmap_sem might be waiting in
5661 * waitq. So we cancel all extra charges, wake up all waiters,
5662 * and retry. Because we cancel precharges, we might not be able
5663 * to move enough charges, but moving charge is a best-effort
5664 * feature anyway, so it wouldn't be a big problem.
5666 __mem_cgroup_clear_mc();
5671 * When we have consumed all precharges and failed in doing
5672 * additional charge, the page walk just aborts.
5674 walk_page_range(0, mc
.mm
->highest_vm_end
, &mem_cgroup_move_charge_walk
);
5676 up_read(&mc
.mm
->mmap_sem
);
5677 atomic_dec(&mc
.from
->moving_account
);
5680 static void mem_cgroup_move_task(void)
5683 mem_cgroup_move_charge();
5684 mem_cgroup_clear_mc();
5687 #else /* !CONFIG_MMU */
5688 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
5692 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
5695 static void mem_cgroup_move_task(void)
5701 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5702 * to verify whether we're attached to the default hierarchy on each mount
5705 static void mem_cgroup_bind(struct cgroup_subsys_state
*root_css
)
5708 * use_hierarchy is forced on the default hierarchy. cgroup core
5709 * guarantees that @root doesn't have any children, so turning it
5710 * on for the root memcg is enough.
5712 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5713 root_mem_cgroup
->use_hierarchy
= true;
5715 root_mem_cgroup
->use_hierarchy
= false;
5718 static int seq_puts_memcg_tunable(struct seq_file
*m
, unsigned long value
)
5720 if (value
== PAGE_COUNTER_MAX
)
5721 seq_puts(m
, "max\n");
5723 seq_printf(m
, "%llu\n", (u64
)value
* PAGE_SIZE
);
5728 static u64
memory_current_read(struct cgroup_subsys_state
*css
,
5731 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5733 return (u64
)page_counter_read(&memcg
->memory
) * PAGE_SIZE
;
5736 static int memory_min_show(struct seq_file
*m
, void *v
)
5738 return seq_puts_memcg_tunable(m
,
5739 READ_ONCE(mem_cgroup_from_seq(m
)->memory
.min
));
5742 static ssize_t
memory_min_write(struct kernfs_open_file
*of
,
5743 char *buf
, size_t nbytes
, loff_t off
)
5745 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5749 buf
= strstrip(buf
);
5750 err
= page_counter_memparse(buf
, "max", &min
);
5754 page_counter_set_min(&memcg
->memory
, min
);
5759 static int memory_low_show(struct seq_file
*m
, void *v
)
5761 return seq_puts_memcg_tunable(m
,
5762 READ_ONCE(mem_cgroup_from_seq(m
)->memory
.low
));
5765 static ssize_t
memory_low_write(struct kernfs_open_file
*of
,
5766 char *buf
, size_t nbytes
, loff_t off
)
5768 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5772 buf
= strstrip(buf
);
5773 err
= page_counter_memparse(buf
, "max", &low
);
5777 page_counter_set_low(&memcg
->memory
, low
);
5782 static int memory_high_show(struct seq_file
*m
, void *v
)
5784 return seq_puts_memcg_tunable(m
, READ_ONCE(mem_cgroup_from_seq(m
)->high
));
5787 static ssize_t
memory_high_write(struct kernfs_open_file
*of
,
5788 char *buf
, size_t nbytes
, loff_t off
)
5790 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5791 unsigned long nr_pages
;
5795 buf
= strstrip(buf
);
5796 err
= page_counter_memparse(buf
, "max", &high
);
5802 nr_pages
= page_counter_read(&memcg
->memory
);
5803 if (nr_pages
> high
)
5804 try_to_free_mem_cgroup_pages(memcg
, nr_pages
- high
,
5807 memcg_wb_domain_size_changed(memcg
);
5811 static int memory_max_show(struct seq_file
*m
, void *v
)
5813 return seq_puts_memcg_tunable(m
,
5814 READ_ONCE(mem_cgroup_from_seq(m
)->memory
.max
));
5817 static ssize_t
memory_max_write(struct kernfs_open_file
*of
,
5818 char *buf
, size_t nbytes
, loff_t off
)
5820 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5821 unsigned int nr_reclaims
= MEM_CGROUP_RECLAIM_RETRIES
;
5822 bool drained
= false;
5826 buf
= strstrip(buf
);
5827 err
= page_counter_memparse(buf
, "max", &max
);
5831 xchg(&memcg
->memory
.max
, max
);
5834 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
5836 if (nr_pages
<= max
)
5839 if (signal_pending(current
)) {
5845 drain_all_stock(memcg
);
5851 if (!try_to_free_mem_cgroup_pages(memcg
, nr_pages
- max
,
5857 memcg_memory_event(memcg
, MEMCG_OOM
);
5858 if (!mem_cgroup_out_of_memory(memcg
, GFP_KERNEL
, 0))
5862 memcg_wb_domain_size_changed(memcg
);
5866 static void __memory_events_show(struct seq_file
*m
, atomic_long_t
*events
)
5868 seq_printf(m
, "low %lu\n", atomic_long_read(&events
[MEMCG_LOW
]));
5869 seq_printf(m
, "high %lu\n", atomic_long_read(&events
[MEMCG_HIGH
]));
5870 seq_printf(m
, "max %lu\n", atomic_long_read(&events
[MEMCG_MAX
]));
5871 seq_printf(m
, "oom %lu\n", atomic_long_read(&events
[MEMCG_OOM
]));
5872 seq_printf(m
, "oom_kill %lu\n",
5873 atomic_long_read(&events
[MEMCG_OOM_KILL
]));
5876 static int memory_events_show(struct seq_file
*m
, void *v
)
5878 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
5880 __memory_events_show(m
, memcg
->memory_events
);
5884 static int memory_events_local_show(struct seq_file
*m
, void *v
)
5886 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
5888 __memory_events_show(m
, memcg
->memory_events_local
);
5892 static int memory_stat_show(struct seq_file
*m
, void *v
)
5894 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
5897 buf
= memory_stat_format(memcg
);
5905 static int memory_oom_group_show(struct seq_file
*m
, void *v
)
5907 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
5909 seq_printf(m
, "%d\n", memcg
->oom_group
);
5914 static ssize_t
memory_oom_group_write(struct kernfs_open_file
*of
,
5915 char *buf
, size_t nbytes
, loff_t off
)
5917 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5920 buf
= strstrip(buf
);
5924 ret
= kstrtoint(buf
, 0, &oom_group
);
5928 if (oom_group
!= 0 && oom_group
!= 1)
5931 memcg
->oom_group
= oom_group
;
5936 static struct cftype memory_files
[] = {
5939 .flags
= CFTYPE_NOT_ON_ROOT
,
5940 .read_u64
= memory_current_read
,
5944 .flags
= CFTYPE_NOT_ON_ROOT
,
5945 .seq_show
= memory_min_show
,
5946 .write
= memory_min_write
,
5950 .flags
= CFTYPE_NOT_ON_ROOT
,
5951 .seq_show
= memory_low_show
,
5952 .write
= memory_low_write
,
5956 .flags
= CFTYPE_NOT_ON_ROOT
,
5957 .seq_show
= memory_high_show
,
5958 .write
= memory_high_write
,
5962 .flags
= CFTYPE_NOT_ON_ROOT
,
5963 .seq_show
= memory_max_show
,
5964 .write
= memory_max_write
,
5968 .flags
= CFTYPE_NOT_ON_ROOT
,
5969 .file_offset
= offsetof(struct mem_cgroup
, events_file
),
5970 .seq_show
= memory_events_show
,
5973 .name
= "events.local",
5974 .flags
= CFTYPE_NOT_ON_ROOT
,
5975 .file_offset
= offsetof(struct mem_cgroup
, events_local_file
),
5976 .seq_show
= memory_events_local_show
,
5980 .flags
= CFTYPE_NOT_ON_ROOT
,
5981 .seq_show
= memory_stat_show
,
5984 .name
= "oom.group",
5985 .flags
= CFTYPE_NOT_ON_ROOT
| CFTYPE_NS_DELEGATABLE
,
5986 .seq_show
= memory_oom_group_show
,
5987 .write
= memory_oom_group_write
,
5992 struct cgroup_subsys memory_cgrp_subsys
= {
5993 .css_alloc
= mem_cgroup_css_alloc
,
5994 .css_online
= mem_cgroup_css_online
,
5995 .css_offline
= mem_cgroup_css_offline
,
5996 .css_released
= mem_cgroup_css_released
,
5997 .css_free
= mem_cgroup_css_free
,
5998 .css_reset
= mem_cgroup_css_reset
,
5999 .can_attach
= mem_cgroup_can_attach
,
6000 .cancel_attach
= mem_cgroup_cancel_attach
,
6001 .post_attach
= mem_cgroup_move_task
,
6002 .bind
= mem_cgroup_bind
,
6003 .dfl_cftypes
= memory_files
,
6004 .legacy_cftypes
= mem_cgroup_legacy_files
,
6009 * mem_cgroup_protected - check if memory consumption is in the normal range
6010 * @root: the top ancestor of the sub-tree being checked
6011 * @memcg: the memory cgroup to check
6013 * WARNING: This function is not stateless! It can only be used as part
6014 * of a top-down tree iteration, not for isolated queries.
6016 * Returns one of the following:
6017 * MEMCG_PROT_NONE: cgroup memory is not protected
6018 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6019 * an unprotected supply of reclaimable memory from other cgroups.
6020 * MEMCG_PROT_MIN: cgroup memory is protected
6022 * @root is exclusive; it is never protected when looked at directly
6024 * To provide a proper hierarchical behavior, effective memory.min/low values
6025 * are used. Below is the description of how effective memory.low is calculated.
6026 * Effective memory.min values is calculated in the same way.
6028 * Effective memory.low is always equal or less than the original memory.low.
6029 * If there is no memory.low overcommittment (which is always true for
6030 * top-level memory cgroups), these two values are equal.
6031 * Otherwise, it's a part of parent's effective memory.low,
6032 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6033 * memory.low usages, where memory.low usage is the size of actually
6037 * elow = min( memory.low, parent->elow * ------------------ ),
6038 * siblings_low_usage
6040 * | memory.current, if memory.current < memory.low
6045 * Such definition of the effective memory.low provides the expected
6046 * hierarchical behavior: parent's memory.low value is limiting
6047 * children, unprotected memory is reclaimed first and cgroups,
6048 * which are not using their guarantee do not affect actual memory
6051 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6053 * A A/memory.low = 2G, A/memory.current = 6G
6055 * BC DE B/memory.low = 3G B/memory.current = 2G
6056 * C/memory.low = 1G C/memory.current = 2G
6057 * D/memory.low = 0 D/memory.current = 2G
6058 * E/memory.low = 10G E/memory.current = 0
6060 * and the memory pressure is applied, the following memory distribution
6061 * is expected (approximately):
6063 * A/memory.current = 2G
6065 * B/memory.current = 1.3G
6066 * C/memory.current = 0.6G
6067 * D/memory.current = 0
6068 * E/memory.current = 0
6070 * These calculations require constant tracking of the actual low usages
6071 * (see propagate_protected_usage()), as well as recursive calculation of
6072 * effective memory.low values. But as we do call mem_cgroup_protected()
6073 * path for each memory cgroup top-down from the reclaim,
6074 * it's possible to optimize this part, and save calculated elow
6075 * for next usage. This part is intentionally racy, but it's ok,
6076 * as memory.low is a best-effort mechanism.
6078 enum mem_cgroup_protection
mem_cgroup_protected(struct mem_cgroup
*root
,
6079 struct mem_cgroup
*memcg
)
6081 struct mem_cgroup
*parent
;
6082 unsigned long emin
, parent_emin
;
6083 unsigned long elow
, parent_elow
;
6084 unsigned long usage
;
6086 if (mem_cgroup_disabled())
6087 return MEMCG_PROT_NONE
;
6090 root
= root_mem_cgroup
;
6092 return MEMCG_PROT_NONE
;
6094 usage
= page_counter_read(&memcg
->memory
);
6096 return MEMCG_PROT_NONE
;
6098 emin
= memcg
->memory
.min
;
6099 elow
= memcg
->memory
.low
;
6101 parent
= parent_mem_cgroup(memcg
);
6102 /* No parent means a non-hierarchical mode on v1 memcg */
6104 return MEMCG_PROT_NONE
;
6109 parent_emin
= READ_ONCE(parent
->memory
.emin
);
6110 emin
= min(emin
, parent_emin
);
6111 if (emin
&& parent_emin
) {
6112 unsigned long min_usage
, siblings_min_usage
;
6114 min_usage
= min(usage
, memcg
->memory
.min
);
6115 siblings_min_usage
= atomic_long_read(
6116 &parent
->memory
.children_min_usage
);
6118 if (min_usage
&& siblings_min_usage
)
6119 emin
= min(emin
, parent_emin
* min_usage
/
6120 siblings_min_usage
);
6123 parent_elow
= READ_ONCE(parent
->memory
.elow
);
6124 elow
= min(elow
, parent_elow
);
6125 if (elow
&& parent_elow
) {
6126 unsigned long low_usage
, siblings_low_usage
;
6128 low_usage
= min(usage
, memcg
->memory
.low
);
6129 siblings_low_usage
= atomic_long_read(
6130 &parent
->memory
.children_low_usage
);
6132 if (low_usage
&& siblings_low_usage
)
6133 elow
= min(elow
, parent_elow
* low_usage
/
6134 siblings_low_usage
);
6138 memcg
->memory
.emin
= emin
;
6139 memcg
->memory
.elow
= elow
;
6142 return MEMCG_PROT_MIN
;
6143 else if (usage
<= elow
)
6144 return MEMCG_PROT_LOW
;
6146 return MEMCG_PROT_NONE
;
6150 * mem_cgroup_try_charge - try charging a page
6151 * @page: page to charge
6152 * @mm: mm context of the victim
6153 * @gfp_mask: reclaim mode
6154 * @memcgp: charged memcg return
6155 * @compound: charge the page as compound or small page
6157 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6158 * pages according to @gfp_mask if necessary.
6160 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6161 * Otherwise, an error code is returned.
6163 * After page->mapping has been set up, the caller must finalize the
6164 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6165 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6167 int mem_cgroup_try_charge(struct page
*page
, struct mm_struct
*mm
,
6168 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
,
6171 struct mem_cgroup
*memcg
= NULL
;
6172 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
6175 if (mem_cgroup_disabled())
6178 if (PageSwapCache(page
)) {
6180 * Every swap fault against a single page tries to charge the
6181 * page, bail as early as possible. shmem_unuse() encounters
6182 * already charged pages, too. The USED bit is protected by
6183 * the page lock, which serializes swap cache removal, which
6184 * in turn serializes uncharging.
6186 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
6187 if (compound_head(page
)->mem_cgroup
)
6190 if (do_swap_account
) {
6191 swp_entry_t ent
= { .val
= page_private(page
), };
6192 unsigned short id
= lookup_swap_cgroup_id(ent
);
6195 memcg
= mem_cgroup_from_id(id
);
6196 if (memcg
&& !css_tryget_online(&memcg
->css
))
6203 memcg
= get_mem_cgroup_from_mm(mm
);
6205 ret
= try_charge(memcg
, gfp_mask
, nr_pages
);
6207 css_put(&memcg
->css
);
6213 int mem_cgroup_try_charge_delay(struct page
*page
, struct mm_struct
*mm
,
6214 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
,
6217 struct mem_cgroup
*memcg
;
6220 ret
= mem_cgroup_try_charge(page
, mm
, gfp_mask
, memcgp
, compound
);
6222 mem_cgroup_throttle_swaprate(memcg
, page_to_nid(page
), gfp_mask
);
6227 * mem_cgroup_commit_charge - commit a page charge
6228 * @page: page to charge
6229 * @memcg: memcg to charge the page to
6230 * @lrucare: page might be on LRU already
6231 * @compound: charge the page as compound or small page
6233 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6234 * after page->mapping has been set up. This must happen atomically
6235 * as part of the page instantiation, i.e. under the page table lock
6236 * for anonymous pages, under the page lock for page and swap cache.
6238 * In addition, the page must not be on the LRU during the commit, to
6239 * prevent racing with task migration. If it might be, use @lrucare.
6241 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6243 void mem_cgroup_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
6244 bool lrucare
, bool compound
)
6246 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
6248 VM_BUG_ON_PAGE(!page
->mapping
, page
);
6249 VM_BUG_ON_PAGE(PageLRU(page
) && !lrucare
, page
);
6251 if (mem_cgroup_disabled())
6254 * Swap faults will attempt to charge the same page multiple
6255 * times. But reuse_swap_page() might have removed the page
6256 * from swapcache already, so we can't check PageSwapCache().
6261 commit_charge(page
, memcg
, lrucare
);
6263 local_irq_disable();
6264 mem_cgroup_charge_statistics(memcg
, page
, compound
, nr_pages
);
6265 memcg_check_events(memcg
, page
);
6268 if (do_memsw_account() && PageSwapCache(page
)) {
6269 swp_entry_t entry
= { .val
= page_private(page
) };
6271 * The swap entry might not get freed for a long time,
6272 * let's not wait for it. The page already received a
6273 * memory+swap charge, drop the swap entry duplicate.
6275 mem_cgroup_uncharge_swap(entry
, nr_pages
);
6280 * mem_cgroup_cancel_charge - cancel a page charge
6281 * @page: page to charge
6282 * @memcg: memcg to charge the page to
6283 * @compound: charge the page as compound or small page
6285 * Cancel a charge transaction started by mem_cgroup_try_charge().
6287 void mem_cgroup_cancel_charge(struct page
*page
, struct mem_cgroup
*memcg
,
6290 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
6292 if (mem_cgroup_disabled())
6295 * Swap faults will attempt to charge the same page multiple
6296 * times. But reuse_swap_page() might have removed the page
6297 * from swapcache already, so we can't check PageSwapCache().
6302 cancel_charge(memcg
, nr_pages
);
6305 struct uncharge_gather
{
6306 struct mem_cgroup
*memcg
;
6307 unsigned long pgpgout
;
6308 unsigned long nr_anon
;
6309 unsigned long nr_file
;
6310 unsigned long nr_kmem
;
6311 unsigned long nr_huge
;
6312 unsigned long nr_shmem
;
6313 struct page
*dummy_page
;
6316 static inline void uncharge_gather_clear(struct uncharge_gather
*ug
)
6318 memset(ug
, 0, sizeof(*ug
));
6321 static void uncharge_batch(const struct uncharge_gather
*ug
)
6323 unsigned long nr_pages
= ug
->nr_anon
+ ug
->nr_file
+ ug
->nr_kmem
;
6324 unsigned long flags
;
6326 if (!mem_cgroup_is_root(ug
->memcg
)) {
6327 page_counter_uncharge(&ug
->memcg
->memory
, nr_pages
);
6328 if (do_memsw_account())
6329 page_counter_uncharge(&ug
->memcg
->memsw
, nr_pages
);
6330 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && ug
->nr_kmem
)
6331 page_counter_uncharge(&ug
->memcg
->kmem
, ug
->nr_kmem
);
6332 memcg_oom_recover(ug
->memcg
);
6335 local_irq_save(flags
);
6336 __mod_memcg_state(ug
->memcg
, MEMCG_RSS
, -ug
->nr_anon
);
6337 __mod_memcg_state(ug
->memcg
, MEMCG_CACHE
, -ug
->nr_file
);
6338 __mod_memcg_state(ug
->memcg
, MEMCG_RSS_HUGE
, -ug
->nr_huge
);
6339 __mod_memcg_state(ug
->memcg
, NR_SHMEM
, -ug
->nr_shmem
);
6340 __count_memcg_events(ug
->memcg
, PGPGOUT
, ug
->pgpgout
);
6341 __this_cpu_add(ug
->memcg
->vmstats_percpu
->nr_page_events
, nr_pages
);
6342 memcg_check_events(ug
->memcg
, ug
->dummy_page
);
6343 local_irq_restore(flags
);
6345 if (!mem_cgroup_is_root(ug
->memcg
))
6346 css_put_many(&ug
->memcg
->css
, nr_pages
);
6349 static void uncharge_page(struct page
*page
, struct uncharge_gather
*ug
)
6351 VM_BUG_ON_PAGE(PageLRU(page
), page
);
6352 VM_BUG_ON_PAGE(page_count(page
) && !is_zone_device_page(page
) &&
6353 !PageHWPoison(page
) , page
);
6355 if (!page
->mem_cgroup
)
6359 * Nobody should be changing or seriously looking at
6360 * page->mem_cgroup at this point, we have fully
6361 * exclusive access to the page.
6364 if (ug
->memcg
!= page
->mem_cgroup
) {
6367 uncharge_gather_clear(ug
);
6369 ug
->memcg
= page
->mem_cgroup
;
6372 if (!PageKmemcg(page
)) {
6373 unsigned int nr_pages
= 1;
6375 if (PageTransHuge(page
)) {
6376 nr_pages
<<= compound_order(page
);
6377 ug
->nr_huge
+= nr_pages
;
6380 ug
->nr_anon
+= nr_pages
;
6382 ug
->nr_file
+= nr_pages
;
6383 if (PageSwapBacked(page
))
6384 ug
->nr_shmem
+= nr_pages
;
6388 ug
->nr_kmem
+= 1 << compound_order(page
);
6389 __ClearPageKmemcg(page
);
6392 ug
->dummy_page
= page
;
6393 page
->mem_cgroup
= NULL
;
6396 static void uncharge_list(struct list_head
*page_list
)
6398 struct uncharge_gather ug
;
6399 struct list_head
*next
;
6401 uncharge_gather_clear(&ug
);
6404 * Note that the list can be a single page->lru; hence the
6405 * do-while loop instead of a simple list_for_each_entry().
6407 next
= page_list
->next
;
6411 page
= list_entry(next
, struct page
, lru
);
6412 next
= page
->lru
.next
;
6414 uncharge_page(page
, &ug
);
6415 } while (next
!= page_list
);
6418 uncharge_batch(&ug
);
6422 * mem_cgroup_uncharge - uncharge a page
6423 * @page: page to uncharge
6425 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6426 * mem_cgroup_commit_charge().
6428 void mem_cgroup_uncharge(struct page
*page
)
6430 struct uncharge_gather ug
;
6432 if (mem_cgroup_disabled())
6435 /* Don't touch page->lru of any random page, pre-check: */
6436 if (!page
->mem_cgroup
)
6439 uncharge_gather_clear(&ug
);
6440 uncharge_page(page
, &ug
);
6441 uncharge_batch(&ug
);
6445 * mem_cgroup_uncharge_list - uncharge a list of page
6446 * @page_list: list of pages to uncharge
6448 * Uncharge a list of pages previously charged with
6449 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6451 void mem_cgroup_uncharge_list(struct list_head
*page_list
)
6453 if (mem_cgroup_disabled())
6456 if (!list_empty(page_list
))
6457 uncharge_list(page_list
);
6461 * mem_cgroup_migrate - charge a page's replacement
6462 * @oldpage: currently circulating page
6463 * @newpage: replacement page
6465 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6466 * be uncharged upon free.
6468 * Both pages must be locked, @newpage->mapping must be set up.
6470 void mem_cgroup_migrate(struct page
*oldpage
, struct page
*newpage
)
6472 struct mem_cgroup
*memcg
;
6473 unsigned int nr_pages
;
6475 unsigned long flags
;
6477 VM_BUG_ON_PAGE(!PageLocked(oldpage
), oldpage
);
6478 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
6479 VM_BUG_ON_PAGE(PageAnon(oldpage
) != PageAnon(newpage
), newpage
);
6480 VM_BUG_ON_PAGE(PageTransHuge(oldpage
) != PageTransHuge(newpage
),
6483 if (mem_cgroup_disabled())
6486 /* Page cache replacement: new page already charged? */
6487 if (newpage
->mem_cgroup
)
6490 /* Swapcache readahead pages can get replaced before being charged */
6491 memcg
= oldpage
->mem_cgroup
;
6495 /* Force-charge the new page. The old one will be freed soon */
6496 compound
= PageTransHuge(newpage
);
6497 nr_pages
= compound
? hpage_nr_pages(newpage
) : 1;
6499 page_counter_charge(&memcg
->memory
, nr_pages
);
6500 if (do_memsw_account())
6501 page_counter_charge(&memcg
->memsw
, nr_pages
);
6502 css_get_many(&memcg
->css
, nr_pages
);
6504 commit_charge(newpage
, memcg
, false);
6506 local_irq_save(flags
);
6507 mem_cgroup_charge_statistics(memcg
, newpage
, compound
, nr_pages
);
6508 memcg_check_events(memcg
, newpage
);
6509 local_irq_restore(flags
);
6512 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key
);
6513 EXPORT_SYMBOL(memcg_sockets_enabled_key
);
6515 void mem_cgroup_sk_alloc(struct sock
*sk
)
6517 struct mem_cgroup
*memcg
;
6519 if (!mem_cgroup_sockets_enabled
)
6523 * Socket cloning can throw us here with sk_memcg already
6524 * filled. It won't however, necessarily happen from
6525 * process context. So the test for root memcg given
6526 * the current task's memcg won't help us in this case.
6528 * Respecting the original socket's memcg is a better
6529 * decision in this case.
6532 css_get(&sk
->sk_memcg
->css
);
6537 memcg
= mem_cgroup_from_task(current
);
6538 if (memcg
== root_mem_cgroup
)
6540 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !memcg
->tcpmem_active
)
6542 if (css_tryget_online(&memcg
->css
))
6543 sk
->sk_memcg
= memcg
;
6548 void mem_cgroup_sk_free(struct sock
*sk
)
6551 css_put(&sk
->sk_memcg
->css
);
6555 * mem_cgroup_charge_skmem - charge socket memory
6556 * @memcg: memcg to charge
6557 * @nr_pages: number of pages to charge
6559 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6560 * @memcg's configured limit, %false if the charge had to be forced.
6562 bool mem_cgroup_charge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
6564 gfp_t gfp_mask
= GFP_KERNEL
;
6566 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
6567 struct page_counter
*fail
;
6569 if (page_counter_try_charge(&memcg
->tcpmem
, nr_pages
, &fail
)) {
6570 memcg
->tcpmem_pressure
= 0;
6573 page_counter_charge(&memcg
->tcpmem
, nr_pages
);
6574 memcg
->tcpmem_pressure
= 1;
6578 /* Don't block in the packet receive path */
6580 gfp_mask
= GFP_NOWAIT
;
6582 mod_memcg_state(memcg
, MEMCG_SOCK
, nr_pages
);
6584 if (try_charge(memcg
, gfp_mask
, nr_pages
) == 0)
6587 try_charge(memcg
, gfp_mask
|__GFP_NOFAIL
, nr_pages
);
6592 * mem_cgroup_uncharge_skmem - uncharge socket memory
6593 * @memcg: memcg to uncharge
6594 * @nr_pages: number of pages to uncharge
6596 void mem_cgroup_uncharge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
6598 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
6599 page_counter_uncharge(&memcg
->tcpmem
, nr_pages
);
6603 mod_memcg_state(memcg
, MEMCG_SOCK
, -nr_pages
);
6605 refill_stock(memcg
, nr_pages
);
6608 static int __init
cgroup_memory(char *s
)
6612 while ((token
= strsep(&s
, ",")) != NULL
) {
6615 if (!strcmp(token
, "nosocket"))
6616 cgroup_memory_nosocket
= true;
6617 if (!strcmp(token
, "nokmem"))
6618 cgroup_memory_nokmem
= true;
6622 __setup("cgroup.memory=", cgroup_memory
);
6625 * subsys_initcall() for memory controller.
6627 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6628 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6629 * basically everything that doesn't depend on a specific mem_cgroup structure
6630 * should be initialized from here.
6632 static int __init
mem_cgroup_init(void)
6636 #ifdef CONFIG_MEMCG_KMEM
6638 * Kmem cache creation is mostly done with the slab_mutex held,
6639 * so use a workqueue with limited concurrency to avoid stalling
6640 * all worker threads in case lots of cgroups are created and
6641 * destroyed simultaneously.
6643 memcg_kmem_cache_wq
= alloc_workqueue("memcg_kmem_cache", 0, 1);
6644 BUG_ON(!memcg_kmem_cache_wq
);
6647 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD
, "mm/memctrl:dead", NULL
,
6648 memcg_hotplug_cpu_dead
);
6650 for_each_possible_cpu(cpu
)
6651 INIT_WORK(&per_cpu_ptr(&memcg_stock
, cpu
)->work
,
6654 for_each_node(node
) {
6655 struct mem_cgroup_tree_per_node
*rtpn
;
6657 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
,
6658 node_online(node
) ? node
: NUMA_NO_NODE
);
6660 rtpn
->rb_root
= RB_ROOT
;
6661 rtpn
->rb_rightmost
= NULL
;
6662 spin_lock_init(&rtpn
->lock
);
6663 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
6668 subsys_initcall(mem_cgroup_init
);
6670 #ifdef CONFIG_MEMCG_SWAP
6671 static struct mem_cgroup
*mem_cgroup_id_get_online(struct mem_cgroup
*memcg
)
6673 while (!refcount_inc_not_zero(&memcg
->id
.ref
)) {
6675 * The root cgroup cannot be destroyed, so it's refcount must
6678 if (WARN_ON_ONCE(memcg
== root_mem_cgroup
)) {
6682 memcg
= parent_mem_cgroup(memcg
);
6684 memcg
= root_mem_cgroup
;
6690 * mem_cgroup_swapout - transfer a memsw charge to swap
6691 * @page: page whose memsw charge to transfer
6692 * @entry: swap entry to move the charge to
6694 * Transfer the memsw charge of @page to @entry.
6696 void mem_cgroup_swapout(struct page
*page
, swp_entry_t entry
)
6698 struct mem_cgroup
*memcg
, *swap_memcg
;
6699 unsigned int nr_entries
;
6700 unsigned short oldid
;
6702 VM_BUG_ON_PAGE(PageLRU(page
), page
);
6703 VM_BUG_ON_PAGE(page_count(page
), page
);
6705 if (!do_memsw_account())
6708 memcg
= page
->mem_cgroup
;
6710 /* Readahead page, never charged */
6715 * In case the memcg owning these pages has been offlined and doesn't
6716 * have an ID allocated to it anymore, charge the closest online
6717 * ancestor for the swap instead and transfer the memory+swap charge.
6719 swap_memcg
= mem_cgroup_id_get_online(memcg
);
6720 nr_entries
= hpage_nr_pages(page
);
6721 /* Get references for the tail pages, too */
6723 mem_cgroup_id_get_many(swap_memcg
, nr_entries
- 1);
6724 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(swap_memcg
),
6726 VM_BUG_ON_PAGE(oldid
, page
);
6727 mod_memcg_state(swap_memcg
, MEMCG_SWAP
, nr_entries
);
6729 page
->mem_cgroup
= NULL
;
6731 if (!mem_cgroup_is_root(memcg
))
6732 page_counter_uncharge(&memcg
->memory
, nr_entries
);
6734 if (memcg
!= swap_memcg
) {
6735 if (!mem_cgroup_is_root(swap_memcg
))
6736 page_counter_charge(&swap_memcg
->memsw
, nr_entries
);
6737 page_counter_uncharge(&memcg
->memsw
, nr_entries
);
6741 * Interrupts should be disabled here because the caller holds the
6742 * i_pages lock which is taken with interrupts-off. It is
6743 * important here to have the interrupts disabled because it is the
6744 * only synchronisation we have for updating the per-CPU variables.
6746 VM_BUG_ON(!irqs_disabled());
6747 mem_cgroup_charge_statistics(memcg
, page
, PageTransHuge(page
),
6749 memcg_check_events(memcg
, page
);
6751 if (!mem_cgroup_is_root(memcg
))
6752 css_put_many(&memcg
->css
, nr_entries
);
6756 * mem_cgroup_try_charge_swap - try charging swap space for a page
6757 * @page: page being added to swap
6758 * @entry: swap entry to charge
6760 * Try to charge @page's memcg for the swap space at @entry.
6762 * Returns 0 on success, -ENOMEM on failure.
6764 int mem_cgroup_try_charge_swap(struct page
*page
, swp_entry_t entry
)
6766 unsigned int nr_pages
= hpage_nr_pages(page
);
6767 struct page_counter
*counter
;
6768 struct mem_cgroup
*memcg
;
6769 unsigned short oldid
;
6771 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) || !do_swap_account
)
6774 memcg
= page
->mem_cgroup
;
6776 /* Readahead page, never charged */
6781 memcg_memory_event(memcg
, MEMCG_SWAP_FAIL
);
6785 memcg
= mem_cgroup_id_get_online(memcg
);
6787 if (!mem_cgroup_is_root(memcg
) &&
6788 !page_counter_try_charge(&memcg
->swap
, nr_pages
, &counter
)) {
6789 memcg_memory_event(memcg
, MEMCG_SWAP_MAX
);
6790 memcg_memory_event(memcg
, MEMCG_SWAP_FAIL
);
6791 mem_cgroup_id_put(memcg
);
6795 /* Get references for the tail pages, too */
6797 mem_cgroup_id_get_many(memcg
, nr_pages
- 1);
6798 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(memcg
), nr_pages
);
6799 VM_BUG_ON_PAGE(oldid
, page
);
6800 mod_memcg_state(memcg
, MEMCG_SWAP
, nr_pages
);
6806 * mem_cgroup_uncharge_swap - uncharge swap space
6807 * @entry: swap entry to uncharge
6808 * @nr_pages: the amount of swap space to uncharge
6810 void mem_cgroup_uncharge_swap(swp_entry_t entry
, unsigned int nr_pages
)
6812 struct mem_cgroup
*memcg
;
6815 if (!do_swap_account
)
6818 id
= swap_cgroup_record(entry
, 0, nr_pages
);
6820 memcg
= mem_cgroup_from_id(id
);
6822 if (!mem_cgroup_is_root(memcg
)) {
6823 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
6824 page_counter_uncharge(&memcg
->swap
, nr_pages
);
6826 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
6828 mod_memcg_state(memcg
, MEMCG_SWAP
, -nr_pages
);
6829 mem_cgroup_id_put_many(memcg
, nr_pages
);
6834 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup
*memcg
)
6836 long nr_swap_pages
= get_nr_swap_pages();
6838 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
6839 return nr_swap_pages
;
6840 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
6841 nr_swap_pages
= min_t(long, nr_swap_pages
,
6842 READ_ONCE(memcg
->swap
.max
) -
6843 page_counter_read(&memcg
->swap
));
6844 return nr_swap_pages
;
6847 bool mem_cgroup_swap_full(struct page
*page
)
6849 struct mem_cgroup
*memcg
;
6851 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
6855 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
6858 memcg
= page
->mem_cgroup
;
6862 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
6863 if (page_counter_read(&memcg
->swap
) * 2 >= memcg
->swap
.max
)
6869 /* for remember boot option*/
6870 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6871 static int really_do_swap_account __initdata
= 1;
6873 static int really_do_swap_account __initdata
;
6876 static int __init
enable_swap_account(char *s
)
6878 if (!strcmp(s
, "1"))
6879 really_do_swap_account
= 1;
6880 else if (!strcmp(s
, "0"))
6881 really_do_swap_account
= 0;
6884 __setup("swapaccount=", enable_swap_account
);
6886 static u64
swap_current_read(struct cgroup_subsys_state
*css
,
6889 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
6891 return (u64
)page_counter_read(&memcg
->swap
) * PAGE_SIZE
;
6894 static int swap_max_show(struct seq_file
*m
, void *v
)
6896 return seq_puts_memcg_tunable(m
,
6897 READ_ONCE(mem_cgroup_from_seq(m
)->swap
.max
));
6900 static ssize_t
swap_max_write(struct kernfs_open_file
*of
,
6901 char *buf
, size_t nbytes
, loff_t off
)
6903 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
6907 buf
= strstrip(buf
);
6908 err
= page_counter_memparse(buf
, "max", &max
);
6912 xchg(&memcg
->swap
.max
, max
);
6917 static int swap_events_show(struct seq_file
*m
, void *v
)
6919 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
6921 seq_printf(m
, "max %lu\n",
6922 atomic_long_read(&memcg
->memory_events
[MEMCG_SWAP_MAX
]));
6923 seq_printf(m
, "fail %lu\n",
6924 atomic_long_read(&memcg
->memory_events
[MEMCG_SWAP_FAIL
]));
6929 static struct cftype swap_files
[] = {
6931 .name
= "swap.current",
6932 .flags
= CFTYPE_NOT_ON_ROOT
,
6933 .read_u64
= swap_current_read
,
6937 .flags
= CFTYPE_NOT_ON_ROOT
,
6938 .seq_show
= swap_max_show
,
6939 .write
= swap_max_write
,
6942 .name
= "swap.events",
6943 .flags
= CFTYPE_NOT_ON_ROOT
,
6944 .file_offset
= offsetof(struct mem_cgroup
, swap_events_file
),
6945 .seq_show
= swap_events_show
,
6950 static struct cftype memsw_cgroup_files
[] = {
6952 .name
= "memsw.usage_in_bytes",
6953 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
6954 .read_u64
= mem_cgroup_read_u64
,
6957 .name
= "memsw.max_usage_in_bytes",
6958 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
6959 .write
= mem_cgroup_reset
,
6960 .read_u64
= mem_cgroup_read_u64
,
6963 .name
= "memsw.limit_in_bytes",
6964 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
6965 .write
= mem_cgroup_write
,
6966 .read_u64
= mem_cgroup_read_u64
,
6969 .name
= "memsw.failcnt",
6970 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
6971 .write
= mem_cgroup_reset
,
6972 .read_u64
= mem_cgroup_read_u64
,
6974 { }, /* terminate */
6977 static int __init
mem_cgroup_swap_init(void)
6979 if (!mem_cgroup_disabled() && really_do_swap_account
) {
6980 do_swap_account
= 1;
6981 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys
,
6983 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys
,
6984 memsw_cgroup_files
));
6988 subsys_initcall(mem_cgroup_swap_init
);
6990 #endif /* CONFIG_MEMCG_SWAP */