]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memcontrol.c
mm: memcontrol: default hierarchy interface for memory
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64
65 #include <asm/uaccess.h>
66
67 #include <trace/events/vmscan.h>
68
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata;
84 #endif
85
86 #else
87 #define do_swap_account 0
88 #endif
89
90
91 static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
98 };
99
100 static const char * const mem_cgroup_events_names[] = {
101 "pgpgin",
102 "pgpgout",
103 "pgfault",
104 "pgmajfault",
105 };
106
107 static const char * const mem_cgroup_lru_names[] = {
108 "inactive_anon",
109 "active_anon",
110 "inactive_file",
111 "active_file",
112 "unevictable",
113 };
114
115 /*
116 * Per memcg event counter is incremented at every pagein/pageout. With THP,
117 * it will be incremated by the number of pages. This counter is used for
118 * for trigger some periodic events. This is straightforward and better
119 * than using jiffies etc. to handle periodic memcg event.
120 */
121 enum mem_cgroup_events_target {
122 MEM_CGROUP_TARGET_THRESH,
123 MEM_CGROUP_TARGET_SOFTLIMIT,
124 MEM_CGROUP_TARGET_NUMAINFO,
125 MEM_CGROUP_NTARGETS,
126 };
127 #define THRESHOLDS_EVENTS_TARGET 128
128 #define SOFTLIMIT_EVENTS_TARGET 1024
129 #define NUMAINFO_EVENTS_TARGET 1024
130
131 struct mem_cgroup_stat_cpu {
132 long count[MEM_CGROUP_STAT_NSTATS];
133 unsigned long events[MEMCG_NR_EVENTS];
134 unsigned long nr_page_events;
135 unsigned long targets[MEM_CGROUP_NTARGETS];
136 };
137
138 struct reclaim_iter {
139 struct mem_cgroup *position;
140 /* scan generation, increased every round-trip */
141 unsigned int generation;
142 };
143
144 /*
145 * per-zone information in memory controller.
146 */
147 struct mem_cgroup_per_zone {
148 struct lruvec lruvec;
149 unsigned long lru_size[NR_LRU_LISTS];
150
151 struct reclaim_iter iter[DEF_PRIORITY + 1];
152
153 struct rb_node tree_node; /* RB tree node */
154 unsigned long usage_in_excess;/* Set to the value by which */
155 /* the soft limit is exceeded*/
156 bool on_tree;
157 struct mem_cgroup *memcg; /* Back pointer, we cannot */
158 /* use container_of */
159 };
160
161 struct mem_cgroup_per_node {
162 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
163 };
164
165 /*
166 * Cgroups above their limits are maintained in a RB-Tree, independent of
167 * their hierarchy representation
168 */
169
170 struct mem_cgroup_tree_per_zone {
171 struct rb_root rb_root;
172 spinlock_t lock;
173 };
174
175 struct mem_cgroup_tree_per_node {
176 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
177 };
178
179 struct mem_cgroup_tree {
180 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
181 };
182
183 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
184
185 struct mem_cgroup_threshold {
186 struct eventfd_ctx *eventfd;
187 unsigned long threshold;
188 };
189
190 /* For threshold */
191 struct mem_cgroup_threshold_ary {
192 /* An array index points to threshold just below or equal to usage. */
193 int current_threshold;
194 /* Size of entries[] */
195 unsigned int size;
196 /* Array of thresholds */
197 struct mem_cgroup_threshold entries[0];
198 };
199
200 struct mem_cgroup_thresholds {
201 /* Primary thresholds array */
202 struct mem_cgroup_threshold_ary *primary;
203 /*
204 * Spare threshold array.
205 * This is needed to make mem_cgroup_unregister_event() "never fail".
206 * It must be able to store at least primary->size - 1 entries.
207 */
208 struct mem_cgroup_threshold_ary *spare;
209 };
210
211 /* for OOM */
212 struct mem_cgroup_eventfd_list {
213 struct list_head list;
214 struct eventfd_ctx *eventfd;
215 };
216
217 /*
218 * cgroup_event represents events which userspace want to receive.
219 */
220 struct mem_cgroup_event {
221 /*
222 * memcg which the event belongs to.
223 */
224 struct mem_cgroup *memcg;
225 /*
226 * eventfd to signal userspace about the event.
227 */
228 struct eventfd_ctx *eventfd;
229 /*
230 * Each of these stored in a list by the cgroup.
231 */
232 struct list_head list;
233 /*
234 * register_event() callback will be used to add new userspace
235 * waiter for changes related to this event. Use eventfd_signal()
236 * on eventfd to send notification to userspace.
237 */
238 int (*register_event)(struct mem_cgroup *memcg,
239 struct eventfd_ctx *eventfd, const char *args);
240 /*
241 * unregister_event() callback will be called when userspace closes
242 * the eventfd or on cgroup removing. This callback must be set,
243 * if you want provide notification functionality.
244 */
245 void (*unregister_event)(struct mem_cgroup *memcg,
246 struct eventfd_ctx *eventfd);
247 /*
248 * All fields below needed to unregister event when
249 * userspace closes eventfd.
250 */
251 poll_table pt;
252 wait_queue_head_t *wqh;
253 wait_queue_t wait;
254 struct work_struct remove;
255 };
256
257 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
258 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
259
260 /*
261 * The memory controller data structure. The memory controller controls both
262 * page cache and RSS per cgroup. We would eventually like to provide
263 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
264 * to help the administrator determine what knobs to tune.
265 *
266 * TODO: Add a water mark for the memory controller. Reclaim will begin when
267 * we hit the water mark. May be even add a low water mark, such that
268 * no reclaim occurs from a cgroup at it's low water mark, this is
269 * a feature that will be implemented much later in the future.
270 */
271 struct mem_cgroup {
272 struct cgroup_subsys_state css;
273
274 /* Accounted resources */
275 struct page_counter memory;
276 struct page_counter memsw;
277 struct page_counter kmem;
278
279 /* Normal memory consumption range */
280 unsigned long low;
281 unsigned long high;
282
283 unsigned long soft_limit;
284
285 /* vmpressure notifications */
286 struct vmpressure vmpressure;
287
288 /* css_online() has been completed */
289 int initialized;
290
291 /*
292 * Should the accounting and control be hierarchical, per subtree?
293 */
294 bool use_hierarchy;
295
296 bool oom_lock;
297 atomic_t under_oom;
298 atomic_t oom_wakeups;
299
300 int swappiness;
301 /* OOM-Killer disable */
302 int oom_kill_disable;
303
304 /* protect arrays of thresholds */
305 struct mutex thresholds_lock;
306
307 /* thresholds for memory usage. RCU-protected */
308 struct mem_cgroup_thresholds thresholds;
309
310 /* thresholds for mem+swap usage. RCU-protected */
311 struct mem_cgroup_thresholds memsw_thresholds;
312
313 /* For oom notifier event fd */
314 struct list_head oom_notify;
315
316 /*
317 * Should we move charges of a task when a task is moved into this
318 * mem_cgroup ? And what type of charges should we move ?
319 */
320 unsigned long move_charge_at_immigrate;
321 /*
322 * set > 0 if pages under this cgroup are moving to other cgroup.
323 */
324 atomic_t moving_account;
325 /* taken only while moving_account > 0 */
326 spinlock_t move_lock;
327 struct task_struct *move_lock_task;
328 unsigned long move_lock_flags;
329 /*
330 * percpu counter.
331 */
332 struct mem_cgroup_stat_cpu __percpu *stat;
333 /*
334 * used when a cpu is offlined or other synchronizations
335 * See mem_cgroup_read_stat().
336 */
337 struct mem_cgroup_stat_cpu nocpu_base;
338 spinlock_t pcp_counter_lock;
339
340 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
341 struct cg_proto tcp_mem;
342 #endif
343 #if defined(CONFIG_MEMCG_KMEM)
344 /* Index in the kmem_cache->memcg_params->memcg_caches array */
345 int kmemcg_id;
346 #endif
347
348 int last_scanned_node;
349 #if MAX_NUMNODES > 1
350 nodemask_t scan_nodes;
351 atomic_t numainfo_events;
352 atomic_t numainfo_updating;
353 #endif
354
355 /* List of events which userspace want to receive */
356 struct list_head event_list;
357 spinlock_t event_list_lock;
358
359 struct mem_cgroup_per_node *nodeinfo[0];
360 /* WARNING: nodeinfo must be the last member here */
361 };
362
363 #ifdef CONFIG_MEMCG_KMEM
364 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
365 {
366 return memcg->kmemcg_id >= 0;
367 }
368 #endif
369
370 /* Stuffs for move charges at task migration. */
371 /*
372 * Types of charges to be moved. "move_charge_at_immitgrate" and
373 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
374 */
375 enum move_type {
376 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
377 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
378 NR_MOVE_TYPE,
379 };
380
381 /* "mc" and its members are protected by cgroup_mutex */
382 static struct move_charge_struct {
383 spinlock_t lock; /* for from, to */
384 struct mem_cgroup *from;
385 struct mem_cgroup *to;
386 unsigned long immigrate_flags;
387 unsigned long precharge;
388 unsigned long moved_charge;
389 unsigned long moved_swap;
390 struct task_struct *moving_task; /* a task moving charges */
391 wait_queue_head_t waitq; /* a waitq for other context */
392 } mc = {
393 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
394 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
395 };
396
397 static bool move_anon(void)
398 {
399 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
400 }
401
402 static bool move_file(void)
403 {
404 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
405 }
406
407 /*
408 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
409 * limit reclaim to prevent infinite loops, if they ever occur.
410 */
411 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
412 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
413
414 enum charge_type {
415 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
416 MEM_CGROUP_CHARGE_TYPE_ANON,
417 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
418 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
419 NR_CHARGE_TYPE,
420 };
421
422 /* for encoding cft->private value on file */
423 enum res_type {
424 _MEM,
425 _MEMSWAP,
426 _OOM_TYPE,
427 _KMEM,
428 };
429
430 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
431 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
432 #define MEMFILE_ATTR(val) ((val) & 0xffff)
433 /* Used for OOM nofiier */
434 #define OOM_CONTROL (0)
435
436 /*
437 * The memcg_create_mutex will be held whenever a new cgroup is created.
438 * As a consequence, any change that needs to protect against new child cgroups
439 * appearing has to hold it as well.
440 */
441 static DEFINE_MUTEX(memcg_create_mutex);
442
443 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
444 {
445 return s ? container_of(s, struct mem_cgroup, css) : NULL;
446 }
447
448 /* Some nice accessors for the vmpressure. */
449 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
450 {
451 if (!memcg)
452 memcg = root_mem_cgroup;
453 return &memcg->vmpressure;
454 }
455
456 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
457 {
458 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
459 }
460
461 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
462 {
463 return (memcg == root_mem_cgroup);
464 }
465
466 /*
467 * We restrict the id in the range of [1, 65535], so it can fit into
468 * an unsigned short.
469 */
470 #define MEM_CGROUP_ID_MAX USHRT_MAX
471
472 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
473 {
474 return memcg->css.id;
475 }
476
477 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
478 {
479 struct cgroup_subsys_state *css;
480
481 css = css_from_id(id, &memory_cgrp_subsys);
482 return mem_cgroup_from_css(css);
483 }
484
485 /* Writing them here to avoid exposing memcg's inner layout */
486 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
487
488 void sock_update_memcg(struct sock *sk)
489 {
490 if (mem_cgroup_sockets_enabled) {
491 struct mem_cgroup *memcg;
492 struct cg_proto *cg_proto;
493
494 BUG_ON(!sk->sk_prot->proto_cgroup);
495
496 /* Socket cloning can throw us here with sk_cgrp already
497 * filled. It won't however, necessarily happen from
498 * process context. So the test for root memcg given
499 * the current task's memcg won't help us in this case.
500 *
501 * Respecting the original socket's memcg is a better
502 * decision in this case.
503 */
504 if (sk->sk_cgrp) {
505 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
506 css_get(&sk->sk_cgrp->memcg->css);
507 return;
508 }
509
510 rcu_read_lock();
511 memcg = mem_cgroup_from_task(current);
512 cg_proto = sk->sk_prot->proto_cgroup(memcg);
513 if (!mem_cgroup_is_root(memcg) &&
514 memcg_proto_active(cg_proto) &&
515 css_tryget_online(&memcg->css)) {
516 sk->sk_cgrp = cg_proto;
517 }
518 rcu_read_unlock();
519 }
520 }
521 EXPORT_SYMBOL(sock_update_memcg);
522
523 void sock_release_memcg(struct sock *sk)
524 {
525 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
526 struct mem_cgroup *memcg;
527 WARN_ON(!sk->sk_cgrp->memcg);
528 memcg = sk->sk_cgrp->memcg;
529 css_put(&sk->sk_cgrp->memcg->css);
530 }
531 }
532
533 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
534 {
535 if (!memcg || mem_cgroup_is_root(memcg))
536 return NULL;
537
538 return &memcg->tcp_mem;
539 }
540 EXPORT_SYMBOL(tcp_proto_cgroup);
541
542 static void disarm_sock_keys(struct mem_cgroup *memcg)
543 {
544 if (!memcg_proto_activated(&memcg->tcp_mem))
545 return;
546 static_key_slow_dec(&memcg_socket_limit_enabled);
547 }
548 #else
549 static void disarm_sock_keys(struct mem_cgroup *memcg)
550 {
551 }
552 #endif
553
554 #ifdef CONFIG_MEMCG_KMEM
555 /*
556 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
557 * The main reason for not using cgroup id for this:
558 * this works better in sparse environments, where we have a lot of memcgs,
559 * but only a few kmem-limited. Or also, if we have, for instance, 200
560 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
561 * 200 entry array for that.
562 *
563 * The current size of the caches array is stored in
564 * memcg_limited_groups_array_size. It will double each time we have to
565 * increase it.
566 */
567 static DEFINE_IDA(kmem_limited_groups);
568 int memcg_limited_groups_array_size;
569
570 /*
571 * MIN_SIZE is different than 1, because we would like to avoid going through
572 * the alloc/free process all the time. In a small machine, 4 kmem-limited
573 * cgroups is a reasonable guess. In the future, it could be a parameter or
574 * tunable, but that is strictly not necessary.
575 *
576 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
577 * this constant directly from cgroup, but it is understandable that this is
578 * better kept as an internal representation in cgroup.c. In any case, the
579 * cgrp_id space is not getting any smaller, and we don't have to necessarily
580 * increase ours as well if it increases.
581 */
582 #define MEMCG_CACHES_MIN_SIZE 4
583 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
584
585 /*
586 * A lot of the calls to the cache allocation functions are expected to be
587 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
588 * conditional to this static branch, we'll have to allow modules that does
589 * kmem_cache_alloc and the such to see this symbol as well
590 */
591 struct static_key memcg_kmem_enabled_key;
592 EXPORT_SYMBOL(memcg_kmem_enabled_key);
593
594 static void memcg_free_cache_id(int id);
595
596 static void disarm_kmem_keys(struct mem_cgroup *memcg)
597 {
598 if (memcg_kmem_is_active(memcg)) {
599 static_key_slow_dec(&memcg_kmem_enabled_key);
600 memcg_free_cache_id(memcg->kmemcg_id);
601 }
602 /*
603 * This check can't live in kmem destruction function,
604 * since the charges will outlive the cgroup
605 */
606 WARN_ON(page_counter_read(&memcg->kmem));
607 }
608 #else
609 static void disarm_kmem_keys(struct mem_cgroup *memcg)
610 {
611 }
612 #endif /* CONFIG_MEMCG_KMEM */
613
614 static void disarm_static_keys(struct mem_cgroup *memcg)
615 {
616 disarm_sock_keys(memcg);
617 disarm_kmem_keys(memcg);
618 }
619
620 static struct mem_cgroup_per_zone *
621 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
622 {
623 int nid = zone_to_nid(zone);
624 int zid = zone_idx(zone);
625
626 return &memcg->nodeinfo[nid]->zoneinfo[zid];
627 }
628
629 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
630 {
631 return &memcg->css;
632 }
633
634 static struct mem_cgroup_per_zone *
635 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
636 {
637 int nid = page_to_nid(page);
638 int zid = page_zonenum(page);
639
640 return &memcg->nodeinfo[nid]->zoneinfo[zid];
641 }
642
643 static struct mem_cgroup_tree_per_zone *
644 soft_limit_tree_node_zone(int nid, int zid)
645 {
646 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
647 }
648
649 static struct mem_cgroup_tree_per_zone *
650 soft_limit_tree_from_page(struct page *page)
651 {
652 int nid = page_to_nid(page);
653 int zid = page_zonenum(page);
654
655 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
656 }
657
658 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
659 struct mem_cgroup_tree_per_zone *mctz,
660 unsigned long new_usage_in_excess)
661 {
662 struct rb_node **p = &mctz->rb_root.rb_node;
663 struct rb_node *parent = NULL;
664 struct mem_cgroup_per_zone *mz_node;
665
666 if (mz->on_tree)
667 return;
668
669 mz->usage_in_excess = new_usage_in_excess;
670 if (!mz->usage_in_excess)
671 return;
672 while (*p) {
673 parent = *p;
674 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
675 tree_node);
676 if (mz->usage_in_excess < mz_node->usage_in_excess)
677 p = &(*p)->rb_left;
678 /*
679 * We can't avoid mem cgroups that are over their soft
680 * limit by the same amount
681 */
682 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
683 p = &(*p)->rb_right;
684 }
685 rb_link_node(&mz->tree_node, parent, p);
686 rb_insert_color(&mz->tree_node, &mctz->rb_root);
687 mz->on_tree = true;
688 }
689
690 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
691 struct mem_cgroup_tree_per_zone *mctz)
692 {
693 if (!mz->on_tree)
694 return;
695 rb_erase(&mz->tree_node, &mctz->rb_root);
696 mz->on_tree = false;
697 }
698
699 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
700 struct mem_cgroup_tree_per_zone *mctz)
701 {
702 unsigned long flags;
703
704 spin_lock_irqsave(&mctz->lock, flags);
705 __mem_cgroup_remove_exceeded(mz, mctz);
706 spin_unlock_irqrestore(&mctz->lock, flags);
707 }
708
709 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
710 {
711 unsigned long nr_pages = page_counter_read(&memcg->memory);
712 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
713 unsigned long excess = 0;
714
715 if (nr_pages > soft_limit)
716 excess = nr_pages - soft_limit;
717
718 return excess;
719 }
720
721 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
722 {
723 unsigned long excess;
724 struct mem_cgroup_per_zone *mz;
725 struct mem_cgroup_tree_per_zone *mctz;
726
727 mctz = soft_limit_tree_from_page(page);
728 /*
729 * Necessary to update all ancestors when hierarchy is used.
730 * because their event counter is not touched.
731 */
732 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
733 mz = mem_cgroup_page_zoneinfo(memcg, page);
734 excess = soft_limit_excess(memcg);
735 /*
736 * We have to update the tree if mz is on RB-tree or
737 * mem is over its softlimit.
738 */
739 if (excess || mz->on_tree) {
740 unsigned long flags;
741
742 spin_lock_irqsave(&mctz->lock, flags);
743 /* if on-tree, remove it */
744 if (mz->on_tree)
745 __mem_cgroup_remove_exceeded(mz, mctz);
746 /*
747 * Insert again. mz->usage_in_excess will be updated.
748 * If excess is 0, no tree ops.
749 */
750 __mem_cgroup_insert_exceeded(mz, mctz, excess);
751 spin_unlock_irqrestore(&mctz->lock, flags);
752 }
753 }
754 }
755
756 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
757 {
758 struct mem_cgroup_tree_per_zone *mctz;
759 struct mem_cgroup_per_zone *mz;
760 int nid, zid;
761
762 for_each_node(nid) {
763 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
764 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
765 mctz = soft_limit_tree_node_zone(nid, zid);
766 mem_cgroup_remove_exceeded(mz, mctz);
767 }
768 }
769 }
770
771 static struct mem_cgroup_per_zone *
772 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
773 {
774 struct rb_node *rightmost = NULL;
775 struct mem_cgroup_per_zone *mz;
776
777 retry:
778 mz = NULL;
779 rightmost = rb_last(&mctz->rb_root);
780 if (!rightmost)
781 goto done; /* Nothing to reclaim from */
782
783 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
784 /*
785 * Remove the node now but someone else can add it back,
786 * we will to add it back at the end of reclaim to its correct
787 * position in the tree.
788 */
789 __mem_cgroup_remove_exceeded(mz, mctz);
790 if (!soft_limit_excess(mz->memcg) ||
791 !css_tryget_online(&mz->memcg->css))
792 goto retry;
793 done:
794 return mz;
795 }
796
797 static struct mem_cgroup_per_zone *
798 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
799 {
800 struct mem_cgroup_per_zone *mz;
801
802 spin_lock_irq(&mctz->lock);
803 mz = __mem_cgroup_largest_soft_limit_node(mctz);
804 spin_unlock_irq(&mctz->lock);
805 return mz;
806 }
807
808 /*
809 * Implementation Note: reading percpu statistics for memcg.
810 *
811 * Both of vmstat[] and percpu_counter has threshold and do periodic
812 * synchronization to implement "quick" read. There are trade-off between
813 * reading cost and precision of value. Then, we may have a chance to implement
814 * a periodic synchronizion of counter in memcg's counter.
815 *
816 * But this _read() function is used for user interface now. The user accounts
817 * memory usage by memory cgroup and he _always_ requires exact value because
818 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
819 * have to visit all online cpus and make sum. So, for now, unnecessary
820 * synchronization is not implemented. (just implemented for cpu hotplug)
821 *
822 * If there are kernel internal actions which can make use of some not-exact
823 * value, and reading all cpu value can be performance bottleneck in some
824 * common workload, threashold and synchonization as vmstat[] should be
825 * implemented.
826 */
827 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
828 enum mem_cgroup_stat_index idx)
829 {
830 long val = 0;
831 int cpu;
832
833 get_online_cpus();
834 for_each_online_cpu(cpu)
835 val += per_cpu(memcg->stat->count[idx], cpu);
836 #ifdef CONFIG_HOTPLUG_CPU
837 spin_lock(&memcg->pcp_counter_lock);
838 val += memcg->nocpu_base.count[idx];
839 spin_unlock(&memcg->pcp_counter_lock);
840 #endif
841 put_online_cpus();
842 return val;
843 }
844
845 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
846 enum mem_cgroup_events_index idx)
847 {
848 unsigned long val = 0;
849 int cpu;
850
851 get_online_cpus();
852 for_each_online_cpu(cpu)
853 val += per_cpu(memcg->stat->events[idx], cpu);
854 #ifdef CONFIG_HOTPLUG_CPU
855 spin_lock(&memcg->pcp_counter_lock);
856 val += memcg->nocpu_base.events[idx];
857 spin_unlock(&memcg->pcp_counter_lock);
858 #endif
859 put_online_cpus();
860 return val;
861 }
862
863 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
864 struct page *page,
865 int nr_pages)
866 {
867 /*
868 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
869 * counted as CACHE even if it's on ANON LRU.
870 */
871 if (PageAnon(page))
872 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
873 nr_pages);
874 else
875 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
876 nr_pages);
877
878 if (PageTransHuge(page))
879 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
880 nr_pages);
881
882 /* pagein of a big page is an event. So, ignore page size */
883 if (nr_pages > 0)
884 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
885 else {
886 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
887 nr_pages = -nr_pages; /* for event */
888 }
889
890 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
891 }
892
893 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
894 {
895 struct mem_cgroup_per_zone *mz;
896
897 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
898 return mz->lru_size[lru];
899 }
900
901 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
902 int nid,
903 unsigned int lru_mask)
904 {
905 unsigned long nr = 0;
906 int zid;
907
908 VM_BUG_ON((unsigned)nid >= nr_node_ids);
909
910 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
911 struct mem_cgroup_per_zone *mz;
912 enum lru_list lru;
913
914 for_each_lru(lru) {
915 if (!(BIT(lru) & lru_mask))
916 continue;
917 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
918 nr += mz->lru_size[lru];
919 }
920 }
921 return nr;
922 }
923
924 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
925 unsigned int lru_mask)
926 {
927 unsigned long nr = 0;
928 int nid;
929
930 for_each_node_state(nid, N_MEMORY)
931 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
932 return nr;
933 }
934
935 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
936 enum mem_cgroup_events_target target)
937 {
938 unsigned long val, next;
939
940 val = __this_cpu_read(memcg->stat->nr_page_events);
941 next = __this_cpu_read(memcg->stat->targets[target]);
942 /* from time_after() in jiffies.h */
943 if ((long)next - (long)val < 0) {
944 switch (target) {
945 case MEM_CGROUP_TARGET_THRESH:
946 next = val + THRESHOLDS_EVENTS_TARGET;
947 break;
948 case MEM_CGROUP_TARGET_SOFTLIMIT:
949 next = val + SOFTLIMIT_EVENTS_TARGET;
950 break;
951 case MEM_CGROUP_TARGET_NUMAINFO:
952 next = val + NUMAINFO_EVENTS_TARGET;
953 break;
954 default:
955 break;
956 }
957 __this_cpu_write(memcg->stat->targets[target], next);
958 return true;
959 }
960 return false;
961 }
962
963 /*
964 * Check events in order.
965 *
966 */
967 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
968 {
969 /* threshold event is triggered in finer grain than soft limit */
970 if (unlikely(mem_cgroup_event_ratelimit(memcg,
971 MEM_CGROUP_TARGET_THRESH))) {
972 bool do_softlimit;
973 bool do_numainfo __maybe_unused;
974
975 do_softlimit = mem_cgroup_event_ratelimit(memcg,
976 MEM_CGROUP_TARGET_SOFTLIMIT);
977 #if MAX_NUMNODES > 1
978 do_numainfo = mem_cgroup_event_ratelimit(memcg,
979 MEM_CGROUP_TARGET_NUMAINFO);
980 #endif
981 mem_cgroup_threshold(memcg);
982 if (unlikely(do_softlimit))
983 mem_cgroup_update_tree(memcg, page);
984 #if MAX_NUMNODES > 1
985 if (unlikely(do_numainfo))
986 atomic_inc(&memcg->numainfo_events);
987 #endif
988 }
989 }
990
991 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
992 {
993 /*
994 * mm_update_next_owner() may clear mm->owner to NULL
995 * if it races with swapoff, page migration, etc.
996 * So this can be called with p == NULL.
997 */
998 if (unlikely(!p))
999 return NULL;
1000
1001 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1002 }
1003
1004 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1005 {
1006 struct mem_cgroup *memcg = NULL;
1007
1008 rcu_read_lock();
1009 do {
1010 /*
1011 * Page cache insertions can happen withou an
1012 * actual mm context, e.g. during disk probing
1013 * on boot, loopback IO, acct() writes etc.
1014 */
1015 if (unlikely(!mm))
1016 memcg = root_mem_cgroup;
1017 else {
1018 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1019 if (unlikely(!memcg))
1020 memcg = root_mem_cgroup;
1021 }
1022 } while (!css_tryget_online(&memcg->css));
1023 rcu_read_unlock();
1024 return memcg;
1025 }
1026
1027 /**
1028 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1029 * @root: hierarchy root
1030 * @prev: previously returned memcg, NULL on first invocation
1031 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1032 *
1033 * Returns references to children of the hierarchy below @root, or
1034 * @root itself, or %NULL after a full round-trip.
1035 *
1036 * Caller must pass the return value in @prev on subsequent
1037 * invocations for reference counting, or use mem_cgroup_iter_break()
1038 * to cancel a hierarchy walk before the round-trip is complete.
1039 *
1040 * Reclaimers can specify a zone and a priority level in @reclaim to
1041 * divide up the memcgs in the hierarchy among all concurrent
1042 * reclaimers operating on the same zone and priority.
1043 */
1044 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1045 struct mem_cgroup *prev,
1046 struct mem_cgroup_reclaim_cookie *reclaim)
1047 {
1048 struct reclaim_iter *uninitialized_var(iter);
1049 struct cgroup_subsys_state *css = NULL;
1050 struct mem_cgroup *memcg = NULL;
1051 struct mem_cgroup *pos = NULL;
1052
1053 if (mem_cgroup_disabled())
1054 return NULL;
1055
1056 if (!root)
1057 root = root_mem_cgroup;
1058
1059 if (prev && !reclaim)
1060 pos = prev;
1061
1062 if (!root->use_hierarchy && root != root_mem_cgroup) {
1063 if (prev)
1064 goto out;
1065 return root;
1066 }
1067
1068 rcu_read_lock();
1069
1070 if (reclaim) {
1071 struct mem_cgroup_per_zone *mz;
1072
1073 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1074 iter = &mz->iter[reclaim->priority];
1075
1076 if (prev && reclaim->generation != iter->generation)
1077 goto out_unlock;
1078
1079 do {
1080 pos = ACCESS_ONCE(iter->position);
1081 /*
1082 * A racing update may change the position and
1083 * put the last reference, hence css_tryget(),
1084 * or retry to see the updated position.
1085 */
1086 } while (pos && !css_tryget(&pos->css));
1087 }
1088
1089 if (pos)
1090 css = &pos->css;
1091
1092 for (;;) {
1093 css = css_next_descendant_pre(css, &root->css);
1094 if (!css) {
1095 /*
1096 * Reclaimers share the hierarchy walk, and a
1097 * new one might jump in right at the end of
1098 * the hierarchy - make sure they see at least
1099 * one group and restart from the beginning.
1100 */
1101 if (!prev)
1102 continue;
1103 break;
1104 }
1105
1106 /*
1107 * Verify the css and acquire a reference. The root
1108 * is provided by the caller, so we know it's alive
1109 * and kicking, and don't take an extra reference.
1110 */
1111 memcg = mem_cgroup_from_css(css);
1112
1113 if (css == &root->css)
1114 break;
1115
1116 if (css_tryget(css)) {
1117 /*
1118 * Make sure the memcg is initialized:
1119 * mem_cgroup_css_online() orders the the
1120 * initialization against setting the flag.
1121 */
1122 if (smp_load_acquire(&memcg->initialized))
1123 break;
1124
1125 css_put(css);
1126 }
1127
1128 memcg = NULL;
1129 }
1130
1131 if (reclaim) {
1132 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1133 if (memcg)
1134 css_get(&memcg->css);
1135 if (pos)
1136 css_put(&pos->css);
1137 }
1138
1139 /*
1140 * pairs with css_tryget when dereferencing iter->position
1141 * above.
1142 */
1143 if (pos)
1144 css_put(&pos->css);
1145
1146 if (!memcg)
1147 iter->generation++;
1148 else if (!prev)
1149 reclaim->generation = iter->generation;
1150 }
1151
1152 out_unlock:
1153 rcu_read_unlock();
1154 out:
1155 if (prev && prev != root)
1156 css_put(&prev->css);
1157
1158 return memcg;
1159 }
1160
1161 /**
1162 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1163 * @root: hierarchy root
1164 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1165 */
1166 void mem_cgroup_iter_break(struct mem_cgroup *root,
1167 struct mem_cgroup *prev)
1168 {
1169 if (!root)
1170 root = root_mem_cgroup;
1171 if (prev && prev != root)
1172 css_put(&prev->css);
1173 }
1174
1175 /*
1176 * Iteration constructs for visiting all cgroups (under a tree). If
1177 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1178 * be used for reference counting.
1179 */
1180 #define for_each_mem_cgroup_tree(iter, root) \
1181 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1182 iter != NULL; \
1183 iter = mem_cgroup_iter(root, iter, NULL))
1184
1185 #define for_each_mem_cgroup(iter) \
1186 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1187 iter != NULL; \
1188 iter = mem_cgroup_iter(NULL, iter, NULL))
1189
1190 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1191 {
1192 struct mem_cgroup *memcg;
1193
1194 rcu_read_lock();
1195 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1196 if (unlikely(!memcg))
1197 goto out;
1198
1199 switch (idx) {
1200 case PGFAULT:
1201 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1202 break;
1203 case PGMAJFAULT:
1204 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1205 break;
1206 default:
1207 BUG();
1208 }
1209 out:
1210 rcu_read_unlock();
1211 }
1212 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1213
1214 /**
1215 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1216 * @zone: zone of the wanted lruvec
1217 * @memcg: memcg of the wanted lruvec
1218 *
1219 * Returns the lru list vector holding pages for the given @zone and
1220 * @mem. This can be the global zone lruvec, if the memory controller
1221 * is disabled.
1222 */
1223 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1224 struct mem_cgroup *memcg)
1225 {
1226 struct mem_cgroup_per_zone *mz;
1227 struct lruvec *lruvec;
1228
1229 if (mem_cgroup_disabled()) {
1230 lruvec = &zone->lruvec;
1231 goto out;
1232 }
1233
1234 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1235 lruvec = &mz->lruvec;
1236 out:
1237 /*
1238 * Since a node can be onlined after the mem_cgroup was created,
1239 * we have to be prepared to initialize lruvec->zone here;
1240 * and if offlined then reonlined, we need to reinitialize it.
1241 */
1242 if (unlikely(lruvec->zone != zone))
1243 lruvec->zone = zone;
1244 return lruvec;
1245 }
1246
1247 /**
1248 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1249 * @page: the page
1250 * @zone: zone of the page
1251 *
1252 * This function is only safe when following the LRU page isolation
1253 * and putback protocol: the LRU lock must be held, and the page must
1254 * either be PageLRU() or the caller must have isolated/allocated it.
1255 */
1256 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1257 {
1258 struct mem_cgroup_per_zone *mz;
1259 struct mem_cgroup *memcg;
1260 struct lruvec *lruvec;
1261
1262 if (mem_cgroup_disabled()) {
1263 lruvec = &zone->lruvec;
1264 goto out;
1265 }
1266
1267 memcg = page->mem_cgroup;
1268 /*
1269 * Swapcache readahead pages are added to the LRU - and
1270 * possibly migrated - before they are charged.
1271 */
1272 if (!memcg)
1273 memcg = root_mem_cgroup;
1274
1275 mz = mem_cgroup_page_zoneinfo(memcg, page);
1276 lruvec = &mz->lruvec;
1277 out:
1278 /*
1279 * Since a node can be onlined after the mem_cgroup was created,
1280 * we have to be prepared to initialize lruvec->zone here;
1281 * and if offlined then reonlined, we need to reinitialize it.
1282 */
1283 if (unlikely(lruvec->zone != zone))
1284 lruvec->zone = zone;
1285 return lruvec;
1286 }
1287
1288 /**
1289 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1290 * @lruvec: mem_cgroup per zone lru vector
1291 * @lru: index of lru list the page is sitting on
1292 * @nr_pages: positive when adding or negative when removing
1293 *
1294 * This function must be called when a page is added to or removed from an
1295 * lru list.
1296 */
1297 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1298 int nr_pages)
1299 {
1300 struct mem_cgroup_per_zone *mz;
1301 unsigned long *lru_size;
1302
1303 if (mem_cgroup_disabled())
1304 return;
1305
1306 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1307 lru_size = mz->lru_size + lru;
1308 *lru_size += nr_pages;
1309 VM_BUG_ON((long)(*lru_size) < 0);
1310 }
1311
1312 bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1313 {
1314 if (root == memcg)
1315 return true;
1316 if (!root->use_hierarchy)
1317 return false;
1318 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1319 }
1320
1321 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1322 {
1323 struct mem_cgroup *task_memcg;
1324 struct task_struct *p;
1325 bool ret;
1326
1327 p = find_lock_task_mm(task);
1328 if (p) {
1329 task_memcg = get_mem_cgroup_from_mm(p->mm);
1330 task_unlock(p);
1331 } else {
1332 /*
1333 * All threads may have already detached their mm's, but the oom
1334 * killer still needs to detect if they have already been oom
1335 * killed to prevent needlessly killing additional tasks.
1336 */
1337 rcu_read_lock();
1338 task_memcg = mem_cgroup_from_task(task);
1339 css_get(&task_memcg->css);
1340 rcu_read_unlock();
1341 }
1342 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1343 css_put(&task_memcg->css);
1344 return ret;
1345 }
1346
1347 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1348 {
1349 unsigned long inactive_ratio;
1350 unsigned long inactive;
1351 unsigned long active;
1352 unsigned long gb;
1353
1354 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1355 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1356
1357 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1358 if (gb)
1359 inactive_ratio = int_sqrt(10 * gb);
1360 else
1361 inactive_ratio = 1;
1362
1363 return inactive * inactive_ratio < active;
1364 }
1365
1366 bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
1367 {
1368 struct mem_cgroup_per_zone *mz;
1369 struct mem_cgroup *memcg;
1370
1371 if (mem_cgroup_disabled())
1372 return true;
1373
1374 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1375 memcg = mz->memcg;
1376
1377 return !!(memcg->css.flags & CSS_ONLINE);
1378 }
1379
1380 #define mem_cgroup_from_counter(counter, member) \
1381 container_of(counter, struct mem_cgroup, member)
1382
1383 /**
1384 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1385 * @memcg: the memory cgroup
1386 *
1387 * Returns the maximum amount of memory @mem can be charged with, in
1388 * pages.
1389 */
1390 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1391 {
1392 unsigned long margin = 0;
1393 unsigned long count;
1394 unsigned long limit;
1395
1396 count = page_counter_read(&memcg->memory);
1397 limit = ACCESS_ONCE(memcg->memory.limit);
1398 if (count < limit)
1399 margin = limit - count;
1400
1401 if (do_swap_account) {
1402 count = page_counter_read(&memcg->memsw);
1403 limit = ACCESS_ONCE(memcg->memsw.limit);
1404 if (count <= limit)
1405 margin = min(margin, limit - count);
1406 }
1407
1408 return margin;
1409 }
1410
1411 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1412 {
1413 /* root ? */
1414 if (mem_cgroup_disabled() || !memcg->css.parent)
1415 return vm_swappiness;
1416
1417 return memcg->swappiness;
1418 }
1419
1420 /*
1421 * A routine for checking "mem" is under move_account() or not.
1422 *
1423 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1424 * moving cgroups. This is for waiting at high-memory pressure
1425 * caused by "move".
1426 */
1427 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1428 {
1429 struct mem_cgroup *from;
1430 struct mem_cgroup *to;
1431 bool ret = false;
1432 /*
1433 * Unlike task_move routines, we access mc.to, mc.from not under
1434 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1435 */
1436 spin_lock(&mc.lock);
1437 from = mc.from;
1438 to = mc.to;
1439 if (!from)
1440 goto unlock;
1441
1442 ret = mem_cgroup_is_descendant(from, memcg) ||
1443 mem_cgroup_is_descendant(to, memcg);
1444 unlock:
1445 spin_unlock(&mc.lock);
1446 return ret;
1447 }
1448
1449 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1450 {
1451 if (mc.moving_task && current != mc.moving_task) {
1452 if (mem_cgroup_under_move(memcg)) {
1453 DEFINE_WAIT(wait);
1454 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1455 /* moving charge context might have finished. */
1456 if (mc.moving_task)
1457 schedule();
1458 finish_wait(&mc.waitq, &wait);
1459 return true;
1460 }
1461 }
1462 return false;
1463 }
1464
1465 #define K(x) ((x) << (PAGE_SHIFT-10))
1466 /**
1467 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1468 * @memcg: The memory cgroup that went over limit
1469 * @p: Task that is going to be killed
1470 *
1471 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1472 * enabled
1473 */
1474 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1475 {
1476 /* oom_info_lock ensures that parallel ooms do not interleave */
1477 static DEFINE_MUTEX(oom_info_lock);
1478 struct mem_cgroup *iter;
1479 unsigned int i;
1480
1481 if (!p)
1482 return;
1483
1484 mutex_lock(&oom_info_lock);
1485 rcu_read_lock();
1486
1487 pr_info("Task in ");
1488 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1489 pr_cont(" killed as a result of limit of ");
1490 pr_cont_cgroup_path(memcg->css.cgroup);
1491 pr_cont("\n");
1492
1493 rcu_read_unlock();
1494
1495 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1496 K((u64)page_counter_read(&memcg->memory)),
1497 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1498 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1499 K((u64)page_counter_read(&memcg->memsw)),
1500 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1501 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1502 K((u64)page_counter_read(&memcg->kmem)),
1503 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1504
1505 for_each_mem_cgroup_tree(iter, memcg) {
1506 pr_info("Memory cgroup stats for ");
1507 pr_cont_cgroup_path(iter->css.cgroup);
1508 pr_cont(":");
1509
1510 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1511 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1512 continue;
1513 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1514 K(mem_cgroup_read_stat(iter, i)));
1515 }
1516
1517 for (i = 0; i < NR_LRU_LISTS; i++)
1518 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1519 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1520
1521 pr_cont("\n");
1522 }
1523 mutex_unlock(&oom_info_lock);
1524 }
1525
1526 /*
1527 * This function returns the number of memcg under hierarchy tree. Returns
1528 * 1(self count) if no children.
1529 */
1530 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1531 {
1532 int num = 0;
1533 struct mem_cgroup *iter;
1534
1535 for_each_mem_cgroup_tree(iter, memcg)
1536 num++;
1537 return num;
1538 }
1539
1540 /*
1541 * Return the memory (and swap, if configured) limit for a memcg.
1542 */
1543 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1544 {
1545 unsigned long limit;
1546
1547 limit = memcg->memory.limit;
1548 if (mem_cgroup_swappiness(memcg)) {
1549 unsigned long memsw_limit;
1550
1551 memsw_limit = memcg->memsw.limit;
1552 limit = min(limit + total_swap_pages, memsw_limit);
1553 }
1554 return limit;
1555 }
1556
1557 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1558 int order)
1559 {
1560 struct mem_cgroup *iter;
1561 unsigned long chosen_points = 0;
1562 unsigned long totalpages;
1563 unsigned int points = 0;
1564 struct task_struct *chosen = NULL;
1565
1566 /*
1567 * If current has a pending SIGKILL or is exiting, then automatically
1568 * select it. The goal is to allow it to allocate so that it may
1569 * quickly exit and free its memory.
1570 */
1571 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1572 set_thread_flag(TIF_MEMDIE);
1573 return;
1574 }
1575
1576 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1577 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1578 for_each_mem_cgroup_tree(iter, memcg) {
1579 struct css_task_iter it;
1580 struct task_struct *task;
1581
1582 css_task_iter_start(&iter->css, &it);
1583 while ((task = css_task_iter_next(&it))) {
1584 switch (oom_scan_process_thread(task, totalpages, NULL,
1585 false)) {
1586 case OOM_SCAN_SELECT:
1587 if (chosen)
1588 put_task_struct(chosen);
1589 chosen = task;
1590 chosen_points = ULONG_MAX;
1591 get_task_struct(chosen);
1592 /* fall through */
1593 case OOM_SCAN_CONTINUE:
1594 continue;
1595 case OOM_SCAN_ABORT:
1596 css_task_iter_end(&it);
1597 mem_cgroup_iter_break(memcg, iter);
1598 if (chosen)
1599 put_task_struct(chosen);
1600 return;
1601 case OOM_SCAN_OK:
1602 break;
1603 };
1604 points = oom_badness(task, memcg, NULL, totalpages);
1605 if (!points || points < chosen_points)
1606 continue;
1607 /* Prefer thread group leaders for display purposes */
1608 if (points == chosen_points &&
1609 thread_group_leader(chosen))
1610 continue;
1611
1612 if (chosen)
1613 put_task_struct(chosen);
1614 chosen = task;
1615 chosen_points = points;
1616 get_task_struct(chosen);
1617 }
1618 css_task_iter_end(&it);
1619 }
1620
1621 if (!chosen)
1622 return;
1623 points = chosen_points * 1000 / totalpages;
1624 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1625 NULL, "Memory cgroup out of memory");
1626 }
1627
1628 #if MAX_NUMNODES > 1
1629
1630 /**
1631 * test_mem_cgroup_node_reclaimable
1632 * @memcg: the target memcg
1633 * @nid: the node ID to be checked.
1634 * @noswap : specify true here if the user wants flle only information.
1635 *
1636 * This function returns whether the specified memcg contains any
1637 * reclaimable pages on a node. Returns true if there are any reclaimable
1638 * pages in the node.
1639 */
1640 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1641 int nid, bool noswap)
1642 {
1643 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1644 return true;
1645 if (noswap || !total_swap_pages)
1646 return false;
1647 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1648 return true;
1649 return false;
1650
1651 }
1652
1653 /*
1654 * Always updating the nodemask is not very good - even if we have an empty
1655 * list or the wrong list here, we can start from some node and traverse all
1656 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1657 *
1658 */
1659 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1660 {
1661 int nid;
1662 /*
1663 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1664 * pagein/pageout changes since the last update.
1665 */
1666 if (!atomic_read(&memcg->numainfo_events))
1667 return;
1668 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1669 return;
1670
1671 /* make a nodemask where this memcg uses memory from */
1672 memcg->scan_nodes = node_states[N_MEMORY];
1673
1674 for_each_node_mask(nid, node_states[N_MEMORY]) {
1675
1676 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1677 node_clear(nid, memcg->scan_nodes);
1678 }
1679
1680 atomic_set(&memcg->numainfo_events, 0);
1681 atomic_set(&memcg->numainfo_updating, 0);
1682 }
1683
1684 /*
1685 * Selecting a node where we start reclaim from. Because what we need is just
1686 * reducing usage counter, start from anywhere is O,K. Considering
1687 * memory reclaim from current node, there are pros. and cons.
1688 *
1689 * Freeing memory from current node means freeing memory from a node which
1690 * we'll use or we've used. So, it may make LRU bad. And if several threads
1691 * hit limits, it will see a contention on a node. But freeing from remote
1692 * node means more costs for memory reclaim because of memory latency.
1693 *
1694 * Now, we use round-robin. Better algorithm is welcomed.
1695 */
1696 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1697 {
1698 int node;
1699
1700 mem_cgroup_may_update_nodemask(memcg);
1701 node = memcg->last_scanned_node;
1702
1703 node = next_node(node, memcg->scan_nodes);
1704 if (node == MAX_NUMNODES)
1705 node = first_node(memcg->scan_nodes);
1706 /*
1707 * We call this when we hit limit, not when pages are added to LRU.
1708 * No LRU may hold pages because all pages are UNEVICTABLE or
1709 * memcg is too small and all pages are not on LRU. In that case,
1710 * we use curret node.
1711 */
1712 if (unlikely(node == MAX_NUMNODES))
1713 node = numa_node_id();
1714
1715 memcg->last_scanned_node = node;
1716 return node;
1717 }
1718 #else
1719 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1720 {
1721 return 0;
1722 }
1723 #endif
1724
1725 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1726 struct zone *zone,
1727 gfp_t gfp_mask,
1728 unsigned long *total_scanned)
1729 {
1730 struct mem_cgroup *victim = NULL;
1731 int total = 0;
1732 int loop = 0;
1733 unsigned long excess;
1734 unsigned long nr_scanned;
1735 struct mem_cgroup_reclaim_cookie reclaim = {
1736 .zone = zone,
1737 .priority = 0,
1738 };
1739
1740 excess = soft_limit_excess(root_memcg);
1741
1742 while (1) {
1743 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1744 if (!victim) {
1745 loop++;
1746 if (loop >= 2) {
1747 /*
1748 * If we have not been able to reclaim
1749 * anything, it might because there are
1750 * no reclaimable pages under this hierarchy
1751 */
1752 if (!total)
1753 break;
1754 /*
1755 * We want to do more targeted reclaim.
1756 * excess >> 2 is not to excessive so as to
1757 * reclaim too much, nor too less that we keep
1758 * coming back to reclaim from this cgroup
1759 */
1760 if (total >= (excess >> 2) ||
1761 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1762 break;
1763 }
1764 continue;
1765 }
1766 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1767 zone, &nr_scanned);
1768 *total_scanned += nr_scanned;
1769 if (!soft_limit_excess(root_memcg))
1770 break;
1771 }
1772 mem_cgroup_iter_break(root_memcg, victim);
1773 return total;
1774 }
1775
1776 #ifdef CONFIG_LOCKDEP
1777 static struct lockdep_map memcg_oom_lock_dep_map = {
1778 .name = "memcg_oom_lock",
1779 };
1780 #endif
1781
1782 static DEFINE_SPINLOCK(memcg_oom_lock);
1783
1784 /*
1785 * Check OOM-Killer is already running under our hierarchy.
1786 * If someone is running, return false.
1787 */
1788 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1789 {
1790 struct mem_cgroup *iter, *failed = NULL;
1791
1792 spin_lock(&memcg_oom_lock);
1793
1794 for_each_mem_cgroup_tree(iter, memcg) {
1795 if (iter->oom_lock) {
1796 /*
1797 * this subtree of our hierarchy is already locked
1798 * so we cannot give a lock.
1799 */
1800 failed = iter;
1801 mem_cgroup_iter_break(memcg, iter);
1802 break;
1803 } else
1804 iter->oom_lock = true;
1805 }
1806
1807 if (failed) {
1808 /*
1809 * OK, we failed to lock the whole subtree so we have
1810 * to clean up what we set up to the failing subtree
1811 */
1812 for_each_mem_cgroup_tree(iter, memcg) {
1813 if (iter == failed) {
1814 mem_cgroup_iter_break(memcg, iter);
1815 break;
1816 }
1817 iter->oom_lock = false;
1818 }
1819 } else
1820 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1821
1822 spin_unlock(&memcg_oom_lock);
1823
1824 return !failed;
1825 }
1826
1827 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1828 {
1829 struct mem_cgroup *iter;
1830
1831 spin_lock(&memcg_oom_lock);
1832 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1833 for_each_mem_cgroup_tree(iter, memcg)
1834 iter->oom_lock = false;
1835 spin_unlock(&memcg_oom_lock);
1836 }
1837
1838 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1839 {
1840 struct mem_cgroup *iter;
1841
1842 for_each_mem_cgroup_tree(iter, memcg)
1843 atomic_inc(&iter->under_oom);
1844 }
1845
1846 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1847 {
1848 struct mem_cgroup *iter;
1849
1850 /*
1851 * When a new child is created while the hierarchy is under oom,
1852 * mem_cgroup_oom_lock() may not be called. We have to use
1853 * atomic_add_unless() here.
1854 */
1855 for_each_mem_cgroup_tree(iter, memcg)
1856 atomic_add_unless(&iter->under_oom, -1, 0);
1857 }
1858
1859 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1860
1861 struct oom_wait_info {
1862 struct mem_cgroup *memcg;
1863 wait_queue_t wait;
1864 };
1865
1866 static int memcg_oom_wake_function(wait_queue_t *wait,
1867 unsigned mode, int sync, void *arg)
1868 {
1869 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1870 struct mem_cgroup *oom_wait_memcg;
1871 struct oom_wait_info *oom_wait_info;
1872
1873 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1874 oom_wait_memcg = oom_wait_info->memcg;
1875
1876 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1877 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1878 return 0;
1879 return autoremove_wake_function(wait, mode, sync, arg);
1880 }
1881
1882 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1883 {
1884 atomic_inc(&memcg->oom_wakeups);
1885 /* for filtering, pass "memcg" as argument. */
1886 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1887 }
1888
1889 static void memcg_oom_recover(struct mem_cgroup *memcg)
1890 {
1891 if (memcg && atomic_read(&memcg->under_oom))
1892 memcg_wakeup_oom(memcg);
1893 }
1894
1895 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1896 {
1897 if (!current->memcg_oom.may_oom)
1898 return;
1899 /*
1900 * We are in the middle of the charge context here, so we
1901 * don't want to block when potentially sitting on a callstack
1902 * that holds all kinds of filesystem and mm locks.
1903 *
1904 * Also, the caller may handle a failed allocation gracefully
1905 * (like optional page cache readahead) and so an OOM killer
1906 * invocation might not even be necessary.
1907 *
1908 * That's why we don't do anything here except remember the
1909 * OOM context and then deal with it at the end of the page
1910 * fault when the stack is unwound, the locks are released,
1911 * and when we know whether the fault was overall successful.
1912 */
1913 css_get(&memcg->css);
1914 current->memcg_oom.memcg = memcg;
1915 current->memcg_oom.gfp_mask = mask;
1916 current->memcg_oom.order = order;
1917 }
1918
1919 /**
1920 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1921 * @handle: actually kill/wait or just clean up the OOM state
1922 *
1923 * This has to be called at the end of a page fault if the memcg OOM
1924 * handler was enabled.
1925 *
1926 * Memcg supports userspace OOM handling where failed allocations must
1927 * sleep on a waitqueue until the userspace task resolves the
1928 * situation. Sleeping directly in the charge context with all kinds
1929 * of locks held is not a good idea, instead we remember an OOM state
1930 * in the task and mem_cgroup_oom_synchronize() has to be called at
1931 * the end of the page fault to complete the OOM handling.
1932 *
1933 * Returns %true if an ongoing memcg OOM situation was detected and
1934 * completed, %false otherwise.
1935 */
1936 bool mem_cgroup_oom_synchronize(bool handle)
1937 {
1938 struct mem_cgroup *memcg = current->memcg_oom.memcg;
1939 struct oom_wait_info owait;
1940 bool locked;
1941
1942 /* OOM is global, do not handle */
1943 if (!memcg)
1944 return false;
1945
1946 if (!handle)
1947 goto cleanup;
1948
1949 owait.memcg = memcg;
1950 owait.wait.flags = 0;
1951 owait.wait.func = memcg_oom_wake_function;
1952 owait.wait.private = current;
1953 INIT_LIST_HEAD(&owait.wait.task_list);
1954
1955 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1956 mem_cgroup_mark_under_oom(memcg);
1957
1958 locked = mem_cgroup_oom_trylock(memcg);
1959
1960 if (locked)
1961 mem_cgroup_oom_notify(memcg);
1962
1963 if (locked && !memcg->oom_kill_disable) {
1964 mem_cgroup_unmark_under_oom(memcg);
1965 finish_wait(&memcg_oom_waitq, &owait.wait);
1966 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1967 current->memcg_oom.order);
1968 } else {
1969 schedule();
1970 mem_cgroup_unmark_under_oom(memcg);
1971 finish_wait(&memcg_oom_waitq, &owait.wait);
1972 }
1973
1974 if (locked) {
1975 mem_cgroup_oom_unlock(memcg);
1976 /*
1977 * There is no guarantee that an OOM-lock contender
1978 * sees the wakeups triggered by the OOM kill
1979 * uncharges. Wake any sleepers explicitely.
1980 */
1981 memcg_oom_recover(memcg);
1982 }
1983 cleanup:
1984 current->memcg_oom.memcg = NULL;
1985 css_put(&memcg->css);
1986 return true;
1987 }
1988
1989 /**
1990 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1991 * @page: page that is going to change accounted state
1992 *
1993 * This function must mark the beginning of an accounted page state
1994 * change to prevent double accounting when the page is concurrently
1995 * being moved to another memcg:
1996 *
1997 * memcg = mem_cgroup_begin_page_stat(page);
1998 * if (TestClearPageState(page))
1999 * mem_cgroup_update_page_stat(memcg, state, -1);
2000 * mem_cgroup_end_page_stat(memcg);
2001 */
2002 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
2003 {
2004 struct mem_cgroup *memcg;
2005 unsigned long flags;
2006
2007 /*
2008 * The RCU lock is held throughout the transaction. The fast
2009 * path can get away without acquiring the memcg->move_lock
2010 * because page moving starts with an RCU grace period.
2011 *
2012 * The RCU lock also protects the memcg from being freed when
2013 * the page state that is going to change is the only thing
2014 * preventing the page from being uncharged.
2015 * E.g. end-writeback clearing PageWriteback(), which allows
2016 * migration to go ahead and uncharge the page before the
2017 * account transaction might be complete.
2018 */
2019 rcu_read_lock();
2020
2021 if (mem_cgroup_disabled())
2022 return NULL;
2023 again:
2024 memcg = page->mem_cgroup;
2025 if (unlikely(!memcg))
2026 return NULL;
2027
2028 if (atomic_read(&memcg->moving_account) <= 0)
2029 return memcg;
2030
2031 spin_lock_irqsave(&memcg->move_lock, flags);
2032 if (memcg != page->mem_cgroup) {
2033 spin_unlock_irqrestore(&memcg->move_lock, flags);
2034 goto again;
2035 }
2036
2037 /*
2038 * When charge migration first begins, we can have locked and
2039 * unlocked page stat updates happening concurrently. Track
2040 * the task who has the lock for mem_cgroup_end_page_stat().
2041 */
2042 memcg->move_lock_task = current;
2043 memcg->move_lock_flags = flags;
2044
2045 return memcg;
2046 }
2047
2048 /**
2049 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2050 * @memcg: the memcg that was accounted against
2051 */
2052 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2053 {
2054 if (memcg && memcg->move_lock_task == current) {
2055 unsigned long flags = memcg->move_lock_flags;
2056
2057 memcg->move_lock_task = NULL;
2058 memcg->move_lock_flags = 0;
2059
2060 spin_unlock_irqrestore(&memcg->move_lock, flags);
2061 }
2062
2063 rcu_read_unlock();
2064 }
2065
2066 /**
2067 * mem_cgroup_update_page_stat - update page state statistics
2068 * @memcg: memcg to account against
2069 * @idx: page state item to account
2070 * @val: number of pages (positive or negative)
2071 *
2072 * See mem_cgroup_begin_page_stat() for locking requirements.
2073 */
2074 void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
2075 enum mem_cgroup_stat_index idx, int val)
2076 {
2077 VM_BUG_ON(!rcu_read_lock_held());
2078
2079 if (memcg)
2080 this_cpu_add(memcg->stat->count[idx], val);
2081 }
2082
2083 /*
2084 * size of first charge trial. "32" comes from vmscan.c's magic value.
2085 * TODO: maybe necessary to use big numbers in big irons.
2086 */
2087 #define CHARGE_BATCH 32U
2088 struct memcg_stock_pcp {
2089 struct mem_cgroup *cached; /* this never be root cgroup */
2090 unsigned int nr_pages;
2091 struct work_struct work;
2092 unsigned long flags;
2093 #define FLUSHING_CACHED_CHARGE 0
2094 };
2095 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2096 static DEFINE_MUTEX(percpu_charge_mutex);
2097
2098 /**
2099 * consume_stock: Try to consume stocked charge on this cpu.
2100 * @memcg: memcg to consume from.
2101 * @nr_pages: how many pages to charge.
2102 *
2103 * The charges will only happen if @memcg matches the current cpu's memcg
2104 * stock, and at least @nr_pages are available in that stock. Failure to
2105 * service an allocation will refill the stock.
2106 *
2107 * returns true if successful, false otherwise.
2108 */
2109 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2110 {
2111 struct memcg_stock_pcp *stock;
2112 bool ret = false;
2113
2114 if (nr_pages > CHARGE_BATCH)
2115 return ret;
2116
2117 stock = &get_cpu_var(memcg_stock);
2118 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2119 stock->nr_pages -= nr_pages;
2120 ret = true;
2121 }
2122 put_cpu_var(memcg_stock);
2123 return ret;
2124 }
2125
2126 /*
2127 * Returns stocks cached in percpu and reset cached information.
2128 */
2129 static void drain_stock(struct memcg_stock_pcp *stock)
2130 {
2131 struct mem_cgroup *old = stock->cached;
2132
2133 if (stock->nr_pages) {
2134 page_counter_uncharge(&old->memory, stock->nr_pages);
2135 if (do_swap_account)
2136 page_counter_uncharge(&old->memsw, stock->nr_pages);
2137 css_put_many(&old->css, stock->nr_pages);
2138 stock->nr_pages = 0;
2139 }
2140 stock->cached = NULL;
2141 }
2142
2143 /*
2144 * This must be called under preempt disabled or must be called by
2145 * a thread which is pinned to local cpu.
2146 */
2147 static void drain_local_stock(struct work_struct *dummy)
2148 {
2149 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2150 drain_stock(stock);
2151 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2152 }
2153
2154 static void __init memcg_stock_init(void)
2155 {
2156 int cpu;
2157
2158 for_each_possible_cpu(cpu) {
2159 struct memcg_stock_pcp *stock =
2160 &per_cpu(memcg_stock, cpu);
2161 INIT_WORK(&stock->work, drain_local_stock);
2162 }
2163 }
2164
2165 /*
2166 * Cache charges(val) to local per_cpu area.
2167 * This will be consumed by consume_stock() function, later.
2168 */
2169 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2170 {
2171 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2172
2173 if (stock->cached != memcg) { /* reset if necessary */
2174 drain_stock(stock);
2175 stock->cached = memcg;
2176 }
2177 stock->nr_pages += nr_pages;
2178 put_cpu_var(memcg_stock);
2179 }
2180
2181 /*
2182 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2183 * of the hierarchy under it.
2184 */
2185 static void drain_all_stock(struct mem_cgroup *root_memcg)
2186 {
2187 int cpu, curcpu;
2188
2189 /* If someone's already draining, avoid adding running more workers. */
2190 if (!mutex_trylock(&percpu_charge_mutex))
2191 return;
2192 /* Notify other cpus that system-wide "drain" is running */
2193 get_online_cpus();
2194 curcpu = get_cpu();
2195 for_each_online_cpu(cpu) {
2196 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2197 struct mem_cgroup *memcg;
2198
2199 memcg = stock->cached;
2200 if (!memcg || !stock->nr_pages)
2201 continue;
2202 if (!mem_cgroup_is_descendant(memcg, root_memcg))
2203 continue;
2204 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2205 if (cpu == curcpu)
2206 drain_local_stock(&stock->work);
2207 else
2208 schedule_work_on(cpu, &stock->work);
2209 }
2210 }
2211 put_cpu();
2212 put_online_cpus();
2213 mutex_unlock(&percpu_charge_mutex);
2214 }
2215
2216 /*
2217 * This function drains percpu counter value from DEAD cpu and
2218 * move it to local cpu. Note that this function can be preempted.
2219 */
2220 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2221 {
2222 int i;
2223
2224 spin_lock(&memcg->pcp_counter_lock);
2225 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2226 long x = per_cpu(memcg->stat->count[i], cpu);
2227
2228 per_cpu(memcg->stat->count[i], cpu) = 0;
2229 memcg->nocpu_base.count[i] += x;
2230 }
2231 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2232 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2233
2234 per_cpu(memcg->stat->events[i], cpu) = 0;
2235 memcg->nocpu_base.events[i] += x;
2236 }
2237 spin_unlock(&memcg->pcp_counter_lock);
2238 }
2239
2240 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2241 unsigned long action,
2242 void *hcpu)
2243 {
2244 int cpu = (unsigned long)hcpu;
2245 struct memcg_stock_pcp *stock;
2246 struct mem_cgroup *iter;
2247
2248 if (action == CPU_ONLINE)
2249 return NOTIFY_OK;
2250
2251 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2252 return NOTIFY_OK;
2253
2254 for_each_mem_cgroup(iter)
2255 mem_cgroup_drain_pcp_counter(iter, cpu);
2256
2257 stock = &per_cpu(memcg_stock, cpu);
2258 drain_stock(stock);
2259 return NOTIFY_OK;
2260 }
2261
2262 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2263 unsigned int nr_pages)
2264 {
2265 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2266 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2267 struct mem_cgroup *mem_over_limit;
2268 struct page_counter *counter;
2269 unsigned long nr_reclaimed;
2270 bool may_swap = true;
2271 bool drained = false;
2272 int ret = 0;
2273
2274 if (mem_cgroup_is_root(memcg))
2275 goto done;
2276 retry:
2277 if (consume_stock(memcg, nr_pages))
2278 goto done;
2279
2280 if (!do_swap_account ||
2281 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2282 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2283 goto done_restock;
2284 if (do_swap_account)
2285 page_counter_uncharge(&memcg->memsw, batch);
2286 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2287 } else {
2288 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2289 may_swap = false;
2290 }
2291
2292 if (batch > nr_pages) {
2293 batch = nr_pages;
2294 goto retry;
2295 }
2296
2297 /*
2298 * Unlike in global OOM situations, memcg is not in a physical
2299 * memory shortage. Allow dying and OOM-killed tasks to
2300 * bypass the last charges so that they can exit quickly and
2301 * free their memory.
2302 */
2303 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2304 fatal_signal_pending(current) ||
2305 current->flags & PF_EXITING))
2306 goto bypass;
2307
2308 if (unlikely(task_in_memcg_oom(current)))
2309 goto nomem;
2310
2311 if (!(gfp_mask & __GFP_WAIT))
2312 goto nomem;
2313
2314 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2315
2316 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2317 gfp_mask, may_swap);
2318
2319 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2320 goto retry;
2321
2322 if (!drained) {
2323 drain_all_stock(mem_over_limit);
2324 drained = true;
2325 goto retry;
2326 }
2327
2328 if (gfp_mask & __GFP_NORETRY)
2329 goto nomem;
2330 /*
2331 * Even though the limit is exceeded at this point, reclaim
2332 * may have been able to free some pages. Retry the charge
2333 * before killing the task.
2334 *
2335 * Only for regular pages, though: huge pages are rather
2336 * unlikely to succeed so close to the limit, and we fall back
2337 * to regular pages anyway in case of failure.
2338 */
2339 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2340 goto retry;
2341 /*
2342 * At task move, charge accounts can be doubly counted. So, it's
2343 * better to wait until the end of task_move if something is going on.
2344 */
2345 if (mem_cgroup_wait_acct_move(mem_over_limit))
2346 goto retry;
2347
2348 if (nr_retries--)
2349 goto retry;
2350
2351 if (gfp_mask & __GFP_NOFAIL)
2352 goto bypass;
2353
2354 if (fatal_signal_pending(current))
2355 goto bypass;
2356
2357 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2358
2359 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2360 nomem:
2361 if (!(gfp_mask & __GFP_NOFAIL))
2362 return -ENOMEM;
2363 bypass:
2364 return -EINTR;
2365
2366 done_restock:
2367 css_get_many(&memcg->css, batch);
2368 if (batch > nr_pages)
2369 refill_stock(memcg, batch - nr_pages);
2370 /*
2371 * If the hierarchy is above the normal consumption range,
2372 * make the charging task trim their excess contribution.
2373 */
2374 do {
2375 if (page_counter_read(&memcg->memory) <= memcg->high)
2376 continue;
2377 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2378 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2379 } while ((memcg = parent_mem_cgroup(memcg)));
2380 done:
2381 return ret;
2382 }
2383
2384 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2385 {
2386 if (mem_cgroup_is_root(memcg))
2387 return;
2388
2389 page_counter_uncharge(&memcg->memory, nr_pages);
2390 if (do_swap_account)
2391 page_counter_uncharge(&memcg->memsw, nr_pages);
2392
2393 css_put_many(&memcg->css, nr_pages);
2394 }
2395
2396 /*
2397 * A helper function to get mem_cgroup from ID. must be called under
2398 * rcu_read_lock(). The caller is responsible for calling
2399 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2400 * refcnt from swap can be called against removed memcg.)
2401 */
2402 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2403 {
2404 /* ID 0 is unused ID */
2405 if (!id)
2406 return NULL;
2407 return mem_cgroup_from_id(id);
2408 }
2409
2410 /*
2411 * try_get_mem_cgroup_from_page - look up page's memcg association
2412 * @page: the page
2413 *
2414 * Look up, get a css reference, and return the memcg that owns @page.
2415 *
2416 * The page must be locked to prevent racing with swap-in and page
2417 * cache charges. If coming from an unlocked page table, the caller
2418 * must ensure the page is on the LRU or this can race with charging.
2419 */
2420 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2421 {
2422 struct mem_cgroup *memcg;
2423 unsigned short id;
2424 swp_entry_t ent;
2425
2426 VM_BUG_ON_PAGE(!PageLocked(page), page);
2427
2428 memcg = page->mem_cgroup;
2429 if (memcg) {
2430 if (!css_tryget_online(&memcg->css))
2431 memcg = NULL;
2432 } else if (PageSwapCache(page)) {
2433 ent.val = page_private(page);
2434 id = lookup_swap_cgroup_id(ent);
2435 rcu_read_lock();
2436 memcg = mem_cgroup_lookup(id);
2437 if (memcg && !css_tryget_online(&memcg->css))
2438 memcg = NULL;
2439 rcu_read_unlock();
2440 }
2441 return memcg;
2442 }
2443
2444 static void lock_page_lru(struct page *page, int *isolated)
2445 {
2446 struct zone *zone = page_zone(page);
2447
2448 spin_lock_irq(&zone->lru_lock);
2449 if (PageLRU(page)) {
2450 struct lruvec *lruvec;
2451
2452 lruvec = mem_cgroup_page_lruvec(page, zone);
2453 ClearPageLRU(page);
2454 del_page_from_lru_list(page, lruvec, page_lru(page));
2455 *isolated = 1;
2456 } else
2457 *isolated = 0;
2458 }
2459
2460 static void unlock_page_lru(struct page *page, int isolated)
2461 {
2462 struct zone *zone = page_zone(page);
2463
2464 if (isolated) {
2465 struct lruvec *lruvec;
2466
2467 lruvec = mem_cgroup_page_lruvec(page, zone);
2468 VM_BUG_ON_PAGE(PageLRU(page), page);
2469 SetPageLRU(page);
2470 add_page_to_lru_list(page, lruvec, page_lru(page));
2471 }
2472 spin_unlock_irq(&zone->lru_lock);
2473 }
2474
2475 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2476 bool lrucare)
2477 {
2478 int isolated;
2479
2480 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2481
2482 /*
2483 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2484 * may already be on some other mem_cgroup's LRU. Take care of it.
2485 */
2486 if (lrucare)
2487 lock_page_lru(page, &isolated);
2488
2489 /*
2490 * Nobody should be changing or seriously looking at
2491 * page->mem_cgroup at this point:
2492 *
2493 * - the page is uncharged
2494 *
2495 * - the page is off-LRU
2496 *
2497 * - an anonymous fault has exclusive page access, except for
2498 * a locked page table
2499 *
2500 * - a page cache insertion, a swapin fault, or a migration
2501 * have the page locked
2502 */
2503 page->mem_cgroup = memcg;
2504
2505 if (lrucare)
2506 unlock_page_lru(page, isolated);
2507 }
2508
2509 #ifdef CONFIG_MEMCG_KMEM
2510 int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2511 unsigned long nr_pages)
2512 {
2513 struct page_counter *counter;
2514 int ret = 0;
2515
2516 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2517 if (ret < 0)
2518 return ret;
2519
2520 ret = try_charge(memcg, gfp, nr_pages);
2521 if (ret == -EINTR) {
2522 /*
2523 * try_charge() chose to bypass to root due to OOM kill or
2524 * fatal signal. Since our only options are to either fail
2525 * the allocation or charge it to this cgroup, do it as a
2526 * temporary condition. But we can't fail. From a kmem/slab
2527 * perspective, the cache has already been selected, by
2528 * mem_cgroup_kmem_get_cache(), so it is too late to change
2529 * our minds.
2530 *
2531 * This condition will only trigger if the task entered
2532 * memcg_charge_kmem in a sane state, but was OOM-killed
2533 * during try_charge() above. Tasks that were already dying
2534 * when the allocation triggers should have been already
2535 * directed to the root cgroup in memcontrol.h
2536 */
2537 page_counter_charge(&memcg->memory, nr_pages);
2538 if (do_swap_account)
2539 page_counter_charge(&memcg->memsw, nr_pages);
2540 css_get_many(&memcg->css, nr_pages);
2541 ret = 0;
2542 } else if (ret)
2543 page_counter_uncharge(&memcg->kmem, nr_pages);
2544
2545 return ret;
2546 }
2547
2548 void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2549 {
2550 page_counter_uncharge(&memcg->memory, nr_pages);
2551 if (do_swap_account)
2552 page_counter_uncharge(&memcg->memsw, nr_pages);
2553
2554 page_counter_uncharge(&memcg->kmem, nr_pages);
2555
2556 css_put_many(&memcg->css, nr_pages);
2557 }
2558
2559 /*
2560 * helper for acessing a memcg's index. It will be used as an index in the
2561 * child cache array in kmem_cache, and also to derive its name. This function
2562 * will return -1 when this is not a kmem-limited memcg.
2563 */
2564 int memcg_cache_id(struct mem_cgroup *memcg)
2565 {
2566 return memcg ? memcg->kmemcg_id : -1;
2567 }
2568
2569 static int memcg_alloc_cache_id(void)
2570 {
2571 int id, size;
2572 int err;
2573
2574 id = ida_simple_get(&kmem_limited_groups,
2575 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2576 if (id < 0)
2577 return id;
2578
2579 if (id < memcg_limited_groups_array_size)
2580 return id;
2581
2582 /*
2583 * There's no space for the new id in memcg_caches arrays,
2584 * so we have to grow them.
2585 */
2586
2587 size = 2 * (id + 1);
2588 if (size < MEMCG_CACHES_MIN_SIZE)
2589 size = MEMCG_CACHES_MIN_SIZE;
2590 else if (size > MEMCG_CACHES_MAX_SIZE)
2591 size = MEMCG_CACHES_MAX_SIZE;
2592
2593 err = memcg_update_all_caches(size);
2594 if (err) {
2595 ida_simple_remove(&kmem_limited_groups, id);
2596 return err;
2597 }
2598 return id;
2599 }
2600
2601 static void memcg_free_cache_id(int id)
2602 {
2603 ida_simple_remove(&kmem_limited_groups, id);
2604 }
2605
2606 /*
2607 * We should update the current array size iff all caches updates succeed. This
2608 * can only be done from the slab side. The slab mutex needs to be held when
2609 * calling this.
2610 */
2611 void memcg_update_array_size(int num)
2612 {
2613 memcg_limited_groups_array_size = num;
2614 }
2615
2616 struct memcg_kmem_cache_create_work {
2617 struct mem_cgroup *memcg;
2618 struct kmem_cache *cachep;
2619 struct work_struct work;
2620 };
2621
2622 static void memcg_kmem_cache_create_func(struct work_struct *w)
2623 {
2624 struct memcg_kmem_cache_create_work *cw =
2625 container_of(w, struct memcg_kmem_cache_create_work, work);
2626 struct mem_cgroup *memcg = cw->memcg;
2627 struct kmem_cache *cachep = cw->cachep;
2628
2629 memcg_create_kmem_cache(memcg, cachep);
2630
2631 css_put(&memcg->css);
2632 kfree(cw);
2633 }
2634
2635 /*
2636 * Enqueue the creation of a per-memcg kmem_cache.
2637 */
2638 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2639 struct kmem_cache *cachep)
2640 {
2641 struct memcg_kmem_cache_create_work *cw;
2642
2643 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2644 if (!cw)
2645 return;
2646
2647 css_get(&memcg->css);
2648
2649 cw->memcg = memcg;
2650 cw->cachep = cachep;
2651 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2652
2653 schedule_work(&cw->work);
2654 }
2655
2656 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2657 struct kmem_cache *cachep)
2658 {
2659 /*
2660 * We need to stop accounting when we kmalloc, because if the
2661 * corresponding kmalloc cache is not yet created, the first allocation
2662 * in __memcg_schedule_kmem_cache_create will recurse.
2663 *
2664 * However, it is better to enclose the whole function. Depending on
2665 * the debugging options enabled, INIT_WORK(), for instance, can
2666 * trigger an allocation. This too, will make us recurse. Because at
2667 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2668 * the safest choice is to do it like this, wrapping the whole function.
2669 */
2670 current->memcg_kmem_skip_account = 1;
2671 __memcg_schedule_kmem_cache_create(memcg, cachep);
2672 current->memcg_kmem_skip_account = 0;
2673 }
2674
2675 /*
2676 * Return the kmem_cache we're supposed to use for a slab allocation.
2677 * We try to use the current memcg's version of the cache.
2678 *
2679 * If the cache does not exist yet, if we are the first user of it,
2680 * we either create it immediately, if possible, or create it asynchronously
2681 * in a workqueue.
2682 * In the latter case, we will let the current allocation go through with
2683 * the original cache.
2684 *
2685 * Can't be called in interrupt context or from kernel threads.
2686 * This function needs to be called with rcu_read_lock() held.
2687 */
2688 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2689 {
2690 struct mem_cgroup *memcg;
2691 struct kmem_cache *memcg_cachep;
2692
2693 VM_BUG_ON(!cachep->memcg_params);
2694 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
2695
2696 if (current->memcg_kmem_skip_account)
2697 return cachep;
2698
2699 memcg = get_mem_cgroup_from_mm(current->mm);
2700 if (!memcg_kmem_is_active(memcg))
2701 goto out;
2702
2703 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
2704 if (likely(memcg_cachep))
2705 return memcg_cachep;
2706
2707 /*
2708 * If we are in a safe context (can wait, and not in interrupt
2709 * context), we could be be predictable and return right away.
2710 * This would guarantee that the allocation being performed
2711 * already belongs in the new cache.
2712 *
2713 * However, there are some clashes that can arrive from locking.
2714 * For instance, because we acquire the slab_mutex while doing
2715 * memcg_create_kmem_cache, this means no further allocation
2716 * could happen with the slab_mutex held. So it's better to
2717 * defer everything.
2718 */
2719 memcg_schedule_kmem_cache_create(memcg, cachep);
2720 out:
2721 css_put(&memcg->css);
2722 return cachep;
2723 }
2724
2725 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2726 {
2727 if (!is_root_cache(cachep))
2728 css_put(&cachep->memcg_params->memcg->css);
2729 }
2730
2731 /*
2732 * We need to verify if the allocation against current->mm->owner's memcg is
2733 * possible for the given order. But the page is not allocated yet, so we'll
2734 * need a further commit step to do the final arrangements.
2735 *
2736 * It is possible for the task to switch cgroups in this mean time, so at
2737 * commit time, we can't rely on task conversion any longer. We'll then use
2738 * the handle argument to return to the caller which cgroup we should commit
2739 * against. We could also return the memcg directly and avoid the pointer
2740 * passing, but a boolean return value gives better semantics considering
2741 * the compiled-out case as well.
2742 *
2743 * Returning true means the allocation is possible.
2744 */
2745 bool
2746 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2747 {
2748 struct mem_cgroup *memcg;
2749 int ret;
2750
2751 *_memcg = NULL;
2752
2753 memcg = get_mem_cgroup_from_mm(current->mm);
2754
2755 if (!memcg_kmem_is_active(memcg)) {
2756 css_put(&memcg->css);
2757 return true;
2758 }
2759
2760 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2761 if (!ret)
2762 *_memcg = memcg;
2763
2764 css_put(&memcg->css);
2765 return (ret == 0);
2766 }
2767
2768 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2769 int order)
2770 {
2771 VM_BUG_ON(mem_cgroup_is_root(memcg));
2772
2773 /* The page allocation failed. Revert */
2774 if (!page) {
2775 memcg_uncharge_kmem(memcg, 1 << order);
2776 return;
2777 }
2778 page->mem_cgroup = memcg;
2779 }
2780
2781 void __memcg_kmem_uncharge_pages(struct page *page, int order)
2782 {
2783 struct mem_cgroup *memcg = page->mem_cgroup;
2784
2785 if (!memcg)
2786 return;
2787
2788 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2789
2790 memcg_uncharge_kmem(memcg, 1 << order);
2791 page->mem_cgroup = NULL;
2792 }
2793 #endif /* CONFIG_MEMCG_KMEM */
2794
2795 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2796
2797 /*
2798 * Because tail pages are not marked as "used", set it. We're under
2799 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2800 * charge/uncharge will be never happen and move_account() is done under
2801 * compound_lock(), so we don't have to take care of races.
2802 */
2803 void mem_cgroup_split_huge_fixup(struct page *head)
2804 {
2805 int i;
2806
2807 if (mem_cgroup_disabled())
2808 return;
2809
2810 for (i = 1; i < HPAGE_PMD_NR; i++)
2811 head[i].mem_cgroup = head->mem_cgroup;
2812
2813 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2814 HPAGE_PMD_NR);
2815 }
2816 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2817
2818 /**
2819 * mem_cgroup_move_account - move account of the page
2820 * @page: the page
2821 * @nr_pages: number of regular pages (>1 for huge pages)
2822 * @from: mem_cgroup which the page is moved from.
2823 * @to: mem_cgroup which the page is moved to. @from != @to.
2824 *
2825 * The caller must confirm following.
2826 * - page is not on LRU (isolate_page() is useful.)
2827 * - compound_lock is held when nr_pages > 1
2828 *
2829 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2830 * from old cgroup.
2831 */
2832 static int mem_cgroup_move_account(struct page *page,
2833 unsigned int nr_pages,
2834 struct mem_cgroup *from,
2835 struct mem_cgroup *to)
2836 {
2837 unsigned long flags;
2838 int ret;
2839
2840 VM_BUG_ON(from == to);
2841 VM_BUG_ON_PAGE(PageLRU(page), page);
2842 /*
2843 * The page is isolated from LRU. So, collapse function
2844 * will not handle this page. But page splitting can happen.
2845 * Do this check under compound_page_lock(). The caller should
2846 * hold it.
2847 */
2848 ret = -EBUSY;
2849 if (nr_pages > 1 && !PageTransHuge(page))
2850 goto out;
2851
2852 /*
2853 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
2854 * of its source page while we change it: page migration takes
2855 * both pages off the LRU, but page cache replacement doesn't.
2856 */
2857 if (!trylock_page(page))
2858 goto out;
2859
2860 ret = -EINVAL;
2861 if (page->mem_cgroup != from)
2862 goto out_unlock;
2863
2864 spin_lock_irqsave(&from->move_lock, flags);
2865
2866 if (!PageAnon(page) && page_mapped(page)) {
2867 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
2868 nr_pages);
2869 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
2870 nr_pages);
2871 }
2872
2873 if (PageWriteback(page)) {
2874 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
2875 nr_pages);
2876 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
2877 nr_pages);
2878 }
2879
2880 /*
2881 * It is safe to change page->mem_cgroup here because the page
2882 * is referenced, charged, and isolated - we can't race with
2883 * uncharging, charging, migration, or LRU putback.
2884 */
2885
2886 /* caller should have done css_get */
2887 page->mem_cgroup = to;
2888 spin_unlock_irqrestore(&from->move_lock, flags);
2889
2890 ret = 0;
2891
2892 local_irq_disable();
2893 mem_cgroup_charge_statistics(to, page, nr_pages);
2894 memcg_check_events(to, page);
2895 mem_cgroup_charge_statistics(from, page, -nr_pages);
2896 memcg_check_events(from, page);
2897 local_irq_enable();
2898 out_unlock:
2899 unlock_page(page);
2900 out:
2901 return ret;
2902 }
2903
2904 #ifdef CONFIG_MEMCG_SWAP
2905 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2906 bool charge)
2907 {
2908 int val = (charge) ? 1 : -1;
2909 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2910 }
2911
2912 /**
2913 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2914 * @entry: swap entry to be moved
2915 * @from: mem_cgroup which the entry is moved from
2916 * @to: mem_cgroup which the entry is moved to
2917 *
2918 * It succeeds only when the swap_cgroup's record for this entry is the same
2919 * as the mem_cgroup's id of @from.
2920 *
2921 * Returns 0 on success, -EINVAL on failure.
2922 *
2923 * The caller must have charged to @to, IOW, called page_counter_charge() about
2924 * both res and memsw, and called css_get().
2925 */
2926 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2927 struct mem_cgroup *from, struct mem_cgroup *to)
2928 {
2929 unsigned short old_id, new_id;
2930
2931 old_id = mem_cgroup_id(from);
2932 new_id = mem_cgroup_id(to);
2933
2934 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2935 mem_cgroup_swap_statistics(from, false);
2936 mem_cgroup_swap_statistics(to, true);
2937 return 0;
2938 }
2939 return -EINVAL;
2940 }
2941 #else
2942 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2943 struct mem_cgroup *from, struct mem_cgroup *to)
2944 {
2945 return -EINVAL;
2946 }
2947 #endif
2948
2949 static DEFINE_MUTEX(memcg_limit_mutex);
2950
2951 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2952 unsigned long limit)
2953 {
2954 unsigned long curusage;
2955 unsigned long oldusage;
2956 bool enlarge = false;
2957 int retry_count;
2958 int ret;
2959
2960 /*
2961 * For keeping hierarchical_reclaim simple, how long we should retry
2962 * is depends on callers. We set our retry-count to be function
2963 * of # of children which we should visit in this loop.
2964 */
2965 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2966 mem_cgroup_count_children(memcg);
2967
2968 oldusage = page_counter_read(&memcg->memory);
2969
2970 do {
2971 if (signal_pending(current)) {
2972 ret = -EINTR;
2973 break;
2974 }
2975
2976 mutex_lock(&memcg_limit_mutex);
2977 if (limit > memcg->memsw.limit) {
2978 mutex_unlock(&memcg_limit_mutex);
2979 ret = -EINVAL;
2980 break;
2981 }
2982 if (limit > memcg->memory.limit)
2983 enlarge = true;
2984 ret = page_counter_limit(&memcg->memory, limit);
2985 mutex_unlock(&memcg_limit_mutex);
2986
2987 if (!ret)
2988 break;
2989
2990 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2991
2992 curusage = page_counter_read(&memcg->memory);
2993 /* Usage is reduced ? */
2994 if (curusage >= oldusage)
2995 retry_count--;
2996 else
2997 oldusage = curusage;
2998 } while (retry_count);
2999
3000 if (!ret && enlarge)
3001 memcg_oom_recover(memcg);
3002
3003 return ret;
3004 }
3005
3006 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3007 unsigned long limit)
3008 {
3009 unsigned long curusage;
3010 unsigned long oldusage;
3011 bool enlarge = false;
3012 int retry_count;
3013 int ret;
3014
3015 /* see mem_cgroup_resize_res_limit */
3016 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3017 mem_cgroup_count_children(memcg);
3018
3019 oldusage = page_counter_read(&memcg->memsw);
3020
3021 do {
3022 if (signal_pending(current)) {
3023 ret = -EINTR;
3024 break;
3025 }
3026
3027 mutex_lock(&memcg_limit_mutex);
3028 if (limit < memcg->memory.limit) {
3029 mutex_unlock(&memcg_limit_mutex);
3030 ret = -EINVAL;
3031 break;
3032 }
3033 if (limit > memcg->memsw.limit)
3034 enlarge = true;
3035 ret = page_counter_limit(&memcg->memsw, limit);
3036 mutex_unlock(&memcg_limit_mutex);
3037
3038 if (!ret)
3039 break;
3040
3041 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3042
3043 curusage = page_counter_read(&memcg->memsw);
3044 /* Usage is reduced ? */
3045 if (curusage >= oldusage)
3046 retry_count--;
3047 else
3048 oldusage = curusage;
3049 } while (retry_count);
3050
3051 if (!ret && enlarge)
3052 memcg_oom_recover(memcg);
3053
3054 return ret;
3055 }
3056
3057 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3058 gfp_t gfp_mask,
3059 unsigned long *total_scanned)
3060 {
3061 unsigned long nr_reclaimed = 0;
3062 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3063 unsigned long reclaimed;
3064 int loop = 0;
3065 struct mem_cgroup_tree_per_zone *mctz;
3066 unsigned long excess;
3067 unsigned long nr_scanned;
3068
3069 if (order > 0)
3070 return 0;
3071
3072 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3073 /*
3074 * This loop can run a while, specially if mem_cgroup's continuously
3075 * keep exceeding their soft limit and putting the system under
3076 * pressure
3077 */
3078 do {
3079 if (next_mz)
3080 mz = next_mz;
3081 else
3082 mz = mem_cgroup_largest_soft_limit_node(mctz);
3083 if (!mz)
3084 break;
3085
3086 nr_scanned = 0;
3087 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3088 gfp_mask, &nr_scanned);
3089 nr_reclaimed += reclaimed;
3090 *total_scanned += nr_scanned;
3091 spin_lock_irq(&mctz->lock);
3092 __mem_cgroup_remove_exceeded(mz, mctz);
3093
3094 /*
3095 * If we failed to reclaim anything from this memory cgroup
3096 * it is time to move on to the next cgroup
3097 */
3098 next_mz = NULL;
3099 if (!reclaimed)
3100 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3101
3102 excess = soft_limit_excess(mz->memcg);
3103 /*
3104 * One school of thought says that we should not add
3105 * back the node to the tree if reclaim returns 0.
3106 * But our reclaim could return 0, simply because due
3107 * to priority we are exposing a smaller subset of
3108 * memory to reclaim from. Consider this as a longer
3109 * term TODO.
3110 */
3111 /* If excess == 0, no tree ops */
3112 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3113 spin_unlock_irq(&mctz->lock);
3114 css_put(&mz->memcg->css);
3115 loop++;
3116 /*
3117 * Could not reclaim anything and there are no more
3118 * mem cgroups to try or we seem to be looping without
3119 * reclaiming anything.
3120 */
3121 if (!nr_reclaimed &&
3122 (next_mz == NULL ||
3123 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3124 break;
3125 } while (!nr_reclaimed);
3126 if (next_mz)
3127 css_put(&next_mz->memcg->css);
3128 return nr_reclaimed;
3129 }
3130
3131 /*
3132 * Test whether @memcg has children, dead or alive. Note that this
3133 * function doesn't care whether @memcg has use_hierarchy enabled and
3134 * returns %true if there are child csses according to the cgroup
3135 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3136 */
3137 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3138 {
3139 bool ret;
3140
3141 /*
3142 * The lock does not prevent addition or deletion of children, but
3143 * it prevents a new child from being initialized based on this
3144 * parent in css_online(), so it's enough to decide whether
3145 * hierarchically inherited attributes can still be changed or not.
3146 */
3147 lockdep_assert_held(&memcg_create_mutex);
3148
3149 rcu_read_lock();
3150 ret = css_next_child(NULL, &memcg->css);
3151 rcu_read_unlock();
3152 return ret;
3153 }
3154
3155 /*
3156 * Reclaims as many pages from the given memcg as possible and moves
3157 * the rest to the parent.
3158 *
3159 * Caller is responsible for holding css reference for memcg.
3160 */
3161 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3162 {
3163 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3164
3165 /* we call try-to-free pages for make this cgroup empty */
3166 lru_add_drain_all();
3167 /* try to free all pages in this cgroup */
3168 while (nr_retries && page_counter_read(&memcg->memory)) {
3169 int progress;
3170
3171 if (signal_pending(current))
3172 return -EINTR;
3173
3174 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3175 GFP_KERNEL, true);
3176 if (!progress) {
3177 nr_retries--;
3178 /* maybe some writeback is necessary */
3179 congestion_wait(BLK_RW_ASYNC, HZ/10);
3180 }
3181
3182 }
3183
3184 return 0;
3185 }
3186
3187 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3188 char *buf, size_t nbytes,
3189 loff_t off)
3190 {
3191 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3192
3193 if (mem_cgroup_is_root(memcg))
3194 return -EINVAL;
3195 return mem_cgroup_force_empty(memcg) ?: nbytes;
3196 }
3197
3198 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3199 struct cftype *cft)
3200 {
3201 return mem_cgroup_from_css(css)->use_hierarchy;
3202 }
3203
3204 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3205 struct cftype *cft, u64 val)
3206 {
3207 int retval = 0;
3208 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3209 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3210
3211 mutex_lock(&memcg_create_mutex);
3212
3213 if (memcg->use_hierarchy == val)
3214 goto out;
3215
3216 /*
3217 * If parent's use_hierarchy is set, we can't make any modifications
3218 * in the child subtrees. If it is unset, then the change can
3219 * occur, provided the current cgroup has no children.
3220 *
3221 * For the root cgroup, parent_mem is NULL, we allow value to be
3222 * set if there are no children.
3223 */
3224 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3225 (val == 1 || val == 0)) {
3226 if (!memcg_has_children(memcg))
3227 memcg->use_hierarchy = val;
3228 else
3229 retval = -EBUSY;
3230 } else
3231 retval = -EINVAL;
3232
3233 out:
3234 mutex_unlock(&memcg_create_mutex);
3235
3236 return retval;
3237 }
3238
3239 static unsigned long tree_stat(struct mem_cgroup *memcg,
3240 enum mem_cgroup_stat_index idx)
3241 {
3242 struct mem_cgroup *iter;
3243 long val = 0;
3244
3245 /* Per-cpu values can be negative, use a signed accumulator */
3246 for_each_mem_cgroup_tree(iter, memcg)
3247 val += mem_cgroup_read_stat(iter, idx);
3248
3249 if (val < 0) /* race ? */
3250 val = 0;
3251 return val;
3252 }
3253
3254 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3255 {
3256 u64 val;
3257
3258 if (mem_cgroup_is_root(memcg)) {
3259 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3260 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3261 if (swap)
3262 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3263 } else {
3264 if (!swap)
3265 val = page_counter_read(&memcg->memory);
3266 else
3267 val = page_counter_read(&memcg->memsw);
3268 }
3269 return val << PAGE_SHIFT;
3270 }
3271
3272 enum {
3273 RES_USAGE,
3274 RES_LIMIT,
3275 RES_MAX_USAGE,
3276 RES_FAILCNT,
3277 RES_SOFT_LIMIT,
3278 };
3279
3280 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3281 struct cftype *cft)
3282 {
3283 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3284 struct page_counter *counter;
3285
3286 switch (MEMFILE_TYPE(cft->private)) {
3287 case _MEM:
3288 counter = &memcg->memory;
3289 break;
3290 case _MEMSWAP:
3291 counter = &memcg->memsw;
3292 break;
3293 case _KMEM:
3294 counter = &memcg->kmem;
3295 break;
3296 default:
3297 BUG();
3298 }
3299
3300 switch (MEMFILE_ATTR(cft->private)) {
3301 case RES_USAGE:
3302 if (counter == &memcg->memory)
3303 return mem_cgroup_usage(memcg, false);
3304 if (counter == &memcg->memsw)
3305 return mem_cgroup_usage(memcg, true);
3306 return (u64)page_counter_read(counter) * PAGE_SIZE;
3307 case RES_LIMIT:
3308 return (u64)counter->limit * PAGE_SIZE;
3309 case RES_MAX_USAGE:
3310 return (u64)counter->watermark * PAGE_SIZE;
3311 case RES_FAILCNT:
3312 return counter->failcnt;
3313 case RES_SOFT_LIMIT:
3314 return (u64)memcg->soft_limit * PAGE_SIZE;
3315 default:
3316 BUG();
3317 }
3318 }
3319
3320 #ifdef CONFIG_MEMCG_KMEM
3321 static int memcg_activate_kmem(struct mem_cgroup *memcg,
3322 unsigned long nr_pages)
3323 {
3324 int err = 0;
3325 int memcg_id;
3326
3327 if (memcg_kmem_is_active(memcg))
3328 return 0;
3329
3330 /*
3331 * For simplicity, we won't allow this to be disabled. It also can't
3332 * be changed if the cgroup has children already, or if tasks had
3333 * already joined.
3334 *
3335 * If tasks join before we set the limit, a person looking at
3336 * kmem.usage_in_bytes will have no way to determine when it took
3337 * place, which makes the value quite meaningless.
3338 *
3339 * After it first became limited, changes in the value of the limit are
3340 * of course permitted.
3341 */
3342 mutex_lock(&memcg_create_mutex);
3343 if (cgroup_has_tasks(memcg->css.cgroup) ||
3344 (memcg->use_hierarchy && memcg_has_children(memcg)))
3345 err = -EBUSY;
3346 mutex_unlock(&memcg_create_mutex);
3347 if (err)
3348 goto out;
3349
3350 memcg_id = memcg_alloc_cache_id();
3351 if (memcg_id < 0) {
3352 err = memcg_id;
3353 goto out;
3354 }
3355
3356 /*
3357 * We couldn't have accounted to this cgroup, because it hasn't got
3358 * activated yet, so this should succeed.
3359 */
3360 err = page_counter_limit(&memcg->kmem, nr_pages);
3361 VM_BUG_ON(err);
3362
3363 static_key_slow_inc(&memcg_kmem_enabled_key);
3364 /*
3365 * A memory cgroup is considered kmem-active as soon as it gets
3366 * kmemcg_id. Setting the id after enabling static branching will
3367 * guarantee no one starts accounting before all call sites are
3368 * patched.
3369 */
3370 memcg->kmemcg_id = memcg_id;
3371 out:
3372 return err;
3373 }
3374
3375 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3376 unsigned long limit)
3377 {
3378 int ret;
3379
3380 mutex_lock(&memcg_limit_mutex);
3381 if (!memcg_kmem_is_active(memcg))
3382 ret = memcg_activate_kmem(memcg, limit);
3383 else
3384 ret = page_counter_limit(&memcg->kmem, limit);
3385 mutex_unlock(&memcg_limit_mutex);
3386 return ret;
3387 }
3388
3389 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3390 {
3391 int ret = 0;
3392 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3393
3394 if (!parent)
3395 return 0;
3396
3397 mutex_lock(&memcg_limit_mutex);
3398 /*
3399 * If the parent cgroup is not kmem-active now, it cannot be activated
3400 * after this point, because it has at least one child already.
3401 */
3402 if (memcg_kmem_is_active(parent))
3403 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3404 mutex_unlock(&memcg_limit_mutex);
3405 return ret;
3406 }
3407 #else
3408 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3409 unsigned long limit)
3410 {
3411 return -EINVAL;
3412 }
3413 #endif /* CONFIG_MEMCG_KMEM */
3414
3415 /*
3416 * The user of this function is...
3417 * RES_LIMIT.
3418 */
3419 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3420 char *buf, size_t nbytes, loff_t off)
3421 {
3422 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3423 unsigned long nr_pages;
3424 int ret;
3425
3426 buf = strstrip(buf);
3427 ret = page_counter_memparse(buf, "-1", &nr_pages);
3428 if (ret)
3429 return ret;
3430
3431 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3432 case RES_LIMIT:
3433 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3434 ret = -EINVAL;
3435 break;
3436 }
3437 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3438 case _MEM:
3439 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3440 break;
3441 case _MEMSWAP:
3442 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3443 break;
3444 case _KMEM:
3445 ret = memcg_update_kmem_limit(memcg, nr_pages);
3446 break;
3447 }
3448 break;
3449 case RES_SOFT_LIMIT:
3450 memcg->soft_limit = nr_pages;
3451 ret = 0;
3452 break;
3453 }
3454 return ret ?: nbytes;
3455 }
3456
3457 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3458 size_t nbytes, loff_t off)
3459 {
3460 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3461 struct page_counter *counter;
3462
3463 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3464 case _MEM:
3465 counter = &memcg->memory;
3466 break;
3467 case _MEMSWAP:
3468 counter = &memcg->memsw;
3469 break;
3470 case _KMEM:
3471 counter = &memcg->kmem;
3472 break;
3473 default:
3474 BUG();
3475 }
3476
3477 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3478 case RES_MAX_USAGE:
3479 page_counter_reset_watermark(counter);
3480 break;
3481 case RES_FAILCNT:
3482 counter->failcnt = 0;
3483 break;
3484 default:
3485 BUG();
3486 }
3487
3488 return nbytes;
3489 }
3490
3491 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3492 struct cftype *cft)
3493 {
3494 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3495 }
3496
3497 #ifdef CONFIG_MMU
3498 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3499 struct cftype *cft, u64 val)
3500 {
3501 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3502
3503 if (val >= (1 << NR_MOVE_TYPE))
3504 return -EINVAL;
3505
3506 /*
3507 * No kind of locking is needed in here, because ->can_attach() will
3508 * check this value once in the beginning of the process, and then carry
3509 * on with stale data. This means that changes to this value will only
3510 * affect task migrations starting after the change.
3511 */
3512 memcg->move_charge_at_immigrate = val;
3513 return 0;
3514 }
3515 #else
3516 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3517 struct cftype *cft, u64 val)
3518 {
3519 return -ENOSYS;
3520 }
3521 #endif
3522
3523 #ifdef CONFIG_NUMA
3524 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3525 {
3526 struct numa_stat {
3527 const char *name;
3528 unsigned int lru_mask;
3529 };
3530
3531 static const struct numa_stat stats[] = {
3532 { "total", LRU_ALL },
3533 { "file", LRU_ALL_FILE },
3534 { "anon", LRU_ALL_ANON },
3535 { "unevictable", BIT(LRU_UNEVICTABLE) },
3536 };
3537 const struct numa_stat *stat;
3538 int nid;
3539 unsigned long nr;
3540 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3541
3542 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3543 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3544 seq_printf(m, "%s=%lu", stat->name, nr);
3545 for_each_node_state(nid, N_MEMORY) {
3546 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3547 stat->lru_mask);
3548 seq_printf(m, " N%d=%lu", nid, nr);
3549 }
3550 seq_putc(m, '\n');
3551 }
3552
3553 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3554 struct mem_cgroup *iter;
3555
3556 nr = 0;
3557 for_each_mem_cgroup_tree(iter, memcg)
3558 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3559 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3560 for_each_node_state(nid, N_MEMORY) {
3561 nr = 0;
3562 for_each_mem_cgroup_tree(iter, memcg)
3563 nr += mem_cgroup_node_nr_lru_pages(
3564 iter, nid, stat->lru_mask);
3565 seq_printf(m, " N%d=%lu", nid, nr);
3566 }
3567 seq_putc(m, '\n');
3568 }
3569
3570 return 0;
3571 }
3572 #endif /* CONFIG_NUMA */
3573
3574 static int memcg_stat_show(struct seq_file *m, void *v)
3575 {
3576 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3577 unsigned long memory, memsw;
3578 struct mem_cgroup *mi;
3579 unsigned int i;
3580
3581 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3582 MEM_CGROUP_STAT_NSTATS);
3583 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3584 MEM_CGROUP_EVENTS_NSTATS);
3585 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3586
3587 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3588 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3589 continue;
3590 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3591 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3592 }
3593
3594 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3595 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3596 mem_cgroup_read_events(memcg, i));
3597
3598 for (i = 0; i < NR_LRU_LISTS; i++)
3599 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3600 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3601
3602 /* Hierarchical information */
3603 memory = memsw = PAGE_COUNTER_MAX;
3604 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3605 memory = min(memory, mi->memory.limit);
3606 memsw = min(memsw, mi->memsw.limit);
3607 }
3608 seq_printf(m, "hierarchical_memory_limit %llu\n",
3609 (u64)memory * PAGE_SIZE);
3610 if (do_swap_account)
3611 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3612 (u64)memsw * PAGE_SIZE);
3613
3614 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3615 long long val = 0;
3616
3617 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3618 continue;
3619 for_each_mem_cgroup_tree(mi, memcg)
3620 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3621 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3622 }
3623
3624 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3625 unsigned long long val = 0;
3626
3627 for_each_mem_cgroup_tree(mi, memcg)
3628 val += mem_cgroup_read_events(mi, i);
3629 seq_printf(m, "total_%s %llu\n",
3630 mem_cgroup_events_names[i], val);
3631 }
3632
3633 for (i = 0; i < NR_LRU_LISTS; i++) {
3634 unsigned long long val = 0;
3635
3636 for_each_mem_cgroup_tree(mi, memcg)
3637 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3638 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3639 }
3640
3641 #ifdef CONFIG_DEBUG_VM
3642 {
3643 int nid, zid;
3644 struct mem_cgroup_per_zone *mz;
3645 struct zone_reclaim_stat *rstat;
3646 unsigned long recent_rotated[2] = {0, 0};
3647 unsigned long recent_scanned[2] = {0, 0};
3648
3649 for_each_online_node(nid)
3650 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3651 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3652 rstat = &mz->lruvec.reclaim_stat;
3653
3654 recent_rotated[0] += rstat->recent_rotated[0];
3655 recent_rotated[1] += rstat->recent_rotated[1];
3656 recent_scanned[0] += rstat->recent_scanned[0];
3657 recent_scanned[1] += rstat->recent_scanned[1];
3658 }
3659 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3660 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3661 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3662 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3663 }
3664 #endif
3665
3666 return 0;
3667 }
3668
3669 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3670 struct cftype *cft)
3671 {
3672 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3673
3674 return mem_cgroup_swappiness(memcg);
3675 }
3676
3677 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3678 struct cftype *cft, u64 val)
3679 {
3680 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3681
3682 if (val > 100)
3683 return -EINVAL;
3684
3685 if (css->parent)
3686 memcg->swappiness = val;
3687 else
3688 vm_swappiness = val;
3689
3690 return 0;
3691 }
3692
3693 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3694 {
3695 struct mem_cgroup_threshold_ary *t;
3696 unsigned long usage;
3697 int i;
3698
3699 rcu_read_lock();
3700 if (!swap)
3701 t = rcu_dereference(memcg->thresholds.primary);
3702 else
3703 t = rcu_dereference(memcg->memsw_thresholds.primary);
3704
3705 if (!t)
3706 goto unlock;
3707
3708 usage = mem_cgroup_usage(memcg, swap);
3709
3710 /*
3711 * current_threshold points to threshold just below or equal to usage.
3712 * If it's not true, a threshold was crossed after last
3713 * call of __mem_cgroup_threshold().
3714 */
3715 i = t->current_threshold;
3716
3717 /*
3718 * Iterate backward over array of thresholds starting from
3719 * current_threshold and check if a threshold is crossed.
3720 * If none of thresholds below usage is crossed, we read
3721 * only one element of the array here.
3722 */
3723 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3724 eventfd_signal(t->entries[i].eventfd, 1);
3725
3726 /* i = current_threshold + 1 */
3727 i++;
3728
3729 /*
3730 * Iterate forward over array of thresholds starting from
3731 * current_threshold+1 and check if a threshold is crossed.
3732 * If none of thresholds above usage is crossed, we read
3733 * only one element of the array here.
3734 */
3735 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3736 eventfd_signal(t->entries[i].eventfd, 1);
3737
3738 /* Update current_threshold */
3739 t->current_threshold = i - 1;
3740 unlock:
3741 rcu_read_unlock();
3742 }
3743
3744 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3745 {
3746 while (memcg) {
3747 __mem_cgroup_threshold(memcg, false);
3748 if (do_swap_account)
3749 __mem_cgroup_threshold(memcg, true);
3750
3751 memcg = parent_mem_cgroup(memcg);
3752 }
3753 }
3754
3755 static int compare_thresholds(const void *a, const void *b)
3756 {
3757 const struct mem_cgroup_threshold *_a = a;
3758 const struct mem_cgroup_threshold *_b = b;
3759
3760 if (_a->threshold > _b->threshold)
3761 return 1;
3762
3763 if (_a->threshold < _b->threshold)
3764 return -1;
3765
3766 return 0;
3767 }
3768
3769 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3770 {
3771 struct mem_cgroup_eventfd_list *ev;
3772
3773 spin_lock(&memcg_oom_lock);
3774
3775 list_for_each_entry(ev, &memcg->oom_notify, list)
3776 eventfd_signal(ev->eventfd, 1);
3777
3778 spin_unlock(&memcg_oom_lock);
3779 return 0;
3780 }
3781
3782 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3783 {
3784 struct mem_cgroup *iter;
3785
3786 for_each_mem_cgroup_tree(iter, memcg)
3787 mem_cgroup_oom_notify_cb(iter);
3788 }
3789
3790 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3791 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3792 {
3793 struct mem_cgroup_thresholds *thresholds;
3794 struct mem_cgroup_threshold_ary *new;
3795 unsigned long threshold;
3796 unsigned long usage;
3797 int i, size, ret;
3798
3799 ret = page_counter_memparse(args, "-1", &threshold);
3800 if (ret)
3801 return ret;
3802
3803 mutex_lock(&memcg->thresholds_lock);
3804
3805 if (type == _MEM) {
3806 thresholds = &memcg->thresholds;
3807 usage = mem_cgroup_usage(memcg, false);
3808 } else if (type == _MEMSWAP) {
3809 thresholds = &memcg->memsw_thresholds;
3810 usage = mem_cgroup_usage(memcg, true);
3811 } else
3812 BUG();
3813
3814 /* Check if a threshold crossed before adding a new one */
3815 if (thresholds->primary)
3816 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3817
3818 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3819
3820 /* Allocate memory for new array of thresholds */
3821 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3822 GFP_KERNEL);
3823 if (!new) {
3824 ret = -ENOMEM;
3825 goto unlock;
3826 }
3827 new->size = size;
3828
3829 /* Copy thresholds (if any) to new array */
3830 if (thresholds->primary) {
3831 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3832 sizeof(struct mem_cgroup_threshold));
3833 }
3834
3835 /* Add new threshold */
3836 new->entries[size - 1].eventfd = eventfd;
3837 new->entries[size - 1].threshold = threshold;
3838
3839 /* Sort thresholds. Registering of new threshold isn't time-critical */
3840 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3841 compare_thresholds, NULL);
3842
3843 /* Find current threshold */
3844 new->current_threshold = -1;
3845 for (i = 0; i < size; i++) {
3846 if (new->entries[i].threshold <= usage) {
3847 /*
3848 * new->current_threshold will not be used until
3849 * rcu_assign_pointer(), so it's safe to increment
3850 * it here.
3851 */
3852 ++new->current_threshold;
3853 } else
3854 break;
3855 }
3856
3857 /* Free old spare buffer and save old primary buffer as spare */
3858 kfree(thresholds->spare);
3859 thresholds->spare = thresholds->primary;
3860
3861 rcu_assign_pointer(thresholds->primary, new);
3862
3863 /* To be sure that nobody uses thresholds */
3864 synchronize_rcu();
3865
3866 unlock:
3867 mutex_unlock(&memcg->thresholds_lock);
3868
3869 return ret;
3870 }
3871
3872 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3873 struct eventfd_ctx *eventfd, const char *args)
3874 {
3875 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3876 }
3877
3878 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3879 struct eventfd_ctx *eventfd, const char *args)
3880 {
3881 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3882 }
3883
3884 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3885 struct eventfd_ctx *eventfd, enum res_type type)
3886 {
3887 struct mem_cgroup_thresholds *thresholds;
3888 struct mem_cgroup_threshold_ary *new;
3889 unsigned long usage;
3890 int i, j, size;
3891
3892 mutex_lock(&memcg->thresholds_lock);
3893
3894 if (type == _MEM) {
3895 thresholds = &memcg->thresholds;
3896 usage = mem_cgroup_usage(memcg, false);
3897 } else if (type == _MEMSWAP) {
3898 thresholds = &memcg->memsw_thresholds;
3899 usage = mem_cgroup_usage(memcg, true);
3900 } else
3901 BUG();
3902
3903 if (!thresholds->primary)
3904 goto unlock;
3905
3906 /* Check if a threshold crossed before removing */
3907 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3908
3909 /* Calculate new number of threshold */
3910 size = 0;
3911 for (i = 0; i < thresholds->primary->size; i++) {
3912 if (thresholds->primary->entries[i].eventfd != eventfd)
3913 size++;
3914 }
3915
3916 new = thresholds->spare;
3917
3918 /* Set thresholds array to NULL if we don't have thresholds */
3919 if (!size) {
3920 kfree(new);
3921 new = NULL;
3922 goto swap_buffers;
3923 }
3924
3925 new->size = size;
3926
3927 /* Copy thresholds and find current threshold */
3928 new->current_threshold = -1;
3929 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3930 if (thresholds->primary->entries[i].eventfd == eventfd)
3931 continue;
3932
3933 new->entries[j] = thresholds->primary->entries[i];
3934 if (new->entries[j].threshold <= usage) {
3935 /*
3936 * new->current_threshold will not be used
3937 * until rcu_assign_pointer(), so it's safe to increment
3938 * it here.
3939 */
3940 ++new->current_threshold;
3941 }
3942 j++;
3943 }
3944
3945 swap_buffers:
3946 /* Swap primary and spare array */
3947 thresholds->spare = thresholds->primary;
3948 /* If all events are unregistered, free the spare array */
3949 if (!new) {
3950 kfree(thresholds->spare);
3951 thresholds->spare = NULL;
3952 }
3953
3954 rcu_assign_pointer(thresholds->primary, new);
3955
3956 /* To be sure that nobody uses thresholds */
3957 synchronize_rcu();
3958 unlock:
3959 mutex_unlock(&memcg->thresholds_lock);
3960 }
3961
3962 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3963 struct eventfd_ctx *eventfd)
3964 {
3965 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3966 }
3967
3968 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3969 struct eventfd_ctx *eventfd)
3970 {
3971 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3972 }
3973
3974 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3975 struct eventfd_ctx *eventfd, const char *args)
3976 {
3977 struct mem_cgroup_eventfd_list *event;
3978
3979 event = kmalloc(sizeof(*event), GFP_KERNEL);
3980 if (!event)
3981 return -ENOMEM;
3982
3983 spin_lock(&memcg_oom_lock);
3984
3985 event->eventfd = eventfd;
3986 list_add(&event->list, &memcg->oom_notify);
3987
3988 /* already in OOM ? */
3989 if (atomic_read(&memcg->under_oom))
3990 eventfd_signal(eventfd, 1);
3991 spin_unlock(&memcg_oom_lock);
3992
3993 return 0;
3994 }
3995
3996 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3997 struct eventfd_ctx *eventfd)
3998 {
3999 struct mem_cgroup_eventfd_list *ev, *tmp;
4000
4001 spin_lock(&memcg_oom_lock);
4002
4003 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4004 if (ev->eventfd == eventfd) {
4005 list_del(&ev->list);
4006 kfree(ev);
4007 }
4008 }
4009
4010 spin_unlock(&memcg_oom_lock);
4011 }
4012
4013 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4014 {
4015 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4016
4017 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4018 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4019 return 0;
4020 }
4021
4022 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4023 struct cftype *cft, u64 val)
4024 {
4025 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4026
4027 /* cannot set to root cgroup and only 0 and 1 are allowed */
4028 if (!css->parent || !((val == 0) || (val == 1)))
4029 return -EINVAL;
4030
4031 memcg->oom_kill_disable = val;
4032 if (!val)
4033 memcg_oom_recover(memcg);
4034
4035 return 0;
4036 }
4037
4038 #ifdef CONFIG_MEMCG_KMEM
4039 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4040 {
4041 int ret;
4042
4043 ret = memcg_propagate_kmem(memcg);
4044 if (ret)
4045 return ret;
4046
4047 return mem_cgroup_sockets_init(memcg, ss);
4048 }
4049
4050 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4051 {
4052 memcg_destroy_kmem_caches(memcg);
4053 mem_cgroup_sockets_destroy(memcg);
4054 }
4055 #else
4056 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4057 {
4058 return 0;
4059 }
4060
4061 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4062 {
4063 }
4064 #endif
4065
4066 /*
4067 * DO NOT USE IN NEW FILES.
4068 *
4069 * "cgroup.event_control" implementation.
4070 *
4071 * This is way over-engineered. It tries to support fully configurable
4072 * events for each user. Such level of flexibility is completely
4073 * unnecessary especially in the light of the planned unified hierarchy.
4074 *
4075 * Please deprecate this and replace with something simpler if at all
4076 * possible.
4077 */
4078
4079 /*
4080 * Unregister event and free resources.
4081 *
4082 * Gets called from workqueue.
4083 */
4084 static void memcg_event_remove(struct work_struct *work)
4085 {
4086 struct mem_cgroup_event *event =
4087 container_of(work, struct mem_cgroup_event, remove);
4088 struct mem_cgroup *memcg = event->memcg;
4089
4090 remove_wait_queue(event->wqh, &event->wait);
4091
4092 event->unregister_event(memcg, event->eventfd);
4093
4094 /* Notify userspace the event is going away. */
4095 eventfd_signal(event->eventfd, 1);
4096
4097 eventfd_ctx_put(event->eventfd);
4098 kfree(event);
4099 css_put(&memcg->css);
4100 }
4101
4102 /*
4103 * Gets called on POLLHUP on eventfd when user closes it.
4104 *
4105 * Called with wqh->lock held and interrupts disabled.
4106 */
4107 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4108 int sync, void *key)
4109 {
4110 struct mem_cgroup_event *event =
4111 container_of(wait, struct mem_cgroup_event, wait);
4112 struct mem_cgroup *memcg = event->memcg;
4113 unsigned long flags = (unsigned long)key;
4114
4115 if (flags & POLLHUP) {
4116 /*
4117 * If the event has been detached at cgroup removal, we
4118 * can simply return knowing the other side will cleanup
4119 * for us.
4120 *
4121 * We can't race against event freeing since the other
4122 * side will require wqh->lock via remove_wait_queue(),
4123 * which we hold.
4124 */
4125 spin_lock(&memcg->event_list_lock);
4126 if (!list_empty(&event->list)) {
4127 list_del_init(&event->list);
4128 /*
4129 * We are in atomic context, but cgroup_event_remove()
4130 * may sleep, so we have to call it in workqueue.
4131 */
4132 schedule_work(&event->remove);
4133 }
4134 spin_unlock(&memcg->event_list_lock);
4135 }
4136
4137 return 0;
4138 }
4139
4140 static void memcg_event_ptable_queue_proc(struct file *file,
4141 wait_queue_head_t *wqh, poll_table *pt)
4142 {
4143 struct mem_cgroup_event *event =
4144 container_of(pt, struct mem_cgroup_event, pt);
4145
4146 event->wqh = wqh;
4147 add_wait_queue(wqh, &event->wait);
4148 }
4149
4150 /*
4151 * DO NOT USE IN NEW FILES.
4152 *
4153 * Parse input and register new cgroup event handler.
4154 *
4155 * Input must be in format '<event_fd> <control_fd> <args>'.
4156 * Interpretation of args is defined by control file implementation.
4157 */
4158 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4159 char *buf, size_t nbytes, loff_t off)
4160 {
4161 struct cgroup_subsys_state *css = of_css(of);
4162 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4163 struct mem_cgroup_event *event;
4164 struct cgroup_subsys_state *cfile_css;
4165 unsigned int efd, cfd;
4166 struct fd efile;
4167 struct fd cfile;
4168 const char *name;
4169 char *endp;
4170 int ret;
4171
4172 buf = strstrip(buf);
4173
4174 efd = simple_strtoul(buf, &endp, 10);
4175 if (*endp != ' ')
4176 return -EINVAL;
4177 buf = endp + 1;
4178
4179 cfd = simple_strtoul(buf, &endp, 10);
4180 if ((*endp != ' ') && (*endp != '\0'))
4181 return -EINVAL;
4182 buf = endp + 1;
4183
4184 event = kzalloc(sizeof(*event), GFP_KERNEL);
4185 if (!event)
4186 return -ENOMEM;
4187
4188 event->memcg = memcg;
4189 INIT_LIST_HEAD(&event->list);
4190 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4191 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4192 INIT_WORK(&event->remove, memcg_event_remove);
4193
4194 efile = fdget(efd);
4195 if (!efile.file) {
4196 ret = -EBADF;
4197 goto out_kfree;
4198 }
4199
4200 event->eventfd = eventfd_ctx_fileget(efile.file);
4201 if (IS_ERR(event->eventfd)) {
4202 ret = PTR_ERR(event->eventfd);
4203 goto out_put_efile;
4204 }
4205
4206 cfile = fdget(cfd);
4207 if (!cfile.file) {
4208 ret = -EBADF;
4209 goto out_put_eventfd;
4210 }
4211
4212 /* the process need read permission on control file */
4213 /* AV: shouldn't we check that it's been opened for read instead? */
4214 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4215 if (ret < 0)
4216 goto out_put_cfile;
4217
4218 /*
4219 * Determine the event callbacks and set them in @event. This used
4220 * to be done via struct cftype but cgroup core no longer knows
4221 * about these events. The following is crude but the whole thing
4222 * is for compatibility anyway.
4223 *
4224 * DO NOT ADD NEW FILES.
4225 */
4226 name = cfile.file->f_path.dentry->d_name.name;
4227
4228 if (!strcmp(name, "memory.usage_in_bytes")) {
4229 event->register_event = mem_cgroup_usage_register_event;
4230 event->unregister_event = mem_cgroup_usage_unregister_event;
4231 } else if (!strcmp(name, "memory.oom_control")) {
4232 event->register_event = mem_cgroup_oom_register_event;
4233 event->unregister_event = mem_cgroup_oom_unregister_event;
4234 } else if (!strcmp(name, "memory.pressure_level")) {
4235 event->register_event = vmpressure_register_event;
4236 event->unregister_event = vmpressure_unregister_event;
4237 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4238 event->register_event = memsw_cgroup_usage_register_event;
4239 event->unregister_event = memsw_cgroup_usage_unregister_event;
4240 } else {
4241 ret = -EINVAL;
4242 goto out_put_cfile;
4243 }
4244
4245 /*
4246 * Verify @cfile should belong to @css. Also, remaining events are
4247 * automatically removed on cgroup destruction but the removal is
4248 * asynchronous, so take an extra ref on @css.
4249 */
4250 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4251 &memory_cgrp_subsys);
4252 ret = -EINVAL;
4253 if (IS_ERR(cfile_css))
4254 goto out_put_cfile;
4255 if (cfile_css != css) {
4256 css_put(cfile_css);
4257 goto out_put_cfile;
4258 }
4259
4260 ret = event->register_event(memcg, event->eventfd, buf);
4261 if (ret)
4262 goto out_put_css;
4263
4264 efile.file->f_op->poll(efile.file, &event->pt);
4265
4266 spin_lock(&memcg->event_list_lock);
4267 list_add(&event->list, &memcg->event_list);
4268 spin_unlock(&memcg->event_list_lock);
4269
4270 fdput(cfile);
4271 fdput(efile);
4272
4273 return nbytes;
4274
4275 out_put_css:
4276 css_put(css);
4277 out_put_cfile:
4278 fdput(cfile);
4279 out_put_eventfd:
4280 eventfd_ctx_put(event->eventfd);
4281 out_put_efile:
4282 fdput(efile);
4283 out_kfree:
4284 kfree(event);
4285
4286 return ret;
4287 }
4288
4289 static struct cftype mem_cgroup_legacy_files[] = {
4290 {
4291 .name = "usage_in_bytes",
4292 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4293 .read_u64 = mem_cgroup_read_u64,
4294 },
4295 {
4296 .name = "max_usage_in_bytes",
4297 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4298 .write = mem_cgroup_reset,
4299 .read_u64 = mem_cgroup_read_u64,
4300 },
4301 {
4302 .name = "limit_in_bytes",
4303 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4304 .write = mem_cgroup_write,
4305 .read_u64 = mem_cgroup_read_u64,
4306 },
4307 {
4308 .name = "soft_limit_in_bytes",
4309 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4310 .write = mem_cgroup_write,
4311 .read_u64 = mem_cgroup_read_u64,
4312 },
4313 {
4314 .name = "failcnt",
4315 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4316 .write = mem_cgroup_reset,
4317 .read_u64 = mem_cgroup_read_u64,
4318 },
4319 {
4320 .name = "stat",
4321 .seq_show = memcg_stat_show,
4322 },
4323 {
4324 .name = "force_empty",
4325 .write = mem_cgroup_force_empty_write,
4326 },
4327 {
4328 .name = "use_hierarchy",
4329 .write_u64 = mem_cgroup_hierarchy_write,
4330 .read_u64 = mem_cgroup_hierarchy_read,
4331 },
4332 {
4333 .name = "cgroup.event_control", /* XXX: for compat */
4334 .write = memcg_write_event_control,
4335 .flags = CFTYPE_NO_PREFIX,
4336 .mode = S_IWUGO,
4337 },
4338 {
4339 .name = "swappiness",
4340 .read_u64 = mem_cgroup_swappiness_read,
4341 .write_u64 = mem_cgroup_swappiness_write,
4342 },
4343 {
4344 .name = "move_charge_at_immigrate",
4345 .read_u64 = mem_cgroup_move_charge_read,
4346 .write_u64 = mem_cgroup_move_charge_write,
4347 },
4348 {
4349 .name = "oom_control",
4350 .seq_show = mem_cgroup_oom_control_read,
4351 .write_u64 = mem_cgroup_oom_control_write,
4352 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4353 },
4354 {
4355 .name = "pressure_level",
4356 },
4357 #ifdef CONFIG_NUMA
4358 {
4359 .name = "numa_stat",
4360 .seq_show = memcg_numa_stat_show,
4361 },
4362 #endif
4363 #ifdef CONFIG_MEMCG_KMEM
4364 {
4365 .name = "kmem.limit_in_bytes",
4366 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4367 .write = mem_cgroup_write,
4368 .read_u64 = mem_cgroup_read_u64,
4369 },
4370 {
4371 .name = "kmem.usage_in_bytes",
4372 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4373 .read_u64 = mem_cgroup_read_u64,
4374 },
4375 {
4376 .name = "kmem.failcnt",
4377 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4378 .write = mem_cgroup_reset,
4379 .read_u64 = mem_cgroup_read_u64,
4380 },
4381 {
4382 .name = "kmem.max_usage_in_bytes",
4383 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4384 .write = mem_cgroup_reset,
4385 .read_u64 = mem_cgroup_read_u64,
4386 },
4387 #ifdef CONFIG_SLABINFO
4388 {
4389 .name = "kmem.slabinfo",
4390 .seq_start = slab_start,
4391 .seq_next = slab_next,
4392 .seq_stop = slab_stop,
4393 .seq_show = memcg_slab_show,
4394 },
4395 #endif
4396 #endif
4397 { }, /* terminate */
4398 };
4399
4400 #ifdef CONFIG_MEMCG_SWAP
4401 static struct cftype memsw_cgroup_files[] = {
4402 {
4403 .name = "memsw.usage_in_bytes",
4404 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4405 .read_u64 = mem_cgroup_read_u64,
4406 },
4407 {
4408 .name = "memsw.max_usage_in_bytes",
4409 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4410 .write = mem_cgroup_reset,
4411 .read_u64 = mem_cgroup_read_u64,
4412 },
4413 {
4414 .name = "memsw.limit_in_bytes",
4415 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4416 .write = mem_cgroup_write,
4417 .read_u64 = mem_cgroup_read_u64,
4418 },
4419 {
4420 .name = "memsw.failcnt",
4421 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4422 .write = mem_cgroup_reset,
4423 .read_u64 = mem_cgroup_read_u64,
4424 },
4425 { }, /* terminate */
4426 };
4427 #endif
4428 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4429 {
4430 struct mem_cgroup_per_node *pn;
4431 struct mem_cgroup_per_zone *mz;
4432 int zone, tmp = node;
4433 /*
4434 * This routine is called against possible nodes.
4435 * But it's BUG to call kmalloc() against offline node.
4436 *
4437 * TODO: this routine can waste much memory for nodes which will
4438 * never be onlined. It's better to use memory hotplug callback
4439 * function.
4440 */
4441 if (!node_state(node, N_NORMAL_MEMORY))
4442 tmp = -1;
4443 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4444 if (!pn)
4445 return 1;
4446
4447 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4448 mz = &pn->zoneinfo[zone];
4449 lruvec_init(&mz->lruvec);
4450 mz->usage_in_excess = 0;
4451 mz->on_tree = false;
4452 mz->memcg = memcg;
4453 }
4454 memcg->nodeinfo[node] = pn;
4455 return 0;
4456 }
4457
4458 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4459 {
4460 kfree(memcg->nodeinfo[node]);
4461 }
4462
4463 static struct mem_cgroup *mem_cgroup_alloc(void)
4464 {
4465 struct mem_cgroup *memcg;
4466 size_t size;
4467
4468 size = sizeof(struct mem_cgroup);
4469 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4470
4471 memcg = kzalloc(size, GFP_KERNEL);
4472 if (!memcg)
4473 return NULL;
4474
4475 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4476 if (!memcg->stat)
4477 goto out_free;
4478 spin_lock_init(&memcg->pcp_counter_lock);
4479 return memcg;
4480
4481 out_free:
4482 kfree(memcg);
4483 return NULL;
4484 }
4485
4486 /*
4487 * At destroying mem_cgroup, references from swap_cgroup can remain.
4488 * (scanning all at force_empty is too costly...)
4489 *
4490 * Instead of clearing all references at force_empty, we remember
4491 * the number of reference from swap_cgroup and free mem_cgroup when
4492 * it goes down to 0.
4493 *
4494 * Removal of cgroup itself succeeds regardless of refs from swap.
4495 */
4496
4497 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4498 {
4499 int node;
4500
4501 mem_cgroup_remove_from_trees(memcg);
4502
4503 for_each_node(node)
4504 free_mem_cgroup_per_zone_info(memcg, node);
4505
4506 free_percpu(memcg->stat);
4507
4508 disarm_static_keys(memcg);
4509 kfree(memcg);
4510 }
4511
4512 /*
4513 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4514 */
4515 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4516 {
4517 if (!memcg->memory.parent)
4518 return NULL;
4519 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4520 }
4521 EXPORT_SYMBOL(parent_mem_cgroup);
4522
4523 static void __init mem_cgroup_soft_limit_tree_init(void)
4524 {
4525 struct mem_cgroup_tree_per_node *rtpn;
4526 struct mem_cgroup_tree_per_zone *rtpz;
4527 int tmp, node, zone;
4528
4529 for_each_node(node) {
4530 tmp = node;
4531 if (!node_state(node, N_NORMAL_MEMORY))
4532 tmp = -1;
4533 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4534 BUG_ON(!rtpn);
4535
4536 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4537
4538 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4539 rtpz = &rtpn->rb_tree_per_zone[zone];
4540 rtpz->rb_root = RB_ROOT;
4541 spin_lock_init(&rtpz->lock);
4542 }
4543 }
4544 }
4545
4546 static struct cgroup_subsys_state * __ref
4547 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4548 {
4549 struct mem_cgroup *memcg;
4550 long error = -ENOMEM;
4551 int node;
4552
4553 memcg = mem_cgroup_alloc();
4554 if (!memcg)
4555 return ERR_PTR(error);
4556
4557 for_each_node(node)
4558 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4559 goto free_out;
4560
4561 /* root ? */
4562 if (parent_css == NULL) {
4563 root_mem_cgroup = memcg;
4564 page_counter_init(&memcg->memory, NULL);
4565 memcg->high = PAGE_COUNTER_MAX;
4566 memcg->soft_limit = PAGE_COUNTER_MAX;
4567 page_counter_init(&memcg->memsw, NULL);
4568 page_counter_init(&memcg->kmem, NULL);
4569 }
4570
4571 memcg->last_scanned_node = MAX_NUMNODES;
4572 INIT_LIST_HEAD(&memcg->oom_notify);
4573 memcg->move_charge_at_immigrate = 0;
4574 mutex_init(&memcg->thresholds_lock);
4575 spin_lock_init(&memcg->move_lock);
4576 vmpressure_init(&memcg->vmpressure);
4577 INIT_LIST_HEAD(&memcg->event_list);
4578 spin_lock_init(&memcg->event_list_lock);
4579 #ifdef CONFIG_MEMCG_KMEM
4580 memcg->kmemcg_id = -1;
4581 #endif
4582
4583 return &memcg->css;
4584
4585 free_out:
4586 __mem_cgroup_free(memcg);
4587 return ERR_PTR(error);
4588 }
4589
4590 static int
4591 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4592 {
4593 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4594 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4595 int ret;
4596
4597 if (css->id > MEM_CGROUP_ID_MAX)
4598 return -ENOSPC;
4599
4600 if (!parent)
4601 return 0;
4602
4603 mutex_lock(&memcg_create_mutex);
4604
4605 memcg->use_hierarchy = parent->use_hierarchy;
4606 memcg->oom_kill_disable = parent->oom_kill_disable;
4607 memcg->swappiness = mem_cgroup_swappiness(parent);
4608
4609 if (parent->use_hierarchy) {
4610 page_counter_init(&memcg->memory, &parent->memory);
4611 memcg->high = PAGE_COUNTER_MAX;
4612 memcg->soft_limit = PAGE_COUNTER_MAX;
4613 page_counter_init(&memcg->memsw, &parent->memsw);
4614 page_counter_init(&memcg->kmem, &parent->kmem);
4615
4616 /*
4617 * No need to take a reference to the parent because cgroup
4618 * core guarantees its existence.
4619 */
4620 } else {
4621 page_counter_init(&memcg->memory, NULL);
4622 memcg->high = PAGE_COUNTER_MAX;
4623 memcg->soft_limit = PAGE_COUNTER_MAX;
4624 page_counter_init(&memcg->memsw, NULL);
4625 page_counter_init(&memcg->kmem, NULL);
4626 /*
4627 * Deeper hierachy with use_hierarchy == false doesn't make
4628 * much sense so let cgroup subsystem know about this
4629 * unfortunate state in our controller.
4630 */
4631 if (parent != root_mem_cgroup)
4632 memory_cgrp_subsys.broken_hierarchy = true;
4633 }
4634 mutex_unlock(&memcg_create_mutex);
4635
4636 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4637 if (ret)
4638 return ret;
4639
4640 /*
4641 * Make sure the memcg is initialized: mem_cgroup_iter()
4642 * orders reading memcg->initialized against its callers
4643 * reading the memcg members.
4644 */
4645 smp_store_release(&memcg->initialized, 1);
4646
4647 return 0;
4648 }
4649
4650 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4651 {
4652 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4653 struct mem_cgroup_event *event, *tmp;
4654
4655 /*
4656 * Unregister events and notify userspace.
4657 * Notify userspace about cgroup removing only after rmdir of cgroup
4658 * directory to avoid race between userspace and kernelspace.
4659 */
4660 spin_lock(&memcg->event_list_lock);
4661 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4662 list_del_init(&event->list);
4663 schedule_work(&event->remove);
4664 }
4665 spin_unlock(&memcg->event_list_lock);
4666
4667 vmpressure_cleanup(&memcg->vmpressure);
4668 }
4669
4670 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4671 {
4672 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4673
4674 memcg_destroy_kmem(memcg);
4675 __mem_cgroup_free(memcg);
4676 }
4677
4678 /**
4679 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4680 * @css: the target css
4681 *
4682 * Reset the states of the mem_cgroup associated with @css. This is
4683 * invoked when the userland requests disabling on the default hierarchy
4684 * but the memcg is pinned through dependency. The memcg should stop
4685 * applying policies and should revert to the vanilla state as it may be
4686 * made visible again.
4687 *
4688 * The current implementation only resets the essential configurations.
4689 * This needs to be expanded to cover all the visible parts.
4690 */
4691 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4692 {
4693 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4694
4695 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4696 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4697 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4698 memcg->low = 0;
4699 memcg->high = PAGE_COUNTER_MAX;
4700 memcg->soft_limit = PAGE_COUNTER_MAX;
4701 }
4702
4703 #ifdef CONFIG_MMU
4704 /* Handlers for move charge at task migration. */
4705 static int mem_cgroup_do_precharge(unsigned long count)
4706 {
4707 int ret;
4708
4709 /* Try a single bulk charge without reclaim first */
4710 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4711 if (!ret) {
4712 mc.precharge += count;
4713 return ret;
4714 }
4715 if (ret == -EINTR) {
4716 cancel_charge(root_mem_cgroup, count);
4717 return ret;
4718 }
4719
4720 /* Try charges one by one with reclaim */
4721 while (count--) {
4722 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4723 /*
4724 * In case of failure, any residual charges against
4725 * mc.to will be dropped by mem_cgroup_clear_mc()
4726 * later on. However, cancel any charges that are
4727 * bypassed to root right away or they'll be lost.
4728 */
4729 if (ret == -EINTR)
4730 cancel_charge(root_mem_cgroup, 1);
4731 if (ret)
4732 return ret;
4733 mc.precharge++;
4734 cond_resched();
4735 }
4736 return 0;
4737 }
4738
4739 /**
4740 * get_mctgt_type - get target type of moving charge
4741 * @vma: the vma the pte to be checked belongs
4742 * @addr: the address corresponding to the pte to be checked
4743 * @ptent: the pte to be checked
4744 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4745 *
4746 * Returns
4747 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4748 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4749 * move charge. if @target is not NULL, the page is stored in target->page
4750 * with extra refcnt got(Callers should handle it).
4751 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4752 * target for charge migration. if @target is not NULL, the entry is stored
4753 * in target->ent.
4754 *
4755 * Called with pte lock held.
4756 */
4757 union mc_target {
4758 struct page *page;
4759 swp_entry_t ent;
4760 };
4761
4762 enum mc_target_type {
4763 MC_TARGET_NONE = 0,
4764 MC_TARGET_PAGE,
4765 MC_TARGET_SWAP,
4766 };
4767
4768 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4769 unsigned long addr, pte_t ptent)
4770 {
4771 struct page *page = vm_normal_page(vma, addr, ptent);
4772
4773 if (!page || !page_mapped(page))
4774 return NULL;
4775 if (PageAnon(page)) {
4776 /* we don't move shared anon */
4777 if (!move_anon())
4778 return NULL;
4779 } else if (!move_file())
4780 /* we ignore mapcount for file pages */
4781 return NULL;
4782 if (!get_page_unless_zero(page))
4783 return NULL;
4784
4785 return page;
4786 }
4787
4788 #ifdef CONFIG_SWAP
4789 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4790 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4791 {
4792 struct page *page = NULL;
4793 swp_entry_t ent = pte_to_swp_entry(ptent);
4794
4795 if (!move_anon() || non_swap_entry(ent))
4796 return NULL;
4797 /*
4798 * Because lookup_swap_cache() updates some statistics counter,
4799 * we call find_get_page() with swapper_space directly.
4800 */
4801 page = find_get_page(swap_address_space(ent), ent.val);
4802 if (do_swap_account)
4803 entry->val = ent.val;
4804
4805 return page;
4806 }
4807 #else
4808 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4809 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4810 {
4811 return NULL;
4812 }
4813 #endif
4814
4815 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4816 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4817 {
4818 struct page *page = NULL;
4819 struct address_space *mapping;
4820 pgoff_t pgoff;
4821
4822 if (!vma->vm_file) /* anonymous vma */
4823 return NULL;
4824 if (!move_file())
4825 return NULL;
4826
4827 mapping = vma->vm_file->f_mapping;
4828 pgoff = linear_page_index(vma, addr);
4829
4830 /* page is moved even if it's not RSS of this task(page-faulted). */
4831 #ifdef CONFIG_SWAP
4832 /* shmem/tmpfs may report page out on swap: account for that too. */
4833 if (shmem_mapping(mapping)) {
4834 page = find_get_entry(mapping, pgoff);
4835 if (radix_tree_exceptional_entry(page)) {
4836 swp_entry_t swp = radix_to_swp_entry(page);
4837 if (do_swap_account)
4838 *entry = swp;
4839 page = find_get_page(swap_address_space(swp), swp.val);
4840 }
4841 } else
4842 page = find_get_page(mapping, pgoff);
4843 #else
4844 page = find_get_page(mapping, pgoff);
4845 #endif
4846 return page;
4847 }
4848
4849 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4850 unsigned long addr, pte_t ptent, union mc_target *target)
4851 {
4852 struct page *page = NULL;
4853 enum mc_target_type ret = MC_TARGET_NONE;
4854 swp_entry_t ent = { .val = 0 };
4855
4856 if (pte_present(ptent))
4857 page = mc_handle_present_pte(vma, addr, ptent);
4858 else if (is_swap_pte(ptent))
4859 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4860 else if (pte_none(ptent))
4861 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4862
4863 if (!page && !ent.val)
4864 return ret;
4865 if (page) {
4866 /*
4867 * Do only loose check w/o serialization.
4868 * mem_cgroup_move_account() checks the page is valid or
4869 * not under LRU exclusion.
4870 */
4871 if (page->mem_cgroup == mc.from) {
4872 ret = MC_TARGET_PAGE;
4873 if (target)
4874 target->page = page;
4875 }
4876 if (!ret || !target)
4877 put_page(page);
4878 }
4879 /* There is a swap entry and a page doesn't exist or isn't charged */
4880 if (ent.val && !ret &&
4881 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4882 ret = MC_TARGET_SWAP;
4883 if (target)
4884 target->ent = ent;
4885 }
4886 return ret;
4887 }
4888
4889 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4890 /*
4891 * We don't consider swapping or file mapped pages because THP does not
4892 * support them for now.
4893 * Caller should make sure that pmd_trans_huge(pmd) is true.
4894 */
4895 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4896 unsigned long addr, pmd_t pmd, union mc_target *target)
4897 {
4898 struct page *page = NULL;
4899 enum mc_target_type ret = MC_TARGET_NONE;
4900
4901 page = pmd_page(pmd);
4902 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4903 if (!move_anon())
4904 return ret;
4905 if (page->mem_cgroup == mc.from) {
4906 ret = MC_TARGET_PAGE;
4907 if (target) {
4908 get_page(page);
4909 target->page = page;
4910 }
4911 }
4912 return ret;
4913 }
4914 #else
4915 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4916 unsigned long addr, pmd_t pmd, union mc_target *target)
4917 {
4918 return MC_TARGET_NONE;
4919 }
4920 #endif
4921
4922 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4923 unsigned long addr, unsigned long end,
4924 struct mm_walk *walk)
4925 {
4926 struct vm_area_struct *vma = walk->private;
4927 pte_t *pte;
4928 spinlock_t *ptl;
4929
4930 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4931 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4932 mc.precharge += HPAGE_PMD_NR;
4933 spin_unlock(ptl);
4934 return 0;
4935 }
4936
4937 if (pmd_trans_unstable(pmd))
4938 return 0;
4939 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4940 for (; addr != end; pte++, addr += PAGE_SIZE)
4941 if (get_mctgt_type(vma, addr, *pte, NULL))
4942 mc.precharge++; /* increment precharge temporarily */
4943 pte_unmap_unlock(pte - 1, ptl);
4944 cond_resched();
4945
4946 return 0;
4947 }
4948
4949 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4950 {
4951 unsigned long precharge;
4952 struct vm_area_struct *vma;
4953
4954 down_read(&mm->mmap_sem);
4955 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4956 struct mm_walk mem_cgroup_count_precharge_walk = {
4957 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4958 .mm = mm,
4959 .private = vma,
4960 };
4961 if (is_vm_hugetlb_page(vma))
4962 continue;
4963 walk_page_range(vma->vm_start, vma->vm_end,
4964 &mem_cgroup_count_precharge_walk);
4965 }
4966 up_read(&mm->mmap_sem);
4967
4968 precharge = mc.precharge;
4969 mc.precharge = 0;
4970
4971 return precharge;
4972 }
4973
4974 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4975 {
4976 unsigned long precharge = mem_cgroup_count_precharge(mm);
4977
4978 VM_BUG_ON(mc.moving_task);
4979 mc.moving_task = current;
4980 return mem_cgroup_do_precharge(precharge);
4981 }
4982
4983 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4984 static void __mem_cgroup_clear_mc(void)
4985 {
4986 struct mem_cgroup *from = mc.from;
4987 struct mem_cgroup *to = mc.to;
4988
4989 /* we must uncharge all the leftover precharges from mc.to */
4990 if (mc.precharge) {
4991 cancel_charge(mc.to, mc.precharge);
4992 mc.precharge = 0;
4993 }
4994 /*
4995 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4996 * we must uncharge here.
4997 */
4998 if (mc.moved_charge) {
4999 cancel_charge(mc.from, mc.moved_charge);
5000 mc.moved_charge = 0;
5001 }
5002 /* we must fixup refcnts and charges */
5003 if (mc.moved_swap) {
5004 /* uncharge swap account from the old cgroup */
5005 if (!mem_cgroup_is_root(mc.from))
5006 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5007
5008 /*
5009 * we charged both to->memory and to->memsw, so we
5010 * should uncharge to->memory.
5011 */
5012 if (!mem_cgroup_is_root(mc.to))
5013 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5014
5015 css_put_many(&mc.from->css, mc.moved_swap);
5016
5017 /* we've already done css_get(mc.to) */
5018 mc.moved_swap = 0;
5019 }
5020 memcg_oom_recover(from);
5021 memcg_oom_recover(to);
5022 wake_up_all(&mc.waitq);
5023 }
5024
5025 static void mem_cgroup_clear_mc(void)
5026 {
5027 /*
5028 * we must clear moving_task before waking up waiters at the end of
5029 * task migration.
5030 */
5031 mc.moving_task = NULL;
5032 __mem_cgroup_clear_mc();
5033 spin_lock(&mc.lock);
5034 mc.from = NULL;
5035 mc.to = NULL;
5036 spin_unlock(&mc.lock);
5037 }
5038
5039 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5040 struct cgroup_taskset *tset)
5041 {
5042 struct task_struct *p = cgroup_taskset_first(tset);
5043 int ret = 0;
5044 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5045 unsigned long move_charge_at_immigrate;
5046
5047 /*
5048 * We are now commited to this value whatever it is. Changes in this
5049 * tunable will only affect upcoming migrations, not the current one.
5050 * So we need to save it, and keep it going.
5051 */
5052 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5053 if (move_charge_at_immigrate) {
5054 struct mm_struct *mm;
5055 struct mem_cgroup *from = mem_cgroup_from_task(p);
5056
5057 VM_BUG_ON(from == memcg);
5058
5059 mm = get_task_mm(p);
5060 if (!mm)
5061 return 0;
5062 /* We move charges only when we move a owner of the mm */
5063 if (mm->owner == p) {
5064 VM_BUG_ON(mc.from);
5065 VM_BUG_ON(mc.to);
5066 VM_BUG_ON(mc.precharge);
5067 VM_BUG_ON(mc.moved_charge);
5068 VM_BUG_ON(mc.moved_swap);
5069
5070 spin_lock(&mc.lock);
5071 mc.from = from;
5072 mc.to = memcg;
5073 mc.immigrate_flags = move_charge_at_immigrate;
5074 spin_unlock(&mc.lock);
5075 /* We set mc.moving_task later */
5076
5077 ret = mem_cgroup_precharge_mc(mm);
5078 if (ret)
5079 mem_cgroup_clear_mc();
5080 }
5081 mmput(mm);
5082 }
5083 return ret;
5084 }
5085
5086 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5087 struct cgroup_taskset *tset)
5088 {
5089 if (mc.to)
5090 mem_cgroup_clear_mc();
5091 }
5092
5093 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5094 unsigned long addr, unsigned long end,
5095 struct mm_walk *walk)
5096 {
5097 int ret = 0;
5098 struct vm_area_struct *vma = walk->private;
5099 pte_t *pte;
5100 spinlock_t *ptl;
5101 enum mc_target_type target_type;
5102 union mc_target target;
5103 struct page *page;
5104
5105 /*
5106 * We don't take compound_lock() here but no race with splitting thp
5107 * happens because:
5108 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5109 * under splitting, which means there's no concurrent thp split,
5110 * - if another thread runs into split_huge_page() just after we
5111 * entered this if-block, the thread must wait for page table lock
5112 * to be unlocked in __split_huge_page_splitting(), where the main
5113 * part of thp split is not executed yet.
5114 */
5115 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5116 if (mc.precharge < HPAGE_PMD_NR) {
5117 spin_unlock(ptl);
5118 return 0;
5119 }
5120 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5121 if (target_type == MC_TARGET_PAGE) {
5122 page = target.page;
5123 if (!isolate_lru_page(page)) {
5124 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5125 mc.from, mc.to)) {
5126 mc.precharge -= HPAGE_PMD_NR;
5127 mc.moved_charge += HPAGE_PMD_NR;
5128 }
5129 putback_lru_page(page);
5130 }
5131 put_page(page);
5132 }
5133 spin_unlock(ptl);
5134 return 0;
5135 }
5136
5137 if (pmd_trans_unstable(pmd))
5138 return 0;
5139 retry:
5140 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5141 for (; addr != end; addr += PAGE_SIZE) {
5142 pte_t ptent = *(pte++);
5143 swp_entry_t ent;
5144
5145 if (!mc.precharge)
5146 break;
5147
5148 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5149 case MC_TARGET_PAGE:
5150 page = target.page;
5151 if (isolate_lru_page(page))
5152 goto put;
5153 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5154 mc.precharge--;
5155 /* we uncharge from mc.from later. */
5156 mc.moved_charge++;
5157 }
5158 putback_lru_page(page);
5159 put: /* get_mctgt_type() gets the page */
5160 put_page(page);
5161 break;
5162 case MC_TARGET_SWAP:
5163 ent = target.ent;
5164 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5165 mc.precharge--;
5166 /* we fixup refcnts and charges later. */
5167 mc.moved_swap++;
5168 }
5169 break;
5170 default:
5171 break;
5172 }
5173 }
5174 pte_unmap_unlock(pte - 1, ptl);
5175 cond_resched();
5176
5177 if (addr != end) {
5178 /*
5179 * We have consumed all precharges we got in can_attach().
5180 * We try charge one by one, but don't do any additional
5181 * charges to mc.to if we have failed in charge once in attach()
5182 * phase.
5183 */
5184 ret = mem_cgroup_do_precharge(1);
5185 if (!ret)
5186 goto retry;
5187 }
5188
5189 return ret;
5190 }
5191
5192 static void mem_cgroup_move_charge(struct mm_struct *mm)
5193 {
5194 struct vm_area_struct *vma;
5195
5196 lru_add_drain_all();
5197 /*
5198 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5199 * move_lock while we're moving its pages to another memcg.
5200 * Then wait for already started RCU-only updates to finish.
5201 */
5202 atomic_inc(&mc.from->moving_account);
5203 synchronize_rcu();
5204 retry:
5205 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5206 /*
5207 * Someone who are holding the mmap_sem might be waiting in
5208 * waitq. So we cancel all extra charges, wake up all waiters,
5209 * and retry. Because we cancel precharges, we might not be able
5210 * to move enough charges, but moving charge is a best-effort
5211 * feature anyway, so it wouldn't be a big problem.
5212 */
5213 __mem_cgroup_clear_mc();
5214 cond_resched();
5215 goto retry;
5216 }
5217 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5218 int ret;
5219 struct mm_walk mem_cgroup_move_charge_walk = {
5220 .pmd_entry = mem_cgroup_move_charge_pte_range,
5221 .mm = mm,
5222 .private = vma,
5223 };
5224 if (is_vm_hugetlb_page(vma))
5225 continue;
5226 ret = walk_page_range(vma->vm_start, vma->vm_end,
5227 &mem_cgroup_move_charge_walk);
5228 if (ret)
5229 /*
5230 * means we have consumed all precharges and failed in
5231 * doing additional charge. Just abandon here.
5232 */
5233 break;
5234 }
5235 up_read(&mm->mmap_sem);
5236 atomic_dec(&mc.from->moving_account);
5237 }
5238
5239 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5240 struct cgroup_taskset *tset)
5241 {
5242 struct task_struct *p = cgroup_taskset_first(tset);
5243 struct mm_struct *mm = get_task_mm(p);
5244
5245 if (mm) {
5246 if (mc.to)
5247 mem_cgroup_move_charge(mm);
5248 mmput(mm);
5249 }
5250 if (mc.to)
5251 mem_cgroup_clear_mc();
5252 }
5253 #else /* !CONFIG_MMU */
5254 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5255 struct cgroup_taskset *tset)
5256 {
5257 return 0;
5258 }
5259 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5260 struct cgroup_taskset *tset)
5261 {
5262 }
5263 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5264 struct cgroup_taskset *tset)
5265 {
5266 }
5267 #endif
5268
5269 /*
5270 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5271 * to verify whether we're attached to the default hierarchy on each mount
5272 * attempt.
5273 */
5274 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5275 {
5276 /*
5277 * use_hierarchy is forced on the default hierarchy. cgroup core
5278 * guarantees that @root doesn't have any children, so turning it
5279 * on for the root memcg is enough.
5280 */
5281 if (cgroup_on_dfl(root_css->cgroup))
5282 mem_cgroup_from_css(root_css)->use_hierarchy = true;
5283 }
5284
5285 static u64 memory_current_read(struct cgroup_subsys_state *css,
5286 struct cftype *cft)
5287 {
5288 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5289 }
5290
5291 static int memory_low_show(struct seq_file *m, void *v)
5292 {
5293 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5294 unsigned long low = ACCESS_ONCE(memcg->low);
5295
5296 if (low == PAGE_COUNTER_MAX)
5297 seq_puts(m, "infinity\n");
5298 else
5299 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5300
5301 return 0;
5302 }
5303
5304 static ssize_t memory_low_write(struct kernfs_open_file *of,
5305 char *buf, size_t nbytes, loff_t off)
5306 {
5307 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5308 unsigned long low;
5309 int err;
5310
5311 buf = strstrip(buf);
5312 err = page_counter_memparse(buf, "infinity", &low);
5313 if (err)
5314 return err;
5315
5316 memcg->low = low;
5317
5318 return nbytes;
5319 }
5320
5321 static int memory_high_show(struct seq_file *m, void *v)
5322 {
5323 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5324 unsigned long high = ACCESS_ONCE(memcg->high);
5325
5326 if (high == PAGE_COUNTER_MAX)
5327 seq_puts(m, "infinity\n");
5328 else
5329 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5330
5331 return 0;
5332 }
5333
5334 static ssize_t memory_high_write(struct kernfs_open_file *of,
5335 char *buf, size_t nbytes, loff_t off)
5336 {
5337 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5338 unsigned long high;
5339 int err;
5340
5341 buf = strstrip(buf);
5342 err = page_counter_memparse(buf, "infinity", &high);
5343 if (err)
5344 return err;
5345
5346 memcg->high = high;
5347
5348 return nbytes;
5349 }
5350
5351 static int memory_max_show(struct seq_file *m, void *v)
5352 {
5353 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5354 unsigned long max = ACCESS_ONCE(memcg->memory.limit);
5355
5356 if (max == PAGE_COUNTER_MAX)
5357 seq_puts(m, "infinity\n");
5358 else
5359 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5360
5361 return 0;
5362 }
5363
5364 static ssize_t memory_max_write(struct kernfs_open_file *of,
5365 char *buf, size_t nbytes, loff_t off)
5366 {
5367 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5368 unsigned long max;
5369 int err;
5370
5371 buf = strstrip(buf);
5372 err = page_counter_memparse(buf, "infinity", &max);
5373 if (err)
5374 return err;
5375
5376 err = mem_cgroup_resize_limit(memcg, max);
5377 if (err)
5378 return err;
5379
5380 return nbytes;
5381 }
5382
5383 static int memory_events_show(struct seq_file *m, void *v)
5384 {
5385 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5386
5387 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5388 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5389 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5390 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5391
5392 return 0;
5393 }
5394
5395 static struct cftype memory_files[] = {
5396 {
5397 .name = "current",
5398 .read_u64 = memory_current_read,
5399 },
5400 {
5401 .name = "low",
5402 .flags = CFTYPE_NOT_ON_ROOT,
5403 .seq_show = memory_low_show,
5404 .write = memory_low_write,
5405 },
5406 {
5407 .name = "high",
5408 .flags = CFTYPE_NOT_ON_ROOT,
5409 .seq_show = memory_high_show,
5410 .write = memory_high_write,
5411 },
5412 {
5413 .name = "max",
5414 .flags = CFTYPE_NOT_ON_ROOT,
5415 .seq_show = memory_max_show,
5416 .write = memory_max_write,
5417 },
5418 {
5419 .name = "events",
5420 .flags = CFTYPE_NOT_ON_ROOT,
5421 .seq_show = memory_events_show,
5422 },
5423 { } /* terminate */
5424 };
5425
5426 struct cgroup_subsys memory_cgrp_subsys = {
5427 .css_alloc = mem_cgroup_css_alloc,
5428 .css_online = mem_cgroup_css_online,
5429 .css_offline = mem_cgroup_css_offline,
5430 .css_free = mem_cgroup_css_free,
5431 .css_reset = mem_cgroup_css_reset,
5432 .can_attach = mem_cgroup_can_attach,
5433 .cancel_attach = mem_cgroup_cancel_attach,
5434 .attach = mem_cgroup_move_task,
5435 .bind = mem_cgroup_bind,
5436 .dfl_cftypes = memory_files,
5437 .legacy_cftypes = mem_cgroup_legacy_files,
5438 .early_init = 0,
5439 };
5440
5441 #ifdef CONFIG_MEMCG_SWAP
5442 static int __init enable_swap_account(char *s)
5443 {
5444 if (!strcmp(s, "1"))
5445 really_do_swap_account = 1;
5446 else if (!strcmp(s, "0"))
5447 really_do_swap_account = 0;
5448 return 1;
5449 }
5450 __setup("swapaccount=", enable_swap_account);
5451
5452 static void __init memsw_file_init(void)
5453 {
5454 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5455 memsw_cgroup_files));
5456 }
5457
5458 static void __init enable_swap_cgroup(void)
5459 {
5460 if (!mem_cgroup_disabled() && really_do_swap_account) {
5461 do_swap_account = 1;
5462 memsw_file_init();
5463 }
5464 }
5465
5466 #else
5467 static void __init enable_swap_cgroup(void)
5468 {
5469 }
5470 #endif
5471
5472 /**
5473 * mem_cgroup_events - count memory events against a cgroup
5474 * @memcg: the memory cgroup
5475 * @idx: the event index
5476 * @nr: the number of events to account for
5477 */
5478 void mem_cgroup_events(struct mem_cgroup *memcg,
5479 enum mem_cgroup_events_index idx,
5480 unsigned int nr)
5481 {
5482 this_cpu_add(memcg->stat->events[idx], nr);
5483 }
5484
5485 /**
5486 * mem_cgroup_low - check if memory consumption is below the normal range
5487 * @root: the highest ancestor to consider
5488 * @memcg: the memory cgroup to check
5489 *
5490 * Returns %true if memory consumption of @memcg, and that of all
5491 * configurable ancestors up to @root, is below the normal range.
5492 */
5493 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5494 {
5495 if (mem_cgroup_disabled())
5496 return false;
5497
5498 /*
5499 * The toplevel group doesn't have a configurable range, so
5500 * it's never low when looked at directly, and it is not
5501 * considered an ancestor when assessing the hierarchy.
5502 */
5503
5504 if (memcg == root_mem_cgroup)
5505 return false;
5506
5507 if (page_counter_read(&memcg->memory) > memcg->low)
5508 return false;
5509
5510 while (memcg != root) {
5511 memcg = parent_mem_cgroup(memcg);
5512
5513 if (memcg == root_mem_cgroup)
5514 break;
5515
5516 if (page_counter_read(&memcg->memory) > memcg->low)
5517 return false;
5518 }
5519 return true;
5520 }
5521
5522 #ifdef CONFIG_MEMCG_SWAP
5523 /**
5524 * mem_cgroup_swapout - transfer a memsw charge to swap
5525 * @page: page whose memsw charge to transfer
5526 * @entry: swap entry to move the charge to
5527 *
5528 * Transfer the memsw charge of @page to @entry.
5529 */
5530 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5531 {
5532 struct mem_cgroup *memcg;
5533 unsigned short oldid;
5534
5535 VM_BUG_ON_PAGE(PageLRU(page), page);
5536 VM_BUG_ON_PAGE(page_count(page), page);
5537
5538 if (!do_swap_account)
5539 return;
5540
5541 memcg = page->mem_cgroup;
5542
5543 /* Readahead page, never charged */
5544 if (!memcg)
5545 return;
5546
5547 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5548 VM_BUG_ON_PAGE(oldid, page);
5549 mem_cgroup_swap_statistics(memcg, true);
5550
5551 page->mem_cgroup = NULL;
5552
5553 if (!mem_cgroup_is_root(memcg))
5554 page_counter_uncharge(&memcg->memory, 1);
5555
5556 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5557 VM_BUG_ON(!irqs_disabled());
5558
5559 mem_cgroup_charge_statistics(memcg, page, -1);
5560 memcg_check_events(memcg, page);
5561 }
5562
5563 /**
5564 * mem_cgroup_uncharge_swap - uncharge a swap entry
5565 * @entry: swap entry to uncharge
5566 *
5567 * Drop the memsw charge associated with @entry.
5568 */
5569 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5570 {
5571 struct mem_cgroup *memcg;
5572 unsigned short id;
5573
5574 if (!do_swap_account)
5575 return;
5576
5577 id = swap_cgroup_record(entry, 0);
5578 rcu_read_lock();
5579 memcg = mem_cgroup_lookup(id);
5580 if (memcg) {
5581 if (!mem_cgroup_is_root(memcg))
5582 page_counter_uncharge(&memcg->memsw, 1);
5583 mem_cgroup_swap_statistics(memcg, false);
5584 css_put(&memcg->css);
5585 }
5586 rcu_read_unlock();
5587 }
5588 #endif
5589
5590 /**
5591 * mem_cgroup_try_charge - try charging a page
5592 * @page: page to charge
5593 * @mm: mm context of the victim
5594 * @gfp_mask: reclaim mode
5595 * @memcgp: charged memcg return
5596 *
5597 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5598 * pages according to @gfp_mask if necessary.
5599 *
5600 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5601 * Otherwise, an error code is returned.
5602 *
5603 * After page->mapping has been set up, the caller must finalize the
5604 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5605 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5606 */
5607 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5608 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5609 {
5610 struct mem_cgroup *memcg = NULL;
5611 unsigned int nr_pages = 1;
5612 int ret = 0;
5613
5614 if (mem_cgroup_disabled())
5615 goto out;
5616
5617 if (PageSwapCache(page)) {
5618 /*
5619 * Every swap fault against a single page tries to charge the
5620 * page, bail as early as possible. shmem_unuse() encounters
5621 * already charged pages, too. The USED bit is protected by
5622 * the page lock, which serializes swap cache removal, which
5623 * in turn serializes uncharging.
5624 */
5625 if (page->mem_cgroup)
5626 goto out;
5627 }
5628
5629 if (PageTransHuge(page)) {
5630 nr_pages <<= compound_order(page);
5631 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5632 }
5633
5634 if (do_swap_account && PageSwapCache(page))
5635 memcg = try_get_mem_cgroup_from_page(page);
5636 if (!memcg)
5637 memcg = get_mem_cgroup_from_mm(mm);
5638
5639 ret = try_charge(memcg, gfp_mask, nr_pages);
5640
5641 css_put(&memcg->css);
5642
5643 if (ret == -EINTR) {
5644 memcg = root_mem_cgroup;
5645 ret = 0;
5646 }
5647 out:
5648 *memcgp = memcg;
5649 return ret;
5650 }
5651
5652 /**
5653 * mem_cgroup_commit_charge - commit a page charge
5654 * @page: page to charge
5655 * @memcg: memcg to charge the page to
5656 * @lrucare: page might be on LRU already
5657 *
5658 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5659 * after page->mapping has been set up. This must happen atomically
5660 * as part of the page instantiation, i.e. under the page table lock
5661 * for anonymous pages, under the page lock for page and swap cache.
5662 *
5663 * In addition, the page must not be on the LRU during the commit, to
5664 * prevent racing with task migration. If it might be, use @lrucare.
5665 *
5666 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5667 */
5668 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5669 bool lrucare)
5670 {
5671 unsigned int nr_pages = 1;
5672
5673 VM_BUG_ON_PAGE(!page->mapping, page);
5674 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5675
5676 if (mem_cgroup_disabled())
5677 return;
5678 /*
5679 * Swap faults will attempt to charge the same page multiple
5680 * times. But reuse_swap_page() might have removed the page
5681 * from swapcache already, so we can't check PageSwapCache().
5682 */
5683 if (!memcg)
5684 return;
5685
5686 commit_charge(page, memcg, lrucare);
5687
5688 if (PageTransHuge(page)) {
5689 nr_pages <<= compound_order(page);
5690 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5691 }
5692
5693 local_irq_disable();
5694 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5695 memcg_check_events(memcg, page);
5696 local_irq_enable();
5697
5698 if (do_swap_account && PageSwapCache(page)) {
5699 swp_entry_t entry = { .val = page_private(page) };
5700 /*
5701 * The swap entry might not get freed for a long time,
5702 * let's not wait for it. The page already received a
5703 * memory+swap charge, drop the swap entry duplicate.
5704 */
5705 mem_cgroup_uncharge_swap(entry);
5706 }
5707 }
5708
5709 /**
5710 * mem_cgroup_cancel_charge - cancel a page charge
5711 * @page: page to charge
5712 * @memcg: memcg to charge the page to
5713 *
5714 * Cancel a charge transaction started by mem_cgroup_try_charge().
5715 */
5716 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5717 {
5718 unsigned int nr_pages = 1;
5719
5720 if (mem_cgroup_disabled())
5721 return;
5722 /*
5723 * Swap faults will attempt to charge the same page multiple
5724 * times. But reuse_swap_page() might have removed the page
5725 * from swapcache already, so we can't check PageSwapCache().
5726 */
5727 if (!memcg)
5728 return;
5729
5730 if (PageTransHuge(page)) {
5731 nr_pages <<= compound_order(page);
5732 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5733 }
5734
5735 cancel_charge(memcg, nr_pages);
5736 }
5737
5738 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5739 unsigned long nr_anon, unsigned long nr_file,
5740 unsigned long nr_huge, struct page *dummy_page)
5741 {
5742 unsigned long nr_pages = nr_anon + nr_file;
5743 unsigned long flags;
5744
5745 if (!mem_cgroup_is_root(memcg)) {
5746 page_counter_uncharge(&memcg->memory, nr_pages);
5747 if (do_swap_account)
5748 page_counter_uncharge(&memcg->memsw, nr_pages);
5749 memcg_oom_recover(memcg);
5750 }
5751
5752 local_irq_save(flags);
5753 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5754 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5755 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5756 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5757 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5758 memcg_check_events(memcg, dummy_page);
5759 local_irq_restore(flags);
5760
5761 if (!mem_cgroup_is_root(memcg))
5762 css_put_many(&memcg->css, nr_pages);
5763 }
5764
5765 static void uncharge_list(struct list_head *page_list)
5766 {
5767 struct mem_cgroup *memcg = NULL;
5768 unsigned long nr_anon = 0;
5769 unsigned long nr_file = 0;
5770 unsigned long nr_huge = 0;
5771 unsigned long pgpgout = 0;
5772 struct list_head *next;
5773 struct page *page;
5774
5775 next = page_list->next;
5776 do {
5777 unsigned int nr_pages = 1;
5778
5779 page = list_entry(next, struct page, lru);
5780 next = page->lru.next;
5781
5782 VM_BUG_ON_PAGE(PageLRU(page), page);
5783 VM_BUG_ON_PAGE(page_count(page), page);
5784
5785 if (!page->mem_cgroup)
5786 continue;
5787
5788 /*
5789 * Nobody should be changing or seriously looking at
5790 * page->mem_cgroup at this point, we have fully
5791 * exclusive access to the page.
5792 */
5793
5794 if (memcg != page->mem_cgroup) {
5795 if (memcg) {
5796 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5797 nr_huge, page);
5798 pgpgout = nr_anon = nr_file = nr_huge = 0;
5799 }
5800 memcg = page->mem_cgroup;
5801 }
5802
5803 if (PageTransHuge(page)) {
5804 nr_pages <<= compound_order(page);
5805 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5806 nr_huge += nr_pages;
5807 }
5808
5809 if (PageAnon(page))
5810 nr_anon += nr_pages;
5811 else
5812 nr_file += nr_pages;
5813
5814 page->mem_cgroup = NULL;
5815
5816 pgpgout++;
5817 } while (next != page_list);
5818
5819 if (memcg)
5820 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5821 nr_huge, page);
5822 }
5823
5824 /**
5825 * mem_cgroup_uncharge - uncharge a page
5826 * @page: page to uncharge
5827 *
5828 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5829 * mem_cgroup_commit_charge().
5830 */
5831 void mem_cgroup_uncharge(struct page *page)
5832 {
5833 if (mem_cgroup_disabled())
5834 return;
5835
5836 /* Don't touch page->lru of any random page, pre-check: */
5837 if (!page->mem_cgroup)
5838 return;
5839
5840 INIT_LIST_HEAD(&page->lru);
5841 uncharge_list(&page->lru);
5842 }
5843
5844 /**
5845 * mem_cgroup_uncharge_list - uncharge a list of page
5846 * @page_list: list of pages to uncharge
5847 *
5848 * Uncharge a list of pages previously charged with
5849 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5850 */
5851 void mem_cgroup_uncharge_list(struct list_head *page_list)
5852 {
5853 if (mem_cgroup_disabled())
5854 return;
5855
5856 if (!list_empty(page_list))
5857 uncharge_list(page_list);
5858 }
5859
5860 /**
5861 * mem_cgroup_migrate - migrate a charge to another page
5862 * @oldpage: currently charged page
5863 * @newpage: page to transfer the charge to
5864 * @lrucare: either or both pages might be on the LRU already
5865 *
5866 * Migrate the charge from @oldpage to @newpage.
5867 *
5868 * Both pages must be locked, @newpage->mapping must be set up.
5869 */
5870 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5871 bool lrucare)
5872 {
5873 struct mem_cgroup *memcg;
5874 int isolated;
5875
5876 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5877 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5878 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5879 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5880 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5881 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5882 newpage);
5883
5884 if (mem_cgroup_disabled())
5885 return;
5886
5887 /* Page cache replacement: new page already charged? */
5888 if (newpage->mem_cgroup)
5889 return;
5890
5891 /*
5892 * Swapcache readahead pages can get migrated before being
5893 * charged, and migration from compaction can happen to an
5894 * uncharged page when the PFN walker finds a page that
5895 * reclaim just put back on the LRU but has not released yet.
5896 */
5897 memcg = oldpage->mem_cgroup;
5898 if (!memcg)
5899 return;
5900
5901 if (lrucare)
5902 lock_page_lru(oldpage, &isolated);
5903
5904 oldpage->mem_cgroup = NULL;
5905
5906 if (lrucare)
5907 unlock_page_lru(oldpage, isolated);
5908
5909 commit_charge(newpage, memcg, lrucare);
5910 }
5911
5912 /*
5913 * subsys_initcall() for memory controller.
5914 *
5915 * Some parts like hotcpu_notifier() have to be initialized from this context
5916 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5917 * everything that doesn't depend on a specific mem_cgroup structure should
5918 * be initialized from here.
5919 */
5920 static int __init mem_cgroup_init(void)
5921 {
5922 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5923 enable_swap_cgroup();
5924 mem_cgroup_soft_limit_tree_init();
5925 memcg_stock_init();
5926 return 0;
5927 }
5928 subsys_initcall(mem_cgroup_init);