]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/memcontrol.c
Merge branch 'akpm' (patches from Andrew)
[mirror_ubuntu-kernels.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/file.h>
62 #include <linux/tracehook.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include "slab.h"
69
70 #include <linux/uaccess.h>
71
72 #include <trace/events/vmscan.h>
73
74 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75 EXPORT_SYMBOL(memory_cgrp_subsys);
76
77 struct mem_cgroup *root_mem_cgroup __read_mostly;
78
79 /* Active memory cgroup to use from an interrupt context */
80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
82
83 /* Socket memory accounting disabled? */
84 static bool cgroup_memory_nosocket __ro_after_init;
85
86 /* Kernel memory accounting disabled? */
87 bool cgroup_memory_nokmem __ro_after_init;
88
89 /* Whether the swap controller is active */
90 #ifdef CONFIG_MEMCG_SWAP
91 bool cgroup_memory_noswap __ro_after_init;
92 #else
93 #define cgroup_memory_noswap 1
94 #endif
95
96 #ifdef CONFIG_CGROUP_WRITEBACK
97 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98 #endif
99
100 /* Whether legacy memory+swap accounting is active */
101 static bool do_memsw_account(void)
102 {
103 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
104 }
105
106 /* memcg and lruvec stats flushing */
107 static void flush_memcg_stats_dwork(struct work_struct *w);
108 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
109 static void flush_memcg_stats_work(struct work_struct *w);
110 static DECLARE_WORK(stats_flush_work, flush_memcg_stats_work);
111 static DEFINE_PER_CPU(unsigned int, stats_flush_threshold);
112 static DEFINE_SPINLOCK(stats_flush_lock);
113
114 #define THRESHOLDS_EVENTS_TARGET 128
115 #define SOFTLIMIT_EVENTS_TARGET 1024
116
117 /*
118 * Cgroups above their limits are maintained in a RB-Tree, independent of
119 * their hierarchy representation
120 */
121
122 struct mem_cgroup_tree_per_node {
123 struct rb_root rb_root;
124 struct rb_node *rb_rightmost;
125 spinlock_t lock;
126 };
127
128 struct mem_cgroup_tree {
129 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
130 };
131
132 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
133
134 /* for OOM */
135 struct mem_cgroup_eventfd_list {
136 struct list_head list;
137 struct eventfd_ctx *eventfd;
138 };
139
140 /*
141 * cgroup_event represents events which userspace want to receive.
142 */
143 struct mem_cgroup_event {
144 /*
145 * memcg which the event belongs to.
146 */
147 struct mem_cgroup *memcg;
148 /*
149 * eventfd to signal userspace about the event.
150 */
151 struct eventfd_ctx *eventfd;
152 /*
153 * Each of these stored in a list by the cgroup.
154 */
155 struct list_head list;
156 /*
157 * register_event() callback will be used to add new userspace
158 * waiter for changes related to this event. Use eventfd_signal()
159 * on eventfd to send notification to userspace.
160 */
161 int (*register_event)(struct mem_cgroup *memcg,
162 struct eventfd_ctx *eventfd, const char *args);
163 /*
164 * unregister_event() callback will be called when userspace closes
165 * the eventfd or on cgroup removing. This callback must be set,
166 * if you want provide notification functionality.
167 */
168 void (*unregister_event)(struct mem_cgroup *memcg,
169 struct eventfd_ctx *eventfd);
170 /*
171 * All fields below needed to unregister event when
172 * userspace closes eventfd.
173 */
174 poll_table pt;
175 wait_queue_head_t *wqh;
176 wait_queue_entry_t wait;
177 struct work_struct remove;
178 };
179
180 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
181 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
182
183 /* Stuffs for move charges at task migration. */
184 /*
185 * Types of charges to be moved.
186 */
187 #define MOVE_ANON 0x1U
188 #define MOVE_FILE 0x2U
189 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
190
191 /* "mc" and its members are protected by cgroup_mutex */
192 static struct move_charge_struct {
193 spinlock_t lock; /* for from, to */
194 struct mm_struct *mm;
195 struct mem_cgroup *from;
196 struct mem_cgroup *to;
197 unsigned long flags;
198 unsigned long precharge;
199 unsigned long moved_charge;
200 unsigned long moved_swap;
201 struct task_struct *moving_task; /* a task moving charges */
202 wait_queue_head_t waitq; /* a waitq for other context */
203 } mc = {
204 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
205 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
206 };
207
208 /*
209 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
210 * limit reclaim to prevent infinite loops, if they ever occur.
211 */
212 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
213 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
214
215 /* for encoding cft->private value on file */
216 enum res_type {
217 _MEM,
218 _MEMSWAP,
219 _OOM_TYPE,
220 _KMEM,
221 _TCP,
222 };
223
224 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
225 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
226 #define MEMFILE_ATTR(val) ((val) & 0xffff)
227 /* Used for OOM notifier */
228 #define OOM_CONTROL (0)
229
230 /*
231 * Iteration constructs for visiting all cgroups (under a tree). If
232 * loops are exited prematurely (break), mem_cgroup_iter_break() must
233 * be used for reference counting.
234 */
235 #define for_each_mem_cgroup_tree(iter, root) \
236 for (iter = mem_cgroup_iter(root, NULL, NULL); \
237 iter != NULL; \
238 iter = mem_cgroup_iter(root, iter, NULL))
239
240 #define for_each_mem_cgroup(iter) \
241 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
242 iter != NULL; \
243 iter = mem_cgroup_iter(NULL, iter, NULL))
244
245 static inline bool should_force_charge(void)
246 {
247 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
248 (current->flags & PF_EXITING);
249 }
250
251 /* Some nice accessors for the vmpressure. */
252 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
253 {
254 if (!memcg)
255 memcg = root_mem_cgroup;
256 return &memcg->vmpressure;
257 }
258
259 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
260 {
261 return container_of(vmpr, struct mem_cgroup, vmpressure);
262 }
263
264 #ifdef CONFIG_MEMCG_KMEM
265 extern spinlock_t css_set_lock;
266
267 bool mem_cgroup_kmem_disabled(void)
268 {
269 return cgroup_memory_nokmem;
270 }
271
272 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
273 unsigned int nr_pages);
274
275 static void obj_cgroup_release(struct percpu_ref *ref)
276 {
277 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
278 unsigned int nr_bytes;
279 unsigned int nr_pages;
280 unsigned long flags;
281
282 /*
283 * At this point all allocated objects are freed, and
284 * objcg->nr_charged_bytes can't have an arbitrary byte value.
285 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
286 *
287 * The following sequence can lead to it:
288 * 1) CPU0: objcg == stock->cached_objcg
289 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
290 * PAGE_SIZE bytes are charged
291 * 3) CPU1: a process from another memcg is allocating something,
292 * the stock if flushed,
293 * objcg->nr_charged_bytes = PAGE_SIZE - 92
294 * 5) CPU0: we do release this object,
295 * 92 bytes are added to stock->nr_bytes
296 * 6) CPU0: stock is flushed,
297 * 92 bytes are added to objcg->nr_charged_bytes
298 *
299 * In the result, nr_charged_bytes == PAGE_SIZE.
300 * This page will be uncharged in obj_cgroup_release().
301 */
302 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
303 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
304 nr_pages = nr_bytes >> PAGE_SHIFT;
305
306 if (nr_pages)
307 obj_cgroup_uncharge_pages(objcg, nr_pages);
308
309 spin_lock_irqsave(&css_set_lock, flags);
310 list_del(&objcg->list);
311 spin_unlock_irqrestore(&css_set_lock, flags);
312
313 percpu_ref_exit(ref);
314 kfree_rcu(objcg, rcu);
315 }
316
317 static struct obj_cgroup *obj_cgroup_alloc(void)
318 {
319 struct obj_cgroup *objcg;
320 int ret;
321
322 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
323 if (!objcg)
324 return NULL;
325
326 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
327 GFP_KERNEL);
328 if (ret) {
329 kfree(objcg);
330 return NULL;
331 }
332 INIT_LIST_HEAD(&objcg->list);
333 return objcg;
334 }
335
336 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
337 struct mem_cgroup *parent)
338 {
339 struct obj_cgroup *objcg, *iter;
340
341 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
342
343 spin_lock_irq(&css_set_lock);
344
345 /* 1) Ready to reparent active objcg. */
346 list_add(&objcg->list, &memcg->objcg_list);
347 /* 2) Reparent active objcg and already reparented objcgs to parent. */
348 list_for_each_entry(iter, &memcg->objcg_list, list)
349 WRITE_ONCE(iter->memcg, parent);
350 /* 3) Move already reparented objcgs to the parent's list */
351 list_splice(&memcg->objcg_list, &parent->objcg_list);
352
353 spin_unlock_irq(&css_set_lock);
354
355 percpu_ref_kill(&objcg->refcnt);
356 }
357
358 /*
359 * This will be used as a shrinker list's index.
360 * The main reason for not using cgroup id for this:
361 * this works better in sparse environments, where we have a lot of memcgs,
362 * but only a few kmem-limited. Or also, if we have, for instance, 200
363 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
364 * 200 entry array for that.
365 *
366 * The current size of the caches array is stored in memcg_nr_cache_ids. It
367 * will double each time we have to increase it.
368 */
369 static DEFINE_IDA(memcg_cache_ida);
370 int memcg_nr_cache_ids;
371
372 /* Protects memcg_nr_cache_ids */
373 static DECLARE_RWSEM(memcg_cache_ids_sem);
374
375 void memcg_get_cache_ids(void)
376 {
377 down_read(&memcg_cache_ids_sem);
378 }
379
380 void memcg_put_cache_ids(void)
381 {
382 up_read(&memcg_cache_ids_sem);
383 }
384
385 /*
386 * MIN_SIZE is different than 1, because we would like to avoid going through
387 * the alloc/free process all the time. In a small machine, 4 kmem-limited
388 * cgroups is a reasonable guess. In the future, it could be a parameter or
389 * tunable, but that is strictly not necessary.
390 *
391 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
392 * this constant directly from cgroup, but it is understandable that this is
393 * better kept as an internal representation in cgroup.c. In any case, the
394 * cgrp_id space is not getting any smaller, and we don't have to necessarily
395 * increase ours as well if it increases.
396 */
397 #define MEMCG_CACHES_MIN_SIZE 4
398 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
399
400 /*
401 * A lot of the calls to the cache allocation functions are expected to be
402 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
403 * conditional to this static branch, we'll have to allow modules that does
404 * kmem_cache_alloc and the such to see this symbol as well
405 */
406 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
407 EXPORT_SYMBOL(memcg_kmem_enabled_key);
408 #endif
409
410 /**
411 * mem_cgroup_css_from_page - css of the memcg associated with a page
412 * @page: page of interest
413 *
414 * If memcg is bound to the default hierarchy, css of the memcg associated
415 * with @page is returned. The returned css remains associated with @page
416 * until it is released.
417 *
418 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
419 * is returned.
420 */
421 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
422 {
423 struct mem_cgroup *memcg;
424
425 memcg = page_memcg(page);
426
427 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
428 memcg = root_mem_cgroup;
429
430 return &memcg->css;
431 }
432
433 /**
434 * page_cgroup_ino - return inode number of the memcg a page is charged to
435 * @page: the page
436 *
437 * Look up the closest online ancestor of the memory cgroup @page is charged to
438 * and return its inode number or 0 if @page is not charged to any cgroup. It
439 * is safe to call this function without holding a reference to @page.
440 *
441 * Note, this function is inherently racy, because there is nothing to prevent
442 * the cgroup inode from getting torn down and potentially reallocated a moment
443 * after page_cgroup_ino() returns, so it only should be used by callers that
444 * do not care (such as procfs interfaces).
445 */
446 ino_t page_cgroup_ino(struct page *page)
447 {
448 struct mem_cgroup *memcg;
449 unsigned long ino = 0;
450
451 rcu_read_lock();
452 memcg = page_memcg_check(page);
453
454 while (memcg && !(memcg->css.flags & CSS_ONLINE))
455 memcg = parent_mem_cgroup(memcg);
456 if (memcg)
457 ino = cgroup_ino(memcg->css.cgroup);
458 rcu_read_unlock();
459 return ino;
460 }
461
462 static struct mem_cgroup_per_node *
463 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
464 {
465 int nid = page_to_nid(page);
466
467 return memcg->nodeinfo[nid];
468 }
469
470 static struct mem_cgroup_tree_per_node *
471 soft_limit_tree_node(int nid)
472 {
473 return soft_limit_tree.rb_tree_per_node[nid];
474 }
475
476 static struct mem_cgroup_tree_per_node *
477 soft_limit_tree_from_page(struct page *page)
478 {
479 int nid = page_to_nid(page);
480
481 return soft_limit_tree.rb_tree_per_node[nid];
482 }
483
484 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
485 struct mem_cgroup_tree_per_node *mctz,
486 unsigned long new_usage_in_excess)
487 {
488 struct rb_node **p = &mctz->rb_root.rb_node;
489 struct rb_node *parent = NULL;
490 struct mem_cgroup_per_node *mz_node;
491 bool rightmost = true;
492
493 if (mz->on_tree)
494 return;
495
496 mz->usage_in_excess = new_usage_in_excess;
497 if (!mz->usage_in_excess)
498 return;
499 while (*p) {
500 parent = *p;
501 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
502 tree_node);
503 if (mz->usage_in_excess < mz_node->usage_in_excess) {
504 p = &(*p)->rb_left;
505 rightmost = false;
506 } else {
507 p = &(*p)->rb_right;
508 }
509 }
510
511 if (rightmost)
512 mctz->rb_rightmost = &mz->tree_node;
513
514 rb_link_node(&mz->tree_node, parent, p);
515 rb_insert_color(&mz->tree_node, &mctz->rb_root);
516 mz->on_tree = true;
517 }
518
519 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
520 struct mem_cgroup_tree_per_node *mctz)
521 {
522 if (!mz->on_tree)
523 return;
524
525 if (&mz->tree_node == mctz->rb_rightmost)
526 mctz->rb_rightmost = rb_prev(&mz->tree_node);
527
528 rb_erase(&mz->tree_node, &mctz->rb_root);
529 mz->on_tree = false;
530 }
531
532 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
533 struct mem_cgroup_tree_per_node *mctz)
534 {
535 unsigned long flags;
536
537 spin_lock_irqsave(&mctz->lock, flags);
538 __mem_cgroup_remove_exceeded(mz, mctz);
539 spin_unlock_irqrestore(&mctz->lock, flags);
540 }
541
542 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
543 {
544 unsigned long nr_pages = page_counter_read(&memcg->memory);
545 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
546 unsigned long excess = 0;
547
548 if (nr_pages > soft_limit)
549 excess = nr_pages - soft_limit;
550
551 return excess;
552 }
553
554 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
555 {
556 unsigned long excess;
557 struct mem_cgroup_per_node *mz;
558 struct mem_cgroup_tree_per_node *mctz;
559
560 mctz = soft_limit_tree_from_page(page);
561 if (!mctz)
562 return;
563 /*
564 * Necessary to update all ancestors when hierarchy is used.
565 * because their event counter is not touched.
566 */
567 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
568 mz = mem_cgroup_page_nodeinfo(memcg, page);
569 excess = soft_limit_excess(memcg);
570 /*
571 * We have to update the tree if mz is on RB-tree or
572 * mem is over its softlimit.
573 */
574 if (excess || mz->on_tree) {
575 unsigned long flags;
576
577 spin_lock_irqsave(&mctz->lock, flags);
578 /* if on-tree, remove it */
579 if (mz->on_tree)
580 __mem_cgroup_remove_exceeded(mz, mctz);
581 /*
582 * Insert again. mz->usage_in_excess will be updated.
583 * If excess is 0, no tree ops.
584 */
585 __mem_cgroup_insert_exceeded(mz, mctz, excess);
586 spin_unlock_irqrestore(&mctz->lock, flags);
587 }
588 }
589 }
590
591 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
592 {
593 struct mem_cgroup_tree_per_node *mctz;
594 struct mem_cgroup_per_node *mz;
595 int nid;
596
597 for_each_node(nid) {
598 mz = memcg->nodeinfo[nid];
599 mctz = soft_limit_tree_node(nid);
600 if (mctz)
601 mem_cgroup_remove_exceeded(mz, mctz);
602 }
603 }
604
605 static struct mem_cgroup_per_node *
606 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
607 {
608 struct mem_cgroup_per_node *mz;
609
610 retry:
611 mz = NULL;
612 if (!mctz->rb_rightmost)
613 goto done; /* Nothing to reclaim from */
614
615 mz = rb_entry(mctz->rb_rightmost,
616 struct mem_cgroup_per_node, tree_node);
617 /*
618 * Remove the node now but someone else can add it back,
619 * we will to add it back at the end of reclaim to its correct
620 * position in the tree.
621 */
622 __mem_cgroup_remove_exceeded(mz, mctz);
623 if (!soft_limit_excess(mz->memcg) ||
624 !css_tryget(&mz->memcg->css))
625 goto retry;
626 done:
627 return mz;
628 }
629
630 static struct mem_cgroup_per_node *
631 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
632 {
633 struct mem_cgroup_per_node *mz;
634
635 spin_lock_irq(&mctz->lock);
636 mz = __mem_cgroup_largest_soft_limit_node(mctz);
637 spin_unlock_irq(&mctz->lock);
638 return mz;
639 }
640
641 /**
642 * __mod_memcg_state - update cgroup memory statistics
643 * @memcg: the memory cgroup
644 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
645 * @val: delta to add to the counter, can be negative
646 */
647 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
648 {
649 if (mem_cgroup_disabled())
650 return;
651
652 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
653 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
654 }
655
656 /* idx can be of type enum memcg_stat_item or node_stat_item. */
657 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
658 {
659 long x = 0;
660 int cpu;
661
662 for_each_possible_cpu(cpu)
663 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
664 #ifdef CONFIG_SMP
665 if (x < 0)
666 x = 0;
667 #endif
668 return x;
669 }
670
671 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
672 int val)
673 {
674 struct mem_cgroup_per_node *pn;
675 struct mem_cgroup *memcg;
676
677 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
678 memcg = pn->memcg;
679
680 /* Update memcg */
681 __mod_memcg_state(memcg, idx, val);
682
683 /* Update lruvec */
684 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
685 if (!(__this_cpu_inc_return(stats_flush_threshold) % MEMCG_CHARGE_BATCH))
686 queue_work(system_unbound_wq, &stats_flush_work);
687 }
688
689 /**
690 * __mod_lruvec_state - update lruvec memory statistics
691 * @lruvec: the lruvec
692 * @idx: the stat item
693 * @val: delta to add to the counter, can be negative
694 *
695 * The lruvec is the intersection of the NUMA node and a cgroup. This
696 * function updates the all three counters that are affected by a
697 * change of state at this level: per-node, per-cgroup, per-lruvec.
698 */
699 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
700 int val)
701 {
702 /* Update node */
703 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
704
705 /* Update memcg and lruvec */
706 if (!mem_cgroup_disabled())
707 __mod_memcg_lruvec_state(lruvec, idx, val);
708 }
709
710 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
711 int val)
712 {
713 struct page *head = compound_head(page); /* rmap on tail pages */
714 struct mem_cgroup *memcg;
715 pg_data_t *pgdat = page_pgdat(page);
716 struct lruvec *lruvec;
717
718 rcu_read_lock();
719 memcg = page_memcg(head);
720 /* Untracked pages have no memcg, no lruvec. Update only the node */
721 if (!memcg) {
722 rcu_read_unlock();
723 __mod_node_page_state(pgdat, idx, val);
724 return;
725 }
726
727 lruvec = mem_cgroup_lruvec(memcg, pgdat);
728 __mod_lruvec_state(lruvec, idx, val);
729 rcu_read_unlock();
730 }
731 EXPORT_SYMBOL(__mod_lruvec_page_state);
732
733 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
734 {
735 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
736 struct mem_cgroup *memcg;
737 struct lruvec *lruvec;
738
739 rcu_read_lock();
740 memcg = mem_cgroup_from_obj(p);
741
742 /*
743 * Untracked pages have no memcg, no lruvec. Update only the
744 * node. If we reparent the slab objects to the root memcg,
745 * when we free the slab object, we need to update the per-memcg
746 * vmstats to keep it correct for the root memcg.
747 */
748 if (!memcg) {
749 __mod_node_page_state(pgdat, idx, val);
750 } else {
751 lruvec = mem_cgroup_lruvec(memcg, pgdat);
752 __mod_lruvec_state(lruvec, idx, val);
753 }
754 rcu_read_unlock();
755 }
756
757 /*
758 * mod_objcg_mlstate() may be called with irq enabled, so
759 * mod_memcg_lruvec_state() should be used.
760 */
761 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
762 struct pglist_data *pgdat,
763 enum node_stat_item idx, int nr)
764 {
765 struct mem_cgroup *memcg;
766 struct lruvec *lruvec;
767
768 rcu_read_lock();
769 memcg = obj_cgroup_memcg(objcg);
770 lruvec = mem_cgroup_lruvec(memcg, pgdat);
771 mod_memcg_lruvec_state(lruvec, idx, nr);
772 rcu_read_unlock();
773 }
774
775 /**
776 * __count_memcg_events - account VM events in a cgroup
777 * @memcg: the memory cgroup
778 * @idx: the event item
779 * @count: the number of events that occurred
780 */
781 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
782 unsigned long count)
783 {
784 if (mem_cgroup_disabled())
785 return;
786
787 __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
788 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
789 }
790
791 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
792 {
793 return READ_ONCE(memcg->vmstats.events[event]);
794 }
795
796 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
797 {
798 long x = 0;
799 int cpu;
800
801 for_each_possible_cpu(cpu)
802 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
803 return x;
804 }
805
806 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
807 struct page *page,
808 int nr_pages)
809 {
810 /* pagein of a big page is an event. So, ignore page size */
811 if (nr_pages > 0)
812 __count_memcg_events(memcg, PGPGIN, 1);
813 else {
814 __count_memcg_events(memcg, PGPGOUT, 1);
815 nr_pages = -nr_pages; /* for event */
816 }
817
818 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
819 }
820
821 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
822 enum mem_cgroup_events_target target)
823 {
824 unsigned long val, next;
825
826 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
827 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
828 /* from time_after() in jiffies.h */
829 if ((long)(next - val) < 0) {
830 switch (target) {
831 case MEM_CGROUP_TARGET_THRESH:
832 next = val + THRESHOLDS_EVENTS_TARGET;
833 break;
834 case MEM_CGROUP_TARGET_SOFTLIMIT:
835 next = val + SOFTLIMIT_EVENTS_TARGET;
836 break;
837 default:
838 break;
839 }
840 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
841 return true;
842 }
843 return false;
844 }
845
846 /*
847 * Check events in order.
848 *
849 */
850 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
851 {
852 /* threshold event is triggered in finer grain than soft limit */
853 if (unlikely(mem_cgroup_event_ratelimit(memcg,
854 MEM_CGROUP_TARGET_THRESH))) {
855 bool do_softlimit;
856
857 do_softlimit = mem_cgroup_event_ratelimit(memcg,
858 MEM_CGROUP_TARGET_SOFTLIMIT);
859 mem_cgroup_threshold(memcg);
860 if (unlikely(do_softlimit))
861 mem_cgroup_update_tree(memcg, page);
862 }
863 }
864
865 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
866 {
867 /*
868 * mm_update_next_owner() may clear mm->owner to NULL
869 * if it races with swapoff, page migration, etc.
870 * So this can be called with p == NULL.
871 */
872 if (unlikely(!p))
873 return NULL;
874
875 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
876 }
877 EXPORT_SYMBOL(mem_cgroup_from_task);
878
879 static __always_inline struct mem_cgroup *active_memcg(void)
880 {
881 if (!in_task())
882 return this_cpu_read(int_active_memcg);
883 else
884 return current->active_memcg;
885 }
886
887 /**
888 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
889 * @mm: mm from which memcg should be extracted. It can be NULL.
890 *
891 * Obtain a reference on mm->memcg and returns it if successful. If mm
892 * is NULL, then the memcg is chosen as follows:
893 * 1) The active memcg, if set.
894 * 2) current->mm->memcg, if available
895 * 3) root memcg
896 * If mem_cgroup is disabled, NULL is returned.
897 */
898 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
899 {
900 struct mem_cgroup *memcg;
901
902 if (mem_cgroup_disabled())
903 return NULL;
904
905 /*
906 * Page cache insertions can happen without an
907 * actual mm context, e.g. during disk probing
908 * on boot, loopback IO, acct() writes etc.
909 *
910 * No need to css_get on root memcg as the reference
911 * counting is disabled on the root level in the
912 * cgroup core. See CSS_NO_REF.
913 */
914 if (unlikely(!mm)) {
915 memcg = active_memcg();
916 if (unlikely(memcg)) {
917 /* remote memcg must hold a ref */
918 css_get(&memcg->css);
919 return memcg;
920 }
921 mm = current->mm;
922 if (unlikely(!mm))
923 return root_mem_cgroup;
924 }
925
926 rcu_read_lock();
927 do {
928 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
929 if (unlikely(!memcg))
930 memcg = root_mem_cgroup;
931 } while (!css_tryget(&memcg->css));
932 rcu_read_unlock();
933 return memcg;
934 }
935 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
936
937 static __always_inline bool memcg_kmem_bypass(void)
938 {
939 /* Allow remote memcg charging from any context. */
940 if (unlikely(active_memcg()))
941 return false;
942
943 /* Memcg to charge can't be determined. */
944 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
945 return true;
946
947 return false;
948 }
949
950 /**
951 * mem_cgroup_iter - iterate over memory cgroup hierarchy
952 * @root: hierarchy root
953 * @prev: previously returned memcg, NULL on first invocation
954 * @reclaim: cookie for shared reclaim walks, NULL for full walks
955 *
956 * Returns references to children of the hierarchy below @root, or
957 * @root itself, or %NULL after a full round-trip.
958 *
959 * Caller must pass the return value in @prev on subsequent
960 * invocations for reference counting, or use mem_cgroup_iter_break()
961 * to cancel a hierarchy walk before the round-trip is complete.
962 *
963 * Reclaimers can specify a node in @reclaim to divide up the memcgs
964 * in the hierarchy among all concurrent reclaimers operating on the
965 * same node.
966 */
967 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
968 struct mem_cgroup *prev,
969 struct mem_cgroup_reclaim_cookie *reclaim)
970 {
971 struct mem_cgroup_reclaim_iter *iter;
972 struct cgroup_subsys_state *css = NULL;
973 struct mem_cgroup *memcg = NULL;
974 struct mem_cgroup *pos = NULL;
975
976 if (mem_cgroup_disabled())
977 return NULL;
978
979 if (!root)
980 root = root_mem_cgroup;
981
982 if (prev && !reclaim)
983 pos = prev;
984
985 rcu_read_lock();
986
987 if (reclaim) {
988 struct mem_cgroup_per_node *mz;
989
990 mz = root->nodeinfo[reclaim->pgdat->node_id];
991 iter = &mz->iter;
992
993 if (prev && reclaim->generation != iter->generation)
994 goto out_unlock;
995
996 while (1) {
997 pos = READ_ONCE(iter->position);
998 if (!pos || css_tryget(&pos->css))
999 break;
1000 /*
1001 * css reference reached zero, so iter->position will
1002 * be cleared by ->css_released. However, we should not
1003 * rely on this happening soon, because ->css_released
1004 * is called from a work queue, and by busy-waiting we
1005 * might block it. So we clear iter->position right
1006 * away.
1007 */
1008 (void)cmpxchg(&iter->position, pos, NULL);
1009 }
1010 }
1011
1012 if (pos)
1013 css = &pos->css;
1014
1015 for (;;) {
1016 css = css_next_descendant_pre(css, &root->css);
1017 if (!css) {
1018 /*
1019 * Reclaimers share the hierarchy walk, and a
1020 * new one might jump in right at the end of
1021 * the hierarchy - make sure they see at least
1022 * one group and restart from the beginning.
1023 */
1024 if (!prev)
1025 continue;
1026 break;
1027 }
1028
1029 /*
1030 * Verify the css and acquire a reference. The root
1031 * is provided by the caller, so we know it's alive
1032 * and kicking, and don't take an extra reference.
1033 */
1034 memcg = mem_cgroup_from_css(css);
1035
1036 if (css == &root->css)
1037 break;
1038
1039 if (css_tryget(css))
1040 break;
1041
1042 memcg = NULL;
1043 }
1044
1045 if (reclaim) {
1046 /*
1047 * The position could have already been updated by a competing
1048 * thread, so check that the value hasn't changed since we read
1049 * it to avoid reclaiming from the same cgroup twice.
1050 */
1051 (void)cmpxchg(&iter->position, pos, memcg);
1052
1053 if (pos)
1054 css_put(&pos->css);
1055
1056 if (!memcg)
1057 iter->generation++;
1058 else if (!prev)
1059 reclaim->generation = iter->generation;
1060 }
1061
1062 out_unlock:
1063 rcu_read_unlock();
1064 if (prev && prev != root)
1065 css_put(&prev->css);
1066
1067 return memcg;
1068 }
1069
1070 /**
1071 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1072 * @root: hierarchy root
1073 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1074 */
1075 void mem_cgroup_iter_break(struct mem_cgroup *root,
1076 struct mem_cgroup *prev)
1077 {
1078 if (!root)
1079 root = root_mem_cgroup;
1080 if (prev && prev != root)
1081 css_put(&prev->css);
1082 }
1083
1084 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1085 struct mem_cgroup *dead_memcg)
1086 {
1087 struct mem_cgroup_reclaim_iter *iter;
1088 struct mem_cgroup_per_node *mz;
1089 int nid;
1090
1091 for_each_node(nid) {
1092 mz = from->nodeinfo[nid];
1093 iter = &mz->iter;
1094 cmpxchg(&iter->position, dead_memcg, NULL);
1095 }
1096 }
1097
1098 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1099 {
1100 struct mem_cgroup *memcg = dead_memcg;
1101 struct mem_cgroup *last;
1102
1103 do {
1104 __invalidate_reclaim_iterators(memcg, dead_memcg);
1105 last = memcg;
1106 } while ((memcg = parent_mem_cgroup(memcg)));
1107
1108 /*
1109 * When cgruop1 non-hierarchy mode is used,
1110 * parent_mem_cgroup() does not walk all the way up to the
1111 * cgroup root (root_mem_cgroup). So we have to handle
1112 * dead_memcg from cgroup root separately.
1113 */
1114 if (last != root_mem_cgroup)
1115 __invalidate_reclaim_iterators(root_mem_cgroup,
1116 dead_memcg);
1117 }
1118
1119 /**
1120 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1121 * @memcg: hierarchy root
1122 * @fn: function to call for each task
1123 * @arg: argument passed to @fn
1124 *
1125 * This function iterates over tasks attached to @memcg or to any of its
1126 * descendants and calls @fn for each task. If @fn returns a non-zero
1127 * value, the function breaks the iteration loop and returns the value.
1128 * Otherwise, it will iterate over all tasks and return 0.
1129 *
1130 * This function must not be called for the root memory cgroup.
1131 */
1132 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1133 int (*fn)(struct task_struct *, void *), void *arg)
1134 {
1135 struct mem_cgroup *iter;
1136 int ret = 0;
1137
1138 BUG_ON(memcg == root_mem_cgroup);
1139
1140 for_each_mem_cgroup_tree(iter, memcg) {
1141 struct css_task_iter it;
1142 struct task_struct *task;
1143
1144 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1145 while (!ret && (task = css_task_iter_next(&it)))
1146 ret = fn(task, arg);
1147 css_task_iter_end(&it);
1148 if (ret) {
1149 mem_cgroup_iter_break(memcg, iter);
1150 break;
1151 }
1152 }
1153 return ret;
1154 }
1155
1156 #ifdef CONFIG_DEBUG_VM
1157 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1158 {
1159 struct mem_cgroup *memcg;
1160
1161 if (mem_cgroup_disabled())
1162 return;
1163
1164 memcg = page_memcg(page);
1165
1166 if (!memcg)
1167 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1168 else
1169 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1170 }
1171 #endif
1172
1173 /**
1174 * lock_page_lruvec - lock and return lruvec for a given page.
1175 * @page: the page
1176 *
1177 * These functions are safe to use under any of the following conditions:
1178 * - page locked
1179 * - PageLRU cleared
1180 * - lock_page_memcg()
1181 * - page->_refcount is zero
1182 */
1183 struct lruvec *lock_page_lruvec(struct page *page)
1184 {
1185 struct lruvec *lruvec;
1186
1187 lruvec = mem_cgroup_page_lruvec(page);
1188 spin_lock(&lruvec->lru_lock);
1189
1190 lruvec_memcg_debug(lruvec, page);
1191
1192 return lruvec;
1193 }
1194
1195 struct lruvec *lock_page_lruvec_irq(struct page *page)
1196 {
1197 struct lruvec *lruvec;
1198
1199 lruvec = mem_cgroup_page_lruvec(page);
1200 spin_lock_irq(&lruvec->lru_lock);
1201
1202 lruvec_memcg_debug(lruvec, page);
1203
1204 return lruvec;
1205 }
1206
1207 struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1208 {
1209 struct lruvec *lruvec;
1210
1211 lruvec = mem_cgroup_page_lruvec(page);
1212 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1213
1214 lruvec_memcg_debug(lruvec, page);
1215
1216 return lruvec;
1217 }
1218
1219 /**
1220 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1221 * @lruvec: mem_cgroup per zone lru vector
1222 * @lru: index of lru list the page is sitting on
1223 * @zid: zone id of the accounted pages
1224 * @nr_pages: positive when adding or negative when removing
1225 *
1226 * This function must be called under lru_lock, just before a page is added
1227 * to or just after a page is removed from an lru list (that ordering being
1228 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1229 */
1230 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1231 int zid, int nr_pages)
1232 {
1233 struct mem_cgroup_per_node *mz;
1234 unsigned long *lru_size;
1235 long size;
1236
1237 if (mem_cgroup_disabled())
1238 return;
1239
1240 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1241 lru_size = &mz->lru_zone_size[zid][lru];
1242
1243 if (nr_pages < 0)
1244 *lru_size += nr_pages;
1245
1246 size = *lru_size;
1247 if (WARN_ONCE(size < 0,
1248 "%s(%p, %d, %d): lru_size %ld\n",
1249 __func__, lruvec, lru, nr_pages, size)) {
1250 VM_BUG_ON(1);
1251 *lru_size = 0;
1252 }
1253
1254 if (nr_pages > 0)
1255 *lru_size += nr_pages;
1256 }
1257
1258 /**
1259 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1260 * @memcg: the memory cgroup
1261 *
1262 * Returns the maximum amount of memory @mem can be charged with, in
1263 * pages.
1264 */
1265 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1266 {
1267 unsigned long margin = 0;
1268 unsigned long count;
1269 unsigned long limit;
1270
1271 count = page_counter_read(&memcg->memory);
1272 limit = READ_ONCE(memcg->memory.max);
1273 if (count < limit)
1274 margin = limit - count;
1275
1276 if (do_memsw_account()) {
1277 count = page_counter_read(&memcg->memsw);
1278 limit = READ_ONCE(memcg->memsw.max);
1279 if (count < limit)
1280 margin = min(margin, limit - count);
1281 else
1282 margin = 0;
1283 }
1284
1285 return margin;
1286 }
1287
1288 /*
1289 * A routine for checking "mem" is under move_account() or not.
1290 *
1291 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1292 * moving cgroups. This is for waiting at high-memory pressure
1293 * caused by "move".
1294 */
1295 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1296 {
1297 struct mem_cgroup *from;
1298 struct mem_cgroup *to;
1299 bool ret = false;
1300 /*
1301 * Unlike task_move routines, we access mc.to, mc.from not under
1302 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1303 */
1304 spin_lock(&mc.lock);
1305 from = mc.from;
1306 to = mc.to;
1307 if (!from)
1308 goto unlock;
1309
1310 ret = mem_cgroup_is_descendant(from, memcg) ||
1311 mem_cgroup_is_descendant(to, memcg);
1312 unlock:
1313 spin_unlock(&mc.lock);
1314 return ret;
1315 }
1316
1317 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1318 {
1319 if (mc.moving_task && current != mc.moving_task) {
1320 if (mem_cgroup_under_move(memcg)) {
1321 DEFINE_WAIT(wait);
1322 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1323 /* moving charge context might have finished. */
1324 if (mc.moving_task)
1325 schedule();
1326 finish_wait(&mc.waitq, &wait);
1327 return true;
1328 }
1329 }
1330 return false;
1331 }
1332
1333 struct memory_stat {
1334 const char *name;
1335 unsigned int idx;
1336 };
1337
1338 static const struct memory_stat memory_stats[] = {
1339 { "anon", NR_ANON_MAPPED },
1340 { "file", NR_FILE_PAGES },
1341 { "kernel_stack", NR_KERNEL_STACK_KB },
1342 { "pagetables", NR_PAGETABLE },
1343 { "percpu", MEMCG_PERCPU_B },
1344 { "sock", MEMCG_SOCK },
1345 { "shmem", NR_SHMEM },
1346 { "file_mapped", NR_FILE_MAPPED },
1347 { "file_dirty", NR_FILE_DIRTY },
1348 { "file_writeback", NR_WRITEBACK },
1349 #ifdef CONFIG_SWAP
1350 { "swapcached", NR_SWAPCACHE },
1351 #endif
1352 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1353 { "anon_thp", NR_ANON_THPS },
1354 { "file_thp", NR_FILE_THPS },
1355 { "shmem_thp", NR_SHMEM_THPS },
1356 #endif
1357 { "inactive_anon", NR_INACTIVE_ANON },
1358 { "active_anon", NR_ACTIVE_ANON },
1359 { "inactive_file", NR_INACTIVE_FILE },
1360 { "active_file", NR_ACTIVE_FILE },
1361 { "unevictable", NR_UNEVICTABLE },
1362 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1363 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1364
1365 /* The memory events */
1366 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1367 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1368 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1369 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1370 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1371 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1372 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1373 };
1374
1375 /* Translate stat items to the correct unit for memory.stat output */
1376 static int memcg_page_state_unit(int item)
1377 {
1378 switch (item) {
1379 case MEMCG_PERCPU_B:
1380 case NR_SLAB_RECLAIMABLE_B:
1381 case NR_SLAB_UNRECLAIMABLE_B:
1382 case WORKINGSET_REFAULT_ANON:
1383 case WORKINGSET_REFAULT_FILE:
1384 case WORKINGSET_ACTIVATE_ANON:
1385 case WORKINGSET_ACTIVATE_FILE:
1386 case WORKINGSET_RESTORE_ANON:
1387 case WORKINGSET_RESTORE_FILE:
1388 case WORKINGSET_NODERECLAIM:
1389 return 1;
1390 case NR_KERNEL_STACK_KB:
1391 return SZ_1K;
1392 default:
1393 return PAGE_SIZE;
1394 }
1395 }
1396
1397 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1398 int item)
1399 {
1400 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1401 }
1402
1403 static char *memory_stat_format(struct mem_cgroup *memcg)
1404 {
1405 struct seq_buf s;
1406 int i;
1407
1408 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1409 if (!s.buffer)
1410 return NULL;
1411
1412 /*
1413 * Provide statistics on the state of the memory subsystem as
1414 * well as cumulative event counters that show past behavior.
1415 *
1416 * This list is ordered following a combination of these gradients:
1417 * 1) generic big picture -> specifics and details
1418 * 2) reflecting userspace activity -> reflecting kernel heuristics
1419 *
1420 * Current memory state:
1421 */
1422 cgroup_rstat_flush(memcg->css.cgroup);
1423
1424 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1425 u64 size;
1426
1427 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1428 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1429
1430 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1431 size += memcg_page_state_output(memcg,
1432 NR_SLAB_RECLAIMABLE_B);
1433 seq_buf_printf(&s, "slab %llu\n", size);
1434 }
1435 }
1436
1437 /* Accumulated memory events */
1438
1439 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1440 memcg_events(memcg, PGFAULT));
1441 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1442 memcg_events(memcg, PGMAJFAULT));
1443 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1444 memcg_events(memcg, PGREFILL));
1445 seq_buf_printf(&s, "pgscan %lu\n",
1446 memcg_events(memcg, PGSCAN_KSWAPD) +
1447 memcg_events(memcg, PGSCAN_DIRECT));
1448 seq_buf_printf(&s, "pgsteal %lu\n",
1449 memcg_events(memcg, PGSTEAL_KSWAPD) +
1450 memcg_events(memcg, PGSTEAL_DIRECT));
1451 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1452 memcg_events(memcg, PGACTIVATE));
1453 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1454 memcg_events(memcg, PGDEACTIVATE));
1455 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1456 memcg_events(memcg, PGLAZYFREE));
1457 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1458 memcg_events(memcg, PGLAZYFREED));
1459
1460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1461 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1462 memcg_events(memcg, THP_FAULT_ALLOC));
1463 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1464 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1465 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1466
1467 /* The above should easily fit into one page */
1468 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1469
1470 return s.buffer;
1471 }
1472
1473 #define K(x) ((x) << (PAGE_SHIFT-10))
1474 /**
1475 * mem_cgroup_print_oom_context: Print OOM information relevant to
1476 * memory controller.
1477 * @memcg: The memory cgroup that went over limit
1478 * @p: Task that is going to be killed
1479 *
1480 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1481 * enabled
1482 */
1483 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1484 {
1485 rcu_read_lock();
1486
1487 if (memcg) {
1488 pr_cont(",oom_memcg=");
1489 pr_cont_cgroup_path(memcg->css.cgroup);
1490 } else
1491 pr_cont(",global_oom");
1492 if (p) {
1493 pr_cont(",task_memcg=");
1494 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1495 }
1496 rcu_read_unlock();
1497 }
1498
1499 /**
1500 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1501 * memory controller.
1502 * @memcg: The memory cgroup that went over limit
1503 */
1504 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1505 {
1506 char *buf;
1507
1508 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1509 K((u64)page_counter_read(&memcg->memory)),
1510 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1511 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1512 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1513 K((u64)page_counter_read(&memcg->swap)),
1514 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1515 else {
1516 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1517 K((u64)page_counter_read(&memcg->memsw)),
1518 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1519 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1520 K((u64)page_counter_read(&memcg->kmem)),
1521 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1522 }
1523
1524 pr_info("Memory cgroup stats for ");
1525 pr_cont_cgroup_path(memcg->css.cgroup);
1526 pr_cont(":");
1527 buf = memory_stat_format(memcg);
1528 if (!buf)
1529 return;
1530 pr_info("%s", buf);
1531 kfree(buf);
1532 }
1533
1534 /*
1535 * Return the memory (and swap, if configured) limit for a memcg.
1536 */
1537 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1538 {
1539 unsigned long max = READ_ONCE(memcg->memory.max);
1540
1541 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1542 if (mem_cgroup_swappiness(memcg))
1543 max += min(READ_ONCE(memcg->swap.max),
1544 (unsigned long)total_swap_pages);
1545 } else { /* v1 */
1546 if (mem_cgroup_swappiness(memcg)) {
1547 /* Calculate swap excess capacity from memsw limit */
1548 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1549
1550 max += min(swap, (unsigned long)total_swap_pages);
1551 }
1552 }
1553 return max;
1554 }
1555
1556 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1557 {
1558 return page_counter_read(&memcg->memory);
1559 }
1560
1561 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1562 int order)
1563 {
1564 struct oom_control oc = {
1565 .zonelist = NULL,
1566 .nodemask = NULL,
1567 .memcg = memcg,
1568 .gfp_mask = gfp_mask,
1569 .order = order,
1570 };
1571 bool ret = true;
1572
1573 if (mutex_lock_killable(&oom_lock))
1574 return true;
1575
1576 if (mem_cgroup_margin(memcg) >= (1 << order))
1577 goto unlock;
1578
1579 /*
1580 * A few threads which were not waiting at mutex_lock_killable() can
1581 * fail to bail out. Therefore, check again after holding oom_lock.
1582 */
1583 ret = should_force_charge() || out_of_memory(&oc);
1584
1585 unlock:
1586 mutex_unlock(&oom_lock);
1587 return ret;
1588 }
1589
1590 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1591 pg_data_t *pgdat,
1592 gfp_t gfp_mask,
1593 unsigned long *total_scanned)
1594 {
1595 struct mem_cgroup *victim = NULL;
1596 int total = 0;
1597 int loop = 0;
1598 unsigned long excess;
1599 unsigned long nr_scanned;
1600 struct mem_cgroup_reclaim_cookie reclaim = {
1601 .pgdat = pgdat,
1602 };
1603
1604 excess = soft_limit_excess(root_memcg);
1605
1606 while (1) {
1607 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1608 if (!victim) {
1609 loop++;
1610 if (loop >= 2) {
1611 /*
1612 * If we have not been able to reclaim
1613 * anything, it might because there are
1614 * no reclaimable pages under this hierarchy
1615 */
1616 if (!total)
1617 break;
1618 /*
1619 * We want to do more targeted reclaim.
1620 * excess >> 2 is not to excessive so as to
1621 * reclaim too much, nor too less that we keep
1622 * coming back to reclaim from this cgroup
1623 */
1624 if (total >= (excess >> 2) ||
1625 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1626 break;
1627 }
1628 continue;
1629 }
1630 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1631 pgdat, &nr_scanned);
1632 *total_scanned += nr_scanned;
1633 if (!soft_limit_excess(root_memcg))
1634 break;
1635 }
1636 mem_cgroup_iter_break(root_memcg, victim);
1637 return total;
1638 }
1639
1640 #ifdef CONFIG_LOCKDEP
1641 static struct lockdep_map memcg_oom_lock_dep_map = {
1642 .name = "memcg_oom_lock",
1643 };
1644 #endif
1645
1646 static DEFINE_SPINLOCK(memcg_oom_lock);
1647
1648 /*
1649 * Check OOM-Killer is already running under our hierarchy.
1650 * If someone is running, return false.
1651 */
1652 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1653 {
1654 struct mem_cgroup *iter, *failed = NULL;
1655
1656 spin_lock(&memcg_oom_lock);
1657
1658 for_each_mem_cgroup_tree(iter, memcg) {
1659 if (iter->oom_lock) {
1660 /*
1661 * this subtree of our hierarchy is already locked
1662 * so we cannot give a lock.
1663 */
1664 failed = iter;
1665 mem_cgroup_iter_break(memcg, iter);
1666 break;
1667 } else
1668 iter->oom_lock = true;
1669 }
1670
1671 if (failed) {
1672 /*
1673 * OK, we failed to lock the whole subtree so we have
1674 * to clean up what we set up to the failing subtree
1675 */
1676 for_each_mem_cgroup_tree(iter, memcg) {
1677 if (iter == failed) {
1678 mem_cgroup_iter_break(memcg, iter);
1679 break;
1680 }
1681 iter->oom_lock = false;
1682 }
1683 } else
1684 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1685
1686 spin_unlock(&memcg_oom_lock);
1687
1688 return !failed;
1689 }
1690
1691 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1692 {
1693 struct mem_cgroup *iter;
1694
1695 spin_lock(&memcg_oom_lock);
1696 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1697 for_each_mem_cgroup_tree(iter, memcg)
1698 iter->oom_lock = false;
1699 spin_unlock(&memcg_oom_lock);
1700 }
1701
1702 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1703 {
1704 struct mem_cgroup *iter;
1705
1706 spin_lock(&memcg_oom_lock);
1707 for_each_mem_cgroup_tree(iter, memcg)
1708 iter->under_oom++;
1709 spin_unlock(&memcg_oom_lock);
1710 }
1711
1712 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1713 {
1714 struct mem_cgroup *iter;
1715
1716 /*
1717 * Be careful about under_oom underflows because a child memcg
1718 * could have been added after mem_cgroup_mark_under_oom.
1719 */
1720 spin_lock(&memcg_oom_lock);
1721 for_each_mem_cgroup_tree(iter, memcg)
1722 if (iter->under_oom > 0)
1723 iter->under_oom--;
1724 spin_unlock(&memcg_oom_lock);
1725 }
1726
1727 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1728
1729 struct oom_wait_info {
1730 struct mem_cgroup *memcg;
1731 wait_queue_entry_t wait;
1732 };
1733
1734 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1735 unsigned mode, int sync, void *arg)
1736 {
1737 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1738 struct mem_cgroup *oom_wait_memcg;
1739 struct oom_wait_info *oom_wait_info;
1740
1741 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1742 oom_wait_memcg = oom_wait_info->memcg;
1743
1744 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1745 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1746 return 0;
1747 return autoremove_wake_function(wait, mode, sync, arg);
1748 }
1749
1750 static void memcg_oom_recover(struct mem_cgroup *memcg)
1751 {
1752 /*
1753 * For the following lockless ->under_oom test, the only required
1754 * guarantee is that it must see the state asserted by an OOM when
1755 * this function is called as a result of userland actions
1756 * triggered by the notification of the OOM. This is trivially
1757 * achieved by invoking mem_cgroup_mark_under_oom() before
1758 * triggering notification.
1759 */
1760 if (memcg && memcg->under_oom)
1761 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1762 }
1763
1764 enum oom_status {
1765 OOM_SUCCESS,
1766 OOM_FAILED,
1767 OOM_ASYNC,
1768 OOM_SKIPPED
1769 };
1770
1771 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1772 {
1773 enum oom_status ret;
1774 bool locked;
1775
1776 if (order > PAGE_ALLOC_COSTLY_ORDER)
1777 return OOM_SKIPPED;
1778
1779 memcg_memory_event(memcg, MEMCG_OOM);
1780
1781 /*
1782 * We are in the middle of the charge context here, so we
1783 * don't want to block when potentially sitting on a callstack
1784 * that holds all kinds of filesystem and mm locks.
1785 *
1786 * cgroup1 allows disabling the OOM killer and waiting for outside
1787 * handling until the charge can succeed; remember the context and put
1788 * the task to sleep at the end of the page fault when all locks are
1789 * released.
1790 *
1791 * On the other hand, in-kernel OOM killer allows for an async victim
1792 * memory reclaim (oom_reaper) and that means that we are not solely
1793 * relying on the oom victim to make a forward progress and we can
1794 * invoke the oom killer here.
1795 *
1796 * Please note that mem_cgroup_out_of_memory might fail to find a
1797 * victim and then we have to bail out from the charge path.
1798 */
1799 if (memcg->oom_kill_disable) {
1800 if (!current->in_user_fault)
1801 return OOM_SKIPPED;
1802 css_get(&memcg->css);
1803 current->memcg_in_oom = memcg;
1804 current->memcg_oom_gfp_mask = mask;
1805 current->memcg_oom_order = order;
1806
1807 return OOM_ASYNC;
1808 }
1809
1810 mem_cgroup_mark_under_oom(memcg);
1811
1812 locked = mem_cgroup_oom_trylock(memcg);
1813
1814 if (locked)
1815 mem_cgroup_oom_notify(memcg);
1816
1817 mem_cgroup_unmark_under_oom(memcg);
1818 if (mem_cgroup_out_of_memory(memcg, mask, order))
1819 ret = OOM_SUCCESS;
1820 else
1821 ret = OOM_FAILED;
1822
1823 if (locked)
1824 mem_cgroup_oom_unlock(memcg);
1825
1826 return ret;
1827 }
1828
1829 /**
1830 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1831 * @handle: actually kill/wait or just clean up the OOM state
1832 *
1833 * This has to be called at the end of a page fault if the memcg OOM
1834 * handler was enabled.
1835 *
1836 * Memcg supports userspace OOM handling where failed allocations must
1837 * sleep on a waitqueue until the userspace task resolves the
1838 * situation. Sleeping directly in the charge context with all kinds
1839 * of locks held is not a good idea, instead we remember an OOM state
1840 * in the task and mem_cgroup_oom_synchronize() has to be called at
1841 * the end of the page fault to complete the OOM handling.
1842 *
1843 * Returns %true if an ongoing memcg OOM situation was detected and
1844 * completed, %false otherwise.
1845 */
1846 bool mem_cgroup_oom_synchronize(bool handle)
1847 {
1848 struct mem_cgroup *memcg = current->memcg_in_oom;
1849 struct oom_wait_info owait;
1850 bool locked;
1851
1852 /* OOM is global, do not handle */
1853 if (!memcg)
1854 return false;
1855
1856 if (!handle)
1857 goto cleanup;
1858
1859 owait.memcg = memcg;
1860 owait.wait.flags = 0;
1861 owait.wait.func = memcg_oom_wake_function;
1862 owait.wait.private = current;
1863 INIT_LIST_HEAD(&owait.wait.entry);
1864
1865 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1866 mem_cgroup_mark_under_oom(memcg);
1867
1868 locked = mem_cgroup_oom_trylock(memcg);
1869
1870 if (locked)
1871 mem_cgroup_oom_notify(memcg);
1872
1873 if (locked && !memcg->oom_kill_disable) {
1874 mem_cgroup_unmark_under_oom(memcg);
1875 finish_wait(&memcg_oom_waitq, &owait.wait);
1876 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1877 current->memcg_oom_order);
1878 } else {
1879 schedule();
1880 mem_cgroup_unmark_under_oom(memcg);
1881 finish_wait(&memcg_oom_waitq, &owait.wait);
1882 }
1883
1884 if (locked) {
1885 mem_cgroup_oom_unlock(memcg);
1886 /*
1887 * There is no guarantee that an OOM-lock contender
1888 * sees the wakeups triggered by the OOM kill
1889 * uncharges. Wake any sleepers explicitly.
1890 */
1891 memcg_oom_recover(memcg);
1892 }
1893 cleanup:
1894 current->memcg_in_oom = NULL;
1895 css_put(&memcg->css);
1896 return true;
1897 }
1898
1899 /**
1900 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1901 * @victim: task to be killed by the OOM killer
1902 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1903 *
1904 * Returns a pointer to a memory cgroup, which has to be cleaned up
1905 * by killing all belonging OOM-killable tasks.
1906 *
1907 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1908 */
1909 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1910 struct mem_cgroup *oom_domain)
1911 {
1912 struct mem_cgroup *oom_group = NULL;
1913 struct mem_cgroup *memcg;
1914
1915 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1916 return NULL;
1917
1918 if (!oom_domain)
1919 oom_domain = root_mem_cgroup;
1920
1921 rcu_read_lock();
1922
1923 memcg = mem_cgroup_from_task(victim);
1924 if (memcg == root_mem_cgroup)
1925 goto out;
1926
1927 /*
1928 * If the victim task has been asynchronously moved to a different
1929 * memory cgroup, we might end up killing tasks outside oom_domain.
1930 * In this case it's better to ignore memory.group.oom.
1931 */
1932 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1933 goto out;
1934
1935 /*
1936 * Traverse the memory cgroup hierarchy from the victim task's
1937 * cgroup up to the OOMing cgroup (or root) to find the
1938 * highest-level memory cgroup with oom.group set.
1939 */
1940 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1941 if (memcg->oom_group)
1942 oom_group = memcg;
1943
1944 if (memcg == oom_domain)
1945 break;
1946 }
1947
1948 if (oom_group)
1949 css_get(&oom_group->css);
1950 out:
1951 rcu_read_unlock();
1952
1953 return oom_group;
1954 }
1955
1956 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1957 {
1958 pr_info("Tasks in ");
1959 pr_cont_cgroup_path(memcg->css.cgroup);
1960 pr_cont(" are going to be killed due to memory.oom.group set\n");
1961 }
1962
1963 /**
1964 * lock_page_memcg - lock a page and memcg binding
1965 * @page: the page
1966 *
1967 * This function protects unlocked LRU pages from being moved to
1968 * another cgroup.
1969 *
1970 * It ensures lifetime of the locked memcg. Caller is responsible
1971 * for the lifetime of the page.
1972 */
1973 void lock_page_memcg(struct page *page)
1974 {
1975 struct page *head = compound_head(page); /* rmap on tail pages */
1976 struct mem_cgroup *memcg;
1977 unsigned long flags;
1978
1979 /*
1980 * The RCU lock is held throughout the transaction. The fast
1981 * path can get away without acquiring the memcg->move_lock
1982 * because page moving starts with an RCU grace period.
1983 */
1984 rcu_read_lock();
1985
1986 if (mem_cgroup_disabled())
1987 return;
1988 again:
1989 memcg = page_memcg(head);
1990 if (unlikely(!memcg))
1991 return;
1992
1993 #ifdef CONFIG_PROVE_LOCKING
1994 local_irq_save(flags);
1995 might_lock(&memcg->move_lock);
1996 local_irq_restore(flags);
1997 #endif
1998
1999 if (atomic_read(&memcg->moving_account) <= 0)
2000 return;
2001
2002 spin_lock_irqsave(&memcg->move_lock, flags);
2003 if (memcg != page_memcg(head)) {
2004 spin_unlock_irqrestore(&memcg->move_lock, flags);
2005 goto again;
2006 }
2007
2008 /*
2009 * When charge migration first begins, we can have multiple
2010 * critical sections holding the fast-path RCU lock and one
2011 * holding the slowpath move_lock. Track the task who has the
2012 * move_lock for unlock_page_memcg().
2013 */
2014 memcg->move_lock_task = current;
2015 memcg->move_lock_flags = flags;
2016 }
2017 EXPORT_SYMBOL(lock_page_memcg);
2018
2019 static void __unlock_page_memcg(struct mem_cgroup *memcg)
2020 {
2021 if (memcg && memcg->move_lock_task == current) {
2022 unsigned long flags = memcg->move_lock_flags;
2023
2024 memcg->move_lock_task = NULL;
2025 memcg->move_lock_flags = 0;
2026
2027 spin_unlock_irqrestore(&memcg->move_lock, flags);
2028 }
2029
2030 rcu_read_unlock();
2031 }
2032
2033 /**
2034 * unlock_page_memcg - unlock a page and memcg binding
2035 * @page: the page
2036 */
2037 void unlock_page_memcg(struct page *page)
2038 {
2039 struct page *head = compound_head(page);
2040
2041 __unlock_page_memcg(page_memcg(head));
2042 }
2043 EXPORT_SYMBOL(unlock_page_memcg);
2044
2045 struct obj_stock {
2046 #ifdef CONFIG_MEMCG_KMEM
2047 struct obj_cgroup *cached_objcg;
2048 struct pglist_data *cached_pgdat;
2049 unsigned int nr_bytes;
2050 int nr_slab_reclaimable_b;
2051 int nr_slab_unreclaimable_b;
2052 #else
2053 int dummy[0];
2054 #endif
2055 };
2056
2057 struct memcg_stock_pcp {
2058 struct mem_cgroup *cached; /* this never be root cgroup */
2059 unsigned int nr_pages;
2060 struct obj_stock task_obj;
2061 struct obj_stock irq_obj;
2062
2063 struct work_struct work;
2064 unsigned long flags;
2065 #define FLUSHING_CACHED_CHARGE 0
2066 };
2067 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2068 static DEFINE_MUTEX(percpu_charge_mutex);
2069
2070 #ifdef CONFIG_MEMCG_KMEM
2071 static void drain_obj_stock(struct obj_stock *stock);
2072 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2073 struct mem_cgroup *root_memcg);
2074
2075 #else
2076 static inline void drain_obj_stock(struct obj_stock *stock)
2077 {
2078 }
2079 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2080 struct mem_cgroup *root_memcg)
2081 {
2082 return false;
2083 }
2084 #endif
2085
2086 /*
2087 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2088 * sequence used in this case to access content from object stock is slow.
2089 * To optimize for user context access, there are now two object stocks for
2090 * task context and interrupt context access respectively.
2091 *
2092 * The task context object stock can be accessed by disabling preemption only
2093 * which is cheap in non-preempt kernel. The interrupt context object stock
2094 * can only be accessed after disabling interrupt. User context code can
2095 * access interrupt object stock, but not vice versa.
2096 */
2097 static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2098 {
2099 struct memcg_stock_pcp *stock;
2100
2101 if (likely(in_task())) {
2102 *pflags = 0UL;
2103 preempt_disable();
2104 stock = this_cpu_ptr(&memcg_stock);
2105 return &stock->task_obj;
2106 }
2107
2108 local_irq_save(*pflags);
2109 stock = this_cpu_ptr(&memcg_stock);
2110 return &stock->irq_obj;
2111 }
2112
2113 static inline void put_obj_stock(unsigned long flags)
2114 {
2115 if (likely(in_task()))
2116 preempt_enable();
2117 else
2118 local_irq_restore(flags);
2119 }
2120
2121 /**
2122 * consume_stock: Try to consume stocked charge on this cpu.
2123 * @memcg: memcg to consume from.
2124 * @nr_pages: how many pages to charge.
2125 *
2126 * The charges will only happen if @memcg matches the current cpu's memcg
2127 * stock, and at least @nr_pages are available in that stock. Failure to
2128 * service an allocation will refill the stock.
2129 *
2130 * returns true if successful, false otherwise.
2131 */
2132 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2133 {
2134 struct memcg_stock_pcp *stock;
2135 unsigned long flags;
2136 bool ret = false;
2137
2138 if (nr_pages > MEMCG_CHARGE_BATCH)
2139 return ret;
2140
2141 local_irq_save(flags);
2142
2143 stock = this_cpu_ptr(&memcg_stock);
2144 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2145 stock->nr_pages -= nr_pages;
2146 ret = true;
2147 }
2148
2149 local_irq_restore(flags);
2150
2151 return ret;
2152 }
2153
2154 /*
2155 * Returns stocks cached in percpu and reset cached information.
2156 */
2157 static void drain_stock(struct memcg_stock_pcp *stock)
2158 {
2159 struct mem_cgroup *old = stock->cached;
2160
2161 if (!old)
2162 return;
2163
2164 if (stock->nr_pages) {
2165 page_counter_uncharge(&old->memory, stock->nr_pages);
2166 if (do_memsw_account())
2167 page_counter_uncharge(&old->memsw, stock->nr_pages);
2168 stock->nr_pages = 0;
2169 }
2170
2171 css_put(&old->css);
2172 stock->cached = NULL;
2173 }
2174
2175 static void drain_local_stock(struct work_struct *dummy)
2176 {
2177 struct memcg_stock_pcp *stock;
2178 unsigned long flags;
2179
2180 /*
2181 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2182 * drain_stock races is that we always operate on local CPU stock
2183 * here with IRQ disabled
2184 */
2185 local_irq_save(flags);
2186
2187 stock = this_cpu_ptr(&memcg_stock);
2188 drain_obj_stock(&stock->irq_obj);
2189 if (in_task())
2190 drain_obj_stock(&stock->task_obj);
2191 drain_stock(stock);
2192 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2193
2194 local_irq_restore(flags);
2195 }
2196
2197 /*
2198 * Cache charges(val) to local per_cpu area.
2199 * This will be consumed by consume_stock() function, later.
2200 */
2201 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2202 {
2203 struct memcg_stock_pcp *stock;
2204 unsigned long flags;
2205
2206 local_irq_save(flags);
2207
2208 stock = this_cpu_ptr(&memcg_stock);
2209 if (stock->cached != memcg) { /* reset if necessary */
2210 drain_stock(stock);
2211 css_get(&memcg->css);
2212 stock->cached = memcg;
2213 }
2214 stock->nr_pages += nr_pages;
2215
2216 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2217 drain_stock(stock);
2218
2219 local_irq_restore(flags);
2220 }
2221
2222 /*
2223 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2224 * of the hierarchy under it.
2225 */
2226 static void drain_all_stock(struct mem_cgroup *root_memcg)
2227 {
2228 int cpu, curcpu;
2229
2230 /* If someone's already draining, avoid adding running more workers. */
2231 if (!mutex_trylock(&percpu_charge_mutex))
2232 return;
2233 /*
2234 * Notify other cpus that system-wide "drain" is running
2235 * We do not care about races with the cpu hotplug because cpu down
2236 * as well as workers from this path always operate on the local
2237 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2238 */
2239 curcpu = get_cpu();
2240 for_each_online_cpu(cpu) {
2241 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2242 struct mem_cgroup *memcg;
2243 bool flush = false;
2244
2245 rcu_read_lock();
2246 memcg = stock->cached;
2247 if (memcg && stock->nr_pages &&
2248 mem_cgroup_is_descendant(memcg, root_memcg))
2249 flush = true;
2250 else if (obj_stock_flush_required(stock, root_memcg))
2251 flush = true;
2252 rcu_read_unlock();
2253
2254 if (flush &&
2255 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2256 if (cpu == curcpu)
2257 drain_local_stock(&stock->work);
2258 else
2259 schedule_work_on(cpu, &stock->work);
2260 }
2261 }
2262 put_cpu();
2263 mutex_unlock(&percpu_charge_mutex);
2264 }
2265
2266 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2267 {
2268 struct memcg_stock_pcp *stock;
2269
2270 stock = &per_cpu(memcg_stock, cpu);
2271 drain_stock(stock);
2272
2273 return 0;
2274 }
2275
2276 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2277 unsigned int nr_pages,
2278 gfp_t gfp_mask)
2279 {
2280 unsigned long nr_reclaimed = 0;
2281
2282 do {
2283 unsigned long pflags;
2284
2285 if (page_counter_read(&memcg->memory) <=
2286 READ_ONCE(memcg->memory.high))
2287 continue;
2288
2289 memcg_memory_event(memcg, MEMCG_HIGH);
2290
2291 psi_memstall_enter(&pflags);
2292 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2293 gfp_mask, true);
2294 psi_memstall_leave(&pflags);
2295 } while ((memcg = parent_mem_cgroup(memcg)) &&
2296 !mem_cgroup_is_root(memcg));
2297
2298 return nr_reclaimed;
2299 }
2300
2301 static void high_work_func(struct work_struct *work)
2302 {
2303 struct mem_cgroup *memcg;
2304
2305 memcg = container_of(work, struct mem_cgroup, high_work);
2306 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2307 }
2308
2309 /*
2310 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2311 * enough to still cause a significant slowdown in most cases, while still
2312 * allowing diagnostics and tracing to proceed without becoming stuck.
2313 */
2314 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2315
2316 /*
2317 * When calculating the delay, we use these either side of the exponentiation to
2318 * maintain precision and scale to a reasonable number of jiffies (see the table
2319 * below.
2320 *
2321 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2322 * overage ratio to a delay.
2323 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2324 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2325 * to produce a reasonable delay curve.
2326 *
2327 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2328 * reasonable delay curve compared to precision-adjusted overage, not
2329 * penalising heavily at first, but still making sure that growth beyond the
2330 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2331 * example, with a high of 100 megabytes:
2332 *
2333 * +-------+------------------------+
2334 * | usage | time to allocate in ms |
2335 * +-------+------------------------+
2336 * | 100M | 0 |
2337 * | 101M | 6 |
2338 * | 102M | 25 |
2339 * | 103M | 57 |
2340 * | 104M | 102 |
2341 * | 105M | 159 |
2342 * | 106M | 230 |
2343 * | 107M | 313 |
2344 * | 108M | 409 |
2345 * | 109M | 518 |
2346 * | 110M | 639 |
2347 * | 111M | 774 |
2348 * | 112M | 921 |
2349 * | 113M | 1081 |
2350 * | 114M | 1254 |
2351 * | 115M | 1439 |
2352 * | 116M | 1638 |
2353 * | 117M | 1849 |
2354 * | 118M | 2000 |
2355 * | 119M | 2000 |
2356 * | 120M | 2000 |
2357 * +-------+------------------------+
2358 */
2359 #define MEMCG_DELAY_PRECISION_SHIFT 20
2360 #define MEMCG_DELAY_SCALING_SHIFT 14
2361
2362 static u64 calculate_overage(unsigned long usage, unsigned long high)
2363 {
2364 u64 overage;
2365
2366 if (usage <= high)
2367 return 0;
2368
2369 /*
2370 * Prevent division by 0 in overage calculation by acting as if
2371 * it was a threshold of 1 page
2372 */
2373 high = max(high, 1UL);
2374
2375 overage = usage - high;
2376 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2377 return div64_u64(overage, high);
2378 }
2379
2380 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2381 {
2382 u64 overage, max_overage = 0;
2383
2384 do {
2385 overage = calculate_overage(page_counter_read(&memcg->memory),
2386 READ_ONCE(memcg->memory.high));
2387 max_overage = max(overage, max_overage);
2388 } while ((memcg = parent_mem_cgroup(memcg)) &&
2389 !mem_cgroup_is_root(memcg));
2390
2391 return max_overage;
2392 }
2393
2394 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2395 {
2396 u64 overage, max_overage = 0;
2397
2398 do {
2399 overage = calculate_overage(page_counter_read(&memcg->swap),
2400 READ_ONCE(memcg->swap.high));
2401 if (overage)
2402 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2403 max_overage = max(overage, max_overage);
2404 } while ((memcg = parent_mem_cgroup(memcg)) &&
2405 !mem_cgroup_is_root(memcg));
2406
2407 return max_overage;
2408 }
2409
2410 /*
2411 * Get the number of jiffies that we should penalise a mischievous cgroup which
2412 * is exceeding its memory.high by checking both it and its ancestors.
2413 */
2414 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2415 unsigned int nr_pages,
2416 u64 max_overage)
2417 {
2418 unsigned long penalty_jiffies;
2419
2420 if (!max_overage)
2421 return 0;
2422
2423 /*
2424 * We use overage compared to memory.high to calculate the number of
2425 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2426 * fairly lenient on small overages, and increasingly harsh when the
2427 * memcg in question makes it clear that it has no intention of stopping
2428 * its crazy behaviour, so we exponentially increase the delay based on
2429 * overage amount.
2430 */
2431 penalty_jiffies = max_overage * max_overage * HZ;
2432 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2433 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2434
2435 /*
2436 * Factor in the task's own contribution to the overage, such that four
2437 * N-sized allocations are throttled approximately the same as one
2438 * 4N-sized allocation.
2439 *
2440 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2441 * larger the current charge patch is than that.
2442 */
2443 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2444 }
2445
2446 /*
2447 * Scheduled by try_charge() to be executed from the userland return path
2448 * and reclaims memory over the high limit.
2449 */
2450 void mem_cgroup_handle_over_high(void)
2451 {
2452 unsigned long penalty_jiffies;
2453 unsigned long pflags;
2454 unsigned long nr_reclaimed;
2455 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2456 int nr_retries = MAX_RECLAIM_RETRIES;
2457 struct mem_cgroup *memcg;
2458 bool in_retry = false;
2459
2460 if (likely(!nr_pages))
2461 return;
2462
2463 memcg = get_mem_cgroup_from_mm(current->mm);
2464 current->memcg_nr_pages_over_high = 0;
2465
2466 retry_reclaim:
2467 /*
2468 * The allocating task should reclaim at least the batch size, but for
2469 * subsequent retries we only want to do what's necessary to prevent oom
2470 * or breaching resource isolation.
2471 *
2472 * This is distinct from memory.max or page allocator behaviour because
2473 * memory.high is currently batched, whereas memory.max and the page
2474 * allocator run every time an allocation is made.
2475 */
2476 nr_reclaimed = reclaim_high(memcg,
2477 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2478 GFP_KERNEL);
2479
2480 /*
2481 * memory.high is breached and reclaim is unable to keep up. Throttle
2482 * allocators proactively to slow down excessive growth.
2483 */
2484 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2485 mem_find_max_overage(memcg));
2486
2487 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2488 swap_find_max_overage(memcg));
2489
2490 /*
2491 * Clamp the max delay per usermode return so as to still keep the
2492 * application moving forwards and also permit diagnostics, albeit
2493 * extremely slowly.
2494 */
2495 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2496
2497 /*
2498 * Don't sleep if the amount of jiffies this memcg owes us is so low
2499 * that it's not even worth doing, in an attempt to be nice to those who
2500 * go only a small amount over their memory.high value and maybe haven't
2501 * been aggressively reclaimed enough yet.
2502 */
2503 if (penalty_jiffies <= HZ / 100)
2504 goto out;
2505
2506 /*
2507 * If reclaim is making forward progress but we're still over
2508 * memory.high, we want to encourage that rather than doing allocator
2509 * throttling.
2510 */
2511 if (nr_reclaimed || nr_retries--) {
2512 in_retry = true;
2513 goto retry_reclaim;
2514 }
2515
2516 /*
2517 * If we exit early, we're guaranteed to die (since
2518 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2519 * need to account for any ill-begotten jiffies to pay them off later.
2520 */
2521 psi_memstall_enter(&pflags);
2522 schedule_timeout_killable(penalty_jiffies);
2523 psi_memstall_leave(&pflags);
2524
2525 out:
2526 css_put(&memcg->css);
2527 }
2528
2529 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2530 unsigned int nr_pages)
2531 {
2532 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2533 int nr_retries = MAX_RECLAIM_RETRIES;
2534 struct mem_cgroup *mem_over_limit;
2535 struct page_counter *counter;
2536 enum oom_status oom_status;
2537 unsigned long nr_reclaimed;
2538 bool may_swap = true;
2539 bool drained = false;
2540 unsigned long pflags;
2541
2542 retry:
2543 if (consume_stock(memcg, nr_pages))
2544 return 0;
2545
2546 if (!do_memsw_account() ||
2547 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2548 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2549 goto done_restock;
2550 if (do_memsw_account())
2551 page_counter_uncharge(&memcg->memsw, batch);
2552 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2553 } else {
2554 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2555 may_swap = false;
2556 }
2557
2558 if (batch > nr_pages) {
2559 batch = nr_pages;
2560 goto retry;
2561 }
2562
2563 /*
2564 * Memcg doesn't have a dedicated reserve for atomic
2565 * allocations. But like the global atomic pool, we need to
2566 * put the burden of reclaim on regular allocation requests
2567 * and let these go through as privileged allocations.
2568 */
2569 if (gfp_mask & __GFP_ATOMIC)
2570 goto force;
2571
2572 /*
2573 * Unlike in global OOM situations, memcg is not in a physical
2574 * memory shortage. Allow dying and OOM-killed tasks to
2575 * bypass the last charges so that they can exit quickly and
2576 * free their memory.
2577 */
2578 if (unlikely(should_force_charge()))
2579 goto force;
2580
2581 /*
2582 * Prevent unbounded recursion when reclaim operations need to
2583 * allocate memory. This might exceed the limits temporarily,
2584 * but we prefer facilitating memory reclaim and getting back
2585 * under the limit over triggering OOM kills in these cases.
2586 */
2587 if (unlikely(current->flags & PF_MEMALLOC))
2588 goto force;
2589
2590 if (unlikely(task_in_memcg_oom(current)))
2591 goto nomem;
2592
2593 if (!gfpflags_allow_blocking(gfp_mask))
2594 goto nomem;
2595
2596 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2597
2598 psi_memstall_enter(&pflags);
2599 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2600 gfp_mask, may_swap);
2601 psi_memstall_leave(&pflags);
2602
2603 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2604 goto retry;
2605
2606 if (!drained) {
2607 drain_all_stock(mem_over_limit);
2608 drained = true;
2609 goto retry;
2610 }
2611
2612 if (gfp_mask & __GFP_NORETRY)
2613 goto nomem;
2614 /*
2615 * Even though the limit is exceeded at this point, reclaim
2616 * may have been able to free some pages. Retry the charge
2617 * before killing the task.
2618 *
2619 * Only for regular pages, though: huge pages are rather
2620 * unlikely to succeed so close to the limit, and we fall back
2621 * to regular pages anyway in case of failure.
2622 */
2623 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2624 goto retry;
2625 /*
2626 * At task move, charge accounts can be doubly counted. So, it's
2627 * better to wait until the end of task_move if something is going on.
2628 */
2629 if (mem_cgroup_wait_acct_move(mem_over_limit))
2630 goto retry;
2631
2632 if (nr_retries--)
2633 goto retry;
2634
2635 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2636 goto nomem;
2637
2638 if (fatal_signal_pending(current))
2639 goto force;
2640
2641 /*
2642 * keep retrying as long as the memcg oom killer is able to make
2643 * a forward progress or bypass the charge if the oom killer
2644 * couldn't make any progress.
2645 */
2646 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2647 get_order(nr_pages * PAGE_SIZE));
2648 switch (oom_status) {
2649 case OOM_SUCCESS:
2650 nr_retries = MAX_RECLAIM_RETRIES;
2651 goto retry;
2652 case OOM_FAILED:
2653 goto force;
2654 default:
2655 goto nomem;
2656 }
2657 nomem:
2658 if (!(gfp_mask & __GFP_NOFAIL))
2659 return -ENOMEM;
2660 force:
2661 /*
2662 * The allocation either can't fail or will lead to more memory
2663 * being freed very soon. Allow memory usage go over the limit
2664 * temporarily by force charging it.
2665 */
2666 page_counter_charge(&memcg->memory, nr_pages);
2667 if (do_memsw_account())
2668 page_counter_charge(&memcg->memsw, nr_pages);
2669
2670 return 0;
2671
2672 done_restock:
2673 if (batch > nr_pages)
2674 refill_stock(memcg, batch - nr_pages);
2675
2676 /*
2677 * If the hierarchy is above the normal consumption range, schedule
2678 * reclaim on returning to userland. We can perform reclaim here
2679 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2680 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2681 * not recorded as it most likely matches current's and won't
2682 * change in the meantime. As high limit is checked again before
2683 * reclaim, the cost of mismatch is negligible.
2684 */
2685 do {
2686 bool mem_high, swap_high;
2687
2688 mem_high = page_counter_read(&memcg->memory) >
2689 READ_ONCE(memcg->memory.high);
2690 swap_high = page_counter_read(&memcg->swap) >
2691 READ_ONCE(memcg->swap.high);
2692
2693 /* Don't bother a random interrupted task */
2694 if (in_interrupt()) {
2695 if (mem_high) {
2696 schedule_work(&memcg->high_work);
2697 break;
2698 }
2699 continue;
2700 }
2701
2702 if (mem_high || swap_high) {
2703 /*
2704 * The allocating tasks in this cgroup will need to do
2705 * reclaim or be throttled to prevent further growth
2706 * of the memory or swap footprints.
2707 *
2708 * Target some best-effort fairness between the tasks,
2709 * and distribute reclaim work and delay penalties
2710 * based on how much each task is actually allocating.
2711 */
2712 current->memcg_nr_pages_over_high += batch;
2713 set_notify_resume(current);
2714 break;
2715 }
2716 } while ((memcg = parent_mem_cgroup(memcg)));
2717
2718 return 0;
2719 }
2720
2721 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2722 unsigned int nr_pages)
2723 {
2724 if (mem_cgroup_is_root(memcg))
2725 return 0;
2726
2727 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2728 }
2729
2730 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2731 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2732 {
2733 if (mem_cgroup_is_root(memcg))
2734 return;
2735
2736 page_counter_uncharge(&memcg->memory, nr_pages);
2737 if (do_memsw_account())
2738 page_counter_uncharge(&memcg->memsw, nr_pages);
2739 }
2740 #endif
2741
2742 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2743 {
2744 VM_BUG_ON_PAGE(page_memcg(page), page);
2745 /*
2746 * Any of the following ensures page's memcg stability:
2747 *
2748 * - the page lock
2749 * - LRU isolation
2750 * - lock_page_memcg()
2751 * - exclusive reference
2752 */
2753 page->memcg_data = (unsigned long)memcg;
2754 }
2755
2756 static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2757 {
2758 struct mem_cgroup *memcg;
2759
2760 rcu_read_lock();
2761 retry:
2762 memcg = obj_cgroup_memcg(objcg);
2763 if (unlikely(!css_tryget(&memcg->css)))
2764 goto retry;
2765 rcu_read_unlock();
2766
2767 return memcg;
2768 }
2769
2770 #ifdef CONFIG_MEMCG_KMEM
2771 /*
2772 * The allocated objcg pointers array is not accounted directly.
2773 * Moreover, it should not come from DMA buffer and is not readily
2774 * reclaimable. So those GFP bits should be masked off.
2775 */
2776 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2777
2778 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2779 gfp_t gfp, bool new_page)
2780 {
2781 unsigned int objects = objs_per_slab_page(s, page);
2782 unsigned long memcg_data;
2783 void *vec;
2784
2785 gfp &= ~OBJCGS_CLEAR_MASK;
2786 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2787 page_to_nid(page));
2788 if (!vec)
2789 return -ENOMEM;
2790
2791 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2792 if (new_page) {
2793 /*
2794 * If the slab page is brand new and nobody can yet access
2795 * it's memcg_data, no synchronization is required and
2796 * memcg_data can be simply assigned.
2797 */
2798 page->memcg_data = memcg_data;
2799 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2800 /*
2801 * If the slab page is already in use, somebody can allocate
2802 * and assign obj_cgroups in parallel. In this case the existing
2803 * objcg vector should be reused.
2804 */
2805 kfree(vec);
2806 return 0;
2807 }
2808
2809 kmemleak_not_leak(vec);
2810 return 0;
2811 }
2812
2813 /*
2814 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2815 *
2816 * A passed kernel object can be a slab object or a generic kernel page, so
2817 * different mechanisms for getting the memory cgroup pointer should be used.
2818 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2819 * can not know for sure how the kernel object is implemented.
2820 * mem_cgroup_from_obj() can be safely used in such cases.
2821 *
2822 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2823 * cgroup_mutex, etc.
2824 */
2825 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2826 {
2827 struct page *page;
2828
2829 if (mem_cgroup_disabled())
2830 return NULL;
2831
2832 page = virt_to_head_page(p);
2833
2834 /*
2835 * Slab objects are accounted individually, not per-page.
2836 * Memcg membership data for each individual object is saved in
2837 * the page->obj_cgroups.
2838 */
2839 if (page_objcgs_check(page)) {
2840 struct obj_cgroup *objcg;
2841 unsigned int off;
2842
2843 off = obj_to_index(page->slab_cache, page, p);
2844 objcg = page_objcgs(page)[off];
2845 if (objcg)
2846 return obj_cgroup_memcg(objcg);
2847
2848 return NULL;
2849 }
2850
2851 /*
2852 * page_memcg_check() is used here, because page_has_obj_cgroups()
2853 * check above could fail because the object cgroups vector wasn't set
2854 * at that moment, but it can be set concurrently.
2855 * page_memcg_check(page) will guarantee that a proper memory
2856 * cgroup pointer or NULL will be returned.
2857 */
2858 return page_memcg_check(page);
2859 }
2860
2861 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2862 {
2863 struct obj_cgroup *objcg = NULL;
2864 struct mem_cgroup *memcg;
2865
2866 if (memcg_kmem_bypass())
2867 return NULL;
2868
2869 rcu_read_lock();
2870 if (unlikely(active_memcg()))
2871 memcg = active_memcg();
2872 else
2873 memcg = mem_cgroup_from_task(current);
2874
2875 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2876 objcg = rcu_dereference(memcg->objcg);
2877 if (objcg && obj_cgroup_tryget(objcg))
2878 break;
2879 objcg = NULL;
2880 }
2881 rcu_read_unlock();
2882
2883 return objcg;
2884 }
2885
2886 static int memcg_alloc_cache_id(void)
2887 {
2888 int id, size;
2889 int err;
2890
2891 id = ida_simple_get(&memcg_cache_ida,
2892 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2893 if (id < 0)
2894 return id;
2895
2896 if (id < memcg_nr_cache_ids)
2897 return id;
2898
2899 /*
2900 * There's no space for the new id in memcg_caches arrays,
2901 * so we have to grow them.
2902 */
2903 down_write(&memcg_cache_ids_sem);
2904
2905 size = 2 * (id + 1);
2906 if (size < MEMCG_CACHES_MIN_SIZE)
2907 size = MEMCG_CACHES_MIN_SIZE;
2908 else if (size > MEMCG_CACHES_MAX_SIZE)
2909 size = MEMCG_CACHES_MAX_SIZE;
2910
2911 err = memcg_update_all_list_lrus(size);
2912 if (!err)
2913 memcg_nr_cache_ids = size;
2914
2915 up_write(&memcg_cache_ids_sem);
2916
2917 if (err) {
2918 ida_simple_remove(&memcg_cache_ida, id);
2919 return err;
2920 }
2921 return id;
2922 }
2923
2924 static void memcg_free_cache_id(int id)
2925 {
2926 ida_simple_remove(&memcg_cache_ida, id);
2927 }
2928
2929 /*
2930 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2931 * @objcg: object cgroup to uncharge
2932 * @nr_pages: number of pages to uncharge
2933 */
2934 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2935 unsigned int nr_pages)
2936 {
2937 struct mem_cgroup *memcg;
2938
2939 memcg = get_mem_cgroup_from_objcg(objcg);
2940
2941 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2942 page_counter_uncharge(&memcg->kmem, nr_pages);
2943 refill_stock(memcg, nr_pages);
2944
2945 css_put(&memcg->css);
2946 }
2947
2948 /*
2949 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2950 * @objcg: object cgroup to charge
2951 * @gfp: reclaim mode
2952 * @nr_pages: number of pages to charge
2953 *
2954 * Returns 0 on success, an error code on failure.
2955 */
2956 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2957 unsigned int nr_pages)
2958 {
2959 struct page_counter *counter;
2960 struct mem_cgroup *memcg;
2961 int ret;
2962
2963 memcg = get_mem_cgroup_from_objcg(objcg);
2964
2965 ret = try_charge_memcg(memcg, gfp, nr_pages);
2966 if (ret)
2967 goto out;
2968
2969 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2970 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2971
2972 /*
2973 * Enforce __GFP_NOFAIL allocation because callers are not
2974 * prepared to see failures and likely do not have any failure
2975 * handling code.
2976 */
2977 if (gfp & __GFP_NOFAIL) {
2978 page_counter_charge(&memcg->kmem, nr_pages);
2979 goto out;
2980 }
2981 cancel_charge(memcg, nr_pages);
2982 ret = -ENOMEM;
2983 }
2984 out:
2985 css_put(&memcg->css);
2986
2987 return ret;
2988 }
2989
2990 /**
2991 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2992 * @page: page to charge
2993 * @gfp: reclaim mode
2994 * @order: allocation order
2995 *
2996 * Returns 0 on success, an error code on failure.
2997 */
2998 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2999 {
3000 struct obj_cgroup *objcg;
3001 int ret = 0;
3002
3003 objcg = get_obj_cgroup_from_current();
3004 if (objcg) {
3005 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3006 if (!ret) {
3007 page->memcg_data = (unsigned long)objcg |
3008 MEMCG_DATA_KMEM;
3009 return 0;
3010 }
3011 obj_cgroup_put(objcg);
3012 }
3013 return ret;
3014 }
3015
3016 /**
3017 * __memcg_kmem_uncharge_page: uncharge a kmem page
3018 * @page: page to uncharge
3019 * @order: allocation order
3020 */
3021 void __memcg_kmem_uncharge_page(struct page *page, int order)
3022 {
3023 struct obj_cgroup *objcg;
3024 unsigned int nr_pages = 1 << order;
3025
3026 if (!PageMemcgKmem(page))
3027 return;
3028
3029 objcg = __page_objcg(page);
3030 obj_cgroup_uncharge_pages(objcg, nr_pages);
3031 page->memcg_data = 0;
3032 obj_cgroup_put(objcg);
3033 }
3034
3035 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3036 enum node_stat_item idx, int nr)
3037 {
3038 unsigned long flags;
3039 struct obj_stock *stock = get_obj_stock(&flags);
3040 int *bytes;
3041
3042 /*
3043 * Save vmstat data in stock and skip vmstat array update unless
3044 * accumulating over a page of vmstat data or when pgdat or idx
3045 * changes.
3046 */
3047 if (stock->cached_objcg != objcg) {
3048 drain_obj_stock(stock);
3049 obj_cgroup_get(objcg);
3050 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3051 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3052 stock->cached_objcg = objcg;
3053 stock->cached_pgdat = pgdat;
3054 } else if (stock->cached_pgdat != pgdat) {
3055 /* Flush the existing cached vmstat data */
3056 struct pglist_data *oldpg = stock->cached_pgdat;
3057
3058 if (stock->nr_slab_reclaimable_b) {
3059 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3060 stock->nr_slab_reclaimable_b);
3061 stock->nr_slab_reclaimable_b = 0;
3062 }
3063 if (stock->nr_slab_unreclaimable_b) {
3064 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3065 stock->nr_slab_unreclaimable_b);
3066 stock->nr_slab_unreclaimable_b = 0;
3067 }
3068 stock->cached_pgdat = pgdat;
3069 }
3070
3071 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3072 : &stock->nr_slab_unreclaimable_b;
3073 /*
3074 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3075 * cached locally at least once before pushing it out.
3076 */
3077 if (!*bytes) {
3078 *bytes = nr;
3079 nr = 0;
3080 } else {
3081 *bytes += nr;
3082 if (abs(*bytes) > PAGE_SIZE) {
3083 nr = *bytes;
3084 *bytes = 0;
3085 } else {
3086 nr = 0;
3087 }
3088 }
3089 if (nr)
3090 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3091
3092 put_obj_stock(flags);
3093 }
3094
3095 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3096 {
3097 unsigned long flags;
3098 struct obj_stock *stock = get_obj_stock(&flags);
3099 bool ret = false;
3100
3101 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3102 stock->nr_bytes -= nr_bytes;
3103 ret = true;
3104 }
3105
3106 put_obj_stock(flags);
3107
3108 return ret;
3109 }
3110
3111 static void drain_obj_stock(struct obj_stock *stock)
3112 {
3113 struct obj_cgroup *old = stock->cached_objcg;
3114
3115 if (!old)
3116 return;
3117
3118 if (stock->nr_bytes) {
3119 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3120 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3121
3122 if (nr_pages)
3123 obj_cgroup_uncharge_pages(old, nr_pages);
3124
3125 /*
3126 * The leftover is flushed to the centralized per-memcg value.
3127 * On the next attempt to refill obj stock it will be moved
3128 * to a per-cpu stock (probably, on an other CPU), see
3129 * refill_obj_stock().
3130 *
3131 * How often it's flushed is a trade-off between the memory
3132 * limit enforcement accuracy and potential CPU contention,
3133 * so it might be changed in the future.
3134 */
3135 atomic_add(nr_bytes, &old->nr_charged_bytes);
3136 stock->nr_bytes = 0;
3137 }
3138
3139 /*
3140 * Flush the vmstat data in current stock
3141 */
3142 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3143 if (stock->nr_slab_reclaimable_b) {
3144 mod_objcg_mlstate(old, stock->cached_pgdat,
3145 NR_SLAB_RECLAIMABLE_B,
3146 stock->nr_slab_reclaimable_b);
3147 stock->nr_slab_reclaimable_b = 0;
3148 }
3149 if (stock->nr_slab_unreclaimable_b) {
3150 mod_objcg_mlstate(old, stock->cached_pgdat,
3151 NR_SLAB_UNRECLAIMABLE_B,
3152 stock->nr_slab_unreclaimable_b);
3153 stock->nr_slab_unreclaimable_b = 0;
3154 }
3155 stock->cached_pgdat = NULL;
3156 }
3157
3158 obj_cgroup_put(old);
3159 stock->cached_objcg = NULL;
3160 }
3161
3162 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3163 struct mem_cgroup *root_memcg)
3164 {
3165 struct mem_cgroup *memcg;
3166
3167 if (in_task() && stock->task_obj.cached_objcg) {
3168 memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3169 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3170 return true;
3171 }
3172 if (stock->irq_obj.cached_objcg) {
3173 memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
3174 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3175 return true;
3176 }
3177
3178 return false;
3179 }
3180
3181 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3182 bool allow_uncharge)
3183 {
3184 unsigned long flags;
3185 struct obj_stock *stock = get_obj_stock(&flags);
3186 unsigned int nr_pages = 0;
3187
3188 if (stock->cached_objcg != objcg) { /* reset if necessary */
3189 drain_obj_stock(stock);
3190 obj_cgroup_get(objcg);
3191 stock->cached_objcg = objcg;
3192 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3193 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3194 allow_uncharge = true; /* Allow uncharge when objcg changes */
3195 }
3196 stock->nr_bytes += nr_bytes;
3197
3198 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3199 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3200 stock->nr_bytes &= (PAGE_SIZE - 1);
3201 }
3202
3203 put_obj_stock(flags);
3204
3205 if (nr_pages)
3206 obj_cgroup_uncharge_pages(objcg, nr_pages);
3207 }
3208
3209 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3210 {
3211 unsigned int nr_pages, nr_bytes;
3212 int ret;
3213
3214 if (consume_obj_stock(objcg, size))
3215 return 0;
3216
3217 /*
3218 * In theory, objcg->nr_charged_bytes can have enough
3219 * pre-charged bytes to satisfy the allocation. However,
3220 * flushing objcg->nr_charged_bytes requires two atomic
3221 * operations, and objcg->nr_charged_bytes can't be big.
3222 * The shared objcg->nr_charged_bytes can also become a
3223 * performance bottleneck if all tasks of the same memcg are
3224 * trying to update it. So it's better to ignore it and try
3225 * grab some new pages. The stock's nr_bytes will be flushed to
3226 * objcg->nr_charged_bytes later on when objcg changes.
3227 *
3228 * The stock's nr_bytes may contain enough pre-charged bytes
3229 * to allow one less page from being charged, but we can't rely
3230 * on the pre-charged bytes not being changed outside of
3231 * consume_obj_stock() or refill_obj_stock(). So ignore those
3232 * pre-charged bytes as well when charging pages. To avoid a
3233 * page uncharge right after a page charge, we set the
3234 * allow_uncharge flag to false when calling refill_obj_stock()
3235 * to temporarily allow the pre-charged bytes to exceed the page
3236 * size limit. The maximum reachable value of the pre-charged
3237 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3238 * race.
3239 */
3240 nr_pages = size >> PAGE_SHIFT;
3241 nr_bytes = size & (PAGE_SIZE - 1);
3242
3243 if (nr_bytes)
3244 nr_pages += 1;
3245
3246 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3247 if (!ret && nr_bytes)
3248 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3249
3250 return ret;
3251 }
3252
3253 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3254 {
3255 refill_obj_stock(objcg, size, true);
3256 }
3257
3258 #endif /* CONFIG_MEMCG_KMEM */
3259
3260 /*
3261 * Because page_memcg(head) is not set on tails, set it now.
3262 */
3263 void split_page_memcg(struct page *head, unsigned int nr)
3264 {
3265 struct mem_cgroup *memcg = page_memcg(head);
3266 int i;
3267
3268 if (mem_cgroup_disabled() || !memcg)
3269 return;
3270
3271 for (i = 1; i < nr; i++)
3272 head[i].memcg_data = head->memcg_data;
3273
3274 if (PageMemcgKmem(head))
3275 obj_cgroup_get_many(__page_objcg(head), nr - 1);
3276 else
3277 css_get_many(&memcg->css, nr - 1);
3278 }
3279
3280 #ifdef CONFIG_MEMCG_SWAP
3281 /**
3282 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3283 * @entry: swap entry to be moved
3284 * @from: mem_cgroup which the entry is moved from
3285 * @to: mem_cgroup which the entry is moved to
3286 *
3287 * It succeeds only when the swap_cgroup's record for this entry is the same
3288 * as the mem_cgroup's id of @from.
3289 *
3290 * Returns 0 on success, -EINVAL on failure.
3291 *
3292 * The caller must have charged to @to, IOW, called page_counter_charge() about
3293 * both res and memsw, and called css_get().
3294 */
3295 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3296 struct mem_cgroup *from, struct mem_cgroup *to)
3297 {
3298 unsigned short old_id, new_id;
3299
3300 old_id = mem_cgroup_id(from);
3301 new_id = mem_cgroup_id(to);
3302
3303 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3304 mod_memcg_state(from, MEMCG_SWAP, -1);
3305 mod_memcg_state(to, MEMCG_SWAP, 1);
3306 return 0;
3307 }
3308 return -EINVAL;
3309 }
3310 #else
3311 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3312 struct mem_cgroup *from, struct mem_cgroup *to)
3313 {
3314 return -EINVAL;
3315 }
3316 #endif
3317
3318 static DEFINE_MUTEX(memcg_max_mutex);
3319
3320 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3321 unsigned long max, bool memsw)
3322 {
3323 bool enlarge = false;
3324 bool drained = false;
3325 int ret;
3326 bool limits_invariant;
3327 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3328
3329 do {
3330 if (signal_pending(current)) {
3331 ret = -EINTR;
3332 break;
3333 }
3334
3335 mutex_lock(&memcg_max_mutex);
3336 /*
3337 * Make sure that the new limit (memsw or memory limit) doesn't
3338 * break our basic invariant rule memory.max <= memsw.max.
3339 */
3340 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3341 max <= memcg->memsw.max;
3342 if (!limits_invariant) {
3343 mutex_unlock(&memcg_max_mutex);
3344 ret = -EINVAL;
3345 break;
3346 }
3347 if (max > counter->max)
3348 enlarge = true;
3349 ret = page_counter_set_max(counter, max);
3350 mutex_unlock(&memcg_max_mutex);
3351
3352 if (!ret)
3353 break;
3354
3355 if (!drained) {
3356 drain_all_stock(memcg);
3357 drained = true;
3358 continue;
3359 }
3360
3361 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3362 GFP_KERNEL, !memsw)) {
3363 ret = -EBUSY;
3364 break;
3365 }
3366 } while (true);
3367
3368 if (!ret && enlarge)
3369 memcg_oom_recover(memcg);
3370
3371 return ret;
3372 }
3373
3374 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3375 gfp_t gfp_mask,
3376 unsigned long *total_scanned)
3377 {
3378 unsigned long nr_reclaimed = 0;
3379 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3380 unsigned long reclaimed;
3381 int loop = 0;
3382 struct mem_cgroup_tree_per_node *mctz;
3383 unsigned long excess;
3384 unsigned long nr_scanned;
3385
3386 if (order > 0)
3387 return 0;
3388
3389 mctz = soft_limit_tree_node(pgdat->node_id);
3390
3391 /*
3392 * Do not even bother to check the largest node if the root
3393 * is empty. Do it lockless to prevent lock bouncing. Races
3394 * are acceptable as soft limit is best effort anyway.
3395 */
3396 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3397 return 0;
3398
3399 /*
3400 * This loop can run a while, specially if mem_cgroup's continuously
3401 * keep exceeding their soft limit and putting the system under
3402 * pressure
3403 */
3404 do {
3405 if (next_mz)
3406 mz = next_mz;
3407 else
3408 mz = mem_cgroup_largest_soft_limit_node(mctz);
3409 if (!mz)
3410 break;
3411
3412 nr_scanned = 0;
3413 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3414 gfp_mask, &nr_scanned);
3415 nr_reclaimed += reclaimed;
3416 *total_scanned += nr_scanned;
3417 spin_lock_irq(&mctz->lock);
3418 __mem_cgroup_remove_exceeded(mz, mctz);
3419
3420 /*
3421 * If we failed to reclaim anything from this memory cgroup
3422 * it is time to move on to the next cgroup
3423 */
3424 next_mz = NULL;
3425 if (!reclaimed)
3426 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3427
3428 excess = soft_limit_excess(mz->memcg);
3429 /*
3430 * One school of thought says that we should not add
3431 * back the node to the tree if reclaim returns 0.
3432 * But our reclaim could return 0, simply because due
3433 * to priority we are exposing a smaller subset of
3434 * memory to reclaim from. Consider this as a longer
3435 * term TODO.
3436 */
3437 /* If excess == 0, no tree ops */
3438 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3439 spin_unlock_irq(&mctz->lock);
3440 css_put(&mz->memcg->css);
3441 loop++;
3442 /*
3443 * Could not reclaim anything and there are no more
3444 * mem cgroups to try or we seem to be looping without
3445 * reclaiming anything.
3446 */
3447 if (!nr_reclaimed &&
3448 (next_mz == NULL ||
3449 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3450 break;
3451 } while (!nr_reclaimed);
3452 if (next_mz)
3453 css_put(&next_mz->memcg->css);
3454 return nr_reclaimed;
3455 }
3456
3457 /*
3458 * Reclaims as many pages from the given memcg as possible.
3459 *
3460 * Caller is responsible for holding css reference for memcg.
3461 */
3462 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3463 {
3464 int nr_retries = MAX_RECLAIM_RETRIES;
3465
3466 /* we call try-to-free pages for make this cgroup empty */
3467 lru_add_drain_all();
3468
3469 drain_all_stock(memcg);
3470
3471 /* try to free all pages in this cgroup */
3472 while (nr_retries && page_counter_read(&memcg->memory)) {
3473 int progress;
3474
3475 if (signal_pending(current))
3476 return -EINTR;
3477
3478 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3479 GFP_KERNEL, true);
3480 if (!progress) {
3481 nr_retries--;
3482 /* maybe some writeback is necessary */
3483 congestion_wait(BLK_RW_ASYNC, HZ/10);
3484 }
3485
3486 }
3487
3488 return 0;
3489 }
3490
3491 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3492 char *buf, size_t nbytes,
3493 loff_t off)
3494 {
3495 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3496
3497 if (mem_cgroup_is_root(memcg))
3498 return -EINVAL;
3499 return mem_cgroup_force_empty(memcg) ?: nbytes;
3500 }
3501
3502 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3503 struct cftype *cft)
3504 {
3505 return 1;
3506 }
3507
3508 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3509 struct cftype *cft, u64 val)
3510 {
3511 if (val == 1)
3512 return 0;
3513
3514 pr_warn_once("Non-hierarchical mode is deprecated. "
3515 "Please report your usecase to linux-mm@kvack.org if you "
3516 "depend on this functionality.\n");
3517
3518 return -EINVAL;
3519 }
3520
3521 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3522 {
3523 unsigned long val;
3524
3525 if (mem_cgroup_is_root(memcg)) {
3526 /* mem_cgroup_threshold() calls here from irqsafe context */
3527 cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
3528 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3529 memcg_page_state(memcg, NR_ANON_MAPPED);
3530 if (swap)
3531 val += memcg_page_state(memcg, MEMCG_SWAP);
3532 } else {
3533 if (!swap)
3534 val = page_counter_read(&memcg->memory);
3535 else
3536 val = page_counter_read(&memcg->memsw);
3537 }
3538 return val;
3539 }
3540
3541 enum {
3542 RES_USAGE,
3543 RES_LIMIT,
3544 RES_MAX_USAGE,
3545 RES_FAILCNT,
3546 RES_SOFT_LIMIT,
3547 };
3548
3549 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3550 struct cftype *cft)
3551 {
3552 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3553 struct page_counter *counter;
3554
3555 switch (MEMFILE_TYPE(cft->private)) {
3556 case _MEM:
3557 counter = &memcg->memory;
3558 break;
3559 case _MEMSWAP:
3560 counter = &memcg->memsw;
3561 break;
3562 case _KMEM:
3563 counter = &memcg->kmem;
3564 break;
3565 case _TCP:
3566 counter = &memcg->tcpmem;
3567 break;
3568 default:
3569 BUG();
3570 }
3571
3572 switch (MEMFILE_ATTR(cft->private)) {
3573 case RES_USAGE:
3574 if (counter == &memcg->memory)
3575 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3576 if (counter == &memcg->memsw)
3577 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3578 return (u64)page_counter_read(counter) * PAGE_SIZE;
3579 case RES_LIMIT:
3580 return (u64)counter->max * PAGE_SIZE;
3581 case RES_MAX_USAGE:
3582 return (u64)counter->watermark * PAGE_SIZE;
3583 case RES_FAILCNT:
3584 return counter->failcnt;
3585 case RES_SOFT_LIMIT:
3586 return (u64)memcg->soft_limit * PAGE_SIZE;
3587 default:
3588 BUG();
3589 }
3590 }
3591
3592 #ifdef CONFIG_MEMCG_KMEM
3593 static int memcg_online_kmem(struct mem_cgroup *memcg)
3594 {
3595 struct obj_cgroup *objcg;
3596 int memcg_id;
3597
3598 if (cgroup_memory_nokmem)
3599 return 0;
3600
3601 BUG_ON(memcg->kmemcg_id >= 0);
3602 BUG_ON(memcg->kmem_state);
3603
3604 memcg_id = memcg_alloc_cache_id();
3605 if (memcg_id < 0)
3606 return memcg_id;
3607
3608 objcg = obj_cgroup_alloc();
3609 if (!objcg) {
3610 memcg_free_cache_id(memcg_id);
3611 return -ENOMEM;
3612 }
3613 objcg->memcg = memcg;
3614 rcu_assign_pointer(memcg->objcg, objcg);
3615
3616 static_branch_enable(&memcg_kmem_enabled_key);
3617
3618 memcg->kmemcg_id = memcg_id;
3619 memcg->kmem_state = KMEM_ONLINE;
3620
3621 return 0;
3622 }
3623
3624 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3625 {
3626 struct cgroup_subsys_state *css;
3627 struct mem_cgroup *parent, *child;
3628 int kmemcg_id;
3629
3630 if (memcg->kmem_state != KMEM_ONLINE)
3631 return;
3632
3633 memcg->kmem_state = KMEM_ALLOCATED;
3634
3635 parent = parent_mem_cgroup(memcg);
3636 if (!parent)
3637 parent = root_mem_cgroup;
3638
3639 memcg_reparent_objcgs(memcg, parent);
3640
3641 kmemcg_id = memcg->kmemcg_id;
3642 BUG_ON(kmemcg_id < 0);
3643
3644 /*
3645 * Change kmemcg_id of this cgroup and all its descendants to the
3646 * parent's id, and then move all entries from this cgroup's list_lrus
3647 * to ones of the parent. After we have finished, all list_lrus
3648 * corresponding to this cgroup are guaranteed to remain empty. The
3649 * ordering is imposed by list_lru_node->lock taken by
3650 * memcg_drain_all_list_lrus().
3651 */
3652 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3653 css_for_each_descendant_pre(css, &memcg->css) {
3654 child = mem_cgroup_from_css(css);
3655 BUG_ON(child->kmemcg_id != kmemcg_id);
3656 child->kmemcg_id = parent->kmemcg_id;
3657 }
3658 rcu_read_unlock();
3659
3660 memcg_drain_all_list_lrus(kmemcg_id, parent);
3661
3662 memcg_free_cache_id(kmemcg_id);
3663 }
3664
3665 static void memcg_free_kmem(struct mem_cgroup *memcg)
3666 {
3667 /* css_alloc() failed, offlining didn't happen */
3668 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3669 memcg_offline_kmem(memcg);
3670 }
3671 #else
3672 static int memcg_online_kmem(struct mem_cgroup *memcg)
3673 {
3674 return 0;
3675 }
3676 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3677 {
3678 }
3679 static void memcg_free_kmem(struct mem_cgroup *memcg)
3680 {
3681 }
3682 #endif /* CONFIG_MEMCG_KMEM */
3683
3684 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3685 unsigned long max)
3686 {
3687 int ret;
3688
3689 mutex_lock(&memcg_max_mutex);
3690 ret = page_counter_set_max(&memcg->kmem, max);
3691 mutex_unlock(&memcg_max_mutex);
3692 return ret;
3693 }
3694
3695 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3696 {
3697 int ret;
3698
3699 mutex_lock(&memcg_max_mutex);
3700
3701 ret = page_counter_set_max(&memcg->tcpmem, max);
3702 if (ret)
3703 goto out;
3704
3705 if (!memcg->tcpmem_active) {
3706 /*
3707 * The active flag needs to be written after the static_key
3708 * update. This is what guarantees that the socket activation
3709 * function is the last one to run. See mem_cgroup_sk_alloc()
3710 * for details, and note that we don't mark any socket as
3711 * belonging to this memcg until that flag is up.
3712 *
3713 * We need to do this, because static_keys will span multiple
3714 * sites, but we can't control their order. If we mark a socket
3715 * as accounted, but the accounting functions are not patched in
3716 * yet, we'll lose accounting.
3717 *
3718 * We never race with the readers in mem_cgroup_sk_alloc(),
3719 * because when this value change, the code to process it is not
3720 * patched in yet.
3721 */
3722 static_branch_inc(&memcg_sockets_enabled_key);
3723 memcg->tcpmem_active = true;
3724 }
3725 out:
3726 mutex_unlock(&memcg_max_mutex);
3727 return ret;
3728 }
3729
3730 /*
3731 * The user of this function is...
3732 * RES_LIMIT.
3733 */
3734 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3735 char *buf, size_t nbytes, loff_t off)
3736 {
3737 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3738 unsigned long nr_pages;
3739 int ret;
3740
3741 buf = strstrip(buf);
3742 ret = page_counter_memparse(buf, "-1", &nr_pages);
3743 if (ret)
3744 return ret;
3745
3746 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3747 case RES_LIMIT:
3748 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3749 ret = -EINVAL;
3750 break;
3751 }
3752 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3753 case _MEM:
3754 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3755 break;
3756 case _MEMSWAP:
3757 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3758 break;
3759 case _KMEM:
3760 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3761 "Please report your usecase to linux-mm@kvack.org if you "
3762 "depend on this functionality.\n");
3763 ret = memcg_update_kmem_max(memcg, nr_pages);
3764 break;
3765 case _TCP:
3766 ret = memcg_update_tcp_max(memcg, nr_pages);
3767 break;
3768 }
3769 break;
3770 case RES_SOFT_LIMIT:
3771 memcg->soft_limit = nr_pages;
3772 ret = 0;
3773 break;
3774 }
3775 return ret ?: nbytes;
3776 }
3777
3778 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3779 size_t nbytes, loff_t off)
3780 {
3781 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3782 struct page_counter *counter;
3783
3784 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3785 case _MEM:
3786 counter = &memcg->memory;
3787 break;
3788 case _MEMSWAP:
3789 counter = &memcg->memsw;
3790 break;
3791 case _KMEM:
3792 counter = &memcg->kmem;
3793 break;
3794 case _TCP:
3795 counter = &memcg->tcpmem;
3796 break;
3797 default:
3798 BUG();
3799 }
3800
3801 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3802 case RES_MAX_USAGE:
3803 page_counter_reset_watermark(counter);
3804 break;
3805 case RES_FAILCNT:
3806 counter->failcnt = 0;
3807 break;
3808 default:
3809 BUG();
3810 }
3811
3812 return nbytes;
3813 }
3814
3815 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3816 struct cftype *cft)
3817 {
3818 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3819 }
3820
3821 #ifdef CONFIG_MMU
3822 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3823 struct cftype *cft, u64 val)
3824 {
3825 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3826
3827 if (val & ~MOVE_MASK)
3828 return -EINVAL;
3829
3830 /*
3831 * No kind of locking is needed in here, because ->can_attach() will
3832 * check this value once in the beginning of the process, and then carry
3833 * on with stale data. This means that changes to this value will only
3834 * affect task migrations starting after the change.
3835 */
3836 memcg->move_charge_at_immigrate = val;
3837 return 0;
3838 }
3839 #else
3840 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3841 struct cftype *cft, u64 val)
3842 {
3843 return -ENOSYS;
3844 }
3845 #endif
3846
3847 #ifdef CONFIG_NUMA
3848
3849 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3850 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3851 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3852
3853 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3854 int nid, unsigned int lru_mask, bool tree)
3855 {
3856 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3857 unsigned long nr = 0;
3858 enum lru_list lru;
3859
3860 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3861
3862 for_each_lru(lru) {
3863 if (!(BIT(lru) & lru_mask))
3864 continue;
3865 if (tree)
3866 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3867 else
3868 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3869 }
3870 return nr;
3871 }
3872
3873 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3874 unsigned int lru_mask,
3875 bool tree)
3876 {
3877 unsigned long nr = 0;
3878 enum lru_list lru;
3879
3880 for_each_lru(lru) {
3881 if (!(BIT(lru) & lru_mask))
3882 continue;
3883 if (tree)
3884 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3885 else
3886 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3887 }
3888 return nr;
3889 }
3890
3891 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3892 {
3893 struct numa_stat {
3894 const char *name;
3895 unsigned int lru_mask;
3896 };
3897
3898 static const struct numa_stat stats[] = {
3899 { "total", LRU_ALL },
3900 { "file", LRU_ALL_FILE },
3901 { "anon", LRU_ALL_ANON },
3902 { "unevictable", BIT(LRU_UNEVICTABLE) },
3903 };
3904 const struct numa_stat *stat;
3905 int nid;
3906 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3907
3908 cgroup_rstat_flush(memcg->css.cgroup);
3909
3910 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3911 seq_printf(m, "%s=%lu", stat->name,
3912 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3913 false));
3914 for_each_node_state(nid, N_MEMORY)
3915 seq_printf(m, " N%d=%lu", nid,
3916 mem_cgroup_node_nr_lru_pages(memcg, nid,
3917 stat->lru_mask, false));
3918 seq_putc(m, '\n');
3919 }
3920
3921 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3922
3923 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3924 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3925 true));
3926 for_each_node_state(nid, N_MEMORY)
3927 seq_printf(m, " N%d=%lu", nid,
3928 mem_cgroup_node_nr_lru_pages(memcg, nid,
3929 stat->lru_mask, true));
3930 seq_putc(m, '\n');
3931 }
3932
3933 return 0;
3934 }
3935 #endif /* CONFIG_NUMA */
3936
3937 static const unsigned int memcg1_stats[] = {
3938 NR_FILE_PAGES,
3939 NR_ANON_MAPPED,
3940 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3941 NR_ANON_THPS,
3942 #endif
3943 NR_SHMEM,
3944 NR_FILE_MAPPED,
3945 NR_FILE_DIRTY,
3946 NR_WRITEBACK,
3947 MEMCG_SWAP,
3948 };
3949
3950 static const char *const memcg1_stat_names[] = {
3951 "cache",
3952 "rss",
3953 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3954 "rss_huge",
3955 #endif
3956 "shmem",
3957 "mapped_file",
3958 "dirty",
3959 "writeback",
3960 "swap",
3961 };
3962
3963 /* Universal VM events cgroup1 shows, original sort order */
3964 static const unsigned int memcg1_events[] = {
3965 PGPGIN,
3966 PGPGOUT,
3967 PGFAULT,
3968 PGMAJFAULT,
3969 };
3970
3971 static int memcg_stat_show(struct seq_file *m, void *v)
3972 {
3973 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3974 unsigned long memory, memsw;
3975 struct mem_cgroup *mi;
3976 unsigned int i;
3977
3978 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3979
3980 cgroup_rstat_flush(memcg->css.cgroup);
3981
3982 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3983 unsigned long nr;
3984
3985 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3986 continue;
3987 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3988 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3989 }
3990
3991 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3992 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3993 memcg_events_local(memcg, memcg1_events[i]));
3994
3995 for (i = 0; i < NR_LRU_LISTS; i++)
3996 seq_printf(m, "%s %lu\n", lru_list_name(i),
3997 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3998 PAGE_SIZE);
3999
4000 /* Hierarchical information */
4001 memory = memsw = PAGE_COUNTER_MAX;
4002 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4003 memory = min(memory, READ_ONCE(mi->memory.max));
4004 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4005 }
4006 seq_printf(m, "hierarchical_memory_limit %llu\n",
4007 (u64)memory * PAGE_SIZE);
4008 if (do_memsw_account())
4009 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4010 (u64)memsw * PAGE_SIZE);
4011
4012 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4013 unsigned long nr;
4014
4015 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4016 continue;
4017 nr = memcg_page_state(memcg, memcg1_stats[i]);
4018 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4019 (u64)nr * PAGE_SIZE);
4020 }
4021
4022 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4023 seq_printf(m, "total_%s %llu\n",
4024 vm_event_name(memcg1_events[i]),
4025 (u64)memcg_events(memcg, memcg1_events[i]));
4026
4027 for (i = 0; i < NR_LRU_LISTS; i++)
4028 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4029 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4030 PAGE_SIZE);
4031
4032 #ifdef CONFIG_DEBUG_VM
4033 {
4034 pg_data_t *pgdat;
4035 struct mem_cgroup_per_node *mz;
4036 unsigned long anon_cost = 0;
4037 unsigned long file_cost = 0;
4038
4039 for_each_online_pgdat(pgdat) {
4040 mz = memcg->nodeinfo[pgdat->node_id];
4041
4042 anon_cost += mz->lruvec.anon_cost;
4043 file_cost += mz->lruvec.file_cost;
4044 }
4045 seq_printf(m, "anon_cost %lu\n", anon_cost);
4046 seq_printf(m, "file_cost %lu\n", file_cost);
4047 }
4048 #endif
4049
4050 return 0;
4051 }
4052
4053 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4054 struct cftype *cft)
4055 {
4056 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4057
4058 return mem_cgroup_swappiness(memcg);
4059 }
4060
4061 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4062 struct cftype *cft, u64 val)
4063 {
4064 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4065
4066 if (val > 200)
4067 return -EINVAL;
4068
4069 if (!mem_cgroup_is_root(memcg))
4070 memcg->swappiness = val;
4071 else
4072 vm_swappiness = val;
4073
4074 return 0;
4075 }
4076
4077 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4078 {
4079 struct mem_cgroup_threshold_ary *t;
4080 unsigned long usage;
4081 int i;
4082
4083 rcu_read_lock();
4084 if (!swap)
4085 t = rcu_dereference(memcg->thresholds.primary);
4086 else
4087 t = rcu_dereference(memcg->memsw_thresholds.primary);
4088
4089 if (!t)
4090 goto unlock;
4091
4092 usage = mem_cgroup_usage(memcg, swap);
4093
4094 /*
4095 * current_threshold points to threshold just below or equal to usage.
4096 * If it's not true, a threshold was crossed after last
4097 * call of __mem_cgroup_threshold().
4098 */
4099 i = t->current_threshold;
4100
4101 /*
4102 * Iterate backward over array of thresholds starting from
4103 * current_threshold and check if a threshold is crossed.
4104 * If none of thresholds below usage is crossed, we read
4105 * only one element of the array here.
4106 */
4107 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4108 eventfd_signal(t->entries[i].eventfd, 1);
4109
4110 /* i = current_threshold + 1 */
4111 i++;
4112
4113 /*
4114 * Iterate forward over array of thresholds starting from
4115 * current_threshold+1 and check if a threshold is crossed.
4116 * If none of thresholds above usage is crossed, we read
4117 * only one element of the array here.
4118 */
4119 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4120 eventfd_signal(t->entries[i].eventfd, 1);
4121
4122 /* Update current_threshold */
4123 t->current_threshold = i - 1;
4124 unlock:
4125 rcu_read_unlock();
4126 }
4127
4128 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4129 {
4130 while (memcg) {
4131 __mem_cgroup_threshold(memcg, false);
4132 if (do_memsw_account())
4133 __mem_cgroup_threshold(memcg, true);
4134
4135 memcg = parent_mem_cgroup(memcg);
4136 }
4137 }
4138
4139 static int compare_thresholds(const void *a, const void *b)
4140 {
4141 const struct mem_cgroup_threshold *_a = a;
4142 const struct mem_cgroup_threshold *_b = b;
4143
4144 if (_a->threshold > _b->threshold)
4145 return 1;
4146
4147 if (_a->threshold < _b->threshold)
4148 return -1;
4149
4150 return 0;
4151 }
4152
4153 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4154 {
4155 struct mem_cgroup_eventfd_list *ev;
4156
4157 spin_lock(&memcg_oom_lock);
4158
4159 list_for_each_entry(ev, &memcg->oom_notify, list)
4160 eventfd_signal(ev->eventfd, 1);
4161
4162 spin_unlock(&memcg_oom_lock);
4163 return 0;
4164 }
4165
4166 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4167 {
4168 struct mem_cgroup *iter;
4169
4170 for_each_mem_cgroup_tree(iter, memcg)
4171 mem_cgroup_oom_notify_cb(iter);
4172 }
4173
4174 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4175 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4176 {
4177 struct mem_cgroup_thresholds *thresholds;
4178 struct mem_cgroup_threshold_ary *new;
4179 unsigned long threshold;
4180 unsigned long usage;
4181 int i, size, ret;
4182
4183 ret = page_counter_memparse(args, "-1", &threshold);
4184 if (ret)
4185 return ret;
4186
4187 mutex_lock(&memcg->thresholds_lock);
4188
4189 if (type == _MEM) {
4190 thresholds = &memcg->thresholds;
4191 usage = mem_cgroup_usage(memcg, false);
4192 } else if (type == _MEMSWAP) {
4193 thresholds = &memcg->memsw_thresholds;
4194 usage = mem_cgroup_usage(memcg, true);
4195 } else
4196 BUG();
4197
4198 /* Check if a threshold crossed before adding a new one */
4199 if (thresholds->primary)
4200 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4201
4202 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4203
4204 /* Allocate memory for new array of thresholds */
4205 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4206 if (!new) {
4207 ret = -ENOMEM;
4208 goto unlock;
4209 }
4210 new->size = size;
4211
4212 /* Copy thresholds (if any) to new array */
4213 if (thresholds->primary)
4214 memcpy(new->entries, thresholds->primary->entries,
4215 flex_array_size(new, entries, size - 1));
4216
4217 /* Add new threshold */
4218 new->entries[size - 1].eventfd = eventfd;
4219 new->entries[size - 1].threshold = threshold;
4220
4221 /* Sort thresholds. Registering of new threshold isn't time-critical */
4222 sort(new->entries, size, sizeof(*new->entries),
4223 compare_thresholds, NULL);
4224
4225 /* Find current threshold */
4226 new->current_threshold = -1;
4227 for (i = 0; i < size; i++) {
4228 if (new->entries[i].threshold <= usage) {
4229 /*
4230 * new->current_threshold will not be used until
4231 * rcu_assign_pointer(), so it's safe to increment
4232 * it here.
4233 */
4234 ++new->current_threshold;
4235 } else
4236 break;
4237 }
4238
4239 /* Free old spare buffer and save old primary buffer as spare */
4240 kfree(thresholds->spare);
4241 thresholds->spare = thresholds->primary;
4242
4243 rcu_assign_pointer(thresholds->primary, new);
4244
4245 /* To be sure that nobody uses thresholds */
4246 synchronize_rcu();
4247
4248 unlock:
4249 mutex_unlock(&memcg->thresholds_lock);
4250
4251 return ret;
4252 }
4253
4254 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4255 struct eventfd_ctx *eventfd, const char *args)
4256 {
4257 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4258 }
4259
4260 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4261 struct eventfd_ctx *eventfd, const char *args)
4262 {
4263 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4264 }
4265
4266 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4267 struct eventfd_ctx *eventfd, enum res_type type)
4268 {
4269 struct mem_cgroup_thresholds *thresholds;
4270 struct mem_cgroup_threshold_ary *new;
4271 unsigned long usage;
4272 int i, j, size, entries;
4273
4274 mutex_lock(&memcg->thresholds_lock);
4275
4276 if (type == _MEM) {
4277 thresholds = &memcg->thresholds;
4278 usage = mem_cgroup_usage(memcg, false);
4279 } else if (type == _MEMSWAP) {
4280 thresholds = &memcg->memsw_thresholds;
4281 usage = mem_cgroup_usage(memcg, true);
4282 } else
4283 BUG();
4284
4285 if (!thresholds->primary)
4286 goto unlock;
4287
4288 /* Check if a threshold crossed before removing */
4289 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4290
4291 /* Calculate new number of threshold */
4292 size = entries = 0;
4293 for (i = 0; i < thresholds->primary->size; i++) {
4294 if (thresholds->primary->entries[i].eventfd != eventfd)
4295 size++;
4296 else
4297 entries++;
4298 }
4299
4300 new = thresholds->spare;
4301
4302 /* If no items related to eventfd have been cleared, nothing to do */
4303 if (!entries)
4304 goto unlock;
4305
4306 /* Set thresholds array to NULL if we don't have thresholds */
4307 if (!size) {
4308 kfree(new);
4309 new = NULL;
4310 goto swap_buffers;
4311 }
4312
4313 new->size = size;
4314
4315 /* Copy thresholds and find current threshold */
4316 new->current_threshold = -1;
4317 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4318 if (thresholds->primary->entries[i].eventfd == eventfd)
4319 continue;
4320
4321 new->entries[j] = thresholds->primary->entries[i];
4322 if (new->entries[j].threshold <= usage) {
4323 /*
4324 * new->current_threshold will not be used
4325 * until rcu_assign_pointer(), so it's safe to increment
4326 * it here.
4327 */
4328 ++new->current_threshold;
4329 }
4330 j++;
4331 }
4332
4333 swap_buffers:
4334 /* Swap primary and spare array */
4335 thresholds->spare = thresholds->primary;
4336
4337 rcu_assign_pointer(thresholds->primary, new);
4338
4339 /* To be sure that nobody uses thresholds */
4340 synchronize_rcu();
4341
4342 /* If all events are unregistered, free the spare array */
4343 if (!new) {
4344 kfree(thresholds->spare);
4345 thresholds->spare = NULL;
4346 }
4347 unlock:
4348 mutex_unlock(&memcg->thresholds_lock);
4349 }
4350
4351 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4352 struct eventfd_ctx *eventfd)
4353 {
4354 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4355 }
4356
4357 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4358 struct eventfd_ctx *eventfd)
4359 {
4360 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4361 }
4362
4363 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4364 struct eventfd_ctx *eventfd, const char *args)
4365 {
4366 struct mem_cgroup_eventfd_list *event;
4367
4368 event = kmalloc(sizeof(*event), GFP_KERNEL);
4369 if (!event)
4370 return -ENOMEM;
4371
4372 spin_lock(&memcg_oom_lock);
4373
4374 event->eventfd = eventfd;
4375 list_add(&event->list, &memcg->oom_notify);
4376
4377 /* already in OOM ? */
4378 if (memcg->under_oom)
4379 eventfd_signal(eventfd, 1);
4380 spin_unlock(&memcg_oom_lock);
4381
4382 return 0;
4383 }
4384
4385 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4386 struct eventfd_ctx *eventfd)
4387 {
4388 struct mem_cgroup_eventfd_list *ev, *tmp;
4389
4390 spin_lock(&memcg_oom_lock);
4391
4392 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4393 if (ev->eventfd == eventfd) {
4394 list_del(&ev->list);
4395 kfree(ev);
4396 }
4397 }
4398
4399 spin_unlock(&memcg_oom_lock);
4400 }
4401
4402 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4403 {
4404 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4405
4406 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4407 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4408 seq_printf(sf, "oom_kill %lu\n",
4409 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4410 return 0;
4411 }
4412
4413 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4414 struct cftype *cft, u64 val)
4415 {
4416 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4417
4418 /* cannot set to root cgroup and only 0 and 1 are allowed */
4419 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4420 return -EINVAL;
4421
4422 memcg->oom_kill_disable = val;
4423 if (!val)
4424 memcg_oom_recover(memcg);
4425
4426 return 0;
4427 }
4428
4429 #ifdef CONFIG_CGROUP_WRITEBACK
4430
4431 #include <trace/events/writeback.h>
4432
4433 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4434 {
4435 return wb_domain_init(&memcg->cgwb_domain, gfp);
4436 }
4437
4438 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4439 {
4440 wb_domain_exit(&memcg->cgwb_domain);
4441 }
4442
4443 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4444 {
4445 wb_domain_size_changed(&memcg->cgwb_domain);
4446 }
4447
4448 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4449 {
4450 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4451
4452 if (!memcg->css.parent)
4453 return NULL;
4454
4455 return &memcg->cgwb_domain;
4456 }
4457
4458 /**
4459 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4460 * @wb: bdi_writeback in question
4461 * @pfilepages: out parameter for number of file pages
4462 * @pheadroom: out parameter for number of allocatable pages according to memcg
4463 * @pdirty: out parameter for number of dirty pages
4464 * @pwriteback: out parameter for number of pages under writeback
4465 *
4466 * Determine the numbers of file, headroom, dirty, and writeback pages in
4467 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4468 * is a bit more involved.
4469 *
4470 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4471 * headroom is calculated as the lowest headroom of itself and the
4472 * ancestors. Note that this doesn't consider the actual amount of
4473 * available memory in the system. The caller should further cap
4474 * *@pheadroom accordingly.
4475 */
4476 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4477 unsigned long *pheadroom, unsigned long *pdirty,
4478 unsigned long *pwriteback)
4479 {
4480 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4481 struct mem_cgroup *parent;
4482
4483 cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4484
4485 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4486 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4487 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4488 memcg_page_state(memcg, NR_ACTIVE_FILE);
4489
4490 *pheadroom = PAGE_COUNTER_MAX;
4491 while ((parent = parent_mem_cgroup(memcg))) {
4492 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4493 READ_ONCE(memcg->memory.high));
4494 unsigned long used = page_counter_read(&memcg->memory);
4495
4496 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4497 memcg = parent;
4498 }
4499 }
4500
4501 /*
4502 * Foreign dirty flushing
4503 *
4504 * There's an inherent mismatch between memcg and writeback. The former
4505 * tracks ownership per-page while the latter per-inode. This was a
4506 * deliberate design decision because honoring per-page ownership in the
4507 * writeback path is complicated, may lead to higher CPU and IO overheads
4508 * and deemed unnecessary given that write-sharing an inode across
4509 * different cgroups isn't a common use-case.
4510 *
4511 * Combined with inode majority-writer ownership switching, this works well
4512 * enough in most cases but there are some pathological cases. For
4513 * example, let's say there are two cgroups A and B which keep writing to
4514 * different but confined parts of the same inode. B owns the inode and
4515 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4516 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4517 * triggering background writeback. A will be slowed down without a way to
4518 * make writeback of the dirty pages happen.
4519 *
4520 * Conditions like the above can lead to a cgroup getting repeatedly and
4521 * severely throttled after making some progress after each
4522 * dirty_expire_interval while the underlying IO device is almost
4523 * completely idle.
4524 *
4525 * Solving this problem completely requires matching the ownership tracking
4526 * granularities between memcg and writeback in either direction. However,
4527 * the more egregious behaviors can be avoided by simply remembering the
4528 * most recent foreign dirtying events and initiating remote flushes on
4529 * them when local writeback isn't enough to keep the memory clean enough.
4530 *
4531 * The following two functions implement such mechanism. When a foreign
4532 * page - a page whose memcg and writeback ownerships don't match - is
4533 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4534 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4535 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4536 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4537 * foreign bdi_writebacks which haven't expired. Both the numbers of
4538 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4539 * limited to MEMCG_CGWB_FRN_CNT.
4540 *
4541 * The mechanism only remembers IDs and doesn't hold any object references.
4542 * As being wrong occasionally doesn't matter, updates and accesses to the
4543 * records are lockless and racy.
4544 */
4545 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4546 struct bdi_writeback *wb)
4547 {
4548 struct mem_cgroup *memcg = page_memcg(page);
4549 struct memcg_cgwb_frn *frn;
4550 u64 now = get_jiffies_64();
4551 u64 oldest_at = now;
4552 int oldest = -1;
4553 int i;
4554
4555 trace_track_foreign_dirty(page, wb);
4556
4557 /*
4558 * Pick the slot to use. If there is already a slot for @wb, keep
4559 * using it. If not replace the oldest one which isn't being
4560 * written out.
4561 */
4562 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4563 frn = &memcg->cgwb_frn[i];
4564 if (frn->bdi_id == wb->bdi->id &&
4565 frn->memcg_id == wb->memcg_css->id)
4566 break;
4567 if (time_before64(frn->at, oldest_at) &&
4568 atomic_read(&frn->done.cnt) == 1) {
4569 oldest = i;
4570 oldest_at = frn->at;
4571 }
4572 }
4573
4574 if (i < MEMCG_CGWB_FRN_CNT) {
4575 /*
4576 * Re-using an existing one. Update timestamp lazily to
4577 * avoid making the cacheline hot. We want them to be
4578 * reasonably up-to-date and significantly shorter than
4579 * dirty_expire_interval as that's what expires the record.
4580 * Use the shorter of 1s and dirty_expire_interval / 8.
4581 */
4582 unsigned long update_intv =
4583 min_t(unsigned long, HZ,
4584 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4585
4586 if (time_before64(frn->at, now - update_intv))
4587 frn->at = now;
4588 } else if (oldest >= 0) {
4589 /* replace the oldest free one */
4590 frn = &memcg->cgwb_frn[oldest];
4591 frn->bdi_id = wb->bdi->id;
4592 frn->memcg_id = wb->memcg_css->id;
4593 frn->at = now;
4594 }
4595 }
4596
4597 /* issue foreign writeback flushes for recorded foreign dirtying events */
4598 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4599 {
4600 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4601 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4602 u64 now = jiffies_64;
4603 int i;
4604
4605 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4606 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4607
4608 /*
4609 * If the record is older than dirty_expire_interval,
4610 * writeback on it has already started. No need to kick it
4611 * off again. Also, don't start a new one if there's
4612 * already one in flight.
4613 */
4614 if (time_after64(frn->at, now - intv) &&
4615 atomic_read(&frn->done.cnt) == 1) {
4616 frn->at = 0;
4617 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4618 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4619 WB_REASON_FOREIGN_FLUSH,
4620 &frn->done);
4621 }
4622 }
4623 }
4624
4625 #else /* CONFIG_CGROUP_WRITEBACK */
4626
4627 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4628 {
4629 return 0;
4630 }
4631
4632 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4633 {
4634 }
4635
4636 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4637 {
4638 }
4639
4640 #endif /* CONFIG_CGROUP_WRITEBACK */
4641
4642 /*
4643 * DO NOT USE IN NEW FILES.
4644 *
4645 * "cgroup.event_control" implementation.
4646 *
4647 * This is way over-engineered. It tries to support fully configurable
4648 * events for each user. Such level of flexibility is completely
4649 * unnecessary especially in the light of the planned unified hierarchy.
4650 *
4651 * Please deprecate this and replace with something simpler if at all
4652 * possible.
4653 */
4654
4655 /*
4656 * Unregister event and free resources.
4657 *
4658 * Gets called from workqueue.
4659 */
4660 static void memcg_event_remove(struct work_struct *work)
4661 {
4662 struct mem_cgroup_event *event =
4663 container_of(work, struct mem_cgroup_event, remove);
4664 struct mem_cgroup *memcg = event->memcg;
4665
4666 remove_wait_queue(event->wqh, &event->wait);
4667
4668 event->unregister_event(memcg, event->eventfd);
4669
4670 /* Notify userspace the event is going away. */
4671 eventfd_signal(event->eventfd, 1);
4672
4673 eventfd_ctx_put(event->eventfd);
4674 kfree(event);
4675 css_put(&memcg->css);
4676 }
4677
4678 /*
4679 * Gets called on EPOLLHUP on eventfd when user closes it.
4680 *
4681 * Called with wqh->lock held and interrupts disabled.
4682 */
4683 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4684 int sync, void *key)
4685 {
4686 struct mem_cgroup_event *event =
4687 container_of(wait, struct mem_cgroup_event, wait);
4688 struct mem_cgroup *memcg = event->memcg;
4689 __poll_t flags = key_to_poll(key);
4690
4691 if (flags & EPOLLHUP) {
4692 /*
4693 * If the event has been detached at cgroup removal, we
4694 * can simply return knowing the other side will cleanup
4695 * for us.
4696 *
4697 * We can't race against event freeing since the other
4698 * side will require wqh->lock via remove_wait_queue(),
4699 * which we hold.
4700 */
4701 spin_lock(&memcg->event_list_lock);
4702 if (!list_empty(&event->list)) {
4703 list_del_init(&event->list);
4704 /*
4705 * We are in atomic context, but cgroup_event_remove()
4706 * may sleep, so we have to call it in workqueue.
4707 */
4708 schedule_work(&event->remove);
4709 }
4710 spin_unlock(&memcg->event_list_lock);
4711 }
4712
4713 return 0;
4714 }
4715
4716 static void memcg_event_ptable_queue_proc(struct file *file,
4717 wait_queue_head_t *wqh, poll_table *pt)
4718 {
4719 struct mem_cgroup_event *event =
4720 container_of(pt, struct mem_cgroup_event, pt);
4721
4722 event->wqh = wqh;
4723 add_wait_queue(wqh, &event->wait);
4724 }
4725
4726 /*
4727 * DO NOT USE IN NEW FILES.
4728 *
4729 * Parse input and register new cgroup event handler.
4730 *
4731 * Input must be in format '<event_fd> <control_fd> <args>'.
4732 * Interpretation of args is defined by control file implementation.
4733 */
4734 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4735 char *buf, size_t nbytes, loff_t off)
4736 {
4737 struct cgroup_subsys_state *css = of_css(of);
4738 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4739 struct mem_cgroup_event *event;
4740 struct cgroup_subsys_state *cfile_css;
4741 unsigned int efd, cfd;
4742 struct fd efile;
4743 struct fd cfile;
4744 const char *name;
4745 char *endp;
4746 int ret;
4747
4748 buf = strstrip(buf);
4749
4750 efd = simple_strtoul(buf, &endp, 10);
4751 if (*endp != ' ')
4752 return -EINVAL;
4753 buf = endp + 1;
4754
4755 cfd = simple_strtoul(buf, &endp, 10);
4756 if ((*endp != ' ') && (*endp != '\0'))
4757 return -EINVAL;
4758 buf = endp + 1;
4759
4760 event = kzalloc(sizeof(*event), GFP_KERNEL);
4761 if (!event)
4762 return -ENOMEM;
4763
4764 event->memcg = memcg;
4765 INIT_LIST_HEAD(&event->list);
4766 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4767 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4768 INIT_WORK(&event->remove, memcg_event_remove);
4769
4770 efile = fdget(efd);
4771 if (!efile.file) {
4772 ret = -EBADF;
4773 goto out_kfree;
4774 }
4775
4776 event->eventfd = eventfd_ctx_fileget(efile.file);
4777 if (IS_ERR(event->eventfd)) {
4778 ret = PTR_ERR(event->eventfd);
4779 goto out_put_efile;
4780 }
4781
4782 cfile = fdget(cfd);
4783 if (!cfile.file) {
4784 ret = -EBADF;
4785 goto out_put_eventfd;
4786 }
4787
4788 /* the process need read permission on control file */
4789 /* AV: shouldn't we check that it's been opened for read instead? */
4790 ret = file_permission(cfile.file, MAY_READ);
4791 if (ret < 0)
4792 goto out_put_cfile;
4793
4794 /*
4795 * Determine the event callbacks and set them in @event. This used
4796 * to be done via struct cftype but cgroup core no longer knows
4797 * about these events. The following is crude but the whole thing
4798 * is for compatibility anyway.
4799 *
4800 * DO NOT ADD NEW FILES.
4801 */
4802 name = cfile.file->f_path.dentry->d_name.name;
4803
4804 if (!strcmp(name, "memory.usage_in_bytes")) {
4805 event->register_event = mem_cgroup_usage_register_event;
4806 event->unregister_event = mem_cgroup_usage_unregister_event;
4807 } else if (!strcmp(name, "memory.oom_control")) {
4808 event->register_event = mem_cgroup_oom_register_event;
4809 event->unregister_event = mem_cgroup_oom_unregister_event;
4810 } else if (!strcmp(name, "memory.pressure_level")) {
4811 event->register_event = vmpressure_register_event;
4812 event->unregister_event = vmpressure_unregister_event;
4813 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4814 event->register_event = memsw_cgroup_usage_register_event;
4815 event->unregister_event = memsw_cgroup_usage_unregister_event;
4816 } else {
4817 ret = -EINVAL;
4818 goto out_put_cfile;
4819 }
4820
4821 /*
4822 * Verify @cfile should belong to @css. Also, remaining events are
4823 * automatically removed on cgroup destruction but the removal is
4824 * asynchronous, so take an extra ref on @css.
4825 */
4826 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4827 &memory_cgrp_subsys);
4828 ret = -EINVAL;
4829 if (IS_ERR(cfile_css))
4830 goto out_put_cfile;
4831 if (cfile_css != css) {
4832 css_put(cfile_css);
4833 goto out_put_cfile;
4834 }
4835
4836 ret = event->register_event(memcg, event->eventfd, buf);
4837 if (ret)
4838 goto out_put_css;
4839
4840 vfs_poll(efile.file, &event->pt);
4841
4842 spin_lock_irq(&memcg->event_list_lock);
4843 list_add(&event->list, &memcg->event_list);
4844 spin_unlock_irq(&memcg->event_list_lock);
4845
4846 fdput(cfile);
4847 fdput(efile);
4848
4849 return nbytes;
4850
4851 out_put_css:
4852 css_put(css);
4853 out_put_cfile:
4854 fdput(cfile);
4855 out_put_eventfd:
4856 eventfd_ctx_put(event->eventfd);
4857 out_put_efile:
4858 fdput(efile);
4859 out_kfree:
4860 kfree(event);
4861
4862 return ret;
4863 }
4864
4865 static struct cftype mem_cgroup_legacy_files[] = {
4866 {
4867 .name = "usage_in_bytes",
4868 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4869 .read_u64 = mem_cgroup_read_u64,
4870 },
4871 {
4872 .name = "max_usage_in_bytes",
4873 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4874 .write = mem_cgroup_reset,
4875 .read_u64 = mem_cgroup_read_u64,
4876 },
4877 {
4878 .name = "limit_in_bytes",
4879 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4880 .write = mem_cgroup_write,
4881 .read_u64 = mem_cgroup_read_u64,
4882 },
4883 {
4884 .name = "soft_limit_in_bytes",
4885 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4886 .write = mem_cgroup_write,
4887 .read_u64 = mem_cgroup_read_u64,
4888 },
4889 {
4890 .name = "failcnt",
4891 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4892 .write = mem_cgroup_reset,
4893 .read_u64 = mem_cgroup_read_u64,
4894 },
4895 {
4896 .name = "stat",
4897 .seq_show = memcg_stat_show,
4898 },
4899 {
4900 .name = "force_empty",
4901 .write = mem_cgroup_force_empty_write,
4902 },
4903 {
4904 .name = "use_hierarchy",
4905 .write_u64 = mem_cgroup_hierarchy_write,
4906 .read_u64 = mem_cgroup_hierarchy_read,
4907 },
4908 {
4909 .name = "cgroup.event_control", /* XXX: for compat */
4910 .write = memcg_write_event_control,
4911 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4912 },
4913 {
4914 .name = "swappiness",
4915 .read_u64 = mem_cgroup_swappiness_read,
4916 .write_u64 = mem_cgroup_swappiness_write,
4917 },
4918 {
4919 .name = "move_charge_at_immigrate",
4920 .read_u64 = mem_cgroup_move_charge_read,
4921 .write_u64 = mem_cgroup_move_charge_write,
4922 },
4923 {
4924 .name = "oom_control",
4925 .seq_show = mem_cgroup_oom_control_read,
4926 .write_u64 = mem_cgroup_oom_control_write,
4927 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4928 },
4929 {
4930 .name = "pressure_level",
4931 },
4932 #ifdef CONFIG_NUMA
4933 {
4934 .name = "numa_stat",
4935 .seq_show = memcg_numa_stat_show,
4936 },
4937 #endif
4938 {
4939 .name = "kmem.limit_in_bytes",
4940 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4941 .write = mem_cgroup_write,
4942 .read_u64 = mem_cgroup_read_u64,
4943 },
4944 {
4945 .name = "kmem.usage_in_bytes",
4946 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4947 .read_u64 = mem_cgroup_read_u64,
4948 },
4949 {
4950 .name = "kmem.failcnt",
4951 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4952 .write = mem_cgroup_reset,
4953 .read_u64 = mem_cgroup_read_u64,
4954 },
4955 {
4956 .name = "kmem.max_usage_in_bytes",
4957 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4958 .write = mem_cgroup_reset,
4959 .read_u64 = mem_cgroup_read_u64,
4960 },
4961 #if defined(CONFIG_MEMCG_KMEM) && \
4962 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4963 {
4964 .name = "kmem.slabinfo",
4965 .seq_show = memcg_slab_show,
4966 },
4967 #endif
4968 {
4969 .name = "kmem.tcp.limit_in_bytes",
4970 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4971 .write = mem_cgroup_write,
4972 .read_u64 = mem_cgroup_read_u64,
4973 },
4974 {
4975 .name = "kmem.tcp.usage_in_bytes",
4976 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4977 .read_u64 = mem_cgroup_read_u64,
4978 },
4979 {
4980 .name = "kmem.tcp.failcnt",
4981 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4982 .write = mem_cgroup_reset,
4983 .read_u64 = mem_cgroup_read_u64,
4984 },
4985 {
4986 .name = "kmem.tcp.max_usage_in_bytes",
4987 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4988 .write = mem_cgroup_reset,
4989 .read_u64 = mem_cgroup_read_u64,
4990 },
4991 { }, /* terminate */
4992 };
4993
4994 /*
4995 * Private memory cgroup IDR
4996 *
4997 * Swap-out records and page cache shadow entries need to store memcg
4998 * references in constrained space, so we maintain an ID space that is
4999 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5000 * memory-controlled cgroups to 64k.
5001 *
5002 * However, there usually are many references to the offline CSS after
5003 * the cgroup has been destroyed, such as page cache or reclaimable
5004 * slab objects, that don't need to hang on to the ID. We want to keep
5005 * those dead CSS from occupying IDs, or we might quickly exhaust the
5006 * relatively small ID space and prevent the creation of new cgroups
5007 * even when there are much fewer than 64k cgroups - possibly none.
5008 *
5009 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5010 * be freed and recycled when it's no longer needed, which is usually
5011 * when the CSS is offlined.
5012 *
5013 * The only exception to that are records of swapped out tmpfs/shmem
5014 * pages that need to be attributed to live ancestors on swapin. But
5015 * those references are manageable from userspace.
5016 */
5017
5018 static DEFINE_IDR(mem_cgroup_idr);
5019
5020 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5021 {
5022 if (memcg->id.id > 0) {
5023 idr_remove(&mem_cgroup_idr, memcg->id.id);
5024 memcg->id.id = 0;
5025 }
5026 }
5027
5028 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5029 unsigned int n)
5030 {
5031 refcount_add(n, &memcg->id.ref);
5032 }
5033
5034 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5035 {
5036 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5037 mem_cgroup_id_remove(memcg);
5038
5039 /* Memcg ID pins CSS */
5040 css_put(&memcg->css);
5041 }
5042 }
5043
5044 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5045 {
5046 mem_cgroup_id_put_many(memcg, 1);
5047 }
5048
5049 /**
5050 * mem_cgroup_from_id - look up a memcg from a memcg id
5051 * @id: the memcg id to look up
5052 *
5053 * Caller must hold rcu_read_lock().
5054 */
5055 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5056 {
5057 WARN_ON_ONCE(!rcu_read_lock_held());
5058 return idr_find(&mem_cgroup_idr, id);
5059 }
5060
5061 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5062 {
5063 struct mem_cgroup_per_node *pn;
5064 int tmp = node;
5065 /*
5066 * This routine is called against possible nodes.
5067 * But it's BUG to call kmalloc() against offline node.
5068 *
5069 * TODO: this routine can waste much memory for nodes which will
5070 * never be onlined. It's better to use memory hotplug callback
5071 * function.
5072 */
5073 if (!node_state(node, N_NORMAL_MEMORY))
5074 tmp = -1;
5075 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5076 if (!pn)
5077 return 1;
5078
5079 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5080 GFP_KERNEL_ACCOUNT);
5081 if (!pn->lruvec_stats_percpu) {
5082 kfree(pn);
5083 return 1;
5084 }
5085
5086 lruvec_init(&pn->lruvec);
5087 pn->usage_in_excess = 0;
5088 pn->on_tree = false;
5089 pn->memcg = memcg;
5090
5091 memcg->nodeinfo[node] = pn;
5092 return 0;
5093 }
5094
5095 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5096 {
5097 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5098
5099 if (!pn)
5100 return;
5101
5102 free_percpu(pn->lruvec_stats_percpu);
5103 kfree(pn);
5104 }
5105
5106 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5107 {
5108 int node;
5109
5110 for_each_node(node)
5111 free_mem_cgroup_per_node_info(memcg, node);
5112 free_percpu(memcg->vmstats_percpu);
5113 kfree(memcg);
5114 }
5115
5116 static void mem_cgroup_free(struct mem_cgroup *memcg)
5117 {
5118 memcg_wb_domain_exit(memcg);
5119 __mem_cgroup_free(memcg);
5120 }
5121
5122 static struct mem_cgroup *mem_cgroup_alloc(void)
5123 {
5124 struct mem_cgroup *memcg;
5125 unsigned int size;
5126 int node;
5127 int __maybe_unused i;
5128 long error = -ENOMEM;
5129
5130 size = sizeof(struct mem_cgroup);
5131 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5132
5133 memcg = kzalloc(size, GFP_KERNEL);
5134 if (!memcg)
5135 return ERR_PTR(error);
5136
5137 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5138 1, MEM_CGROUP_ID_MAX,
5139 GFP_KERNEL);
5140 if (memcg->id.id < 0) {
5141 error = memcg->id.id;
5142 goto fail;
5143 }
5144
5145 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5146 GFP_KERNEL_ACCOUNT);
5147 if (!memcg->vmstats_percpu)
5148 goto fail;
5149
5150 for_each_node(node)
5151 if (alloc_mem_cgroup_per_node_info(memcg, node))
5152 goto fail;
5153
5154 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5155 goto fail;
5156
5157 INIT_WORK(&memcg->high_work, high_work_func);
5158 INIT_LIST_HEAD(&memcg->oom_notify);
5159 mutex_init(&memcg->thresholds_lock);
5160 spin_lock_init(&memcg->move_lock);
5161 vmpressure_init(&memcg->vmpressure);
5162 INIT_LIST_HEAD(&memcg->event_list);
5163 spin_lock_init(&memcg->event_list_lock);
5164 memcg->socket_pressure = jiffies;
5165 #ifdef CONFIG_MEMCG_KMEM
5166 memcg->kmemcg_id = -1;
5167 INIT_LIST_HEAD(&memcg->objcg_list);
5168 #endif
5169 #ifdef CONFIG_CGROUP_WRITEBACK
5170 INIT_LIST_HEAD(&memcg->cgwb_list);
5171 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5172 memcg->cgwb_frn[i].done =
5173 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5174 #endif
5175 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5176 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5177 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5178 memcg->deferred_split_queue.split_queue_len = 0;
5179 #endif
5180 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5181 return memcg;
5182 fail:
5183 mem_cgroup_id_remove(memcg);
5184 __mem_cgroup_free(memcg);
5185 return ERR_PTR(error);
5186 }
5187
5188 static struct cgroup_subsys_state * __ref
5189 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5190 {
5191 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5192 struct mem_cgroup *memcg, *old_memcg;
5193 long error = -ENOMEM;
5194
5195 old_memcg = set_active_memcg(parent);
5196 memcg = mem_cgroup_alloc();
5197 set_active_memcg(old_memcg);
5198 if (IS_ERR(memcg))
5199 return ERR_CAST(memcg);
5200
5201 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5202 memcg->soft_limit = PAGE_COUNTER_MAX;
5203 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5204 if (parent) {
5205 memcg->swappiness = mem_cgroup_swappiness(parent);
5206 memcg->oom_kill_disable = parent->oom_kill_disable;
5207
5208 page_counter_init(&memcg->memory, &parent->memory);
5209 page_counter_init(&memcg->swap, &parent->swap);
5210 page_counter_init(&memcg->kmem, &parent->kmem);
5211 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5212 } else {
5213 page_counter_init(&memcg->memory, NULL);
5214 page_counter_init(&memcg->swap, NULL);
5215 page_counter_init(&memcg->kmem, NULL);
5216 page_counter_init(&memcg->tcpmem, NULL);
5217
5218 root_mem_cgroup = memcg;
5219 return &memcg->css;
5220 }
5221
5222 /* The following stuff does not apply to the root */
5223 error = memcg_online_kmem(memcg);
5224 if (error)
5225 goto fail;
5226
5227 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5228 static_branch_inc(&memcg_sockets_enabled_key);
5229
5230 return &memcg->css;
5231 fail:
5232 mem_cgroup_id_remove(memcg);
5233 mem_cgroup_free(memcg);
5234 return ERR_PTR(error);
5235 }
5236
5237 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5238 {
5239 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5240
5241 /*
5242 * A memcg must be visible for expand_shrinker_info()
5243 * by the time the maps are allocated. So, we allocate maps
5244 * here, when for_each_mem_cgroup() can't skip it.
5245 */
5246 if (alloc_shrinker_info(memcg)) {
5247 mem_cgroup_id_remove(memcg);
5248 return -ENOMEM;
5249 }
5250
5251 /* Online state pins memcg ID, memcg ID pins CSS */
5252 refcount_set(&memcg->id.ref, 1);
5253 css_get(css);
5254
5255 if (unlikely(mem_cgroup_is_root(memcg)))
5256 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5257 2UL*HZ);
5258 return 0;
5259 }
5260
5261 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5262 {
5263 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5264 struct mem_cgroup_event *event, *tmp;
5265
5266 /*
5267 * Unregister events and notify userspace.
5268 * Notify userspace about cgroup removing only after rmdir of cgroup
5269 * directory to avoid race between userspace and kernelspace.
5270 */
5271 spin_lock_irq(&memcg->event_list_lock);
5272 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5273 list_del_init(&event->list);
5274 schedule_work(&event->remove);
5275 }
5276 spin_unlock_irq(&memcg->event_list_lock);
5277
5278 page_counter_set_min(&memcg->memory, 0);
5279 page_counter_set_low(&memcg->memory, 0);
5280
5281 memcg_offline_kmem(memcg);
5282 reparent_shrinker_deferred(memcg);
5283 wb_memcg_offline(memcg);
5284
5285 drain_all_stock(memcg);
5286
5287 mem_cgroup_id_put(memcg);
5288 }
5289
5290 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5291 {
5292 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5293
5294 invalidate_reclaim_iterators(memcg);
5295 }
5296
5297 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5298 {
5299 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5300 int __maybe_unused i;
5301
5302 #ifdef CONFIG_CGROUP_WRITEBACK
5303 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5304 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5305 #endif
5306 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5307 static_branch_dec(&memcg_sockets_enabled_key);
5308
5309 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5310 static_branch_dec(&memcg_sockets_enabled_key);
5311
5312 vmpressure_cleanup(&memcg->vmpressure);
5313 cancel_work_sync(&memcg->high_work);
5314 mem_cgroup_remove_from_trees(memcg);
5315 free_shrinker_info(memcg);
5316 memcg_free_kmem(memcg);
5317 mem_cgroup_free(memcg);
5318 }
5319
5320 /**
5321 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5322 * @css: the target css
5323 *
5324 * Reset the states of the mem_cgroup associated with @css. This is
5325 * invoked when the userland requests disabling on the default hierarchy
5326 * but the memcg is pinned through dependency. The memcg should stop
5327 * applying policies and should revert to the vanilla state as it may be
5328 * made visible again.
5329 *
5330 * The current implementation only resets the essential configurations.
5331 * This needs to be expanded to cover all the visible parts.
5332 */
5333 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5334 {
5335 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5336
5337 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5338 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5339 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5340 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5341 page_counter_set_min(&memcg->memory, 0);
5342 page_counter_set_low(&memcg->memory, 0);
5343 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5344 memcg->soft_limit = PAGE_COUNTER_MAX;
5345 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5346 memcg_wb_domain_size_changed(memcg);
5347 }
5348
5349 void mem_cgroup_flush_stats(void)
5350 {
5351 if (!spin_trylock(&stats_flush_lock))
5352 return;
5353
5354 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
5355 spin_unlock(&stats_flush_lock);
5356 }
5357
5358 static void flush_memcg_stats_dwork(struct work_struct *w)
5359 {
5360 mem_cgroup_flush_stats();
5361 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 2UL*HZ);
5362 }
5363
5364 static void flush_memcg_stats_work(struct work_struct *w)
5365 {
5366 mem_cgroup_flush_stats();
5367 }
5368
5369 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5370 {
5371 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5372 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5373 struct memcg_vmstats_percpu *statc;
5374 long delta, v;
5375 int i, nid;
5376
5377 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5378
5379 for (i = 0; i < MEMCG_NR_STAT; i++) {
5380 /*
5381 * Collect the aggregated propagation counts of groups
5382 * below us. We're in a per-cpu loop here and this is
5383 * a global counter, so the first cycle will get them.
5384 */
5385 delta = memcg->vmstats.state_pending[i];
5386 if (delta)
5387 memcg->vmstats.state_pending[i] = 0;
5388
5389 /* Add CPU changes on this level since the last flush */
5390 v = READ_ONCE(statc->state[i]);
5391 if (v != statc->state_prev[i]) {
5392 delta += v - statc->state_prev[i];
5393 statc->state_prev[i] = v;
5394 }
5395
5396 if (!delta)
5397 continue;
5398
5399 /* Aggregate counts on this level and propagate upwards */
5400 memcg->vmstats.state[i] += delta;
5401 if (parent)
5402 parent->vmstats.state_pending[i] += delta;
5403 }
5404
5405 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5406 delta = memcg->vmstats.events_pending[i];
5407 if (delta)
5408 memcg->vmstats.events_pending[i] = 0;
5409
5410 v = READ_ONCE(statc->events[i]);
5411 if (v != statc->events_prev[i]) {
5412 delta += v - statc->events_prev[i];
5413 statc->events_prev[i] = v;
5414 }
5415
5416 if (!delta)
5417 continue;
5418
5419 memcg->vmstats.events[i] += delta;
5420 if (parent)
5421 parent->vmstats.events_pending[i] += delta;
5422 }
5423
5424 for_each_node_state(nid, N_MEMORY) {
5425 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5426 struct mem_cgroup_per_node *ppn = NULL;
5427 struct lruvec_stats_percpu *lstatc;
5428
5429 if (parent)
5430 ppn = parent->nodeinfo[nid];
5431
5432 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5433
5434 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5435 delta = pn->lruvec_stats.state_pending[i];
5436 if (delta)
5437 pn->lruvec_stats.state_pending[i] = 0;
5438
5439 v = READ_ONCE(lstatc->state[i]);
5440 if (v != lstatc->state_prev[i]) {
5441 delta += v - lstatc->state_prev[i];
5442 lstatc->state_prev[i] = v;
5443 }
5444
5445 if (!delta)
5446 continue;
5447
5448 pn->lruvec_stats.state[i] += delta;
5449 if (ppn)
5450 ppn->lruvec_stats.state_pending[i] += delta;
5451 }
5452 }
5453 }
5454
5455 #ifdef CONFIG_MMU
5456 /* Handlers for move charge at task migration. */
5457 static int mem_cgroup_do_precharge(unsigned long count)
5458 {
5459 int ret;
5460
5461 /* Try a single bulk charge without reclaim first, kswapd may wake */
5462 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5463 if (!ret) {
5464 mc.precharge += count;
5465 return ret;
5466 }
5467
5468 /* Try charges one by one with reclaim, but do not retry */
5469 while (count--) {
5470 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5471 if (ret)
5472 return ret;
5473 mc.precharge++;
5474 cond_resched();
5475 }
5476 return 0;
5477 }
5478
5479 union mc_target {
5480 struct page *page;
5481 swp_entry_t ent;
5482 };
5483
5484 enum mc_target_type {
5485 MC_TARGET_NONE = 0,
5486 MC_TARGET_PAGE,
5487 MC_TARGET_SWAP,
5488 MC_TARGET_DEVICE,
5489 };
5490
5491 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5492 unsigned long addr, pte_t ptent)
5493 {
5494 struct page *page = vm_normal_page(vma, addr, ptent);
5495
5496 if (!page || !page_mapped(page))
5497 return NULL;
5498 if (PageAnon(page)) {
5499 if (!(mc.flags & MOVE_ANON))
5500 return NULL;
5501 } else {
5502 if (!(mc.flags & MOVE_FILE))
5503 return NULL;
5504 }
5505 if (!get_page_unless_zero(page))
5506 return NULL;
5507
5508 return page;
5509 }
5510
5511 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5512 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5513 pte_t ptent, swp_entry_t *entry)
5514 {
5515 struct page *page = NULL;
5516 swp_entry_t ent = pte_to_swp_entry(ptent);
5517
5518 if (!(mc.flags & MOVE_ANON))
5519 return NULL;
5520
5521 /*
5522 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5523 * a device and because they are not accessible by CPU they are store
5524 * as special swap entry in the CPU page table.
5525 */
5526 if (is_device_private_entry(ent)) {
5527 page = pfn_swap_entry_to_page(ent);
5528 /*
5529 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5530 * a refcount of 1 when free (unlike normal page)
5531 */
5532 if (!page_ref_add_unless(page, 1, 1))
5533 return NULL;
5534 return page;
5535 }
5536
5537 if (non_swap_entry(ent))
5538 return NULL;
5539
5540 /*
5541 * Because lookup_swap_cache() updates some statistics counter,
5542 * we call find_get_page() with swapper_space directly.
5543 */
5544 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5545 entry->val = ent.val;
5546
5547 return page;
5548 }
5549 #else
5550 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5551 pte_t ptent, swp_entry_t *entry)
5552 {
5553 return NULL;
5554 }
5555 #endif
5556
5557 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5558 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5559 {
5560 if (!vma->vm_file) /* anonymous vma */
5561 return NULL;
5562 if (!(mc.flags & MOVE_FILE))
5563 return NULL;
5564
5565 /* page is moved even if it's not RSS of this task(page-faulted). */
5566 /* shmem/tmpfs may report page out on swap: account for that too. */
5567 return find_get_incore_page(vma->vm_file->f_mapping,
5568 linear_page_index(vma, addr));
5569 }
5570
5571 /**
5572 * mem_cgroup_move_account - move account of the page
5573 * @page: the page
5574 * @compound: charge the page as compound or small page
5575 * @from: mem_cgroup which the page is moved from.
5576 * @to: mem_cgroup which the page is moved to. @from != @to.
5577 *
5578 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5579 *
5580 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5581 * from old cgroup.
5582 */
5583 static int mem_cgroup_move_account(struct page *page,
5584 bool compound,
5585 struct mem_cgroup *from,
5586 struct mem_cgroup *to)
5587 {
5588 struct lruvec *from_vec, *to_vec;
5589 struct pglist_data *pgdat;
5590 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5591 int ret;
5592
5593 VM_BUG_ON(from == to);
5594 VM_BUG_ON_PAGE(PageLRU(page), page);
5595 VM_BUG_ON(compound && !PageTransHuge(page));
5596
5597 /*
5598 * Prevent mem_cgroup_migrate() from looking at
5599 * page's memory cgroup of its source page while we change it.
5600 */
5601 ret = -EBUSY;
5602 if (!trylock_page(page))
5603 goto out;
5604
5605 ret = -EINVAL;
5606 if (page_memcg(page) != from)
5607 goto out_unlock;
5608
5609 pgdat = page_pgdat(page);
5610 from_vec = mem_cgroup_lruvec(from, pgdat);
5611 to_vec = mem_cgroup_lruvec(to, pgdat);
5612
5613 lock_page_memcg(page);
5614
5615 if (PageAnon(page)) {
5616 if (page_mapped(page)) {
5617 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5618 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5619 if (PageTransHuge(page)) {
5620 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5621 -nr_pages);
5622 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5623 nr_pages);
5624 }
5625 }
5626 } else {
5627 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5628 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5629
5630 if (PageSwapBacked(page)) {
5631 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5632 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5633 }
5634
5635 if (page_mapped(page)) {
5636 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5637 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5638 }
5639
5640 if (PageDirty(page)) {
5641 struct address_space *mapping = page_mapping(page);
5642
5643 if (mapping_can_writeback(mapping)) {
5644 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5645 -nr_pages);
5646 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5647 nr_pages);
5648 }
5649 }
5650 }
5651
5652 if (PageWriteback(page)) {
5653 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5654 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5655 }
5656
5657 /*
5658 * All state has been migrated, let's switch to the new memcg.
5659 *
5660 * It is safe to change page's memcg here because the page
5661 * is referenced, charged, isolated, and locked: we can't race
5662 * with (un)charging, migration, LRU putback, or anything else
5663 * that would rely on a stable page's memory cgroup.
5664 *
5665 * Note that lock_page_memcg is a memcg lock, not a page lock,
5666 * to save space. As soon as we switch page's memory cgroup to a
5667 * new memcg that isn't locked, the above state can change
5668 * concurrently again. Make sure we're truly done with it.
5669 */
5670 smp_mb();
5671
5672 css_get(&to->css);
5673 css_put(&from->css);
5674
5675 page->memcg_data = (unsigned long)to;
5676
5677 __unlock_page_memcg(from);
5678
5679 ret = 0;
5680
5681 local_irq_disable();
5682 mem_cgroup_charge_statistics(to, page, nr_pages);
5683 memcg_check_events(to, page);
5684 mem_cgroup_charge_statistics(from, page, -nr_pages);
5685 memcg_check_events(from, page);
5686 local_irq_enable();
5687 out_unlock:
5688 unlock_page(page);
5689 out:
5690 return ret;
5691 }
5692
5693 /**
5694 * get_mctgt_type - get target type of moving charge
5695 * @vma: the vma the pte to be checked belongs
5696 * @addr: the address corresponding to the pte to be checked
5697 * @ptent: the pte to be checked
5698 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5699 *
5700 * Returns
5701 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5702 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5703 * move charge. if @target is not NULL, the page is stored in target->page
5704 * with extra refcnt got(Callers should handle it).
5705 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5706 * target for charge migration. if @target is not NULL, the entry is stored
5707 * in target->ent.
5708 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5709 * (so ZONE_DEVICE page and thus not on the lru).
5710 * For now we such page is charge like a regular page would be as for all
5711 * intent and purposes it is just special memory taking the place of a
5712 * regular page.
5713 *
5714 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5715 *
5716 * Called with pte lock held.
5717 */
5718
5719 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5720 unsigned long addr, pte_t ptent, union mc_target *target)
5721 {
5722 struct page *page = NULL;
5723 enum mc_target_type ret = MC_TARGET_NONE;
5724 swp_entry_t ent = { .val = 0 };
5725
5726 if (pte_present(ptent))
5727 page = mc_handle_present_pte(vma, addr, ptent);
5728 else if (is_swap_pte(ptent))
5729 page = mc_handle_swap_pte(vma, ptent, &ent);
5730 else if (pte_none(ptent))
5731 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5732
5733 if (!page && !ent.val)
5734 return ret;
5735 if (page) {
5736 /*
5737 * Do only loose check w/o serialization.
5738 * mem_cgroup_move_account() checks the page is valid or
5739 * not under LRU exclusion.
5740 */
5741 if (page_memcg(page) == mc.from) {
5742 ret = MC_TARGET_PAGE;
5743 if (is_device_private_page(page))
5744 ret = MC_TARGET_DEVICE;
5745 if (target)
5746 target->page = page;
5747 }
5748 if (!ret || !target)
5749 put_page(page);
5750 }
5751 /*
5752 * There is a swap entry and a page doesn't exist or isn't charged.
5753 * But we cannot move a tail-page in a THP.
5754 */
5755 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5756 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5757 ret = MC_TARGET_SWAP;
5758 if (target)
5759 target->ent = ent;
5760 }
5761 return ret;
5762 }
5763
5764 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5765 /*
5766 * We don't consider PMD mapped swapping or file mapped pages because THP does
5767 * not support them for now.
5768 * Caller should make sure that pmd_trans_huge(pmd) is true.
5769 */
5770 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5771 unsigned long addr, pmd_t pmd, union mc_target *target)
5772 {
5773 struct page *page = NULL;
5774 enum mc_target_type ret = MC_TARGET_NONE;
5775
5776 if (unlikely(is_swap_pmd(pmd))) {
5777 VM_BUG_ON(thp_migration_supported() &&
5778 !is_pmd_migration_entry(pmd));
5779 return ret;
5780 }
5781 page = pmd_page(pmd);
5782 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5783 if (!(mc.flags & MOVE_ANON))
5784 return ret;
5785 if (page_memcg(page) == mc.from) {
5786 ret = MC_TARGET_PAGE;
5787 if (target) {
5788 get_page(page);
5789 target->page = page;
5790 }
5791 }
5792 return ret;
5793 }
5794 #else
5795 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5796 unsigned long addr, pmd_t pmd, union mc_target *target)
5797 {
5798 return MC_TARGET_NONE;
5799 }
5800 #endif
5801
5802 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5803 unsigned long addr, unsigned long end,
5804 struct mm_walk *walk)
5805 {
5806 struct vm_area_struct *vma = walk->vma;
5807 pte_t *pte;
5808 spinlock_t *ptl;
5809
5810 ptl = pmd_trans_huge_lock(pmd, vma);
5811 if (ptl) {
5812 /*
5813 * Note their can not be MC_TARGET_DEVICE for now as we do not
5814 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5815 * this might change.
5816 */
5817 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5818 mc.precharge += HPAGE_PMD_NR;
5819 spin_unlock(ptl);
5820 return 0;
5821 }
5822
5823 if (pmd_trans_unstable(pmd))
5824 return 0;
5825 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5826 for (; addr != end; pte++, addr += PAGE_SIZE)
5827 if (get_mctgt_type(vma, addr, *pte, NULL))
5828 mc.precharge++; /* increment precharge temporarily */
5829 pte_unmap_unlock(pte - 1, ptl);
5830 cond_resched();
5831
5832 return 0;
5833 }
5834
5835 static const struct mm_walk_ops precharge_walk_ops = {
5836 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5837 };
5838
5839 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5840 {
5841 unsigned long precharge;
5842
5843 mmap_read_lock(mm);
5844 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5845 mmap_read_unlock(mm);
5846
5847 precharge = mc.precharge;
5848 mc.precharge = 0;
5849
5850 return precharge;
5851 }
5852
5853 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5854 {
5855 unsigned long precharge = mem_cgroup_count_precharge(mm);
5856
5857 VM_BUG_ON(mc.moving_task);
5858 mc.moving_task = current;
5859 return mem_cgroup_do_precharge(precharge);
5860 }
5861
5862 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5863 static void __mem_cgroup_clear_mc(void)
5864 {
5865 struct mem_cgroup *from = mc.from;
5866 struct mem_cgroup *to = mc.to;
5867
5868 /* we must uncharge all the leftover precharges from mc.to */
5869 if (mc.precharge) {
5870 cancel_charge(mc.to, mc.precharge);
5871 mc.precharge = 0;
5872 }
5873 /*
5874 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5875 * we must uncharge here.
5876 */
5877 if (mc.moved_charge) {
5878 cancel_charge(mc.from, mc.moved_charge);
5879 mc.moved_charge = 0;
5880 }
5881 /* we must fixup refcnts and charges */
5882 if (mc.moved_swap) {
5883 /* uncharge swap account from the old cgroup */
5884 if (!mem_cgroup_is_root(mc.from))
5885 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5886
5887 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5888
5889 /*
5890 * we charged both to->memory and to->memsw, so we
5891 * should uncharge to->memory.
5892 */
5893 if (!mem_cgroup_is_root(mc.to))
5894 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5895
5896 mc.moved_swap = 0;
5897 }
5898 memcg_oom_recover(from);
5899 memcg_oom_recover(to);
5900 wake_up_all(&mc.waitq);
5901 }
5902
5903 static void mem_cgroup_clear_mc(void)
5904 {
5905 struct mm_struct *mm = mc.mm;
5906
5907 /*
5908 * we must clear moving_task before waking up waiters at the end of
5909 * task migration.
5910 */
5911 mc.moving_task = NULL;
5912 __mem_cgroup_clear_mc();
5913 spin_lock(&mc.lock);
5914 mc.from = NULL;
5915 mc.to = NULL;
5916 mc.mm = NULL;
5917 spin_unlock(&mc.lock);
5918
5919 mmput(mm);
5920 }
5921
5922 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5923 {
5924 struct cgroup_subsys_state *css;
5925 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5926 struct mem_cgroup *from;
5927 struct task_struct *leader, *p;
5928 struct mm_struct *mm;
5929 unsigned long move_flags;
5930 int ret = 0;
5931
5932 /* charge immigration isn't supported on the default hierarchy */
5933 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5934 return 0;
5935
5936 /*
5937 * Multi-process migrations only happen on the default hierarchy
5938 * where charge immigration is not used. Perform charge
5939 * immigration if @tset contains a leader and whine if there are
5940 * multiple.
5941 */
5942 p = NULL;
5943 cgroup_taskset_for_each_leader(leader, css, tset) {
5944 WARN_ON_ONCE(p);
5945 p = leader;
5946 memcg = mem_cgroup_from_css(css);
5947 }
5948 if (!p)
5949 return 0;
5950
5951 /*
5952 * We are now committed to this value whatever it is. Changes in this
5953 * tunable will only affect upcoming migrations, not the current one.
5954 * So we need to save it, and keep it going.
5955 */
5956 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5957 if (!move_flags)
5958 return 0;
5959
5960 from = mem_cgroup_from_task(p);
5961
5962 VM_BUG_ON(from == memcg);
5963
5964 mm = get_task_mm(p);
5965 if (!mm)
5966 return 0;
5967 /* We move charges only when we move a owner of the mm */
5968 if (mm->owner == p) {
5969 VM_BUG_ON(mc.from);
5970 VM_BUG_ON(mc.to);
5971 VM_BUG_ON(mc.precharge);
5972 VM_BUG_ON(mc.moved_charge);
5973 VM_BUG_ON(mc.moved_swap);
5974
5975 spin_lock(&mc.lock);
5976 mc.mm = mm;
5977 mc.from = from;
5978 mc.to = memcg;
5979 mc.flags = move_flags;
5980 spin_unlock(&mc.lock);
5981 /* We set mc.moving_task later */
5982
5983 ret = mem_cgroup_precharge_mc(mm);
5984 if (ret)
5985 mem_cgroup_clear_mc();
5986 } else {
5987 mmput(mm);
5988 }
5989 return ret;
5990 }
5991
5992 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5993 {
5994 if (mc.to)
5995 mem_cgroup_clear_mc();
5996 }
5997
5998 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5999 unsigned long addr, unsigned long end,
6000 struct mm_walk *walk)
6001 {
6002 int ret = 0;
6003 struct vm_area_struct *vma = walk->vma;
6004 pte_t *pte;
6005 spinlock_t *ptl;
6006 enum mc_target_type target_type;
6007 union mc_target target;
6008 struct page *page;
6009
6010 ptl = pmd_trans_huge_lock(pmd, vma);
6011 if (ptl) {
6012 if (mc.precharge < HPAGE_PMD_NR) {
6013 spin_unlock(ptl);
6014 return 0;
6015 }
6016 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6017 if (target_type == MC_TARGET_PAGE) {
6018 page = target.page;
6019 if (!isolate_lru_page(page)) {
6020 if (!mem_cgroup_move_account(page, true,
6021 mc.from, mc.to)) {
6022 mc.precharge -= HPAGE_PMD_NR;
6023 mc.moved_charge += HPAGE_PMD_NR;
6024 }
6025 putback_lru_page(page);
6026 }
6027 put_page(page);
6028 } else if (target_type == MC_TARGET_DEVICE) {
6029 page = target.page;
6030 if (!mem_cgroup_move_account(page, true,
6031 mc.from, mc.to)) {
6032 mc.precharge -= HPAGE_PMD_NR;
6033 mc.moved_charge += HPAGE_PMD_NR;
6034 }
6035 put_page(page);
6036 }
6037 spin_unlock(ptl);
6038 return 0;
6039 }
6040
6041 if (pmd_trans_unstable(pmd))
6042 return 0;
6043 retry:
6044 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6045 for (; addr != end; addr += PAGE_SIZE) {
6046 pte_t ptent = *(pte++);
6047 bool device = false;
6048 swp_entry_t ent;
6049
6050 if (!mc.precharge)
6051 break;
6052
6053 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6054 case MC_TARGET_DEVICE:
6055 device = true;
6056 fallthrough;
6057 case MC_TARGET_PAGE:
6058 page = target.page;
6059 /*
6060 * We can have a part of the split pmd here. Moving it
6061 * can be done but it would be too convoluted so simply
6062 * ignore such a partial THP and keep it in original
6063 * memcg. There should be somebody mapping the head.
6064 */
6065 if (PageTransCompound(page))
6066 goto put;
6067 if (!device && isolate_lru_page(page))
6068 goto put;
6069 if (!mem_cgroup_move_account(page, false,
6070 mc.from, mc.to)) {
6071 mc.precharge--;
6072 /* we uncharge from mc.from later. */
6073 mc.moved_charge++;
6074 }
6075 if (!device)
6076 putback_lru_page(page);
6077 put: /* get_mctgt_type() gets the page */
6078 put_page(page);
6079 break;
6080 case MC_TARGET_SWAP:
6081 ent = target.ent;
6082 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6083 mc.precharge--;
6084 mem_cgroup_id_get_many(mc.to, 1);
6085 /* we fixup other refcnts and charges later. */
6086 mc.moved_swap++;
6087 }
6088 break;
6089 default:
6090 break;
6091 }
6092 }
6093 pte_unmap_unlock(pte - 1, ptl);
6094 cond_resched();
6095
6096 if (addr != end) {
6097 /*
6098 * We have consumed all precharges we got in can_attach().
6099 * We try charge one by one, but don't do any additional
6100 * charges to mc.to if we have failed in charge once in attach()
6101 * phase.
6102 */
6103 ret = mem_cgroup_do_precharge(1);
6104 if (!ret)
6105 goto retry;
6106 }
6107
6108 return ret;
6109 }
6110
6111 static const struct mm_walk_ops charge_walk_ops = {
6112 .pmd_entry = mem_cgroup_move_charge_pte_range,
6113 };
6114
6115 static void mem_cgroup_move_charge(void)
6116 {
6117 lru_add_drain_all();
6118 /*
6119 * Signal lock_page_memcg() to take the memcg's move_lock
6120 * while we're moving its pages to another memcg. Then wait
6121 * for already started RCU-only updates to finish.
6122 */
6123 atomic_inc(&mc.from->moving_account);
6124 synchronize_rcu();
6125 retry:
6126 if (unlikely(!mmap_read_trylock(mc.mm))) {
6127 /*
6128 * Someone who are holding the mmap_lock might be waiting in
6129 * waitq. So we cancel all extra charges, wake up all waiters,
6130 * and retry. Because we cancel precharges, we might not be able
6131 * to move enough charges, but moving charge is a best-effort
6132 * feature anyway, so it wouldn't be a big problem.
6133 */
6134 __mem_cgroup_clear_mc();
6135 cond_resched();
6136 goto retry;
6137 }
6138 /*
6139 * When we have consumed all precharges and failed in doing
6140 * additional charge, the page walk just aborts.
6141 */
6142 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6143 NULL);
6144
6145 mmap_read_unlock(mc.mm);
6146 atomic_dec(&mc.from->moving_account);
6147 }
6148
6149 static void mem_cgroup_move_task(void)
6150 {
6151 if (mc.to) {
6152 mem_cgroup_move_charge();
6153 mem_cgroup_clear_mc();
6154 }
6155 }
6156 #else /* !CONFIG_MMU */
6157 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6158 {
6159 return 0;
6160 }
6161 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6162 {
6163 }
6164 static void mem_cgroup_move_task(void)
6165 {
6166 }
6167 #endif
6168
6169 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6170 {
6171 if (value == PAGE_COUNTER_MAX)
6172 seq_puts(m, "max\n");
6173 else
6174 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6175
6176 return 0;
6177 }
6178
6179 static u64 memory_current_read(struct cgroup_subsys_state *css,
6180 struct cftype *cft)
6181 {
6182 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6183
6184 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6185 }
6186
6187 static int memory_min_show(struct seq_file *m, void *v)
6188 {
6189 return seq_puts_memcg_tunable(m,
6190 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6191 }
6192
6193 static ssize_t memory_min_write(struct kernfs_open_file *of,
6194 char *buf, size_t nbytes, loff_t off)
6195 {
6196 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6197 unsigned long min;
6198 int err;
6199
6200 buf = strstrip(buf);
6201 err = page_counter_memparse(buf, "max", &min);
6202 if (err)
6203 return err;
6204
6205 page_counter_set_min(&memcg->memory, min);
6206
6207 return nbytes;
6208 }
6209
6210 static int memory_low_show(struct seq_file *m, void *v)
6211 {
6212 return seq_puts_memcg_tunable(m,
6213 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6214 }
6215
6216 static ssize_t memory_low_write(struct kernfs_open_file *of,
6217 char *buf, size_t nbytes, loff_t off)
6218 {
6219 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6220 unsigned long low;
6221 int err;
6222
6223 buf = strstrip(buf);
6224 err = page_counter_memparse(buf, "max", &low);
6225 if (err)
6226 return err;
6227
6228 page_counter_set_low(&memcg->memory, low);
6229
6230 return nbytes;
6231 }
6232
6233 static int memory_high_show(struct seq_file *m, void *v)
6234 {
6235 return seq_puts_memcg_tunable(m,
6236 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6237 }
6238
6239 static ssize_t memory_high_write(struct kernfs_open_file *of,
6240 char *buf, size_t nbytes, loff_t off)
6241 {
6242 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6243 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6244 bool drained = false;
6245 unsigned long high;
6246 int err;
6247
6248 buf = strstrip(buf);
6249 err = page_counter_memparse(buf, "max", &high);
6250 if (err)
6251 return err;
6252
6253 page_counter_set_high(&memcg->memory, high);
6254
6255 for (;;) {
6256 unsigned long nr_pages = page_counter_read(&memcg->memory);
6257 unsigned long reclaimed;
6258
6259 if (nr_pages <= high)
6260 break;
6261
6262 if (signal_pending(current))
6263 break;
6264
6265 if (!drained) {
6266 drain_all_stock(memcg);
6267 drained = true;
6268 continue;
6269 }
6270
6271 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6272 GFP_KERNEL, true);
6273
6274 if (!reclaimed && !nr_retries--)
6275 break;
6276 }
6277
6278 memcg_wb_domain_size_changed(memcg);
6279 return nbytes;
6280 }
6281
6282 static int memory_max_show(struct seq_file *m, void *v)
6283 {
6284 return seq_puts_memcg_tunable(m,
6285 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6286 }
6287
6288 static ssize_t memory_max_write(struct kernfs_open_file *of,
6289 char *buf, size_t nbytes, loff_t off)
6290 {
6291 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6292 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6293 bool drained = false;
6294 unsigned long max;
6295 int err;
6296
6297 buf = strstrip(buf);
6298 err = page_counter_memparse(buf, "max", &max);
6299 if (err)
6300 return err;
6301
6302 xchg(&memcg->memory.max, max);
6303
6304 for (;;) {
6305 unsigned long nr_pages = page_counter_read(&memcg->memory);
6306
6307 if (nr_pages <= max)
6308 break;
6309
6310 if (signal_pending(current))
6311 break;
6312
6313 if (!drained) {
6314 drain_all_stock(memcg);
6315 drained = true;
6316 continue;
6317 }
6318
6319 if (nr_reclaims) {
6320 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6321 GFP_KERNEL, true))
6322 nr_reclaims--;
6323 continue;
6324 }
6325
6326 memcg_memory_event(memcg, MEMCG_OOM);
6327 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6328 break;
6329 }
6330
6331 memcg_wb_domain_size_changed(memcg);
6332 return nbytes;
6333 }
6334
6335 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6336 {
6337 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6338 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6339 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6340 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6341 seq_printf(m, "oom_kill %lu\n",
6342 atomic_long_read(&events[MEMCG_OOM_KILL]));
6343 }
6344
6345 static int memory_events_show(struct seq_file *m, void *v)
6346 {
6347 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6348
6349 __memory_events_show(m, memcg->memory_events);
6350 return 0;
6351 }
6352
6353 static int memory_events_local_show(struct seq_file *m, void *v)
6354 {
6355 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6356
6357 __memory_events_show(m, memcg->memory_events_local);
6358 return 0;
6359 }
6360
6361 static int memory_stat_show(struct seq_file *m, void *v)
6362 {
6363 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6364 char *buf;
6365
6366 buf = memory_stat_format(memcg);
6367 if (!buf)
6368 return -ENOMEM;
6369 seq_puts(m, buf);
6370 kfree(buf);
6371 return 0;
6372 }
6373
6374 #ifdef CONFIG_NUMA
6375 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6376 int item)
6377 {
6378 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6379 }
6380
6381 static int memory_numa_stat_show(struct seq_file *m, void *v)
6382 {
6383 int i;
6384 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6385
6386 cgroup_rstat_flush(memcg->css.cgroup);
6387
6388 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6389 int nid;
6390
6391 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6392 continue;
6393
6394 seq_printf(m, "%s", memory_stats[i].name);
6395 for_each_node_state(nid, N_MEMORY) {
6396 u64 size;
6397 struct lruvec *lruvec;
6398
6399 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6400 size = lruvec_page_state_output(lruvec,
6401 memory_stats[i].idx);
6402 seq_printf(m, " N%d=%llu", nid, size);
6403 }
6404 seq_putc(m, '\n');
6405 }
6406
6407 return 0;
6408 }
6409 #endif
6410
6411 static int memory_oom_group_show(struct seq_file *m, void *v)
6412 {
6413 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6414
6415 seq_printf(m, "%d\n", memcg->oom_group);
6416
6417 return 0;
6418 }
6419
6420 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6421 char *buf, size_t nbytes, loff_t off)
6422 {
6423 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6424 int ret, oom_group;
6425
6426 buf = strstrip(buf);
6427 if (!buf)
6428 return -EINVAL;
6429
6430 ret = kstrtoint(buf, 0, &oom_group);
6431 if (ret)
6432 return ret;
6433
6434 if (oom_group != 0 && oom_group != 1)
6435 return -EINVAL;
6436
6437 memcg->oom_group = oom_group;
6438
6439 return nbytes;
6440 }
6441
6442 static struct cftype memory_files[] = {
6443 {
6444 .name = "current",
6445 .flags = CFTYPE_NOT_ON_ROOT,
6446 .read_u64 = memory_current_read,
6447 },
6448 {
6449 .name = "min",
6450 .flags = CFTYPE_NOT_ON_ROOT,
6451 .seq_show = memory_min_show,
6452 .write = memory_min_write,
6453 },
6454 {
6455 .name = "low",
6456 .flags = CFTYPE_NOT_ON_ROOT,
6457 .seq_show = memory_low_show,
6458 .write = memory_low_write,
6459 },
6460 {
6461 .name = "high",
6462 .flags = CFTYPE_NOT_ON_ROOT,
6463 .seq_show = memory_high_show,
6464 .write = memory_high_write,
6465 },
6466 {
6467 .name = "max",
6468 .flags = CFTYPE_NOT_ON_ROOT,
6469 .seq_show = memory_max_show,
6470 .write = memory_max_write,
6471 },
6472 {
6473 .name = "events",
6474 .flags = CFTYPE_NOT_ON_ROOT,
6475 .file_offset = offsetof(struct mem_cgroup, events_file),
6476 .seq_show = memory_events_show,
6477 },
6478 {
6479 .name = "events.local",
6480 .flags = CFTYPE_NOT_ON_ROOT,
6481 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6482 .seq_show = memory_events_local_show,
6483 },
6484 {
6485 .name = "stat",
6486 .seq_show = memory_stat_show,
6487 },
6488 #ifdef CONFIG_NUMA
6489 {
6490 .name = "numa_stat",
6491 .seq_show = memory_numa_stat_show,
6492 },
6493 #endif
6494 {
6495 .name = "oom.group",
6496 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6497 .seq_show = memory_oom_group_show,
6498 .write = memory_oom_group_write,
6499 },
6500 { } /* terminate */
6501 };
6502
6503 struct cgroup_subsys memory_cgrp_subsys = {
6504 .css_alloc = mem_cgroup_css_alloc,
6505 .css_online = mem_cgroup_css_online,
6506 .css_offline = mem_cgroup_css_offline,
6507 .css_released = mem_cgroup_css_released,
6508 .css_free = mem_cgroup_css_free,
6509 .css_reset = mem_cgroup_css_reset,
6510 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6511 .can_attach = mem_cgroup_can_attach,
6512 .cancel_attach = mem_cgroup_cancel_attach,
6513 .post_attach = mem_cgroup_move_task,
6514 .dfl_cftypes = memory_files,
6515 .legacy_cftypes = mem_cgroup_legacy_files,
6516 .early_init = 0,
6517 };
6518
6519 /*
6520 * This function calculates an individual cgroup's effective
6521 * protection which is derived from its own memory.min/low, its
6522 * parent's and siblings' settings, as well as the actual memory
6523 * distribution in the tree.
6524 *
6525 * The following rules apply to the effective protection values:
6526 *
6527 * 1. At the first level of reclaim, effective protection is equal to
6528 * the declared protection in memory.min and memory.low.
6529 *
6530 * 2. To enable safe delegation of the protection configuration, at
6531 * subsequent levels the effective protection is capped to the
6532 * parent's effective protection.
6533 *
6534 * 3. To make complex and dynamic subtrees easier to configure, the
6535 * user is allowed to overcommit the declared protection at a given
6536 * level. If that is the case, the parent's effective protection is
6537 * distributed to the children in proportion to how much protection
6538 * they have declared and how much of it they are utilizing.
6539 *
6540 * This makes distribution proportional, but also work-conserving:
6541 * if one cgroup claims much more protection than it uses memory,
6542 * the unused remainder is available to its siblings.
6543 *
6544 * 4. Conversely, when the declared protection is undercommitted at a
6545 * given level, the distribution of the larger parental protection
6546 * budget is NOT proportional. A cgroup's protection from a sibling
6547 * is capped to its own memory.min/low setting.
6548 *
6549 * 5. However, to allow protecting recursive subtrees from each other
6550 * without having to declare each individual cgroup's fixed share
6551 * of the ancestor's claim to protection, any unutilized -
6552 * "floating" - protection from up the tree is distributed in
6553 * proportion to each cgroup's *usage*. This makes the protection
6554 * neutral wrt sibling cgroups and lets them compete freely over
6555 * the shared parental protection budget, but it protects the
6556 * subtree as a whole from neighboring subtrees.
6557 *
6558 * Note that 4. and 5. are not in conflict: 4. is about protecting
6559 * against immediate siblings whereas 5. is about protecting against
6560 * neighboring subtrees.
6561 */
6562 static unsigned long effective_protection(unsigned long usage,
6563 unsigned long parent_usage,
6564 unsigned long setting,
6565 unsigned long parent_effective,
6566 unsigned long siblings_protected)
6567 {
6568 unsigned long protected;
6569 unsigned long ep;
6570
6571 protected = min(usage, setting);
6572 /*
6573 * If all cgroups at this level combined claim and use more
6574 * protection then what the parent affords them, distribute
6575 * shares in proportion to utilization.
6576 *
6577 * We are using actual utilization rather than the statically
6578 * claimed protection in order to be work-conserving: claimed
6579 * but unused protection is available to siblings that would
6580 * otherwise get a smaller chunk than what they claimed.
6581 */
6582 if (siblings_protected > parent_effective)
6583 return protected * parent_effective / siblings_protected;
6584
6585 /*
6586 * Ok, utilized protection of all children is within what the
6587 * parent affords them, so we know whatever this child claims
6588 * and utilizes is effectively protected.
6589 *
6590 * If there is unprotected usage beyond this value, reclaim
6591 * will apply pressure in proportion to that amount.
6592 *
6593 * If there is unutilized protection, the cgroup will be fully
6594 * shielded from reclaim, but we do return a smaller value for
6595 * protection than what the group could enjoy in theory. This
6596 * is okay. With the overcommit distribution above, effective
6597 * protection is always dependent on how memory is actually
6598 * consumed among the siblings anyway.
6599 */
6600 ep = protected;
6601
6602 /*
6603 * If the children aren't claiming (all of) the protection
6604 * afforded to them by the parent, distribute the remainder in
6605 * proportion to the (unprotected) memory of each cgroup. That
6606 * way, cgroups that aren't explicitly prioritized wrt each
6607 * other compete freely over the allowance, but they are
6608 * collectively protected from neighboring trees.
6609 *
6610 * We're using unprotected memory for the weight so that if
6611 * some cgroups DO claim explicit protection, we don't protect
6612 * the same bytes twice.
6613 *
6614 * Check both usage and parent_usage against the respective
6615 * protected values. One should imply the other, but they
6616 * aren't read atomically - make sure the division is sane.
6617 */
6618 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6619 return ep;
6620 if (parent_effective > siblings_protected &&
6621 parent_usage > siblings_protected &&
6622 usage > protected) {
6623 unsigned long unclaimed;
6624
6625 unclaimed = parent_effective - siblings_protected;
6626 unclaimed *= usage - protected;
6627 unclaimed /= parent_usage - siblings_protected;
6628
6629 ep += unclaimed;
6630 }
6631
6632 return ep;
6633 }
6634
6635 /**
6636 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6637 * @root: the top ancestor of the sub-tree being checked
6638 * @memcg: the memory cgroup to check
6639 *
6640 * WARNING: This function is not stateless! It can only be used as part
6641 * of a top-down tree iteration, not for isolated queries.
6642 */
6643 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6644 struct mem_cgroup *memcg)
6645 {
6646 unsigned long usage, parent_usage;
6647 struct mem_cgroup *parent;
6648
6649 if (mem_cgroup_disabled())
6650 return;
6651
6652 if (!root)
6653 root = root_mem_cgroup;
6654
6655 /*
6656 * Effective values of the reclaim targets are ignored so they
6657 * can be stale. Have a look at mem_cgroup_protection for more
6658 * details.
6659 * TODO: calculation should be more robust so that we do not need
6660 * that special casing.
6661 */
6662 if (memcg == root)
6663 return;
6664
6665 usage = page_counter_read(&memcg->memory);
6666 if (!usage)
6667 return;
6668
6669 parent = parent_mem_cgroup(memcg);
6670 /* No parent means a non-hierarchical mode on v1 memcg */
6671 if (!parent)
6672 return;
6673
6674 if (parent == root) {
6675 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6676 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6677 return;
6678 }
6679
6680 parent_usage = page_counter_read(&parent->memory);
6681
6682 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6683 READ_ONCE(memcg->memory.min),
6684 READ_ONCE(parent->memory.emin),
6685 atomic_long_read(&parent->memory.children_min_usage)));
6686
6687 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6688 READ_ONCE(memcg->memory.low),
6689 READ_ONCE(parent->memory.elow),
6690 atomic_long_read(&parent->memory.children_low_usage)));
6691 }
6692
6693 static int charge_memcg(struct page *page, struct mem_cgroup *memcg, gfp_t gfp)
6694 {
6695 unsigned int nr_pages = thp_nr_pages(page);
6696 int ret;
6697
6698 ret = try_charge(memcg, gfp, nr_pages);
6699 if (ret)
6700 goto out;
6701
6702 css_get(&memcg->css);
6703 commit_charge(page, memcg);
6704
6705 local_irq_disable();
6706 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6707 memcg_check_events(memcg, page);
6708 local_irq_enable();
6709 out:
6710 return ret;
6711 }
6712
6713 /**
6714 * __mem_cgroup_charge - charge a newly allocated page to a cgroup
6715 * @page: page to charge
6716 * @mm: mm context of the victim
6717 * @gfp_mask: reclaim mode
6718 *
6719 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6720 * pages according to @gfp_mask if necessary. if @mm is NULL, try to
6721 * charge to the active memcg.
6722 *
6723 * Do not use this for pages allocated for swapin.
6724 *
6725 * Returns 0 on success. Otherwise, an error code is returned.
6726 */
6727 int __mem_cgroup_charge(struct page *page, struct mm_struct *mm,
6728 gfp_t gfp_mask)
6729 {
6730 struct mem_cgroup *memcg;
6731 int ret;
6732
6733 memcg = get_mem_cgroup_from_mm(mm);
6734 ret = charge_memcg(page, memcg, gfp_mask);
6735 css_put(&memcg->css);
6736
6737 return ret;
6738 }
6739
6740 /**
6741 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6742 * @page: page to charge
6743 * @mm: mm context of the victim
6744 * @gfp: reclaim mode
6745 * @entry: swap entry for which the page is allocated
6746 *
6747 * This function charges a page allocated for swapin. Please call this before
6748 * adding the page to the swapcache.
6749 *
6750 * Returns 0 on success. Otherwise, an error code is returned.
6751 */
6752 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6753 gfp_t gfp, swp_entry_t entry)
6754 {
6755 struct mem_cgroup *memcg;
6756 unsigned short id;
6757 int ret;
6758
6759 if (mem_cgroup_disabled())
6760 return 0;
6761
6762 id = lookup_swap_cgroup_id(entry);
6763 rcu_read_lock();
6764 memcg = mem_cgroup_from_id(id);
6765 if (!memcg || !css_tryget_online(&memcg->css))
6766 memcg = get_mem_cgroup_from_mm(mm);
6767 rcu_read_unlock();
6768
6769 ret = charge_memcg(page, memcg, gfp);
6770
6771 css_put(&memcg->css);
6772 return ret;
6773 }
6774
6775 /*
6776 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6777 * @entry: swap entry for which the page is charged
6778 *
6779 * Call this function after successfully adding the charged page to swapcache.
6780 *
6781 * Note: This function assumes the page for which swap slot is being uncharged
6782 * is order 0 page.
6783 */
6784 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6785 {
6786 /*
6787 * Cgroup1's unified memory+swap counter has been charged with the
6788 * new swapcache page, finish the transfer by uncharging the swap
6789 * slot. The swap slot would also get uncharged when it dies, but
6790 * it can stick around indefinitely and we'd count the page twice
6791 * the entire time.
6792 *
6793 * Cgroup2 has separate resource counters for memory and swap,
6794 * so this is a non-issue here. Memory and swap charge lifetimes
6795 * correspond 1:1 to page and swap slot lifetimes: we charge the
6796 * page to memory here, and uncharge swap when the slot is freed.
6797 */
6798 if (!mem_cgroup_disabled() && do_memsw_account()) {
6799 /*
6800 * The swap entry might not get freed for a long time,
6801 * let's not wait for it. The page already received a
6802 * memory+swap charge, drop the swap entry duplicate.
6803 */
6804 mem_cgroup_uncharge_swap(entry, 1);
6805 }
6806 }
6807
6808 struct uncharge_gather {
6809 struct mem_cgroup *memcg;
6810 unsigned long nr_memory;
6811 unsigned long pgpgout;
6812 unsigned long nr_kmem;
6813 struct page *dummy_page;
6814 };
6815
6816 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6817 {
6818 memset(ug, 0, sizeof(*ug));
6819 }
6820
6821 static void uncharge_batch(const struct uncharge_gather *ug)
6822 {
6823 unsigned long flags;
6824
6825 if (ug->nr_memory) {
6826 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6827 if (do_memsw_account())
6828 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6829 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6830 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6831 memcg_oom_recover(ug->memcg);
6832 }
6833
6834 local_irq_save(flags);
6835 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6836 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6837 memcg_check_events(ug->memcg, ug->dummy_page);
6838 local_irq_restore(flags);
6839
6840 /* drop reference from uncharge_page */
6841 css_put(&ug->memcg->css);
6842 }
6843
6844 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6845 {
6846 unsigned long nr_pages;
6847 struct mem_cgroup *memcg;
6848 struct obj_cgroup *objcg;
6849 bool use_objcg = PageMemcgKmem(page);
6850
6851 VM_BUG_ON_PAGE(PageLRU(page), page);
6852
6853 /*
6854 * Nobody should be changing or seriously looking at
6855 * page memcg or objcg at this point, we have fully
6856 * exclusive access to the page.
6857 */
6858 if (use_objcg) {
6859 objcg = __page_objcg(page);
6860 /*
6861 * This get matches the put at the end of the function and
6862 * kmem pages do not hold memcg references anymore.
6863 */
6864 memcg = get_mem_cgroup_from_objcg(objcg);
6865 } else {
6866 memcg = __page_memcg(page);
6867 }
6868
6869 if (!memcg)
6870 return;
6871
6872 if (ug->memcg != memcg) {
6873 if (ug->memcg) {
6874 uncharge_batch(ug);
6875 uncharge_gather_clear(ug);
6876 }
6877 ug->memcg = memcg;
6878 ug->dummy_page = page;
6879
6880 /* pairs with css_put in uncharge_batch */
6881 css_get(&memcg->css);
6882 }
6883
6884 nr_pages = compound_nr(page);
6885
6886 if (use_objcg) {
6887 ug->nr_memory += nr_pages;
6888 ug->nr_kmem += nr_pages;
6889
6890 page->memcg_data = 0;
6891 obj_cgroup_put(objcg);
6892 } else {
6893 /* LRU pages aren't accounted at the root level */
6894 if (!mem_cgroup_is_root(memcg))
6895 ug->nr_memory += nr_pages;
6896 ug->pgpgout++;
6897
6898 page->memcg_data = 0;
6899 }
6900
6901 css_put(&memcg->css);
6902 }
6903
6904 /**
6905 * __mem_cgroup_uncharge - uncharge a page
6906 * @page: page to uncharge
6907 *
6908 * Uncharge a page previously charged with __mem_cgroup_charge().
6909 */
6910 void __mem_cgroup_uncharge(struct page *page)
6911 {
6912 struct uncharge_gather ug;
6913
6914 /* Don't touch page->lru of any random page, pre-check: */
6915 if (!page_memcg(page))
6916 return;
6917
6918 uncharge_gather_clear(&ug);
6919 uncharge_page(page, &ug);
6920 uncharge_batch(&ug);
6921 }
6922
6923 /**
6924 * __mem_cgroup_uncharge_list - uncharge a list of page
6925 * @page_list: list of pages to uncharge
6926 *
6927 * Uncharge a list of pages previously charged with
6928 * __mem_cgroup_charge().
6929 */
6930 void __mem_cgroup_uncharge_list(struct list_head *page_list)
6931 {
6932 struct uncharge_gather ug;
6933 struct page *page;
6934
6935 uncharge_gather_clear(&ug);
6936 list_for_each_entry(page, page_list, lru)
6937 uncharge_page(page, &ug);
6938 if (ug.memcg)
6939 uncharge_batch(&ug);
6940 }
6941
6942 /**
6943 * mem_cgroup_migrate - charge a page's replacement
6944 * @oldpage: currently circulating page
6945 * @newpage: replacement page
6946 *
6947 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6948 * be uncharged upon free.
6949 *
6950 * Both pages must be locked, @newpage->mapping must be set up.
6951 */
6952 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6953 {
6954 struct mem_cgroup *memcg;
6955 unsigned int nr_pages;
6956 unsigned long flags;
6957
6958 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6959 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6960 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6961 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6962 newpage);
6963
6964 if (mem_cgroup_disabled())
6965 return;
6966
6967 /* Page cache replacement: new page already charged? */
6968 if (page_memcg(newpage))
6969 return;
6970
6971 memcg = page_memcg(oldpage);
6972 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6973 if (!memcg)
6974 return;
6975
6976 /* Force-charge the new page. The old one will be freed soon */
6977 nr_pages = thp_nr_pages(newpage);
6978
6979 if (!mem_cgroup_is_root(memcg)) {
6980 page_counter_charge(&memcg->memory, nr_pages);
6981 if (do_memsw_account())
6982 page_counter_charge(&memcg->memsw, nr_pages);
6983 }
6984
6985 css_get(&memcg->css);
6986 commit_charge(newpage, memcg);
6987
6988 local_irq_save(flags);
6989 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6990 memcg_check_events(memcg, newpage);
6991 local_irq_restore(flags);
6992 }
6993
6994 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6995 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6996
6997 void mem_cgroup_sk_alloc(struct sock *sk)
6998 {
6999 struct mem_cgroup *memcg;
7000
7001 if (!mem_cgroup_sockets_enabled)
7002 return;
7003
7004 /* Do not associate the sock with unrelated interrupted task's memcg. */
7005 if (in_interrupt())
7006 return;
7007
7008 rcu_read_lock();
7009 memcg = mem_cgroup_from_task(current);
7010 if (memcg == root_mem_cgroup)
7011 goto out;
7012 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7013 goto out;
7014 if (css_tryget(&memcg->css))
7015 sk->sk_memcg = memcg;
7016 out:
7017 rcu_read_unlock();
7018 }
7019
7020 void mem_cgroup_sk_free(struct sock *sk)
7021 {
7022 if (sk->sk_memcg)
7023 css_put(&sk->sk_memcg->css);
7024 }
7025
7026 /**
7027 * mem_cgroup_charge_skmem - charge socket memory
7028 * @memcg: memcg to charge
7029 * @nr_pages: number of pages to charge
7030 * @gfp_mask: reclaim mode
7031 *
7032 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7033 * @memcg's configured limit, %false if it doesn't.
7034 */
7035 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7036 gfp_t gfp_mask)
7037 {
7038 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7039 struct page_counter *fail;
7040
7041 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7042 memcg->tcpmem_pressure = 0;
7043 return true;
7044 }
7045 memcg->tcpmem_pressure = 1;
7046 if (gfp_mask & __GFP_NOFAIL) {
7047 page_counter_charge(&memcg->tcpmem, nr_pages);
7048 return true;
7049 }
7050 return false;
7051 }
7052
7053 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7054 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7055 return true;
7056 }
7057
7058 return false;
7059 }
7060
7061 /**
7062 * mem_cgroup_uncharge_skmem - uncharge socket memory
7063 * @memcg: memcg to uncharge
7064 * @nr_pages: number of pages to uncharge
7065 */
7066 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7067 {
7068 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7069 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7070 return;
7071 }
7072
7073 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7074
7075 refill_stock(memcg, nr_pages);
7076 }
7077
7078 static int __init cgroup_memory(char *s)
7079 {
7080 char *token;
7081
7082 while ((token = strsep(&s, ",")) != NULL) {
7083 if (!*token)
7084 continue;
7085 if (!strcmp(token, "nosocket"))
7086 cgroup_memory_nosocket = true;
7087 if (!strcmp(token, "nokmem"))
7088 cgroup_memory_nokmem = true;
7089 }
7090 return 0;
7091 }
7092 __setup("cgroup.memory=", cgroup_memory);
7093
7094 /*
7095 * subsys_initcall() for memory controller.
7096 *
7097 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7098 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7099 * basically everything that doesn't depend on a specific mem_cgroup structure
7100 * should be initialized from here.
7101 */
7102 static int __init mem_cgroup_init(void)
7103 {
7104 int cpu, node;
7105
7106 /*
7107 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7108 * used for per-memcg-per-cpu caching of per-node statistics. In order
7109 * to work fine, we should make sure that the overfill threshold can't
7110 * exceed S32_MAX / PAGE_SIZE.
7111 */
7112 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7113
7114 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7115 memcg_hotplug_cpu_dead);
7116
7117 for_each_possible_cpu(cpu)
7118 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7119 drain_local_stock);
7120
7121 for_each_node(node) {
7122 struct mem_cgroup_tree_per_node *rtpn;
7123
7124 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7125 node_online(node) ? node : NUMA_NO_NODE);
7126
7127 rtpn->rb_root = RB_ROOT;
7128 rtpn->rb_rightmost = NULL;
7129 spin_lock_init(&rtpn->lock);
7130 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7131 }
7132
7133 return 0;
7134 }
7135 subsys_initcall(mem_cgroup_init);
7136
7137 #ifdef CONFIG_MEMCG_SWAP
7138 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7139 {
7140 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7141 /*
7142 * The root cgroup cannot be destroyed, so it's refcount must
7143 * always be >= 1.
7144 */
7145 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7146 VM_BUG_ON(1);
7147 break;
7148 }
7149 memcg = parent_mem_cgroup(memcg);
7150 if (!memcg)
7151 memcg = root_mem_cgroup;
7152 }
7153 return memcg;
7154 }
7155
7156 /**
7157 * mem_cgroup_swapout - transfer a memsw charge to swap
7158 * @page: page whose memsw charge to transfer
7159 * @entry: swap entry to move the charge to
7160 *
7161 * Transfer the memsw charge of @page to @entry.
7162 */
7163 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7164 {
7165 struct mem_cgroup *memcg, *swap_memcg;
7166 unsigned int nr_entries;
7167 unsigned short oldid;
7168
7169 VM_BUG_ON_PAGE(PageLRU(page), page);
7170 VM_BUG_ON_PAGE(page_count(page), page);
7171
7172 if (mem_cgroup_disabled())
7173 return;
7174
7175 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7176 return;
7177
7178 memcg = page_memcg(page);
7179
7180 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7181 if (!memcg)
7182 return;
7183
7184 /*
7185 * In case the memcg owning these pages has been offlined and doesn't
7186 * have an ID allocated to it anymore, charge the closest online
7187 * ancestor for the swap instead and transfer the memory+swap charge.
7188 */
7189 swap_memcg = mem_cgroup_id_get_online(memcg);
7190 nr_entries = thp_nr_pages(page);
7191 /* Get references for the tail pages, too */
7192 if (nr_entries > 1)
7193 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7194 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7195 nr_entries);
7196 VM_BUG_ON_PAGE(oldid, page);
7197 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7198
7199 page->memcg_data = 0;
7200
7201 if (!mem_cgroup_is_root(memcg))
7202 page_counter_uncharge(&memcg->memory, nr_entries);
7203
7204 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7205 if (!mem_cgroup_is_root(swap_memcg))
7206 page_counter_charge(&swap_memcg->memsw, nr_entries);
7207 page_counter_uncharge(&memcg->memsw, nr_entries);
7208 }
7209
7210 /*
7211 * Interrupts should be disabled here because the caller holds the
7212 * i_pages lock which is taken with interrupts-off. It is
7213 * important here to have the interrupts disabled because it is the
7214 * only synchronisation we have for updating the per-CPU variables.
7215 */
7216 VM_BUG_ON(!irqs_disabled());
7217 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7218 memcg_check_events(memcg, page);
7219
7220 css_put(&memcg->css);
7221 }
7222
7223 /**
7224 * __mem_cgroup_try_charge_swap - try charging swap space for a page
7225 * @page: page being added to swap
7226 * @entry: swap entry to charge
7227 *
7228 * Try to charge @page's memcg for the swap space at @entry.
7229 *
7230 * Returns 0 on success, -ENOMEM on failure.
7231 */
7232 int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7233 {
7234 unsigned int nr_pages = thp_nr_pages(page);
7235 struct page_counter *counter;
7236 struct mem_cgroup *memcg;
7237 unsigned short oldid;
7238
7239 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7240 return 0;
7241
7242 memcg = page_memcg(page);
7243
7244 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7245 if (!memcg)
7246 return 0;
7247
7248 if (!entry.val) {
7249 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7250 return 0;
7251 }
7252
7253 memcg = mem_cgroup_id_get_online(memcg);
7254
7255 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7256 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7257 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7258 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7259 mem_cgroup_id_put(memcg);
7260 return -ENOMEM;
7261 }
7262
7263 /* Get references for the tail pages, too */
7264 if (nr_pages > 1)
7265 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7266 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7267 VM_BUG_ON_PAGE(oldid, page);
7268 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7269
7270 return 0;
7271 }
7272
7273 /**
7274 * __mem_cgroup_uncharge_swap - uncharge swap space
7275 * @entry: swap entry to uncharge
7276 * @nr_pages: the amount of swap space to uncharge
7277 */
7278 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7279 {
7280 struct mem_cgroup *memcg;
7281 unsigned short id;
7282
7283 id = swap_cgroup_record(entry, 0, nr_pages);
7284 rcu_read_lock();
7285 memcg = mem_cgroup_from_id(id);
7286 if (memcg) {
7287 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7288 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7289 page_counter_uncharge(&memcg->swap, nr_pages);
7290 else
7291 page_counter_uncharge(&memcg->memsw, nr_pages);
7292 }
7293 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7294 mem_cgroup_id_put_many(memcg, nr_pages);
7295 }
7296 rcu_read_unlock();
7297 }
7298
7299 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7300 {
7301 long nr_swap_pages = get_nr_swap_pages();
7302
7303 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7304 return nr_swap_pages;
7305 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7306 nr_swap_pages = min_t(long, nr_swap_pages,
7307 READ_ONCE(memcg->swap.max) -
7308 page_counter_read(&memcg->swap));
7309 return nr_swap_pages;
7310 }
7311
7312 bool mem_cgroup_swap_full(struct page *page)
7313 {
7314 struct mem_cgroup *memcg;
7315
7316 VM_BUG_ON_PAGE(!PageLocked(page), page);
7317
7318 if (vm_swap_full())
7319 return true;
7320 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7321 return false;
7322
7323 memcg = page_memcg(page);
7324 if (!memcg)
7325 return false;
7326
7327 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7328 unsigned long usage = page_counter_read(&memcg->swap);
7329
7330 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7331 usage * 2 >= READ_ONCE(memcg->swap.max))
7332 return true;
7333 }
7334
7335 return false;
7336 }
7337
7338 static int __init setup_swap_account(char *s)
7339 {
7340 if (!strcmp(s, "1"))
7341 cgroup_memory_noswap = false;
7342 else if (!strcmp(s, "0"))
7343 cgroup_memory_noswap = true;
7344 return 1;
7345 }
7346 __setup("swapaccount=", setup_swap_account);
7347
7348 static u64 swap_current_read(struct cgroup_subsys_state *css,
7349 struct cftype *cft)
7350 {
7351 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7352
7353 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7354 }
7355
7356 static int swap_high_show(struct seq_file *m, void *v)
7357 {
7358 return seq_puts_memcg_tunable(m,
7359 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7360 }
7361
7362 static ssize_t swap_high_write(struct kernfs_open_file *of,
7363 char *buf, size_t nbytes, loff_t off)
7364 {
7365 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7366 unsigned long high;
7367 int err;
7368
7369 buf = strstrip(buf);
7370 err = page_counter_memparse(buf, "max", &high);
7371 if (err)
7372 return err;
7373
7374 page_counter_set_high(&memcg->swap, high);
7375
7376 return nbytes;
7377 }
7378
7379 static int swap_max_show(struct seq_file *m, void *v)
7380 {
7381 return seq_puts_memcg_tunable(m,
7382 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7383 }
7384
7385 static ssize_t swap_max_write(struct kernfs_open_file *of,
7386 char *buf, size_t nbytes, loff_t off)
7387 {
7388 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7389 unsigned long max;
7390 int err;
7391
7392 buf = strstrip(buf);
7393 err = page_counter_memparse(buf, "max", &max);
7394 if (err)
7395 return err;
7396
7397 xchg(&memcg->swap.max, max);
7398
7399 return nbytes;
7400 }
7401
7402 static int swap_events_show(struct seq_file *m, void *v)
7403 {
7404 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7405
7406 seq_printf(m, "high %lu\n",
7407 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7408 seq_printf(m, "max %lu\n",
7409 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7410 seq_printf(m, "fail %lu\n",
7411 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7412
7413 return 0;
7414 }
7415
7416 static struct cftype swap_files[] = {
7417 {
7418 .name = "swap.current",
7419 .flags = CFTYPE_NOT_ON_ROOT,
7420 .read_u64 = swap_current_read,
7421 },
7422 {
7423 .name = "swap.high",
7424 .flags = CFTYPE_NOT_ON_ROOT,
7425 .seq_show = swap_high_show,
7426 .write = swap_high_write,
7427 },
7428 {
7429 .name = "swap.max",
7430 .flags = CFTYPE_NOT_ON_ROOT,
7431 .seq_show = swap_max_show,
7432 .write = swap_max_write,
7433 },
7434 {
7435 .name = "swap.events",
7436 .flags = CFTYPE_NOT_ON_ROOT,
7437 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7438 .seq_show = swap_events_show,
7439 },
7440 { } /* terminate */
7441 };
7442
7443 static struct cftype memsw_files[] = {
7444 {
7445 .name = "memsw.usage_in_bytes",
7446 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7447 .read_u64 = mem_cgroup_read_u64,
7448 },
7449 {
7450 .name = "memsw.max_usage_in_bytes",
7451 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7452 .write = mem_cgroup_reset,
7453 .read_u64 = mem_cgroup_read_u64,
7454 },
7455 {
7456 .name = "memsw.limit_in_bytes",
7457 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7458 .write = mem_cgroup_write,
7459 .read_u64 = mem_cgroup_read_u64,
7460 },
7461 {
7462 .name = "memsw.failcnt",
7463 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7464 .write = mem_cgroup_reset,
7465 .read_u64 = mem_cgroup_read_u64,
7466 },
7467 { }, /* terminate */
7468 };
7469
7470 /*
7471 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7472 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7473 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7474 * boot parameter. This may result in premature OOPS inside
7475 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7476 */
7477 static int __init mem_cgroup_swap_init(void)
7478 {
7479 /* No memory control -> no swap control */
7480 if (mem_cgroup_disabled())
7481 cgroup_memory_noswap = true;
7482
7483 if (cgroup_memory_noswap)
7484 return 0;
7485
7486 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7487 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7488
7489 return 0;
7490 }
7491 core_initcall(mem_cgroup_swap_init);
7492
7493 #endif /* CONFIG_MEMCG_SWAP */