]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memcontrol.c
memcg, oom: no oom-kill for __GFP_RETRY_MAYFAIL
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/mm.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include "internal.h"
61 #include <net/sock.h>
62 #include <net/ip.h>
63 #include "slab.h"
64
65 #include <linux/uaccess.h>
66
67 #include <trace/events/vmscan.h>
68
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71
72 struct mem_cgroup *root_mem_cgroup __read_mostly;
73
74 #define MEM_CGROUP_RECLAIM_RETRIES 5
75
76 /* Socket memory accounting disabled? */
77 static bool cgroup_memory_nosocket;
78
79 /* Kernel memory accounting disabled? */
80 static bool cgroup_memory_nokmem;
81
82 /* Whether the swap controller is active */
83 #ifdef CONFIG_MEMCG_SWAP
84 int do_swap_account __read_mostly;
85 #else
86 #define do_swap_account 0
87 #endif
88
89 /* Whether legacy memory+swap accounting is active */
90 static bool do_memsw_account(void)
91 {
92 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
93 }
94
95 static const char *const mem_cgroup_lru_names[] = {
96 "inactive_anon",
97 "active_anon",
98 "inactive_file",
99 "active_file",
100 "unevictable",
101 };
102
103 #define THRESHOLDS_EVENTS_TARGET 128
104 #define SOFTLIMIT_EVENTS_TARGET 1024
105 #define NUMAINFO_EVENTS_TARGET 1024
106
107 /*
108 * Cgroups above their limits are maintained in a RB-Tree, independent of
109 * their hierarchy representation
110 */
111
112 struct mem_cgroup_tree_per_node {
113 struct rb_root rb_root;
114 struct rb_node *rb_rightmost;
115 spinlock_t lock;
116 };
117
118 struct mem_cgroup_tree {
119 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
120 };
121
122 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
123
124 /* for OOM */
125 struct mem_cgroup_eventfd_list {
126 struct list_head list;
127 struct eventfd_ctx *eventfd;
128 };
129
130 /*
131 * cgroup_event represents events which userspace want to receive.
132 */
133 struct mem_cgroup_event {
134 /*
135 * memcg which the event belongs to.
136 */
137 struct mem_cgroup *memcg;
138 /*
139 * eventfd to signal userspace about the event.
140 */
141 struct eventfd_ctx *eventfd;
142 /*
143 * Each of these stored in a list by the cgroup.
144 */
145 struct list_head list;
146 /*
147 * register_event() callback will be used to add new userspace
148 * waiter for changes related to this event. Use eventfd_signal()
149 * on eventfd to send notification to userspace.
150 */
151 int (*register_event)(struct mem_cgroup *memcg,
152 struct eventfd_ctx *eventfd, const char *args);
153 /*
154 * unregister_event() callback will be called when userspace closes
155 * the eventfd or on cgroup removing. This callback must be set,
156 * if you want provide notification functionality.
157 */
158 void (*unregister_event)(struct mem_cgroup *memcg,
159 struct eventfd_ctx *eventfd);
160 /*
161 * All fields below needed to unregister event when
162 * userspace closes eventfd.
163 */
164 poll_table pt;
165 wait_queue_head_t *wqh;
166 wait_queue_entry_t wait;
167 struct work_struct remove;
168 };
169
170 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
171 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
172
173 /* Stuffs for move charges at task migration. */
174 /*
175 * Types of charges to be moved.
176 */
177 #define MOVE_ANON 0x1U
178 #define MOVE_FILE 0x2U
179 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
180
181 /* "mc" and its members are protected by cgroup_mutex */
182 static struct move_charge_struct {
183 spinlock_t lock; /* for from, to */
184 struct mm_struct *mm;
185 struct mem_cgroup *from;
186 struct mem_cgroup *to;
187 unsigned long flags;
188 unsigned long precharge;
189 unsigned long moved_charge;
190 unsigned long moved_swap;
191 struct task_struct *moving_task; /* a task moving charges */
192 wait_queue_head_t waitq; /* a waitq for other context */
193 } mc = {
194 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
195 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
196 };
197
198 /*
199 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
200 * limit reclaim to prevent infinite loops, if they ever occur.
201 */
202 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
203 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
204
205 enum charge_type {
206 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
207 MEM_CGROUP_CHARGE_TYPE_ANON,
208 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
209 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
210 NR_CHARGE_TYPE,
211 };
212
213 /* for encoding cft->private value on file */
214 enum res_type {
215 _MEM,
216 _MEMSWAP,
217 _OOM_TYPE,
218 _KMEM,
219 _TCP,
220 };
221
222 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
223 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
224 #define MEMFILE_ATTR(val) ((val) & 0xffff)
225 /* Used for OOM nofiier */
226 #define OOM_CONTROL (0)
227
228 /*
229 * Iteration constructs for visiting all cgroups (under a tree). If
230 * loops are exited prematurely (break), mem_cgroup_iter_break() must
231 * be used for reference counting.
232 */
233 #define for_each_mem_cgroup_tree(iter, root) \
234 for (iter = mem_cgroup_iter(root, NULL, NULL); \
235 iter != NULL; \
236 iter = mem_cgroup_iter(root, iter, NULL))
237
238 #define for_each_mem_cgroup(iter) \
239 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
240 iter != NULL; \
241 iter = mem_cgroup_iter(NULL, iter, NULL))
242
243 static inline bool should_force_charge(void)
244 {
245 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
246 (current->flags & PF_EXITING);
247 }
248
249 /* Some nice accessors for the vmpressure. */
250 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
251 {
252 if (!memcg)
253 memcg = root_mem_cgroup;
254 return &memcg->vmpressure;
255 }
256
257 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
258 {
259 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
260 }
261
262 #ifdef CONFIG_MEMCG_KMEM
263 /*
264 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
265 * The main reason for not using cgroup id for this:
266 * this works better in sparse environments, where we have a lot of memcgs,
267 * but only a few kmem-limited. Or also, if we have, for instance, 200
268 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
269 * 200 entry array for that.
270 *
271 * The current size of the caches array is stored in memcg_nr_cache_ids. It
272 * will double each time we have to increase it.
273 */
274 static DEFINE_IDA(memcg_cache_ida);
275 int memcg_nr_cache_ids;
276
277 /* Protects memcg_nr_cache_ids */
278 static DECLARE_RWSEM(memcg_cache_ids_sem);
279
280 void memcg_get_cache_ids(void)
281 {
282 down_read(&memcg_cache_ids_sem);
283 }
284
285 void memcg_put_cache_ids(void)
286 {
287 up_read(&memcg_cache_ids_sem);
288 }
289
290 /*
291 * MIN_SIZE is different than 1, because we would like to avoid going through
292 * the alloc/free process all the time. In a small machine, 4 kmem-limited
293 * cgroups is a reasonable guess. In the future, it could be a parameter or
294 * tunable, but that is strictly not necessary.
295 *
296 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
297 * this constant directly from cgroup, but it is understandable that this is
298 * better kept as an internal representation in cgroup.c. In any case, the
299 * cgrp_id space is not getting any smaller, and we don't have to necessarily
300 * increase ours as well if it increases.
301 */
302 #define MEMCG_CACHES_MIN_SIZE 4
303 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
304
305 /*
306 * A lot of the calls to the cache allocation functions are expected to be
307 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
308 * conditional to this static branch, we'll have to allow modules that does
309 * kmem_cache_alloc and the such to see this symbol as well
310 */
311 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
312 EXPORT_SYMBOL(memcg_kmem_enabled_key);
313
314 struct workqueue_struct *memcg_kmem_cache_wq;
315
316 static int memcg_shrinker_map_size;
317 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
318
319 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
320 {
321 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
322 }
323
324 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
325 int size, int old_size)
326 {
327 struct memcg_shrinker_map *new, *old;
328 int nid;
329
330 lockdep_assert_held(&memcg_shrinker_map_mutex);
331
332 for_each_node(nid) {
333 old = rcu_dereference_protected(
334 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
335 /* Not yet online memcg */
336 if (!old)
337 return 0;
338
339 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
340 if (!new)
341 return -ENOMEM;
342
343 /* Set all old bits, clear all new bits */
344 memset(new->map, (int)0xff, old_size);
345 memset((void *)new->map + old_size, 0, size - old_size);
346
347 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
348 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
349 }
350
351 return 0;
352 }
353
354 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
355 {
356 struct mem_cgroup_per_node *pn;
357 struct memcg_shrinker_map *map;
358 int nid;
359
360 if (mem_cgroup_is_root(memcg))
361 return;
362
363 for_each_node(nid) {
364 pn = mem_cgroup_nodeinfo(memcg, nid);
365 map = rcu_dereference_protected(pn->shrinker_map, true);
366 if (map)
367 kvfree(map);
368 rcu_assign_pointer(pn->shrinker_map, NULL);
369 }
370 }
371
372 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
373 {
374 struct memcg_shrinker_map *map;
375 int nid, size, ret = 0;
376
377 if (mem_cgroup_is_root(memcg))
378 return 0;
379
380 mutex_lock(&memcg_shrinker_map_mutex);
381 size = memcg_shrinker_map_size;
382 for_each_node(nid) {
383 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
384 if (!map) {
385 memcg_free_shrinker_maps(memcg);
386 ret = -ENOMEM;
387 break;
388 }
389 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
390 }
391 mutex_unlock(&memcg_shrinker_map_mutex);
392
393 return ret;
394 }
395
396 int memcg_expand_shrinker_maps(int new_id)
397 {
398 int size, old_size, ret = 0;
399 struct mem_cgroup *memcg;
400
401 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
402 old_size = memcg_shrinker_map_size;
403 if (size <= old_size)
404 return 0;
405
406 mutex_lock(&memcg_shrinker_map_mutex);
407 if (!root_mem_cgroup)
408 goto unlock;
409
410 for_each_mem_cgroup(memcg) {
411 if (mem_cgroup_is_root(memcg))
412 continue;
413 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
414 if (ret)
415 goto unlock;
416 }
417 unlock:
418 if (!ret)
419 memcg_shrinker_map_size = size;
420 mutex_unlock(&memcg_shrinker_map_mutex);
421 return ret;
422 }
423
424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
425 {
426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 struct memcg_shrinker_map *map;
428
429 rcu_read_lock();
430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 /* Pairs with smp mb in shrink_slab() */
432 smp_mb__before_atomic();
433 set_bit(shrinker_id, map->map);
434 rcu_read_unlock();
435 }
436 }
437
438 #else /* CONFIG_MEMCG_KMEM */
439 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
440 {
441 return 0;
442 }
443 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
444 #endif /* CONFIG_MEMCG_KMEM */
445
446 /**
447 * mem_cgroup_css_from_page - css of the memcg associated with a page
448 * @page: page of interest
449 *
450 * If memcg is bound to the default hierarchy, css of the memcg associated
451 * with @page is returned. The returned css remains associated with @page
452 * until it is released.
453 *
454 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
455 * is returned.
456 */
457 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
458 {
459 struct mem_cgroup *memcg;
460
461 memcg = page->mem_cgroup;
462
463 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
464 memcg = root_mem_cgroup;
465
466 return &memcg->css;
467 }
468
469 /**
470 * page_cgroup_ino - return inode number of the memcg a page is charged to
471 * @page: the page
472 *
473 * Look up the closest online ancestor of the memory cgroup @page is charged to
474 * and return its inode number or 0 if @page is not charged to any cgroup. It
475 * is safe to call this function without holding a reference to @page.
476 *
477 * Note, this function is inherently racy, because there is nothing to prevent
478 * the cgroup inode from getting torn down and potentially reallocated a moment
479 * after page_cgroup_ino() returns, so it only should be used by callers that
480 * do not care (such as procfs interfaces).
481 */
482 ino_t page_cgroup_ino(struct page *page)
483 {
484 struct mem_cgroup *memcg;
485 unsigned long ino = 0;
486
487 rcu_read_lock();
488 memcg = READ_ONCE(page->mem_cgroup);
489 while (memcg && !(memcg->css.flags & CSS_ONLINE))
490 memcg = parent_mem_cgroup(memcg);
491 if (memcg)
492 ino = cgroup_ino(memcg->css.cgroup);
493 rcu_read_unlock();
494 return ino;
495 }
496
497 static struct mem_cgroup_per_node *
498 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
499 {
500 int nid = page_to_nid(page);
501
502 return memcg->nodeinfo[nid];
503 }
504
505 static struct mem_cgroup_tree_per_node *
506 soft_limit_tree_node(int nid)
507 {
508 return soft_limit_tree.rb_tree_per_node[nid];
509 }
510
511 static struct mem_cgroup_tree_per_node *
512 soft_limit_tree_from_page(struct page *page)
513 {
514 int nid = page_to_nid(page);
515
516 return soft_limit_tree.rb_tree_per_node[nid];
517 }
518
519 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
520 struct mem_cgroup_tree_per_node *mctz,
521 unsigned long new_usage_in_excess)
522 {
523 struct rb_node **p = &mctz->rb_root.rb_node;
524 struct rb_node *parent = NULL;
525 struct mem_cgroup_per_node *mz_node;
526 bool rightmost = true;
527
528 if (mz->on_tree)
529 return;
530
531 mz->usage_in_excess = new_usage_in_excess;
532 if (!mz->usage_in_excess)
533 return;
534 while (*p) {
535 parent = *p;
536 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
537 tree_node);
538 if (mz->usage_in_excess < mz_node->usage_in_excess) {
539 p = &(*p)->rb_left;
540 rightmost = false;
541 }
542
543 /*
544 * We can't avoid mem cgroups that are over their soft
545 * limit by the same amount
546 */
547 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
548 p = &(*p)->rb_right;
549 }
550
551 if (rightmost)
552 mctz->rb_rightmost = &mz->tree_node;
553
554 rb_link_node(&mz->tree_node, parent, p);
555 rb_insert_color(&mz->tree_node, &mctz->rb_root);
556 mz->on_tree = true;
557 }
558
559 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
560 struct mem_cgroup_tree_per_node *mctz)
561 {
562 if (!mz->on_tree)
563 return;
564
565 if (&mz->tree_node == mctz->rb_rightmost)
566 mctz->rb_rightmost = rb_prev(&mz->tree_node);
567
568 rb_erase(&mz->tree_node, &mctz->rb_root);
569 mz->on_tree = false;
570 }
571
572 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
573 struct mem_cgroup_tree_per_node *mctz)
574 {
575 unsigned long flags;
576
577 spin_lock_irqsave(&mctz->lock, flags);
578 __mem_cgroup_remove_exceeded(mz, mctz);
579 spin_unlock_irqrestore(&mctz->lock, flags);
580 }
581
582 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
583 {
584 unsigned long nr_pages = page_counter_read(&memcg->memory);
585 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
586 unsigned long excess = 0;
587
588 if (nr_pages > soft_limit)
589 excess = nr_pages - soft_limit;
590
591 return excess;
592 }
593
594 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
595 {
596 unsigned long excess;
597 struct mem_cgroup_per_node *mz;
598 struct mem_cgroup_tree_per_node *mctz;
599
600 mctz = soft_limit_tree_from_page(page);
601 if (!mctz)
602 return;
603 /*
604 * Necessary to update all ancestors when hierarchy is used.
605 * because their event counter is not touched.
606 */
607 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
608 mz = mem_cgroup_page_nodeinfo(memcg, page);
609 excess = soft_limit_excess(memcg);
610 /*
611 * We have to update the tree if mz is on RB-tree or
612 * mem is over its softlimit.
613 */
614 if (excess || mz->on_tree) {
615 unsigned long flags;
616
617 spin_lock_irqsave(&mctz->lock, flags);
618 /* if on-tree, remove it */
619 if (mz->on_tree)
620 __mem_cgroup_remove_exceeded(mz, mctz);
621 /*
622 * Insert again. mz->usage_in_excess will be updated.
623 * If excess is 0, no tree ops.
624 */
625 __mem_cgroup_insert_exceeded(mz, mctz, excess);
626 spin_unlock_irqrestore(&mctz->lock, flags);
627 }
628 }
629 }
630
631 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
632 {
633 struct mem_cgroup_tree_per_node *mctz;
634 struct mem_cgroup_per_node *mz;
635 int nid;
636
637 for_each_node(nid) {
638 mz = mem_cgroup_nodeinfo(memcg, nid);
639 mctz = soft_limit_tree_node(nid);
640 if (mctz)
641 mem_cgroup_remove_exceeded(mz, mctz);
642 }
643 }
644
645 static struct mem_cgroup_per_node *
646 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
647 {
648 struct mem_cgroup_per_node *mz;
649
650 retry:
651 mz = NULL;
652 if (!mctz->rb_rightmost)
653 goto done; /* Nothing to reclaim from */
654
655 mz = rb_entry(mctz->rb_rightmost,
656 struct mem_cgroup_per_node, tree_node);
657 /*
658 * Remove the node now but someone else can add it back,
659 * we will to add it back at the end of reclaim to its correct
660 * position in the tree.
661 */
662 __mem_cgroup_remove_exceeded(mz, mctz);
663 if (!soft_limit_excess(mz->memcg) ||
664 !css_tryget_online(&mz->memcg->css))
665 goto retry;
666 done:
667 return mz;
668 }
669
670 static struct mem_cgroup_per_node *
671 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
672 {
673 struct mem_cgroup_per_node *mz;
674
675 spin_lock_irq(&mctz->lock);
676 mz = __mem_cgroup_largest_soft_limit_node(mctz);
677 spin_unlock_irq(&mctz->lock);
678 return mz;
679 }
680
681 /**
682 * __mod_memcg_state - update cgroup memory statistics
683 * @memcg: the memory cgroup
684 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
685 * @val: delta to add to the counter, can be negative
686 */
687 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
688 {
689 long x;
690
691 if (mem_cgroup_disabled())
692 return;
693
694 __this_cpu_add(memcg->vmstats_local->stat[idx], val);
695
696 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
697 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
698 struct mem_cgroup *mi;
699
700 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
701 atomic_long_add(x, &mi->vmstats[idx]);
702 x = 0;
703 }
704 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
705 }
706
707 static struct mem_cgroup_per_node *
708 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
709 {
710 struct mem_cgroup *parent;
711
712 parent = parent_mem_cgroup(pn->memcg);
713 if (!parent)
714 return NULL;
715 return mem_cgroup_nodeinfo(parent, nid);
716 }
717
718 /**
719 * __mod_lruvec_state - update lruvec memory statistics
720 * @lruvec: the lruvec
721 * @idx: the stat item
722 * @val: delta to add to the counter, can be negative
723 *
724 * The lruvec is the intersection of the NUMA node and a cgroup. This
725 * function updates the all three counters that are affected by a
726 * change of state at this level: per-node, per-cgroup, per-lruvec.
727 */
728 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
729 int val)
730 {
731 pg_data_t *pgdat = lruvec_pgdat(lruvec);
732 struct mem_cgroup_per_node *pn;
733 struct mem_cgroup *memcg;
734 long x;
735
736 /* Update node */
737 __mod_node_page_state(pgdat, idx, val);
738
739 if (mem_cgroup_disabled())
740 return;
741
742 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
743 memcg = pn->memcg;
744
745 /* Update memcg */
746 __mod_memcg_state(memcg, idx, val);
747
748 /* Update lruvec */
749 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
750
751 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
752 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
753 struct mem_cgroup_per_node *pi;
754
755 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
756 atomic_long_add(x, &pi->lruvec_stat[idx]);
757 x = 0;
758 }
759 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
760 }
761
762 /**
763 * __count_memcg_events - account VM events in a cgroup
764 * @memcg: the memory cgroup
765 * @idx: the event item
766 * @count: the number of events that occured
767 */
768 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
769 unsigned long count)
770 {
771 unsigned long x;
772
773 if (mem_cgroup_disabled())
774 return;
775
776 __this_cpu_add(memcg->vmstats_local->events[idx], count);
777
778 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
779 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
780 struct mem_cgroup *mi;
781
782 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
783 atomic_long_add(x, &mi->vmevents[idx]);
784 x = 0;
785 }
786 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
787 }
788
789 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
790 {
791 return atomic_long_read(&memcg->vmevents[event]);
792 }
793
794 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
795 {
796 long x = 0;
797 int cpu;
798
799 for_each_possible_cpu(cpu)
800 x += per_cpu(memcg->vmstats_local->events[event], cpu);
801 return x;
802 }
803
804 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
805 struct page *page,
806 bool compound, int nr_pages)
807 {
808 /*
809 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
810 * counted as CACHE even if it's on ANON LRU.
811 */
812 if (PageAnon(page))
813 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
814 else {
815 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
816 if (PageSwapBacked(page))
817 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
818 }
819
820 if (compound) {
821 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
822 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
823 }
824
825 /* pagein of a big page is an event. So, ignore page size */
826 if (nr_pages > 0)
827 __count_memcg_events(memcg, PGPGIN, 1);
828 else {
829 __count_memcg_events(memcg, PGPGOUT, 1);
830 nr_pages = -nr_pages; /* for event */
831 }
832
833 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
834 }
835
836 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
837 enum mem_cgroup_events_target target)
838 {
839 unsigned long val, next;
840
841 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
842 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
843 /* from time_after() in jiffies.h */
844 if ((long)(next - val) < 0) {
845 switch (target) {
846 case MEM_CGROUP_TARGET_THRESH:
847 next = val + THRESHOLDS_EVENTS_TARGET;
848 break;
849 case MEM_CGROUP_TARGET_SOFTLIMIT:
850 next = val + SOFTLIMIT_EVENTS_TARGET;
851 break;
852 case MEM_CGROUP_TARGET_NUMAINFO:
853 next = val + NUMAINFO_EVENTS_TARGET;
854 break;
855 default:
856 break;
857 }
858 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
859 return true;
860 }
861 return false;
862 }
863
864 /*
865 * Check events in order.
866 *
867 */
868 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
869 {
870 /* threshold event is triggered in finer grain than soft limit */
871 if (unlikely(mem_cgroup_event_ratelimit(memcg,
872 MEM_CGROUP_TARGET_THRESH))) {
873 bool do_softlimit;
874 bool do_numainfo __maybe_unused;
875
876 do_softlimit = mem_cgroup_event_ratelimit(memcg,
877 MEM_CGROUP_TARGET_SOFTLIMIT);
878 #if MAX_NUMNODES > 1
879 do_numainfo = mem_cgroup_event_ratelimit(memcg,
880 MEM_CGROUP_TARGET_NUMAINFO);
881 #endif
882 mem_cgroup_threshold(memcg);
883 if (unlikely(do_softlimit))
884 mem_cgroup_update_tree(memcg, page);
885 #if MAX_NUMNODES > 1
886 if (unlikely(do_numainfo))
887 atomic_inc(&memcg->numainfo_events);
888 #endif
889 }
890 }
891
892 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
893 {
894 /*
895 * mm_update_next_owner() may clear mm->owner to NULL
896 * if it races with swapoff, page migration, etc.
897 * So this can be called with p == NULL.
898 */
899 if (unlikely(!p))
900 return NULL;
901
902 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
903 }
904 EXPORT_SYMBOL(mem_cgroup_from_task);
905
906 /**
907 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
908 * @mm: mm from which memcg should be extracted. It can be NULL.
909 *
910 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
911 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
912 * returned.
913 */
914 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
915 {
916 struct mem_cgroup *memcg;
917
918 if (mem_cgroup_disabled())
919 return NULL;
920
921 rcu_read_lock();
922 do {
923 /*
924 * Page cache insertions can happen withou an
925 * actual mm context, e.g. during disk probing
926 * on boot, loopback IO, acct() writes etc.
927 */
928 if (unlikely(!mm))
929 memcg = root_mem_cgroup;
930 else {
931 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
932 if (unlikely(!memcg))
933 memcg = root_mem_cgroup;
934 }
935 } while (!css_tryget_online(&memcg->css));
936 rcu_read_unlock();
937 return memcg;
938 }
939 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
940
941 /**
942 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
943 * @page: page from which memcg should be extracted.
944 *
945 * Obtain a reference on page->memcg and returns it if successful. Otherwise
946 * root_mem_cgroup is returned.
947 */
948 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
949 {
950 struct mem_cgroup *memcg = page->mem_cgroup;
951
952 if (mem_cgroup_disabled())
953 return NULL;
954
955 rcu_read_lock();
956 if (!memcg || !css_tryget_online(&memcg->css))
957 memcg = root_mem_cgroup;
958 rcu_read_unlock();
959 return memcg;
960 }
961 EXPORT_SYMBOL(get_mem_cgroup_from_page);
962
963 /**
964 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
965 */
966 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
967 {
968 if (unlikely(current->active_memcg)) {
969 struct mem_cgroup *memcg = root_mem_cgroup;
970
971 rcu_read_lock();
972 if (css_tryget_online(&current->active_memcg->css))
973 memcg = current->active_memcg;
974 rcu_read_unlock();
975 return memcg;
976 }
977 return get_mem_cgroup_from_mm(current->mm);
978 }
979
980 /**
981 * mem_cgroup_iter - iterate over memory cgroup hierarchy
982 * @root: hierarchy root
983 * @prev: previously returned memcg, NULL on first invocation
984 * @reclaim: cookie for shared reclaim walks, NULL for full walks
985 *
986 * Returns references to children of the hierarchy below @root, or
987 * @root itself, or %NULL after a full round-trip.
988 *
989 * Caller must pass the return value in @prev on subsequent
990 * invocations for reference counting, or use mem_cgroup_iter_break()
991 * to cancel a hierarchy walk before the round-trip is complete.
992 *
993 * Reclaimers can specify a node and a priority level in @reclaim to
994 * divide up the memcgs in the hierarchy among all concurrent
995 * reclaimers operating on the same node and priority.
996 */
997 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
998 struct mem_cgroup *prev,
999 struct mem_cgroup_reclaim_cookie *reclaim)
1000 {
1001 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1002 struct cgroup_subsys_state *css = NULL;
1003 struct mem_cgroup *memcg = NULL;
1004 struct mem_cgroup *pos = NULL;
1005
1006 if (mem_cgroup_disabled())
1007 return NULL;
1008
1009 if (!root)
1010 root = root_mem_cgroup;
1011
1012 if (prev && !reclaim)
1013 pos = prev;
1014
1015 if (!root->use_hierarchy && root != root_mem_cgroup) {
1016 if (prev)
1017 goto out;
1018 return root;
1019 }
1020
1021 rcu_read_lock();
1022
1023 if (reclaim) {
1024 struct mem_cgroup_per_node *mz;
1025
1026 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1027 iter = &mz->iter[reclaim->priority];
1028
1029 if (prev && reclaim->generation != iter->generation)
1030 goto out_unlock;
1031
1032 while (1) {
1033 pos = READ_ONCE(iter->position);
1034 if (!pos || css_tryget(&pos->css))
1035 break;
1036 /*
1037 * css reference reached zero, so iter->position will
1038 * be cleared by ->css_released. However, we should not
1039 * rely on this happening soon, because ->css_released
1040 * is called from a work queue, and by busy-waiting we
1041 * might block it. So we clear iter->position right
1042 * away.
1043 */
1044 (void)cmpxchg(&iter->position, pos, NULL);
1045 }
1046 }
1047
1048 if (pos)
1049 css = &pos->css;
1050
1051 for (;;) {
1052 css = css_next_descendant_pre(css, &root->css);
1053 if (!css) {
1054 /*
1055 * Reclaimers share the hierarchy walk, and a
1056 * new one might jump in right at the end of
1057 * the hierarchy - make sure they see at least
1058 * one group and restart from the beginning.
1059 */
1060 if (!prev)
1061 continue;
1062 break;
1063 }
1064
1065 /*
1066 * Verify the css and acquire a reference. The root
1067 * is provided by the caller, so we know it's alive
1068 * and kicking, and don't take an extra reference.
1069 */
1070 memcg = mem_cgroup_from_css(css);
1071
1072 if (css == &root->css)
1073 break;
1074
1075 if (css_tryget(css))
1076 break;
1077
1078 memcg = NULL;
1079 }
1080
1081 if (reclaim) {
1082 /*
1083 * The position could have already been updated by a competing
1084 * thread, so check that the value hasn't changed since we read
1085 * it to avoid reclaiming from the same cgroup twice.
1086 */
1087 (void)cmpxchg(&iter->position, pos, memcg);
1088
1089 if (pos)
1090 css_put(&pos->css);
1091
1092 if (!memcg)
1093 iter->generation++;
1094 else if (!prev)
1095 reclaim->generation = iter->generation;
1096 }
1097
1098 out_unlock:
1099 rcu_read_unlock();
1100 out:
1101 if (prev && prev != root)
1102 css_put(&prev->css);
1103
1104 return memcg;
1105 }
1106
1107 /**
1108 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1109 * @root: hierarchy root
1110 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1111 */
1112 void mem_cgroup_iter_break(struct mem_cgroup *root,
1113 struct mem_cgroup *prev)
1114 {
1115 if (!root)
1116 root = root_mem_cgroup;
1117 if (prev && prev != root)
1118 css_put(&prev->css);
1119 }
1120
1121 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1122 {
1123 struct mem_cgroup *memcg = dead_memcg;
1124 struct mem_cgroup_reclaim_iter *iter;
1125 struct mem_cgroup_per_node *mz;
1126 int nid;
1127 int i;
1128
1129 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1130 for_each_node(nid) {
1131 mz = mem_cgroup_nodeinfo(memcg, nid);
1132 for (i = 0; i <= DEF_PRIORITY; i++) {
1133 iter = &mz->iter[i];
1134 cmpxchg(&iter->position,
1135 dead_memcg, NULL);
1136 }
1137 }
1138 }
1139 }
1140
1141 /**
1142 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1143 * @memcg: hierarchy root
1144 * @fn: function to call for each task
1145 * @arg: argument passed to @fn
1146 *
1147 * This function iterates over tasks attached to @memcg or to any of its
1148 * descendants and calls @fn for each task. If @fn returns a non-zero
1149 * value, the function breaks the iteration loop and returns the value.
1150 * Otherwise, it will iterate over all tasks and return 0.
1151 *
1152 * This function must not be called for the root memory cgroup.
1153 */
1154 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1155 int (*fn)(struct task_struct *, void *), void *arg)
1156 {
1157 struct mem_cgroup *iter;
1158 int ret = 0;
1159
1160 BUG_ON(memcg == root_mem_cgroup);
1161
1162 for_each_mem_cgroup_tree(iter, memcg) {
1163 struct css_task_iter it;
1164 struct task_struct *task;
1165
1166 css_task_iter_start(&iter->css, 0, &it);
1167 while (!ret && (task = css_task_iter_next(&it)))
1168 ret = fn(task, arg);
1169 css_task_iter_end(&it);
1170 if (ret) {
1171 mem_cgroup_iter_break(memcg, iter);
1172 break;
1173 }
1174 }
1175 return ret;
1176 }
1177
1178 /**
1179 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1180 * @page: the page
1181 * @pgdat: pgdat of the page
1182 *
1183 * This function is only safe when following the LRU page isolation
1184 * and putback protocol: the LRU lock must be held, and the page must
1185 * either be PageLRU() or the caller must have isolated/allocated it.
1186 */
1187 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1188 {
1189 struct mem_cgroup_per_node *mz;
1190 struct mem_cgroup *memcg;
1191 struct lruvec *lruvec;
1192
1193 if (mem_cgroup_disabled()) {
1194 lruvec = &pgdat->lruvec;
1195 goto out;
1196 }
1197
1198 memcg = page->mem_cgroup;
1199 /*
1200 * Swapcache readahead pages are added to the LRU - and
1201 * possibly migrated - before they are charged.
1202 */
1203 if (!memcg)
1204 memcg = root_mem_cgroup;
1205
1206 mz = mem_cgroup_page_nodeinfo(memcg, page);
1207 lruvec = &mz->lruvec;
1208 out:
1209 /*
1210 * Since a node can be onlined after the mem_cgroup was created,
1211 * we have to be prepared to initialize lruvec->zone here;
1212 * and if offlined then reonlined, we need to reinitialize it.
1213 */
1214 if (unlikely(lruvec->pgdat != pgdat))
1215 lruvec->pgdat = pgdat;
1216 return lruvec;
1217 }
1218
1219 /**
1220 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1221 * @lruvec: mem_cgroup per zone lru vector
1222 * @lru: index of lru list the page is sitting on
1223 * @zid: zone id of the accounted pages
1224 * @nr_pages: positive when adding or negative when removing
1225 *
1226 * This function must be called under lru_lock, just before a page is added
1227 * to or just after a page is removed from an lru list (that ordering being
1228 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1229 */
1230 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1231 int zid, int nr_pages)
1232 {
1233 struct mem_cgroup_per_node *mz;
1234 unsigned long *lru_size;
1235 long size;
1236
1237 if (mem_cgroup_disabled())
1238 return;
1239
1240 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1241 lru_size = &mz->lru_zone_size[zid][lru];
1242
1243 if (nr_pages < 0)
1244 *lru_size += nr_pages;
1245
1246 size = *lru_size;
1247 if (WARN_ONCE(size < 0,
1248 "%s(%p, %d, %d): lru_size %ld\n",
1249 __func__, lruvec, lru, nr_pages, size)) {
1250 VM_BUG_ON(1);
1251 *lru_size = 0;
1252 }
1253
1254 if (nr_pages > 0)
1255 *lru_size += nr_pages;
1256 }
1257
1258 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1259 {
1260 struct mem_cgroup *task_memcg;
1261 struct task_struct *p;
1262 bool ret;
1263
1264 p = find_lock_task_mm(task);
1265 if (p) {
1266 task_memcg = get_mem_cgroup_from_mm(p->mm);
1267 task_unlock(p);
1268 } else {
1269 /*
1270 * All threads may have already detached their mm's, but the oom
1271 * killer still needs to detect if they have already been oom
1272 * killed to prevent needlessly killing additional tasks.
1273 */
1274 rcu_read_lock();
1275 task_memcg = mem_cgroup_from_task(task);
1276 css_get(&task_memcg->css);
1277 rcu_read_unlock();
1278 }
1279 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1280 css_put(&task_memcg->css);
1281 return ret;
1282 }
1283
1284 /**
1285 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1286 * @memcg: the memory cgroup
1287 *
1288 * Returns the maximum amount of memory @mem can be charged with, in
1289 * pages.
1290 */
1291 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1292 {
1293 unsigned long margin = 0;
1294 unsigned long count;
1295 unsigned long limit;
1296
1297 count = page_counter_read(&memcg->memory);
1298 limit = READ_ONCE(memcg->memory.max);
1299 if (count < limit)
1300 margin = limit - count;
1301
1302 if (do_memsw_account()) {
1303 count = page_counter_read(&memcg->memsw);
1304 limit = READ_ONCE(memcg->memsw.max);
1305 if (count <= limit)
1306 margin = min(margin, limit - count);
1307 else
1308 margin = 0;
1309 }
1310
1311 return margin;
1312 }
1313
1314 /*
1315 * A routine for checking "mem" is under move_account() or not.
1316 *
1317 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1318 * moving cgroups. This is for waiting at high-memory pressure
1319 * caused by "move".
1320 */
1321 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1322 {
1323 struct mem_cgroup *from;
1324 struct mem_cgroup *to;
1325 bool ret = false;
1326 /*
1327 * Unlike task_move routines, we access mc.to, mc.from not under
1328 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1329 */
1330 spin_lock(&mc.lock);
1331 from = mc.from;
1332 to = mc.to;
1333 if (!from)
1334 goto unlock;
1335
1336 ret = mem_cgroup_is_descendant(from, memcg) ||
1337 mem_cgroup_is_descendant(to, memcg);
1338 unlock:
1339 spin_unlock(&mc.lock);
1340 return ret;
1341 }
1342
1343 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1344 {
1345 if (mc.moving_task && current != mc.moving_task) {
1346 if (mem_cgroup_under_move(memcg)) {
1347 DEFINE_WAIT(wait);
1348 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1349 /* moving charge context might have finished. */
1350 if (mc.moving_task)
1351 schedule();
1352 finish_wait(&mc.waitq, &wait);
1353 return true;
1354 }
1355 }
1356 return false;
1357 }
1358
1359 static const unsigned int memcg1_stats[] = {
1360 MEMCG_CACHE,
1361 MEMCG_RSS,
1362 MEMCG_RSS_HUGE,
1363 NR_SHMEM,
1364 NR_FILE_MAPPED,
1365 NR_FILE_DIRTY,
1366 NR_WRITEBACK,
1367 MEMCG_SWAP,
1368 };
1369
1370 static const char *const memcg1_stat_names[] = {
1371 "cache",
1372 "rss",
1373 "rss_huge",
1374 "shmem",
1375 "mapped_file",
1376 "dirty",
1377 "writeback",
1378 "swap",
1379 };
1380
1381 #define K(x) ((x) << (PAGE_SHIFT-10))
1382 /**
1383 * mem_cgroup_print_oom_context: Print OOM information relevant to
1384 * memory controller.
1385 * @memcg: The memory cgroup that went over limit
1386 * @p: Task that is going to be killed
1387 *
1388 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1389 * enabled
1390 */
1391 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1392 {
1393 rcu_read_lock();
1394
1395 if (memcg) {
1396 pr_cont(",oom_memcg=");
1397 pr_cont_cgroup_path(memcg->css.cgroup);
1398 } else
1399 pr_cont(",global_oom");
1400 if (p) {
1401 pr_cont(",task_memcg=");
1402 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1403 }
1404 rcu_read_unlock();
1405 }
1406
1407 /**
1408 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1409 * memory controller.
1410 * @memcg: The memory cgroup that went over limit
1411 */
1412 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1413 {
1414 struct mem_cgroup *iter;
1415 unsigned int i;
1416
1417 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1418 K((u64)page_counter_read(&memcg->memory)),
1419 K((u64)memcg->memory.max), memcg->memory.failcnt);
1420 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1421 K((u64)page_counter_read(&memcg->memsw)),
1422 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1423 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1424 K((u64)page_counter_read(&memcg->kmem)),
1425 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1426
1427 for_each_mem_cgroup_tree(iter, memcg) {
1428 pr_info("Memory cgroup stats for ");
1429 pr_cont_cgroup_path(iter->css.cgroup);
1430 pr_cont(":");
1431
1432 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1433 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1434 continue;
1435 pr_cont(" %s:%luKB", memcg1_stat_names[i],
1436 K(memcg_page_state_local(iter,
1437 memcg1_stats[i])));
1438 }
1439
1440 for (i = 0; i < NR_LRU_LISTS; i++)
1441 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1442 K(memcg_page_state_local(iter,
1443 NR_LRU_BASE + i)));
1444
1445 pr_cont("\n");
1446 }
1447 }
1448
1449 /*
1450 * Return the memory (and swap, if configured) limit for a memcg.
1451 */
1452 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1453 {
1454 unsigned long max;
1455
1456 max = memcg->memory.max;
1457 if (mem_cgroup_swappiness(memcg)) {
1458 unsigned long memsw_max;
1459 unsigned long swap_max;
1460
1461 memsw_max = memcg->memsw.max;
1462 swap_max = memcg->swap.max;
1463 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1464 max = min(max + swap_max, memsw_max);
1465 }
1466 return max;
1467 }
1468
1469 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1470 int order)
1471 {
1472 struct oom_control oc = {
1473 .zonelist = NULL,
1474 .nodemask = NULL,
1475 .memcg = memcg,
1476 .gfp_mask = gfp_mask,
1477 .order = order,
1478 };
1479 bool ret;
1480
1481 if (mutex_lock_killable(&oom_lock))
1482 return true;
1483 /*
1484 * A few threads which were not waiting at mutex_lock_killable() can
1485 * fail to bail out. Therefore, check again after holding oom_lock.
1486 */
1487 ret = should_force_charge() || out_of_memory(&oc);
1488 mutex_unlock(&oom_lock);
1489 return ret;
1490 }
1491
1492 #if MAX_NUMNODES > 1
1493
1494 /**
1495 * test_mem_cgroup_node_reclaimable
1496 * @memcg: the target memcg
1497 * @nid: the node ID to be checked.
1498 * @noswap : specify true here if the user wants flle only information.
1499 *
1500 * This function returns whether the specified memcg contains any
1501 * reclaimable pages on a node. Returns true if there are any reclaimable
1502 * pages in the node.
1503 */
1504 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1505 int nid, bool noswap)
1506 {
1507 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1508
1509 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1510 lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1511 return true;
1512 if (noswap || !total_swap_pages)
1513 return false;
1514 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1515 lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1516 return true;
1517 return false;
1518
1519 }
1520
1521 /*
1522 * Always updating the nodemask is not very good - even if we have an empty
1523 * list or the wrong list here, we can start from some node and traverse all
1524 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1525 *
1526 */
1527 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1528 {
1529 int nid;
1530 /*
1531 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1532 * pagein/pageout changes since the last update.
1533 */
1534 if (!atomic_read(&memcg->numainfo_events))
1535 return;
1536 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1537 return;
1538
1539 /* make a nodemask where this memcg uses memory from */
1540 memcg->scan_nodes = node_states[N_MEMORY];
1541
1542 for_each_node_mask(nid, node_states[N_MEMORY]) {
1543
1544 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1545 node_clear(nid, memcg->scan_nodes);
1546 }
1547
1548 atomic_set(&memcg->numainfo_events, 0);
1549 atomic_set(&memcg->numainfo_updating, 0);
1550 }
1551
1552 /*
1553 * Selecting a node where we start reclaim from. Because what we need is just
1554 * reducing usage counter, start from anywhere is O,K. Considering
1555 * memory reclaim from current node, there are pros. and cons.
1556 *
1557 * Freeing memory from current node means freeing memory from a node which
1558 * we'll use or we've used. So, it may make LRU bad. And if several threads
1559 * hit limits, it will see a contention on a node. But freeing from remote
1560 * node means more costs for memory reclaim because of memory latency.
1561 *
1562 * Now, we use round-robin. Better algorithm is welcomed.
1563 */
1564 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1565 {
1566 int node;
1567
1568 mem_cgroup_may_update_nodemask(memcg);
1569 node = memcg->last_scanned_node;
1570
1571 node = next_node_in(node, memcg->scan_nodes);
1572 /*
1573 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1574 * last time it really checked all the LRUs due to rate limiting.
1575 * Fallback to the current node in that case for simplicity.
1576 */
1577 if (unlikely(node == MAX_NUMNODES))
1578 node = numa_node_id();
1579
1580 memcg->last_scanned_node = node;
1581 return node;
1582 }
1583 #else
1584 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1585 {
1586 return 0;
1587 }
1588 #endif
1589
1590 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1591 pg_data_t *pgdat,
1592 gfp_t gfp_mask,
1593 unsigned long *total_scanned)
1594 {
1595 struct mem_cgroup *victim = NULL;
1596 int total = 0;
1597 int loop = 0;
1598 unsigned long excess;
1599 unsigned long nr_scanned;
1600 struct mem_cgroup_reclaim_cookie reclaim = {
1601 .pgdat = pgdat,
1602 .priority = 0,
1603 };
1604
1605 excess = soft_limit_excess(root_memcg);
1606
1607 while (1) {
1608 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1609 if (!victim) {
1610 loop++;
1611 if (loop >= 2) {
1612 /*
1613 * If we have not been able to reclaim
1614 * anything, it might because there are
1615 * no reclaimable pages under this hierarchy
1616 */
1617 if (!total)
1618 break;
1619 /*
1620 * We want to do more targeted reclaim.
1621 * excess >> 2 is not to excessive so as to
1622 * reclaim too much, nor too less that we keep
1623 * coming back to reclaim from this cgroup
1624 */
1625 if (total >= (excess >> 2) ||
1626 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1627 break;
1628 }
1629 continue;
1630 }
1631 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1632 pgdat, &nr_scanned);
1633 *total_scanned += nr_scanned;
1634 if (!soft_limit_excess(root_memcg))
1635 break;
1636 }
1637 mem_cgroup_iter_break(root_memcg, victim);
1638 return total;
1639 }
1640
1641 #ifdef CONFIG_LOCKDEP
1642 static struct lockdep_map memcg_oom_lock_dep_map = {
1643 .name = "memcg_oom_lock",
1644 };
1645 #endif
1646
1647 static DEFINE_SPINLOCK(memcg_oom_lock);
1648
1649 /*
1650 * Check OOM-Killer is already running under our hierarchy.
1651 * If someone is running, return false.
1652 */
1653 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1654 {
1655 struct mem_cgroup *iter, *failed = NULL;
1656
1657 spin_lock(&memcg_oom_lock);
1658
1659 for_each_mem_cgroup_tree(iter, memcg) {
1660 if (iter->oom_lock) {
1661 /*
1662 * this subtree of our hierarchy is already locked
1663 * so we cannot give a lock.
1664 */
1665 failed = iter;
1666 mem_cgroup_iter_break(memcg, iter);
1667 break;
1668 } else
1669 iter->oom_lock = true;
1670 }
1671
1672 if (failed) {
1673 /*
1674 * OK, we failed to lock the whole subtree so we have
1675 * to clean up what we set up to the failing subtree
1676 */
1677 for_each_mem_cgroup_tree(iter, memcg) {
1678 if (iter == failed) {
1679 mem_cgroup_iter_break(memcg, iter);
1680 break;
1681 }
1682 iter->oom_lock = false;
1683 }
1684 } else
1685 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1686
1687 spin_unlock(&memcg_oom_lock);
1688
1689 return !failed;
1690 }
1691
1692 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1693 {
1694 struct mem_cgroup *iter;
1695
1696 spin_lock(&memcg_oom_lock);
1697 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1698 for_each_mem_cgroup_tree(iter, memcg)
1699 iter->oom_lock = false;
1700 spin_unlock(&memcg_oom_lock);
1701 }
1702
1703 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1704 {
1705 struct mem_cgroup *iter;
1706
1707 spin_lock(&memcg_oom_lock);
1708 for_each_mem_cgroup_tree(iter, memcg)
1709 iter->under_oom++;
1710 spin_unlock(&memcg_oom_lock);
1711 }
1712
1713 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1714 {
1715 struct mem_cgroup *iter;
1716
1717 /*
1718 * When a new child is created while the hierarchy is under oom,
1719 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1720 */
1721 spin_lock(&memcg_oom_lock);
1722 for_each_mem_cgroup_tree(iter, memcg)
1723 if (iter->under_oom > 0)
1724 iter->under_oom--;
1725 spin_unlock(&memcg_oom_lock);
1726 }
1727
1728 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1729
1730 struct oom_wait_info {
1731 struct mem_cgroup *memcg;
1732 wait_queue_entry_t wait;
1733 };
1734
1735 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1736 unsigned mode, int sync, void *arg)
1737 {
1738 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1739 struct mem_cgroup *oom_wait_memcg;
1740 struct oom_wait_info *oom_wait_info;
1741
1742 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1743 oom_wait_memcg = oom_wait_info->memcg;
1744
1745 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1746 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1747 return 0;
1748 return autoremove_wake_function(wait, mode, sync, arg);
1749 }
1750
1751 static void memcg_oom_recover(struct mem_cgroup *memcg)
1752 {
1753 /*
1754 * For the following lockless ->under_oom test, the only required
1755 * guarantee is that it must see the state asserted by an OOM when
1756 * this function is called as a result of userland actions
1757 * triggered by the notification of the OOM. This is trivially
1758 * achieved by invoking mem_cgroup_mark_under_oom() before
1759 * triggering notification.
1760 */
1761 if (memcg && memcg->under_oom)
1762 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1763 }
1764
1765 enum oom_status {
1766 OOM_SUCCESS,
1767 OOM_FAILED,
1768 OOM_ASYNC,
1769 OOM_SKIPPED
1770 };
1771
1772 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1773 {
1774 enum oom_status ret;
1775 bool locked;
1776
1777 if (order > PAGE_ALLOC_COSTLY_ORDER)
1778 return OOM_SKIPPED;
1779
1780 memcg_memory_event(memcg, MEMCG_OOM);
1781
1782 /*
1783 * We are in the middle of the charge context here, so we
1784 * don't want to block when potentially sitting on a callstack
1785 * that holds all kinds of filesystem and mm locks.
1786 *
1787 * cgroup1 allows disabling the OOM killer and waiting for outside
1788 * handling until the charge can succeed; remember the context and put
1789 * the task to sleep at the end of the page fault when all locks are
1790 * released.
1791 *
1792 * On the other hand, in-kernel OOM killer allows for an async victim
1793 * memory reclaim (oom_reaper) and that means that we are not solely
1794 * relying on the oom victim to make a forward progress and we can
1795 * invoke the oom killer here.
1796 *
1797 * Please note that mem_cgroup_out_of_memory might fail to find a
1798 * victim and then we have to bail out from the charge path.
1799 */
1800 if (memcg->oom_kill_disable) {
1801 if (!current->in_user_fault)
1802 return OOM_SKIPPED;
1803 css_get(&memcg->css);
1804 current->memcg_in_oom = memcg;
1805 current->memcg_oom_gfp_mask = mask;
1806 current->memcg_oom_order = order;
1807
1808 return OOM_ASYNC;
1809 }
1810
1811 mem_cgroup_mark_under_oom(memcg);
1812
1813 locked = mem_cgroup_oom_trylock(memcg);
1814
1815 if (locked)
1816 mem_cgroup_oom_notify(memcg);
1817
1818 mem_cgroup_unmark_under_oom(memcg);
1819 if (mem_cgroup_out_of_memory(memcg, mask, order))
1820 ret = OOM_SUCCESS;
1821 else
1822 ret = OOM_FAILED;
1823
1824 if (locked)
1825 mem_cgroup_oom_unlock(memcg);
1826
1827 return ret;
1828 }
1829
1830 /**
1831 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1832 * @handle: actually kill/wait or just clean up the OOM state
1833 *
1834 * This has to be called at the end of a page fault if the memcg OOM
1835 * handler was enabled.
1836 *
1837 * Memcg supports userspace OOM handling where failed allocations must
1838 * sleep on a waitqueue until the userspace task resolves the
1839 * situation. Sleeping directly in the charge context with all kinds
1840 * of locks held is not a good idea, instead we remember an OOM state
1841 * in the task and mem_cgroup_oom_synchronize() has to be called at
1842 * the end of the page fault to complete the OOM handling.
1843 *
1844 * Returns %true if an ongoing memcg OOM situation was detected and
1845 * completed, %false otherwise.
1846 */
1847 bool mem_cgroup_oom_synchronize(bool handle)
1848 {
1849 struct mem_cgroup *memcg = current->memcg_in_oom;
1850 struct oom_wait_info owait;
1851 bool locked;
1852
1853 /* OOM is global, do not handle */
1854 if (!memcg)
1855 return false;
1856
1857 if (!handle)
1858 goto cleanup;
1859
1860 owait.memcg = memcg;
1861 owait.wait.flags = 0;
1862 owait.wait.func = memcg_oom_wake_function;
1863 owait.wait.private = current;
1864 INIT_LIST_HEAD(&owait.wait.entry);
1865
1866 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1867 mem_cgroup_mark_under_oom(memcg);
1868
1869 locked = mem_cgroup_oom_trylock(memcg);
1870
1871 if (locked)
1872 mem_cgroup_oom_notify(memcg);
1873
1874 if (locked && !memcg->oom_kill_disable) {
1875 mem_cgroup_unmark_under_oom(memcg);
1876 finish_wait(&memcg_oom_waitq, &owait.wait);
1877 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1878 current->memcg_oom_order);
1879 } else {
1880 schedule();
1881 mem_cgroup_unmark_under_oom(memcg);
1882 finish_wait(&memcg_oom_waitq, &owait.wait);
1883 }
1884
1885 if (locked) {
1886 mem_cgroup_oom_unlock(memcg);
1887 /*
1888 * There is no guarantee that an OOM-lock contender
1889 * sees the wakeups triggered by the OOM kill
1890 * uncharges. Wake any sleepers explicitely.
1891 */
1892 memcg_oom_recover(memcg);
1893 }
1894 cleanup:
1895 current->memcg_in_oom = NULL;
1896 css_put(&memcg->css);
1897 return true;
1898 }
1899
1900 /**
1901 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1902 * @victim: task to be killed by the OOM killer
1903 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1904 *
1905 * Returns a pointer to a memory cgroup, which has to be cleaned up
1906 * by killing all belonging OOM-killable tasks.
1907 *
1908 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1909 */
1910 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1911 struct mem_cgroup *oom_domain)
1912 {
1913 struct mem_cgroup *oom_group = NULL;
1914 struct mem_cgroup *memcg;
1915
1916 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1917 return NULL;
1918
1919 if (!oom_domain)
1920 oom_domain = root_mem_cgroup;
1921
1922 rcu_read_lock();
1923
1924 memcg = mem_cgroup_from_task(victim);
1925 if (memcg == root_mem_cgroup)
1926 goto out;
1927
1928 /*
1929 * Traverse the memory cgroup hierarchy from the victim task's
1930 * cgroup up to the OOMing cgroup (or root) to find the
1931 * highest-level memory cgroup with oom.group set.
1932 */
1933 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1934 if (memcg->oom_group)
1935 oom_group = memcg;
1936
1937 if (memcg == oom_domain)
1938 break;
1939 }
1940
1941 if (oom_group)
1942 css_get(&oom_group->css);
1943 out:
1944 rcu_read_unlock();
1945
1946 return oom_group;
1947 }
1948
1949 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1950 {
1951 pr_info("Tasks in ");
1952 pr_cont_cgroup_path(memcg->css.cgroup);
1953 pr_cont(" are going to be killed due to memory.oom.group set\n");
1954 }
1955
1956 /**
1957 * lock_page_memcg - lock a page->mem_cgroup binding
1958 * @page: the page
1959 *
1960 * This function protects unlocked LRU pages from being moved to
1961 * another cgroup.
1962 *
1963 * It ensures lifetime of the returned memcg. Caller is responsible
1964 * for the lifetime of the page; __unlock_page_memcg() is available
1965 * when @page might get freed inside the locked section.
1966 */
1967 struct mem_cgroup *lock_page_memcg(struct page *page)
1968 {
1969 struct mem_cgroup *memcg;
1970 unsigned long flags;
1971
1972 /*
1973 * The RCU lock is held throughout the transaction. The fast
1974 * path can get away without acquiring the memcg->move_lock
1975 * because page moving starts with an RCU grace period.
1976 *
1977 * The RCU lock also protects the memcg from being freed when
1978 * the page state that is going to change is the only thing
1979 * preventing the page itself from being freed. E.g. writeback
1980 * doesn't hold a page reference and relies on PG_writeback to
1981 * keep off truncation, migration and so forth.
1982 */
1983 rcu_read_lock();
1984
1985 if (mem_cgroup_disabled())
1986 return NULL;
1987 again:
1988 memcg = page->mem_cgroup;
1989 if (unlikely(!memcg))
1990 return NULL;
1991
1992 if (atomic_read(&memcg->moving_account) <= 0)
1993 return memcg;
1994
1995 spin_lock_irqsave(&memcg->move_lock, flags);
1996 if (memcg != page->mem_cgroup) {
1997 spin_unlock_irqrestore(&memcg->move_lock, flags);
1998 goto again;
1999 }
2000
2001 /*
2002 * When charge migration first begins, we can have locked and
2003 * unlocked page stat updates happening concurrently. Track
2004 * the task who has the lock for unlock_page_memcg().
2005 */
2006 memcg->move_lock_task = current;
2007 memcg->move_lock_flags = flags;
2008
2009 return memcg;
2010 }
2011 EXPORT_SYMBOL(lock_page_memcg);
2012
2013 /**
2014 * __unlock_page_memcg - unlock and unpin a memcg
2015 * @memcg: the memcg
2016 *
2017 * Unlock and unpin a memcg returned by lock_page_memcg().
2018 */
2019 void __unlock_page_memcg(struct mem_cgroup *memcg)
2020 {
2021 if (memcg && memcg->move_lock_task == current) {
2022 unsigned long flags = memcg->move_lock_flags;
2023
2024 memcg->move_lock_task = NULL;
2025 memcg->move_lock_flags = 0;
2026
2027 spin_unlock_irqrestore(&memcg->move_lock, flags);
2028 }
2029
2030 rcu_read_unlock();
2031 }
2032
2033 /**
2034 * unlock_page_memcg - unlock a page->mem_cgroup binding
2035 * @page: the page
2036 */
2037 void unlock_page_memcg(struct page *page)
2038 {
2039 __unlock_page_memcg(page->mem_cgroup);
2040 }
2041 EXPORT_SYMBOL(unlock_page_memcg);
2042
2043 struct memcg_stock_pcp {
2044 struct mem_cgroup *cached; /* this never be root cgroup */
2045 unsigned int nr_pages;
2046 struct work_struct work;
2047 unsigned long flags;
2048 #define FLUSHING_CACHED_CHARGE 0
2049 };
2050 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2051 static DEFINE_MUTEX(percpu_charge_mutex);
2052
2053 /**
2054 * consume_stock: Try to consume stocked charge on this cpu.
2055 * @memcg: memcg to consume from.
2056 * @nr_pages: how many pages to charge.
2057 *
2058 * The charges will only happen if @memcg matches the current cpu's memcg
2059 * stock, and at least @nr_pages are available in that stock. Failure to
2060 * service an allocation will refill the stock.
2061 *
2062 * returns true if successful, false otherwise.
2063 */
2064 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2065 {
2066 struct memcg_stock_pcp *stock;
2067 unsigned long flags;
2068 bool ret = false;
2069
2070 if (nr_pages > MEMCG_CHARGE_BATCH)
2071 return ret;
2072
2073 local_irq_save(flags);
2074
2075 stock = this_cpu_ptr(&memcg_stock);
2076 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2077 stock->nr_pages -= nr_pages;
2078 ret = true;
2079 }
2080
2081 local_irq_restore(flags);
2082
2083 return ret;
2084 }
2085
2086 /*
2087 * Returns stocks cached in percpu and reset cached information.
2088 */
2089 static void drain_stock(struct memcg_stock_pcp *stock)
2090 {
2091 struct mem_cgroup *old = stock->cached;
2092
2093 if (stock->nr_pages) {
2094 page_counter_uncharge(&old->memory, stock->nr_pages);
2095 if (do_memsw_account())
2096 page_counter_uncharge(&old->memsw, stock->nr_pages);
2097 css_put_many(&old->css, stock->nr_pages);
2098 stock->nr_pages = 0;
2099 }
2100 stock->cached = NULL;
2101 }
2102
2103 static void drain_local_stock(struct work_struct *dummy)
2104 {
2105 struct memcg_stock_pcp *stock;
2106 unsigned long flags;
2107
2108 /*
2109 * The only protection from memory hotplug vs. drain_stock races is
2110 * that we always operate on local CPU stock here with IRQ disabled
2111 */
2112 local_irq_save(flags);
2113
2114 stock = this_cpu_ptr(&memcg_stock);
2115 drain_stock(stock);
2116 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2117
2118 local_irq_restore(flags);
2119 }
2120
2121 /*
2122 * Cache charges(val) to local per_cpu area.
2123 * This will be consumed by consume_stock() function, later.
2124 */
2125 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2126 {
2127 struct memcg_stock_pcp *stock;
2128 unsigned long flags;
2129
2130 local_irq_save(flags);
2131
2132 stock = this_cpu_ptr(&memcg_stock);
2133 if (stock->cached != memcg) { /* reset if necessary */
2134 drain_stock(stock);
2135 stock->cached = memcg;
2136 }
2137 stock->nr_pages += nr_pages;
2138
2139 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2140 drain_stock(stock);
2141
2142 local_irq_restore(flags);
2143 }
2144
2145 /*
2146 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2147 * of the hierarchy under it.
2148 */
2149 static void drain_all_stock(struct mem_cgroup *root_memcg)
2150 {
2151 int cpu, curcpu;
2152
2153 /* If someone's already draining, avoid adding running more workers. */
2154 if (!mutex_trylock(&percpu_charge_mutex))
2155 return;
2156 /*
2157 * Notify other cpus that system-wide "drain" is running
2158 * We do not care about races with the cpu hotplug because cpu down
2159 * as well as workers from this path always operate on the local
2160 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2161 */
2162 curcpu = get_cpu();
2163 for_each_online_cpu(cpu) {
2164 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2165 struct mem_cgroup *memcg;
2166
2167 memcg = stock->cached;
2168 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2169 continue;
2170 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2171 css_put(&memcg->css);
2172 continue;
2173 }
2174 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2175 if (cpu == curcpu)
2176 drain_local_stock(&stock->work);
2177 else
2178 schedule_work_on(cpu, &stock->work);
2179 }
2180 css_put(&memcg->css);
2181 }
2182 put_cpu();
2183 mutex_unlock(&percpu_charge_mutex);
2184 }
2185
2186 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2187 {
2188 struct memcg_stock_pcp *stock;
2189 struct mem_cgroup *memcg, *mi;
2190
2191 stock = &per_cpu(memcg_stock, cpu);
2192 drain_stock(stock);
2193
2194 for_each_mem_cgroup(memcg) {
2195 int i;
2196
2197 for (i = 0; i < MEMCG_NR_STAT; i++) {
2198 int nid;
2199 long x;
2200
2201 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2202 if (x)
2203 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2204 atomic_long_add(x, &memcg->vmstats[i]);
2205
2206 if (i >= NR_VM_NODE_STAT_ITEMS)
2207 continue;
2208
2209 for_each_node(nid) {
2210 struct mem_cgroup_per_node *pn;
2211
2212 pn = mem_cgroup_nodeinfo(memcg, nid);
2213 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2214 if (x)
2215 do {
2216 atomic_long_add(x, &pn->lruvec_stat[i]);
2217 } while ((pn = parent_nodeinfo(pn, nid)));
2218 }
2219 }
2220
2221 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2222 long x;
2223
2224 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2225 if (x)
2226 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2227 atomic_long_add(x, &memcg->vmevents[i]);
2228 }
2229 }
2230
2231 return 0;
2232 }
2233
2234 static void reclaim_high(struct mem_cgroup *memcg,
2235 unsigned int nr_pages,
2236 gfp_t gfp_mask)
2237 {
2238 do {
2239 if (page_counter_read(&memcg->memory) <= memcg->high)
2240 continue;
2241 memcg_memory_event(memcg, MEMCG_HIGH);
2242 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2243 } while ((memcg = parent_mem_cgroup(memcg)));
2244 }
2245
2246 static void high_work_func(struct work_struct *work)
2247 {
2248 struct mem_cgroup *memcg;
2249
2250 memcg = container_of(work, struct mem_cgroup, high_work);
2251 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2252 }
2253
2254 /*
2255 * Scheduled by try_charge() to be executed from the userland return path
2256 * and reclaims memory over the high limit.
2257 */
2258 void mem_cgroup_handle_over_high(void)
2259 {
2260 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2261 struct mem_cgroup *memcg;
2262
2263 if (likely(!nr_pages))
2264 return;
2265
2266 memcg = get_mem_cgroup_from_mm(current->mm);
2267 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2268 css_put(&memcg->css);
2269 current->memcg_nr_pages_over_high = 0;
2270 }
2271
2272 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2273 unsigned int nr_pages)
2274 {
2275 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2276 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2277 struct mem_cgroup *mem_over_limit;
2278 struct page_counter *counter;
2279 unsigned long nr_reclaimed;
2280 bool may_swap = true;
2281 bool drained = false;
2282 enum oom_status oom_status;
2283
2284 if (mem_cgroup_is_root(memcg))
2285 return 0;
2286 retry:
2287 if (consume_stock(memcg, nr_pages))
2288 return 0;
2289
2290 if (!do_memsw_account() ||
2291 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2292 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2293 goto done_restock;
2294 if (do_memsw_account())
2295 page_counter_uncharge(&memcg->memsw, batch);
2296 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2297 } else {
2298 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2299 may_swap = false;
2300 }
2301
2302 if (batch > nr_pages) {
2303 batch = nr_pages;
2304 goto retry;
2305 }
2306
2307 /*
2308 * Unlike in global OOM situations, memcg is not in a physical
2309 * memory shortage. Allow dying and OOM-killed tasks to
2310 * bypass the last charges so that they can exit quickly and
2311 * free their memory.
2312 */
2313 if (unlikely(should_force_charge()))
2314 goto force;
2315
2316 /*
2317 * Prevent unbounded recursion when reclaim operations need to
2318 * allocate memory. This might exceed the limits temporarily,
2319 * but we prefer facilitating memory reclaim and getting back
2320 * under the limit over triggering OOM kills in these cases.
2321 */
2322 if (unlikely(current->flags & PF_MEMALLOC))
2323 goto force;
2324
2325 if (unlikely(task_in_memcg_oom(current)))
2326 goto nomem;
2327
2328 if (!gfpflags_allow_blocking(gfp_mask))
2329 goto nomem;
2330
2331 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2332
2333 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2334 gfp_mask, may_swap);
2335
2336 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2337 goto retry;
2338
2339 if (!drained) {
2340 drain_all_stock(mem_over_limit);
2341 drained = true;
2342 goto retry;
2343 }
2344
2345 if (gfp_mask & __GFP_NORETRY)
2346 goto nomem;
2347 /*
2348 * Even though the limit is exceeded at this point, reclaim
2349 * may have been able to free some pages. Retry the charge
2350 * before killing the task.
2351 *
2352 * Only for regular pages, though: huge pages are rather
2353 * unlikely to succeed so close to the limit, and we fall back
2354 * to regular pages anyway in case of failure.
2355 */
2356 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2357 goto retry;
2358 /*
2359 * At task move, charge accounts can be doubly counted. So, it's
2360 * better to wait until the end of task_move if something is going on.
2361 */
2362 if (mem_cgroup_wait_acct_move(mem_over_limit))
2363 goto retry;
2364
2365 if (nr_retries--)
2366 goto retry;
2367
2368 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2369 goto nomem;
2370
2371 if (gfp_mask & __GFP_NOFAIL)
2372 goto force;
2373
2374 if (fatal_signal_pending(current))
2375 goto force;
2376
2377 /*
2378 * keep retrying as long as the memcg oom killer is able to make
2379 * a forward progress or bypass the charge if the oom killer
2380 * couldn't make any progress.
2381 */
2382 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2383 get_order(nr_pages * PAGE_SIZE));
2384 switch (oom_status) {
2385 case OOM_SUCCESS:
2386 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2387 goto retry;
2388 case OOM_FAILED:
2389 goto force;
2390 default:
2391 goto nomem;
2392 }
2393 nomem:
2394 if (!(gfp_mask & __GFP_NOFAIL))
2395 return -ENOMEM;
2396 force:
2397 /*
2398 * The allocation either can't fail or will lead to more memory
2399 * being freed very soon. Allow memory usage go over the limit
2400 * temporarily by force charging it.
2401 */
2402 page_counter_charge(&memcg->memory, nr_pages);
2403 if (do_memsw_account())
2404 page_counter_charge(&memcg->memsw, nr_pages);
2405 css_get_many(&memcg->css, nr_pages);
2406
2407 return 0;
2408
2409 done_restock:
2410 css_get_many(&memcg->css, batch);
2411 if (batch > nr_pages)
2412 refill_stock(memcg, batch - nr_pages);
2413
2414 /*
2415 * If the hierarchy is above the normal consumption range, schedule
2416 * reclaim on returning to userland. We can perform reclaim here
2417 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2418 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2419 * not recorded as it most likely matches current's and won't
2420 * change in the meantime. As high limit is checked again before
2421 * reclaim, the cost of mismatch is negligible.
2422 */
2423 do {
2424 if (page_counter_read(&memcg->memory) > memcg->high) {
2425 /* Don't bother a random interrupted task */
2426 if (in_interrupt()) {
2427 schedule_work(&memcg->high_work);
2428 break;
2429 }
2430 current->memcg_nr_pages_over_high += batch;
2431 set_notify_resume(current);
2432 break;
2433 }
2434 } while ((memcg = parent_mem_cgroup(memcg)));
2435
2436 return 0;
2437 }
2438
2439 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2440 {
2441 if (mem_cgroup_is_root(memcg))
2442 return;
2443
2444 page_counter_uncharge(&memcg->memory, nr_pages);
2445 if (do_memsw_account())
2446 page_counter_uncharge(&memcg->memsw, nr_pages);
2447
2448 css_put_many(&memcg->css, nr_pages);
2449 }
2450
2451 static void lock_page_lru(struct page *page, int *isolated)
2452 {
2453 pg_data_t *pgdat = page_pgdat(page);
2454
2455 spin_lock_irq(&pgdat->lru_lock);
2456 if (PageLRU(page)) {
2457 struct lruvec *lruvec;
2458
2459 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2460 ClearPageLRU(page);
2461 del_page_from_lru_list(page, lruvec, page_lru(page));
2462 *isolated = 1;
2463 } else
2464 *isolated = 0;
2465 }
2466
2467 static void unlock_page_lru(struct page *page, int isolated)
2468 {
2469 pg_data_t *pgdat = page_pgdat(page);
2470
2471 if (isolated) {
2472 struct lruvec *lruvec;
2473
2474 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2475 VM_BUG_ON_PAGE(PageLRU(page), page);
2476 SetPageLRU(page);
2477 add_page_to_lru_list(page, lruvec, page_lru(page));
2478 }
2479 spin_unlock_irq(&pgdat->lru_lock);
2480 }
2481
2482 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2483 bool lrucare)
2484 {
2485 int isolated;
2486
2487 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2488
2489 /*
2490 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2491 * may already be on some other mem_cgroup's LRU. Take care of it.
2492 */
2493 if (lrucare)
2494 lock_page_lru(page, &isolated);
2495
2496 /*
2497 * Nobody should be changing or seriously looking at
2498 * page->mem_cgroup at this point:
2499 *
2500 * - the page is uncharged
2501 *
2502 * - the page is off-LRU
2503 *
2504 * - an anonymous fault has exclusive page access, except for
2505 * a locked page table
2506 *
2507 * - a page cache insertion, a swapin fault, or a migration
2508 * have the page locked
2509 */
2510 page->mem_cgroup = memcg;
2511
2512 if (lrucare)
2513 unlock_page_lru(page, isolated);
2514 }
2515
2516 #ifdef CONFIG_MEMCG_KMEM
2517 static int memcg_alloc_cache_id(void)
2518 {
2519 int id, size;
2520 int err;
2521
2522 id = ida_simple_get(&memcg_cache_ida,
2523 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2524 if (id < 0)
2525 return id;
2526
2527 if (id < memcg_nr_cache_ids)
2528 return id;
2529
2530 /*
2531 * There's no space for the new id in memcg_caches arrays,
2532 * so we have to grow them.
2533 */
2534 down_write(&memcg_cache_ids_sem);
2535
2536 size = 2 * (id + 1);
2537 if (size < MEMCG_CACHES_MIN_SIZE)
2538 size = MEMCG_CACHES_MIN_SIZE;
2539 else if (size > MEMCG_CACHES_MAX_SIZE)
2540 size = MEMCG_CACHES_MAX_SIZE;
2541
2542 err = memcg_update_all_caches(size);
2543 if (!err)
2544 err = memcg_update_all_list_lrus(size);
2545 if (!err)
2546 memcg_nr_cache_ids = size;
2547
2548 up_write(&memcg_cache_ids_sem);
2549
2550 if (err) {
2551 ida_simple_remove(&memcg_cache_ida, id);
2552 return err;
2553 }
2554 return id;
2555 }
2556
2557 static void memcg_free_cache_id(int id)
2558 {
2559 ida_simple_remove(&memcg_cache_ida, id);
2560 }
2561
2562 struct memcg_kmem_cache_create_work {
2563 struct mem_cgroup *memcg;
2564 struct kmem_cache *cachep;
2565 struct work_struct work;
2566 };
2567
2568 static void memcg_kmem_cache_create_func(struct work_struct *w)
2569 {
2570 struct memcg_kmem_cache_create_work *cw =
2571 container_of(w, struct memcg_kmem_cache_create_work, work);
2572 struct mem_cgroup *memcg = cw->memcg;
2573 struct kmem_cache *cachep = cw->cachep;
2574
2575 memcg_create_kmem_cache(memcg, cachep);
2576
2577 css_put(&memcg->css);
2578 kfree(cw);
2579 }
2580
2581 /*
2582 * Enqueue the creation of a per-memcg kmem_cache.
2583 */
2584 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2585 struct kmem_cache *cachep)
2586 {
2587 struct memcg_kmem_cache_create_work *cw;
2588
2589 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2590 if (!cw)
2591 return;
2592
2593 css_get(&memcg->css);
2594
2595 cw->memcg = memcg;
2596 cw->cachep = cachep;
2597 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2598
2599 queue_work(memcg_kmem_cache_wq, &cw->work);
2600 }
2601
2602 static inline bool memcg_kmem_bypass(void)
2603 {
2604 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2605 return true;
2606 return false;
2607 }
2608
2609 /**
2610 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2611 * @cachep: the original global kmem cache
2612 *
2613 * Return the kmem_cache we're supposed to use for a slab allocation.
2614 * We try to use the current memcg's version of the cache.
2615 *
2616 * If the cache does not exist yet, if we are the first user of it, we
2617 * create it asynchronously in a workqueue and let the current allocation
2618 * go through with the original cache.
2619 *
2620 * This function takes a reference to the cache it returns to assure it
2621 * won't get destroyed while we are working with it. Once the caller is
2622 * done with it, memcg_kmem_put_cache() must be called to release the
2623 * reference.
2624 */
2625 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2626 {
2627 struct mem_cgroup *memcg;
2628 struct kmem_cache *memcg_cachep;
2629 int kmemcg_id;
2630
2631 VM_BUG_ON(!is_root_cache(cachep));
2632
2633 if (memcg_kmem_bypass())
2634 return cachep;
2635
2636 memcg = get_mem_cgroup_from_current();
2637 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2638 if (kmemcg_id < 0)
2639 goto out;
2640
2641 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2642 if (likely(memcg_cachep))
2643 return memcg_cachep;
2644
2645 /*
2646 * If we are in a safe context (can wait, and not in interrupt
2647 * context), we could be be predictable and return right away.
2648 * This would guarantee that the allocation being performed
2649 * already belongs in the new cache.
2650 *
2651 * However, there are some clashes that can arrive from locking.
2652 * For instance, because we acquire the slab_mutex while doing
2653 * memcg_create_kmem_cache, this means no further allocation
2654 * could happen with the slab_mutex held. So it's better to
2655 * defer everything.
2656 */
2657 memcg_schedule_kmem_cache_create(memcg, cachep);
2658 out:
2659 css_put(&memcg->css);
2660 return cachep;
2661 }
2662
2663 /**
2664 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2665 * @cachep: the cache returned by memcg_kmem_get_cache
2666 */
2667 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2668 {
2669 if (!is_root_cache(cachep))
2670 css_put(&cachep->memcg_params.memcg->css);
2671 }
2672
2673 /**
2674 * __memcg_kmem_charge_memcg: charge a kmem page
2675 * @page: page to charge
2676 * @gfp: reclaim mode
2677 * @order: allocation order
2678 * @memcg: memory cgroup to charge
2679 *
2680 * Returns 0 on success, an error code on failure.
2681 */
2682 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2683 struct mem_cgroup *memcg)
2684 {
2685 unsigned int nr_pages = 1 << order;
2686 struct page_counter *counter;
2687 int ret;
2688
2689 ret = try_charge(memcg, gfp, nr_pages);
2690 if (ret)
2691 return ret;
2692
2693 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2694 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2695 cancel_charge(memcg, nr_pages);
2696 return -ENOMEM;
2697 }
2698
2699 page->mem_cgroup = memcg;
2700
2701 return 0;
2702 }
2703
2704 /**
2705 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2706 * @page: page to charge
2707 * @gfp: reclaim mode
2708 * @order: allocation order
2709 *
2710 * Returns 0 on success, an error code on failure.
2711 */
2712 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2713 {
2714 struct mem_cgroup *memcg;
2715 int ret = 0;
2716
2717 if (memcg_kmem_bypass())
2718 return 0;
2719
2720 memcg = get_mem_cgroup_from_current();
2721 if (!mem_cgroup_is_root(memcg)) {
2722 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2723 if (!ret)
2724 __SetPageKmemcg(page);
2725 }
2726 css_put(&memcg->css);
2727 return ret;
2728 }
2729 /**
2730 * __memcg_kmem_uncharge: uncharge a kmem page
2731 * @page: page to uncharge
2732 * @order: allocation order
2733 */
2734 void __memcg_kmem_uncharge(struct page *page, int order)
2735 {
2736 struct mem_cgroup *memcg = page->mem_cgroup;
2737 unsigned int nr_pages = 1 << order;
2738
2739 if (!memcg)
2740 return;
2741
2742 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2743
2744 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2745 page_counter_uncharge(&memcg->kmem, nr_pages);
2746
2747 page_counter_uncharge(&memcg->memory, nr_pages);
2748 if (do_memsw_account())
2749 page_counter_uncharge(&memcg->memsw, nr_pages);
2750
2751 page->mem_cgroup = NULL;
2752
2753 /* slab pages do not have PageKmemcg flag set */
2754 if (PageKmemcg(page))
2755 __ClearPageKmemcg(page);
2756
2757 css_put_many(&memcg->css, nr_pages);
2758 }
2759 #endif /* CONFIG_MEMCG_KMEM */
2760
2761 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2762
2763 /*
2764 * Because tail pages are not marked as "used", set it. We're under
2765 * pgdat->lru_lock and migration entries setup in all page mappings.
2766 */
2767 void mem_cgroup_split_huge_fixup(struct page *head)
2768 {
2769 int i;
2770
2771 if (mem_cgroup_disabled())
2772 return;
2773
2774 for (i = 1; i < HPAGE_PMD_NR; i++)
2775 head[i].mem_cgroup = head->mem_cgroup;
2776
2777 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2778 }
2779 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2780
2781 #ifdef CONFIG_MEMCG_SWAP
2782 /**
2783 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2784 * @entry: swap entry to be moved
2785 * @from: mem_cgroup which the entry is moved from
2786 * @to: mem_cgroup which the entry is moved to
2787 *
2788 * It succeeds only when the swap_cgroup's record for this entry is the same
2789 * as the mem_cgroup's id of @from.
2790 *
2791 * Returns 0 on success, -EINVAL on failure.
2792 *
2793 * The caller must have charged to @to, IOW, called page_counter_charge() about
2794 * both res and memsw, and called css_get().
2795 */
2796 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2797 struct mem_cgroup *from, struct mem_cgroup *to)
2798 {
2799 unsigned short old_id, new_id;
2800
2801 old_id = mem_cgroup_id(from);
2802 new_id = mem_cgroup_id(to);
2803
2804 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2805 mod_memcg_state(from, MEMCG_SWAP, -1);
2806 mod_memcg_state(to, MEMCG_SWAP, 1);
2807 return 0;
2808 }
2809 return -EINVAL;
2810 }
2811 #else
2812 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2813 struct mem_cgroup *from, struct mem_cgroup *to)
2814 {
2815 return -EINVAL;
2816 }
2817 #endif
2818
2819 static DEFINE_MUTEX(memcg_max_mutex);
2820
2821 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2822 unsigned long max, bool memsw)
2823 {
2824 bool enlarge = false;
2825 bool drained = false;
2826 int ret;
2827 bool limits_invariant;
2828 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2829
2830 do {
2831 if (signal_pending(current)) {
2832 ret = -EINTR;
2833 break;
2834 }
2835
2836 mutex_lock(&memcg_max_mutex);
2837 /*
2838 * Make sure that the new limit (memsw or memory limit) doesn't
2839 * break our basic invariant rule memory.max <= memsw.max.
2840 */
2841 limits_invariant = memsw ? max >= memcg->memory.max :
2842 max <= memcg->memsw.max;
2843 if (!limits_invariant) {
2844 mutex_unlock(&memcg_max_mutex);
2845 ret = -EINVAL;
2846 break;
2847 }
2848 if (max > counter->max)
2849 enlarge = true;
2850 ret = page_counter_set_max(counter, max);
2851 mutex_unlock(&memcg_max_mutex);
2852
2853 if (!ret)
2854 break;
2855
2856 if (!drained) {
2857 drain_all_stock(memcg);
2858 drained = true;
2859 continue;
2860 }
2861
2862 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2863 GFP_KERNEL, !memsw)) {
2864 ret = -EBUSY;
2865 break;
2866 }
2867 } while (true);
2868
2869 if (!ret && enlarge)
2870 memcg_oom_recover(memcg);
2871
2872 return ret;
2873 }
2874
2875 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2876 gfp_t gfp_mask,
2877 unsigned long *total_scanned)
2878 {
2879 unsigned long nr_reclaimed = 0;
2880 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2881 unsigned long reclaimed;
2882 int loop = 0;
2883 struct mem_cgroup_tree_per_node *mctz;
2884 unsigned long excess;
2885 unsigned long nr_scanned;
2886
2887 if (order > 0)
2888 return 0;
2889
2890 mctz = soft_limit_tree_node(pgdat->node_id);
2891
2892 /*
2893 * Do not even bother to check the largest node if the root
2894 * is empty. Do it lockless to prevent lock bouncing. Races
2895 * are acceptable as soft limit is best effort anyway.
2896 */
2897 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2898 return 0;
2899
2900 /*
2901 * This loop can run a while, specially if mem_cgroup's continuously
2902 * keep exceeding their soft limit and putting the system under
2903 * pressure
2904 */
2905 do {
2906 if (next_mz)
2907 mz = next_mz;
2908 else
2909 mz = mem_cgroup_largest_soft_limit_node(mctz);
2910 if (!mz)
2911 break;
2912
2913 nr_scanned = 0;
2914 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2915 gfp_mask, &nr_scanned);
2916 nr_reclaimed += reclaimed;
2917 *total_scanned += nr_scanned;
2918 spin_lock_irq(&mctz->lock);
2919 __mem_cgroup_remove_exceeded(mz, mctz);
2920
2921 /*
2922 * If we failed to reclaim anything from this memory cgroup
2923 * it is time to move on to the next cgroup
2924 */
2925 next_mz = NULL;
2926 if (!reclaimed)
2927 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2928
2929 excess = soft_limit_excess(mz->memcg);
2930 /*
2931 * One school of thought says that we should not add
2932 * back the node to the tree if reclaim returns 0.
2933 * But our reclaim could return 0, simply because due
2934 * to priority we are exposing a smaller subset of
2935 * memory to reclaim from. Consider this as a longer
2936 * term TODO.
2937 */
2938 /* If excess == 0, no tree ops */
2939 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2940 spin_unlock_irq(&mctz->lock);
2941 css_put(&mz->memcg->css);
2942 loop++;
2943 /*
2944 * Could not reclaim anything and there are no more
2945 * mem cgroups to try or we seem to be looping without
2946 * reclaiming anything.
2947 */
2948 if (!nr_reclaimed &&
2949 (next_mz == NULL ||
2950 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2951 break;
2952 } while (!nr_reclaimed);
2953 if (next_mz)
2954 css_put(&next_mz->memcg->css);
2955 return nr_reclaimed;
2956 }
2957
2958 /*
2959 * Test whether @memcg has children, dead or alive. Note that this
2960 * function doesn't care whether @memcg has use_hierarchy enabled and
2961 * returns %true if there are child csses according to the cgroup
2962 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2963 */
2964 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2965 {
2966 bool ret;
2967
2968 rcu_read_lock();
2969 ret = css_next_child(NULL, &memcg->css);
2970 rcu_read_unlock();
2971 return ret;
2972 }
2973
2974 /*
2975 * Reclaims as many pages from the given memcg as possible.
2976 *
2977 * Caller is responsible for holding css reference for memcg.
2978 */
2979 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2980 {
2981 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2982
2983 /* we call try-to-free pages for make this cgroup empty */
2984 lru_add_drain_all();
2985
2986 drain_all_stock(memcg);
2987
2988 /* try to free all pages in this cgroup */
2989 while (nr_retries && page_counter_read(&memcg->memory)) {
2990 int progress;
2991
2992 if (signal_pending(current))
2993 return -EINTR;
2994
2995 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2996 GFP_KERNEL, true);
2997 if (!progress) {
2998 nr_retries--;
2999 /* maybe some writeback is necessary */
3000 congestion_wait(BLK_RW_ASYNC, HZ/10);
3001 }
3002
3003 }
3004
3005 return 0;
3006 }
3007
3008 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3009 char *buf, size_t nbytes,
3010 loff_t off)
3011 {
3012 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3013
3014 if (mem_cgroup_is_root(memcg))
3015 return -EINVAL;
3016 return mem_cgroup_force_empty(memcg) ?: nbytes;
3017 }
3018
3019 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3020 struct cftype *cft)
3021 {
3022 return mem_cgroup_from_css(css)->use_hierarchy;
3023 }
3024
3025 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3026 struct cftype *cft, u64 val)
3027 {
3028 int retval = 0;
3029 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3030 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3031
3032 if (memcg->use_hierarchy == val)
3033 return 0;
3034
3035 /*
3036 * If parent's use_hierarchy is set, we can't make any modifications
3037 * in the child subtrees. If it is unset, then the change can
3038 * occur, provided the current cgroup has no children.
3039 *
3040 * For the root cgroup, parent_mem is NULL, we allow value to be
3041 * set if there are no children.
3042 */
3043 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3044 (val == 1 || val == 0)) {
3045 if (!memcg_has_children(memcg))
3046 memcg->use_hierarchy = val;
3047 else
3048 retval = -EBUSY;
3049 } else
3050 retval = -EINVAL;
3051
3052 return retval;
3053 }
3054
3055 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3056 {
3057 unsigned long val;
3058
3059 if (mem_cgroup_is_root(memcg)) {
3060 val = memcg_page_state(memcg, MEMCG_CACHE) +
3061 memcg_page_state(memcg, MEMCG_RSS);
3062 if (swap)
3063 val += memcg_page_state(memcg, MEMCG_SWAP);
3064 } else {
3065 if (!swap)
3066 val = page_counter_read(&memcg->memory);
3067 else
3068 val = page_counter_read(&memcg->memsw);
3069 }
3070 return val;
3071 }
3072
3073 enum {
3074 RES_USAGE,
3075 RES_LIMIT,
3076 RES_MAX_USAGE,
3077 RES_FAILCNT,
3078 RES_SOFT_LIMIT,
3079 };
3080
3081 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3082 struct cftype *cft)
3083 {
3084 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3085 struct page_counter *counter;
3086
3087 switch (MEMFILE_TYPE(cft->private)) {
3088 case _MEM:
3089 counter = &memcg->memory;
3090 break;
3091 case _MEMSWAP:
3092 counter = &memcg->memsw;
3093 break;
3094 case _KMEM:
3095 counter = &memcg->kmem;
3096 break;
3097 case _TCP:
3098 counter = &memcg->tcpmem;
3099 break;
3100 default:
3101 BUG();
3102 }
3103
3104 switch (MEMFILE_ATTR(cft->private)) {
3105 case RES_USAGE:
3106 if (counter == &memcg->memory)
3107 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3108 if (counter == &memcg->memsw)
3109 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3110 return (u64)page_counter_read(counter) * PAGE_SIZE;
3111 case RES_LIMIT:
3112 return (u64)counter->max * PAGE_SIZE;
3113 case RES_MAX_USAGE:
3114 return (u64)counter->watermark * PAGE_SIZE;
3115 case RES_FAILCNT:
3116 return counter->failcnt;
3117 case RES_SOFT_LIMIT:
3118 return (u64)memcg->soft_limit * PAGE_SIZE;
3119 default:
3120 BUG();
3121 }
3122 }
3123
3124 #ifdef CONFIG_MEMCG_KMEM
3125 static int memcg_online_kmem(struct mem_cgroup *memcg)
3126 {
3127 int memcg_id;
3128
3129 if (cgroup_memory_nokmem)
3130 return 0;
3131
3132 BUG_ON(memcg->kmemcg_id >= 0);
3133 BUG_ON(memcg->kmem_state);
3134
3135 memcg_id = memcg_alloc_cache_id();
3136 if (memcg_id < 0)
3137 return memcg_id;
3138
3139 static_branch_inc(&memcg_kmem_enabled_key);
3140 /*
3141 * A memory cgroup is considered kmem-online as soon as it gets
3142 * kmemcg_id. Setting the id after enabling static branching will
3143 * guarantee no one starts accounting before all call sites are
3144 * patched.
3145 */
3146 memcg->kmemcg_id = memcg_id;
3147 memcg->kmem_state = KMEM_ONLINE;
3148 INIT_LIST_HEAD(&memcg->kmem_caches);
3149
3150 return 0;
3151 }
3152
3153 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3154 {
3155 struct cgroup_subsys_state *css;
3156 struct mem_cgroup *parent, *child;
3157 int kmemcg_id;
3158
3159 if (memcg->kmem_state != KMEM_ONLINE)
3160 return;
3161 /*
3162 * Clear the online state before clearing memcg_caches array
3163 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3164 * guarantees that no cache will be created for this cgroup
3165 * after we are done (see memcg_create_kmem_cache()).
3166 */
3167 memcg->kmem_state = KMEM_ALLOCATED;
3168
3169 memcg_deactivate_kmem_caches(memcg);
3170
3171 kmemcg_id = memcg->kmemcg_id;
3172 BUG_ON(kmemcg_id < 0);
3173
3174 parent = parent_mem_cgroup(memcg);
3175 if (!parent)
3176 parent = root_mem_cgroup;
3177
3178 /*
3179 * Change kmemcg_id of this cgroup and all its descendants to the
3180 * parent's id, and then move all entries from this cgroup's list_lrus
3181 * to ones of the parent. After we have finished, all list_lrus
3182 * corresponding to this cgroup are guaranteed to remain empty. The
3183 * ordering is imposed by list_lru_node->lock taken by
3184 * memcg_drain_all_list_lrus().
3185 */
3186 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3187 css_for_each_descendant_pre(css, &memcg->css) {
3188 child = mem_cgroup_from_css(css);
3189 BUG_ON(child->kmemcg_id != kmemcg_id);
3190 child->kmemcg_id = parent->kmemcg_id;
3191 if (!memcg->use_hierarchy)
3192 break;
3193 }
3194 rcu_read_unlock();
3195
3196 memcg_drain_all_list_lrus(kmemcg_id, parent);
3197
3198 memcg_free_cache_id(kmemcg_id);
3199 }
3200
3201 static void memcg_free_kmem(struct mem_cgroup *memcg)
3202 {
3203 /* css_alloc() failed, offlining didn't happen */
3204 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3205 memcg_offline_kmem(memcg);
3206
3207 if (memcg->kmem_state == KMEM_ALLOCATED) {
3208 memcg_destroy_kmem_caches(memcg);
3209 static_branch_dec(&memcg_kmem_enabled_key);
3210 WARN_ON(page_counter_read(&memcg->kmem));
3211 }
3212 }
3213 #else
3214 static int memcg_online_kmem(struct mem_cgroup *memcg)
3215 {
3216 return 0;
3217 }
3218 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3219 {
3220 }
3221 static void memcg_free_kmem(struct mem_cgroup *memcg)
3222 {
3223 }
3224 #endif /* CONFIG_MEMCG_KMEM */
3225
3226 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3227 unsigned long max)
3228 {
3229 int ret;
3230
3231 mutex_lock(&memcg_max_mutex);
3232 ret = page_counter_set_max(&memcg->kmem, max);
3233 mutex_unlock(&memcg_max_mutex);
3234 return ret;
3235 }
3236
3237 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3238 {
3239 int ret;
3240
3241 mutex_lock(&memcg_max_mutex);
3242
3243 ret = page_counter_set_max(&memcg->tcpmem, max);
3244 if (ret)
3245 goto out;
3246
3247 if (!memcg->tcpmem_active) {
3248 /*
3249 * The active flag needs to be written after the static_key
3250 * update. This is what guarantees that the socket activation
3251 * function is the last one to run. See mem_cgroup_sk_alloc()
3252 * for details, and note that we don't mark any socket as
3253 * belonging to this memcg until that flag is up.
3254 *
3255 * We need to do this, because static_keys will span multiple
3256 * sites, but we can't control their order. If we mark a socket
3257 * as accounted, but the accounting functions are not patched in
3258 * yet, we'll lose accounting.
3259 *
3260 * We never race with the readers in mem_cgroup_sk_alloc(),
3261 * because when this value change, the code to process it is not
3262 * patched in yet.
3263 */
3264 static_branch_inc(&memcg_sockets_enabled_key);
3265 memcg->tcpmem_active = true;
3266 }
3267 out:
3268 mutex_unlock(&memcg_max_mutex);
3269 return ret;
3270 }
3271
3272 /*
3273 * The user of this function is...
3274 * RES_LIMIT.
3275 */
3276 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3277 char *buf, size_t nbytes, loff_t off)
3278 {
3279 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3280 unsigned long nr_pages;
3281 int ret;
3282
3283 buf = strstrip(buf);
3284 ret = page_counter_memparse(buf, "-1", &nr_pages);
3285 if (ret)
3286 return ret;
3287
3288 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3289 case RES_LIMIT:
3290 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3291 ret = -EINVAL;
3292 break;
3293 }
3294 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3295 case _MEM:
3296 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3297 break;
3298 case _MEMSWAP:
3299 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3300 break;
3301 case _KMEM:
3302 ret = memcg_update_kmem_max(memcg, nr_pages);
3303 break;
3304 case _TCP:
3305 ret = memcg_update_tcp_max(memcg, nr_pages);
3306 break;
3307 }
3308 break;
3309 case RES_SOFT_LIMIT:
3310 memcg->soft_limit = nr_pages;
3311 ret = 0;
3312 break;
3313 }
3314 return ret ?: nbytes;
3315 }
3316
3317 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3318 size_t nbytes, loff_t off)
3319 {
3320 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3321 struct page_counter *counter;
3322
3323 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3324 case _MEM:
3325 counter = &memcg->memory;
3326 break;
3327 case _MEMSWAP:
3328 counter = &memcg->memsw;
3329 break;
3330 case _KMEM:
3331 counter = &memcg->kmem;
3332 break;
3333 case _TCP:
3334 counter = &memcg->tcpmem;
3335 break;
3336 default:
3337 BUG();
3338 }
3339
3340 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3341 case RES_MAX_USAGE:
3342 page_counter_reset_watermark(counter);
3343 break;
3344 case RES_FAILCNT:
3345 counter->failcnt = 0;
3346 break;
3347 default:
3348 BUG();
3349 }
3350
3351 return nbytes;
3352 }
3353
3354 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3355 struct cftype *cft)
3356 {
3357 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3358 }
3359
3360 #ifdef CONFIG_MMU
3361 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3362 struct cftype *cft, u64 val)
3363 {
3364 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3365
3366 if (val & ~MOVE_MASK)
3367 return -EINVAL;
3368
3369 /*
3370 * No kind of locking is needed in here, because ->can_attach() will
3371 * check this value once in the beginning of the process, and then carry
3372 * on with stale data. This means that changes to this value will only
3373 * affect task migrations starting after the change.
3374 */
3375 memcg->move_charge_at_immigrate = val;
3376 return 0;
3377 }
3378 #else
3379 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3380 struct cftype *cft, u64 val)
3381 {
3382 return -ENOSYS;
3383 }
3384 #endif
3385
3386 #ifdef CONFIG_NUMA
3387
3388 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3389 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3390 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3391
3392 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3393 int nid, unsigned int lru_mask)
3394 {
3395 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3396 unsigned long nr = 0;
3397 enum lru_list lru;
3398
3399 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3400
3401 for_each_lru(lru) {
3402 if (!(BIT(lru) & lru_mask))
3403 continue;
3404 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3405 }
3406 return nr;
3407 }
3408
3409 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3410 unsigned int lru_mask)
3411 {
3412 unsigned long nr = 0;
3413 enum lru_list lru;
3414
3415 for_each_lru(lru) {
3416 if (!(BIT(lru) & lru_mask))
3417 continue;
3418 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3419 }
3420 return nr;
3421 }
3422
3423 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3424 {
3425 struct numa_stat {
3426 const char *name;
3427 unsigned int lru_mask;
3428 };
3429
3430 static const struct numa_stat stats[] = {
3431 { "total", LRU_ALL },
3432 { "file", LRU_ALL_FILE },
3433 { "anon", LRU_ALL_ANON },
3434 { "unevictable", BIT(LRU_UNEVICTABLE) },
3435 };
3436 const struct numa_stat *stat;
3437 int nid;
3438 unsigned long nr;
3439 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3440
3441 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3442 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3443 seq_printf(m, "%s=%lu", stat->name, nr);
3444 for_each_node_state(nid, N_MEMORY) {
3445 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3446 stat->lru_mask);
3447 seq_printf(m, " N%d=%lu", nid, nr);
3448 }
3449 seq_putc(m, '\n');
3450 }
3451
3452 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3453 struct mem_cgroup *iter;
3454
3455 nr = 0;
3456 for_each_mem_cgroup_tree(iter, memcg)
3457 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3458 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3459 for_each_node_state(nid, N_MEMORY) {
3460 nr = 0;
3461 for_each_mem_cgroup_tree(iter, memcg)
3462 nr += mem_cgroup_node_nr_lru_pages(
3463 iter, nid, stat->lru_mask);
3464 seq_printf(m, " N%d=%lu", nid, nr);
3465 }
3466 seq_putc(m, '\n');
3467 }
3468
3469 return 0;
3470 }
3471 #endif /* CONFIG_NUMA */
3472
3473 /* Universal VM events cgroup1 shows, original sort order */
3474 static const unsigned int memcg1_events[] = {
3475 PGPGIN,
3476 PGPGOUT,
3477 PGFAULT,
3478 PGMAJFAULT,
3479 };
3480
3481 static const char *const memcg1_event_names[] = {
3482 "pgpgin",
3483 "pgpgout",
3484 "pgfault",
3485 "pgmajfault",
3486 };
3487
3488 static int memcg_stat_show(struct seq_file *m, void *v)
3489 {
3490 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3491 unsigned long memory, memsw;
3492 struct mem_cgroup *mi;
3493 unsigned int i;
3494
3495 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3496 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3497
3498 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3499 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3500 continue;
3501 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3502 memcg_page_state_local(memcg, memcg1_stats[i]) *
3503 PAGE_SIZE);
3504 }
3505
3506 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3507 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3508 memcg_events_local(memcg, memcg1_events[i]));
3509
3510 for (i = 0; i < NR_LRU_LISTS; i++)
3511 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3512 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3513 PAGE_SIZE);
3514
3515 /* Hierarchical information */
3516 memory = memsw = PAGE_COUNTER_MAX;
3517 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3518 memory = min(memory, mi->memory.max);
3519 memsw = min(memsw, mi->memsw.max);
3520 }
3521 seq_printf(m, "hierarchical_memory_limit %llu\n",
3522 (u64)memory * PAGE_SIZE);
3523 if (do_memsw_account())
3524 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3525 (u64)memsw * PAGE_SIZE);
3526
3527 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3528 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3529 continue;
3530 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3531 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3532 PAGE_SIZE);
3533 }
3534
3535 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3536 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3537 (u64)memcg_events(memcg, memcg1_events[i]));
3538
3539 for (i = 0; i < NR_LRU_LISTS; i++)
3540 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3541 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3542 PAGE_SIZE);
3543
3544 #ifdef CONFIG_DEBUG_VM
3545 {
3546 pg_data_t *pgdat;
3547 struct mem_cgroup_per_node *mz;
3548 struct zone_reclaim_stat *rstat;
3549 unsigned long recent_rotated[2] = {0, 0};
3550 unsigned long recent_scanned[2] = {0, 0};
3551
3552 for_each_online_pgdat(pgdat) {
3553 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3554 rstat = &mz->lruvec.reclaim_stat;
3555
3556 recent_rotated[0] += rstat->recent_rotated[0];
3557 recent_rotated[1] += rstat->recent_rotated[1];
3558 recent_scanned[0] += rstat->recent_scanned[0];
3559 recent_scanned[1] += rstat->recent_scanned[1];
3560 }
3561 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3562 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3563 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3564 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3565 }
3566 #endif
3567
3568 return 0;
3569 }
3570
3571 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3572 struct cftype *cft)
3573 {
3574 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3575
3576 return mem_cgroup_swappiness(memcg);
3577 }
3578
3579 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3580 struct cftype *cft, u64 val)
3581 {
3582 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3583
3584 if (val > 100)
3585 return -EINVAL;
3586
3587 if (css->parent)
3588 memcg->swappiness = val;
3589 else
3590 vm_swappiness = val;
3591
3592 return 0;
3593 }
3594
3595 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3596 {
3597 struct mem_cgroup_threshold_ary *t;
3598 unsigned long usage;
3599 int i;
3600
3601 rcu_read_lock();
3602 if (!swap)
3603 t = rcu_dereference(memcg->thresholds.primary);
3604 else
3605 t = rcu_dereference(memcg->memsw_thresholds.primary);
3606
3607 if (!t)
3608 goto unlock;
3609
3610 usage = mem_cgroup_usage(memcg, swap);
3611
3612 /*
3613 * current_threshold points to threshold just below or equal to usage.
3614 * If it's not true, a threshold was crossed after last
3615 * call of __mem_cgroup_threshold().
3616 */
3617 i = t->current_threshold;
3618
3619 /*
3620 * Iterate backward over array of thresholds starting from
3621 * current_threshold and check if a threshold is crossed.
3622 * If none of thresholds below usage is crossed, we read
3623 * only one element of the array here.
3624 */
3625 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3626 eventfd_signal(t->entries[i].eventfd, 1);
3627
3628 /* i = current_threshold + 1 */
3629 i++;
3630
3631 /*
3632 * Iterate forward over array of thresholds starting from
3633 * current_threshold+1 and check if a threshold is crossed.
3634 * If none of thresholds above usage is crossed, we read
3635 * only one element of the array here.
3636 */
3637 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3638 eventfd_signal(t->entries[i].eventfd, 1);
3639
3640 /* Update current_threshold */
3641 t->current_threshold = i - 1;
3642 unlock:
3643 rcu_read_unlock();
3644 }
3645
3646 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3647 {
3648 while (memcg) {
3649 __mem_cgroup_threshold(memcg, false);
3650 if (do_memsw_account())
3651 __mem_cgroup_threshold(memcg, true);
3652
3653 memcg = parent_mem_cgroup(memcg);
3654 }
3655 }
3656
3657 static int compare_thresholds(const void *a, const void *b)
3658 {
3659 const struct mem_cgroup_threshold *_a = a;
3660 const struct mem_cgroup_threshold *_b = b;
3661
3662 if (_a->threshold > _b->threshold)
3663 return 1;
3664
3665 if (_a->threshold < _b->threshold)
3666 return -1;
3667
3668 return 0;
3669 }
3670
3671 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3672 {
3673 struct mem_cgroup_eventfd_list *ev;
3674
3675 spin_lock(&memcg_oom_lock);
3676
3677 list_for_each_entry(ev, &memcg->oom_notify, list)
3678 eventfd_signal(ev->eventfd, 1);
3679
3680 spin_unlock(&memcg_oom_lock);
3681 return 0;
3682 }
3683
3684 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3685 {
3686 struct mem_cgroup *iter;
3687
3688 for_each_mem_cgroup_tree(iter, memcg)
3689 mem_cgroup_oom_notify_cb(iter);
3690 }
3691
3692 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3693 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3694 {
3695 struct mem_cgroup_thresholds *thresholds;
3696 struct mem_cgroup_threshold_ary *new;
3697 unsigned long threshold;
3698 unsigned long usage;
3699 int i, size, ret;
3700
3701 ret = page_counter_memparse(args, "-1", &threshold);
3702 if (ret)
3703 return ret;
3704
3705 mutex_lock(&memcg->thresholds_lock);
3706
3707 if (type == _MEM) {
3708 thresholds = &memcg->thresholds;
3709 usage = mem_cgroup_usage(memcg, false);
3710 } else if (type == _MEMSWAP) {
3711 thresholds = &memcg->memsw_thresholds;
3712 usage = mem_cgroup_usage(memcg, true);
3713 } else
3714 BUG();
3715
3716 /* Check if a threshold crossed before adding a new one */
3717 if (thresholds->primary)
3718 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3719
3720 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3721
3722 /* Allocate memory for new array of thresholds */
3723 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3724 if (!new) {
3725 ret = -ENOMEM;
3726 goto unlock;
3727 }
3728 new->size = size;
3729
3730 /* Copy thresholds (if any) to new array */
3731 if (thresholds->primary) {
3732 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3733 sizeof(struct mem_cgroup_threshold));
3734 }
3735
3736 /* Add new threshold */
3737 new->entries[size - 1].eventfd = eventfd;
3738 new->entries[size - 1].threshold = threshold;
3739
3740 /* Sort thresholds. Registering of new threshold isn't time-critical */
3741 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3742 compare_thresholds, NULL);
3743
3744 /* Find current threshold */
3745 new->current_threshold = -1;
3746 for (i = 0; i < size; i++) {
3747 if (new->entries[i].threshold <= usage) {
3748 /*
3749 * new->current_threshold will not be used until
3750 * rcu_assign_pointer(), so it's safe to increment
3751 * it here.
3752 */
3753 ++new->current_threshold;
3754 } else
3755 break;
3756 }
3757
3758 /* Free old spare buffer and save old primary buffer as spare */
3759 kfree(thresholds->spare);
3760 thresholds->spare = thresholds->primary;
3761
3762 rcu_assign_pointer(thresholds->primary, new);
3763
3764 /* To be sure that nobody uses thresholds */
3765 synchronize_rcu();
3766
3767 unlock:
3768 mutex_unlock(&memcg->thresholds_lock);
3769
3770 return ret;
3771 }
3772
3773 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3774 struct eventfd_ctx *eventfd, const char *args)
3775 {
3776 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3777 }
3778
3779 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3780 struct eventfd_ctx *eventfd, const char *args)
3781 {
3782 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3783 }
3784
3785 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3786 struct eventfd_ctx *eventfd, enum res_type type)
3787 {
3788 struct mem_cgroup_thresholds *thresholds;
3789 struct mem_cgroup_threshold_ary *new;
3790 unsigned long usage;
3791 int i, j, size;
3792
3793 mutex_lock(&memcg->thresholds_lock);
3794
3795 if (type == _MEM) {
3796 thresholds = &memcg->thresholds;
3797 usage = mem_cgroup_usage(memcg, false);
3798 } else if (type == _MEMSWAP) {
3799 thresholds = &memcg->memsw_thresholds;
3800 usage = mem_cgroup_usage(memcg, true);
3801 } else
3802 BUG();
3803
3804 if (!thresholds->primary)
3805 goto unlock;
3806
3807 /* Check if a threshold crossed before removing */
3808 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3809
3810 /* Calculate new number of threshold */
3811 size = 0;
3812 for (i = 0; i < thresholds->primary->size; i++) {
3813 if (thresholds->primary->entries[i].eventfd != eventfd)
3814 size++;
3815 }
3816
3817 new = thresholds->spare;
3818
3819 /* Set thresholds array to NULL if we don't have thresholds */
3820 if (!size) {
3821 kfree(new);
3822 new = NULL;
3823 goto swap_buffers;
3824 }
3825
3826 new->size = size;
3827
3828 /* Copy thresholds and find current threshold */
3829 new->current_threshold = -1;
3830 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3831 if (thresholds->primary->entries[i].eventfd == eventfd)
3832 continue;
3833
3834 new->entries[j] = thresholds->primary->entries[i];
3835 if (new->entries[j].threshold <= usage) {
3836 /*
3837 * new->current_threshold will not be used
3838 * until rcu_assign_pointer(), so it's safe to increment
3839 * it here.
3840 */
3841 ++new->current_threshold;
3842 }
3843 j++;
3844 }
3845
3846 swap_buffers:
3847 /* Swap primary and spare array */
3848 thresholds->spare = thresholds->primary;
3849
3850 rcu_assign_pointer(thresholds->primary, new);
3851
3852 /* To be sure that nobody uses thresholds */
3853 synchronize_rcu();
3854
3855 /* If all events are unregistered, free the spare array */
3856 if (!new) {
3857 kfree(thresholds->spare);
3858 thresholds->spare = NULL;
3859 }
3860 unlock:
3861 mutex_unlock(&memcg->thresholds_lock);
3862 }
3863
3864 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3865 struct eventfd_ctx *eventfd)
3866 {
3867 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3868 }
3869
3870 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3871 struct eventfd_ctx *eventfd)
3872 {
3873 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3874 }
3875
3876 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3877 struct eventfd_ctx *eventfd, const char *args)
3878 {
3879 struct mem_cgroup_eventfd_list *event;
3880
3881 event = kmalloc(sizeof(*event), GFP_KERNEL);
3882 if (!event)
3883 return -ENOMEM;
3884
3885 spin_lock(&memcg_oom_lock);
3886
3887 event->eventfd = eventfd;
3888 list_add(&event->list, &memcg->oom_notify);
3889
3890 /* already in OOM ? */
3891 if (memcg->under_oom)
3892 eventfd_signal(eventfd, 1);
3893 spin_unlock(&memcg_oom_lock);
3894
3895 return 0;
3896 }
3897
3898 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3899 struct eventfd_ctx *eventfd)
3900 {
3901 struct mem_cgroup_eventfd_list *ev, *tmp;
3902
3903 spin_lock(&memcg_oom_lock);
3904
3905 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3906 if (ev->eventfd == eventfd) {
3907 list_del(&ev->list);
3908 kfree(ev);
3909 }
3910 }
3911
3912 spin_unlock(&memcg_oom_lock);
3913 }
3914
3915 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3916 {
3917 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3918
3919 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3920 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3921 seq_printf(sf, "oom_kill %lu\n",
3922 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3923 return 0;
3924 }
3925
3926 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3927 struct cftype *cft, u64 val)
3928 {
3929 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3930
3931 /* cannot set to root cgroup and only 0 and 1 are allowed */
3932 if (!css->parent || !((val == 0) || (val == 1)))
3933 return -EINVAL;
3934
3935 memcg->oom_kill_disable = val;
3936 if (!val)
3937 memcg_oom_recover(memcg);
3938
3939 return 0;
3940 }
3941
3942 #ifdef CONFIG_CGROUP_WRITEBACK
3943
3944 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3945 {
3946 return wb_domain_init(&memcg->cgwb_domain, gfp);
3947 }
3948
3949 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3950 {
3951 wb_domain_exit(&memcg->cgwb_domain);
3952 }
3953
3954 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3955 {
3956 wb_domain_size_changed(&memcg->cgwb_domain);
3957 }
3958
3959 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3960 {
3961 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3962
3963 if (!memcg->css.parent)
3964 return NULL;
3965
3966 return &memcg->cgwb_domain;
3967 }
3968
3969 /*
3970 * idx can be of type enum memcg_stat_item or node_stat_item.
3971 * Keep in sync with memcg_exact_page().
3972 */
3973 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
3974 {
3975 long x = atomic_long_read(&memcg->vmstats[idx]);
3976 int cpu;
3977
3978 for_each_online_cpu(cpu)
3979 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
3980 if (x < 0)
3981 x = 0;
3982 return x;
3983 }
3984
3985 /**
3986 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3987 * @wb: bdi_writeback in question
3988 * @pfilepages: out parameter for number of file pages
3989 * @pheadroom: out parameter for number of allocatable pages according to memcg
3990 * @pdirty: out parameter for number of dirty pages
3991 * @pwriteback: out parameter for number of pages under writeback
3992 *
3993 * Determine the numbers of file, headroom, dirty, and writeback pages in
3994 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3995 * is a bit more involved.
3996 *
3997 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3998 * headroom is calculated as the lowest headroom of itself and the
3999 * ancestors. Note that this doesn't consider the actual amount of
4000 * available memory in the system. The caller should further cap
4001 * *@pheadroom accordingly.
4002 */
4003 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4004 unsigned long *pheadroom, unsigned long *pdirty,
4005 unsigned long *pwriteback)
4006 {
4007 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4008 struct mem_cgroup *parent;
4009
4010 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4011
4012 /* this should eventually include NR_UNSTABLE_NFS */
4013 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4014 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4015 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4016 *pheadroom = PAGE_COUNTER_MAX;
4017
4018 while ((parent = parent_mem_cgroup(memcg))) {
4019 unsigned long ceiling = min(memcg->memory.max, memcg->high);
4020 unsigned long used = page_counter_read(&memcg->memory);
4021
4022 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4023 memcg = parent;
4024 }
4025 }
4026
4027 #else /* CONFIG_CGROUP_WRITEBACK */
4028
4029 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4030 {
4031 return 0;
4032 }
4033
4034 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4035 {
4036 }
4037
4038 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4039 {
4040 }
4041
4042 #endif /* CONFIG_CGROUP_WRITEBACK */
4043
4044 /*
4045 * DO NOT USE IN NEW FILES.
4046 *
4047 * "cgroup.event_control" implementation.
4048 *
4049 * This is way over-engineered. It tries to support fully configurable
4050 * events for each user. Such level of flexibility is completely
4051 * unnecessary especially in the light of the planned unified hierarchy.
4052 *
4053 * Please deprecate this and replace with something simpler if at all
4054 * possible.
4055 */
4056
4057 /*
4058 * Unregister event and free resources.
4059 *
4060 * Gets called from workqueue.
4061 */
4062 static void memcg_event_remove(struct work_struct *work)
4063 {
4064 struct mem_cgroup_event *event =
4065 container_of(work, struct mem_cgroup_event, remove);
4066 struct mem_cgroup *memcg = event->memcg;
4067
4068 remove_wait_queue(event->wqh, &event->wait);
4069
4070 event->unregister_event(memcg, event->eventfd);
4071
4072 /* Notify userspace the event is going away. */
4073 eventfd_signal(event->eventfd, 1);
4074
4075 eventfd_ctx_put(event->eventfd);
4076 kfree(event);
4077 css_put(&memcg->css);
4078 }
4079
4080 /*
4081 * Gets called on EPOLLHUP on eventfd when user closes it.
4082 *
4083 * Called with wqh->lock held and interrupts disabled.
4084 */
4085 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4086 int sync, void *key)
4087 {
4088 struct mem_cgroup_event *event =
4089 container_of(wait, struct mem_cgroup_event, wait);
4090 struct mem_cgroup *memcg = event->memcg;
4091 __poll_t flags = key_to_poll(key);
4092
4093 if (flags & EPOLLHUP) {
4094 /*
4095 * If the event has been detached at cgroup removal, we
4096 * can simply return knowing the other side will cleanup
4097 * for us.
4098 *
4099 * We can't race against event freeing since the other
4100 * side will require wqh->lock via remove_wait_queue(),
4101 * which we hold.
4102 */
4103 spin_lock(&memcg->event_list_lock);
4104 if (!list_empty(&event->list)) {
4105 list_del_init(&event->list);
4106 /*
4107 * We are in atomic context, but cgroup_event_remove()
4108 * may sleep, so we have to call it in workqueue.
4109 */
4110 schedule_work(&event->remove);
4111 }
4112 spin_unlock(&memcg->event_list_lock);
4113 }
4114
4115 return 0;
4116 }
4117
4118 static void memcg_event_ptable_queue_proc(struct file *file,
4119 wait_queue_head_t *wqh, poll_table *pt)
4120 {
4121 struct mem_cgroup_event *event =
4122 container_of(pt, struct mem_cgroup_event, pt);
4123
4124 event->wqh = wqh;
4125 add_wait_queue(wqh, &event->wait);
4126 }
4127
4128 /*
4129 * DO NOT USE IN NEW FILES.
4130 *
4131 * Parse input and register new cgroup event handler.
4132 *
4133 * Input must be in format '<event_fd> <control_fd> <args>'.
4134 * Interpretation of args is defined by control file implementation.
4135 */
4136 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4137 char *buf, size_t nbytes, loff_t off)
4138 {
4139 struct cgroup_subsys_state *css = of_css(of);
4140 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4141 struct mem_cgroup_event *event;
4142 struct cgroup_subsys_state *cfile_css;
4143 unsigned int efd, cfd;
4144 struct fd efile;
4145 struct fd cfile;
4146 const char *name;
4147 char *endp;
4148 int ret;
4149
4150 buf = strstrip(buf);
4151
4152 efd = simple_strtoul(buf, &endp, 10);
4153 if (*endp != ' ')
4154 return -EINVAL;
4155 buf = endp + 1;
4156
4157 cfd = simple_strtoul(buf, &endp, 10);
4158 if ((*endp != ' ') && (*endp != '\0'))
4159 return -EINVAL;
4160 buf = endp + 1;
4161
4162 event = kzalloc(sizeof(*event), GFP_KERNEL);
4163 if (!event)
4164 return -ENOMEM;
4165
4166 event->memcg = memcg;
4167 INIT_LIST_HEAD(&event->list);
4168 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4169 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4170 INIT_WORK(&event->remove, memcg_event_remove);
4171
4172 efile = fdget(efd);
4173 if (!efile.file) {
4174 ret = -EBADF;
4175 goto out_kfree;
4176 }
4177
4178 event->eventfd = eventfd_ctx_fileget(efile.file);
4179 if (IS_ERR(event->eventfd)) {
4180 ret = PTR_ERR(event->eventfd);
4181 goto out_put_efile;
4182 }
4183
4184 cfile = fdget(cfd);
4185 if (!cfile.file) {
4186 ret = -EBADF;
4187 goto out_put_eventfd;
4188 }
4189
4190 /* the process need read permission on control file */
4191 /* AV: shouldn't we check that it's been opened for read instead? */
4192 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4193 if (ret < 0)
4194 goto out_put_cfile;
4195
4196 /*
4197 * Determine the event callbacks and set them in @event. This used
4198 * to be done via struct cftype but cgroup core no longer knows
4199 * about these events. The following is crude but the whole thing
4200 * is for compatibility anyway.
4201 *
4202 * DO NOT ADD NEW FILES.
4203 */
4204 name = cfile.file->f_path.dentry->d_name.name;
4205
4206 if (!strcmp(name, "memory.usage_in_bytes")) {
4207 event->register_event = mem_cgroup_usage_register_event;
4208 event->unregister_event = mem_cgroup_usage_unregister_event;
4209 } else if (!strcmp(name, "memory.oom_control")) {
4210 event->register_event = mem_cgroup_oom_register_event;
4211 event->unregister_event = mem_cgroup_oom_unregister_event;
4212 } else if (!strcmp(name, "memory.pressure_level")) {
4213 event->register_event = vmpressure_register_event;
4214 event->unregister_event = vmpressure_unregister_event;
4215 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4216 event->register_event = memsw_cgroup_usage_register_event;
4217 event->unregister_event = memsw_cgroup_usage_unregister_event;
4218 } else {
4219 ret = -EINVAL;
4220 goto out_put_cfile;
4221 }
4222
4223 /*
4224 * Verify @cfile should belong to @css. Also, remaining events are
4225 * automatically removed on cgroup destruction but the removal is
4226 * asynchronous, so take an extra ref on @css.
4227 */
4228 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4229 &memory_cgrp_subsys);
4230 ret = -EINVAL;
4231 if (IS_ERR(cfile_css))
4232 goto out_put_cfile;
4233 if (cfile_css != css) {
4234 css_put(cfile_css);
4235 goto out_put_cfile;
4236 }
4237
4238 ret = event->register_event(memcg, event->eventfd, buf);
4239 if (ret)
4240 goto out_put_css;
4241
4242 vfs_poll(efile.file, &event->pt);
4243
4244 spin_lock(&memcg->event_list_lock);
4245 list_add(&event->list, &memcg->event_list);
4246 spin_unlock(&memcg->event_list_lock);
4247
4248 fdput(cfile);
4249 fdput(efile);
4250
4251 return nbytes;
4252
4253 out_put_css:
4254 css_put(css);
4255 out_put_cfile:
4256 fdput(cfile);
4257 out_put_eventfd:
4258 eventfd_ctx_put(event->eventfd);
4259 out_put_efile:
4260 fdput(efile);
4261 out_kfree:
4262 kfree(event);
4263
4264 return ret;
4265 }
4266
4267 static struct cftype mem_cgroup_legacy_files[] = {
4268 {
4269 .name = "usage_in_bytes",
4270 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4271 .read_u64 = mem_cgroup_read_u64,
4272 },
4273 {
4274 .name = "max_usage_in_bytes",
4275 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4276 .write = mem_cgroup_reset,
4277 .read_u64 = mem_cgroup_read_u64,
4278 },
4279 {
4280 .name = "limit_in_bytes",
4281 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4282 .write = mem_cgroup_write,
4283 .read_u64 = mem_cgroup_read_u64,
4284 },
4285 {
4286 .name = "soft_limit_in_bytes",
4287 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4288 .write = mem_cgroup_write,
4289 .read_u64 = mem_cgroup_read_u64,
4290 },
4291 {
4292 .name = "failcnt",
4293 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4294 .write = mem_cgroup_reset,
4295 .read_u64 = mem_cgroup_read_u64,
4296 },
4297 {
4298 .name = "stat",
4299 .seq_show = memcg_stat_show,
4300 },
4301 {
4302 .name = "force_empty",
4303 .write = mem_cgroup_force_empty_write,
4304 },
4305 {
4306 .name = "use_hierarchy",
4307 .write_u64 = mem_cgroup_hierarchy_write,
4308 .read_u64 = mem_cgroup_hierarchy_read,
4309 },
4310 {
4311 .name = "cgroup.event_control", /* XXX: for compat */
4312 .write = memcg_write_event_control,
4313 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4314 },
4315 {
4316 .name = "swappiness",
4317 .read_u64 = mem_cgroup_swappiness_read,
4318 .write_u64 = mem_cgroup_swappiness_write,
4319 },
4320 {
4321 .name = "move_charge_at_immigrate",
4322 .read_u64 = mem_cgroup_move_charge_read,
4323 .write_u64 = mem_cgroup_move_charge_write,
4324 },
4325 {
4326 .name = "oom_control",
4327 .seq_show = mem_cgroup_oom_control_read,
4328 .write_u64 = mem_cgroup_oom_control_write,
4329 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4330 },
4331 {
4332 .name = "pressure_level",
4333 },
4334 #ifdef CONFIG_NUMA
4335 {
4336 .name = "numa_stat",
4337 .seq_show = memcg_numa_stat_show,
4338 },
4339 #endif
4340 {
4341 .name = "kmem.limit_in_bytes",
4342 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4343 .write = mem_cgroup_write,
4344 .read_u64 = mem_cgroup_read_u64,
4345 },
4346 {
4347 .name = "kmem.usage_in_bytes",
4348 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4349 .read_u64 = mem_cgroup_read_u64,
4350 },
4351 {
4352 .name = "kmem.failcnt",
4353 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4354 .write = mem_cgroup_reset,
4355 .read_u64 = mem_cgroup_read_u64,
4356 },
4357 {
4358 .name = "kmem.max_usage_in_bytes",
4359 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4360 .write = mem_cgroup_reset,
4361 .read_u64 = mem_cgroup_read_u64,
4362 },
4363 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4364 {
4365 .name = "kmem.slabinfo",
4366 .seq_start = memcg_slab_start,
4367 .seq_next = memcg_slab_next,
4368 .seq_stop = memcg_slab_stop,
4369 .seq_show = memcg_slab_show,
4370 },
4371 #endif
4372 {
4373 .name = "kmem.tcp.limit_in_bytes",
4374 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4375 .write = mem_cgroup_write,
4376 .read_u64 = mem_cgroup_read_u64,
4377 },
4378 {
4379 .name = "kmem.tcp.usage_in_bytes",
4380 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4381 .read_u64 = mem_cgroup_read_u64,
4382 },
4383 {
4384 .name = "kmem.tcp.failcnt",
4385 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4386 .write = mem_cgroup_reset,
4387 .read_u64 = mem_cgroup_read_u64,
4388 },
4389 {
4390 .name = "kmem.tcp.max_usage_in_bytes",
4391 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4392 .write = mem_cgroup_reset,
4393 .read_u64 = mem_cgroup_read_u64,
4394 },
4395 { }, /* terminate */
4396 };
4397
4398 /*
4399 * Private memory cgroup IDR
4400 *
4401 * Swap-out records and page cache shadow entries need to store memcg
4402 * references in constrained space, so we maintain an ID space that is
4403 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4404 * memory-controlled cgroups to 64k.
4405 *
4406 * However, there usually are many references to the oflline CSS after
4407 * the cgroup has been destroyed, such as page cache or reclaimable
4408 * slab objects, that don't need to hang on to the ID. We want to keep
4409 * those dead CSS from occupying IDs, or we might quickly exhaust the
4410 * relatively small ID space and prevent the creation of new cgroups
4411 * even when there are much fewer than 64k cgroups - possibly none.
4412 *
4413 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4414 * be freed and recycled when it's no longer needed, which is usually
4415 * when the CSS is offlined.
4416 *
4417 * The only exception to that are records of swapped out tmpfs/shmem
4418 * pages that need to be attributed to live ancestors on swapin. But
4419 * those references are manageable from userspace.
4420 */
4421
4422 static DEFINE_IDR(mem_cgroup_idr);
4423
4424 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4425 {
4426 if (memcg->id.id > 0) {
4427 idr_remove(&mem_cgroup_idr, memcg->id.id);
4428 memcg->id.id = 0;
4429 }
4430 }
4431
4432 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4433 {
4434 refcount_add(n, &memcg->id.ref);
4435 }
4436
4437 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4438 {
4439 if (refcount_sub_and_test(n, &memcg->id.ref)) {
4440 mem_cgroup_id_remove(memcg);
4441
4442 /* Memcg ID pins CSS */
4443 css_put(&memcg->css);
4444 }
4445 }
4446
4447 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4448 {
4449 mem_cgroup_id_get_many(memcg, 1);
4450 }
4451
4452 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4453 {
4454 mem_cgroup_id_put_many(memcg, 1);
4455 }
4456
4457 /**
4458 * mem_cgroup_from_id - look up a memcg from a memcg id
4459 * @id: the memcg id to look up
4460 *
4461 * Caller must hold rcu_read_lock().
4462 */
4463 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4464 {
4465 WARN_ON_ONCE(!rcu_read_lock_held());
4466 return idr_find(&mem_cgroup_idr, id);
4467 }
4468
4469 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4470 {
4471 struct mem_cgroup_per_node *pn;
4472 int tmp = node;
4473 /*
4474 * This routine is called against possible nodes.
4475 * But it's BUG to call kmalloc() against offline node.
4476 *
4477 * TODO: this routine can waste much memory for nodes which will
4478 * never be onlined. It's better to use memory hotplug callback
4479 * function.
4480 */
4481 if (!node_state(node, N_NORMAL_MEMORY))
4482 tmp = -1;
4483 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4484 if (!pn)
4485 return 1;
4486
4487 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4488 if (!pn->lruvec_stat_local) {
4489 kfree(pn);
4490 return 1;
4491 }
4492
4493 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4494 if (!pn->lruvec_stat_cpu) {
4495 free_percpu(pn->lruvec_stat_local);
4496 kfree(pn);
4497 return 1;
4498 }
4499
4500 lruvec_init(&pn->lruvec);
4501 pn->usage_in_excess = 0;
4502 pn->on_tree = false;
4503 pn->memcg = memcg;
4504
4505 memcg->nodeinfo[node] = pn;
4506 return 0;
4507 }
4508
4509 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4510 {
4511 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4512
4513 if (!pn)
4514 return;
4515
4516 free_percpu(pn->lruvec_stat_cpu);
4517 free_percpu(pn->lruvec_stat_local);
4518 kfree(pn);
4519 }
4520
4521 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4522 {
4523 int node;
4524
4525 for_each_node(node)
4526 free_mem_cgroup_per_node_info(memcg, node);
4527 free_percpu(memcg->vmstats_percpu);
4528 free_percpu(memcg->vmstats_local);
4529 kfree(memcg);
4530 }
4531
4532 static void mem_cgroup_free(struct mem_cgroup *memcg)
4533 {
4534 memcg_wb_domain_exit(memcg);
4535 __mem_cgroup_free(memcg);
4536 }
4537
4538 static struct mem_cgroup *mem_cgroup_alloc(void)
4539 {
4540 struct mem_cgroup *memcg;
4541 unsigned int size;
4542 int node;
4543
4544 size = sizeof(struct mem_cgroup);
4545 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4546
4547 memcg = kzalloc(size, GFP_KERNEL);
4548 if (!memcg)
4549 return NULL;
4550
4551 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4552 1, MEM_CGROUP_ID_MAX,
4553 GFP_KERNEL);
4554 if (memcg->id.id < 0)
4555 goto fail;
4556
4557 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4558 if (!memcg->vmstats_local)
4559 goto fail;
4560
4561 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4562 if (!memcg->vmstats_percpu)
4563 goto fail;
4564
4565 for_each_node(node)
4566 if (alloc_mem_cgroup_per_node_info(memcg, node))
4567 goto fail;
4568
4569 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4570 goto fail;
4571
4572 INIT_WORK(&memcg->high_work, high_work_func);
4573 memcg->last_scanned_node = MAX_NUMNODES;
4574 INIT_LIST_HEAD(&memcg->oom_notify);
4575 mutex_init(&memcg->thresholds_lock);
4576 spin_lock_init(&memcg->move_lock);
4577 vmpressure_init(&memcg->vmpressure);
4578 INIT_LIST_HEAD(&memcg->event_list);
4579 spin_lock_init(&memcg->event_list_lock);
4580 memcg->socket_pressure = jiffies;
4581 #ifdef CONFIG_MEMCG_KMEM
4582 memcg->kmemcg_id = -1;
4583 #endif
4584 #ifdef CONFIG_CGROUP_WRITEBACK
4585 INIT_LIST_HEAD(&memcg->cgwb_list);
4586 #endif
4587 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4588 return memcg;
4589 fail:
4590 mem_cgroup_id_remove(memcg);
4591 __mem_cgroup_free(memcg);
4592 return NULL;
4593 }
4594
4595 static struct cgroup_subsys_state * __ref
4596 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4597 {
4598 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4599 struct mem_cgroup *memcg;
4600 long error = -ENOMEM;
4601
4602 memcg = mem_cgroup_alloc();
4603 if (!memcg)
4604 return ERR_PTR(error);
4605
4606 memcg->high = PAGE_COUNTER_MAX;
4607 memcg->soft_limit = PAGE_COUNTER_MAX;
4608 if (parent) {
4609 memcg->swappiness = mem_cgroup_swappiness(parent);
4610 memcg->oom_kill_disable = parent->oom_kill_disable;
4611 }
4612 if (parent && parent->use_hierarchy) {
4613 memcg->use_hierarchy = true;
4614 page_counter_init(&memcg->memory, &parent->memory);
4615 page_counter_init(&memcg->swap, &parent->swap);
4616 page_counter_init(&memcg->memsw, &parent->memsw);
4617 page_counter_init(&memcg->kmem, &parent->kmem);
4618 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4619 } else {
4620 page_counter_init(&memcg->memory, NULL);
4621 page_counter_init(&memcg->swap, NULL);
4622 page_counter_init(&memcg->memsw, NULL);
4623 page_counter_init(&memcg->kmem, NULL);
4624 page_counter_init(&memcg->tcpmem, NULL);
4625 /*
4626 * Deeper hierachy with use_hierarchy == false doesn't make
4627 * much sense so let cgroup subsystem know about this
4628 * unfortunate state in our controller.
4629 */
4630 if (parent != root_mem_cgroup)
4631 memory_cgrp_subsys.broken_hierarchy = true;
4632 }
4633
4634 /* The following stuff does not apply to the root */
4635 if (!parent) {
4636 root_mem_cgroup = memcg;
4637 return &memcg->css;
4638 }
4639
4640 error = memcg_online_kmem(memcg);
4641 if (error)
4642 goto fail;
4643
4644 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4645 static_branch_inc(&memcg_sockets_enabled_key);
4646
4647 return &memcg->css;
4648 fail:
4649 mem_cgroup_id_remove(memcg);
4650 mem_cgroup_free(memcg);
4651 return ERR_PTR(-ENOMEM);
4652 }
4653
4654 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4655 {
4656 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4657
4658 /*
4659 * A memcg must be visible for memcg_expand_shrinker_maps()
4660 * by the time the maps are allocated. So, we allocate maps
4661 * here, when for_each_mem_cgroup() can't skip it.
4662 */
4663 if (memcg_alloc_shrinker_maps(memcg)) {
4664 mem_cgroup_id_remove(memcg);
4665 return -ENOMEM;
4666 }
4667
4668 /* Online state pins memcg ID, memcg ID pins CSS */
4669 refcount_set(&memcg->id.ref, 1);
4670 css_get(css);
4671 return 0;
4672 }
4673
4674 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4675 {
4676 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4677 struct mem_cgroup_event *event, *tmp;
4678
4679 /*
4680 * Unregister events and notify userspace.
4681 * Notify userspace about cgroup removing only after rmdir of cgroup
4682 * directory to avoid race between userspace and kernelspace.
4683 */
4684 spin_lock(&memcg->event_list_lock);
4685 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4686 list_del_init(&event->list);
4687 schedule_work(&event->remove);
4688 }
4689 spin_unlock(&memcg->event_list_lock);
4690
4691 page_counter_set_min(&memcg->memory, 0);
4692 page_counter_set_low(&memcg->memory, 0);
4693
4694 memcg_offline_kmem(memcg);
4695 wb_memcg_offline(memcg);
4696
4697 drain_all_stock(memcg);
4698
4699 mem_cgroup_id_put(memcg);
4700 }
4701
4702 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4703 {
4704 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4705
4706 invalidate_reclaim_iterators(memcg);
4707 }
4708
4709 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4710 {
4711 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4712
4713 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4714 static_branch_dec(&memcg_sockets_enabled_key);
4715
4716 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4717 static_branch_dec(&memcg_sockets_enabled_key);
4718
4719 vmpressure_cleanup(&memcg->vmpressure);
4720 cancel_work_sync(&memcg->high_work);
4721 mem_cgroup_remove_from_trees(memcg);
4722 memcg_free_shrinker_maps(memcg);
4723 memcg_free_kmem(memcg);
4724 mem_cgroup_free(memcg);
4725 }
4726
4727 /**
4728 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4729 * @css: the target css
4730 *
4731 * Reset the states of the mem_cgroup associated with @css. This is
4732 * invoked when the userland requests disabling on the default hierarchy
4733 * but the memcg is pinned through dependency. The memcg should stop
4734 * applying policies and should revert to the vanilla state as it may be
4735 * made visible again.
4736 *
4737 * The current implementation only resets the essential configurations.
4738 * This needs to be expanded to cover all the visible parts.
4739 */
4740 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4741 {
4742 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4743
4744 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4745 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4746 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4747 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4748 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4749 page_counter_set_min(&memcg->memory, 0);
4750 page_counter_set_low(&memcg->memory, 0);
4751 memcg->high = PAGE_COUNTER_MAX;
4752 memcg->soft_limit = PAGE_COUNTER_MAX;
4753 memcg_wb_domain_size_changed(memcg);
4754 }
4755
4756 #ifdef CONFIG_MMU
4757 /* Handlers for move charge at task migration. */
4758 static int mem_cgroup_do_precharge(unsigned long count)
4759 {
4760 int ret;
4761
4762 /* Try a single bulk charge without reclaim first, kswapd may wake */
4763 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4764 if (!ret) {
4765 mc.precharge += count;
4766 return ret;
4767 }
4768
4769 /* Try charges one by one with reclaim, but do not retry */
4770 while (count--) {
4771 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4772 if (ret)
4773 return ret;
4774 mc.precharge++;
4775 cond_resched();
4776 }
4777 return 0;
4778 }
4779
4780 union mc_target {
4781 struct page *page;
4782 swp_entry_t ent;
4783 };
4784
4785 enum mc_target_type {
4786 MC_TARGET_NONE = 0,
4787 MC_TARGET_PAGE,
4788 MC_TARGET_SWAP,
4789 MC_TARGET_DEVICE,
4790 };
4791
4792 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4793 unsigned long addr, pte_t ptent)
4794 {
4795 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4796
4797 if (!page || !page_mapped(page))
4798 return NULL;
4799 if (PageAnon(page)) {
4800 if (!(mc.flags & MOVE_ANON))
4801 return NULL;
4802 } else {
4803 if (!(mc.flags & MOVE_FILE))
4804 return NULL;
4805 }
4806 if (!get_page_unless_zero(page))
4807 return NULL;
4808
4809 return page;
4810 }
4811
4812 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4813 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4814 pte_t ptent, swp_entry_t *entry)
4815 {
4816 struct page *page = NULL;
4817 swp_entry_t ent = pte_to_swp_entry(ptent);
4818
4819 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4820 return NULL;
4821
4822 /*
4823 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4824 * a device and because they are not accessible by CPU they are store
4825 * as special swap entry in the CPU page table.
4826 */
4827 if (is_device_private_entry(ent)) {
4828 page = device_private_entry_to_page(ent);
4829 /*
4830 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4831 * a refcount of 1 when free (unlike normal page)
4832 */
4833 if (!page_ref_add_unless(page, 1, 1))
4834 return NULL;
4835 return page;
4836 }
4837
4838 /*
4839 * Because lookup_swap_cache() updates some statistics counter,
4840 * we call find_get_page() with swapper_space directly.
4841 */
4842 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4843 if (do_memsw_account())
4844 entry->val = ent.val;
4845
4846 return page;
4847 }
4848 #else
4849 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4850 pte_t ptent, swp_entry_t *entry)
4851 {
4852 return NULL;
4853 }
4854 #endif
4855
4856 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4857 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4858 {
4859 struct page *page = NULL;
4860 struct address_space *mapping;
4861 pgoff_t pgoff;
4862
4863 if (!vma->vm_file) /* anonymous vma */
4864 return NULL;
4865 if (!(mc.flags & MOVE_FILE))
4866 return NULL;
4867
4868 mapping = vma->vm_file->f_mapping;
4869 pgoff = linear_page_index(vma, addr);
4870
4871 /* page is moved even if it's not RSS of this task(page-faulted). */
4872 #ifdef CONFIG_SWAP
4873 /* shmem/tmpfs may report page out on swap: account for that too. */
4874 if (shmem_mapping(mapping)) {
4875 page = find_get_entry(mapping, pgoff);
4876 if (xa_is_value(page)) {
4877 swp_entry_t swp = radix_to_swp_entry(page);
4878 if (do_memsw_account())
4879 *entry = swp;
4880 page = find_get_page(swap_address_space(swp),
4881 swp_offset(swp));
4882 }
4883 } else
4884 page = find_get_page(mapping, pgoff);
4885 #else
4886 page = find_get_page(mapping, pgoff);
4887 #endif
4888 return page;
4889 }
4890
4891 /**
4892 * mem_cgroup_move_account - move account of the page
4893 * @page: the page
4894 * @compound: charge the page as compound or small page
4895 * @from: mem_cgroup which the page is moved from.
4896 * @to: mem_cgroup which the page is moved to. @from != @to.
4897 *
4898 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4899 *
4900 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4901 * from old cgroup.
4902 */
4903 static int mem_cgroup_move_account(struct page *page,
4904 bool compound,
4905 struct mem_cgroup *from,
4906 struct mem_cgroup *to)
4907 {
4908 unsigned long flags;
4909 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4910 int ret;
4911 bool anon;
4912
4913 VM_BUG_ON(from == to);
4914 VM_BUG_ON_PAGE(PageLRU(page), page);
4915 VM_BUG_ON(compound && !PageTransHuge(page));
4916
4917 /*
4918 * Prevent mem_cgroup_migrate() from looking at
4919 * page->mem_cgroup of its source page while we change it.
4920 */
4921 ret = -EBUSY;
4922 if (!trylock_page(page))
4923 goto out;
4924
4925 ret = -EINVAL;
4926 if (page->mem_cgroup != from)
4927 goto out_unlock;
4928
4929 anon = PageAnon(page);
4930
4931 spin_lock_irqsave(&from->move_lock, flags);
4932
4933 if (!anon && page_mapped(page)) {
4934 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4935 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4936 }
4937
4938 /*
4939 * move_lock grabbed above and caller set from->moving_account, so
4940 * mod_memcg_page_state will serialize updates to PageDirty.
4941 * So mapping should be stable for dirty pages.
4942 */
4943 if (!anon && PageDirty(page)) {
4944 struct address_space *mapping = page_mapping(page);
4945
4946 if (mapping_cap_account_dirty(mapping)) {
4947 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4948 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4949 }
4950 }
4951
4952 if (PageWriteback(page)) {
4953 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4954 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4955 }
4956
4957 /*
4958 * It is safe to change page->mem_cgroup here because the page
4959 * is referenced, charged, and isolated - we can't race with
4960 * uncharging, charging, migration, or LRU putback.
4961 */
4962
4963 /* caller should have done css_get */
4964 page->mem_cgroup = to;
4965 spin_unlock_irqrestore(&from->move_lock, flags);
4966
4967 ret = 0;
4968
4969 local_irq_disable();
4970 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4971 memcg_check_events(to, page);
4972 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4973 memcg_check_events(from, page);
4974 local_irq_enable();
4975 out_unlock:
4976 unlock_page(page);
4977 out:
4978 return ret;
4979 }
4980
4981 /**
4982 * get_mctgt_type - get target type of moving charge
4983 * @vma: the vma the pte to be checked belongs
4984 * @addr: the address corresponding to the pte to be checked
4985 * @ptent: the pte to be checked
4986 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4987 *
4988 * Returns
4989 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4990 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4991 * move charge. if @target is not NULL, the page is stored in target->page
4992 * with extra refcnt got(Callers should handle it).
4993 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4994 * target for charge migration. if @target is not NULL, the entry is stored
4995 * in target->ent.
4996 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4997 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4998 * For now we such page is charge like a regular page would be as for all
4999 * intent and purposes it is just special memory taking the place of a
5000 * regular page.
5001 *
5002 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5003 *
5004 * Called with pte lock held.
5005 */
5006
5007 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5008 unsigned long addr, pte_t ptent, union mc_target *target)
5009 {
5010 struct page *page = NULL;
5011 enum mc_target_type ret = MC_TARGET_NONE;
5012 swp_entry_t ent = { .val = 0 };
5013
5014 if (pte_present(ptent))
5015 page = mc_handle_present_pte(vma, addr, ptent);
5016 else if (is_swap_pte(ptent))
5017 page = mc_handle_swap_pte(vma, ptent, &ent);
5018 else if (pte_none(ptent))
5019 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5020
5021 if (!page && !ent.val)
5022 return ret;
5023 if (page) {
5024 /*
5025 * Do only loose check w/o serialization.
5026 * mem_cgroup_move_account() checks the page is valid or
5027 * not under LRU exclusion.
5028 */
5029 if (page->mem_cgroup == mc.from) {
5030 ret = MC_TARGET_PAGE;
5031 if (is_device_private_page(page) ||
5032 is_device_public_page(page))
5033 ret = MC_TARGET_DEVICE;
5034 if (target)
5035 target->page = page;
5036 }
5037 if (!ret || !target)
5038 put_page(page);
5039 }
5040 /*
5041 * There is a swap entry and a page doesn't exist or isn't charged.
5042 * But we cannot move a tail-page in a THP.
5043 */
5044 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5045 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5046 ret = MC_TARGET_SWAP;
5047 if (target)
5048 target->ent = ent;
5049 }
5050 return ret;
5051 }
5052
5053 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5054 /*
5055 * We don't consider PMD mapped swapping or file mapped pages because THP does
5056 * not support them for now.
5057 * Caller should make sure that pmd_trans_huge(pmd) is true.
5058 */
5059 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5060 unsigned long addr, pmd_t pmd, union mc_target *target)
5061 {
5062 struct page *page = NULL;
5063 enum mc_target_type ret = MC_TARGET_NONE;
5064
5065 if (unlikely(is_swap_pmd(pmd))) {
5066 VM_BUG_ON(thp_migration_supported() &&
5067 !is_pmd_migration_entry(pmd));
5068 return ret;
5069 }
5070 page = pmd_page(pmd);
5071 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5072 if (!(mc.flags & MOVE_ANON))
5073 return ret;
5074 if (page->mem_cgroup == mc.from) {
5075 ret = MC_TARGET_PAGE;
5076 if (target) {
5077 get_page(page);
5078 target->page = page;
5079 }
5080 }
5081 return ret;
5082 }
5083 #else
5084 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5085 unsigned long addr, pmd_t pmd, union mc_target *target)
5086 {
5087 return MC_TARGET_NONE;
5088 }
5089 #endif
5090
5091 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5092 unsigned long addr, unsigned long end,
5093 struct mm_walk *walk)
5094 {
5095 struct vm_area_struct *vma = walk->vma;
5096 pte_t *pte;
5097 spinlock_t *ptl;
5098
5099 ptl = pmd_trans_huge_lock(pmd, vma);
5100 if (ptl) {
5101 /*
5102 * Note their can not be MC_TARGET_DEVICE for now as we do not
5103 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
5104 * MEMORY_DEVICE_PRIVATE but this might change.
5105 */
5106 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5107 mc.precharge += HPAGE_PMD_NR;
5108 spin_unlock(ptl);
5109 return 0;
5110 }
5111
5112 if (pmd_trans_unstable(pmd))
5113 return 0;
5114 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5115 for (; addr != end; pte++, addr += PAGE_SIZE)
5116 if (get_mctgt_type(vma, addr, *pte, NULL))
5117 mc.precharge++; /* increment precharge temporarily */
5118 pte_unmap_unlock(pte - 1, ptl);
5119 cond_resched();
5120
5121 return 0;
5122 }
5123
5124 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5125 {
5126 unsigned long precharge;
5127
5128 struct mm_walk mem_cgroup_count_precharge_walk = {
5129 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5130 .mm = mm,
5131 };
5132 down_read(&mm->mmap_sem);
5133 walk_page_range(0, mm->highest_vm_end,
5134 &mem_cgroup_count_precharge_walk);
5135 up_read(&mm->mmap_sem);
5136
5137 precharge = mc.precharge;
5138 mc.precharge = 0;
5139
5140 return precharge;
5141 }
5142
5143 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5144 {
5145 unsigned long precharge = mem_cgroup_count_precharge(mm);
5146
5147 VM_BUG_ON(mc.moving_task);
5148 mc.moving_task = current;
5149 return mem_cgroup_do_precharge(precharge);
5150 }
5151
5152 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5153 static void __mem_cgroup_clear_mc(void)
5154 {
5155 struct mem_cgroup *from = mc.from;
5156 struct mem_cgroup *to = mc.to;
5157
5158 /* we must uncharge all the leftover precharges from mc.to */
5159 if (mc.precharge) {
5160 cancel_charge(mc.to, mc.precharge);
5161 mc.precharge = 0;
5162 }
5163 /*
5164 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5165 * we must uncharge here.
5166 */
5167 if (mc.moved_charge) {
5168 cancel_charge(mc.from, mc.moved_charge);
5169 mc.moved_charge = 0;
5170 }
5171 /* we must fixup refcnts and charges */
5172 if (mc.moved_swap) {
5173 /* uncharge swap account from the old cgroup */
5174 if (!mem_cgroup_is_root(mc.from))
5175 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5176
5177 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5178
5179 /*
5180 * we charged both to->memory and to->memsw, so we
5181 * should uncharge to->memory.
5182 */
5183 if (!mem_cgroup_is_root(mc.to))
5184 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5185
5186 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5187 css_put_many(&mc.to->css, mc.moved_swap);
5188
5189 mc.moved_swap = 0;
5190 }
5191 memcg_oom_recover(from);
5192 memcg_oom_recover(to);
5193 wake_up_all(&mc.waitq);
5194 }
5195
5196 static void mem_cgroup_clear_mc(void)
5197 {
5198 struct mm_struct *mm = mc.mm;
5199
5200 /*
5201 * we must clear moving_task before waking up waiters at the end of
5202 * task migration.
5203 */
5204 mc.moving_task = NULL;
5205 __mem_cgroup_clear_mc();
5206 spin_lock(&mc.lock);
5207 mc.from = NULL;
5208 mc.to = NULL;
5209 mc.mm = NULL;
5210 spin_unlock(&mc.lock);
5211
5212 mmput(mm);
5213 }
5214
5215 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5216 {
5217 struct cgroup_subsys_state *css;
5218 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5219 struct mem_cgroup *from;
5220 struct task_struct *leader, *p;
5221 struct mm_struct *mm;
5222 unsigned long move_flags;
5223 int ret = 0;
5224
5225 /* charge immigration isn't supported on the default hierarchy */
5226 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5227 return 0;
5228
5229 /*
5230 * Multi-process migrations only happen on the default hierarchy
5231 * where charge immigration is not used. Perform charge
5232 * immigration if @tset contains a leader and whine if there are
5233 * multiple.
5234 */
5235 p = NULL;
5236 cgroup_taskset_for_each_leader(leader, css, tset) {
5237 WARN_ON_ONCE(p);
5238 p = leader;
5239 memcg = mem_cgroup_from_css(css);
5240 }
5241 if (!p)
5242 return 0;
5243
5244 /*
5245 * We are now commited to this value whatever it is. Changes in this
5246 * tunable will only affect upcoming migrations, not the current one.
5247 * So we need to save it, and keep it going.
5248 */
5249 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5250 if (!move_flags)
5251 return 0;
5252
5253 from = mem_cgroup_from_task(p);
5254
5255 VM_BUG_ON(from == memcg);
5256
5257 mm = get_task_mm(p);
5258 if (!mm)
5259 return 0;
5260 /* We move charges only when we move a owner of the mm */
5261 if (mm->owner == p) {
5262 VM_BUG_ON(mc.from);
5263 VM_BUG_ON(mc.to);
5264 VM_BUG_ON(mc.precharge);
5265 VM_BUG_ON(mc.moved_charge);
5266 VM_BUG_ON(mc.moved_swap);
5267
5268 spin_lock(&mc.lock);
5269 mc.mm = mm;
5270 mc.from = from;
5271 mc.to = memcg;
5272 mc.flags = move_flags;
5273 spin_unlock(&mc.lock);
5274 /* We set mc.moving_task later */
5275
5276 ret = mem_cgroup_precharge_mc(mm);
5277 if (ret)
5278 mem_cgroup_clear_mc();
5279 } else {
5280 mmput(mm);
5281 }
5282 return ret;
5283 }
5284
5285 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5286 {
5287 if (mc.to)
5288 mem_cgroup_clear_mc();
5289 }
5290
5291 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5292 unsigned long addr, unsigned long end,
5293 struct mm_walk *walk)
5294 {
5295 int ret = 0;
5296 struct vm_area_struct *vma = walk->vma;
5297 pte_t *pte;
5298 spinlock_t *ptl;
5299 enum mc_target_type target_type;
5300 union mc_target target;
5301 struct page *page;
5302
5303 ptl = pmd_trans_huge_lock(pmd, vma);
5304 if (ptl) {
5305 if (mc.precharge < HPAGE_PMD_NR) {
5306 spin_unlock(ptl);
5307 return 0;
5308 }
5309 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5310 if (target_type == MC_TARGET_PAGE) {
5311 page = target.page;
5312 if (!isolate_lru_page(page)) {
5313 if (!mem_cgroup_move_account(page, true,
5314 mc.from, mc.to)) {
5315 mc.precharge -= HPAGE_PMD_NR;
5316 mc.moved_charge += HPAGE_PMD_NR;
5317 }
5318 putback_lru_page(page);
5319 }
5320 put_page(page);
5321 } else if (target_type == MC_TARGET_DEVICE) {
5322 page = target.page;
5323 if (!mem_cgroup_move_account(page, true,
5324 mc.from, mc.to)) {
5325 mc.precharge -= HPAGE_PMD_NR;
5326 mc.moved_charge += HPAGE_PMD_NR;
5327 }
5328 put_page(page);
5329 }
5330 spin_unlock(ptl);
5331 return 0;
5332 }
5333
5334 if (pmd_trans_unstable(pmd))
5335 return 0;
5336 retry:
5337 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5338 for (; addr != end; addr += PAGE_SIZE) {
5339 pte_t ptent = *(pte++);
5340 bool device = false;
5341 swp_entry_t ent;
5342
5343 if (!mc.precharge)
5344 break;
5345
5346 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5347 case MC_TARGET_DEVICE:
5348 device = true;
5349 /* fall through */
5350 case MC_TARGET_PAGE:
5351 page = target.page;
5352 /*
5353 * We can have a part of the split pmd here. Moving it
5354 * can be done but it would be too convoluted so simply
5355 * ignore such a partial THP and keep it in original
5356 * memcg. There should be somebody mapping the head.
5357 */
5358 if (PageTransCompound(page))
5359 goto put;
5360 if (!device && isolate_lru_page(page))
5361 goto put;
5362 if (!mem_cgroup_move_account(page, false,
5363 mc.from, mc.to)) {
5364 mc.precharge--;
5365 /* we uncharge from mc.from later. */
5366 mc.moved_charge++;
5367 }
5368 if (!device)
5369 putback_lru_page(page);
5370 put: /* get_mctgt_type() gets the page */
5371 put_page(page);
5372 break;
5373 case MC_TARGET_SWAP:
5374 ent = target.ent;
5375 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5376 mc.precharge--;
5377 /* we fixup refcnts and charges later. */
5378 mc.moved_swap++;
5379 }
5380 break;
5381 default:
5382 break;
5383 }
5384 }
5385 pte_unmap_unlock(pte - 1, ptl);
5386 cond_resched();
5387
5388 if (addr != end) {
5389 /*
5390 * We have consumed all precharges we got in can_attach().
5391 * We try charge one by one, but don't do any additional
5392 * charges to mc.to if we have failed in charge once in attach()
5393 * phase.
5394 */
5395 ret = mem_cgroup_do_precharge(1);
5396 if (!ret)
5397 goto retry;
5398 }
5399
5400 return ret;
5401 }
5402
5403 static void mem_cgroup_move_charge(void)
5404 {
5405 struct mm_walk mem_cgroup_move_charge_walk = {
5406 .pmd_entry = mem_cgroup_move_charge_pte_range,
5407 .mm = mc.mm,
5408 };
5409
5410 lru_add_drain_all();
5411 /*
5412 * Signal lock_page_memcg() to take the memcg's move_lock
5413 * while we're moving its pages to another memcg. Then wait
5414 * for already started RCU-only updates to finish.
5415 */
5416 atomic_inc(&mc.from->moving_account);
5417 synchronize_rcu();
5418 retry:
5419 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5420 /*
5421 * Someone who are holding the mmap_sem might be waiting in
5422 * waitq. So we cancel all extra charges, wake up all waiters,
5423 * and retry. Because we cancel precharges, we might not be able
5424 * to move enough charges, but moving charge is a best-effort
5425 * feature anyway, so it wouldn't be a big problem.
5426 */
5427 __mem_cgroup_clear_mc();
5428 cond_resched();
5429 goto retry;
5430 }
5431 /*
5432 * When we have consumed all precharges and failed in doing
5433 * additional charge, the page walk just aborts.
5434 */
5435 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5436
5437 up_read(&mc.mm->mmap_sem);
5438 atomic_dec(&mc.from->moving_account);
5439 }
5440
5441 static void mem_cgroup_move_task(void)
5442 {
5443 if (mc.to) {
5444 mem_cgroup_move_charge();
5445 mem_cgroup_clear_mc();
5446 }
5447 }
5448 #else /* !CONFIG_MMU */
5449 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5450 {
5451 return 0;
5452 }
5453 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5454 {
5455 }
5456 static void mem_cgroup_move_task(void)
5457 {
5458 }
5459 #endif
5460
5461 /*
5462 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5463 * to verify whether we're attached to the default hierarchy on each mount
5464 * attempt.
5465 */
5466 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5467 {
5468 /*
5469 * use_hierarchy is forced on the default hierarchy. cgroup core
5470 * guarantees that @root doesn't have any children, so turning it
5471 * on for the root memcg is enough.
5472 */
5473 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5474 root_mem_cgroup->use_hierarchy = true;
5475 else
5476 root_mem_cgroup->use_hierarchy = false;
5477 }
5478
5479 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5480 {
5481 if (value == PAGE_COUNTER_MAX)
5482 seq_puts(m, "max\n");
5483 else
5484 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5485
5486 return 0;
5487 }
5488
5489 static u64 memory_current_read(struct cgroup_subsys_state *css,
5490 struct cftype *cft)
5491 {
5492 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5493
5494 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5495 }
5496
5497 static int memory_min_show(struct seq_file *m, void *v)
5498 {
5499 return seq_puts_memcg_tunable(m,
5500 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5501 }
5502
5503 static ssize_t memory_min_write(struct kernfs_open_file *of,
5504 char *buf, size_t nbytes, loff_t off)
5505 {
5506 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5507 unsigned long min;
5508 int err;
5509
5510 buf = strstrip(buf);
5511 err = page_counter_memparse(buf, "max", &min);
5512 if (err)
5513 return err;
5514
5515 page_counter_set_min(&memcg->memory, min);
5516
5517 return nbytes;
5518 }
5519
5520 static int memory_low_show(struct seq_file *m, void *v)
5521 {
5522 return seq_puts_memcg_tunable(m,
5523 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5524 }
5525
5526 static ssize_t memory_low_write(struct kernfs_open_file *of,
5527 char *buf, size_t nbytes, loff_t off)
5528 {
5529 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5530 unsigned long low;
5531 int err;
5532
5533 buf = strstrip(buf);
5534 err = page_counter_memparse(buf, "max", &low);
5535 if (err)
5536 return err;
5537
5538 page_counter_set_low(&memcg->memory, low);
5539
5540 return nbytes;
5541 }
5542
5543 static int memory_high_show(struct seq_file *m, void *v)
5544 {
5545 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5546 }
5547
5548 static ssize_t memory_high_write(struct kernfs_open_file *of,
5549 char *buf, size_t nbytes, loff_t off)
5550 {
5551 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5552 unsigned long nr_pages;
5553 unsigned long high;
5554 int err;
5555
5556 buf = strstrip(buf);
5557 err = page_counter_memparse(buf, "max", &high);
5558 if (err)
5559 return err;
5560
5561 memcg->high = high;
5562
5563 nr_pages = page_counter_read(&memcg->memory);
5564 if (nr_pages > high)
5565 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5566 GFP_KERNEL, true);
5567
5568 memcg_wb_domain_size_changed(memcg);
5569 return nbytes;
5570 }
5571
5572 static int memory_max_show(struct seq_file *m, void *v)
5573 {
5574 return seq_puts_memcg_tunable(m,
5575 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
5576 }
5577
5578 static ssize_t memory_max_write(struct kernfs_open_file *of,
5579 char *buf, size_t nbytes, loff_t off)
5580 {
5581 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5582 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5583 bool drained = false;
5584 unsigned long max;
5585 int err;
5586
5587 buf = strstrip(buf);
5588 err = page_counter_memparse(buf, "max", &max);
5589 if (err)
5590 return err;
5591
5592 xchg(&memcg->memory.max, max);
5593
5594 for (;;) {
5595 unsigned long nr_pages = page_counter_read(&memcg->memory);
5596
5597 if (nr_pages <= max)
5598 break;
5599
5600 if (signal_pending(current)) {
5601 err = -EINTR;
5602 break;
5603 }
5604
5605 if (!drained) {
5606 drain_all_stock(memcg);
5607 drained = true;
5608 continue;
5609 }
5610
5611 if (nr_reclaims) {
5612 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5613 GFP_KERNEL, true))
5614 nr_reclaims--;
5615 continue;
5616 }
5617
5618 memcg_memory_event(memcg, MEMCG_OOM);
5619 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5620 break;
5621 }
5622
5623 memcg_wb_domain_size_changed(memcg);
5624 return nbytes;
5625 }
5626
5627 static int memory_events_show(struct seq_file *m, void *v)
5628 {
5629 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5630
5631 seq_printf(m, "low %lu\n",
5632 atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5633 seq_printf(m, "high %lu\n",
5634 atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5635 seq_printf(m, "max %lu\n",
5636 atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5637 seq_printf(m, "oom %lu\n",
5638 atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
5639 seq_printf(m, "oom_kill %lu\n",
5640 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
5641
5642 return 0;
5643 }
5644
5645 static int memory_stat_show(struct seq_file *m, void *v)
5646 {
5647 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5648 int i;
5649
5650 /*
5651 * Provide statistics on the state of the memory subsystem as
5652 * well as cumulative event counters that show past behavior.
5653 *
5654 * This list is ordered following a combination of these gradients:
5655 * 1) generic big picture -> specifics and details
5656 * 2) reflecting userspace activity -> reflecting kernel heuristics
5657 *
5658 * Current memory state:
5659 */
5660
5661 seq_printf(m, "anon %llu\n",
5662 (u64)memcg_page_state(memcg, MEMCG_RSS) * PAGE_SIZE);
5663 seq_printf(m, "file %llu\n",
5664 (u64)memcg_page_state(memcg, MEMCG_CACHE) * PAGE_SIZE);
5665 seq_printf(m, "kernel_stack %llu\n",
5666 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) * 1024);
5667 seq_printf(m, "slab %llu\n",
5668 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
5669 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
5670 PAGE_SIZE);
5671 seq_printf(m, "sock %llu\n",
5672 (u64)memcg_page_state(memcg, MEMCG_SOCK) * PAGE_SIZE);
5673
5674 seq_printf(m, "shmem %llu\n",
5675 (u64)memcg_page_state(memcg, NR_SHMEM) * PAGE_SIZE);
5676 seq_printf(m, "file_mapped %llu\n",
5677 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) * PAGE_SIZE);
5678 seq_printf(m, "file_dirty %llu\n",
5679 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) * PAGE_SIZE);
5680 seq_printf(m, "file_writeback %llu\n",
5681 (u64)memcg_page_state(memcg, NR_WRITEBACK) * PAGE_SIZE);
5682
5683 /*
5684 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
5685 * with the NR_ANON_THP vm counter, but right now it's a pain in the
5686 * arse because it requires migrating the work out of rmap to a place
5687 * where the page->mem_cgroup is set up and stable.
5688 */
5689 seq_printf(m, "anon_thp %llu\n",
5690 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) * PAGE_SIZE);
5691
5692 for (i = 0; i < NR_LRU_LISTS; i++)
5693 seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
5694 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
5695 PAGE_SIZE);
5696
5697 seq_printf(m, "slab_reclaimable %llu\n",
5698 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
5699 PAGE_SIZE);
5700 seq_printf(m, "slab_unreclaimable %llu\n",
5701 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
5702 PAGE_SIZE);
5703
5704 /* Accumulated memory events */
5705
5706 seq_printf(m, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
5707 seq_printf(m, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
5708
5709 seq_printf(m, "workingset_refault %lu\n",
5710 memcg_page_state(memcg, WORKINGSET_REFAULT));
5711 seq_printf(m, "workingset_activate %lu\n",
5712 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
5713 seq_printf(m, "workingset_nodereclaim %lu\n",
5714 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
5715
5716 seq_printf(m, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
5717 seq_printf(m, "pgscan %lu\n", memcg_events(memcg, PGSCAN_KSWAPD) +
5718 memcg_events(memcg, PGSCAN_DIRECT));
5719 seq_printf(m, "pgsteal %lu\n", memcg_events(memcg, PGSTEAL_KSWAPD) +
5720 memcg_events(memcg, PGSTEAL_DIRECT));
5721 seq_printf(m, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
5722 seq_printf(m, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
5723 seq_printf(m, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
5724 seq_printf(m, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
5725
5726 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5727 seq_printf(m, "thp_fault_alloc %lu\n",
5728 memcg_events(memcg, THP_FAULT_ALLOC));
5729 seq_printf(m, "thp_collapse_alloc %lu\n",
5730 memcg_events(memcg, THP_COLLAPSE_ALLOC));
5731 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5732
5733 return 0;
5734 }
5735
5736 static int memory_oom_group_show(struct seq_file *m, void *v)
5737 {
5738 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5739
5740 seq_printf(m, "%d\n", memcg->oom_group);
5741
5742 return 0;
5743 }
5744
5745 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5746 char *buf, size_t nbytes, loff_t off)
5747 {
5748 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5749 int ret, oom_group;
5750
5751 buf = strstrip(buf);
5752 if (!buf)
5753 return -EINVAL;
5754
5755 ret = kstrtoint(buf, 0, &oom_group);
5756 if (ret)
5757 return ret;
5758
5759 if (oom_group != 0 && oom_group != 1)
5760 return -EINVAL;
5761
5762 memcg->oom_group = oom_group;
5763
5764 return nbytes;
5765 }
5766
5767 static struct cftype memory_files[] = {
5768 {
5769 .name = "current",
5770 .flags = CFTYPE_NOT_ON_ROOT,
5771 .read_u64 = memory_current_read,
5772 },
5773 {
5774 .name = "min",
5775 .flags = CFTYPE_NOT_ON_ROOT,
5776 .seq_show = memory_min_show,
5777 .write = memory_min_write,
5778 },
5779 {
5780 .name = "low",
5781 .flags = CFTYPE_NOT_ON_ROOT,
5782 .seq_show = memory_low_show,
5783 .write = memory_low_write,
5784 },
5785 {
5786 .name = "high",
5787 .flags = CFTYPE_NOT_ON_ROOT,
5788 .seq_show = memory_high_show,
5789 .write = memory_high_write,
5790 },
5791 {
5792 .name = "max",
5793 .flags = CFTYPE_NOT_ON_ROOT,
5794 .seq_show = memory_max_show,
5795 .write = memory_max_write,
5796 },
5797 {
5798 .name = "events",
5799 .flags = CFTYPE_NOT_ON_ROOT,
5800 .file_offset = offsetof(struct mem_cgroup, events_file),
5801 .seq_show = memory_events_show,
5802 },
5803 {
5804 .name = "stat",
5805 .flags = CFTYPE_NOT_ON_ROOT,
5806 .seq_show = memory_stat_show,
5807 },
5808 {
5809 .name = "oom.group",
5810 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5811 .seq_show = memory_oom_group_show,
5812 .write = memory_oom_group_write,
5813 },
5814 { } /* terminate */
5815 };
5816
5817 struct cgroup_subsys memory_cgrp_subsys = {
5818 .css_alloc = mem_cgroup_css_alloc,
5819 .css_online = mem_cgroup_css_online,
5820 .css_offline = mem_cgroup_css_offline,
5821 .css_released = mem_cgroup_css_released,
5822 .css_free = mem_cgroup_css_free,
5823 .css_reset = mem_cgroup_css_reset,
5824 .can_attach = mem_cgroup_can_attach,
5825 .cancel_attach = mem_cgroup_cancel_attach,
5826 .post_attach = mem_cgroup_move_task,
5827 .bind = mem_cgroup_bind,
5828 .dfl_cftypes = memory_files,
5829 .legacy_cftypes = mem_cgroup_legacy_files,
5830 .early_init = 0,
5831 };
5832
5833 /**
5834 * mem_cgroup_protected - check if memory consumption is in the normal range
5835 * @root: the top ancestor of the sub-tree being checked
5836 * @memcg: the memory cgroup to check
5837 *
5838 * WARNING: This function is not stateless! It can only be used as part
5839 * of a top-down tree iteration, not for isolated queries.
5840 *
5841 * Returns one of the following:
5842 * MEMCG_PROT_NONE: cgroup memory is not protected
5843 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5844 * an unprotected supply of reclaimable memory from other cgroups.
5845 * MEMCG_PROT_MIN: cgroup memory is protected
5846 *
5847 * @root is exclusive; it is never protected when looked at directly
5848 *
5849 * To provide a proper hierarchical behavior, effective memory.min/low values
5850 * are used. Below is the description of how effective memory.low is calculated.
5851 * Effective memory.min values is calculated in the same way.
5852 *
5853 * Effective memory.low is always equal or less than the original memory.low.
5854 * If there is no memory.low overcommittment (which is always true for
5855 * top-level memory cgroups), these two values are equal.
5856 * Otherwise, it's a part of parent's effective memory.low,
5857 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5858 * memory.low usages, where memory.low usage is the size of actually
5859 * protected memory.
5860 *
5861 * low_usage
5862 * elow = min( memory.low, parent->elow * ------------------ ),
5863 * siblings_low_usage
5864 *
5865 * | memory.current, if memory.current < memory.low
5866 * low_usage = |
5867 * | 0, otherwise.
5868 *
5869 *
5870 * Such definition of the effective memory.low provides the expected
5871 * hierarchical behavior: parent's memory.low value is limiting
5872 * children, unprotected memory is reclaimed first and cgroups,
5873 * which are not using their guarantee do not affect actual memory
5874 * distribution.
5875 *
5876 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5877 *
5878 * A A/memory.low = 2G, A/memory.current = 6G
5879 * //\\
5880 * BC DE B/memory.low = 3G B/memory.current = 2G
5881 * C/memory.low = 1G C/memory.current = 2G
5882 * D/memory.low = 0 D/memory.current = 2G
5883 * E/memory.low = 10G E/memory.current = 0
5884 *
5885 * and the memory pressure is applied, the following memory distribution
5886 * is expected (approximately):
5887 *
5888 * A/memory.current = 2G
5889 *
5890 * B/memory.current = 1.3G
5891 * C/memory.current = 0.6G
5892 * D/memory.current = 0
5893 * E/memory.current = 0
5894 *
5895 * These calculations require constant tracking of the actual low usages
5896 * (see propagate_protected_usage()), as well as recursive calculation of
5897 * effective memory.low values. But as we do call mem_cgroup_protected()
5898 * path for each memory cgroup top-down from the reclaim,
5899 * it's possible to optimize this part, and save calculated elow
5900 * for next usage. This part is intentionally racy, but it's ok,
5901 * as memory.low is a best-effort mechanism.
5902 */
5903 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5904 struct mem_cgroup *memcg)
5905 {
5906 struct mem_cgroup *parent;
5907 unsigned long emin, parent_emin;
5908 unsigned long elow, parent_elow;
5909 unsigned long usage;
5910
5911 if (mem_cgroup_disabled())
5912 return MEMCG_PROT_NONE;
5913
5914 if (!root)
5915 root = root_mem_cgroup;
5916 if (memcg == root)
5917 return MEMCG_PROT_NONE;
5918
5919 usage = page_counter_read(&memcg->memory);
5920 if (!usage)
5921 return MEMCG_PROT_NONE;
5922
5923 emin = memcg->memory.min;
5924 elow = memcg->memory.low;
5925
5926 parent = parent_mem_cgroup(memcg);
5927 /* No parent means a non-hierarchical mode on v1 memcg */
5928 if (!parent)
5929 return MEMCG_PROT_NONE;
5930
5931 if (parent == root)
5932 goto exit;
5933
5934 parent_emin = READ_ONCE(parent->memory.emin);
5935 emin = min(emin, parent_emin);
5936 if (emin && parent_emin) {
5937 unsigned long min_usage, siblings_min_usage;
5938
5939 min_usage = min(usage, memcg->memory.min);
5940 siblings_min_usage = atomic_long_read(
5941 &parent->memory.children_min_usage);
5942
5943 if (min_usage && siblings_min_usage)
5944 emin = min(emin, parent_emin * min_usage /
5945 siblings_min_usage);
5946 }
5947
5948 parent_elow = READ_ONCE(parent->memory.elow);
5949 elow = min(elow, parent_elow);
5950 if (elow && parent_elow) {
5951 unsigned long low_usage, siblings_low_usage;
5952
5953 low_usage = min(usage, memcg->memory.low);
5954 siblings_low_usage = atomic_long_read(
5955 &parent->memory.children_low_usage);
5956
5957 if (low_usage && siblings_low_usage)
5958 elow = min(elow, parent_elow * low_usage /
5959 siblings_low_usage);
5960 }
5961
5962 exit:
5963 memcg->memory.emin = emin;
5964 memcg->memory.elow = elow;
5965
5966 if (usage <= emin)
5967 return MEMCG_PROT_MIN;
5968 else if (usage <= elow)
5969 return MEMCG_PROT_LOW;
5970 else
5971 return MEMCG_PROT_NONE;
5972 }
5973
5974 /**
5975 * mem_cgroup_try_charge - try charging a page
5976 * @page: page to charge
5977 * @mm: mm context of the victim
5978 * @gfp_mask: reclaim mode
5979 * @memcgp: charged memcg return
5980 * @compound: charge the page as compound or small page
5981 *
5982 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5983 * pages according to @gfp_mask if necessary.
5984 *
5985 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5986 * Otherwise, an error code is returned.
5987 *
5988 * After page->mapping has been set up, the caller must finalize the
5989 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5990 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5991 */
5992 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5993 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5994 bool compound)
5995 {
5996 struct mem_cgroup *memcg = NULL;
5997 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5998 int ret = 0;
5999
6000 if (mem_cgroup_disabled())
6001 goto out;
6002
6003 if (PageSwapCache(page)) {
6004 /*
6005 * Every swap fault against a single page tries to charge the
6006 * page, bail as early as possible. shmem_unuse() encounters
6007 * already charged pages, too. The USED bit is protected by
6008 * the page lock, which serializes swap cache removal, which
6009 * in turn serializes uncharging.
6010 */
6011 VM_BUG_ON_PAGE(!PageLocked(page), page);
6012 if (compound_head(page)->mem_cgroup)
6013 goto out;
6014
6015 if (do_swap_account) {
6016 swp_entry_t ent = { .val = page_private(page), };
6017 unsigned short id = lookup_swap_cgroup_id(ent);
6018
6019 rcu_read_lock();
6020 memcg = mem_cgroup_from_id(id);
6021 if (memcg && !css_tryget_online(&memcg->css))
6022 memcg = NULL;
6023 rcu_read_unlock();
6024 }
6025 }
6026
6027 if (!memcg)
6028 memcg = get_mem_cgroup_from_mm(mm);
6029
6030 ret = try_charge(memcg, gfp_mask, nr_pages);
6031
6032 css_put(&memcg->css);
6033 out:
6034 *memcgp = memcg;
6035 return ret;
6036 }
6037
6038 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6039 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6040 bool compound)
6041 {
6042 struct mem_cgroup *memcg;
6043 int ret;
6044
6045 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6046 memcg = *memcgp;
6047 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6048 return ret;
6049 }
6050
6051 /**
6052 * mem_cgroup_commit_charge - commit a page charge
6053 * @page: page to charge
6054 * @memcg: memcg to charge the page to
6055 * @lrucare: page might be on LRU already
6056 * @compound: charge the page as compound or small page
6057 *
6058 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6059 * after page->mapping has been set up. This must happen atomically
6060 * as part of the page instantiation, i.e. under the page table lock
6061 * for anonymous pages, under the page lock for page and swap cache.
6062 *
6063 * In addition, the page must not be on the LRU during the commit, to
6064 * prevent racing with task migration. If it might be, use @lrucare.
6065 *
6066 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6067 */
6068 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6069 bool lrucare, bool compound)
6070 {
6071 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6072
6073 VM_BUG_ON_PAGE(!page->mapping, page);
6074 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6075
6076 if (mem_cgroup_disabled())
6077 return;
6078 /*
6079 * Swap faults will attempt to charge the same page multiple
6080 * times. But reuse_swap_page() might have removed the page
6081 * from swapcache already, so we can't check PageSwapCache().
6082 */
6083 if (!memcg)
6084 return;
6085
6086 commit_charge(page, memcg, lrucare);
6087
6088 local_irq_disable();
6089 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6090 memcg_check_events(memcg, page);
6091 local_irq_enable();
6092
6093 if (do_memsw_account() && PageSwapCache(page)) {
6094 swp_entry_t entry = { .val = page_private(page) };
6095 /*
6096 * The swap entry might not get freed for a long time,
6097 * let's not wait for it. The page already received a
6098 * memory+swap charge, drop the swap entry duplicate.
6099 */
6100 mem_cgroup_uncharge_swap(entry, nr_pages);
6101 }
6102 }
6103
6104 /**
6105 * mem_cgroup_cancel_charge - cancel a page charge
6106 * @page: page to charge
6107 * @memcg: memcg to charge the page to
6108 * @compound: charge the page as compound or small page
6109 *
6110 * Cancel a charge transaction started by mem_cgroup_try_charge().
6111 */
6112 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6113 bool compound)
6114 {
6115 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6116
6117 if (mem_cgroup_disabled())
6118 return;
6119 /*
6120 * Swap faults will attempt to charge the same page multiple
6121 * times. But reuse_swap_page() might have removed the page
6122 * from swapcache already, so we can't check PageSwapCache().
6123 */
6124 if (!memcg)
6125 return;
6126
6127 cancel_charge(memcg, nr_pages);
6128 }
6129
6130 struct uncharge_gather {
6131 struct mem_cgroup *memcg;
6132 unsigned long pgpgout;
6133 unsigned long nr_anon;
6134 unsigned long nr_file;
6135 unsigned long nr_kmem;
6136 unsigned long nr_huge;
6137 unsigned long nr_shmem;
6138 struct page *dummy_page;
6139 };
6140
6141 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6142 {
6143 memset(ug, 0, sizeof(*ug));
6144 }
6145
6146 static void uncharge_batch(const struct uncharge_gather *ug)
6147 {
6148 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6149 unsigned long flags;
6150
6151 if (!mem_cgroup_is_root(ug->memcg)) {
6152 page_counter_uncharge(&ug->memcg->memory, nr_pages);
6153 if (do_memsw_account())
6154 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6155 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6156 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6157 memcg_oom_recover(ug->memcg);
6158 }
6159
6160 local_irq_save(flags);
6161 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6162 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6163 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6164 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6165 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6166 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6167 memcg_check_events(ug->memcg, ug->dummy_page);
6168 local_irq_restore(flags);
6169
6170 if (!mem_cgroup_is_root(ug->memcg))
6171 css_put_many(&ug->memcg->css, nr_pages);
6172 }
6173
6174 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6175 {
6176 VM_BUG_ON_PAGE(PageLRU(page), page);
6177 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6178 !PageHWPoison(page) , page);
6179
6180 if (!page->mem_cgroup)
6181 return;
6182
6183 /*
6184 * Nobody should be changing or seriously looking at
6185 * page->mem_cgroup at this point, we have fully
6186 * exclusive access to the page.
6187 */
6188
6189 if (ug->memcg != page->mem_cgroup) {
6190 if (ug->memcg) {
6191 uncharge_batch(ug);
6192 uncharge_gather_clear(ug);
6193 }
6194 ug->memcg = page->mem_cgroup;
6195 }
6196
6197 if (!PageKmemcg(page)) {
6198 unsigned int nr_pages = 1;
6199
6200 if (PageTransHuge(page)) {
6201 nr_pages <<= compound_order(page);
6202 ug->nr_huge += nr_pages;
6203 }
6204 if (PageAnon(page))
6205 ug->nr_anon += nr_pages;
6206 else {
6207 ug->nr_file += nr_pages;
6208 if (PageSwapBacked(page))
6209 ug->nr_shmem += nr_pages;
6210 }
6211 ug->pgpgout++;
6212 } else {
6213 ug->nr_kmem += 1 << compound_order(page);
6214 __ClearPageKmemcg(page);
6215 }
6216
6217 ug->dummy_page = page;
6218 page->mem_cgroup = NULL;
6219 }
6220
6221 static void uncharge_list(struct list_head *page_list)
6222 {
6223 struct uncharge_gather ug;
6224 struct list_head *next;
6225
6226 uncharge_gather_clear(&ug);
6227
6228 /*
6229 * Note that the list can be a single page->lru; hence the
6230 * do-while loop instead of a simple list_for_each_entry().
6231 */
6232 next = page_list->next;
6233 do {
6234 struct page *page;
6235
6236 page = list_entry(next, struct page, lru);
6237 next = page->lru.next;
6238
6239 uncharge_page(page, &ug);
6240 } while (next != page_list);
6241
6242 if (ug.memcg)
6243 uncharge_batch(&ug);
6244 }
6245
6246 /**
6247 * mem_cgroup_uncharge - uncharge a page
6248 * @page: page to uncharge
6249 *
6250 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6251 * mem_cgroup_commit_charge().
6252 */
6253 void mem_cgroup_uncharge(struct page *page)
6254 {
6255 struct uncharge_gather ug;
6256
6257 if (mem_cgroup_disabled())
6258 return;
6259
6260 /* Don't touch page->lru of any random page, pre-check: */
6261 if (!page->mem_cgroup)
6262 return;
6263
6264 uncharge_gather_clear(&ug);
6265 uncharge_page(page, &ug);
6266 uncharge_batch(&ug);
6267 }
6268
6269 /**
6270 * mem_cgroup_uncharge_list - uncharge a list of page
6271 * @page_list: list of pages to uncharge
6272 *
6273 * Uncharge a list of pages previously charged with
6274 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6275 */
6276 void mem_cgroup_uncharge_list(struct list_head *page_list)
6277 {
6278 if (mem_cgroup_disabled())
6279 return;
6280
6281 if (!list_empty(page_list))
6282 uncharge_list(page_list);
6283 }
6284
6285 /**
6286 * mem_cgroup_migrate - charge a page's replacement
6287 * @oldpage: currently circulating page
6288 * @newpage: replacement page
6289 *
6290 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6291 * be uncharged upon free.
6292 *
6293 * Both pages must be locked, @newpage->mapping must be set up.
6294 */
6295 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6296 {
6297 struct mem_cgroup *memcg;
6298 unsigned int nr_pages;
6299 bool compound;
6300 unsigned long flags;
6301
6302 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6303 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6304 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6305 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6306 newpage);
6307
6308 if (mem_cgroup_disabled())
6309 return;
6310
6311 /* Page cache replacement: new page already charged? */
6312 if (newpage->mem_cgroup)
6313 return;
6314
6315 /* Swapcache readahead pages can get replaced before being charged */
6316 memcg = oldpage->mem_cgroup;
6317 if (!memcg)
6318 return;
6319
6320 /* Force-charge the new page. The old one will be freed soon */
6321 compound = PageTransHuge(newpage);
6322 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6323
6324 page_counter_charge(&memcg->memory, nr_pages);
6325 if (do_memsw_account())
6326 page_counter_charge(&memcg->memsw, nr_pages);
6327 css_get_many(&memcg->css, nr_pages);
6328
6329 commit_charge(newpage, memcg, false);
6330
6331 local_irq_save(flags);
6332 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6333 memcg_check_events(memcg, newpage);
6334 local_irq_restore(flags);
6335 }
6336
6337 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6338 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6339
6340 void mem_cgroup_sk_alloc(struct sock *sk)
6341 {
6342 struct mem_cgroup *memcg;
6343
6344 if (!mem_cgroup_sockets_enabled)
6345 return;
6346
6347 /*
6348 * Socket cloning can throw us here with sk_memcg already
6349 * filled. It won't however, necessarily happen from
6350 * process context. So the test for root memcg given
6351 * the current task's memcg won't help us in this case.
6352 *
6353 * Respecting the original socket's memcg is a better
6354 * decision in this case.
6355 */
6356 if (sk->sk_memcg) {
6357 css_get(&sk->sk_memcg->css);
6358 return;
6359 }
6360
6361 rcu_read_lock();
6362 memcg = mem_cgroup_from_task(current);
6363 if (memcg == root_mem_cgroup)
6364 goto out;
6365 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6366 goto out;
6367 if (css_tryget_online(&memcg->css))
6368 sk->sk_memcg = memcg;
6369 out:
6370 rcu_read_unlock();
6371 }
6372
6373 void mem_cgroup_sk_free(struct sock *sk)
6374 {
6375 if (sk->sk_memcg)
6376 css_put(&sk->sk_memcg->css);
6377 }
6378
6379 /**
6380 * mem_cgroup_charge_skmem - charge socket memory
6381 * @memcg: memcg to charge
6382 * @nr_pages: number of pages to charge
6383 *
6384 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6385 * @memcg's configured limit, %false if the charge had to be forced.
6386 */
6387 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6388 {
6389 gfp_t gfp_mask = GFP_KERNEL;
6390
6391 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6392 struct page_counter *fail;
6393
6394 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6395 memcg->tcpmem_pressure = 0;
6396 return true;
6397 }
6398 page_counter_charge(&memcg->tcpmem, nr_pages);
6399 memcg->tcpmem_pressure = 1;
6400 return false;
6401 }
6402
6403 /* Don't block in the packet receive path */
6404 if (in_softirq())
6405 gfp_mask = GFP_NOWAIT;
6406
6407 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6408
6409 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6410 return true;
6411
6412 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6413 return false;
6414 }
6415
6416 /**
6417 * mem_cgroup_uncharge_skmem - uncharge socket memory
6418 * @memcg: memcg to uncharge
6419 * @nr_pages: number of pages to uncharge
6420 */
6421 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6422 {
6423 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6424 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6425 return;
6426 }
6427
6428 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6429
6430 refill_stock(memcg, nr_pages);
6431 }
6432
6433 static int __init cgroup_memory(char *s)
6434 {
6435 char *token;
6436
6437 while ((token = strsep(&s, ",")) != NULL) {
6438 if (!*token)
6439 continue;
6440 if (!strcmp(token, "nosocket"))
6441 cgroup_memory_nosocket = true;
6442 if (!strcmp(token, "nokmem"))
6443 cgroup_memory_nokmem = true;
6444 }
6445 return 0;
6446 }
6447 __setup("cgroup.memory=", cgroup_memory);
6448
6449 /*
6450 * subsys_initcall() for memory controller.
6451 *
6452 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6453 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6454 * basically everything that doesn't depend on a specific mem_cgroup structure
6455 * should be initialized from here.
6456 */
6457 static int __init mem_cgroup_init(void)
6458 {
6459 int cpu, node;
6460
6461 #ifdef CONFIG_MEMCG_KMEM
6462 /*
6463 * Kmem cache creation is mostly done with the slab_mutex held,
6464 * so use a workqueue with limited concurrency to avoid stalling
6465 * all worker threads in case lots of cgroups are created and
6466 * destroyed simultaneously.
6467 */
6468 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6469 BUG_ON(!memcg_kmem_cache_wq);
6470 #endif
6471
6472 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6473 memcg_hotplug_cpu_dead);
6474
6475 for_each_possible_cpu(cpu)
6476 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6477 drain_local_stock);
6478
6479 for_each_node(node) {
6480 struct mem_cgroup_tree_per_node *rtpn;
6481
6482 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6483 node_online(node) ? node : NUMA_NO_NODE);
6484
6485 rtpn->rb_root = RB_ROOT;
6486 rtpn->rb_rightmost = NULL;
6487 spin_lock_init(&rtpn->lock);
6488 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6489 }
6490
6491 return 0;
6492 }
6493 subsys_initcall(mem_cgroup_init);
6494
6495 #ifdef CONFIG_MEMCG_SWAP
6496 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6497 {
6498 while (!refcount_inc_not_zero(&memcg->id.ref)) {
6499 /*
6500 * The root cgroup cannot be destroyed, so it's refcount must
6501 * always be >= 1.
6502 */
6503 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6504 VM_BUG_ON(1);
6505 break;
6506 }
6507 memcg = parent_mem_cgroup(memcg);
6508 if (!memcg)
6509 memcg = root_mem_cgroup;
6510 }
6511 return memcg;
6512 }
6513
6514 /**
6515 * mem_cgroup_swapout - transfer a memsw charge to swap
6516 * @page: page whose memsw charge to transfer
6517 * @entry: swap entry to move the charge to
6518 *
6519 * Transfer the memsw charge of @page to @entry.
6520 */
6521 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6522 {
6523 struct mem_cgroup *memcg, *swap_memcg;
6524 unsigned int nr_entries;
6525 unsigned short oldid;
6526
6527 VM_BUG_ON_PAGE(PageLRU(page), page);
6528 VM_BUG_ON_PAGE(page_count(page), page);
6529
6530 if (!do_memsw_account())
6531 return;
6532
6533 memcg = page->mem_cgroup;
6534
6535 /* Readahead page, never charged */
6536 if (!memcg)
6537 return;
6538
6539 /*
6540 * In case the memcg owning these pages has been offlined and doesn't
6541 * have an ID allocated to it anymore, charge the closest online
6542 * ancestor for the swap instead and transfer the memory+swap charge.
6543 */
6544 swap_memcg = mem_cgroup_id_get_online(memcg);
6545 nr_entries = hpage_nr_pages(page);
6546 /* Get references for the tail pages, too */
6547 if (nr_entries > 1)
6548 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6549 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6550 nr_entries);
6551 VM_BUG_ON_PAGE(oldid, page);
6552 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6553
6554 page->mem_cgroup = NULL;
6555
6556 if (!mem_cgroup_is_root(memcg))
6557 page_counter_uncharge(&memcg->memory, nr_entries);
6558
6559 if (memcg != swap_memcg) {
6560 if (!mem_cgroup_is_root(swap_memcg))
6561 page_counter_charge(&swap_memcg->memsw, nr_entries);
6562 page_counter_uncharge(&memcg->memsw, nr_entries);
6563 }
6564
6565 /*
6566 * Interrupts should be disabled here because the caller holds the
6567 * i_pages lock which is taken with interrupts-off. It is
6568 * important here to have the interrupts disabled because it is the
6569 * only synchronisation we have for updating the per-CPU variables.
6570 */
6571 VM_BUG_ON(!irqs_disabled());
6572 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6573 -nr_entries);
6574 memcg_check_events(memcg, page);
6575
6576 if (!mem_cgroup_is_root(memcg))
6577 css_put_many(&memcg->css, nr_entries);
6578 }
6579
6580 /**
6581 * mem_cgroup_try_charge_swap - try charging swap space for a page
6582 * @page: page being added to swap
6583 * @entry: swap entry to charge
6584 *
6585 * Try to charge @page's memcg for the swap space at @entry.
6586 *
6587 * Returns 0 on success, -ENOMEM on failure.
6588 */
6589 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6590 {
6591 unsigned int nr_pages = hpage_nr_pages(page);
6592 struct page_counter *counter;
6593 struct mem_cgroup *memcg;
6594 unsigned short oldid;
6595
6596 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6597 return 0;
6598
6599 memcg = page->mem_cgroup;
6600
6601 /* Readahead page, never charged */
6602 if (!memcg)
6603 return 0;
6604
6605 if (!entry.val) {
6606 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6607 return 0;
6608 }
6609
6610 memcg = mem_cgroup_id_get_online(memcg);
6611
6612 if (!mem_cgroup_is_root(memcg) &&
6613 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6614 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6615 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6616 mem_cgroup_id_put(memcg);
6617 return -ENOMEM;
6618 }
6619
6620 /* Get references for the tail pages, too */
6621 if (nr_pages > 1)
6622 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6623 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6624 VM_BUG_ON_PAGE(oldid, page);
6625 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6626
6627 return 0;
6628 }
6629
6630 /**
6631 * mem_cgroup_uncharge_swap - uncharge swap space
6632 * @entry: swap entry to uncharge
6633 * @nr_pages: the amount of swap space to uncharge
6634 */
6635 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6636 {
6637 struct mem_cgroup *memcg;
6638 unsigned short id;
6639
6640 if (!do_swap_account)
6641 return;
6642
6643 id = swap_cgroup_record(entry, 0, nr_pages);
6644 rcu_read_lock();
6645 memcg = mem_cgroup_from_id(id);
6646 if (memcg) {
6647 if (!mem_cgroup_is_root(memcg)) {
6648 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6649 page_counter_uncharge(&memcg->swap, nr_pages);
6650 else
6651 page_counter_uncharge(&memcg->memsw, nr_pages);
6652 }
6653 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6654 mem_cgroup_id_put_many(memcg, nr_pages);
6655 }
6656 rcu_read_unlock();
6657 }
6658
6659 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6660 {
6661 long nr_swap_pages = get_nr_swap_pages();
6662
6663 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6664 return nr_swap_pages;
6665 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6666 nr_swap_pages = min_t(long, nr_swap_pages,
6667 READ_ONCE(memcg->swap.max) -
6668 page_counter_read(&memcg->swap));
6669 return nr_swap_pages;
6670 }
6671
6672 bool mem_cgroup_swap_full(struct page *page)
6673 {
6674 struct mem_cgroup *memcg;
6675
6676 VM_BUG_ON_PAGE(!PageLocked(page), page);
6677
6678 if (vm_swap_full())
6679 return true;
6680 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6681 return false;
6682
6683 memcg = page->mem_cgroup;
6684 if (!memcg)
6685 return false;
6686
6687 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6688 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6689 return true;
6690
6691 return false;
6692 }
6693
6694 /* for remember boot option*/
6695 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6696 static int really_do_swap_account __initdata = 1;
6697 #else
6698 static int really_do_swap_account __initdata;
6699 #endif
6700
6701 static int __init enable_swap_account(char *s)
6702 {
6703 if (!strcmp(s, "1"))
6704 really_do_swap_account = 1;
6705 else if (!strcmp(s, "0"))
6706 really_do_swap_account = 0;
6707 return 1;
6708 }
6709 __setup("swapaccount=", enable_swap_account);
6710
6711 static u64 swap_current_read(struct cgroup_subsys_state *css,
6712 struct cftype *cft)
6713 {
6714 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6715
6716 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6717 }
6718
6719 static int swap_max_show(struct seq_file *m, void *v)
6720 {
6721 return seq_puts_memcg_tunable(m,
6722 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
6723 }
6724
6725 static ssize_t swap_max_write(struct kernfs_open_file *of,
6726 char *buf, size_t nbytes, loff_t off)
6727 {
6728 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6729 unsigned long max;
6730 int err;
6731
6732 buf = strstrip(buf);
6733 err = page_counter_memparse(buf, "max", &max);
6734 if (err)
6735 return err;
6736
6737 xchg(&memcg->swap.max, max);
6738
6739 return nbytes;
6740 }
6741
6742 static int swap_events_show(struct seq_file *m, void *v)
6743 {
6744 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6745
6746 seq_printf(m, "max %lu\n",
6747 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6748 seq_printf(m, "fail %lu\n",
6749 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6750
6751 return 0;
6752 }
6753
6754 static struct cftype swap_files[] = {
6755 {
6756 .name = "swap.current",
6757 .flags = CFTYPE_NOT_ON_ROOT,
6758 .read_u64 = swap_current_read,
6759 },
6760 {
6761 .name = "swap.max",
6762 .flags = CFTYPE_NOT_ON_ROOT,
6763 .seq_show = swap_max_show,
6764 .write = swap_max_write,
6765 },
6766 {
6767 .name = "swap.events",
6768 .flags = CFTYPE_NOT_ON_ROOT,
6769 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6770 .seq_show = swap_events_show,
6771 },
6772 { } /* terminate */
6773 };
6774
6775 static struct cftype memsw_cgroup_files[] = {
6776 {
6777 .name = "memsw.usage_in_bytes",
6778 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6779 .read_u64 = mem_cgroup_read_u64,
6780 },
6781 {
6782 .name = "memsw.max_usage_in_bytes",
6783 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6784 .write = mem_cgroup_reset,
6785 .read_u64 = mem_cgroup_read_u64,
6786 },
6787 {
6788 .name = "memsw.limit_in_bytes",
6789 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6790 .write = mem_cgroup_write,
6791 .read_u64 = mem_cgroup_read_u64,
6792 },
6793 {
6794 .name = "memsw.failcnt",
6795 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6796 .write = mem_cgroup_reset,
6797 .read_u64 = mem_cgroup_read_u64,
6798 },
6799 { }, /* terminate */
6800 };
6801
6802 static int __init mem_cgroup_swap_init(void)
6803 {
6804 if (!mem_cgroup_disabled() && really_do_swap_account) {
6805 do_swap_account = 1;
6806 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6807 swap_files));
6808 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6809 memsw_cgroup_files));
6810 }
6811 return 0;
6812 }
6813 subsys_initcall(mem_cgroup_swap_init);
6814
6815 #endif /* CONFIG_MEMCG_SWAP */