]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/memcontrol.c
memcg: fix error path of mem_cgroup_move_parent
[mirror_ubuntu-focal-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/mutex.h>
31 #include <linux/slab.h>
32 #include <linux/swap.h>
33 #include <linux/spinlock.h>
34 #include <linux/fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/vmalloc.h>
37 #include <linux/mm_inline.h>
38 #include <linux/page_cgroup.h>
39 #include "internal.h"
40
41 #include <asm/uaccess.h>
42
43 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
44 #define MEM_CGROUP_RECLAIM_RETRIES 5
45
46 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48 int do_swap_account __read_mostly;
49 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50 #else
51 #define do_swap_account (0)
52 #endif
53
54 static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
55
56 /*
57 * Statistics for memory cgroup.
58 */
59 enum mem_cgroup_stat_index {
60 /*
61 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
62 */
63 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
64 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
65 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
66 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
67
68 MEM_CGROUP_STAT_NSTATS,
69 };
70
71 struct mem_cgroup_stat_cpu {
72 s64 count[MEM_CGROUP_STAT_NSTATS];
73 } ____cacheline_aligned_in_smp;
74
75 struct mem_cgroup_stat {
76 struct mem_cgroup_stat_cpu cpustat[0];
77 };
78
79 /*
80 * For accounting under irq disable, no need for increment preempt count.
81 */
82 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
83 enum mem_cgroup_stat_index idx, int val)
84 {
85 stat->count[idx] += val;
86 }
87
88 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
89 enum mem_cgroup_stat_index idx)
90 {
91 int cpu;
92 s64 ret = 0;
93 for_each_possible_cpu(cpu)
94 ret += stat->cpustat[cpu].count[idx];
95 return ret;
96 }
97
98 /*
99 * per-zone information in memory controller.
100 */
101 struct mem_cgroup_per_zone {
102 /*
103 * spin_lock to protect the per cgroup LRU
104 */
105 struct list_head lists[NR_LRU_LISTS];
106 unsigned long count[NR_LRU_LISTS];
107
108 struct zone_reclaim_stat reclaim_stat;
109 };
110 /* Macro for accessing counter */
111 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
112
113 struct mem_cgroup_per_node {
114 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
115 };
116
117 struct mem_cgroup_lru_info {
118 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
119 };
120
121 /*
122 * The memory controller data structure. The memory controller controls both
123 * page cache and RSS per cgroup. We would eventually like to provide
124 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
125 * to help the administrator determine what knobs to tune.
126 *
127 * TODO: Add a water mark for the memory controller. Reclaim will begin when
128 * we hit the water mark. May be even add a low water mark, such that
129 * no reclaim occurs from a cgroup at it's low water mark, this is
130 * a feature that will be implemented much later in the future.
131 */
132 struct mem_cgroup {
133 struct cgroup_subsys_state css;
134 /*
135 * the counter to account for memory usage
136 */
137 struct res_counter res;
138 /*
139 * the counter to account for mem+swap usage.
140 */
141 struct res_counter memsw;
142 /*
143 * Per cgroup active and inactive list, similar to the
144 * per zone LRU lists.
145 */
146 struct mem_cgroup_lru_info info;
147
148 /*
149 protect against reclaim related member.
150 */
151 spinlock_t reclaim_param_lock;
152
153 int prev_priority; /* for recording reclaim priority */
154
155 /*
156 * While reclaiming in a hiearchy, we cache the last child we
157 * reclaimed from. Protected by hierarchy_mutex
158 */
159 struct mem_cgroup *last_scanned_child;
160 /*
161 * Should the accounting and control be hierarchical, per subtree?
162 */
163 bool use_hierarchy;
164 unsigned long last_oom_jiffies;
165 atomic_t refcnt;
166
167 unsigned int swappiness;
168
169 /*
170 * statistics. This must be placed at the end of memcg.
171 */
172 struct mem_cgroup_stat stat;
173 };
174
175 enum charge_type {
176 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
177 MEM_CGROUP_CHARGE_TYPE_MAPPED,
178 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
179 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
180 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
181 NR_CHARGE_TYPE,
182 };
183
184 /* only for here (for easy reading.) */
185 #define PCGF_CACHE (1UL << PCG_CACHE)
186 #define PCGF_USED (1UL << PCG_USED)
187 #define PCGF_LOCK (1UL << PCG_LOCK)
188 static const unsigned long
189 pcg_default_flags[NR_CHARGE_TYPE] = {
190 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
191 PCGF_USED | PCGF_LOCK, /* Anon */
192 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
193 0, /* FORCE */
194 };
195
196 /* for encoding cft->private value on file */
197 #define _MEM (0)
198 #define _MEMSWAP (1)
199 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
200 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
201 #define MEMFILE_ATTR(val) ((val) & 0xffff)
202
203 static void mem_cgroup_get(struct mem_cgroup *mem);
204 static void mem_cgroup_put(struct mem_cgroup *mem);
205
206 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
207 struct page_cgroup *pc,
208 bool charge)
209 {
210 int val = (charge)? 1 : -1;
211 struct mem_cgroup_stat *stat = &mem->stat;
212 struct mem_cgroup_stat_cpu *cpustat;
213 int cpu = get_cpu();
214
215 cpustat = &stat->cpustat[cpu];
216 if (PageCgroupCache(pc))
217 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
218 else
219 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
220
221 if (charge)
222 __mem_cgroup_stat_add_safe(cpustat,
223 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
224 else
225 __mem_cgroup_stat_add_safe(cpustat,
226 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
227 put_cpu();
228 }
229
230 static struct mem_cgroup_per_zone *
231 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
232 {
233 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
234 }
235
236 static struct mem_cgroup_per_zone *
237 page_cgroup_zoneinfo(struct page_cgroup *pc)
238 {
239 struct mem_cgroup *mem = pc->mem_cgroup;
240 int nid = page_cgroup_nid(pc);
241 int zid = page_cgroup_zid(pc);
242
243 if (!mem)
244 return NULL;
245
246 return mem_cgroup_zoneinfo(mem, nid, zid);
247 }
248
249 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
250 enum lru_list idx)
251 {
252 int nid, zid;
253 struct mem_cgroup_per_zone *mz;
254 u64 total = 0;
255
256 for_each_online_node(nid)
257 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
258 mz = mem_cgroup_zoneinfo(mem, nid, zid);
259 total += MEM_CGROUP_ZSTAT(mz, idx);
260 }
261 return total;
262 }
263
264 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
265 {
266 return container_of(cgroup_subsys_state(cont,
267 mem_cgroup_subsys_id), struct mem_cgroup,
268 css);
269 }
270
271 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
272 {
273 /*
274 * mm_update_next_owner() may clear mm->owner to NULL
275 * if it races with swapoff, page migration, etc.
276 * So this can be called with p == NULL.
277 */
278 if (unlikely(!p))
279 return NULL;
280
281 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
282 struct mem_cgroup, css);
283 }
284
285 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
286 {
287 struct mem_cgroup *mem = NULL;
288 /*
289 * Because we have no locks, mm->owner's may be being moved to other
290 * cgroup. We use css_tryget() here even if this looks
291 * pessimistic (rather than adding locks here).
292 */
293 rcu_read_lock();
294 do {
295 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
296 if (unlikely(!mem))
297 break;
298 } while (!css_tryget(&mem->css));
299 rcu_read_unlock();
300 return mem;
301 }
302
303 static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
304 {
305 if (!mem)
306 return true;
307 return css_is_removed(&mem->css);
308 }
309
310 /*
311 * Following LRU functions are allowed to be used without PCG_LOCK.
312 * Operations are called by routine of global LRU independently from memcg.
313 * What we have to take care of here is validness of pc->mem_cgroup.
314 *
315 * Changes to pc->mem_cgroup happens when
316 * 1. charge
317 * 2. moving account
318 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
319 * It is added to LRU before charge.
320 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
321 * When moving account, the page is not on LRU. It's isolated.
322 */
323
324 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
325 {
326 struct page_cgroup *pc;
327 struct mem_cgroup *mem;
328 struct mem_cgroup_per_zone *mz;
329
330 if (mem_cgroup_disabled())
331 return;
332 pc = lookup_page_cgroup(page);
333 /* can happen while we handle swapcache. */
334 if (list_empty(&pc->lru) || !pc->mem_cgroup)
335 return;
336 /*
337 * We don't check PCG_USED bit. It's cleared when the "page" is finally
338 * removed from global LRU.
339 */
340 mz = page_cgroup_zoneinfo(pc);
341 mem = pc->mem_cgroup;
342 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
343 list_del_init(&pc->lru);
344 return;
345 }
346
347 void mem_cgroup_del_lru(struct page *page)
348 {
349 mem_cgroup_del_lru_list(page, page_lru(page));
350 }
351
352 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
353 {
354 struct mem_cgroup_per_zone *mz;
355 struct page_cgroup *pc;
356
357 if (mem_cgroup_disabled())
358 return;
359
360 pc = lookup_page_cgroup(page);
361 /*
362 * Used bit is set without atomic ops but after smp_wmb().
363 * For making pc->mem_cgroup visible, insert smp_rmb() here.
364 */
365 smp_rmb();
366 /* unused page is not rotated. */
367 if (!PageCgroupUsed(pc))
368 return;
369 mz = page_cgroup_zoneinfo(pc);
370 list_move(&pc->lru, &mz->lists[lru]);
371 }
372
373 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
374 {
375 struct page_cgroup *pc;
376 struct mem_cgroup_per_zone *mz;
377
378 if (mem_cgroup_disabled())
379 return;
380 pc = lookup_page_cgroup(page);
381 /*
382 * Used bit is set without atomic ops but after smp_wmb().
383 * For making pc->mem_cgroup visible, insert smp_rmb() here.
384 */
385 smp_rmb();
386 if (!PageCgroupUsed(pc))
387 return;
388
389 mz = page_cgroup_zoneinfo(pc);
390 MEM_CGROUP_ZSTAT(mz, lru) += 1;
391 list_add(&pc->lru, &mz->lists[lru]);
392 }
393
394 /*
395 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
396 * lru because the page may.be reused after it's fully uncharged (because of
397 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
398 * it again. This function is only used to charge SwapCache. It's done under
399 * lock_page and expected that zone->lru_lock is never held.
400 */
401 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
402 {
403 unsigned long flags;
404 struct zone *zone = page_zone(page);
405 struct page_cgroup *pc = lookup_page_cgroup(page);
406
407 spin_lock_irqsave(&zone->lru_lock, flags);
408 /*
409 * Forget old LRU when this page_cgroup is *not* used. This Used bit
410 * is guarded by lock_page() because the page is SwapCache.
411 */
412 if (!PageCgroupUsed(pc))
413 mem_cgroup_del_lru_list(page, page_lru(page));
414 spin_unlock_irqrestore(&zone->lru_lock, flags);
415 }
416
417 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
418 {
419 unsigned long flags;
420 struct zone *zone = page_zone(page);
421 struct page_cgroup *pc = lookup_page_cgroup(page);
422
423 spin_lock_irqsave(&zone->lru_lock, flags);
424 /* link when the page is linked to LRU but page_cgroup isn't */
425 if (PageLRU(page) && list_empty(&pc->lru))
426 mem_cgroup_add_lru_list(page, page_lru(page));
427 spin_unlock_irqrestore(&zone->lru_lock, flags);
428 }
429
430
431 void mem_cgroup_move_lists(struct page *page,
432 enum lru_list from, enum lru_list to)
433 {
434 if (mem_cgroup_disabled())
435 return;
436 mem_cgroup_del_lru_list(page, from);
437 mem_cgroup_add_lru_list(page, to);
438 }
439
440 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
441 {
442 int ret;
443
444 task_lock(task);
445 ret = task->mm && mm_match_cgroup(task->mm, mem);
446 task_unlock(task);
447 return ret;
448 }
449
450 /*
451 * Calculate mapped_ratio under memory controller. This will be used in
452 * vmscan.c for deteremining we have to reclaim mapped pages.
453 */
454 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
455 {
456 long total, rss;
457
458 /*
459 * usage is recorded in bytes. But, here, we assume the number of
460 * physical pages can be represented by "long" on any arch.
461 */
462 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
463 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
464 return (int)((rss * 100L) / total);
465 }
466
467 /*
468 * prev_priority control...this will be used in memory reclaim path.
469 */
470 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
471 {
472 int prev_priority;
473
474 spin_lock(&mem->reclaim_param_lock);
475 prev_priority = mem->prev_priority;
476 spin_unlock(&mem->reclaim_param_lock);
477
478 return prev_priority;
479 }
480
481 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
482 {
483 spin_lock(&mem->reclaim_param_lock);
484 if (priority < mem->prev_priority)
485 mem->prev_priority = priority;
486 spin_unlock(&mem->reclaim_param_lock);
487 }
488
489 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
490 {
491 spin_lock(&mem->reclaim_param_lock);
492 mem->prev_priority = priority;
493 spin_unlock(&mem->reclaim_param_lock);
494 }
495
496 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
497 {
498 unsigned long active;
499 unsigned long inactive;
500 unsigned long gb;
501 unsigned long inactive_ratio;
502
503 inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
504 active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);
505
506 gb = (inactive + active) >> (30 - PAGE_SHIFT);
507 if (gb)
508 inactive_ratio = int_sqrt(10 * gb);
509 else
510 inactive_ratio = 1;
511
512 if (present_pages) {
513 present_pages[0] = inactive;
514 present_pages[1] = active;
515 }
516
517 return inactive_ratio;
518 }
519
520 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
521 {
522 unsigned long active;
523 unsigned long inactive;
524 unsigned long present_pages[2];
525 unsigned long inactive_ratio;
526
527 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
528
529 inactive = present_pages[0];
530 active = present_pages[1];
531
532 if (inactive * inactive_ratio < active)
533 return 1;
534
535 return 0;
536 }
537
538 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
539 struct zone *zone,
540 enum lru_list lru)
541 {
542 int nid = zone->zone_pgdat->node_id;
543 int zid = zone_idx(zone);
544 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
545
546 return MEM_CGROUP_ZSTAT(mz, lru);
547 }
548
549 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
550 struct zone *zone)
551 {
552 int nid = zone->zone_pgdat->node_id;
553 int zid = zone_idx(zone);
554 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
555
556 return &mz->reclaim_stat;
557 }
558
559 struct zone_reclaim_stat *
560 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
561 {
562 struct page_cgroup *pc;
563 struct mem_cgroup_per_zone *mz;
564
565 if (mem_cgroup_disabled())
566 return NULL;
567
568 pc = lookup_page_cgroup(page);
569 /*
570 * Used bit is set without atomic ops but after smp_wmb().
571 * For making pc->mem_cgroup visible, insert smp_rmb() here.
572 */
573 smp_rmb();
574 if (!PageCgroupUsed(pc))
575 return NULL;
576
577 mz = page_cgroup_zoneinfo(pc);
578 if (!mz)
579 return NULL;
580
581 return &mz->reclaim_stat;
582 }
583
584 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
585 struct list_head *dst,
586 unsigned long *scanned, int order,
587 int mode, struct zone *z,
588 struct mem_cgroup *mem_cont,
589 int active, int file)
590 {
591 unsigned long nr_taken = 0;
592 struct page *page;
593 unsigned long scan;
594 LIST_HEAD(pc_list);
595 struct list_head *src;
596 struct page_cgroup *pc, *tmp;
597 int nid = z->zone_pgdat->node_id;
598 int zid = zone_idx(z);
599 struct mem_cgroup_per_zone *mz;
600 int lru = LRU_FILE * !!file + !!active;
601
602 BUG_ON(!mem_cont);
603 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
604 src = &mz->lists[lru];
605
606 scan = 0;
607 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
608 if (scan >= nr_to_scan)
609 break;
610
611 page = pc->page;
612 if (unlikely(!PageCgroupUsed(pc)))
613 continue;
614 if (unlikely(!PageLRU(page)))
615 continue;
616
617 scan++;
618 if (__isolate_lru_page(page, mode, file) == 0) {
619 list_move(&page->lru, dst);
620 nr_taken++;
621 }
622 }
623
624 *scanned = scan;
625 return nr_taken;
626 }
627
628 #define mem_cgroup_from_res_counter(counter, member) \
629 container_of(counter, struct mem_cgroup, member)
630
631 /*
632 * This routine finds the DFS walk successor. This routine should be
633 * called with hierarchy_mutex held
634 */
635 static struct mem_cgroup *
636 mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
637 {
638 struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
639
640 curr_cgroup = curr->css.cgroup;
641 root_cgroup = root_mem->css.cgroup;
642
643 if (!list_empty(&curr_cgroup->children)) {
644 /*
645 * Walk down to children
646 */
647 mem_cgroup_put(curr);
648 cgroup = list_entry(curr_cgroup->children.next,
649 struct cgroup, sibling);
650 curr = mem_cgroup_from_cont(cgroup);
651 mem_cgroup_get(curr);
652 goto done;
653 }
654
655 visit_parent:
656 if (curr_cgroup == root_cgroup) {
657 mem_cgroup_put(curr);
658 curr = root_mem;
659 mem_cgroup_get(curr);
660 goto done;
661 }
662
663 /*
664 * Goto next sibling
665 */
666 if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
667 mem_cgroup_put(curr);
668 cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
669 sibling);
670 curr = mem_cgroup_from_cont(cgroup);
671 mem_cgroup_get(curr);
672 goto done;
673 }
674
675 /*
676 * Go up to next parent and next parent's sibling if need be
677 */
678 curr_cgroup = curr_cgroup->parent;
679 goto visit_parent;
680
681 done:
682 root_mem->last_scanned_child = curr;
683 return curr;
684 }
685
686 /*
687 * Visit the first child (need not be the first child as per the ordering
688 * of the cgroup list, since we track last_scanned_child) of @mem and use
689 * that to reclaim free pages from.
690 */
691 static struct mem_cgroup *
692 mem_cgroup_get_first_node(struct mem_cgroup *root_mem)
693 {
694 struct cgroup *cgroup;
695 struct mem_cgroup *ret;
696 bool obsolete;
697
698 obsolete = mem_cgroup_is_obsolete(root_mem->last_scanned_child);
699
700 /*
701 * Scan all children under the mem_cgroup mem
702 */
703 mutex_lock(&mem_cgroup_subsys.hierarchy_mutex);
704 if (list_empty(&root_mem->css.cgroup->children)) {
705 ret = root_mem;
706 goto done;
707 }
708
709 if (!root_mem->last_scanned_child || obsolete) {
710
711 if (obsolete && root_mem->last_scanned_child)
712 mem_cgroup_put(root_mem->last_scanned_child);
713
714 cgroup = list_first_entry(&root_mem->css.cgroup->children,
715 struct cgroup, sibling);
716 ret = mem_cgroup_from_cont(cgroup);
717 mem_cgroup_get(ret);
718 } else
719 ret = mem_cgroup_get_next_node(root_mem->last_scanned_child,
720 root_mem);
721
722 done:
723 root_mem->last_scanned_child = ret;
724 mutex_unlock(&mem_cgroup_subsys.hierarchy_mutex);
725 return ret;
726 }
727
728 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
729 {
730 if (do_swap_account) {
731 if (res_counter_check_under_limit(&mem->res) &&
732 res_counter_check_under_limit(&mem->memsw))
733 return true;
734 } else
735 if (res_counter_check_under_limit(&mem->res))
736 return true;
737 return false;
738 }
739
740 static unsigned int get_swappiness(struct mem_cgroup *memcg)
741 {
742 struct cgroup *cgrp = memcg->css.cgroup;
743 unsigned int swappiness;
744
745 /* root ? */
746 if (cgrp->parent == NULL)
747 return vm_swappiness;
748
749 spin_lock(&memcg->reclaim_param_lock);
750 swappiness = memcg->swappiness;
751 spin_unlock(&memcg->reclaim_param_lock);
752
753 return swappiness;
754 }
755
756 /*
757 * Dance down the hierarchy if needed to reclaim memory. We remember the
758 * last child we reclaimed from, so that we don't end up penalizing
759 * one child extensively based on its position in the children list.
760 *
761 * root_mem is the original ancestor that we've been reclaim from.
762 */
763 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
764 gfp_t gfp_mask, bool noswap)
765 {
766 struct mem_cgroup *next_mem;
767 int ret = 0;
768
769 /*
770 * Reclaim unconditionally and don't check for return value.
771 * We need to reclaim in the current group and down the tree.
772 * One might think about checking for children before reclaiming,
773 * but there might be left over accounting, even after children
774 * have left.
775 */
776 ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap,
777 get_swappiness(root_mem));
778 if (mem_cgroup_check_under_limit(root_mem))
779 return 0;
780 if (!root_mem->use_hierarchy)
781 return ret;
782
783 next_mem = mem_cgroup_get_first_node(root_mem);
784
785 while (next_mem != root_mem) {
786 if (mem_cgroup_is_obsolete(next_mem)) {
787 mem_cgroup_put(next_mem);
788 next_mem = mem_cgroup_get_first_node(root_mem);
789 continue;
790 }
791 ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap,
792 get_swappiness(next_mem));
793 if (mem_cgroup_check_under_limit(root_mem))
794 return 0;
795 mutex_lock(&mem_cgroup_subsys.hierarchy_mutex);
796 next_mem = mem_cgroup_get_next_node(next_mem, root_mem);
797 mutex_unlock(&mem_cgroup_subsys.hierarchy_mutex);
798 }
799 return ret;
800 }
801
802 bool mem_cgroup_oom_called(struct task_struct *task)
803 {
804 bool ret = false;
805 struct mem_cgroup *mem;
806 struct mm_struct *mm;
807
808 rcu_read_lock();
809 mm = task->mm;
810 if (!mm)
811 mm = &init_mm;
812 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
813 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
814 ret = true;
815 rcu_read_unlock();
816 return ret;
817 }
818 /*
819 * Unlike exported interface, "oom" parameter is added. if oom==true,
820 * oom-killer can be invoked.
821 */
822 static int __mem_cgroup_try_charge(struct mm_struct *mm,
823 gfp_t gfp_mask, struct mem_cgroup **memcg,
824 bool oom)
825 {
826 struct mem_cgroup *mem, *mem_over_limit;
827 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
828 struct res_counter *fail_res;
829
830 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
831 /* Don't account this! */
832 *memcg = NULL;
833 return 0;
834 }
835
836 /*
837 * We always charge the cgroup the mm_struct belongs to.
838 * The mm_struct's mem_cgroup changes on task migration if the
839 * thread group leader migrates. It's possible that mm is not
840 * set, if so charge the init_mm (happens for pagecache usage).
841 */
842 mem = *memcg;
843 if (likely(!mem)) {
844 mem = try_get_mem_cgroup_from_mm(mm);
845 *memcg = mem;
846 } else {
847 css_get(&mem->css);
848 }
849 if (unlikely(!mem))
850 return 0;
851
852 VM_BUG_ON(mem_cgroup_is_obsolete(mem));
853
854 while (1) {
855 int ret;
856 bool noswap = false;
857
858 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
859 if (likely(!ret)) {
860 if (!do_swap_account)
861 break;
862 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
863 &fail_res);
864 if (likely(!ret))
865 break;
866 /* mem+swap counter fails */
867 res_counter_uncharge(&mem->res, PAGE_SIZE);
868 noswap = true;
869 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
870 memsw);
871 } else
872 /* mem counter fails */
873 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
874 res);
875
876 if (!(gfp_mask & __GFP_WAIT))
877 goto nomem;
878
879 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
880 noswap);
881
882 /*
883 * try_to_free_mem_cgroup_pages() might not give us a full
884 * picture of reclaim. Some pages are reclaimed and might be
885 * moved to swap cache or just unmapped from the cgroup.
886 * Check the limit again to see if the reclaim reduced the
887 * current usage of the cgroup before giving up
888 *
889 */
890 if (mem_cgroup_check_under_limit(mem_over_limit))
891 continue;
892
893 if (!nr_retries--) {
894 if (oom) {
895 mutex_lock(&memcg_tasklist);
896 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
897 mutex_unlock(&memcg_tasklist);
898 mem_over_limit->last_oom_jiffies = jiffies;
899 }
900 goto nomem;
901 }
902 }
903 return 0;
904 nomem:
905 css_put(&mem->css);
906 return -ENOMEM;
907 }
908
909 static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
910 {
911 struct mem_cgroup *mem;
912 swp_entry_t ent;
913
914 if (!PageSwapCache(page))
915 return NULL;
916
917 ent.val = page_private(page);
918 mem = lookup_swap_cgroup(ent);
919 if (!mem)
920 return NULL;
921 if (!css_tryget(&mem->css))
922 return NULL;
923 return mem;
924 }
925
926 /*
927 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
928 * USED state. If already USED, uncharge and return.
929 */
930
931 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
932 struct page_cgroup *pc,
933 enum charge_type ctype)
934 {
935 /* try_charge() can return NULL to *memcg, taking care of it. */
936 if (!mem)
937 return;
938
939 lock_page_cgroup(pc);
940 if (unlikely(PageCgroupUsed(pc))) {
941 unlock_page_cgroup(pc);
942 res_counter_uncharge(&mem->res, PAGE_SIZE);
943 if (do_swap_account)
944 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
945 css_put(&mem->css);
946 return;
947 }
948 pc->mem_cgroup = mem;
949 smp_wmb();
950 pc->flags = pcg_default_flags[ctype];
951
952 mem_cgroup_charge_statistics(mem, pc, true);
953
954 unlock_page_cgroup(pc);
955 }
956
957 /**
958 * mem_cgroup_move_account - move account of the page
959 * @pc: page_cgroup of the page.
960 * @from: mem_cgroup which the page is moved from.
961 * @to: mem_cgroup which the page is moved to. @from != @to.
962 *
963 * The caller must confirm following.
964 * - page is not on LRU (isolate_page() is useful.)
965 *
966 * returns 0 at success,
967 * returns -EBUSY when lock is busy or "pc" is unstable.
968 *
969 * This function does "uncharge" from old cgroup but doesn't do "charge" to
970 * new cgroup. It should be done by a caller.
971 */
972
973 static int mem_cgroup_move_account(struct page_cgroup *pc,
974 struct mem_cgroup *from, struct mem_cgroup *to)
975 {
976 struct mem_cgroup_per_zone *from_mz, *to_mz;
977 int nid, zid;
978 int ret = -EBUSY;
979
980 VM_BUG_ON(from == to);
981 VM_BUG_ON(PageLRU(pc->page));
982
983 nid = page_cgroup_nid(pc);
984 zid = page_cgroup_zid(pc);
985 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
986 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
987
988 if (!trylock_page_cgroup(pc))
989 return ret;
990
991 if (!PageCgroupUsed(pc))
992 goto out;
993
994 if (pc->mem_cgroup != from)
995 goto out;
996
997 res_counter_uncharge(&from->res, PAGE_SIZE);
998 mem_cgroup_charge_statistics(from, pc, false);
999 if (do_swap_account)
1000 res_counter_uncharge(&from->memsw, PAGE_SIZE);
1001 css_put(&from->css);
1002
1003 css_get(&to->css);
1004 pc->mem_cgroup = to;
1005 mem_cgroup_charge_statistics(to, pc, true);
1006 ret = 0;
1007 out:
1008 unlock_page_cgroup(pc);
1009 return ret;
1010 }
1011
1012 /*
1013 * move charges to its parent.
1014 */
1015
1016 static int mem_cgroup_move_parent(struct page_cgroup *pc,
1017 struct mem_cgroup *child,
1018 gfp_t gfp_mask)
1019 {
1020 struct page *page = pc->page;
1021 struct cgroup *cg = child->css.cgroup;
1022 struct cgroup *pcg = cg->parent;
1023 struct mem_cgroup *parent;
1024 int ret;
1025
1026 /* Is ROOT ? */
1027 if (!pcg)
1028 return -EINVAL;
1029
1030
1031 parent = mem_cgroup_from_cont(pcg);
1032
1033
1034 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1035 if (ret || !parent)
1036 return ret;
1037
1038 if (!get_page_unless_zero(page)) {
1039 ret = -EBUSY;
1040 goto uncharge;
1041 }
1042
1043 ret = isolate_lru_page(page);
1044
1045 if (ret)
1046 goto cancel;
1047
1048 ret = mem_cgroup_move_account(pc, child, parent);
1049
1050 putback_lru_page(page);
1051 if (!ret) {
1052 put_page(page);
1053 /* drop extra refcnt by try_charge() */
1054 css_put(&parent->css);
1055 return 0;
1056 }
1057
1058 cancel:
1059 put_page(page);
1060 uncharge:
1061 /* drop extra refcnt by try_charge() */
1062 css_put(&parent->css);
1063 /* uncharge if move fails */
1064 res_counter_uncharge(&parent->res, PAGE_SIZE);
1065 if (do_swap_account)
1066 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1067 return ret;
1068 }
1069
1070 /*
1071 * Charge the memory controller for page usage.
1072 * Return
1073 * 0 if the charge was successful
1074 * < 0 if the cgroup is over its limit
1075 */
1076 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1077 gfp_t gfp_mask, enum charge_type ctype,
1078 struct mem_cgroup *memcg)
1079 {
1080 struct mem_cgroup *mem;
1081 struct page_cgroup *pc;
1082 int ret;
1083
1084 pc = lookup_page_cgroup(page);
1085 /* can happen at boot */
1086 if (unlikely(!pc))
1087 return 0;
1088 prefetchw(pc);
1089
1090 mem = memcg;
1091 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1092 if (ret || !mem)
1093 return ret;
1094
1095 __mem_cgroup_commit_charge(mem, pc, ctype);
1096 return 0;
1097 }
1098
1099 int mem_cgroup_newpage_charge(struct page *page,
1100 struct mm_struct *mm, gfp_t gfp_mask)
1101 {
1102 if (mem_cgroup_disabled())
1103 return 0;
1104 if (PageCompound(page))
1105 return 0;
1106 /*
1107 * If already mapped, we don't have to account.
1108 * If page cache, page->mapping has address_space.
1109 * But page->mapping may have out-of-use anon_vma pointer,
1110 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1111 * is NULL.
1112 */
1113 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1114 return 0;
1115 if (unlikely(!mm))
1116 mm = &init_mm;
1117 return mem_cgroup_charge_common(page, mm, gfp_mask,
1118 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1119 }
1120
1121 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1122 gfp_t gfp_mask)
1123 {
1124 struct mem_cgroup *mem = NULL;
1125 int ret;
1126
1127 if (mem_cgroup_disabled())
1128 return 0;
1129 if (PageCompound(page))
1130 return 0;
1131 /*
1132 * Corner case handling. This is called from add_to_page_cache()
1133 * in usual. But some FS (shmem) precharges this page before calling it
1134 * and call add_to_page_cache() with GFP_NOWAIT.
1135 *
1136 * For GFP_NOWAIT case, the page may be pre-charged before calling
1137 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1138 * charge twice. (It works but has to pay a bit larger cost.)
1139 * And when the page is SwapCache, it should take swap information
1140 * into account. This is under lock_page() now.
1141 */
1142 if (!(gfp_mask & __GFP_WAIT)) {
1143 struct page_cgroup *pc;
1144
1145
1146 pc = lookup_page_cgroup(page);
1147 if (!pc)
1148 return 0;
1149 lock_page_cgroup(pc);
1150 if (PageCgroupUsed(pc)) {
1151 unlock_page_cgroup(pc);
1152 return 0;
1153 }
1154 unlock_page_cgroup(pc);
1155 }
1156
1157 if (do_swap_account && PageSwapCache(page)) {
1158 mem = try_get_mem_cgroup_from_swapcache(page);
1159 if (mem)
1160 mm = NULL;
1161 else
1162 mem = NULL;
1163 /* SwapCache may be still linked to LRU now. */
1164 mem_cgroup_lru_del_before_commit_swapcache(page);
1165 }
1166
1167 if (unlikely(!mm && !mem))
1168 mm = &init_mm;
1169
1170 if (page_is_file_cache(page))
1171 return mem_cgroup_charge_common(page, mm, gfp_mask,
1172 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1173
1174 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1175 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1176 if (mem)
1177 css_put(&mem->css);
1178 if (PageSwapCache(page))
1179 mem_cgroup_lru_add_after_commit_swapcache(page);
1180
1181 if (do_swap_account && !ret && PageSwapCache(page)) {
1182 swp_entry_t ent = {.val = page_private(page)};
1183 /* avoid double counting */
1184 mem = swap_cgroup_record(ent, NULL);
1185 if (mem) {
1186 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1187 mem_cgroup_put(mem);
1188 }
1189 }
1190 return ret;
1191 }
1192
1193 /*
1194 * While swap-in, try_charge -> commit or cancel, the page is locked.
1195 * And when try_charge() successfully returns, one refcnt to memcg without
1196 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1197 * "commit()" or removed by "cancel()"
1198 */
1199 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1200 struct page *page,
1201 gfp_t mask, struct mem_cgroup **ptr)
1202 {
1203 struct mem_cgroup *mem;
1204 int ret;
1205
1206 if (mem_cgroup_disabled())
1207 return 0;
1208
1209 if (!do_swap_account)
1210 goto charge_cur_mm;
1211 /*
1212 * A racing thread's fault, or swapoff, may have already updated
1213 * the pte, and even removed page from swap cache: return success
1214 * to go on to do_swap_page()'s pte_same() test, which should fail.
1215 */
1216 if (!PageSwapCache(page))
1217 return 0;
1218 mem = try_get_mem_cgroup_from_swapcache(page);
1219 if (!mem)
1220 goto charge_cur_mm;
1221 *ptr = mem;
1222 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1223 /* drop extra refcnt from tryget */
1224 css_put(&mem->css);
1225 return ret;
1226 charge_cur_mm:
1227 if (unlikely(!mm))
1228 mm = &init_mm;
1229 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1230 }
1231
1232 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1233 {
1234 struct page_cgroup *pc;
1235
1236 if (mem_cgroup_disabled())
1237 return;
1238 if (!ptr)
1239 return;
1240 pc = lookup_page_cgroup(page);
1241 mem_cgroup_lru_del_before_commit_swapcache(page);
1242 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1243 mem_cgroup_lru_add_after_commit_swapcache(page);
1244 /*
1245 * Now swap is on-memory. This means this page may be
1246 * counted both as mem and swap....double count.
1247 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1248 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1249 * may call delete_from_swap_cache() before reach here.
1250 */
1251 if (do_swap_account && PageSwapCache(page)) {
1252 swp_entry_t ent = {.val = page_private(page)};
1253 struct mem_cgroup *memcg;
1254 memcg = swap_cgroup_record(ent, NULL);
1255 if (memcg) {
1256 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1257 mem_cgroup_put(memcg);
1258 }
1259
1260 }
1261 /* add this page(page_cgroup) to the LRU we want. */
1262
1263 }
1264
1265 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1266 {
1267 if (mem_cgroup_disabled())
1268 return;
1269 if (!mem)
1270 return;
1271 res_counter_uncharge(&mem->res, PAGE_SIZE);
1272 if (do_swap_account)
1273 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1274 css_put(&mem->css);
1275 }
1276
1277
1278 /*
1279 * uncharge if !page_mapped(page)
1280 */
1281 static struct mem_cgroup *
1282 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1283 {
1284 struct page_cgroup *pc;
1285 struct mem_cgroup *mem = NULL;
1286 struct mem_cgroup_per_zone *mz;
1287
1288 if (mem_cgroup_disabled())
1289 return NULL;
1290
1291 if (PageSwapCache(page))
1292 return NULL;
1293
1294 /*
1295 * Check if our page_cgroup is valid
1296 */
1297 pc = lookup_page_cgroup(page);
1298 if (unlikely(!pc || !PageCgroupUsed(pc)))
1299 return NULL;
1300
1301 lock_page_cgroup(pc);
1302
1303 mem = pc->mem_cgroup;
1304
1305 if (!PageCgroupUsed(pc))
1306 goto unlock_out;
1307
1308 switch (ctype) {
1309 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1310 if (page_mapped(page))
1311 goto unlock_out;
1312 break;
1313 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1314 if (!PageAnon(page)) { /* Shared memory */
1315 if (page->mapping && !page_is_file_cache(page))
1316 goto unlock_out;
1317 } else if (page_mapped(page)) /* Anon */
1318 goto unlock_out;
1319 break;
1320 default:
1321 break;
1322 }
1323
1324 res_counter_uncharge(&mem->res, PAGE_SIZE);
1325 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1326 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1327
1328 mem_cgroup_charge_statistics(mem, pc, false);
1329 ClearPageCgroupUsed(pc);
1330 /*
1331 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1332 * freed from LRU. This is safe because uncharged page is expected not
1333 * to be reused (freed soon). Exception is SwapCache, it's handled by
1334 * special functions.
1335 */
1336
1337 mz = page_cgroup_zoneinfo(pc);
1338 unlock_page_cgroup(pc);
1339
1340 /* at swapout, this memcg will be accessed to record to swap */
1341 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1342 css_put(&mem->css);
1343
1344 return mem;
1345
1346 unlock_out:
1347 unlock_page_cgroup(pc);
1348 return NULL;
1349 }
1350
1351 void mem_cgroup_uncharge_page(struct page *page)
1352 {
1353 /* early check. */
1354 if (page_mapped(page))
1355 return;
1356 if (page->mapping && !PageAnon(page))
1357 return;
1358 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1359 }
1360
1361 void mem_cgroup_uncharge_cache_page(struct page *page)
1362 {
1363 VM_BUG_ON(page_mapped(page));
1364 VM_BUG_ON(page->mapping);
1365 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1366 }
1367
1368 /*
1369 * called from __delete_from_swap_cache() and drop "page" account.
1370 * memcg information is recorded to swap_cgroup of "ent"
1371 */
1372 void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1373 {
1374 struct mem_cgroup *memcg;
1375
1376 memcg = __mem_cgroup_uncharge_common(page,
1377 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1378 /* record memcg information */
1379 if (do_swap_account && memcg) {
1380 swap_cgroup_record(ent, memcg);
1381 mem_cgroup_get(memcg);
1382 }
1383 if (memcg)
1384 css_put(&memcg->css);
1385 }
1386
1387 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1388 /*
1389 * called from swap_entry_free(). remove record in swap_cgroup and
1390 * uncharge "memsw" account.
1391 */
1392 void mem_cgroup_uncharge_swap(swp_entry_t ent)
1393 {
1394 struct mem_cgroup *memcg;
1395
1396 if (!do_swap_account)
1397 return;
1398
1399 memcg = swap_cgroup_record(ent, NULL);
1400 if (memcg) {
1401 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1402 mem_cgroup_put(memcg);
1403 }
1404 }
1405 #endif
1406
1407 /*
1408 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1409 * page belongs to.
1410 */
1411 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1412 {
1413 struct page_cgroup *pc;
1414 struct mem_cgroup *mem = NULL;
1415 int ret = 0;
1416
1417 if (mem_cgroup_disabled())
1418 return 0;
1419
1420 pc = lookup_page_cgroup(page);
1421 lock_page_cgroup(pc);
1422 if (PageCgroupUsed(pc)) {
1423 mem = pc->mem_cgroup;
1424 css_get(&mem->css);
1425 }
1426 unlock_page_cgroup(pc);
1427
1428 if (mem) {
1429 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
1430 css_put(&mem->css);
1431 }
1432 *ptr = mem;
1433 return ret;
1434 }
1435
1436 /* remove redundant charge if migration failed*/
1437 void mem_cgroup_end_migration(struct mem_cgroup *mem,
1438 struct page *oldpage, struct page *newpage)
1439 {
1440 struct page *target, *unused;
1441 struct page_cgroup *pc;
1442 enum charge_type ctype;
1443
1444 if (!mem)
1445 return;
1446
1447 /* at migration success, oldpage->mapping is NULL. */
1448 if (oldpage->mapping) {
1449 target = oldpage;
1450 unused = NULL;
1451 } else {
1452 target = newpage;
1453 unused = oldpage;
1454 }
1455
1456 if (PageAnon(target))
1457 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1458 else if (page_is_file_cache(target))
1459 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1460 else
1461 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1462
1463 /* unused page is not on radix-tree now. */
1464 if (unused)
1465 __mem_cgroup_uncharge_common(unused, ctype);
1466
1467 pc = lookup_page_cgroup(target);
1468 /*
1469 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1470 * So, double-counting is effectively avoided.
1471 */
1472 __mem_cgroup_commit_charge(mem, pc, ctype);
1473
1474 /*
1475 * Both of oldpage and newpage are still under lock_page().
1476 * Then, we don't have to care about race in radix-tree.
1477 * But we have to be careful that this page is unmapped or not.
1478 *
1479 * There is a case for !page_mapped(). At the start of
1480 * migration, oldpage was mapped. But now, it's zapped.
1481 * But we know *target* page is not freed/reused under us.
1482 * mem_cgroup_uncharge_page() does all necessary checks.
1483 */
1484 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1485 mem_cgroup_uncharge_page(target);
1486 }
1487
1488 /*
1489 * A call to try to shrink memory usage under specified resource controller.
1490 * This is typically used for page reclaiming for shmem for reducing side
1491 * effect of page allocation from shmem, which is used by some mem_cgroup.
1492 */
1493 int mem_cgroup_shrink_usage(struct page *page,
1494 struct mm_struct *mm,
1495 gfp_t gfp_mask)
1496 {
1497 struct mem_cgroup *mem = NULL;
1498 int progress = 0;
1499 int retry = MEM_CGROUP_RECLAIM_RETRIES;
1500
1501 if (mem_cgroup_disabled())
1502 return 0;
1503 if (page)
1504 mem = try_get_mem_cgroup_from_swapcache(page);
1505 if (!mem && mm)
1506 mem = try_get_mem_cgroup_from_mm(mm);
1507 if (unlikely(!mem))
1508 return 0;
1509
1510 do {
1511 progress = mem_cgroup_hierarchical_reclaim(mem, gfp_mask, true);
1512 progress += mem_cgroup_check_under_limit(mem);
1513 } while (!progress && --retry);
1514
1515 css_put(&mem->css);
1516 if (!retry)
1517 return -ENOMEM;
1518 return 0;
1519 }
1520
1521 static DEFINE_MUTEX(set_limit_mutex);
1522
1523 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1524 unsigned long long val)
1525 {
1526
1527 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1528 int progress;
1529 u64 memswlimit;
1530 int ret = 0;
1531
1532 while (retry_count) {
1533 if (signal_pending(current)) {
1534 ret = -EINTR;
1535 break;
1536 }
1537 /*
1538 * Rather than hide all in some function, I do this in
1539 * open coded manner. You see what this really does.
1540 * We have to guarantee mem->res.limit < mem->memsw.limit.
1541 */
1542 mutex_lock(&set_limit_mutex);
1543 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1544 if (memswlimit < val) {
1545 ret = -EINVAL;
1546 mutex_unlock(&set_limit_mutex);
1547 break;
1548 }
1549 ret = res_counter_set_limit(&memcg->res, val);
1550 mutex_unlock(&set_limit_mutex);
1551
1552 if (!ret)
1553 break;
1554
1555 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1556 false);
1557 if (!progress) retry_count--;
1558 }
1559
1560 return ret;
1561 }
1562
1563 int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1564 unsigned long long val)
1565 {
1566 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1567 u64 memlimit, oldusage, curusage;
1568 int ret;
1569
1570 if (!do_swap_account)
1571 return -EINVAL;
1572
1573 while (retry_count) {
1574 if (signal_pending(current)) {
1575 ret = -EINTR;
1576 break;
1577 }
1578 /*
1579 * Rather than hide all in some function, I do this in
1580 * open coded manner. You see what this really does.
1581 * We have to guarantee mem->res.limit < mem->memsw.limit.
1582 */
1583 mutex_lock(&set_limit_mutex);
1584 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1585 if (memlimit > val) {
1586 ret = -EINVAL;
1587 mutex_unlock(&set_limit_mutex);
1588 break;
1589 }
1590 ret = res_counter_set_limit(&memcg->memsw, val);
1591 mutex_unlock(&set_limit_mutex);
1592
1593 if (!ret)
1594 break;
1595
1596 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1597 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true);
1598 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1599 if (curusage >= oldusage)
1600 retry_count--;
1601 }
1602 return ret;
1603 }
1604
1605 /*
1606 * This routine traverse page_cgroup in given list and drop them all.
1607 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1608 */
1609 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1610 int node, int zid, enum lru_list lru)
1611 {
1612 struct zone *zone;
1613 struct mem_cgroup_per_zone *mz;
1614 struct page_cgroup *pc, *busy;
1615 unsigned long flags, loop;
1616 struct list_head *list;
1617 int ret = 0;
1618
1619 zone = &NODE_DATA(node)->node_zones[zid];
1620 mz = mem_cgroup_zoneinfo(mem, node, zid);
1621 list = &mz->lists[lru];
1622
1623 loop = MEM_CGROUP_ZSTAT(mz, lru);
1624 /* give some margin against EBUSY etc...*/
1625 loop += 256;
1626 busy = NULL;
1627 while (loop--) {
1628 ret = 0;
1629 spin_lock_irqsave(&zone->lru_lock, flags);
1630 if (list_empty(list)) {
1631 spin_unlock_irqrestore(&zone->lru_lock, flags);
1632 break;
1633 }
1634 pc = list_entry(list->prev, struct page_cgroup, lru);
1635 if (busy == pc) {
1636 list_move(&pc->lru, list);
1637 busy = 0;
1638 spin_unlock_irqrestore(&zone->lru_lock, flags);
1639 continue;
1640 }
1641 spin_unlock_irqrestore(&zone->lru_lock, flags);
1642
1643 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1644 if (ret == -ENOMEM)
1645 break;
1646
1647 if (ret == -EBUSY || ret == -EINVAL) {
1648 /* found lock contention or "pc" is obsolete. */
1649 busy = pc;
1650 cond_resched();
1651 } else
1652 busy = NULL;
1653 }
1654
1655 if (!ret && !list_empty(list))
1656 return -EBUSY;
1657 return ret;
1658 }
1659
1660 /*
1661 * make mem_cgroup's charge to be 0 if there is no task.
1662 * This enables deleting this mem_cgroup.
1663 */
1664 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1665 {
1666 int ret;
1667 int node, zid, shrink;
1668 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1669 struct cgroup *cgrp = mem->css.cgroup;
1670
1671 css_get(&mem->css);
1672
1673 shrink = 0;
1674 /* should free all ? */
1675 if (free_all)
1676 goto try_to_free;
1677 move_account:
1678 while (mem->res.usage > 0) {
1679 ret = -EBUSY;
1680 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1681 goto out;
1682 ret = -EINTR;
1683 if (signal_pending(current))
1684 goto out;
1685 /* This is for making all *used* pages to be on LRU. */
1686 lru_add_drain_all();
1687 ret = 0;
1688 for_each_node_state(node, N_POSSIBLE) {
1689 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1690 enum lru_list l;
1691 for_each_lru(l) {
1692 ret = mem_cgroup_force_empty_list(mem,
1693 node, zid, l);
1694 if (ret)
1695 break;
1696 }
1697 }
1698 if (ret)
1699 break;
1700 }
1701 /* it seems parent cgroup doesn't have enough mem */
1702 if (ret == -ENOMEM)
1703 goto try_to_free;
1704 cond_resched();
1705 }
1706 ret = 0;
1707 out:
1708 css_put(&mem->css);
1709 return ret;
1710
1711 try_to_free:
1712 /* returns EBUSY if there is a task or if we come here twice. */
1713 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1714 ret = -EBUSY;
1715 goto out;
1716 }
1717 /* we call try-to-free pages for make this cgroup empty */
1718 lru_add_drain_all();
1719 /* try to free all pages in this cgroup */
1720 shrink = 1;
1721 while (nr_retries && mem->res.usage > 0) {
1722 int progress;
1723
1724 if (signal_pending(current)) {
1725 ret = -EINTR;
1726 goto out;
1727 }
1728 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1729 false, get_swappiness(mem));
1730 if (!progress) {
1731 nr_retries--;
1732 /* maybe some writeback is necessary */
1733 congestion_wait(WRITE, HZ/10);
1734 }
1735
1736 }
1737 lru_add_drain();
1738 /* try move_account...there may be some *locked* pages. */
1739 if (mem->res.usage)
1740 goto move_account;
1741 ret = 0;
1742 goto out;
1743 }
1744
1745 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1746 {
1747 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1748 }
1749
1750
1751 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1752 {
1753 return mem_cgroup_from_cont(cont)->use_hierarchy;
1754 }
1755
1756 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1757 u64 val)
1758 {
1759 int retval = 0;
1760 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1761 struct cgroup *parent = cont->parent;
1762 struct mem_cgroup *parent_mem = NULL;
1763
1764 if (parent)
1765 parent_mem = mem_cgroup_from_cont(parent);
1766
1767 cgroup_lock();
1768 /*
1769 * If parent's use_hiearchy is set, we can't make any modifications
1770 * in the child subtrees. If it is unset, then the change can
1771 * occur, provided the current cgroup has no children.
1772 *
1773 * For the root cgroup, parent_mem is NULL, we allow value to be
1774 * set if there are no children.
1775 */
1776 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1777 (val == 1 || val == 0)) {
1778 if (list_empty(&cont->children))
1779 mem->use_hierarchy = val;
1780 else
1781 retval = -EBUSY;
1782 } else
1783 retval = -EINVAL;
1784 cgroup_unlock();
1785
1786 return retval;
1787 }
1788
1789 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
1790 {
1791 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1792 u64 val = 0;
1793 int type, name;
1794
1795 type = MEMFILE_TYPE(cft->private);
1796 name = MEMFILE_ATTR(cft->private);
1797 switch (type) {
1798 case _MEM:
1799 val = res_counter_read_u64(&mem->res, name);
1800 break;
1801 case _MEMSWAP:
1802 if (do_swap_account)
1803 val = res_counter_read_u64(&mem->memsw, name);
1804 break;
1805 default:
1806 BUG();
1807 break;
1808 }
1809 return val;
1810 }
1811 /*
1812 * The user of this function is...
1813 * RES_LIMIT.
1814 */
1815 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1816 const char *buffer)
1817 {
1818 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1819 int type, name;
1820 unsigned long long val;
1821 int ret;
1822
1823 type = MEMFILE_TYPE(cft->private);
1824 name = MEMFILE_ATTR(cft->private);
1825 switch (name) {
1826 case RES_LIMIT:
1827 /* This function does all necessary parse...reuse it */
1828 ret = res_counter_memparse_write_strategy(buffer, &val);
1829 if (ret)
1830 break;
1831 if (type == _MEM)
1832 ret = mem_cgroup_resize_limit(memcg, val);
1833 else
1834 ret = mem_cgroup_resize_memsw_limit(memcg, val);
1835 break;
1836 default:
1837 ret = -EINVAL; /* should be BUG() ? */
1838 break;
1839 }
1840 return ret;
1841 }
1842
1843 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
1844 unsigned long long *mem_limit, unsigned long long *memsw_limit)
1845 {
1846 struct cgroup *cgroup;
1847 unsigned long long min_limit, min_memsw_limit, tmp;
1848
1849 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1850 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1851 cgroup = memcg->css.cgroup;
1852 if (!memcg->use_hierarchy)
1853 goto out;
1854
1855 while (cgroup->parent) {
1856 cgroup = cgroup->parent;
1857 memcg = mem_cgroup_from_cont(cgroup);
1858 if (!memcg->use_hierarchy)
1859 break;
1860 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
1861 min_limit = min(min_limit, tmp);
1862 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1863 min_memsw_limit = min(min_memsw_limit, tmp);
1864 }
1865 out:
1866 *mem_limit = min_limit;
1867 *memsw_limit = min_memsw_limit;
1868 return;
1869 }
1870
1871 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
1872 {
1873 struct mem_cgroup *mem;
1874 int type, name;
1875
1876 mem = mem_cgroup_from_cont(cont);
1877 type = MEMFILE_TYPE(event);
1878 name = MEMFILE_ATTR(event);
1879 switch (name) {
1880 case RES_MAX_USAGE:
1881 if (type == _MEM)
1882 res_counter_reset_max(&mem->res);
1883 else
1884 res_counter_reset_max(&mem->memsw);
1885 break;
1886 case RES_FAILCNT:
1887 if (type == _MEM)
1888 res_counter_reset_failcnt(&mem->res);
1889 else
1890 res_counter_reset_failcnt(&mem->memsw);
1891 break;
1892 }
1893 return 0;
1894 }
1895
1896 static const struct mem_cgroup_stat_desc {
1897 const char *msg;
1898 u64 unit;
1899 } mem_cgroup_stat_desc[] = {
1900 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1901 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
1902 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1903 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
1904 };
1905
1906 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1907 struct cgroup_map_cb *cb)
1908 {
1909 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1910 struct mem_cgroup_stat *stat = &mem_cont->stat;
1911 int i;
1912
1913 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1914 s64 val;
1915
1916 val = mem_cgroup_read_stat(stat, i);
1917 val *= mem_cgroup_stat_desc[i].unit;
1918 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
1919 }
1920 /* showing # of active pages */
1921 {
1922 unsigned long active_anon, inactive_anon;
1923 unsigned long active_file, inactive_file;
1924 unsigned long unevictable;
1925
1926 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1927 LRU_INACTIVE_ANON);
1928 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1929 LRU_ACTIVE_ANON);
1930 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1931 LRU_INACTIVE_FILE);
1932 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1933 LRU_ACTIVE_FILE);
1934 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1935 LRU_UNEVICTABLE);
1936
1937 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1938 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1939 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1940 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
1941 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1942
1943 }
1944 {
1945 unsigned long long limit, memsw_limit;
1946 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
1947 cb->fill(cb, "hierarchical_memory_limit", limit);
1948 if (do_swap_account)
1949 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
1950 }
1951
1952 #ifdef CONFIG_DEBUG_VM
1953 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
1954
1955 {
1956 int nid, zid;
1957 struct mem_cgroup_per_zone *mz;
1958 unsigned long recent_rotated[2] = {0, 0};
1959 unsigned long recent_scanned[2] = {0, 0};
1960
1961 for_each_online_node(nid)
1962 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1963 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1964
1965 recent_rotated[0] +=
1966 mz->reclaim_stat.recent_rotated[0];
1967 recent_rotated[1] +=
1968 mz->reclaim_stat.recent_rotated[1];
1969 recent_scanned[0] +=
1970 mz->reclaim_stat.recent_scanned[0];
1971 recent_scanned[1] +=
1972 mz->reclaim_stat.recent_scanned[1];
1973 }
1974 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
1975 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
1976 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
1977 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
1978 }
1979 #endif
1980
1981 return 0;
1982 }
1983
1984 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
1985 {
1986 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1987
1988 return get_swappiness(memcg);
1989 }
1990
1991 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
1992 u64 val)
1993 {
1994 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1995 struct mem_cgroup *parent;
1996 if (val > 100)
1997 return -EINVAL;
1998
1999 if (cgrp->parent == NULL)
2000 return -EINVAL;
2001
2002 parent = mem_cgroup_from_cont(cgrp->parent);
2003 /* If under hierarchy, only empty-root can set this value */
2004 if ((parent->use_hierarchy) ||
2005 (memcg->use_hierarchy && !list_empty(&cgrp->children)))
2006 return -EINVAL;
2007
2008 spin_lock(&memcg->reclaim_param_lock);
2009 memcg->swappiness = val;
2010 spin_unlock(&memcg->reclaim_param_lock);
2011
2012 return 0;
2013 }
2014
2015
2016 static struct cftype mem_cgroup_files[] = {
2017 {
2018 .name = "usage_in_bytes",
2019 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2020 .read_u64 = mem_cgroup_read,
2021 },
2022 {
2023 .name = "max_usage_in_bytes",
2024 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2025 .trigger = mem_cgroup_reset,
2026 .read_u64 = mem_cgroup_read,
2027 },
2028 {
2029 .name = "limit_in_bytes",
2030 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2031 .write_string = mem_cgroup_write,
2032 .read_u64 = mem_cgroup_read,
2033 },
2034 {
2035 .name = "failcnt",
2036 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2037 .trigger = mem_cgroup_reset,
2038 .read_u64 = mem_cgroup_read,
2039 },
2040 {
2041 .name = "stat",
2042 .read_map = mem_control_stat_show,
2043 },
2044 {
2045 .name = "force_empty",
2046 .trigger = mem_cgroup_force_empty_write,
2047 },
2048 {
2049 .name = "use_hierarchy",
2050 .write_u64 = mem_cgroup_hierarchy_write,
2051 .read_u64 = mem_cgroup_hierarchy_read,
2052 },
2053 {
2054 .name = "swappiness",
2055 .read_u64 = mem_cgroup_swappiness_read,
2056 .write_u64 = mem_cgroup_swappiness_write,
2057 },
2058 };
2059
2060 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2061 static struct cftype memsw_cgroup_files[] = {
2062 {
2063 .name = "memsw.usage_in_bytes",
2064 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2065 .read_u64 = mem_cgroup_read,
2066 },
2067 {
2068 .name = "memsw.max_usage_in_bytes",
2069 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2070 .trigger = mem_cgroup_reset,
2071 .read_u64 = mem_cgroup_read,
2072 },
2073 {
2074 .name = "memsw.limit_in_bytes",
2075 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2076 .write_string = mem_cgroup_write,
2077 .read_u64 = mem_cgroup_read,
2078 },
2079 {
2080 .name = "memsw.failcnt",
2081 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2082 .trigger = mem_cgroup_reset,
2083 .read_u64 = mem_cgroup_read,
2084 },
2085 };
2086
2087 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2088 {
2089 if (!do_swap_account)
2090 return 0;
2091 return cgroup_add_files(cont, ss, memsw_cgroup_files,
2092 ARRAY_SIZE(memsw_cgroup_files));
2093 };
2094 #else
2095 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2096 {
2097 return 0;
2098 }
2099 #endif
2100
2101 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2102 {
2103 struct mem_cgroup_per_node *pn;
2104 struct mem_cgroup_per_zone *mz;
2105 enum lru_list l;
2106 int zone, tmp = node;
2107 /*
2108 * This routine is called against possible nodes.
2109 * But it's BUG to call kmalloc() against offline node.
2110 *
2111 * TODO: this routine can waste much memory for nodes which will
2112 * never be onlined. It's better to use memory hotplug callback
2113 * function.
2114 */
2115 if (!node_state(node, N_NORMAL_MEMORY))
2116 tmp = -1;
2117 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2118 if (!pn)
2119 return 1;
2120
2121 mem->info.nodeinfo[node] = pn;
2122 memset(pn, 0, sizeof(*pn));
2123
2124 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2125 mz = &pn->zoneinfo[zone];
2126 for_each_lru(l)
2127 INIT_LIST_HEAD(&mz->lists[l]);
2128 }
2129 return 0;
2130 }
2131
2132 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2133 {
2134 kfree(mem->info.nodeinfo[node]);
2135 }
2136
2137 static int mem_cgroup_size(void)
2138 {
2139 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2140 return sizeof(struct mem_cgroup) + cpustat_size;
2141 }
2142
2143 static struct mem_cgroup *mem_cgroup_alloc(void)
2144 {
2145 struct mem_cgroup *mem;
2146 int size = mem_cgroup_size();
2147
2148 if (size < PAGE_SIZE)
2149 mem = kmalloc(size, GFP_KERNEL);
2150 else
2151 mem = vmalloc(size);
2152
2153 if (mem)
2154 memset(mem, 0, size);
2155 return mem;
2156 }
2157
2158 /*
2159 * At destroying mem_cgroup, references from swap_cgroup can remain.
2160 * (scanning all at force_empty is too costly...)
2161 *
2162 * Instead of clearing all references at force_empty, we remember
2163 * the number of reference from swap_cgroup and free mem_cgroup when
2164 * it goes down to 0.
2165 *
2166 * Removal of cgroup itself succeeds regardless of refs from swap.
2167 */
2168
2169 static void __mem_cgroup_free(struct mem_cgroup *mem)
2170 {
2171 int node;
2172
2173 for_each_node_state(node, N_POSSIBLE)
2174 free_mem_cgroup_per_zone_info(mem, node);
2175
2176 if (mem_cgroup_size() < PAGE_SIZE)
2177 kfree(mem);
2178 else
2179 vfree(mem);
2180 }
2181
2182 static void mem_cgroup_get(struct mem_cgroup *mem)
2183 {
2184 atomic_inc(&mem->refcnt);
2185 }
2186
2187 static void mem_cgroup_put(struct mem_cgroup *mem)
2188 {
2189 if (atomic_dec_and_test(&mem->refcnt))
2190 __mem_cgroup_free(mem);
2191 }
2192
2193
2194 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2195 static void __init enable_swap_cgroup(void)
2196 {
2197 if (!mem_cgroup_disabled() && really_do_swap_account)
2198 do_swap_account = 1;
2199 }
2200 #else
2201 static void __init enable_swap_cgroup(void)
2202 {
2203 }
2204 #endif
2205
2206 static struct cgroup_subsys_state *
2207 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2208 {
2209 struct mem_cgroup *mem, *parent;
2210 int node;
2211
2212 mem = mem_cgroup_alloc();
2213 if (!mem)
2214 return ERR_PTR(-ENOMEM);
2215
2216 for_each_node_state(node, N_POSSIBLE)
2217 if (alloc_mem_cgroup_per_zone_info(mem, node))
2218 goto free_out;
2219 /* root ? */
2220 if (cont->parent == NULL) {
2221 enable_swap_cgroup();
2222 parent = NULL;
2223 } else {
2224 parent = mem_cgroup_from_cont(cont->parent);
2225 mem->use_hierarchy = parent->use_hierarchy;
2226 }
2227
2228 if (parent && parent->use_hierarchy) {
2229 res_counter_init(&mem->res, &parent->res);
2230 res_counter_init(&mem->memsw, &parent->memsw);
2231 } else {
2232 res_counter_init(&mem->res, NULL);
2233 res_counter_init(&mem->memsw, NULL);
2234 }
2235 mem->last_scanned_child = NULL;
2236 spin_lock_init(&mem->reclaim_param_lock);
2237
2238 if (parent)
2239 mem->swappiness = get_swappiness(parent);
2240 atomic_set(&mem->refcnt, 1);
2241 return &mem->css;
2242 free_out:
2243 __mem_cgroup_free(mem);
2244 return ERR_PTR(-ENOMEM);
2245 }
2246
2247 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2248 struct cgroup *cont)
2249 {
2250 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2251 mem_cgroup_force_empty(mem, false);
2252 }
2253
2254 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2255 struct cgroup *cont)
2256 {
2257 mem_cgroup_put(mem_cgroup_from_cont(cont));
2258 }
2259
2260 static int mem_cgroup_populate(struct cgroup_subsys *ss,
2261 struct cgroup *cont)
2262 {
2263 int ret;
2264
2265 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2266 ARRAY_SIZE(mem_cgroup_files));
2267
2268 if (!ret)
2269 ret = register_memsw_files(cont, ss);
2270 return ret;
2271 }
2272
2273 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2274 struct cgroup *cont,
2275 struct cgroup *old_cont,
2276 struct task_struct *p)
2277 {
2278 mutex_lock(&memcg_tasklist);
2279 /*
2280 * FIXME: It's better to move charges of this process from old
2281 * memcg to new memcg. But it's just on TODO-List now.
2282 */
2283 mutex_unlock(&memcg_tasklist);
2284 }
2285
2286 struct cgroup_subsys mem_cgroup_subsys = {
2287 .name = "memory",
2288 .subsys_id = mem_cgroup_subsys_id,
2289 .create = mem_cgroup_create,
2290 .pre_destroy = mem_cgroup_pre_destroy,
2291 .destroy = mem_cgroup_destroy,
2292 .populate = mem_cgroup_populate,
2293 .attach = mem_cgroup_move_task,
2294 .early_init = 0,
2295 };
2296
2297 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2298
2299 static int __init disable_swap_account(char *s)
2300 {
2301 really_do_swap_account = 0;
2302 return 1;
2303 }
2304 __setup("noswapaccount", disable_swap_account);
2305 #endif