]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memcontrol.c
Merge tag 'mailbox-v5.7' of git://git.linaro.org/landing-teams/working/fujitsu/integr...
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66
67 #include <linux/uaccess.h>
68
69 #include <trace/events/vmscan.h>
70
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75
76 #define MEM_CGROUP_RECLAIM_RETRIES 5
77
78 /* Socket memory accounting disabled? */
79 static bool cgroup_memory_nosocket;
80
81 /* Kernel memory accounting disabled? */
82 static bool cgroup_memory_nokmem;
83
84 /* Whether the swap controller is active */
85 #ifdef CONFIG_MEMCG_SWAP
86 int do_swap_account __read_mostly;
87 #else
88 #define do_swap_account 0
89 #endif
90
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 #define THRESHOLDS_EVENTS_TARGET 128
102 #define SOFTLIMIT_EVENTS_TARGET 1024
103
104 /*
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
107 */
108
109 struct mem_cgroup_tree_per_node {
110 struct rb_root rb_root;
111 struct rb_node *rb_rightmost;
112 spinlock_t lock;
113 };
114
115 struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117 };
118
119 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120
121 /* for OOM */
122 struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
125 };
126
127 /*
128 * cgroup_event represents events which userspace want to receive.
129 */
130 struct mem_cgroup_event {
131 /*
132 * memcg which the event belongs to.
133 */
134 struct mem_cgroup *memcg;
135 /*
136 * eventfd to signal userspace about the event.
137 */
138 struct eventfd_ctx *eventfd;
139 /*
140 * Each of these stored in a list by the cgroup.
141 */
142 struct list_head list;
143 /*
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
147 */
148 int (*register_event)(struct mem_cgroup *memcg,
149 struct eventfd_ctx *eventfd, const char *args);
150 /*
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
154 */
155 void (*unregister_event)(struct mem_cgroup *memcg,
156 struct eventfd_ctx *eventfd);
157 /*
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
160 */
161 poll_table pt;
162 wait_queue_head_t *wqh;
163 wait_queue_entry_t wait;
164 struct work_struct remove;
165 };
166
167 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169
170 /* Stuffs for move charges at task migration. */
171 /*
172 * Types of charges to be moved.
173 */
174 #define MOVE_ANON 0x1U
175 #define MOVE_FILE 0x2U
176 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
177
178 /* "mc" and its members are protected by cgroup_mutex */
179 static struct move_charge_struct {
180 spinlock_t lock; /* for from, to */
181 struct mm_struct *mm;
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
184 unsigned long flags;
185 unsigned long precharge;
186 unsigned long moved_charge;
187 unsigned long moved_swap;
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
190 } mc = {
191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193 };
194
195 /*
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
198 */
199 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
200 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
201
202 enum charge_type {
203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
204 MEM_CGROUP_CHARGE_TYPE_ANON,
205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
207 NR_CHARGE_TYPE,
208 };
209
210 /* for encoding cft->private value on file */
211 enum res_type {
212 _MEM,
213 _MEMSWAP,
214 _OOM_TYPE,
215 _KMEM,
216 _TCP,
217 };
218
219 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
220 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
221 #define MEMFILE_ATTR(val) ((val) & 0xffff)
222 /* Used for OOM nofiier */
223 #define OOM_CONTROL (0)
224
225 /*
226 * Iteration constructs for visiting all cgroups (under a tree). If
227 * loops are exited prematurely (break), mem_cgroup_iter_break() must
228 * be used for reference counting.
229 */
230 #define for_each_mem_cgroup_tree(iter, root) \
231 for (iter = mem_cgroup_iter(root, NULL, NULL); \
232 iter != NULL; \
233 iter = mem_cgroup_iter(root, iter, NULL))
234
235 #define for_each_mem_cgroup(iter) \
236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
237 iter != NULL; \
238 iter = mem_cgroup_iter(NULL, iter, NULL))
239
240 static inline bool should_force_charge(void)
241 {
242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 (current->flags & PF_EXITING);
244 }
245
246 /* Some nice accessors for the vmpressure. */
247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
248 {
249 if (!memcg)
250 memcg = root_mem_cgroup;
251 return &memcg->vmpressure;
252 }
253
254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
255 {
256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
257 }
258
259 #ifdef CONFIG_MEMCG_KMEM
260 /*
261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
262 * The main reason for not using cgroup id for this:
263 * this works better in sparse environments, where we have a lot of memcgs,
264 * but only a few kmem-limited. Or also, if we have, for instance, 200
265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
266 * 200 entry array for that.
267 *
268 * The current size of the caches array is stored in memcg_nr_cache_ids. It
269 * will double each time we have to increase it.
270 */
271 static DEFINE_IDA(memcg_cache_ida);
272 int memcg_nr_cache_ids;
273
274 /* Protects memcg_nr_cache_ids */
275 static DECLARE_RWSEM(memcg_cache_ids_sem);
276
277 void memcg_get_cache_ids(void)
278 {
279 down_read(&memcg_cache_ids_sem);
280 }
281
282 void memcg_put_cache_ids(void)
283 {
284 up_read(&memcg_cache_ids_sem);
285 }
286
287 /*
288 * MIN_SIZE is different than 1, because we would like to avoid going through
289 * the alloc/free process all the time. In a small machine, 4 kmem-limited
290 * cgroups is a reasonable guess. In the future, it could be a parameter or
291 * tunable, but that is strictly not necessary.
292 *
293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
294 * this constant directly from cgroup, but it is understandable that this is
295 * better kept as an internal representation in cgroup.c. In any case, the
296 * cgrp_id space is not getting any smaller, and we don't have to necessarily
297 * increase ours as well if it increases.
298 */
299 #define MEMCG_CACHES_MIN_SIZE 4
300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
301
302 /*
303 * A lot of the calls to the cache allocation functions are expected to be
304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305 * conditional to this static branch, we'll have to allow modules that does
306 * kmem_cache_alloc and the such to see this symbol as well
307 */
308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
309 EXPORT_SYMBOL(memcg_kmem_enabled_key);
310
311 struct workqueue_struct *memcg_kmem_cache_wq;
312 #endif
313
314 static int memcg_shrinker_map_size;
315 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
316
317 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
318 {
319 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
320 }
321
322 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 int size, int old_size)
324 {
325 struct memcg_shrinker_map *new, *old;
326 int nid;
327
328 lockdep_assert_held(&memcg_shrinker_map_mutex);
329
330 for_each_node(nid) {
331 old = rcu_dereference_protected(
332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 /* Not yet online memcg */
334 if (!old)
335 return 0;
336
337 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
338 if (!new)
339 return -ENOMEM;
340
341 /* Set all old bits, clear all new bits */
342 memset(new->map, (int)0xff, old_size);
343 memset((void *)new->map + old_size, 0, size - old_size);
344
345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
347 }
348
349 return 0;
350 }
351
352 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
353 {
354 struct mem_cgroup_per_node *pn;
355 struct memcg_shrinker_map *map;
356 int nid;
357
358 if (mem_cgroup_is_root(memcg))
359 return;
360
361 for_each_node(nid) {
362 pn = mem_cgroup_nodeinfo(memcg, nid);
363 map = rcu_dereference_protected(pn->shrinker_map, true);
364 if (map)
365 kvfree(map);
366 rcu_assign_pointer(pn->shrinker_map, NULL);
367 }
368 }
369
370 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
371 {
372 struct memcg_shrinker_map *map;
373 int nid, size, ret = 0;
374
375 if (mem_cgroup_is_root(memcg))
376 return 0;
377
378 mutex_lock(&memcg_shrinker_map_mutex);
379 size = memcg_shrinker_map_size;
380 for_each_node(nid) {
381 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
382 if (!map) {
383 memcg_free_shrinker_maps(memcg);
384 ret = -ENOMEM;
385 break;
386 }
387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
388 }
389 mutex_unlock(&memcg_shrinker_map_mutex);
390
391 return ret;
392 }
393
394 int memcg_expand_shrinker_maps(int new_id)
395 {
396 int size, old_size, ret = 0;
397 struct mem_cgroup *memcg;
398
399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 old_size = memcg_shrinker_map_size;
401 if (size <= old_size)
402 return 0;
403
404 mutex_lock(&memcg_shrinker_map_mutex);
405 if (!root_mem_cgroup)
406 goto unlock;
407
408 for_each_mem_cgroup(memcg) {
409 if (mem_cgroup_is_root(memcg))
410 continue;
411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
412 if (ret) {
413 mem_cgroup_iter_break(NULL, memcg);
414 goto unlock;
415 }
416 }
417 unlock:
418 if (!ret)
419 memcg_shrinker_map_size = size;
420 mutex_unlock(&memcg_shrinker_map_mutex);
421 return ret;
422 }
423
424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
425 {
426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 struct memcg_shrinker_map *map;
428
429 rcu_read_lock();
430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 /* Pairs with smp mb in shrink_slab() */
432 smp_mb__before_atomic();
433 set_bit(shrinker_id, map->map);
434 rcu_read_unlock();
435 }
436 }
437
438 /**
439 * mem_cgroup_css_from_page - css of the memcg associated with a page
440 * @page: page of interest
441 *
442 * If memcg is bound to the default hierarchy, css of the memcg associated
443 * with @page is returned. The returned css remains associated with @page
444 * until it is released.
445 *
446 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
447 * is returned.
448 */
449 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
450 {
451 struct mem_cgroup *memcg;
452
453 memcg = page->mem_cgroup;
454
455 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
456 memcg = root_mem_cgroup;
457
458 return &memcg->css;
459 }
460
461 /**
462 * page_cgroup_ino - return inode number of the memcg a page is charged to
463 * @page: the page
464 *
465 * Look up the closest online ancestor of the memory cgroup @page is charged to
466 * and return its inode number or 0 if @page is not charged to any cgroup. It
467 * is safe to call this function without holding a reference to @page.
468 *
469 * Note, this function is inherently racy, because there is nothing to prevent
470 * the cgroup inode from getting torn down and potentially reallocated a moment
471 * after page_cgroup_ino() returns, so it only should be used by callers that
472 * do not care (such as procfs interfaces).
473 */
474 ino_t page_cgroup_ino(struct page *page)
475 {
476 struct mem_cgroup *memcg;
477 unsigned long ino = 0;
478
479 rcu_read_lock();
480 if (PageSlab(page) && !PageTail(page))
481 memcg = memcg_from_slab_page(page);
482 else
483 memcg = READ_ONCE(page->mem_cgroup);
484 while (memcg && !(memcg->css.flags & CSS_ONLINE))
485 memcg = parent_mem_cgroup(memcg);
486 if (memcg)
487 ino = cgroup_ino(memcg->css.cgroup);
488 rcu_read_unlock();
489 return ino;
490 }
491
492 static struct mem_cgroup_per_node *
493 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
494 {
495 int nid = page_to_nid(page);
496
497 return memcg->nodeinfo[nid];
498 }
499
500 static struct mem_cgroup_tree_per_node *
501 soft_limit_tree_node(int nid)
502 {
503 return soft_limit_tree.rb_tree_per_node[nid];
504 }
505
506 static struct mem_cgroup_tree_per_node *
507 soft_limit_tree_from_page(struct page *page)
508 {
509 int nid = page_to_nid(page);
510
511 return soft_limit_tree.rb_tree_per_node[nid];
512 }
513
514 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
515 struct mem_cgroup_tree_per_node *mctz,
516 unsigned long new_usage_in_excess)
517 {
518 struct rb_node **p = &mctz->rb_root.rb_node;
519 struct rb_node *parent = NULL;
520 struct mem_cgroup_per_node *mz_node;
521 bool rightmost = true;
522
523 if (mz->on_tree)
524 return;
525
526 mz->usage_in_excess = new_usage_in_excess;
527 if (!mz->usage_in_excess)
528 return;
529 while (*p) {
530 parent = *p;
531 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
532 tree_node);
533 if (mz->usage_in_excess < mz_node->usage_in_excess) {
534 p = &(*p)->rb_left;
535 rightmost = false;
536 }
537
538 /*
539 * We can't avoid mem cgroups that are over their soft
540 * limit by the same amount
541 */
542 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
543 p = &(*p)->rb_right;
544 }
545
546 if (rightmost)
547 mctz->rb_rightmost = &mz->tree_node;
548
549 rb_link_node(&mz->tree_node, parent, p);
550 rb_insert_color(&mz->tree_node, &mctz->rb_root);
551 mz->on_tree = true;
552 }
553
554 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
555 struct mem_cgroup_tree_per_node *mctz)
556 {
557 if (!mz->on_tree)
558 return;
559
560 if (&mz->tree_node == mctz->rb_rightmost)
561 mctz->rb_rightmost = rb_prev(&mz->tree_node);
562
563 rb_erase(&mz->tree_node, &mctz->rb_root);
564 mz->on_tree = false;
565 }
566
567 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 struct mem_cgroup_tree_per_node *mctz)
569 {
570 unsigned long flags;
571
572 spin_lock_irqsave(&mctz->lock, flags);
573 __mem_cgroup_remove_exceeded(mz, mctz);
574 spin_unlock_irqrestore(&mctz->lock, flags);
575 }
576
577 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
578 {
579 unsigned long nr_pages = page_counter_read(&memcg->memory);
580 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
581 unsigned long excess = 0;
582
583 if (nr_pages > soft_limit)
584 excess = nr_pages - soft_limit;
585
586 return excess;
587 }
588
589 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
590 {
591 unsigned long excess;
592 struct mem_cgroup_per_node *mz;
593 struct mem_cgroup_tree_per_node *mctz;
594
595 mctz = soft_limit_tree_from_page(page);
596 if (!mctz)
597 return;
598 /*
599 * Necessary to update all ancestors when hierarchy is used.
600 * because their event counter is not touched.
601 */
602 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
603 mz = mem_cgroup_page_nodeinfo(memcg, page);
604 excess = soft_limit_excess(memcg);
605 /*
606 * We have to update the tree if mz is on RB-tree or
607 * mem is over its softlimit.
608 */
609 if (excess || mz->on_tree) {
610 unsigned long flags;
611
612 spin_lock_irqsave(&mctz->lock, flags);
613 /* if on-tree, remove it */
614 if (mz->on_tree)
615 __mem_cgroup_remove_exceeded(mz, mctz);
616 /*
617 * Insert again. mz->usage_in_excess will be updated.
618 * If excess is 0, no tree ops.
619 */
620 __mem_cgroup_insert_exceeded(mz, mctz, excess);
621 spin_unlock_irqrestore(&mctz->lock, flags);
622 }
623 }
624 }
625
626 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
627 {
628 struct mem_cgroup_tree_per_node *mctz;
629 struct mem_cgroup_per_node *mz;
630 int nid;
631
632 for_each_node(nid) {
633 mz = mem_cgroup_nodeinfo(memcg, nid);
634 mctz = soft_limit_tree_node(nid);
635 if (mctz)
636 mem_cgroup_remove_exceeded(mz, mctz);
637 }
638 }
639
640 static struct mem_cgroup_per_node *
641 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
642 {
643 struct mem_cgroup_per_node *mz;
644
645 retry:
646 mz = NULL;
647 if (!mctz->rb_rightmost)
648 goto done; /* Nothing to reclaim from */
649
650 mz = rb_entry(mctz->rb_rightmost,
651 struct mem_cgroup_per_node, tree_node);
652 /*
653 * Remove the node now but someone else can add it back,
654 * we will to add it back at the end of reclaim to its correct
655 * position in the tree.
656 */
657 __mem_cgroup_remove_exceeded(mz, mctz);
658 if (!soft_limit_excess(mz->memcg) ||
659 !css_tryget_online(&mz->memcg->css))
660 goto retry;
661 done:
662 return mz;
663 }
664
665 static struct mem_cgroup_per_node *
666 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
667 {
668 struct mem_cgroup_per_node *mz;
669
670 spin_lock_irq(&mctz->lock);
671 mz = __mem_cgroup_largest_soft_limit_node(mctz);
672 spin_unlock_irq(&mctz->lock);
673 return mz;
674 }
675
676 /**
677 * __mod_memcg_state - update cgroup memory statistics
678 * @memcg: the memory cgroup
679 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
680 * @val: delta to add to the counter, can be negative
681 */
682 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
683 {
684 long x;
685
686 if (mem_cgroup_disabled())
687 return;
688
689 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
690 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
691 struct mem_cgroup *mi;
692
693 /*
694 * Batch local counters to keep them in sync with
695 * the hierarchical ones.
696 */
697 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
698 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
699 atomic_long_add(x, &mi->vmstats[idx]);
700 x = 0;
701 }
702 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
703 }
704
705 static struct mem_cgroup_per_node *
706 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
707 {
708 struct mem_cgroup *parent;
709
710 parent = parent_mem_cgroup(pn->memcg);
711 if (!parent)
712 return NULL;
713 return mem_cgroup_nodeinfo(parent, nid);
714 }
715
716 /**
717 * __mod_lruvec_state - update lruvec memory statistics
718 * @lruvec: the lruvec
719 * @idx: the stat item
720 * @val: delta to add to the counter, can be negative
721 *
722 * The lruvec is the intersection of the NUMA node and a cgroup. This
723 * function updates the all three counters that are affected by a
724 * change of state at this level: per-node, per-cgroup, per-lruvec.
725 */
726 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 int val)
728 {
729 pg_data_t *pgdat = lruvec_pgdat(lruvec);
730 struct mem_cgroup_per_node *pn;
731 struct mem_cgroup *memcg;
732 long x;
733
734 /* Update node */
735 __mod_node_page_state(pgdat, idx, val);
736
737 if (mem_cgroup_disabled())
738 return;
739
740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
741 memcg = pn->memcg;
742
743 /* Update memcg */
744 __mod_memcg_state(memcg, idx, val);
745
746 /* Update lruvec */
747 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
748
749 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
750 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
751 struct mem_cgroup_per_node *pi;
752
753 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
754 atomic_long_add(x, &pi->lruvec_stat[idx]);
755 x = 0;
756 }
757 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
758 }
759
760 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
761 {
762 struct page *page = virt_to_head_page(p);
763 pg_data_t *pgdat = page_pgdat(page);
764 struct mem_cgroup *memcg;
765 struct lruvec *lruvec;
766
767 rcu_read_lock();
768 memcg = memcg_from_slab_page(page);
769
770 /* Untracked pages have no memcg, no lruvec. Update only the node */
771 if (!memcg || memcg == root_mem_cgroup) {
772 __mod_node_page_state(pgdat, idx, val);
773 } else {
774 lruvec = mem_cgroup_lruvec(memcg, pgdat);
775 __mod_lruvec_state(lruvec, idx, val);
776 }
777 rcu_read_unlock();
778 }
779
780 void mod_memcg_obj_state(void *p, int idx, int val)
781 {
782 struct mem_cgroup *memcg;
783
784 rcu_read_lock();
785 memcg = mem_cgroup_from_obj(p);
786 if (memcg)
787 mod_memcg_state(memcg, idx, val);
788 rcu_read_unlock();
789 }
790
791 /**
792 * __count_memcg_events - account VM events in a cgroup
793 * @memcg: the memory cgroup
794 * @idx: the event item
795 * @count: the number of events that occured
796 */
797 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
798 unsigned long count)
799 {
800 unsigned long x;
801
802 if (mem_cgroup_disabled())
803 return;
804
805 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
806 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
807 struct mem_cgroup *mi;
808
809 /*
810 * Batch local counters to keep them in sync with
811 * the hierarchical ones.
812 */
813 __this_cpu_add(memcg->vmstats_local->events[idx], x);
814 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
815 atomic_long_add(x, &mi->vmevents[idx]);
816 x = 0;
817 }
818 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
819 }
820
821 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
822 {
823 return atomic_long_read(&memcg->vmevents[event]);
824 }
825
826 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
827 {
828 long x = 0;
829 int cpu;
830
831 for_each_possible_cpu(cpu)
832 x += per_cpu(memcg->vmstats_local->events[event], cpu);
833 return x;
834 }
835
836 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
837 struct page *page,
838 bool compound, int nr_pages)
839 {
840 /*
841 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
842 * counted as CACHE even if it's on ANON LRU.
843 */
844 if (PageAnon(page))
845 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
846 else {
847 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
848 if (PageSwapBacked(page))
849 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
850 }
851
852 if (compound) {
853 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
854 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
855 }
856
857 /* pagein of a big page is an event. So, ignore page size */
858 if (nr_pages > 0)
859 __count_memcg_events(memcg, PGPGIN, 1);
860 else {
861 __count_memcg_events(memcg, PGPGOUT, 1);
862 nr_pages = -nr_pages; /* for event */
863 }
864
865 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
866 }
867
868 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
869 enum mem_cgroup_events_target target)
870 {
871 unsigned long val, next;
872
873 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
874 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
875 /* from time_after() in jiffies.h */
876 if ((long)(next - val) < 0) {
877 switch (target) {
878 case MEM_CGROUP_TARGET_THRESH:
879 next = val + THRESHOLDS_EVENTS_TARGET;
880 break;
881 case MEM_CGROUP_TARGET_SOFTLIMIT:
882 next = val + SOFTLIMIT_EVENTS_TARGET;
883 break;
884 default:
885 break;
886 }
887 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
888 return true;
889 }
890 return false;
891 }
892
893 /*
894 * Check events in order.
895 *
896 */
897 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
898 {
899 /* threshold event is triggered in finer grain than soft limit */
900 if (unlikely(mem_cgroup_event_ratelimit(memcg,
901 MEM_CGROUP_TARGET_THRESH))) {
902 bool do_softlimit;
903
904 do_softlimit = mem_cgroup_event_ratelimit(memcg,
905 MEM_CGROUP_TARGET_SOFTLIMIT);
906 mem_cgroup_threshold(memcg);
907 if (unlikely(do_softlimit))
908 mem_cgroup_update_tree(memcg, page);
909 }
910 }
911
912 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
913 {
914 /*
915 * mm_update_next_owner() may clear mm->owner to NULL
916 * if it races with swapoff, page migration, etc.
917 * So this can be called with p == NULL.
918 */
919 if (unlikely(!p))
920 return NULL;
921
922 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
923 }
924 EXPORT_SYMBOL(mem_cgroup_from_task);
925
926 /**
927 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
928 * @mm: mm from which memcg should be extracted. It can be NULL.
929 *
930 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
931 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
932 * returned.
933 */
934 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
935 {
936 struct mem_cgroup *memcg;
937
938 if (mem_cgroup_disabled())
939 return NULL;
940
941 rcu_read_lock();
942 do {
943 /*
944 * Page cache insertions can happen withou an
945 * actual mm context, e.g. during disk probing
946 * on boot, loopback IO, acct() writes etc.
947 */
948 if (unlikely(!mm))
949 memcg = root_mem_cgroup;
950 else {
951 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
952 if (unlikely(!memcg))
953 memcg = root_mem_cgroup;
954 }
955 } while (!css_tryget(&memcg->css));
956 rcu_read_unlock();
957 return memcg;
958 }
959 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
960
961 /**
962 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
963 * @page: page from which memcg should be extracted.
964 *
965 * Obtain a reference on page->memcg and returns it if successful. Otherwise
966 * root_mem_cgroup is returned.
967 */
968 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
969 {
970 struct mem_cgroup *memcg = page->mem_cgroup;
971
972 if (mem_cgroup_disabled())
973 return NULL;
974
975 rcu_read_lock();
976 if (!memcg || !css_tryget_online(&memcg->css))
977 memcg = root_mem_cgroup;
978 rcu_read_unlock();
979 return memcg;
980 }
981 EXPORT_SYMBOL(get_mem_cgroup_from_page);
982
983 /**
984 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
985 */
986 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
987 {
988 if (unlikely(current->active_memcg)) {
989 struct mem_cgroup *memcg = root_mem_cgroup;
990
991 rcu_read_lock();
992 if (css_tryget_online(&current->active_memcg->css))
993 memcg = current->active_memcg;
994 rcu_read_unlock();
995 return memcg;
996 }
997 return get_mem_cgroup_from_mm(current->mm);
998 }
999
1000 /**
1001 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1002 * @root: hierarchy root
1003 * @prev: previously returned memcg, NULL on first invocation
1004 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1005 *
1006 * Returns references to children of the hierarchy below @root, or
1007 * @root itself, or %NULL after a full round-trip.
1008 *
1009 * Caller must pass the return value in @prev on subsequent
1010 * invocations for reference counting, or use mem_cgroup_iter_break()
1011 * to cancel a hierarchy walk before the round-trip is complete.
1012 *
1013 * Reclaimers can specify a node and a priority level in @reclaim to
1014 * divide up the memcgs in the hierarchy among all concurrent
1015 * reclaimers operating on the same node and priority.
1016 */
1017 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1018 struct mem_cgroup *prev,
1019 struct mem_cgroup_reclaim_cookie *reclaim)
1020 {
1021 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1022 struct cgroup_subsys_state *css = NULL;
1023 struct mem_cgroup *memcg = NULL;
1024 struct mem_cgroup *pos = NULL;
1025
1026 if (mem_cgroup_disabled())
1027 return NULL;
1028
1029 if (!root)
1030 root = root_mem_cgroup;
1031
1032 if (prev && !reclaim)
1033 pos = prev;
1034
1035 if (!root->use_hierarchy && root != root_mem_cgroup) {
1036 if (prev)
1037 goto out;
1038 return root;
1039 }
1040
1041 rcu_read_lock();
1042
1043 if (reclaim) {
1044 struct mem_cgroup_per_node *mz;
1045
1046 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1047 iter = &mz->iter;
1048
1049 if (prev && reclaim->generation != iter->generation)
1050 goto out_unlock;
1051
1052 while (1) {
1053 pos = READ_ONCE(iter->position);
1054 if (!pos || css_tryget(&pos->css))
1055 break;
1056 /*
1057 * css reference reached zero, so iter->position will
1058 * be cleared by ->css_released. However, we should not
1059 * rely on this happening soon, because ->css_released
1060 * is called from a work queue, and by busy-waiting we
1061 * might block it. So we clear iter->position right
1062 * away.
1063 */
1064 (void)cmpxchg(&iter->position, pos, NULL);
1065 }
1066 }
1067
1068 if (pos)
1069 css = &pos->css;
1070
1071 for (;;) {
1072 css = css_next_descendant_pre(css, &root->css);
1073 if (!css) {
1074 /*
1075 * Reclaimers share the hierarchy walk, and a
1076 * new one might jump in right at the end of
1077 * the hierarchy - make sure they see at least
1078 * one group and restart from the beginning.
1079 */
1080 if (!prev)
1081 continue;
1082 break;
1083 }
1084
1085 /*
1086 * Verify the css and acquire a reference. The root
1087 * is provided by the caller, so we know it's alive
1088 * and kicking, and don't take an extra reference.
1089 */
1090 memcg = mem_cgroup_from_css(css);
1091
1092 if (css == &root->css)
1093 break;
1094
1095 if (css_tryget(css))
1096 break;
1097
1098 memcg = NULL;
1099 }
1100
1101 if (reclaim) {
1102 /*
1103 * The position could have already been updated by a competing
1104 * thread, so check that the value hasn't changed since we read
1105 * it to avoid reclaiming from the same cgroup twice.
1106 */
1107 (void)cmpxchg(&iter->position, pos, memcg);
1108
1109 if (pos)
1110 css_put(&pos->css);
1111
1112 if (!memcg)
1113 iter->generation++;
1114 else if (!prev)
1115 reclaim->generation = iter->generation;
1116 }
1117
1118 out_unlock:
1119 rcu_read_unlock();
1120 out:
1121 if (prev && prev != root)
1122 css_put(&prev->css);
1123
1124 return memcg;
1125 }
1126
1127 /**
1128 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1129 * @root: hierarchy root
1130 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1131 */
1132 void mem_cgroup_iter_break(struct mem_cgroup *root,
1133 struct mem_cgroup *prev)
1134 {
1135 if (!root)
1136 root = root_mem_cgroup;
1137 if (prev && prev != root)
1138 css_put(&prev->css);
1139 }
1140
1141 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1142 struct mem_cgroup *dead_memcg)
1143 {
1144 struct mem_cgroup_reclaim_iter *iter;
1145 struct mem_cgroup_per_node *mz;
1146 int nid;
1147
1148 for_each_node(nid) {
1149 mz = mem_cgroup_nodeinfo(from, nid);
1150 iter = &mz->iter;
1151 cmpxchg(&iter->position, dead_memcg, NULL);
1152 }
1153 }
1154
1155 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1156 {
1157 struct mem_cgroup *memcg = dead_memcg;
1158 struct mem_cgroup *last;
1159
1160 do {
1161 __invalidate_reclaim_iterators(memcg, dead_memcg);
1162 last = memcg;
1163 } while ((memcg = parent_mem_cgroup(memcg)));
1164
1165 /*
1166 * When cgruop1 non-hierarchy mode is used,
1167 * parent_mem_cgroup() does not walk all the way up to the
1168 * cgroup root (root_mem_cgroup). So we have to handle
1169 * dead_memcg from cgroup root separately.
1170 */
1171 if (last != root_mem_cgroup)
1172 __invalidate_reclaim_iterators(root_mem_cgroup,
1173 dead_memcg);
1174 }
1175
1176 /**
1177 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1178 * @memcg: hierarchy root
1179 * @fn: function to call for each task
1180 * @arg: argument passed to @fn
1181 *
1182 * This function iterates over tasks attached to @memcg or to any of its
1183 * descendants and calls @fn for each task. If @fn returns a non-zero
1184 * value, the function breaks the iteration loop and returns the value.
1185 * Otherwise, it will iterate over all tasks and return 0.
1186 *
1187 * This function must not be called for the root memory cgroup.
1188 */
1189 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1190 int (*fn)(struct task_struct *, void *), void *arg)
1191 {
1192 struct mem_cgroup *iter;
1193 int ret = 0;
1194
1195 BUG_ON(memcg == root_mem_cgroup);
1196
1197 for_each_mem_cgroup_tree(iter, memcg) {
1198 struct css_task_iter it;
1199 struct task_struct *task;
1200
1201 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1202 while (!ret && (task = css_task_iter_next(&it)))
1203 ret = fn(task, arg);
1204 css_task_iter_end(&it);
1205 if (ret) {
1206 mem_cgroup_iter_break(memcg, iter);
1207 break;
1208 }
1209 }
1210 return ret;
1211 }
1212
1213 /**
1214 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1215 * @page: the page
1216 * @pgdat: pgdat of the page
1217 *
1218 * This function is only safe when following the LRU page isolation
1219 * and putback protocol: the LRU lock must be held, and the page must
1220 * either be PageLRU() or the caller must have isolated/allocated it.
1221 */
1222 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1223 {
1224 struct mem_cgroup_per_node *mz;
1225 struct mem_cgroup *memcg;
1226 struct lruvec *lruvec;
1227
1228 if (mem_cgroup_disabled()) {
1229 lruvec = &pgdat->__lruvec;
1230 goto out;
1231 }
1232
1233 memcg = page->mem_cgroup;
1234 /*
1235 * Swapcache readahead pages are added to the LRU - and
1236 * possibly migrated - before they are charged.
1237 */
1238 if (!memcg)
1239 memcg = root_mem_cgroup;
1240
1241 mz = mem_cgroup_page_nodeinfo(memcg, page);
1242 lruvec = &mz->lruvec;
1243 out:
1244 /*
1245 * Since a node can be onlined after the mem_cgroup was created,
1246 * we have to be prepared to initialize lruvec->zone here;
1247 * and if offlined then reonlined, we need to reinitialize it.
1248 */
1249 if (unlikely(lruvec->pgdat != pgdat))
1250 lruvec->pgdat = pgdat;
1251 return lruvec;
1252 }
1253
1254 /**
1255 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1256 * @lruvec: mem_cgroup per zone lru vector
1257 * @lru: index of lru list the page is sitting on
1258 * @zid: zone id of the accounted pages
1259 * @nr_pages: positive when adding or negative when removing
1260 *
1261 * This function must be called under lru_lock, just before a page is added
1262 * to or just after a page is removed from an lru list (that ordering being
1263 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1264 */
1265 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1266 int zid, int nr_pages)
1267 {
1268 struct mem_cgroup_per_node *mz;
1269 unsigned long *lru_size;
1270 long size;
1271
1272 if (mem_cgroup_disabled())
1273 return;
1274
1275 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1276 lru_size = &mz->lru_zone_size[zid][lru];
1277
1278 if (nr_pages < 0)
1279 *lru_size += nr_pages;
1280
1281 size = *lru_size;
1282 if (WARN_ONCE(size < 0,
1283 "%s(%p, %d, %d): lru_size %ld\n",
1284 __func__, lruvec, lru, nr_pages, size)) {
1285 VM_BUG_ON(1);
1286 *lru_size = 0;
1287 }
1288
1289 if (nr_pages > 0)
1290 *lru_size += nr_pages;
1291 }
1292
1293 /**
1294 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1295 * @memcg: the memory cgroup
1296 *
1297 * Returns the maximum amount of memory @mem can be charged with, in
1298 * pages.
1299 */
1300 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1301 {
1302 unsigned long margin = 0;
1303 unsigned long count;
1304 unsigned long limit;
1305
1306 count = page_counter_read(&memcg->memory);
1307 limit = READ_ONCE(memcg->memory.max);
1308 if (count < limit)
1309 margin = limit - count;
1310
1311 if (do_memsw_account()) {
1312 count = page_counter_read(&memcg->memsw);
1313 limit = READ_ONCE(memcg->memsw.max);
1314 if (count <= limit)
1315 margin = min(margin, limit - count);
1316 else
1317 margin = 0;
1318 }
1319
1320 return margin;
1321 }
1322
1323 /*
1324 * A routine for checking "mem" is under move_account() or not.
1325 *
1326 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1327 * moving cgroups. This is for waiting at high-memory pressure
1328 * caused by "move".
1329 */
1330 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1331 {
1332 struct mem_cgroup *from;
1333 struct mem_cgroup *to;
1334 bool ret = false;
1335 /*
1336 * Unlike task_move routines, we access mc.to, mc.from not under
1337 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1338 */
1339 spin_lock(&mc.lock);
1340 from = mc.from;
1341 to = mc.to;
1342 if (!from)
1343 goto unlock;
1344
1345 ret = mem_cgroup_is_descendant(from, memcg) ||
1346 mem_cgroup_is_descendant(to, memcg);
1347 unlock:
1348 spin_unlock(&mc.lock);
1349 return ret;
1350 }
1351
1352 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1353 {
1354 if (mc.moving_task && current != mc.moving_task) {
1355 if (mem_cgroup_under_move(memcg)) {
1356 DEFINE_WAIT(wait);
1357 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1358 /* moving charge context might have finished. */
1359 if (mc.moving_task)
1360 schedule();
1361 finish_wait(&mc.waitq, &wait);
1362 return true;
1363 }
1364 }
1365 return false;
1366 }
1367
1368 static char *memory_stat_format(struct mem_cgroup *memcg)
1369 {
1370 struct seq_buf s;
1371 int i;
1372
1373 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1374 if (!s.buffer)
1375 return NULL;
1376
1377 /*
1378 * Provide statistics on the state of the memory subsystem as
1379 * well as cumulative event counters that show past behavior.
1380 *
1381 * This list is ordered following a combination of these gradients:
1382 * 1) generic big picture -> specifics and details
1383 * 2) reflecting userspace activity -> reflecting kernel heuristics
1384 *
1385 * Current memory state:
1386 */
1387
1388 seq_buf_printf(&s, "anon %llu\n",
1389 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1390 PAGE_SIZE);
1391 seq_buf_printf(&s, "file %llu\n",
1392 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1393 PAGE_SIZE);
1394 seq_buf_printf(&s, "kernel_stack %llu\n",
1395 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1396 1024);
1397 seq_buf_printf(&s, "slab %llu\n",
1398 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1399 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1400 PAGE_SIZE);
1401 seq_buf_printf(&s, "sock %llu\n",
1402 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1403 PAGE_SIZE);
1404
1405 seq_buf_printf(&s, "shmem %llu\n",
1406 (u64)memcg_page_state(memcg, NR_SHMEM) *
1407 PAGE_SIZE);
1408 seq_buf_printf(&s, "file_mapped %llu\n",
1409 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1410 PAGE_SIZE);
1411 seq_buf_printf(&s, "file_dirty %llu\n",
1412 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1413 PAGE_SIZE);
1414 seq_buf_printf(&s, "file_writeback %llu\n",
1415 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1416 PAGE_SIZE);
1417
1418 /*
1419 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1420 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1421 * arse because it requires migrating the work out of rmap to a place
1422 * where the page->mem_cgroup is set up and stable.
1423 */
1424 seq_buf_printf(&s, "anon_thp %llu\n",
1425 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1426 PAGE_SIZE);
1427
1428 for (i = 0; i < NR_LRU_LISTS; i++)
1429 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1430 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1431 PAGE_SIZE);
1432
1433 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1434 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1435 PAGE_SIZE);
1436 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1437 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1438 PAGE_SIZE);
1439
1440 /* Accumulated memory events */
1441
1442 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1443 memcg_events(memcg, PGFAULT));
1444 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1445 memcg_events(memcg, PGMAJFAULT));
1446
1447 seq_buf_printf(&s, "workingset_refault %lu\n",
1448 memcg_page_state(memcg, WORKINGSET_REFAULT));
1449 seq_buf_printf(&s, "workingset_activate %lu\n",
1450 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1451 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1452 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1453
1454 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1455 memcg_events(memcg, PGREFILL));
1456 seq_buf_printf(&s, "pgscan %lu\n",
1457 memcg_events(memcg, PGSCAN_KSWAPD) +
1458 memcg_events(memcg, PGSCAN_DIRECT));
1459 seq_buf_printf(&s, "pgsteal %lu\n",
1460 memcg_events(memcg, PGSTEAL_KSWAPD) +
1461 memcg_events(memcg, PGSTEAL_DIRECT));
1462 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1463 memcg_events(memcg, PGACTIVATE));
1464 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1465 memcg_events(memcg, PGDEACTIVATE));
1466 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1467 memcg_events(memcg, PGLAZYFREE));
1468 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1469 memcg_events(memcg, PGLAZYFREED));
1470
1471 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1472 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1473 memcg_events(memcg, THP_FAULT_ALLOC));
1474 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1475 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1476 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1477
1478 /* The above should easily fit into one page */
1479 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1480
1481 return s.buffer;
1482 }
1483
1484 #define K(x) ((x) << (PAGE_SHIFT-10))
1485 /**
1486 * mem_cgroup_print_oom_context: Print OOM information relevant to
1487 * memory controller.
1488 * @memcg: The memory cgroup that went over limit
1489 * @p: Task that is going to be killed
1490 *
1491 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1492 * enabled
1493 */
1494 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1495 {
1496 rcu_read_lock();
1497
1498 if (memcg) {
1499 pr_cont(",oom_memcg=");
1500 pr_cont_cgroup_path(memcg->css.cgroup);
1501 } else
1502 pr_cont(",global_oom");
1503 if (p) {
1504 pr_cont(",task_memcg=");
1505 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1506 }
1507 rcu_read_unlock();
1508 }
1509
1510 /**
1511 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1512 * memory controller.
1513 * @memcg: The memory cgroup that went over limit
1514 */
1515 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1516 {
1517 char *buf;
1518
1519 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1520 K((u64)page_counter_read(&memcg->memory)),
1521 K((u64)memcg->memory.max), memcg->memory.failcnt);
1522 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1523 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1524 K((u64)page_counter_read(&memcg->swap)),
1525 K((u64)memcg->swap.max), memcg->swap.failcnt);
1526 else {
1527 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1528 K((u64)page_counter_read(&memcg->memsw)),
1529 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1530 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1531 K((u64)page_counter_read(&memcg->kmem)),
1532 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1533 }
1534
1535 pr_info("Memory cgroup stats for ");
1536 pr_cont_cgroup_path(memcg->css.cgroup);
1537 pr_cont(":");
1538 buf = memory_stat_format(memcg);
1539 if (!buf)
1540 return;
1541 pr_info("%s", buf);
1542 kfree(buf);
1543 }
1544
1545 /*
1546 * Return the memory (and swap, if configured) limit for a memcg.
1547 */
1548 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1549 {
1550 unsigned long max;
1551
1552 max = memcg->memory.max;
1553 if (mem_cgroup_swappiness(memcg)) {
1554 unsigned long memsw_max;
1555 unsigned long swap_max;
1556
1557 memsw_max = memcg->memsw.max;
1558 swap_max = memcg->swap.max;
1559 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1560 max = min(max + swap_max, memsw_max);
1561 }
1562 return max;
1563 }
1564
1565 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1566 {
1567 return page_counter_read(&memcg->memory);
1568 }
1569
1570 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1571 int order)
1572 {
1573 struct oom_control oc = {
1574 .zonelist = NULL,
1575 .nodemask = NULL,
1576 .memcg = memcg,
1577 .gfp_mask = gfp_mask,
1578 .order = order,
1579 };
1580 bool ret;
1581
1582 if (mutex_lock_killable(&oom_lock))
1583 return true;
1584 /*
1585 * A few threads which were not waiting at mutex_lock_killable() can
1586 * fail to bail out. Therefore, check again after holding oom_lock.
1587 */
1588 ret = should_force_charge() || out_of_memory(&oc);
1589 mutex_unlock(&oom_lock);
1590 return ret;
1591 }
1592
1593 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1594 pg_data_t *pgdat,
1595 gfp_t gfp_mask,
1596 unsigned long *total_scanned)
1597 {
1598 struct mem_cgroup *victim = NULL;
1599 int total = 0;
1600 int loop = 0;
1601 unsigned long excess;
1602 unsigned long nr_scanned;
1603 struct mem_cgroup_reclaim_cookie reclaim = {
1604 .pgdat = pgdat,
1605 };
1606
1607 excess = soft_limit_excess(root_memcg);
1608
1609 while (1) {
1610 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1611 if (!victim) {
1612 loop++;
1613 if (loop >= 2) {
1614 /*
1615 * If we have not been able to reclaim
1616 * anything, it might because there are
1617 * no reclaimable pages under this hierarchy
1618 */
1619 if (!total)
1620 break;
1621 /*
1622 * We want to do more targeted reclaim.
1623 * excess >> 2 is not to excessive so as to
1624 * reclaim too much, nor too less that we keep
1625 * coming back to reclaim from this cgroup
1626 */
1627 if (total >= (excess >> 2) ||
1628 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1629 break;
1630 }
1631 continue;
1632 }
1633 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1634 pgdat, &nr_scanned);
1635 *total_scanned += nr_scanned;
1636 if (!soft_limit_excess(root_memcg))
1637 break;
1638 }
1639 mem_cgroup_iter_break(root_memcg, victim);
1640 return total;
1641 }
1642
1643 #ifdef CONFIG_LOCKDEP
1644 static struct lockdep_map memcg_oom_lock_dep_map = {
1645 .name = "memcg_oom_lock",
1646 };
1647 #endif
1648
1649 static DEFINE_SPINLOCK(memcg_oom_lock);
1650
1651 /*
1652 * Check OOM-Killer is already running under our hierarchy.
1653 * If someone is running, return false.
1654 */
1655 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1656 {
1657 struct mem_cgroup *iter, *failed = NULL;
1658
1659 spin_lock(&memcg_oom_lock);
1660
1661 for_each_mem_cgroup_tree(iter, memcg) {
1662 if (iter->oom_lock) {
1663 /*
1664 * this subtree of our hierarchy is already locked
1665 * so we cannot give a lock.
1666 */
1667 failed = iter;
1668 mem_cgroup_iter_break(memcg, iter);
1669 break;
1670 } else
1671 iter->oom_lock = true;
1672 }
1673
1674 if (failed) {
1675 /*
1676 * OK, we failed to lock the whole subtree so we have
1677 * to clean up what we set up to the failing subtree
1678 */
1679 for_each_mem_cgroup_tree(iter, memcg) {
1680 if (iter == failed) {
1681 mem_cgroup_iter_break(memcg, iter);
1682 break;
1683 }
1684 iter->oom_lock = false;
1685 }
1686 } else
1687 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1688
1689 spin_unlock(&memcg_oom_lock);
1690
1691 return !failed;
1692 }
1693
1694 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1695 {
1696 struct mem_cgroup *iter;
1697
1698 spin_lock(&memcg_oom_lock);
1699 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1700 for_each_mem_cgroup_tree(iter, memcg)
1701 iter->oom_lock = false;
1702 spin_unlock(&memcg_oom_lock);
1703 }
1704
1705 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1706 {
1707 struct mem_cgroup *iter;
1708
1709 spin_lock(&memcg_oom_lock);
1710 for_each_mem_cgroup_tree(iter, memcg)
1711 iter->under_oom++;
1712 spin_unlock(&memcg_oom_lock);
1713 }
1714
1715 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1716 {
1717 struct mem_cgroup *iter;
1718
1719 /*
1720 * When a new child is created while the hierarchy is under oom,
1721 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1722 */
1723 spin_lock(&memcg_oom_lock);
1724 for_each_mem_cgroup_tree(iter, memcg)
1725 if (iter->under_oom > 0)
1726 iter->under_oom--;
1727 spin_unlock(&memcg_oom_lock);
1728 }
1729
1730 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1731
1732 struct oom_wait_info {
1733 struct mem_cgroup *memcg;
1734 wait_queue_entry_t wait;
1735 };
1736
1737 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1738 unsigned mode, int sync, void *arg)
1739 {
1740 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1741 struct mem_cgroup *oom_wait_memcg;
1742 struct oom_wait_info *oom_wait_info;
1743
1744 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1745 oom_wait_memcg = oom_wait_info->memcg;
1746
1747 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1748 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1749 return 0;
1750 return autoremove_wake_function(wait, mode, sync, arg);
1751 }
1752
1753 static void memcg_oom_recover(struct mem_cgroup *memcg)
1754 {
1755 /*
1756 * For the following lockless ->under_oom test, the only required
1757 * guarantee is that it must see the state asserted by an OOM when
1758 * this function is called as a result of userland actions
1759 * triggered by the notification of the OOM. This is trivially
1760 * achieved by invoking mem_cgroup_mark_under_oom() before
1761 * triggering notification.
1762 */
1763 if (memcg && memcg->under_oom)
1764 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1765 }
1766
1767 enum oom_status {
1768 OOM_SUCCESS,
1769 OOM_FAILED,
1770 OOM_ASYNC,
1771 OOM_SKIPPED
1772 };
1773
1774 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1775 {
1776 enum oom_status ret;
1777 bool locked;
1778
1779 if (order > PAGE_ALLOC_COSTLY_ORDER)
1780 return OOM_SKIPPED;
1781
1782 memcg_memory_event(memcg, MEMCG_OOM);
1783
1784 /*
1785 * We are in the middle of the charge context here, so we
1786 * don't want to block when potentially sitting on a callstack
1787 * that holds all kinds of filesystem and mm locks.
1788 *
1789 * cgroup1 allows disabling the OOM killer and waiting for outside
1790 * handling until the charge can succeed; remember the context and put
1791 * the task to sleep at the end of the page fault when all locks are
1792 * released.
1793 *
1794 * On the other hand, in-kernel OOM killer allows for an async victim
1795 * memory reclaim (oom_reaper) and that means that we are not solely
1796 * relying on the oom victim to make a forward progress and we can
1797 * invoke the oom killer here.
1798 *
1799 * Please note that mem_cgroup_out_of_memory might fail to find a
1800 * victim and then we have to bail out from the charge path.
1801 */
1802 if (memcg->oom_kill_disable) {
1803 if (!current->in_user_fault)
1804 return OOM_SKIPPED;
1805 css_get(&memcg->css);
1806 current->memcg_in_oom = memcg;
1807 current->memcg_oom_gfp_mask = mask;
1808 current->memcg_oom_order = order;
1809
1810 return OOM_ASYNC;
1811 }
1812
1813 mem_cgroup_mark_under_oom(memcg);
1814
1815 locked = mem_cgroup_oom_trylock(memcg);
1816
1817 if (locked)
1818 mem_cgroup_oom_notify(memcg);
1819
1820 mem_cgroup_unmark_under_oom(memcg);
1821 if (mem_cgroup_out_of_memory(memcg, mask, order))
1822 ret = OOM_SUCCESS;
1823 else
1824 ret = OOM_FAILED;
1825
1826 if (locked)
1827 mem_cgroup_oom_unlock(memcg);
1828
1829 return ret;
1830 }
1831
1832 /**
1833 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1834 * @handle: actually kill/wait or just clean up the OOM state
1835 *
1836 * This has to be called at the end of a page fault if the memcg OOM
1837 * handler was enabled.
1838 *
1839 * Memcg supports userspace OOM handling where failed allocations must
1840 * sleep on a waitqueue until the userspace task resolves the
1841 * situation. Sleeping directly in the charge context with all kinds
1842 * of locks held is not a good idea, instead we remember an OOM state
1843 * in the task and mem_cgroup_oom_synchronize() has to be called at
1844 * the end of the page fault to complete the OOM handling.
1845 *
1846 * Returns %true if an ongoing memcg OOM situation was detected and
1847 * completed, %false otherwise.
1848 */
1849 bool mem_cgroup_oom_synchronize(bool handle)
1850 {
1851 struct mem_cgroup *memcg = current->memcg_in_oom;
1852 struct oom_wait_info owait;
1853 bool locked;
1854
1855 /* OOM is global, do not handle */
1856 if (!memcg)
1857 return false;
1858
1859 if (!handle)
1860 goto cleanup;
1861
1862 owait.memcg = memcg;
1863 owait.wait.flags = 0;
1864 owait.wait.func = memcg_oom_wake_function;
1865 owait.wait.private = current;
1866 INIT_LIST_HEAD(&owait.wait.entry);
1867
1868 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1869 mem_cgroup_mark_under_oom(memcg);
1870
1871 locked = mem_cgroup_oom_trylock(memcg);
1872
1873 if (locked)
1874 mem_cgroup_oom_notify(memcg);
1875
1876 if (locked && !memcg->oom_kill_disable) {
1877 mem_cgroup_unmark_under_oom(memcg);
1878 finish_wait(&memcg_oom_waitq, &owait.wait);
1879 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1880 current->memcg_oom_order);
1881 } else {
1882 schedule();
1883 mem_cgroup_unmark_under_oom(memcg);
1884 finish_wait(&memcg_oom_waitq, &owait.wait);
1885 }
1886
1887 if (locked) {
1888 mem_cgroup_oom_unlock(memcg);
1889 /*
1890 * There is no guarantee that an OOM-lock contender
1891 * sees the wakeups triggered by the OOM kill
1892 * uncharges. Wake any sleepers explicitely.
1893 */
1894 memcg_oom_recover(memcg);
1895 }
1896 cleanup:
1897 current->memcg_in_oom = NULL;
1898 css_put(&memcg->css);
1899 return true;
1900 }
1901
1902 /**
1903 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1904 * @victim: task to be killed by the OOM killer
1905 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1906 *
1907 * Returns a pointer to a memory cgroup, which has to be cleaned up
1908 * by killing all belonging OOM-killable tasks.
1909 *
1910 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1911 */
1912 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1913 struct mem_cgroup *oom_domain)
1914 {
1915 struct mem_cgroup *oom_group = NULL;
1916 struct mem_cgroup *memcg;
1917
1918 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1919 return NULL;
1920
1921 if (!oom_domain)
1922 oom_domain = root_mem_cgroup;
1923
1924 rcu_read_lock();
1925
1926 memcg = mem_cgroup_from_task(victim);
1927 if (memcg == root_mem_cgroup)
1928 goto out;
1929
1930 /*
1931 * Traverse the memory cgroup hierarchy from the victim task's
1932 * cgroup up to the OOMing cgroup (or root) to find the
1933 * highest-level memory cgroup with oom.group set.
1934 */
1935 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1936 if (memcg->oom_group)
1937 oom_group = memcg;
1938
1939 if (memcg == oom_domain)
1940 break;
1941 }
1942
1943 if (oom_group)
1944 css_get(&oom_group->css);
1945 out:
1946 rcu_read_unlock();
1947
1948 return oom_group;
1949 }
1950
1951 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1952 {
1953 pr_info("Tasks in ");
1954 pr_cont_cgroup_path(memcg->css.cgroup);
1955 pr_cont(" are going to be killed due to memory.oom.group set\n");
1956 }
1957
1958 /**
1959 * lock_page_memcg - lock a page->mem_cgroup binding
1960 * @page: the page
1961 *
1962 * This function protects unlocked LRU pages from being moved to
1963 * another cgroup.
1964 *
1965 * It ensures lifetime of the returned memcg. Caller is responsible
1966 * for the lifetime of the page; __unlock_page_memcg() is available
1967 * when @page might get freed inside the locked section.
1968 */
1969 struct mem_cgroup *lock_page_memcg(struct page *page)
1970 {
1971 struct mem_cgroup *memcg;
1972 unsigned long flags;
1973
1974 /*
1975 * The RCU lock is held throughout the transaction. The fast
1976 * path can get away without acquiring the memcg->move_lock
1977 * because page moving starts with an RCU grace period.
1978 *
1979 * The RCU lock also protects the memcg from being freed when
1980 * the page state that is going to change is the only thing
1981 * preventing the page itself from being freed. E.g. writeback
1982 * doesn't hold a page reference and relies on PG_writeback to
1983 * keep off truncation, migration and so forth.
1984 */
1985 rcu_read_lock();
1986
1987 if (mem_cgroup_disabled())
1988 return NULL;
1989 again:
1990 memcg = page->mem_cgroup;
1991 if (unlikely(!memcg))
1992 return NULL;
1993
1994 if (atomic_read(&memcg->moving_account) <= 0)
1995 return memcg;
1996
1997 spin_lock_irqsave(&memcg->move_lock, flags);
1998 if (memcg != page->mem_cgroup) {
1999 spin_unlock_irqrestore(&memcg->move_lock, flags);
2000 goto again;
2001 }
2002
2003 /*
2004 * When charge migration first begins, we can have locked and
2005 * unlocked page stat updates happening concurrently. Track
2006 * the task who has the lock for unlock_page_memcg().
2007 */
2008 memcg->move_lock_task = current;
2009 memcg->move_lock_flags = flags;
2010
2011 return memcg;
2012 }
2013 EXPORT_SYMBOL(lock_page_memcg);
2014
2015 /**
2016 * __unlock_page_memcg - unlock and unpin a memcg
2017 * @memcg: the memcg
2018 *
2019 * Unlock and unpin a memcg returned by lock_page_memcg().
2020 */
2021 void __unlock_page_memcg(struct mem_cgroup *memcg)
2022 {
2023 if (memcg && memcg->move_lock_task == current) {
2024 unsigned long flags = memcg->move_lock_flags;
2025
2026 memcg->move_lock_task = NULL;
2027 memcg->move_lock_flags = 0;
2028
2029 spin_unlock_irqrestore(&memcg->move_lock, flags);
2030 }
2031
2032 rcu_read_unlock();
2033 }
2034
2035 /**
2036 * unlock_page_memcg - unlock a page->mem_cgroup binding
2037 * @page: the page
2038 */
2039 void unlock_page_memcg(struct page *page)
2040 {
2041 __unlock_page_memcg(page->mem_cgroup);
2042 }
2043 EXPORT_SYMBOL(unlock_page_memcg);
2044
2045 struct memcg_stock_pcp {
2046 struct mem_cgroup *cached; /* this never be root cgroup */
2047 unsigned int nr_pages;
2048 struct work_struct work;
2049 unsigned long flags;
2050 #define FLUSHING_CACHED_CHARGE 0
2051 };
2052 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2053 static DEFINE_MUTEX(percpu_charge_mutex);
2054
2055 /**
2056 * consume_stock: Try to consume stocked charge on this cpu.
2057 * @memcg: memcg to consume from.
2058 * @nr_pages: how many pages to charge.
2059 *
2060 * The charges will only happen if @memcg matches the current cpu's memcg
2061 * stock, and at least @nr_pages are available in that stock. Failure to
2062 * service an allocation will refill the stock.
2063 *
2064 * returns true if successful, false otherwise.
2065 */
2066 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2067 {
2068 struct memcg_stock_pcp *stock;
2069 unsigned long flags;
2070 bool ret = false;
2071
2072 if (nr_pages > MEMCG_CHARGE_BATCH)
2073 return ret;
2074
2075 local_irq_save(flags);
2076
2077 stock = this_cpu_ptr(&memcg_stock);
2078 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2079 stock->nr_pages -= nr_pages;
2080 ret = true;
2081 }
2082
2083 local_irq_restore(flags);
2084
2085 return ret;
2086 }
2087
2088 /*
2089 * Returns stocks cached in percpu and reset cached information.
2090 */
2091 static void drain_stock(struct memcg_stock_pcp *stock)
2092 {
2093 struct mem_cgroup *old = stock->cached;
2094
2095 if (stock->nr_pages) {
2096 page_counter_uncharge(&old->memory, stock->nr_pages);
2097 if (do_memsw_account())
2098 page_counter_uncharge(&old->memsw, stock->nr_pages);
2099 css_put_many(&old->css, stock->nr_pages);
2100 stock->nr_pages = 0;
2101 }
2102 stock->cached = NULL;
2103 }
2104
2105 static void drain_local_stock(struct work_struct *dummy)
2106 {
2107 struct memcg_stock_pcp *stock;
2108 unsigned long flags;
2109
2110 /*
2111 * The only protection from memory hotplug vs. drain_stock races is
2112 * that we always operate on local CPU stock here with IRQ disabled
2113 */
2114 local_irq_save(flags);
2115
2116 stock = this_cpu_ptr(&memcg_stock);
2117 drain_stock(stock);
2118 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2119
2120 local_irq_restore(flags);
2121 }
2122
2123 /*
2124 * Cache charges(val) to local per_cpu area.
2125 * This will be consumed by consume_stock() function, later.
2126 */
2127 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2128 {
2129 struct memcg_stock_pcp *stock;
2130 unsigned long flags;
2131
2132 local_irq_save(flags);
2133
2134 stock = this_cpu_ptr(&memcg_stock);
2135 if (stock->cached != memcg) { /* reset if necessary */
2136 drain_stock(stock);
2137 stock->cached = memcg;
2138 }
2139 stock->nr_pages += nr_pages;
2140
2141 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2142 drain_stock(stock);
2143
2144 local_irq_restore(flags);
2145 }
2146
2147 /*
2148 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2149 * of the hierarchy under it.
2150 */
2151 static void drain_all_stock(struct mem_cgroup *root_memcg)
2152 {
2153 int cpu, curcpu;
2154
2155 /* If someone's already draining, avoid adding running more workers. */
2156 if (!mutex_trylock(&percpu_charge_mutex))
2157 return;
2158 /*
2159 * Notify other cpus that system-wide "drain" is running
2160 * We do not care about races with the cpu hotplug because cpu down
2161 * as well as workers from this path always operate on the local
2162 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2163 */
2164 curcpu = get_cpu();
2165 for_each_online_cpu(cpu) {
2166 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2167 struct mem_cgroup *memcg;
2168 bool flush = false;
2169
2170 rcu_read_lock();
2171 memcg = stock->cached;
2172 if (memcg && stock->nr_pages &&
2173 mem_cgroup_is_descendant(memcg, root_memcg))
2174 flush = true;
2175 rcu_read_unlock();
2176
2177 if (flush &&
2178 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2179 if (cpu == curcpu)
2180 drain_local_stock(&stock->work);
2181 else
2182 schedule_work_on(cpu, &stock->work);
2183 }
2184 }
2185 put_cpu();
2186 mutex_unlock(&percpu_charge_mutex);
2187 }
2188
2189 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2190 {
2191 struct memcg_stock_pcp *stock;
2192 struct mem_cgroup *memcg, *mi;
2193
2194 stock = &per_cpu(memcg_stock, cpu);
2195 drain_stock(stock);
2196
2197 for_each_mem_cgroup(memcg) {
2198 int i;
2199
2200 for (i = 0; i < MEMCG_NR_STAT; i++) {
2201 int nid;
2202 long x;
2203
2204 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2205 if (x)
2206 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2207 atomic_long_add(x, &memcg->vmstats[i]);
2208
2209 if (i >= NR_VM_NODE_STAT_ITEMS)
2210 continue;
2211
2212 for_each_node(nid) {
2213 struct mem_cgroup_per_node *pn;
2214
2215 pn = mem_cgroup_nodeinfo(memcg, nid);
2216 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2217 if (x)
2218 do {
2219 atomic_long_add(x, &pn->lruvec_stat[i]);
2220 } while ((pn = parent_nodeinfo(pn, nid)));
2221 }
2222 }
2223
2224 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2225 long x;
2226
2227 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2228 if (x)
2229 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2230 atomic_long_add(x, &memcg->vmevents[i]);
2231 }
2232 }
2233
2234 return 0;
2235 }
2236
2237 static void reclaim_high(struct mem_cgroup *memcg,
2238 unsigned int nr_pages,
2239 gfp_t gfp_mask)
2240 {
2241 do {
2242 if (page_counter_read(&memcg->memory) <= memcg->high)
2243 continue;
2244 memcg_memory_event(memcg, MEMCG_HIGH);
2245 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2246 } while ((memcg = parent_mem_cgroup(memcg)));
2247 }
2248
2249 static void high_work_func(struct work_struct *work)
2250 {
2251 struct mem_cgroup *memcg;
2252
2253 memcg = container_of(work, struct mem_cgroup, high_work);
2254 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2255 }
2256
2257 /*
2258 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2259 * enough to still cause a significant slowdown in most cases, while still
2260 * allowing diagnostics and tracing to proceed without becoming stuck.
2261 */
2262 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2263
2264 /*
2265 * When calculating the delay, we use these either side of the exponentiation to
2266 * maintain precision and scale to a reasonable number of jiffies (see the table
2267 * below.
2268 *
2269 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2270 * overage ratio to a delay.
2271 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2272 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2273 * to produce a reasonable delay curve.
2274 *
2275 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2276 * reasonable delay curve compared to precision-adjusted overage, not
2277 * penalising heavily at first, but still making sure that growth beyond the
2278 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2279 * example, with a high of 100 megabytes:
2280 *
2281 * +-------+------------------------+
2282 * | usage | time to allocate in ms |
2283 * +-------+------------------------+
2284 * | 100M | 0 |
2285 * | 101M | 6 |
2286 * | 102M | 25 |
2287 * | 103M | 57 |
2288 * | 104M | 102 |
2289 * | 105M | 159 |
2290 * | 106M | 230 |
2291 * | 107M | 313 |
2292 * | 108M | 409 |
2293 * | 109M | 518 |
2294 * | 110M | 639 |
2295 * | 111M | 774 |
2296 * | 112M | 921 |
2297 * | 113M | 1081 |
2298 * | 114M | 1254 |
2299 * | 115M | 1439 |
2300 * | 116M | 1638 |
2301 * | 117M | 1849 |
2302 * | 118M | 2000 |
2303 * | 119M | 2000 |
2304 * | 120M | 2000 |
2305 * +-------+------------------------+
2306 */
2307 #define MEMCG_DELAY_PRECISION_SHIFT 20
2308 #define MEMCG_DELAY_SCALING_SHIFT 14
2309
2310 /*
2311 * Get the number of jiffies that we should penalise a mischievous cgroup which
2312 * is exceeding its memory.high by checking both it and its ancestors.
2313 */
2314 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2315 unsigned int nr_pages)
2316 {
2317 unsigned long penalty_jiffies;
2318 u64 max_overage = 0;
2319
2320 do {
2321 unsigned long usage, high;
2322 u64 overage;
2323
2324 usage = page_counter_read(&memcg->memory);
2325 high = READ_ONCE(memcg->high);
2326
2327 /*
2328 * Prevent division by 0 in overage calculation by acting as if
2329 * it was a threshold of 1 page
2330 */
2331 high = max(high, 1UL);
2332
2333 overage = usage - high;
2334 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2335 overage = div64_u64(overage, high);
2336
2337 if (overage > max_overage)
2338 max_overage = overage;
2339 } while ((memcg = parent_mem_cgroup(memcg)) &&
2340 !mem_cgroup_is_root(memcg));
2341
2342 if (!max_overage)
2343 return 0;
2344
2345 /*
2346 * We use overage compared to memory.high to calculate the number of
2347 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2348 * fairly lenient on small overages, and increasingly harsh when the
2349 * memcg in question makes it clear that it has no intention of stopping
2350 * its crazy behaviour, so we exponentially increase the delay based on
2351 * overage amount.
2352 */
2353 penalty_jiffies = max_overage * max_overage * HZ;
2354 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2355 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2356
2357 /*
2358 * Factor in the task's own contribution to the overage, such that four
2359 * N-sized allocations are throttled approximately the same as one
2360 * 4N-sized allocation.
2361 *
2362 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2363 * larger the current charge patch is than that.
2364 */
2365 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2366
2367 /*
2368 * Clamp the max delay per usermode return so as to still keep the
2369 * application moving forwards and also permit diagnostics, albeit
2370 * extremely slowly.
2371 */
2372 return min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2373 }
2374
2375 /*
2376 * Scheduled by try_charge() to be executed from the userland return path
2377 * and reclaims memory over the high limit.
2378 */
2379 void mem_cgroup_handle_over_high(void)
2380 {
2381 unsigned long penalty_jiffies;
2382 unsigned long pflags;
2383 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2384 struct mem_cgroup *memcg;
2385
2386 if (likely(!nr_pages))
2387 return;
2388
2389 memcg = get_mem_cgroup_from_mm(current->mm);
2390 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2391 current->memcg_nr_pages_over_high = 0;
2392
2393 /*
2394 * memory.high is breached and reclaim is unable to keep up. Throttle
2395 * allocators proactively to slow down excessive growth.
2396 */
2397 penalty_jiffies = calculate_high_delay(memcg, nr_pages);
2398
2399 /*
2400 * Don't sleep if the amount of jiffies this memcg owes us is so low
2401 * that it's not even worth doing, in an attempt to be nice to those who
2402 * go only a small amount over their memory.high value and maybe haven't
2403 * been aggressively reclaimed enough yet.
2404 */
2405 if (penalty_jiffies <= HZ / 100)
2406 goto out;
2407
2408 /*
2409 * If we exit early, we're guaranteed to die (since
2410 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2411 * need to account for any ill-begotten jiffies to pay them off later.
2412 */
2413 psi_memstall_enter(&pflags);
2414 schedule_timeout_killable(penalty_jiffies);
2415 psi_memstall_leave(&pflags);
2416
2417 out:
2418 css_put(&memcg->css);
2419 }
2420
2421 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2422 unsigned int nr_pages)
2423 {
2424 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2425 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2426 struct mem_cgroup *mem_over_limit;
2427 struct page_counter *counter;
2428 unsigned long nr_reclaimed;
2429 bool may_swap = true;
2430 bool drained = false;
2431 enum oom_status oom_status;
2432
2433 if (mem_cgroup_is_root(memcg))
2434 return 0;
2435 retry:
2436 if (consume_stock(memcg, nr_pages))
2437 return 0;
2438
2439 if (!do_memsw_account() ||
2440 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2441 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2442 goto done_restock;
2443 if (do_memsw_account())
2444 page_counter_uncharge(&memcg->memsw, batch);
2445 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2446 } else {
2447 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2448 may_swap = false;
2449 }
2450
2451 if (batch > nr_pages) {
2452 batch = nr_pages;
2453 goto retry;
2454 }
2455
2456 /*
2457 * Memcg doesn't have a dedicated reserve for atomic
2458 * allocations. But like the global atomic pool, we need to
2459 * put the burden of reclaim on regular allocation requests
2460 * and let these go through as privileged allocations.
2461 */
2462 if (gfp_mask & __GFP_ATOMIC)
2463 goto force;
2464
2465 /*
2466 * Unlike in global OOM situations, memcg is not in a physical
2467 * memory shortage. Allow dying and OOM-killed tasks to
2468 * bypass the last charges so that they can exit quickly and
2469 * free their memory.
2470 */
2471 if (unlikely(should_force_charge()))
2472 goto force;
2473
2474 /*
2475 * Prevent unbounded recursion when reclaim operations need to
2476 * allocate memory. This might exceed the limits temporarily,
2477 * but we prefer facilitating memory reclaim and getting back
2478 * under the limit over triggering OOM kills in these cases.
2479 */
2480 if (unlikely(current->flags & PF_MEMALLOC))
2481 goto force;
2482
2483 if (unlikely(task_in_memcg_oom(current)))
2484 goto nomem;
2485
2486 if (!gfpflags_allow_blocking(gfp_mask))
2487 goto nomem;
2488
2489 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2490
2491 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2492 gfp_mask, may_swap);
2493
2494 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2495 goto retry;
2496
2497 if (!drained) {
2498 drain_all_stock(mem_over_limit);
2499 drained = true;
2500 goto retry;
2501 }
2502
2503 if (gfp_mask & __GFP_NORETRY)
2504 goto nomem;
2505 /*
2506 * Even though the limit is exceeded at this point, reclaim
2507 * may have been able to free some pages. Retry the charge
2508 * before killing the task.
2509 *
2510 * Only for regular pages, though: huge pages are rather
2511 * unlikely to succeed so close to the limit, and we fall back
2512 * to regular pages anyway in case of failure.
2513 */
2514 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2515 goto retry;
2516 /*
2517 * At task move, charge accounts can be doubly counted. So, it's
2518 * better to wait until the end of task_move if something is going on.
2519 */
2520 if (mem_cgroup_wait_acct_move(mem_over_limit))
2521 goto retry;
2522
2523 if (nr_retries--)
2524 goto retry;
2525
2526 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2527 goto nomem;
2528
2529 if (gfp_mask & __GFP_NOFAIL)
2530 goto force;
2531
2532 if (fatal_signal_pending(current))
2533 goto force;
2534
2535 /*
2536 * keep retrying as long as the memcg oom killer is able to make
2537 * a forward progress or bypass the charge if the oom killer
2538 * couldn't make any progress.
2539 */
2540 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2541 get_order(nr_pages * PAGE_SIZE));
2542 switch (oom_status) {
2543 case OOM_SUCCESS:
2544 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2545 goto retry;
2546 case OOM_FAILED:
2547 goto force;
2548 default:
2549 goto nomem;
2550 }
2551 nomem:
2552 if (!(gfp_mask & __GFP_NOFAIL))
2553 return -ENOMEM;
2554 force:
2555 /*
2556 * The allocation either can't fail or will lead to more memory
2557 * being freed very soon. Allow memory usage go over the limit
2558 * temporarily by force charging it.
2559 */
2560 page_counter_charge(&memcg->memory, nr_pages);
2561 if (do_memsw_account())
2562 page_counter_charge(&memcg->memsw, nr_pages);
2563 css_get_many(&memcg->css, nr_pages);
2564
2565 return 0;
2566
2567 done_restock:
2568 css_get_many(&memcg->css, batch);
2569 if (batch > nr_pages)
2570 refill_stock(memcg, batch - nr_pages);
2571
2572 /*
2573 * If the hierarchy is above the normal consumption range, schedule
2574 * reclaim on returning to userland. We can perform reclaim here
2575 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2576 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2577 * not recorded as it most likely matches current's and won't
2578 * change in the meantime. As high limit is checked again before
2579 * reclaim, the cost of mismatch is negligible.
2580 */
2581 do {
2582 if (page_counter_read(&memcg->memory) > memcg->high) {
2583 /* Don't bother a random interrupted task */
2584 if (in_interrupt()) {
2585 schedule_work(&memcg->high_work);
2586 break;
2587 }
2588 current->memcg_nr_pages_over_high += batch;
2589 set_notify_resume(current);
2590 break;
2591 }
2592 } while ((memcg = parent_mem_cgroup(memcg)));
2593
2594 return 0;
2595 }
2596
2597 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2598 {
2599 if (mem_cgroup_is_root(memcg))
2600 return;
2601
2602 page_counter_uncharge(&memcg->memory, nr_pages);
2603 if (do_memsw_account())
2604 page_counter_uncharge(&memcg->memsw, nr_pages);
2605
2606 css_put_many(&memcg->css, nr_pages);
2607 }
2608
2609 static void lock_page_lru(struct page *page, int *isolated)
2610 {
2611 pg_data_t *pgdat = page_pgdat(page);
2612
2613 spin_lock_irq(&pgdat->lru_lock);
2614 if (PageLRU(page)) {
2615 struct lruvec *lruvec;
2616
2617 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2618 ClearPageLRU(page);
2619 del_page_from_lru_list(page, lruvec, page_lru(page));
2620 *isolated = 1;
2621 } else
2622 *isolated = 0;
2623 }
2624
2625 static void unlock_page_lru(struct page *page, int isolated)
2626 {
2627 pg_data_t *pgdat = page_pgdat(page);
2628
2629 if (isolated) {
2630 struct lruvec *lruvec;
2631
2632 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2633 VM_BUG_ON_PAGE(PageLRU(page), page);
2634 SetPageLRU(page);
2635 add_page_to_lru_list(page, lruvec, page_lru(page));
2636 }
2637 spin_unlock_irq(&pgdat->lru_lock);
2638 }
2639
2640 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2641 bool lrucare)
2642 {
2643 int isolated;
2644
2645 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2646
2647 /*
2648 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2649 * may already be on some other mem_cgroup's LRU. Take care of it.
2650 */
2651 if (lrucare)
2652 lock_page_lru(page, &isolated);
2653
2654 /*
2655 * Nobody should be changing or seriously looking at
2656 * page->mem_cgroup at this point:
2657 *
2658 * - the page is uncharged
2659 *
2660 * - the page is off-LRU
2661 *
2662 * - an anonymous fault has exclusive page access, except for
2663 * a locked page table
2664 *
2665 * - a page cache insertion, a swapin fault, or a migration
2666 * have the page locked
2667 */
2668 page->mem_cgroup = memcg;
2669
2670 if (lrucare)
2671 unlock_page_lru(page, isolated);
2672 }
2673
2674 #ifdef CONFIG_MEMCG_KMEM
2675 /*
2676 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2677 *
2678 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2679 * cgroup_mutex, etc.
2680 */
2681 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2682 {
2683 struct page *page;
2684
2685 if (mem_cgroup_disabled())
2686 return NULL;
2687
2688 page = virt_to_head_page(p);
2689
2690 /*
2691 * Slab pages don't have page->mem_cgroup set because corresponding
2692 * kmem caches can be reparented during the lifetime. That's why
2693 * memcg_from_slab_page() should be used instead.
2694 */
2695 if (PageSlab(page))
2696 return memcg_from_slab_page(page);
2697
2698 /* All other pages use page->mem_cgroup */
2699 return page->mem_cgroup;
2700 }
2701
2702 static int memcg_alloc_cache_id(void)
2703 {
2704 int id, size;
2705 int err;
2706
2707 id = ida_simple_get(&memcg_cache_ida,
2708 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2709 if (id < 0)
2710 return id;
2711
2712 if (id < memcg_nr_cache_ids)
2713 return id;
2714
2715 /*
2716 * There's no space for the new id in memcg_caches arrays,
2717 * so we have to grow them.
2718 */
2719 down_write(&memcg_cache_ids_sem);
2720
2721 size = 2 * (id + 1);
2722 if (size < MEMCG_CACHES_MIN_SIZE)
2723 size = MEMCG_CACHES_MIN_SIZE;
2724 else if (size > MEMCG_CACHES_MAX_SIZE)
2725 size = MEMCG_CACHES_MAX_SIZE;
2726
2727 err = memcg_update_all_caches(size);
2728 if (!err)
2729 err = memcg_update_all_list_lrus(size);
2730 if (!err)
2731 memcg_nr_cache_ids = size;
2732
2733 up_write(&memcg_cache_ids_sem);
2734
2735 if (err) {
2736 ida_simple_remove(&memcg_cache_ida, id);
2737 return err;
2738 }
2739 return id;
2740 }
2741
2742 static void memcg_free_cache_id(int id)
2743 {
2744 ida_simple_remove(&memcg_cache_ida, id);
2745 }
2746
2747 struct memcg_kmem_cache_create_work {
2748 struct mem_cgroup *memcg;
2749 struct kmem_cache *cachep;
2750 struct work_struct work;
2751 };
2752
2753 static void memcg_kmem_cache_create_func(struct work_struct *w)
2754 {
2755 struct memcg_kmem_cache_create_work *cw =
2756 container_of(w, struct memcg_kmem_cache_create_work, work);
2757 struct mem_cgroup *memcg = cw->memcg;
2758 struct kmem_cache *cachep = cw->cachep;
2759
2760 memcg_create_kmem_cache(memcg, cachep);
2761
2762 css_put(&memcg->css);
2763 kfree(cw);
2764 }
2765
2766 /*
2767 * Enqueue the creation of a per-memcg kmem_cache.
2768 */
2769 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2770 struct kmem_cache *cachep)
2771 {
2772 struct memcg_kmem_cache_create_work *cw;
2773
2774 if (!css_tryget_online(&memcg->css))
2775 return;
2776
2777 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2778 if (!cw)
2779 return;
2780
2781 cw->memcg = memcg;
2782 cw->cachep = cachep;
2783 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2784
2785 queue_work(memcg_kmem_cache_wq, &cw->work);
2786 }
2787
2788 static inline bool memcg_kmem_bypass(void)
2789 {
2790 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2791 return true;
2792 return false;
2793 }
2794
2795 /**
2796 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2797 * @cachep: the original global kmem cache
2798 *
2799 * Return the kmem_cache we're supposed to use for a slab allocation.
2800 * We try to use the current memcg's version of the cache.
2801 *
2802 * If the cache does not exist yet, if we are the first user of it, we
2803 * create it asynchronously in a workqueue and let the current allocation
2804 * go through with the original cache.
2805 *
2806 * This function takes a reference to the cache it returns to assure it
2807 * won't get destroyed while we are working with it. Once the caller is
2808 * done with it, memcg_kmem_put_cache() must be called to release the
2809 * reference.
2810 */
2811 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2812 {
2813 struct mem_cgroup *memcg;
2814 struct kmem_cache *memcg_cachep;
2815 struct memcg_cache_array *arr;
2816 int kmemcg_id;
2817
2818 VM_BUG_ON(!is_root_cache(cachep));
2819
2820 if (memcg_kmem_bypass())
2821 return cachep;
2822
2823 rcu_read_lock();
2824
2825 if (unlikely(current->active_memcg))
2826 memcg = current->active_memcg;
2827 else
2828 memcg = mem_cgroup_from_task(current);
2829
2830 if (!memcg || memcg == root_mem_cgroup)
2831 goto out_unlock;
2832
2833 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2834 if (kmemcg_id < 0)
2835 goto out_unlock;
2836
2837 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2838
2839 /*
2840 * Make sure we will access the up-to-date value. The code updating
2841 * memcg_caches issues a write barrier to match the data dependency
2842 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2843 */
2844 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2845
2846 /*
2847 * If we are in a safe context (can wait, and not in interrupt
2848 * context), we could be be predictable and return right away.
2849 * This would guarantee that the allocation being performed
2850 * already belongs in the new cache.
2851 *
2852 * However, there are some clashes that can arrive from locking.
2853 * For instance, because we acquire the slab_mutex while doing
2854 * memcg_create_kmem_cache, this means no further allocation
2855 * could happen with the slab_mutex held. So it's better to
2856 * defer everything.
2857 *
2858 * If the memcg is dying or memcg_cache is about to be released,
2859 * don't bother creating new kmem_caches. Because memcg_cachep
2860 * is ZEROed as the fist step of kmem offlining, we don't need
2861 * percpu_ref_tryget_live() here. css_tryget_online() check in
2862 * memcg_schedule_kmem_cache_create() will prevent us from
2863 * creation of a new kmem_cache.
2864 */
2865 if (unlikely(!memcg_cachep))
2866 memcg_schedule_kmem_cache_create(memcg, cachep);
2867 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2868 cachep = memcg_cachep;
2869 out_unlock:
2870 rcu_read_unlock();
2871 return cachep;
2872 }
2873
2874 /**
2875 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2876 * @cachep: the cache returned by memcg_kmem_get_cache
2877 */
2878 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2879 {
2880 if (!is_root_cache(cachep))
2881 percpu_ref_put(&cachep->memcg_params.refcnt);
2882 }
2883
2884 /**
2885 * __memcg_kmem_charge_memcg: charge a kmem page
2886 * @page: page to charge
2887 * @gfp: reclaim mode
2888 * @order: allocation order
2889 * @memcg: memory cgroup to charge
2890 *
2891 * Returns 0 on success, an error code on failure.
2892 */
2893 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2894 struct mem_cgroup *memcg)
2895 {
2896 unsigned int nr_pages = 1 << order;
2897 struct page_counter *counter;
2898 int ret;
2899
2900 ret = try_charge(memcg, gfp, nr_pages);
2901 if (ret)
2902 return ret;
2903
2904 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2905 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2906
2907 /*
2908 * Enforce __GFP_NOFAIL allocation because callers are not
2909 * prepared to see failures and likely do not have any failure
2910 * handling code.
2911 */
2912 if (gfp & __GFP_NOFAIL) {
2913 page_counter_charge(&memcg->kmem, nr_pages);
2914 return 0;
2915 }
2916 cancel_charge(memcg, nr_pages);
2917 return -ENOMEM;
2918 }
2919 return 0;
2920 }
2921
2922 /**
2923 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2924 * @page: page to charge
2925 * @gfp: reclaim mode
2926 * @order: allocation order
2927 *
2928 * Returns 0 on success, an error code on failure.
2929 */
2930 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2931 {
2932 struct mem_cgroup *memcg;
2933 int ret = 0;
2934
2935 if (memcg_kmem_bypass())
2936 return 0;
2937
2938 memcg = get_mem_cgroup_from_current();
2939 if (!mem_cgroup_is_root(memcg)) {
2940 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2941 if (!ret) {
2942 page->mem_cgroup = memcg;
2943 __SetPageKmemcg(page);
2944 }
2945 }
2946 css_put(&memcg->css);
2947 return ret;
2948 }
2949
2950 /**
2951 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2952 * @memcg: memcg to uncharge
2953 * @nr_pages: number of pages to uncharge
2954 */
2955 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2956 unsigned int nr_pages)
2957 {
2958 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2959 page_counter_uncharge(&memcg->kmem, nr_pages);
2960
2961 page_counter_uncharge(&memcg->memory, nr_pages);
2962 if (do_memsw_account())
2963 page_counter_uncharge(&memcg->memsw, nr_pages);
2964 }
2965 /**
2966 * __memcg_kmem_uncharge: uncharge a kmem page
2967 * @page: page to uncharge
2968 * @order: allocation order
2969 */
2970 void __memcg_kmem_uncharge(struct page *page, int order)
2971 {
2972 struct mem_cgroup *memcg = page->mem_cgroup;
2973 unsigned int nr_pages = 1 << order;
2974
2975 if (!memcg)
2976 return;
2977
2978 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2979 __memcg_kmem_uncharge_memcg(memcg, nr_pages);
2980 page->mem_cgroup = NULL;
2981
2982 /* slab pages do not have PageKmemcg flag set */
2983 if (PageKmemcg(page))
2984 __ClearPageKmemcg(page);
2985
2986 css_put_many(&memcg->css, nr_pages);
2987 }
2988 #endif /* CONFIG_MEMCG_KMEM */
2989
2990 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2991
2992 /*
2993 * Because tail pages are not marked as "used", set it. We're under
2994 * pgdat->lru_lock and migration entries setup in all page mappings.
2995 */
2996 void mem_cgroup_split_huge_fixup(struct page *head)
2997 {
2998 int i;
2999
3000 if (mem_cgroup_disabled())
3001 return;
3002
3003 for (i = 1; i < HPAGE_PMD_NR; i++)
3004 head[i].mem_cgroup = head->mem_cgroup;
3005
3006 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
3007 }
3008 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3009
3010 #ifdef CONFIG_MEMCG_SWAP
3011 /**
3012 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3013 * @entry: swap entry to be moved
3014 * @from: mem_cgroup which the entry is moved from
3015 * @to: mem_cgroup which the entry is moved to
3016 *
3017 * It succeeds only when the swap_cgroup's record for this entry is the same
3018 * as the mem_cgroup's id of @from.
3019 *
3020 * Returns 0 on success, -EINVAL on failure.
3021 *
3022 * The caller must have charged to @to, IOW, called page_counter_charge() about
3023 * both res and memsw, and called css_get().
3024 */
3025 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3026 struct mem_cgroup *from, struct mem_cgroup *to)
3027 {
3028 unsigned short old_id, new_id;
3029
3030 old_id = mem_cgroup_id(from);
3031 new_id = mem_cgroup_id(to);
3032
3033 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3034 mod_memcg_state(from, MEMCG_SWAP, -1);
3035 mod_memcg_state(to, MEMCG_SWAP, 1);
3036 return 0;
3037 }
3038 return -EINVAL;
3039 }
3040 #else
3041 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3042 struct mem_cgroup *from, struct mem_cgroup *to)
3043 {
3044 return -EINVAL;
3045 }
3046 #endif
3047
3048 static DEFINE_MUTEX(memcg_max_mutex);
3049
3050 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3051 unsigned long max, bool memsw)
3052 {
3053 bool enlarge = false;
3054 bool drained = false;
3055 int ret;
3056 bool limits_invariant;
3057 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3058
3059 do {
3060 if (signal_pending(current)) {
3061 ret = -EINTR;
3062 break;
3063 }
3064
3065 mutex_lock(&memcg_max_mutex);
3066 /*
3067 * Make sure that the new limit (memsw or memory limit) doesn't
3068 * break our basic invariant rule memory.max <= memsw.max.
3069 */
3070 limits_invariant = memsw ? max >= memcg->memory.max :
3071 max <= memcg->memsw.max;
3072 if (!limits_invariant) {
3073 mutex_unlock(&memcg_max_mutex);
3074 ret = -EINVAL;
3075 break;
3076 }
3077 if (max > counter->max)
3078 enlarge = true;
3079 ret = page_counter_set_max(counter, max);
3080 mutex_unlock(&memcg_max_mutex);
3081
3082 if (!ret)
3083 break;
3084
3085 if (!drained) {
3086 drain_all_stock(memcg);
3087 drained = true;
3088 continue;
3089 }
3090
3091 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3092 GFP_KERNEL, !memsw)) {
3093 ret = -EBUSY;
3094 break;
3095 }
3096 } while (true);
3097
3098 if (!ret && enlarge)
3099 memcg_oom_recover(memcg);
3100
3101 return ret;
3102 }
3103
3104 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3105 gfp_t gfp_mask,
3106 unsigned long *total_scanned)
3107 {
3108 unsigned long nr_reclaimed = 0;
3109 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3110 unsigned long reclaimed;
3111 int loop = 0;
3112 struct mem_cgroup_tree_per_node *mctz;
3113 unsigned long excess;
3114 unsigned long nr_scanned;
3115
3116 if (order > 0)
3117 return 0;
3118
3119 mctz = soft_limit_tree_node(pgdat->node_id);
3120
3121 /*
3122 * Do not even bother to check the largest node if the root
3123 * is empty. Do it lockless to prevent lock bouncing. Races
3124 * are acceptable as soft limit is best effort anyway.
3125 */
3126 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3127 return 0;
3128
3129 /*
3130 * This loop can run a while, specially if mem_cgroup's continuously
3131 * keep exceeding their soft limit and putting the system under
3132 * pressure
3133 */
3134 do {
3135 if (next_mz)
3136 mz = next_mz;
3137 else
3138 mz = mem_cgroup_largest_soft_limit_node(mctz);
3139 if (!mz)
3140 break;
3141
3142 nr_scanned = 0;
3143 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3144 gfp_mask, &nr_scanned);
3145 nr_reclaimed += reclaimed;
3146 *total_scanned += nr_scanned;
3147 spin_lock_irq(&mctz->lock);
3148 __mem_cgroup_remove_exceeded(mz, mctz);
3149
3150 /*
3151 * If we failed to reclaim anything from this memory cgroup
3152 * it is time to move on to the next cgroup
3153 */
3154 next_mz = NULL;
3155 if (!reclaimed)
3156 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3157
3158 excess = soft_limit_excess(mz->memcg);
3159 /*
3160 * One school of thought says that we should not add
3161 * back the node to the tree if reclaim returns 0.
3162 * But our reclaim could return 0, simply because due
3163 * to priority we are exposing a smaller subset of
3164 * memory to reclaim from. Consider this as a longer
3165 * term TODO.
3166 */
3167 /* If excess == 0, no tree ops */
3168 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3169 spin_unlock_irq(&mctz->lock);
3170 css_put(&mz->memcg->css);
3171 loop++;
3172 /*
3173 * Could not reclaim anything and there are no more
3174 * mem cgroups to try or we seem to be looping without
3175 * reclaiming anything.
3176 */
3177 if (!nr_reclaimed &&
3178 (next_mz == NULL ||
3179 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3180 break;
3181 } while (!nr_reclaimed);
3182 if (next_mz)
3183 css_put(&next_mz->memcg->css);
3184 return nr_reclaimed;
3185 }
3186
3187 /*
3188 * Test whether @memcg has children, dead or alive. Note that this
3189 * function doesn't care whether @memcg has use_hierarchy enabled and
3190 * returns %true if there are child csses according to the cgroup
3191 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3192 */
3193 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3194 {
3195 bool ret;
3196
3197 rcu_read_lock();
3198 ret = css_next_child(NULL, &memcg->css);
3199 rcu_read_unlock();
3200 return ret;
3201 }
3202
3203 /*
3204 * Reclaims as many pages from the given memcg as possible.
3205 *
3206 * Caller is responsible for holding css reference for memcg.
3207 */
3208 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3209 {
3210 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3211
3212 /* we call try-to-free pages for make this cgroup empty */
3213 lru_add_drain_all();
3214
3215 drain_all_stock(memcg);
3216
3217 /* try to free all pages in this cgroup */
3218 while (nr_retries && page_counter_read(&memcg->memory)) {
3219 int progress;
3220
3221 if (signal_pending(current))
3222 return -EINTR;
3223
3224 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3225 GFP_KERNEL, true);
3226 if (!progress) {
3227 nr_retries--;
3228 /* maybe some writeback is necessary */
3229 congestion_wait(BLK_RW_ASYNC, HZ/10);
3230 }
3231
3232 }
3233
3234 return 0;
3235 }
3236
3237 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3238 char *buf, size_t nbytes,
3239 loff_t off)
3240 {
3241 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3242
3243 if (mem_cgroup_is_root(memcg))
3244 return -EINVAL;
3245 return mem_cgroup_force_empty(memcg) ?: nbytes;
3246 }
3247
3248 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3249 struct cftype *cft)
3250 {
3251 return mem_cgroup_from_css(css)->use_hierarchy;
3252 }
3253
3254 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3255 struct cftype *cft, u64 val)
3256 {
3257 int retval = 0;
3258 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3259 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3260
3261 if (memcg->use_hierarchy == val)
3262 return 0;
3263
3264 /*
3265 * If parent's use_hierarchy is set, we can't make any modifications
3266 * in the child subtrees. If it is unset, then the change can
3267 * occur, provided the current cgroup has no children.
3268 *
3269 * For the root cgroup, parent_mem is NULL, we allow value to be
3270 * set if there are no children.
3271 */
3272 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3273 (val == 1 || val == 0)) {
3274 if (!memcg_has_children(memcg))
3275 memcg->use_hierarchy = val;
3276 else
3277 retval = -EBUSY;
3278 } else
3279 retval = -EINVAL;
3280
3281 return retval;
3282 }
3283
3284 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3285 {
3286 unsigned long val;
3287
3288 if (mem_cgroup_is_root(memcg)) {
3289 val = memcg_page_state(memcg, MEMCG_CACHE) +
3290 memcg_page_state(memcg, MEMCG_RSS);
3291 if (swap)
3292 val += memcg_page_state(memcg, MEMCG_SWAP);
3293 } else {
3294 if (!swap)
3295 val = page_counter_read(&memcg->memory);
3296 else
3297 val = page_counter_read(&memcg->memsw);
3298 }
3299 return val;
3300 }
3301
3302 enum {
3303 RES_USAGE,
3304 RES_LIMIT,
3305 RES_MAX_USAGE,
3306 RES_FAILCNT,
3307 RES_SOFT_LIMIT,
3308 };
3309
3310 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3311 struct cftype *cft)
3312 {
3313 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3314 struct page_counter *counter;
3315
3316 switch (MEMFILE_TYPE(cft->private)) {
3317 case _MEM:
3318 counter = &memcg->memory;
3319 break;
3320 case _MEMSWAP:
3321 counter = &memcg->memsw;
3322 break;
3323 case _KMEM:
3324 counter = &memcg->kmem;
3325 break;
3326 case _TCP:
3327 counter = &memcg->tcpmem;
3328 break;
3329 default:
3330 BUG();
3331 }
3332
3333 switch (MEMFILE_ATTR(cft->private)) {
3334 case RES_USAGE:
3335 if (counter == &memcg->memory)
3336 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3337 if (counter == &memcg->memsw)
3338 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3339 return (u64)page_counter_read(counter) * PAGE_SIZE;
3340 case RES_LIMIT:
3341 return (u64)counter->max * PAGE_SIZE;
3342 case RES_MAX_USAGE:
3343 return (u64)counter->watermark * PAGE_SIZE;
3344 case RES_FAILCNT:
3345 return counter->failcnt;
3346 case RES_SOFT_LIMIT:
3347 return (u64)memcg->soft_limit * PAGE_SIZE;
3348 default:
3349 BUG();
3350 }
3351 }
3352
3353 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3354 {
3355 unsigned long stat[MEMCG_NR_STAT] = {0};
3356 struct mem_cgroup *mi;
3357 int node, cpu, i;
3358
3359 for_each_online_cpu(cpu)
3360 for (i = 0; i < MEMCG_NR_STAT; i++)
3361 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3362
3363 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3364 for (i = 0; i < MEMCG_NR_STAT; i++)
3365 atomic_long_add(stat[i], &mi->vmstats[i]);
3366
3367 for_each_node(node) {
3368 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3369 struct mem_cgroup_per_node *pi;
3370
3371 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3372 stat[i] = 0;
3373
3374 for_each_online_cpu(cpu)
3375 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3376 stat[i] += per_cpu(
3377 pn->lruvec_stat_cpu->count[i], cpu);
3378
3379 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3380 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3381 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3382 }
3383 }
3384
3385 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3386 {
3387 unsigned long events[NR_VM_EVENT_ITEMS];
3388 struct mem_cgroup *mi;
3389 int cpu, i;
3390
3391 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3392 events[i] = 0;
3393
3394 for_each_online_cpu(cpu)
3395 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3396 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3397 cpu);
3398
3399 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3400 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3401 atomic_long_add(events[i], &mi->vmevents[i]);
3402 }
3403
3404 #ifdef CONFIG_MEMCG_KMEM
3405 static int memcg_online_kmem(struct mem_cgroup *memcg)
3406 {
3407 int memcg_id;
3408
3409 if (cgroup_memory_nokmem)
3410 return 0;
3411
3412 BUG_ON(memcg->kmemcg_id >= 0);
3413 BUG_ON(memcg->kmem_state);
3414
3415 memcg_id = memcg_alloc_cache_id();
3416 if (memcg_id < 0)
3417 return memcg_id;
3418
3419 static_branch_inc(&memcg_kmem_enabled_key);
3420 /*
3421 * A memory cgroup is considered kmem-online as soon as it gets
3422 * kmemcg_id. Setting the id after enabling static branching will
3423 * guarantee no one starts accounting before all call sites are
3424 * patched.
3425 */
3426 memcg->kmemcg_id = memcg_id;
3427 memcg->kmem_state = KMEM_ONLINE;
3428 INIT_LIST_HEAD(&memcg->kmem_caches);
3429
3430 return 0;
3431 }
3432
3433 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3434 {
3435 struct cgroup_subsys_state *css;
3436 struct mem_cgroup *parent, *child;
3437 int kmemcg_id;
3438
3439 if (memcg->kmem_state != KMEM_ONLINE)
3440 return;
3441 /*
3442 * Clear the online state before clearing memcg_caches array
3443 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3444 * guarantees that no cache will be created for this cgroup
3445 * after we are done (see memcg_create_kmem_cache()).
3446 */
3447 memcg->kmem_state = KMEM_ALLOCATED;
3448
3449 parent = parent_mem_cgroup(memcg);
3450 if (!parent)
3451 parent = root_mem_cgroup;
3452
3453 /*
3454 * Deactivate and reparent kmem_caches.
3455 */
3456 memcg_deactivate_kmem_caches(memcg, parent);
3457
3458 kmemcg_id = memcg->kmemcg_id;
3459 BUG_ON(kmemcg_id < 0);
3460
3461 /*
3462 * Change kmemcg_id of this cgroup and all its descendants to the
3463 * parent's id, and then move all entries from this cgroup's list_lrus
3464 * to ones of the parent. After we have finished, all list_lrus
3465 * corresponding to this cgroup are guaranteed to remain empty. The
3466 * ordering is imposed by list_lru_node->lock taken by
3467 * memcg_drain_all_list_lrus().
3468 */
3469 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3470 css_for_each_descendant_pre(css, &memcg->css) {
3471 child = mem_cgroup_from_css(css);
3472 BUG_ON(child->kmemcg_id != kmemcg_id);
3473 child->kmemcg_id = parent->kmemcg_id;
3474 if (!memcg->use_hierarchy)
3475 break;
3476 }
3477 rcu_read_unlock();
3478
3479 memcg_drain_all_list_lrus(kmemcg_id, parent);
3480
3481 memcg_free_cache_id(kmemcg_id);
3482 }
3483
3484 static void memcg_free_kmem(struct mem_cgroup *memcg)
3485 {
3486 /* css_alloc() failed, offlining didn't happen */
3487 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3488 memcg_offline_kmem(memcg);
3489
3490 if (memcg->kmem_state == KMEM_ALLOCATED) {
3491 WARN_ON(!list_empty(&memcg->kmem_caches));
3492 static_branch_dec(&memcg_kmem_enabled_key);
3493 }
3494 }
3495 #else
3496 static int memcg_online_kmem(struct mem_cgroup *memcg)
3497 {
3498 return 0;
3499 }
3500 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3501 {
3502 }
3503 static void memcg_free_kmem(struct mem_cgroup *memcg)
3504 {
3505 }
3506 #endif /* CONFIG_MEMCG_KMEM */
3507
3508 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3509 unsigned long max)
3510 {
3511 int ret;
3512
3513 mutex_lock(&memcg_max_mutex);
3514 ret = page_counter_set_max(&memcg->kmem, max);
3515 mutex_unlock(&memcg_max_mutex);
3516 return ret;
3517 }
3518
3519 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3520 {
3521 int ret;
3522
3523 mutex_lock(&memcg_max_mutex);
3524
3525 ret = page_counter_set_max(&memcg->tcpmem, max);
3526 if (ret)
3527 goto out;
3528
3529 if (!memcg->tcpmem_active) {
3530 /*
3531 * The active flag needs to be written after the static_key
3532 * update. This is what guarantees that the socket activation
3533 * function is the last one to run. See mem_cgroup_sk_alloc()
3534 * for details, and note that we don't mark any socket as
3535 * belonging to this memcg until that flag is up.
3536 *
3537 * We need to do this, because static_keys will span multiple
3538 * sites, but we can't control their order. If we mark a socket
3539 * as accounted, but the accounting functions are not patched in
3540 * yet, we'll lose accounting.
3541 *
3542 * We never race with the readers in mem_cgroup_sk_alloc(),
3543 * because when this value change, the code to process it is not
3544 * patched in yet.
3545 */
3546 static_branch_inc(&memcg_sockets_enabled_key);
3547 memcg->tcpmem_active = true;
3548 }
3549 out:
3550 mutex_unlock(&memcg_max_mutex);
3551 return ret;
3552 }
3553
3554 /*
3555 * The user of this function is...
3556 * RES_LIMIT.
3557 */
3558 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3559 char *buf, size_t nbytes, loff_t off)
3560 {
3561 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3562 unsigned long nr_pages;
3563 int ret;
3564
3565 buf = strstrip(buf);
3566 ret = page_counter_memparse(buf, "-1", &nr_pages);
3567 if (ret)
3568 return ret;
3569
3570 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3571 case RES_LIMIT:
3572 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3573 ret = -EINVAL;
3574 break;
3575 }
3576 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3577 case _MEM:
3578 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3579 break;
3580 case _MEMSWAP:
3581 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3582 break;
3583 case _KMEM:
3584 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3585 "Please report your usecase to linux-mm@kvack.org if you "
3586 "depend on this functionality.\n");
3587 ret = memcg_update_kmem_max(memcg, nr_pages);
3588 break;
3589 case _TCP:
3590 ret = memcg_update_tcp_max(memcg, nr_pages);
3591 break;
3592 }
3593 break;
3594 case RES_SOFT_LIMIT:
3595 memcg->soft_limit = nr_pages;
3596 ret = 0;
3597 break;
3598 }
3599 return ret ?: nbytes;
3600 }
3601
3602 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3603 size_t nbytes, loff_t off)
3604 {
3605 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3606 struct page_counter *counter;
3607
3608 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3609 case _MEM:
3610 counter = &memcg->memory;
3611 break;
3612 case _MEMSWAP:
3613 counter = &memcg->memsw;
3614 break;
3615 case _KMEM:
3616 counter = &memcg->kmem;
3617 break;
3618 case _TCP:
3619 counter = &memcg->tcpmem;
3620 break;
3621 default:
3622 BUG();
3623 }
3624
3625 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3626 case RES_MAX_USAGE:
3627 page_counter_reset_watermark(counter);
3628 break;
3629 case RES_FAILCNT:
3630 counter->failcnt = 0;
3631 break;
3632 default:
3633 BUG();
3634 }
3635
3636 return nbytes;
3637 }
3638
3639 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3640 struct cftype *cft)
3641 {
3642 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3643 }
3644
3645 #ifdef CONFIG_MMU
3646 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3647 struct cftype *cft, u64 val)
3648 {
3649 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3650
3651 if (val & ~MOVE_MASK)
3652 return -EINVAL;
3653
3654 /*
3655 * No kind of locking is needed in here, because ->can_attach() will
3656 * check this value once in the beginning of the process, and then carry
3657 * on with stale data. This means that changes to this value will only
3658 * affect task migrations starting after the change.
3659 */
3660 memcg->move_charge_at_immigrate = val;
3661 return 0;
3662 }
3663 #else
3664 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3665 struct cftype *cft, u64 val)
3666 {
3667 return -ENOSYS;
3668 }
3669 #endif
3670
3671 #ifdef CONFIG_NUMA
3672
3673 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3674 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3675 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3676
3677 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3678 int nid, unsigned int lru_mask)
3679 {
3680 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3681 unsigned long nr = 0;
3682 enum lru_list lru;
3683
3684 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3685
3686 for_each_lru(lru) {
3687 if (!(BIT(lru) & lru_mask))
3688 continue;
3689 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3690 }
3691 return nr;
3692 }
3693
3694 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3695 unsigned int lru_mask)
3696 {
3697 unsigned long nr = 0;
3698 enum lru_list lru;
3699
3700 for_each_lru(lru) {
3701 if (!(BIT(lru) & lru_mask))
3702 continue;
3703 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3704 }
3705 return nr;
3706 }
3707
3708 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3709 {
3710 struct numa_stat {
3711 const char *name;
3712 unsigned int lru_mask;
3713 };
3714
3715 static const struct numa_stat stats[] = {
3716 { "total", LRU_ALL },
3717 { "file", LRU_ALL_FILE },
3718 { "anon", LRU_ALL_ANON },
3719 { "unevictable", BIT(LRU_UNEVICTABLE) },
3720 };
3721 const struct numa_stat *stat;
3722 int nid;
3723 unsigned long nr;
3724 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3725
3726 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3727 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3728 seq_printf(m, "%s=%lu", stat->name, nr);
3729 for_each_node_state(nid, N_MEMORY) {
3730 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3731 stat->lru_mask);
3732 seq_printf(m, " N%d=%lu", nid, nr);
3733 }
3734 seq_putc(m, '\n');
3735 }
3736
3737 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3738 struct mem_cgroup *iter;
3739
3740 nr = 0;
3741 for_each_mem_cgroup_tree(iter, memcg)
3742 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3743 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3744 for_each_node_state(nid, N_MEMORY) {
3745 nr = 0;
3746 for_each_mem_cgroup_tree(iter, memcg)
3747 nr += mem_cgroup_node_nr_lru_pages(
3748 iter, nid, stat->lru_mask);
3749 seq_printf(m, " N%d=%lu", nid, nr);
3750 }
3751 seq_putc(m, '\n');
3752 }
3753
3754 return 0;
3755 }
3756 #endif /* CONFIG_NUMA */
3757
3758 static const unsigned int memcg1_stats[] = {
3759 MEMCG_CACHE,
3760 MEMCG_RSS,
3761 MEMCG_RSS_HUGE,
3762 NR_SHMEM,
3763 NR_FILE_MAPPED,
3764 NR_FILE_DIRTY,
3765 NR_WRITEBACK,
3766 MEMCG_SWAP,
3767 };
3768
3769 static const char *const memcg1_stat_names[] = {
3770 "cache",
3771 "rss",
3772 "rss_huge",
3773 "shmem",
3774 "mapped_file",
3775 "dirty",
3776 "writeback",
3777 "swap",
3778 };
3779
3780 /* Universal VM events cgroup1 shows, original sort order */
3781 static const unsigned int memcg1_events[] = {
3782 PGPGIN,
3783 PGPGOUT,
3784 PGFAULT,
3785 PGMAJFAULT,
3786 };
3787
3788 static int memcg_stat_show(struct seq_file *m, void *v)
3789 {
3790 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3791 unsigned long memory, memsw;
3792 struct mem_cgroup *mi;
3793 unsigned int i;
3794
3795 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3796
3797 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3798 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3799 continue;
3800 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3801 memcg_page_state_local(memcg, memcg1_stats[i]) *
3802 PAGE_SIZE);
3803 }
3804
3805 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3806 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3807 memcg_events_local(memcg, memcg1_events[i]));
3808
3809 for (i = 0; i < NR_LRU_LISTS; i++)
3810 seq_printf(m, "%s %lu\n", lru_list_name(i),
3811 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3812 PAGE_SIZE);
3813
3814 /* Hierarchical information */
3815 memory = memsw = PAGE_COUNTER_MAX;
3816 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3817 memory = min(memory, mi->memory.max);
3818 memsw = min(memsw, mi->memsw.max);
3819 }
3820 seq_printf(m, "hierarchical_memory_limit %llu\n",
3821 (u64)memory * PAGE_SIZE);
3822 if (do_memsw_account())
3823 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3824 (u64)memsw * PAGE_SIZE);
3825
3826 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3827 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3828 continue;
3829 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3830 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3831 PAGE_SIZE);
3832 }
3833
3834 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3835 seq_printf(m, "total_%s %llu\n",
3836 vm_event_name(memcg1_events[i]),
3837 (u64)memcg_events(memcg, memcg1_events[i]));
3838
3839 for (i = 0; i < NR_LRU_LISTS; i++)
3840 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3841 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3842 PAGE_SIZE);
3843
3844 #ifdef CONFIG_DEBUG_VM
3845 {
3846 pg_data_t *pgdat;
3847 struct mem_cgroup_per_node *mz;
3848 struct zone_reclaim_stat *rstat;
3849 unsigned long recent_rotated[2] = {0, 0};
3850 unsigned long recent_scanned[2] = {0, 0};
3851
3852 for_each_online_pgdat(pgdat) {
3853 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3854 rstat = &mz->lruvec.reclaim_stat;
3855
3856 recent_rotated[0] += rstat->recent_rotated[0];
3857 recent_rotated[1] += rstat->recent_rotated[1];
3858 recent_scanned[0] += rstat->recent_scanned[0];
3859 recent_scanned[1] += rstat->recent_scanned[1];
3860 }
3861 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3862 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3863 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3864 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3865 }
3866 #endif
3867
3868 return 0;
3869 }
3870
3871 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3872 struct cftype *cft)
3873 {
3874 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3875
3876 return mem_cgroup_swappiness(memcg);
3877 }
3878
3879 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3880 struct cftype *cft, u64 val)
3881 {
3882 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3883
3884 if (val > 100)
3885 return -EINVAL;
3886
3887 if (css->parent)
3888 memcg->swappiness = val;
3889 else
3890 vm_swappiness = val;
3891
3892 return 0;
3893 }
3894
3895 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3896 {
3897 struct mem_cgroup_threshold_ary *t;
3898 unsigned long usage;
3899 int i;
3900
3901 rcu_read_lock();
3902 if (!swap)
3903 t = rcu_dereference(memcg->thresholds.primary);
3904 else
3905 t = rcu_dereference(memcg->memsw_thresholds.primary);
3906
3907 if (!t)
3908 goto unlock;
3909
3910 usage = mem_cgroup_usage(memcg, swap);
3911
3912 /*
3913 * current_threshold points to threshold just below or equal to usage.
3914 * If it's not true, a threshold was crossed after last
3915 * call of __mem_cgroup_threshold().
3916 */
3917 i = t->current_threshold;
3918
3919 /*
3920 * Iterate backward over array of thresholds starting from
3921 * current_threshold and check if a threshold is crossed.
3922 * If none of thresholds below usage is crossed, we read
3923 * only one element of the array here.
3924 */
3925 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3926 eventfd_signal(t->entries[i].eventfd, 1);
3927
3928 /* i = current_threshold + 1 */
3929 i++;
3930
3931 /*
3932 * Iterate forward over array of thresholds starting from
3933 * current_threshold+1 and check if a threshold is crossed.
3934 * If none of thresholds above usage is crossed, we read
3935 * only one element of the array here.
3936 */
3937 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3938 eventfd_signal(t->entries[i].eventfd, 1);
3939
3940 /* Update current_threshold */
3941 t->current_threshold = i - 1;
3942 unlock:
3943 rcu_read_unlock();
3944 }
3945
3946 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3947 {
3948 while (memcg) {
3949 __mem_cgroup_threshold(memcg, false);
3950 if (do_memsw_account())
3951 __mem_cgroup_threshold(memcg, true);
3952
3953 memcg = parent_mem_cgroup(memcg);
3954 }
3955 }
3956
3957 static int compare_thresholds(const void *a, const void *b)
3958 {
3959 const struct mem_cgroup_threshold *_a = a;
3960 const struct mem_cgroup_threshold *_b = b;
3961
3962 if (_a->threshold > _b->threshold)
3963 return 1;
3964
3965 if (_a->threshold < _b->threshold)
3966 return -1;
3967
3968 return 0;
3969 }
3970
3971 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3972 {
3973 struct mem_cgroup_eventfd_list *ev;
3974
3975 spin_lock(&memcg_oom_lock);
3976
3977 list_for_each_entry(ev, &memcg->oom_notify, list)
3978 eventfd_signal(ev->eventfd, 1);
3979
3980 spin_unlock(&memcg_oom_lock);
3981 return 0;
3982 }
3983
3984 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3985 {
3986 struct mem_cgroup *iter;
3987
3988 for_each_mem_cgroup_tree(iter, memcg)
3989 mem_cgroup_oom_notify_cb(iter);
3990 }
3991
3992 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3993 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3994 {
3995 struct mem_cgroup_thresholds *thresholds;
3996 struct mem_cgroup_threshold_ary *new;
3997 unsigned long threshold;
3998 unsigned long usage;
3999 int i, size, ret;
4000
4001 ret = page_counter_memparse(args, "-1", &threshold);
4002 if (ret)
4003 return ret;
4004
4005 mutex_lock(&memcg->thresholds_lock);
4006
4007 if (type == _MEM) {
4008 thresholds = &memcg->thresholds;
4009 usage = mem_cgroup_usage(memcg, false);
4010 } else if (type == _MEMSWAP) {
4011 thresholds = &memcg->memsw_thresholds;
4012 usage = mem_cgroup_usage(memcg, true);
4013 } else
4014 BUG();
4015
4016 /* Check if a threshold crossed before adding a new one */
4017 if (thresholds->primary)
4018 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4019
4020 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4021
4022 /* Allocate memory for new array of thresholds */
4023 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4024 if (!new) {
4025 ret = -ENOMEM;
4026 goto unlock;
4027 }
4028 new->size = size;
4029
4030 /* Copy thresholds (if any) to new array */
4031 if (thresholds->primary) {
4032 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4033 sizeof(struct mem_cgroup_threshold));
4034 }
4035
4036 /* Add new threshold */
4037 new->entries[size - 1].eventfd = eventfd;
4038 new->entries[size - 1].threshold = threshold;
4039
4040 /* Sort thresholds. Registering of new threshold isn't time-critical */
4041 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4042 compare_thresholds, NULL);
4043
4044 /* Find current threshold */
4045 new->current_threshold = -1;
4046 for (i = 0; i < size; i++) {
4047 if (new->entries[i].threshold <= usage) {
4048 /*
4049 * new->current_threshold will not be used until
4050 * rcu_assign_pointer(), so it's safe to increment
4051 * it here.
4052 */
4053 ++new->current_threshold;
4054 } else
4055 break;
4056 }
4057
4058 /* Free old spare buffer and save old primary buffer as spare */
4059 kfree(thresholds->spare);
4060 thresholds->spare = thresholds->primary;
4061
4062 rcu_assign_pointer(thresholds->primary, new);
4063
4064 /* To be sure that nobody uses thresholds */
4065 synchronize_rcu();
4066
4067 unlock:
4068 mutex_unlock(&memcg->thresholds_lock);
4069
4070 return ret;
4071 }
4072
4073 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4074 struct eventfd_ctx *eventfd, const char *args)
4075 {
4076 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4077 }
4078
4079 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4080 struct eventfd_ctx *eventfd, const char *args)
4081 {
4082 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4083 }
4084
4085 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4086 struct eventfd_ctx *eventfd, enum res_type type)
4087 {
4088 struct mem_cgroup_thresholds *thresholds;
4089 struct mem_cgroup_threshold_ary *new;
4090 unsigned long usage;
4091 int i, j, size, entries;
4092
4093 mutex_lock(&memcg->thresholds_lock);
4094
4095 if (type == _MEM) {
4096 thresholds = &memcg->thresholds;
4097 usage = mem_cgroup_usage(memcg, false);
4098 } else if (type == _MEMSWAP) {
4099 thresholds = &memcg->memsw_thresholds;
4100 usage = mem_cgroup_usage(memcg, true);
4101 } else
4102 BUG();
4103
4104 if (!thresholds->primary)
4105 goto unlock;
4106
4107 /* Check if a threshold crossed before removing */
4108 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4109
4110 /* Calculate new number of threshold */
4111 size = entries = 0;
4112 for (i = 0; i < thresholds->primary->size; i++) {
4113 if (thresholds->primary->entries[i].eventfd != eventfd)
4114 size++;
4115 else
4116 entries++;
4117 }
4118
4119 new = thresholds->spare;
4120
4121 /* If no items related to eventfd have been cleared, nothing to do */
4122 if (!entries)
4123 goto unlock;
4124
4125 /* Set thresholds array to NULL if we don't have thresholds */
4126 if (!size) {
4127 kfree(new);
4128 new = NULL;
4129 goto swap_buffers;
4130 }
4131
4132 new->size = size;
4133
4134 /* Copy thresholds and find current threshold */
4135 new->current_threshold = -1;
4136 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4137 if (thresholds->primary->entries[i].eventfd == eventfd)
4138 continue;
4139
4140 new->entries[j] = thresholds->primary->entries[i];
4141 if (new->entries[j].threshold <= usage) {
4142 /*
4143 * new->current_threshold will not be used
4144 * until rcu_assign_pointer(), so it's safe to increment
4145 * it here.
4146 */
4147 ++new->current_threshold;
4148 }
4149 j++;
4150 }
4151
4152 swap_buffers:
4153 /* Swap primary and spare array */
4154 thresholds->spare = thresholds->primary;
4155
4156 rcu_assign_pointer(thresholds->primary, new);
4157
4158 /* To be sure that nobody uses thresholds */
4159 synchronize_rcu();
4160
4161 /* If all events are unregistered, free the spare array */
4162 if (!new) {
4163 kfree(thresholds->spare);
4164 thresholds->spare = NULL;
4165 }
4166 unlock:
4167 mutex_unlock(&memcg->thresholds_lock);
4168 }
4169
4170 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4171 struct eventfd_ctx *eventfd)
4172 {
4173 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4174 }
4175
4176 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4177 struct eventfd_ctx *eventfd)
4178 {
4179 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4180 }
4181
4182 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4183 struct eventfd_ctx *eventfd, const char *args)
4184 {
4185 struct mem_cgroup_eventfd_list *event;
4186
4187 event = kmalloc(sizeof(*event), GFP_KERNEL);
4188 if (!event)
4189 return -ENOMEM;
4190
4191 spin_lock(&memcg_oom_lock);
4192
4193 event->eventfd = eventfd;
4194 list_add(&event->list, &memcg->oom_notify);
4195
4196 /* already in OOM ? */
4197 if (memcg->under_oom)
4198 eventfd_signal(eventfd, 1);
4199 spin_unlock(&memcg_oom_lock);
4200
4201 return 0;
4202 }
4203
4204 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4205 struct eventfd_ctx *eventfd)
4206 {
4207 struct mem_cgroup_eventfd_list *ev, *tmp;
4208
4209 spin_lock(&memcg_oom_lock);
4210
4211 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4212 if (ev->eventfd == eventfd) {
4213 list_del(&ev->list);
4214 kfree(ev);
4215 }
4216 }
4217
4218 spin_unlock(&memcg_oom_lock);
4219 }
4220
4221 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4222 {
4223 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4224
4225 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4226 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4227 seq_printf(sf, "oom_kill %lu\n",
4228 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4229 return 0;
4230 }
4231
4232 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4233 struct cftype *cft, u64 val)
4234 {
4235 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4236
4237 /* cannot set to root cgroup and only 0 and 1 are allowed */
4238 if (!css->parent || !((val == 0) || (val == 1)))
4239 return -EINVAL;
4240
4241 memcg->oom_kill_disable = val;
4242 if (!val)
4243 memcg_oom_recover(memcg);
4244
4245 return 0;
4246 }
4247
4248 #ifdef CONFIG_CGROUP_WRITEBACK
4249
4250 #include <trace/events/writeback.h>
4251
4252 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4253 {
4254 return wb_domain_init(&memcg->cgwb_domain, gfp);
4255 }
4256
4257 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4258 {
4259 wb_domain_exit(&memcg->cgwb_domain);
4260 }
4261
4262 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4263 {
4264 wb_domain_size_changed(&memcg->cgwb_domain);
4265 }
4266
4267 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4268 {
4269 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4270
4271 if (!memcg->css.parent)
4272 return NULL;
4273
4274 return &memcg->cgwb_domain;
4275 }
4276
4277 /*
4278 * idx can be of type enum memcg_stat_item or node_stat_item.
4279 * Keep in sync with memcg_exact_page().
4280 */
4281 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4282 {
4283 long x = atomic_long_read(&memcg->vmstats[idx]);
4284 int cpu;
4285
4286 for_each_online_cpu(cpu)
4287 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4288 if (x < 0)
4289 x = 0;
4290 return x;
4291 }
4292
4293 /**
4294 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4295 * @wb: bdi_writeback in question
4296 * @pfilepages: out parameter for number of file pages
4297 * @pheadroom: out parameter for number of allocatable pages according to memcg
4298 * @pdirty: out parameter for number of dirty pages
4299 * @pwriteback: out parameter for number of pages under writeback
4300 *
4301 * Determine the numbers of file, headroom, dirty, and writeback pages in
4302 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4303 * is a bit more involved.
4304 *
4305 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4306 * headroom is calculated as the lowest headroom of itself and the
4307 * ancestors. Note that this doesn't consider the actual amount of
4308 * available memory in the system. The caller should further cap
4309 * *@pheadroom accordingly.
4310 */
4311 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4312 unsigned long *pheadroom, unsigned long *pdirty,
4313 unsigned long *pwriteback)
4314 {
4315 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4316 struct mem_cgroup *parent;
4317
4318 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4319
4320 /* this should eventually include NR_UNSTABLE_NFS */
4321 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4322 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4323 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4324 *pheadroom = PAGE_COUNTER_MAX;
4325
4326 while ((parent = parent_mem_cgroup(memcg))) {
4327 unsigned long ceiling = min(memcg->memory.max, memcg->high);
4328 unsigned long used = page_counter_read(&memcg->memory);
4329
4330 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4331 memcg = parent;
4332 }
4333 }
4334
4335 /*
4336 * Foreign dirty flushing
4337 *
4338 * There's an inherent mismatch between memcg and writeback. The former
4339 * trackes ownership per-page while the latter per-inode. This was a
4340 * deliberate design decision because honoring per-page ownership in the
4341 * writeback path is complicated, may lead to higher CPU and IO overheads
4342 * and deemed unnecessary given that write-sharing an inode across
4343 * different cgroups isn't a common use-case.
4344 *
4345 * Combined with inode majority-writer ownership switching, this works well
4346 * enough in most cases but there are some pathological cases. For
4347 * example, let's say there are two cgroups A and B which keep writing to
4348 * different but confined parts of the same inode. B owns the inode and
4349 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4350 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4351 * triggering background writeback. A will be slowed down without a way to
4352 * make writeback of the dirty pages happen.
4353 *
4354 * Conditions like the above can lead to a cgroup getting repatedly and
4355 * severely throttled after making some progress after each
4356 * dirty_expire_interval while the underyling IO device is almost
4357 * completely idle.
4358 *
4359 * Solving this problem completely requires matching the ownership tracking
4360 * granularities between memcg and writeback in either direction. However,
4361 * the more egregious behaviors can be avoided by simply remembering the
4362 * most recent foreign dirtying events and initiating remote flushes on
4363 * them when local writeback isn't enough to keep the memory clean enough.
4364 *
4365 * The following two functions implement such mechanism. When a foreign
4366 * page - a page whose memcg and writeback ownerships don't match - is
4367 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4368 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4369 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4370 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4371 * foreign bdi_writebacks which haven't expired. Both the numbers of
4372 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4373 * limited to MEMCG_CGWB_FRN_CNT.
4374 *
4375 * The mechanism only remembers IDs and doesn't hold any object references.
4376 * As being wrong occasionally doesn't matter, updates and accesses to the
4377 * records are lockless and racy.
4378 */
4379 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4380 struct bdi_writeback *wb)
4381 {
4382 struct mem_cgroup *memcg = page->mem_cgroup;
4383 struct memcg_cgwb_frn *frn;
4384 u64 now = get_jiffies_64();
4385 u64 oldest_at = now;
4386 int oldest = -1;
4387 int i;
4388
4389 trace_track_foreign_dirty(page, wb);
4390
4391 /*
4392 * Pick the slot to use. If there is already a slot for @wb, keep
4393 * using it. If not replace the oldest one which isn't being
4394 * written out.
4395 */
4396 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4397 frn = &memcg->cgwb_frn[i];
4398 if (frn->bdi_id == wb->bdi->id &&
4399 frn->memcg_id == wb->memcg_css->id)
4400 break;
4401 if (time_before64(frn->at, oldest_at) &&
4402 atomic_read(&frn->done.cnt) == 1) {
4403 oldest = i;
4404 oldest_at = frn->at;
4405 }
4406 }
4407
4408 if (i < MEMCG_CGWB_FRN_CNT) {
4409 /*
4410 * Re-using an existing one. Update timestamp lazily to
4411 * avoid making the cacheline hot. We want them to be
4412 * reasonably up-to-date and significantly shorter than
4413 * dirty_expire_interval as that's what expires the record.
4414 * Use the shorter of 1s and dirty_expire_interval / 8.
4415 */
4416 unsigned long update_intv =
4417 min_t(unsigned long, HZ,
4418 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4419
4420 if (time_before64(frn->at, now - update_intv))
4421 frn->at = now;
4422 } else if (oldest >= 0) {
4423 /* replace the oldest free one */
4424 frn = &memcg->cgwb_frn[oldest];
4425 frn->bdi_id = wb->bdi->id;
4426 frn->memcg_id = wb->memcg_css->id;
4427 frn->at = now;
4428 }
4429 }
4430
4431 /* issue foreign writeback flushes for recorded foreign dirtying events */
4432 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4433 {
4434 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4435 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4436 u64 now = jiffies_64;
4437 int i;
4438
4439 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4440 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4441
4442 /*
4443 * If the record is older than dirty_expire_interval,
4444 * writeback on it has already started. No need to kick it
4445 * off again. Also, don't start a new one if there's
4446 * already one in flight.
4447 */
4448 if (time_after64(frn->at, now - intv) &&
4449 atomic_read(&frn->done.cnt) == 1) {
4450 frn->at = 0;
4451 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4452 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4453 WB_REASON_FOREIGN_FLUSH,
4454 &frn->done);
4455 }
4456 }
4457 }
4458
4459 #else /* CONFIG_CGROUP_WRITEBACK */
4460
4461 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4462 {
4463 return 0;
4464 }
4465
4466 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4467 {
4468 }
4469
4470 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4471 {
4472 }
4473
4474 #endif /* CONFIG_CGROUP_WRITEBACK */
4475
4476 /*
4477 * DO NOT USE IN NEW FILES.
4478 *
4479 * "cgroup.event_control" implementation.
4480 *
4481 * This is way over-engineered. It tries to support fully configurable
4482 * events for each user. Such level of flexibility is completely
4483 * unnecessary especially in the light of the planned unified hierarchy.
4484 *
4485 * Please deprecate this and replace with something simpler if at all
4486 * possible.
4487 */
4488
4489 /*
4490 * Unregister event and free resources.
4491 *
4492 * Gets called from workqueue.
4493 */
4494 static void memcg_event_remove(struct work_struct *work)
4495 {
4496 struct mem_cgroup_event *event =
4497 container_of(work, struct mem_cgroup_event, remove);
4498 struct mem_cgroup *memcg = event->memcg;
4499
4500 remove_wait_queue(event->wqh, &event->wait);
4501
4502 event->unregister_event(memcg, event->eventfd);
4503
4504 /* Notify userspace the event is going away. */
4505 eventfd_signal(event->eventfd, 1);
4506
4507 eventfd_ctx_put(event->eventfd);
4508 kfree(event);
4509 css_put(&memcg->css);
4510 }
4511
4512 /*
4513 * Gets called on EPOLLHUP on eventfd when user closes it.
4514 *
4515 * Called with wqh->lock held and interrupts disabled.
4516 */
4517 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4518 int sync, void *key)
4519 {
4520 struct mem_cgroup_event *event =
4521 container_of(wait, struct mem_cgroup_event, wait);
4522 struct mem_cgroup *memcg = event->memcg;
4523 __poll_t flags = key_to_poll(key);
4524
4525 if (flags & EPOLLHUP) {
4526 /*
4527 * If the event has been detached at cgroup removal, we
4528 * can simply return knowing the other side will cleanup
4529 * for us.
4530 *
4531 * We can't race against event freeing since the other
4532 * side will require wqh->lock via remove_wait_queue(),
4533 * which we hold.
4534 */
4535 spin_lock(&memcg->event_list_lock);
4536 if (!list_empty(&event->list)) {
4537 list_del_init(&event->list);
4538 /*
4539 * We are in atomic context, but cgroup_event_remove()
4540 * may sleep, so we have to call it in workqueue.
4541 */
4542 schedule_work(&event->remove);
4543 }
4544 spin_unlock(&memcg->event_list_lock);
4545 }
4546
4547 return 0;
4548 }
4549
4550 static void memcg_event_ptable_queue_proc(struct file *file,
4551 wait_queue_head_t *wqh, poll_table *pt)
4552 {
4553 struct mem_cgroup_event *event =
4554 container_of(pt, struct mem_cgroup_event, pt);
4555
4556 event->wqh = wqh;
4557 add_wait_queue(wqh, &event->wait);
4558 }
4559
4560 /*
4561 * DO NOT USE IN NEW FILES.
4562 *
4563 * Parse input and register new cgroup event handler.
4564 *
4565 * Input must be in format '<event_fd> <control_fd> <args>'.
4566 * Interpretation of args is defined by control file implementation.
4567 */
4568 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4569 char *buf, size_t nbytes, loff_t off)
4570 {
4571 struct cgroup_subsys_state *css = of_css(of);
4572 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4573 struct mem_cgroup_event *event;
4574 struct cgroup_subsys_state *cfile_css;
4575 unsigned int efd, cfd;
4576 struct fd efile;
4577 struct fd cfile;
4578 const char *name;
4579 char *endp;
4580 int ret;
4581
4582 buf = strstrip(buf);
4583
4584 efd = simple_strtoul(buf, &endp, 10);
4585 if (*endp != ' ')
4586 return -EINVAL;
4587 buf = endp + 1;
4588
4589 cfd = simple_strtoul(buf, &endp, 10);
4590 if ((*endp != ' ') && (*endp != '\0'))
4591 return -EINVAL;
4592 buf = endp + 1;
4593
4594 event = kzalloc(sizeof(*event), GFP_KERNEL);
4595 if (!event)
4596 return -ENOMEM;
4597
4598 event->memcg = memcg;
4599 INIT_LIST_HEAD(&event->list);
4600 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4601 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4602 INIT_WORK(&event->remove, memcg_event_remove);
4603
4604 efile = fdget(efd);
4605 if (!efile.file) {
4606 ret = -EBADF;
4607 goto out_kfree;
4608 }
4609
4610 event->eventfd = eventfd_ctx_fileget(efile.file);
4611 if (IS_ERR(event->eventfd)) {
4612 ret = PTR_ERR(event->eventfd);
4613 goto out_put_efile;
4614 }
4615
4616 cfile = fdget(cfd);
4617 if (!cfile.file) {
4618 ret = -EBADF;
4619 goto out_put_eventfd;
4620 }
4621
4622 /* the process need read permission on control file */
4623 /* AV: shouldn't we check that it's been opened for read instead? */
4624 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4625 if (ret < 0)
4626 goto out_put_cfile;
4627
4628 /*
4629 * Determine the event callbacks and set them in @event. This used
4630 * to be done via struct cftype but cgroup core no longer knows
4631 * about these events. The following is crude but the whole thing
4632 * is for compatibility anyway.
4633 *
4634 * DO NOT ADD NEW FILES.
4635 */
4636 name = cfile.file->f_path.dentry->d_name.name;
4637
4638 if (!strcmp(name, "memory.usage_in_bytes")) {
4639 event->register_event = mem_cgroup_usage_register_event;
4640 event->unregister_event = mem_cgroup_usage_unregister_event;
4641 } else if (!strcmp(name, "memory.oom_control")) {
4642 event->register_event = mem_cgroup_oom_register_event;
4643 event->unregister_event = mem_cgroup_oom_unregister_event;
4644 } else if (!strcmp(name, "memory.pressure_level")) {
4645 event->register_event = vmpressure_register_event;
4646 event->unregister_event = vmpressure_unregister_event;
4647 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4648 event->register_event = memsw_cgroup_usage_register_event;
4649 event->unregister_event = memsw_cgroup_usage_unregister_event;
4650 } else {
4651 ret = -EINVAL;
4652 goto out_put_cfile;
4653 }
4654
4655 /*
4656 * Verify @cfile should belong to @css. Also, remaining events are
4657 * automatically removed on cgroup destruction but the removal is
4658 * asynchronous, so take an extra ref on @css.
4659 */
4660 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4661 &memory_cgrp_subsys);
4662 ret = -EINVAL;
4663 if (IS_ERR(cfile_css))
4664 goto out_put_cfile;
4665 if (cfile_css != css) {
4666 css_put(cfile_css);
4667 goto out_put_cfile;
4668 }
4669
4670 ret = event->register_event(memcg, event->eventfd, buf);
4671 if (ret)
4672 goto out_put_css;
4673
4674 vfs_poll(efile.file, &event->pt);
4675
4676 spin_lock(&memcg->event_list_lock);
4677 list_add(&event->list, &memcg->event_list);
4678 spin_unlock(&memcg->event_list_lock);
4679
4680 fdput(cfile);
4681 fdput(efile);
4682
4683 return nbytes;
4684
4685 out_put_css:
4686 css_put(css);
4687 out_put_cfile:
4688 fdput(cfile);
4689 out_put_eventfd:
4690 eventfd_ctx_put(event->eventfd);
4691 out_put_efile:
4692 fdput(efile);
4693 out_kfree:
4694 kfree(event);
4695
4696 return ret;
4697 }
4698
4699 static struct cftype mem_cgroup_legacy_files[] = {
4700 {
4701 .name = "usage_in_bytes",
4702 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4703 .read_u64 = mem_cgroup_read_u64,
4704 },
4705 {
4706 .name = "max_usage_in_bytes",
4707 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4708 .write = mem_cgroup_reset,
4709 .read_u64 = mem_cgroup_read_u64,
4710 },
4711 {
4712 .name = "limit_in_bytes",
4713 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4714 .write = mem_cgroup_write,
4715 .read_u64 = mem_cgroup_read_u64,
4716 },
4717 {
4718 .name = "soft_limit_in_bytes",
4719 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4720 .write = mem_cgroup_write,
4721 .read_u64 = mem_cgroup_read_u64,
4722 },
4723 {
4724 .name = "failcnt",
4725 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4726 .write = mem_cgroup_reset,
4727 .read_u64 = mem_cgroup_read_u64,
4728 },
4729 {
4730 .name = "stat",
4731 .seq_show = memcg_stat_show,
4732 },
4733 {
4734 .name = "force_empty",
4735 .write = mem_cgroup_force_empty_write,
4736 },
4737 {
4738 .name = "use_hierarchy",
4739 .write_u64 = mem_cgroup_hierarchy_write,
4740 .read_u64 = mem_cgroup_hierarchy_read,
4741 },
4742 {
4743 .name = "cgroup.event_control", /* XXX: for compat */
4744 .write = memcg_write_event_control,
4745 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4746 },
4747 {
4748 .name = "swappiness",
4749 .read_u64 = mem_cgroup_swappiness_read,
4750 .write_u64 = mem_cgroup_swappiness_write,
4751 },
4752 {
4753 .name = "move_charge_at_immigrate",
4754 .read_u64 = mem_cgroup_move_charge_read,
4755 .write_u64 = mem_cgroup_move_charge_write,
4756 },
4757 {
4758 .name = "oom_control",
4759 .seq_show = mem_cgroup_oom_control_read,
4760 .write_u64 = mem_cgroup_oom_control_write,
4761 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4762 },
4763 {
4764 .name = "pressure_level",
4765 },
4766 #ifdef CONFIG_NUMA
4767 {
4768 .name = "numa_stat",
4769 .seq_show = memcg_numa_stat_show,
4770 },
4771 #endif
4772 {
4773 .name = "kmem.limit_in_bytes",
4774 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4775 .write = mem_cgroup_write,
4776 .read_u64 = mem_cgroup_read_u64,
4777 },
4778 {
4779 .name = "kmem.usage_in_bytes",
4780 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4781 .read_u64 = mem_cgroup_read_u64,
4782 },
4783 {
4784 .name = "kmem.failcnt",
4785 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4786 .write = mem_cgroup_reset,
4787 .read_u64 = mem_cgroup_read_u64,
4788 },
4789 {
4790 .name = "kmem.max_usage_in_bytes",
4791 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4792 .write = mem_cgroup_reset,
4793 .read_u64 = mem_cgroup_read_u64,
4794 },
4795 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4796 {
4797 .name = "kmem.slabinfo",
4798 .seq_start = memcg_slab_start,
4799 .seq_next = memcg_slab_next,
4800 .seq_stop = memcg_slab_stop,
4801 .seq_show = memcg_slab_show,
4802 },
4803 #endif
4804 {
4805 .name = "kmem.tcp.limit_in_bytes",
4806 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4807 .write = mem_cgroup_write,
4808 .read_u64 = mem_cgroup_read_u64,
4809 },
4810 {
4811 .name = "kmem.tcp.usage_in_bytes",
4812 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4813 .read_u64 = mem_cgroup_read_u64,
4814 },
4815 {
4816 .name = "kmem.tcp.failcnt",
4817 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4818 .write = mem_cgroup_reset,
4819 .read_u64 = mem_cgroup_read_u64,
4820 },
4821 {
4822 .name = "kmem.tcp.max_usage_in_bytes",
4823 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4824 .write = mem_cgroup_reset,
4825 .read_u64 = mem_cgroup_read_u64,
4826 },
4827 { }, /* terminate */
4828 };
4829
4830 /*
4831 * Private memory cgroup IDR
4832 *
4833 * Swap-out records and page cache shadow entries need to store memcg
4834 * references in constrained space, so we maintain an ID space that is
4835 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4836 * memory-controlled cgroups to 64k.
4837 *
4838 * However, there usually are many references to the oflline CSS after
4839 * the cgroup has been destroyed, such as page cache or reclaimable
4840 * slab objects, that don't need to hang on to the ID. We want to keep
4841 * those dead CSS from occupying IDs, or we might quickly exhaust the
4842 * relatively small ID space and prevent the creation of new cgroups
4843 * even when there are much fewer than 64k cgroups - possibly none.
4844 *
4845 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4846 * be freed and recycled when it's no longer needed, which is usually
4847 * when the CSS is offlined.
4848 *
4849 * The only exception to that are records of swapped out tmpfs/shmem
4850 * pages that need to be attributed to live ancestors on swapin. But
4851 * those references are manageable from userspace.
4852 */
4853
4854 static DEFINE_IDR(mem_cgroup_idr);
4855
4856 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4857 {
4858 if (memcg->id.id > 0) {
4859 idr_remove(&mem_cgroup_idr, memcg->id.id);
4860 memcg->id.id = 0;
4861 }
4862 }
4863
4864 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4865 {
4866 refcount_add(n, &memcg->id.ref);
4867 }
4868
4869 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4870 {
4871 if (refcount_sub_and_test(n, &memcg->id.ref)) {
4872 mem_cgroup_id_remove(memcg);
4873
4874 /* Memcg ID pins CSS */
4875 css_put(&memcg->css);
4876 }
4877 }
4878
4879 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4880 {
4881 mem_cgroup_id_put_many(memcg, 1);
4882 }
4883
4884 /**
4885 * mem_cgroup_from_id - look up a memcg from a memcg id
4886 * @id: the memcg id to look up
4887 *
4888 * Caller must hold rcu_read_lock().
4889 */
4890 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4891 {
4892 WARN_ON_ONCE(!rcu_read_lock_held());
4893 return idr_find(&mem_cgroup_idr, id);
4894 }
4895
4896 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4897 {
4898 struct mem_cgroup_per_node *pn;
4899 int tmp = node;
4900 /*
4901 * This routine is called against possible nodes.
4902 * But it's BUG to call kmalloc() against offline node.
4903 *
4904 * TODO: this routine can waste much memory for nodes which will
4905 * never be onlined. It's better to use memory hotplug callback
4906 * function.
4907 */
4908 if (!node_state(node, N_NORMAL_MEMORY))
4909 tmp = -1;
4910 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4911 if (!pn)
4912 return 1;
4913
4914 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4915 if (!pn->lruvec_stat_local) {
4916 kfree(pn);
4917 return 1;
4918 }
4919
4920 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4921 if (!pn->lruvec_stat_cpu) {
4922 free_percpu(pn->lruvec_stat_local);
4923 kfree(pn);
4924 return 1;
4925 }
4926
4927 lruvec_init(&pn->lruvec);
4928 pn->usage_in_excess = 0;
4929 pn->on_tree = false;
4930 pn->memcg = memcg;
4931
4932 memcg->nodeinfo[node] = pn;
4933 return 0;
4934 }
4935
4936 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4937 {
4938 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4939
4940 if (!pn)
4941 return;
4942
4943 free_percpu(pn->lruvec_stat_cpu);
4944 free_percpu(pn->lruvec_stat_local);
4945 kfree(pn);
4946 }
4947
4948 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4949 {
4950 int node;
4951
4952 for_each_node(node)
4953 free_mem_cgroup_per_node_info(memcg, node);
4954 free_percpu(memcg->vmstats_percpu);
4955 free_percpu(memcg->vmstats_local);
4956 kfree(memcg);
4957 }
4958
4959 static void mem_cgroup_free(struct mem_cgroup *memcg)
4960 {
4961 memcg_wb_domain_exit(memcg);
4962 /*
4963 * Flush percpu vmstats and vmevents to guarantee the value correctness
4964 * on parent's and all ancestor levels.
4965 */
4966 memcg_flush_percpu_vmstats(memcg);
4967 memcg_flush_percpu_vmevents(memcg);
4968 __mem_cgroup_free(memcg);
4969 }
4970
4971 static struct mem_cgroup *mem_cgroup_alloc(void)
4972 {
4973 struct mem_cgroup *memcg;
4974 unsigned int size;
4975 int node;
4976 int __maybe_unused i;
4977
4978 size = sizeof(struct mem_cgroup);
4979 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4980
4981 memcg = kzalloc(size, GFP_KERNEL);
4982 if (!memcg)
4983 return NULL;
4984
4985 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4986 1, MEM_CGROUP_ID_MAX,
4987 GFP_KERNEL);
4988 if (memcg->id.id < 0)
4989 goto fail;
4990
4991 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4992 if (!memcg->vmstats_local)
4993 goto fail;
4994
4995 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4996 if (!memcg->vmstats_percpu)
4997 goto fail;
4998
4999 for_each_node(node)
5000 if (alloc_mem_cgroup_per_node_info(memcg, node))
5001 goto fail;
5002
5003 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5004 goto fail;
5005
5006 INIT_WORK(&memcg->high_work, high_work_func);
5007 INIT_LIST_HEAD(&memcg->oom_notify);
5008 mutex_init(&memcg->thresholds_lock);
5009 spin_lock_init(&memcg->move_lock);
5010 vmpressure_init(&memcg->vmpressure);
5011 INIT_LIST_HEAD(&memcg->event_list);
5012 spin_lock_init(&memcg->event_list_lock);
5013 memcg->socket_pressure = jiffies;
5014 #ifdef CONFIG_MEMCG_KMEM
5015 memcg->kmemcg_id = -1;
5016 #endif
5017 #ifdef CONFIG_CGROUP_WRITEBACK
5018 INIT_LIST_HEAD(&memcg->cgwb_list);
5019 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5020 memcg->cgwb_frn[i].done =
5021 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5022 #endif
5023 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5024 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5025 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5026 memcg->deferred_split_queue.split_queue_len = 0;
5027 #endif
5028 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5029 return memcg;
5030 fail:
5031 mem_cgroup_id_remove(memcg);
5032 __mem_cgroup_free(memcg);
5033 return NULL;
5034 }
5035
5036 static struct cgroup_subsys_state * __ref
5037 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5038 {
5039 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5040 struct mem_cgroup *memcg;
5041 long error = -ENOMEM;
5042
5043 memcg = mem_cgroup_alloc();
5044 if (!memcg)
5045 return ERR_PTR(error);
5046
5047 memcg->high = PAGE_COUNTER_MAX;
5048 memcg->soft_limit = PAGE_COUNTER_MAX;
5049 if (parent) {
5050 memcg->swappiness = mem_cgroup_swappiness(parent);
5051 memcg->oom_kill_disable = parent->oom_kill_disable;
5052 }
5053 if (parent && parent->use_hierarchy) {
5054 memcg->use_hierarchy = true;
5055 page_counter_init(&memcg->memory, &parent->memory);
5056 page_counter_init(&memcg->swap, &parent->swap);
5057 page_counter_init(&memcg->memsw, &parent->memsw);
5058 page_counter_init(&memcg->kmem, &parent->kmem);
5059 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5060 } else {
5061 page_counter_init(&memcg->memory, NULL);
5062 page_counter_init(&memcg->swap, NULL);
5063 page_counter_init(&memcg->memsw, NULL);
5064 page_counter_init(&memcg->kmem, NULL);
5065 page_counter_init(&memcg->tcpmem, NULL);
5066 /*
5067 * Deeper hierachy with use_hierarchy == false doesn't make
5068 * much sense so let cgroup subsystem know about this
5069 * unfortunate state in our controller.
5070 */
5071 if (parent != root_mem_cgroup)
5072 memory_cgrp_subsys.broken_hierarchy = true;
5073 }
5074
5075 /* The following stuff does not apply to the root */
5076 if (!parent) {
5077 #ifdef CONFIG_MEMCG_KMEM
5078 INIT_LIST_HEAD(&memcg->kmem_caches);
5079 #endif
5080 root_mem_cgroup = memcg;
5081 return &memcg->css;
5082 }
5083
5084 error = memcg_online_kmem(memcg);
5085 if (error)
5086 goto fail;
5087
5088 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5089 static_branch_inc(&memcg_sockets_enabled_key);
5090
5091 return &memcg->css;
5092 fail:
5093 mem_cgroup_id_remove(memcg);
5094 mem_cgroup_free(memcg);
5095 return ERR_PTR(-ENOMEM);
5096 }
5097
5098 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5099 {
5100 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5101
5102 /*
5103 * A memcg must be visible for memcg_expand_shrinker_maps()
5104 * by the time the maps are allocated. So, we allocate maps
5105 * here, when for_each_mem_cgroup() can't skip it.
5106 */
5107 if (memcg_alloc_shrinker_maps(memcg)) {
5108 mem_cgroup_id_remove(memcg);
5109 return -ENOMEM;
5110 }
5111
5112 /* Online state pins memcg ID, memcg ID pins CSS */
5113 refcount_set(&memcg->id.ref, 1);
5114 css_get(css);
5115 return 0;
5116 }
5117
5118 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5119 {
5120 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5121 struct mem_cgroup_event *event, *tmp;
5122
5123 /*
5124 * Unregister events and notify userspace.
5125 * Notify userspace about cgroup removing only after rmdir of cgroup
5126 * directory to avoid race between userspace and kernelspace.
5127 */
5128 spin_lock(&memcg->event_list_lock);
5129 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5130 list_del_init(&event->list);
5131 schedule_work(&event->remove);
5132 }
5133 spin_unlock(&memcg->event_list_lock);
5134
5135 page_counter_set_min(&memcg->memory, 0);
5136 page_counter_set_low(&memcg->memory, 0);
5137
5138 memcg_offline_kmem(memcg);
5139 wb_memcg_offline(memcg);
5140
5141 drain_all_stock(memcg);
5142
5143 mem_cgroup_id_put(memcg);
5144 }
5145
5146 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5147 {
5148 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5149
5150 invalidate_reclaim_iterators(memcg);
5151 }
5152
5153 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5154 {
5155 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5156 int __maybe_unused i;
5157
5158 #ifdef CONFIG_CGROUP_WRITEBACK
5159 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5160 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5161 #endif
5162 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5163 static_branch_dec(&memcg_sockets_enabled_key);
5164
5165 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5166 static_branch_dec(&memcg_sockets_enabled_key);
5167
5168 vmpressure_cleanup(&memcg->vmpressure);
5169 cancel_work_sync(&memcg->high_work);
5170 mem_cgroup_remove_from_trees(memcg);
5171 memcg_free_shrinker_maps(memcg);
5172 memcg_free_kmem(memcg);
5173 mem_cgroup_free(memcg);
5174 }
5175
5176 /**
5177 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5178 * @css: the target css
5179 *
5180 * Reset the states of the mem_cgroup associated with @css. This is
5181 * invoked when the userland requests disabling on the default hierarchy
5182 * but the memcg is pinned through dependency. The memcg should stop
5183 * applying policies and should revert to the vanilla state as it may be
5184 * made visible again.
5185 *
5186 * The current implementation only resets the essential configurations.
5187 * This needs to be expanded to cover all the visible parts.
5188 */
5189 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5190 {
5191 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5192
5193 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5194 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5195 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5196 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5197 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5198 page_counter_set_min(&memcg->memory, 0);
5199 page_counter_set_low(&memcg->memory, 0);
5200 memcg->high = PAGE_COUNTER_MAX;
5201 memcg->soft_limit = PAGE_COUNTER_MAX;
5202 memcg_wb_domain_size_changed(memcg);
5203 }
5204
5205 #ifdef CONFIG_MMU
5206 /* Handlers for move charge at task migration. */
5207 static int mem_cgroup_do_precharge(unsigned long count)
5208 {
5209 int ret;
5210
5211 /* Try a single bulk charge without reclaim first, kswapd may wake */
5212 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5213 if (!ret) {
5214 mc.precharge += count;
5215 return ret;
5216 }
5217
5218 /* Try charges one by one with reclaim, but do not retry */
5219 while (count--) {
5220 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5221 if (ret)
5222 return ret;
5223 mc.precharge++;
5224 cond_resched();
5225 }
5226 return 0;
5227 }
5228
5229 union mc_target {
5230 struct page *page;
5231 swp_entry_t ent;
5232 };
5233
5234 enum mc_target_type {
5235 MC_TARGET_NONE = 0,
5236 MC_TARGET_PAGE,
5237 MC_TARGET_SWAP,
5238 MC_TARGET_DEVICE,
5239 };
5240
5241 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5242 unsigned long addr, pte_t ptent)
5243 {
5244 struct page *page = vm_normal_page(vma, addr, ptent);
5245
5246 if (!page || !page_mapped(page))
5247 return NULL;
5248 if (PageAnon(page)) {
5249 if (!(mc.flags & MOVE_ANON))
5250 return NULL;
5251 } else {
5252 if (!(mc.flags & MOVE_FILE))
5253 return NULL;
5254 }
5255 if (!get_page_unless_zero(page))
5256 return NULL;
5257
5258 return page;
5259 }
5260
5261 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5262 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5263 pte_t ptent, swp_entry_t *entry)
5264 {
5265 struct page *page = NULL;
5266 swp_entry_t ent = pte_to_swp_entry(ptent);
5267
5268 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5269 return NULL;
5270
5271 /*
5272 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5273 * a device and because they are not accessible by CPU they are store
5274 * as special swap entry in the CPU page table.
5275 */
5276 if (is_device_private_entry(ent)) {
5277 page = device_private_entry_to_page(ent);
5278 /*
5279 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5280 * a refcount of 1 when free (unlike normal page)
5281 */
5282 if (!page_ref_add_unless(page, 1, 1))
5283 return NULL;
5284 return page;
5285 }
5286
5287 /*
5288 * Because lookup_swap_cache() updates some statistics counter,
5289 * we call find_get_page() with swapper_space directly.
5290 */
5291 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5292 if (do_memsw_account())
5293 entry->val = ent.val;
5294
5295 return page;
5296 }
5297 #else
5298 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5299 pte_t ptent, swp_entry_t *entry)
5300 {
5301 return NULL;
5302 }
5303 #endif
5304
5305 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5306 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5307 {
5308 struct page *page = NULL;
5309 struct address_space *mapping;
5310 pgoff_t pgoff;
5311
5312 if (!vma->vm_file) /* anonymous vma */
5313 return NULL;
5314 if (!(mc.flags & MOVE_FILE))
5315 return NULL;
5316
5317 mapping = vma->vm_file->f_mapping;
5318 pgoff = linear_page_index(vma, addr);
5319
5320 /* page is moved even if it's not RSS of this task(page-faulted). */
5321 #ifdef CONFIG_SWAP
5322 /* shmem/tmpfs may report page out on swap: account for that too. */
5323 if (shmem_mapping(mapping)) {
5324 page = find_get_entry(mapping, pgoff);
5325 if (xa_is_value(page)) {
5326 swp_entry_t swp = radix_to_swp_entry(page);
5327 if (do_memsw_account())
5328 *entry = swp;
5329 page = find_get_page(swap_address_space(swp),
5330 swp_offset(swp));
5331 }
5332 } else
5333 page = find_get_page(mapping, pgoff);
5334 #else
5335 page = find_get_page(mapping, pgoff);
5336 #endif
5337 return page;
5338 }
5339
5340 /**
5341 * mem_cgroup_move_account - move account of the page
5342 * @page: the page
5343 * @compound: charge the page as compound or small page
5344 * @from: mem_cgroup which the page is moved from.
5345 * @to: mem_cgroup which the page is moved to. @from != @to.
5346 *
5347 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5348 *
5349 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5350 * from old cgroup.
5351 */
5352 static int mem_cgroup_move_account(struct page *page,
5353 bool compound,
5354 struct mem_cgroup *from,
5355 struct mem_cgroup *to)
5356 {
5357 struct lruvec *from_vec, *to_vec;
5358 struct pglist_data *pgdat;
5359 unsigned long flags;
5360 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5361 int ret;
5362 bool anon;
5363
5364 VM_BUG_ON(from == to);
5365 VM_BUG_ON_PAGE(PageLRU(page), page);
5366 VM_BUG_ON(compound && !PageTransHuge(page));
5367
5368 /*
5369 * Prevent mem_cgroup_migrate() from looking at
5370 * page->mem_cgroup of its source page while we change it.
5371 */
5372 ret = -EBUSY;
5373 if (!trylock_page(page))
5374 goto out;
5375
5376 ret = -EINVAL;
5377 if (page->mem_cgroup != from)
5378 goto out_unlock;
5379
5380 anon = PageAnon(page);
5381
5382 pgdat = page_pgdat(page);
5383 from_vec = mem_cgroup_lruvec(from, pgdat);
5384 to_vec = mem_cgroup_lruvec(to, pgdat);
5385
5386 spin_lock_irqsave(&from->move_lock, flags);
5387
5388 if (!anon && page_mapped(page)) {
5389 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5390 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5391 }
5392
5393 /*
5394 * move_lock grabbed above and caller set from->moving_account, so
5395 * mod_memcg_page_state will serialize updates to PageDirty.
5396 * So mapping should be stable for dirty pages.
5397 */
5398 if (!anon && PageDirty(page)) {
5399 struct address_space *mapping = page_mapping(page);
5400
5401 if (mapping_cap_account_dirty(mapping)) {
5402 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5403 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
5404 }
5405 }
5406
5407 if (PageWriteback(page)) {
5408 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5409 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5410 }
5411
5412 /*
5413 * It is safe to change page->mem_cgroup here because the page
5414 * is referenced, charged, and isolated - we can't race with
5415 * uncharging, charging, migration, or LRU putback.
5416 */
5417
5418 /* caller should have done css_get */
5419 page->mem_cgroup = to;
5420
5421 spin_unlock_irqrestore(&from->move_lock, flags);
5422
5423 ret = 0;
5424
5425 local_irq_disable();
5426 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5427 memcg_check_events(to, page);
5428 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5429 memcg_check_events(from, page);
5430 local_irq_enable();
5431 out_unlock:
5432 unlock_page(page);
5433 out:
5434 return ret;
5435 }
5436
5437 /**
5438 * get_mctgt_type - get target type of moving charge
5439 * @vma: the vma the pte to be checked belongs
5440 * @addr: the address corresponding to the pte to be checked
5441 * @ptent: the pte to be checked
5442 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5443 *
5444 * Returns
5445 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5446 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5447 * move charge. if @target is not NULL, the page is stored in target->page
5448 * with extra refcnt got(Callers should handle it).
5449 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5450 * target for charge migration. if @target is not NULL, the entry is stored
5451 * in target->ent.
5452 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5453 * (so ZONE_DEVICE page and thus not on the lru).
5454 * For now we such page is charge like a regular page would be as for all
5455 * intent and purposes it is just special memory taking the place of a
5456 * regular page.
5457 *
5458 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5459 *
5460 * Called with pte lock held.
5461 */
5462
5463 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5464 unsigned long addr, pte_t ptent, union mc_target *target)
5465 {
5466 struct page *page = NULL;
5467 enum mc_target_type ret = MC_TARGET_NONE;
5468 swp_entry_t ent = { .val = 0 };
5469
5470 if (pte_present(ptent))
5471 page = mc_handle_present_pte(vma, addr, ptent);
5472 else if (is_swap_pte(ptent))
5473 page = mc_handle_swap_pte(vma, ptent, &ent);
5474 else if (pte_none(ptent))
5475 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5476
5477 if (!page && !ent.val)
5478 return ret;
5479 if (page) {
5480 /*
5481 * Do only loose check w/o serialization.
5482 * mem_cgroup_move_account() checks the page is valid or
5483 * not under LRU exclusion.
5484 */
5485 if (page->mem_cgroup == mc.from) {
5486 ret = MC_TARGET_PAGE;
5487 if (is_device_private_page(page))
5488 ret = MC_TARGET_DEVICE;
5489 if (target)
5490 target->page = page;
5491 }
5492 if (!ret || !target)
5493 put_page(page);
5494 }
5495 /*
5496 * There is a swap entry and a page doesn't exist or isn't charged.
5497 * But we cannot move a tail-page in a THP.
5498 */
5499 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5500 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5501 ret = MC_TARGET_SWAP;
5502 if (target)
5503 target->ent = ent;
5504 }
5505 return ret;
5506 }
5507
5508 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5509 /*
5510 * We don't consider PMD mapped swapping or file mapped pages because THP does
5511 * not support them for now.
5512 * Caller should make sure that pmd_trans_huge(pmd) is true.
5513 */
5514 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5515 unsigned long addr, pmd_t pmd, union mc_target *target)
5516 {
5517 struct page *page = NULL;
5518 enum mc_target_type ret = MC_TARGET_NONE;
5519
5520 if (unlikely(is_swap_pmd(pmd))) {
5521 VM_BUG_ON(thp_migration_supported() &&
5522 !is_pmd_migration_entry(pmd));
5523 return ret;
5524 }
5525 page = pmd_page(pmd);
5526 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5527 if (!(mc.flags & MOVE_ANON))
5528 return ret;
5529 if (page->mem_cgroup == mc.from) {
5530 ret = MC_TARGET_PAGE;
5531 if (target) {
5532 get_page(page);
5533 target->page = page;
5534 }
5535 }
5536 return ret;
5537 }
5538 #else
5539 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5540 unsigned long addr, pmd_t pmd, union mc_target *target)
5541 {
5542 return MC_TARGET_NONE;
5543 }
5544 #endif
5545
5546 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5547 unsigned long addr, unsigned long end,
5548 struct mm_walk *walk)
5549 {
5550 struct vm_area_struct *vma = walk->vma;
5551 pte_t *pte;
5552 spinlock_t *ptl;
5553
5554 ptl = pmd_trans_huge_lock(pmd, vma);
5555 if (ptl) {
5556 /*
5557 * Note their can not be MC_TARGET_DEVICE for now as we do not
5558 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5559 * this might change.
5560 */
5561 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5562 mc.precharge += HPAGE_PMD_NR;
5563 spin_unlock(ptl);
5564 return 0;
5565 }
5566
5567 if (pmd_trans_unstable(pmd))
5568 return 0;
5569 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5570 for (; addr != end; pte++, addr += PAGE_SIZE)
5571 if (get_mctgt_type(vma, addr, *pte, NULL))
5572 mc.precharge++; /* increment precharge temporarily */
5573 pte_unmap_unlock(pte - 1, ptl);
5574 cond_resched();
5575
5576 return 0;
5577 }
5578
5579 static const struct mm_walk_ops precharge_walk_ops = {
5580 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5581 };
5582
5583 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5584 {
5585 unsigned long precharge;
5586
5587 down_read(&mm->mmap_sem);
5588 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5589 up_read(&mm->mmap_sem);
5590
5591 precharge = mc.precharge;
5592 mc.precharge = 0;
5593
5594 return precharge;
5595 }
5596
5597 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5598 {
5599 unsigned long precharge = mem_cgroup_count_precharge(mm);
5600
5601 VM_BUG_ON(mc.moving_task);
5602 mc.moving_task = current;
5603 return mem_cgroup_do_precharge(precharge);
5604 }
5605
5606 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5607 static void __mem_cgroup_clear_mc(void)
5608 {
5609 struct mem_cgroup *from = mc.from;
5610 struct mem_cgroup *to = mc.to;
5611
5612 /* we must uncharge all the leftover precharges from mc.to */
5613 if (mc.precharge) {
5614 cancel_charge(mc.to, mc.precharge);
5615 mc.precharge = 0;
5616 }
5617 /*
5618 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5619 * we must uncharge here.
5620 */
5621 if (mc.moved_charge) {
5622 cancel_charge(mc.from, mc.moved_charge);
5623 mc.moved_charge = 0;
5624 }
5625 /* we must fixup refcnts and charges */
5626 if (mc.moved_swap) {
5627 /* uncharge swap account from the old cgroup */
5628 if (!mem_cgroup_is_root(mc.from))
5629 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5630
5631 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5632
5633 /*
5634 * we charged both to->memory and to->memsw, so we
5635 * should uncharge to->memory.
5636 */
5637 if (!mem_cgroup_is_root(mc.to))
5638 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5639
5640 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5641 css_put_many(&mc.to->css, mc.moved_swap);
5642
5643 mc.moved_swap = 0;
5644 }
5645 memcg_oom_recover(from);
5646 memcg_oom_recover(to);
5647 wake_up_all(&mc.waitq);
5648 }
5649
5650 static void mem_cgroup_clear_mc(void)
5651 {
5652 struct mm_struct *mm = mc.mm;
5653
5654 /*
5655 * we must clear moving_task before waking up waiters at the end of
5656 * task migration.
5657 */
5658 mc.moving_task = NULL;
5659 __mem_cgroup_clear_mc();
5660 spin_lock(&mc.lock);
5661 mc.from = NULL;
5662 mc.to = NULL;
5663 mc.mm = NULL;
5664 spin_unlock(&mc.lock);
5665
5666 mmput(mm);
5667 }
5668
5669 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5670 {
5671 struct cgroup_subsys_state *css;
5672 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5673 struct mem_cgroup *from;
5674 struct task_struct *leader, *p;
5675 struct mm_struct *mm;
5676 unsigned long move_flags;
5677 int ret = 0;
5678
5679 /* charge immigration isn't supported on the default hierarchy */
5680 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5681 return 0;
5682
5683 /*
5684 * Multi-process migrations only happen on the default hierarchy
5685 * where charge immigration is not used. Perform charge
5686 * immigration if @tset contains a leader and whine if there are
5687 * multiple.
5688 */
5689 p = NULL;
5690 cgroup_taskset_for_each_leader(leader, css, tset) {
5691 WARN_ON_ONCE(p);
5692 p = leader;
5693 memcg = mem_cgroup_from_css(css);
5694 }
5695 if (!p)
5696 return 0;
5697
5698 /*
5699 * We are now commited to this value whatever it is. Changes in this
5700 * tunable will only affect upcoming migrations, not the current one.
5701 * So we need to save it, and keep it going.
5702 */
5703 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5704 if (!move_flags)
5705 return 0;
5706
5707 from = mem_cgroup_from_task(p);
5708
5709 VM_BUG_ON(from == memcg);
5710
5711 mm = get_task_mm(p);
5712 if (!mm)
5713 return 0;
5714 /* We move charges only when we move a owner of the mm */
5715 if (mm->owner == p) {
5716 VM_BUG_ON(mc.from);
5717 VM_BUG_ON(mc.to);
5718 VM_BUG_ON(mc.precharge);
5719 VM_BUG_ON(mc.moved_charge);
5720 VM_BUG_ON(mc.moved_swap);
5721
5722 spin_lock(&mc.lock);
5723 mc.mm = mm;
5724 mc.from = from;
5725 mc.to = memcg;
5726 mc.flags = move_flags;
5727 spin_unlock(&mc.lock);
5728 /* We set mc.moving_task later */
5729
5730 ret = mem_cgroup_precharge_mc(mm);
5731 if (ret)
5732 mem_cgroup_clear_mc();
5733 } else {
5734 mmput(mm);
5735 }
5736 return ret;
5737 }
5738
5739 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5740 {
5741 if (mc.to)
5742 mem_cgroup_clear_mc();
5743 }
5744
5745 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5746 unsigned long addr, unsigned long end,
5747 struct mm_walk *walk)
5748 {
5749 int ret = 0;
5750 struct vm_area_struct *vma = walk->vma;
5751 pte_t *pte;
5752 spinlock_t *ptl;
5753 enum mc_target_type target_type;
5754 union mc_target target;
5755 struct page *page;
5756
5757 ptl = pmd_trans_huge_lock(pmd, vma);
5758 if (ptl) {
5759 if (mc.precharge < HPAGE_PMD_NR) {
5760 spin_unlock(ptl);
5761 return 0;
5762 }
5763 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5764 if (target_type == MC_TARGET_PAGE) {
5765 page = target.page;
5766 if (!isolate_lru_page(page)) {
5767 if (!mem_cgroup_move_account(page, true,
5768 mc.from, mc.to)) {
5769 mc.precharge -= HPAGE_PMD_NR;
5770 mc.moved_charge += HPAGE_PMD_NR;
5771 }
5772 putback_lru_page(page);
5773 }
5774 put_page(page);
5775 } else if (target_type == MC_TARGET_DEVICE) {
5776 page = target.page;
5777 if (!mem_cgroup_move_account(page, true,
5778 mc.from, mc.to)) {
5779 mc.precharge -= HPAGE_PMD_NR;
5780 mc.moved_charge += HPAGE_PMD_NR;
5781 }
5782 put_page(page);
5783 }
5784 spin_unlock(ptl);
5785 return 0;
5786 }
5787
5788 if (pmd_trans_unstable(pmd))
5789 return 0;
5790 retry:
5791 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5792 for (; addr != end; addr += PAGE_SIZE) {
5793 pte_t ptent = *(pte++);
5794 bool device = false;
5795 swp_entry_t ent;
5796
5797 if (!mc.precharge)
5798 break;
5799
5800 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5801 case MC_TARGET_DEVICE:
5802 device = true;
5803 /* fall through */
5804 case MC_TARGET_PAGE:
5805 page = target.page;
5806 /*
5807 * We can have a part of the split pmd here. Moving it
5808 * can be done but it would be too convoluted so simply
5809 * ignore such a partial THP and keep it in original
5810 * memcg. There should be somebody mapping the head.
5811 */
5812 if (PageTransCompound(page))
5813 goto put;
5814 if (!device && isolate_lru_page(page))
5815 goto put;
5816 if (!mem_cgroup_move_account(page, false,
5817 mc.from, mc.to)) {
5818 mc.precharge--;
5819 /* we uncharge from mc.from later. */
5820 mc.moved_charge++;
5821 }
5822 if (!device)
5823 putback_lru_page(page);
5824 put: /* get_mctgt_type() gets the page */
5825 put_page(page);
5826 break;
5827 case MC_TARGET_SWAP:
5828 ent = target.ent;
5829 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5830 mc.precharge--;
5831 /* we fixup refcnts and charges later. */
5832 mc.moved_swap++;
5833 }
5834 break;
5835 default:
5836 break;
5837 }
5838 }
5839 pte_unmap_unlock(pte - 1, ptl);
5840 cond_resched();
5841
5842 if (addr != end) {
5843 /*
5844 * We have consumed all precharges we got in can_attach().
5845 * We try charge one by one, but don't do any additional
5846 * charges to mc.to if we have failed in charge once in attach()
5847 * phase.
5848 */
5849 ret = mem_cgroup_do_precharge(1);
5850 if (!ret)
5851 goto retry;
5852 }
5853
5854 return ret;
5855 }
5856
5857 static const struct mm_walk_ops charge_walk_ops = {
5858 .pmd_entry = mem_cgroup_move_charge_pte_range,
5859 };
5860
5861 static void mem_cgroup_move_charge(void)
5862 {
5863 lru_add_drain_all();
5864 /*
5865 * Signal lock_page_memcg() to take the memcg's move_lock
5866 * while we're moving its pages to another memcg. Then wait
5867 * for already started RCU-only updates to finish.
5868 */
5869 atomic_inc(&mc.from->moving_account);
5870 synchronize_rcu();
5871 retry:
5872 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5873 /*
5874 * Someone who are holding the mmap_sem might be waiting in
5875 * waitq. So we cancel all extra charges, wake up all waiters,
5876 * and retry. Because we cancel precharges, we might not be able
5877 * to move enough charges, but moving charge is a best-effort
5878 * feature anyway, so it wouldn't be a big problem.
5879 */
5880 __mem_cgroup_clear_mc();
5881 cond_resched();
5882 goto retry;
5883 }
5884 /*
5885 * When we have consumed all precharges and failed in doing
5886 * additional charge, the page walk just aborts.
5887 */
5888 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5889 NULL);
5890
5891 up_read(&mc.mm->mmap_sem);
5892 atomic_dec(&mc.from->moving_account);
5893 }
5894
5895 static void mem_cgroup_move_task(void)
5896 {
5897 if (mc.to) {
5898 mem_cgroup_move_charge();
5899 mem_cgroup_clear_mc();
5900 }
5901 }
5902 #else /* !CONFIG_MMU */
5903 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5904 {
5905 return 0;
5906 }
5907 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5908 {
5909 }
5910 static void mem_cgroup_move_task(void)
5911 {
5912 }
5913 #endif
5914
5915 /*
5916 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5917 * to verify whether we're attached to the default hierarchy on each mount
5918 * attempt.
5919 */
5920 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5921 {
5922 /*
5923 * use_hierarchy is forced on the default hierarchy. cgroup core
5924 * guarantees that @root doesn't have any children, so turning it
5925 * on for the root memcg is enough.
5926 */
5927 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5928 root_mem_cgroup->use_hierarchy = true;
5929 else
5930 root_mem_cgroup->use_hierarchy = false;
5931 }
5932
5933 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5934 {
5935 if (value == PAGE_COUNTER_MAX)
5936 seq_puts(m, "max\n");
5937 else
5938 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5939
5940 return 0;
5941 }
5942
5943 static u64 memory_current_read(struct cgroup_subsys_state *css,
5944 struct cftype *cft)
5945 {
5946 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5947
5948 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5949 }
5950
5951 static int memory_min_show(struct seq_file *m, void *v)
5952 {
5953 return seq_puts_memcg_tunable(m,
5954 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5955 }
5956
5957 static ssize_t memory_min_write(struct kernfs_open_file *of,
5958 char *buf, size_t nbytes, loff_t off)
5959 {
5960 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5961 unsigned long min;
5962 int err;
5963
5964 buf = strstrip(buf);
5965 err = page_counter_memparse(buf, "max", &min);
5966 if (err)
5967 return err;
5968
5969 page_counter_set_min(&memcg->memory, min);
5970
5971 return nbytes;
5972 }
5973
5974 static int memory_low_show(struct seq_file *m, void *v)
5975 {
5976 return seq_puts_memcg_tunable(m,
5977 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5978 }
5979
5980 static ssize_t memory_low_write(struct kernfs_open_file *of,
5981 char *buf, size_t nbytes, loff_t off)
5982 {
5983 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5984 unsigned long low;
5985 int err;
5986
5987 buf = strstrip(buf);
5988 err = page_counter_memparse(buf, "max", &low);
5989 if (err)
5990 return err;
5991
5992 page_counter_set_low(&memcg->memory, low);
5993
5994 return nbytes;
5995 }
5996
5997 static int memory_high_show(struct seq_file *m, void *v)
5998 {
5999 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
6000 }
6001
6002 static ssize_t memory_high_write(struct kernfs_open_file *of,
6003 char *buf, size_t nbytes, loff_t off)
6004 {
6005 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6006 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6007 bool drained = false;
6008 unsigned long high;
6009 int err;
6010
6011 buf = strstrip(buf);
6012 err = page_counter_memparse(buf, "max", &high);
6013 if (err)
6014 return err;
6015
6016 memcg->high = high;
6017
6018 for (;;) {
6019 unsigned long nr_pages = page_counter_read(&memcg->memory);
6020 unsigned long reclaimed;
6021
6022 if (nr_pages <= high)
6023 break;
6024
6025 if (signal_pending(current))
6026 break;
6027
6028 if (!drained) {
6029 drain_all_stock(memcg);
6030 drained = true;
6031 continue;
6032 }
6033
6034 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6035 GFP_KERNEL, true);
6036
6037 if (!reclaimed && !nr_retries--)
6038 break;
6039 }
6040
6041 return nbytes;
6042 }
6043
6044 static int memory_max_show(struct seq_file *m, void *v)
6045 {
6046 return seq_puts_memcg_tunable(m,
6047 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6048 }
6049
6050 static ssize_t memory_max_write(struct kernfs_open_file *of,
6051 char *buf, size_t nbytes, loff_t off)
6052 {
6053 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6054 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6055 bool drained = false;
6056 unsigned long max;
6057 int err;
6058
6059 buf = strstrip(buf);
6060 err = page_counter_memparse(buf, "max", &max);
6061 if (err)
6062 return err;
6063
6064 xchg(&memcg->memory.max, max);
6065
6066 for (;;) {
6067 unsigned long nr_pages = page_counter_read(&memcg->memory);
6068
6069 if (nr_pages <= max)
6070 break;
6071
6072 if (signal_pending(current))
6073 break;
6074
6075 if (!drained) {
6076 drain_all_stock(memcg);
6077 drained = true;
6078 continue;
6079 }
6080
6081 if (nr_reclaims) {
6082 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6083 GFP_KERNEL, true))
6084 nr_reclaims--;
6085 continue;
6086 }
6087
6088 memcg_memory_event(memcg, MEMCG_OOM);
6089 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6090 break;
6091 }
6092
6093 memcg_wb_domain_size_changed(memcg);
6094 return nbytes;
6095 }
6096
6097 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6098 {
6099 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6100 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6101 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6102 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6103 seq_printf(m, "oom_kill %lu\n",
6104 atomic_long_read(&events[MEMCG_OOM_KILL]));
6105 }
6106
6107 static int memory_events_show(struct seq_file *m, void *v)
6108 {
6109 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6110
6111 __memory_events_show(m, memcg->memory_events);
6112 return 0;
6113 }
6114
6115 static int memory_events_local_show(struct seq_file *m, void *v)
6116 {
6117 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6118
6119 __memory_events_show(m, memcg->memory_events_local);
6120 return 0;
6121 }
6122
6123 static int memory_stat_show(struct seq_file *m, void *v)
6124 {
6125 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6126 char *buf;
6127
6128 buf = memory_stat_format(memcg);
6129 if (!buf)
6130 return -ENOMEM;
6131 seq_puts(m, buf);
6132 kfree(buf);
6133 return 0;
6134 }
6135
6136 static int memory_oom_group_show(struct seq_file *m, void *v)
6137 {
6138 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6139
6140 seq_printf(m, "%d\n", memcg->oom_group);
6141
6142 return 0;
6143 }
6144
6145 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6146 char *buf, size_t nbytes, loff_t off)
6147 {
6148 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6149 int ret, oom_group;
6150
6151 buf = strstrip(buf);
6152 if (!buf)
6153 return -EINVAL;
6154
6155 ret = kstrtoint(buf, 0, &oom_group);
6156 if (ret)
6157 return ret;
6158
6159 if (oom_group != 0 && oom_group != 1)
6160 return -EINVAL;
6161
6162 memcg->oom_group = oom_group;
6163
6164 return nbytes;
6165 }
6166
6167 static struct cftype memory_files[] = {
6168 {
6169 .name = "current",
6170 .flags = CFTYPE_NOT_ON_ROOT,
6171 .read_u64 = memory_current_read,
6172 },
6173 {
6174 .name = "min",
6175 .flags = CFTYPE_NOT_ON_ROOT,
6176 .seq_show = memory_min_show,
6177 .write = memory_min_write,
6178 },
6179 {
6180 .name = "low",
6181 .flags = CFTYPE_NOT_ON_ROOT,
6182 .seq_show = memory_low_show,
6183 .write = memory_low_write,
6184 },
6185 {
6186 .name = "high",
6187 .flags = CFTYPE_NOT_ON_ROOT,
6188 .seq_show = memory_high_show,
6189 .write = memory_high_write,
6190 },
6191 {
6192 .name = "max",
6193 .flags = CFTYPE_NOT_ON_ROOT,
6194 .seq_show = memory_max_show,
6195 .write = memory_max_write,
6196 },
6197 {
6198 .name = "events",
6199 .flags = CFTYPE_NOT_ON_ROOT,
6200 .file_offset = offsetof(struct mem_cgroup, events_file),
6201 .seq_show = memory_events_show,
6202 },
6203 {
6204 .name = "events.local",
6205 .flags = CFTYPE_NOT_ON_ROOT,
6206 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6207 .seq_show = memory_events_local_show,
6208 },
6209 {
6210 .name = "stat",
6211 .flags = CFTYPE_NOT_ON_ROOT,
6212 .seq_show = memory_stat_show,
6213 },
6214 {
6215 .name = "oom.group",
6216 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6217 .seq_show = memory_oom_group_show,
6218 .write = memory_oom_group_write,
6219 },
6220 { } /* terminate */
6221 };
6222
6223 struct cgroup_subsys memory_cgrp_subsys = {
6224 .css_alloc = mem_cgroup_css_alloc,
6225 .css_online = mem_cgroup_css_online,
6226 .css_offline = mem_cgroup_css_offline,
6227 .css_released = mem_cgroup_css_released,
6228 .css_free = mem_cgroup_css_free,
6229 .css_reset = mem_cgroup_css_reset,
6230 .can_attach = mem_cgroup_can_attach,
6231 .cancel_attach = mem_cgroup_cancel_attach,
6232 .post_attach = mem_cgroup_move_task,
6233 .bind = mem_cgroup_bind,
6234 .dfl_cftypes = memory_files,
6235 .legacy_cftypes = mem_cgroup_legacy_files,
6236 .early_init = 0,
6237 };
6238
6239 /**
6240 * mem_cgroup_protected - check if memory consumption is in the normal range
6241 * @root: the top ancestor of the sub-tree being checked
6242 * @memcg: the memory cgroup to check
6243 *
6244 * WARNING: This function is not stateless! It can only be used as part
6245 * of a top-down tree iteration, not for isolated queries.
6246 *
6247 * Returns one of the following:
6248 * MEMCG_PROT_NONE: cgroup memory is not protected
6249 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6250 * an unprotected supply of reclaimable memory from other cgroups.
6251 * MEMCG_PROT_MIN: cgroup memory is protected
6252 *
6253 * @root is exclusive; it is never protected when looked at directly
6254 *
6255 * To provide a proper hierarchical behavior, effective memory.min/low values
6256 * are used. Below is the description of how effective memory.low is calculated.
6257 * Effective memory.min values is calculated in the same way.
6258 *
6259 * Effective memory.low is always equal or less than the original memory.low.
6260 * If there is no memory.low overcommittment (which is always true for
6261 * top-level memory cgroups), these two values are equal.
6262 * Otherwise, it's a part of parent's effective memory.low,
6263 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6264 * memory.low usages, where memory.low usage is the size of actually
6265 * protected memory.
6266 *
6267 * low_usage
6268 * elow = min( memory.low, parent->elow * ------------------ ),
6269 * siblings_low_usage
6270 *
6271 * | memory.current, if memory.current < memory.low
6272 * low_usage = |
6273 * | 0, otherwise.
6274 *
6275 *
6276 * Such definition of the effective memory.low provides the expected
6277 * hierarchical behavior: parent's memory.low value is limiting
6278 * children, unprotected memory is reclaimed first and cgroups,
6279 * which are not using their guarantee do not affect actual memory
6280 * distribution.
6281 *
6282 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6283 *
6284 * A A/memory.low = 2G, A/memory.current = 6G
6285 * //\\
6286 * BC DE B/memory.low = 3G B/memory.current = 2G
6287 * C/memory.low = 1G C/memory.current = 2G
6288 * D/memory.low = 0 D/memory.current = 2G
6289 * E/memory.low = 10G E/memory.current = 0
6290 *
6291 * and the memory pressure is applied, the following memory distribution
6292 * is expected (approximately):
6293 *
6294 * A/memory.current = 2G
6295 *
6296 * B/memory.current = 1.3G
6297 * C/memory.current = 0.6G
6298 * D/memory.current = 0
6299 * E/memory.current = 0
6300 *
6301 * These calculations require constant tracking of the actual low usages
6302 * (see propagate_protected_usage()), as well as recursive calculation of
6303 * effective memory.low values. But as we do call mem_cgroup_protected()
6304 * path for each memory cgroup top-down from the reclaim,
6305 * it's possible to optimize this part, and save calculated elow
6306 * for next usage. This part is intentionally racy, but it's ok,
6307 * as memory.low is a best-effort mechanism.
6308 */
6309 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6310 struct mem_cgroup *memcg)
6311 {
6312 struct mem_cgroup *parent;
6313 unsigned long emin, parent_emin;
6314 unsigned long elow, parent_elow;
6315 unsigned long usage;
6316
6317 if (mem_cgroup_disabled())
6318 return MEMCG_PROT_NONE;
6319
6320 if (!root)
6321 root = root_mem_cgroup;
6322 if (memcg == root)
6323 return MEMCG_PROT_NONE;
6324
6325 usage = page_counter_read(&memcg->memory);
6326 if (!usage)
6327 return MEMCG_PROT_NONE;
6328
6329 emin = memcg->memory.min;
6330 elow = memcg->memory.low;
6331
6332 parent = parent_mem_cgroup(memcg);
6333 /* No parent means a non-hierarchical mode on v1 memcg */
6334 if (!parent)
6335 return MEMCG_PROT_NONE;
6336
6337 if (parent == root)
6338 goto exit;
6339
6340 parent_emin = READ_ONCE(parent->memory.emin);
6341 emin = min(emin, parent_emin);
6342 if (emin && parent_emin) {
6343 unsigned long min_usage, siblings_min_usage;
6344
6345 min_usage = min(usage, memcg->memory.min);
6346 siblings_min_usage = atomic_long_read(
6347 &parent->memory.children_min_usage);
6348
6349 if (min_usage && siblings_min_usage)
6350 emin = min(emin, parent_emin * min_usage /
6351 siblings_min_usage);
6352 }
6353
6354 parent_elow = READ_ONCE(parent->memory.elow);
6355 elow = min(elow, parent_elow);
6356 if (elow && parent_elow) {
6357 unsigned long low_usage, siblings_low_usage;
6358
6359 low_usage = min(usage, memcg->memory.low);
6360 siblings_low_usage = atomic_long_read(
6361 &parent->memory.children_low_usage);
6362
6363 if (low_usage && siblings_low_usage)
6364 elow = min(elow, parent_elow * low_usage /
6365 siblings_low_usage);
6366 }
6367
6368 exit:
6369 memcg->memory.emin = emin;
6370 memcg->memory.elow = elow;
6371
6372 if (usage <= emin)
6373 return MEMCG_PROT_MIN;
6374 else if (usage <= elow)
6375 return MEMCG_PROT_LOW;
6376 else
6377 return MEMCG_PROT_NONE;
6378 }
6379
6380 /**
6381 * mem_cgroup_try_charge - try charging a page
6382 * @page: page to charge
6383 * @mm: mm context of the victim
6384 * @gfp_mask: reclaim mode
6385 * @memcgp: charged memcg return
6386 * @compound: charge the page as compound or small page
6387 *
6388 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6389 * pages according to @gfp_mask if necessary.
6390 *
6391 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6392 * Otherwise, an error code is returned.
6393 *
6394 * After page->mapping has been set up, the caller must finalize the
6395 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6396 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6397 */
6398 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6399 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6400 bool compound)
6401 {
6402 struct mem_cgroup *memcg = NULL;
6403 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6404 int ret = 0;
6405
6406 if (mem_cgroup_disabled())
6407 goto out;
6408
6409 if (PageSwapCache(page)) {
6410 /*
6411 * Every swap fault against a single page tries to charge the
6412 * page, bail as early as possible. shmem_unuse() encounters
6413 * already charged pages, too. The USED bit is protected by
6414 * the page lock, which serializes swap cache removal, which
6415 * in turn serializes uncharging.
6416 */
6417 VM_BUG_ON_PAGE(!PageLocked(page), page);
6418 if (compound_head(page)->mem_cgroup)
6419 goto out;
6420
6421 if (do_swap_account) {
6422 swp_entry_t ent = { .val = page_private(page), };
6423 unsigned short id = lookup_swap_cgroup_id(ent);
6424
6425 rcu_read_lock();
6426 memcg = mem_cgroup_from_id(id);
6427 if (memcg && !css_tryget_online(&memcg->css))
6428 memcg = NULL;
6429 rcu_read_unlock();
6430 }
6431 }
6432
6433 if (!memcg)
6434 memcg = get_mem_cgroup_from_mm(mm);
6435
6436 ret = try_charge(memcg, gfp_mask, nr_pages);
6437
6438 css_put(&memcg->css);
6439 out:
6440 *memcgp = memcg;
6441 return ret;
6442 }
6443
6444 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6445 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6446 bool compound)
6447 {
6448 struct mem_cgroup *memcg;
6449 int ret;
6450
6451 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6452 memcg = *memcgp;
6453 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6454 return ret;
6455 }
6456
6457 /**
6458 * mem_cgroup_commit_charge - commit a page charge
6459 * @page: page to charge
6460 * @memcg: memcg to charge the page to
6461 * @lrucare: page might be on LRU already
6462 * @compound: charge the page as compound or small page
6463 *
6464 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6465 * after page->mapping has been set up. This must happen atomically
6466 * as part of the page instantiation, i.e. under the page table lock
6467 * for anonymous pages, under the page lock for page and swap cache.
6468 *
6469 * In addition, the page must not be on the LRU during the commit, to
6470 * prevent racing with task migration. If it might be, use @lrucare.
6471 *
6472 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6473 */
6474 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6475 bool lrucare, bool compound)
6476 {
6477 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6478
6479 VM_BUG_ON_PAGE(!page->mapping, page);
6480 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6481
6482 if (mem_cgroup_disabled())
6483 return;
6484 /*
6485 * Swap faults will attempt to charge the same page multiple
6486 * times. But reuse_swap_page() might have removed the page
6487 * from swapcache already, so we can't check PageSwapCache().
6488 */
6489 if (!memcg)
6490 return;
6491
6492 commit_charge(page, memcg, lrucare);
6493
6494 local_irq_disable();
6495 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6496 memcg_check_events(memcg, page);
6497 local_irq_enable();
6498
6499 if (do_memsw_account() && PageSwapCache(page)) {
6500 swp_entry_t entry = { .val = page_private(page) };
6501 /*
6502 * The swap entry might not get freed for a long time,
6503 * let's not wait for it. The page already received a
6504 * memory+swap charge, drop the swap entry duplicate.
6505 */
6506 mem_cgroup_uncharge_swap(entry, nr_pages);
6507 }
6508 }
6509
6510 /**
6511 * mem_cgroup_cancel_charge - cancel a page charge
6512 * @page: page to charge
6513 * @memcg: memcg to charge the page to
6514 * @compound: charge the page as compound or small page
6515 *
6516 * Cancel a charge transaction started by mem_cgroup_try_charge().
6517 */
6518 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6519 bool compound)
6520 {
6521 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6522
6523 if (mem_cgroup_disabled())
6524 return;
6525 /*
6526 * Swap faults will attempt to charge the same page multiple
6527 * times. But reuse_swap_page() might have removed the page
6528 * from swapcache already, so we can't check PageSwapCache().
6529 */
6530 if (!memcg)
6531 return;
6532
6533 cancel_charge(memcg, nr_pages);
6534 }
6535
6536 struct uncharge_gather {
6537 struct mem_cgroup *memcg;
6538 unsigned long pgpgout;
6539 unsigned long nr_anon;
6540 unsigned long nr_file;
6541 unsigned long nr_kmem;
6542 unsigned long nr_huge;
6543 unsigned long nr_shmem;
6544 struct page *dummy_page;
6545 };
6546
6547 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6548 {
6549 memset(ug, 0, sizeof(*ug));
6550 }
6551
6552 static void uncharge_batch(const struct uncharge_gather *ug)
6553 {
6554 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6555 unsigned long flags;
6556
6557 if (!mem_cgroup_is_root(ug->memcg)) {
6558 page_counter_uncharge(&ug->memcg->memory, nr_pages);
6559 if (do_memsw_account())
6560 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6561 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6562 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6563 memcg_oom_recover(ug->memcg);
6564 }
6565
6566 local_irq_save(flags);
6567 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6568 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6569 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6570 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6571 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6572 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6573 memcg_check_events(ug->memcg, ug->dummy_page);
6574 local_irq_restore(flags);
6575
6576 if (!mem_cgroup_is_root(ug->memcg))
6577 css_put_many(&ug->memcg->css, nr_pages);
6578 }
6579
6580 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6581 {
6582 VM_BUG_ON_PAGE(PageLRU(page), page);
6583 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6584 !PageHWPoison(page) , page);
6585
6586 if (!page->mem_cgroup)
6587 return;
6588
6589 /*
6590 * Nobody should be changing or seriously looking at
6591 * page->mem_cgroup at this point, we have fully
6592 * exclusive access to the page.
6593 */
6594
6595 if (ug->memcg != page->mem_cgroup) {
6596 if (ug->memcg) {
6597 uncharge_batch(ug);
6598 uncharge_gather_clear(ug);
6599 }
6600 ug->memcg = page->mem_cgroup;
6601 }
6602
6603 if (!PageKmemcg(page)) {
6604 unsigned int nr_pages = 1;
6605
6606 if (PageTransHuge(page)) {
6607 nr_pages = compound_nr(page);
6608 ug->nr_huge += nr_pages;
6609 }
6610 if (PageAnon(page))
6611 ug->nr_anon += nr_pages;
6612 else {
6613 ug->nr_file += nr_pages;
6614 if (PageSwapBacked(page))
6615 ug->nr_shmem += nr_pages;
6616 }
6617 ug->pgpgout++;
6618 } else {
6619 ug->nr_kmem += compound_nr(page);
6620 __ClearPageKmemcg(page);
6621 }
6622
6623 ug->dummy_page = page;
6624 page->mem_cgroup = NULL;
6625 }
6626
6627 static void uncharge_list(struct list_head *page_list)
6628 {
6629 struct uncharge_gather ug;
6630 struct list_head *next;
6631
6632 uncharge_gather_clear(&ug);
6633
6634 /*
6635 * Note that the list can be a single page->lru; hence the
6636 * do-while loop instead of a simple list_for_each_entry().
6637 */
6638 next = page_list->next;
6639 do {
6640 struct page *page;
6641
6642 page = list_entry(next, struct page, lru);
6643 next = page->lru.next;
6644
6645 uncharge_page(page, &ug);
6646 } while (next != page_list);
6647
6648 if (ug.memcg)
6649 uncharge_batch(&ug);
6650 }
6651
6652 /**
6653 * mem_cgroup_uncharge - uncharge a page
6654 * @page: page to uncharge
6655 *
6656 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6657 * mem_cgroup_commit_charge().
6658 */
6659 void mem_cgroup_uncharge(struct page *page)
6660 {
6661 struct uncharge_gather ug;
6662
6663 if (mem_cgroup_disabled())
6664 return;
6665
6666 /* Don't touch page->lru of any random page, pre-check: */
6667 if (!page->mem_cgroup)
6668 return;
6669
6670 uncharge_gather_clear(&ug);
6671 uncharge_page(page, &ug);
6672 uncharge_batch(&ug);
6673 }
6674
6675 /**
6676 * mem_cgroup_uncharge_list - uncharge a list of page
6677 * @page_list: list of pages to uncharge
6678 *
6679 * Uncharge a list of pages previously charged with
6680 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6681 */
6682 void mem_cgroup_uncharge_list(struct list_head *page_list)
6683 {
6684 if (mem_cgroup_disabled())
6685 return;
6686
6687 if (!list_empty(page_list))
6688 uncharge_list(page_list);
6689 }
6690
6691 /**
6692 * mem_cgroup_migrate - charge a page's replacement
6693 * @oldpage: currently circulating page
6694 * @newpage: replacement page
6695 *
6696 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6697 * be uncharged upon free.
6698 *
6699 * Both pages must be locked, @newpage->mapping must be set up.
6700 */
6701 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6702 {
6703 struct mem_cgroup *memcg;
6704 unsigned int nr_pages;
6705 unsigned long flags;
6706
6707 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6708 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6709 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6710 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6711 newpage);
6712
6713 if (mem_cgroup_disabled())
6714 return;
6715
6716 /* Page cache replacement: new page already charged? */
6717 if (newpage->mem_cgroup)
6718 return;
6719
6720 /* Swapcache readahead pages can get replaced before being charged */
6721 memcg = oldpage->mem_cgroup;
6722 if (!memcg)
6723 return;
6724
6725 /* Force-charge the new page. The old one will be freed soon */
6726 nr_pages = hpage_nr_pages(newpage);
6727
6728 page_counter_charge(&memcg->memory, nr_pages);
6729 if (do_memsw_account())
6730 page_counter_charge(&memcg->memsw, nr_pages);
6731 css_get_many(&memcg->css, nr_pages);
6732
6733 commit_charge(newpage, memcg, false);
6734
6735 local_irq_save(flags);
6736 mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage),
6737 nr_pages);
6738 memcg_check_events(memcg, newpage);
6739 local_irq_restore(flags);
6740 }
6741
6742 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6743 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6744
6745 void mem_cgroup_sk_alloc(struct sock *sk)
6746 {
6747 struct mem_cgroup *memcg;
6748
6749 if (!mem_cgroup_sockets_enabled)
6750 return;
6751
6752 /* Do not associate the sock with unrelated interrupted task's memcg. */
6753 if (in_interrupt())
6754 return;
6755
6756 rcu_read_lock();
6757 memcg = mem_cgroup_from_task(current);
6758 if (memcg == root_mem_cgroup)
6759 goto out;
6760 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6761 goto out;
6762 if (css_tryget_online(&memcg->css))
6763 sk->sk_memcg = memcg;
6764 out:
6765 rcu_read_unlock();
6766 }
6767
6768 void mem_cgroup_sk_free(struct sock *sk)
6769 {
6770 if (sk->sk_memcg)
6771 css_put(&sk->sk_memcg->css);
6772 }
6773
6774 /**
6775 * mem_cgroup_charge_skmem - charge socket memory
6776 * @memcg: memcg to charge
6777 * @nr_pages: number of pages to charge
6778 *
6779 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6780 * @memcg's configured limit, %false if the charge had to be forced.
6781 */
6782 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6783 {
6784 gfp_t gfp_mask = GFP_KERNEL;
6785
6786 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6787 struct page_counter *fail;
6788
6789 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6790 memcg->tcpmem_pressure = 0;
6791 return true;
6792 }
6793 page_counter_charge(&memcg->tcpmem, nr_pages);
6794 memcg->tcpmem_pressure = 1;
6795 return false;
6796 }
6797
6798 /* Don't block in the packet receive path */
6799 if (in_softirq())
6800 gfp_mask = GFP_NOWAIT;
6801
6802 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6803
6804 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6805 return true;
6806
6807 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6808 return false;
6809 }
6810
6811 /**
6812 * mem_cgroup_uncharge_skmem - uncharge socket memory
6813 * @memcg: memcg to uncharge
6814 * @nr_pages: number of pages to uncharge
6815 */
6816 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6817 {
6818 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6819 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6820 return;
6821 }
6822
6823 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6824
6825 refill_stock(memcg, nr_pages);
6826 }
6827
6828 static int __init cgroup_memory(char *s)
6829 {
6830 char *token;
6831
6832 while ((token = strsep(&s, ",")) != NULL) {
6833 if (!*token)
6834 continue;
6835 if (!strcmp(token, "nosocket"))
6836 cgroup_memory_nosocket = true;
6837 if (!strcmp(token, "nokmem"))
6838 cgroup_memory_nokmem = true;
6839 }
6840 return 0;
6841 }
6842 __setup("cgroup.memory=", cgroup_memory);
6843
6844 /*
6845 * subsys_initcall() for memory controller.
6846 *
6847 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6848 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6849 * basically everything that doesn't depend on a specific mem_cgroup structure
6850 * should be initialized from here.
6851 */
6852 static int __init mem_cgroup_init(void)
6853 {
6854 int cpu, node;
6855
6856 #ifdef CONFIG_MEMCG_KMEM
6857 /*
6858 * Kmem cache creation is mostly done with the slab_mutex held,
6859 * so use a workqueue with limited concurrency to avoid stalling
6860 * all worker threads in case lots of cgroups are created and
6861 * destroyed simultaneously.
6862 */
6863 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6864 BUG_ON(!memcg_kmem_cache_wq);
6865 #endif
6866
6867 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6868 memcg_hotplug_cpu_dead);
6869
6870 for_each_possible_cpu(cpu)
6871 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6872 drain_local_stock);
6873
6874 for_each_node(node) {
6875 struct mem_cgroup_tree_per_node *rtpn;
6876
6877 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6878 node_online(node) ? node : NUMA_NO_NODE);
6879
6880 rtpn->rb_root = RB_ROOT;
6881 rtpn->rb_rightmost = NULL;
6882 spin_lock_init(&rtpn->lock);
6883 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6884 }
6885
6886 return 0;
6887 }
6888 subsys_initcall(mem_cgroup_init);
6889
6890 #ifdef CONFIG_MEMCG_SWAP
6891 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6892 {
6893 while (!refcount_inc_not_zero(&memcg->id.ref)) {
6894 /*
6895 * The root cgroup cannot be destroyed, so it's refcount must
6896 * always be >= 1.
6897 */
6898 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6899 VM_BUG_ON(1);
6900 break;
6901 }
6902 memcg = parent_mem_cgroup(memcg);
6903 if (!memcg)
6904 memcg = root_mem_cgroup;
6905 }
6906 return memcg;
6907 }
6908
6909 /**
6910 * mem_cgroup_swapout - transfer a memsw charge to swap
6911 * @page: page whose memsw charge to transfer
6912 * @entry: swap entry to move the charge to
6913 *
6914 * Transfer the memsw charge of @page to @entry.
6915 */
6916 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6917 {
6918 struct mem_cgroup *memcg, *swap_memcg;
6919 unsigned int nr_entries;
6920 unsigned short oldid;
6921
6922 VM_BUG_ON_PAGE(PageLRU(page), page);
6923 VM_BUG_ON_PAGE(page_count(page), page);
6924
6925 if (!do_memsw_account())
6926 return;
6927
6928 memcg = page->mem_cgroup;
6929
6930 /* Readahead page, never charged */
6931 if (!memcg)
6932 return;
6933
6934 /*
6935 * In case the memcg owning these pages has been offlined and doesn't
6936 * have an ID allocated to it anymore, charge the closest online
6937 * ancestor for the swap instead and transfer the memory+swap charge.
6938 */
6939 swap_memcg = mem_cgroup_id_get_online(memcg);
6940 nr_entries = hpage_nr_pages(page);
6941 /* Get references for the tail pages, too */
6942 if (nr_entries > 1)
6943 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6944 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6945 nr_entries);
6946 VM_BUG_ON_PAGE(oldid, page);
6947 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6948
6949 page->mem_cgroup = NULL;
6950
6951 if (!mem_cgroup_is_root(memcg))
6952 page_counter_uncharge(&memcg->memory, nr_entries);
6953
6954 if (memcg != swap_memcg) {
6955 if (!mem_cgroup_is_root(swap_memcg))
6956 page_counter_charge(&swap_memcg->memsw, nr_entries);
6957 page_counter_uncharge(&memcg->memsw, nr_entries);
6958 }
6959
6960 /*
6961 * Interrupts should be disabled here because the caller holds the
6962 * i_pages lock which is taken with interrupts-off. It is
6963 * important here to have the interrupts disabled because it is the
6964 * only synchronisation we have for updating the per-CPU variables.
6965 */
6966 VM_BUG_ON(!irqs_disabled());
6967 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6968 -nr_entries);
6969 memcg_check_events(memcg, page);
6970
6971 if (!mem_cgroup_is_root(memcg))
6972 css_put_many(&memcg->css, nr_entries);
6973 }
6974
6975 /**
6976 * mem_cgroup_try_charge_swap - try charging swap space for a page
6977 * @page: page being added to swap
6978 * @entry: swap entry to charge
6979 *
6980 * Try to charge @page's memcg for the swap space at @entry.
6981 *
6982 * Returns 0 on success, -ENOMEM on failure.
6983 */
6984 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6985 {
6986 unsigned int nr_pages = hpage_nr_pages(page);
6987 struct page_counter *counter;
6988 struct mem_cgroup *memcg;
6989 unsigned short oldid;
6990
6991 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6992 return 0;
6993
6994 memcg = page->mem_cgroup;
6995
6996 /* Readahead page, never charged */
6997 if (!memcg)
6998 return 0;
6999
7000 if (!entry.val) {
7001 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7002 return 0;
7003 }
7004
7005 memcg = mem_cgroup_id_get_online(memcg);
7006
7007 if (!mem_cgroup_is_root(memcg) &&
7008 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7009 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7010 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7011 mem_cgroup_id_put(memcg);
7012 return -ENOMEM;
7013 }
7014
7015 /* Get references for the tail pages, too */
7016 if (nr_pages > 1)
7017 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7018 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7019 VM_BUG_ON_PAGE(oldid, page);
7020 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7021
7022 return 0;
7023 }
7024
7025 /**
7026 * mem_cgroup_uncharge_swap - uncharge swap space
7027 * @entry: swap entry to uncharge
7028 * @nr_pages: the amount of swap space to uncharge
7029 */
7030 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7031 {
7032 struct mem_cgroup *memcg;
7033 unsigned short id;
7034
7035 if (!do_swap_account)
7036 return;
7037
7038 id = swap_cgroup_record(entry, 0, nr_pages);
7039 rcu_read_lock();
7040 memcg = mem_cgroup_from_id(id);
7041 if (memcg) {
7042 if (!mem_cgroup_is_root(memcg)) {
7043 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7044 page_counter_uncharge(&memcg->swap, nr_pages);
7045 else
7046 page_counter_uncharge(&memcg->memsw, nr_pages);
7047 }
7048 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7049 mem_cgroup_id_put_many(memcg, nr_pages);
7050 }
7051 rcu_read_unlock();
7052 }
7053
7054 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7055 {
7056 long nr_swap_pages = get_nr_swap_pages();
7057
7058 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7059 return nr_swap_pages;
7060 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7061 nr_swap_pages = min_t(long, nr_swap_pages,
7062 READ_ONCE(memcg->swap.max) -
7063 page_counter_read(&memcg->swap));
7064 return nr_swap_pages;
7065 }
7066
7067 bool mem_cgroup_swap_full(struct page *page)
7068 {
7069 struct mem_cgroup *memcg;
7070
7071 VM_BUG_ON_PAGE(!PageLocked(page), page);
7072
7073 if (vm_swap_full())
7074 return true;
7075 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7076 return false;
7077
7078 memcg = page->mem_cgroup;
7079 if (!memcg)
7080 return false;
7081
7082 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7083 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
7084 return true;
7085
7086 return false;
7087 }
7088
7089 /* for remember boot option*/
7090 #ifdef CONFIG_MEMCG_SWAP_ENABLED
7091 static int really_do_swap_account __initdata = 1;
7092 #else
7093 static int really_do_swap_account __initdata;
7094 #endif
7095
7096 static int __init enable_swap_account(char *s)
7097 {
7098 if (!strcmp(s, "1"))
7099 really_do_swap_account = 1;
7100 else if (!strcmp(s, "0"))
7101 really_do_swap_account = 0;
7102 return 1;
7103 }
7104 __setup("swapaccount=", enable_swap_account);
7105
7106 static u64 swap_current_read(struct cgroup_subsys_state *css,
7107 struct cftype *cft)
7108 {
7109 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7110
7111 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7112 }
7113
7114 static int swap_max_show(struct seq_file *m, void *v)
7115 {
7116 return seq_puts_memcg_tunable(m,
7117 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7118 }
7119
7120 static ssize_t swap_max_write(struct kernfs_open_file *of,
7121 char *buf, size_t nbytes, loff_t off)
7122 {
7123 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7124 unsigned long max;
7125 int err;
7126
7127 buf = strstrip(buf);
7128 err = page_counter_memparse(buf, "max", &max);
7129 if (err)
7130 return err;
7131
7132 xchg(&memcg->swap.max, max);
7133
7134 return nbytes;
7135 }
7136
7137 static int swap_events_show(struct seq_file *m, void *v)
7138 {
7139 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7140
7141 seq_printf(m, "max %lu\n",
7142 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7143 seq_printf(m, "fail %lu\n",
7144 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7145
7146 return 0;
7147 }
7148
7149 static struct cftype swap_files[] = {
7150 {
7151 .name = "swap.current",
7152 .flags = CFTYPE_NOT_ON_ROOT,
7153 .read_u64 = swap_current_read,
7154 },
7155 {
7156 .name = "swap.max",
7157 .flags = CFTYPE_NOT_ON_ROOT,
7158 .seq_show = swap_max_show,
7159 .write = swap_max_write,
7160 },
7161 {
7162 .name = "swap.events",
7163 .flags = CFTYPE_NOT_ON_ROOT,
7164 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7165 .seq_show = swap_events_show,
7166 },
7167 { } /* terminate */
7168 };
7169
7170 static struct cftype memsw_cgroup_files[] = {
7171 {
7172 .name = "memsw.usage_in_bytes",
7173 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7174 .read_u64 = mem_cgroup_read_u64,
7175 },
7176 {
7177 .name = "memsw.max_usage_in_bytes",
7178 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7179 .write = mem_cgroup_reset,
7180 .read_u64 = mem_cgroup_read_u64,
7181 },
7182 {
7183 .name = "memsw.limit_in_bytes",
7184 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7185 .write = mem_cgroup_write,
7186 .read_u64 = mem_cgroup_read_u64,
7187 },
7188 {
7189 .name = "memsw.failcnt",
7190 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7191 .write = mem_cgroup_reset,
7192 .read_u64 = mem_cgroup_read_u64,
7193 },
7194 { }, /* terminate */
7195 };
7196
7197 static int __init mem_cgroup_swap_init(void)
7198 {
7199 if (!mem_cgroup_disabled() && really_do_swap_account) {
7200 do_swap_account = 1;
7201 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7202 swap_files));
7203 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7204 memsw_cgroup_files));
7205 }
7206 return 0;
7207 }
7208 subsys_initcall(mem_cgroup_swap_init);
7209
7210 #endif /* CONFIG_MEMCG_SWAP */