]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memcontrol.c
Merge branch 'for-5.7/mcp2221' into for-linus
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66
67 #include <linux/uaccess.h>
68
69 #include <trace/events/vmscan.h>
70
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75
76 #define MEM_CGROUP_RECLAIM_RETRIES 5
77
78 /* Socket memory accounting disabled? */
79 static bool cgroup_memory_nosocket;
80
81 /* Kernel memory accounting disabled? */
82 static bool cgroup_memory_nokmem;
83
84 /* Whether the swap controller is active */
85 #ifdef CONFIG_MEMCG_SWAP
86 int do_swap_account __read_mostly;
87 #else
88 #define do_swap_account 0
89 #endif
90
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 #define THRESHOLDS_EVENTS_TARGET 128
102 #define SOFTLIMIT_EVENTS_TARGET 1024
103
104 /*
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
107 */
108
109 struct mem_cgroup_tree_per_node {
110 struct rb_root rb_root;
111 struct rb_node *rb_rightmost;
112 spinlock_t lock;
113 };
114
115 struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117 };
118
119 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120
121 /* for OOM */
122 struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
125 };
126
127 /*
128 * cgroup_event represents events which userspace want to receive.
129 */
130 struct mem_cgroup_event {
131 /*
132 * memcg which the event belongs to.
133 */
134 struct mem_cgroup *memcg;
135 /*
136 * eventfd to signal userspace about the event.
137 */
138 struct eventfd_ctx *eventfd;
139 /*
140 * Each of these stored in a list by the cgroup.
141 */
142 struct list_head list;
143 /*
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
147 */
148 int (*register_event)(struct mem_cgroup *memcg,
149 struct eventfd_ctx *eventfd, const char *args);
150 /*
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
154 */
155 void (*unregister_event)(struct mem_cgroup *memcg,
156 struct eventfd_ctx *eventfd);
157 /*
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
160 */
161 poll_table pt;
162 wait_queue_head_t *wqh;
163 wait_queue_entry_t wait;
164 struct work_struct remove;
165 };
166
167 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169
170 /* Stuffs for move charges at task migration. */
171 /*
172 * Types of charges to be moved.
173 */
174 #define MOVE_ANON 0x1U
175 #define MOVE_FILE 0x2U
176 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
177
178 /* "mc" and its members are protected by cgroup_mutex */
179 static struct move_charge_struct {
180 spinlock_t lock; /* for from, to */
181 struct mm_struct *mm;
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
184 unsigned long flags;
185 unsigned long precharge;
186 unsigned long moved_charge;
187 unsigned long moved_swap;
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
190 } mc = {
191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193 };
194
195 /*
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
198 */
199 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
200 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
201
202 enum charge_type {
203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
204 MEM_CGROUP_CHARGE_TYPE_ANON,
205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
207 NR_CHARGE_TYPE,
208 };
209
210 /* for encoding cft->private value on file */
211 enum res_type {
212 _MEM,
213 _MEMSWAP,
214 _OOM_TYPE,
215 _KMEM,
216 _TCP,
217 };
218
219 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
220 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
221 #define MEMFILE_ATTR(val) ((val) & 0xffff)
222 /* Used for OOM nofiier */
223 #define OOM_CONTROL (0)
224
225 /*
226 * Iteration constructs for visiting all cgroups (under a tree). If
227 * loops are exited prematurely (break), mem_cgroup_iter_break() must
228 * be used for reference counting.
229 */
230 #define for_each_mem_cgroup_tree(iter, root) \
231 for (iter = mem_cgroup_iter(root, NULL, NULL); \
232 iter != NULL; \
233 iter = mem_cgroup_iter(root, iter, NULL))
234
235 #define for_each_mem_cgroup(iter) \
236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
237 iter != NULL; \
238 iter = mem_cgroup_iter(NULL, iter, NULL))
239
240 static inline bool should_force_charge(void)
241 {
242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 (current->flags & PF_EXITING);
244 }
245
246 /* Some nice accessors for the vmpressure. */
247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
248 {
249 if (!memcg)
250 memcg = root_mem_cgroup;
251 return &memcg->vmpressure;
252 }
253
254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
255 {
256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
257 }
258
259 #ifdef CONFIG_MEMCG_KMEM
260 /*
261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
262 * The main reason for not using cgroup id for this:
263 * this works better in sparse environments, where we have a lot of memcgs,
264 * but only a few kmem-limited. Or also, if we have, for instance, 200
265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
266 * 200 entry array for that.
267 *
268 * The current size of the caches array is stored in memcg_nr_cache_ids. It
269 * will double each time we have to increase it.
270 */
271 static DEFINE_IDA(memcg_cache_ida);
272 int memcg_nr_cache_ids;
273
274 /* Protects memcg_nr_cache_ids */
275 static DECLARE_RWSEM(memcg_cache_ids_sem);
276
277 void memcg_get_cache_ids(void)
278 {
279 down_read(&memcg_cache_ids_sem);
280 }
281
282 void memcg_put_cache_ids(void)
283 {
284 up_read(&memcg_cache_ids_sem);
285 }
286
287 /*
288 * MIN_SIZE is different than 1, because we would like to avoid going through
289 * the alloc/free process all the time. In a small machine, 4 kmem-limited
290 * cgroups is a reasonable guess. In the future, it could be a parameter or
291 * tunable, but that is strictly not necessary.
292 *
293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
294 * this constant directly from cgroup, but it is understandable that this is
295 * better kept as an internal representation in cgroup.c. In any case, the
296 * cgrp_id space is not getting any smaller, and we don't have to necessarily
297 * increase ours as well if it increases.
298 */
299 #define MEMCG_CACHES_MIN_SIZE 4
300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
301
302 /*
303 * A lot of the calls to the cache allocation functions are expected to be
304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305 * conditional to this static branch, we'll have to allow modules that does
306 * kmem_cache_alloc and the such to see this symbol as well
307 */
308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
309 EXPORT_SYMBOL(memcg_kmem_enabled_key);
310
311 struct workqueue_struct *memcg_kmem_cache_wq;
312 #endif
313
314 static int memcg_shrinker_map_size;
315 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
316
317 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
318 {
319 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
320 }
321
322 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 int size, int old_size)
324 {
325 struct memcg_shrinker_map *new, *old;
326 int nid;
327
328 lockdep_assert_held(&memcg_shrinker_map_mutex);
329
330 for_each_node(nid) {
331 old = rcu_dereference_protected(
332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 /* Not yet online memcg */
334 if (!old)
335 return 0;
336
337 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
338 if (!new)
339 return -ENOMEM;
340
341 /* Set all old bits, clear all new bits */
342 memset(new->map, (int)0xff, old_size);
343 memset((void *)new->map + old_size, 0, size - old_size);
344
345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
347 }
348
349 return 0;
350 }
351
352 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
353 {
354 struct mem_cgroup_per_node *pn;
355 struct memcg_shrinker_map *map;
356 int nid;
357
358 if (mem_cgroup_is_root(memcg))
359 return;
360
361 for_each_node(nid) {
362 pn = mem_cgroup_nodeinfo(memcg, nid);
363 map = rcu_dereference_protected(pn->shrinker_map, true);
364 if (map)
365 kvfree(map);
366 rcu_assign_pointer(pn->shrinker_map, NULL);
367 }
368 }
369
370 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
371 {
372 struct memcg_shrinker_map *map;
373 int nid, size, ret = 0;
374
375 if (mem_cgroup_is_root(memcg))
376 return 0;
377
378 mutex_lock(&memcg_shrinker_map_mutex);
379 size = memcg_shrinker_map_size;
380 for_each_node(nid) {
381 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
382 if (!map) {
383 memcg_free_shrinker_maps(memcg);
384 ret = -ENOMEM;
385 break;
386 }
387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
388 }
389 mutex_unlock(&memcg_shrinker_map_mutex);
390
391 return ret;
392 }
393
394 int memcg_expand_shrinker_maps(int new_id)
395 {
396 int size, old_size, ret = 0;
397 struct mem_cgroup *memcg;
398
399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 old_size = memcg_shrinker_map_size;
401 if (size <= old_size)
402 return 0;
403
404 mutex_lock(&memcg_shrinker_map_mutex);
405 if (!root_mem_cgroup)
406 goto unlock;
407
408 for_each_mem_cgroup(memcg) {
409 if (mem_cgroup_is_root(memcg))
410 continue;
411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
412 if (ret) {
413 mem_cgroup_iter_break(NULL, memcg);
414 goto unlock;
415 }
416 }
417 unlock:
418 if (!ret)
419 memcg_shrinker_map_size = size;
420 mutex_unlock(&memcg_shrinker_map_mutex);
421 return ret;
422 }
423
424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
425 {
426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 struct memcg_shrinker_map *map;
428
429 rcu_read_lock();
430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 /* Pairs with smp mb in shrink_slab() */
432 smp_mb__before_atomic();
433 set_bit(shrinker_id, map->map);
434 rcu_read_unlock();
435 }
436 }
437
438 /**
439 * mem_cgroup_css_from_page - css of the memcg associated with a page
440 * @page: page of interest
441 *
442 * If memcg is bound to the default hierarchy, css of the memcg associated
443 * with @page is returned. The returned css remains associated with @page
444 * until it is released.
445 *
446 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
447 * is returned.
448 */
449 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
450 {
451 struct mem_cgroup *memcg;
452
453 memcg = page->mem_cgroup;
454
455 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
456 memcg = root_mem_cgroup;
457
458 return &memcg->css;
459 }
460
461 /**
462 * page_cgroup_ino - return inode number of the memcg a page is charged to
463 * @page: the page
464 *
465 * Look up the closest online ancestor of the memory cgroup @page is charged to
466 * and return its inode number or 0 if @page is not charged to any cgroup. It
467 * is safe to call this function without holding a reference to @page.
468 *
469 * Note, this function is inherently racy, because there is nothing to prevent
470 * the cgroup inode from getting torn down and potentially reallocated a moment
471 * after page_cgroup_ino() returns, so it only should be used by callers that
472 * do not care (such as procfs interfaces).
473 */
474 ino_t page_cgroup_ino(struct page *page)
475 {
476 struct mem_cgroup *memcg;
477 unsigned long ino = 0;
478
479 rcu_read_lock();
480 if (PageSlab(page) && !PageTail(page))
481 memcg = memcg_from_slab_page(page);
482 else
483 memcg = READ_ONCE(page->mem_cgroup);
484 while (memcg && !(memcg->css.flags & CSS_ONLINE))
485 memcg = parent_mem_cgroup(memcg);
486 if (memcg)
487 ino = cgroup_ino(memcg->css.cgroup);
488 rcu_read_unlock();
489 return ino;
490 }
491
492 static struct mem_cgroup_per_node *
493 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
494 {
495 int nid = page_to_nid(page);
496
497 return memcg->nodeinfo[nid];
498 }
499
500 static struct mem_cgroup_tree_per_node *
501 soft_limit_tree_node(int nid)
502 {
503 return soft_limit_tree.rb_tree_per_node[nid];
504 }
505
506 static struct mem_cgroup_tree_per_node *
507 soft_limit_tree_from_page(struct page *page)
508 {
509 int nid = page_to_nid(page);
510
511 return soft_limit_tree.rb_tree_per_node[nid];
512 }
513
514 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
515 struct mem_cgroup_tree_per_node *mctz,
516 unsigned long new_usage_in_excess)
517 {
518 struct rb_node **p = &mctz->rb_root.rb_node;
519 struct rb_node *parent = NULL;
520 struct mem_cgroup_per_node *mz_node;
521 bool rightmost = true;
522
523 if (mz->on_tree)
524 return;
525
526 mz->usage_in_excess = new_usage_in_excess;
527 if (!mz->usage_in_excess)
528 return;
529 while (*p) {
530 parent = *p;
531 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
532 tree_node);
533 if (mz->usage_in_excess < mz_node->usage_in_excess) {
534 p = &(*p)->rb_left;
535 rightmost = false;
536 }
537
538 /*
539 * We can't avoid mem cgroups that are over their soft
540 * limit by the same amount
541 */
542 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
543 p = &(*p)->rb_right;
544 }
545
546 if (rightmost)
547 mctz->rb_rightmost = &mz->tree_node;
548
549 rb_link_node(&mz->tree_node, parent, p);
550 rb_insert_color(&mz->tree_node, &mctz->rb_root);
551 mz->on_tree = true;
552 }
553
554 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
555 struct mem_cgroup_tree_per_node *mctz)
556 {
557 if (!mz->on_tree)
558 return;
559
560 if (&mz->tree_node == mctz->rb_rightmost)
561 mctz->rb_rightmost = rb_prev(&mz->tree_node);
562
563 rb_erase(&mz->tree_node, &mctz->rb_root);
564 mz->on_tree = false;
565 }
566
567 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 struct mem_cgroup_tree_per_node *mctz)
569 {
570 unsigned long flags;
571
572 spin_lock_irqsave(&mctz->lock, flags);
573 __mem_cgroup_remove_exceeded(mz, mctz);
574 spin_unlock_irqrestore(&mctz->lock, flags);
575 }
576
577 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
578 {
579 unsigned long nr_pages = page_counter_read(&memcg->memory);
580 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
581 unsigned long excess = 0;
582
583 if (nr_pages > soft_limit)
584 excess = nr_pages - soft_limit;
585
586 return excess;
587 }
588
589 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
590 {
591 unsigned long excess;
592 struct mem_cgroup_per_node *mz;
593 struct mem_cgroup_tree_per_node *mctz;
594
595 mctz = soft_limit_tree_from_page(page);
596 if (!mctz)
597 return;
598 /*
599 * Necessary to update all ancestors when hierarchy is used.
600 * because their event counter is not touched.
601 */
602 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
603 mz = mem_cgroup_page_nodeinfo(memcg, page);
604 excess = soft_limit_excess(memcg);
605 /*
606 * We have to update the tree if mz is on RB-tree or
607 * mem is over its softlimit.
608 */
609 if (excess || mz->on_tree) {
610 unsigned long flags;
611
612 spin_lock_irqsave(&mctz->lock, flags);
613 /* if on-tree, remove it */
614 if (mz->on_tree)
615 __mem_cgroup_remove_exceeded(mz, mctz);
616 /*
617 * Insert again. mz->usage_in_excess will be updated.
618 * If excess is 0, no tree ops.
619 */
620 __mem_cgroup_insert_exceeded(mz, mctz, excess);
621 spin_unlock_irqrestore(&mctz->lock, flags);
622 }
623 }
624 }
625
626 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
627 {
628 struct mem_cgroup_tree_per_node *mctz;
629 struct mem_cgroup_per_node *mz;
630 int nid;
631
632 for_each_node(nid) {
633 mz = mem_cgroup_nodeinfo(memcg, nid);
634 mctz = soft_limit_tree_node(nid);
635 if (mctz)
636 mem_cgroup_remove_exceeded(mz, mctz);
637 }
638 }
639
640 static struct mem_cgroup_per_node *
641 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
642 {
643 struct mem_cgroup_per_node *mz;
644
645 retry:
646 mz = NULL;
647 if (!mctz->rb_rightmost)
648 goto done; /* Nothing to reclaim from */
649
650 mz = rb_entry(mctz->rb_rightmost,
651 struct mem_cgroup_per_node, tree_node);
652 /*
653 * Remove the node now but someone else can add it back,
654 * we will to add it back at the end of reclaim to its correct
655 * position in the tree.
656 */
657 __mem_cgroup_remove_exceeded(mz, mctz);
658 if (!soft_limit_excess(mz->memcg) ||
659 !css_tryget_online(&mz->memcg->css))
660 goto retry;
661 done:
662 return mz;
663 }
664
665 static struct mem_cgroup_per_node *
666 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
667 {
668 struct mem_cgroup_per_node *mz;
669
670 spin_lock_irq(&mctz->lock);
671 mz = __mem_cgroup_largest_soft_limit_node(mctz);
672 spin_unlock_irq(&mctz->lock);
673 return mz;
674 }
675
676 /**
677 * __mod_memcg_state - update cgroup memory statistics
678 * @memcg: the memory cgroup
679 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
680 * @val: delta to add to the counter, can be negative
681 */
682 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
683 {
684 long x;
685
686 if (mem_cgroup_disabled())
687 return;
688
689 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
690 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
691 struct mem_cgroup *mi;
692
693 /*
694 * Batch local counters to keep them in sync with
695 * the hierarchical ones.
696 */
697 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
698 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
699 atomic_long_add(x, &mi->vmstats[idx]);
700 x = 0;
701 }
702 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
703 }
704
705 static struct mem_cgroup_per_node *
706 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
707 {
708 struct mem_cgroup *parent;
709
710 parent = parent_mem_cgroup(pn->memcg);
711 if (!parent)
712 return NULL;
713 return mem_cgroup_nodeinfo(parent, nid);
714 }
715
716 /**
717 * __mod_lruvec_state - update lruvec memory statistics
718 * @lruvec: the lruvec
719 * @idx: the stat item
720 * @val: delta to add to the counter, can be negative
721 *
722 * The lruvec is the intersection of the NUMA node and a cgroup. This
723 * function updates the all three counters that are affected by a
724 * change of state at this level: per-node, per-cgroup, per-lruvec.
725 */
726 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 int val)
728 {
729 pg_data_t *pgdat = lruvec_pgdat(lruvec);
730 struct mem_cgroup_per_node *pn;
731 struct mem_cgroup *memcg;
732 long x;
733
734 /* Update node */
735 __mod_node_page_state(pgdat, idx, val);
736
737 if (mem_cgroup_disabled())
738 return;
739
740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
741 memcg = pn->memcg;
742
743 /* Update memcg */
744 __mod_memcg_state(memcg, idx, val);
745
746 /* Update lruvec */
747 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
748
749 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
750 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
751 struct mem_cgroup_per_node *pi;
752
753 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
754 atomic_long_add(x, &pi->lruvec_stat[idx]);
755 x = 0;
756 }
757 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
758 }
759
760 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
761 {
762 struct page *page = virt_to_head_page(p);
763 pg_data_t *pgdat = page_pgdat(page);
764 struct mem_cgroup *memcg;
765 struct lruvec *lruvec;
766
767 rcu_read_lock();
768 memcg = memcg_from_slab_page(page);
769
770 /* Untracked pages have no memcg, no lruvec. Update only the node */
771 if (!memcg || memcg == root_mem_cgroup) {
772 __mod_node_page_state(pgdat, idx, val);
773 } else {
774 lruvec = mem_cgroup_lruvec(memcg, pgdat);
775 __mod_lruvec_state(lruvec, idx, val);
776 }
777 rcu_read_unlock();
778 }
779
780 /**
781 * __count_memcg_events - account VM events in a cgroup
782 * @memcg: the memory cgroup
783 * @idx: the event item
784 * @count: the number of events that occured
785 */
786 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
787 unsigned long count)
788 {
789 unsigned long x;
790
791 if (mem_cgroup_disabled())
792 return;
793
794 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
795 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
796 struct mem_cgroup *mi;
797
798 /*
799 * Batch local counters to keep them in sync with
800 * the hierarchical ones.
801 */
802 __this_cpu_add(memcg->vmstats_local->events[idx], x);
803 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
804 atomic_long_add(x, &mi->vmevents[idx]);
805 x = 0;
806 }
807 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
808 }
809
810 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
811 {
812 return atomic_long_read(&memcg->vmevents[event]);
813 }
814
815 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
816 {
817 long x = 0;
818 int cpu;
819
820 for_each_possible_cpu(cpu)
821 x += per_cpu(memcg->vmstats_local->events[event], cpu);
822 return x;
823 }
824
825 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
826 struct page *page,
827 bool compound, int nr_pages)
828 {
829 /*
830 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
831 * counted as CACHE even if it's on ANON LRU.
832 */
833 if (PageAnon(page))
834 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
835 else {
836 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
837 if (PageSwapBacked(page))
838 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
839 }
840
841 if (compound) {
842 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
843 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
844 }
845
846 /* pagein of a big page is an event. So, ignore page size */
847 if (nr_pages > 0)
848 __count_memcg_events(memcg, PGPGIN, 1);
849 else {
850 __count_memcg_events(memcg, PGPGOUT, 1);
851 nr_pages = -nr_pages; /* for event */
852 }
853
854 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
855 }
856
857 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
858 enum mem_cgroup_events_target target)
859 {
860 unsigned long val, next;
861
862 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
863 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
864 /* from time_after() in jiffies.h */
865 if ((long)(next - val) < 0) {
866 switch (target) {
867 case MEM_CGROUP_TARGET_THRESH:
868 next = val + THRESHOLDS_EVENTS_TARGET;
869 break;
870 case MEM_CGROUP_TARGET_SOFTLIMIT:
871 next = val + SOFTLIMIT_EVENTS_TARGET;
872 break;
873 default:
874 break;
875 }
876 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
877 return true;
878 }
879 return false;
880 }
881
882 /*
883 * Check events in order.
884 *
885 */
886 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
887 {
888 /* threshold event is triggered in finer grain than soft limit */
889 if (unlikely(mem_cgroup_event_ratelimit(memcg,
890 MEM_CGROUP_TARGET_THRESH))) {
891 bool do_softlimit;
892
893 do_softlimit = mem_cgroup_event_ratelimit(memcg,
894 MEM_CGROUP_TARGET_SOFTLIMIT);
895 mem_cgroup_threshold(memcg);
896 if (unlikely(do_softlimit))
897 mem_cgroup_update_tree(memcg, page);
898 }
899 }
900
901 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
902 {
903 /*
904 * mm_update_next_owner() may clear mm->owner to NULL
905 * if it races with swapoff, page migration, etc.
906 * So this can be called with p == NULL.
907 */
908 if (unlikely(!p))
909 return NULL;
910
911 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
912 }
913 EXPORT_SYMBOL(mem_cgroup_from_task);
914
915 /**
916 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
917 * @mm: mm from which memcg should be extracted. It can be NULL.
918 *
919 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
920 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
921 * returned.
922 */
923 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
924 {
925 struct mem_cgroup *memcg;
926
927 if (mem_cgroup_disabled())
928 return NULL;
929
930 rcu_read_lock();
931 do {
932 /*
933 * Page cache insertions can happen withou an
934 * actual mm context, e.g. during disk probing
935 * on boot, loopback IO, acct() writes etc.
936 */
937 if (unlikely(!mm))
938 memcg = root_mem_cgroup;
939 else {
940 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
941 if (unlikely(!memcg))
942 memcg = root_mem_cgroup;
943 }
944 } while (!css_tryget(&memcg->css));
945 rcu_read_unlock();
946 return memcg;
947 }
948 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
949
950 /**
951 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
952 * @page: page from which memcg should be extracted.
953 *
954 * Obtain a reference on page->memcg and returns it if successful. Otherwise
955 * root_mem_cgroup is returned.
956 */
957 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
958 {
959 struct mem_cgroup *memcg = page->mem_cgroup;
960
961 if (mem_cgroup_disabled())
962 return NULL;
963
964 rcu_read_lock();
965 if (!memcg || !css_tryget_online(&memcg->css))
966 memcg = root_mem_cgroup;
967 rcu_read_unlock();
968 return memcg;
969 }
970 EXPORT_SYMBOL(get_mem_cgroup_from_page);
971
972 /**
973 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
974 */
975 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
976 {
977 if (unlikely(current->active_memcg)) {
978 struct mem_cgroup *memcg = root_mem_cgroup;
979
980 rcu_read_lock();
981 if (css_tryget_online(&current->active_memcg->css))
982 memcg = current->active_memcg;
983 rcu_read_unlock();
984 return memcg;
985 }
986 return get_mem_cgroup_from_mm(current->mm);
987 }
988
989 /**
990 * mem_cgroup_iter - iterate over memory cgroup hierarchy
991 * @root: hierarchy root
992 * @prev: previously returned memcg, NULL on first invocation
993 * @reclaim: cookie for shared reclaim walks, NULL for full walks
994 *
995 * Returns references to children of the hierarchy below @root, or
996 * @root itself, or %NULL after a full round-trip.
997 *
998 * Caller must pass the return value in @prev on subsequent
999 * invocations for reference counting, or use mem_cgroup_iter_break()
1000 * to cancel a hierarchy walk before the round-trip is complete.
1001 *
1002 * Reclaimers can specify a node and a priority level in @reclaim to
1003 * divide up the memcgs in the hierarchy among all concurrent
1004 * reclaimers operating on the same node and priority.
1005 */
1006 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1007 struct mem_cgroup *prev,
1008 struct mem_cgroup_reclaim_cookie *reclaim)
1009 {
1010 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1011 struct cgroup_subsys_state *css = NULL;
1012 struct mem_cgroup *memcg = NULL;
1013 struct mem_cgroup *pos = NULL;
1014
1015 if (mem_cgroup_disabled())
1016 return NULL;
1017
1018 if (!root)
1019 root = root_mem_cgroup;
1020
1021 if (prev && !reclaim)
1022 pos = prev;
1023
1024 if (!root->use_hierarchy && root != root_mem_cgroup) {
1025 if (prev)
1026 goto out;
1027 return root;
1028 }
1029
1030 rcu_read_lock();
1031
1032 if (reclaim) {
1033 struct mem_cgroup_per_node *mz;
1034
1035 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1036 iter = &mz->iter;
1037
1038 if (prev && reclaim->generation != iter->generation)
1039 goto out_unlock;
1040
1041 while (1) {
1042 pos = READ_ONCE(iter->position);
1043 if (!pos || css_tryget(&pos->css))
1044 break;
1045 /*
1046 * css reference reached zero, so iter->position will
1047 * be cleared by ->css_released. However, we should not
1048 * rely on this happening soon, because ->css_released
1049 * is called from a work queue, and by busy-waiting we
1050 * might block it. So we clear iter->position right
1051 * away.
1052 */
1053 (void)cmpxchg(&iter->position, pos, NULL);
1054 }
1055 }
1056
1057 if (pos)
1058 css = &pos->css;
1059
1060 for (;;) {
1061 css = css_next_descendant_pre(css, &root->css);
1062 if (!css) {
1063 /*
1064 * Reclaimers share the hierarchy walk, and a
1065 * new one might jump in right at the end of
1066 * the hierarchy - make sure they see at least
1067 * one group and restart from the beginning.
1068 */
1069 if (!prev)
1070 continue;
1071 break;
1072 }
1073
1074 /*
1075 * Verify the css and acquire a reference. The root
1076 * is provided by the caller, so we know it's alive
1077 * and kicking, and don't take an extra reference.
1078 */
1079 memcg = mem_cgroup_from_css(css);
1080
1081 if (css == &root->css)
1082 break;
1083
1084 if (css_tryget(css))
1085 break;
1086
1087 memcg = NULL;
1088 }
1089
1090 if (reclaim) {
1091 /*
1092 * The position could have already been updated by a competing
1093 * thread, so check that the value hasn't changed since we read
1094 * it to avoid reclaiming from the same cgroup twice.
1095 */
1096 (void)cmpxchg(&iter->position, pos, memcg);
1097
1098 if (pos)
1099 css_put(&pos->css);
1100
1101 if (!memcg)
1102 iter->generation++;
1103 else if (!prev)
1104 reclaim->generation = iter->generation;
1105 }
1106
1107 out_unlock:
1108 rcu_read_unlock();
1109 out:
1110 if (prev && prev != root)
1111 css_put(&prev->css);
1112
1113 return memcg;
1114 }
1115
1116 /**
1117 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1118 * @root: hierarchy root
1119 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1120 */
1121 void mem_cgroup_iter_break(struct mem_cgroup *root,
1122 struct mem_cgroup *prev)
1123 {
1124 if (!root)
1125 root = root_mem_cgroup;
1126 if (prev && prev != root)
1127 css_put(&prev->css);
1128 }
1129
1130 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1131 struct mem_cgroup *dead_memcg)
1132 {
1133 struct mem_cgroup_reclaim_iter *iter;
1134 struct mem_cgroup_per_node *mz;
1135 int nid;
1136
1137 for_each_node(nid) {
1138 mz = mem_cgroup_nodeinfo(from, nid);
1139 iter = &mz->iter;
1140 cmpxchg(&iter->position, dead_memcg, NULL);
1141 }
1142 }
1143
1144 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1145 {
1146 struct mem_cgroup *memcg = dead_memcg;
1147 struct mem_cgroup *last;
1148
1149 do {
1150 __invalidate_reclaim_iterators(memcg, dead_memcg);
1151 last = memcg;
1152 } while ((memcg = parent_mem_cgroup(memcg)));
1153
1154 /*
1155 * When cgruop1 non-hierarchy mode is used,
1156 * parent_mem_cgroup() does not walk all the way up to the
1157 * cgroup root (root_mem_cgroup). So we have to handle
1158 * dead_memcg from cgroup root separately.
1159 */
1160 if (last != root_mem_cgroup)
1161 __invalidate_reclaim_iterators(root_mem_cgroup,
1162 dead_memcg);
1163 }
1164
1165 /**
1166 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1167 * @memcg: hierarchy root
1168 * @fn: function to call for each task
1169 * @arg: argument passed to @fn
1170 *
1171 * This function iterates over tasks attached to @memcg or to any of its
1172 * descendants and calls @fn for each task. If @fn returns a non-zero
1173 * value, the function breaks the iteration loop and returns the value.
1174 * Otherwise, it will iterate over all tasks and return 0.
1175 *
1176 * This function must not be called for the root memory cgroup.
1177 */
1178 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1179 int (*fn)(struct task_struct *, void *), void *arg)
1180 {
1181 struct mem_cgroup *iter;
1182 int ret = 0;
1183
1184 BUG_ON(memcg == root_mem_cgroup);
1185
1186 for_each_mem_cgroup_tree(iter, memcg) {
1187 struct css_task_iter it;
1188 struct task_struct *task;
1189
1190 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1191 while (!ret && (task = css_task_iter_next(&it)))
1192 ret = fn(task, arg);
1193 css_task_iter_end(&it);
1194 if (ret) {
1195 mem_cgroup_iter_break(memcg, iter);
1196 break;
1197 }
1198 }
1199 return ret;
1200 }
1201
1202 /**
1203 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1204 * @page: the page
1205 * @pgdat: pgdat of the page
1206 *
1207 * This function is only safe when following the LRU page isolation
1208 * and putback protocol: the LRU lock must be held, and the page must
1209 * either be PageLRU() or the caller must have isolated/allocated it.
1210 */
1211 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1212 {
1213 struct mem_cgroup_per_node *mz;
1214 struct mem_cgroup *memcg;
1215 struct lruvec *lruvec;
1216
1217 if (mem_cgroup_disabled()) {
1218 lruvec = &pgdat->__lruvec;
1219 goto out;
1220 }
1221
1222 memcg = page->mem_cgroup;
1223 /*
1224 * Swapcache readahead pages are added to the LRU - and
1225 * possibly migrated - before they are charged.
1226 */
1227 if (!memcg)
1228 memcg = root_mem_cgroup;
1229
1230 mz = mem_cgroup_page_nodeinfo(memcg, page);
1231 lruvec = &mz->lruvec;
1232 out:
1233 /*
1234 * Since a node can be onlined after the mem_cgroup was created,
1235 * we have to be prepared to initialize lruvec->zone here;
1236 * and if offlined then reonlined, we need to reinitialize it.
1237 */
1238 if (unlikely(lruvec->pgdat != pgdat))
1239 lruvec->pgdat = pgdat;
1240 return lruvec;
1241 }
1242
1243 /**
1244 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1245 * @lruvec: mem_cgroup per zone lru vector
1246 * @lru: index of lru list the page is sitting on
1247 * @zid: zone id of the accounted pages
1248 * @nr_pages: positive when adding or negative when removing
1249 *
1250 * This function must be called under lru_lock, just before a page is added
1251 * to or just after a page is removed from an lru list (that ordering being
1252 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1253 */
1254 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1255 int zid, int nr_pages)
1256 {
1257 struct mem_cgroup_per_node *mz;
1258 unsigned long *lru_size;
1259 long size;
1260
1261 if (mem_cgroup_disabled())
1262 return;
1263
1264 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1265 lru_size = &mz->lru_zone_size[zid][lru];
1266
1267 if (nr_pages < 0)
1268 *lru_size += nr_pages;
1269
1270 size = *lru_size;
1271 if (WARN_ONCE(size < 0,
1272 "%s(%p, %d, %d): lru_size %ld\n",
1273 __func__, lruvec, lru, nr_pages, size)) {
1274 VM_BUG_ON(1);
1275 *lru_size = 0;
1276 }
1277
1278 if (nr_pages > 0)
1279 *lru_size += nr_pages;
1280 }
1281
1282 /**
1283 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1284 * @memcg: the memory cgroup
1285 *
1286 * Returns the maximum amount of memory @mem can be charged with, in
1287 * pages.
1288 */
1289 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1290 {
1291 unsigned long margin = 0;
1292 unsigned long count;
1293 unsigned long limit;
1294
1295 count = page_counter_read(&memcg->memory);
1296 limit = READ_ONCE(memcg->memory.max);
1297 if (count < limit)
1298 margin = limit - count;
1299
1300 if (do_memsw_account()) {
1301 count = page_counter_read(&memcg->memsw);
1302 limit = READ_ONCE(memcg->memsw.max);
1303 if (count <= limit)
1304 margin = min(margin, limit - count);
1305 else
1306 margin = 0;
1307 }
1308
1309 return margin;
1310 }
1311
1312 /*
1313 * A routine for checking "mem" is under move_account() or not.
1314 *
1315 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1316 * moving cgroups. This is for waiting at high-memory pressure
1317 * caused by "move".
1318 */
1319 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1320 {
1321 struct mem_cgroup *from;
1322 struct mem_cgroup *to;
1323 bool ret = false;
1324 /*
1325 * Unlike task_move routines, we access mc.to, mc.from not under
1326 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1327 */
1328 spin_lock(&mc.lock);
1329 from = mc.from;
1330 to = mc.to;
1331 if (!from)
1332 goto unlock;
1333
1334 ret = mem_cgroup_is_descendant(from, memcg) ||
1335 mem_cgroup_is_descendant(to, memcg);
1336 unlock:
1337 spin_unlock(&mc.lock);
1338 return ret;
1339 }
1340
1341 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1342 {
1343 if (mc.moving_task && current != mc.moving_task) {
1344 if (mem_cgroup_under_move(memcg)) {
1345 DEFINE_WAIT(wait);
1346 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1347 /* moving charge context might have finished. */
1348 if (mc.moving_task)
1349 schedule();
1350 finish_wait(&mc.waitq, &wait);
1351 return true;
1352 }
1353 }
1354 return false;
1355 }
1356
1357 static char *memory_stat_format(struct mem_cgroup *memcg)
1358 {
1359 struct seq_buf s;
1360 int i;
1361
1362 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1363 if (!s.buffer)
1364 return NULL;
1365
1366 /*
1367 * Provide statistics on the state of the memory subsystem as
1368 * well as cumulative event counters that show past behavior.
1369 *
1370 * This list is ordered following a combination of these gradients:
1371 * 1) generic big picture -> specifics and details
1372 * 2) reflecting userspace activity -> reflecting kernel heuristics
1373 *
1374 * Current memory state:
1375 */
1376
1377 seq_buf_printf(&s, "anon %llu\n",
1378 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1379 PAGE_SIZE);
1380 seq_buf_printf(&s, "file %llu\n",
1381 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1382 PAGE_SIZE);
1383 seq_buf_printf(&s, "kernel_stack %llu\n",
1384 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1385 1024);
1386 seq_buf_printf(&s, "slab %llu\n",
1387 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1388 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1389 PAGE_SIZE);
1390 seq_buf_printf(&s, "sock %llu\n",
1391 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1392 PAGE_SIZE);
1393
1394 seq_buf_printf(&s, "shmem %llu\n",
1395 (u64)memcg_page_state(memcg, NR_SHMEM) *
1396 PAGE_SIZE);
1397 seq_buf_printf(&s, "file_mapped %llu\n",
1398 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1399 PAGE_SIZE);
1400 seq_buf_printf(&s, "file_dirty %llu\n",
1401 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1402 PAGE_SIZE);
1403 seq_buf_printf(&s, "file_writeback %llu\n",
1404 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1405 PAGE_SIZE);
1406
1407 /*
1408 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1409 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1410 * arse because it requires migrating the work out of rmap to a place
1411 * where the page->mem_cgroup is set up and stable.
1412 */
1413 seq_buf_printf(&s, "anon_thp %llu\n",
1414 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1415 PAGE_SIZE);
1416
1417 for (i = 0; i < NR_LRU_LISTS; i++)
1418 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1419 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1420 PAGE_SIZE);
1421
1422 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1423 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1424 PAGE_SIZE);
1425 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1426 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1427 PAGE_SIZE);
1428
1429 /* Accumulated memory events */
1430
1431 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1432 memcg_events(memcg, PGFAULT));
1433 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1434 memcg_events(memcg, PGMAJFAULT));
1435
1436 seq_buf_printf(&s, "workingset_refault %lu\n",
1437 memcg_page_state(memcg, WORKINGSET_REFAULT));
1438 seq_buf_printf(&s, "workingset_activate %lu\n",
1439 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1440 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1441 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1442
1443 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1444 memcg_events(memcg, PGREFILL));
1445 seq_buf_printf(&s, "pgscan %lu\n",
1446 memcg_events(memcg, PGSCAN_KSWAPD) +
1447 memcg_events(memcg, PGSCAN_DIRECT));
1448 seq_buf_printf(&s, "pgsteal %lu\n",
1449 memcg_events(memcg, PGSTEAL_KSWAPD) +
1450 memcg_events(memcg, PGSTEAL_DIRECT));
1451 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1452 memcg_events(memcg, PGACTIVATE));
1453 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1454 memcg_events(memcg, PGDEACTIVATE));
1455 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1456 memcg_events(memcg, PGLAZYFREE));
1457 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1458 memcg_events(memcg, PGLAZYFREED));
1459
1460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1461 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1462 memcg_events(memcg, THP_FAULT_ALLOC));
1463 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1464 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1465 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1466
1467 /* The above should easily fit into one page */
1468 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1469
1470 return s.buffer;
1471 }
1472
1473 #define K(x) ((x) << (PAGE_SHIFT-10))
1474 /**
1475 * mem_cgroup_print_oom_context: Print OOM information relevant to
1476 * memory controller.
1477 * @memcg: The memory cgroup that went over limit
1478 * @p: Task that is going to be killed
1479 *
1480 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1481 * enabled
1482 */
1483 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1484 {
1485 rcu_read_lock();
1486
1487 if (memcg) {
1488 pr_cont(",oom_memcg=");
1489 pr_cont_cgroup_path(memcg->css.cgroup);
1490 } else
1491 pr_cont(",global_oom");
1492 if (p) {
1493 pr_cont(",task_memcg=");
1494 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1495 }
1496 rcu_read_unlock();
1497 }
1498
1499 /**
1500 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1501 * memory controller.
1502 * @memcg: The memory cgroup that went over limit
1503 */
1504 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1505 {
1506 char *buf;
1507
1508 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1509 K((u64)page_counter_read(&memcg->memory)),
1510 K((u64)memcg->memory.max), memcg->memory.failcnt);
1511 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1512 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1513 K((u64)page_counter_read(&memcg->swap)),
1514 K((u64)memcg->swap.max), memcg->swap.failcnt);
1515 else {
1516 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1517 K((u64)page_counter_read(&memcg->memsw)),
1518 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1519 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1520 K((u64)page_counter_read(&memcg->kmem)),
1521 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1522 }
1523
1524 pr_info("Memory cgroup stats for ");
1525 pr_cont_cgroup_path(memcg->css.cgroup);
1526 pr_cont(":");
1527 buf = memory_stat_format(memcg);
1528 if (!buf)
1529 return;
1530 pr_info("%s", buf);
1531 kfree(buf);
1532 }
1533
1534 /*
1535 * Return the memory (and swap, if configured) limit for a memcg.
1536 */
1537 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1538 {
1539 unsigned long max;
1540
1541 max = memcg->memory.max;
1542 if (mem_cgroup_swappiness(memcg)) {
1543 unsigned long memsw_max;
1544 unsigned long swap_max;
1545
1546 memsw_max = memcg->memsw.max;
1547 swap_max = memcg->swap.max;
1548 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1549 max = min(max + swap_max, memsw_max);
1550 }
1551 return max;
1552 }
1553
1554 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1555 {
1556 return page_counter_read(&memcg->memory);
1557 }
1558
1559 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1560 int order)
1561 {
1562 struct oom_control oc = {
1563 .zonelist = NULL,
1564 .nodemask = NULL,
1565 .memcg = memcg,
1566 .gfp_mask = gfp_mask,
1567 .order = order,
1568 };
1569 bool ret;
1570
1571 if (mutex_lock_killable(&oom_lock))
1572 return true;
1573 /*
1574 * A few threads which were not waiting at mutex_lock_killable() can
1575 * fail to bail out. Therefore, check again after holding oom_lock.
1576 */
1577 ret = should_force_charge() || out_of_memory(&oc);
1578 mutex_unlock(&oom_lock);
1579 return ret;
1580 }
1581
1582 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1583 pg_data_t *pgdat,
1584 gfp_t gfp_mask,
1585 unsigned long *total_scanned)
1586 {
1587 struct mem_cgroup *victim = NULL;
1588 int total = 0;
1589 int loop = 0;
1590 unsigned long excess;
1591 unsigned long nr_scanned;
1592 struct mem_cgroup_reclaim_cookie reclaim = {
1593 .pgdat = pgdat,
1594 };
1595
1596 excess = soft_limit_excess(root_memcg);
1597
1598 while (1) {
1599 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1600 if (!victim) {
1601 loop++;
1602 if (loop >= 2) {
1603 /*
1604 * If we have not been able to reclaim
1605 * anything, it might because there are
1606 * no reclaimable pages under this hierarchy
1607 */
1608 if (!total)
1609 break;
1610 /*
1611 * We want to do more targeted reclaim.
1612 * excess >> 2 is not to excessive so as to
1613 * reclaim too much, nor too less that we keep
1614 * coming back to reclaim from this cgroup
1615 */
1616 if (total >= (excess >> 2) ||
1617 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1618 break;
1619 }
1620 continue;
1621 }
1622 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1623 pgdat, &nr_scanned);
1624 *total_scanned += nr_scanned;
1625 if (!soft_limit_excess(root_memcg))
1626 break;
1627 }
1628 mem_cgroup_iter_break(root_memcg, victim);
1629 return total;
1630 }
1631
1632 #ifdef CONFIG_LOCKDEP
1633 static struct lockdep_map memcg_oom_lock_dep_map = {
1634 .name = "memcg_oom_lock",
1635 };
1636 #endif
1637
1638 static DEFINE_SPINLOCK(memcg_oom_lock);
1639
1640 /*
1641 * Check OOM-Killer is already running under our hierarchy.
1642 * If someone is running, return false.
1643 */
1644 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1645 {
1646 struct mem_cgroup *iter, *failed = NULL;
1647
1648 spin_lock(&memcg_oom_lock);
1649
1650 for_each_mem_cgroup_tree(iter, memcg) {
1651 if (iter->oom_lock) {
1652 /*
1653 * this subtree of our hierarchy is already locked
1654 * so we cannot give a lock.
1655 */
1656 failed = iter;
1657 mem_cgroup_iter_break(memcg, iter);
1658 break;
1659 } else
1660 iter->oom_lock = true;
1661 }
1662
1663 if (failed) {
1664 /*
1665 * OK, we failed to lock the whole subtree so we have
1666 * to clean up what we set up to the failing subtree
1667 */
1668 for_each_mem_cgroup_tree(iter, memcg) {
1669 if (iter == failed) {
1670 mem_cgroup_iter_break(memcg, iter);
1671 break;
1672 }
1673 iter->oom_lock = false;
1674 }
1675 } else
1676 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1677
1678 spin_unlock(&memcg_oom_lock);
1679
1680 return !failed;
1681 }
1682
1683 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1684 {
1685 struct mem_cgroup *iter;
1686
1687 spin_lock(&memcg_oom_lock);
1688 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1689 for_each_mem_cgroup_tree(iter, memcg)
1690 iter->oom_lock = false;
1691 spin_unlock(&memcg_oom_lock);
1692 }
1693
1694 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1695 {
1696 struct mem_cgroup *iter;
1697
1698 spin_lock(&memcg_oom_lock);
1699 for_each_mem_cgroup_tree(iter, memcg)
1700 iter->under_oom++;
1701 spin_unlock(&memcg_oom_lock);
1702 }
1703
1704 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1705 {
1706 struct mem_cgroup *iter;
1707
1708 /*
1709 * When a new child is created while the hierarchy is under oom,
1710 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1711 */
1712 spin_lock(&memcg_oom_lock);
1713 for_each_mem_cgroup_tree(iter, memcg)
1714 if (iter->under_oom > 0)
1715 iter->under_oom--;
1716 spin_unlock(&memcg_oom_lock);
1717 }
1718
1719 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1720
1721 struct oom_wait_info {
1722 struct mem_cgroup *memcg;
1723 wait_queue_entry_t wait;
1724 };
1725
1726 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1727 unsigned mode, int sync, void *arg)
1728 {
1729 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1730 struct mem_cgroup *oom_wait_memcg;
1731 struct oom_wait_info *oom_wait_info;
1732
1733 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1734 oom_wait_memcg = oom_wait_info->memcg;
1735
1736 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1737 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1738 return 0;
1739 return autoremove_wake_function(wait, mode, sync, arg);
1740 }
1741
1742 static void memcg_oom_recover(struct mem_cgroup *memcg)
1743 {
1744 /*
1745 * For the following lockless ->under_oom test, the only required
1746 * guarantee is that it must see the state asserted by an OOM when
1747 * this function is called as a result of userland actions
1748 * triggered by the notification of the OOM. This is trivially
1749 * achieved by invoking mem_cgroup_mark_under_oom() before
1750 * triggering notification.
1751 */
1752 if (memcg && memcg->under_oom)
1753 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1754 }
1755
1756 enum oom_status {
1757 OOM_SUCCESS,
1758 OOM_FAILED,
1759 OOM_ASYNC,
1760 OOM_SKIPPED
1761 };
1762
1763 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1764 {
1765 enum oom_status ret;
1766 bool locked;
1767
1768 if (order > PAGE_ALLOC_COSTLY_ORDER)
1769 return OOM_SKIPPED;
1770
1771 memcg_memory_event(memcg, MEMCG_OOM);
1772
1773 /*
1774 * We are in the middle of the charge context here, so we
1775 * don't want to block when potentially sitting on a callstack
1776 * that holds all kinds of filesystem and mm locks.
1777 *
1778 * cgroup1 allows disabling the OOM killer and waiting for outside
1779 * handling until the charge can succeed; remember the context and put
1780 * the task to sleep at the end of the page fault when all locks are
1781 * released.
1782 *
1783 * On the other hand, in-kernel OOM killer allows for an async victim
1784 * memory reclaim (oom_reaper) and that means that we are not solely
1785 * relying on the oom victim to make a forward progress and we can
1786 * invoke the oom killer here.
1787 *
1788 * Please note that mem_cgroup_out_of_memory might fail to find a
1789 * victim and then we have to bail out from the charge path.
1790 */
1791 if (memcg->oom_kill_disable) {
1792 if (!current->in_user_fault)
1793 return OOM_SKIPPED;
1794 css_get(&memcg->css);
1795 current->memcg_in_oom = memcg;
1796 current->memcg_oom_gfp_mask = mask;
1797 current->memcg_oom_order = order;
1798
1799 return OOM_ASYNC;
1800 }
1801
1802 mem_cgroup_mark_under_oom(memcg);
1803
1804 locked = mem_cgroup_oom_trylock(memcg);
1805
1806 if (locked)
1807 mem_cgroup_oom_notify(memcg);
1808
1809 mem_cgroup_unmark_under_oom(memcg);
1810 if (mem_cgroup_out_of_memory(memcg, mask, order))
1811 ret = OOM_SUCCESS;
1812 else
1813 ret = OOM_FAILED;
1814
1815 if (locked)
1816 mem_cgroup_oom_unlock(memcg);
1817
1818 return ret;
1819 }
1820
1821 /**
1822 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1823 * @handle: actually kill/wait or just clean up the OOM state
1824 *
1825 * This has to be called at the end of a page fault if the memcg OOM
1826 * handler was enabled.
1827 *
1828 * Memcg supports userspace OOM handling where failed allocations must
1829 * sleep on a waitqueue until the userspace task resolves the
1830 * situation. Sleeping directly in the charge context with all kinds
1831 * of locks held is not a good idea, instead we remember an OOM state
1832 * in the task and mem_cgroup_oom_synchronize() has to be called at
1833 * the end of the page fault to complete the OOM handling.
1834 *
1835 * Returns %true if an ongoing memcg OOM situation was detected and
1836 * completed, %false otherwise.
1837 */
1838 bool mem_cgroup_oom_synchronize(bool handle)
1839 {
1840 struct mem_cgroup *memcg = current->memcg_in_oom;
1841 struct oom_wait_info owait;
1842 bool locked;
1843
1844 /* OOM is global, do not handle */
1845 if (!memcg)
1846 return false;
1847
1848 if (!handle)
1849 goto cleanup;
1850
1851 owait.memcg = memcg;
1852 owait.wait.flags = 0;
1853 owait.wait.func = memcg_oom_wake_function;
1854 owait.wait.private = current;
1855 INIT_LIST_HEAD(&owait.wait.entry);
1856
1857 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1858 mem_cgroup_mark_under_oom(memcg);
1859
1860 locked = mem_cgroup_oom_trylock(memcg);
1861
1862 if (locked)
1863 mem_cgroup_oom_notify(memcg);
1864
1865 if (locked && !memcg->oom_kill_disable) {
1866 mem_cgroup_unmark_under_oom(memcg);
1867 finish_wait(&memcg_oom_waitq, &owait.wait);
1868 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1869 current->memcg_oom_order);
1870 } else {
1871 schedule();
1872 mem_cgroup_unmark_under_oom(memcg);
1873 finish_wait(&memcg_oom_waitq, &owait.wait);
1874 }
1875
1876 if (locked) {
1877 mem_cgroup_oom_unlock(memcg);
1878 /*
1879 * There is no guarantee that an OOM-lock contender
1880 * sees the wakeups triggered by the OOM kill
1881 * uncharges. Wake any sleepers explicitely.
1882 */
1883 memcg_oom_recover(memcg);
1884 }
1885 cleanup:
1886 current->memcg_in_oom = NULL;
1887 css_put(&memcg->css);
1888 return true;
1889 }
1890
1891 /**
1892 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1893 * @victim: task to be killed by the OOM killer
1894 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1895 *
1896 * Returns a pointer to a memory cgroup, which has to be cleaned up
1897 * by killing all belonging OOM-killable tasks.
1898 *
1899 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1900 */
1901 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1902 struct mem_cgroup *oom_domain)
1903 {
1904 struct mem_cgroup *oom_group = NULL;
1905 struct mem_cgroup *memcg;
1906
1907 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1908 return NULL;
1909
1910 if (!oom_domain)
1911 oom_domain = root_mem_cgroup;
1912
1913 rcu_read_lock();
1914
1915 memcg = mem_cgroup_from_task(victim);
1916 if (memcg == root_mem_cgroup)
1917 goto out;
1918
1919 /*
1920 * Traverse the memory cgroup hierarchy from the victim task's
1921 * cgroup up to the OOMing cgroup (or root) to find the
1922 * highest-level memory cgroup with oom.group set.
1923 */
1924 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1925 if (memcg->oom_group)
1926 oom_group = memcg;
1927
1928 if (memcg == oom_domain)
1929 break;
1930 }
1931
1932 if (oom_group)
1933 css_get(&oom_group->css);
1934 out:
1935 rcu_read_unlock();
1936
1937 return oom_group;
1938 }
1939
1940 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1941 {
1942 pr_info("Tasks in ");
1943 pr_cont_cgroup_path(memcg->css.cgroup);
1944 pr_cont(" are going to be killed due to memory.oom.group set\n");
1945 }
1946
1947 /**
1948 * lock_page_memcg - lock a page->mem_cgroup binding
1949 * @page: the page
1950 *
1951 * This function protects unlocked LRU pages from being moved to
1952 * another cgroup.
1953 *
1954 * It ensures lifetime of the returned memcg. Caller is responsible
1955 * for the lifetime of the page; __unlock_page_memcg() is available
1956 * when @page might get freed inside the locked section.
1957 */
1958 struct mem_cgroup *lock_page_memcg(struct page *page)
1959 {
1960 struct mem_cgroup *memcg;
1961 unsigned long flags;
1962
1963 /*
1964 * The RCU lock is held throughout the transaction. The fast
1965 * path can get away without acquiring the memcg->move_lock
1966 * because page moving starts with an RCU grace period.
1967 *
1968 * The RCU lock also protects the memcg from being freed when
1969 * the page state that is going to change is the only thing
1970 * preventing the page itself from being freed. E.g. writeback
1971 * doesn't hold a page reference and relies on PG_writeback to
1972 * keep off truncation, migration and so forth.
1973 */
1974 rcu_read_lock();
1975
1976 if (mem_cgroup_disabled())
1977 return NULL;
1978 again:
1979 memcg = page->mem_cgroup;
1980 if (unlikely(!memcg))
1981 return NULL;
1982
1983 if (atomic_read(&memcg->moving_account) <= 0)
1984 return memcg;
1985
1986 spin_lock_irqsave(&memcg->move_lock, flags);
1987 if (memcg != page->mem_cgroup) {
1988 spin_unlock_irqrestore(&memcg->move_lock, flags);
1989 goto again;
1990 }
1991
1992 /*
1993 * When charge migration first begins, we can have locked and
1994 * unlocked page stat updates happening concurrently. Track
1995 * the task who has the lock for unlock_page_memcg().
1996 */
1997 memcg->move_lock_task = current;
1998 memcg->move_lock_flags = flags;
1999
2000 return memcg;
2001 }
2002 EXPORT_SYMBOL(lock_page_memcg);
2003
2004 /**
2005 * __unlock_page_memcg - unlock and unpin a memcg
2006 * @memcg: the memcg
2007 *
2008 * Unlock and unpin a memcg returned by lock_page_memcg().
2009 */
2010 void __unlock_page_memcg(struct mem_cgroup *memcg)
2011 {
2012 if (memcg && memcg->move_lock_task == current) {
2013 unsigned long flags = memcg->move_lock_flags;
2014
2015 memcg->move_lock_task = NULL;
2016 memcg->move_lock_flags = 0;
2017
2018 spin_unlock_irqrestore(&memcg->move_lock, flags);
2019 }
2020
2021 rcu_read_unlock();
2022 }
2023
2024 /**
2025 * unlock_page_memcg - unlock a page->mem_cgroup binding
2026 * @page: the page
2027 */
2028 void unlock_page_memcg(struct page *page)
2029 {
2030 __unlock_page_memcg(page->mem_cgroup);
2031 }
2032 EXPORT_SYMBOL(unlock_page_memcg);
2033
2034 struct memcg_stock_pcp {
2035 struct mem_cgroup *cached; /* this never be root cgroup */
2036 unsigned int nr_pages;
2037 struct work_struct work;
2038 unsigned long flags;
2039 #define FLUSHING_CACHED_CHARGE 0
2040 };
2041 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2042 static DEFINE_MUTEX(percpu_charge_mutex);
2043
2044 /**
2045 * consume_stock: Try to consume stocked charge on this cpu.
2046 * @memcg: memcg to consume from.
2047 * @nr_pages: how many pages to charge.
2048 *
2049 * The charges will only happen if @memcg matches the current cpu's memcg
2050 * stock, and at least @nr_pages are available in that stock. Failure to
2051 * service an allocation will refill the stock.
2052 *
2053 * returns true if successful, false otherwise.
2054 */
2055 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2056 {
2057 struct memcg_stock_pcp *stock;
2058 unsigned long flags;
2059 bool ret = false;
2060
2061 if (nr_pages > MEMCG_CHARGE_BATCH)
2062 return ret;
2063
2064 local_irq_save(flags);
2065
2066 stock = this_cpu_ptr(&memcg_stock);
2067 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2068 stock->nr_pages -= nr_pages;
2069 ret = true;
2070 }
2071
2072 local_irq_restore(flags);
2073
2074 return ret;
2075 }
2076
2077 /*
2078 * Returns stocks cached in percpu and reset cached information.
2079 */
2080 static void drain_stock(struct memcg_stock_pcp *stock)
2081 {
2082 struct mem_cgroup *old = stock->cached;
2083
2084 if (stock->nr_pages) {
2085 page_counter_uncharge(&old->memory, stock->nr_pages);
2086 if (do_memsw_account())
2087 page_counter_uncharge(&old->memsw, stock->nr_pages);
2088 css_put_many(&old->css, stock->nr_pages);
2089 stock->nr_pages = 0;
2090 }
2091 stock->cached = NULL;
2092 }
2093
2094 static void drain_local_stock(struct work_struct *dummy)
2095 {
2096 struct memcg_stock_pcp *stock;
2097 unsigned long flags;
2098
2099 /*
2100 * The only protection from memory hotplug vs. drain_stock races is
2101 * that we always operate on local CPU stock here with IRQ disabled
2102 */
2103 local_irq_save(flags);
2104
2105 stock = this_cpu_ptr(&memcg_stock);
2106 drain_stock(stock);
2107 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2108
2109 local_irq_restore(flags);
2110 }
2111
2112 /*
2113 * Cache charges(val) to local per_cpu area.
2114 * This will be consumed by consume_stock() function, later.
2115 */
2116 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2117 {
2118 struct memcg_stock_pcp *stock;
2119 unsigned long flags;
2120
2121 local_irq_save(flags);
2122
2123 stock = this_cpu_ptr(&memcg_stock);
2124 if (stock->cached != memcg) { /* reset if necessary */
2125 drain_stock(stock);
2126 stock->cached = memcg;
2127 }
2128 stock->nr_pages += nr_pages;
2129
2130 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2131 drain_stock(stock);
2132
2133 local_irq_restore(flags);
2134 }
2135
2136 /*
2137 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2138 * of the hierarchy under it.
2139 */
2140 static void drain_all_stock(struct mem_cgroup *root_memcg)
2141 {
2142 int cpu, curcpu;
2143
2144 /* If someone's already draining, avoid adding running more workers. */
2145 if (!mutex_trylock(&percpu_charge_mutex))
2146 return;
2147 /*
2148 * Notify other cpus that system-wide "drain" is running
2149 * We do not care about races with the cpu hotplug because cpu down
2150 * as well as workers from this path always operate on the local
2151 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2152 */
2153 curcpu = get_cpu();
2154 for_each_online_cpu(cpu) {
2155 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2156 struct mem_cgroup *memcg;
2157 bool flush = false;
2158
2159 rcu_read_lock();
2160 memcg = stock->cached;
2161 if (memcg && stock->nr_pages &&
2162 mem_cgroup_is_descendant(memcg, root_memcg))
2163 flush = true;
2164 rcu_read_unlock();
2165
2166 if (flush &&
2167 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2168 if (cpu == curcpu)
2169 drain_local_stock(&stock->work);
2170 else
2171 schedule_work_on(cpu, &stock->work);
2172 }
2173 }
2174 put_cpu();
2175 mutex_unlock(&percpu_charge_mutex);
2176 }
2177
2178 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2179 {
2180 struct memcg_stock_pcp *stock;
2181 struct mem_cgroup *memcg, *mi;
2182
2183 stock = &per_cpu(memcg_stock, cpu);
2184 drain_stock(stock);
2185
2186 for_each_mem_cgroup(memcg) {
2187 int i;
2188
2189 for (i = 0; i < MEMCG_NR_STAT; i++) {
2190 int nid;
2191 long x;
2192
2193 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2194 if (x)
2195 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2196 atomic_long_add(x, &memcg->vmstats[i]);
2197
2198 if (i >= NR_VM_NODE_STAT_ITEMS)
2199 continue;
2200
2201 for_each_node(nid) {
2202 struct mem_cgroup_per_node *pn;
2203
2204 pn = mem_cgroup_nodeinfo(memcg, nid);
2205 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2206 if (x)
2207 do {
2208 atomic_long_add(x, &pn->lruvec_stat[i]);
2209 } while ((pn = parent_nodeinfo(pn, nid)));
2210 }
2211 }
2212
2213 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2214 long x;
2215
2216 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2217 if (x)
2218 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2219 atomic_long_add(x, &memcg->vmevents[i]);
2220 }
2221 }
2222
2223 return 0;
2224 }
2225
2226 static void reclaim_high(struct mem_cgroup *memcg,
2227 unsigned int nr_pages,
2228 gfp_t gfp_mask)
2229 {
2230 do {
2231 if (page_counter_read(&memcg->memory) <= memcg->high)
2232 continue;
2233 memcg_memory_event(memcg, MEMCG_HIGH);
2234 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2235 } while ((memcg = parent_mem_cgroup(memcg)));
2236 }
2237
2238 static void high_work_func(struct work_struct *work)
2239 {
2240 struct mem_cgroup *memcg;
2241
2242 memcg = container_of(work, struct mem_cgroup, high_work);
2243 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2244 }
2245
2246 /*
2247 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2248 * enough to still cause a significant slowdown in most cases, while still
2249 * allowing diagnostics and tracing to proceed without becoming stuck.
2250 */
2251 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2252
2253 /*
2254 * When calculating the delay, we use these either side of the exponentiation to
2255 * maintain precision and scale to a reasonable number of jiffies (see the table
2256 * below.
2257 *
2258 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2259 * overage ratio to a delay.
2260 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2261 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2262 * to produce a reasonable delay curve.
2263 *
2264 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2265 * reasonable delay curve compared to precision-adjusted overage, not
2266 * penalising heavily at first, but still making sure that growth beyond the
2267 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2268 * example, with a high of 100 megabytes:
2269 *
2270 * +-------+------------------------+
2271 * | usage | time to allocate in ms |
2272 * +-------+------------------------+
2273 * | 100M | 0 |
2274 * | 101M | 6 |
2275 * | 102M | 25 |
2276 * | 103M | 57 |
2277 * | 104M | 102 |
2278 * | 105M | 159 |
2279 * | 106M | 230 |
2280 * | 107M | 313 |
2281 * | 108M | 409 |
2282 * | 109M | 518 |
2283 * | 110M | 639 |
2284 * | 111M | 774 |
2285 * | 112M | 921 |
2286 * | 113M | 1081 |
2287 * | 114M | 1254 |
2288 * | 115M | 1439 |
2289 * | 116M | 1638 |
2290 * | 117M | 1849 |
2291 * | 118M | 2000 |
2292 * | 119M | 2000 |
2293 * | 120M | 2000 |
2294 * +-------+------------------------+
2295 */
2296 #define MEMCG_DELAY_PRECISION_SHIFT 20
2297 #define MEMCG_DELAY_SCALING_SHIFT 14
2298
2299 /*
2300 * Scheduled by try_charge() to be executed from the userland return path
2301 * and reclaims memory over the high limit.
2302 */
2303 void mem_cgroup_handle_over_high(void)
2304 {
2305 unsigned long usage, high, clamped_high;
2306 unsigned long pflags;
2307 unsigned long penalty_jiffies, overage;
2308 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2309 struct mem_cgroup *memcg;
2310
2311 if (likely(!nr_pages))
2312 return;
2313
2314 memcg = get_mem_cgroup_from_mm(current->mm);
2315 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2316 current->memcg_nr_pages_over_high = 0;
2317
2318 /*
2319 * memory.high is breached and reclaim is unable to keep up. Throttle
2320 * allocators proactively to slow down excessive growth.
2321 *
2322 * We use overage compared to memory.high to calculate the number of
2323 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2324 * fairly lenient on small overages, and increasingly harsh when the
2325 * memcg in question makes it clear that it has no intention of stopping
2326 * its crazy behaviour, so we exponentially increase the delay based on
2327 * overage amount.
2328 */
2329
2330 usage = page_counter_read(&memcg->memory);
2331 high = READ_ONCE(memcg->high);
2332
2333 if (usage <= high)
2334 goto out;
2335
2336 /*
2337 * Prevent division by 0 in overage calculation by acting as if it was a
2338 * threshold of 1 page
2339 */
2340 clamped_high = max(high, 1UL);
2341
2342 overage = div_u64((u64)(usage - high) << MEMCG_DELAY_PRECISION_SHIFT,
2343 clamped_high);
2344
2345 penalty_jiffies = ((u64)overage * overage * HZ)
2346 >> (MEMCG_DELAY_PRECISION_SHIFT + MEMCG_DELAY_SCALING_SHIFT);
2347
2348 /*
2349 * Factor in the task's own contribution to the overage, such that four
2350 * N-sized allocations are throttled approximately the same as one
2351 * 4N-sized allocation.
2352 *
2353 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2354 * larger the current charge patch is than that.
2355 */
2356 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2357
2358 /*
2359 * Clamp the max delay per usermode return so as to still keep the
2360 * application moving forwards and also permit diagnostics, albeit
2361 * extremely slowly.
2362 */
2363 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2364
2365 /*
2366 * Don't sleep if the amount of jiffies this memcg owes us is so low
2367 * that it's not even worth doing, in an attempt to be nice to those who
2368 * go only a small amount over their memory.high value and maybe haven't
2369 * been aggressively reclaimed enough yet.
2370 */
2371 if (penalty_jiffies <= HZ / 100)
2372 goto out;
2373
2374 /*
2375 * If we exit early, we're guaranteed to die (since
2376 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2377 * need to account for any ill-begotten jiffies to pay them off later.
2378 */
2379 psi_memstall_enter(&pflags);
2380 schedule_timeout_killable(penalty_jiffies);
2381 psi_memstall_leave(&pflags);
2382
2383 out:
2384 css_put(&memcg->css);
2385 }
2386
2387 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2388 unsigned int nr_pages)
2389 {
2390 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2391 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2392 struct mem_cgroup *mem_over_limit;
2393 struct page_counter *counter;
2394 unsigned long nr_reclaimed;
2395 bool may_swap = true;
2396 bool drained = false;
2397 enum oom_status oom_status;
2398
2399 if (mem_cgroup_is_root(memcg))
2400 return 0;
2401 retry:
2402 if (consume_stock(memcg, nr_pages))
2403 return 0;
2404
2405 if (!do_memsw_account() ||
2406 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2407 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2408 goto done_restock;
2409 if (do_memsw_account())
2410 page_counter_uncharge(&memcg->memsw, batch);
2411 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2412 } else {
2413 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2414 may_swap = false;
2415 }
2416
2417 if (batch > nr_pages) {
2418 batch = nr_pages;
2419 goto retry;
2420 }
2421
2422 /*
2423 * Memcg doesn't have a dedicated reserve for atomic
2424 * allocations. But like the global atomic pool, we need to
2425 * put the burden of reclaim on regular allocation requests
2426 * and let these go through as privileged allocations.
2427 */
2428 if (gfp_mask & __GFP_ATOMIC)
2429 goto force;
2430
2431 /*
2432 * Unlike in global OOM situations, memcg is not in a physical
2433 * memory shortage. Allow dying and OOM-killed tasks to
2434 * bypass the last charges so that they can exit quickly and
2435 * free their memory.
2436 */
2437 if (unlikely(should_force_charge()))
2438 goto force;
2439
2440 /*
2441 * Prevent unbounded recursion when reclaim operations need to
2442 * allocate memory. This might exceed the limits temporarily,
2443 * but we prefer facilitating memory reclaim and getting back
2444 * under the limit over triggering OOM kills in these cases.
2445 */
2446 if (unlikely(current->flags & PF_MEMALLOC))
2447 goto force;
2448
2449 if (unlikely(task_in_memcg_oom(current)))
2450 goto nomem;
2451
2452 if (!gfpflags_allow_blocking(gfp_mask))
2453 goto nomem;
2454
2455 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2456
2457 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2458 gfp_mask, may_swap);
2459
2460 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2461 goto retry;
2462
2463 if (!drained) {
2464 drain_all_stock(mem_over_limit);
2465 drained = true;
2466 goto retry;
2467 }
2468
2469 if (gfp_mask & __GFP_NORETRY)
2470 goto nomem;
2471 /*
2472 * Even though the limit is exceeded at this point, reclaim
2473 * may have been able to free some pages. Retry the charge
2474 * before killing the task.
2475 *
2476 * Only for regular pages, though: huge pages are rather
2477 * unlikely to succeed so close to the limit, and we fall back
2478 * to regular pages anyway in case of failure.
2479 */
2480 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2481 goto retry;
2482 /*
2483 * At task move, charge accounts can be doubly counted. So, it's
2484 * better to wait until the end of task_move if something is going on.
2485 */
2486 if (mem_cgroup_wait_acct_move(mem_over_limit))
2487 goto retry;
2488
2489 if (nr_retries--)
2490 goto retry;
2491
2492 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2493 goto nomem;
2494
2495 if (gfp_mask & __GFP_NOFAIL)
2496 goto force;
2497
2498 if (fatal_signal_pending(current))
2499 goto force;
2500
2501 /*
2502 * keep retrying as long as the memcg oom killer is able to make
2503 * a forward progress or bypass the charge if the oom killer
2504 * couldn't make any progress.
2505 */
2506 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2507 get_order(nr_pages * PAGE_SIZE));
2508 switch (oom_status) {
2509 case OOM_SUCCESS:
2510 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2511 goto retry;
2512 case OOM_FAILED:
2513 goto force;
2514 default:
2515 goto nomem;
2516 }
2517 nomem:
2518 if (!(gfp_mask & __GFP_NOFAIL))
2519 return -ENOMEM;
2520 force:
2521 /*
2522 * The allocation either can't fail or will lead to more memory
2523 * being freed very soon. Allow memory usage go over the limit
2524 * temporarily by force charging it.
2525 */
2526 page_counter_charge(&memcg->memory, nr_pages);
2527 if (do_memsw_account())
2528 page_counter_charge(&memcg->memsw, nr_pages);
2529 css_get_many(&memcg->css, nr_pages);
2530
2531 return 0;
2532
2533 done_restock:
2534 css_get_many(&memcg->css, batch);
2535 if (batch > nr_pages)
2536 refill_stock(memcg, batch - nr_pages);
2537
2538 /*
2539 * If the hierarchy is above the normal consumption range, schedule
2540 * reclaim on returning to userland. We can perform reclaim here
2541 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2542 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2543 * not recorded as it most likely matches current's and won't
2544 * change in the meantime. As high limit is checked again before
2545 * reclaim, the cost of mismatch is negligible.
2546 */
2547 do {
2548 if (page_counter_read(&memcg->memory) > memcg->high) {
2549 /* Don't bother a random interrupted task */
2550 if (in_interrupt()) {
2551 schedule_work(&memcg->high_work);
2552 break;
2553 }
2554 current->memcg_nr_pages_over_high += batch;
2555 set_notify_resume(current);
2556 break;
2557 }
2558 } while ((memcg = parent_mem_cgroup(memcg)));
2559
2560 return 0;
2561 }
2562
2563 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2564 {
2565 if (mem_cgroup_is_root(memcg))
2566 return;
2567
2568 page_counter_uncharge(&memcg->memory, nr_pages);
2569 if (do_memsw_account())
2570 page_counter_uncharge(&memcg->memsw, nr_pages);
2571
2572 css_put_many(&memcg->css, nr_pages);
2573 }
2574
2575 static void lock_page_lru(struct page *page, int *isolated)
2576 {
2577 pg_data_t *pgdat = page_pgdat(page);
2578
2579 spin_lock_irq(&pgdat->lru_lock);
2580 if (PageLRU(page)) {
2581 struct lruvec *lruvec;
2582
2583 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2584 ClearPageLRU(page);
2585 del_page_from_lru_list(page, lruvec, page_lru(page));
2586 *isolated = 1;
2587 } else
2588 *isolated = 0;
2589 }
2590
2591 static void unlock_page_lru(struct page *page, int isolated)
2592 {
2593 pg_data_t *pgdat = page_pgdat(page);
2594
2595 if (isolated) {
2596 struct lruvec *lruvec;
2597
2598 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2599 VM_BUG_ON_PAGE(PageLRU(page), page);
2600 SetPageLRU(page);
2601 add_page_to_lru_list(page, lruvec, page_lru(page));
2602 }
2603 spin_unlock_irq(&pgdat->lru_lock);
2604 }
2605
2606 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2607 bool lrucare)
2608 {
2609 int isolated;
2610
2611 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2612
2613 /*
2614 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2615 * may already be on some other mem_cgroup's LRU. Take care of it.
2616 */
2617 if (lrucare)
2618 lock_page_lru(page, &isolated);
2619
2620 /*
2621 * Nobody should be changing or seriously looking at
2622 * page->mem_cgroup at this point:
2623 *
2624 * - the page is uncharged
2625 *
2626 * - the page is off-LRU
2627 *
2628 * - an anonymous fault has exclusive page access, except for
2629 * a locked page table
2630 *
2631 * - a page cache insertion, a swapin fault, or a migration
2632 * have the page locked
2633 */
2634 page->mem_cgroup = memcg;
2635
2636 if (lrucare)
2637 unlock_page_lru(page, isolated);
2638 }
2639
2640 #ifdef CONFIG_MEMCG_KMEM
2641 static int memcg_alloc_cache_id(void)
2642 {
2643 int id, size;
2644 int err;
2645
2646 id = ida_simple_get(&memcg_cache_ida,
2647 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2648 if (id < 0)
2649 return id;
2650
2651 if (id < memcg_nr_cache_ids)
2652 return id;
2653
2654 /*
2655 * There's no space for the new id in memcg_caches arrays,
2656 * so we have to grow them.
2657 */
2658 down_write(&memcg_cache_ids_sem);
2659
2660 size = 2 * (id + 1);
2661 if (size < MEMCG_CACHES_MIN_SIZE)
2662 size = MEMCG_CACHES_MIN_SIZE;
2663 else if (size > MEMCG_CACHES_MAX_SIZE)
2664 size = MEMCG_CACHES_MAX_SIZE;
2665
2666 err = memcg_update_all_caches(size);
2667 if (!err)
2668 err = memcg_update_all_list_lrus(size);
2669 if (!err)
2670 memcg_nr_cache_ids = size;
2671
2672 up_write(&memcg_cache_ids_sem);
2673
2674 if (err) {
2675 ida_simple_remove(&memcg_cache_ida, id);
2676 return err;
2677 }
2678 return id;
2679 }
2680
2681 static void memcg_free_cache_id(int id)
2682 {
2683 ida_simple_remove(&memcg_cache_ida, id);
2684 }
2685
2686 struct memcg_kmem_cache_create_work {
2687 struct mem_cgroup *memcg;
2688 struct kmem_cache *cachep;
2689 struct work_struct work;
2690 };
2691
2692 static void memcg_kmem_cache_create_func(struct work_struct *w)
2693 {
2694 struct memcg_kmem_cache_create_work *cw =
2695 container_of(w, struct memcg_kmem_cache_create_work, work);
2696 struct mem_cgroup *memcg = cw->memcg;
2697 struct kmem_cache *cachep = cw->cachep;
2698
2699 memcg_create_kmem_cache(memcg, cachep);
2700
2701 css_put(&memcg->css);
2702 kfree(cw);
2703 }
2704
2705 /*
2706 * Enqueue the creation of a per-memcg kmem_cache.
2707 */
2708 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2709 struct kmem_cache *cachep)
2710 {
2711 struct memcg_kmem_cache_create_work *cw;
2712
2713 if (!css_tryget_online(&memcg->css))
2714 return;
2715
2716 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2717 if (!cw)
2718 return;
2719
2720 cw->memcg = memcg;
2721 cw->cachep = cachep;
2722 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2723
2724 queue_work(memcg_kmem_cache_wq, &cw->work);
2725 }
2726
2727 static inline bool memcg_kmem_bypass(void)
2728 {
2729 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2730 return true;
2731 return false;
2732 }
2733
2734 /**
2735 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2736 * @cachep: the original global kmem cache
2737 *
2738 * Return the kmem_cache we're supposed to use for a slab allocation.
2739 * We try to use the current memcg's version of the cache.
2740 *
2741 * If the cache does not exist yet, if we are the first user of it, we
2742 * create it asynchronously in a workqueue and let the current allocation
2743 * go through with the original cache.
2744 *
2745 * This function takes a reference to the cache it returns to assure it
2746 * won't get destroyed while we are working with it. Once the caller is
2747 * done with it, memcg_kmem_put_cache() must be called to release the
2748 * reference.
2749 */
2750 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2751 {
2752 struct mem_cgroup *memcg;
2753 struct kmem_cache *memcg_cachep;
2754 struct memcg_cache_array *arr;
2755 int kmemcg_id;
2756
2757 VM_BUG_ON(!is_root_cache(cachep));
2758
2759 if (memcg_kmem_bypass())
2760 return cachep;
2761
2762 rcu_read_lock();
2763
2764 if (unlikely(current->active_memcg))
2765 memcg = current->active_memcg;
2766 else
2767 memcg = mem_cgroup_from_task(current);
2768
2769 if (!memcg || memcg == root_mem_cgroup)
2770 goto out_unlock;
2771
2772 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2773 if (kmemcg_id < 0)
2774 goto out_unlock;
2775
2776 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2777
2778 /*
2779 * Make sure we will access the up-to-date value. The code updating
2780 * memcg_caches issues a write barrier to match the data dependency
2781 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2782 */
2783 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2784
2785 /*
2786 * If we are in a safe context (can wait, and not in interrupt
2787 * context), we could be be predictable and return right away.
2788 * This would guarantee that the allocation being performed
2789 * already belongs in the new cache.
2790 *
2791 * However, there are some clashes that can arrive from locking.
2792 * For instance, because we acquire the slab_mutex while doing
2793 * memcg_create_kmem_cache, this means no further allocation
2794 * could happen with the slab_mutex held. So it's better to
2795 * defer everything.
2796 *
2797 * If the memcg is dying or memcg_cache is about to be released,
2798 * don't bother creating new kmem_caches. Because memcg_cachep
2799 * is ZEROed as the fist step of kmem offlining, we don't need
2800 * percpu_ref_tryget_live() here. css_tryget_online() check in
2801 * memcg_schedule_kmem_cache_create() will prevent us from
2802 * creation of a new kmem_cache.
2803 */
2804 if (unlikely(!memcg_cachep))
2805 memcg_schedule_kmem_cache_create(memcg, cachep);
2806 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2807 cachep = memcg_cachep;
2808 out_unlock:
2809 rcu_read_unlock();
2810 return cachep;
2811 }
2812
2813 /**
2814 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2815 * @cachep: the cache returned by memcg_kmem_get_cache
2816 */
2817 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2818 {
2819 if (!is_root_cache(cachep))
2820 percpu_ref_put(&cachep->memcg_params.refcnt);
2821 }
2822
2823 /**
2824 * __memcg_kmem_charge_memcg: charge a kmem page
2825 * @page: page to charge
2826 * @gfp: reclaim mode
2827 * @order: allocation order
2828 * @memcg: memory cgroup to charge
2829 *
2830 * Returns 0 on success, an error code on failure.
2831 */
2832 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2833 struct mem_cgroup *memcg)
2834 {
2835 unsigned int nr_pages = 1 << order;
2836 struct page_counter *counter;
2837 int ret;
2838
2839 ret = try_charge(memcg, gfp, nr_pages);
2840 if (ret)
2841 return ret;
2842
2843 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2844 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2845
2846 /*
2847 * Enforce __GFP_NOFAIL allocation because callers are not
2848 * prepared to see failures and likely do not have any failure
2849 * handling code.
2850 */
2851 if (gfp & __GFP_NOFAIL) {
2852 page_counter_charge(&memcg->kmem, nr_pages);
2853 return 0;
2854 }
2855 cancel_charge(memcg, nr_pages);
2856 return -ENOMEM;
2857 }
2858 return 0;
2859 }
2860
2861 /**
2862 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2863 * @page: page to charge
2864 * @gfp: reclaim mode
2865 * @order: allocation order
2866 *
2867 * Returns 0 on success, an error code on failure.
2868 */
2869 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2870 {
2871 struct mem_cgroup *memcg;
2872 int ret = 0;
2873
2874 if (memcg_kmem_bypass())
2875 return 0;
2876
2877 memcg = get_mem_cgroup_from_current();
2878 if (!mem_cgroup_is_root(memcg)) {
2879 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2880 if (!ret) {
2881 page->mem_cgroup = memcg;
2882 __SetPageKmemcg(page);
2883 }
2884 }
2885 css_put(&memcg->css);
2886 return ret;
2887 }
2888
2889 /**
2890 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2891 * @memcg: memcg to uncharge
2892 * @nr_pages: number of pages to uncharge
2893 */
2894 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2895 unsigned int nr_pages)
2896 {
2897 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2898 page_counter_uncharge(&memcg->kmem, nr_pages);
2899
2900 page_counter_uncharge(&memcg->memory, nr_pages);
2901 if (do_memsw_account())
2902 page_counter_uncharge(&memcg->memsw, nr_pages);
2903 }
2904 /**
2905 * __memcg_kmem_uncharge: uncharge a kmem page
2906 * @page: page to uncharge
2907 * @order: allocation order
2908 */
2909 void __memcg_kmem_uncharge(struct page *page, int order)
2910 {
2911 struct mem_cgroup *memcg = page->mem_cgroup;
2912 unsigned int nr_pages = 1 << order;
2913
2914 if (!memcg)
2915 return;
2916
2917 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2918 __memcg_kmem_uncharge_memcg(memcg, nr_pages);
2919 page->mem_cgroup = NULL;
2920
2921 /* slab pages do not have PageKmemcg flag set */
2922 if (PageKmemcg(page))
2923 __ClearPageKmemcg(page);
2924
2925 css_put_many(&memcg->css, nr_pages);
2926 }
2927 #endif /* CONFIG_MEMCG_KMEM */
2928
2929 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2930
2931 /*
2932 * Because tail pages are not marked as "used", set it. We're under
2933 * pgdat->lru_lock and migration entries setup in all page mappings.
2934 */
2935 void mem_cgroup_split_huge_fixup(struct page *head)
2936 {
2937 int i;
2938
2939 if (mem_cgroup_disabled())
2940 return;
2941
2942 for (i = 1; i < HPAGE_PMD_NR; i++)
2943 head[i].mem_cgroup = head->mem_cgroup;
2944
2945 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2946 }
2947 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2948
2949 #ifdef CONFIG_MEMCG_SWAP
2950 /**
2951 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2952 * @entry: swap entry to be moved
2953 * @from: mem_cgroup which the entry is moved from
2954 * @to: mem_cgroup which the entry is moved to
2955 *
2956 * It succeeds only when the swap_cgroup's record for this entry is the same
2957 * as the mem_cgroup's id of @from.
2958 *
2959 * Returns 0 on success, -EINVAL on failure.
2960 *
2961 * The caller must have charged to @to, IOW, called page_counter_charge() about
2962 * both res and memsw, and called css_get().
2963 */
2964 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2965 struct mem_cgroup *from, struct mem_cgroup *to)
2966 {
2967 unsigned short old_id, new_id;
2968
2969 old_id = mem_cgroup_id(from);
2970 new_id = mem_cgroup_id(to);
2971
2972 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2973 mod_memcg_state(from, MEMCG_SWAP, -1);
2974 mod_memcg_state(to, MEMCG_SWAP, 1);
2975 return 0;
2976 }
2977 return -EINVAL;
2978 }
2979 #else
2980 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2981 struct mem_cgroup *from, struct mem_cgroup *to)
2982 {
2983 return -EINVAL;
2984 }
2985 #endif
2986
2987 static DEFINE_MUTEX(memcg_max_mutex);
2988
2989 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2990 unsigned long max, bool memsw)
2991 {
2992 bool enlarge = false;
2993 bool drained = false;
2994 int ret;
2995 bool limits_invariant;
2996 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2997
2998 do {
2999 if (signal_pending(current)) {
3000 ret = -EINTR;
3001 break;
3002 }
3003
3004 mutex_lock(&memcg_max_mutex);
3005 /*
3006 * Make sure that the new limit (memsw or memory limit) doesn't
3007 * break our basic invariant rule memory.max <= memsw.max.
3008 */
3009 limits_invariant = memsw ? max >= memcg->memory.max :
3010 max <= memcg->memsw.max;
3011 if (!limits_invariant) {
3012 mutex_unlock(&memcg_max_mutex);
3013 ret = -EINVAL;
3014 break;
3015 }
3016 if (max > counter->max)
3017 enlarge = true;
3018 ret = page_counter_set_max(counter, max);
3019 mutex_unlock(&memcg_max_mutex);
3020
3021 if (!ret)
3022 break;
3023
3024 if (!drained) {
3025 drain_all_stock(memcg);
3026 drained = true;
3027 continue;
3028 }
3029
3030 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3031 GFP_KERNEL, !memsw)) {
3032 ret = -EBUSY;
3033 break;
3034 }
3035 } while (true);
3036
3037 if (!ret && enlarge)
3038 memcg_oom_recover(memcg);
3039
3040 return ret;
3041 }
3042
3043 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3044 gfp_t gfp_mask,
3045 unsigned long *total_scanned)
3046 {
3047 unsigned long nr_reclaimed = 0;
3048 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3049 unsigned long reclaimed;
3050 int loop = 0;
3051 struct mem_cgroup_tree_per_node *mctz;
3052 unsigned long excess;
3053 unsigned long nr_scanned;
3054
3055 if (order > 0)
3056 return 0;
3057
3058 mctz = soft_limit_tree_node(pgdat->node_id);
3059
3060 /*
3061 * Do not even bother to check the largest node if the root
3062 * is empty. Do it lockless to prevent lock bouncing. Races
3063 * are acceptable as soft limit is best effort anyway.
3064 */
3065 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3066 return 0;
3067
3068 /*
3069 * This loop can run a while, specially if mem_cgroup's continuously
3070 * keep exceeding their soft limit and putting the system under
3071 * pressure
3072 */
3073 do {
3074 if (next_mz)
3075 mz = next_mz;
3076 else
3077 mz = mem_cgroup_largest_soft_limit_node(mctz);
3078 if (!mz)
3079 break;
3080
3081 nr_scanned = 0;
3082 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3083 gfp_mask, &nr_scanned);
3084 nr_reclaimed += reclaimed;
3085 *total_scanned += nr_scanned;
3086 spin_lock_irq(&mctz->lock);
3087 __mem_cgroup_remove_exceeded(mz, mctz);
3088
3089 /*
3090 * If we failed to reclaim anything from this memory cgroup
3091 * it is time to move on to the next cgroup
3092 */
3093 next_mz = NULL;
3094 if (!reclaimed)
3095 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3096
3097 excess = soft_limit_excess(mz->memcg);
3098 /*
3099 * One school of thought says that we should not add
3100 * back the node to the tree if reclaim returns 0.
3101 * But our reclaim could return 0, simply because due
3102 * to priority we are exposing a smaller subset of
3103 * memory to reclaim from. Consider this as a longer
3104 * term TODO.
3105 */
3106 /* If excess == 0, no tree ops */
3107 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3108 spin_unlock_irq(&mctz->lock);
3109 css_put(&mz->memcg->css);
3110 loop++;
3111 /*
3112 * Could not reclaim anything and there are no more
3113 * mem cgroups to try or we seem to be looping without
3114 * reclaiming anything.
3115 */
3116 if (!nr_reclaimed &&
3117 (next_mz == NULL ||
3118 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3119 break;
3120 } while (!nr_reclaimed);
3121 if (next_mz)
3122 css_put(&next_mz->memcg->css);
3123 return nr_reclaimed;
3124 }
3125
3126 /*
3127 * Test whether @memcg has children, dead or alive. Note that this
3128 * function doesn't care whether @memcg has use_hierarchy enabled and
3129 * returns %true if there are child csses according to the cgroup
3130 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3131 */
3132 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3133 {
3134 bool ret;
3135
3136 rcu_read_lock();
3137 ret = css_next_child(NULL, &memcg->css);
3138 rcu_read_unlock();
3139 return ret;
3140 }
3141
3142 /*
3143 * Reclaims as many pages from the given memcg as possible.
3144 *
3145 * Caller is responsible for holding css reference for memcg.
3146 */
3147 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3148 {
3149 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3150
3151 /* we call try-to-free pages for make this cgroup empty */
3152 lru_add_drain_all();
3153
3154 drain_all_stock(memcg);
3155
3156 /* try to free all pages in this cgroup */
3157 while (nr_retries && page_counter_read(&memcg->memory)) {
3158 int progress;
3159
3160 if (signal_pending(current))
3161 return -EINTR;
3162
3163 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3164 GFP_KERNEL, true);
3165 if (!progress) {
3166 nr_retries--;
3167 /* maybe some writeback is necessary */
3168 congestion_wait(BLK_RW_ASYNC, HZ/10);
3169 }
3170
3171 }
3172
3173 return 0;
3174 }
3175
3176 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3177 char *buf, size_t nbytes,
3178 loff_t off)
3179 {
3180 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3181
3182 if (mem_cgroup_is_root(memcg))
3183 return -EINVAL;
3184 return mem_cgroup_force_empty(memcg) ?: nbytes;
3185 }
3186
3187 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3188 struct cftype *cft)
3189 {
3190 return mem_cgroup_from_css(css)->use_hierarchy;
3191 }
3192
3193 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3194 struct cftype *cft, u64 val)
3195 {
3196 int retval = 0;
3197 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3198 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3199
3200 if (memcg->use_hierarchy == val)
3201 return 0;
3202
3203 /*
3204 * If parent's use_hierarchy is set, we can't make any modifications
3205 * in the child subtrees. If it is unset, then the change can
3206 * occur, provided the current cgroup has no children.
3207 *
3208 * For the root cgroup, parent_mem is NULL, we allow value to be
3209 * set if there are no children.
3210 */
3211 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3212 (val == 1 || val == 0)) {
3213 if (!memcg_has_children(memcg))
3214 memcg->use_hierarchy = val;
3215 else
3216 retval = -EBUSY;
3217 } else
3218 retval = -EINVAL;
3219
3220 return retval;
3221 }
3222
3223 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3224 {
3225 unsigned long val;
3226
3227 if (mem_cgroup_is_root(memcg)) {
3228 val = memcg_page_state(memcg, MEMCG_CACHE) +
3229 memcg_page_state(memcg, MEMCG_RSS);
3230 if (swap)
3231 val += memcg_page_state(memcg, MEMCG_SWAP);
3232 } else {
3233 if (!swap)
3234 val = page_counter_read(&memcg->memory);
3235 else
3236 val = page_counter_read(&memcg->memsw);
3237 }
3238 return val;
3239 }
3240
3241 enum {
3242 RES_USAGE,
3243 RES_LIMIT,
3244 RES_MAX_USAGE,
3245 RES_FAILCNT,
3246 RES_SOFT_LIMIT,
3247 };
3248
3249 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3250 struct cftype *cft)
3251 {
3252 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3253 struct page_counter *counter;
3254
3255 switch (MEMFILE_TYPE(cft->private)) {
3256 case _MEM:
3257 counter = &memcg->memory;
3258 break;
3259 case _MEMSWAP:
3260 counter = &memcg->memsw;
3261 break;
3262 case _KMEM:
3263 counter = &memcg->kmem;
3264 break;
3265 case _TCP:
3266 counter = &memcg->tcpmem;
3267 break;
3268 default:
3269 BUG();
3270 }
3271
3272 switch (MEMFILE_ATTR(cft->private)) {
3273 case RES_USAGE:
3274 if (counter == &memcg->memory)
3275 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3276 if (counter == &memcg->memsw)
3277 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3278 return (u64)page_counter_read(counter) * PAGE_SIZE;
3279 case RES_LIMIT:
3280 return (u64)counter->max * PAGE_SIZE;
3281 case RES_MAX_USAGE:
3282 return (u64)counter->watermark * PAGE_SIZE;
3283 case RES_FAILCNT:
3284 return counter->failcnt;
3285 case RES_SOFT_LIMIT:
3286 return (u64)memcg->soft_limit * PAGE_SIZE;
3287 default:
3288 BUG();
3289 }
3290 }
3291
3292 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3293 {
3294 unsigned long stat[MEMCG_NR_STAT] = {0};
3295 struct mem_cgroup *mi;
3296 int node, cpu, i;
3297
3298 for_each_online_cpu(cpu)
3299 for (i = 0; i < MEMCG_NR_STAT; i++)
3300 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3301
3302 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3303 for (i = 0; i < MEMCG_NR_STAT; i++)
3304 atomic_long_add(stat[i], &mi->vmstats[i]);
3305
3306 for_each_node(node) {
3307 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3308 struct mem_cgroup_per_node *pi;
3309
3310 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3311 stat[i] = 0;
3312
3313 for_each_online_cpu(cpu)
3314 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3315 stat[i] += per_cpu(
3316 pn->lruvec_stat_cpu->count[i], cpu);
3317
3318 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3319 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3320 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3321 }
3322 }
3323
3324 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3325 {
3326 unsigned long events[NR_VM_EVENT_ITEMS];
3327 struct mem_cgroup *mi;
3328 int cpu, i;
3329
3330 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3331 events[i] = 0;
3332
3333 for_each_online_cpu(cpu)
3334 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3335 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3336 cpu);
3337
3338 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3339 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3340 atomic_long_add(events[i], &mi->vmevents[i]);
3341 }
3342
3343 #ifdef CONFIG_MEMCG_KMEM
3344 static int memcg_online_kmem(struct mem_cgroup *memcg)
3345 {
3346 int memcg_id;
3347
3348 if (cgroup_memory_nokmem)
3349 return 0;
3350
3351 BUG_ON(memcg->kmemcg_id >= 0);
3352 BUG_ON(memcg->kmem_state);
3353
3354 memcg_id = memcg_alloc_cache_id();
3355 if (memcg_id < 0)
3356 return memcg_id;
3357
3358 static_branch_inc(&memcg_kmem_enabled_key);
3359 /*
3360 * A memory cgroup is considered kmem-online as soon as it gets
3361 * kmemcg_id. Setting the id after enabling static branching will
3362 * guarantee no one starts accounting before all call sites are
3363 * patched.
3364 */
3365 memcg->kmemcg_id = memcg_id;
3366 memcg->kmem_state = KMEM_ONLINE;
3367 INIT_LIST_HEAD(&memcg->kmem_caches);
3368
3369 return 0;
3370 }
3371
3372 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3373 {
3374 struct cgroup_subsys_state *css;
3375 struct mem_cgroup *parent, *child;
3376 int kmemcg_id;
3377
3378 if (memcg->kmem_state != KMEM_ONLINE)
3379 return;
3380 /*
3381 * Clear the online state before clearing memcg_caches array
3382 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3383 * guarantees that no cache will be created for this cgroup
3384 * after we are done (see memcg_create_kmem_cache()).
3385 */
3386 memcg->kmem_state = KMEM_ALLOCATED;
3387
3388 parent = parent_mem_cgroup(memcg);
3389 if (!parent)
3390 parent = root_mem_cgroup;
3391
3392 /*
3393 * Deactivate and reparent kmem_caches.
3394 */
3395 memcg_deactivate_kmem_caches(memcg, parent);
3396
3397 kmemcg_id = memcg->kmemcg_id;
3398 BUG_ON(kmemcg_id < 0);
3399
3400 /*
3401 * Change kmemcg_id of this cgroup and all its descendants to the
3402 * parent's id, and then move all entries from this cgroup's list_lrus
3403 * to ones of the parent. After we have finished, all list_lrus
3404 * corresponding to this cgroup are guaranteed to remain empty. The
3405 * ordering is imposed by list_lru_node->lock taken by
3406 * memcg_drain_all_list_lrus().
3407 */
3408 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3409 css_for_each_descendant_pre(css, &memcg->css) {
3410 child = mem_cgroup_from_css(css);
3411 BUG_ON(child->kmemcg_id != kmemcg_id);
3412 child->kmemcg_id = parent->kmemcg_id;
3413 if (!memcg->use_hierarchy)
3414 break;
3415 }
3416 rcu_read_unlock();
3417
3418 memcg_drain_all_list_lrus(kmemcg_id, parent);
3419
3420 memcg_free_cache_id(kmemcg_id);
3421 }
3422
3423 static void memcg_free_kmem(struct mem_cgroup *memcg)
3424 {
3425 /* css_alloc() failed, offlining didn't happen */
3426 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3427 memcg_offline_kmem(memcg);
3428
3429 if (memcg->kmem_state == KMEM_ALLOCATED) {
3430 WARN_ON(!list_empty(&memcg->kmem_caches));
3431 static_branch_dec(&memcg_kmem_enabled_key);
3432 }
3433 }
3434 #else
3435 static int memcg_online_kmem(struct mem_cgroup *memcg)
3436 {
3437 return 0;
3438 }
3439 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3440 {
3441 }
3442 static void memcg_free_kmem(struct mem_cgroup *memcg)
3443 {
3444 }
3445 #endif /* CONFIG_MEMCG_KMEM */
3446
3447 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3448 unsigned long max)
3449 {
3450 int ret;
3451
3452 mutex_lock(&memcg_max_mutex);
3453 ret = page_counter_set_max(&memcg->kmem, max);
3454 mutex_unlock(&memcg_max_mutex);
3455 return ret;
3456 }
3457
3458 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3459 {
3460 int ret;
3461
3462 mutex_lock(&memcg_max_mutex);
3463
3464 ret = page_counter_set_max(&memcg->tcpmem, max);
3465 if (ret)
3466 goto out;
3467
3468 if (!memcg->tcpmem_active) {
3469 /*
3470 * The active flag needs to be written after the static_key
3471 * update. This is what guarantees that the socket activation
3472 * function is the last one to run. See mem_cgroup_sk_alloc()
3473 * for details, and note that we don't mark any socket as
3474 * belonging to this memcg until that flag is up.
3475 *
3476 * We need to do this, because static_keys will span multiple
3477 * sites, but we can't control their order. If we mark a socket
3478 * as accounted, but the accounting functions are not patched in
3479 * yet, we'll lose accounting.
3480 *
3481 * We never race with the readers in mem_cgroup_sk_alloc(),
3482 * because when this value change, the code to process it is not
3483 * patched in yet.
3484 */
3485 static_branch_inc(&memcg_sockets_enabled_key);
3486 memcg->tcpmem_active = true;
3487 }
3488 out:
3489 mutex_unlock(&memcg_max_mutex);
3490 return ret;
3491 }
3492
3493 /*
3494 * The user of this function is...
3495 * RES_LIMIT.
3496 */
3497 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3498 char *buf, size_t nbytes, loff_t off)
3499 {
3500 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3501 unsigned long nr_pages;
3502 int ret;
3503
3504 buf = strstrip(buf);
3505 ret = page_counter_memparse(buf, "-1", &nr_pages);
3506 if (ret)
3507 return ret;
3508
3509 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3510 case RES_LIMIT:
3511 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3512 ret = -EINVAL;
3513 break;
3514 }
3515 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3516 case _MEM:
3517 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3518 break;
3519 case _MEMSWAP:
3520 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3521 break;
3522 case _KMEM:
3523 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3524 "Please report your usecase to linux-mm@kvack.org if you "
3525 "depend on this functionality.\n");
3526 ret = memcg_update_kmem_max(memcg, nr_pages);
3527 break;
3528 case _TCP:
3529 ret = memcg_update_tcp_max(memcg, nr_pages);
3530 break;
3531 }
3532 break;
3533 case RES_SOFT_LIMIT:
3534 memcg->soft_limit = nr_pages;
3535 ret = 0;
3536 break;
3537 }
3538 return ret ?: nbytes;
3539 }
3540
3541 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3542 size_t nbytes, loff_t off)
3543 {
3544 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3545 struct page_counter *counter;
3546
3547 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3548 case _MEM:
3549 counter = &memcg->memory;
3550 break;
3551 case _MEMSWAP:
3552 counter = &memcg->memsw;
3553 break;
3554 case _KMEM:
3555 counter = &memcg->kmem;
3556 break;
3557 case _TCP:
3558 counter = &memcg->tcpmem;
3559 break;
3560 default:
3561 BUG();
3562 }
3563
3564 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3565 case RES_MAX_USAGE:
3566 page_counter_reset_watermark(counter);
3567 break;
3568 case RES_FAILCNT:
3569 counter->failcnt = 0;
3570 break;
3571 default:
3572 BUG();
3573 }
3574
3575 return nbytes;
3576 }
3577
3578 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3579 struct cftype *cft)
3580 {
3581 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3582 }
3583
3584 #ifdef CONFIG_MMU
3585 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3586 struct cftype *cft, u64 val)
3587 {
3588 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3589
3590 if (val & ~MOVE_MASK)
3591 return -EINVAL;
3592
3593 /*
3594 * No kind of locking is needed in here, because ->can_attach() will
3595 * check this value once in the beginning of the process, and then carry
3596 * on with stale data. This means that changes to this value will only
3597 * affect task migrations starting after the change.
3598 */
3599 memcg->move_charge_at_immigrate = val;
3600 return 0;
3601 }
3602 #else
3603 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3604 struct cftype *cft, u64 val)
3605 {
3606 return -ENOSYS;
3607 }
3608 #endif
3609
3610 #ifdef CONFIG_NUMA
3611
3612 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3613 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3614 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3615
3616 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3617 int nid, unsigned int lru_mask)
3618 {
3619 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3620 unsigned long nr = 0;
3621 enum lru_list lru;
3622
3623 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3624
3625 for_each_lru(lru) {
3626 if (!(BIT(lru) & lru_mask))
3627 continue;
3628 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3629 }
3630 return nr;
3631 }
3632
3633 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3634 unsigned int lru_mask)
3635 {
3636 unsigned long nr = 0;
3637 enum lru_list lru;
3638
3639 for_each_lru(lru) {
3640 if (!(BIT(lru) & lru_mask))
3641 continue;
3642 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3643 }
3644 return nr;
3645 }
3646
3647 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3648 {
3649 struct numa_stat {
3650 const char *name;
3651 unsigned int lru_mask;
3652 };
3653
3654 static const struct numa_stat stats[] = {
3655 { "total", LRU_ALL },
3656 { "file", LRU_ALL_FILE },
3657 { "anon", LRU_ALL_ANON },
3658 { "unevictable", BIT(LRU_UNEVICTABLE) },
3659 };
3660 const struct numa_stat *stat;
3661 int nid;
3662 unsigned long nr;
3663 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3664
3665 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3666 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3667 seq_printf(m, "%s=%lu", stat->name, nr);
3668 for_each_node_state(nid, N_MEMORY) {
3669 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3670 stat->lru_mask);
3671 seq_printf(m, " N%d=%lu", nid, nr);
3672 }
3673 seq_putc(m, '\n');
3674 }
3675
3676 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3677 struct mem_cgroup *iter;
3678
3679 nr = 0;
3680 for_each_mem_cgroup_tree(iter, memcg)
3681 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3682 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3683 for_each_node_state(nid, N_MEMORY) {
3684 nr = 0;
3685 for_each_mem_cgroup_tree(iter, memcg)
3686 nr += mem_cgroup_node_nr_lru_pages(
3687 iter, nid, stat->lru_mask);
3688 seq_printf(m, " N%d=%lu", nid, nr);
3689 }
3690 seq_putc(m, '\n');
3691 }
3692
3693 return 0;
3694 }
3695 #endif /* CONFIG_NUMA */
3696
3697 static const unsigned int memcg1_stats[] = {
3698 MEMCG_CACHE,
3699 MEMCG_RSS,
3700 MEMCG_RSS_HUGE,
3701 NR_SHMEM,
3702 NR_FILE_MAPPED,
3703 NR_FILE_DIRTY,
3704 NR_WRITEBACK,
3705 MEMCG_SWAP,
3706 };
3707
3708 static const char *const memcg1_stat_names[] = {
3709 "cache",
3710 "rss",
3711 "rss_huge",
3712 "shmem",
3713 "mapped_file",
3714 "dirty",
3715 "writeback",
3716 "swap",
3717 };
3718
3719 /* Universal VM events cgroup1 shows, original sort order */
3720 static const unsigned int memcg1_events[] = {
3721 PGPGIN,
3722 PGPGOUT,
3723 PGFAULT,
3724 PGMAJFAULT,
3725 };
3726
3727 static int memcg_stat_show(struct seq_file *m, void *v)
3728 {
3729 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3730 unsigned long memory, memsw;
3731 struct mem_cgroup *mi;
3732 unsigned int i;
3733
3734 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3735
3736 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3737 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3738 continue;
3739 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3740 memcg_page_state_local(memcg, memcg1_stats[i]) *
3741 PAGE_SIZE);
3742 }
3743
3744 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3745 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3746 memcg_events_local(memcg, memcg1_events[i]));
3747
3748 for (i = 0; i < NR_LRU_LISTS; i++)
3749 seq_printf(m, "%s %lu\n", lru_list_name(i),
3750 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3751 PAGE_SIZE);
3752
3753 /* Hierarchical information */
3754 memory = memsw = PAGE_COUNTER_MAX;
3755 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3756 memory = min(memory, mi->memory.max);
3757 memsw = min(memsw, mi->memsw.max);
3758 }
3759 seq_printf(m, "hierarchical_memory_limit %llu\n",
3760 (u64)memory * PAGE_SIZE);
3761 if (do_memsw_account())
3762 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3763 (u64)memsw * PAGE_SIZE);
3764
3765 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3766 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3767 continue;
3768 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3769 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3770 PAGE_SIZE);
3771 }
3772
3773 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3774 seq_printf(m, "total_%s %llu\n",
3775 vm_event_name(memcg1_events[i]),
3776 (u64)memcg_events(memcg, memcg1_events[i]));
3777
3778 for (i = 0; i < NR_LRU_LISTS; i++)
3779 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3780 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3781 PAGE_SIZE);
3782
3783 #ifdef CONFIG_DEBUG_VM
3784 {
3785 pg_data_t *pgdat;
3786 struct mem_cgroup_per_node *mz;
3787 struct zone_reclaim_stat *rstat;
3788 unsigned long recent_rotated[2] = {0, 0};
3789 unsigned long recent_scanned[2] = {0, 0};
3790
3791 for_each_online_pgdat(pgdat) {
3792 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3793 rstat = &mz->lruvec.reclaim_stat;
3794
3795 recent_rotated[0] += rstat->recent_rotated[0];
3796 recent_rotated[1] += rstat->recent_rotated[1];
3797 recent_scanned[0] += rstat->recent_scanned[0];
3798 recent_scanned[1] += rstat->recent_scanned[1];
3799 }
3800 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3801 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3802 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3803 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3804 }
3805 #endif
3806
3807 return 0;
3808 }
3809
3810 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3811 struct cftype *cft)
3812 {
3813 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3814
3815 return mem_cgroup_swappiness(memcg);
3816 }
3817
3818 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3819 struct cftype *cft, u64 val)
3820 {
3821 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3822
3823 if (val > 100)
3824 return -EINVAL;
3825
3826 if (css->parent)
3827 memcg->swappiness = val;
3828 else
3829 vm_swappiness = val;
3830
3831 return 0;
3832 }
3833
3834 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3835 {
3836 struct mem_cgroup_threshold_ary *t;
3837 unsigned long usage;
3838 int i;
3839
3840 rcu_read_lock();
3841 if (!swap)
3842 t = rcu_dereference(memcg->thresholds.primary);
3843 else
3844 t = rcu_dereference(memcg->memsw_thresholds.primary);
3845
3846 if (!t)
3847 goto unlock;
3848
3849 usage = mem_cgroup_usage(memcg, swap);
3850
3851 /*
3852 * current_threshold points to threshold just below or equal to usage.
3853 * If it's not true, a threshold was crossed after last
3854 * call of __mem_cgroup_threshold().
3855 */
3856 i = t->current_threshold;
3857
3858 /*
3859 * Iterate backward over array of thresholds starting from
3860 * current_threshold and check if a threshold is crossed.
3861 * If none of thresholds below usage is crossed, we read
3862 * only one element of the array here.
3863 */
3864 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3865 eventfd_signal(t->entries[i].eventfd, 1);
3866
3867 /* i = current_threshold + 1 */
3868 i++;
3869
3870 /*
3871 * Iterate forward over array of thresholds starting from
3872 * current_threshold+1 and check if a threshold is crossed.
3873 * If none of thresholds above usage is crossed, we read
3874 * only one element of the array here.
3875 */
3876 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3877 eventfd_signal(t->entries[i].eventfd, 1);
3878
3879 /* Update current_threshold */
3880 t->current_threshold = i - 1;
3881 unlock:
3882 rcu_read_unlock();
3883 }
3884
3885 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3886 {
3887 while (memcg) {
3888 __mem_cgroup_threshold(memcg, false);
3889 if (do_memsw_account())
3890 __mem_cgroup_threshold(memcg, true);
3891
3892 memcg = parent_mem_cgroup(memcg);
3893 }
3894 }
3895
3896 static int compare_thresholds(const void *a, const void *b)
3897 {
3898 const struct mem_cgroup_threshold *_a = a;
3899 const struct mem_cgroup_threshold *_b = b;
3900
3901 if (_a->threshold > _b->threshold)
3902 return 1;
3903
3904 if (_a->threshold < _b->threshold)
3905 return -1;
3906
3907 return 0;
3908 }
3909
3910 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3911 {
3912 struct mem_cgroup_eventfd_list *ev;
3913
3914 spin_lock(&memcg_oom_lock);
3915
3916 list_for_each_entry(ev, &memcg->oom_notify, list)
3917 eventfd_signal(ev->eventfd, 1);
3918
3919 spin_unlock(&memcg_oom_lock);
3920 return 0;
3921 }
3922
3923 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3924 {
3925 struct mem_cgroup *iter;
3926
3927 for_each_mem_cgroup_tree(iter, memcg)
3928 mem_cgroup_oom_notify_cb(iter);
3929 }
3930
3931 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3932 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3933 {
3934 struct mem_cgroup_thresholds *thresholds;
3935 struct mem_cgroup_threshold_ary *new;
3936 unsigned long threshold;
3937 unsigned long usage;
3938 int i, size, ret;
3939
3940 ret = page_counter_memparse(args, "-1", &threshold);
3941 if (ret)
3942 return ret;
3943
3944 mutex_lock(&memcg->thresholds_lock);
3945
3946 if (type == _MEM) {
3947 thresholds = &memcg->thresholds;
3948 usage = mem_cgroup_usage(memcg, false);
3949 } else if (type == _MEMSWAP) {
3950 thresholds = &memcg->memsw_thresholds;
3951 usage = mem_cgroup_usage(memcg, true);
3952 } else
3953 BUG();
3954
3955 /* Check if a threshold crossed before adding a new one */
3956 if (thresholds->primary)
3957 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3958
3959 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3960
3961 /* Allocate memory for new array of thresholds */
3962 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3963 if (!new) {
3964 ret = -ENOMEM;
3965 goto unlock;
3966 }
3967 new->size = size;
3968
3969 /* Copy thresholds (if any) to new array */
3970 if (thresholds->primary) {
3971 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3972 sizeof(struct mem_cgroup_threshold));
3973 }
3974
3975 /* Add new threshold */
3976 new->entries[size - 1].eventfd = eventfd;
3977 new->entries[size - 1].threshold = threshold;
3978
3979 /* Sort thresholds. Registering of new threshold isn't time-critical */
3980 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3981 compare_thresholds, NULL);
3982
3983 /* Find current threshold */
3984 new->current_threshold = -1;
3985 for (i = 0; i < size; i++) {
3986 if (new->entries[i].threshold <= usage) {
3987 /*
3988 * new->current_threshold will not be used until
3989 * rcu_assign_pointer(), so it's safe to increment
3990 * it here.
3991 */
3992 ++new->current_threshold;
3993 } else
3994 break;
3995 }
3996
3997 /* Free old spare buffer and save old primary buffer as spare */
3998 kfree(thresholds->spare);
3999 thresholds->spare = thresholds->primary;
4000
4001 rcu_assign_pointer(thresholds->primary, new);
4002
4003 /* To be sure that nobody uses thresholds */
4004 synchronize_rcu();
4005
4006 unlock:
4007 mutex_unlock(&memcg->thresholds_lock);
4008
4009 return ret;
4010 }
4011
4012 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4013 struct eventfd_ctx *eventfd, const char *args)
4014 {
4015 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4016 }
4017
4018 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4019 struct eventfd_ctx *eventfd, const char *args)
4020 {
4021 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4022 }
4023
4024 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4025 struct eventfd_ctx *eventfd, enum res_type type)
4026 {
4027 struct mem_cgroup_thresholds *thresholds;
4028 struct mem_cgroup_threshold_ary *new;
4029 unsigned long usage;
4030 int i, j, size;
4031
4032 mutex_lock(&memcg->thresholds_lock);
4033
4034 if (type == _MEM) {
4035 thresholds = &memcg->thresholds;
4036 usage = mem_cgroup_usage(memcg, false);
4037 } else if (type == _MEMSWAP) {
4038 thresholds = &memcg->memsw_thresholds;
4039 usage = mem_cgroup_usage(memcg, true);
4040 } else
4041 BUG();
4042
4043 if (!thresholds->primary)
4044 goto unlock;
4045
4046 /* Check if a threshold crossed before removing */
4047 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4048
4049 /* Calculate new number of threshold */
4050 size = 0;
4051 for (i = 0; i < thresholds->primary->size; i++) {
4052 if (thresholds->primary->entries[i].eventfd != eventfd)
4053 size++;
4054 }
4055
4056 new = thresholds->spare;
4057
4058 /* Set thresholds array to NULL if we don't have thresholds */
4059 if (!size) {
4060 kfree(new);
4061 new = NULL;
4062 goto swap_buffers;
4063 }
4064
4065 new->size = size;
4066
4067 /* Copy thresholds and find current threshold */
4068 new->current_threshold = -1;
4069 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4070 if (thresholds->primary->entries[i].eventfd == eventfd)
4071 continue;
4072
4073 new->entries[j] = thresholds->primary->entries[i];
4074 if (new->entries[j].threshold <= usage) {
4075 /*
4076 * new->current_threshold will not be used
4077 * until rcu_assign_pointer(), so it's safe to increment
4078 * it here.
4079 */
4080 ++new->current_threshold;
4081 }
4082 j++;
4083 }
4084
4085 swap_buffers:
4086 /* Swap primary and spare array */
4087 thresholds->spare = thresholds->primary;
4088
4089 rcu_assign_pointer(thresholds->primary, new);
4090
4091 /* To be sure that nobody uses thresholds */
4092 synchronize_rcu();
4093
4094 /* If all events are unregistered, free the spare array */
4095 if (!new) {
4096 kfree(thresholds->spare);
4097 thresholds->spare = NULL;
4098 }
4099 unlock:
4100 mutex_unlock(&memcg->thresholds_lock);
4101 }
4102
4103 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4104 struct eventfd_ctx *eventfd)
4105 {
4106 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4107 }
4108
4109 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4110 struct eventfd_ctx *eventfd)
4111 {
4112 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4113 }
4114
4115 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4116 struct eventfd_ctx *eventfd, const char *args)
4117 {
4118 struct mem_cgroup_eventfd_list *event;
4119
4120 event = kmalloc(sizeof(*event), GFP_KERNEL);
4121 if (!event)
4122 return -ENOMEM;
4123
4124 spin_lock(&memcg_oom_lock);
4125
4126 event->eventfd = eventfd;
4127 list_add(&event->list, &memcg->oom_notify);
4128
4129 /* already in OOM ? */
4130 if (memcg->under_oom)
4131 eventfd_signal(eventfd, 1);
4132 spin_unlock(&memcg_oom_lock);
4133
4134 return 0;
4135 }
4136
4137 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4138 struct eventfd_ctx *eventfd)
4139 {
4140 struct mem_cgroup_eventfd_list *ev, *tmp;
4141
4142 spin_lock(&memcg_oom_lock);
4143
4144 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4145 if (ev->eventfd == eventfd) {
4146 list_del(&ev->list);
4147 kfree(ev);
4148 }
4149 }
4150
4151 spin_unlock(&memcg_oom_lock);
4152 }
4153
4154 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4155 {
4156 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4157
4158 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4159 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4160 seq_printf(sf, "oom_kill %lu\n",
4161 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4162 return 0;
4163 }
4164
4165 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4166 struct cftype *cft, u64 val)
4167 {
4168 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4169
4170 /* cannot set to root cgroup and only 0 and 1 are allowed */
4171 if (!css->parent || !((val == 0) || (val == 1)))
4172 return -EINVAL;
4173
4174 memcg->oom_kill_disable = val;
4175 if (!val)
4176 memcg_oom_recover(memcg);
4177
4178 return 0;
4179 }
4180
4181 #ifdef CONFIG_CGROUP_WRITEBACK
4182
4183 #include <trace/events/writeback.h>
4184
4185 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4186 {
4187 return wb_domain_init(&memcg->cgwb_domain, gfp);
4188 }
4189
4190 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4191 {
4192 wb_domain_exit(&memcg->cgwb_domain);
4193 }
4194
4195 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4196 {
4197 wb_domain_size_changed(&memcg->cgwb_domain);
4198 }
4199
4200 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4201 {
4202 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4203
4204 if (!memcg->css.parent)
4205 return NULL;
4206
4207 return &memcg->cgwb_domain;
4208 }
4209
4210 /*
4211 * idx can be of type enum memcg_stat_item or node_stat_item.
4212 * Keep in sync with memcg_exact_page().
4213 */
4214 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4215 {
4216 long x = atomic_long_read(&memcg->vmstats[idx]);
4217 int cpu;
4218
4219 for_each_online_cpu(cpu)
4220 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4221 if (x < 0)
4222 x = 0;
4223 return x;
4224 }
4225
4226 /**
4227 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4228 * @wb: bdi_writeback in question
4229 * @pfilepages: out parameter for number of file pages
4230 * @pheadroom: out parameter for number of allocatable pages according to memcg
4231 * @pdirty: out parameter for number of dirty pages
4232 * @pwriteback: out parameter for number of pages under writeback
4233 *
4234 * Determine the numbers of file, headroom, dirty, and writeback pages in
4235 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4236 * is a bit more involved.
4237 *
4238 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4239 * headroom is calculated as the lowest headroom of itself and the
4240 * ancestors. Note that this doesn't consider the actual amount of
4241 * available memory in the system. The caller should further cap
4242 * *@pheadroom accordingly.
4243 */
4244 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4245 unsigned long *pheadroom, unsigned long *pdirty,
4246 unsigned long *pwriteback)
4247 {
4248 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4249 struct mem_cgroup *parent;
4250
4251 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4252
4253 /* this should eventually include NR_UNSTABLE_NFS */
4254 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4255 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4256 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4257 *pheadroom = PAGE_COUNTER_MAX;
4258
4259 while ((parent = parent_mem_cgroup(memcg))) {
4260 unsigned long ceiling = min(memcg->memory.max, memcg->high);
4261 unsigned long used = page_counter_read(&memcg->memory);
4262
4263 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4264 memcg = parent;
4265 }
4266 }
4267
4268 /*
4269 * Foreign dirty flushing
4270 *
4271 * There's an inherent mismatch between memcg and writeback. The former
4272 * trackes ownership per-page while the latter per-inode. This was a
4273 * deliberate design decision because honoring per-page ownership in the
4274 * writeback path is complicated, may lead to higher CPU and IO overheads
4275 * and deemed unnecessary given that write-sharing an inode across
4276 * different cgroups isn't a common use-case.
4277 *
4278 * Combined with inode majority-writer ownership switching, this works well
4279 * enough in most cases but there are some pathological cases. For
4280 * example, let's say there are two cgroups A and B which keep writing to
4281 * different but confined parts of the same inode. B owns the inode and
4282 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4283 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4284 * triggering background writeback. A will be slowed down without a way to
4285 * make writeback of the dirty pages happen.
4286 *
4287 * Conditions like the above can lead to a cgroup getting repatedly and
4288 * severely throttled after making some progress after each
4289 * dirty_expire_interval while the underyling IO device is almost
4290 * completely idle.
4291 *
4292 * Solving this problem completely requires matching the ownership tracking
4293 * granularities between memcg and writeback in either direction. However,
4294 * the more egregious behaviors can be avoided by simply remembering the
4295 * most recent foreign dirtying events and initiating remote flushes on
4296 * them when local writeback isn't enough to keep the memory clean enough.
4297 *
4298 * The following two functions implement such mechanism. When a foreign
4299 * page - a page whose memcg and writeback ownerships don't match - is
4300 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4301 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4302 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4303 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4304 * foreign bdi_writebacks which haven't expired. Both the numbers of
4305 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4306 * limited to MEMCG_CGWB_FRN_CNT.
4307 *
4308 * The mechanism only remembers IDs and doesn't hold any object references.
4309 * As being wrong occasionally doesn't matter, updates and accesses to the
4310 * records are lockless and racy.
4311 */
4312 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4313 struct bdi_writeback *wb)
4314 {
4315 struct mem_cgroup *memcg = page->mem_cgroup;
4316 struct memcg_cgwb_frn *frn;
4317 u64 now = get_jiffies_64();
4318 u64 oldest_at = now;
4319 int oldest = -1;
4320 int i;
4321
4322 trace_track_foreign_dirty(page, wb);
4323
4324 /*
4325 * Pick the slot to use. If there is already a slot for @wb, keep
4326 * using it. If not replace the oldest one which isn't being
4327 * written out.
4328 */
4329 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4330 frn = &memcg->cgwb_frn[i];
4331 if (frn->bdi_id == wb->bdi->id &&
4332 frn->memcg_id == wb->memcg_css->id)
4333 break;
4334 if (time_before64(frn->at, oldest_at) &&
4335 atomic_read(&frn->done.cnt) == 1) {
4336 oldest = i;
4337 oldest_at = frn->at;
4338 }
4339 }
4340
4341 if (i < MEMCG_CGWB_FRN_CNT) {
4342 /*
4343 * Re-using an existing one. Update timestamp lazily to
4344 * avoid making the cacheline hot. We want them to be
4345 * reasonably up-to-date and significantly shorter than
4346 * dirty_expire_interval as that's what expires the record.
4347 * Use the shorter of 1s and dirty_expire_interval / 8.
4348 */
4349 unsigned long update_intv =
4350 min_t(unsigned long, HZ,
4351 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4352
4353 if (time_before64(frn->at, now - update_intv))
4354 frn->at = now;
4355 } else if (oldest >= 0) {
4356 /* replace the oldest free one */
4357 frn = &memcg->cgwb_frn[oldest];
4358 frn->bdi_id = wb->bdi->id;
4359 frn->memcg_id = wb->memcg_css->id;
4360 frn->at = now;
4361 }
4362 }
4363
4364 /* issue foreign writeback flushes for recorded foreign dirtying events */
4365 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4366 {
4367 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4368 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4369 u64 now = jiffies_64;
4370 int i;
4371
4372 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4373 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4374
4375 /*
4376 * If the record is older than dirty_expire_interval,
4377 * writeback on it has already started. No need to kick it
4378 * off again. Also, don't start a new one if there's
4379 * already one in flight.
4380 */
4381 if (time_after64(frn->at, now - intv) &&
4382 atomic_read(&frn->done.cnt) == 1) {
4383 frn->at = 0;
4384 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4385 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4386 WB_REASON_FOREIGN_FLUSH,
4387 &frn->done);
4388 }
4389 }
4390 }
4391
4392 #else /* CONFIG_CGROUP_WRITEBACK */
4393
4394 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4395 {
4396 return 0;
4397 }
4398
4399 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4400 {
4401 }
4402
4403 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4404 {
4405 }
4406
4407 #endif /* CONFIG_CGROUP_WRITEBACK */
4408
4409 /*
4410 * DO NOT USE IN NEW FILES.
4411 *
4412 * "cgroup.event_control" implementation.
4413 *
4414 * This is way over-engineered. It tries to support fully configurable
4415 * events for each user. Such level of flexibility is completely
4416 * unnecessary especially in the light of the planned unified hierarchy.
4417 *
4418 * Please deprecate this and replace with something simpler if at all
4419 * possible.
4420 */
4421
4422 /*
4423 * Unregister event and free resources.
4424 *
4425 * Gets called from workqueue.
4426 */
4427 static void memcg_event_remove(struct work_struct *work)
4428 {
4429 struct mem_cgroup_event *event =
4430 container_of(work, struct mem_cgroup_event, remove);
4431 struct mem_cgroup *memcg = event->memcg;
4432
4433 remove_wait_queue(event->wqh, &event->wait);
4434
4435 event->unregister_event(memcg, event->eventfd);
4436
4437 /* Notify userspace the event is going away. */
4438 eventfd_signal(event->eventfd, 1);
4439
4440 eventfd_ctx_put(event->eventfd);
4441 kfree(event);
4442 css_put(&memcg->css);
4443 }
4444
4445 /*
4446 * Gets called on EPOLLHUP on eventfd when user closes it.
4447 *
4448 * Called with wqh->lock held and interrupts disabled.
4449 */
4450 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4451 int sync, void *key)
4452 {
4453 struct mem_cgroup_event *event =
4454 container_of(wait, struct mem_cgroup_event, wait);
4455 struct mem_cgroup *memcg = event->memcg;
4456 __poll_t flags = key_to_poll(key);
4457
4458 if (flags & EPOLLHUP) {
4459 /*
4460 * If the event has been detached at cgroup removal, we
4461 * can simply return knowing the other side will cleanup
4462 * for us.
4463 *
4464 * We can't race against event freeing since the other
4465 * side will require wqh->lock via remove_wait_queue(),
4466 * which we hold.
4467 */
4468 spin_lock(&memcg->event_list_lock);
4469 if (!list_empty(&event->list)) {
4470 list_del_init(&event->list);
4471 /*
4472 * We are in atomic context, but cgroup_event_remove()
4473 * may sleep, so we have to call it in workqueue.
4474 */
4475 schedule_work(&event->remove);
4476 }
4477 spin_unlock(&memcg->event_list_lock);
4478 }
4479
4480 return 0;
4481 }
4482
4483 static void memcg_event_ptable_queue_proc(struct file *file,
4484 wait_queue_head_t *wqh, poll_table *pt)
4485 {
4486 struct mem_cgroup_event *event =
4487 container_of(pt, struct mem_cgroup_event, pt);
4488
4489 event->wqh = wqh;
4490 add_wait_queue(wqh, &event->wait);
4491 }
4492
4493 /*
4494 * DO NOT USE IN NEW FILES.
4495 *
4496 * Parse input and register new cgroup event handler.
4497 *
4498 * Input must be in format '<event_fd> <control_fd> <args>'.
4499 * Interpretation of args is defined by control file implementation.
4500 */
4501 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4502 char *buf, size_t nbytes, loff_t off)
4503 {
4504 struct cgroup_subsys_state *css = of_css(of);
4505 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4506 struct mem_cgroup_event *event;
4507 struct cgroup_subsys_state *cfile_css;
4508 unsigned int efd, cfd;
4509 struct fd efile;
4510 struct fd cfile;
4511 const char *name;
4512 char *endp;
4513 int ret;
4514
4515 buf = strstrip(buf);
4516
4517 efd = simple_strtoul(buf, &endp, 10);
4518 if (*endp != ' ')
4519 return -EINVAL;
4520 buf = endp + 1;
4521
4522 cfd = simple_strtoul(buf, &endp, 10);
4523 if ((*endp != ' ') && (*endp != '\0'))
4524 return -EINVAL;
4525 buf = endp + 1;
4526
4527 event = kzalloc(sizeof(*event), GFP_KERNEL);
4528 if (!event)
4529 return -ENOMEM;
4530
4531 event->memcg = memcg;
4532 INIT_LIST_HEAD(&event->list);
4533 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4534 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4535 INIT_WORK(&event->remove, memcg_event_remove);
4536
4537 efile = fdget(efd);
4538 if (!efile.file) {
4539 ret = -EBADF;
4540 goto out_kfree;
4541 }
4542
4543 event->eventfd = eventfd_ctx_fileget(efile.file);
4544 if (IS_ERR(event->eventfd)) {
4545 ret = PTR_ERR(event->eventfd);
4546 goto out_put_efile;
4547 }
4548
4549 cfile = fdget(cfd);
4550 if (!cfile.file) {
4551 ret = -EBADF;
4552 goto out_put_eventfd;
4553 }
4554
4555 /* the process need read permission on control file */
4556 /* AV: shouldn't we check that it's been opened for read instead? */
4557 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4558 if (ret < 0)
4559 goto out_put_cfile;
4560
4561 /*
4562 * Determine the event callbacks and set them in @event. This used
4563 * to be done via struct cftype but cgroup core no longer knows
4564 * about these events. The following is crude but the whole thing
4565 * is for compatibility anyway.
4566 *
4567 * DO NOT ADD NEW FILES.
4568 */
4569 name = cfile.file->f_path.dentry->d_name.name;
4570
4571 if (!strcmp(name, "memory.usage_in_bytes")) {
4572 event->register_event = mem_cgroup_usage_register_event;
4573 event->unregister_event = mem_cgroup_usage_unregister_event;
4574 } else if (!strcmp(name, "memory.oom_control")) {
4575 event->register_event = mem_cgroup_oom_register_event;
4576 event->unregister_event = mem_cgroup_oom_unregister_event;
4577 } else if (!strcmp(name, "memory.pressure_level")) {
4578 event->register_event = vmpressure_register_event;
4579 event->unregister_event = vmpressure_unregister_event;
4580 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4581 event->register_event = memsw_cgroup_usage_register_event;
4582 event->unregister_event = memsw_cgroup_usage_unregister_event;
4583 } else {
4584 ret = -EINVAL;
4585 goto out_put_cfile;
4586 }
4587
4588 /*
4589 * Verify @cfile should belong to @css. Also, remaining events are
4590 * automatically removed on cgroup destruction but the removal is
4591 * asynchronous, so take an extra ref on @css.
4592 */
4593 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4594 &memory_cgrp_subsys);
4595 ret = -EINVAL;
4596 if (IS_ERR(cfile_css))
4597 goto out_put_cfile;
4598 if (cfile_css != css) {
4599 css_put(cfile_css);
4600 goto out_put_cfile;
4601 }
4602
4603 ret = event->register_event(memcg, event->eventfd, buf);
4604 if (ret)
4605 goto out_put_css;
4606
4607 vfs_poll(efile.file, &event->pt);
4608
4609 spin_lock(&memcg->event_list_lock);
4610 list_add(&event->list, &memcg->event_list);
4611 spin_unlock(&memcg->event_list_lock);
4612
4613 fdput(cfile);
4614 fdput(efile);
4615
4616 return nbytes;
4617
4618 out_put_css:
4619 css_put(css);
4620 out_put_cfile:
4621 fdput(cfile);
4622 out_put_eventfd:
4623 eventfd_ctx_put(event->eventfd);
4624 out_put_efile:
4625 fdput(efile);
4626 out_kfree:
4627 kfree(event);
4628
4629 return ret;
4630 }
4631
4632 static struct cftype mem_cgroup_legacy_files[] = {
4633 {
4634 .name = "usage_in_bytes",
4635 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4636 .read_u64 = mem_cgroup_read_u64,
4637 },
4638 {
4639 .name = "max_usage_in_bytes",
4640 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4641 .write = mem_cgroup_reset,
4642 .read_u64 = mem_cgroup_read_u64,
4643 },
4644 {
4645 .name = "limit_in_bytes",
4646 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4647 .write = mem_cgroup_write,
4648 .read_u64 = mem_cgroup_read_u64,
4649 },
4650 {
4651 .name = "soft_limit_in_bytes",
4652 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4653 .write = mem_cgroup_write,
4654 .read_u64 = mem_cgroup_read_u64,
4655 },
4656 {
4657 .name = "failcnt",
4658 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4659 .write = mem_cgroup_reset,
4660 .read_u64 = mem_cgroup_read_u64,
4661 },
4662 {
4663 .name = "stat",
4664 .seq_show = memcg_stat_show,
4665 },
4666 {
4667 .name = "force_empty",
4668 .write = mem_cgroup_force_empty_write,
4669 },
4670 {
4671 .name = "use_hierarchy",
4672 .write_u64 = mem_cgroup_hierarchy_write,
4673 .read_u64 = mem_cgroup_hierarchy_read,
4674 },
4675 {
4676 .name = "cgroup.event_control", /* XXX: for compat */
4677 .write = memcg_write_event_control,
4678 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4679 },
4680 {
4681 .name = "swappiness",
4682 .read_u64 = mem_cgroup_swappiness_read,
4683 .write_u64 = mem_cgroup_swappiness_write,
4684 },
4685 {
4686 .name = "move_charge_at_immigrate",
4687 .read_u64 = mem_cgroup_move_charge_read,
4688 .write_u64 = mem_cgroup_move_charge_write,
4689 },
4690 {
4691 .name = "oom_control",
4692 .seq_show = mem_cgroup_oom_control_read,
4693 .write_u64 = mem_cgroup_oom_control_write,
4694 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4695 },
4696 {
4697 .name = "pressure_level",
4698 },
4699 #ifdef CONFIG_NUMA
4700 {
4701 .name = "numa_stat",
4702 .seq_show = memcg_numa_stat_show,
4703 },
4704 #endif
4705 {
4706 .name = "kmem.limit_in_bytes",
4707 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4708 .write = mem_cgroup_write,
4709 .read_u64 = mem_cgroup_read_u64,
4710 },
4711 {
4712 .name = "kmem.usage_in_bytes",
4713 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4714 .read_u64 = mem_cgroup_read_u64,
4715 },
4716 {
4717 .name = "kmem.failcnt",
4718 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4719 .write = mem_cgroup_reset,
4720 .read_u64 = mem_cgroup_read_u64,
4721 },
4722 {
4723 .name = "kmem.max_usage_in_bytes",
4724 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4725 .write = mem_cgroup_reset,
4726 .read_u64 = mem_cgroup_read_u64,
4727 },
4728 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4729 {
4730 .name = "kmem.slabinfo",
4731 .seq_start = memcg_slab_start,
4732 .seq_next = memcg_slab_next,
4733 .seq_stop = memcg_slab_stop,
4734 .seq_show = memcg_slab_show,
4735 },
4736 #endif
4737 {
4738 .name = "kmem.tcp.limit_in_bytes",
4739 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4740 .write = mem_cgroup_write,
4741 .read_u64 = mem_cgroup_read_u64,
4742 },
4743 {
4744 .name = "kmem.tcp.usage_in_bytes",
4745 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4746 .read_u64 = mem_cgroup_read_u64,
4747 },
4748 {
4749 .name = "kmem.tcp.failcnt",
4750 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4751 .write = mem_cgroup_reset,
4752 .read_u64 = mem_cgroup_read_u64,
4753 },
4754 {
4755 .name = "kmem.tcp.max_usage_in_bytes",
4756 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4757 .write = mem_cgroup_reset,
4758 .read_u64 = mem_cgroup_read_u64,
4759 },
4760 { }, /* terminate */
4761 };
4762
4763 /*
4764 * Private memory cgroup IDR
4765 *
4766 * Swap-out records and page cache shadow entries need to store memcg
4767 * references in constrained space, so we maintain an ID space that is
4768 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4769 * memory-controlled cgroups to 64k.
4770 *
4771 * However, there usually are many references to the oflline CSS after
4772 * the cgroup has been destroyed, such as page cache or reclaimable
4773 * slab objects, that don't need to hang on to the ID. We want to keep
4774 * those dead CSS from occupying IDs, or we might quickly exhaust the
4775 * relatively small ID space and prevent the creation of new cgroups
4776 * even when there are much fewer than 64k cgroups - possibly none.
4777 *
4778 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4779 * be freed and recycled when it's no longer needed, which is usually
4780 * when the CSS is offlined.
4781 *
4782 * The only exception to that are records of swapped out tmpfs/shmem
4783 * pages that need to be attributed to live ancestors on swapin. But
4784 * those references are manageable from userspace.
4785 */
4786
4787 static DEFINE_IDR(mem_cgroup_idr);
4788
4789 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4790 {
4791 if (memcg->id.id > 0) {
4792 idr_remove(&mem_cgroup_idr, memcg->id.id);
4793 memcg->id.id = 0;
4794 }
4795 }
4796
4797 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4798 {
4799 refcount_add(n, &memcg->id.ref);
4800 }
4801
4802 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4803 {
4804 if (refcount_sub_and_test(n, &memcg->id.ref)) {
4805 mem_cgroup_id_remove(memcg);
4806
4807 /* Memcg ID pins CSS */
4808 css_put(&memcg->css);
4809 }
4810 }
4811
4812 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4813 {
4814 mem_cgroup_id_put_many(memcg, 1);
4815 }
4816
4817 /**
4818 * mem_cgroup_from_id - look up a memcg from a memcg id
4819 * @id: the memcg id to look up
4820 *
4821 * Caller must hold rcu_read_lock().
4822 */
4823 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4824 {
4825 WARN_ON_ONCE(!rcu_read_lock_held());
4826 return idr_find(&mem_cgroup_idr, id);
4827 }
4828
4829 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4830 {
4831 struct mem_cgroup_per_node *pn;
4832 int tmp = node;
4833 /*
4834 * This routine is called against possible nodes.
4835 * But it's BUG to call kmalloc() against offline node.
4836 *
4837 * TODO: this routine can waste much memory for nodes which will
4838 * never be onlined. It's better to use memory hotplug callback
4839 * function.
4840 */
4841 if (!node_state(node, N_NORMAL_MEMORY))
4842 tmp = -1;
4843 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4844 if (!pn)
4845 return 1;
4846
4847 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4848 if (!pn->lruvec_stat_local) {
4849 kfree(pn);
4850 return 1;
4851 }
4852
4853 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4854 if (!pn->lruvec_stat_cpu) {
4855 free_percpu(pn->lruvec_stat_local);
4856 kfree(pn);
4857 return 1;
4858 }
4859
4860 lruvec_init(&pn->lruvec);
4861 pn->usage_in_excess = 0;
4862 pn->on_tree = false;
4863 pn->memcg = memcg;
4864
4865 memcg->nodeinfo[node] = pn;
4866 return 0;
4867 }
4868
4869 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4870 {
4871 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4872
4873 if (!pn)
4874 return;
4875
4876 free_percpu(pn->lruvec_stat_cpu);
4877 free_percpu(pn->lruvec_stat_local);
4878 kfree(pn);
4879 }
4880
4881 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4882 {
4883 int node;
4884
4885 for_each_node(node)
4886 free_mem_cgroup_per_node_info(memcg, node);
4887 free_percpu(memcg->vmstats_percpu);
4888 free_percpu(memcg->vmstats_local);
4889 kfree(memcg);
4890 }
4891
4892 static void mem_cgroup_free(struct mem_cgroup *memcg)
4893 {
4894 memcg_wb_domain_exit(memcg);
4895 /*
4896 * Flush percpu vmstats and vmevents to guarantee the value correctness
4897 * on parent's and all ancestor levels.
4898 */
4899 memcg_flush_percpu_vmstats(memcg);
4900 memcg_flush_percpu_vmevents(memcg);
4901 __mem_cgroup_free(memcg);
4902 }
4903
4904 static struct mem_cgroup *mem_cgroup_alloc(void)
4905 {
4906 struct mem_cgroup *memcg;
4907 unsigned int size;
4908 int node;
4909 int __maybe_unused i;
4910
4911 size = sizeof(struct mem_cgroup);
4912 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4913
4914 memcg = kzalloc(size, GFP_KERNEL);
4915 if (!memcg)
4916 return NULL;
4917
4918 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4919 1, MEM_CGROUP_ID_MAX,
4920 GFP_KERNEL);
4921 if (memcg->id.id < 0)
4922 goto fail;
4923
4924 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4925 if (!memcg->vmstats_local)
4926 goto fail;
4927
4928 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4929 if (!memcg->vmstats_percpu)
4930 goto fail;
4931
4932 for_each_node(node)
4933 if (alloc_mem_cgroup_per_node_info(memcg, node))
4934 goto fail;
4935
4936 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4937 goto fail;
4938
4939 INIT_WORK(&memcg->high_work, high_work_func);
4940 INIT_LIST_HEAD(&memcg->oom_notify);
4941 mutex_init(&memcg->thresholds_lock);
4942 spin_lock_init(&memcg->move_lock);
4943 vmpressure_init(&memcg->vmpressure);
4944 INIT_LIST_HEAD(&memcg->event_list);
4945 spin_lock_init(&memcg->event_list_lock);
4946 memcg->socket_pressure = jiffies;
4947 #ifdef CONFIG_MEMCG_KMEM
4948 memcg->kmemcg_id = -1;
4949 #endif
4950 #ifdef CONFIG_CGROUP_WRITEBACK
4951 INIT_LIST_HEAD(&memcg->cgwb_list);
4952 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
4953 memcg->cgwb_frn[i].done =
4954 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
4955 #endif
4956 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4957 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
4958 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
4959 memcg->deferred_split_queue.split_queue_len = 0;
4960 #endif
4961 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4962 return memcg;
4963 fail:
4964 mem_cgroup_id_remove(memcg);
4965 __mem_cgroup_free(memcg);
4966 return NULL;
4967 }
4968
4969 static struct cgroup_subsys_state * __ref
4970 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4971 {
4972 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4973 struct mem_cgroup *memcg;
4974 long error = -ENOMEM;
4975
4976 memcg = mem_cgroup_alloc();
4977 if (!memcg)
4978 return ERR_PTR(error);
4979
4980 memcg->high = PAGE_COUNTER_MAX;
4981 memcg->soft_limit = PAGE_COUNTER_MAX;
4982 if (parent) {
4983 memcg->swappiness = mem_cgroup_swappiness(parent);
4984 memcg->oom_kill_disable = parent->oom_kill_disable;
4985 }
4986 if (parent && parent->use_hierarchy) {
4987 memcg->use_hierarchy = true;
4988 page_counter_init(&memcg->memory, &parent->memory);
4989 page_counter_init(&memcg->swap, &parent->swap);
4990 page_counter_init(&memcg->memsw, &parent->memsw);
4991 page_counter_init(&memcg->kmem, &parent->kmem);
4992 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4993 } else {
4994 page_counter_init(&memcg->memory, NULL);
4995 page_counter_init(&memcg->swap, NULL);
4996 page_counter_init(&memcg->memsw, NULL);
4997 page_counter_init(&memcg->kmem, NULL);
4998 page_counter_init(&memcg->tcpmem, NULL);
4999 /*
5000 * Deeper hierachy with use_hierarchy == false doesn't make
5001 * much sense so let cgroup subsystem know about this
5002 * unfortunate state in our controller.
5003 */
5004 if (parent != root_mem_cgroup)
5005 memory_cgrp_subsys.broken_hierarchy = true;
5006 }
5007
5008 /* The following stuff does not apply to the root */
5009 if (!parent) {
5010 #ifdef CONFIG_MEMCG_KMEM
5011 INIT_LIST_HEAD(&memcg->kmem_caches);
5012 #endif
5013 root_mem_cgroup = memcg;
5014 return &memcg->css;
5015 }
5016
5017 error = memcg_online_kmem(memcg);
5018 if (error)
5019 goto fail;
5020
5021 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5022 static_branch_inc(&memcg_sockets_enabled_key);
5023
5024 return &memcg->css;
5025 fail:
5026 mem_cgroup_id_remove(memcg);
5027 mem_cgroup_free(memcg);
5028 return ERR_PTR(-ENOMEM);
5029 }
5030
5031 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5032 {
5033 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5034
5035 /*
5036 * A memcg must be visible for memcg_expand_shrinker_maps()
5037 * by the time the maps are allocated. So, we allocate maps
5038 * here, when for_each_mem_cgroup() can't skip it.
5039 */
5040 if (memcg_alloc_shrinker_maps(memcg)) {
5041 mem_cgroup_id_remove(memcg);
5042 return -ENOMEM;
5043 }
5044
5045 /* Online state pins memcg ID, memcg ID pins CSS */
5046 refcount_set(&memcg->id.ref, 1);
5047 css_get(css);
5048 return 0;
5049 }
5050
5051 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5052 {
5053 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5054 struct mem_cgroup_event *event, *tmp;
5055
5056 /*
5057 * Unregister events and notify userspace.
5058 * Notify userspace about cgroup removing only after rmdir of cgroup
5059 * directory to avoid race between userspace and kernelspace.
5060 */
5061 spin_lock(&memcg->event_list_lock);
5062 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5063 list_del_init(&event->list);
5064 schedule_work(&event->remove);
5065 }
5066 spin_unlock(&memcg->event_list_lock);
5067
5068 page_counter_set_min(&memcg->memory, 0);
5069 page_counter_set_low(&memcg->memory, 0);
5070
5071 memcg_offline_kmem(memcg);
5072 wb_memcg_offline(memcg);
5073
5074 drain_all_stock(memcg);
5075
5076 mem_cgroup_id_put(memcg);
5077 }
5078
5079 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5080 {
5081 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5082
5083 invalidate_reclaim_iterators(memcg);
5084 }
5085
5086 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5087 {
5088 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5089 int __maybe_unused i;
5090
5091 #ifdef CONFIG_CGROUP_WRITEBACK
5092 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5093 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5094 #endif
5095 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5096 static_branch_dec(&memcg_sockets_enabled_key);
5097
5098 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5099 static_branch_dec(&memcg_sockets_enabled_key);
5100
5101 vmpressure_cleanup(&memcg->vmpressure);
5102 cancel_work_sync(&memcg->high_work);
5103 mem_cgroup_remove_from_trees(memcg);
5104 memcg_free_shrinker_maps(memcg);
5105 memcg_free_kmem(memcg);
5106 mem_cgroup_free(memcg);
5107 }
5108
5109 /**
5110 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5111 * @css: the target css
5112 *
5113 * Reset the states of the mem_cgroup associated with @css. This is
5114 * invoked when the userland requests disabling on the default hierarchy
5115 * but the memcg is pinned through dependency. The memcg should stop
5116 * applying policies and should revert to the vanilla state as it may be
5117 * made visible again.
5118 *
5119 * The current implementation only resets the essential configurations.
5120 * This needs to be expanded to cover all the visible parts.
5121 */
5122 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5123 {
5124 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5125
5126 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5127 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5128 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5129 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5130 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5131 page_counter_set_min(&memcg->memory, 0);
5132 page_counter_set_low(&memcg->memory, 0);
5133 memcg->high = PAGE_COUNTER_MAX;
5134 memcg->soft_limit = PAGE_COUNTER_MAX;
5135 memcg_wb_domain_size_changed(memcg);
5136 }
5137
5138 #ifdef CONFIG_MMU
5139 /* Handlers for move charge at task migration. */
5140 static int mem_cgroup_do_precharge(unsigned long count)
5141 {
5142 int ret;
5143
5144 /* Try a single bulk charge without reclaim first, kswapd may wake */
5145 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5146 if (!ret) {
5147 mc.precharge += count;
5148 return ret;
5149 }
5150
5151 /* Try charges one by one with reclaim, but do not retry */
5152 while (count--) {
5153 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5154 if (ret)
5155 return ret;
5156 mc.precharge++;
5157 cond_resched();
5158 }
5159 return 0;
5160 }
5161
5162 union mc_target {
5163 struct page *page;
5164 swp_entry_t ent;
5165 };
5166
5167 enum mc_target_type {
5168 MC_TARGET_NONE = 0,
5169 MC_TARGET_PAGE,
5170 MC_TARGET_SWAP,
5171 MC_TARGET_DEVICE,
5172 };
5173
5174 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5175 unsigned long addr, pte_t ptent)
5176 {
5177 struct page *page = vm_normal_page(vma, addr, ptent);
5178
5179 if (!page || !page_mapped(page))
5180 return NULL;
5181 if (PageAnon(page)) {
5182 if (!(mc.flags & MOVE_ANON))
5183 return NULL;
5184 } else {
5185 if (!(mc.flags & MOVE_FILE))
5186 return NULL;
5187 }
5188 if (!get_page_unless_zero(page))
5189 return NULL;
5190
5191 return page;
5192 }
5193
5194 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5195 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5196 pte_t ptent, swp_entry_t *entry)
5197 {
5198 struct page *page = NULL;
5199 swp_entry_t ent = pte_to_swp_entry(ptent);
5200
5201 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5202 return NULL;
5203
5204 /*
5205 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5206 * a device and because they are not accessible by CPU they are store
5207 * as special swap entry in the CPU page table.
5208 */
5209 if (is_device_private_entry(ent)) {
5210 page = device_private_entry_to_page(ent);
5211 /*
5212 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5213 * a refcount of 1 when free (unlike normal page)
5214 */
5215 if (!page_ref_add_unless(page, 1, 1))
5216 return NULL;
5217 return page;
5218 }
5219
5220 /*
5221 * Because lookup_swap_cache() updates some statistics counter,
5222 * we call find_get_page() with swapper_space directly.
5223 */
5224 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5225 if (do_memsw_account())
5226 entry->val = ent.val;
5227
5228 return page;
5229 }
5230 #else
5231 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5232 pte_t ptent, swp_entry_t *entry)
5233 {
5234 return NULL;
5235 }
5236 #endif
5237
5238 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5239 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5240 {
5241 struct page *page = NULL;
5242 struct address_space *mapping;
5243 pgoff_t pgoff;
5244
5245 if (!vma->vm_file) /* anonymous vma */
5246 return NULL;
5247 if (!(mc.flags & MOVE_FILE))
5248 return NULL;
5249
5250 mapping = vma->vm_file->f_mapping;
5251 pgoff = linear_page_index(vma, addr);
5252
5253 /* page is moved even if it's not RSS of this task(page-faulted). */
5254 #ifdef CONFIG_SWAP
5255 /* shmem/tmpfs may report page out on swap: account for that too. */
5256 if (shmem_mapping(mapping)) {
5257 page = find_get_entry(mapping, pgoff);
5258 if (xa_is_value(page)) {
5259 swp_entry_t swp = radix_to_swp_entry(page);
5260 if (do_memsw_account())
5261 *entry = swp;
5262 page = find_get_page(swap_address_space(swp),
5263 swp_offset(swp));
5264 }
5265 } else
5266 page = find_get_page(mapping, pgoff);
5267 #else
5268 page = find_get_page(mapping, pgoff);
5269 #endif
5270 return page;
5271 }
5272
5273 /**
5274 * mem_cgroup_move_account - move account of the page
5275 * @page: the page
5276 * @compound: charge the page as compound or small page
5277 * @from: mem_cgroup which the page is moved from.
5278 * @to: mem_cgroup which the page is moved to. @from != @to.
5279 *
5280 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5281 *
5282 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5283 * from old cgroup.
5284 */
5285 static int mem_cgroup_move_account(struct page *page,
5286 bool compound,
5287 struct mem_cgroup *from,
5288 struct mem_cgroup *to)
5289 {
5290 struct lruvec *from_vec, *to_vec;
5291 struct pglist_data *pgdat;
5292 unsigned long flags;
5293 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5294 int ret;
5295 bool anon;
5296
5297 VM_BUG_ON(from == to);
5298 VM_BUG_ON_PAGE(PageLRU(page), page);
5299 VM_BUG_ON(compound && !PageTransHuge(page));
5300
5301 /*
5302 * Prevent mem_cgroup_migrate() from looking at
5303 * page->mem_cgroup of its source page while we change it.
5304 */
5305 ret = -EBUSY;
5306 if (!trylock_page(page))
5307 goto out;
5308
5309 ret = -EINVAL;
5310 if (page->mem_cgroup != from)
5311 goto out_unlock;
5312
5313 anon = PageAnon(page);
5314
5315 pgdat = page_pgdat(page);
5316 from_vec = mem_cgroup_lruvec(from, pgdat);
5317 to_vec = mem_cgroup_lruvec(to, pgdat);
5318
5319 spin_lock_irqsave(&from->move_lock, flags);
5320
5321 if (!anon && page_mapped(page)) {
5322 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5323 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5324 }
5325
5326 /*
5327 * move_lock grabbed above and caller set from->moving_account, so
5328 * mod_memcg_page_state will serialize updates to PageDirty.
5329 * So mapping should be stable for dirty pages.
5330 */
5331 if (!anon && PageDirty(page)) {
5332 struct address_space *mapping = page_mapping(page);
5333
5334 if (mapping_cap_account_dirty(mapping)) {
5335 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5336 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
5337 }
5338 }
5339
5340 if (PageWriteback(page)) {
5341 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5342 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5343 }
5344
5345 /*
5346 * It is safe to change page->mem_cgroup here because the page
5347 * is referenced, charged, and isolated - we can't race with
5348 * uncharging, charging, migration, or LRU putback.
5349 */
5350
5351 /* caller should have done css_get */
5352 page->mem_cgroup = to;
5353
5354 spin_unlock_irqrestore(&from->move_lock, flags);
5355
5356 ret = 0;
5357
5358 local_irq_disable();
5359 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5360 memcg_check_events(to, page);
5361 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5362 memcg_check_events(from, page);
5363 local_irq_enable();
5364 out_unlock:
5365 unlock_page(page);
5366 out:
5367 return ret;
5368 }
5369
5370 /**
5371 * get_mctgt_type - get target type of moving charge
5372 * @vma: the vma the pte to be checked belongs
5373 * @addr: the address corresponding to the pte to be checked
5374 * @ptent: the pte to be checked
5375 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5376 *
5377 * Returns
5378 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5379 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5380 * move charge. if @target is not NULL, the page is stored in target->page
5381 * with extra refcnt got(Callers should handle it).
5382 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5383 * target for charge migration. if @target is not NULL, the entry is stored
5384 * in target->ent.
5385 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5386 * (so ZONE_DEVICE page and thus not on the lru).
5387 * For now we such page is charge like a regular page would be as for all
5388 * intent and purposes it is just special memory taking the place of a
5389 * regular page.
5390 *
5391 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5392 *
5393 * Called with pte lock held.
5394 */
5395
5396 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5397 unsigned long addr, pte_t ptent, union mc_target *target)
5398 {
5399 struct page *page = NULL;
5400 enum mc_target_type ret = MC_TARGET_NONE;
5401 swp_entry_t ent = { .val = 0 };
5402
5403 if (pte_present(ptent))
5404 page = mc_handle_present_pte(vma, addr, ptent);
5405 else if (is_swap_pte(ptent))
5406 page = mc_handle_swap_pte(vma, ptent, &ent);
5407 else if (pte_none(ptent))
5408 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5409
5410 if (!page && !ent.val)
5411 return ret;
5412 if (page) {
5413 /*
5414 * Do only loose check w/o serialization.
5415 * mem_cgroup_move_account() checks the page is valid or
5416 * not under LRU exclusion.
5417 */
5418 if (page->mem_cgroup == mc.from) {
5419 ret = MC_TARGET_PAGE;
5420 if (is_device_private_page(page))
5421 ret = MC_TARGET_DEVICE;
5422 if (target)
5423 target->page = page;
5424 }
5425 if (!ret || !target)
5426 put_page(page);
5427 }
5428 /*
5429 * There is a swap entry and a page doesn't exist or isn't charged.
5430 * But we cannot move a tail-page in a THP.
5431 */
5432 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5433 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5434 ret = MC_TARGET_SWAP;
5435 if (target)
5436 target->ent = ent;
5437 }
5438 return ret;
5439 }
5440
5441 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5442 /*
5443 * We don't consider PMD mapped swapping or file mapped pages because THP does
5444 * not support them for now.
5445 * Caller should make sure that pmd_trans_huge(pmd) is true.
5446 */
5447 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5448 unsigned long addr, pmd_t pmd, union mc_target *target)
5449 {
5450 struct page *page = NULL;
5451 enum mc_target_type ret = MC_TARGET_NONE;
5452
5453 if (unlikely(is_swap_pmd(pmd))) {
5454 VM_BUG_ON(thp_migration_supported() &&
5455 !is_pmd_migration_entry(pmd));
5456 return ret;
5457 }
5458 page = pmd_page(pmd);
5459 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5460 if (!(mc.flags & MOVE_ANON))
5461 return ret;
5462 if (page->mem_cgroup == mc.from) {
5463 ret = MC_TARGET_PAGE;
5464 if (target) {
5465 get_page(page);
5466 target->page = page;
5467 }
5468 }
5469 return ret;
5470 }
5471 #else
5472 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5473 unsigned long addr, pmd_t pmd, union mc_target *target)
5474 {
5475 return MC_TARGET_NONE;
5476 }
5477 #endif
5478
5479 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5480 unsigned long addr, unsigned long end,
5481 struct mm_walk *walk)
5482 {
5483 struct vm_area_struct *vma = walk->vma;
5484 pte_t *pte;
5485 spinlock_t *ptl;
5486
5487 ptl = pmd_trans_huge_lock(pmd, vma);
5488 if (ptl) {
5489 /*
5490 * Note their can not be MC_TARGET_DEVICE for now as we do not
5491 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5492 * this might change.
5493 */
5494 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5495 mc.precharge += HPAGE_PMD_NR;
5496 spin_unlock(ptl);
5497 return 0;
5498 }
5499
5500 if (pmd_trans_unstable(pmd))
5501 return 0;
5502 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5503 for (; addr != end; pte++, addr += PAGE_SIZE)
5504 if (get_mctgt_type(vma, addr, *pte, NULL))
5505 mc.precharge++; /* increment precharge temporarily */
5506 pte_unmap_unlock(pte - 1, ptl);
5507 cond_resched();
5508
5509 return 0;
5510 }
5511
5512 static const struct mm_walk_ops precharge_walk_ops = {
5513 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5514 };
5515
5516 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5517 {
5518 unsigned long precharge;
5519
5520 down_read(&mm->mmap_sem);
5521 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5522 up_read(&mm->mmap_sem);
5523
5524 precharge = mc.precharge;
5525 mc.precharge = 0;
5526
5527 return precharge;
5528 }
5529
5530 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5531 {
5532 unsigned long precharge = mem_cgroup_count_precharge(mm);
5533
5534 VM_BUG_ON(mc.moving_task);
5535 mc.moving_task = current;
5536 return mem_cgroup_do_precharge(precharge);
5537 }
5538
5539 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5540 static void __mem_cgroup_clear_mc(void)
5541 {
5542 struct mem_cgroup *from = mc.from;
5543 struct mem_cgroup *to = mc.to;
5544
5545 /* we must uncharge all the leftover precharges from mc.to */
5546 if (mc.precharge) {
5547 cancel_charge(mc.to, mc.precharge);
5548 mc.precharge = 0;
5549 }
5550 /*
5551 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5552 * we must uncharge here.
5553 */
5554 if (mc.moved_charge) {
5555 cancel_charge(mc.from, mc.moved_charge);
5556 mc.moved_charge = 0;
5557 }
5558 /* we must fixup refcnts and charges */
5559 if (mc.moved_swap) {
5560 /* uncharge swap account from the old cgroup */
5561 if (!mem_cgroup_is_root(mc.from))
5562 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5563
5564 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5565
5566 /*
5567 * we charged both to->memory and to->memsw, so we
5568 * should uncharge to->memory.
5569 */
5570 if (!mem_cgroup_is_root(mc.to))
5571 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5572
5573 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5574 css_put_many(&mc.to->css, mc.moved_swap);
5575
5576 mc.moved_swap = 0;
5577 }
5578 memcg_oom_recover(from);
5579 memcg_oom_recover(to);
5580 wake_up_all(&mc.waitq);
5581 }
5582
5583 static void mem_cgroup_clear_mc(void)
5584 {
5585 struct mm_struct *mm = mc.mm;
5586
5587 /*
5588 * we must clear moving_task before waking up waiters at the end of
5589 * task migration.
5590 */
5591 mc.moving_task = NULL;
5592 __mem_cgroup_clear_mc();
5593 spin_lock(&mc.lock);
5594 mc.from = NULL;
5595 mc.to = NULL;
5596 mc.mm = NULL;
5597 spin_unlock(&mc.lock);
5598
5599 mmput(mm);
5600 }
5601
5602 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5603 {
5604 struct cgroup_subsys_state *css;
5605 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5606 struct mem_cgroup *from;
5607 struct task_struct *leader, *p;
5608 struct mm_struct *mm;
5609 unsigned long move_flags;
5610 int ret = 0;
5611
5612 /* charge immigration isn't supported on the default hierarchy */
5613 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5614 return 0;
5615
5616 /*
5617 * Multi-process migrations only happen on the default hierarchy
5618 * where charge immigration is not used. Perform charge
5619 * immigration if @tset contains a leader and whine if there are
5620 * multiple.
5621 */
5622 p = NULL;
5623 cgroup_taskset_for_each_leader(leader, css, tset) {
5624 WARN_ON_ONCE(p);
5625 p = leader;
5626 memcg = mem_cgroup_from_css(css);
5627 }
5628 if (!p)
5629 return 0;
5630
5631 /*
5632 * We are now commited to this value whatever it is. Changes in this
5633 * tunable will only affect upcoming migrations, not the current one.
5634 * So we need to save it, and keep it going.
5635 */
5636 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5637 if (!move_flags)
5638 return 0;
5639
5640 from = mem_cgroup_from_task(p);
5641
5642 VM_BUG_ON(from == memcg);
5643
5644 mm = get_task_mm(p);
5645 if (!mm)
5646 return 0;
5647 /* We move charges only when we move a owner of the mm */
5648 if (mm->owner == p) {
5649 VM_BUG_ON(mc.from);
5650 VM_BUG_ON(mc.to);
5651 VM_BUG_ON(mc.precharge);
5652 VM_BUG_ON(mc.moved_charge);
5653 VM_BUG_ON(mc.moved_swap);
5654
5655 spin_lock(&mc.lock);
5656 mc.mm = mm;
5657 mc.from = from;
5658 mc.to = memcg;
5659 mc.flags = move_flags;
5660 spin_unlock(&mc.lock);
5661 /* We set mc.moving_task later */
5662
5663 ret = mem_cgroup_precharge_mc(mm);
5664 if (ret)
5665 mem_cgroup_clear_mc();
5666 } else {
5667 mmput(mm);
5668 }
5669 return ret;
5670 }
5671
5672 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5673 {
5674 if (mc.to)
5675 mem_cgroup_clear_mc();
5676 }
5677
5678 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5679 unsigned long addr, unsigned long end,
5680 struct mm_walk *walk)
5681 {
5682 int ret = 0;
5683 struct vm_area_struct *vma = walk->vma;
5684 pte_t *pte;
5685 spinlock_t *ptl;
5686 enum mc_target_type target_type;
5687 union mc_target target;
5688 struct page *page;
5689
5690 ptl = pmd_trans_huge_lock(pmd, vma);
5691 if (ptl) {
5692 if (mc.precharge < HPAGE_PMD_NR) {
5693 spin_unlock(ptl);
5694 return 0;
5695 }
5696 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5697 if (target_type == MC_TARGET_PAGE) {
5698 page = target.page;
5699 if (!isolate_lru_page(page)) {
5700 if (!mem_cgroup_move_account(page, true,
5701 mc.from, mc.to)) {
5702 mc.precharge -= HPAGE_PMD_NR;
5703 mc.moved_charge += HPAGE_PMD_NR;
5704 }
5705 putback_lru_page(page);
5706 }
5707 put_page(page);
5708 } else if (target_type == MC_TARGET_DEVICE) {
5709 page = target.page;
5710 if (!mem_cgroup_move_account(page, true,
5711 mc.from, mc.to)) {
5712 mc.precharge -= HPAGE_PMD_NR;
5713 mc.moved_charge += HPAGE_PMD_NR;
5714 }
5715 put_page(page);
5716 }
5717 spin_unlock(ptl);
5718 return 0;
5719 }
5720
5721 if (pmd_trans_unstable(pmd))
5722 return 0;
5723 retry:
5724 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5725 for (; addr != end; addr += PAGE_SIZE) {
5726 pte_t ptent = *(pte++);
5727 bool device = false;
5728 swp_entry_t ent;
5729
5730 if (!mc.precharge)
5731 break;
5732
5733 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5734 case MC_TARGET_DEVICE:
5735 device = true;
5736 /* fall through */
5737 case MC_TARGET_PAGE:
5738 page = target.page;
5739 /*
5740 * We can have a part of the split pmd here. Moving it
5741 * can be done but it would be too convoluted so simply
5742 * ignore such a partial THP and keep it in original
5743 * memcg. There should be somebody mapping the head.
5744 */
5745 if (PageTransCompound(page))
5746 goto put;
5747 if (!device && isolate_lru_page(page))
5748 goto put;
5749 if (!mem_cgroup_move_account(page, false,
5750 mc.from, mc.to)) {
5751 mc.precharge--;
5752 /* we uncharge from mc.from later. */
5753 mc.moved_charge++;
5754 }
5755 if (!device)
5756 putback_lru_page(page);
5757 put: /* get_mctgt_type() gets the page */
5758 put_page(page);
5759 break;
5760 case MC_TARGET_SWAP:
5761 ent = target.ent;
5762 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5763 mc.precharge--;
5764 /* we fixup refcnts and charges later. */
5765 mc.moved_swap++;
5766 }
5767 break;
5768 default:
5769 break;
5770 }
5771 }
5772 pte_unmap_unlock(pte - 1, ptl);
5773 cond_resched();
5774
5775 if (addr != end) {
5776 /*
5777 * We have consumed all precharges we got in can_attach().
5778 * We try charge one by one, but don't do any additional
5779 * charges to mc.to if we have failed in charge once in attach()
5780 * phase.
5781 */
5782 ret = mem_cgroup_do_precharge(1);
5783 if (!ret)
5784 goto retry;
5785 }
5786
5787 return ret;
5788 }
5789
5790 static const struct mm_walk_ops charge_walk_ops = {
5791 .pmd_entry = mem_cgroup_move_charge_pte_range,
5792 };
5793
5794 static void mem_cgroup_move_charge(void)
5795 {
5796 lru_add_drain_all();
5797 /*
5798 * Signal lock_page_memcg() to take the memcg's move_lock
5799 * while we're moving its pages to another memcg. Then wait
5800 * for already started RCU-only updates to finish.
5801 */
5802 atomic_inc(&mc.from->moving_account);
5803 synchronize_rcu();
5804 retry:
5805 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5806 /*
5807 * Someone who are holding the mmap_sem might be waiting in
5808 * waitq. So we cancel all extra charges, wake up all waiters,
5809 * and retry. Because we cancel precharges, we might not be able
5810 * to move enough charges, but moving charge is a best-effort
5811 * feature anyway, so it wouldn't be a big problem.
5812 */
5813 __mem_cgroup_clear_mc();
5814 cond_resched();
5815 goto retry;
5816 }
5817 /*
5818 * When we have consumed all precharges and failed in doing
5819 * additional charge, the page walk just aborts.
5820 */
5821 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5822 NULL);
5823
5824 up_read(&mc.mm->mmap_sem);
5825 atomic_dec(&mc.from->moving_account);
5826 }
5827
5828 static void mem_cgroup_move_task(void)
5829 {
5830 if (mc.to) {
5831 mem_cgroup_move_charge();
5832 mem_cgroup_clear_mc();
5833 }
5834 }
5835 #else /* !CONFIG_MMU */
5836 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5837 {
5838 return 0;
5839 }
5840 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5841 {
5842 }
5843 static void mem_cgroup_move_task(void)
5844 {
5845 }
5846 #endif
5847
5848 /*
5849 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5850 * to verify whether we're attached to the default hierarchy on each mount
5851 * attempt.
5852 */
5853 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5854 {
5855 /*
5856 * use_hierarchy is forced on the default hierarchy. cgroup core
5857 * guarantees that @root doesn't have any children, so turning it
5858 * on for the root memcg is enough.
5859 */
5860 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5861 root_mem_cgroup->use_hierarchy = true;
5862 else
5863 root_mem_cgroup->use_hierarchy = false;
5864 }
5865
5866 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5867 {
5868 if (value == PAGE_COUNTER_MAX)
5869 seq_puts(m, "max\n");
5870 else
5871 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5872
5873 return 0;
5874 }
5875
5876 static u64 memory_current_read(struct cgroup_subsys_state *css,
5877 struct cftype *cft)
5878 {
5879 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5880
5881 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5882 }
5883
5884 static int memory_min_show(struct seq_file *m, void *v)
5885 {
5886 return seq_puts_memcg_tunable(m,
5887 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5888 }
5889
5890 static ssize_t memory_min_write(struct kernfs_open_file *of,
5891 char *buf, size_t nbytes, loff_t off)
5892 {
5893 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5894 unsigned long min;
5895 int err;
5896
5897 buf = strstrip(buf);
5898 err = page_counter_memparse(buf, "max", &min);
5899 if (err)
5900 return err;
5901
5902 page_counter_set_min(&memcg->memory, min);
5903
5904 return nbytes;
5905 }
5906
5907 static int memory_low_show(struct seq_file *m, void *v)
5908 {
5909 return seq_puts_memcg_tunable(m,
5910 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5911 }
5912
5913 static ssize_t memory_low_write(struct kernfs_open_file *of,
5914 char *buf, size_t nbytes, loff_t off)
5915 {
5916 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5917 unsigned long low;
5918 int err;
5919
5920 buf = strstrip(buf);
5921 err = page_counter_memparse(buf, "max", &low);
5922 if (err)
5923 return err;
5924
5925 page_counter_set_low(&memcg->memory, low);
5926
5927 return nbytes;
5928 }
5929
5930 static int memory_high_show(struct seq_file *m, void *v)
5931 {
5932 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5933 }
5934
5935 static ssize_t memory_high_write(struct kernfs_open_file *of,
5936 char *buf, size_t nbytes, loff_t off)
5937 {
5938 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5939 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
5940 bool drained = false;
5941 unsigned long high;
5942 int err;
5943
5944 buf = strstrip(buf);
5945 err = page_counter_memparse(buf, "max", &high);
5946 if (err)
5947 return err;
5948
5949 memcg->high = high;
5950
5951 for (;;) {
5952 unsigned long nr_pages = page_counter_read(&memcg->memory);
5953 unsigned long reclaimed;
5954
5955 if (nr_pages <= high)
5956 break;
5957
5958 if (signal_pending(current))
5959 break;
5960
5961 if (!drained) {
5962 drain_all_stock(memcg);
5963 drained = true;
5964 continue;
5965 }
5966
5967 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5968 GFP_KERNEL, true);
5969
5970 if (!reclaimed && !nr_retries--)
5971 break;
5972 }
5973
5974 return nbytes;
5975 }
5976
5977 static int memory_max_show(struct seq_file *m, void *v)
5978 {
5979 return seq_puts_memcg_tunable(m,
5980 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
5981 }
5982
5983 static ssize_t memory_max_write(struct kernfs_open_file *of,
5984 char *buf, size_t nbytes, loff_t off)
5985 {
5986 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5987 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5988 bool drained = false;
5989 unsigned long max;
5990 int err;
5991
5992 buf = strstrip(buf);
5993 err = page_counter_memparse(buf, "max", &max);
5994 if (err)
5995 return err;
5996
5997 xchg(&memcg->memory.max, max);
5998
5999 for (;;) {
6000 unsigned long nr_pages = page_counter_read(&memcg->memory);
6001
6002 if (nr_pages <= max)
6003 break;
6004
6005 if (signal_pending(current))
6006 break;
6007
6008 if (!drained) {
6009 drain_all_stock(memcg);
6010 drained = true;
6011 continue;
6012 }
6013
6014 if (nr_reclaims) {
6015 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6016 GFP_KERNEL, true))
6017 nr_reclaims--;
6018 continue;
6019 }
6020
6021 memcg_memory_event(memcg, MEMCG_OOM);
6022 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6023 break;
6024 }
6025
6026 memcg_wb_domain_size_changed(memcg);
6027 return nbytes;
6028 }
6029
6030 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6031 {
6032 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6033 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6034 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6035 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6036 seq_printf(m, "oom_kill %lu\n",
6037 atomic_long_read(&events[MEMCG_OOM_KILL]));
6038 }
6039
6040 static int memory_events_show(struct seq_file *m, void *v)
6041 {
6042 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6043
6044 __memory_events_show(m, memcg->memory_events);
6045 return 0;
6046 }
6047
6048 static int memory_events_local_show(struct seq_file *m, void *v)
6049 {
6050 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6051
6052 __memory_events_show(m, memcg->memory_events_local);
6053 return 0;
6054 }
6055
6056 static int memory_stat_show(struct seq_file *m, void *v)
6057 {
6058 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6059 char *buf;
6060
6061 buf = memory_stat_format(memcg);
6062 if (!buf)
6063 return -ENOMEM;
6064 seq_puts(m, buf);
6065 kfree(buf);
6066 return 0;
6067 }
6068
6069 static int memory_oom_group_show(struct seq_file *m, void *v)
6070 {
6071 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6072
6073 seq_printf(m, "%d\n", memcg->oom_group);
6074
6075 return 0;
6076 }
6077
6078 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6079 char *buf, size_t nbytes, loff_t off)
6080 {
6081 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6082 int ret, oom_group;
6083
6084 buf = strstrip(buf);
6085 if (!buf)
6086 return -EINVAL;
6087
6088 ret = kstrtoint(buf, 0, &oom_group);
6089 if (ret)
6090 return ret;
6091
6092 if (oom_group != 0 && oom_group != 1)
6093 return -EINVAL;
6094
6095 memcg->oom_group = oom_group;
6096
6097 return nbytes;
6098 }
6099
6100 static struct cftype memory_files[] = {
6101 {
6102 .name = "current",
6103 .flags = CFTYPE_NOT_ON_ROOT,
6104 .read_u64 = memory_current_read,
6105 },
6106 {
6107 .name = "min",
6108 .flags = CFTYPE_NOT_ON_ROOT,
6109 .seq_show = memory_min_show,
6110 .write = memory_min_write,
6111 },
6112 {
6113 .name = "low",
6114 .flags = CFTYPE_NOT_ON_ROOT,
6115 .seq_show = memory_low_show,
6116 .write = memory_low_write,
6117 },
6118 {
6119 .name = "high",
6120 .flags = CFTYPE_NOT_ON_ROOT,
6121 .seq_show = memory_high_show,
6122 .write = memory_high_write,
6123 },
6124 {
6125 .name = "max",
6126 .flags = CFTYPE_NOT_ON_ROOT,
6127 .seq_show = memory_max_show,
6128 .write = memory_max_write,
6129 },
6130 {
6131 .name = "events",
6132 .flags = CFTYPE_NOT_ON_ROOT,
6133 .file_offset = offsetof(struct mem_cgroup, events_file),
6134 .seq_show = memory_events_show,
6135 },
6136 {
6137 .name = "events.local",
6138 .flags = CFTYPE_NOT_ON_ROOT,
6139 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6140 .seq_show = memory_events_local_show,
6141 },
6142 {
6143 .name = "stat",
6144 .flags = CFTYPE_NOT_ON_ROOT,
6145 .seq_show = memory_stat_show,
6146 },
6147 {
6148 .name = "oom.group",
6149 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6150 .seq_show = memory_oom_group_show,
6151 .write = memory_oom_group_write,
6152 },
6153 { } /* terminate */
6154 };
6155
6156 struct cgroup_subsys memory_cgrp_subsys = {
6157 .css_alloc = mem_cgroup_css_alloc,
6158 .css_online = mem_cgroup_css_online,
6159 .css_offline = mem_cgroup_css_offline,
6160 .css_released = mem_cgroup_css_released,
6161 .css_free = mem_cgroup_css_free,
6162 .css_reset = mem_cgroup_css_reset,
6163 .can_attach = mem_cgroup_can_attach,
6164 .cancel_attach = mem_cgroup_cancel_attach,
6165 .post_attach = mem_cgroup_move_task,
6166 .bind = mem_cgroup_bind,
6167 .dfl_cftypes = memory_files,
6168 .legacy_cftypes = mem_cgroup_legacy_files,
6169 .early_init = 0,
6170 };
6171
6172 /**
6173 * mem_cgroup_protected - check if memory consumption is in the normal range
6174 * @root: the top ancestor of the sub-tree being checked
6175 * @memcg: the memory cgroup to check
6176 *
6177 * WARNING: This function is not stateless! It can only be used as part
6178 * of a top-down tree iteration, not for isolated queries.
6179 *
6180 * Returns one of the following:
6181 * MEMCG_PROT_NONE: cgroup memory is not protected
6182 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6183 * an unprotected supply of reclaimable memory from other cgroups.
6184 * MEMCG_PROT_MIN: cgroup memory is protected
6185 *
6186 * @root is exclusive; it is never protected when looked at directly
6187 *
6188 * To provide a proper hierarchical behavior, effective memory.min/low values
6189 * are used. Below is the description of how effective memory.low is calculated.
6190 * Effective memory.min values is calculated in the same way.
6191 *
6192 * Effective memory.low is always equal or less than the original memory.low.
6193 * If there is no memory.low overcommittment (which is always true for
6194 * top-level memory cgroups), these two values are equal.
6195 * Otherwise, it's a part of parent's effective memory.low,
6196 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6197 * memory.low usages, where memory.low usage is the size of actually
6198 * protected memory.
6199 *
6200 * low_usage
6201 * elow = min( memory.low, parent->elow * ------------------ ),
6202 * siblings_low_usage
6203 *
6204 * | memory.current, if memory.current < memory.low
6205 * low_usage = |
6206 * | 0, otherwise.
6207 *
6208 *
6209 * Such definition of the effective memory.low provides the expected
6210 * hierarchical behavior: parent's memory.low value is limiting
6211 * children, unprotected memory is reclaimed first and cgroups,
6212 * which are not using their guarantee do not affect actual memory
6213 * distribution.
6214 *
6215 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6216 *
6217 * A A/memory.low = 2G, A/memory.current = 6G
6218 * //\\
6219 * BC DE B/memory.low = 3G B/memory.current = 2G
6220 * C/memory.low = 1G C/memory.current = 2G
6221 * D/memory.low = 0 D/memory.current = 2G
6222 * E/memory.low = 10G E/memory.current = 0
6223 *
6224 * and the memory pressure is applied, the following memory distribution
6225 * is expected (approximately):
6226 *
6227 * A/memory.current = 2G
6228 *
6229 * B/memory.current = 1.3G
6230 * C/memory.current = 0.6G
6231 * D/memory.current = 0
6232 * E/memory.current = 0
6233 *
6234 * These calculations require constant tracking of the actual low usages
6235 * (see propagate_protected_usage()), as well as recursive calculation of
6236 * effective memory.low values. But as we do call mem_cgroup_protected()
6237 * path for each memory cgroup top-down from the reclaim,
6238 * it's possible to optimize this part, and save calculated elow
6239 * for next usage. This part is intentionally racy, but it's ok,
6240 * as memory.low is a best-effort mechanism.
6241 */
6242 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6243 struct mem_cgroup *memcg)
6244 {
6245 struct mem_cgroup *parent;
6246 unsigned long emin, parent_emin;
6247 unsigned long elow, parent_elow;
6248 unsigned long usage;
6249
6250 if (mem_cgroup_disabled())
6251 return MEMCG_PROT_NONE;
6252
6253 if (!root)
6254 root = root_mem_cgroup;
6255 if (memcg == root)
6256 return MEMCG_PROT_NONE;
6257
6258 usage = page_counter_read(&memcg->memory);
6259 if (!usage)
6260 return MEMCG_PROT_NONE;
6261
6262 emin = memcg->memory.min;
6263 elow = memcg->memory.low;
6264
6265 parent = parent_mem_cgroup(memcg);
6266 /* No parent means a non-hierarchical mode on v1 memcg */
6267 if (!parent)
6268 return MEMCG_PROT_NONE;
6269
6270 if (parent == root)
6271 goto exit;
6272
6273 parent_emin = READ_ONCE(parent->memory.emin);
6274 emin = min(emin, parent_emin);
6275 if (emin && parent_emin) {
6276 unsigned long min_usage, siblings_min_usage;
6277
6278 min_usage = min(usage, memcg->memory.min);
6279 siblings_min_usage = atomic_long_read(
6280 &parent->memory.children_min_usage);
6281
6282 if (min_usage && siblings_min_usage)
6283 emin = min(emin, parent_emin * min_usage /
6284 siblings_min_usage);
6285 }
6286
6287 parent_elow = READ_ONCE(parent->memory.elow);
6288 elow = min(elow, parent_elow);
6289 if (elow && parent_elow) {
6290 unsigned long low_usage, siblings_low_usage;
6291
6292 low_usage = min(usage, memcg->memory.low);
6293 siblings_low_usage = atomic_long_read(
6294 &parent->memory.children_low_usage);
6295
6296 if (low_usage && siblings_low_usage)
6297 elow = min(elow, parent_elow * low_usage /
6298 siblings_low_usage);
6299 }
6300
6301 exit:
6302 memcg->memory.emin = emin;
6303 memcg->memory.elow = elow;
6304
6305 if (usage <= emin)
6306 return MEMCG_PROT_MIN;
6307 else if (usage <= elow)
6308 return MEMCG_PROT_LOW;
6309 else
6310 return MEMCG_PROT_NONE;
6311 }
6312
6313 /**
6314 * mem_cgroup_try_charge - try charging a page
6315 * @page: page to charge
6316 * @mm: mm context of the victim
6317 * @gfp_mask: reclaim mode
6318 * @memcgp: charged memcg return
6319 * @compound: charge the page as compound or small page
6320 *
6321 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6322 * pages according to @gfp_mask if necessary.
6323 *
6324 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6325 * Otherwise, an error code is returned.
6326 *
6327 * After page->mapping has been set up, the caller must finalize the
6328 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6329 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6330 */
6331 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6332 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6333 bool compound)
6334 {
6335 struct mem_cgroup *memcg = NULL;
6336 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6337 int ret = 0;
6338
6339 if (mem_cgroup_disabled())
6340 goto out;
6341
6342 if (PageSwapCache(page)) {
6343 /*
6344 * Every swap fault against a single page tries to charge the
6345 * page, bail as early as possible. shmem_unuse() encounters
6346 * already charged pages, too. The USED bit is protected by
6347 * the page lock, which serializes swap cache removal, which
6348 * in turn serializes uncharging.
6349 */
6350 VM_BUG_ON_PAGE(!PageLocked(page), page);
6351 if (compound_head(page)->mem_cgroup)
6352 goto out;
6353
6354 if (do_swap_account) {
6355 swp_entry_t ent = { .val = page_private(page), };
6356 unsigned short id = lookup_swap_cgroup_id(ent);
6357
6358 rcu_read_lock();
6359 memcg = mem_cgroup_from_id(id);
6360 if (memcg && !css_tryget_online(&memcg->css))
6361 memcg = NULL;
6362 rcu_read_unlock();
6363 }
6364 }
6365
6366 if (!memcg)
6367 memcg = get_mem_cgroup_from_mm(mm);
6368
6369 ret = try_charge(memcg, gfp_mask, nr_pages);
6370
6371 css_put(&memcg->css);
6372 out:
6373 *memcgp = memcg;
6374 return ret;
6375 }
6376
6377 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6378 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6379 bool compound)
6380 {
6381 struct mem_cgroup *memcg;
6382 int ret;
6383
6384 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6385 memcg = *memcgp;
6386 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6387 return ret;
6388 }
6389
6390 /**
6391 * mem_cgroup_commit_charge - commit a page charge
6392 * @page: page to charge
6393 * @memcg: memcg to charge the page to
6394 * @lrucare: page might be on LRU already
6395 * @compound: charge the page as compound or small page
6396 *
6397 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6398 * after page->mapping has been set up. This must happen atomically
6399 * as part of the page instantiation, i.e. under the page table lock
6400 * for anonymous pages, under the page lock for page and swap cache.
6401 *
6402 * In addition, the page must not be on the LRU during the commit, to
6403 * prevent racing with task migration. If it might be, use @lrucare.
6404 *
6405 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6406 */
6407 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6408 bool lrucare, bool compound)
6409 {
6410 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6411
6412 VM_BUG_ON_PAGE(!page->mapping, page);
6413 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6414
6415 if (mem_cgroup_disabled())
6416 return;
6417 /*
6418 * Swap faults will attempt to charge the same page multiple
6419 * times. But reuse_swap_page() might have removed the page
6420 * from swapcache already, so we can't check PageSwapCache().
6421 */
6422 if (!memcg)
6423 return;
6424
6425 commit_charge(page, memcg, lrucare);
6426
6427 local_irq_disable();
6428 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6429 memcg_check_events(memcg, page);
6430 local_irq_enable();
6431
6432 if (do_memsw_account() && PageSwapCache(page)) {
6433 swp_entry_t entry = { .val = page_private(page) };
6434 /*
6435 * The swap entry might not get freed for a long time,
6436 * let's not wait for it. The page already received a
6437 * memory+swap charge, drop the swap entry duplicate.
6438 */
6439 mem_cgroup_uncharge_swap(entry, nr_pages);
6440 }
6441 }
6442
6443 /**
6444 * mem_cgroup_cancel_charge - cancel a page charge
6445 * @page: page to charge
6446 * @memcg: memcg to charge the page to
6447 * @compound: charge the page as compound or small page
6448 *
6449 * Cancel a charge transaction started by mem_cgroup_try_charge().
6450 */
6451 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6452 bool compound)
6453 {
6454 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6455
6456 if (mem_cgroup_disabled())
6457 return;
6458 /*
6459 * Swap faults will attempt to charge the same page multiple
6460 * times. But reuse_swap_page() might have removed the page
6461 * from swapcache already, so we can't check PageSwapCache().
6462 */
6463 if (!memcg)
6464 return;
6465
6466 cancel_charge(memcg, nr_pages);
6467 }
6468
6469 struct uncharge_gather {
6470 struct mem_cgroup *memcg;
6471 unsigned long pgpgout;
6472 unsigned long nr_anon;
6473 unsigned long nr_file;
6474 unsigned long nr_kmem;
6475 unsigned long nr_huge;
6476 unsigned long nr_shmem;
6477 struct page *dummy_page;
6478 };
6479
6480 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6481 {
6482 memset(ug, 0, sizeof(*ug));
6483 }
6484
6485 static void uncharge_batch(const struct uncharge_gather *ug)
6486 {
6487 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6488 unsigned long flags;
6489
6490 if (!mem_cgroup_is_root(ug->memcg)) {
6491 page_counter_uncharge(&ug->memcg->memory, nr_pages);
6492 if (do_memsw_account())
6493 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6494 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6495 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6496 memcg_oom_recover(ug->memcg);
6497 }
6498
6499 local_irq_save(flags);
6500 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6501 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6502 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6503 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6504 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6505 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6506 memcg_check_events(ug->memcg, ug->dummy_page);
6507 local_irq_restore(flags);
6508
6509 if (!mem_cgroup_is_root(ug->memcg))
6510 css_put_many(&ug->memcg->css, nr_pages);
6511 }
6512
6513 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6514 {
6515 VM_BUG_ON_PAGE(PageLRU(page), page);
6516 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6517 !PageHWPoison(page) , page);
6518
6519 if (!page->mem_cgroup)
6520 return;
6521
6522 /*
6523 * Nobody should be changing or seriously looking at
6524 * page->mem_cgroup at this point, we have fully
6525 * exclusive access to the page.
6526 */
6527
6528 if (ug->memcg != page->mem_cgroup) {
6529 if (ug->memcg) {
6530 uncharge_batch(ug);
6531 uncharge_gather_clear(ug);
6532 }
6533 ug->memcg = page->mem_cgroup;
6534 }
6535
6536 if (!PageKmemcg(page)) {
6537 unsigned int nr_pages = 1;
6538
6539 if (PageTransHuge(page)) {
6540 nr_pages = compound_nr(page);
6541 ug->nr_huge += nr_pages;
6542 }
6543 if (PageAnon(page))
6544 ug->nr_anon += nr_pages;
6545 else {
6546 ug->nr_file += nr_pages;
6547 if (PageSwapBacked(page))
6548 ug->nr_shmem += nr_pages;
6549 }
6550 ug->pgpgout++;
6551 } else {
6552 ug->nr_kmem += compound_nr(page);
6553 __ClearPageKmemcg(page);
6554 }
6555
6556 ug->dummy_page = page;
6557 page->mem_cgroup = NULL;
6558 }
6559
6560 static void uncharge_list(struct list_head *page_list)
6561 {
6562 struct uncharge_gather ug;
6563 struct list_head *next;
6564
6565 uncharge_gather_clear(&ug);
6566
6567 /*
6568 * Note that the list can be a single page->lru; hence the
6569 * do-while loop instead of a simple list_for_each_entry().
6570 */
6571 next = page_list->next;
6572 do {
6573 struct page *page;
6574
6575 page = list_entry(next, struct page, lru);
6576 next = page->lru.next;
6577
6578 uncharge_page(page, &ug);
6579 } while (next != page_list);
6580
6581 if (ug.memcg)
6582 uncharge_batch(&ug);
6583 }
6584
6585 /**
6586 * mem_cgroup_uncharge - uncharge a page
6587 * @page: page to uncharge
6588 *
6589 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6590 * mem_cgroup_commit_charge().
6591 */
6592 void mem_cgroup_uncharge(struct page *page)
6593 {
6594 struct uncharge_gather ug;
6595
6596 if (mem_cgroup_disabled())
6597 return;
6598
6599 /* Don't touch page->lru of any random page, pre-check: */
6600 if (!page->mem_cgroup)
6601 return;
6602
6603 uncharge_gather_clear(&ug);
6604 uncharge_page(page, &ug);
6605 uncharge_batch(&ug);
6606 }
6607
6608 /**
6609 * mem_cgroup_uncharge_list - uncharge a list of page
6610 * @page_list: list of pages to uncharge
6611 *
6612 * Uncharge a list of pages previously charged with
6613 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6614 */
6615 void mem_cgroup_uncharge_list(struct list_head *page_list)
6616 {
6617 if (mem_cgroup_disabled())
6618 return;
6619
6620 if (!list_empty(page_list))
6621 uncharge_list(page_list);
6622 }
6623
6624 /**
6625 * mem_cgroup_migrate - charge a page's replacement
6626 * @oldpage: currently circulating page
6627 * @newpage: replacement page
6628 *
6629 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6630 * be uncharged upon free.
6631 *
6632 * Both pages must be locked, @newpage->mapping must be set up.
6633 */
6634 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6635 {
6636 struct mem_cgroup *memcg;
6637 unsigned int nr_pages;
6638 unsigned long flags;
6639
6640 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6641 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6642 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6643 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6644 newpage);
6645
6646 if (mem_cgroup_disabled())
6647 return;
6648
6649 /* Page cache replacement: new page already charged? */
6650 if (newpage->mem_cgroup)
6651 return;
6652
6653 /* Swapcache readahead pages can get replaced before being charged */
6654 memcg = oldpage->mem_cgroup;
6655 if (!memcg)
6656 return;
6657
6658 /* Force-charge the new page. The old one will be freed soon */
6659 nr_pages = hpage_nr_pages(newpage);
6660
6661 page_counter_charge(&memcg->memory, nr_pages);
6662 if (do_memsw_account())
6663 page_counter_charge(&memcg->memsw, nr_pages);
6664 css_get_many(&memcg->css, nr_pages);
6665
6666 commit_charge(newpage, memcg, false);
6667
6668 local_irq_save(flags);
6669 mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage),
6670 nr_pages);
6671 memcg_check_events(memcg, newpage);
6672 local_irq_restore(flags);
6673 }
6674
6675 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6676 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6677
6678 void mem_cgroup_sk_alloc(struct sock *sk)
6679 {
6680 struct mem_cgroup *memcg;
6681
6682 if (!mem_cgroup_sockets_enabled)
6683 return;
6684
6685 /* Do not associate the sock with unrelated interrupted task's memcg. */
6686 if (in_interrupt())
6687 return;
6688
6689 rcu_read_lock();
6690 memcg = mem_cgroup_from_task(current);
6691 if (memcg == root_mem_cgroup)
6692 goto out;
6693 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6694 goto out;
6695 if (css_tryget_online(&memcg->css))
6696 sk->sk_memcg = memcg;
6697 out:
6698 rcu_read_unlock();
6699 }
6700
6701 void mem_cgroup_sk_free(struct sock *sk)
6702 {
6703 if (sk->sk_memcg)
6704 css_put(&sk->sk_memcg->css);
6705 }
6706
6707 /**
6708 * mem_cgroup_charge_skmem - charge socket memory
6709 * @memcg: memcg to charge
6710 * @nr_pages: number of pages to charge
6711 *
6712 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6713 * @memcg's configured limit, %false if the charge had to be forced.
6714 */
6715 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6716 {
6717 gfp_t gfp_mask = GFP_KERNEL;
6718
6719 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6720 struct page_counter *fail;
6721
6722 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6723 memcg->tcpmem_pressure = 0;
6724 return true;
6725 }
6726 page_counter_charge(&memcg->tcpmem, nr_pages);
6727 memcg->tcpmem_pressure = 1;
6728 return false;
6729 }
6730
6731 /* Don't block in the packet receive path */
6732 if (in_softirq())
6733 gfp_mask = GFP_NOWAIT;
6734
6735 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6736
6737 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6738 return true;
6739
6740 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6741 return false;
6742 }
6743
6744 /**
6745 * mem_cgroup_uncharge_skmem - uncharge socket memory
6746 * @memcg: memcg to uncharge
6747 * @nr_pages: number of pages to uncharge
6748 */
6749 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6750 {
6751 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6752 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6753 return;
6754 }
6755
6756 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6757
6758 refill_stock(memcg, nr_pages);
6759 }
6760
6761 static int __init cgroup_memory(char *s)
6762 {
6763 char *token;
6764
6765 while ((token = strsep(&s, ",")) != NULL) {
6766 if (!*token)
6767 continue;
6768 if (!strcmp(token, "nosocket"))
6769 cgroup_memory_nosocket = true;
6770 if (!strcmp(token, "nokmem"))
6771 cgroup_memory_nokmem = true;
6772 }
6773 return 0;
6774 }
6775 __setup("cgroup.memory=", cgroup_memory);
6776
6777 /*
6778 * subsys_initcall() for memory controller.
6779 *
6780 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6781 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6782 * basically everything that doesn't depend on a specific mem_cgroup structure
6783 * should be initialized from here.
6784 */
6785 static int __init mem_cgroup_init(void)
6786 {
6787 int cpu, node;
6788
6789 #ifdef CONFIG_MEMCG_KMEM
6790 /*
6791 * Kmem cache creation is mostly done with the slab_mutex held,
6792 * so use a workqueue with limited concurrency to avoid stalling
6793 * all worker threads in case lots of cgroups are created and
6794 * destroyed simultaneously.
6795 */
6796 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6797 BUG_ON(!memcg_kmem_cache_wq);
6798 #endif
6799
6800 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6801 memcg_hotplug_cpu_dead);
6802
6803 for_each_possible_cpu(cpu)
6804 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6805 drain_local_stock);
6806
6807 for_each_node(node) {
6808 struct mem_cgroup_tree_per_node *rtpn;
6809
6810 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6811 node_online(node) ? node : NUMA_NO_NODE);
6812
6813 rtpn->rb_root = RB_ROOT;
6814 rtpn->rb_rightmost = NULL;
6815 spin_lock_init(&rtpn->lock);
6816 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6817 }
6818
6819 return 0;
6820 }
6821 subsys_initcall(mem_cgroup_init);
6822
6823 #ifdef CONFIG_MEMCG_SWAP
6824 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6825 {
6826 while (!refcount_inc_not_zero(&memcg->id.ref)) {
6827 /*
6828 * The root cgroup cannot be destroyed, so it's refcount must
6829 * always be >= 1.
6830 */
6831 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6832 VM_BUG_ON(1);
6833 break;
6834 }
6835 memcg = parent_mem_cgroup(memcg);
6836 if (!memcg)
6837 memcg = root_mem_cgroup;
6838 }
6839 return memcg;
6840 }
6841
6842 /**
6843 * mem_cgroup_swapout - transfer a memsw charge to swap
6844 * @page: page whose memsw charge to transfer
6845 * @entry: swap entry to move the charge to
6846 *
6847 * Transfer the memsw charge of @page to @entry.
6848 */
6849 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6850 {
6851 struct mem_cgroup *memcg, *swap_memcg;
6852 unsigned int nr_entries;
6853 unsigned short oldid;
6854
6855 VM_BUG_ON_PAGE(PageLRU(page), page);
6856 VM_BUG_ON_PAGE(page_count(page), page);
6857
6858 if (!do_memsw_account())
6859 return;
6860
6861 memcg = page->mem_cgroup;
6862
6863 /* Readahead page, never charged */
6864 if (!memcg)
6865 return;
6866
6867 /*
6868 * In case the memcg owning these pages has been offlined and doesn't
6869 * have an ID allocated to it anymore, charge the closest online
6870 * ancestor for the swap instead and transfer the memory+swap charge.
6871 */
6872 swap_memcg = mem_cgroup_id_get_online(memcg);
6873 nr_entries = hpage_nr_pages(page);
6874 /* Get references for the tail pages, too */
6875 if (nr_entries > 1)
6876 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6877 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6878 nr_entries);
6879 VM_BUG_ON_PAGE(oldid, page);
6880 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6881
6882 page->mem_cgroup = NULL;
6883
6884 if (!mem_cgroup_is_root(memcg))
6885 page_counter_uncharge(&memcg->memory, nr_entries);
6886
6887 if (memcg != swap_memcg) {
6888 if (!mem_cgroup_is_root(swap_memcg))
6889 page_counter_charge(&swap_memcg->memsw, nr_entries);
6890 page_counter_uncharge(&memcg->memsw, nr_entries);
6891 }
6892
6893 /*
6894 * Interrupts should be disabled here because the caller holds the
6895 * i_pages lock which is taken with interrupts-off. It is
6896 * important here to have the interrupts disabled because it is the
6897 * only synchronisation we have for updating the per-CPU variables.
6898 */
6899 VM_BUG_ON(!irqs_disabled());
6900 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6901 -nr_entries);
6902 memcg_check_events(memcg, page);
6903
6904 if (!mem_cgroup_is_root(memcg))
6905 css_put_many(&memcg->css, nr_entries);
6906 }
6907
6908 /**
6909 * mem_cgroup_try_charge_swap - try charging swap space for a page
6910 * @page: page being added to swap
6911 * @entry: swap entry to charge
6912 *
6913 * Try to charge @page's memcg for the swap space at @entry.
6914 *
6915 * Returns 0 on success, -ENOMEM on failure.
6916 */
6917 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6918 {
6919 unsigned int nr_pages = hpage_nr_pages(page);
6920 struct page_counter *counter;
6921 struct mem_cgroup *memcg;
6922 unsigned short oldid;
6923
6924 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6925 return 0;
6926
6927 memcg = page->mem_cgroup;
6928
6929 /* Readahead page, never charged */
6930 if (!memcg)
6931 return 0;
6932
6933 if (!entry.val) {
6934 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6935 return 0;
6936 }
6937
6938 memcg = mem_cgroup_id_get_online(memcg);
6939
6940 if (!mem_cgroup_is_root(memcg) &&
6941 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6942 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6943 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6944 mem_cgroup_id_put(memcg);
6945 return -ENOMEM;
6946 }
6947
6948 /* Get references for the tail pages, too */
6949 if (nr_pages > 1)
6950 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6951 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6952 VM_BUG_ON_PAGE(oldid, page);
6953 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6954
6955 return 0;
6956 }
6957
6958 /**
6959 * mem_cgroup_uncharge_swap - uncharge swap space
6960 * @entry: swap entry to uncharge
6961 * @nr_pages: the amount of swap space to uncharge
6962 */
6963 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6964 {
6965 struct mem_cgroup *memcg;
6966 unsigned short id;
6967
6968 if (!do_swap_account)
6969 return;
6970
6971 id = swap_cgroup_record(entry, 0, nr_pages);
6972 rcu_read_lock();
6973 memcg = mem_cgroup_from_id(id);
6974 if (memcg) {
6975 if (!mem_cgroup_is_root(memcg)) {
6976 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6977 page_counter_uncharge(&memcg->swap, nr_pages);
6978 else
6979 page_counter_uncharge(&memcg->memsw, nr_pages);
6980 }
6981 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6982 mem_cgroup_id_put_many(memcg, nr_pages);
6983 }
6984 rcu_read_unlock();
6985 }
6986
6987 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6988 {
6989 long nr_swap_pages = get_nr_swap_pages();
6990
6991 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6992 return nr_swap_pages;
6993 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6994 nr_swap_pages = min_t(long, nr_swap_pages,
6995 READ_ONCE(memcg->swap.max) -
6996 page_counter_read(&memcg->swap));
6997 return nr_swap_pages;
6998 }
6999
7000 bool mem_cgroup_swap_full(struct page *page)
7001 {
7002 struct mem_cgroup *memcg;
7003
7004 VM_BUG_ON_PAGE(!PageLocked(page), page);
7005
7006 if (vm_swap_full())
7007 return true;
7008 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7009 return false;
7010
7011 memcg = page->mem_cgroup;
7012 if (!memcg)
7013 return false;
7014
7015 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7016 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
7017 return true;
7018
7019 return false;
7020 }
7021
7022 /* for remember boot option*/
7023 #ifdef CONFIG_MEMCG_SWAP_ENABLED
7024 static int really_do_swap_account __initdata = 1;
7025 #else
7026 static int really_do_swap_account __initdata;
7027 #endif
7028
7029 static int __init enable_swap_account(char *s)
7030 {
7031 if (!strcmp(s, "1"))
7032 really_do_swap_account = 1;
7033 else if (!strcmp(s, "0"))
7034 really_do_swap_account = 0;
7035 return 1;
7036 }
7037 __setup("swapaccount=", enable_swap_account);
7038
7039 static u64 swap_current_read(struct cgroup_subsys_state *css,
7040 struct cftype *cft)
7041 {
7042 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7043
7044 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7045 }
7046
7047 static int swap_max_show(struct seq_file *m, void *v)
7048 {
7049 return seq_puts_memcg_tunable(m,
7050 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7051 }
7052
7053 static ssize_t swap_max_write(struct kernfs_open_file *of,
7054 char *buf, size_t nbytes, loff_t off)
7055 {
7056 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7057 unsigned long max;
7058 int err;
7059
7060 buf = strstrip(buf);
7061 err = page_counter_memparse(buf, "max", &max);
7062 if (err)
7063 return err;
7064
7065 xchg(&memcg->swap.max, max);
7066
7067 return nbytes;
7068 }
7069
7070 static int swap_events_show(struct seq_file *m, void *v)
7071 {
7072 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7073
7074 seq_printf(m, "max %lu\n",
7075 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7076 seq_printf(m, "fail %lu\n",
7077 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7078
7079 return 0;
7080 }
7081
7082 static struct cftype swap_files[] = {
7083 {
7084 .name = "swap.current",
7085 .flags = CFTYPE_NOT_ON_ROOT,
7086 .read_u64 = swap_current_read,
7087 },
7088 {
7089 .name = "swap.max",
7090 .flags = CFTYPE_NOT_ON_ROOT,
7091 .seq_show = swap_max_show,
7092 .write = swap_max_write,
7093 },
7094 {
7095 .name = "swap.events",
7096 .flags = CFTYPE_NOT_ON_ROOT,
7097 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7098 .seq_show = swap_events_show,
7099 },
7100 { } /* terminate */
7101 };
7102
7103 static struct cftype memsw_cgroup_files[] = {
7104 {
7105 .name = "memsw.usage_in_bytes",
7106 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7107 .read_u64 = mem_cgroup_read_u64,
7108 },
7109 {
7110 .name = "memsw.max_usage_in_bytes",
7111 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7112 .write = mem_cgroup_reset,
7113 .read_u64 = mem_cgroup_read_u64,
7114 },
7115 {
7116 .name = "memsw.limit_in_bytes",
7117 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7118 .write = mem_cgroup_write,
7119 .read_u64 = mem_cgroup_read_u64,
7120 },
7121 {
7122 .name = "memsw.failcnt",
7123 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7124 .write = mem_cgroup_reset,
7125 .read_u64 = mem_cgroup_read_u64,
7126 },
7127 { }, /* terminate */
7128 };
7129
7130 static int __init mem_cgroup_swap_init(void)
7131 {
7132 if (!mem_cgroup_disabled() && really_do_swap_account) {
7133 do_swap_account = 1;
7134 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7135 swap_files));
7136 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7137 memsw_cgroup_files));
7138 }
7139 return 0;
7140 }
7141 subsys_initcall(mem_cgroup_swap_init);
7142
7143 #endif /* CONFIG_MEMCG_SWAP */