]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memcontrol.c
Merge tag 'nfs-for-4.13-2' of git://git.linux-nfs.org/projects/anna/linux-nfs
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
58 #include <linux/fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
68 #include "internal.h"
69 #include <net/sock.h>
70 #include <net/ip.h>
71 #include "slab.h"
72
73 #include <linux/uaccess.h>
74
75 #include <trace/events/vmscan.h>
76
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81
82 #define MEM_CGROUP_RECLAIM_RETRIES 5
83
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket;
86
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem;
89
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly;
93 #else
94 #define do_swap_account 0
95 #endif
96
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
99 {
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 }
102
103 static const char *const mem_cgroup_lru_names[] = {
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109 };
110
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET 1024
114
115 /*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
120 struct mem_cgroup_tree_per_node {
121 struct rb_root rb_root;
122 spinlock_t lock;
123 };
124
125 struct mem_cgroup_tree {
126 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
127 };
128
129 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
130
131 /* for OOM */
132 struct mem_cgroup_eventfd_list {
133 struct list_head list;
134 struct eventfd_ctx *eventfd;
135 };
136
137 /*
138 * cgroup_event represents events which userspace want to receive.
139 */
140 struct mem_cgroup_event {
141 /*
142 * memcg which the event belongs to.
143 */
144 struct mem_cgroup *memcg;
145 /*
146 * eventfd to signal userspace about the event.
147 */
148 struct eventfd_ctx *eventfd;
149 /*
150 * Each of these stored in a list by the cgroup.
151 */
152 struct list_head list;
153 /*
154 * register_event() callback will be used to add new userspace
155 * waiter for changes related to this event. Use eventfd_signal()
156 * on eventfd to send notification to userspace.
157 */
158 int (*register_event)(struct mem_cgroup *memcg,
159 struct eventfd_ctx *eventfd, const char *args);
160 /*
161 * unregister_event() callback will be called when userspace closes
162 * the eventfd or on cgroup removing. This callback must be set,
163 * if you want provide notification functionality.
164 */
165 void (*unregister_event)(struct mem_cgroup *memcg,
166 struct eventfd_ctx *eventfd);
167 /*
168 * All fields below needed to unregister event when
169 * userspace closes eventfd.
170 */
171 poll_table pt;
172 wait_queue_head_t *wqh;
173 wait_queue_entry_t wait;
174 struct work_struct remove;
175 };
176
177 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
178 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
179
180 /* Stuffs for move charges at task migration. */
181 /*
182 * Types of charges to be moved.
183 */
184 #define MOVE_ANON 0x1U
185 #define MOVE_FILE 0x2U
186 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
187
188 /* "mc" and its members are protected by cgroup_mutex */
189 static struct move_charge_struct {
190 spinlock_t lock; /* for from, to */
191 struct mm_struct *mm;
192 struct mem_cgroup *from;
193 struct mem_cgroup *to;
194 unsigned long flags;
195 unsigned long precharge;
196 unsigned long moved_charge;
197 unsigned long moved_swap;
198 struct task_struct *moving_task; /* a task moving charges */
199 wait_queue_head_t waitq; /* a waitq for other context */
200 } mc = {
201 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
202 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
203 };
204
205 /*
206 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
207 * limit reclaim to prevent infinite loops, if they ever occur.
208 */
209 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
210 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
211
212 enum charge_type {
213 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
214 MEM_CGROUP_CHARGE_TYPE_ANON,
215 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
216 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
217 NR_CHARGE_TYPE,
218 };
219
220 /* for encoding cft->private value on file */
221 enum res_type {
222 _MEM,
223 _MEMSWAP,
224 _OOM_TYPE,
225 _KMEM,
226 _TCP,
227 };
228
229 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
230 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
231 #define MEMFILE_ATTR(val) ((val) & 0xffff)
232 /* Used for OOM nofiier */
233 #define OOM_CONTROL (0)
234
235 /* Some nice accessors for the vmpressure. */
236 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
237 {
238 if (!memcg)
239 memcg = root_mem_cgroup;
240 return &memcg->vmpressure;
241 }
242
243 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
244 {
245 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
246 }
247
248 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
249 {
250 return (memcg == root_mem_cgroup);
251 }
252
253 #ifndef CONFIG_SLOB
254 /*
255 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
256 * The main reason for not using cgroup id for this:
257 * this works better in sparse environments, where we have a lot of memcgs,
258 * but only a few kmem-limited. Or also, if we have, for instance, 200
259 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
260 * 200 entry array for that.
261 *
262 * The current size of the caches array is stored in memcg_nr_cache_ids. It
263 * will double each time we have to increase it.
264 */
265 static DEFINE_IDA(memcg_cache_ida);
266 int memcg_nr_cache_ids;
267
268 /* Protects memcg_nr_cache_ids */
269 static DECLARE_RWSEM(memcg_cache_ids_sem);
270
271 void memcg_get_cache_ids(void)
272 {
273 down_read(&memcg_cache_ids_sem);
274 }
275
276 void memcg_put_cache_ids(void)
277 {
278 up_read(&memcg_cache_ids_sem);
279 }
280
281 /*
282 * MIN_SIZE is different than 1, because we would like to avoid going through
283 * the alloc/free process all the time. In a small machine, 4 kmem-limited
284 * cgroups is a reasonable guess. In the future, it could be a parameter or
285 * tunable, but that is strictly not necessary.
286 *
287 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
288 * this constant directly from cgroup, but it is understandable that this is
289 * better kept as an internal representation in cgroup.c. In any case, the
290 * cgrp_id space is not getting any smaller, and we don't have to necessarily
291 * increase ours as well if it increases.
292 */
293 #define MEMCG_CACHES_MIN_SIZE 4
294 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
295
296 /*
297 * A lot of the calls to the cache allocation functions are expected to be
298 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
299 * conditional to this static branch, we'll have to allow modules that does
300 * kmem_cache_alloc and the such to see this symbol as well
301 */
302 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
303 EXPORT_SYMBOL(memcg_kmem_enabled_key);
304
305 struct workqueue_struct *memcg_kmem_cache_wq;
306
307 #endif /* !CONFIG_SLOB */
308
309 /**
310 * mem_cgroup_css_from_page - css of the memcg associated with a page
311 * @page: page of interest
312 *
313 * If memcg is bound to the default hierarchy, css of the memcg associated
314 * with @page is returned. The returned css remains associated with @page
315 * until it is released.
316 *
317 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
318 * is returned.
319 */
320 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
321 {
322 struct mem_cgroup *memcg;
323
324 memcg = page->mem_cgroup;
325
326 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
327 memcg = root_mem_cgroup;
328
329 return &memcg->css;
330 }
331
332 /**
333 * page_cgroup_ino - return inode number of the memcg a page is charged to
334 * @page: the page
335 *
336 * Look up the closest online ancestor of the memory cgroup @page is charged to
337 * and return its inode number or 0 if @page is not charged to any cgroup. It
338 * is safe to call this function without holding a reference to @page.
339 *
340 * Note, this function is inherently racy, because there is nothing to prevent
341 * the cgroup inode from getting torn down and potentially reallocated a moment
342 * after page_cgroup_ino() returns, so it only should be used by callers that
343 * do not care (such as procfs interfaces).
344 */
345 ino_t page_cgroup_ino(struct page *page)
346 {
347 struct mem_cgroup *memcg;
348 unsigned long ino = 0;
349
350 rcu_read_lock();
351 memcg = READ_ONCE(page->mem_cgroup);
352 while (memcg && !(memcg->css.flags & CSS_ONLINE))
353 memcg = parent_mem_cgroup(memcg);
354 if (memcg)
355 ino = cgroup_ino(memcg->css.cgroup);
356 rcu_read_unlock();
357 return ino;
358 }
359
360 static struct mem_cgroup_per_node *
361 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
362 {
363 int nid = page_to_nid(page);
364
365 return memcg->nodeinfo[nid];
366 }
367
368 static struct mem_cgroup_tree_per_node *
369 soft_limit_tree_node(int nid)
370 {
371 return soft_limit_tree.rb_tree_per_node[nid];
372 }
373
374 static struct mem_cgroup_tree_per_node *
375 soft_limit_tree_from_page(struct page *page)
376 {
377 int nid = page_to_nid(page);
378
379 return soft_limit_tree.rb_tree_per_node[nid];
380 }
381
382 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
383 struct mem_cgroup_tree_per_node *mctz,
384 unsigned long new_usage_in_excess)
385 {
386 struct rb_node **p = &mctz->rb_root.rb_node;
387 struct rb_node *parent = NULL;
388 struct mem_cgroup_per_node *mz_node;
389
390 if (mz->on_tree)
391 return;
392
393 mz->usage_in_excess = new_usage_in_excess;
394 if (!mz->usage_in_excess)
395 return;
396 while (*p) {
397 parent = *p;
398 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
399 tree_node);
400 if (mz->usage_in_excess < mz_node->usage_in_excess)
401 p = &(*p)->rb_left;
402 /*
403 * We can't avoid mem cgroups that are over their soft
404 * limit by the same amount
405 */
406 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
407 p = &(*p)->rb_right;
408 }
409 rb_link_node(&mz->tree_node, parent, p);
410 rb_insert_color(&mz->tree_node, &mctz->rb_root);
411 mz->on_tree = true;
412 }
413
414 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
415 struct mem_cgroup_tree_per_node *mctz)
416 {
417 if (!mz->on_tree)
418 return;
419 rb_erase(&mz->tree_node, &mctz->rb_root);
420 mz->on_tree = false;
421 }
422
423 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
424 struct mem_cgroup_tree_per_node *mctz)
425 {
426 unsigned long flags;
427
428 spin_lock_irqsave(&mctz->lock, flags);
429 __mem_cgroup_remove_exceeded(mz, mctz);
430 spin_unlock_irqrestore(&mctz->lock, flags);
431 }
432
433 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
434 {
435 unsigned long nr_pages = page_counter_read(&memcg->memory);
436 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
437 unsigned long excess = 0;
438
439 if (nr_pages > soft_limit)
440 excess = nr_pages - soft_limit;
441
442 return excess;
443 }
444
445 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
446 {
447 unsigned long excess;
448 struct mem_cgroup_per_node *mz;
449 struct mem_cgroup_tree_per_node *mctz;
450
451 mctz = soft_limit_tree_from_page(page);
452 if (!mctz)
453 return;
454 /*
455 * Necessary to update all ancestors when hierarchy is used.
456 * because their event counter is not touched.
457 */
458 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
459 mz = mem_cgroup_page_nodeinfo(memcg, page);
460 excess = soft_limit_excess(memcg);
461 /*
462 * We have to update the tree if mz is on RB-tree or
463 * mem is over its softlimit.
464 */
465 if (excess || mz->on_tree) {
466 unsigned long flags;
467
468 spin_lock_irqsave(&mctz->lock, flags);
469 /* if on-tree, remove it */
470 if (mz->on_tree)
471 __mem_cgroup_remove_exceeded(mz, mctz);
472 /*
473 * Insert again. mz->usage_in_excess will be updated.
474 * If excess is 0, no tree ops.
475 */
476 __mem_cgroup_insert_exceeded(mz, mctz, excess);
477 spin_unlock_irqrestore(&mctz->lock, flags);
478 }
479 }
480 }
481
482 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
483 {
484 struct mem_cgroup_tree_per_node *mctz;
485 struct mem_cgroup_per_node *mz;
486 int nid;
487
488 for_each_node(nid) {
489 mz = mem_cgroup_nodeinfo(memcg, nid);
490 mctz = soft_limit_tree_node(nid);
491 if (mctz)
492 mem_cgroup_remove_exceeded(mz, mctz);
493 }
494 }
495
496 static struct mem_cgroup_per_node *
497 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
498 {
499 struct rb_node *rightmost = NULL;
500 struct mem_cgroup_per_node *mz;
501
502 retry:
503 mz = NULL;
504 rightmost = rb_last(&mctz->rb_root);
505 if (!rightmost)
506 goto done; /* Nothing to reclaim from */
507
508 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
509 /*
510 * Remove the node now but someone else can add it back,
511 * we will to add it back at the end of reclaim to its correct
512 * position in the tree.
513 */
514 __mem_cgroup_remove_exceeded(mz, mctz);
515 if (!soft_limit_excess(mz->memcg) ||
516 !css_tryget_online(&mz->memcg->css))
517 goto retry;
518 done:
519 return mz;
520 }
521
522 static struct mem_cgroup_per_node *
523 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
524 {
525 struct mem_cgroup_per_node *mz;
526
527 spin_lock_irq(&mctz->lock);
528 mz = __mem_cgroup_largest_soft_limit_node(mctz);
529 spin_unlock_irq(&mctz->lock);
530 return mz;
531 }
532
533 /*
534 * Return page count for single (non recursive) @memcg.
535 *
536 * Implementation Note: reading percpu statistics for memcg.
537 *
538 * Both of vmstat[] and percpu_counter has threshold and do periodic
539 * synchronization to implement "quick" read. There are trade-off between
540 * reading cost and precision of value. Then, we may have a chance to implement
541 * a periodic synchronization of counter in memcg's counter.
542 *
543 * But this _read() function is used for user interface now. The user accounts
544 * memory usage by memory cgroup and he _always_ requires exact value because
545 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
546 * have to visit all online cpus and make sum. So, for now, unnecessary
547 * synchronization is not implemented. (just implemented for cpu hotplug)
548 *
549 * If there are kernel internal actions which can make use of some not-exact
550 * value, and reading all cpu value can be performance bottleneck in some
551 * common workload, threshold and synchronization as vmstat[] should be
552 * implemented.
553 */
554
555 static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
556 enum memcg_event_item event)
557 {
558 unsigned long val = 0;
559 int cpu;
560
561 for_each_possible_cpu(cpu)
562 val += per_cpu(memcg->stat->events[event], cpu);
563 return val;
564 }
565
566 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
567 struct page *page,
568 bool compound, int nr_pages)
569 {
570 /*
571 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
572 * counted as CACHE even if it's on ANON LRU.
573 */
574 if (PageAnon(page))
575 __this_cpu_add(memcg->stat->count[MEMCG_RSS], nr_pages);
576 else {
577 __this_cpu_add(memcg->stat->count[MEMCG_CACHE], nr_pages);
578 if (PageSwapBacked(page))
579 __this_cpu_add(memcg->stat->count[NR_SHMEM], nr_pages);
580 }
581
582 if (compound) {
583 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
584 __this_cpu_add(memcg->stat->count[MEMCG_RSS_HUGE], nr_pages);
585 }
586
587 /* pagein of a big page is an event. So, ignore page size */
588 if (nr_pages > 0)
589 __this_cpu_inc(memcg->stat->events[PGPGIN]);
590 else {
591 __this_cpu_inc(memcg->stat->events[PGPGOUT]);
592 nr_pages = -nr_pages; /* for event */
593 }
594
595 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
596 }
597
598 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
599 int nid, unsigned int lru_mask)
600 {
601 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
602 unsigned long nr = 0;
603 enum lru_list lru;
604
605 VM_BUG_ON((unsigned)nid >= nr_node_ids);
606
607 for_each_lru(lru) {
608 if (!(BIT(lru) & lru_mask))
609 continue;
610 nr += mem_cgroup_get_lru_size(lruvec, lru);
611 }
612 return nr;
613 }
614
615 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
616 unsigned int lru_mask)
617 {
618 unsigned long nr = 0;
619 int nid;
620
621 for_each_node_state(nid, N_MEMORY)
622 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
623 return nr;
624 }
625
626 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
627 enum mem_cgroup_events_target target)
628 {
629 unsigned long val, next;
630
631 val = __this_cpu_read(memcg->stat->nr_page_events);
632 next = __this_cpu_read(memcg->stat->targets[target]);
633 /* from time_after() in jiffies.h */
634 if ((long)(next - val) < 0) {
635 switch (target) {
636 case MEM_CGROUP_TARGET_THRESH:
637 next = val + THRESHOLDS_EVENTS_TARGET;
638 break;
639 case MEM_CGROUP_TARGET_SOFTLIMIT:
640 next = val + SOFTLIMIT_EVENTS_TARGET;
641 break;
642 case MEM_CGROUP_TARGET_NUMAINFO:
643 next = val + NUMAINFO_EVENTS_TARGET;
644 break;
645 default:
646 break;
647 }
648 __this_cpu_write(memcg->stat->targets[target], next);
649 return true;
650 }
651 return false;
652 }
653
654 /*
655 * Check events in order.
656 *
657 */
658 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
659 {
660 /* threshold event is triggered in finer grain than soft limit */
661 if (unlikely(mem_cgroup_event_ratelimit(memcg,
662 MEM_CGROUP_TARGET_THRESH))) {
663 bool do_softlimit;
664 bool do_numainfo __maybe_unused;
665
666 do_softlimit = mem_cgroup_event_ratelimit(memcg,
667 MEM_CGROUP_TARGET_SOFTLIMIT);
668 #if MAX_NUMNODES > 1
669 do_numainfo = mem_cgroup_event_ratelimit(memcg,
670 MEM_CGROUP_TARGET_NUMAINFO);
671 #endif
672 mem_cgroup_threshold(memcg);
673 if (unlikely(do_softlimit))
674 mem_cgroup_update_tree(memcg, page);
675 #if MAX_NUMNODES > 1
676 if (unlikely(do_numainfo))
677 atomic_inc(&memcg->numainfo_events);
678 #endif
679 }
680 }
681
682 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
683 {
684 /*
685 * mm_update_next_owner() may clear mm->owner to NULL
686 * if it races with swapoff, page migration, etc.
687 * So this can be called with p == NULL.
688 */
689 if (unlikely(!p))
690 return NULL;
691
692 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
693 }
694 EXPORT_SYMBOL(mem_cgroup_from_task);
695
696 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
697 {
698 struct mem_cgroup *memcg = NULL;
699
700 rcu_read_lock();
701 do {
702 /*
703 * Page cache insertions can happen withou an
704 * actual mm context, e.g. during disk probing
705 * on boot, loopback IO, acct() writes etc.
706 */
707 if (unlikely(!mm))
708 memcg = root_mem_cgroup;
709 else {
710 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
711 if (unlikely(!memcg))
712 memcg = root_mem_cgroup;
713 }
714 } while (!css_tryget_online(&memcg->css));
715 rcu_read_unlock();
716 return memcg;
717 }
718
719 /**
720 * mem_cgroup_iter - iterate over memory cgroup hierarchy
721 * @root: hierarchy root
722 * @prev: previously returned memcg, NULL on first invocation
723 * @reclaim: cookie for shared reclaim walks, NULL for full walks
724 *
725 * Returns references to children of the hierarchy below @root, or
726 * @root itself, or %NULL after a full round-trip.
727 *
728 * Caller must pass the return value in @prev on subsequent
729 * invocations for reference counting, or use mem_cgroup_iter_break()
730 * to cancel a hierarchy walk before the round-trip is complete.
731 *
732 * Reclaimers can specify a zone and a priority level in @reclaim to
733 * divide up the memcgs in the hierarchy among all concurrent
734 * reclaimers operating on the same zone and priority.
735 */
736 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
737 struct mem_cgroup *prev,
738 struct mem_cgroup_reclaim_cookie *reclaim)
739 {
740 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
741 struct cgroup_subsys_state *css = NULL;
742 struct mem_cgroup *memcg = NULL;
743 struct mem_cgroup *pos = NULL;
744
745 if (mem_cgroup_disabled())
746 return NULL;
747
748 if (!root)
749 root = root_mem_cgroup;
750
751 if (prev && !reclaim)
752 pos = prev;
753
754 if (!root->use_hierarchy && root != root_mem_cgroup) {
755 if (prev)
756 goto out;
757 return root;
758 }
759
760 rcu_read_lock();
761
762 if (reclaim) {
763 struct mem_cgroup_per_node *mz;
764
765 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
766 iter = &mz->iter[reclaim->priority];
767
768 if (prev && reclaim->generation != iter->generation)
769 goto out_unlock;
770
771 while (1) {
772 pos = READ_ONCE(iter->position);
773 if (!pos || css_tryget(&pos->css))
774 break;
775 /*
776 * css reference reached zero, so iter->position will
777 * be cleared by ->css_released. However, we should not
778 * rely on this happening soon, because ->css_released
779 * is called from a work queue, and by busy-waiting we
780 * might block it. So we clear iter->position right
781 * away.
782 */
783 (void)cmpxchg(&iter->position, pos, NULL);
784 }
785 }
786
787 if (pos)
788 css = &pos->css;
789
790 for (;;) {
791 css = css_next_descendant_pre(css, &root->css);
792 if (!css) {
793 /*
794 * Reclaimers share the hierarchy walk, and a
795 * new one might jump in right at the end of
796 * the hierarchy - make sure they see at least
797 * one group and restart from the beginning.
798 */
799 if (!prev)
800 continue;
801 break;
802 }
803
804 /*
805 * Verify the css and acquire a reference. The root
806 * is provided by the caller, so we know it's alive
807 * and kicking, and don't take an extra reference.
808 */
809 memcg = mem_cgroup_from_css(css);
810
811 if (css == &root->css)
812 break;
813
814 if (css_tryget(css))
815 break;
816
817 memcg = NULL;
818 }
819
820 if (reclaim) {
821 /*
822 * The position could have already been updated by a competing
823 * thread, so check that the value hasn't changed since we read
824 * it to avoid reclaiming from the same cgroup twice.
825 */
826 (void)cmpxchg(&iter->position, pos, memcg);
827
828 if (pos)
829 css_put(&pos->css);
830
831 if (!memcg)
832 iter->generation++;
833 else if (!prev)
834 reclaim->generation = iter->generation;
835 }
836
837 out_unlock:
838 rcu_read_unlock();
839 out:
840 if (prev && prev != root)
841 css_put(&prev->css);
842
843 return memcg;
844 }
845
846 /**
847 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
848 * @root: hierarchy root
849 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
850 */
851 void mem_cgroup_iter_break(struct mem_cgroup *root,
852 struct mem_cgroup *prev)
853 {
854 if (!root)
855 root = root_mem_cgroup;
856 if (prev && prev != root)
857 css_put(&prev->css);
858 }
859
860 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
861 {
862 struct mem_cgroup *memcg = dead_memcg;
863 struct mem_cgroup_reclaim_iter *iter;
864 struct mem_cgroup_per_node *mz;
865 int nid;
866 int i;
867
868 while ((memcg = parent_mem_cgroup(memcg))) {
869 for_each_node(nid) {
870 mz = mem_cgroup_nodeinfo(memcg, nid);
871 for (i = 0; i <= DEF_PRIORITY; i++) {
872 iter = &mz->iter[i];
873 cmpxchg(&iter->position,
874 dead_memcg, NULL);
875 }
876 }
877 }
878 }
879
880 /*
881 * Iteration constructs for visiting all cgroups (under a tree). If
882 * loops are exited prematurely (break), mem_cgroup_iter_break() must
883 * be used for reference counting.
884 */
885 #define for_each_mem_cgroup_tree(iter, root) \
886 for (iter = mem_cgroup_iter(root, NULL, NULL); \
887 iter != NULL; \
888 iter = mem_cgroup_iter(root, iter, NULL))
889
890 #define for_each_mem_cgroup(iter) \
891 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
892 iter != NULL; \
893 iter = mem_cgroup_iter(NULL, iter, NULL))
894
895 /**
896 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
897 * @memcg: hierarchy root
898 * @fn: function to call for each task
899 * @arg: argument passed to @fn
900 *
901 * This function iterates over tasks attached to @memcg or to any of its
902 * descendants and calls @fn for each task. If @fn returns a non-zero
903 * value, the function breaks the iteration loop and returns the value.
904 * Otherwise, it will iterate over all tasks and return 0.
905 *
906 * This function must not be called for the root memory cgroup.
907 */
908 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
909 int (*fn)(struct task_struct *, void *), void *arg)
910 {
911 struct mem_cgroup *iter;
912 int ret = 0;
913
914 BUG_ON(memcg == root_mem_cgroup);
915
916 for_each_mem_cgroup_tree(iter, memcg) {
917 struct css_task_iter it;
918 struct task_struct *task;
919
920 css_task_iter_start(&iter->css, &it);
921 while (!ret && (task = css_task_iter_next(&it)))
922 ret = fn(task, arg);
923 css_task_iter_end(&it);
924 if (ret) {
925 mem_cgroup_iter_break(memcg, iter);
926 break;
927 }
928 }
929 return ret;
930 }
931
932 /**
933 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
934 * @page: the page
935 * @zone: zone of the page
936 *
937 * This function is only safe when following the LRU page isolation
938 * and putback protocol: the LRU lock must be held, and the page must
939 * either be PageLRU() or the caller must have isolated/allocated it.
940 */
941 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
942 {
943 struct mem_cgroup_per_node *mz;
944 struct mem_cgroup *memcg;
945 struct lruvec *lruvec;
946
947 if (mem_cgroup_disabled()) {
948 lruvec = &pgdat->lruvec;
949 goto out;
950 }
951
952 memcg = page->mem_cgroup;
953 /*
954 * Swapcache readahead pages are added to the LRU - and
955 * possibly migrated - before they are charged.
956 */
957 if (!memcg)
958 memcg = root_mem_cgroup;
959
960 mz = mem_cgroup_page_nodeinfo(memcg, page);
961 lruvec = &mz->lruvec;
962 out:
963 /*
964 * Since a node can be onlined after the mem_cgroup was created,
965 * we have to be prepared to initialize lruvec->zone here;
966 * and if offlined then reonlined, we need to reinitialize it.
967 */
968 if (unlikely(lruvec->pgdat != pgdat))
969 lruvec->pgdat = pgdat;
970 return lruvec;
971 }
972
973 /**
974 * mem_cgroup_update_lru_size - account for adding or removing an lru page
975 * @lruvec: mem_cgroup per zone lru vector
976 * @lru: index of lru list the page is sitting on
977 * @zid: zone id of the accounted pages
978 * @nr_pages: positive when adding or negative when removing
979 *
980 * This function must be called under lru_lock, just before a page is added
981 * to or just after a page is removed from an lru list (that ordering being
982 * so as to allow it to check that lru_size 0 is consistent with list_empty).
983 */
984 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
985 int zid, int nr_pages)
986 {
987 struct mem_cgroup_per_node *mz;
988 unsigned long *lru_size;
989 long size;
990
991 if (mem_cgroup_disabled())
992 return;
993
994 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
995 lru_size = &mz->lru_zone_size[zid][lru];
996
997 if (nr_pages < 0)
998 *lru_size += nr_pages;
999
1000 size = *lru_size;
1001 if (WARN_ONCE(size < 0,
1002 "%s(%p, %d, %d): lru_size %ld\n",
1003 __func__, lruvec, lru, nr_pages, size)) {
1004 VM_BUG_ON(1);
1005 *lru_size = 0;
1006 }
1007
1008 if (nr_pages > 0)
1009 *lru_size += nr_pages;
1010 }
1011
1012 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1013 {
1014 struct mem_cgroup *task_memcg;
1015 struct task_struct *p;
1016 bool ret;
1017
1018 p = find_lock_task_mm(task);
1019 if (p) {
1020 task_memcg = get_mem_cgroup_from_mm(p->mm);
1021 task_unlock(p);
1022 } else {
1023 /*
1024 * All threads may have already detached their mm's, but the oom
1025 * killer still needs to detect if they have already been oom
1026 * killed to prevent needlessly killing additional tasks.
1027 */
1028 rcu_read_lock();
1029 task_memcg = mem_cgroup_from_task(task);
1030 css_get(&task_memcg->css);
1031 rcu_read_unlock();
1032 }
1033 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1034 css_put(&task_memcg->css);
1035 return ret;
1036 }
1037
1038 /**
1039 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1040 * @memcg: the memory cgroup
1041 *
1042 * Returns the maximum amount of memory @mem can be charged with, in
1043 * pages.
1044 */
1045 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1046 {
1047 unsigned long margin = 0;
1048 unsigned long count;
1049 unsigned long limit;
1050
1051 count = page_counter_read(&memcg->memory);
1052 limit = READ_ONCE(memcg->memory.limit);
1053 if (count < limit)
1054 margin = limit - count;
1055
1056 if (do_memsw_account()) {
1057 count = page_counter_read(&memcg->memsw);
1058 limit = READ_ONCE(memcg->memsw.limit);
1059 if (count <= limit)
1060 margin = min(margin, limit - count);
1061 else
1062 margin = 0;
1063 }
1064
1065 return margin;
1066 }
1067
1068 /*
1069 * A routine for checking "mem" is under move_account() or not.
1070 *
1071 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1072 * moving cgroups. This is for waiting at high-memory pressure
1073 * caused by "move".
1074 */
1075 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1076 {
1077 struct mem_cgroup *from;
1078 struct mem_cgroup *to;
1079 bool ret = false;
1080 /*
1081 * Unlike task_move routines, we access mc.to, mc.from not under
1082 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1083 */
1084 spin_lock(&mc.lock);
1085 from = mc.from;
1086 to = mc.to;
1087 if (!from)
1088 goto unlock;
1089
1090 ret = mem_cgroup_is_descendant(from, memcg) ||
1091 mem_cgroup_is_descendant(to, memcg);
1092 unlock:
1093 spin_unlock(&mc.lock);
1094 return ret;
1095 }
1096
1097 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1098 {
1099 if (mc.moving_task && current != mc.moving_task) {
1100 if (mem_cgroup_under_move(memcg)) {
1101 DEFINE_WAIT(wait);
1102 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1103 /* moving charge context might have finished. */
1104 if (mc.moving_task)
1105 schedule();
1106 finish_wait(&mc.waitq, &wait);
1107 return true;
1108 }
1109 }
1110 return false;
1111 }
1112
1113 unsigned int memcg1_stats[] = {
1114 MEMCG_CACHE,
1115 MEMCG_RSS,
1116 MEMCG_RSS_HUGE,
1117 NR_SHMEM,
1118 NR_FILE_MAPPED,
1119 NR_FILE_DIRTY,
1120 NR_WRITEBACK,
1121 MEMCG_SWAP,
1122 };
1123
1124 static const char *const memcg1_stat_names[] = {
1125 "cache",
1126 "rss",
1127 "rss_huge",
1128 "shmem",
1129 "mapped_file",
1130 "dirty",
1131 "writeback",
1132 "swap",
1133 };
1134
1135 #define K(x) ((x) << (PAGE_SHIFT-10))
1136 /**
1137 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1138 * @memcg: The memory cgroup that went over limit
1139 * @p: Task that is going to be killed
1140 *
1141 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1142 * enabled
1143 */
1144 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1145 {
1146 struct mem_cgroup *iter;
1147 unsigned int i;
1148
1149 rcu_read_lock();
1150
1151 if (p) {
1152 pr_info("Task in ");
1153 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1154 pr_cont(" killed as a result of limit of ");
1155 } else {
1156 pr_info("Memory limit reached of cgroup ");
1157 }
1158
1159 pr_cont_cgroup_path(memcg->css.cgroup);
1160 pr_cont("\n");
1161
1162 rcu_read_unlock();
1163
1164 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1165 K((u64)page_counter_read(&memcg->memory)),
1166 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1167 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1168 K((u64)page_counter_read(&memcg->memsw)),
1169 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1170 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1171 K((u64)page_counter_read(&memcg->kmem)),
1172 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1173
1174 for_each_mem_cgroup_tree(iter, memcg) {
1175 pr_info("Memory cgroup stats for ");
1176 pr_cont_cgroup_path(iter->css.cgroup);
1177 pr_cont(":");
1178
1179 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1180 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1181 continue;
1182 pr_cont(" %s:%luKB", memcg1_stat_names[i],
1183 K(memcg_page_state(iter, memcg1_stats[i])));
1184 }
1185
1186 for (i = 0; i < NR_LRU_LISTS; i++)
1187 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1188 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1189
1190 pr_cont("\n");
1191 }
1192 }
1193
1194 /*
1195 * This function returns the number of memcg under hierarchy tree. Returns
1196 * 1(self count) if no children.
1197 */
1198 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1199 {
1200 int num = 0;
1201 struct mem_cgroup *iter;
1202
1203 for_each_mem_cgroup_tree(iter, memcg)
1204 num++;
1205 return num;
1206 }
1207
1208 /*
1209 * Return the memory (and swap, if configured) limit for a memcg.
1210 */
1211 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1212 {
1213 unsigned long limit;
1214
1215 limit = memcg->memory.limit;
1216 if (mem_cgroup_swappiness(memcg)) {
1217 unsigned long memsw_limit;
1218 unsigned long swap_limit;
1219
1220 memsw_limit = memcg->memsw.limit;
1221 swap_limit = memcg->swap.limit;
1222 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1223 limit = min(limit + swap_limit, memsw_limit);
1224 }
1225 return limit;
1226 }
1227
1228 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1229 int order)
1230 {
1231 struct oom_control oc = {
1232 .zonelist = NULL,
1233 .nodemask = NULL,
1234 .memcg = memcg,
1235 .gfp_mask = gfp_mask,
1236 .order = order,
1237 };
1238 bool ret;
1239
1240 mutex_lock(&oom_lock);
1241 ret = out_of_memory(&oc);
1242 mutex_unlock(&oom_lock);
1243 return ret;
1244 }
1245
1246 #if MAX_NUMNODES > 1
1247
1248 /**
1249 * test_mem_cgroup_node_reclaimable
1250 * @memcg: the target memcg
1251 * @nid: the node ID to be checked.
1252 * @noswap : specify true here if the user wants flle only information.
1253 *
1254 * This function returns whether the specified memcg contains any
1255 * reclaimable pages on a node. Returns true if there are any reclaimable
1256 * pages in the node.
1257 */
1258 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1259 int nid, bool noswap)
1260 {
1261 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1262 return true;
1263 if (noswap || !total_swap_pages)
1264 return false;
1265 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1266 return true;
1267 return false;
1268
1269 }
1270
1271 /*
1272 * Always updating the nodemask is not very good - even if we have an empty
1273 * list or the wrong list here, we can start from some node and traverse all
1274 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1275 *
1276 */
1277 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1278 {
1279 int nid;
1280 /*
1281 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1282 * pagein/pageout changes since the last update.
1283 */
1284 if (!atomic_read(&memcg->numainfo_events))
1285 return;
1286 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1287 return;
1288
1289 /* make a nodemask where this memcg uses memory from */
1290 memcg->scan_nodes = node_states[N_MEMORY];
1291
1292 for_each_node_mask(nid, node_states[N_MEMORY]) {
1293
1294 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1295 node_clear(nid, memcg->scan_nodes);
1296 }
1297
1298 atomic_set(&memcg->numainfo_events, 0);
1299 atomic_set(&memcg->numainfo_updating, 0);
1300 }
1301
1302 /*
1303 * Selecting a node where we start reclaim from. Because what we need is just
1304 * reducing usage counter, start from anywhere is O,K. Considering
1305 * memory reclaim from current node, there are pros. and cons.
1306 *
1307 * Freeing memory from current node means freeing memory from a node which
1308 * we'll use or we've used. So, it may make LRU bad. And if several threads
1309 * hit limits, it will see a contention on a node. But freeing from remote
1310 * node means more costs for memory reclaim because of memory latency.
1311 *
1312 * Now, we use round-robin. Better algorithm is welcomed.
1313 */
1314 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1315 {
1316 int node;
1317
1318 mem_cgroup_may_update_nodemask(memcg);
1319 node = memcg->last_scanned_node;
1320
1321 node = next_node_in(node, memcg->scan_nodes);
1322 /*
1323 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1324 * last time it really checked all the LRUs due to rate limiting.
1325 * Fallback to the current node in that case for simplicity.
1326 */
1327 if (unlikely(node == MAX_NUMNODES))
1328 node = numa_node_id();
1329
1330 memcg->last_scanned_node = node;
1331 return node;
1332 }
1333 #else
1334 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1335 {
1336 return 0;
1337 }
1338 #endif
1339
1340 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1341 pg_data_t *pgdat,
1342 gfp_t gfp_mask,
1343 unsigned long *total_scanned)
1344 {
1345 struct mem_cgroup *victim = NULL;
1346 int total = 0;
1347 int loop = 0;
1348 unsigned long excess;
1349 unsigned long nr_scanned;
1350 struct mem_cgroup_reclaim_cookie reclaim = {
1351 .pgdat = pgdat,
1352 .priority = 0,
1353 };
1354
1355 excess = soft_limit_excess(root_memcg);
1356
1357 while (1) {
1358 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1359 if (!victim) {
1360 loop++;
1361 if (loop >= 2) {
1362 /*
1363 * If we have not been able to reclaim
1364 * anything, it might because there are
1365 * no reclaimable pages under this hierarchy
1366 */
1367 if (!total)
1368 break;
1369 /*
1370 * We want to do more targeted reclaim.
1371 * excess >> 2 is not to excessive so as to
1372 * reclaim too much, nor too less that we keep
1373 * coming back to reclaim from this cgroup
1374 */
1375 if (total >= (excess >> 2) ||
1376 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1377 break;
1378 }
1379 continue;
1380 }
1381 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1382 pgdat, &nr_scanned);
1383 *total_scanned += nr_scanned;
1384 if (!soft_limit_excess(root_memcg))
1385 break;
1386 }
1387 mem_cgroup_iter_break(root_memcg, victim);
1388 return total;
1389 }
1390
1391 #ifdef CONFIG_LOCKDEP
1392 static struct lockdep_map memcg_oom_lock_dep_map = {
1393 .name = "memcg_oom_lock",
1394 };
1395 #endif
1396
1397 static DEFINE_SPINLOCK(memcg_oom_lock);
1398
1399 /*
1400 * Check OOM-Killer is already running under our hierarchy.
1401 * If someone is running, return false.
1402 */
1403 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1404 {
1405 struct mem_cgroup *iter, *failed = NULL;
1406
1407 spin_lock(&memcg_oom_lock);
1408
1409 for_each_mem_cgroup_tree(iter, memcg) {
1410 if (iter->oom_lock) {
1411 /*
1412 * this subtree of our hierarchy is already locked
1413 * so we cannot give a lock.
1414 */
1415 failed = iter;
1416 mem_cgroup_iter_break(memcg, iter);
1417 break;
1418 } else
1419 iter->oom_lock = true;
1420 }
1421
1422 if (failed) {
1423 /*
1424 * OK, we failed to lock the whole subtree so we have
1425 * to clean up what we set up to the failing subtree
1426 */
1427 for_each_mem_cgroup_tree(iter, memcg) {
1428 if (iter == failed) {
1429 mem_cgroup_iter_break(memcg, iter);
1430 break;
1431 }
1432 iter->oom_lock = false;
1433 }
1434 } else
1435 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1436
1437 spin_unlock(&memcg_oom_lock);
1438
1439 return !failed;
1440 }
1441
1442 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1443 {
1444 struct mem_cgroup *iter;
1445
1446 spin_lock(&memcg_oom_lock);
1447 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1448 for_each_mem_cgroup_tree(iter, memcg)
1449 iter->oom_lock = false;
1450 spin_unlock(&memcg_oom_lock);
1451 }
1452
1453 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1454 {
1455 struct mem_cgroup *iter;
1456
1457 spin_lock(&memcg_oom_lock);
1458 for_each_mem_cgroup_tree(iter, memcg)
1459 iter->under_oom++;
1460 spin_unlock(&memcg_oom_lock);
1461 }
1462
1463 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1464 {
1465 struct mem_cgroup *iter;
1466
1467 /*
1468 * When a new child is created while the hierarchy is under oom,
1469 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1470 */
1471 spin_lock(&memcg_oom_lock);
1472 for_each_mem_cgroup_tree(iter, memcg)
1473 if (iter->under_oom > 0)
1474 iter->under_oom--;
1475 spin_unlock(&memcg_oom_lock);
1476 }
1477
1478 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1479
1480 struct oom_wait_info {
1481 struct mem_cgroup *memcg;
1482 wait_queue_entry_t wait;
1483 };
1484
1485 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1486 unsigned mode, int sync, void *arg)
1487 {
1488 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1489 struct mem_cgroup *oom_wait_memcg;
1490 struct oom_wait_info *oom_wait_info;
1491
1492 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1493 oom_wait_memcg = oom_wait_info->memcg;
1494
1495 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1496 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1497 return 0;
1498 return autoremove_wake_function(wait, mode, sync, arg);
1499 }
1500
1501 static void memcg_oom_recover(struct mem_cgroup *memcg)
1502 {
1503 /*
1504 * For the following lockless ->under_oom test, the only required
1505 * guarantee is that it must see the state asserted by an OOM when
1506 * this function is called as a result of userland actions
1507 * triggered by the notification of the OOM. This is trivially
1508 * achieved by invoking mem_cgroup_mark_under_oom() before
1509 * triggering notification.
1510 */
1511 if (memcg && memcg->under_oom)
1512 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1513 }
1514
1515 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1516 {
1517 if (!current->memcg_may_oom)
1518 return;
1519 /*
1520 * We are in the middle of the charge context here, so we
1521 * don't want to block when potentially sitting on a callstack
1522 * that holds all kinds of filesystem and mm locks.
1523 *
1524 * Also, the caller may handle a failed allocation gracefully
1525 * (like optional page cache readahead) and so an OOM killer
1526 * invocation might not even be necessary.
1527 *
1528 * That's why we don't do anything here except remember the
1529 * OOM context and then deal with it at the end of the page
1530 * fault when the stack is unwound, the locks are released,
1531 * and when we know whether the fault was overall successful.
1532 */
1533 css_get(&memcg->css);
1534 current->memcg_in_oom = memcg;
1535 current->memcg_oom_gfp_mask = mask;
1536 current->memcg_oom_order = order;
1537 }
1538
1539 /**
1540 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1541 * @handle: actually kill/wait or just clean up the OOM state
1542 *
1543 * This has to be called at the end of a page fault if the memcg OOM
1544 * handler was enabled.
1545 *
1546 * Memcg supports userspace OOM handling where failed allocations must
1547 * sleep on a waitqueue until the userspace task resolves the
1548 * situation. Sleeping directly in the charge context with all kinds
1549 * of locks held is not a good idea, instead we remember an OOM state
1550 * in the task and mem_cgroup_oom_synchronize() has to be called at
1551 * the end of the page fault to complete the OOM handling.
1552 *
1553 * Returns %true if an ongoing memcg OOM situation was detected and
1554 * completed, %false otherwise.
1555 */
1556 bool mem_cgroup_oom_synchronize(bool handle)
1557 {
1558 struct mem_cgroup *memcg = current->memcg_in_oom;
1559 struct oom_wait_info owait;
1560 bool locked;
1561
1562 /* OOM is global, do not handle */
1563 if (!memcg)
1564 return false;
1565
1566 if (!handle)
1567 goto cleanup;
1568
1569 owait.memcg = memcg;
1570 owait.wait.flags = 0;
1571 owait.wait.func = memcg_oom_wake_function;
1572 owait.wait.private = current;
1573 INIT_LIST_HEAD(&owait.wait.entry);
1574
1575 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1576 mem_cgroup_mark_under_oom(memcg);
1577
1578 locked = mem_cgroup_oom_trylock(memcg);
1579
1580 if (locked)
1581 mem_cgroup_oom_notify(memcg);
1582
1583 if (locked && !memcg->oom_kill_disable) {
1584 mem_cgroup_unmark_under_oom(memcg);
1585 finish_wait(&memcg_oom_waitq, &owait.wait);
1586 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1587 current->memcg_oom_order);
1588 } else {
1589 schedule();
1590 mem_cgroup_unmark_under_oom(memcg);
1591 finish_wait(&memcg_oom_waitq, &owait.wait);
1592 }
1593
1594 if (locked) {
1595 mem_cgroup_oom_unlock(memcg);
1596 /*
1597 * There is no guarantee that an OOM-lock contender
1598 * sees the wakeups triggered by the OOM kill
1599 * uncharges. Wake any sleepers explicitely.
1600 */
1601 memcg_oom_recover(memcg);
1602 }
1603 cleanup:
1604 current->memcg_in_oom = NULL;
1605 css_put(&memcg->css);
1606 return true;
1607 }
1608
1609 /**
1610 * lock_page_memcg - lock a page->mem_cgroup binding
1611 * @page: the page
1612 *
1613 * This function protects unlocked LRU pages from being moved to
1614 * another cgroup and stabilizes their page->mem_cgroup binding.
1615 */
1616 void lock_page_memcg(struct page *page)
1617 {
1618 struct mem_cgroup *memcg;
1619 unsigned long flags;
1620
1621 /*
1622 * The RCU lock is held throughout the transaction. The fast
1623 * path can get away without acquiring the memcg->move_lock
1624 * because page moving starts with an RCU grace period.
1625 */
1626 rcu_read_lock();
1627
1628 if (mem_cgroup_disabled())
1629 return;
1630 again:
1631 memcg = page->mem_cgroup;
1632 if (unlikely(!memcg))
1633 return;
1634
1635 if (atomic_read(&memcg->moving_account) <= 0)
1636 return;
1637
1638 spin_lock_irqsave(&memcg->move_lock, flags);
1639 if (memcg != page->mem_cgroup) {
1640 spin_unlock_irqrestore(&memcg->move_lock, flags);
1641 goto again;
1642 }
1643
1644 /*
1645 * When charge migration first begins, we can have locked and
1646 * unlocked page stat updates happening concurrently. Track
1647 * the task who has the lock for unlock_page_memcg().
1648 */
1649 memcg->move_lock_task = current;
1650 memcg->move_lock_flags = flags;
1651
1652 return;
1653 }
1654 EXPORT_SYMBOL(lock_page_memcg);
1655
1656 /**
1657 * unlock_page_memcg - unlock a page->mem_cgroup binding
1658 * @page: the page
1659 */
1660 void unlock_page_memcg(struct page *page)
1661 {
1662 struct mem_cgroup *memcg = page->mem_cgroup;
1663
1664 if (memcg && memcg->move_lock_task == current) {
1665 unsigned long flags = memcg->move_lock_flags;
1666
1667 memcg->move_lock_task = NULL;
1668 memcg->move_lock_flags = 0;
1669
1670 spin_unlock_irqrestore(&memcg->move_lock, flags);
1671 }
1672
1673 rcu_read_unlock();
1674 }
1675 EXPORT_SYMBOL(unlock_page_memcg);
1676
1677 /*
1678 * size of first charge trial. "32" comes from vmscan.c's magic value.
1679 * TODO: maybe necessary to use big numbers in big irons.
1680 */
1681 #define CHARGE_BATCH 32U
1682 struct memcg_stock_pcp {
1683 struct mem_cgroup *cached; /* this never be root cgroup */
1684 unsigned int nr_pages;
1685 struct work_struct work;
1686 unsigned long flags;
1687 #define FLUSHING_CACHED_CHARGE 0
1688 };
1689 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1690 static DEFINE_MUTEX(percpu_charge_mutex);
1691
1692 /**
1693 * consume_stock: Try to consume stocked charge on this cpu.
1694 * @memcg: memcg to consume from.
1695 * @nr_pages: how many pages to charge.
1696 *
1697 * The charges will only happen if @memcg matches the current cpu's memcg
1698 * stock, and at least @nr_pages are available in that stock. Failure to
1699 * service an allocation will refill the stock.
1700 *
1701 * returns true if successful, false otherwise.
1702 */
1703 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1704 {
1705 struct memcg_stock_pcp *stock;
1706 unsigned long flags;
1707 bool ret = false;
1708
1709 if (nr_pages > CHARGE_BATCH)
1710 return ret;
1711
1712 local_irq_save(flags);
1713
1714 stock = this_cpu_ptr(&memcg_stock);
1715 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1716 stock->nr_pages -= nr_pages;
1717 ret = true;
1718 }
1719
1720 local_irq_restore(flags);
1721
1722 return ret;
1723 }
1724
1725 /*
1726 * Returns stocks cached in percpu and reset cached information.
1727 */
1728 static void drain_stock(struct memcg_stock_pcp *stock)
1729 {
1730 struct mem_cgroup *old = stock->cached;
1731
1732 if (stock->nr_pages) {
1733 page_counter_uncharge(&old->memory, stock->nr_pages);
1734 if (do_memsw_account())
1735 page_counter_uncharge(&old->memsw, stock->nr_pages);
1736 css_put_many(&old->css, stock->nr_pages);
1737 stock->nr_pages = 0;
1738 }
1739 stock->cached = NULL;
1740 }
1741
1742 static void drain_local_stock(struct work_struct *dummy)
1743 {
1744 struct memcg_stock_pcp *stock;
1745 unsigned long flags;
1746
1747 local_irq_save(flags);
1748
1749 stock = this_cpu_ptr(&memcg_stock);
1750 drain_stock(stock);
1751 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1752
1753 local_irq_restore(flags);
1754 }
1755
1756 /*
1757 * Cache charges(val) to local per_cpu area.
1758 * This will be consumed by consume_stock() function, later.
1759 */
1760 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1761 {
1762 struct memcg_stock_pcp *stock;
1763 unsigned long flags;
1764
1765 local_irq_save(flags);
1766
1767 stock = this_cpu_ptr(&memcg_stock);
1768 if (stock->cached != memcg) { /* reset if necessary */
1769 drain_stock(stock);
1770 stock->cached = memcg;
1771 }
1772 stock->nr_pages += nr_pages;
1773
1774 local_irq_restore(flags);
1775 }
1776
1777 /*
1778 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1779 * of the hierarchy under it.
1780 */
1781 static void drain_all_stock(struct mem_cgroup *root_memcg)
1782 {
1783 int cpu, curcpu;
1784
1785 /* If someone's already draining, avoid adding running more workers. */
1786 if (!mutex_trylock(&percpu_charge_mutex))
1787 return;
1788 /* Notify other cpus that system-wide "drain" is running */
1789 get_online_cpus();
1790 curcpu = get_cpu();
1791 for_each_online_cpu(cpu) {
1792 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1793 struct mem_cgroup *memcg;
1794
1795 memcg = stock->cached;
1796 if (!memcg || !stock->nr_pages)
1797 continue;
1798 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1799 continue;
1800 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1801 if (cpu == curcpu)
1802 drain_local_stock(&stock->work);
1803 else
1804 schedule_work_on(cpu, &stock->work);
1805 }
1806 }
1807 put_cpu();
1808 put_online_cpus();
1809 mutex_unlock(&percpu_charge_mutex);
1810 }
1811
1812 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1813 {
1814 struct memcg_stock_pcp *stock;
1815
1816 stock = &per_cpu(memcg_stock, cpu);
1817 drain_stock(stock);
1818 return 0;
1819 }
1820
1821 static void reclaim_high(struct mem_cgroup *memcg,
1822 unsigned int nr_pages,
1823 gfp_t gfp_mask)
1824 {
1825 do {
1826 if (page_counter_read(&memcg->memory) <= memcg->high)
1827 continue;
1828 mem_cgroup_event(memcg, MEMCG_HIGH);
1829 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1830 } while ((memcg = parent_mem_cgroup(memcg)));
1831 }
1832
1833 static void high_work_func(struct work_struct *work)
1834 {
1835 struct mem_cgroup *memcg;
1836
1837 memcg = container_of(work, struct mem_cgroup, high_work);
1838 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1839 }
1840
1841 /*
1842 * Scheduled by try_charge() to be executed from the userland return path
1843 * and reclaims memory over the high limit.
1844 */
1845 void mem_cgroup_handle_over_high(void)
1846 {
1847 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1848 struct mem_cgroup *memcg;
1849
1850 if (likely(!nr_pages))
1851 return;
1852
1853 memcg = get_mem_cgroup_from_mm(current->mm);
1854 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1855 css_put(&memcg->css);
1856 current->memcg_nr_pages_over_high = 0;
1857 }
1858
1859 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1860 unsigned int nr_pages)
1861 {
1862 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1863 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1864 struct mem_cgroup *mem_over_limit;
1865 struct page_counter *counter;
1866 unsigned long nr_reclaimed;
1867 bool may_swap = true;
1868 bool drained = false;
1869
1870 if (mem_cgroup_is_root(memcg))
1871 return 0;
1872 retry:
1873 if (consume_stock(memcg, nr_pages))
1874 return 0;
1875
1876 if (!do_memsw_account() ||
1877 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1878 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1879 goto done_restock;
1880 if (do_memsw_account())
1881 page_counter_uncharge(&memcg->memsw, batch);
1882 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1883 } else {
1884 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1885 may_swap = false;
1886 }
1887
1888 if (batch > nr_pages) {
1889 batch = nr_pages;
1890 goto retry;
1891 }
1892
1893 /*
1894 * Unlike in global OOM situations, memcg is not in a physical
1895 * memory shortage. Allow dying and OOM-killed tasks to
1896 * bypass the last charges so that they can exit quickly and
1897 * free their memory.
1898 */
1899 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1900 fatal_signal_pending(current) ||
1901 current->flags & PF_EXITING))
1902 goto force;
1903
1904 /*
1905 * Prevent unbounded recursion when reclaim operations need to
1906 * allocate memory. This might exceed the limits temporarily,
1907 * but we prefer facilitating memory reclaim and getting back
1908 * under the limit over triggering OOM kills in these cases.
1909 */
1910 if (unlikely(current->flags & PF_MEMALLOC))
1911 goto force;
1912
1913 if (unlikely(task_in_memcg_oom(current)))
1914 goto nomem;
1915
1916 if (!gfpflags_allow_blocking(gfp_mask))
1917 goto nomem;
1918
1919 mem_cgroup_event(mem_over_limit, MEMCG_MAX);
1920
1921 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1922 gfp_mask, may_swap);
1923
1924 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1925 goto retry;
1926
1927 if (!drained) {
1928 drain_all_stock(mem_over_limit);
1929 drained = true;
1930 goto retry;
1931 }
1932
1933 if (gfp_mask & __GFP_NORETRY)
1934 goto nomem;
1935 /*
1936 * Even though the limit is exceeded at this point, reclaim
1937 * may have been able to free some pages. Retry the charge
1938 * before killing the task.
1939 *
1940 * Only for regular pages, though: huge pages are rather
1941 * unlikely to succeed so close to the limit, and we fall back
1942 * to regular pages anyway in case of failure.
1943 */
1944 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1945 goto retry;
1946 /*
1947 * At task move, charge accounts can be doubly counted. So, it's
1948 * better to wait until the end of task_move if something is going on.
1949 */
1950 if (mem_cgroup_wait_acct_move(mem_over_limit))
1951 goto retry;
1952
1953 if (nr_retries--)
1954 goto retry;
1955
1956 if (gfp_mask & __GFP_NOFAIL)
1957 goto force;
1958
1959 if (fatal_signal_pending(current))
1960 goto force;
1961
1962 mem_cgroup_event(mem_over_limit, MEMCG_OOM);
1963
1964 mem_cgroup_oom(mem_over_limit, gfp_mask,
1965 get_order(nr_pages * PAGE_SIZE));
1966 nomem:
1967 if (!(gfp_mask & __GFP_NOFAIL))
1968 return -ENOMEM;
1969 force:
1970 /*
1971 * The allocation either can't fail or will lead to more memory
1972 * being freed very soon. Allow memory usage go over the limit
1973 * temporarily by force charging it.
1974 */
1975 page_counter_charge(&memcg->memory, nr_pages);
1976 if (do_memsw_account())
1977 page_counter_charge(&memcg->memsw, nr_pages);
1978 css_get_many(&memcg->css, nr_pages);
1979
1980 return 0;
1981
1982 done_restock:
1983 css_get_many(&memcg->css, batch);
1984 if (batch > nr_pages)
1985 refill_stock(memcg, batch - nr_pages);
1986
1987 /*
1988 * If the hierarchy is above the normal consumption range, schedule
1989 * reclaim on returning to userland. We can perform reclaim here
1990 * if __GFP_RECLAIM but let's always punt for simplicity and so that
1991 * GFP_KERNEL can consistently be used during reclaim. @memcg is
1992 * not recorded as it most likely matches current's and won't
1993 * change in the meantime. As high limit is checked again before
1994 * reclaim, the cost of mismatch is negligible.
1995 */
1996 do {
1997 if (page_counter_read(&memcg->memory) > memcg->high) {
1998 /* Don't bother a random interrupted task */
1999 if (in_interrupt()) {
2000 schedule_work(&memcg->high_work);
2001 break;
2002 }
2003 current->memcg_nr_pages_over_high += batch;
2004 set_notify_resume(current);
2005 break;
2006 }
2007 } while ((memcg = parent_mem_cgroup(memcg)));
2008
2009 return 0;
2010 }
2011
2012 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2013 {
2014 if (mem_cgroup_is_root(memcg))
2015 return;
2016
2017 page_counter_uncharge(&memcg->memory, nr_pages);
2018 if (do_memsw_account())
2019 page_counter_uncharge(&memcg->memsw, nr_pages);
2020
2021 css_put_many(&memcg->css, nr_pages);
2022 }
2023
2024 static void lock_page_lru(struct page *page, int *isolated)
2025 {
2026 struct zone *zone = page_zone(page);
2027
2028 spin_lock_irq(zone_lru_lock(zone));
2029 if (PageLRU(page)) {
2030 struct lruvec *lruvec;
2031
2032 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2033 ClearPageLRU(page);
2034 del_page_from_lru_list(page, lruvec, page_lru(page));
2035 *isolated = 1;
2036 } else
2037 *isolated = 0;
2038 }
2039
2040 static void unlock_page_lru(struct page *page, int isolated)
2041 {
2042 struct zone *zone = page_zone(page);
2043
2044 if (isolated) {
2045 struct lruvec *lruvec;
2046
2047 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2048 VM_BUG_ON_PAGE(PageLRU(page), page);
2049 SetPageLRU(page);
2050 add_page_to_lru_list(page, lruvec, page_lru(page));
2051 }
2052 spin_unlock_irq(zone_lru_lock(zone));
2053 }
2054
2055 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2056 bool lrucare)
2057 {
2058 int isolated;
2059
2060 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2061
2062 /*
2063 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2064 * may already be on some other mem_cgroup's LRU. Take care of it.
2065 */
2066 if (lrucare)
2067 lock_page_lru(page, &isolated);
2068
2069 /*
2070 * Nobody should be changing or seriously looking at
2071 * page->mem_cgroup at this point:
2072 *
2073 * - the page is uncharged
2074 *
2075 * - the page is off-LRU
2076 *
2077 * - an anonymous fault has exclusive page access, except for
2078 * a locked page table
2079 *
2080 * - a page cache insertion, a swapin fault, or a migration
2081 * have the page locked
2082 */
2083 page->mem_cgroup = memcg;
2084
2085 if (lrucare)
2086 unlock_page_lru(page, isolated);
2087 }
2088
2089 #ifndef CONFIG_SLOB
2090 static int memcg_alloc_cache_id(void)
2091 {
2092 int id, size;
2093 int err;
2094
2095 id = ida_simple_get(&memcg_cache_ida,
2096 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2097 if (id < 0)
2098 return id;
2099
2100 if (id < memcg_nr_cache_ids)
2101 return id;
2102
2103 /*
2104 * There's no space for the new id in memcg_caches arrays,
2105 * so we have to grow them.
2106 */
2107 down_write(&memcg_cache_ids_sem);
2108
2109 size = 2 * (id + 1);
2110 if (size < MEMCG_CACHES_MIN_SIZE)
2111 size = MEMCG_CACHES_MIN_SIZE;
2112 else if (size > MEMCG_CACHES_MAX_SIZE)
2113 size = MEMCG_CACHES_MAX_SIZE;
2114
2115 err = memcg_update_all_caches(size);
2116 if (!err)
2117 err = memcg_update_all_list_lrus(size);
2118 if (!err)
2119 memcg_nr_cache_ids = size;
2120
2121 up_write(&memcg_cache_ids_sem);
2122
2123 if (err) {
2124 ida_simple_remove(&memcg_cache_ida, id);
2125 return err;
2126 }
2127 return id;
2128 }
2129
2130 static void memcg_free_cache_id(int id)
2131 {
2132 ida_simple_remove(&memcg_cache_ida, id);
2133 }
2134
2135 struct memcg_kmem_cache_create_work {
2136 struct mem_cgroup *memcg;
2137 struct kmem_cache *cachep;
2138 struct work_struct work;
2139 };
2140
2141 static void memcg_kmem_cache_create_func(struct work_struct *w)
2142 {
2143 struct memcg_kmem_cache_create_work *cw =
2144 container_of(w, struct memcg_kmem_cache_create_work, work);
2145 struct mem_cgroup *memcg = cw->memcg;
2146 struct kmem_cache *cachep = cw->cachep;
2147
2148 memcg_create_kmem_cache(memcg, cachep);
2149
2150 css_put(&memcg->css);
2151 kfree(cw);
2152 }
2153
2154 /*
2155 * Enqueue the creation of a per-memcg kmem_cache.
2156 */
2157 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2158 struct kmem_cache *cachep)
2159 {
2160 struct memcg_kmem_cache_create_work *cw;
2161
2162 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2163 if (!cw)
2164 return;
2165
2166 css_get(&memcg->css);
2167
2168 cw->memcg = memcg;
2169 cw->cachep = cachep;
2170 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2171
2172 queue_work(memcg_kmem_cache_wq, &cw->work);
2173 }
2174
2175 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2176 struct kmem_cache *cachep)
2177 {
2178 /*
2179 * We need to stop accounting when we kmalloc, because if the
2180 * corresponding kmalloc cache is not yet created, the first allocation
2181 * in __memcg_schedule_kmem_cache_create will recurse.
2182 *
2183 * However, it is better to enclose the whole function. Depending on
2184 * the debugging options enabled, INIT_WORK(), for instance, can
2185 * trigger an allocation. This too, will make us recurse. Because at
2186 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2187 * the safest choice is to do it like this, wrapping the whole function.
2188 */
2189 current->memcg_kmem_skip_account = 1;
2190 __memcg_schedule_kmem_cache_create(memcg, cachep);
2191 current->memcg_kmem_skip_account = 0;
2192 }
2193
2194 static inline bool memcg_kmem_bypass(void)
2195 {
2196 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2197 return true;
2198 return false;
2199 }
2200
2201 /**
2202 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2203 * @cachep: the original global kmem cache
2204 *
2205 * Return the kmem_cache we're supposed to use for a slab allocation.
2206 * We try to use the current memcg's version of the cache.
2207 *
2208 * If the cache does not exist yet, if we are the first user of it, we
2209 * create it asynchronously in a workqueue and let the current allocation
2210 * go through with the original cache.
2211 *
2212 * This function takes a reference to the cache it returns to assure it
2213 * won't get destroyed while we are working with it. Once the caller is
2214 * done with it, memcg_kmem_put_cache() must be called to release the
2215 * reference.
2216 */
2217 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2218 {
2219 struct mem_cgroup *memcg;
2220 struct kmem_cache *memcg_cachep;
2221 int kmemcg_id;
2222
2223 VM_BUG_ON(!is_root_cache(cachep));
2224
2225 if (memcg_kmem_bypass())
2226 return cachep;
2227
2228 if (current->memcg_kmem_skip_account)
2229 return cachep;
2230
2231 memcg = get_mem_cgroup_from_mm(current->mm);
2232 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2233 if (kmemcg_id < 0)
2234 goto out;
2235
2236 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2237 if (likely(memcg_cachep))
2238 return memcg_cachep;
2239
2240 /*
2241 * If we are in a safe context (can wait, and not in interrupt
2242 * context), we could be be predictable and return right away.
2243 * This would guarantee that the allocation being performed
2244 * already belongs in the new cache.
2245 *
2246 * However, there are some clashes that can arrive from locking.
2247 * For instance, because we acquire the slab_mutex while doing
2248 * memcg_create_kmem_cache, this means no further allocation
2249 * could happen with the slab_mutex held. So it's better to
2250 * defer everything.
2251 */
2252 memcg_schedule_kmem_cache_create(memcg, cachep);
2253 out:
2254 css_put(&memcg->css);
2255 return cachep;
2256 }
2257
2258 /**
2259 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2260 * @cachep: the cache returned by memcg_kmem_get_cache
2261 */
2262 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2263 {
2264 if (!is_root_cache(cachep))
2265 css_put(&cachep->memcg_params.memcg->css);
2266 }
2267
2268 /**
2269 * memcg_kmem_charge: charge a kmem page
2270 * @page: page to charge
2271 * @gfp: reclaim mode
2272 * @order: allocation order
2273 * @memcg: memory cgroup to charge
2274 *
2275 * Returns 0 on success, an error code on failure.
2276 */
2277 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2278 struct mem_cgroup *memcg)
2279 {
2280 unsigned int nr_pages = 1 << order;
2281 struct page_counter *counter;
2282 int ret;
2283
2284 ret = try_charge(memcg, gfp, nr_pages);
2285 if (ret)
2286 return ret;
2287
2288 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2289 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2290 cancel_charge(memcg, nr_pages);
2291 return -ENOMEM;
2292 }
2293
2294 page->mem_cgroup = memcg;
2295
2296 return 0;
2297 }
2298
2299 /**
2300 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2301 * @page: page to charge
2302 * @gfp: reclaim mode
2303 * @order: allocation order
2304 *
2305 * Returns 0 on success, an error code on failure.
2306 */
2307 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2308 {
2309 struct mem_cgroup *memcg;
2310 int ret = 0;
2311
2312 if (memcg_kmem_bypass())
2313 return 0;
2314
2315 memcg = get_mem_cgroup_from_mm(current->mm);
2316 if (!mem_cgroup_is_root(memcg)) {
2317 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2318 if (!ret)
2319 __SetPageKmemcg(page);
2320 }
2321 css_put(&memcg->css);
2322 return ret;
2323 }
2324 /**
2325 * memcg_kmem_uncharge: uncharge a kmem page
2326 * @page: page to uncharge
2327 * @order: allocation order
2328 */
2329 void memcg_kmem_uncharge(struct page *page, int order)
2330 {
2331 struct mem_cgroup *memcg = page->mem_cgroup;
2332 unsigned int nr_pages = 1 << order;
2333
2334 if (!memcg)
2335 return;
2336
2337 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2338
2339 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2340 page_counter_uncharge(&memcg->kmem, nr_pages);
2341
2342 page_counter_uncharge(&memcg->memory, nr_pages);
2343 if (do_memsw_account())
2344 page_counter_uncharge(&memcg->memsw, nr_pages);
2345
2346 page->mem_cgroup = NULL;
2347
2348 /* slab pages do not have PageKmemcg flag set */
2349 if (PageKmemcg(page))
2350 __ClearPageKmemcg(page);
2351
2352 css_put_many(&memcg->css, nr_pages);
2353 }
2354 #endif /* !CONFIG_SLOB */
2355
2356 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2357
2358 /*
2359 * Because tail pages are not marked as "used", set it. We're under
2360 * zone_lru_lock and migration entries setup in all page mappings.
2361 */
2362 void mem_cgroup_split_huge_fixup(struct page *head)
2363 {
2364 int i;
2365
2366 if (mem_cgroup_disabled())
2367 return;
2368
2369 for (i = 1; i < HPAGE_PMD_NR; i++)
2370 head[i].mem_cgroup = head->mem_cgroup;
2371
2372 __this_cpu_sub(head->mem_cgroup->stat->count[MEMCG_RSS_HUGE],
2373 HPAGE_PMD_NR);
2374 }
2375 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2376
2377 #ifdef CONFIG_MEMCG_SWAP
2378 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2379 int nr_entries)
2380 {
2381 this_cpu_add(memcg->stat->count[MEMCG_SWAP], nr_entries);
2382 }
2383
2384 /**
2385 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2386 * @entry: swap entry to be moved
2387 * @from: mem_cgroup which the entry is moved from
2388 * @to: mem_cgroup which the entry is moved to
2389 *
2390 * It succeeds only when the swap_cgroup's record for this entry is the same
2391 * as the mem_cgroup's id of @from.
2392 *
2393 * Returns 0 on success, -EINVAL on failure.
2394 *
2395 * The caller must have charged to @to, IOW, called page_counter_charge() about
2396 * both res and memsw, and called css_get().
2397 */
2398 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2399 struct mem_cgroup *from, struct mem_cgroup *to)
2400 {
2401 unsigned short old_id, new_id;
2402
2403 old_id = mem_cgroup_id(from);
2404 new_id = mem_cgroup_id(to);
2405
2406 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2407 mem_cgroup_swap_statistics(from, -1);
2408 mem_cgroup_swap_statistics(to, 1);
2409 return 0;
2410 }
2411 return -EINVAL;
2412 }
2413 #else
2414 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2415 struct mem_cgroup *from, struct mem_cgroup *to)
2416 {
2417 return -EINVAL;
2418 }
2419 #endif
2420
2421 static DEFINE_MUTEX(memcg_limit_mutex);
2422
2423 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2424 unsigned long limit)
2425 {
2426 unsigned long curusage;
2427 unsigned long oldusage;
2428 bool enlarge = false;
2429 int retry_count;
2430 int ret;
2431
2432 /*
2433 * For keeping hierarchical_reclaim simple, how long we should retry
2434 * is depends on callers. We set our retry-count to be function
2435 * of # of children which we should visit in this loop.
2436 */
2437 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2438 mem_cgroup_count_children(memcg);
2439
2440 oldusage = page_counter_read(&memcg->memory);
2441
2442 do {
2443 if (signal_pending(current)) {
2444 ret = -EINTR;
2445 break;
2446 }
2447
2448 mutex_lock(&memcg_limit_mutex);
2449 if (limit > memcg->memsw.limit) {
2450 mutex_unlock(&memcg_limit_mutex);
2451 ret = -EINVAL;
2452 break;
2453 }
2454 if (limit > memcg->memory.limit)
2455 enlarge = true;
2456 ret = page_counter_limit(&memcg->memory, limit);
2457 mutex_unlock(&memcg_limit_mutex);
2458
2459 if (!ret)
2460 break;
2461
2462 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2463
2464 curusage = page_counter_read(&memcg->memory);
2465 /* Usage is reduced ? */
2466 if (curusage >= oldusage)
2467 retry_count--;
2468 else
2469 oldusage = curusage;
2470 } while (retry_count);
2471
2472 if (!ret && enlarge)
2473 memcg_oom_recover(memcg);
2474
2475 return ret;
2476 }
2477
2478 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2479 unsigned long limit)
2480 {
2481 unsigned long curusage;
2482 unsigned long oldusage;
2483 bool enlarge = false;
2484 int retry_count;
2485 int ret;
2486
2487 /* see mem_cgroup_resize_res_limit */
2488 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2489 mem_cgroup_count_children(memcg);
2490
2491 oldusage = page_counter_read(&memcg->memsw);
2492
2493 do {
2494 if (signal_pending(current)) {
2495 ret = -EINTR;
2496 break;
2497 }
2498
2499 mutex_lock(&memcg_limit_mutex);
2500 if (limit < memcg->memory.limit) {
2501 mutex_unlock(&memcg_limit_mutex);
2502 ret = -EINVAL;
2503 break;
2504 }
2505 if (limit > memcg->memsw.limit)
2506 enlarge = true;
2507 ret = page_counter_limit(&memcg->memsw, limit);
2508 mutex_unlock(&memcg_limit_mutex);
2509
2510 if (!ret)
2511 break;
2512
2513 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2514
2515 curusage = page_counter_read(&memcg->memsw);
2516 /* Usage is reduced ? */
2517 if (curusage >= oldusage)
2518 retry_count--;
2519 else
2520 oldusage = curusage;
2521 } while (retry_count);
2522
2523 if (!ret && enlarge)
2524 memcg_oom_recover(memcg);
2525
2526 return ret;
2527 }
2528
2529 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2530 gfp_t gfp_mask,
2531 unsigned long *total_scanned)
2532 {
2533 unsigned long nr_reclaimed = 0;
2534 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2535 unsigned long reclaimed;
2536 int loop = 0;
2537 struct mem_cgroup_tree_per_node *mctz;
2538 unsigned long excess;
2539 unsigned long nr_scanned;
2540
2541 if (order > 0)
2542 return 0;
2543
2544 mctz = soft_limit_tree_node(pgdat->node_id);
2545
2546 /*
2547 * Do not even bother to check the largest node if the root
2548 * is empty. Do it lockless to prevent lock bouncing. Races
2549 * are acceptable as soft limit is best effort anyway.
2550 */
2551 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2552 return 0;
2553
2554 /*
2555 * This loop can run a while, specially if mem_cgroup's continuously
2556 * keep exceeding their soft limit and putting the system under
2557 * pressure
2558 */
2559 do {
2560 if (next_mz)
2561 mz = next_mz;
2562 else
2563 mz = mem_cgroup_largest_soft_limit_node(mctz);
2564 if (!mz)
2565 break;
2566
2567 nr_scanned = 0;
2568 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2569 gfp_mask, &nr_scanned);
2570 nr_reclaimed += reclaimed;
2571 *total_scanned += nr_scanned;
2572 spin_lock_irq(&mctz->lock);
2573 __mem_cgroup_remove_exceeded(mz, mctz);
2574
2575 /*
2576 * If we failed to reclaim anything from this memory cgroup
2577 * it is time to move on to the next cgroup
2578 */
2579 next_mz = NULL;
2580 if (!reclaimed)
2581 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2582
2583 excess = soft_limit_excess(mz->memcg);
2584 /*
2585 * One school of thought says that we should not add
2586 * back the node to the tree if reclaim returns 0.
2587 * But our reclaim could return 0, simply because due
2588 * to priority we are exposing a smaller subset of
2589 * memory to reclaim from. Consider this as a longer
2590 * term TODO.
2591 */
2592 /* If excess == 0, no tree ops */
2593 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2594 spin_unlock_irq(&mctz->lock);
2595 css_put(&mz->memcg->css);
2596 loop++;
2597 /*
2598 * Could not reclaim anything and there are no more
2599 * mem cgroups to try or we seem to be looping without
2600 * reclaiming anything.
2601 */
2602 if (!nr_reclaimed &&
2603 (next_mz == NULL ||
2604 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2605 break;
2606 } while (!nr_reclaimed);
2607 if (next_mz)
2608 css_put(&next_mz->memcg->css);
2609 return nr_reclaimed;
2610 }
2611
2612 /*
2613 * Test whether @memcg has children, dead or alive. Note that this
2614 * function doesn't care whether @memcg has use_hierarchy enabled and
2615 * returns %true if there are child csses according to the cgroup
2616 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2617 */
2618 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2619 {
2620 bool ret;
2621
2622 rcu_read_lock();
2623 ret = css_next_child(NULL, &memcg->css);
2624 rcu_read_unlock();
2625 return ret;
2626 }
2627
2628 /*
2629 * Reclaims as many pages from the given memcg as possible.
2630 *
2631 * Caller is responsible for holding css reference for memcg.
2632 */
2633 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2634 {
2635 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2636
2637 /* we call try-to-free pages for make this cgroup empty */
2638 lru_add_drain_all();
2639 /* try to free all pages in this cgroup */
2640 while (nr_retries && page_counter_read(&memcg->memory)) {
2641 int progress;
2642
2643 if (signal_pending(current))
2644 return -EINTR;
2645
2646 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2647 GFP_KERNEL, true);
2648 if (!progress) {
2649 nr_retries--;
2650 /* maybe some writeback is necessary */
2651 congestion_wait(BLK_RW_ASYNC, HZ/10);
2652 }
2653
2654 }
2655
2656 return 0;
2657 }
2658
2659 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2660 char *buf, size_t nbytes,
2661 loff_t off)
2662 {
2663 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2664
2665 if (mem_cgroup_is_root(memcg))
2666 return -EINVAL;
2667 return mem_cgroup_force_empty(memcg) ?: nbytes;
2668 }
2669
2670 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2671 struct cftype *cft)
2672 {
2673 return mem_cgroup_from_css(css)->use_hierarchy;
2674 }
2675
2676 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2677 struct cftype *cft, u64 val)
2678 {
2679 int retval = 0;
2680 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2681 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2682
2683 if (memcg->use_hierarchy == val)
2684 return 0;
2685
2686 /*
2687 * If parent's use_hierarchy is set, we can't make any modifications
2688 * in the child subtrees. If it is unset, then the change can
2689 * occur, provided the current cgroup has no children.
2690 *
2691 * For the root cgroup, parent_mem is NULL, we allow value to be
2692 * set if there are no children.
2693 */
2694 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2695 (val == 1 || val == 0)) {
2696 if (!memcg_has_children(memcg))
2697 memcg->use_hierarchy = val;
2698 else
2699 retval = -EBUSY;
2700 } else
2701 retval = -EINVAL;
2702
2703 return retval;
2704 }
2705
2706 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2707 {
2708 struct mem_cgroup *iter;
2709 int i;
2710
2711 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2712
2713 for_each_mem_cgroup_tree(iter, memcg) {
2714 for (i = 0; i < MEMCG_NR_STAT; i++)
2715 stat[i] += memcg_page_state(iter, i);
2716 }
2717 }
2718
2719 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2720 {
2721 struct mem_cgroup *iter;
2722 int i;
2723
2724 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2725
2726 for_each_mem_cgroup_tree(iter, memcg) {
2727 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2728 events[i] += memcg_sum_events(iter, i);
2729 }
2730 }
2731
2732 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2733 {
2734 unsigned long val = 0;
2735
2736 if (mem_cgroup_is_root(memcg)) {
2737 struct mem_cgroup *iter;
2738
2739 for_each_mem_cgroup_tree(iter, memcg) {
2740 val += memcg_page_state(iter, MEMCG_CACHE);
2741 val += memcg_page_state(iter, MEMCG_RSS);
2742 if (swap)
2743 val += memcg_page_state(iter, MEMCG_SWAP);
2744 }
2745 } else {
2746 if (!swap)
2747 val = page_counter_read(&memcg->memory);
2748 else
2749 val = page_counter_read(&memcg->memsw);
2750 }
2751 return val;
2752 }
2753
2754 enum {
2755 RES_USAGE,
2756 RES_LIMIT,
2757 RES_MAX_USAGE,
2758 RES_FAILCNT,
2759 RES_SOFT_LIMIT,
2760 };
2761
2762 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2763 struct cftype *cft)
2764 {
2765 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2766 struct page_counter *counter;
2767
2768 switch (MEMFILE_TYPE(cft->private)) {
2769 case _MEM:
2770 counter = &memcg->memory;
2771 break;
2772 case _MEMSWAP:
2773 counter = &memcg->memsw;
2774 break;
2775 case _KMEM:
2776 counter = &memcg->kmem;
2777 break;
2778 case _TCP:
2779 counter = &memcg->tcpmem;
2780 break;
2781 default:
2782 BUG();
2783 }
2784
2785 switch (MEMFILE_ATTR(cft->private)) {
2786 case RES_USAGE:
2787 if (counter == &memcg->memory)
2788 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2789 if (counter == &memcg->memsw)
2790 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2791 return (u64)page_counter_read(counter) * PAGE_SIZE;
2792 case RES_LIMIT:
2793 return (u64)counter->limit * PAGE_SIZE;
2794 case RES_MAX_USAGE:
2795 return (u64)counter->watermark * PAGE_SIZE;
2796 case RES_FAILCNT:
2797 return counter->failcnt;
2798 case RES_SOFT_LIMIT:
2799 return (u64)memcg->soft_limit * PAGE_SIZE;
2800 default:
2801 BUG();
2802 }
2803 }
2804
2805 #ifndef CONFIG_SLOB
2806 static int memcg_online_kmem(struct mem_cgroup *memcg)
2807 {
2808 int memcg_id;
2809
2810 if (cgroup_memory_nokmem)
2811 return 0;
2812
2813 BUG_ON(memcg->kmemcg_id >= 0);
2814 BUG_ON(memcg->kmem_state);
2815
2816 memcg_id = memcg_alloc_cache_id();
2817 if (memcg_id < 0)
2818 return memcg_id;
2819
2820 static_branch_inc(&memcg_kmem_enabled_key);
2821 /*
2822 * A memory cgroup is considered kmem-online as soon as it gets
2823 * kmemcg_id. Setting the id after enabling static branching will
2824 * guarantee no one starts accounting before all call sites are
2825 * patched.
2826 */
2827 memcg->kmemcg_id = memcg_id;
2828 memcg->kmem_state = KMEM_ONLINE;
2829 INIT_LIST_HEAD(&memcg->kmem_caches);
2830
2831 return 0;
2832 }
2833
2834 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2835 {
2836 struct cgroup_subsys_state *css;
2837 struct mem_cgroup *parent, *child;
2838 int kmemcg_id;
2839
2840 if (memcg->kmem_state != KMEM_ONLINE)
2841 return;
2842 /*
2843 * Clear the online state before clearing memcg_caches array
2844 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2845 * guarantees that no cache will be created for this cgroup
2846 * after we are done (see memcg_create_kmem_cache()).
2847 */
2848 memcg->kmem_state = KMEM_ALLOCATED;
2849
2850 memcg_deactivate_kmem_caches(memcg);
2851
2852 kmemcg_id = memcg->kmemcg_id;
2853 BUG_ON(kmemcg_id < 0);
2854
2855 parent = parent_mem_cgroup(memcg);
2856 if (!parent)
2857 parent = root_mem_cgroup;
2858
2859 /*
2860 * Change kmemcg_id of this cgroup and all its descendants to the
2861 * parent's id, and then move all entries from this cgroup's list_lrus
2862 * to ones of the parent. After we have finished, all list_lrus
2863 * corresponding to this cgroup are guaranteed to remain empty. The
2864 * ordering is imposed by list_lru_node->lock taken by
2865 * memcg_drain_all_list_lrus().
2866 */
2867 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2868 css_for_each_descendant_pre(css, &memcg->css) {
2869 child = mem_cgroup_from_css(css);
2870 BUG_ON(child->kmemcg_id != kmemcg_id);
2871 child->kmemcg_id = parent->kmemcg_id;
2872 if (!memcg->use_hierarchy)
2873 break;
2874 }
2875 rcu_read_unlock();
2876
2877 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2878
2879 memcg_free_cache_id(kmemcg_id);
2880 }
2881
2882 static void memcg_free_kmem(struct mem_cgroup *memcg)
2883 {
2884 /* css_alloc() failed, offlining didn't happen */
2885 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2886 memcg_offline_kmem(memcg);
2887
2888 if (memcg->kmem_state == KMEM_ALLOCATED) {
2889 memcg_destroy_kmem_caches(memcg);
2890 static_branch_dec(&memcg_kmem_enabled_key);
2891 WARN_ON(page_counter_read(&memcg->kmem));
2892 }
2893 }
2894 #else
2895 static int memcg_online_kmem(struct mem_cgroup *memcg)
2896 {
2897 return 0;
2898 }
2899 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2900 {
2901 }
2902 static void memcg_free_kmem(struct mem_cgroup *memcg)
2903 {
2904 }
2905 #endif /* !CONFIG_SLOB */
2906
2907 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2908 unsigned long limit)
2909 {
2910 int ret;
2911
2912 mutex_lock(&memcg_limit_mutex);
2913 ret = page_counter_limit(&memcg->kmem, limit);
2914 mutex_unlock(&memcg_limit_mutex);
2915 return ret;
2916 }
2917
2918 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2919 {
2920 int ret;
2921
2922 mutex_lock(&memcg_limit_mutex);
2923
2924 ret = page_counter_limit(&memcg->tcpmem, limit);
2925 if (ret)
2926 goto out;
2927
2928 if (!memcg->tcpmem_active) {
2929 /*
2930 * The active flag needs to be written after the static_key
2931 * update. This is what guarantees that the socket activation
2932 * function is the last one to run. See mem_cgroup_sk_alloc()
2933 * for details, and note that we don't mark any socket as
2934 * belonging to this memcg until that flag is up.
2935 *
2936 * We need to do this, because static_keys will span multiple
2937 * sites, but we can't control their order. If we mark a socket
2938 * as accounted, but the accounting functions are not patched in
2939 * yet, we'll lose accounting.
2940 *
2941 * We never race with the readers in mem_cgroup_sk_alloc(),
2942 * because when this value change, the code to process it is not
2943 * patched in yet.
2944 */
2945 static_branch_inc(&memcg_sockets_enabled_key);
2946 memcg->tcpmem_active = true;
2947 }
2948 out:
2949 mutex_unlock(&memcg_limit_mutex);
2950 return ret;
2951 }
2952
2953 /*
2954 * The user of this function is...
2955 * RES_LIMIT.
2956 */
2957 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2958 char *buf, size_t nbytes, loff_t off)
2959 {
2960 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2961 unsigned long nr_pages;
2962 int ret;
2963
2964 buf = strstrip(buf);
2965 ret = page_counter_memparse(buf, "-1", &nr_pages);
2966 if (ret)
2967 return ret;
2968
2969 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2970 case RES_LIMIT:
2971 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2972 ret = -EINVAL;
2973 break;
2974 }
2975 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2976 case _MEM:
2977 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2978 break;
2979 case _MEMSWAP:
2980 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2981 break;
2982 case _KMEM:
2983 ret = memcg_update_kmem_limit(memcg, nr_pages);
2984 break;
2985 case _TCP:
2986 ret = memcg_update_tcp_limit(memcg, nr_pages);
2987 break;
2988 }
2989 break;
2990 case RES_SOFT_LIMIT:
2991 memcg->soft_limit = nr_pages;
2992 ret = 0;
2993 break;
2994 }
2995 return ret ?: nbytes;
2996 }
2997
2998 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
2999 size_t nbytes, loff_t off)
3000 {
3001 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3002 struct page_counter *counter;
3003
3004 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3005 case _MEM:
3006 counter = &memcg->memory;
3007 break;
3008 case _MEMSWAP:
3009 counter = &memcg->memsw;
3010 break;
3011 case _KMEM:
3012 counter = &memcg->kmem;
3013 break;
3014 case _TCP:
3015 counter = &memcg->tcpmem;
3016 break;
3017 default:
3018 BUG();
3019 }
3020
3021 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3022 case RES_MAX_USAGE:
3023 page_counter_reset_watermark(counter);
3024 break;
3025 case RES_FAILCNT:
3026 counter->failcnt = 0;
3027 break;
3028 default:
3029 BUG();
3030 }
3031
3032 return nbytes;
3033 }
3034
3035 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3036 struct cftype *cft)
3037 {
3038 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3039 }
3040
3041 #ifdef CONFIG_MMU
3042 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3043 struct cftype *cft, u64 val)
3044 {
3045 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3046
3047 if (val & ~MOVE_MASK)
3048 return -EINVAL;
3049
3050 /*
3051 * No kind of locking is needed in here, because ->can_attach() will
3052 * check this value once in the beginning of the process, and then carry
3053 * on with stale data. This means that changes to this value will only
3054 * affect task migrations starting after the change.
3055 */
3056 memcg->move_charge_at_immigrate = val;
3057 return 0;
3058 }
3059 #else
3060 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3061 struct cftype *cft, u64 val)
3062 {
3063 return -ENOSYS;
3064 }
3065 #endif
3066
3067 #ifdef CONFIG_NUMA
3068 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3069 {
3070 struct numa_stat {
3071 const char *name;
3072 unsigned int lru_mask;
3073 };
3074
3075 static const struct numa_stat stats[] = {
3076 { "total", LRU_ALL },
3077 { "file", LRU_ALL_FILE },
3078 { "anon", LRU_ALL_ANON },
3079 { "unevictable", BIT(LRU_UNEVICTABLE) },
3080 };
3081 const struct numa_stat *stat;
3082 int nid;
3083 unsigned long nr;
3084 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3085
3086 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3087 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3088 seq_printf(m, "%s=%lu", stat->name, nr);
3089 for_each_node_state(nid, N_MEMORY) {
3090 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3091 stat->lru_mask);
3092 seq_printf(m, " N%d=%lu", nid, nr);
3093 }
3094 seq_putc(m, '\n');
3095 }
3096
3097 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3098 struct mem_cgroup *iter;
3099
3100 nr = 0;
3101 for_each_mem_cgroup_tree(iter, memcg)
3102 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3103 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3104 for_each_node_state(nid, N_MEMORY) {
3105 nr = 0;
3106 for_each_mem_cgroup_tree(iter, memcg)
3107 nr += mem_cgroup_node_nr_lru_pages(
3108 iter, nid, stat->lru_mask);
3109 seq_printf(m, " N%d=%lu", nid, nr);
3110 }
3111 seq_putc(m, '\n');
3112 }
3113
3114 return 0;
3115 }
3116 #endif /* CONFIG_NUMA */
3117
3118 /* Universal VM events cgroup1 shows, original sort order */
3119 unsigned int memcg1_events[] = {
3120 PGPGIN,
3121 PGPGOUT,
3122 PGFAULT,
3123 PGMAJFAULT,
3124 };
3125
3126 static const char *const memcg1_event_names[] = {
3127 "pgpgin",
3128 "pgpgout",
3129 "pgfault",
3130 "pgmajfault",
3131 };
3132
3133 static int memcg_stat_show(struct seq_file *m, void *v)
3134 {
3135 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3136 unsigned long memory, memsw;
3137 struct mem_cgroup *mi;
3138 unsigned int i;
3139
3140 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3141 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3142
3143 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3144 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3145 continue;
3146 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3147 memcg_page_state(memcg, memcg1_stats[i]) *
3148 PAGE_SIZE);
3149 }
3150
3151 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3152 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3153 memcg_sum_events(memcg, memcg1_events[i]));
3154
3155 for (i = 0; i < NR_LRU_LISTS; i++)
3156 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3157 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3158
3159 /* Hierarchical information */
3160 memory = memsw = PAGE_COUNTER_MAX;
3161 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3162 memory = min(memory, mi->memory.limit);
3163 memsw = min(memsw, mi->memsw.limit);
3164 }
3165 seq_printf(m, "hierarchical_memory_limit %llu\n",
3166 (u64)memory * PAGE_SIZE);
3167 if (do_memsw_account())
3168 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3169 (u64)memsw * PAGE_SIZE);
3170
3171 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3172 unsigned long long val = 0;
3173
3174 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3175 continue;
3176 for_each_mem_cgroup_tree(mi, memcg)
3177 val += memcg_page_state(mi, memcg1_stats[i]) *
3178 PAGE_SIZE;
3179 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3180 }
3181
3182 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3183 unsigned long long val = 0;
3184
3185 for_each_mem_cgroup_tree(mi, memcg)
3186 val += memcg_sum_events(mi, memcg1_events[i]);
3187 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3188 }
3189
3190 for (i = 0; i < NR_LRU_LISTS; i++) {
3191 unsigned long long val = 0;
3192
3193 for_each_mem_cgroup_tree(mi, memcg)
3194 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3195 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3196 }
3197
3198 #ifdef CONFIG_DEBUG_VM
3199 {
3200 pg_data_t *pgdat;
3201 struct mem_cgroup_per_node *mz;
3202 struct zone_reclaim_stat *rstat;
3203 unsigned long recent_rotated[2] = {0, 0};
3204 unsigned long recent_scanned[2] = {0, 0};
3205
3206 for_each_online_pgdat(pgdat) {
3207 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3208 rstat = &mz->lruvec.reclaim_stat;
3209
3210 recent_rotated[0] += rstat->recent_rotated[0];
3211 recent_rotated[1] += rstat->recent_rotated[1];
3212 recent_scanned[0] += rstat->recent_scanned[0];
3213 recent_scanned[1] += rstat->recent_scanned[1];
3214 }
3215 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3216 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3217 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3218 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3219 }
3220 #endif
3221
3222 return 0;
3223 }
3224
3225 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3226 struct cftype *cft)
3227 {
3228 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3229
3230 return mem_cgroup_swappiness(memcg);
3231 }
3232
3233 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3234 struct cftype *cft, u64 val)
3235 {
3236 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3237
3238 if (val > 100)
3239 return -EINVAL;
3240
3241 if (css->parent)
3242 memcg->swappiness = val;
3243 else
3244 vm_swappiness = val;
3245
3246 return 0;
3247 }
3248
3249 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3250 {
3251 struct mem_cgroup_threshold_ary *t;
3252 unsigned long usage;
3253 int i;
3254
3255 rcu_read_lock();
3256 if (!swap)
3257 t = rcu_dereference(memcg->thresholds.primary);
3258 else
3259 t = rcu_dereference(memcg->memsw_thresholds.primary);
3260
3261 if (!t)
3262 goto unlock;
3263
3264 usage = mem_cgroup_usage(memcg, swap);
3265
3266 /*
3267 * current_threshold points to threshold just below or equal to usage.
3268 * If it's not true, a threshold was crossed after last
3269 * call of __mem_cgroup_threshold().
3270 */
3271 i = t->current_threshold;
3272
3273 /*
3274 * Iterate backward over array of thresholds starting from
3275 * current_threshold and check if a threshold is crossed.
3276 * If none of thresholds below usage is crossed, we read
3277 * only one element of the array here.
3278 */
3279 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3280 eventfd_signal(t->entries[i].eventfd, 1);
3281
3282 /* i = current_threshold + 1 */
3283 i++;
3284
3285 /*
3286 * Iterate forward over array of thresholds starting from
3287 * current_threshold+1 and check if a threshold is crossed.
3288 * If none of thresholds above usage is crossed, we read
3289 * only one element of the array here.
3290 */
3291 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3292 eventfd_signal(t->entries[i].eventfd, 1);
3293
3294 /* Update current_threshold */
3295 t->current_threshold = i - 1;
3296 unlock:
3297 rcu_read_unlock();
3298 }
3299
3300 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3301 {
3302 while (memcg) {
3303 __mem_cgroup_threshold(memcg, false);
3304 if (do_memsw_account())
3305 __mem_cgroup_threshold(memcg, true);
3306
3307 memcg = parent_mem_cgroup(memcg);
3308 }
3309 }
3310
3311 static int compare_thresholds(const void *a, const void *b)
3312 {
3313 const struct mem_cgroup_threshold *_a = a;
3314 const struct mem_cgroup_threshold *_b = b;
3315
3316 if (_a->threshold > _b->threshold)
3317 return 1;
3318
3319 if (_a->threshold < _b->threshold)
3320 return -1;
3321
3322 return 0;
3323 }
3324
3325 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3326 {
3327 struct mem_cgroup_eventfd_list *ev;
3328
3329 spin_lock(&memcg_oom_lock);
3330
3331 list_for_each_entry(ev, &memcg->oom_notify, list)
3332 eventfd_signal(ev->eventfd, 1);
3333
3334 spin_unlock(&memcg_oom_lock);
3335 return 0;
3336 }
3337
3338 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3339 {
3340 struct mem_cgroup *iter;
3341
3342 for_each_mem_cgroup_tree(iter, memcg)
3343 mem_cgroup_oom_notify_cb(iter);
3344 }
3345
3346 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3347 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3348 {
3349 struct mem_cgroup_thresholds *thresholds;
3350 struct mem_cgroup_threshold_ary *new;
3351 unsigned long threshold;
3352 unsigned long usage;
3353 int i, size, ret;
3354
3355 ret = page_counter_memparse(args, "-1", &threshold);
3356 if (ret)
3357 return ret;
3358
3359 mutex_lock(&memcg->thresholds_lock);
3360
3361 if (type == _MEM) {
3362 thresholds = &memcg->thresholds;
3363 usage = mem_cgroup_usage(memcg, false);
3364 } else if (type == _MEMSWAP) {
3365 thresholds = &memcg->memsw_thresholds;
3366 usage = mem_cgroup_usage(memcg, true);
3367 } else
3368 BUG();
3369
3370 /* Check if a threshold crossed before adding a new one */
3371 if (thresholds->primary)
3372 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3373
3374 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3375
3376 /* Allocate memory for new array of thresholds */
3377 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3378 GFP_KERNEL);
3379 if (!new) {
3380 ret = -ENOMEM;
3381 goto unlock;
3382 }
3383 new->size = size;
3384
3385 /* Copy thresholds (if any) to new array */
3386 if (thresholds->primary) {
3387 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3388 sizeof(struct mem_cgroup_threshold));
3389 }
3390
3391 /* Add new threshold */
3392 new->entries[size - 1].eventfd = eventfd;
3393 new->entries[size - 1].threshold = threshold;
3394
3395 /* Sort thresholds. Registering of new threshold isn't time-critical */
3396 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3397 compare_thresholds, NULL);
3398
3399 /* Find current threshold */
3400 new->current_threshold = -1;
3401 for (i = 0; i < size; i++) {
3402 if (new->entries[i].threshold <= usage) {
3403 /*
3404 * new->current_threshold will not be used until
3405 * rcu_assign_pointer(), so it's safe to increment
3406 * it here.
3407 */
3408 ++new->current_threshold;
3409 } else
3410 break;
3411 }
3412
3413 /* Free old spare buffer and save old primary buffer as spare */
3414 kfree(thresholds->spare);
3415 thresholds->spare = thresholds->primary;
3416
3417 rcu_assign_pointer(thresholds->primary, new);
3418
3419 /* To be sure that nobody uses thresholds */
3420 synchronize_rcu();
3421
3422 unlock:
3423 mutex_unlock(&memcg->thresholds_lock);
3424
3425 return ret;
3426 }
3427
3428 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3429 struct eventfd_ctx *eventfd, const char *args)
3430 {
3431 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3432 }
3433
3434 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3435 struct eventfd_ctx *eventfd, const char *args)
3436 {
3437 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3438 }
3439
3440 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3441 struct eventfd_ctx *eventfd, enum res_type type)
3442 {
3443 struct mem_cgroup_thresholds *thresholds;
3444 struct mem_cgroup_threshold_ary *new;
3445 unsigned long usage;
3446 int i, j, size;
3447
3448 mutex_lock(&memcg->thresholds_lock);
3449
3450 if (type == _MEM) {
3451 thresholds = &memcg->thresholds;
3452 usage = mem_cgroup_usage(memcg, false);
3453 } else if (type == _MEMSWAP) {
3454 thresholds = &memcg->memsw_thresholds;
3455 usage = mem_cgroup_usage(memcg, true);
3456 } else
3457 BUG();
3458
3459 if (!thresholds->primary)
3460 goto unlock;
3461
3462 /* Check if a threshold crossed before removing */
3463 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3464
3465 /* Calculate new number of threshold */
3466 size = 0;
3467 for (i = 0; i < thresholds->primary->size; i++) {
3468 if (thresholds->primary->entries[i].eventfd != eventfd)
3469 size++;
3470 }
3471
3472 new = thresholds->spare;
3473
3474 /* Set thresholds array to NULL if we don't have thresholds */
3475 if (!size) {
3476 kfree(new);
3477 new = NULL;
3478 goto swap_buffers;
3479 }
3480
3481 new->size = size;
3482
3483 /* Copy thresholds and find current threshold */
3484 new->current_threshold = -1;
3485 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3486 if (thresholds->primary->entries[i].eventfd == eventfd)
3487 continue;
3488
3489 new->entries[j] = thresholds->primary->entries[i];
3490 if (new->entries[j].threshold <= usage) {
3491 /*
3492 * new->current_threshold will not be used
3493 * until rcu_assign_pointer(), so it's safe to increment
3494 * it here.
3495 */
3496 ++new->current_threshold;
3497 }
3498 j++;
3499 }
3500
3501 swap_buffers:
3502 /* Swap primary and spare array */
3503 thresholds->spare = thresholds->primary;
3504
3505 rcu_assign_pointer(thresholds->primary, new);
3506
3507 /* To be sure that nobody uses thresholds */
3508 synchronize_rcu();
3509
3510 /* If all events are unregistered, free the spare array */
3511 if (!new) {
3512 kfree(thresholds->spare);
3513 thresholds->spare = NULL;
3514 }
3515 unlock:
3516 mutex_unlock(&memcg->thresholds_lock);
3517 }
3518
3519 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3520 struct eventfd_ctx *eventfd)
3521 {
3522 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3523 }
3524
3525 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3526 struct eventfd_ctx *eventfd)
3527 {
3528 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3529 }
3530
3531 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3532 struct eventfd_ctx *eventfd, const char *args)
3533 {
3534 struct mem_cgroup_eventfd_list *event;
3535
3536 event = kmalloc(sizeof(*event), GFP_KERNEL);
3537 if (!event)
3538 return -ENOMEM;
3539
3540 spin_lock(&memcg_oom_lock);
3541
3542 event->eventfd = eventfd;
3543 list_add(&event->list, &memcg->oom_notify);
3544
3545 /* already in OOM ? */
3546 if (memcg->under_oom)
3547 eventfd_signal(eventfd, 1);
3548 spin_unlock(&memcg_oom_lock);
3549
3550 return 0;
3551 }
3552
3553 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3554 struct eventfd_ctx *eventfd)
3555 {
3556 struct mem_cgroup_eventfd_list *ev, *tmp;
3557
3558 spin_lock(&memcg_oom_lock);
3559
3560 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3561 if (ev->eventfd == eventfd) {
3562 list_del(&ev->list);
3563 kfree(ev);
3564 }
3565 }
3566
3567 spin_unlock(&memcg_oom_lock);
3568 }
3569
3570 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3571 {
3572 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3573
3574 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3575 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3576 seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3577 return 0;
3578 }
3579
3580 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3581 struct cftype *cft, u64 val)
3582 {
3583 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3584
3585 /* cannot set to root cgroup and only 0 and 1 are allowed */
3586 if (!css->parent || !((val == 0) || (val == 1)))
3587 return -EINVAL;
3588
3589 memcg->oom_kill_disable = val;
3590 if (!val)
3591 memcg_oom_recover(memcg);
3592
3593 return 0;
3594 }
3595
3596 #ifdef CONFIG_CGROUP_WRITEBACK
3597
3598 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3599 {
3600 return &memcg->cgwb_list;
3601 }
3602
3603 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3604 {
3605 return wb_domain_init(&memcg->cgwb_domain, gfp);
3606 }
3607
3608 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3609 {
3610 wb_domain_exit(&memcg->cgwb_domain);
3611 }
3612
3613 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3614 {
3615 wb_domain_size_changed(&memcg->cgwb_domain);
3616 }
3617
3618 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3619 {
3620 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3621
3622 if (!memcg->css.parent)
3623 return NULL;
3624
3625 return &memcg->cgwb_domain;
3626 }
3627
3628 /**
3629 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3630 * @wb: bdi_writeback in question
3631 * @pfilepages: out parameter for number of file pages
3632 * @pheadroom: out parameter for number of allocatable pages according to memcg
3633 * @pdirty: out parameter for number of dirty pages
3634 * @pwriteback: out parameter for number of pages under writeback
3635 *
3636 * Determine the numbers of file, headroom, dirty, and writeback pages in
3637 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3638 * is a bit more involved.
3639 *
3640 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3641 * headroom is calculated as the lowest headroom of itself and the
3642 * ancestors. Note that this doesn't consider the actual amount of
3643 * available memory in the system. The caller should further cap
3644 * *@pheadroom accordingly.
3645 */
3646 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3647 unsigned long *pheadroom, unsigned long *pdirty,
3648 unsigned long *pwriteback)
3649 {
3650 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3651 struct mem_cgroup *parent;
3652
3653 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3654
3655 /* this should eventually include NR_UNSTABLE_NFS */
3656 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3657 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3658 (1 << LRU_ACTIVE_FILE));
3659 *pheadroom = PAGE_COUNTER_MAX;
3660
3661 while ((parent = parent_mem_cgroup(memcg))) {
3662 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3663 unsigned long used = page_counter_read(&memcg->memory);
3664
3665 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3666 memcg = parent;
3667 }
3668 }
3669
3670 #else /* CONFIG_CGROUP_WRITEBACK */
3671
3672 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3673 {
3674 return 0;
3675 }
3676
3677 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3678 {
3679 }
3680
3681 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3682 {
3683 }
3684
3685 #endif /* CONFIG_CGROUP_WRITEBACK */
3686
3687 /*
3688 * DO NOT USE IN NEW FILES.
3689 *
3690 * "cgroup.event_control" implementation.
3691 *
3692 * This is way over-engineered. It tries to support fully configurable
3693 * events for each user. Such level of flexibility is completely
3694 * unnecessary especially in the light of the planned unified hierarchy.
3695 *
3696 * Please deprecate this and replace with something simpler if at all
3697 * possible.
3698 */
3699
3700 /*
3701 * Unregister event and free resources.
3702 *
3703 * Gets called from workqueue.
3704 */
3705 static void memcg_event_remove(struct work_struct *work)
3706 {
3707 struct mem_cgroup_event *event =
3708 container_of(work, struct mem_cgroup_event, remove);
3709 struct mem_cgroup *memcg = event->memcg;
3710
3711 remove_wait_queue(event->wqh, &event->wait);
3712
3713 event->unregister_event(memcg, event->eventfd);
3714
3715 /* Notify userspace the event is going away. */
3716 eventfd_signal(event->eventfd, 1);
3717
3718 eventfd_ctx_put(event->eventfd);
3719 kfree(event);
3720 css_put(&memcg->css);
3721 }
3722
3723 /*
3724 * Gets called on POLLHUP on eventfd when user closes it.
3725 *
3726 * Called with wqh->lock held and interrupts disabled.
3727 */
3728 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3729 int sync, void *key)
3730 {
3731 struct mem_cgroup_event *event =
3732 container_of(wait, struct mem_cgroup_event, wait);
3733 struct mem_cgroup *memcg = event->memcg;
3734 unsigned long flags = (unsigned long)key;
3735
3736 if (flags & POLLHUP) {
3737 /*
3738 * If the event has been detached at cgroup removal, we
3739 * can simply return knowing the other side will cleanup
3740 * for us.
3741 *
3742 * We can't race against event freeing since the other
3743 * side will require wqh->lock via remove_wait_queue(),
3744 * which we hold.
3745 */
3746 spin_lock(&memcg->event_list_lock);
3747 if (!list_empty(&event->list)) {
3748 list_del_init(&event->list);
3749 /*
3750 * We are in atomic context, but cgroup_event_remove()
3751 * may sleep, so we have to call it in workqueue.
3752 */
3753 schedule_work(&event->remove);
3754 }
3755 spin_unlock(&memcg->event_list_lock);
3756 }
3757
3758 return 0;
3759 }
3760
3761 static void memcg_event_ptable_queue_proc(struct file *file,
3762 wait_queue_head_t *wqh, poll_table *pt)
3763 {
3764 struct mem_cgroup_event *event =
3765 container_of(pt, struct mem_cgroup_event, pt);
3766
3767 event->wqh = wqh;
3768 add_wait_queue(wqh, &event->wait);
3769 }
3770
3771 /*
3772 * DO NOT USE IN NEW FILES.
3773 *
3774 * Parse input and register new cgroup event handler.
3775 *
3776 * Input must be in format '<event_fd> <control_fd> <args>'.
3777 * Interpretation of args is defined by control file implementation.
3778 */
3779 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3780 char *buf, size_t nbytes, loff_t off)
3781 {
3782 struct cgroup_subsys_state *css = of_css(of);
3783 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3784 struct mem_cgroup_event *event;
3785 struct cgroup_subsys_state *cfile_css;
3786 unsigned int efd, cfd;
3787 struct fd efile;
3788 struct fd cfile;
3789 const char *name;
3790 char *endp;
3791 int ret;
3792
3793 buf = strstrip(buf);
3794
3795 efd = simple_strtoul(buf, &endp, 10);
3796 if (*endp != ' ')
3797 return -EINVAL;
3798 buf = endp + 1;
3799
3800 cfd = simple_strtoul(buf, &endp, 10);
3801 if ((*endp != ' ') && (*endp != '\0'))
3802 return -EINVAL;
3803 buf = endp + 1;
3804
3805 event = kzalloc(sizeof(*event), GFP_KERNEL);
3806 if (!event)
3807 return -ENOMEM;
3808
3809 event->memcg = memcg;
3810 INIT_LIST_HEAD(&event->list);
3811 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3812 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3813 INIT_WORK(&event->remove, memcg_event_remove);
3814
3815 efile = fdget(efd);
3816 if (!efile.file) {
3817 ret = -EBADF;
3818 goto out_kfree;
3819 }
3820
3821 event->eventfd = eventfd_ctx_fileget(efile.file);
3822 if (IS_ERR(event->eventfd)) {
3823 ret = PTR_ERR(event->eventfd);
3824 goto out_put_efile;
3825 }
3826
3827 cfile = fdget(cfd);
3828 if (!cfile.file) {
3829 ret = -EBADF;
3830 goto out_put_eventfd;
3831 }
3832
3833 /* the process need read permission on control file */
3834 /* AV: shouldn't we check that it's been opened for read instead? */
3835 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3836 if (ret < 0)
3837 goto out_put_cfile;
3838
3839 /*
3840 * Determine the event callbacks and set them in @event. This used
3841 * to be done via struct cftype but cgroup core no longer knows
3842 * about these events. The following is crude but the whole thing
3843 * is for compatibility anyway.
3844 *
3845 * DO NOT ADD NEW FILES.
3846 */
3847 name = cfile.file->f_path.dentry->d_name.name;
3848
3849 if (!strcmp(name, "memory.usage_in_bytes")) {
3850 event->register_event = mem_cgroup_usage_register_event;
3851 event->unregister_event = mem_cgroup_usage_unregister_event;
3852 } else if (!strcmp(name, "memory.oom_control")) {
3853 event->register_event = mem_cgroup_oom_register_event;
3854 event->unregister_event = mem_cgroup_oom_unregister_event;
3855 } else if (!strcmp(name, "memory.pressure_level")) {
3856 event->register_event = vmpressure_register_event;
3857 event->unregister_event = vmpressure_unregister_event;
3858 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3859 event->register_event = memsw_cgroup_usage_register_event;
3860 event->unregister_event = memsw_cgroup_usage_unregister_event;
3861 } else {
3862 ret = -EINVAL;
3863 goto out_put_cfile;
3864 }
3865
3866 /*
3867 * Verify @cfile should belong to @css. Also, remaining events are
3868 * automatically removed on cgroup destruction but the removal is
3869 * asynchronous, so take an extra ref on @css.
3870 */
3871 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3872 &memory_cgrp_subsys);
3873 ret = -EINVAL;
3874 if (IS_ERR(cfile_css))
3875 goto out_put_cfile;
3876 if (cfile_css != css) {
3877 css_put(cfile_css);
3878 goto out_put_cfile;
3879 }
3880
3881 ret = event->register_event(memcg, event->eventfd, buf);
3882 if (ret)
3883 goto out_put_css;
3884
3885 efile.file->f_op->poll(efile.file, &event->pt);
3886
3887 spin_lock(&memcg->event_list_lock);
3888 list_add(&event->list, &memcg->event_list);
3889 spin_unlock(&memcg->event_list_lock);
3890
3891 fdput(cfile);
3892 fdput(efile);
3893
3894 return nbytes;
3895
3896 out_put_css:
3897 css_put(css);
3898 out_put_cfile:
3899 fdput(cfile);
3900 out_put_eventfd:
3901 eventfd_ctx_put(event->eventfd);
3902 out_put_efile:
3903 fdput(efile);
3904 out_kfree:
3905 kfree(event);
3906
3907 return ret;
3908 }
3909
3910 static struct cftype mem_cgroup_legacy_files[] = {
3911 {
3912 .name = "usage_in_bytes",
3913 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3914 .read_u64 = mem_cgroup_read_u64,
3915 },
3916 {
3917 .name = "max_usage_in_bytes",
3918 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3919 .write = mem_cgroup_reset,
3920 .read_u64 = mem_cgroup_read_u64,
3921 },
3922 {
3923 .name = "limit_in_bytes",
3924 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3925 .write = mem_cgroup_write,
3926 .read_u64 = mem_cgroup_read_u64,
3927 },
3928 {
3929 .name = "soft_limit_in_bytes",
3930 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3931 .write = mem_cgroup_write,
3932 .read_u64 = mem_cgroup_read_u64,
3933 },
3934 {
3935 .name = "failcnt",
3936 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3937 .write = mem_cgroup_reset,
3938 .read_u64 = mem_cgroup_read_u64,
3939 },
3940 {
3941 .name = "stat",
3942 .seq_show = memcg_stat_show,
3943 },
3944 {
3945 .name = "force_empty",
3946 .write = mem_cgroup_force_empty_write,
3947 },
3948 {
3949 .name = "use_hierarchy",
3950 .write_u64 = mem_cgroup_hierarchy_write,
3951 .read_u64 = mem_cgroup_hierarchy_read,
3952 },
3953 {
3954 .name = "cgroup.event_control", /* XXX: for compat */
3955 .write = memcg_write_event_control,
3956 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3957 },
3958 {
3959 .name = "swappiness",
3960 .read_u64 = mem_cgroup_swappiness_read,
3961 .write_u64 = mem_cgroup_swappiness_write,
3962 },
3963 {
3964 .name = "move_charge_at_immigrate",
3965 .read_u64 = mem_cgroup_move_charge_read,
3966 .write_u64 = mem_cgroup_move_charge_write,
3967 },
3968 {
3969 .name = "oom_control",
3970 .seq_show = mem_cgroup_oom_control_read,
3971 .write_u64 = mem_cgroup_oom_control_write,
3972 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3973 },
3974 {
3975 .name = "pressure_level",
3976 },
3977 #ifdef CONFIG_NUMA
3978 {
3979 .name = "numa_stat",
3980 .seq_show = memcg_numa_stat_show,
3981 },
3982 #endif
3983 {
3984 .name = "kmem.limit_in_bytes",
3985 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3986 .write = mem_cgroup_write,
3987 .read_u64 = mem_cgroup_read_u64,
3988 },
3989 {
3990 .name = "kmem.usage_in_bytes",
3991 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3992 .read_u64 = mem_cgroup_read_u64,
3993 },
3994 {
3995 .name = "kmem.failcnt",
3996 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3997 .write = mem_cgroup_reset,
3998 .read_u64 = mem_cgroup_read_u64,
3999 },
4000 {
4001 .name = "kmem.max_usage_in_bytes",
4002 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4003 .write = mem_cgroup_reset,
4004 .read_u64 = mem_cgroup_read_u64,
4005 },
4006 #ifdef CONFIG_SLABINFO
4007 {
4008 .name = "kmem.slabinfo",
4009 .seq_start = memcg_slab_start,
4010 .seq_next = memcg_slab_next,
4011 .seq_stop = memcg_slab_stop,
4012 .seq_show = memcg_slab_show,
4013 },
4014 #endif
4015 {
4016 .name = "kmem.tcp.limit_in_bytes",
4017 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4018 .write = mem_cgroup_write,
4019 .read_u64 = mem_cgroup_read_u64,
4020 },
4021 {
4022 .name = "kmem.tcp.usage_in_bytes",
4023 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4024 .read_u64 = mem_cgroup_read_u64,
4025 },
4026 {
4027 .name = "kmem.tcp.failcnt",
4028 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4029 .write = mem_cgroup_reset,
4030 .read_u64 = mem_cgroup_read_u64,
4031 },
4032 {
4033 .name = "kmem.tcp.max_usage_in_bytes",
4034 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4035 .write = mem_cgroup_reset,
4036 .read_u64 = mem_cgroup_read_u64,
4037 },
4038 { }, /* terminate */
4039 };
4040
4041 /*
4042 * Private memory cgroup IDR
4043 *
4044 * Swap-out records and page cache shadow entries need to store memcg
4045 * references in constrained space, so we maintain an ID space that is
4046 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4047 * memory-controlled cgroups to 64k.
4048 *
4049 * However, there usually are many references to the oflline CSS after
4050 * the cgroup has been destroyed, such as page cache or reclaimable
4051 * slab objects, that don't need to hang on to the ID. We want to keep
4052 * those dead CSS from occupying IDs, or we might quickly exhaust the
4053 * relatively small ID space and prevent the creation of new cgroups
4054 * even when there are much fewer than 64k cgroups - possibly none.
4055 *
4056 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4057 * be freed and recycled when it's no longer needed, which is usually
4058 * when the CSS is offlined.
4059 *
4060 * The only exception to that are records of swapped out tmpfs/shmem
4061 * pages that need to be attributed to live ancestors on swapin. But
4062 * those references are manageable from userspace.
4063 */
4064
4065 static DEFINE_IDR(mem_cgroup_idr);
4066
4067 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4068 {
4069 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4070 atomic_add(n, &memcg->id.ref);
4071 }
4072
4073 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4074 {
4075 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4076 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4077 idr_remove(&mem_cgroup_idr, memcg->id.id);
4078 memcg->id.id = 0;
4079
4080 /* Memcg ID pins CSS */
4081 css_put(&memcg->css);
4082 }
4083 }
4084
4085 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4086 {
4087 mem_cgroup_id_get_many(memcg, 1);
4088 }
4089
4090 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4091 {
4092 mem_cgroup_id_put_many(memcg, 1);
4093 }
4094
4095 /**
4096 * mem_cgroup_from_id - look up a memcg from a memcg id
4097 * @id: the memcg id to look up
4098 *
4099 * Caller must hold rcu_read_lock().
4100 */
4101 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4102 {
4103 WARN_ON_ONCE(!rcu_read_lock_held());
4104 return idr_find(&mem_cgroup_idr, id);
4105 }
4106
4107 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4108 {
4109 struct mem_cgroup_per_node *pn;
4110 int tmp = node;
4111 /*
4112 * This routine is called against possible nodes.
4113 * But it's BUG to call kmalloc() against offline node.
4114 *
4115 * TODO: this routine can waste much memory for nodes which will
4116 * never be onlined. It's better to use memory hotplug callback
4117 * function.
4118 */
4119 if (!node_state(node, N_NORMAL_MEMORY))
4120 tmp = -1;
4121 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4122 if (!pn)
4123 return 1;
4124
4125 pn->lruvec_stat = alloc_percpu(struct lruvec_stat);
4126 if (!pn->lruvec_stat) {
4127 kfree(pn);
4128 return 1;
4129 }
4130
4131 lruvec_init(&pn->lruvec);
4132 pn->usage_in_excess = 0;
4133 pn->on_tree = false;
4134 pn->memcg = memcg;
4135
4136 memcg->nodeinfo[node] = pn;
4137 return 0;
4138 }
4139
4140 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4141 {
4142 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4143
4144 free_percpu(pn->lruvec_stat);
4145 kfree(pn);
4146 }
4147
4148 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4149 {
4150 int node;
4151
4152 for_each_node(node)
4153 free_mem_cgroup_per_node_info(memcg, node);
4154 free_percpu(memcg->stat);
4155 kfree(memcg);
4156 }
4157
4158 static void mem_cgroup_free(struct mem_cgroup *memcg)
4159 {
4160 memcg_wb_domain_exit(memcg);
4161 __mem_cgroup_free(memcg);
4162 }
4163
4164 static struct mem_cgroup *mem_cgroup_alloc(void)
4165 {
4166 struct mem_cgroup *memcg;
4167 size_t size;
4168 int node;
4169
4170 size = sizeof(struct mem_cgroup);
4171 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4172
4173 memcg = kzalloc(size, GFP_KERNEL);
4174 if (!memcg)
4175 return NULL;
4176
4177 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4178 1, MEM_CGROUP_ID_MAX,
4179 GFP_KERNEL);
4180 if (memcg->id.id < 0)
4181 goto fail;
4182
4183 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4184 if (!memcg->stat)
4185 goto fail;
4186
4187 for_each_node(node)
4188 if (alloc_mem_cgroup_per_node_info(memcg, node))
4189 goto fail;
4190
4191 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4192 goto fail;
4193
4194 INIT_WORK(&memcg->high_work, high_work_func);
4195 memcg->last_scanned_node = MAX_NUMNODES;
4196 INIT_LIST_HEAD(&memcg->oom_notify);
4197 mutex_init(&memcg->thresholds_lock);
4198 spin_lock_init(&memcg->move_lock);
4199 vmpressure_init(&memcg->vmpressure);
4200 INIT_LIST_HEAD(&memcg->event_list);
4201 spin_lock_init(&memcg->event_list_lock);
4202 memcg->socket_pressure = jiffies;
4203 #ifndef CONFIG_SLOB
4204 memcg->kmemcg_id = -1;
4205 #endif
4206 #ifdef CONFIG_CGROUP_WRITEBACK
4207 INIT_LIST_HEAD(&memcg->cgwb_list);
4208 #endif
4209 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4210 return memcg;
4211 fail:
4212 if (memcg->id.id > 0)
4213 idr_remove(&mem_cgroup_idr, memcg->id.id);
4214 __mem_cgroup_free(memcg);
4215 return NULL;
4216 }
4217
4218 static struct cgroup_subsys_state * __ref
4219 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4220 {
4221 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4222 struct mem_cgroup *memcg;
4223 long error = -ENOMEM;
4224
4225 memcg = mem_cgroup_alloc();
4226 if (!memcg)
4227 return ERR_PTR(error);
4228
4229 memcg->high = PAGE_COUNTER_MAX;
4230 memcg->soft_limit = PAGE_COUNTER_MAX;
4231 if (parent) {
4232 memcg->swappiness = mem_cgroup_swappiness(parent);
4233 memcg->oom_kill_disable = parent->oom_kill_disable;
4234 }
4235 if (parent && parent->use_hierarchy) {
4236 memcg->use_hierarchy = true;
4237 page_counter_init(&memcg->memory, &parent->memory);
4238 page_counter_init(&memcg->swap, &parent->swap);
4239 page_counter_init(&memcg->memsw, &parent->memsw);
4240 page_counter_init(&memcg->kmem, &parent->kmem);
4241 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4242 } else {
4243 page_counter_init(&memcg->memory, NULL);
4244 page_counter_init(&memcg->swap, NULL);
4245 page_counter_init(&memcg->memsw, NULL);
4246 page_counter_init(&memcg->kmem, NULL);
4247 page_counter_init(&memcg->tcpmem, NULL);
4248 /*
4249 * Deeper hierachy with use_hierarchy == false doesn't make
4250 * much sense so let cgroup subsystem know about this
4251 * unfortunate state in our controller.
4252 */
4253 if (parent != root_mem_cgroup)
4254 memory_cgrp_subsys.broken_hierarchy = true;
4255 }
4256
4257 /* The following stuff does not apply to the root */
4258 if (!parent) {
4259 root_mem_cgroup = memcg;
4260 return &memcg->css;
4261 }
4262
4263 error = memcg_online_kmem(memcg);
4264 if (error)
4265 goto fail;
4266
4267 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4268 static_branch_inc(&memcg_sockets_enabled_key);
4269
4270 return &memcg->css;
4271 fail:
4272 mem_cgroup_free(memcg);
4273 return ERR_PTR(-ENOMEM);
4274 }
4275
4276 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4277 {
4278 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4279
4280 /* Online state pins memcg ID, memcg ID pins CSS */
4281 atomic_set(&memcg->id.ref, 1);
4282 css_get(css);
4283 return 0;
4284 }
4285
4286 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4287 {
4288 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4289 struct mem_cgroup_event *event, *tmp;
4290
4291 /*
4292 * Unregister events and notify userspace.
4293 * Notify userspace about cgroup removing only after rmdir of cgroup
4294 * directory to avoid race between userspace and kernelspace.
4295 */
4296 spin_lock(&memcg->event_list_lock);
4297 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4298 list_del_init(&event->list);
4299 schedule_work(&event->remove);
4300 }
4301 spin_unlock(&memcg->event_list_lock);
4302
4303 memcg_offline_kmem(memcg);
4304 wb_memcg_offline(memcg);
4305
4306 mem_cgroup_id_put(memcg);
4307 }
4308
4309 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4310 {
4311 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4312
4313 invalidate_reclaim_iterators(memcg);
4314 }
4315
4316 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4317 {
4318 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4319
4320 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4321 static_branch_dec(&memcg_sockets_enabled_key);
4322
4323 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4324 static_branch_dec(&memcg_sockets_enabled_key);
4325
4326 vmpressure_cleanup(&memcg->vmpressure);
4327 cancel_work_sync(&memcg->high_work);
4328 mem_cgroup_remove_from_trees(memcg);
4329 memcg_free_kmem(memcg);
4330 mem_cgroup_free(memcg);
4331 }
4332
4333 /**
4334 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4335 * @css: the target css
4336 *
4337 * Reset the states of the mem_cgroup associated with @css. This is
4338 * invoked when the userland requests disabling on the default hierarchy
4339 * but the memcg is pinned through dependency. The memcg should stop
4340 * applying policies and should revert to the vanilla state as it may be
4341 * made visible again.
4342 *
4343 * The current implementation only resets the essential configurations.
4344 * This needs to be expanded to cover all the visible parts.
4345 */
4346 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4347 {
4348 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4349
4350 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4351 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4352 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4353 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4354 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4355 memcg->low = 0;
4356 memcg->high = PAGE_COUNTER_MAX;
4357 memcg->soft_limit = PAGE_COUNTER_MAX;
4358 memcg_wb_domain_size_changed(memcg);
4359 }
4360
4361 #ifdef CONFIG_MMU
4362 /* Handlers for move charge at task migration. */
4363 static int mem_cgroup_do_precharge(unsigned long count)
4364 {
4365 int ret;
4366
4367 /* Try a single bulk charge without reclaim first, kswapd may wake */
4368 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4369 if (!ret) {
4370 mc.precharge += count;
4371 return ret;
4372 }
4373
4374 /* Try charges one by one with reclaim, but do not retry */
4375 while (count--) {
4376 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4377 if (ret)
4378 return ret;
4379 mc.precharge++;
4380 cond_resched();
4381 }
4382 return 0;
4383 }
4384
4385 union mc_target {
4386 struct page *page;
4387 swp_entry_t ent;
4388 };
4389
4390 enum mc_target_type {
4391 MC_TARGET_NONE = 0,
4392 MC_TARGET_PAGE,
4393 MC_TARGET_SWAP,
4394 };
4395
4396 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4397 unsigned long addr, pte_t ptent)
4398 {
4399 struct page *page = vm_normal_page(vma, addr, ptent);
4400
4401 if (!page || !page_mapped(page))
4402 return NULL;
4403 if (PageAnon(page)) {
4404 if (!(mc.flags & MOVE_ANON))
4405 return NULL;
4406 } else {
4407 if (!(mc.flags & MOVE_FILE))
4408 return NULL;
4409 }
4410 if (!get_page_unless_zero(page))
4411 return NULL;
4412
4413 return page;
4414 }
4415
4416 #ifdef CONFIG_SWAP
4417 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4418 pte_t ptent, swp_entry_t *entry)
4419 {
4420 struct page *page = NULL;
4421 swp_entry_t ent = pte_to_swp_entry(ptent);
4422
4423 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4424 return NULL;
4425 /*
4426 * Because lookup_swap_cache() updates some statistics counter,
4427 * we call find_get_page() with swapper_space directly.
4428 */
4429 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4430 if (do_memsw_account())
4431 entry->val = ent.val;
4432
4433 return page;
4434 }
4435 #else
4436 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4437 pte_t ptent, swp_entry_t *entry)
4438 {
4439 return NULL;
4440 }
4441 #endif
4442
4443 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4444 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4445 {
4446 struct page *page = NULL;
4447 struct address_space *mapping;
4448 pgoff_t pgoff;
4449
4450 if (!vma->vm_file) /* anonymous vma */
4451 return NULL;
4452 if (!(mc.flags & MOVE_FILE))
4453 return NULL;
4454
4455 mapping = vma->vm_file->f_mapping;
4456 pgoff = linear_page_index(vma, addr);
4457
4458 /* page is moved even if it's not RSS of this task(page-faulted). */
4459 #ifdef CONFIG_SWAP
4460 /* shmem/tmpfs may report page out on swap: account for that too. */
4461 if (shmem_mapping(mapping)) {
4462 page = find_get_entry(mapping, pgoff);
4463 if (radix_tree_exceptional_entry(page)) {
4464 swp_entry_t swp = radix_to_swp_entry(page);
4465 if (do_memsw_account())
4466 *entry = swp;
4467 page = find_get_page(swap_address_space(swp),
4468 swp_offset(swp));
4469 }
4470 } else
4471 page = find_get_page(mapping, pgoff);
4472 #else
4473 page = find_get_page(mapping, pgoff);
4474 #endif
4475 return page;
4476 }
4477
4478 /**
4479 * mem_cgroup_move_account - move account of the page
4480 * @page: the page
4481 * @compound: charge the page as compound or small page
4482 * @from: mem_cgroup which the page is moved from.
4483 * @to: mem_cgroup which the page is moved to. @from != @to.
4484 *
4485 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4486 *
4487 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4488 * from old cgroup.
4489 */
4490 static int mem_cgroup_move_account(struct page *page,
4491 bool compound,
4492 struct mem_cgroup *from,
4493 struct mem_cgroup *to)
4494 {
4495 unsigned long flags;
4496 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4497 int ret;
4498 bool anon;
4499
4500 VM_BUG_ON(from == to);
4501 VM_BUG_ON_PAGE(PageLRU(page), page);
4502 VM_BUG_ON(compound && !PageTransHuge(page));
4503
4504 /*
4505 * Prevent mem_cgroup_migrate() from looking at
4506 * page->mem_cgroup of its source page while we change it.
4507 */
4508 ret = -EBUSY;
4509 if (!trylock_page(page))
4510 goto out;
4511
4512 ret = -EINVAL;
4513 if (page->mem_cgroup != from)
4514 goto out_unlock;
4515
4516 anon = PageAnon(page);
4517
4518 spin_lock_irqsave(&from->move_lock, flags);
4519
4520 if (!anon && page_mapped(page)) {
4521 __this_cpu_sub(from->stat->count[NR_FILE_MAPPED], nr_pages);
4522 __this_cpu_add(to->stat->count[NR_FILE_MAPPED], nr_pages);
4523 }
4524
4525 /*
4526 * move_lock grabbed above and caller set from->moving_account, so
4527 * mod_memcg_page_state will serialize updates to PageDirty.
4528 * So mapping should be stable for dirty pages.
4529 */
4530 if (!anon && PageDirty(page)) {
4531 struct address_space *mapping = page_mapping(page);
4532
4533 if (mapping_cap_account_dirty(mapping)) {
4534 __this_cpu_sub(from->stat->count[NR_FILE_DIRTY],
4535 nr_pages);
4536 __this_cpu_add(to->stat->count[NR_FILE_DIRTY],
4537 nr_pages);
4538 }
4539 }
4540
4541 if (PageWriteback(page)) {
4542 __this_cpu_sub(from->stat->count[NR_WRITEBACK], nr_pages);
4543 __this_cpu_add(to->stat->count[NR_WRITEBACK], nr_pages);
4544 }
4545
4546 /*
4547 * It is safe to change page->mem_cgroup here because the page
4548 * is referenced, charged, and isolated - we can't race with
4549 * uncharging, charging, migration, or LRU putback.
4550 */
4551
4552 /* caller should have done css_get */
4553 page->mem_cgroup = to;
4554 spin_unlock_irqrestore(&from->move_lock, flags);
4555
4556 ret = 0;
4557
4558 local_irq_disable();
4559 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4560 memcg_check_events(to, page);
4561 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4562 memcg_check_events(from, page);
4563 local_irq_enable();
4564 out_unlock:
4565 unlock_page(page);
4566 out:
4567 return ret;
4568 }
4569
4570 /**
4571 * get_mctgt_type - get target type of moving charge
4572 * @vma: the vma the pte to be checked belongs
4573 * @addr: the address corresponding to the pte to be checked
4574 * @ptent: the pte to be checked
4575 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4576 *
4577 * Returns
4578 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4579 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4580 * move charge. if @target is not NULL, the page is stored in target->page
4581 * with extra refcnt got(Callers should handle it).
4582 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4583 * target for charge migration. if @target is not NULL, the entry is stored
4584 * in target->ent.
4585 *
4586 * Called with pte lock held.
4587 */
4588
4589 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4590 unsigned long addr, pte_t ptent, union mc_target *target)
4591 {
4592 struct page *page = NULL;
4593 enum mc_target_type ret = MC_TARGET_NONE;
4594 swp_entry_t ent = { .val = 0 };
4595
4596 if (pte_present(ptent))
4597 page = mc_handle_present_pte(vma, addr, ptent);
4598 else if (is_swap_pte(ptent))
4599 page = mc_handle_swap_pte(vma, ptent, &ent);
4600 else if (pte_none(ptent))
4601 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4602
4603 if (!page && !ent.val)
4604 return ret;
4605 if (page) {
4606 /*
4607 * Do only loose check w/o serialization.
4608 * mem_cgroup_move_account() checks the page is valid or
4609 * not under LRU exclusion.
4610 */
4611 if (page->mem_cgroup == mc.from) {
4612 ret = MC_TARGET_PAGE;
4613 if (target)
4614 target->page = page;
4615 }
4616 if (!ret || !target)
4617 put_page(page);
4618 }
4619 /* There is a swap entry and a page doesn't exist or isn't charged */
4620 if (ent.val && !ret &&
4621 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4622 ret = MC_TARGET_SWAP;
4623 if (target)
4624 target->ent = ent;
4625 }
4626 return ret;
4627 }
4628
4629 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4630 /*
4631 * We don't consider swapping or file mapped pages because THP does not
4632 * support them for now.
4633 * Caller should make sure that pmd_trans_huge(pmd) is true.
4634 */
4635 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4636 unsigned long addr, pmd_t pmd, union mc_target *target)
4637 {
4638 struct page *page = NULL;
4639 enum mc_target_type ret = MC_TARGET_NONE;
4640
4641 page = pmd_page(pmd);
4642 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4643 if (!(mc.flags & MOVE_ANON))
4644 return ret;
4645 if (page->mem_cgroup == mc.from) {
4646 ret = MC_TARGET_PAGE;
4647 if (target) {
4648 get_page(page);
4649 target->page = page;
4650 }
4651 }
4652 return ret;
4653 }
4654 #else
4655 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4656 unsigned long addr, pmd_t pmd, union mc_target *target)
4657 {
4658 return MC_TARGET_NONE;
4659 }
4660 #endif
4661
4662 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4663 unsigned long addr, unsigned long end,
4664 struct mm_walk *walk)
4665 {
4666 struct vm_area_struct *vma = walk->vma;
4667 pte_t *pte;
4668 spinlock_t *ptl;
4669
4670 ptl = pmd_trans_huge_lock(pmd, vma);
4671 if (ptl) {
4672 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4673 mc.precharge += HPAGE_PMD_NR;
4674 spin_unlock(ptl);
4675 return 0;
4676 }
4677
4678 if (pmd_trans_unstable(pmd))
4679 return 0;
4680 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4681 for (; addr != end; pte++, addr += PAGE_SIZE)
4682 if (get_mctgt_type(vma, addr, *pte, NULL))
4683 mc.precharge++; /* increment precharge temporarily */
4684 pte_unmap_unlock(pte - 1, ptl);
4685 cond_resched();
4686
4687 return 0;
4688 }
4689
4690 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4691 {
4692 unsigned long precharge;
4693
4694 struct mm_walk mem_cgroup_count_precharge_walk = {
4695 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4696 .mm = mm,
4697 };
4698 down_read(&mm->mmap_sem);
4699 walk_page_range(0, mm->highest_vm_end,
4700 &mem_cgroup_count_precharge_walk);
4701 up_read(&mm->mmap_sem);
4702
4703 precharge = mc.precharge;
4704 mc.precharge = 0;
4705
4706 return precharge;
4707 }
4708
4709 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4710 {
4711 unsigned long precharge = mem_cgroup_count_precharge(mm);
4712
4713 VM_BUG_ON(mc.moving_task);
4714 mc.moving_task = current;
4715 return mem_cgroup_do_precharge(precharge);
4716 }
4717
4718 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4719 static void __mem_cgroup_clear_mc(void)
4720 {
4721 struct mem_cgroup *from = mc.from;
4722 struct mem_cgroup *to = mc.to;
4723
4724 /* we must uncharge all the leftover precharges from mc.to */
4725 if (mc.precharge) {
4726 cancel_charge(mc.to, mc.precharge);
4727 mc.precharge = 0;
4728 }
4729 /*
4730 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4731 * we must uncharge here.
4732 */
4733 if (mc.moved_charge) {
4734 cancel_charge(mc.from, mc.moved_charge);
4735 mc.moved_charge = 0;
4736 }
4737 /* we must fixup refcnts and charges */
4738 if (mc.moved_swap) {
4739 /* uncharge swap account from the old cgroup */
4740 if (!mem_cgroup_is_root(mc.from))
4741 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4742
4743 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4744
4745 /*
4746 * we charged both to->memory and to->memsw, so we
4747 * should uncharge to->memory.
4748 */
4749 if (!mem_cgroup_is_root(mc.to))
4750 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4751
4752 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4753 css_put_many(&mc.to->css, mc.moved_swap);
4754
4755 mc.moved_swap = 0;
4756 }
4757 memcg_oom_recover(from);
4758 memcg_oom_recover(to);
4759 wake_up_all(&mc.waitq);
4760 }
4761
4762 static void mem_cgroup_clear_mc(void)
4763 {
4764 struct mm_struct *mm = mc.mm;
4765
4766 /*
4767 * we must clear moving_task before waking up waiters at the end of
4768 * task migration.
4769 */
4770 mc.moving_task = NULL;
4771 __mem_cgroup_clear_mc();
4772 spin_lock(&mc.lock);
4773 mc.from = NULL;
4774 mc.to = NULL;
4775 mc.mm = NULL;
4776 spin_unlock(&mc.lock);
4777
4778 mmput(mm);
4779 }
4780
4781 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4782 {
4783 struct cgroup_subsys_state *css;
4784 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4785 struct mem_cgroup *from;
4786 struct task_struct *leader, *p;
4787 struct mm_struct *mm;
4788 unsigned long move_flags;
4789 int ret = 0;
4790
4791 /* charge immigration isn't supported on the default hierarchy */
4792 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4793 return 0;
4794
4795 /*
4796 * Multi-process migrations only happen on the default hierarchy
4797 * where charge immigration is not used. Perform charge
4798 * immigration if @tset contains a leader and whine if there are
4799 * multiple.
4800 */
4801 p = NULL;
4802 cgroup_taskset_for_each_leader(leader, css, tset) {
4803 WARN_ON_ONCE(p);
4804 p = leader;
4805 memcg = mem_cgroup_from_css(css);
4806 }
4807 if (!p)
4808 return 0;
4809
4810 /*
4811 * We are now commited to this value whatever it is. Changes in this
4812 * tunable will only affect upcoming migrations, not the current one.
4813 * So we need to save it, and keep it going.
4814 */
4815 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4816 if (!move_flags)
4817 return 0;
4818
4819 from = mem_cgroup_from_task(p);
4820
4821 VM_BUG_ON(from == memcg);
4822
4823 mm = get_task_mm(p);
4824 if (!mm)
4825 return 0;
4826 /* We move charges only when we move a owner of the mm */
4827 if (mm->owner == p) {
4828 VM_BUG_ON(mc.from);
4829 VM_BUG_ON(mc.to);
4830 VM_BUG_ON(mc.precharge);
4831 VM_BUG_ON(mc.moved_charge);
4832 VM_BUG_ON(mc.moved_swap);
4833
4834 spin_lock(&mc.lock);
4835 mc.mm = mm;
4836 mc.from = from;
4837 mc.to = memcg;
4838 mc.flags = move_flags;
4839 spin_unlock(&mc.lock);
4840 /* We set mc.moving_task later */
4841
4842 ret = mem_cgroup_precharge_mc(mm);
4843 if (ret)
4844 mem_cgroup_clear_mc();
4845 } else {
4846 mmput(mm);
4847 }
4848 return ret;
4849 }
4850
4851 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4852 {
4853 if (mc.to)
4854 mem_cgroup_clear_mc();
4855 }
4856
4857 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4858 unsigned long addr, unsigned long end,
4859 struct mm_walk *walk)
4860 {
4861 int ret = 0;
4862 struct vm_area_struct *vma = walk->vma;
4863 pte_t *pte;
4864 spinlock_t *ptl;
4865 enum mc_target_type target_type;
4866 union mc_target target;
4867 struct page *page;
4868
4869 ptl = pmd_trans_huge_lock(pmd, vma);
4870 if (ptl) {
4871 if (mc.precharge < HPAGE_PMD_NR) {
4872 spin_unlock(ptl);
4873 return 0;
4874 }
4875 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4876 if (target_type == MC_TARGET_PAGE) {
4877 page = target.page;
4878 if (!isolate_lru_page(page)) {
4879 if (!mem_cgroup_move_account(page, true,
4880 mc.from, mc.to)) {
4881 mc.precharge -= HPAGE_PMD_NR;
4882 mc.moved_charge += HPAGE_PMD_NR;
4883 }
4884 putback_lru_page(page);
4885 }
4886 put_page(page);
4887 }
4888 spin_unlock(ptl);
4889 return 0;
4890 }
4891
4892 if (pmd_trans_unstable(pmd))
4893 return 0;
4894 retry:
4895 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4896 for (; addr != end; addr += PAGE_SIZE) {
4897 pte_t ptent = *(pte++);
4898 swp_entry_t ent;
4899
4900 if (!mc.precharge)
4901 break;
4902
4903 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4904 case MC_TARGET_PAGE:
4905 page = target.page;
4906 /*
4907 * We can have a part of the split pmd here. Moving it
4908 * can be done but it would be too convoluted so simply
4909 * ignore such a partial THP and keep it in original
4910 * memcg. There should be somebody mapping the head.
4911 */
4912 if (PageTransCompound(page))
4913 goto put;
4914 if (isolate_lru_page(page))
4915 goto put;
4916 if (!mem_cgroup_move_account(page, false,
4917 mc.from, mc.to)) {
4918 mc.precharge--;
4919 /* we uncharge from mc.from later. */
4920 mc.moved_charge++;
4921 }
4922 putback_lru_page(page);
4923 put: /* get_mctgt_type() gets the page */
4924 put_page(page);
4925 break;
4926 case MC_TARGET_SWAP:
4927 ent = target.ent;
4928 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4929 mc.precharge--;
4930 /* we fixup refcnts and charges later. */
4931 mc.moved_swap++;
4932 }
4933 break;
4934 default:
4935 break;
4936 }
4937 }
4938 pte_unmap_unlock(pte - 1, ptl);
4939 cond_resched();
4940
4941 if (addr != end) {
4942 /*
4943 * We have consumed all precharges we got in can_attach().
4944 * We try charge one by one, but don't do any additional
4945 * charges to mc.to if we have failed in charge once in attach()
4946 * phase.
4947 */
4948 ret = mem_cgroup_do_precharge(1);
4949 if (!ret)
4950 goto retry;
4951 }
4952
4953 return ret;
4954 }
4955
4956 static void mem_cgroup_move_charge(void)
4957 {
4958 struct mm_walk mem_cgroup_move_charge_walk = {
4959 .pmd_entry = mem_cgroup_move_charge_pte_range,
4960 .mm = mc.mm,
4961 };
4962
4963 lru_add_drain_all();
4964 /*
4965 * Signal lock_page_memcg() to take the memcg's move_lock
4966 * while we're moving its pages to another memcg. Then wait
4967 * for already started RCU-only updates to finish.
4968 */
4969 atomic_inc(&mc.from->moving_account);
4970 synchronize_rcu();
4971 retry:
4972 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4973 /*
4974 * Someone who are holding the mmap_sem might be waiting in
4975 * waitq. So we cancel all extra charges, wake up all waiters,
4976 * and retry. Because we cancel precharges, we might not be able
4977 * to move enough charges, but moving charge is a best-effort
4978 * feature anyway, so it wouldn't be a big problem.
4979 */
4980 __mem_cgroup_clear_mc();
4981 cond_resched();
4982 goto retry;
4983 }
4984 /*
4985 * When we have consumed all precharges and failed in doing
4986 * additional charge, the page walk just aborts.
4987 */
4988 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
4989
4990 up_read(&mc.mm->mmap_sem);
4991 atomic_dec(&mc.from->moving_account);
4992 }
4993
4994 static void mem_cgroup_move_task(void)
4995 {
4996 if (mc.to) {
4997 mem_cgroup_move_charge();
4998 mem_cgroup_clear_mc();
4999 }
5000 }
5001 #else /* !CONFIG_MMU */
5002 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5003 {
5004 return 0;
5005 }
5006 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5007 {
5008 }
5009 static void mem_cgroup_move_task(void)
5010 {
5011 }
5012 #endif
5013
5014 /*
5015 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5016 * to verify whether we're attached to the default hierarchy on each mount
5017 * attempt.
5018 */
5019 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5020 {
5021 /*
5022 * use_hierarchy is forced on the default hierarchy. cgroup core
5023 * guarantees that @root doesn't have any children, so turning it
5024 * on for the root memcg is enough.
5025 */
5026 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5027 root_mem_cgroup->use_hierarchy = true;
5028 else
5029 root_mem_cgroup->use_hierarchy = false;
5030 }
5031
5032 static u64 memory_current_read(struct cgroup_subsys_state *css,
5033 struct cftype *cft)
5034 {
5035 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5036
5037 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5038 }
5039
5040 static int memory_low_show(struct seq_file *m, void *v)
5041 {
5042 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5043 unsigned long low = READ_ONCE(memcg->low);
5044
5045 if (low == PAGE_COUNTER_MAX)
5046 seq_puts(m, "max\n");
5047 else
5048 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5049
5050 return 0;
5051 }
5052
5053 static ssize_t memory_low_write(struct kernfs_open_file *of,
5054 char *buf, size_t nbytes, loff_t off)
5055 {
5056 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5057 unsigned long low;
5058 int err;
5059
5060 buf = strstrip(buf);
5061 err = page_counter_memparse(buf, "max", &low);
5062 if (err)
5063 return err;
5064
5065 memcg->low = low;
5066
5067 return nbytes;
5068 }
5069
5070 static int memory_high_show(struct seq_file *m, void *v)
5071 {
5072 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5073 unsigned long high = READ_ONCE(memcg->high);
5074
5075 if (high == PAGE_COUNTER_MAX)
5076 seq_puts(m, "max\n");
5077 else
5078 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5079
5080 return 0;
5081 }
5082
5083 static ssize_t memory_high_write(struct kernfs_open_file *of,
5084 char *buf, size_t nbytes, loff_t off)
5085 {
5086 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5087 unsigned long nr_pages;
5088 unsigned long high;
5089 int err;
5090
5091 buf = strstrip(buf);
5092 err = page_counter_memparse(buf, "max", &high);
5093 if (err)
5094 return err;
5095
5096 memcg->high = high;
5097
5098 nr_pages = page_counter_read(&memcg->memory);
5099 if (nr_pages > high)
5100 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5101 GFP_KERNEL, true);
5102
5103 memcg_wb_domain_size_changed(memcg);
5104 return nbytes;
5105 }
5106
5107 static int memory_max_show(struct seq_file *m, void *v)
5108 {
5109 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5110 unsigned long max = READ_ONCE(memcg->memory.limit);
5111
5112 if (max == PAGE_COUNTER_MAX)
5113 seq_puts(m, "max\n");
5114 else
5115 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5116
5117 return 0;
5118 }
5119
5120 static ssize_t memory_max_write(struct kernfs_open_file *of,
5121 char *buf, size_t nbytes, loff_t off)
5122 {
5123 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5124 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5125 bool drained = false;
5126 unsigned long max;
5127 int err;
5128
5129 buf = strstrip(buf);
5130 err = page_counter_memparse(buf, "max", &max);
5131 if (err)
5132 return err;
5133
5134 xchg(&memcg->memory.limit, max);
5135
5136 for (;;) {
5137 unsigned long nr_pages = page_counter_read(&memcg->memory);
5138
5139 if (nr_pages <= max)
5140 break;
5141
5142 if (signal_pending(current)) {
5143 err = -EINTR;
5144 break;
5145 }
5146
5147 if (!drained) {
5148 drain_all_stock(memcg);
5149 drained = true;
5150 continue;
5151 }
5152
5153 if (nr_reclaims) {
5154 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5155 GFP_KERNEL, true))
5156 nr_reclaims--;
5157 continue;
5158 }
5159
5160 mem_cgroup_event(memcg, MEMCG_OOM);
5161 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5162 break;
5163 }
5164
5165 memcg_wb_domain_size_changed(memcg);
5166 return nbytes;
5167 }
5168
5169 static int memory_events_show(struct seq_file *m, void *v)
5170 {
5171 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5172
5173 seq_printf(m, "low %lu\n", memcg_sum_events(memcg, MEMCG_LOW));
5174 seq_printf(m, "high %lu\n", memcg_sum_events(memcg, MEMCG_HIGH));
5175 seq_printf(m, "max %lu\n", memcg_sum_events(memcg, MEMCG_MAX));
5176 seq_printf(m, "oom %lu\n", memcg_sum_events(memcg, MEMCG_OOM));
5177 seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
5178
5179 return 0;
5180 }
5181
5182 static int memory_stat_show(struct seq_file *m, void *v)
5183 {
5184 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5185 unsigned long stat[MEMCG_NR_STAT];
5186 unsigned long events[MEMCG_NR_EVENTS];
5187 int i;
5188
5189 /*
5190 * Provide statistics on the state of the memory subsystem as
5191 * well as cumulative event counters that show past behavior.
5192 *
5193 * This list is ordered following a combination of these gradients:
5194 * 1) generic big picture -> specifics and details
5195 * 2) reflecting userspace activity -> reflecting kernel heuristics
5196 *
5197 * Current memory state:
5198 */
5199
5200 tree_stat(memcg, stat);
5201 tree_events(memcg, events);
5202
5203 seq_printf(m, "anon %llu\n",
5204 (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5205 seq_printf(m, "file %llu\n",
5206 (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5207 seq_printf(m, "kernel_stack %llu\n",
5208 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5209 seq_printf(m, "slab %llu\n",
5210 (u64)(stat[NR_SLAB_RECLAIMABLE] +
5211 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5212 seq_printf(m, "sock %llu\n",
5213 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5214
5215 seq_printf(m, "shmem %llu\n",
5216 (u64)stat[NR_SHMEM] * PAGE_SIZE);
5217 seq_printf(m, "file_mapped %llu\n",
5218 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5219 seq_printf(m, "file_dirty %llu\n",
5220 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5221 seq_printf(m, "file_writeback %llu\n",
5222 (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5223
5224 for (i = 0; i < NR_LRU_LISTS; i++) {
5225 struct mem_cgroup *mi;
5226 unsigned long val = 0;
5227
5228 for_each_mem_cgroup_tree(mi, memcg)
5229 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5230 seq_printf(m, "%s %llu\n",
5231 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5232 }
5233
5234 seq_printf(m, "slab_reclaimable %llu\n",
5235 (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5236 seq_printf(m, "slab_unreclaimable %llu\n",
5237 (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5238
5239 /* Accumulated memory events */
5240
5241 seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5242 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5243
5244 seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5245 seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5246 events[PGSCAN_DIRECT]);
5247 seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5248 events[PGSTEAL_DIRECT]);
5249 seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5250 seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5251 seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5252 seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5253
5254 seq_printf(m, "workingset_refault %lu\n",
5255 stat[WORKINGSET_REFAULT]);
5256 seq_printf(m, "workingset_activate %lu\n",
5257 stat[WORKINGSET_ACTIVATE]);
5258 seq_printf(m, "workingset_nodereclaim %lu\n",
5259 stat[WORKINGSET_NODERECLAIM]);
5260
5261 return 0;
5262 }
5263
5264 static struct cftype memory_files[] = {
5265 {
5266 .name = "current",
5267 .flags = CFTYPE_NOT_ON_ROOT,
5268 .read_u64 = memory_current_read,
5269 },
5270 {
5271 .name = "low",
5272 .flags = CFTYPE_NOT_ON_ROOT,
5273 .seq_show = memory_low_show,
5274 .write = memory_low_write,
5275 },
5276 {
5277 .name = "high",
5278 .flags = CFTYPE_NOT_ON_ROOT,
5279 .seq_show = memory_high_show,
5280 .write = memory_high_write,
5281 },
5282 {
5283 .name = "max",
5284 .flags = CFTYPE_NOT_ON_ROOT,
5285 .seq_show = memory_max_show,
5286 .write = memory_max_write,
5287 },
5288 {
5289 .name = "events",
5290 .flags = CFTYPE_NOT_ON_ROOT,
5291 .file_offset = offsetof(struct mem_cgroup, events_file),
5292 .seq_show = memory_events_show,
5293 },
5294 {
5295 .name = "stat",
5296 .flags = CFTYPE_NOT_ON_ROOT,
5297 .seq_show = memory_stat_show,
5298 },
5299 { } /* terminate */
5300 };
5301
5302 struct cgroup_subsys memory_cgrp_subsys = {
5303 .css_alloc = mem_cgroup_css_alloc,
5304 .css_online = mem_cgroup_css_online,
5305 .css_offline = mem_cgroup_css_offline,
5306 .css_released = mem_cgroup_css_released,
5307 .css_free = mem_cgroup_css_free,
5308 .css_reset = mem_cgroup_css_reset,
5309 .can_attach = mem_cgroup_can_attach,
5310 .cancel_attach = mem_cgroup_cancel_attach,
5311 .post_attach = mem_cgroup_move_task,
5312 .bind = mem_cgroup_bind,
5313 .dfl_cftypes = memory_files,
5314 .legacy_cftypes = mem_cgroup_legacy_files,
5315 .early_init = 0,
5316 };
5317
5318 /**
5319 * mem_cgroup_low - check if memory consumption is below the normal range
5320 * @root: the top ancestor of the sub-tree being checked
5321 * @memcg: the memory cgroup to check
5322 *
5323 * Returns %true if memory consumption of @memcg, and that of all
5324 * ancestors up to (but not including) @root, is below the normal range.
5325 *
5326 * @root is exclusive; it is never low when looked at directly and isn't
5327 * checked when traversing the hierarchy.
5328 *
5329 * Excluding @root enables using memory.low to prioritize memory usage
5330 * between cgroups within a subtree of the hierarchy that is limited by
5331 * memory.high or memory.max.
5332 *
5333 * For example, given cgroup A with children B and C:
5334 *
5335 * A
5336 * / \
5337 * B C
5338 *
5339 * and
5340 *
5341 * 1. A/memory.current > A/memory.high
5342 * 2. A/B/memory.current < A/B/memory.low
5343 * 3. A/C/memory.current >= A/C/memory.low
5344 *
5345 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
5346 * should reclaim from 'C' until 'A' is no longer high or until we can
5347 * no longer reclaim from 'C'. If 'A', i.e. @root, isn't excluded by
5348 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
5349 * low and we will reclaim indiscriminately from both 'B' and 'C'.
5350 */
5351 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5352 {
5353 if (mem_cgroup_disabled())
5354 return false;
5355
5356 if (!root)
5357 root = root_mem_cgroup;
5358 if (memcg == root)
5359 return false;
5360
5361 for (; memcg != root; memcg = parent_mem_cgroup(memcg)) {
5362 if (page_counter_read(&memcg->memory) >= memcg->low)
5363 return false;
5364 }
5365
5366 return true;
5367 }
5368
5369 /**
5370 * mem_cgroup_try_charge - try charging a page
5371 * @page: page to charge
5372 * @mm: mm context of the victim
5373 * @gfp_mask: reclaim mode
5374 * @memcgp: charged memcg return
5375 * @compound: charge the page as compound or small page
5376 *
5377 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5378 * pages according to @gfp_mask if necessary.
5379 *
5380 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5381 * Otherwise, an error code is returned.
5382 *
5383 * After page->mapping has been set up, the caller must finalize the
5384 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5385 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5386 */
5387 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5388 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5389 bool compound)
5390 {
5391 struct mem_cgroup *memcg = NULL;
5392 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5393 int ret = 0;
5394
5395 if (mem_cgroup_disabled())
5396 goto out;
5397
5398 if (PageSwapCache(page)) {
5399 /*
5400 * Every swap fault against a single page tries to charge the
5401 * page, bail as early as possible. shmem_unuse() encounters
5402 * already charged pages, too. The USED bit is protected by
5403 * the page lock, which serializes swap cache removal, which
5404 * in turn serializes uncharging.
5405 */
5406 VM_BUG_ON_PAGE(!PageLocked(page), page);
5407 if (page->mem_cgroup)
5408 goto out;
5409
5410 if (do_swap_account) {
5411 swp_entry_t ent = { .val = page_private(page), };
5412 unsigned short id = lookup_swap_cgroup_id(ent);
5413
5414 rcu_read_lock();
5415 memcg = mem_cgroup_from_id(id);
5416 if (memcg && !css_tryget_online(&memcg->css))
5417 memcg = NULL;
5418 rcu_read_unlock();
5419 }
5420 }
5421
5422 if (!memcg)
5423 memcg = get_mem_cgroup_from_mm(mm);
5424
5425 ret = try_charge(memcg, gfp_mask, nr_pages);
5426
5427 css_put(&memcg->css);
5428 out:
5429 *memcgp = memcg;
5430 return ret;
5431 }
5432
5433 /**
5434 * mem_cgroup_commit_charge - commit a page charge
5435 * @page: page to charge
5436 * @memcg: memcg to charge the page to
5437 * @lrucare: page might be on LRU already
5438 * @compound: charge the page as compound or small page
5439 *
5440 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5441 * after page->mapping has been set up. This must happen atomically
5442 * as part of the page instantiation, i.e. under the page table lock
5443 * for anonymous pages, under the page lock for page and swap cache.
5444 *
5445 * In addition, the page must not be on the LRU during the commit, to
5446 * prevent racing with task migration. If it might be, use @lrucare.
5447 *
5448 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5449 */
5450 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5451 bool lrucare, bool compound)
5452 {
5453 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5454
5455 VM_BUG_ON_PAGE(!page->mapping, page);
5456 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5457
5458 if (mem_cgroup_disabled())
5459 return;
5460 /*
5461 * Swap faults will attempt to charge the same page multiple
5462 * times. But reuse_swap_page() might have removed the page
5463 * from swapcache already, so we can't check PageSwapCache().
5464 */
5465 if (!memcg)
5466 return;
5467
5468 commit_charge(page, memcg, lrucare);
5469
5470 local_irq_disable();
5471 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5472 memcg_check_events(memcg, page);
5473 local_irq_enable();
5474
5475 if (do_memsw_account() && PageSwapCache(page)) {
5476 swp_entry_t entry = { .val = page_private(page) };
5477 /*
5478 * The swap entry might not get freed for a long time,
5479 * let's not wait for it. The page already received a
5480 * memory+swap charge, drop the swap entry duplicate.
5481 */
5482 mem_cgroup_uncharge_swap(entry, nr_pages);
5483 }
5484 }
5485
5486 /**
5487 * mem_cgroup_cancel_charge - cancel a page charge
5488 * @page: page to charge
5489 * @memcg: memcg to charge the page to
5490 * @compound: charge the page as compound or small page
5491 *
5492 * Cancel a charge transaction started by mem_cgroup_try_charge().
5493 */
5494 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5495 bool compound)
5496 {
5497 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5498
5499 if (mem_cgroup_disabled())
5500 return;
5501 /*
5502 * Swap faults will attempt to charge the same page multiple
5503 * times. But reuse_swap_page() might have removed the page
5504 * from swapcache already, so we can't check PageSwapCache().
5505 */
5506 if (!memcg)
5507 return;
5508
5509 cancel_charge(memcg, nr_pages);
5510 }
5511
5512 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5513 unsigned long nr_anon, unsigned long nr_file,
5514 unsigned long nr_kmem, unsigned long nr_huge,
5515 unsigned long nr_shmem, struct page *dummy_page)
5516 {
5517 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5518 unsigned long flags;
5519
5520 if (!mem_cgroup_is_root(memcg)) {
5521 page_counter_uncharge(&memcg->memory, nr_pages);
5522 if (do_memsw_account())
5523 page_counter_uncharge(&memcg->memsw, nr_pages);
5524 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5525 page_counter_uncharge(&memcg->kmem, nr_kmem);
5526 memcg_oom_recover(memcg);
5527 }
5528
5529 local_irq_save(flags);
5530 __this_cpu_sub(memcg->stat->count[MEMCG_RSS], nr_anon);
5531 __this_cpu_sub(memcg->stat->count[MEMCG_CACHE], nr_file);
5532 __this_cpu_sub(memcg->stat->count[MEMCG_RSS_HUGE], nr_huge);
5533 __this_cpu_sub(memcg->stat->count[NR_SHMEM], nr_shmem);
5534 __this_cpu_add(memcg->stat->events[PGPGOUT], pgpgout);
5535 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5536 memcg_check_events(memcg, dummy_page);
5537 local_irq_restore(flags);
5538
5539 if (!mem_cgroup_is_root(memcg))
5540 css_put_many(&memcg->css, nr_pages);
5541 }
5542
5543 static void uncharge_list(struct list_head *page_list)
5544 {
5545 struct mem_cgroup *memcg = NULL;
5546 unsigned long nr_shmem = 0;
5547 unsigned long nr_anon = 0;
5548 unsigned long nr_file = 0;
5549 unsigned long nr_huge = 0;
5550 unsigned long nr_kmem = 0;
5551 unsigned long pgpgout = 0;
5552 struct list_head *next;
5553 struct page *page;
5554
5555 /*
5556 * Note that the list can be a single page->lru; hence the
5557 * do-while loop instead of a simple list_for_each_entry().
5558 */
5559 next = page_list->next;
5560 do {
5561 page = list_entry(next, struct page, lru);
5562 next = page->lru.next;
5563
5564 VM_BUG_ON_PAGE(PageLRU(page), page);
5565 VM_BUG_ON_PAGE(!PageHWPoison(page) && page_count(page), page);
5566
5567 if (!page->mem_cgroup)
5568 continue;
5569
5570 /*
5571 * Nobody should be changing or seriously looking at
5572 * page->mem_cgroup at this point, we have fully
5573 * exclusive access to the page.
5574 */
5575
5576 if (memcg != page->mem_cgroup) {
5577 if (memcg) {
5578 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5579 nr_kmem, nr_huge, nr_shmem, page);
5580 pgpgout = nr_anon = nr_file = nr_kmem = 0;
5581 nr_huge = nr_shmem = 0;
5582 }
5583 memcg = page->mem_cgroup;
5584 }
5585
5586 if (!PageKmemcg(page)) {
5587 unsigned int nr_pages = 1;
5588
5589 if (PageTransHuge(page)) {
5590 nr_pages <<= compound_order(page);
5591 nr_huge += nr_pages;
5592 }
5593 if (PageAnon(page))
5594 nr_anon += nr_pages;
5595 else {
5596 nr_file += nr_pages;
5597 if (PageSwapBacked(page))
5598 nr_shmem += nr_pages;
5599 }
5600 pgpgout++;
5601 } else {
5602 nr_kmem += 1 << compound_order(page);
5603 __ClearPageKmemcg(page);
5604 }
5605
5606 page->mem_cgroup = NULL;
5607 } while (next != page_list);
5608
5609 if (memcg)
5610 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5611 nr_kmem, nr_huge, nr_shmem, page);
5612 }
5613
5614 /**
5615 * mem_cgroup_uncharge - uncharge a page
5616 * @page: page to uncharge
5617 *
5618 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5619 * mem_cgroup_commit_charge().
5620 */
5621 void mem_cgroup_uncharge(struct page *page)
5622 {
5623 if (mem_cgroup_disabled())
5624 return;
5625
5626 /* Don't touch page->lru of any random page, pre-check: */
5627 if (!page->mem_cgroup)
5628 return;
5629
5630 INIT_LIST_HEAD(&page->lru);
5631 uncharge_list(&page->lru);
5632 }
5633
5634 /**
5635 * mem_cgroup_uncharge_list - uncharge a list of page
5636 * @page_list: list of pages to uncharge
5637 *
5638 * Uncharge a list of pages previously charged with
5639 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5640 */
5641 void mem_cgroup_uncharge_list(struct list_head *page_list)
5642 {
5643 if (mem_cgroup_disabled())
5644 return;
5645
5646 if (!list_empty(page_list))
5647 uncharge_list(page_list);
5648 }
5649
5650 /**
5651 * mem_cgroup_migrate - charge a page's replacement
5652 * @oldpage: currently circulating page
5653 * @newpage: replacement page
5654 *
5655 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5656 * be uncharged upon free.
5657 *
5658 * Both pages must be locked, @newpage->mapping must be set up.
5659 */
5660 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5661 {
5662 struct mem_cgroup *memcg;
5663 unsigned int nr_pages;
5664 bool compound;
5665 unsigned long flags;
5666
5667 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5668 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5669 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5670 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5671 newpage);
5672
5673 if (mem_cgroup_disabled())
5674 return;
5675
5676 /* Page cache replacement: new page already charged? */
5677 if (newpage->mem_cgroup)
5678 return;
5679
5680 /* Swapcache readahead pages can get replaced before being charged */
5681 memcg = oldpage->mem_cgroup;
5682 if (!memcg)
5683 return;
5684
5685 /* Force-charge the new page. The old one will be freed soon */
5686 compound = PageTransHuge(newpage);
5687 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5688
5689 page_counter_charge(&memcg->memory, nr_pages);
5690 if (do_memsw_account())
5691 page_counter_charge(&memcg->memsw, nr_pages);
5692 css_get_many(&memcg->css, nr_pages);
5693
5694 commit_charge(newpage, memcg, false);
5695
5696 local_irq_save(flags);
5697 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5698 memcg_check_events(memcg, newpage);
5699 local_irq_restore(flags);
5700 }
5701
5702 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5703 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5704
5705 void mem_cgroup_sk_alloc(struct sock *sk)
5706 {
5707 struct mem_cgroup *memcg;
5708
5709 if (!mem_cgroup_sockets_enabled)
5710 return;
5711
5712 /*
5713 * Socket cloning can throw us here with sk_memcg already
5714 * filled. It won't however, necessarily happen from
5715 * process context. So the test for root memcg given
5716 * the current task's memcg won't help us in this case.
5717 *
5718 * Respecting the original socket's memcg is a better
5719 * decision in this case.
5720 */
5721 if (sk->sk_memcg) {
5722 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5723 css_get(&sk->sk_memcg->css);
5724 return;
5725 }
5726
5727 rcu_read_lock();
5728 memcg = mem_cgroup_from_task(current);
5729 if (memcg == root_mem_cgroup)
5730 goto out;
5731 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5732 goto out;
5733 if (css_tryget_online(&memcg->css))
5734 sk->sk_memcg = memcg;
5735 out:
5736 rcu_read_unlock();
5737 }
5738
5739 void mem_cgroup_sk_free(struct sock *sk)
5740 {
5741 if (sk->sk_memcg)
5742 css_put(&sk->sk_memcg->css);
5743 }
5744
5745 /**
5746 * mem_cgroup_charge_skmem - charge socket memory
5747 * @memcg: memcg to charge
5748 * @nr_pages: number of pages to charge
5749 *
5750 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5751 * @memcg's configured limit, %false if the charge had to be forced.
5752 */
5753 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5754 {
5755 gfp_t gfp_mask = GFP_KERNEL;
5756
5757 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5758 struct page_counter *fail;
5759
5760 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5761 memcg->tcpmem_pressure = 0;
5762 return true;
5763 }
5764 page_counter_charge(&memcg->tcpmem, nr_pages);
5765 memcg->tcpmem_pressure = 1;
5766 return false;
5767 }
5768
5769 /* Don't block in the packet receive path */
5770 if (in_softirq())
5771 gfp_mask = GFP_NOWAIT;
5772
5773 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5774
5775 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5776 return true;
5777
5778 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5779 return false;
5780 }
5781
5782 /**
5783 * mem_cgroup_uncharge_skmem - uncharge socket memory
5784 * @memcg - memcg to uncharge
5785 * @nr_pages - number of pages to uncharge
5786 */
5787 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5788 {
5789 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5790 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5791 return;
5792 }
5793
5794 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5795
5796 page_counter_uncharge(&memcg->memory, nr_pages);
5797 css_put_many(&memcg->css, nr_pages);
5798 }
5799
5800 static int __init cgroup_memory(char *s)
5801 {
5802 char *token;
5803
5804 while ((token = strsep(&s, ",")) != NULL) {
5805 if (!*token)
5806 continue;
5807 if (!strcmp(token, "nosocket"))
5808 cgroup_memory_nosocket = true;
5809 if (!strcmp(token, "nokmem"))
5810 cgroup_memory_nokmem = true;
5811 }
5812 return 0;
5813 }
5814 __setup("cgroup.memory=", cgroup_memory);
5815
5816 /*
5817 * subsys_initcall() for memory controller.
5818 *
5819 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5820 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5821 * basically everything that doesn't depend on a specific mem_cgroup structure
5822 * should be initialized from here.
5823 */
5824 static int __init mem_cgroup_init(void)
5825 {
5826 int cpu, node;
5827
5828 #ifndef CONFIG_SLOB
5829 /*
5830 * Kmem cache creation is mostly done with the slab_mutex held,
5831 * so use a workqueue with limited concurrency to avoid stalling
5832 * all worker threads in case lots of cgroups are created and
5833 * destroyed simultaneously.
5834 */
5835 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5836 BUG_ON(!memcg_kmem_cache_wq);
5837 #endif
5838
5839 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5840 memcg_hotplug_cpu_dead);
5841
5842 for_each_possible_cpu(cpu)
5843 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5844 drain_local_stock);
5845
5846 for_each_node(node) {
5847 struct mem_cgroup_tree_per_node *rtpn;
5848
5849 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5850 node_online(node) ? node : NUMA_NO_NODE);
5851
5852 rtpn->rb_root = RB_ROOT;
5853 spin_lock_init(&rtpn->lock);
5854 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5855 }
5856
5857 return 0;
5858 }
5859 subsys_initcall(mem_cgroup_init);
5860
5861 #ifdef CONFIG_MEMCG_SWAP
5862 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5863 {
5864 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5865 /*
5866 * The root cgroup cannot be destroyed, so it's refcount must
5867 * always be >= 1.
5868 */
5869 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5870 VM_BUG_ON(1);
5871 break;
5872 }
5873 memcg = parent_mem_cgroup(memcg);
5874 if (!memcg)
5875 memcg = root_mem_cgroup;
5876 }
5877 return memcg;
5878 }
5879
5880 /**
5881 * mem_cgroup_swapout - transfer a memsw charge to swap
5882 * @page: page whose memsw charge to transfer
5883 * @entry: swap entry to move the charge to
5884 *
5885 * Transfer the memsw charge of @page to @entry.
5886 */
5887 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5888 {
5889 struct mem_cgroup *memcg, *swap_memcg;
5890 unsigned short oldid;
5891
5892 VM_BUG_ON_PAGE(PageLRU(page), page);
5893 VM_BUG_ON_PAGE(page_count(page), page);
5894
5895 if (!do_memsw_account())
5896 return;
5897
5898 memcg = page->mem_cgroup;
5899
5900 /* Readahead page, never charged */
5901 if (!memcg)
5902 return;
5903
5904 /*
5905 * In case the memcg owning these pages has been offlined and doesn't
5906 * have an ID allocated to it anymore, charge the closest online
5907 * ancestor for the swap instead and transfer the memory+swap charge.
5908 */
5909 swap_memcg = mem_cgroup_id_get_online(memcg);
5910 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 1);
5911 VM_BUG_ON_PAGE(oldid, page);
5912 mem_cgroup_swap_statistics(swap_memcg, 1);
5913
5914 page->mem_cgroup = NULL;
5915
5916 if (!mem_cgroup_is_root(memcg))
5917 page_counter_uncharge(&memcg->memory, 1);
5918
5919 if (memcg != swap_memcg) {
5920 if (!mem_cgroup_is_root(swap_memcg))
5921 page_counter_charge(&swap_memcg->memsw, 1);
5922 page_counter_uncharge(&memcg->memsw, 1);
5923 }
5924
5925 /*
5926 * Interrupts should be disabled here because the caller holds the
5927 * mapping->tree_lock lock which is taken with interrupts-off. It is
5928 * important here to have the interrupts disabled because it is the
5929 * only synchronisation we have for udpating the per-CPU variables.
5930 */
5931 VM_BUG_ON(!irqs_disabled());
5932 mem_cgroup_charge_statistics(memcg, page, false, -1);
5933 memcg_check_events(memcg, page);
5934
5935 if (!mem_cgroup_is_root(memcg))
5936 css_put(&memcg->css);
5937 }
5938
5939 /**
5940 * mem_cgroup_try_charge_swap - try charging swap space for a page
5941 * @page: page being added to swap
5942 * @entry: swap entry to charge
5943 *
5944 * Try to charge @page's memcg for the swap space at @entry.
5945 *
5946 * Returns 0 on success, -ENOMEM on failure.
5947 */
5948 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5949 {
5950 unsigned int nr_pages = hpage_nr_pages(page);
5951 struct page_counter *counter;
5952 struct mem_cgroup *memcg;
5953 unsigned short oldid;
5954
5955 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5956 return 0;
5957
5958 memcg = page->mem_cgroup;
5959
5960 /* Readahead page, never charged */
5961 if (!memcg)
5962 return 0;
5963
5964 memcg = mem_cgroup_id_get_online(memcg);
5965
5966 if (!mem_cgroup_is_root(memcg) &&
5967 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5968 mem_cgroup_id_put(memcg);
5969 return -ENOMEM;
5970 }
5971
5972 /* Get references for the tail pages, too */
5973 if (nr_pages > 1)
5974 mem_cgroup_id_get_many(memcg, nr_pages - 1);
5975 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
5976 VM_BUG_ON_PAGE(oldid, page);
5977 mem_cgroup_swap_statistics(memcg, nr_pages);
5978
5979 return 0;
5980 }
5981
5982 /**
5983 * mem_cgroup_uncharge_swap - uncharge swap space
5984 * @entry: swap entry to uncharge
5985 * @nr_pages: the amount of swap space to uncharge
5986 */
5987 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
5988 {
5989 struct mem_cgroup *memcg;
5990 unsigned short id;
5991
5992 if (!do_swap_account)
5993 return;
5994
5995 id = swap_cgroup_record(entry, 0, nr_pages);
5996 rcu_read_lock();
5997 memcg = mem_cgroup_from_id(id);
5998 if (memcg) {
5999 if (!mem_cgroup_is_root(memcg)) {
6000 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6001 page_counter_uncharge(&memcg->swap, nr_pages);
6002 else
6003 page_counter_uncharge(&memcg->memsw, nr_pages);
6004 }
6005 mem_cgroup_swap_statistics(memcg, -nr_pages);
6006 mem_cgroup_id_put_many(memcg, nr_pages);
6007 }
6008 rcu_read_unlock();
6009 }
6010
6011 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6012 {
6013 long nr_swap_pages = get_nr_swap_pages();
6014
6015 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6016 return nr_swap_pages;
6017 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6018 nr_swap_pages = min_t(long, nr_swap_pages,
6019 READ_ONCE(memcg->swap.limit) -
6020 page_counter_read(&memcg->swap));
6021 return nr_swap_pages;
6022 }
6023
6024 bool mem_cgroup_swap_full(struct page *page)
6025 {
6026 struct mem_cgroup *memcg;
6027
6028 VM_BUG_ON_PAGE(!PageLocked(page), page);
6029
6030 if (vm_swap_full())
6031 return true;
6032 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6033 return false;
6034
6035 memcg = page->mem_cgroup;
6036 if (!memcg)
6037 return false;
6038
6039 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6040 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
6041 return true;
6042
6043 return false;
6044 }
6045
6046 /* for remember boot option*/
6047 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6048 static int really_do_swap_account __initdata = 1;
6049 #else
6050 static int really_do_swap_account __initdata;
6051 #endif
6052
6053 static int __init enable_swap_account(char *s)
6054 {
6055 if (!strcmp(s, "1"))
6056 really_do_swap_account = 1;
6057 else if (!strcmp(s, "0"))
6058 really_do_swap_account = 0;
6059 return 1;
6060 }
6061 __setup("swapaccount=", enable_swap_account);
6062
6063 static u64 swap_current_read(struct cgroup_subsys_state *css,
6064 struct cftype *cft)
6065 {
6066 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6067
6068 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6069 }
6070
6071 static int swap_max_show(struct seq_file *m, void *v)
6072 {
6073 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6074 unsigned long max = READ_ONCE(memcg->swap.limit);
6075
6076 if (max == PAGE_COUNTER_MAX)
6077 seq_puts(m, "max\n");
6078 else
6079 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6080
6081 return 0;
6082 }
6083
6084 static ssize_t swap_max_write(struct kernfs_open_file *of,
6085 char *buf, size_t nbytes, loff_t off)
6086 {
6087 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6088 unsigned long max;
6089 int err;
6090
6091 buf = strstrip(buf);
6092 err = page_counter_memparse(buf, "max", &max);
6093 if (err)
6094 return err;
6095
6096 mutex_lock(&memcg_limit_mutex);
6097 err = page_counter_limit(&memcg->swap, max);
6098 mutex_unlock(&memcg_limit_mutex);
6099 if (err)
6100 return err;
6101
6102 return nbytes;
6103 }
6104
6105 static struct cftype swap_files[] = {
6106 {
6107 .name = "swap.current",
6108 .flags = CFTYPE_NOT_ON_ROOT,
6109 .read_u64 = swap_current_read,
6110 },
6111 {
6112 .name = "swap.max",
6113 .flags = CFTYPE_NOT_ON_ROOT,
6114 .seq_show = swap_max_show,
6115 .write = swap_max_write,
6116 },
6117 { } /* terminate */
6118 };
6119
6120 static struct cftype memsw_cgroup_files[] = {
6121 {
6122 .name = "memsw.usage_in_bytes",
6123 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6124 .read_u64 = mem_cgroup_read_u64,
6125 },
6126 {
6127 .name = "memsw.max_usage_in_bytes",
6128 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6129 .write = mem_cgroup_reset,
6130 .read_u64 = mem_cgroup_read_u64,
6131 },
6132 {
6133 .name = "memsw.limit_in_bytes",
6134 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6135 .write = mem_cgroup_write,
6136 .read_u64 = mem_cgroup_read_u64,
6137 },
6138 {
6139 .name = "memsw.failcnt",
6140 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6141 .write = mem_cgroup_reset,
6142 .read_u64 = mem_cgroup_read_u64,
6143 },
6144 { }, /* terminate */
6145 };
6146
6147 static int __init mem_cgroup_swap_init(void)
6148 {
6149 if (!mem_cgroup_disabled() && really_do_swap_account) {
6150 do_swap_account = 1;
6151 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6152 swap_files));
6153 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6154 memsw_cgroup_files));
6155 }
6156 return 0;
6157 }
6158 subsys_initcall(mem_cgroup_swap_init);
6159
6160 #endif /* CONFIG_MEMCG_SWAP */