]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memcontrol.c
mm, oom: pass an oom order of -1 when triggered by sysrq
[mirror_ubuntu-jammy-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include <net/tcp_memcontrol.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 #define MEM_CGROUP_RECLAIM_RETRIES 5
79 static struct mem_cgroup *root_mem_cgroup __read_mostly;
80 struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
81
82 /* Whether the swap controller is active */
83 #ifdef CONFIG_MEMCG_SWAP
84 int do_swap_account __read_mostly;
85 #else
86 #define do_swap_account 0
87 #endif
88
89 static const char * const mem_cgroup_stat_names[] = {
90 "cache",
91 "rss",
92 "rss_huge",
93 "mapped_file",
94 "dirty",
95 "writeback",
96 "swap",
97 };
98
99 static const char * const mem_cgroup_events_names[] = {
100 "pgpgin",
101 "pgpgout",
102 "pgfault",
103 "pgmajfault",
104 };
105
106 static const char * const mem_cgroup_lru_names[] = {
107 "inactive_anon",
108 "active_anon",
109 "inactive_file",
110 "active_file",
111 "unevictable",
112 };
113
114 /*
115 * Per memcg event counter is incremented at every pagein/pageout. With THP,
116 * it will be incremated by the number of pages. This counter is used for
117 * for trigger some periodic events. This is straightforward and better
118 * than using jiffies etc. to handle periodic memcg event.
119 */
120 enum mem_cgroup_events_target {
121 MEM_CGROUP_TARGET_THRESH,
122 MEM_CGROUP_TARGET_SOFTLIMIT,
123 MEM_CGROUP_TARGET_NUMAINFO,
124 MEM_CGROUP_NTARGETS,
125 };
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
129
130 struct mem_cgroup_stat_cpu {
131 long count[MEM_CGROUP_STAT_NSTATS];
132 unsigned long events[MEMCG_NR_EVENTS];
133 unsigned long nr_page_events;
134 unsigned long targets[MEM_CGROUP_NTARGETS];
135 };
136
137 struct reclaim_iter {
138 struct mem_cgroup *position;
139 /* scan generation, increased every round-trip */
140 unsigned int generation;
141 };
142
143 /*
144 * per-zone information in memory controller.
145 */
146 struct mem_cgroup_per_zone {
147 struct lruvec lruvec;
148 unsigned long lru_size[NR_LRU_LISTS];
149
150 struct reclaim_iter iter[DEF_PRIORITY + 1];
151
152 struct rb_node tree_node; /* RB tree node */
153 unsigned long usage_in_excess;/* Set to the value by which */
154 /* the soft limit is exceeded*/
155 bool on_tree;
156 struct mem_cgroup *memcg; /* Back pointer, we cannot */
157 /* use container_of */
158 };
159
160 struct mem_cgroup_per_node {
161 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
162 };
163
164 /*
165 * Cgroups above their limits are maintained in a RB-Tree, independent of
166 * their hierarchy representation
167 */
168
169 struct mem_cgroup_tree_per_zone {
170 struct rb_root rb_root;
171 spinlock_t lock;
172 };
173
174 struct mem_cgroup_tree_per_node {
175 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
176 };
177
178 struct mem_cgroup_tree {
179 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
180 };
181
182 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
183
184 struct mem_cgroup_threshold {
185 struct eventfd_ctx *eventfd;
186 unsigned long threshold;
187 };
188
189 /* For threshold */
190 struct mem_cgroup_threshold_ary {
191 /* An array index points to threshold just below or equal to usage. */
192 int current_threshold;
193 /* Size of entries[] */
194 unsigned int size;
195 /* Array of thresholds */
196 struct mem_cgroup_threshold entries[0];
197 };
198
199 struct mem_cgroup_thresholds {
200 /* Primary thresholds array */
201 struct mem_cgroup_threshold_ary *primary;
202 /*
203 * Spare threshold array.
204 * This is needed to make mem_cgroup_unregister_event() "never fail".
205 * It must be able to store at least primary->size - 1 entries.
206 */
207 struct mem_cgroup_threshold_ary *spare;
208 };
209
210 /* for OOM */
211 struct mem_cgroup_eventfd_list {
212 struct list_head list;
213 struct eventfd_ctx *eventfd;
214 };
215
216 /*
217 * cgroup_event represents events which userspace want to receive.
218 */
219 struct mem_cgroup_event {
220 /*
221 * memcg which the event belongs to.
222 */
223 struct mem_cgroup *memcg;
224 /*
225 * eventfd to signal userspace about the event.
226 */
227 struct eventfd_ctx *eventfd;
228 /*
229 * Each of these stored in a list by the cgroup.
230 */
231 struct list_head list;
232 /*
233 * register_event() callback will be used to add new userspace
234 * waiter for changes related to this event. Use eventfd_signal()
235 * on eventfd to send notification to userspace.
236 */
237 int (*register_event)(struct mem_cgroup *memcg,
238 struct eventfd_ctx *eventfd, const char *args);
239 /*
240 * unregister_event() callback will be called when userspace closes
241 * the eventfd or on cgroup removing. This callback must be set,
242 * if you want provide notification functionality.
243 */
244 void (*unregister_event)(struct mem_cgroup *memcg,
245 struct eventfd_ctx *eventfd);
246 /*
247 * All fields below needed to unregister event when
248 * userspace closes eventfd.
249 */
250 poll_table pt;
251 wait_queue_head_t *wqh;
252 wait_queue_t wait;
253 struct work_struct remove;
254 };
255
256 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
257 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
258
259 /*
260 * The memory controller data structure. The memory controller controls both
261 * page cache and RSS per cgroup. We would eventually like to provide
262 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
263 * to help the administrator determine what knobs to tune.
264 */
265 struct mem_cgroup {
266 struct cgroup_subsys_state css;
267
268 /* Accounted resources */
269 struct page_counter memory;
270 struct page_counter memsw;
271 struct page_counter kmem;
272
273 /* Normal memory consumption range */
274 unsigned long low;
275 unsigned long high;
276
277 unsigned long soft_limit;
278
279 /* vmpressure notifications */
280 struct vmpressure vmpressure;
281
282 /* css_online() has been completed */
283 int initialized;
284
285 /*
286 * Should the accounting and control be hierarchical, per subtree?
287 */
288 bool use_hierarchy;
289
290 /* protected by memcg_oom_lock */
291 bool oom_lock;
292 int under_oom;
293
294 int swappiness;
295 /* OOM-Killer disable */
296 int oom_kill_disable;
297
298 /* protect arrays of thresholds */
299 struct mutex thresholds_lock;
300
301 /* thresholds for memory usage. RCU-protected */
302 struct mem_cgroup_thresholds thresholds;
303
304 /* thresholds for mem+swap usage. RCU-protected */
305 struct mem_cgroup_thresholds memsw_thresholds;
306
307 /* For oom notifier event fd */
308 struct list_head oom_notify;
309
310 /*
311 * Should we move charges of a task when a task is moved into this
312 * mem_cgroup ? And what type of charges should we move ?
313 */
314 unsigned long move_charge_at_immigrate;
315 /*
316 * set > 0 if pages under this cgroup are moving to other cgroup.
317 */
318 atomic_t moving_account;
319 /* taken only while moving_account > 0 */
320 spinlock_t move_lock;
321 struct task_struct *move_lock_task;
322 unsigned long move_lock_flags;
323 /*
324 * percpu counter.
325 */
326 struct mem_cgroup_stat_cpu __percpu *stat;
327 spinlock_t pcp_counter_lock;
328
329 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
330 struct cg_proto tcp_mem;
331 #endif
332 #if defined(CONFIG_MEMCG_KMEM)
333 /* Index in the kmem_cache->memcg_params.memcg_caches array */
334 int kmemcg_id;
335 bool kmem_acct_activated;
336 bool kmem_acct_active;
337 #endif
338
339 int last_scanned_node;
340 #if MAX_NUMNODES > 1
341 nodemask_t scan_nodes;
342 atomic_t numainfo_events;
343 atomic_t numainfo_updating;
344 #endif
345
346 #ifdef CONFIG_CGROUP_WRITEBACK
347 struct list_head cgwb_list;
348 struct wb_domain cgwb_domain;
349 #endif
350
351 /* List of events which userspace want to receive */
352 struct list_head event_list;
353 spinlock_t event_list_lock;
354
355 struct mem_cgroup_per_node *nodeinfo[0];
356 /* WARNING: nodeinfo must be the last member here */
357 };
358
359 #ifdef CONFIG_MEMCG_KMEM
360 bool memcg_kmem_is_active(struct mem_cgroup *memcg)
361 {
362 return memcg->kmem_acct_active;
363 }
364 #endif
365
366 /* Stuffs for move charges at task migration. */
367 /*
368 * Types of charges to be moved.
369 */
370 #define MOVE_ANON 0x1U
371 #define MOVE_FILE 0x2U
372 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
373
374 /* "mc" and its members are protected by cgroup_mutex */
375 static struct move_charge_struct {
376 spinlock_t lock; /* for from, to */
377 struct mem_cgroup *from;
378 struct mem_cgroup *to;
379 unsigned long flags;
380 unsigned long precharge;
381 unsigned long moved_charge;
382 unsigned long moved_swap;
383 struct task_struct *moving_task; /* a task moving charges */
384 wait_queue_head_t waitq; /* a waitq for other context */
385 } mc = {
386 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
387 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
388 };
389
390 /*
391 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
392 * limit reclaim to prevent infinite loops, if they ever occur.
393 */
394 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
395 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
396
397 enum charge_type {
398 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
399 MEM_CGROUP_CHARGE_TYPE_ANON,
400 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
401 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
402 NR_CHARGE_TYPE,
403 };
404
405 /* for encoding cft->private value on file */
406 enum res_type {
407 _MEM,
408 _MEMSWAP,
409 _OOM_TYPE,
410 _KMEM,
411 };
412
413 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
414 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
415 #define MEMFILE_ATTR(val) ((val) & 0xffff)
416 /* Used for OOM nofiier */
417 #define OOM_CONTROL (0)
418
419 /*
420 * The memcg_create_mutex will be held whenever a new cgroup is created.
421 * As a consequence, any change that needs to protect against new child cgroups
422 * appearing has to hold it as well.
423 */
424 static DEFINE_MUTEX(memcg_create_mutex);
425
426 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
427 {
428 return s ? container_of(s, struct mem_cgroup, css) : NULL;
429 }
430
431 /* Some nice accessors for the vmpressure. */
432 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
433 {
434 if (!memcg)
435 memcg = root_mem_cgroup;
436 return &memcg->vmpressure;
437 }
438
439 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
440 {
441 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
442 }
443
444 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
445 {
446 return (memcg == root_mem_cgroup);
447 }
448
449 /*
450 * We restrict the id in the range of [1, 65535], so it can fit into
451 * an unsigned short.
452 */
453 #define MEM_CGROUP_ID_MAX USHRT_MAX
454
455 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
456 {
457 return memcg->css.id;
458 }
459
460 /*
461 * A helper function to get mem_cgroup from ID. must be called under
462 * rcu_read_lock(). The caller is responsible for calling
463 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
464 * refcnt from swap can be called against removed memcg.)
465 */
466 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
467 {
468 struct cgroup_subsys_state *css;
469
470 css = css_from_id(id, &memory_cgrp_subsys);
471 return mem_cgroup_from_css(css);
472 }
473
474 /* Writing them here to avoid exposing memcg's inner layout */
475 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
476
477 void sock_update_memcg(struct sock *sk)
478 {
479 if (mem_cgroup_sockets_enabled) {
480 struct mem_cgroup *memcg;
481 struct cg_proto *cg_proto;
482
483 BUG_ON(!sk->sk_prot->proto_cgroup);
484
485 /* Socket cloning can throw us here with sk_cgrp already
486 * filled. It won't however, necessarily happen from
487 * process context. So the test for root memcg given
488 * the current task's memcg won't help us in this case.
489 *
490 * Respecting the original socket's memcg is a better
491 * decision in this case.
492 */
493 if (sk->sk_cgrp) {
494 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
495 css_get(&sk->sk_cgrp->memcg->css);
496 return;
497 }
498
499 rcu_read_lock();
500 memcg = mem_cgroup_from_task(current);
501 cg_proto = sk->sk_prot->proto_cgroup(memcg);
502 if (!mem_cgroup_is_root(memcg) &&
503 memcg_proto_active(cg_proto) &&
504 css_tryget_online(&memcg->css)) {
505 sk->sk_cgrp = cg_proto;
506 }
507 rcu_read_unlock();
508 }
509 }
510 EXPORT_SYMBOL(sock_update_memcg);
511
512 void sock_release_memcg(struct sock *sk)
513 {
514 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
515 struct mem_cgroup *memcg;
516 WARN_ON(!sk->sk_cgrp->memcg);
517 memcg = sk->sk_cgrp->memcg;
518 css_put(&sk->sk_cgrp->memcg->css);
519 }
520 }
521
522 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
523 {
524 if (!memcg || mem_cgroup_is_root(memcg))
525 return NULL;
526
527 return &memcg->tcp_mem;
528 }
529 EXPORT_SYMBOL(tcp_proto_cgroup);
530
531 #endif
532
533 #ifdef CONFIG_MEMCG_KMEM
534 /*
535 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
536 * The main reason for not using cgroup id for this:
537 * this works better in sparse environments, where we have a lot of memcgs,
538 * but only a few kmem-limited. Or also, if we have, for instance, 200
539 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
540 * 200 entry array for that.
541 *
542 * The current size of the caches array is stored in memcg_nr_cache_ids. It
543 * will double each time we have to increase it.
544 */
545 static DEFINE_IDA(memcg_cache_ida);
546 int memcg_nr_cache_ids;
547
548 /* Protects memcg_nr_cache_ids */
549 static DECLARE_RWSEM(memcg_cache_ids_sem);
550
551 void memcg_get_cache_ids(void)
552 {
553 down_read(&memcg_cache_ids_sem);
554 }
555
556 void memcg_put_cache_ids(void)
557 {
558 up_read(&memcg_cache_ids_sem);
559 }
560
561 /*
562 * MIN_SIZE is different than 1, because we would like to avoid going through
563 * the alloc/free process all the time. In a small machine, 4 kmem-limited
564 * cgroups is a reasonable guess. In the future, it could be a parameter or
565 * tunable, but that is strictly not necessary.
566 *
567 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
568 * this constant directly from cgroup, but it is understandable that this is
569 * better kept as an internal representation in cgroup.c. In any case, the
570 * cgrp_id space is not getting any smaller, and we don't have to necessarily
571 * increase ours as well if it increases.
572 */
573 #define MEMCG_CACHES_MIN_SIZE 4
574 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
575
576 /*
577 * A lot of the calls to the cache allocation functions are expected to be
578 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
579 * conditional to this static branch, we'll have to allow modules that does
580 * kmem_cache_alloc and the such to see this symbol as well
581 */
582 struct static_key memcg_kmem_enabled_key;
583 EXPORT_SYMBOL(memcg_kmem_enabled_key);
584
585 #endif /* CONFIG_MEMCG_KMEM */
586
587 static struct mem_cgroup_per_zone *
588 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
589 {
590 int nid = zone_to_nid(zone);
591 int zid = zone_idx(zone);
592
593 return &memcg->nodeinfo[nid]->zoneinfo[zid];
594 }
595
596 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
597 {
598 return &memcg->css;
599 }
600
601 /**
602 * mem_cgroup_css_from_page - css of the memcg associated with a page
603 * @page: page of interest
604 *
605 * If memcg is bound to the default hierarchy, css of the memcg associated
606 * with @page is returned. The returned css remains associated with @page
607 * until it is released.
608 *
609 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
610 * is returned.
611 *
612 * XXX: The above description of behavior on the default hierarchy isn't
613 * strictly true yet as replace_page_cache_page() can modify the
614 * association before @page is released even on the default hierarchy;
615 * however, the current and planned usages don't mix the the two functions
616 * and replace_page_cache_page() will soon be updated to make the invariant
617 * actually true.
618 */
619 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
620 {
621 struct mem_cgroup *memcg;
622
623 rcu_read_lock();
624
625 memcg = page->mem_cgroup;
626
627 if (!memcg || !cgroup_on_dfl(memcg->css.cgroup))
628 memcg = root_mem_cgroup;
629
630 rcu_read_unlock();
631 return &memcg->css;
632 }
633
634 static struct mem_cgroup_per_zone *
635 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
636 {
637 int nid = page_to_nid(page);
638 int zid = page_zonenum(page);
639
640 return &memcg->nodeinfo[nid]->zoneinfo[zid];
641 }
642
643 static struct mem_cgroup_tree_per_zone *
644 soft_limit_tree_node_zone(int nid, int zid)
645 {
646 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
647 }
648
649 static struct mem_cgroup_tree_per_zone *
650 soft_limit_tree_from_page(struct page *page)
651 {
652 int nid = page_to_nid(page);
653 int zid = page_zonenum(page);
654
655 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
656 }
657
658 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
659 struct mem_cgroup_tree_per_zone *mctz,
660 unsigned long new_usage_in_excess)
661 {
662 struct rb_node **p = &mctz->rb_root.rb_node;
663 struct rb_node *parent = NULL;
664 struct mem_cgroup_per_zone *mz_node;
665
666 if (mz->on_tree)
667 return;
668
669 mz->usage_in_excess = new_usage_in_excess;
670 if (!mz->usage_in_excess)
671 return;
672 while (*p) {
673 parent = *p;
674 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
675 tree_node);
676 if (mz->usage_in_excess < mz_node->usage_in_excess)
677 p = &(*p)->rb_left;
678 /*
679 * We can't avoid mem cgroups that are over their soft
680 * limit by the same amount
681 */
682 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
683 p = &(*p)->rb_right;
684 }
685 rb_link_node(&mz->tree_node, parent, p);
686 rb_insert_color(&mz->tree_node, &mctz->rb_root);
687 mz->on_tree = true;
688 }
689
690 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
691 struct mem_cgroup_tree_per_zone *mctz)
692 {
693 if (!mz->on_tree)
694 return;
695 rb_erase(&mz->tree_node, &mctz->rb_root);
696 mz->on_tree = false;
697 }
698
699 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
700 struct mem_cgroup_tree_per_zone *mctz)
701 {
702 unsigned long flags;
703
704 spin_lock_irqsave(&mctz->lock, flags);
705 __mem_cgroup_remove_exceeded(mz, mctz);
706 spin_unlock_irqrestore(&mctz->lock, flags);
707 }
708
709 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
710 {
711 unsigned long nr_pages = page_counter_read(&memcg->memory);
712 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
713 unsigned long excess = 0;
714
715 if (nr_pages > soft_limit)
716 excess = nr_pages - soft_limit;
717
718 return excess;
719 }
720
721 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
722 {
723 unsigned long excess;
724 struct mem_cgroup_per_zone *mz;
725 struct mem_cgroup_tree_per_zone *mctz;
726
727 mctz = soft_limit_tree_from_page(page);
728 /*
729 * Necessary to update all ancestors when hierarchy is used.
730 * because their event counter is not touched.
731 */
732 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
733 mz = mem_cgroup_page_zoneinfo(memcg, page);
734 excess = soft_limit_excess(memcg);
735 /*
736 * We have to update the tree if mz is on RB-tree or
737 * mem is over its softlimit.
738 */
739 if (excess || mz->on_tree) {
740 unsigned long flags;
741
742 spin_lock_irqsave(&mctz->lock, flags);
743 /* if on-tree, remove it */
744 if (mz->on_tree)
745 __mem_cgroup_remove_exceeded(mz, mctz);
746 /*
747 * Insert again. mz->usage_in_excess will be updated.
748 * If excess is 0, no tree ops.
749 */
750 __mem_cgroup_insert_exceeded(mz, mctz, excess);
751 spin_unlock_irqrestore(&mctz->lock, flags);
752 }
753 }
754 }
755
756 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
757 {
758 struct mem_cgroup_tree_per_zone *mctz;
759 struct mem_cgroup_per_zone *mz;
760 int nid, zid;
761
762 for_each_node(nid) {
763 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
764 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
765 mctz = soft_limit_tree_node_zone(nid, zid);
766 mem_cgroup_remove_exceeded(mz, mctz);
767 }
768 }
769 }
770
771 static struct mem_cgroup_per_zone *
772 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
773 {
774 struct rb_node *rightmost = NULL;
775 struct mem_cgroup_per_zone *mz;
776
777 retry:
778 mz = NULL;
779 rightmost = rb_last(&mctz->rb_root);
780 if (!rightmost)
781 goto done; /* Nothing to reclaim from */
782
783 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
784 /*
785 * Remove the node now but someone else can add it back,
786 * we will to add it back at the end of reclaim to its correct
787 * position in the tree.
788 */
789 __mem_cgroup_remove_exceeded(mz, mctz);
790 if (!soft_limit_excess(mz->memcg) ||
791 !css_tryget_online(&mz->memcg->css))
792 goto retry;
793 done:
794 return mz;
795 }
796
797 static struct mem_cgroup_per_zone *
798 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
799 {
800 struct mem_cgroup_per_zone *mz;
801
802 spin_lock_irq(&mctz->lock);
803 mz = __mem_cgroup_largest_soft_limit_node(mctz);
804 spin_unlock_irq(&mctz->lock);
805 return mz;
806 }
807
808 /*
809 * Implementation Note: reading percpu statistics for memcg.
810 *
811 * Both of vmstat[] and percpu_counter has threshold and do periodic
812 * synchronization to implement "quick" read. There are trade-off between
813 * reading cost and precision of value. Then, we may have a chance to implement
814 * a periodic synchronizion of counter in memcg's counter.
815 *
816 * But this _read() function is used for user interface now. The user accounts
817 * memory usage by memory cgroup and he _always_ requires exact value because
818 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
819 * have to visit all online cpus and make sum. So, for now, unnecessary
820 * synchronization is not implemented. (just implemented for cpu hotplug)
821 *
822 * If there are kernel internal actions which can make use of some not-exact
823 * value, and reading all cpu value can be performance bottleneck in some
824 * common workload, threashold and synchonization as vmstat[] should be
825 * implemented.
826 */
827 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
828 enum mem_cgroup_stat_index idx)
829 {
830 long val = 0;
831 int cpu;
832
833 for_each_possible_cpu(cpu)
834 val += per_cpu(memcg->stat->count[idx], cpu);
835 return val;
836 }
837
838 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
839 enum mem_cgroup_events_index idx)
840 {
841 unsigned long val = 0;
842 int cpu;
843
844 for_each_possible_cpu(cpu)
845 val += per_cpu(memcg->stat->events[idx], cpu);
846 return val;
847 }
848
849 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
850 struct page *page,
851 int nr_pages)
852 {
853 /*
854 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
855 * counted as CACHE even if it's on ANON LRU.
856 */
857 if (PageAnon(page))
858 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
859 nr_pages);
860 else
861 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
862 nr_pages);
863
864 if (PageTransHuge(page))
865 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
866 nr_pages);
867
868 /* pagein of a big page is an event. So, ignore page size */
869 if (nr_pages > 0)
870 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
871 else {
872 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
873 nr_pages = -nr_pages; /* for event */
874 }
875
876 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
877 }
878
879 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
880 {
881 struct mem_cgroup_per_zone *mz;
882
883 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
884 return mz->lru_size[lru];
885 }
886
887 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
888 int nid,
889 unsigned int lru_mask)
890 {
891 unsigned long nr = 0;
892 int zid;
893
894 VM_BUG_ON((unsigned)nid >= nr_node_ids);
895
896 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
897 struct mem_cgroup_per_zone *mz;
898 enum lru_list lru;
899
900 for_each_lru(lru) {
901 if (!(BIT(lru) & lru_mask))
902 continue;
903 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
904 nr += mz->lru_size[lru];
905 }
906 }
907 return nr;
908 }
909
910 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
911 unsigned int lru_mask)
912 {
913 unsigned long nr = 0;
914 int nid;
915
916 for_each_node_state(nid, N_MEMORY)
917 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
918 return nr;
919 }
920
921 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
922 enum mem_cgroup_events_target target)
923 {
924 unsigned long val, next;
925
926 val = __this_cpu_read(memcg->stat->nr_page_events);
927 next = __this_cpu_read(memcg->stat->targets[target]);
928 /* from time_after() in jiffies.h */
929 if ((long)next - (long)val < 0) {
930 switch (target) {
931 case MEM_CGROUP_TARGET_THRESH:
932 next = val + THRESHOLDS_EVENTS_TARGET;
933 break;
934 case MEM_CGROUP_TARGET_SOFTLIMIT:
935 next = val + SOFTLIMIT_EVENTS_TARGET;
936 break;
937 case MEM_CGROUP_TARGET_NUMAINFO:
938 next = val + NUMAINFO_EVENTS_TARGET;
939 break;
940 default:
941 break;
942 }
943 __this_cpu_write(memcg->stat->targets[target], next);
944 return true;
945 }
946 return false;
947 }
948
949 /*
950 * Check events in order.
951 *
952 */
953 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
954 {
955 /* threshold event is triggered in finer grain than soft limit */
956 if (unlikely(mem_cgroup_event_ratelimit(memcg,
957 MEM_CGROUP_TARGET_THRESH))) {
958 bool do_softlimit;
959 bool do_numainfo __maybe_unused;
960
961 do_softlimit = mem_cgroup_event_ratelimit(memcg,
962 MEM_CGROUP_TARGET_SOFTLIMIT);
963 #if MAX_NUMNODES > 1
964 do_numainfo = mem_cgroup_event_ratelimit(memcg,
965 MEM_CGROUP_TARGET_NUMAINFO);
966 #endif
967 mem_cgroup_threshold(memcg);
968 if (unlikely(do_softlimit))
969 mem_cgroup_update_tree(memcg, page);
970 #if MAX_NUMNODES > 1
971 if (unlikely(do_numainfo))
972 atomic_inc(&memcg->numainfo_events);
973 #endif
974 }
975 }
976
977 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
978 {
979 /*
980 * mm_update_next_owner() may clear mm->owner to NULL
981 * if it races with swapoff, page migration, etc.
982 * So this can be called with p == NULL.
983 */
984 if (unlikely(!p))
985 return NULL;
986
987 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
988 }
989
990 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
991 {
992 struct mem_cgroup *memcg = NULL;
993
994 rcu_read_lock();
995 do {
996 /*
997 * Page cache insertions can happen withou an
998 * actual mm context, e.g. during disk probing
999 * on boot, loopback IO, acct() writes etc.
1000 */
1001 if (unlikely(!mm))
1002 memcg = root_mem_cgroup;
1003 else {
1004 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1005 if (unlikely(!memcg))
1006 memcg = root_mem_cgroup;
1007 }
1008 } while (!css_tryget_online(&memcg->css));
1009 rcu_read_unlock();
1010 return memcg;
1011 }
1012
1013 /**
1014 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1015 * @root: hierarchy root
1016 * @prev: previously returned memcg, NULL on first invocation
1017 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1018 *
1019 * Returns references to children of the hierarchy below @root, or
1020 * @root itself, or %NULL after a full round-trip.
1021 *
1022 * Caller must pass the return value in @prev on subsequent
1023 * invocations for reference counting, or use mem_cgroup_iter_break()
1024 * to cancel a hierarchy walk before the round-trip is complete.
1025 *
1026 * Reclaimers can specify a zone and a priority level in @reclaim to
1027 * divide up the memcgs in the hierarchy among all concurrent
1028 * reclaimers operating on the same zone and priority.
1029 */
1030 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1031 struct mem_cgroup *prev,
1032 struct mem_cgroup_reclaim_cookie *reclaim)
1033 {
1034 struct reclaim_iter *uninitialized_var(iter);
1035 struct cgroup_subsys_state *css = NULL;
1036 struct mem_cgroup *memcg = NULL;
1037 struct mem_cgroup *pos = NULL;
1038
1039 if (mem_cgroup_disabled())
1040 return NULL;
1041
1042 if (!root)
1043 root = root_mem_cgroup;
1044
1045 if (prev && !reclaim)
1046 pos = prev;
1047
1048 if (!root->use_hierarchy && root != root_mem_cgroup) {
1049 if (prev)
1050 goto out;
1051 return root;
1052 }
1053
1054 rcu_read_lock();
1055
1056 if (reclaim) {
1057 struct mem_cgroup_per_zone *mz;
1058
1059 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1060 iter = &mz->iter[reclaim->priority];
1061
1062 if (prev && reclaim->generation != iter->generation)
1063 goto out_unlock;
1064
1065 do {
1066 pos = READ_ONCE(iter->position);
1067 /*
1068 * A racing update may change the position and
1069 * put the last reference, hence css_tryget(),
1070 * or retry to see the updated position.
1071 */
1072 } while (pos && !css_tryget(&pos->css));
1073 }
1074
1075 if (pos)
1076 css = &pos->css;
1077
1078 for (;;) {
1079 css = css_next_descendant_pre(css, &root->css);
1080 if (!css) {
1081 /*
1082 * Reclaimers share the hierarchy walk, and a
1083 * new one might jump in right at the end of
1084 * the hierarchy - make sure they see at least
1085 * one group and restart from the beginning.
1086 */
1087 if (!prev)
1088 continue;
1089 break;
1090 }
1091
1092 /*
1093 * Verify the css and acquire a reference. The root
1094 * is provided by the caller, so we know it's alive
1095 * and kicking, and don't take an extra reference.
1096 */
1097 memcg = mem_cgroup_from_css(css);
1098
1099 if (css == &root->css)
1100 break;
1101
1102 if (css_tryget(css)) {
1103 /*
1104 * Make sure the memcg is initialized:
1105 * mem_cgroup_css_online() orders the the
1106 * initialization against setting the flag.
1107 */
1108 if (smp_load_acquire(&memcg->initialized))
1109 break;
1110
1111 css_put(css);
1112 }
1113
1114 memcg = NULL;
1115 }
1116
1117 if (reclaim) {
1118 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1119 if (memcg)
1120 css_get(&memcg->css);
1121 if (pos)
1122 css_put(&pos->css);
1123 }
1124
1125 /*
1126 * pairs with css_tryget when dereferencing iter->position
1127 * above.
1128 */
1129 if (pos)
1130 css_put(&pos->css);
1131
1132 if (!memcg)
1133 iter->generation++;
1134 else if (!prev)
1135 reclaim->generation = iter->generation;
1136 }
1137
1138 out_unlock:
1139 rcu_read_unlock();
1140 out:
1141 if (prev && prev != root)
1142 css_put(&prev->css);
1143
1144 return memcg;
1145 }
1146
1147 /**
1148 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1149 * @root: hierarchy root
1150 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1151 */
1152 void mem_cgroup_iter_break(struct mem_cgroup *root,
1153 struct mem_cgroup *prev)
1154 {
1155 if (!root)
1156 root = root_mem_cgroup;
1157 if (prev && prev != root)
1158 css_put(&prev->css);
1159 }
1160
1161 /*
1162 * Iteration constructs for visiting all cgroups (under a tree). If
1163 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1164 * be used for reference counting.
1165 */
1166 #define for_each_mem_cgroup_tree(iter, root) \
1167 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1168 iter != NULL; \
1169 iter = mem_cgroup_iter(root, iter, NULL))
1170
1171 #define for_each_mem_cgroup(iter) \
1172 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1173 iter != NULL; \
1174 iter = mem_cgroup_iter(NULL, iter, NULL))
1175
1176 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1177 {
1178 struct mem_cgroup *memcg;
1179
1180 rcu_read_lock();
1181 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1182 if (unlikely(!memcg))
1183 goto out;
1184
1185 switch (idx) {
1186 case PGFAULT:
1187 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1188 break;
1189 case PGMAJFAULT:
1190 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1191 break;
1192 default:
1193 BUG();
1194 }
1195 out:
1196 rcu_read_unlock();
1197 }
1198 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1199
1200 /**
1201 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1202 * @zone: zone of the wanted lruvec
1203 * @memcg: memcg of the wanted lruvec
1204 *
1205 * Returns the lru list vector holding pages for the given @zone and
1206 * @mem. This can be the global zone lruvec, if the memory controller
1207 * is disabled.
1208 */
1209 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1210 struct mem_cgroup *memcg)
1211 {
1212 struct mem_cgroup_per_zone *mz;
1213 struct lruvec *lruvec;
1214
1215 if (mem_cgroup_disabled()) {
1216 lruvec = &zone->lruvec;
1217 goto out;
1218 }
1219
1220 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1221 lruvec = &mz->lruvec;
1222 out:
1223 /*
1224 * Since a node can be onlined after the mem_cgroup was created,
1225 * we have to be prepared to initialize lruvec->zone here;
1226 * and if offlined then reonlined, we need to reinitialize it.
1227 */
1228 if (unlikely(lruvec->zone != zone))
1229 lruvec->zone = zone;
1230 return lruvec;
1231 }
1232
1233 /**
1234 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1235 * @page: the page
1236 * @zone: zone of the page
1237 *
1238 * This function is only safe when following the LRU page isolation
1239 * and putback protocol: the LRU lock must be held, and the page must
1240 * either be PageLRU() or the caller must have isolated/allocated it.
1241 */
1242 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1243 {
1244 struct mem_cgroup_per_zone *mz;
1245 struct mem_cgroup *memcg;
1246 struct lruvec *lruvec;
1247
1248 if (mem_cgroup_disabled()) {
1249 lruvec = &zone->lruvec;
1250 goto out;
1251 }
1252
1253 memcg = page->mem_cgroup;
1254 /*
1255 * Swapcache readahead pages are added to the LRU - and
1256 * possibly migrated - before they are charged.
1257 */
1258 if (!memcg)
1259 memcg = root_mem_cgroup;
1260
1261 mz = mem_cgroup_page_zoneinfo(memcg, page);
1262 lruvec = &mz->lruvec;
1263 out:
1264 /*
1265 * Since a node can be onlined after the mem_cgroup was created,
1266 * we have to be prepared to initialize lruvec->zone here;
1267 * and if offlined then reonlined, we need to reinitialize it.
1268 */
1269 if (unlikely(lruvec->zone != zone))
1270 lruvec->zone = zone;
1271 return lruvec;
1272 }
1273
1274 /**
1275 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1276 * @lruvec: mem_cgroup per zone lru vector
1277 * @lru: index of lru list the page is sitting on
1278 * @nr_pages: positive when adding or negative when removing
1279 *
1280 * This function must be called when a page is added to or removed from an
1281 * lru list.
1282 */
1283 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1284 int nr_pages)
1285 {
1286 struct mem_cgroup_per_zone *mz;
1287 unsigned long *lru_size;
1288
1289 if (mem_cgroup_disabled())
1290 return;
1291
1292 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1293 lru_size = mz->lru_size + lru;
1294 *lru_size += nr_pages;
1295 VM_BUG_ON((long)(*lru_size) < 0);
1296 }
1297
1298 bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1299 {
1300 if (root == memcg)
1301 return true;
1302 if (!root->use_hierarchy)
1303 return false;
1304 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1305 }
1306
1307 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1308 {
1309 struct mem_cgroup *task_memcg;
1310 struct task_struct *p;
1311 bool ret;
1312
1313 p = find_lock_task_mm(task);
1314 if (p) {
1315 task_memcg = get_mem_cgroup_from_mm(p->mm);
1316 task_unlock(p);
1317 } else {
1318 /*
1319 * All threads may have already detached their mm's, but the oom
1320 * killer still needs to detect if they have already been oom
1321 * killed to prevent needlessly killing additional tasks.
1322 */
1323 rcu_read_lock();
1324 task_memcg = mem_cgroup_from_task(task);
1325 css_get(&task_memcg->css);
1326 rcu_read_unlock();
1327 }
1328 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1329 css_put(&task_memcg->css);
1330 return ret;
1331 }
1332
1333 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1334 {
1335 unsigned long inactive_ratio;
1336 unsigned long inactive;
1337 unsigned long active;
1338 unsigned long gb;
1339
1340 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1341 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1342
1343 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1344 if (gb)
1345 inactive_ratio = int_sqrt(10 * gb);
1346 else
1347 inactive_ratio = 1;
1348
1349 return inactive * inactive_ratio < active;
1350 }
1351
1352 bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
1353 {
1354 struct mem_cgroup_per_zone *mz;
1355 struct mem_cgroup *memcg;
1356
1357 if (mem_cgroup_disabled())
1358 return true;
1359
1360 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1361 memcg = mz->memcg;
1362
1363 return !!(memcg->css.flags & CSS_ONLINE);
1364 }
1365
1366 #define mem_cgroup_from_counter(counter, member) \
1367 container_of(counter, struct mem_cgroup, member)
1368
1369 /**
1370 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1371 * @memcg: the memory cgroup
1372 *
1373 * Returns the maximum amount of memory @mem can be charged with, in
1374 * pages.
1375 */
1376 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1377 {
1378 unsigned long margin = 0;
1379 unsigned long count;
1380 unsigned long limit;
1381
1382 count = page_counter_read(&memcg->memory);
1383 limit = READ_ONCE(memcg->memory.limit);
1384 if (count < limit)
1385 margin = limit - count;
1386
1387 if (do_swap_account) {
1388 count = page_counter_read(&memcg->memsw);
1389 limit = READ_ONCE(memcg->memsw.limit);
1390 if (count <= limit)
1391 margin = min(margin, limit - count);
1392 }
1393
1394 return margin;
1395 }
1396
1397 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1398 {
1399 /* root ? */
1400 if (mem_cgroup_disabled() || !memcg->css.parent)
1401 return vm_swappiness;
1402
1403 return memcg->swappiness;
1404 }
1405
1406 /*
1407 * A routine for checking "mem" is under move_account() or not.
1408 *
1409 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1410 * moving cgroups. This is for waiting at high-memory pressure
1411 * caused by "move".
1412 */
1413 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1414 {
1415 struct mem_cgroup *from;
1416 struct mem_cgroup *to;
1417 bool ret = false;
1418 /*
1419 * Unlike task_move routines, we access mc.to, mc.from not under
1420 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1421 */
1422 spin_lock(&mc.lock);
1423 from = mc.from;
1424 to = mc.to;
1425 if (!from)
1426 goto unlock;
1427
1428 ret = mem_cgroup_is_descendant(from, memcg) ||
1429 mem_cgroup_is_descendant(to, memcg);
1430 unlock:
1431 spin_unlock(&mc.lock);
1432 return ret;
1433 }
1434
1435 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1436 {
1437 if (mc.moving_task && current != mc.moving_task) {
1438 if (mem_cgroup_under_move(memcg)) {
1439 DEFINE_WAIT(wait);
1440 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1441 /* moving charge context might have finished. */
1442 if (mc.moving_task)
1443 schedule();
1444 finish_wait(&mc.waitq, &wait);
1445 return true;
1446 }
1447 }
1448 return false;
1449 }
1450
1451 #define K(x) ((x) << (PAGE_SHIFT-10))
1452 /**
1453 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1454 * @memcg: The memory cgroup that went over limit
1455 * @p: Task that is going to be killed
1456 *
1457 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1458 * enabled
1459 */
1460 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1461 {
1462 /* oom_info_lock ensures that parallel ooms do not interleave */
1463 static DEFINE_MUTEX(oom_info_lock);
1464 struct mem_cgroup *iter;
1465 unsigned int i;
1466
1467 mutex_lock(&oom_info_lock);
1468 rcu_read_lock();
1469
1470 if (p) {
1471 pr_info("Task in ");
1472 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1473 pr_cont(" killed as a result of limit of ");
1474 } else {
1475 pr_info("Memory limit reached of cgroup ");
1476 }
1477
1478 pr_cont_cgroup_path(memcg->css.cgroup);
1479 pr_cont("\n");
1480
1481 rcu_read_unlock();
1482
1483 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1484 K((u64)page_counter_read(&memcg->memory)),
1485 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1486 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1487 K((u64)page_counter_read(&memcg->memsw)),
1488 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1489 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1490 K((u64)page_counter_read(&memcg->kmem)),
1491 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1492
1493 for_each_mem_cgroup_tree(iter, memcg) {
1494 pr_info("Memory cgroup stats for ");
1495 pr_cont_cgroup_path(iter->css.cgroup);
1496 pr_cont(":");
1497
1498 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1499 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1500 continue;
1501 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1502 K(mem_cgroup_read_stat(iter, i)));
1503 }
1504
1505 for (i = 0; i < NR_LRU_LISTS; i++)
1506 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1507 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1508
1509 pr_cont("\n");
1510 }
1511 mutex_unlock(&oom_info_lock);
1512 }
1513
1514 /*
1515 * This function returns the number of memcg under hierarchy tree. Returns
1516 * 1(self count) if no children.
1517 */
1518 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1519 {
1520 int num = 0;
1521 struct mem_cgroup *iter;
1522
1523 for_each_mem_cgroup_tree(iter, memcg)
1524 num++;
1525 return num;
1526 }
1527
1528 /*
1529 * Return the memory (and swap, if configured) limit for a memcg.
1530 */
1531 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1532 {
1533 unsigned long limit;
1534
1535 limit = memcg->memory.limit;
1536 if (mem_cgroup_swappiness(memcg)) {
1537 unsigned long memsw_limit;
1538
1539 memsw_limit = memcg->memsw.limit;
1540 limit = min(limit + total_swap_pages, memsw_limit);
1541 }
1542 return limit;
1543 }
1544
1545 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1546 int order)
1547 {
1548 struct oom_control oc = {
1549 .zonelist = NULL,
1550 .nodemask = NULL,
1551 .gfp_mask = gfp_mask,
1552 .order = order,
1553 };
1554 struct mem_cgroup *iter;
1555 unsigned long chosen_points = 0;
1556 unsigned long totalpages;
1557 unsigned int points = 0;
1558 struct task_struct *chosen = NULL;
1559
1560 mutex_lock(&oom_lock);
1561
1562 /*
1563 * If current has a pending SIGKILL or is exiting, then automatically
1564 * select it. The goal is to allow it to allocate so that it may
1565 * quickly exit and free its memory.
1566 */
1567 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1568 mark_oom_victim(current);
1569 goto unlock;
1570 }
1571
1572 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1573 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1574 for_each_mem_cgroup_tree(iter, memcg) {
1575 struct css_task_iter it;
1576 struct task_struct *task;
1577
1578 css_task_iter_start(&iter->css, &it);
1579 while ((task = css_task_iter_next(&it))) {
1580 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1581 case OOM_SCAN_SELECT:
1582 if (chosen)
1583 put_task_struct(chosen);
1584 chosen = task;
1585 chosen_points = ULONG_MAX;
1586 get_task_struct(chosen);
1587 /* fall through */
1588 case OOM_SCAN_CONTINUE:
1589 continue;
1590 case OOM_SCAN_ABORT:
1591 css_task_iter_end(&it);
1592 mem_cgroup_iter_break(memcg, iter);
1593 if (chosen)
1594 put_task_struct(chosen);
1595 goto unlock;
1596 case OOM_SCAN_OK:
1597 break;
1598 };
1599 points = oom_badness(task, memcg, NULL, totalpages);
1600 if (!points || points < chosen_points)
1601 continue;
1602 /* Prefer thread group leaders for display purposes */
1603 if (points == chosen_points &&
1604 thread_group_leader(chosen))
1605 continue;
1606
1607 if (chosen)
1608 put_task_struct(chosen);
1609 chosen = task;
1610 chosen_points = points;
1611 get_task_struct(chosen);
1612 }
1613 css_task_iter_end(&it);
1614 }
1615
1616 if (chosen) {
1617 points = chosen_points * 1000 / totalpages;
1618 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1619 "Memory cgroup out of memory");
1620 }
1621 unlock:
1622 mutex_unlock(&oom_lock);
1623 }
1624
1625 #if MAX_NUMNODES > 1
1626
1627 /**
1628 * test_mem_cgroup_node_reclaimable
1629 * @memcg: the target memcg
1630 * @nid: the node ID to be checked.
1631 * @noswap : specify true here if the user wants flle only information.
1632 *
1633 * This function returns whether the specified memcg contains any
1634 * reclaimable pages on a node. Returns true if there are any reclaimable
1635 * pages in the node.
1636 */
1637 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1638 int nid, bool noswap)
1639 {
1640 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1641 return true;
1642 if (noswap || !total_swap_pages)
1643 return false;
1644 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1645 return true;
1646 return false;
1647
1648 }
1649
1650 /*
1651 * Always updating the nodemask is not very good - even if we have an empty
1652 * list or the wrong list here, we can start from some node and traverse all
1653 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1654 *
1655 */
1656 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1657 {
1658 int nid;
1659 /*
1660 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1661 * pagein/pageout changes since the last update.
1662 */
1663 if (!atomic_read(&memcg->numainfo_events))
1664 return;
1665 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1666 return;
1667
1668 /* make a nodemask where this memcg uses memory from */
1669 memcg->scan_nodes = node_states[N_MEMORY];
1670
1671 for_each_node_mask(nid, node_states[N_MEMORY]) {
1672
1673 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1674 node_clear(nid, memcg->scan_nodes);
1675 }
1676
1677 atomic_set(&memcg->numainfo_events, 0);
1678 atomic_set(&memcg->numainfo_updating, 0);
1679 }
1680
1681 /*
1682 * Selecting a node where we start reclaim from. Because what we need is just
1683 * reducing usage counter, start from anywhere is O,K. Considering
1684 * memory reclaim from current node, there are pros. and cons.
1685 *
1686 * Freeing memory from current node means freeing memory from a node which
1687 * we'll use or we've used. So, it may make LRU bad. And if several threads
1688 * hit limits, it will see a contention on a node. But freeing from remote
1689 * node means more costs for memory reclaim because of memory latency.
1690 *
1691 * Now, we use round-robin. Better algorithm is welcomed.
1692 */
1693 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1694 {
1695 int node;
1696
1697 mem_cgroup_may_update_nodemask(memcg);
1698 node = memcg->last_scanned_node;
1699
1700 node = next_node(node, memcg->scan_nodes);
1701 if (node == MAX_NUMNODES)
1702 node = first_node(memcg->scan_nodes);
1703 /*
1704 * We call this when we hit limit, not when pages are added to LRU.
1705 * No LRU may hold pages because all pages are UNEVICTABLE or
1706 * memcg is too small and all pages are not on LRU. In that case,
1707 * we use curret node.
1708 */
1709 if (unlikely(node == MAX_NUMNODES))
1710 node = numa_node_id();
1711
1712 memcg->last_scanned_node = node;
1713 return node;
1714 }
1715 #else
1716 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1717 {
1718 return 0;
1719 }
1720 #endif
1721
1722 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1723 struct zone *zone,
1724 gfp_t gfp_mask,
1725 unsigned long *total_scanned)
1726 {
1727 struct mem_cgroup *victim = NULL;
1728 int total = 0;
1729 int loop = 0;
1730 unsigned long excess;
1731 unsigned long nr_scanned;
1732 struct mem_cgroup_reclaim_cookie reclaim = {
1733 .zone = zone,
1734 .priority = 0,
1735 };
1736
1737 excess = soft_limit_excess(root_memcg);
1738
1739 while (1) {
1740 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1741 if (!victim) {
1742 loop++;
1743 if (loop >= 2) {
1744 /*
1745 * If we have not been able to reclaim
1746 * anything, it might because there are
1747 * no reclaimable pages under this hierarchy
1748 */
1749 if (!total)
1750 break;
1751 /*
1752 * We want to do more targeted reclaim.
1753 * excess >> 2 is not to excessive so as to
1754 * reclaim too much, nor too less that we keep
1755 * coming back to reclaim from this cgroup
1756 */
1757 if (total >= (excess >> 2) ||
1758 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1759 break;
1760 }
1761 continue;
1762 }
1763 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1764 zone, &nr_scanned);
1765 *total_scanned += nr_scanned;
1766 if (!soft_limit_excess(root_memcg))
1767 break;
1768 }
1769 mem_cgroup_iter_break(root_memcg, victim);
1770 return total;
1771 }
1772
1773 #ifdef CONFIG_LOCKDEP
1774 static struct lockdep_map memcg_oom_lock_dep_map = {
1775 .name = "memcg_oom_lock",
1776 };
1777 #endif
1778
1779 static DEFINE_SPINLOCK(memcg_oom_lock);
1780
1781 /*
1782 * Check OOM-Killer is already running under our hierarchy.
1783 * If someone is running, return false.
1784 */
1785 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1786 {
1787 struct mem_cgroup *iter, *failed = NULL;
1788
1789 spin_lock(&memcg_oom_lock);
1790
1791 for_each_mem_cgroup_tree(iter, memcg) {
1792 if (iter->oom_lock) {
1793 /*
1794 * this subtree of our hierarchy is already locked
1795 * so we cannot give a lock.
1796 */
1797 failed = iter;
1798 mem_cgroup_iter_break(memcg, iter);
1799 break;
1800 } else
1801 iter->oom_lock = true;
1802 }
1803
1804 if (failed) {
1805 /*
1806 * OK, we failed to lock the whole subtree so we have
1807 * to clean up what we set up to the failing subtree
1808 */
1809 for_each_mem_cgroup_tree(iter, memcg) {
1810 if (iter == failed) {
1811 mem_cgroup_iter_break(memcg, iter);
1812 break;
1813 }
1814 iter->oom_lock = false;
1815 }
1816 } else
1817 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1818
1819 spin_unlock(&memcg_oom_lock);
1820
1821 return !failed;
1822 }
1823
1824 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1825 {
1826 struct mem_cgroup *iter;
1827
1828 spin_lock(&memcg_oom_lock);
1829 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1830 for_each_mem_cgroup_tree(iter, memcg)
1831 iter->oom_lock = false;
1832 spin_unlock(&memcg_oom_lock);
1833 }
1834
1835 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1836 {
1837 struct mem_cgroup *iter;
1838
1839 spin_lock(&memcg_oom_lock);
1840 for_each_mem_cgroup_tree(iter, memcg)
1841 iter->under_oom++;
1842 spin_unlock(&memcg_oom_lock);
1843 }
1844
1845 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1846 {
1847 struct mem_cgroup *iter;
1848
1849 /*
1850 * When a new child is created while the hierarchy is under oom,
1851 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1852 */
1853 spin_lock(&memcg_oom_lock);
1854 for_each_mem_cgroup_tree(iter, memcg)
1855 if (iter->under_oom > 0)
1856 iter->under_oom--;
1857 spin_unlock(&memcg_oom_lock);
1858 }
1859
1860 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1861
1862 struct oom_wait_info {
1863 struct mem_cgroup *memcg;
1864 wait_queue_t wait;
1865 };
1866
1867 static int memcg_oom_wake_function(wait_queue_t *wait,
1868 unsigned mode, int sync, void *arg)
1869 {
1870 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1871 struct mem_cgroup *oom_wait_memcg;
1872 struct oom_wait_info *oom_wait_info;
1873
1874 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1875 oom_wait_memcg = oom_wait_info->memcg;
1876
1877 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1878 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1879 return 0;
1880 return autoremove_wake_function(wait, mode, sync, arg);
1881 }
1882
1883 static void memcg_oom_recover(struct mem_cgroup *memcg)
1884 {
1885 /*
1886 * For the following lockless ->under_oom test, the only required
1887 * guarantee is that it must see the state asserted by an OOM when
1888 * this function is called as a result of userland actions
1889 * triggered by the notification of the OOM. This is trivially
1890 * achieved by invoking mem_cgroup_mark_under_oom() before
1891 * triggering notification.
1892 */
1893 if (memcg && memcg->under_oom)
1894 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1895 }
1896
1897 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1898 {
1899 if (!current->memcg_oom.may_oom)
1900 return;
1901 /*
1902 * We are in the middle of the charge context here, so we
1903 * don't want to block when potentially sitting on a callstack
1904 * that holds all kinds of filesystem and mm locks.
1905 *
1906 * Also, the caller may handle a failed allocation gracefully
1907 * (like optional page cache readahead) and so an OOM killer
1908 * invocation might not even be necessary.
1909 *
1910 * That's why we don't do anything here except remember the
1911 * OOM context and then deal with it at the end of the page
1912 * fault when the stack is unwound, the locks are released,
1913 * and when we know whether the fault was overall successful.
1914 */
1915 css_get(&memcg->css);
1916 current->memcg_oom.memcg = memcg;
1917 current->memcg_oom.gfp_mask = mask;
1918 current->memcg_oom.order = order;
1919 }
1920
1921 /**
1922 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1923 * @handle: actually kill/wait or just clean up the OOM state
1924 *
1925 * This has to be called at the end of a page fault if the memcg OOM
1926 * handler was enabled.
1927 *
1928 * Memcg supports userspace OOM handling where failed allocations must
1929 * sleep on a waitqueue until the userspace task resolves the
1930 * situation. Sleeping directly in the charge context with all kinds
1931 * of locks held is not a good idea, instead we remember an OOM state
1932 * in the task and mem_cgroup_oom_synchronize() has to be called at
1933 * the end of the page fault to complete the OOM handling.
1934 *
1935 * Returns %true if an ongoing memcg OOM situation was detected and
1936 * completed, %false otherwise.
1937 */
1938 bool mem_cgroup_oom_synchronize(bool handle)
1939 {
1940 struct mem_cgroup *memcg = current->memcg_oom.memcg;
1941 struct oom_wait_info owait;
1942 bool locked;
1943
1944 /* OOM is global, do not handle */
1945 if (!memcg)
1946 return false;
1947
1948 if (!handle || oom_killer_disabled)
1949 goto cleanup;
1950
1951 owait.memcg = memcg;
1952 owait.wait.flags = 0;
1953 owait.wait.func = memcg_oom_wake_function;
1954 owait.wait.private = current;
1955 INIT_LIST_HEAD(&owait.wait.task_list);
1956
1957 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1958 mem_cgroup_mark_under_oom(memcg);
1959
1960 locked = mem_cgroup_oom_trylock(memcg);
1961
1962 if (locked)
1963 mem_cgroup_oom_notify(memcg);
1964
1965 if (locked && !memcg->oom_kill_disable) {
1966 mem_cgroup_unmark_under_oom(memcg);
1967 finish_wait(&memcg_oom_waitq, &owait.wait);
1968 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1969 current->memcg_oom.order);
1970 } else {
1971 schedule();
1972 mem_cgroup_unmark_under_oom(memcg);
1973 finish_wait(&memcg_oom_waitq, &owait.wait);
1974 }
1975
1976 if (locked) {
1977 mem_cgroup_oom_unlock(memcg);
1978 /*
1979 * There is no guarantee that an OOM-lock contender
1980 * sees the wakeups triggered by the OOM kill
1981 * uncharges. Wake any sleepers explicitely.
1982 */
1983 memcg_oom_recover(memcg);
1984 }
1985 cleanup:
1986 current->memcg_oom.memcg = NULL;
1987 css_put(&memcg->css);
1988 return true;
1989 }
1990
1991 /**
1992 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1993 * @page: page that is going to change accounted state
1994 *
1995 * This function must mark the beginning of an accounted page state
1996 * change to prevent double accounting when the page is concurrently
1997 * being moved to another memcg:
1998 *
1999 * memcg = mem_cgroup_begin_page_stat(page);
2000 * if (TestClearPageState(page))
2001 * mem_cgroup_update_page_stat(memcg, state, -1);
2002 * mem_cgroup_end_page_stat(memcg);
2003 */
2004 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
2005 {
2006 struct mem_cgroup *memcg;
2007 unsigned long flags;
2008
2009 /*
2010 * The RCU lock is held throughout the transaction. The fast
2011 * path can get away without acquiring the memcg->move_lock
2012 * because page moving starts with an RCU grace period.
2013 *
2014 * The RCU lock also protects the memcg from being freed when
2015 * the page state that is going to change is the only thing
2016 * preventing the page from being uncharged.
2017 * E.g. end-writeback clearing PageWriteback(), which allows
2018 * migration to go ahead and uncharge the page before the
2019 * account transaction might be complete.
2020 */
2021 rcu_read_lock();
2022
2023 if (mem_cgroup_disabled())
2024 return NULL;
2025 again:
2026 memcg = page->mem_cgroup;
2027 if (unlikely(!memcg))
2028 return NULL;
2029
2030 if (atomic_read(&memcg->moving_account) <= 0)
2031 return memcg;
2032
2033 spin_lock_irqsave(&memcg->move_lock, flags);
2034 if (memcg != page->mem_cgroup) {
2035 spin_unlock_irqrestore(&memcg->move_lock, flags);
2036 goto again;
2037 }
2038
2039 /*
2040 * When charge migration first begins, we can have locked and
2041 * unlocked page stat updates happening concurrently. Track
2042 * the task who has the lock for mem_cgroup_end_page_stat().
2043 */
2044 memcg->move_lock_task = current;
2045 memcg->move_lock_flags = flags;
2046
2047 return memcg;
2048 }
2049 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
2050
2051 /**
2052 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2053 * @memcg: the memcg that was accounted against
2054 */
2055 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2056 {
2057 if (memcg && memcg->move_lock_task == current) {
2058 unsigned long flags = memcg->move_lock_flags;
2059
2060 memcg->move_lock_task = NULL;
2061 memcg->move_lock_flags = 0;
2062
2063 spin_unlock_irqrestore(&memcg->move_lock, flags);
2064 }
2065
2066 rcu_read_unlock();
2067 }
2068 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
2069
2070 /**
2071 * mem_cgroup_update_page_stat - update page state statistics
2072 * @memcg: memcg to account against
2073 * @idx: page state item to account
2074 * @val: number of pages (positive or negative)
2075 *
2076 * See mem_cgroup_begin_page_stat() for locking requirements.
2077 */
2078 void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
2079 enum mem_cgroup_stat_index idx, int val)
2080 {
2081 VM_BUG_ON(!rcu_read_lock_held());
2082
2083 if (memcg)
2084 this_cpu_add(memcg->stat->count[idx], val);
2085 }
2086
2087 /*
2088 * size of first charge trial. "32" comes from vmscan.c's magic value.
2089 * TODO: maybe necessary to use big numbers in big irons.
2090 */
2091 #define CHARGE_BATCH 32U
2092 struct memcg_stock_pcp {
2093 struct mem_cgroup *cached; /* this never be root cgroup */
2094 unsigned int nr_pages;
2095 struct work_struct work;
2096 unsigned long flags;
2097 #define FLUSHING_CACHED_CHARGE 0
2098 };
2099 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2100 static DEFINE_MUTEX(percpu_charge_mutex);
2101
2102 /**
2103 * consume_stock: Try to consume stocked charge on this cpu.
2104 * @memcg: memcg to consume from.
2105 * @nr_pages: how many pages to charge.
2106 *
2107 * The charges will only happen if @memcg matches the current cpu's memcg
2108 * stock, and at least @nr_pages are available in that stock. Failure to
2109 * service an allocation will refill the stock.
2110 *
2111 * returns true if successful, false otherwise.
2112 */
2113 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2114 {
2115 struct memcg_stock_pcp *stock;
2116 bool ret = false;
2117
2118 if (nr_pages > CHARGE_BATCH)
2119 return ret;
2120
2121 stock = &get_cpu_var(memcg_stock);
2122 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2123 stock->nr_pages -= nr_pages;
2124 ret = true;
2125 }
2126 put_cpu_var(memcg_stock);
2127 return ret;
2128 }
2129
2130 /*
2131 * Returns stocks cached in percpu and reset cached information.
2132 */
2133 static void drain_stock(struct memcg_stock_pcp *stock)
2134 {
2135 struct mem_cgroup *old = stock->cached;
2136
2137 if (stock->nr_pages) {
2138 page_counter_uncharge(&old->memory, stock->nr_pages);
2139 if (do_swap_account)
2140 page_counter_uncharge(&old->memsw, stock->nr_pages);
2141 css_put_many(&old->css, stock->nr_pages);
2142 stock->nr_pages = 0;
2143 }
2144 stock->cached = NULL;
2145 }
2146
2147 /*
2148 * This must be called under preempt disabled or must be called by
2149 * a thread which is pinned to local cpu.
2150 */
2151 static void drain_local_stock(struct work_struct *dummy)
2152 {
2153 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2154 drain_stock(stock);
2155 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2156 }
2157
2158 /*
2159 * Cache charges(val) to local per_cpu area.
2160 * This will be consumed by consume_stock() function, later.
2161 */
2162 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2163 {
2164 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2165
2166 if (stock->cached != memcg) { /* reset if necessary */
2167 drain_stock(stock);
2168 stock->cached = memcg;
2169 }
2170 stock->nr_pages += nr_pages;
2171 put_cpu_var(memcg_stock);
2172 }
2173
2174 /*
2175 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2176 * of the hierarchy under it.
2177 */
2178 static void drain_all_stock(struct mem_cgroup *root_memcg)
2179 {
2180 int cpu, curcpu;
2181
2182 /* If someone's already draining, avoid adding running more workers. */
2183 if (!mutex_trylock(&percpu_charge_mutex))
2184 return;
2185 /* Notify other cpus that system-wide "drain" is running */
2186 get_online_cpus();
2187 curcpu = get_cpu();
2188 for_each_online_cpu(cpu) {
2189 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2190 struct mem_cgroup *memcg;
2191
2192 memcg = stock->cached;
2193 if (!memcg || !stock->nr_pages)
2194 continue;
2195 if (!mem_cgroup_is_descendant(memcg, root_memcg))
2196 continue;
2197 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2198 if (cpu == curcpu)
2199 drain_local_stock(&stock->work);
2200 else
2201 schedule_work_on(cpu, &stock->work);
2202 }
2203 }
2204 put_cpu();
2205 put_online_cpus();
2206 mutex_unlock(&percpu_charge_mutex);
2207 }
2208
2209 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2210 unsigned long action,
2211 void *hcpu)
2212 {
2213 int cpu = (unsigned long)hcpu;
2214 struct memcg_stock_pcp *stock;
2215
2216 if (action == CPU_ONLINE)
2217 return NOTIFY_OK;
2218
2219 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2220 return NOTIFY_OK;
2221
2222 stock = &per_cpu(memcg_stock, cpu);
2223 drain_stock(stock);
2224 return NOTIFY_OK;
2225 }
2226
2227 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2228 unsigned int nr_pages)
2229 {
2230 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2231 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2232 struct mem_cgroup *mem_over_limit;
2233 struct page_counter *counter;
2234 unsigned long nr_reclaimed;
2235 bool may_swap = true;
2236 bool drained = false;
2237 int ret = 0;
2238
2239 if (mem_cgroup_is_root(memcg))
2240 goto done;
2241 retry:
2242 if (consume_stock(memcg, nr_pages))
2243 goto done;
2244
2245 if (!do_swap_account ||
2246 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2247 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2248 goto done_restock;
2249 if (do_swap_account)
2250 page_counter_uncharge(&memcg->memsw, batch);
2251 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2252 } else {
2253 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2254 may_swap = false;
2255 }
2256
2257 if (batch > nr_pages) {
2258 batch = nr_pages;
2259 goto retry;
2260 }
2261
2262 /*
2263 * Unlike in global OOM situations, memcg is not in a physical
2264 * memory shortage. Allow dying and OOM-killed tasks to
2265 * bypass the last charges so that they can exit quickly and
2266 * free their memory.
2267 */
2268 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2269 fatal_signal_pending(current) ||
2270 current->flags & PF_EXITING))
2271 goto bypass;
2272
2273 if (unlikely(task_in_memcg_oom(current)))
2274 goto nomem;
2275
2276 if (!(gfp_mask & __GFP_WAIT))
2277 goto nomem;
2278
2279 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2280
2281 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2282 gfp_mask, may_swap);
2283
2284 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2285 goto retry;
2286
2287 if (!drained) {
2288 drain_all_stock(mem_over_limit);
2289 drained = true;
2290 goto retry;
2291 }
2292
2293 if (gfp_mask & __GFP_NORETRY)
2294 goto nomem;
2295 /*
2296 * Even though the limit is exceeded at this point, reclaim
2297 * may have been able to free some pages. Retry the charge
2298 * before killing the task.
2299 *
2300 * Only for regular pages, though: huge pages are rather
2301 * unlikely to succeed so close to the limit, and we fall back
2302 * to regular pages anyway in case of failure.
2303 */
2304 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2305 goto retry;
2306 /*
2307 * At task move, charge accounts can be doubly counted. So, it's
2308 * better to wait until the end of task_move if something is going on.
2309 */
2310 if (mem_cgroup_wait_acct_move(mem_over_limit))
2311 goto retry;
2312
2313 if (nr_retries--)
2314 goto retry;
2315
2316 if (gfp_mask & __GFP_NOFAIL)
2317 goto bypass;
2318
2319 if (fatal_signal_pending(current))
2320 goto bypass;
2321
2322 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2323
2324 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2325 nomem:
2326 if (!(gfp_mask & __GFP_NOFAIL))
2327 return -ENOMEM;
2328 bypass:
2329 return -EINTR;
2330
2331 done_restock:
2332 css_get_many(&memcg->css, batch);
2333 if (batch > nr_pages)
2334 refill_stock(memcg, batch - nr_pages);
2335 if (!(gfp_mask & __GFP_WAIT))
2336 goto done;
2337 /*
2338 * If the hierarchy is above the normal consumption range,
2339 * make the charging task trim their excess contribution.
2340 */
2341 do {
2342 if (page_counter_read(&memcg->memory) <= memcg->high)
2343 continue;
2344 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2345 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2346 } while ((memcg = parent_mem_cgroup(memcg)));
2347 done:
2348 return ret;
2349 }
2350
2351 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2352 {
2353 if (mem_cgroup_is_root(memcg))
2354 return;
2355
2356 page_counter_uncharge(&memcg->memory, nr_pages);
2357 if (do_swap_account)
2358 page_counter_uncharge(&memcg->memsw, nr_pages);
2359
2360 css_put_many(&memcg->css, nr_pages);
2361 }
2362
2363 /*
2364 * try_get_mem_cgroup_from_page - look up page's memcg association
2365 * @page: the page
2366 *
2367 * Look up, get a css reference, and return the memcg that owns @page.
2368 *
2369 * The page must be locked to prevent racing with swap-in and page
2370 * cache charges. If coming from an unlocked page table, the caller
2371 * must ensure the page is on the LRU or this can race with charging.
2372 */
2373 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2374 {
2375 struct mem_cgroup *memcg;
2376 unsigned short id;
2377 swp_entry_t ent;
2378
2379 VM_BUG_ON_PAGE(!PageLocked(page), page);
2380
2381 memcg = page->mem_cgroup;
2382 if (memcg) {
2383 if (!css_tryget_online(&memcg->css))
2384 memcg = NULL;
2385 } else if (PageSwapCache(page)) {
2386 ent.val = page_private(page);
2387 id = lookup_swap_cgroup_id(ent);
2388 rcu_read_lock();
2389 memcg = mem_cgroup_from_id(id);
2390 if (memcg && !css_tryget_online(&memcg->css))
2391 memcg = NULL;
2392 rcu_read_unlock();
2393 }
2394 return memcg;
2395 }
2396
2397 static void lock_page_lru(struct page *page, int *isolated)
2398 {
2399 struct zone *zone = page_zone(page);
2400
2401 spin_lock_irq(&zone->lru_lock);
2402 if (PageLRU(page)) {
2403 struct lruvec *lruvec;
2404
2405 lruvec = mem_cgroup_page_lruvec(page, zone);
2406 ClearPageLRU(page);
2407 del_page_from_lru_list(page, lruvec, page_lru(page));
2408 *isolated = 1;
2409 } else
2410 *isolated = 0;
2411 }
2412
2413 static void unlock_page_lru(struct page *page, int isolated)
2414 {
2415 struct zone *zone = page_zone(page);
2416
2417 if (isolated) {
2418 struct lruvec *lruvec;
2419
2420 lruvec = mem_cgroup_page_lruvec(page, zone);
2421 VM_BUG_ON_PAGE(PageLRU(page), page);
2422 SetPageLRU(page);
2423 add_page_to_lru_list(page, lruvec, page_lru(page));
2424 }
2425 spin_unlock_irq(&zone->lru_lock);
2426 }
2427
2428 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2429 bool lrucare)
2430 {
2431 int isolated;
2432
2433 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2434
2435 /*
2436 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2437 * may already be on some other mem_cgroup's LRU. Take care of it.
2438 */
2439 if (lrucare)
2440 lock_page_lru(page, &isolated);
2441
2442 /*
2443 * Nobody should be changing or seriously looking at
2444 * page->mem_cgroup at this point:
2445 *
2446 * - the page is uncharged
2447 *
2448 * - the page is off-LRU
2449 *
2450 * - an anonymous fault has exclusive page access, except for
2451 * a locked page table
2452 *
2453 * - a page cache insertion, a swapin fault, or a migration
2454 * have the page locked
2455 */
2456 page->mem_cgroup = memcg;
2457
2458 if (lrucare)
2459 unlock_page_lru(page, isolated);
2460 }
2461
2462 #ifdef CONFIG_MEMCG_KMEM
2463 int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2464 unsigned long nr_pages)
2465 {
2466 struct page_counter *counter;
2467 int ret = 0;
2468
2469 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2470 if (ret < 0)
2471 return ret;
2472
2473 ret = try_charge(memcg, gfp, nr_pages);
2474 if (ret == -EINTR) {
2475 /*
2476 * try_charge() chose to bypass to root due to OOM kill or
2477 * fatal signal. Since our only options are to either fail
2478 * the allocation or charge it to this cgroup, do it as a
2479 * temporary condition. But we can't fail. From a kmem/slab
2480 * perspective, the cache has already been selected, by
2481 * mem_cgroup_kmem_get_cache(), so it is too late to change
2482 * our minds.
2483 *
2484 * This condition will only trigger if the task entered
2485 * memcg_charge_kmem in a sane state, but was OOM-killed
2486 * during try_charge() above. Tasks that were already dying
2487 * when the allocation triggers should have been already
2488 * directed to the root cgroup in memcontrol.h
2489 */
2490 page_counter_charge(&memcg->memory, nr_pages);
2491 if (do_swap_account)
2492 page_counter_charge(&memcg->memsw, nr_pages);
2493 css_get_many(&memcg->css, nr_pages);
2494 ret = 0;
2495 } else if (ret)
2496 page_counter_uncharge(&memcg->kmem, nr_pages);
2497
2498 return ret;
2499 }
2500
2501 void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2502 {
2503 page_counter_uncharge(&memcg->memory, nr_pages);
2504 if (do_swap_account)
2505 page_counter_uncharge(&memcg->memsw, nr_pages);
2506
2507 page_counter_uncharge(&memcg->kmem, nr_pages);
2508
2509 css_put_many(&memcg->css, nr_pages);
2510 }
2511
2512 /*
2513 * helper for acessing a memcg's index. It will be used as an index in the
2514 * child cache array in kmem_cache, and also to derive its name. This function
2515 * will return -1 when this is not a kmem-limited memcg.
2516 */
2517 int memcg_cache_id(struct mem_cgroup *memcg)
2518 {
2519 return memcg ? memcg->kmemcg_id : -1;
2520 }
2521
2522 static int memcg_alloc_cache_id(void)
2523 {
2524 int id, size;
2525 int err;
2526
2527 id = ida_simple_get(&memcg_cache_ida,
2528 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2529 if (id < 0)
2530 return id;
2531
2532 if (id < memcg_nr_cache_ids)
2533 return id;
2534
2535 /*
2536 * There's no space for the new id in memcg_caches arrays,
2537 * so we have to grow them.
2538 */
2539 down_write(&memcg_cache_ids_sem);
2540
2541 size = 2 * (id + 1);
2542 if (size < MEMCG_CACHES_MIN_SIZE)
2543 size = MEMCG_CACHES_MIN_SIZE;
2544 else if (size > MEMCG_CACHES_MAX_SIZE)
2545 size = MEMCG_CACHES_MAX_SIZE;
2546
2547 err = memcg_update_all_caches(size);
2548 if (!err)
2549 err = memcg_update_all_list_lrus(size);
2550 if (!err)
2551 memcg_nr_cache_ids = size;
2552
2553 up_write(&memcg_cache_ids_sem);
2554
2555 if (err) {
2556 ida_simple_remove(&memcg_cache_ida, id);
2557 return err;
2558 }
2559 return id;
2560 }
2561
2562 static void memcg_free_cache_id(int id)
2563 {
2564 ida_simple_remove(&memcg_cache_ida, id);
2565 }
2566
2567 struct memcg_kmem_cache_create_work {
2568 struct mem_cgroup *memcg;
2569 struct kmem_cache *cachep;
2570 struct work_struct work;
2571 };
2572
2573 static void memcg_kmem_cache_create_func(struct work_struct *w)
2574 {
2575 struct memcg_kmem_cache_create_work *cw =
2576 container_of(w, struct memcg_kmem_cache_create_work, work);
2577 struct mem_cgroup *memcg = cw->memcg;
2578 struct kmem_cache *cachep = cw->cachep;
2579
2580 memcg_create_kmem_cache(memcg, cachep);
2581
2582 css_put(&memcg->css);
2583 kfree(cw);
2584 }
2585
2586 /*
2587 * Enqueue the creation of a per-memcg kmem_cache.
2588 */
2589 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2590 struct kmem_cache *cachep)
2591 {
2592 struct memcg_kmem_cache_create_work *cw;
2593
2594 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2595 if (!cw)
2596 return;
2597
2598 css_get(&memcg->css);
2599
2600 cw->memcg = memcg;
2601 cw->cachep = cachep;
2602 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2603
2604 schedule_work(&cw->work);
2605 }
2606
2607 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2608 struct kmem_cache *cachep)
2609 {
2610 /*
2611 * We need to stop accounting when we kmalloc, because if the
2612 * corresponding kmalloc cache is not yet created, the first allocation
2613 * in __memcg_schedule_kmem_cache_create will recurse.
2614 *
2615 * However, it is better to enclose the whole function. Depending on
2616 * the debugging options enabled, INIT_WORK(), for instance, can
2617 * trigger an allocation. This too, will make us recurse. Because at
2618 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2619 * the safest choice is to do it like this, wrapping the whole function.
2620 */
2621 current->memcg_kmem_skip_account = 1;
2622 __memcg_schedule_kmem_cache_create(memcg, cachep);
2623 current->memcg_kmem_skip_account = 0;
2624 }
2625
2626 /*
2627 * Return the kmem_cache we're supposed to use for a slab allocation.
2628 * We try to use the current memcg's version of the cache.
2629 *
2630 * If the cache does not exist yet, if we are the first user of it,
2631 * we either create it immediately, if possible, or create it asynchronously
2632 * in a workqueue.
2633 * In the latter case, we will let the current allocation go through with
2634 * the original cache.
2635 *
2636 * Can't be called in interrupt context or from kernel threads.
2637 * This function needs to be called with rcu_read_lock() held.
2638 */
2639 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2640 {
2641 struct mem_cgroup *memcg;
2642 struct kmem_cache *memcg_cachep;
2643 int kmemcg_id;
2644
2645 VM_BUG_ON(!is_root_cache(cachep));
2646
2647 if (current->memcg_kmem_skip_account)
2648 return cachep;
2649
2650 memcg = get_mem_cgroup_from_mm(current->mm);
2651 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2652 if (kmemcg_id < 0)
2653 goto out;
2654
2655 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2656 if (likely(memcg_cachep))
2657 return memcg_cachep;
2658
2659 /*
2660 * If we are in a safe context (can wait, and not in interrupt
2661 * context), we could be be predictable and return right away.
2662 * This would guarantee that the allocation being performed
2663 * already belongs in the new cache.
2664 *
2665 * However, there are some clashes that can arrive from locking.
2666 * For instance, because we acquire the slab_mutex while doing
2667 * memcg_create_kmem_cache, this means no further allocation
2668 * could happen with the slab_mutex held. So it's better to
2669 * defer everything.
2670 */
2671 memcg_schedule_kmem_cache_create(memcg, cachep);
2672 out:
2673 css_put(&memcg->css);
2674 return cachep;
2675 }
2676
2677 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2678 {
2679 if (!is_root_cache(cachep))
2680 css_put(&cachep->memcg_params.memcg->css);
2681 }
2682
2683 /*
2684 * We need to verify if the allocation against current->mm->owner's memcg is
2685 * possible for the given order. But the page is not allocated yet, so we'll
2686 * need a further commit step to do the final arrangements.
2687 *
2688 * It is possible for the task to switch cgroups in this mean time, so at
2689 * commit time, we can't rely on task conversion any longer. We'll then use
2690 * the handle argument to return to the caller which cgroup we should commit
2691 * against. We could also return the memcg directly and avoid the pointer
2692 * passing, but a boolean return value gives better semantics considering
2693 * the compiled-out case as well.
2694 *
2695 * Returning true means the allocation is possible.
2696 */
2697 bool
2698 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2699 {
2700 struct mem_cgroup *memcg;
2701 int ret;
2702
2703 *_memcg = NULL;
2704
2705 memcg = get_mem_cgroup_from_mm(current->mm);
2706
2707 if (!memcg_kmem_is_active(memcg)) {
2708 css_put(&memcg->css);
2709 return true;
2710 }
2711
2712 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2713 if (!ret)
2714 *_memcg = memcg;
2715
2716 css_put(&memcg->css);
2717 return (ret == 0);
2718 }
2719
2720 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2721 int order)
2722 {
2723 VM_BUG_ON(mem_cgroup_is_root(memcg));
2724
2725 /* The page allocation failed. Revert */
2726 if (!page) {
2727 memcg_uncharge_kmem(memcg, 1 << order);
2728 return;
2729 }
2730 page->mem_cgroup = memcg;
2731 }
2732
2733 void __memcg_kmem_uncharge_pages(struct page *page, int order)
2734 {
2735 struct mem_cgroup *memcg = page->mem_cgroup;
2736
2737 if (!memcg)
2738 return;
2739
2740 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2741
2742 memcg_uncharge_kmem(memcg, 1 << order);
2743 page->mem_cgroup = NULL;
2744 }
2745
2746 struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2747 {
2748 struct mem_cgroup *memcg = NULL;
2749 struct kmem_cache *cachep;
2750 struct page *page;
2751
2752 page = virt_to_head_page(ptr);
2753 if (PageSlab(page)) {
2754 cachep = page->slab_cache;
2755 if (!is_root_cache(cachep))
2756 memcg = cachep->memcg_params.memcg;
2757 } else
2758 /* page allocated by alloc_kmem_pages */
2759 memcg = page->mem_cgroup;
2760
2761 return memcg;
2762 }
2763 #endif /* CONFIG_MEMCG_KMEM */
2764
2765 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2766
2767 /*
2768 * Because tail pages are not marked as "used", set it. We're under
2769 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2770 * charge/uncharge will be never happen and move_account() is done under
2771 * compound_lock(), so we don't have to take care of races.
2772 */
2773 void mem_cgroup_split_huge_fixup(struct page *head)
2774 {
2775 int i;
2776
2777 if (mem_cgroup_disabled())
2778 return;
2779
2780 for (i = 1; i < HPAGE_PMD_NR; i++)
2781 head[i].mem_cgroup = head->mem_cgroup;
2782
2783 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2784 HPAGE_PMD_NR);
2785 }
2786 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2787
2788 #ifdef CONFIG_MEMCG_SWAP
2789 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2790 bool charge)
2791 {
2792 int val = (charge) ? 1 : -1;
2793 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2794 }
2795
2796 /**
2797 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2798 * @entry: swap entry to be moved
2799 * @from: mem_cgroup which the entry is moved from
2800 * @to: mem_cgroup which the entry is moved to
2801 *
2802 * It succeeds only when the swap_cgroup's record for this entry is the same
2803 * as the mem_cgroup's id of @from.
2804 *
2805 * Returns 0 on success, -EINVAL on failure.
2806 *
2807 * The caller must have charged to @to, IOW, called page_counter_charge() about
2808 * both res and memsw, and called css_get().
2809 */
2810 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2811 struct mem_cgroup *from, struct mem_cgroup *to)
2812 {
2813 unsigned short old_id, new_id;
2814
2815 old_id = mem_cgroup_id(from);
2816 new_id = mem_cgroup_id(to);
2817
2818 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2819 mem_cgroup_swap_statistics(from, false);
2820 mem_cgroup_swap_statistics(to, true);
2821 return 0;
2822 }
2823 return -EINVAL;
2824 }
2825 #else
2826 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2827 struct mem_cgroup *from, struct mem_cgroup *to)
2828 {
2829 return -EINVAL;
2830 }
2831 #endif
2832
2833 static DEFINE_MUTEX(memcg_limit_mutex);
2834
2835 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2836 unsigned long limit)
2837 {
2838 unsigned long curusage;
2839 unsigned long oldusage;
2840 bool enlarge = false;
2841 int retry_count;
2842 int ret;
2843
2844 /*
2845 * For keeping hierarchical_reclaim simple, how long we should retry
2846 * is depends on callers. We set our retry-count to be function
2847 * of # of children which we should visit in this loop.
2848 */
2849 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2850 mem_cgroup_count_children(memcg);
2851
2852 oldusage = page_counter_read(&memcg->memory);
2853
2854 do {
2855 if (signal_pending(current)) {
2856 ret = -EINTR;
2857 break;
2858 }
2859
2860 mutex_lock(&memcg_limit_mutex);
2861 if (limit > memcg->memsw.limit) {
2862 mutex_unlock(&memcg_limit_mutex);
2863 ret = -EINVAL;
2864 break;
2865 }
2866 if (limit > memcg->memory.limit)
2867 enlarge = true;
2868 ret = page_counter_limit(&memcg->memory, limit);
2869 mutex_unlock(&memcg_limit_mutex);
2870
2871 if (!ret)
2872 break;
2873
2874 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2875
2876 curusage = page_counter_read(&memcg->memory);
2877 /* Usage is reduced ? */
2878 if (curusage >= oldusage)
2879 retry_count--;
2880 else
2881 oldusage = curusage;
2882 } while (retry_count);
2883
2884 if (!ret && enlarge)
2885 memcg_oom_recover(memcg);
2886
2887 return ret;
2888 }
2889
2890 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2891 unsigned long limit)
2892 {
2893 unsigned long curusage;
2894 unsigned long oldusage;
2895 bool enlarge = false;
2896 int retry_count;
2897 int ret;
2898
2899 /* see mem_cgroup_resize_res_limit */
2900 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2901 mem_cgroup_count_children(memcg);
2902
2903 oldusage = page_counter_read(&memcg->memsw);
2904
2905 do {
2906 if (signal_pending(current)) {
2907 ret = -EINTR;
2908 break;
2909 }
2910
2911 mutex_lock(&memcg_limit_mutex);
2912 if (limit < memcg->memory.limit) {
2913 mutex_unlock(&memcg_limit_mutex);
2914 ret = -EINVAL;
2915 break;
2916 }
2917 if (limit > memcg->memsw.limit)
2918 enlarge = true;
2919 ret = page_counter_limit(&memcg->memsw, limit);
2920 mutex_unlock(&memcg_limit_mutex);
2921
2922 if (!ret)
2923 break;
2924
2925 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2926
2927 curusage = page_counter_read(&memcg->memsw);
2928 /* Usage is reduced ? */
2929 if (curusage >= oldusage)
2930 retry_count--;
2931 else
2932 oldusage = curusage;
2933 } while (retry_count);
2934
2935 if (!ret && enlarge)
2936 memcg_oom_recover(memcg);
2937
2938 return ret;
2939 }
2940
2941 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2942 gfp_t gfp_mask,
2943 unsigned long *total_scanned)
2944 {
2945 unsigned long nr_reclaimed = 0;
2946 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2947 unsigned long reclaimed;
2948 int loop = 0;
2949 struct mem_cgroup_tree_per_zone *mctz;
2950 unsigned long excess;
2951 unsigned long nr_scanned;
2952
2953 if (order > 0)
2954 return 0;
2955
2956 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2957 /*
2958 * This loop can run a while, specially if mem_cgroup's continuously
2959 * keep exceeding their soft limit and putting the system under
2960 * pressure
2961 */
2962 do {
2963 if (next_mz)
2964 mz = next_mz;
2965 else
2966 mz = mem_cgroup_largest_soft_limit_node(mctz);
2967 if (!mz)
2968 break;
2969
2970 nr_scanned = 0;
2971 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2972 gfp_mask, &nr_scanned);
2973 nr_reclaimed += reclaimed;
2974 *total_scanned += nr_scanned;
2975 spin_lock_irq(&mctz->lock);
2976 __mem_cgroup_remove_exceeded(mz, mctz);
2977
2978 /*
2979 * If we failed to reclaim anything from this memory cgroup
2980 * it is time to move on to the next cgroup
2981 */
2982 next_mz = NULL;
2983 if (!reclaimed)
2984 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2985
2986 excess = soft_limit_excess(mz->memcg);
2987 /*
2988 * One school of thought says that we should not add
2989 * back the node to the tree if reclaim returns 0.
2990 * But our reclaim could return 0, simply because due
2991 * to priority we are exposing a smaller subset of
2992 * memory to reclaim from. Consider this as a longer
2993 * term TODO.
2994 */
2995 /* If excess == 0, no tree ops */
2996 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2997 spin_unlock_irq(&mctz->lock);
2998 css_put(&mz->memcg->css);
2999 loop++;
3000 /*
3001 * Could not reclaim anything and there are no more
3002 * mem cgroups to try or we seem to be looping without
3003 * reclaiming anything.
3004 */
3005 if (!nr_reclaimed &&
3006 (next_mz == NULL ||
3007 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3008 break;
3009 } while (!nr_reclaimed);
3010 if (next_mz)
3011 css_put(&next_mz->memcg->css);
3012 return nr_reclaimed;
3013 }
3014
3015 /*
3016 * Test whether @memcg has children, dead or alive. Note that this
3017 * function doesn't care whether @memcg has use_hierarchy enabled and
3018 * returns %true if there are child csses according to the cgroup
3019 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3020 */
3021 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3022 {
3023 bool ret;
3024
3025 /*
3026 * The lock does not prevent addition or deletion of children, but
3027 * it prevents a new child from being initialized based on this
3028 * parent in css_online(), so it's enough to decide whether
3029 * hierarchically inherited attributes can still be changed or not.
3030 */
3031 lockdep_assert_held(&memcg_create_mutex);
3032
3033 rcu_read_lock();
3034 ret = css_next_child(NULL, &memcg->css);
3035 rcu_read_unlock();
3036 return ret;
3037 }
3038
3039 /*
3040 * Reclaims as many pages from the given memcg as possible and moves
3041 * the rest to the parent.
3042 *
3043 * Caller is responsible for holding css reference for memcg.
3044 */
3045 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3046 {
3047 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3048
3049 /* we call try-to-free pages for make this cgroup empty */
3050 lru_add_drain_all();
3051 /* try to free all pages in this cgroup */
3052 while (nr_retries && page_counter_read(&memcg->memory)) {
3053 int progress;
3054
3055 if (signal_pending(current))
3056 return -EINTR;
3057
3058 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3059 GFP_KERNEL, true);
3060 if (!progress) {
3061 nr_retries--;
3062 /* maybe some writeback is necessary */
3063 congestion_wait(BLK_RW_ASYNC, HZ/10);
3064 }
3065
3066 }
3067
3068 return 0;
3069 }
3070
3071 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3072 char *buf, size_t nbytes,
3073 loff_t off)
3074 {
3075 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3076
3077 if (mem_cgroup_is_root(memcg))
3078 return -EINVAL;
3079 return mem_cgroup_force_empty(memcg) ?: nbytes;
3080 }
3081
3082 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3083 struct cftype *cft)
3084 {
3085 return mem_cgroup_from_css(css)->use_hierarchy;
3086 }
3087
3088 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3089 struct cftype *cft, u64 val)
3090 {
3091 int retval = 0;
3092 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3093 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3094
3095 mutex_lock(&memcg_create_mutex);
3096
3097 if (memcg->use_hierarchy == val)
3098 goto out;
3099
3100 /*
3101 * If parent's use_hierarchy is set, we can't make any modifications
3102 * in the child subtrees. If it is unset, then the change can
3103 * occur, provided the current cgroup has no children.
3104 *
3105 * For the root cgroup, parent_mem is NULL, we allow value to be
3106 * set if there are no children.
3107 */
3108 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3109 (val == 1 || val == 0)) {
3110 if (!memcg_has_children(memcg))
3111 memcg->use_hierarchy = val;
3112 else
3113 retval = -EBUSY;
3114 } else
3115 retval = -EINVAL;
3116
3117 out:
3118 mutex_unlock(&memcg_create_mutex);
3119
3120 return retval;
3121 }
3122
3123 static unsigned long tree_stat(struct mem_cgroup *memcg,
3124 enum mem_cgroup_stat_index idx)
3125 {
3126 struct mem_cgroup *iter;
3127 long val = 0;
3128
3129 /* Per-cpu values can be negative, use a signed accumulator */
3130 for_each_mem_cgroup_tree(iter, memcg)
3131 val += mem_cgroup_read_stat(iter, idx);
3132
3133 if (val < 0) /* race ? */
3134 val = 0;
3135 return val;
3136 }
3137
3138 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3139 {
3140 u64 val;
3141
3142 if (mem_cgroup_is_root(memcg)) {
3143 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3144 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3145 if (swap)
3146 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3147 } else {
3148 if (!swap)
3149 val = page_counter_read(&memcg->memory);
3150 else
3151 val = page_counter_read(&memcg->memsw);
3152 }
3153 return val << PAGE_SHIFT;
3154 }
3155
3156 enum {
3157 RES_USAGE,
3158 RES_LIMIT,
3159 RES_MAX_USAGE,
3160 RES_FAILCNT,
3161 RES_SOFT_LIMIT,
3162 };
3163
3164 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3165 struct cftype *cft)
3166 {
3167 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3168 struct page_counter *counter;
3169
3170 switch (MEMFILE_TYPE(cft->private)) {
3171 case _MEM:
3172 counter = &memcg->memory;
3173 break;
3174 case _MEMSWAP:
3175 counter = &memcg->memsw;
3176 break;
3177 case _KMEM:
3178 counter = &memcg->kmem;
3179 break;
3180 default:
3181 BUG();
3182 }
3183
3184 switch (MEMFILE_ATTR(cft->private)) {
3185 case RES_USAGE:
3186 if (counter == &memcg->memory)
3187 return mem_cgroup_usage(memcg, false);
3188 if (counter == &memcg->memsw)
3189 return mem_cgroup_usage(memcg, true);
3190 return (u64)page_counter_read(counter) * PAGE_SIZE;
3191 case RES_LIMIT:
3192 return (u64)counter->limit * PAGE_SIZE;
3193 case RES_MAX_USAGE:
3194 return (u64)counter->watermark * PAGE_SIZE;
3195 case RES_FAILCNT:
3196 return counter->failcnt;
3197 case RES_SOFT_LIMIT:
3198 return (u64)memcg->soft_limit * PAGE_SIZE;
3199 default:
3200 BUG();
3201 }
3202 }
3203
3204 #ifdef CONFIG_MEMCG_KMEM
3205 static int memcg_activate_kmem(struct mem_cgroup *memcg,
3206 unsigned long nr_pages)
3207 {
3208 int err = 0;
3209 int memcg_id;
3210
3211 BUG_ON(memcg->kmemcg_id >= 0);
3212 BUG_ON(memcg->kmem_acct_activated);
3213 BUG_ON(memcg->kmem_acct_active);
3214
3215 /*
3216 * For simplicity, we won't allow this to be disabled. It also can't
3217 * be changed if the cgroup has children already, or if tasks had
3218 * already joined.
3219 *
3220 * If tasks join before we set the limit, a person looking at
3221 * kmem.usage_in_bytes will have no way to determine when it took
3222 * place, which makes the value quite meaningless.
3223 *
3224 * After it first became limited, changes in the value of the limit are
3225 * of course permitted.
3226 */
3227 mutex_lock(&memcg_create_mutex);
3228 if (cgroup_has_tasks(memcg->css.cgroup) ||
3229 (memcg->use_hierarchy && memcg_has_children(memcg)))
3230 err = -EBUSY;
3231 mutex_unlock(&memcg_create_mutex);
3232 if (err)
3233 goto out;
3234
3235 memcg_id = memcg_alloc_cache_id();
3236 if (memcg_id < 0) {
3237 err = memcg_id;
3238 goto out;
3239 }
3240
3241 /*
3242 * We couldn't have accounted to this cgroup, because it hasn't got
3243 * activated yet, so this should succeed.
3244 */
3245 err = page_counter_limit(&memcg->kmem, nr_pages);
3246 VM_BUG_ON(err);
3247
3248 static_key_slow_inc(&memcg_kmem_enabled_key);
3249 /*
3250 * A memory cgroup is considered kmem-active as soon as it gets
3251 * kmemcg_id. Setting the id after enabling static branching will
3252 * guarantee no one starts accounting before all call sites are
3253 * patched.
3254 */
3255 memcg->kmemcg_id = memcg_id;
3256 memcg->kmem_acct_activated = true;
3257 memcg->kmem_acct_active = true;
3258 out:
3259 return err;
3260 }
3261
3262 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3263 unsigned long limit)
3264 {
3265 int ret;
3266
3267 mutex_lock(&memcg_limit_mutex);
3268 if (!memcg_kmem_is_active(memcg))
3269 ret = memcg_activate_kmem(memcg, limit);
3270 else
3271 ret = page_counter_limit(&memcg->kmem, limit);
3272 mutex_unlock(&memcg_limit_mutex);
3273 return ret;
3274 }
3275
3276 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3277 {
3278 int ret = 0;
3279 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3280
3281 if (!parent)
3282 return 0;
3283
3284 mutex_lock(&memcg_limit_mutex);
3285 /*
3286 * If the parent cgroup is not kmem-active now, it cannot be activated
3287 * after this point, because it has at least one child already.
3288 */
3289 if (memcg_kmem_is_active(parent))
3290 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3291 mutex_unlock(&memcg_limit_mutex);
3292 return ret;
3293 }
3294 #else
3295 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3296 unsigned long limit)
3297 {
3298 return -EINVAL;
3299 }
3300 #endif /* CONFIG_MEMCG_KMEM */
3301
3302 /*
3303 * The user of this function is...
3304 * RES_LIMIT.
3305 */
3306 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3307 char *buf, size_t nbytes, loff_t off)
3308 {
3309 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3310 unsigned long nr_pages;
3311 int ret;
3312
3313 buf = strstrip(buf);
3314 ret = page_counter_memparse(buf, "-1", &nr_pages);
3315 if (ret)
3316 return ret;
3317
3318 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3319 case RES_LIMIT:
3320 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3321 ret = -EINVAL;
3322 break;
3323 }
3324 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3325 case _MEM:
3326 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3327 break;
3328 case _MEMSWAP:
3329 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3330 break;
3331 case _KMEM:
3332 ret = memcg_update_kmem_limit(memcg, nr_pages);
3333 break;
3334 }
3335 break;
3336 case RES_SOFT_LIMIT:
3337 memcg->soft_limit = nr_pages;
3338 ret = 0;
3339 break;
3340 }
3341 return ret ?: nbytes;
3342 }
3343
3344 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3345 size_t nbytes, loff_t off)
3346 {
3347 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3348 struct page_counter *counter;
3349
3350 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3351 case _MEM:
3352 counter = &memcg->memory;
3353 break;
3354 case _MEMSWAP:
3355 counter = &memcg->memsw;
3356 break;
3357 case _KMEM:
3358 counter = &memcg->kmem;
3359 break;
3360 default:
3361 BUG();
3362 }
3363
3364 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3365 case RES_MAX_USAGE:
3366 page_counter_reset_watermark(counter);
3367 break;
3368 case RES_FAILCNT:
3369 counter->failcnt = 0;
3370 break;
3371 default:
3372 BUG();
3373 }
3374
3375 return nbytes;
3376 }
3377
3378 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3379 struct cftype *cft)
3380 {
3381 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3382 }
3383
3384 #ifdef CONFIG_MMU
3385 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3386 struct cftype *cft, u64 val)
3387 {
3388 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3389
3390 if (val & ~MOVE_MASK)
3391 return -EINVAL;
3392
3393 /*
3394 * No kind of locking is needed in here, because ->can_attach() will
3395 * check this value once in the beginning of the process, and then carry
3396 * on with stale data. This means that changes to this value will only
3397 * affect task migrations starting after the change.
3398 */
3399 memcg->move_charge_at_immigrate = val;
3400 return 0;
3401 }
3402 #else
3403 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3404 struct cftype *cft, u64 val)
3405 {
3406 return -ENOSYS;
3407 }
3408 #endif
3409
3410 #ifdef CONFIG_NUMA
3411 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3412 {
3413 struct numa_stat {
3414 const char *name;
3415 unsigned int lru_mask;
3416 };
3417
3418 static const struct numa_stat stats[] = {
3419 { "total", LRU_ALL },
3420 { "file", LRU_ALL_FILE },
3421 { "anon", LRU_ALL_ANON },
3422 { "unevictable", BIT(LRU_UNEVICTABLE) },
3423 };
3424 const struct numa_stat *stat;
3425 int nid;
3426 unsigned long nr;
3427 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3428
3429 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3430 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3431 seq_printf(m, "%s=%lu", stat->name, nr);
3432 for_each_node_state(nid, N_MEMORY) {
3433 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3434 stat->lru_mask);
3435 seq_printf(m, " N%d=%lu", nid, nr);
3436 }
3437 seq_putc(m, '\n');
3438 }
3439
3440 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3441 struct mem_cgroup *iter;
3442
3443 nr = 0;
3444 for_each_mem_cgroup_tree(iter, memcg)
3445 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3446 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3447 for_each_node_state(nid, N_MEMORY) {
3448 nr = 0;
3449 for_each_mem_cgroup_tree(iter, memcg)
3450 nr += mem_cgroup_node_nr_lru_pages(
3451 iter, nid, stat->lru_mask);
3452 seq_printf(m, " N%d=%lu", nid, nr);
3453 }
3454 seq_putc(m, '\n');
3455 }
3456
3457 return 0;
3458 }
3459 #endif /* CONFIG_NUMA */
3460
3461 static int memcg_stat_show(struct seq_file *m, void *v)
3462 {
3463 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3464 unsigned long memory, memsw;
3465 struct mem_cgroup *mi;
3466 unsigned int i;
3467
3468 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3469 MEM_CGROUP_STAT_NSTATS);
3470 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3471 MEM_CGROUP_EVENTS_NSTATS);
3472 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3473
3474 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3475 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3476 continue;
3477 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3478 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3479 }
3480
3481 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3482 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3483 mem_cgroup_read_events(memcg, i));
3484
3485 for (i = 0; i < NR_LRU_LISTS; i++)
3486 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3487 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3488
3489 /* Hierarchical information */
3490 memory = memsw = PAGE_COUNTER_MAX;
3491 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3492 memory = min(memory, mi->memory.limit);
3493 memsw = min(memsw, mi->memsw.limit);
3494 }
3495 seq_printf(m, "hierarchical_memory_limit %llu\n",
3496 (u64)memory * PAGE_SIZE);
3497 if (do_swap_account)
3498 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3499 (u64)memsw * PAGE_SIZE);
3500
3501 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3502 long long val = 0;
3503
3504 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3505 continue;
3506 for_each_mem_cgroup_tree(mi, memcg)
3507 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3508 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3509 }
3510
3511 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3512 unsigned long long val = 0;
3513
3514 for_each_mem_cgroup_tree(mi, memcg)
3515 val += mem_cgroup_read_events(mi, i);
3516 seq_printf(m, "total_%s %llu\n",
3517 mem_cgroup_events_names[i], val);
3518 }
3519
3520 for (i = 0; i < NR_LRU_LISTS; i++) {
3521 unsigned long long val = 0;
3522
3523 for_each_mem_cgroup_tree(mi, memcg)
3524 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3525 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3526 }
3527
3528 #ifdef CONFIG_DEBUG_VM
3529 {
3530 int nid, zid;
3531 struct mem_cgroup_per_zone *mz;
3532 struct zone_reclaim_stat *rstat;
3533 unsigned long recent_rotated[2] = {0, 0};
3534 unsigned long recent_scanned[2] = {0, 0};
3535
3536 for_each_online_node(nid)
3537 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3538 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3539 rstat = &mz->lruvec.reclaim_stat;
3540
3541 recent_rotated[0] += rstat->recent_rotated[0];
3542 recent_rotated[1] += rstat->recent_rotated[1];
3543 recent_scanned[0] += rstat->recent_scanned[0];
3544 recent_scanned[1] += rstat->recent_scanned[1];
3545 }
3546 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3547 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3548 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3549 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3550 }
3551 #endif
3552
3553 return 0;
3554 }
3555
3556 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3557 struct cftype *cft)
3558 {
3559 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3560
3561 return mem_cgroup_swappiness(memcg);
3562 }
3563
3564 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3565 struct cftype *cft, u64 val)
3566 {
3567 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3568
3569 if (val > 100)
3570 return -EINVAL;
3571
3572 if (css->parent)
3573 memcg->swappiness = val;
3574 else
3575 vm_swappiness = val;
3576
3577 return 0;
3578 }
3579
3580 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3581 {
3582 struct mem_cgroup_threshold_ary *t;
3583 unsigned long usage;
3584 int i;
3585
3586 rcu_read_lock();
3587 if (!swap)
3588 t = rcu_dereference(memcg->thresholds.primary);
3589 else
3590 t = rcu_dereference(memcg->memsw_thresholds.primary);
3591
3592 if (!t)
3593 goto unlock;
3594
3595 usage = mem_cgroup_usage(memcg, swap);
3596
3597 /*
3598 * current_threshold points to threshold just below or equal to usage.
3599 * If it's not true, a threshold was crossed after last
3600 * call of __mem_cgroup_threshold().
3601 */
3602 i = t->current_threshold;
3603
3604 /*
3605 * Iterate backward over array of thresholds starting from
3606 * current_threshold and check if a threshold is crossed.
3607 * If none of thresholds below usage is crossed, we read
3608 * only one element of the array here.
3609 */
3610 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3611 eventfd_signal(t->entries[i].eventfd, 1);
3612
3613 /* i = current_threshold + 1 */
3614 i++;
3615
3616 /*
3617 * Iterate forward over array of thresholds starting from
3618 * current_threshold+1 and check if a threshold is crossed.
3619 * If none of thresholds above usage is crossed, we read
3620 * only one element of the array here.
3621 */
3622 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3623 eventfd_signal(t->entries[i].eventfd, 1);
3624
3625 /* Update current_threshold */
3626 t->current_threshold = i - 1;
3627 unlock:
3628 rcu_read_unlock();
3629 }
3630
3631 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3632 {
3633 while (memcg) {
3634 __mem_cgroup_threshold(memcg, false);
3635 if (do_swap_account)
3636 __mem_cgroup_threshold(memcg, true);
3637
3638 memcg = parent_mem_cgroup(memcg);
3639 }
3640 }
3641
3642 static int compare_thresholds(const void *a, const void *b)
3643 {
3644 const struct mem_cgroup_threshold *_a = a;
3645 const struct mem_cgroup_threshold *_b = b;
3646
3647 if (_a->threshold > _b->threshold)
3648 return 1;
3649
3650 if (_a->threshold < _b->threshold)
3651 return -1;
3652
3653 return 0;
3654 }
3655
3656 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3657 {
3658 struct mem_cgroup_eventfd_list *ev;
3659
3660 spin_lock(&memcg_oom_lock);
3661
3662 list_for_each_entry(ev, &memcg->oom_notify, list)
3663 eventfd_signal(ev->eventfd, 1);
3664
3665 spin_unlock(&memcg_oom_lock);
3666 return 0;
3667 }
3668
3669 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3670 {
3671 struct mem_cgroup *iter;
3672
3673 for_each_mem_cgroup_tree(iter, memcg)
3674 mem_cgroup_oom_notify_cb(iter);
3675 }
3676
3677 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3678 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3679 {
3680 struct mem_cgroup_thresholds *thresholds;
3681 struct mem_cgroup_threshold_ary *new;
3682 unsigned long threshold;
3683 unsigned long usage;
3684 int i, size, ret;
3685
3686 ret = page_counter_memparse(args, "-1", &threshold);
3687 if (ret)
3688 return ret;
3689
3690 mutex_lock(&memcg->thresholds_lock);
3691
3692 if (type == _MEM) {
3693 thresholds = &memcg->thresholds;
3694 usage = mem_cgroup_usage(memcg, false);
3695 } else if (type == _MEMSWAP) {
3696 thresholds = &memcg->memsw_thresholds;
3697 usage = mem_cgroup_usage(memcg, true);
3698 } else
3699 BUG();
3700
3701 /* Check if a threshold crossed before adding a new one */
3702 if (thresholds->primary)
3703 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3704
3705 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3706
3707 /* Allocate memory for new array of thresholds */
3708 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3709 GFP_KERNEL);
3710 if (!new) {
3711 ret = -ENOMEM;
3712 goto unlock;
3713 }
3714 new->size = size;
3715
3716 /* Copy thresholds (if any) to new array */
3717 if (thresholds->primary) {
3718 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3719 sizeof(struct mem_cgroup_threshold));
3720 }
3721
3722 /* Add new threshold */
3723 new->entries[size - 1].eventfd = eventfd;
3724 new->entries[size - 1].threshold = threshold;
3725
3726 /* Sort thresholds. Registering of new threshold isn't time-critical */
3727 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3728 compare_thresholds, NULL);
3729
3730 /* Find current threshold */
3731 new->current_threshold = -1;
3732 for (i = 0; i < size; i++) {
3733 if (new->entries[i].threshold <= usage) {
3734 /*
3735 * new->current_threshold will not be used until
3736 * rcu_assign_pointer(), so it's safe to increment
3737 * it here.
3738 */
3739 ++new->current_threshold;
3740 } else
3741 break;
3742 }
3743
3744 /* Free old spare buffer and save old primary buffer as spare */
3745 kfree(thresholds->spare);
3746 thresholds->spare = thresholds->primary;
3747
3748 rcu_assign_pointer(thresholds->primary, new);
3749
3750 /* To be sure that nobody uses thresholds */
3751 synchronize_rcu();
3752
3753 unlock:
3754 mutex_unlock(&memcg->thresholds_lock);
3755
3756 return ret;
3757 }
3758
3759 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3760 struct eventfd_ctx *eventfd, const char *args)
3761 {
3762 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3763 }
3764
3765 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3766 struct eventfd_ctx *eventfd, const char *args)
3767 {
3768 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3769 }
3770
3771 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3772 struct eventfd_ctx *eventfd, enum res_type type)
3773 {
3774 struct mem_cgroup_thresholds *thresholds;
3775 struct mem_cgroup_threshold_ary *new;
3776 unsigned long usage;
3777 int i, j, size;
3778
3779 mutex_lock(&memcg->thresholds_lock);
3780
3781 if (type == _MEM) {
3782 thresholds = &memcg->thresholds;
3783 usage = mem_cgroup_usage(memcg, false);
3784 } else if (type == _MEMSWAP) {
3785 thresholds = &memcg->memsw_thresholds;
3786 usage = mem_cgroup_usage(memcg, true);
3787 } else
3788 BUG();
3789
3790 if (!thresholds->primary)
3791 goto unlock;
3792
3793 /* Check if a threshold crossed before removing */
3794 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3795
3796 /* Calculate new number of threshold */
3797 size = 0;
3798 for (i = 0; i < thresholds->primary->size; i++) {
3799 if (thresholds->primary->entries[i].eventfd != eventfd)
3800 size++;
3801 }
3802
3803 new = thresholds->spare;
3804
3805 /* Set thresholds array to NULL if we don't have thresholds */
3806 if (!size) {
3807 kfree(new);
3808 new = NULL;
3809 goto swap_buffers;
3810 }
3811
3812 new->size = size;
3813
3814 /* Copy thresholds and find current threshold */
3815 new->current_threshold = -1;
3816 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3817 if (thresholds->primary->entries[i].eventfd == eventfd)
3818 continue;
3819
3820 new->entries[j] = thresholds->primary->entries[i];
3821 if (new->entries[j].threshold <= usage) {
3822 /*
3823 * new->current_threshold will not be used
3824 * until rcu_assign_pointer(), so it's safe to increment
3825 * it here.
3826 */
3827 ++new->current_threshold;
3828 }
3829 j++;
3830 }
3831
3832 swap_buffers:
3833 /* Swap primary and spare array */
3834 thresholds->spare = thresholds->primary;
3835 /* If all events are unregistered, free the spare array */
3836 if (!new) {
3837 kfree(thresholds->spare);
3838 thresholds->spare = NULL;
3839 }
3840
3841 rcu_assign_pointer(thresholds->primary, new);
3842
3843 /* To be sure that nobody uses thresholds */
3844 synchronize_rcu();
3845 unlock:
3846 mutex_unlock(&memcg->thresholds_lock);
3847 }
3848
3849 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3850 struct eventfd_ctx *eventfd)
3851 {
3852 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3853 }
3854
3855 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3856 struct eventfd_ctx *eventfd)
3857 {
3858 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3859 }
3860
3861 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3862 struct eventfd_ctx *eventfd, const char *args)
3863 {
3864 struct mem_cgroup_eventfd_list *event;
3865
3866 event = kmalloc(sizeof(*event), GFP_KERNEL);
3867 if (!event)
3868 return -ENOMEM;
3869
3870 spin_lock(&memcg_oom_lock);
3871
3872 event->eventfd = eventfd;
3873 list_add(&event->list, &memcg->oom_notify);
3874
3875 /* already in OOM ? */
3876 if (memcg->under_oom)
3877 eventfd_signal(eventfd, 1);
3878 spin_unlock(&memcg_oom_lock);
3879
3880 return 0;
3881 }
3882
3883 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3884 struct eventfd_ctx *eventfd)
3885 {
3886 struct mem_cgroup_eventfd_list *ev, *tmp;
3887
3888 spin_lock(&memcg_oom_lock);
3889
3890 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3891 if (ev->eventfd == eventfd) {
3892 list_del(&ev->list);
3893 kfree(ev);
3894 }
3895 }
3896
3897 spin_unlock(&memcg_oom_lock);
3898 }
3899
3900 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3901 {
3902 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3903
3904 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3905 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3906 return 0;
3907 }
3908
3909 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3910 struct cftype *cft, u64 val)
3911 {
3912 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3913
3914 /* cannot set to root cgroup and only 0 and 1 are allowed */
3915 if (!css->parent || !((val == 0) || (val == 1)))
3916 return -EINVAL;
3917
3918 memcg->oom_kill_disable = val;
3919 if (!val)
3920 memcg_oom_recover(memcg);
3921
3922 return 0;
3923 }
3924
3925 #ifdef CONFIG_MEMCG_KMEM
3926 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3927 {
3928 int ret;
3929
3930 ret = memcg_propagate_kmem(memcg);
3931 if (ret)
3932 return ret;
3933
3934 return mem_cgroup_sockets_init(memcg, ss);
3935 }
3936
3937 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3938 {
3939 struct cgroup_subsys_state *css;
3940 struct mem_cgroup *parent, *child;
3941 int kmemcg_id;
3942
3943 if (!memcg->kmem_acct_active)
3944 return;
3945
3946 /*
3947 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3948 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3949 * guarantees no cache will be created for this cgroup after we are
3950 * done (see memcg_create_kmem_cache()).
3951 */
3952 memcg->kmem_acct_active = false;
3953
3954 memcg_deactivate_kmem_caches(memcg);
3955
3956 kmemcg_id = memcg->kmemcg_id;
3957 BUG_ON(kmemcg_id < 0);
3958
3959 parent = parent_mem_cgroup(memcg);
3960 if (!parent)
3961 parent = root_mem_cgroup;
3962
3963 /*
3964 * Change kmemcg_id of this cgroup and all its descendants to the
3965 * parent's id, and then move all entries from this cgroup's list_lrus
3966 * to ones of the parent. After we have finished, all list_lrus
3967 * corresponding to this cgroup are guaranteed to remain empty. The
3968 * ordering is imposed by list_lru_node->lock taken by
3969 * memcg_drain_all_list_lrus().
3970 */
3971 css_for_each_descendant_pre(css, &memcg->css) {
3972 child = mem_cgroup_from_css(css);
3973 BUG_ON(child->kmemcg_id != kmemcg_id);
3974 child->kmemcg_id = parent->kmemcg_id;
3975 if (!memcg->use_hierarchy)
3976 break;
3977 }
3978 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3979
3980 memcg_free_cache_id(kmemcg_id);
3981 }
3982
3983 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3984 {
3985 if (memcg->kmem_acct_activated) {
3986 memcg_destroy_kmem_caches(memcg);
3987 static_key_slow_dec(&memcg_kmem_enabled_key);
3988 WARN_ON(page_counter_read(&memcg->kmem));
3989 }
3990 mem_cgroup_sockets_destroy(memcg);
3991 }
3992 #else
3993 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3994 {
3995 return 0;
3996 }
3997
3998 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3999 {
4000 }
4001
4002 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4003 {
4004 }
4005 #endif
4006
4007 #ifdef CONFIG_CGROUP_WRITEBACK
4008
4009 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
4010 {
4011 return &memcg->cgwb_list;
4012 }
4013
4014 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4015 {
4016 return wb_domain_init(&memcg->cgwb_domain, gfp);
4017 }
4018
4019 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4020 {
4021 wb_domain_exit(&memcg->cgwb_domain);
4022 }
4023
4024 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4025 {
4026 wb_domain_size_changed(&memcg->cgwb_domain);
4027 }
4028
4029 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4030 {
4031 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4032
4033 if (!memcg->css.parent)
4034 return NULL;
4035
4036 return &memcg->cgwb_domain;
4037 }
4038
4039 /**
4040 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4041 * @wb: bdi_writeback in question
4042 * @pavail: out parameter for number of available pages
4043 * @pdirty: out parameter for number of dirty pages
4044 * @pwriteback: out parameter for number of pages under writeback
4045 *
4046 * Determine the numbers of available, dirty, and writeback pages in @wb's
4047 * memcg. Dirty and writeback are self-explanatory. Available is a bit
4048 * more involved.
4049 *
4050 * A memcg's headroom is "min(max, high) - used". The available memory is
4051 * calculated as the lowest headroom of itself and the ancestors plus the
4052 * number of pages already being used for file pages. Note that this
4053 * doesn't consider the actual amount of available memory in the system.
4054 * The caller should further cap *@pavail accordingly.
4055 */
4056 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pavail,
4057 unsigned long *pdirty, unsigned long *pwriteback)
4058 {
4059 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4060 struct mem_cgroup *parent;
4061 unsigned long head_room = PAGE_COUNTER_MAX;
4062 unsigned long file_pages;
4063
4064 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
4065
4066 /* this should eventually include NR_UNSTABLE_NFS */
4067 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
4068
4069 file_pages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
4070 (1 << LRU_ACTIVE_FILE));
4071 while ((parent = parent_mem_cgroup(memcg))) {
4072 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
4073 unsigned long used = page_counter_read(&memcg->memory);
4074
4075 head_room = min(head_room, ceiling - min(ceiling, used));
4076 memcg = parent;
4077 }
4078
4079 *pavail = file_pages + head_room;
4080 }
4081
4082 #else /* CONFIG_CGROUP_WRITEBACK */
4083
4084 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4085 {
4086 return 0;
4087 }
4088
4089 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4090 {
4091 }
4092
4093 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4094 {
4095 }
4096
4097 #endif /* CONFIG_CGROUP_WRITEBACK */
4098
4099 /*
4100 * DO NOT USE IN NEW FILES.
4101 *
4102 * "cgroup.event_control" implementation.
4103 *
4104 * This is way over-engineered. It tries to support fully configurable
4105 * events for each user. Such level of flexibility is completely
4106 * unnecessary especially in the light of the planned unified hierarchy.
4107 *
4108 * Please deprecate this and replace with something simpler if at all
4109 * possible.
4110 */
4111
4112 /*
4113 * Unregister event and free resources.
4114 *
4115 * Gets called from workqueue.
4116 */
4117 static void memcg_event_remove(struct work_struct *work)
4118 {
4119 struct mem_cgroup_event *event =
4120 container_of(work, struct mem_cgroup_event, remove);
4121 struct mem_cgroup *memcg = event->memcg;
4122
4123 remove_wait_queue(event->wqh, &event->wait);
4124
4125 event->unregister_event(memcg, event->eventfd);
4126
4127 /* Notify userspace the event is going away. */
4128 eventfd_signal(event->eventfd, 1);
4129
4130 eventfd_ctx_put(event->eventfd);
4131 kfree(event);
4132 css_put(&memcg->css);
4133 }
4134
4135 /*
4136 * Gets called on POLLHUP on eventfd when user closes it.
4137 *
4138 * Called with wqh->lock held and interrupts disabled.
4139 */
4140 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4141 int sync, void *key)
4142 {
4143 struct mem_cgroup_event *event =
4144 container_of(wait, struct mem_cgroup_event, wait);
4145 struct mem_cgroup *memcg = event->memcg;
4146 unsigned long flags = (unsigned long)key;
4147
4148 if (flags & POLLHUP) {
4149 /*
4150 * If the event has been detached at cgroup removal, we
4151 * can simply return knowing the other side will cleanup
4152 * for us.
4153 *
4154 * We can't race against event freeing since the other
4155 * side will require wqh->lock via remove_wait_queue(),
4156 * which we hold.
4157 */
4158 spin_lock(&memcg->event_list_lock);
4159 if (!list_empty(&event->list)) {
4160 list_del_init(&event->list);
4161 /*
4162 * We are in atomic context, but cgroup_event_remove()
4163 * may sleep, so we have to call it in workqueue.
4164 */
4165 schedule_work(&event->remove);
4166 }
4167 spin_unlock(&memcg->event_list_lock);
4168 }
4169
4170 return 0;
4171 }
4172
4173 static void memcg_event_ptable_queue_proc(struct file *file,
4174 wait_queue_head_t *wqh, poll_table *pt)
4175 {
4176 struct mem_cgroup_event *event =
4177 container_of(pt, struct mem_cgroup_event, pt);
4178
4179 event->wqh = wqh;
4180 add_wait_queue(wqh, &event->wait);
4181 }
4182
4183 /*
4184 * DO NOT USE IN NEW FILES.
4185 *
4186 * Parse input and register new cgroup event handler.
4187 *
4188 * Input must be in format '<event_fd> <control_fd> <args>'.
4189 * Interpretation of args is defined by control file implementation.
4190 */
4191 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4192 char *buf, size_t nbytes, loff_t off)
4193 {
4194 struct cgroup_subsys_state *css = of_css(of);
4195 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4196 struct mem_cgroup_event *event;
4197 struct cgroup_subsys_state *cfile_css;
4198 unsigned int efd, cfd;
4199 struct fd efile;
4200 struct fd cfile;
4201 const char *name;
4202 char *endp;
4203 int ret;
4204
4205 buf = strstrip(buf);
4206
4207 efd = simple_strtoul(buf, &endp, 10);
4208 if (*endp != ' ')
4209 return -EINVAL;
4210 buf = endp + 1;
4211
4212 cfd = simple_strtoul(buf, &endp, 10);
4213 if ((*endp != ' ') && (*endp != '\0'))
4214 return -EINVAL;
4215 buf = endp + 1;
4216
4217 event = kzalloc(sizeof(*event), GFP_KERNEL);
4218 if (!event)
4219 return -ENOMEM;
4220
4221 event->memcg = memcg;
4222 INIT_LIST_HEAD(&event->list);
4223 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4224 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4225 INIT_WORK(&event->remove, memcg_event_remove);
4226
4227 efile = fdget(efd);
4228 if (!efile.file) {
4229 ret = -EBADF;
4230 goto out_kfree;
4231 }
4232
4233 event->eventfd = eventfd_ctx_fileget(efile.file);
4234 if (IS_ERR(event->eventfd)) {
4235 ret = PTR_ERR(event->eventfd);
4236 goto out_put_efile;
4237 }
4238
4239 cfile = fdget(cfd);
4240 if (!cfile.file) {
4241 ret = -EBADF;
4242 goto out_put_eventfd;
4243 }
4244
4245 /* the process need read permission on control file */
4246 /* AV: shouldn't we check that it's been opened for read instead? */
4247 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4248 if (ret < 0)
4249 goto out_put_cfile;
4250
4251 /*
4252 * Determine the event callbacks and set them in @event. This used
4253 * to be done via struct cftype but cgroup core no longer knows
4254 * about these events. The following is crude but the whole thing
4255 * is for compatibility anyway.
4256 *
4257 * DO NOT ADD NEW FILES.
4258 */
4259 name = cfile.file->f_path.dentry->d_name.name;
4260
4261 if (!strcmp(name, "memory.usage_in_bytes")) {
4262 event->register_event = mem_cgroup_usage_register_event;
4263 event->unregister_event = mem_cgroup_usage_unregister_event;
4264 } else if (!strcmp(name, "memory.oom_control")) {
4265 event->register_event = mem_cgroup_oom_register_event;
4266 event->unregister_event = mem_cgroup_oom_unregister_event;
4267 } else if (!strcmp(name, "memory.pressure_level")) {
4268 event->register_event = vmpressure_register_event;
4269 event->unregister_event = vmpressure_unregister_event;
4270 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4271 event->register_event = memsw_cgroup_usage_register_event;
4272 event->unregister_event = memsw_cgroup_usage_unregister_event;
4273 } else {
4274 ret = -EINVAL;
4275 goto out_put_cfile;
4276 }
4277
4278 /*
4279 * Verify @cfile should belong to @css. Also, remaining events are
4280 * automatically removed on cgroup destruction but the removal is
4281 * asynchronous, so take an extra ref on @css.
4282 */
4283 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4284 &memory_cgrp_subsys);
4285 ret = -EINVAL;
4286 if (IS_ERR(cfile_css))
4287 goto out_put_cfile;
4288 if (cfile_css != css) {
4289 css_put(cfile_css);
4290 goto out_put_cfile;
4291 }
4292
4293 ret = event->register_event(memcg, event->eventfd, buf);
4294 if (ret)
4295 goto out_put_css;
4296
4297 efile.file->f_op->poll(efile.file, &event->pt);
4298
4299 spin_lock(&memcg->event_list_lock);
4300 list_add(&event->list, &memcg->event_list);
4301 spin_unlock(&memcg->event_list_lock);
4302
4303 fdput(cfile);
4304 fdput(efile);
4305
4306 return nbytes;
4307
4308 out_put_css:
4309 css_put(css);
4310 out_put_cfile:
4311 fdput(cfile);
4312 out_put_eventfd:
4313 eventfd_ctx_put(event->eventfd);
4314 out_put_efile:
4315 fdput(efile);
4316 out_kfree:
4317 kfree(event);
4318
4319 return ret;
4320 }
4321
4322 static struct cftype mem_cgroup_legacy_files[] = {
4323 {
4324 .name = "usage_in_bytes",
4325 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4326 .read_u64 = mem_cgroup_read_u64,
4327 },
4328 {
4329 .name = "max_usage_in_bytes",
4330 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4331 .write = mem_cgroup_reset,
4332 .read_u64 = mem_cgroup_read_u64,
4333 },
4334 {
4335 .name = "limit_in_bytes",
4336 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4337 .write = mem_cgroup_write,
4338 .read_u64 = mem_cgroup_read_u64,
4339 },
4340 {
4341 .name = "soft_limit_in_bytes",
4342 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4343 .write = mem_cgroup_write,
4344 .read_u64 = mem_cgroup_read_u64,
4345 },
4346 {
4347 .name = "failcnt",
4348 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4349 .write = mem_cgroup_reset,
4350 .read_u64 = mem_cgroup_read_u64,
4351 },
4352 {
4353 .name = "stat",
4354 .seq_show = memcg_stat_show,
4355 },
4356 {
4357 .name = "force_empty",
4358 .write = mem_cgroup_force_empty_write,
4359 },
4360 {
4361 .name = "use_hierarchy",
4362 .write_u64 = mem_cgroup_hierarchy_write,
4363 .read_u64 = mem_cgroup_hierarchy_read,
4364 },
4365 {
4366 .name = "cgroup.event_control", /* XXX: for compat */
4367 .write = memcg_write_event_control,
4368 .flags = CFTYPE_NO_PREFIX,
4369 .mode = S_IWUGO,
4370 },
4371 {
4372 .name = "swappiness",
4373 .read_u64 = mem_cgroup_swappiness_read,
4374 .write_u64 = mem_cgroup_swappiness_write,
4375 },
4376 {
4377 .name = "move_charge_at_immigrate",
4378 .read_u64 = mem_cgroup_move_charge_read,
4379 .write_u64 = mem_cgroup_move_charge_write,
4380 },
4381 {
4382 .name = "oom_control",
4383 .seq_show = mem_cgroup_oom_control_read,
4384 .write_u64 = mem_cgroup_oom_control_write,
4385 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4386 },
4387 {
4388 .name = "pressure_level",
4389 },
4390 #ifdef CONFIG_NUMA
4391 {
4392 .name = "numa_stat",
4393 .seq_show = memcg_numa_stat_show,
4394 },
4395 #endif
4396 #ifdef CONFIG_MEMCG_KMEM
4397 {
4398 .name = "kmem.limit_in_bytes",
4399 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4400 .write = mem_cgroup_write,
4401 .read_u64 = mem_cgroup_read_u64,
4402 },
4403 {
4404 .name = "kmem.usage_in_bytes",
4405 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4406 .read_u64 = mem_cgroup_read_u64,
4407 },
4408 {
4409 .name = "kmem.failcnt",
4410 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4411 .write = mem_cgroup_reset,
4412 .read_u64 = mem_cgroup_read_u64,
4413 },
4414 {
4415 .name = "kmem.max_usage_in_bytes",
4416 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4417 .write = mem_cgroup_reset,
4418 .read_u64 = mem_cgroup_read_u64,
4419 },
4420 #ifdef CONFIG_SLABINFO
4421 {
4422 .name = "kmem.slabinfo",
4423 .seq_start = slab_start,
4424 .seq_next = slab_next,
4425 .seq_stop = slab_stop,
4426 .seq_show = memcg_slab_show,
4427 },
4428 #endif
4429 #endif
4430 { }, /* terminate */
4431 };
4432
4433 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4434 {
4435 struct mem_cgroup_per_node *pn;
4436 struct mem_cgroup_per_zone *mz;
4437 int zone, tmp = node;
4438 /*
4439 * This routine is called against possible nodes.
4440 * But it's BUG to call kmalloc() against offline node.
4441 *
4442 * TODO: this routine can waste much memory for nodes which will
4443 * never be onlined. It's better to use memory hotplug callback
4444 * function.
4445 */
4446 if (!node_state(node, N_NORMAL_MEMORY))
4447 tmp = -1;
4448 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4449 if (!pn)
4450 return 1;
4451
4452 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4453 mz = &pn->zoneinfo[zone];
4454 lruvec_init(&mz->lruvec);
4455 mz->usage_in_excess = 0;
4456 mz->on_tree = false;
4457 mz->memcg = memcg;
4458 }
4459 memcg->nodeinfo[node] = pn;
4460 return 0;
4461 }
4462
4463 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4464 {
4465 kfree(memcg->nodeinfo[node]);
4466 }
4467
4468 static struct mem_cgroup *mem_cgroup_alloc(void)
4469 {
4470 struct mem_cgroup *memcg;
4471 size_t size;
4472
4473 size = sizeof(struct mem_cgroup);
4474 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4475
4476 memcg = kzalloc(size, GFP_KERNEL);
4477 if (!memcg)
4478 return NULL;
4479
4480 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4481 if (!memcg->stat)
4482 goto out_free;
4483
4484 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4485 goto out_free_stat;
4486
4487 spin_lock_init(&memcg->pcp_counter_lock);
4488 return memcg;
4489
4490 out_free_stat:
4491 free_percpu(memcg->stat);
4492 out_free:
4493 kfree(memcg);
4494 return NULL;
4495 }
4496
4497 /*
4498 * At destroying mem_cgroup, references from swap_cgroup can remain.
4499 * (scanning all at force_empty is too costly...)
4500 *
4501 * Instead of clearing all references at force_empty, we remember
4502 * the number of reference from swap_cgroup and free mem_cgroup when
4503 * it goes down to 0.
4504 *
4505 * Removal of cgroup itself succeeds regardless of refs from swap.
4506 */
4507
4508 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4509 {
4510 int node;
4511
4512 mem_cgroup_remove_from_trees(memcg);
4513
4514 for_each_node(node)
4515 free_mem_cgroup_per_zone_info(memcg, node);
4516
4517 free_percpu(memcg->stat);
4518 memcg_wb_domain_exit(memcg);
4519 kfree(memcg);
4520 }
4521
4522 /*
4523 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4524 */
4525 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4526 {
4527 if (!memcg->memory.parent)
4528 return NULL;
4529 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4530 }
4531 EXPORT_SYMBOL(parent_mem_cgroup);
4532
4533 static struct cgroup_subsys_state * __ref
4534 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4535 {
4536 struct mem_cgroup *memcg;
4537 long error = -ENOMEM;
4538 int node;
4539
4540 memcg = mem_cgroup_alloc();
4541 if (!memcg)
4542 return ERR_PTR(error);
4543
4544 for_each_node(node)
4545 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4546 goto free_out;
4547
4548 /* root ? */
4549 if (parent_css == NULL) {
4550 root_mem_cgroup = memcg;
4551 mem_cgroup_root_css = &memcg->css;
4552 page_counter_init(&memcg->memory, NULL);
4553 memcg->high = PAGE_COUNTER_MAX;
4554 memcg->soft_limit = PAGE_COUNTER_MAX;
4555 page_counter_init(&memcg->memsw, NULL);
4556 page_counter_init(&memcg->kmem, NULL);
4557 }
4558
4559 memcg->last_scanned_node = MAX_NUMNODES;
4560 INIT_LIST_HEAD(&memcg->oom_notify);
4561 memcg->move_charge_at_immigrate = 0;
4562 mutex_init(&memcg->thresholds_lock);
4563 spin_lock_init(&memcg->move_lock);
4564 vmpressure_init(&memcg->vmpressure);
4565 INIT_LIST_HEAD(&memcg->event_list);
4566 spin_lock_init(&memcg->event_list_lock);
4567 #ifdef CONFIG_MEMCG_KMEM
4568 memcg->kmemcg_id = -1;
4569 #endif
4570 #ifdef CONFIG_CGROUP_WRITEBACK
4571 INIT_LIST_HEAD(&memcg->cgwb_list);
4572 #endif
4573 return &memcg->css;
4574
4575 free_out:
4576 __mem_cgroup_free(memcg);
4577 return ERR_PTR(error);
4578 }
4579
4580 static int
4581 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4582 {
4583 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4584 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4585 int ret;
4586
4587 if (css->id > MEM_CGROUP_ID_MAX)
4588 return -ENOSPC;
4589
4590 if (!parent)
4591 return 0;
4592
4593 mutex_lock(&memcg_create_mutex);
4594
4595 memcg->use_hierarchy = parent->use_hierarchy;
4596 memcg->oom_kill_disable = parent->oom_kill_disable;
4597 memcg->swappiness = mem_cgroup_swappiness(parent);
4598
4599 if (parent->use_hierarchy) {
4600 page_counter_init(&memcg->memory, &parent->memory);
4601 memcg->high = PAGE_COUNTER_MAX;
4602 memcg->soft_limit = PAGE_COUNTER_MAX;
4603 page_counter_init(&memcg->memsw, &parent->memsw);
4604 page_counter_init(&memcg->kmem, &parent->kmem);
4605
4606 /*
4607 * No need to take a reference to the parent because cgroup
4608 * core guarantees its existence.
4609 */
4610 } else {
4611 page_counter_init(&memcg->memory, NULL);
4612 memcg->high = PAGE_COUNTER_MAX;
4613 memcg->soft_limit = PAGE_COUNTER_MAX;
4614 page_counter_init(&memcg->memsw, NULL);
4615 page_counter_init(&memcg->kmem, NULL);
4616 /*
4617 * Deeper hierachy with use_hierarchy == false doesn't make
4618 * much sense so let cgroup subsystem know about this
4619 * unfortunate state in our controller.
4620 */
4621 if (parent != root_mem_cgroup)
4622 memory_cgrp_subsys.broken_hierarchy = true;
4623 }
4624 mutex_unlock(&memcg_create_mutex);
4625
4626 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4627 if (ret)
4628 return ret;
4629
4630 /*
4631 * Make sure the memcg is initialized: mem_cgroup_iter()
4632 * orders reading memcg->initialized against its callers
4633 * reading the memcg members.
4634 */
4635 smp_store_release(&memcg->initialized, 1);
4636
4637 return 0;
4638 }
4639
4640 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4641 {
4642 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4643 struct mem_cgroup_event *event, *tmp;
4644
4645 /*
4646 * Unregister events and notify userspace.
4647 * Notify userspace about cgroup removing only after rmdir of cgroup
4648 * directory to avoid race between userspace and kernelspace.
4649 */
4650 spin_lock(&memcg->event_list_lock);
4651 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4652 list_del_init(&event->list);
4653 schedule_work(&event->remove);
4654 }
4655 spin_unlock(&memcg->event_list_lock);
4656
4657 vmpressure_cleanup(&memcg->vmpressure);
4658
4659 memcg_deactivate_kmem(memcg);
4660
4661 wb_memcg_offline(memcg);
4662 }
4663
4664 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4665 {
4666 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4667
4668 memcg_destroy_kmem(memcg);
4669 __mem_cgroup_free(memcg);
4670 }
4671
4672 /**
4673 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4674 * @css: the target css
4675 *
4676 * Reset the states of the mem_cgroup associated with @css. This is
4677 * invoked when the userland requests disabling on the default hierarchy
4678 * but the memcg is pinned through dependency. The memcg should stop
4679 * applying policies and should revert to the vanilla state as it may be
4680 * made visible again.
4681 *
4682 * The current implementation only resets the essential configurations.
4683 * This needs to be expanded to cover all the visible parts.
4684 */
4685 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4686 {
4687 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4688
4689 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4690 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4691 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4692 memcg->low = 0;
4693 memcg->high = PAGE_COUNTER_MAX;
4694 memcg->soft_limit = PAGE_COUNTER_MAX;
4695 memcg_wb_domain_size_changed(memcg);
4696 }
4697
4698 #ifdef CONFIG_MMU
4699 /* Handlers for move charge at task migration. */
4700 static int mem_cgroup_do_precharge(unsigned long count)
4701 {
4702 int ret;
4703
4704 /* Try a single bulk charge without reclaim first */
4705 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4706 if (!ret) {
4707 mc.precharge += count;
4708 return ret;
4709 }
4710 if (ret == -EINTR) {
4711 cancel_charge(root_mem_cgroup, count);
4712 return ret;
4713 }
4714
4715 /* Try charges one by one with reclaim */
4716 while (count--) {
4717 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4718 /*
4719 * In case of failure, any residual charges against
4720 * mc.to will be dropped by mem_cgroup_clear_mc()
4721 * later on. However, cancel any charges that are
4722 * bypassed to root right away or they'll be lost.
4723 */
4724 if (ret == -EINTR)
4725 cancel_charge(root_mem_cgroup, 1);
4726 if (ret)
4727 return ret;
4728 mc.precharge++;
4729 cond_resched();
4730 }
4731 return 0;
4732 }
4733
4734 /**
4735 * get_mctgt_type - get target type of moving charge
4736 * @vma: the vma the pte to be checked belongs
4737 * @addr: the address corresponding to the pte to be checked
4738 * @ptent: the pte to be checked
4739 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4740 *
4741 * Returns
4742 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4743 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4744 * move charge. if @target is not NULL, the page is stored in target->page
4745 * with extra refcnt got(Callers should handle it).
4746 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4747 * target for charge migration. if @target is not NULL, the entry is stored
4748 * in target->ent.
4749 *
4750 * Called with pte lock held.
4751 */
4752 union mc_target {
4753 struct page *page;
4754 swp_entry_t ent;
4755 };
4756
4757 enum mc_target_type {
4758 MC_TARGET_NONE = 0,
4759 MC_TARGET_PAGE,
4760 MC_TARGET_SWAP,
4761 };
4762
4763 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4764 unsigned long addr, pte_t ptent)
4765 {
4766 struct page *page = vm_normal_page(vma, addr, ptent);
4767
4768 if (!page || !page_mapped(page))
4769 return NULL;
4770 if (PageAnon(page)) {
4771 if (!(mc.flags & MOVE_ANON))
4772 return NULL;
4773 } else {
4774 if (!(mc.flags & MOVE_FILE))
4775 return NULL;
4776 }
4777 if (!get_page_unless_zero(page))
4778 return NULL;
4779
4780 return page;
4781 }
4782
4783 #ifdef CONFIG_SWAP
4784 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4785 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4786 {
4787 struct page *page = NULL;
4788 swp_entry_t ent = pte_to_swp_entry(ptent);
4789
4790 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4791 return NULL;
4792 /*
4793 * Because lookup_swap_cache() updates some statistics counter,
4794 * we call find_get_page() with swapper_space directly.
4795 */
4796 page = find_get_page(swap_address_space(ent), ent.val);
4797 if (do_swap_account)
4798 entry->val = ent.val;
4799
4800 return page;
4801 }
4802 #else
4803 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4804 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4805 {
4806 return NULL;
4807 }
4808 #endif
4809
4810 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4811 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4812 {
4813 struct page *page = NULL;
4814 struct address_space *mapping;
4815 pgoff_t pgoff;
4816
4817 if (!vma->vm_file) /* anonymous vma */
4818 return NULL;
4819 if (!(mc.flags & MOVE_FILE))
4820 return NULL;
4821
4822 mapping = vma->vm_file->f_mapping;
4823 pgoff = linear_page_index(vma, addr);
4824
4825 /* page is moved even if it's not RSS of this task(page-faulted). */
4826 #ifdef CONFIG_SWAP
4827 /* shmem/tmpfs may report page out on swap: account for that too. */
4828 if (shmem_mapping(mapping)) {
4829 page = find_get_entry(mapping, pgoff);
4830 if (radix_tree_exceptional_entry(page)) {
4831 swp_entry_t swp = radix_to_swp_entry(page);
4832 if (do_swap_account)
4833 *entry = swp;
4834 page = find_get_page(swap_address_space(swp), swp.val);
4835 }
4836 } else
4837 page = find_get_page(mapping, pgoff);
4838 #else
4839 page = find_get_page(mapping, pgoff);
4840 #endif
4841 return page;
4842 }
4843
4844 /**
4845 * mem_cgroup_move_account - move account of the page
4846 * @page: the page
4847 * @nr_pages: number of regular pages (>1 for huge pages)
4848 * @from: mem_cgroup which the page is moved from.
4849 * @to: mem_cgroup which the page is moved to. @from != @to.
4850 *
4851 * The caller must confirm following.
4852 * - page is not on LRU (isolate_page() is useful.)
4853 * - compound_lock is held when nr_pages > 1
4854 *
4855 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4856 * from old cgroup.
4857 */
4858 static int mem_cgroup_move_account(struct page *page,
4859 unsigned int nr_pages,
4860 struct mem_cgroup *from,
4861 struct mem_cgroup *to)
4862 {
4863 unsigned long flags;
4864 int ret;
4865 bool anon;
4866
4867 VM_BUG_ON(from == to);
4868 VM_BUG_ON_PAGE(PageLRU(page), page);
4869 /*
4870 * The page is isolated from LRU. So, collapse function
4871 * will not handle this page. But page splitting can happen.
4872 * Do this check under compound_page_lock(). The caller should
4873 * hold it.
4874 */
4875 ret = -EBUSY;
4876 if (nr_pages > 1 && !PageTransHuge(page))
4877 goto out;
4878
4879 /*
4880 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4881 * of its source page while we change it: page migration takes
4882 * both pages off the LRU, but page cache replacement doesn't.
4883 */
4884 if (!trylock_page(page))
4885 goto out;
4886
4887 ret = -EINVAL;
4888 if (page->mem_cgroup != from)
4889 goto out_unlock;
4890
4891 anon = PageAnon(page);
4892
4893 spin_lock_irqsave(&from->move_lock, flags);
4894
4895 if (!anon && page_mapped(page)) {
4896 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4897 nr_pages);
4898 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4899 nr_pages);
4900 }
4901
4902 /*
4903 * move_lock grabbed above and caller set from->moving_account, so
4904 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4905 * So mapping should be stable for dirty pages.
4906 */
4907 if (!anon && PageDirty(page)) {
4908 struct address_space *mapping = page_mapping(page);
4909
4910 if (mapping_cap_account_dirty(mapping)) {
4911 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4912 nr_pages);
4913 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4914 nr_pages);
4915 }
4916 }
4917
4918 if (PageWriteback(page)) {
4919 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4920 nr_pages);
4921 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4922 nr_pages);
4923 }
4924
4925 /*
4926 * It is safe to change page->mem_cgroup here because the page
4927 * is referenced, charged, and isolated - we can't race with
4928 * uncharging, charging, migration, or LRU putback.
4929 */
4930
4931 /* caller should have done css_get */
4932 page->mem_cgroup = to;
4933 spin_unlock_irqrestore(&from->move_lock, flags);
4934
4935 ret = 0;
4936
4937 local_irq_disable();
4938 mem_cgroup_charge_statistics(to, page, nr_pages);
4939 memcg_check_events(to, page);
4940 mem_cgroup_charge_statistics(from, page, -nr_pages);
4941 memcg_check_events(from, page);
4942 local_irq_enable();
4943 out_unlock:
4944 unlock_page(page);
4945 out:
4946 return ret;
4947 }
4948
4949 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4950 unsigned long addr, pte_t ptent, union mc_target *target)
4951 {
4952 struct page *page = NULL;
4953 enum mc_target_type ret = MC_TARGET_NONE;
4954 swp_entry_t ent = { .val = 0 };
4955
4956 if (pte_present(ptent))
4957 page = mc_handle_present_pte(vma, addr, ptent);
4958 else if (is_swap_pte(ptent))
4959 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4960 else if (pte_none(ptent))
4961 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4962
4963 if (!page && !ent.val)
4964 return ret;
4965 if (page) {
4966 /*
4967 * Do only loose check w/o serialization.
4968 * mem_cgroup_move_account() checks the page is valid or
4969 * not under LRU exclusion.
4970 */
4971 if (page->mem_cgroup == mc.from) {
4972 ret = MC_TARGET_PAGE;
4973 if (target)
4974 target->page = page;
4975 }
4976 if (!ret || !target)
4977 put_page(page);
4978 }
4979 /* There is a swap entry and a page doesn't exist or isn't charged */
4980 if (ent.val && !ret &&
4981 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4982 ret = MC_TARGET_SWAP;
4983 if (target)
4984 target->ent = ent;
4985 }
4986 return ret;
4987 }
4988
4989 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4990 /*
4991 * We don't consider swapping or file mapped pages because THP does not
4992 * support them for now.
4993 * Caller should make sure that pmd_trans_huge(pmd) is true.
4994 */
4995 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4996 unsigned long addr, pmd_t pmd, union mc_target *target)
4997 {
4998 struct page *page = NULL;
4999 enum mc_target_type ret = MC_TARGET_NONE;
5000
5001 page = pmd_page(pmd);
5002 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5003 if (!(mc.flags & MOVE_ANON))
5004 return ret;
5005 if (page->mem_cgroup == mc.from) {
5006 ret = MC_TARGET_PAGE;
5007 if (target) {
5008 get_page(page);
5009 target->page = page;
5010 }
5011 }
5012 return ret;
5013 }
5014 #else
5015 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5016 unsigned long addr, pmd_t pmd, union mc_target *target)
5017 {
5018 return MC_TARGET_NONE;
5019 }
5020 #endif
5021
5022 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5023 unsigned long addr, unsigned long end,
5024 struct mm_walk *walk)
5025 {
5026 struct vm_area_struct *vma = walk->vma;
5027 pte_t *pte;
5028 spinlock_t *ptl;
5029
5030 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5031 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5032 mc.precharge += HPAGE_PMD_NR;
5033 spin_unlock(ptl);
5034 return 0;
5035 }
5036
5037 if (pmd_trans_unstable(pmd))
5038 return 0;
5039 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5040 for (; addr != end; pte++, addr += PAGE_SIZE)
5041 if (get_mctgt_type(vma, addr, *pte, NULL))
5042 mc.precharge++; /* increment precharge temporarily */
5043 pte_unmap_unlock(pte - 1, ptl);
5044 cond_resched();
5045
5046 return 0;
5047 }
5048
5049 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5050 {
5051 unsigned long precharge;
5052
5053 struct mm_walk mem_cgroup_count_precharge_walk = {
5054 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5055 .mm = mm,
5056 };
5057 down_read(&mm->mmap_sem);
5058 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
5059 up_read(&mm->mmap_sem);
5060
5061 precharge = mc.precharge;
5062 mc.precharge = 0;
5063
5064 return precharge;
5065 }
5066
5067 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5068 {
5069 unsigned long precharge = mem_cgroup_count_precharge(mm);
5070
5071 VM_BUG_ON(mc.moving_task);
5072 mc.moving_task = current;
5073 return mem_cgroup_do_precharge(precharge);
5074 }
5075
5076 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5077 static void __mem_cgroup_clear_mc(void)
5078 {
5079 struct mem_cgroup *from = mc.from;
5080 struct mem_cgroup *to = mc.to;
5081
5082 /* we must uncharge all the leftover precharges from mc.to */
5083 if (mc.precharge) {
5084 cancel_charge(mc.to, mc.precharge);
5085 mc.precharge = 0;
5086 }
5087 /*
5088 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5089 * we must uncharge here.
5090 */
5091 if (mc.moved_charge) {
5092 cancel_charge(mc.from, mc.moved_charge);
5093 mc.moved_charge = 0;
5094 }
5095 /* we must fixup refcnts and charges */
5096 if (mc.moved_swap) {
5097 /* uncharge swap account from the old cgroup */
5098 if (!mem_cgroup_is_root(mc.from))
5099 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5100
5101 /*
5102 * we charged both to->memory and to->memsw, so we
5103 * should uncharge to->memory.
5104 */
5105 if (!mem_cgroup_is_root(mc.to))
5106 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5107
5108 css_put_many(&mc.from->css, mc.moved_swap);
5109
5110 /* we've already done css_get(mc.to) */
5111 mc.moved_swap = 0;
5112 }
5113 memcg_oom_recover(from);
5114 memcg_oom_recover(to);
5115 wake_up_all(&mc.waitq);
5116 }
5117
5118 static void mem_cgroup_clear_mc(void)
5119 {
5120 /*
5121 * we must clear moving_task before waking up waiters at the end of
5122 * task migration.
5123 */
5124 mc.moving_task = NULL;
5125 __mem_cgroup_clear_mc();
5126 spin_lock(&mc.lock);
5127 mc.from = NULL;
5128 mc.to = NULL;
5129 spin_unlock(&mc.lock);
5130 }
5131
5132 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5133 struct cgroup_taskset *tset)
5134 {
5135 struct task_struct *p = cgroup_taskset_first(tset);
5136 int ret = 0;
5137 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5138 unsigned long move_flags;
5139
5140 /*
5141 * We are now commited to this value whatever it is. Changes in this
5142 * tunable will only affect upcoming migrations, not the current one.
5143 * So we need to save it, and keep it going.
5144 */
5145 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5146 if (move_flags) {
5147 struct mm_struct *mm;
5148 struct mem_cgroup *from = mem_cgroup_from_task(p);
5149
5150 VM_BUG_ON(from == memcg);
5151
5152 mm = get_task_mm(p);
5153 if (!mm)
5154 return 0;
5155 /* We move charges only when we move a owner of the mm */
5156 if (mm->owner == p) {
5157 VM_BUG_ON(mc.from);
5158 VM_BUG_ON(mc.to);
5159 VM_BUG_ON(mc.precharge);
5160 VM_BUG_ON(mc.moved_charge);
5161 VM_BUG_ON(mc.moved_swap);
5162
5163 spin_lock(&mc.lock);
5164 mc.from = from;
5165 mc.to = memcg;
5166 mc.flags = move_flags;
5167 spin_unlock(&mc.lock);
5168 /* We set mc.moving_task later */
5169
5170 ret = mem_cgroup_precharge_mc(mm);
5171 if (ret)
5172 mem_cgroup_clear_mc();
5173 }
5174 mmput(mm);
5175 }
5176 return ret;
5177 }
5178
5179 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5180 struct cgroup_taskset *tset)
5181 {
5182 if (mc.to)
5183 mem_cgroup_clear_mc();
5184 }
5185
5186 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5187 unsigned long addr, unsigned long end,
5188 struct mm_walk *walk)
5189 {
5190 int ret = 0;
5191 struct vm_area_struct *vma = walk->vma;
5192 pte_t *pte;
5193 spinlock_t *ptl;
5194 enum mc_target_type target_type;
5195 union mc_target target;
5196 struct page *page;
5197
5198 /*
5199 * We don't take compound_lock() here but no race with splitting thp
5200 * happens because:
5201 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5202 * under splitting, which means there's no concurrent thp split,
5203 * - if another thread runs into split_huge_page() just after we
5204 * entered this if-block, the thread must wait for page table lock
5205 * to be unlocked in __split_huge_page_splitting(), where the main
5206 * part of thp split is not executed yet.
5207 */
5208 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5209 if (mc.precharge < HPAGE_PMD_NR) {
5210 spin_unlock(ptl);
5211 return 0;
5212 }
5213 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5214 if (target_type == MC_TARGET_PAGE) {
5215 page = target.page;
5216 if (!isolate_lru_page(page)) {
5217 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5218 mc.from, mc.to)) {
5219 mc.precharge -= HPAGE_PMD_NR;
5220 mc.moved_charge += HPAGE_PMD_NR;
5221 }
5222 putback_lru_page(page);
5223 }
5224 put_page(page);
5225 }
5226 spin_unlock(ptl);
5227 return 0;
5228 }
5229
5230 if (pmd_trans_unstable(pmd))
5231 return 0;
5232 retry:
5233 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5234 for (; addr != end; addr += PAGE_SIZE) {
5235 pte_t ptent = *(pte++);
5236 swp_entry_t ent;
5237
5238 if (!mc.precharge)
5239 break;
5240
5241 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5242 case MC_TARGET_PAGE:
5243 page = target.page;
5244 if (isolate_lru_page(page))
5245 goto put;
5246 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5247 mc.precharge--;
5248 /* we uncharge from mc.from later. */
5249 mc.moved_charge++;
5250 }
5251 putback_lru_page(page);
5252 put: /* get_mctgt_type() gets the page */
5253 put_page(page);
5254 break;
5255 case MC_TARGET_SWAP:
5256 ent = target.ent;
5257 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5258 mc.precharge--;
5259 /* we fixup refcnts and charges later. */
5260 mc.moved_swap++;
5261 }
5262 break;
5263 default:
5264 break;
5265 }
5266 }
5267 pte_unmap_unlock(pte - 1, ptl);
5268 cond_resched();
5269
5270 if (addr != end) {
5271 /*
5272 * We have consumed all precharges we got in can_attach().
5273 * We try charge one by one, but don't do any additional
5274 * charges to mc.to if we have failed in charge once in attach()
5275 * phase.
5276 */
5277 ret = mem_cgroup_do_precharge(1);
5278 if (!ret)
5279 goto retry;
5280 }
5281
5282 return ret;
5283 }
5284
5285 static void mem_cgroup_move_charge(struct mm_struct *mm)
5286 {
5287 struct mm_walk mem_cgroup_move_charge_walk = {
5288 .pmd_entry = mem_cgroup_move_charge_pte_range,
5289 .mm = mm,
5290 };
5291
5292 lru_add_drain_all();
5293 /*
5294 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5295 * move_lock while we're moving its pages to another memcg.
5296 * Then wait for already started RCU-only updates to finish.
5297 */
5298 atomic_inc(&mc.from->moving_account);
5299 synchronize_rcu();
5300 retry:
5301 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5302 /*
5303 * Someone who are holding the mmap_sem might be waiting in
5304 * waitq. So we cancel all extra charges, wake up all waiters,
5305 * and retry. Because we cancel precharges, we might not be able
5306 * to move enough charges, but moving charge is a best-effort
5307 * feature anyway, so it wouldn't be a big problem.
5308 */
5309 __mem_cgroup_clear_mc();
5310 cond_resched();
5311 goto retry;
5312 }
5313 /*
5314 * When we have consumed all precharges and failed in doing
5315 * additional charge, the page walk just aborts.
5316 */
5317 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5318 up_read(&mm->mmap_sem);
5319 atomic_dec(&mc.from->moving_account);
5320 }
5321
5322 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5323 struct cgroup_taskset *tset)
5324 {
5325 struct task_struct *p = cgroup_taskset_first(tset);
5326 struct mm_struct *mm = get_task_mm(p);
5327
5328 if (mm) {
5329 if (mc.to)
5330 mem_cgroup_move_charge(mm);
5331 mmput(mm);
5332 }
5333 if (mc.to)
5334 mem_cgroup_clear_mc();
5335 }
5336 #else /* !CONFIG_MMU */
5337 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5338 struct cgroup_taskset *tset)
5339 {
5340 return 0;
5341 }
5342 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5343 struct cgroup_taskset *tset)
5344 {
5345 }
5346 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5347 struct cgroup_taskset *tset)
5348 {
5349 }
5350 #endif
5351
5352 /*
5353 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5354 * to verify whether we're attached to the default hierarchy on each mount
5355 * attempt.
5356 */
5357 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5358 {
5359 /*
5360 * use_hierarchy is forced on the default hierarchy. cgroup core
5361 * guarantees that @root doesn't have any children, so turning it
5362 * on for the root memcg is enough.
5363 */
5364 if (cgroup_on_dfl(root_css->cgroup))
5365 root_mem_cgroup->use_hierarchy = true;
5366 else
5367 root_mem_cgroup->use_hierarchy = false;
5368 }
5369
5370 static u64 memory_current_read(struct cgroup_subsys_state *css,
5371 struct cftype *cft)
5372 {
5373 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5374 }
5375
5376 static int memory_low_show(struct seq_file *m, void *v)
5377 {
5378 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5379 unsigned long low = READ_ONCE(memcg->low);
5380
5381 if (low == PAGE_COUNTER_MAX)
5382 seq_puts(m, "max\n");
5383 else
5384 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5385
5386 return 0;
5387 }
5388
5389 static ssize_t memory_low_write(struct kernfs_open_file *of,
5390 char *buf, size_t nbytes, loff_t off)
5391 {
5392 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5393 unsigned long low;
5394 int err;
5395
5396 buf = strstrip(buf);
5397 err = page_counter_memparse(buf, "max", &low);
5398 if (err)
5399 return err;
5400
5401 memcg->low = low;
5402
5403 return nbytes;
5404 }
5405
5406 static int memory_high_show(struct seq_file *m, void *v)
5407 {
5408 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5409 unsigned long high = READ_ONCE(memcg->high);
5410
5411 if (high == PAGE_COUNTER_MAX)
5412 seq_puts(m, "max\n");
5413 else
5414 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5415
5416 return 0;
5417 }
5418
5419 static ssize_t memory_high_write(struct kernfs_open_file *of,
5420 char *buf, size_t nbytes, loff_t off)
5421 {
5422 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5423 unsigned long high;
5424 int err;
5425
5426 buf = strstrip(buf);
5427 err = page_counter_memparse(buf, "max", &high);
5428 if (err)
5429 return err;
5430
5431 memcg->high = high;
5432
5433 memcg_wb_domain_size_changed(memcg);
5434 return nbytes;
5435 }
5436
5437 static int memory_max_show(struct seq_file *m, void *v)
5438 {
5439 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5440 unsigned long max = READ_ONCE(memcg->memory.limit);
5441
5442 if (max == PAGE_COUNTER_MAX)
5443 seq_puts(m, "max\n");
5444 else
5445 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5446
5447 return 0;
5448 }
5449
5450 static ssize_t memory_max_write(struct kernfs_open_file *of,
5451 char *buf, size_t nbytes, loff_t off)
5452 {
5453 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5454 unsigned long max;
5455 int err;
5456
5457 buf = strstrip(buf);
5458 err = page_counter_memparse(buf, "max", &max);
5459 if (err)
5460 return err;
5461
5462 err = mem_cgroup_resize_limit(memcg, max);
5463 if (err)
5464 return err;
5465
5466 memcg_wb_domain_size_changed(memcg);
5467 return nbytes;
5468 }
5469
5470 static int memory_events_show(struct seq_file *m, void *v)
5471 {
5472 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5473
5474 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5475 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5476 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5477 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5478
5479 return 0;
5480 }
5481
5482 static struct cftype memory_files[] = {
5483 {
5484 .name = "current",
5485 .read_u64 = memory_current_read,
5486 },
5487 {
5488 .name = "low",
5489 .flags = CFTYPE_NOT_ON_ROOT,
5490 .seq_show = memory_low_show,
5491 .write = memory_low_write,
5492 },
5493 {
5494 .name = "high",
5495 .flags = CFTYPE_NOT_ON_ROOT,
5496 .seq_show = memory_high_show,
5497 .write = memory_high_write,
5498 },
5499 {
5500 .name = "max",
5501 .flags = CFTYPE_NOT_ON_ROOT,
5502 .seq_show = memory_max_show,
5503 .write = memory_max_write,
5504 },
5505 {
5506 .name = "events",
5507 .flags = CFTYPE_NOT_ON_ROOT,
5508 .seq_show = memory_events_show,
5509 },
5510 { } /* terminate */
5511 };
5512
5513 struct cgroup_subsys memory_cgrp_subsys = {
5514 .css_alloc = mem_cgroup_css_alloc,
5515 .css_online = mem_cgroup_css_online,
5516 .css_offline = mem_cgroup_css_offline,
5517 .css_free = mem_cgroup_css_free,
5518 .css_reset = mem_cgroup_css_reset,
5519 .can_attach = mem_cgroup_can_attach,
5520 .cancel_attach = mem_cgroup_cancel_attach,
5521 .attach = mem_cgroup_move_task,
5522 .bind = mem_cgroup_bind,
5523 .dfl_cftypes = memory_files,
5524 .legacy_cftypes = mem_cgroup_legacy_files,
5525 .early_init = 0,
5526 };
5527
5528 /**
5529 * mem_cgroup_events - count memory events against a cgroup
5530 * @memcg: the memory cgroup
5531 * @idx: the event index
5532 * @nr: the number of events to account for
5533 */
5534 void mem_cgroup_events(struct mem_cgroup *memcg,
5535 enum mem_cgroup_events_index idx,
5536 unsigned int nr)
5537 {
5538 this_cpu_add(memcg->stat->events[idx], nr);
5539 }
5540
5541 /**
5542 * mem_cgroup_low - check if memory consumption is below the normal range
5543 * @root: the highest ancestor to consider
5544 * @memcg: the memory cgroup to check
5545 *
5546 * Returns %true if memory consumption of @memcg, and that of all
5547 * configurable ancestors up to @root, is below the normal range.
5548 */
5549 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5550 {
5551 if (mem_cgroup_disabled())
5552 return false;
5553
5554 /*
5555 * The toplevel group doesn't have a configurable range, so
5556 * it's never low when looked at directly, and it is not
5557 * considered an ancestor when assessing the hierarchy.
5558 */
5559
5560 if (memcg == root_mem_cgroup)
5561 return false;
5562
5563 if (page_counter_read(&memcg->memory) >= memcg->low)
5564 return false;
5565
5566 while (memcg != root) {
5567 memcg = parent_mem_cgroup(memcg);
5568
5569 if (memcg == root_mem_cgroup)
5570 break;
5571
5572 if (page_counter_read(&memcg->memory) >= memcg->low)
5573 return false;
5574 }
5575 return true;
5576 }
5577
5578 /**
5579 * mem_cgroup_try_charge - try charging a page
5580 * @page: page to charge
5581 * @mm: mm context of the victim
5582 * @gfp_mask: reclaim mode
5583 * @memcgp: charged memcg return
5584 *
5585 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5586 * pages according to @gfp_mask if necessary.
5587 *
5588 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5589 * Otherwise, an error code is returned.
5590 *
5591 * After page->mapping has been set up, the caller must finalize the
5592 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5593 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5594 */
5595 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5596 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5597 {
5598 struct mem_cgroup *memcg = NULL;
5599 unsigned int nr_pages = 1;
5600 int ret = 0;
5601
5602 if (mem_cgroup_disabled())
5603 goto out;
5604
5605 if (PageSwapCache(page)) {
5606 /*
5607 * Every swap fault against a single page tries to charge the
5608 * page, bail as early as possible. shmem_unuse() encounters
5609 * already charged pages, too. The USED bit is protected by
5610 * the page lock, which serializes swap cache removal, which
5611 * in turn serializes uncharging.
5612 */
5613 if (page->mem_cgroup)
5614 goto out;
5615 }
5616
5617 if (PageTransHuge(page)) {
5618 nr_pages <<= compound_order(page);
5619 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5620 }
5621
5622 if (do_swap_account && PageSwapCache(page))
5623 memcg = try_get_mem_cgroup_from_page(page);
5624 if (!memcg)
5625 memcg = get_mem_cgroup_from_mm(mm);
5626
5627 ret = try_charge(memcg, gfp_mask, nr_pages);
5628
5629 css_put(&memcg->css);
5630
5631 if (ret == -EINTR) {
5632 memcg = root_mem_cgroup;
5633 ret = 0;
5634 }
5635 out:
5636 *memcgp = memcg;
5637 return ret;
5638 }
5639
5640 /**
5641 * mem_cgroup_commit_charge - commit a page charge
5642 * @page: page to charge
5643 * @memcg: memcg to charge the page to
5644 * @lrucare: page might be on LRU already
5645 *
5646 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5647 * after page->mapping has been set up. This must happen atomically
5648 * as part of the page instantiation, i.e. under the page table lock
5649 * for anonymous pages, under the page lock for page and swap cache.
5650 *
5651 * In addition, the page must not be on the LRU during the commit, to
5652 * prevent racing with task migration. If it might be, use @lrucare.
5653 *
5654 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5655 */
5656 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5657 bool lrucare)
5658 {
5659 unsigned int nr_pages = 1;
5660
5661 VM_BUG_ON_PAGE(!page->mapping, page);
5662 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5663
5664 if (mem_cgroup_disabled())
5665 return;
5666 /*
5667 * Swap faults will attempt to charge the same page multiple
5668 * times. But reuse_swap_page() might have removed the page
5669 * from swapcache already, so we can't check PageSwapCache().
5670 */
5671 if (!memcg)
5672 return;
5673
5674 commit_charge(page, memcg, lrucare);
5675
5676 if (PageTransHuge(page)) {
5677 nr_pages <<= compound_order(page);
5678 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5679 }
5680
5681 local_irq_disable();
5682 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5683 memcg_check_events(memcg, page);
5684 local_irq_enable();
5685
5686 if (do_swap_account && PageSwapCache(page)) {
5687 swp_entry_t entry = { .val = page_private(page) };
5688 /*
5689 * The swap entry might not get freed for a long time,
5690 * let's not wait for it. The page already received a
5691 * memory+swap charge, drop the swap entry duplicate.
5692 */
5693 mem_cgroup_uncharge_swap(entry);
5694 }
5695 }
5696
5697 /**
5698 * mem_cgroup_cancel_charge - cancel a page charge
5699 * @page: page to charge
5700 * @memcg: memcg to charge the page to
5701 *
5702 * Cancel a charge transaction started by mem_cgroup_try_charge().
5703 */
5704 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5705 {
5706 unsigned int nr_pages = 1;
5707
5708 if (mem_cgroup_disabled())
5709 return;
5710 /*
5711 * Swap faults will attempt to charge the same page multiple
5712 * times. But reuse_swap_page() might have removed the page
5713 * from swapcache already, so we can't check PageSwapCache().
5714 */
5715 if (!memcg)
5716 return;
5717
5718 if (PageTransHuge(page)) {
5719 nr_pages <<= compound_order(page);
5720 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5721 }
5722
5723 cancel_charge(memcg, nr_pages);
5724 }
5725
5726 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5727 unsigned long nr_anon, unsigned long nr_file,
5728 unsigned long nr_huge, struct page *dummy_page)
5729 {
5730 unsigned long nr_pages = nr_anon + nr_file;
5731 unsigned long flags;
5732
5733 if (!mem_cgroup_is_root(memcg)) {
5734 page_counter_uncharge(&memcg->memory, nr_pages);
5735 if (do_swap_account)
5736 page_counter_uncharge(&memcg->memsw, nr_pages);
5737 memcg_oom_recover(memcg);
5738 }
5739
5740 local_irq_save(flags);
5741 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5742 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5743 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5744 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5745 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5746 memcg_check_events(memcg, dummy_page);
5747 local_irq_restore(flags);
5748
5749 if (!mem_cgroup_is_root(memcg))
5750 css_put_many(&memcg->css, nr_pages);
5751 }
5752
5753 static void uncharge_list(struct list_head *page_list)
5754 {
5755 struct mem_cgroup *memcg = NULL;
5756 unsigned long nr_anon = 0;
5757 unsigned long nr_file = 0;
5758 unsigned long nr_huge = 0;
5759 unsigned long pgpgout = 0;
5760 struct list_head *next;
5761 struct page *page;
5762
5763 next = page_list->next;
5764 do {
5765 unsigned int nr_pages = 1;
5766
5767 page = list_entry(next, struct page, lru);
5768 next = page->lru.next;
5769
5770 VM_BUG_ON_PAGE(PageLRU(page), page);
5771 VM_BUG_ON_PAGE(page_count(page), page);
5772
5773 if (!page->mem_cgroup)
5774 continue;
5775
5776 /*
5777 * Nobody should be changing or seriously looking at
5778 * page->mem_cgroup at this point, we have fully
5779 * exclusive access to the page.
5780 */
5781
5782 if (memcg != page->mem_cgroup) {
5783 if (memcg) {
5784 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5785 nr_huge, page);
5786 pgpgout = nr_anon = nr_file = nr_huge = 0;
5787 }
5788 memcg = page->mem_cgroup;
5789 }
5790
5791 if (PageTransHuge(page)) {
5792 nr_pages <<= compound_order(page);
5793 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5794 nr_huge += nr_pages;
5795 }
5796
5797 if (PageAnon(page))
5798 nr_anon += nr_pages;
5799 else
5800 nr_file += nr_pages;
5801
5802 page->mem_cgroup = NULL;
5803
5804 pgpgout++;
5805 } while (next != page_list);
5806
5807 if (memcg)
5808 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5809 nr_huge, page);
5810 }
5811
5812 /**
5813 * mem_cgroup_uncharge - uncharge a page
5814 * @page: page to uncharge
5815 *
5816 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5817 * mem_cgroup_commit_charge().
5818 */
5819 void mem_cgroup_uncharge(struct page *page)
5820 {
5821 if (mem_cgroup_disabled())
5822 return;
5823
5824 /* Don't touch page->lru of any random page, pre-check: */
5825 if (!page->mem_cgroup)
5826 return;
5827
5828 INIT_LIST_HEAD(&page->lru);
5829 uncharge_list(&page->lru);
5830 }
5831
5832 /**
5833 * mem_cgroup_uncharge_list - uncharge a list of page
5834 * @page_list: list of pages to uncharge
5835 *
5836 * Uncharge a list of pages previously charged with
5837 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5838 */
5839 void mem_cgroup_uncharge_list(struct list_head *page_list)
5840 {
5841 if (mem_cgroup_disabled())
5842 return;
5843
5844 if (!list_empty(page_list))
5845 uncharge_list(page_list);
5846 }
5847
5848 /**
5849 * mem_cgroup_migrate - migrate a charge to another page
5850 * @oldpage: currently charged page
5851 * @newpage: page to transfer the charge to
5852 * @lrucare: either or both pages might be on the LRU already
5853 *
5854 * Migrate the charge from @oldpage to @newpage.
5855 *
5856 * Both pages must be locked, @newpage->mapping must be set up.
5857 */
5858 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5859 bool lrucare)
5860 {
5861 struct mem_cgroup *memcg;
5862 int isolated;
5863
5864 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5865 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5866 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5867 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5868 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5869 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5870 newpage);
5871
5872 if (mem_cgroup_disabled())
5873 return;
5874
5875 /* Page cache replacement: new page already charged? */
5876 if (newpage->mem_cgroup)
5877 return;
5878
5879 /*
5880 * Swapcache readahead pages can get migrated before being
5881 * charged, and migration from compaction can happen to an
5882 * uncharged page when the PFN walker finds a page that
5883 * reclaim just put back on the LRU but has not released yet.
5884 */
5885 memcg = oldpage->mem_cgroup;
5886 if (!memcg)
5887 return;
5888
5889 if (lrucare)
5890 lock_page_lru(oldpage, &isolated);
5891
5892 oldpage->mem_cgroup = NULL;
5893
5894 if (lrucare)
5895 unlock_page_lru(oldpage, isolated);
5896
5897 commit_charge(newpage, memcg, lrucare);
5898 }
5899
5900 /*
5901 * subsys_initcall() for memory controller.
5902 *
5903 * Some parts like hotcpu_notifier() have to be initialized from this context
5904 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5905 * everything that doesn't depend on a specific mem_cgroup structure should
5906 * be initialized from here.
5907 */
5908 static int __init mem_cgroup_init(void)
5909 {
5910 int cpu, node;
5911
5912 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5913
5914 for_each_possible_cpu(cpu)
5915 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5916 drain_local_stock);
5917
5918 for_each_node(node) {
5919 struct mem_cgroup_tree_per_node *rtpn;
5920 int zone;
5921
5922 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5923 node_online(node) ? node : NUMA_NO_NODE);
5924
5925 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5926 struct mem_cgroup_tree_per_zone *rtpz;
5927
5928 rtpz = &rtpn->rb_tree_per_zone[zone];
5929 rtpz->rb_root = RB_ROOT;
5930 spin_lock_init(&rtpz->lock);
5931 }
5932 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5933 }
5934
5935 return 0;
5936 }
5937 subsys_initcall(mem_cgroup_init);
5938
5939 #ifdef CONFIG_MEMCG_SWAP
5940 /**
5941 * mem_cgroup_swapout - transfer a memsw charge to swap
5942 * @page: page whose memsw charge to transfer
5943 * @entry: swap entry to move the charge to
5944 *
5945 * Transfer the memsw charge of @page to @entry.
5946 */
5947 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5948 {
5949 struct mem_cgroup *memcg;
5950 unsigned short oldid;
5951
5952 VM_BUG_ON_PAGE(PageLRU(page), page);
5953 VM_BUG_ON_PAGE(page_count(page), page);
5954
5955 if (!do_swap_account)
5956 return;
5957
5958 memcg = page->mem_cgroup;
5959
5960 /* Readahead page, never charged */
5961 if (!memcg)
5962 return;
5963
5964 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5965 VM_BUG_ON_PAGE(oldid, page);
5966 mem_cgroup_swap_statistics(memcg, true);
5967
5968 page->mem_cgroup = NULL;
5969
5970 if (!mem_cgroup_is_root(memcg))
5971 page_counter_uncharge(&memcg->memory, 1);
5972
5973 /*
5974 * Interrupts should be disabled here because the caller holds the
5975 * mapping->tree_lock lock which is taken with interrupts-off. It is
5976 * important here to have the interrupts disabled because it is the
5977 * only synchronisation we have for udpating the per-CPU variables.
5978 */
5979 VM_BUG_ON(!irqs_disabled());
5980 mem_cgroup_charge_statistics(memcg, page, -1);
5981 memcg_check_events(memcg, page);
5982 }
5983
5984 /**
5985 * mem_cgroup_uncharge_swap - uncharge a swap entry
5986 * @entry: swap entry to uncharge
5987 *
5988 * Drop the memsw charge associated with @entry.
5989 */
5990 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5991 {
5992 struct mem_cgroup *memcg;
5993 unsigned short id;
5994
5995 if (!do_swap_account)
5996 return;
5997
5998 id = swap_cgroup_record(entry, 0);
5999 rcu_read_lock();
6000 memcg = mem_cgroup_from_id(id);
6001 if (memcg) {
6002 if (!mem_cgroup_is_root(memcg))
6003 page_counter_uncharge(&memcg->memsw, 1);
6004 mem_cgroup_swap_statistics(memcg, false);
6005 css_put(&memcg->css);
6006 }
6007 rcu_read_unlock();
6008 }
6009
6010 /* for remember boot option*/
6011 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6012 static int really_do_swap_account __initdata = 1;
6013 #else
6014 static int really_do_swap_account __initdata;
6015 #endif
6016
6017 static int __init enable_swap_account(char *s)
6018 {
6019 if (!strcmp(s, "1"))
6020 really_do_swap_account = 1;
6021 else if (!strcmp(s, "0"))
6022 really_do_swap_account = 0;
6023 return 1;
6024 }
6025 __setup("swapaccount=", enable_swap_account);
6026
6027 static struct cftype memsw_cgroup_files[] = {
6028 {
6029 .name = "memsw.usage_in_bytes",
6030 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6031 .read_u64 = mem_cgroup_read_u64,
6032 },
6033 {
6034 .name = "memsw.max_usage_in_bytes",
6035 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6036 .write = mem_cgroup_reset,
6037 .read_u64 = mem_cgroup_read_u64,
6038 },
6039 {
6040 .name = "memsw.limit_in_bytes",
6041 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6042 .write = mem_cgroup_write,
6043 .read_u64 = mem_cgroup_read_u64,
6044 },
6045 {
6046 .name = "memsw.failcnt",
6047 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6048 .write = mem_cgroup_reset,
6049 .read_u64 = mem_cgroup_read_u64,
6050 },
6051 { }, /* terminate */
6052 };
6053
6054 static int __init mem_cgroup_swap_init(void)
6055 {
6056 if (!mem_cgroup_disabled() && really_do_swap_account) {
6057 do_swap_account = 1;
6058 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6059 memsw_cgroup_files));
6060 }
6061 return 0;
6062 }
6063 subsys_initcall(mem_cgroup_swap_init);
6064
6065 #endif /* CONFIG_MEMCG_SWAP */