]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/memcontrol.c
Merge tag 'dma-mapping-5.4' of git://git.infradead.org/users/hch/dma-mapping
[mirror_ubuntu-focal-kernel.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/mm.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/seq_buf.h>
61 #include "internal.h"
62 #include <net/sock.h>
63 #include <net/ip.h>
64 #include "slab.h"
65
66 #include <linux/uaccess.h>
67
68 #include <trace/events/vmscan.h>
69
70 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
71 EXPORT_SYMBOL(memory_cgrp_subsys);
72
73 struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75 #define MEM_CGROUP_RECLAIM_RETRIES 5
76
77 /* Socket memory accounting disabled? */
78 static bool cgroup_memory_nosocket;
79
80 /* Kernel memory accounting disabled? */
81 static bool cgroup_memory_nokmem;
82
83 /* Whether the swap controller is active */
84 #ifdef CONFIG_MEMCG_SWAP
85 int do_swap_account __read_mostly;
86 #else
87 #define do_swap_account 0
88 #endif
89
90 #ifdef CONFIG_CGROUP_WRITEBACK
91 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
92 #endif
93
94 /* Whether legacy memory+swap accounting is active */
95 static bool do_memsw_account(void)
96 {
97 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
98 }
99
100 static const char *const mem_cgroup_lru_names[] = {
101 "inactive_anon",
102 "active_anon",
103 "inactive_file",
104 "active_file",
105 "unevictable",
106 };
107
108 #define THRESHOLDS_EVENTS_TARGET 128
109 #define SOFTLIMIT_EVENTS_TARGET 1024
110 #define NUMAINFO_EVENTS_TARGET 1024
111
112 /*
113 * Cgroups above their limits are maintained in a RB-Tree, independent of
114 * their hierarchy representation
115 */
116
117 struct mem_cgroup_tree_per_node {
118 struct rb_root rb_root;
119 struct rb_node *rb_rightmost;
120 spinlock_t lock;
121 };
122
123 struct mem_cgroup_tree {
124 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
125 };
126
127 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
128
129 /* for OOM */
130 struct mem_cgroup_eventfd_list {
131 struct list_head list;
132 struct eventfd_ctx *eventfd;
133 };
134
135 /*
136 * cgroup_event represents events which userspace want to receive.
137 */
138 struct mem_cgroup_event {
139 /*
140 * memcg which the event belongs to.
141 */
142 struct mem_cgroup *memcg;
143 /*
144 * eventfd to signal userspace about the event.
145 */
146 struct eventfd_ctx *eventfd;
147 /*
148 * Each of these stored in a list by the cgroup.
149 */
150 struct list_head list;
151 /*
152 * register_event() callback will be used to add new userspace
153 * waiter for changes related to this event. Use eventfd_signal()
154 * on eventfd to send notification to userspace.
155 */
156 int (*register_event)(struct mem_cgroup *memcg,
157 struct eventfd_ctx *eventfd, const char *args);
158 /*
159 * unregister_event() callback will be called when userspace closes
160 * the eventfd or on cgroup removing. This callback must be set,
161 * if you want provide notification functionality.
162 */
163 void (*unregister_event)(struct mem_cgroup *memcg,
164 struct eventfd_ctx *eventfd);
165 /*
166 * All fields below needed to unregister event when
167 * userspace closes eventfd.
168 */
169 poll_table pt;
170 wait_queue_head_t *wqh;
171 wait_queue_entry_t wait;
172 struct work_struct remove;
173 };
174
175 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
176 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
177
178 /* Stuffs for move charges at task migration. */
179 /*
180 * Types of charges to be moved.
181 */
182 #define MOVE_ANON 0x1U
183 #define MOVE_FILE 0x2U
184 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
185
186 /* "mc" and its members are protected by cgroup_mutex */
187 static struct move_charge_struct {
188 spinlock_t lock; /* for from, to */
189 struct mm_struct *mm;
190 struct mem_cgroup *from;
191 struct mem_cgroup *to;
192 unsigned long flags;
193 unsigned long precharge;
194 unsigned long moved_charge;
195 unsigned long moved_swap;
196 struct task_struct *moving_task; /* a task moving charges */
197 wait_queue_head_t waitq; /* a waitq for other context */
198 } mc = {
199 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
200 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
201 };
202
203 /*
204 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
205 * limit reclaim to prevent infinite loops, if they ever occur.
206 */
207 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
208 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
209
210 enum charge_type {
211 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
212 MEM_CGROUP_CHARGE_TYPE_ANON,
213 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
214 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
215 NR_CHARGE_TYPE,
216 };
217
218 /* for encoding cft->private value on file */
219 enum res_type {
220 _MEM,
221 _MEMSWAP,
222 _OOM_TYPE,
223 _KMEM,
224 _TCP,
225 };
226
227 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
228 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
229 #define MEMFILE_ATTR(val) ((val) & 0xffff)
230 /* Used for OOM nofiier */
231 #define OOM_CONTROL (0)
232
233 /*
234 * Iteration constructs for visiting all cgroups (under a tree). If
235 * loops are exited prematurely (break), mem_cgroup_iter_break() must
236 * be used for reference counting.
237 */
238 #define for_each_mem_cgroup_tree(iter, root) \
239 for (iter = mem_cgroup_iter(root, NULL, NULL); \
240 iter != NULL; \
241 iter = mem_cgroup_iter(root, iter, NULL))
242
243 #define for_each_mem_cgroup(iter) \
244 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
245 iter != NULL; \
246 iter = mem_cgroup_iter(NULL, iter, NULL))
247
248 static inline bool should_force_charge(void)
249 {
250 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
251 (current->flags & PF_EXITING);
252 }
253
254 /* Some nice accessors for the vmpressure. */
255 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256 {
257 if (!memcg)
258 memcg = root_mem_cgroup;
259 return &memcg->vmpressure;
260 }
261
262 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263 {
264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265 }
266
267 #ifdef CONFIG_MEMCG_KMEM
268 /*
269 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
270 * The main reason for not using cgroup id for this:
271 * this works better in sparse environments, where we have a lot of memcgs,
272 * but only a few kmem-limited. Or also, if we have, for instance, 200
273 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
274 * 200 entry array for that.
275 *
276 * The current size of the caches array is stored in memcg_nr_cache_ids. It
277 * will double each time we have to increase it.
278 */
279 static DEFINE_IDA(memcg_cache_ida);
280 int memcg_nr_cache_ids;
281
282 /* Protects memcg_nr_cache_ids */
283 static DECLARE_RWSEM(memcg_cache_ids_sem);
284
285 void memcg_get_cache_ids(void)
286 {
287 down_read(&memcg_cache_ids_sem);
288 }
289
290 void memcg_put_cache_ids(void)
291 {
292 up_read(&memcg_cache_ids_sem);
293 }
294
295 /*
296 * MIN_SIZE is different than 1, because we would like to avoid going through
297 * the alloc/free process all the time. In a small machine, 4 kmem-limited
298 * cgroups is a reasonable guess. In the future, it could be a parameter or
299 * tunable, but that is strictly not necessary.
300 *
301 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
302 * this constant directly from cgroup, but it is understandable that this is
303 * better kept as an internal representation in cgroup.c. In any case, the
304 * cgrp_id space is not getting any smaller, and we don't have to necessarily
305 * increase ours as well if it increases.
306 */
307 #define MEMCG_CACHES_MIN_SIZE 4
308 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
309
310 /*
311 * A lot of the calls to the cache allocation functions are expected to be
312 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
313 * conditional to this static branch, we'll have to allow modules that does
314 * kmem_cache_alloc and the such to see this symbol as well
315 */
316 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
317 EXPORT_SYMBOL(memcg_kmem_enabled_key);
318
319 struct workqueue_struct *memcg_kmem_cache_wq;
320
321 static int memcg_shrinker_map_size;
322 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
323
324 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
325 {
326 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
327 }
328
329 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
330 int size, int old_size)
331 {
332 struct memcg_shrinker_map *new, *old;
333 int nid;
334
335 lockdep_assert_held(&memcg_shrinker_map_mutex);
336
337 for_each_node(nid) {
338 old = rcu_dereference_protected(
339 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
340 /* Not yet online memcg */
341 if (!old)
342 return 0;
343
344 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
345 if (!new)
346 return -ENOMEM;
347
348 /* Set all old bits, clear all new bits */
349 memset(new->map, (int)0xff, old_size);
350 memset((void *)new->map + old_size, 0, size - old_size);
351
352 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
353 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
354 }
355
356 return 0;
357 }
358
359 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
360 {
361 struct mem_cgroup_per_node *pn;
362 struct memcg_shrinker_map *map;
363 int nid;
364
365 if (mem_cgroup_is_root(memcg))
366 return;
367
368 for_each_node(nid) {
369 pn = mem_cgroup_nodeinfo(memcg, nid);
370 map = rcu_dereference_protected(pn->shrinker_map, true);
371 if (map)
372 kvfree(map);
373 rcu_assign_pointer(pn->shrinker_map, NULL);
374 }
375 }
376
377 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
378 {
379 struct memcg_shrinker_map *map;
380 int nid, size, ret = 0;
381
382 if (mem_cgroup_is_root(memcg))
383 return 0;
384
385 mutex_lock(&memcg_shrinker_map_mutex);
386 size = memcg_shrinker_map_size;
387 for_each_node(nid) {
388 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
389 if (!map) {
390 memcg_free_shrinker_maps(memcg);
391 ret = -ENOMEM;
392 break;
393 }
394 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
395 }
396 mutex_unlock(&memcg_shrinker_map_mutex);
397
398 return ret;
399 }
400
401 int memcg_expand_shrinker_maps(int new_id)
402 {
403 int size, old_size, ret = 0;
404 struct mem_cgroup *memcg;
405
406 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
407 old_size = memcg_shrinker_map_size;
408 if (size <= old_size)
409 return 0;
410
411 mutex_lock(&memcg_shrinker_map_mutex);
412 if (!root_mem_cgroup)
413 goto unlock;
414
415 for_each_mem_cgroup(memcg) {
416 if (mem_cgroup_is_root(memcg))
417 continue;
418 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
419 if (ret)
420 goto unlock;
421 }
422 unlock:
423 if (!ret)
424 memcg_shrinker_map_size = size;
425 mutex_unlock(&memcg_shrinker_map_mutex);
426 return ret;
427 }
428
429 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
430 {
431 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
432 struct memcg_shrinker_map *map;
433
434 rcu_read_lock();
435 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
436 /* Pairs with smp mb in shrink_slab() */
437 smp_mb__before_atomic();
438 set_bit(shrinker_id, map->map);
439 rcu_read_unlock();
440 }
441 }
442
443 #else /* CONFIG_MEMCG_KMEM */
444 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
445 {
446 return 0;
447 }
448 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
449 #endif /* CONFIG_MEMCG_KMEM */
450
451 /**
452 * mem_cgroup_css_from_page - css of the memcg associated with a page
453 * @page: page of interest
454 *
455 * If memcg is bound to the default hierarchy, css of the memcg associated
456 * with @page is returned. The returned css remains associated with @page
457 * until it is released.
458 *
459 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
460 * is returned.
461 */
462 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
463 {
464 struct mem_cgroup *memcg;
465
466 memcg = page->mem_cgroup;
467
468 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
469 memcg = root_mem_cgroup;
470
471 return &memcg->css;
472 }
473
474 /**
475 * page_cgroup_ino - return inode number of the memcg a page is charged to
476 * @page: the page
477 *
478 * Look up the closest online ancestor of the memory cgroup @page is charged to
479 * and return its inode number or 0 if @page is not charged to any cgroup. It
480 * is safe to call this function without holding a reference to @page.
481 *
482 * Note, this function is inherently racy, because there is nothing to prevent
483 * the cgroup inode from getting torn down and potentially reallocated a moment
484 * after page_cgroup_ino() returns, so it only should be used by callers that
485 * do not care (such as procfs interfaces).
486 */
487 ino_t page_cgroup_ino(struct page *page)
488 {
489 struct mem_cgroup *memcg;
490 unsigned long ino = 0;
491
492 rcu_read_lock();
493 if (PageHead(page) && PageSlab(page))
494 memcg = memcg_from_slab_page(page);
495 else
496 memcg = READ_ONCE(page->mem_cgroup);
497 while (memcg && !(memcg->css.flags & CSS_ONLINE))
498 memcg = parent_mem_cgroup(memcg);
499 if (memcg)
500 ino = cgroup_ino(memcg->css.cgroup);
501 rcu_read_unlock();
502 return ino;
503 }
504
505 static struct mem_cgroup_per_node *
506 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
507 {
508 int nid = page_to_nid(page);
509
510 return memcg->nodeinfo[nid];
511 }
512
513 static struct mem_cgroup_tree_per_node *
514 soft_limit_tree_node(int nid)
515 {
516 return soft_limit_tree.rb_tree_per_node[nid];
517 }
518
519 static struct mem_cgroup_tree_per_node *
520 soft_limit_tree_from_page(struct page *page)
521 {
522 int nid = page_to_nid(page);
523
524 return soft_limit_tree.rb_tree_per_node[nid];
525 }
526
527 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
528 struct mem_cgroup_tree_per_node *mctz,
529 unsigned long new_usage_in_excess)
530 {
531 struct rb_node **p = &mctz->rb_root.rb_node;
532 struct rb_node *parent = NULL;
533 struct mem_cgroup_per_node *mz_node;
534 bool rightmost = true;
535
536 if (mz->on_tree)
537 return;
538
539 mz->usage_in_excess = new_usage_in_excess;
540 if (!mz->usage_in_excess)
541 return;
542 while (*p) {
543 parent = *p;
544 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
545 tree_node);
546 if (mz->usage_in_excess < mz_node->usage_in_excess) {
547 p = &(*p)->rb_left;
548 rightmost = false;
549 }
550
551 /*
552 * We can't avoid mem cgroups that are over their soft
553 * limit by the same amount
554 */
555 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
556 p = &(*p)->rb_right;
557 }
558
559 if (rightmost)
560 mctz->rb_rightmost = &mz->tree_node;
561
562 rb_link_node(&mz->tree_node, parent, p);
563 rb_insert_color(&mz->tree_node, &mctz->rb_root);
564 mz->on_tree = true;
565 }
566
567 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 struct mem_cgroup_tree_per_node *mctz)
569 {
570 if (!mz->on_tree)
571 return;
572
573 if (&mz->tree_node == mctz->rb_rightmost)
574 mctz->rb_rightmost = rb_prev(&mz->tree_node);
575
576 rb_erase(&mz->tree_node, &mctz->rb_root);
577 mz->on_tree = false;
578 }
579
580 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
581 struct mem_cgroup_tree_per_node *mctz)
582 {
583 unsigned long flags;
584
585 spin_lock_irqsave(&mctz->lock, flags);
586 __mem_cgroup_remove_exceeded(mz, mctz);
587 spin_unlock_irqrestore(&mctz->lock, flags);
588 }
589
590 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
591 {
592 unsigned long nr_pages = page_counter_read(&memcg->memory);
593 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
594 unsigned long excess = 0;
595
596 if (nr_pages > soft_limit)
597 excess = nr_pages - soft_limit;
598
599 return excess;
600 }
601
602 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
603 {
604 unsigned long excess;
605 struct mem_cgroup_per_node *mz;
606 struct mem_cgroup_tree_per_node *mctz;
607
608 mctz = soft_limit_tree_from_page(page);
609 if (!mctz)
610 return;
611 /*
612 * Necessary to update all ancestors when hierarchy is used.
613 * because their event counter is not touched.
614 */
615 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
616 mz = mem_cgroup_page_nodeinfo(memcg, page);
617 excess = soft_limit_excess(memcg);
618 /*
619 * We have to update the tree if mz is on RB-tree or
620 * mem is over its softlimit.
621 */
622 if (excess || mz->on_tree) {
623 unsigned long flags;
624
625 spin_lock_irqsave(&mctz->lock, flags);
626 /* if on-tree, remove it */
627 if (mz->on_tree)
628 __mem_cgroup_remove_exceeded(mz, mctz);
629 /*
630 * Insert again. mz->usage_in_excess will be updated.
631 * If excess is 0, no tree ops.
632 */
633 __mem_cgroup_insert_exceeded(mz, mctz, excess);
634 spin_unlock_irqrestore(&mctz->lock, flags);
635 }
636 }
637 }
638
639 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
640 {
641 struct mem_cgroup_tree_per_node *mctz;
642 struct mem_cgroup_per_node *mz;
643 int nid;
644
645 for_each_node(nid) {
646 mz = mem_cgroup_nodeinfo(memcg, nid);
647 mctz = soft_limit_tree_node(nid);
648 if (mctz)
649 mem_cgroup_remove_exceeded(mz, mctz);
650 }
651 }
652
653 static struct mem_cgroup_per_node *
654 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
655 {
656 struct mem_cgroup_per_node *mz;
657
658 retry:
659 mz = NULL;
660 if (!mctz->rb_rightmost)
661 goto done; /* Nothing to reclaim from */
662
663 mz = rb_entry(mctz->rb_rightmost,
664 struct mem_cgroup_per_node, tree_node);
665 /*
666 * Remove the node now but someone else can add it back,
667 * we will to add it back at the end of reclaim to its correct
668 * position in the tree.
669 */
670 __mem_cgroup_remove_exceeded(mz, mctz);
671 if (!soft_limit_excess(mz->memcg) ||
672 !css_tryget_online(&mz->memcg->css))
673 goto retry;
674 done:
675 return mz;
676 }
677
678 static struct mem_cgroup_per_node *
679 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
680 {
681 struct mem_cgroup_per_node *mz;
682
683 spin_lock_irq(&mctz->lock);
684 mz = __mem_cgroup_largest_soft_limit_node(mctz);
685 spin_unlock_irq(&mctz->lock);
686 return mz;
687 }
688
689 /**
690 * __mod_memcg_state - update cgroup memory statistics
691 * @memcg: the memory cgroup
692 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
693 * @val: delta to add to the counter, can be negative
694 */
695 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
696 {
697 long x;
698
699 if (mem_cgroup_disabled())
700 return;
701
702 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
703 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
704 struct mem_cgroup *mi;
705
706 /*
707 * Batch local counters to keep them in sync with
708 * the hierarchical ones.
709 */
710 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
711 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
712 atomic_long_add(x, &mi->vmstats[idx]);
713 x = 0;
714 }
715 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
716 }
717
718 static struct mem_cgroup_per_node *
719 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
720 {
721 struct mem_cgroup *parent;
722
723 parent = parent_mem_cgroup(pn->memcg);
724 if (!parent)
725 return NULL;
726 return mem_cgroup_nodeinfo(parent, nid);
727 }
728
729 /**
730 * __mod_lruvec_state - update lruvec memory statistics
731 * @lruvec: the lruvec
732 * @idx: the stat item
733 * @val: delta to add to the counter, can be negative
734 *
735 * The lruvec is the intersection of the NUMA node and a cgroup. This
736 * function updates the all three counters that are affected by a
737 * change of state at this level: per-node, per-cgroup, per-lruvec.
738 */
739 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
740 int val)
741 {
742 pg_data_t *pgdat = lruvec_pgdat(lruvec);
743 struct mem_cgroup_per_node *pn;
744 struct mem_cgroup *memcg;
745 long x;
746
747 /* Update node */
748 __mod_node_page_state(pgdat, idx, val);
749
750 if (mem_cgroup_disabled())
751 return;
752
753 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
754 memcg = pn->memcg;
755
756 /* Update memcg */
757 __mod_memcg_state(memcg, idx, val);
758
759 /* Update lruvec */
760 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
761
762 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
763 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
764 struct mem_cgroup_per_node *pi;
765
766 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
767 atomic_long_add(x, &pi->lruvec_stat[idx]);
768 x = 0;
769 }
770 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
771 }
772
773 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
774 {
775 struct page *page = virt_to_head_page(p);
776 pg_data_t *pgdat = page_pgdat(page);
777 struct mem_cgroup *memcg;
778 struct lruvec *lruvec;
779
780 rcu_read_lock();
781 memcg = memcg_from_slab_page(page);
782
783 /* Untracked pages have no memcg, no lruvec. Update only the node */
784 if (!memcg || memcg == root_mem_cgroup) {
785 __mod_node_page_state(pgdat, idx, val);
786 } else {
787 lruvec = mem_cgroup_lruvec(pgdat, memcg);
788 __mod_lruvec_state(lruvec, idx, val);
789 }
790 rcu_read_unlock();
791 }
792
793 /**
794 * __count_memcg_events - account VM events in a cgroup
795 * @memcg: the memory cgroup
796 * @idx: the event item
797 * @count: the number of events that occured
798 */
799 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
800 unsigned long count)
801 {
802 unsigned long x;
803
804 if (mem_cgroup_disabled())
805 return;
806
807 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
808 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
809 struct mem_cgroup *mi;
810
811 /*
812 * Batch local counters to keep them in sync with
813 * the hierarchical ones.
814 */
815 __this_cpu_add(memcg->vmstats_local->events[idx], x);
816 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
817 atomic_long_add(x, &mi->vmevents[idx]);
818 x = 0;
819 }
820 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
821 }
822
823 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
824 {
825 return atomic_long_read(&memcg->vmevents[event]);
826 }
827
828 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
829 {
830 long x = 0;
831 int cpu;
832
833 for_each_possible_cpu(cpu)
834 x += per_cpu(memcg->vmstats_local->events[event], cpu);
835 return x;
836 }
837
838 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
839 struct page *page,
840 bool compound, int nr_pages)
841 {
842 /*
843 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
844 * counted as CACHE even if it's on ANON LRU.
845 */
846 if (PageAnon(page))
847 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
848 else {
849 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
850 if (PageSwapBacked(page))
851 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
852 }
853
854 if (compound) {
855 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
856 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
857 }
858
859 /* pagein of a big page is an event. So, ignore page size */
860 if (nr_pages > 0)
861 __count_memcg_events(memcg, PGPGIN, 1);
862 else {
863 __count_memcg_events(memcg, PGPGOUT, 1);
864 nr_pages = -nr_pages; /* for event */
865 }
866
867 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
868 }
869
870 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
871 enum mem_cgroup_events_target target)
872 {
873 unsigned long val, next;
874
875 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
876 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
877 /* from time_after() in jiffies.h */
878 if ((long)(next - val) < 0) {
879 switch (target) {
880 case MEM_CGROUP_TARGET_THRESH:
881 next = val + THRESHOLDS_EVENTS_TARGET;
882 break;
883 case MEM_CGROUP_TARGET_SOFTLIMIT:
884 next = val + SOFTLIMIT_EVENTS_TARGET;
885 break;
886 case MEM_CGROUP_TARGET_NUMAINFO:
887 next = val + NUMAINFO_EVENTS_TARGET;
888 break;
889 default:
890 break;
891 }
892 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
893 return true;
894 }
895 return false;
896 }
897
898 /*
899 * Check events in order.
900 *
901 */
902 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
903 {
904 /* threshold event is triggered in finer grain than soft limit */
905 if (unlikely(mem_cgroup_event_ratelimit(memcg,
906 MEM_CGROUP_TARGET_THRESH))) {
907 bool do_softlimit;
908 bool do_numainfo __maybe_unused;
909
910 do_softlimit = mem_cgroup_event_ratelimit(memcg,
911 MEM_CGROUP_TARGET_SOFTLIMIT);
912 #if MAX_NUMNODES > 1
913 do_numainfo = mem_cgroup_event_ratelimit(memcg,
914 MEM_CGROUP_TARGET_NUMAINFO);
915 #endif
916 mem_cgroup_threshold(memcg);
917 if (unlikely(do_softlimit))
918 mem_cgroup_update_tree(memcg, page);
919 #if MAX_NUMNODES > 1
920 if (unlikely(do_numainfo))
921 atomic_inc(&memcg->numainfo_events);
922 #endif
923 }
924 }
925
926 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
927 {
928 /*
929 * mm_update_next_owner() may clear mm->owner to NULL
930 * if it races with swapoff, page migration, etc.
931 * So this can be called with p == NULL.
932 */
933 if (unlikely(!p))
934 return NULL;
935
936 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
937 }
938 EXPORT_SYMBOL(mem_cgroup_from_task);
939
940 /**
941 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
942 * @mm: mm from which memcg should be extracted. It can be NULL.
943 *
944 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
945 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
946 * returned.
947 */
948 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
949 {
950 struct mem_cgroup *memcg;
951
952 if (mem_cgroup_disabled())
953 return NULL;
954
955 rcu_read_lock();
956 do {
957 /*
958 * Page cache insertions can happen withou an
959 * actual mm context, e.g. during disk probing
960 * on boot, loopback IO, acct() writes etc.
961 */
962 if (unlikely(!mm))
963 memcg = root_mem_cgroup;
964 else {
965 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
966 if (unlikely(!memcg))
967 memcg = root_mem_cgroup;
968 }
969 } while (!css_tryget_online(&memcg->css));
970 rcu_read_unlock();
971 return memcg;
972 }
973 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
974
975 /**
976 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
977 * @page: page from which memcg should be extracted.
978 *
979 * Obtain a reference on page->memcg and returns it if successful. Otherwise
980 * root_mem_cgroup is returned.
981 */
982 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
983 {
984 struct mem_cgroup *memcg = page->mem_cgroup;
985
986 if (mem_cgroup_disabled())
987 return NULL;
988
989 rcu_read_lock();
990 if (!memcg || !css_tryget_online(&memcg->css))
991 memcg = root_mem_cgroup;
992 rcu_read_unlock();
993 return memcg;
994 }
995 EXPORT_SYMBOL(get_mem_cgroup_from_page);
996
997 /**
998 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
999 */
1000 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1001 {
1002 if (unlikely(current->active_memcg)) {
1003 struct mem_cgroup *memcg = root_mem_cgroup;
1004
1005 rcu_read_lock();
1006 if (css_tryget_online(&current->active_memcg->css))
1007 memcg = current->active_memcg;
1008 rcu_read_unlock();
1009 return memcg;
1010 }
1011 return get_mem_cgroup_from_mm(current->mm);
1012 }
1013
1014 /**
1015 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1016 * @root: hierarchy root
1017 * @prev: previously returned memcg, NULL on first invocation
1018 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1019 *
1020 * Returns references to children of the hierarchy below @root, or
1021 * @root itself, or %NULL after a full round-trip.
1022 *
1023 * Caller must pass the return value in @prev on subsequent
1024 * invocations for reference counting, or use mem_cgroup_iter_break()
1025 * to cancel a hierarchy walk before the round-trip is complete.
1026 *
1027 * Reclaimers can specify a node and a priority level in @reclaim to
1028 * divide up the memcgs in the hierarchy among all concurrent
1029 * reclaimers operating on the same node and priority.
1030 */
1031 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1032 struct mem_cgroup *prev,
1033 struct mem_cgroup_reclaim_cookie *reclaim)
1034 {
1035 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1036 struct cgroup_subsys_state *css = NULL;
1037 struct mem_cgroup *memcg = NULL;
1038 struct mem_cgroup *pos = NULL;
1039
1040 if (mem_cgroup_disabled())
1041 return NULL;
1042
1043 if (!root)
1044 root = root_mem_cgroup;
1045
1046 if (prev && !reclaim)
1047 pos = prev;
1048
1049 if (!root->use_hierarchy && root != root_mem_cgroup) {
1050 if (prev)
1051 goto out;
1052 return root;
1053 }
1054
1055 rcu_read_lock();
1056
1057 if (reclaim) {
1058 struct mem_cgroup_per_node *mz;
1059
1060 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1061 iter = &mz->iter[reclaim->priority];
1062
1063 if (prev && reclaim->generation != iter->generation)
1064 goto out_unlock;
1065
1066 while (1) {
1067 pos = READ_ONCE(iter->position);
1068 if (!pos || css_tryget(&pos->css))
1069 break;
1070 /*
1071 * css reference reached zero, so iter->position will
1072 * be cleared by ->css_released. However, we should not
1073 * rely on this happening soon, because ->css_released
1074 * is called from a work queue, and by busy-waiting we
1075 * might block it. So we clear iter->position right
1076 * away.
1077 */
1078 (void)cmpxchg(&iter->position, pos, NULL);
1079 }
1080 }
1081
1082 if (pos)
1083 css = &pos->css;
1084
1085 for (;;) {
1086 css = css_next_descendant_pre(css, &root->css);
1087 if (!css) {
1088 /*
1089 * Reclaimers share the hierarchy walk, and a
1090 * new one might jump in right at the end of
1091 * the hierarchy - make sure they see at least
1092 * one group and restart from the beginning.
1093 */
1094 if (!prev)
1095 continue;
1096 break;
1097 }
1098
1099 /*
1100 * Verify the css and acquire a reference. The root
1101 * is provided by the caller, so we know it's alive
1102 * and kicking, and don't take an extra reference.
1103 */
1104 memcg = mem_cgroup_from_css(css);
1105
1106 if (css == &root->css)
1107 break;
1108
1109 if (css_tryget(css))
1110 break;
1111
1112 memcg = NULL;
1113 }
1114
1115 if (reclaim) {
1116 /*
1117 * The position could have already been updated by a competing
1118 * thread, so check that the value hasn't changed since we read
1119 * it to avoid reclaiming from the same cgroup twice.
1120 */
1121 (void)cmpxchg(&iter->position, pos, memcg);
1122
1123 if (pos)
1124 css_put(&pos->css);
1125
1126 if (!memcg)
1127 iter->generation++;
1128 else if (!prev)
1129 reclaim->generation = iter->generation;
1130 }
1131
1132 out_unlock:
1133 rcu_read_unlock();
1134 out:
1135 if (prev && prev != root)
1136 css_put(&prev->css);
1137
1138 return memcg;
1139 }
1140
1141 /**
1142 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1143 * @root: hierarchy root
1144 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1145 */
1146 void mem_cgroup_iter_break(struct mem_cgroup *root,
1147 struct mem_cgroup *prev)
1148 {
1149 if (!root)
1150 root = root_mem_cgroup;
1151 if (prev && prev != root)
1152 css_put(&prev->css);
1153 }
1154
1155 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1156 struct mem_cgroup *dead_memcg)
1157 {
1158 struct mem_cgroup_reclaim_iter *iter;
1159 struct mem_cgroup_per_node *mz;
1160 int nid;
1161 int i;
1162
1163 for_each_node(nid) {
1164 mz = mem_cgroup_nodeinfo(from, nid);
1165 for (i = 0; i <= DEF_PRIORITY; i++) {
1166 iter = &mz->iter[i];
1167 cmpxchg(&iter->position,
1168 dead_memcg, NULL);
1169 }
1170 }
1171 }
1172
1173 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1174 {
1175 struct mem_cgroup *memcg = dead_memcg;
1176 struct mem_cgroup *last;
1177
1178 do {
1179 __invalidate_reclaim_iterators(memcg, dead_memcg);
1180 last = memcg;
1181 } while ((memcg = parent_mem_cgroup(memcg)));
1182
1183 /*
1184 * When cgruop1 non-hierarchy mode is used,
1185 * parent_mem_cgroup() does not walk all the way up to the
1186 * cgroup root (root_mem_cgroup). So we have to handle
1187 * dead_memcg from cgroup root separately.
1188 */
1189 if (last != root_mem_cgroup)
1190 __invalidate_reclaim_iterators(root_mem_cgroup,
1191 dead_memcg);
1192 }
1193
1194 /**
1195 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1196 * @memcg: hierarchy root
1197 * @fn: function to call for each task
1198 * @arg: argument passed to @fn
1199 *
1200 * This function iterates over tasks attached to @memcg or to any of its
1201 * descendants and calls @fn for each task. If @fn returns a non-zero
1202 * value, the function breaks the iteration loop and returns the value.
1203 * Otherwise, it will iterate over all tasks and return 0.
1204 *
1205 * This function must not be called for the root memory cgroup.
1206 */
1207 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1208 int (*fn)(struct task_struct *, void *), void *arg)
1209 {
1210 struct mem_cgroup *iter;
1211 int ret = 0;
1212
1213 BUG_ON(memcg == root_mem_cgroup);
1214
1215 for_each_mem_cgroup_tree(iter, memcg) {
1216 struct css_task_iter it;
1217 struct task_struct *task;
1218
1219 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1220 while (!ret && (task = css_task_iter_next(&it)))
1221 ret = fn(task, arg);
1222 css_task_iter_end(&it);
1223 if (ret) {
1224 mem_cgroup_iter_break(memcg, iter);
1225 break;
1226 }
1227 }
1228 return ret;
1229 }
1230
1231 /**
1232 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1233 * @page: the page
1234 * @pgdat: pgdat of the page
1235 *
1236 * This function is only safe when following the LRU page isolation
1237 * and putback protocol: the LRU lock must be held, and the page must
1238 * either be PageLRU() or the caller must have isolated/allocated it.
1239 */
1240 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1241 {
1242 struct mem_cgroup_per_node *mz;
1243 struct mem_cgroup *memcg;
1244 struct lruvec *lruvec;
1245
1246 if (mem_cgroup_disabled()) {
1247 lruvec = &pgdat->lruvec;
1248 goto out;
1249 }
1250
1251 memcg = page->mem_cgroup;
1252 /*
1253 * Swapcache readahead pages are added to the LRU - and
1254 * possibly migrated - before they are charged.
1255 */
1256 if (!memcg)
1257 memcg = root_mem_cgroup;
1258
1259 mz = mem_cgroup_page_nodeinfo(memcg, page);
1260 lruvec = &mz->lruvec;
1261 out:
1262 /*
1263 * Since a node can be onlined after the mem_cgroup was created,
1264 * we have to be prepared to initialize lruvec->zone here;
1265 * and if offlined then reonlined, we need to reinitialize it.
1266 */
1267 if (unlikely(lruvec->pgdat != pgdat))
1268 lruvec->pgdat = pgdat;
1269 return lruvec;
1270 }
1271
1272 /**
1273 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1274 * @lruvec: mem_cgroup per zone lru vector
1275 * @lru: index of lru list the page is sitting on
1276 * @zid: zone id of the accounted pages
1277 * @nr_pages: positive when adding or negative when removing
1278 *
1279 * This function must be called under lru_lock, just before a page is added
1280 * to or just after a page is removed from an lru list (that ordering being
1281 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1282 */
1283 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1284 int zid, int nr_pages)
1285 {
1286 struct mem_cgroup_per_node *mz;
1287 unsigned long *lru_size;
1288 long size;
1289
1290 if (mem_cgroup_disabled())
1291 return;
1292
1293 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1294 lru_size = &mz->lru_zone_size[zid][lru];
1295
1296 if (nr_pages < 0)
1297 *lru_size += nr_pages;
1298
1299 size = *lru_size;
1300 if (WARN_ONCE(size < 0,
1301 "%s(%p, %d, %d): lru_size %ld\n",
1302 __func__, lruvec, lru, nr_pages, size)) {
1303 VM_BUG_ON(1);
1304 *lru_size = 0;
1305 }
1306
1307 if (nr_pages > 0)
1308 *lru_size += nr_pages;
1309 }
1310
1311 /**
1312 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1313 * @memcg: the memory cgroup
1314 *
1315 * Returns the maximum amount of memory @mem can be charged with, in
1316 * pages.
1317 */
1318 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1319 {
1320 unsigned long margin = 0;
1321 unsigned long count;
1322 unsigned long limit;
1323
1324 count = page_counter_read(&memcg->memory);
1325 limit = READ_ONCE(memcg->memory.max);
1326 if (count < limit)
1327 margin = limit - count;
1328
1329 if (do_memsw_account()) {
1330 count = page_counter_read(&memcg->memsw);
1331 limit = READ_ONCE(memcg->memsw.max);
1332 if (count <= limit)
1333 margin = min(margin, limit - count);
1334 else
1335 margin = 0;
1336 }
1337
1338 return margin;
1339 }
1340
1341 /*
1342 * A routine for checking "mem" is under move_account() or not.
1343 *
1344 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1345 * moving cgroups. This is for waiting at high-memory pressure
1346 * caused by "move".
1347 */
1348 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1349 {
1350 struct mem_cgroup *from;
1351 struct mem_cgroup *to;
1352 bool ret = false;
1353 /*
1354 * Unlike task_move routines, we access mc.to, mc.from not under
1355 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1356 */
1357 spin_lock(&mc.lock);
1358 from = mc.from;
1359 to = mc.to;
1360 if (!from)
1361 goto unlock;
1362
1363 ret = mem_cgroup_is_descendant(from, memcg) ||
1364 mem_cgroup_is_descendant(to, memcg);
1365 unlock:
1366 spin_unlock(&mc.lock);
1367 return ret;
1368 }
1369
1370 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1371 {
1372 if (mc.moving_task && current != mc.moving_task) {
1373 if (mem_cgroup_under_move(memcg)) {
1374 DEFINE_WAIT(wait);
1375 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1376 /* moving charge context might have finished. */
1377 if (mc.moving_task)
1378 schedule();
1379 finish_wait(&mc.waitq, &wait);
1380 return true;
1381 }
1382 }
1383 return false;
1384 }
1385
1386 static char *memory_stat_format(struct mem_cgroup *memcg)
1387 {
1388 struct seq_buf s;
1389 int i;
1390
1391 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1392 if (!s.buffer)
1393 return NULL;
1394
1395 /*
1396 * Provide statistics on the state of the memory subsystem as
1397 * well as cumulative event counters that show past behavior.
1398 *
1399 * This list is ordered following a combination of these gradients:
1400 * 1) generic big picture -> specifics and details
1401 * 2) reflecting userspace activity -> reflecting kernel heuristics
1402 *
1403 * Current memory state:
1404 */
1405
1406 seq_buf_printf(&s, "anon %llu\n",
1407 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1408 PAGE_SIZE);
1409 seq_buf_printf(&s, "file %llu\n",
1410 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1411 PAGE_SIZE);
1412 seq_buf_printf(&s, "kernel_stack %llu\n",
1413 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1414 1024);
1415 seq_buf_printf(&s, "slab %llu\n",
1416 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1417 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1418 PAGE_SIZE);
1419 seq_buf_printf(&s, "sock %llu\n",
1420 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1421 PAGE_SIZE);
1422
1423 seq_buf_printf(&s, "shmem %llu\n",
1424 (u64)memcg_page_state(memcg, NR_SHMEM) *
1425 PAGE_SIZE);
1426 seq_buf_printf(&s, "file_mapped %llu\n",
1427 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1428 PAGE_SIZE);
1429 seq_buf_printf(&s, "file_dirty %llu\n",
1430 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1431 PAGE_SIZE);
1432 seq_buf_printf(&s, "file_writeback %llu\n",
1433 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1434 PAGE_SIZE);
1435
1436 /*
1437 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1438 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1439 * arse because it requires migrating the work out of rmap to a place
1440 * where the page->mem_cgroup is set up and stable.
1441 */
1442 seq_buf_printf(&s, "anon_thp %llu\n",
1443 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1444 PAGE_SIZE);
1445
1446 for (i = 0; i < NR_LRU_LISTS; i++)
1447 seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
1448 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1449 PAGE_SIZE);
1450
1451 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1452 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1453 PAGE_SIZE);
1454 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1455 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1456 PAGE_SIZE);
1457
1458 /* Accumulated memory events */
1459
1460 seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
1461 seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
1462
1463 seq_buf_printf(&s, "workingset_refault %lu\n",
1464 memcg_page_state(memcg, WORKINGSET_REFAULT));
1465 seq_buf_printf(&s, "workingset_activate %lu\n",
1466 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1467 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1468 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1469
1470 seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
1471 seq_buf_printf(&s, "pgscan %lu\n",
1472 memcg_events(memcg, PGSCAN_KSWAPD) +
1473 memcg_events(memcg, PGSCAN_DIRECT));
1474 seq_buf_printf(&s, "pgsteal %lu\n",
1475 memcg_events(memcg, PGSTEAL_KSWAPD) +
1476 memcg_events(memcg, PGSTEAL_DIRECT));
1477 seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
1478 seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
1479 seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
1480 seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
1481
1482 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1483 seq_buf_printf(&s, "thp_fault_alloc %lu\n",
1484 memcg_events(memcg, THP_FAULT_ALLOC));
1485 seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
1486 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1487 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1488
1489 /* The above should easily fit into one page */
1490 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1491
1492 return s.buffer;
1493 }
1494
1495 #define K(x) ((x) << (PAGE_SHIFT-10))
1496 /**
1497 * mem_cgroup_print_oom_context: Print OOM information relevant to
1498 * memory controller.
1499 * @memcg: The memory cgroup that went over limit
1500 * @p: Task that is going to be killed
1501 *
1502 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1503 * enabled
1504 */
1505 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1506 {
1507 rcu_read_lock();
1508
1509 if (memcg) {
1510 pr_cont(",oom_memcg=");
1511 pr_cont_cgroup_path(memcg->css.cgroup);
1512 } else
1513 pr_cont(",global_oom");
1514 if (p) {
1515 pr_cont(",task_memcg=");
1516 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1517 }
1518 rcu_read_unlock();
1519 }
1520
1521 /**
1522 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1523 * memory controller.
1524 * @memcg: The memory cgroup that went over limit
1525 */
1526 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1527 {
1528 char *buf;
1529
1530 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1531 K((u64)page_counter_read(&memcg->memory)),
1532 K((u64)memcg->memory.max), memcg->memory.failcnt);
1533 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1534 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1535 K((u64)page_counter_read(&memcg->swap)),
1536 K((u64)memcg->swap.max), memcg->swap.failcnt);
1537 else {
1538 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1539 K((u64)page_counter_read(&memcg->memsw)),
1540 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1541 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1542 K((u64)page_counter_read(&memcg->kmem)),
1543 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1544 }
1545
1546 pr_info("Memory cgroup stats for ");
1547 pr_cont_cgroup_path(memcg->css.cgroup);
1548 pr_cont(":");
1549 buf = memory_stat_format(memcg);
1550 if (!buf)
1551 return;
1552 pr_info("%s", buf);
1553 kfree(buf);
1554 }
1555
1556 /*
1557 * Return the memory (and swap, if configured) limit for a memcg.
1558 */
1559 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1560 {
1561 unsigned long max;
1562
1563 max = memcg->memory.max;
1564 if (mem_cgroup_swappiness(memcg)) {
1565 unsigned long memsw_max;
1566 unsigned long swap_max;
1567
1568 memsw_max = memcg->memsw.max;
1569 swap_max = memcg->swap.max;
1570 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1571 max = min(max + swap_max, memsw_max);
1572 }
1573 return max;
1574 }
1575
1576 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1577 int order)
1578 {
1579 struct oom_control oc = {
1580 .zonelist = NULL,
1581 .nodemask = NULL,
1582 .memcg = memcg,
1583 .gfp_mask = gfp_mask,
1584 .order = order,
1585 };
1586 bool ret;
1587
1588 if (mutex_lock_killable(&oom_lock))
1589 return true;
1590 /*
1591 * A few threads which were not waiting at mutex_lock_killable() can
1592 * fail to bail out. Therefore, check again after holding oom_lock.
1593 */
1594 ret = should_force_charge() || out_of_memory(&oc);
1595 mutex_unlock(&oom_lock);
1596 return ret;
1597 }
1598
1599 #if MAX_NUMNODES > 1
1600
1601 /**
1602 * test_mem_cgroup_node_reclaimable
1603 * @memcg: the target memcg
1604 * @nid: the node ID to be checked.
1605 * @noswap : specify true here if the user wants flle only information.
1606 *
1607 * This function returns whether the specified memcg contains any
1608 * reclaimable pages on a node. Returns true if there are any reclaimable
1609 * pages in the node.
1610 */
1611 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1612 int nid, bool noswap)
1613 {
1614 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1615
1616 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1617 lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1618 return true;
1619 if (noswap || !total_swap_pages)
1620 return false;
1621 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1622 lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1623 return true;
1624 return false;
1625
1626 }
1627
1628 /*
1629 * Always updating the nodemask is not very good - even if we have an empty
1630 * list or the wrong list here, we can start from some node and traverse all
1631 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1632 *
1633 */
1634 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1635 {
1636 int nid;
1637 /*
1638 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1639 * pagein/pageout changes since the last update.
1640 */
1641 if (!atomic_read(&memcg->numainfo_events))
1642 return;
1643 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1644 return;
1645
1646 /* make a nodemask where this memcg uses memory from */
1647 memcg->scan_nodes = node_states[N_MEMORY];
1648
1649 for_each_node_mask(nid, node_states[N_MEMORY]) {
1650
1651 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1652 node_clear(nid, memcg->scan_nodes);
1653 }
1654
1655 atomic_set(&memcg->numainfo_events, 0);
1656 atomic_set(&memcg->numainfo_updating, 0);
1657 }
1658
1659 /*
1660 * Selecting a node where we start reclaim from. Because what we need is just
1661 * reducing usage counter, start from anywhere is O,K. Considering
1662 * memory reclaim from current node, there are pros. and cons.
1663 *
1664 * Freeing memory from current node means freeing memory from a node which
1665 * we'll use or we've used. So, it may make LRU bad. And if several threads
1666 * hit limits, it will see a contention on a node. But freeing from remote
1667 * node means more costs for memory reclaim because of memory latency.
1668 *
1669 * Now, we use round-robin. Better algorithm is welcomed.
1670 */
1671 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1672 {
1673 int node;
1674
1675 mem_cgroup_may_update_nodemask(memcg);
1676 node = memcg->last_scanned_node;
1677
1678 node = next_node_in(node, memcg->scan_nodes);
1679 /*
1680 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1681 * last time it really checked all the LRUs due to rate limiting.
1682 * Fallback to the current node in that case for simplicity.
1683 */
1684 if (unlikely(node == MAX_NUMNODES))
1685 node = numa_node_id();
1686
1687 memcg->last_scanned_node = node;
1688 return node;
1689 }
1690 #else
1691 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1692 {
1693 return 0;
1694 }
1695 #endif
1696
1697 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1698 pg_data_t *pgdat,
1699 gfp_t gfp_mask,
1700 unsigned long *total_scanned)
1701 {
1702 struct mem_cgroup *victim = NULL;
1703 int total = 0;
1704 int loop = 0;
1705 unsigned long excess;
1706 unsigned long nr_scanned;
1707 struct mem_cgroup_reclaim_cookie reclaim = {
1708 .pgdat = pgdat,
1709 .priority = 0,
1710 };
1711
1712 excess = soft_limit_excess(root_memcg);
1713
1714 while (1) {
1715 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1716 if (!victim) {
1717 loop++;
1718 if (loop >= 2) {
1719 /*
1720 * If we have not been able to reclaim
1721 * anything, it might because there are
1722 * no reclaimable pages under this hierarchy
1723 */
1724 if (!total)
1725 break;
1726 /*
1727 * We want to do more targeted reclaim.
1728 * excess >> 2 is not to excessive so as to
1729 * reclaim too much, nor too less that we keep
1730 * coming back to reclaim from this cgroup
1731 */
1732 if (total >= (excess >> 2) ||
1733 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1734 break;
1735 }
1736 continue;
1737 }
1738 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1739 pgdat, &nr_scanned);
1740 *total_scanned += nr_scanned;
1741 if (!soft_limit_excess(root_memcg))
1742 break;
1743 }
1744 mem_cgroup_iter_break(root_memcg, victim);
1745 return total;
1746 }
1747
1748 #ifdef CONFIG_LOCKDEP
1749 static struct lockdep_map memcg_oom_lock_dep_map = {
1750 .name = "memcg_oom_lock",
1751 };
1752 #endif
1753
1754 static DEFINE_SPINLOCK(memcg_oom_lock);
1755
1756 /*
1757 * Check OOM-Killer is already running under our hierarchy.
1758 * If someone is running, return false.
1759 */
1760 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1761 {
1762 struct mem_cgroup *iter, *failed = NULL;
1763
1764 spin_lock(&memcg_oom_lock);
1765
1766 for_each_mem_cgroup_tree(iter, memcg) {
1767 if (iter->oom_lock) {
1768 /*
1769 * this subtree of our hierarchy is already locked
1770 * so we cannot give a lock.
1771 */
1772 failed = iter;
1773 mem_cgroup_iter_break(memcg, iter);
1774 break;
1775 } else
1776 iter->oom_lock = true;
1777 }
1778
1779 if (failed) {
1780 /*
1781 * OK, we failed to lock the whole subtree so we have
1782 * to clean up what we set up to the failing subtree
1783 */
1784 for_each_mem_cgroup_tree(iter, memcg) {
1785 if (iter == failed) {
1786 mem_cgroup_iter_break(memcg, iter);
1787 break;
1788 }
1789 iter->oom_lock = false;
1790 }
1791 } else
1792 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1793
1794 spin_unlock(&memcg_oom_lock);
1795
1796 return !failed;
1797 }
1798
1799 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1800 {
1801 struct mem_cgroup *iter;
1802
1803 spin_lock(&memcg_oom_lock);
1804 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1805 for_each_mem_cgroup_tree(iter, memcg)
1806 iter->oom_lock = false;
1807 spin_unlock(&memcg_oom_lock);
1808 }
1809
1810 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1811 {
1812 struct mem_cgroup *iter;
1813
1814 spin_lock(&memcg_oom_lock);
1815 for_each_mem_cgroup_tree(iter, memcg)
1816 iter->under_oom++;
1817 spin_unlock(&memcg_oom_lock);
1818 }
1819
1820 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1821 {
1822 struct mem_cgroup *iter;
1823
1824 /*
1825 * When a new child is created while the hierarchy is under oom,
1826 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1827 */
1828 spin_lock(&memcg_oom_lock);
1829 for_each_mem_cgroup_tree(iter, memcg)
1830 if (iter->under_oom > 0)
1831 iter->under_oom--;
1832 spin_unlock(&memcg_oom_lock);
1833 }
1834
1835 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1836
1837 struct oom_wait_info {
1838 struct mem_cgroup *memcg;
1839 wait_queue_entry_t wait;
1840 };
1841
1842 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1843 unsigned mode, int sync, void *arg)
1844 {
1845 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1846 struct mem_cgroup *oom_wait_memcg;
1847 struct oom_wait_info *oom_wait_info;
1848
1849 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1850 oom_wait_memcg = oom_wait_info->memcg;
1851
1852 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1853 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1854 return 0;
1855 return autoremove_wake_function(wait, mode, sync, arg);
1856 }
1857
1858 static void memcg_oom_recover(struct mem_cgroup *memcg)
1859 {
1860 /*
1861 * For the following lockless ->under_oom test, the only required
1862 * guarantee is that it must see the state asserted by an OOM when
1863 * this function is called as a result of userland actions
1864 * triggered by the notification of the OOM. This is trivially
1865 * achieved by invoking mem_cgroup_mark_under_oom() before
1866 * triggering notification.
1867 */
1868 if (memcg && memcg->under_oom)
1869 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1870 }
1871
1872 enum oom_status {
1873 OOM_SUCCESS,
1874 OOM_FAILED,
1875 OOM_ASYNC,
1876 OOM_SKIPPED
1877 };
1878
1879 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1880 {
1881 enum oom_status ret;
1882 bool locked;
1883
1884 if (order > PAGE_ALLOC_COSTLY_ORDER)
1885 return OOM_SKIPPED;
1886
1887 memcg_memory_event(memcg, MEMCG_OOM);
1888
1889 /*
1890 * We are in the middle of the charge context here, so we
1891 * don't want to block when potentially sitting on a callstack
1892 * that holds all kinds of filesystem and mm locks.
1893 *
1894 * cgroup1 allows disabling the OOM killer and waiting for outside
1895 * handling until the charge can succeed; remember the context and put
1896 * the task to sleep at the end of the page fault when all locks are
1897 * released.
1898 *
1899 * On the other hand, in-kernel OOM killer allows for an async victim
1900 * memory reclaim (oom_reaper) and that means that we are not solely
1901 * relying on the oom victim to make a forward progress and we can
1902 * invoke the oom killer here.
1903 *
1904 * Please note that mem_cgroup_out_of_memory might fail to find a
1905 * victim and then we have to bail out from the charge path.
1906 */
1907 if (memcg->oom_kill_disable) {
1908 if (!current->in_user_fault)
1909 return OOM_SKIPPED;
1910 css_get(&memcg->css);
1911 current->memcg_in_oom = memcg;
1912 current->memcg_oom_gfp_mask = mask;
1913 current->memcg_oom_order = order;
1914
1915 return OOM_ASYNC;
1916 }
1917
1918 mem_cgroup_mark_under_oom(memcg);
1919
1920 locked = mem_cgroup_oom_trylock(memcg);
1921
1922 if (locked)
1923 mem_cgroup_oom_notify(memcg);
1924
1925 mem_cgroup_unmark_under_oom(memcg);
1926 if (mem_cgroup_out_of_memory(memcg, mask, order))
1927 ret = OOM_SUCCESS;
1928 else
1929 ret = OOM_FAILED;
1930
1931 if (locked)
1932 mem_cgroup_oom_unlock(memcg);
1933
1934 return ret;
1935 }
1936
1937 /**
1938 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1939 * @handle: actually kill/wait or just clean up the OOM state
1940 *
1941 * This has to be called at the end of a page fault if the memcg OOM
1942 * handler was enabled.
1943 *
1944 * Memcg supports userspace OOM handling where failed allocations must
1945 * sleep on a waitqueue until the userspace task resolves the
1946 * situation. Sleeping directly in the charge context with all kinds
1947 * of locks held is not a good idea, instead we remember an OOM state
1948 * in the task and mem_cgroup_oom_synchronize() has to be called at
1949 * the end of the page fault to complete the OOM handling.
1950 *
1951 * Returns %true if an ongoing memcg OOM situation was detected and
1952 * completed, %false otherwise.
1953 */
1954 bool mem_cgroup_oom_synchronize(bool handle)
1955 {
1956 struct mem_cgroup *memcg = current->memcg_in_oom;
1957 struct oom_wait_info owait;
1958 bool locked;
1959
1960 /* OOM is global, do not handle */
1961 if (!memcg)
1962 return false;
1963
1964 if (!handle)
1965 goto cleanup;
1966
1967 owait.memcg = memcg;
1968 owait.wait.flags = 0;
1969 owait.wait.func = memcg_oom_wake_function;
1970 owait.wait.private = current;
1971 INIT_LIST_HEAD(&owait.wait.entry);
1972
1973 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1974 mem_cgroup_mark_under_oom(memcg);
1975
1976 locked = mem_cgroup_oom_trylock(memcg);
1977
1978 if (locked)
1979 mem_cgroup_oom_notify(memcg);
1980
1981 if (locked && !memcg->oom_kill_disable) {
1982 mem_cgroup_unmark_under_oom(memcg);
1983 finish_wait(&memcg_oom_waitq, &owait.wait);
1984 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1985 current->memcg_oom_order);
1986 } else {
1987 schedule();
1988 mem_cgroup_unmark_under_oom(memcg);
1989 finish_wait(&memcg_oom_waitq, &owait.wait);
1990 }
1991
1992 if (locked) {
1993 mem_cgroup_oom_unlock(memcg);
1994 /*
1995 * There is no guarantee that an OOM-lock contender
1996 * sees the wakeups triggered by the OOM kill
1997 * uncharges. Wake any sleepers explicitely.
1998 */
1999 memcg_oom_recover(memcg);
2000 }
2001 cleanup:
2002 current->memcg_in_oom = NULL;
2003 css_put(&memcg->css);
2004 return true;
2005 }
2006
2007 /**
2008 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2009 * @victim: task to be killed by the OOM killer
2010 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2011 *
2012 * Returns a pointer to a memory cgroup, which has to be cleaned up
2013 * by killing all belonging OOM-killable tasks.
2014 *
2015 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2016 */
2017 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2018 struct mem_cgroup *oom_domain)
2019 {
2020 struct mem_cgroup *oom_group = NULL;
2021 struct mem_cgroup *memcg;
2022
2023 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2024 return NULL;
2025
2026 if (!oom_domain)
2027 oom_domain = root_mem_cgroup;
2028
2029 rcu_read_lock();
2030
2031 memcg = mem_cgroup_from_task(victim);
2032 if (memcg == root_mem_cgroup)
2033 goto out;
2034
2035 /*
2036 * Traverse the memory cgroup hierarchy from the victim task's
2037 * cgroup up to the OOMing cgroup (or root) to find the
2038 * highest-level memory cgroup with oom.group set.
2039 */
2040 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2041 if (memcg->oom_group)
2042 oom_group = memcg;
2043
2044 if (memcg == oom_domain)
2045 break;
2046 }
2047
2048 if (oom_group)
2049 css_get(&oom_group->css);
2050 out:
2051 rcu_read_unlock();
2052
2053 return oom_group;
2054 }
2055
2056 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2057 {
2058 pr_info("Tasks in ");
2059 pr_cont_cgroup_path(memcg->css.cgroup);
2060 pr_cont(" are going to be killed due to memory.oom.group set\n");
2061 }
2062
2063 /**
2064 * lock_page_memcg - lock a page->mem_cgroup binding
2065 * @page: the page
2066 *
2067 * This function protects unlocked LRU pages from being moved to
2068 * another cgroup.
2069 *
2070 * It ensures lifetime of the returned memcg. Caller is responsible
2071 * for the lifetime of the page; __unlock_page_memcg() is available
2072 * when @page might get freed inside the locked section.
2073 */
2074 struct mem_cgroup *lock_page_memcg(struct page *page)
2075 {
2076 struct mem_cgroup *memcg;
2077 unsigned long flags;
2078
2079 /*
2080 * The RCU lock is held throughout the transaction. The fast
2081 * path can get away without acquiring the memcg->move_lock
2082 * because page moving starts with an RCU grace period.
2083 *
2084 * The RCU lock also protects the memcg from being freed when
2085 * the page state that is going to change is the only thing
2086 * preventing the page itself from being freed. E.g. writeback
2087 * doesn't hold a page reference and relies on PG_writeback to
2088 * keep off truncation, migration and so forth.
2089 */
2090 rcu_read_lock();
2091
2092 if (mem_cgroup_disabled())
2093 return NULL;
2094 again:
2095 memcg = page->mem_cgroup;
2096 if (unlikely(!memcg))
2097 return NULL;
2098
2099 if (atomic_read(&memcg->moving_account) <= 0)
2100 return memcg;
2101
2102 spin_lock_irqsave(&memcg->move_lock, flags);
2103 if (memcg != page->mem_cgroup) {
2104 spin_unlock_irqrestore(&memcg->move_lock, flags);
2105 goto again;
2106 }
2107
2108 /*
2109 * When charge migration first begins, we can have locked and
2110 * unlocked page stat updates happening concurrently. Track
2111 * the task who has the lock for unlock_page_memcg().
2112 */
2113 memcg->move_lock_task = current;
2114 memcg->move_lock_flags = flags;
2115
2116 return memcg;
2117 }
2118 EXPORT_SYMBOL(lock_page_memcg);
2119
2120 /**
2121 * __unlock_page_memcg - unlock and unpin a memcg
2122 * @memcg: the memcg
2123 *
2124 * Unlock and unpin a memcg returned by lock_page_memcg().
2125 */
2126 void __unlock_page_memcg(struct mem_cgroup *memcg)
2127 {
2128 if (memcg && memcg->move_lock_task == current) {
2129 unsigned long flags = memcg->move_lock_flags;
2130
2131 memcg->move_lock_task = NULL;
2132 memcg->move_lock_flags = 0;
2133
2134 spin_unlock_irqrestore(&memcg->move_lock, flags);
2135 }
2136
2137 rcu_read_unlock();
2138 }
2139
2140 /**
2141 * unlock_page_memcg - unlock a page->mem_cgroup binding
2142 * @page: the page
2143 */
2144 void unlock_page_memcg(struct page *page)
2145 {
2146 __unlock_page_memcg(page->mem_cgroup);
2147 }
2148 EXPORT_SYMBOL(unlock_page_memcg);
2149
2150 struct memcg_stock_pcp {
2151 struct mem_cgroup *cached; /* this never be root cgroup */
2152 unsigned int nr_pages;
2153 struct work_struct work;
2154 unsigned long flags;
2155 #define FLUSHING_CACHED_CHARGE 0
2156 };
2157 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2158 static DEFINE_MUTEX(percpu_charge_mutex);
2159
2160 /**
2161 * consume_stock: Try to consume stocked charge on this cpu.
2162 * @memcg: memcg to consume from.
2163 * @nr_pages: how many pages to charge.
2164 *
2165 * The charges will only happen if @memcg matches the current cpu's memcg
2166 * stock, and at least @nr_pages are available in that stock. Failure to
2167 * service an allocation will refill the stock.
2168 *
2169 * returns true if successful, false otherwise.
2170 */
2171 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2172 {
2173 struct memcg_stock_pcp *stock;
2174 unsigned long flags;
2175 bool ret = false;
2176
2177 if (nr_pages > MEMCG_CHARGE_BATCH)
2178 return ret;
2179
2180 local_irq_save(flags);
2181
2182 stock = this_cpu_ptr(&memcg_stock);
2183 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2184 stock->nr_pages -= nr_pages;
2185 ret = true;
2186 }
2187
2188 local_irq_restore(flags);
2189
2190 return ret;
2191 }
2192
2193 /*
2194 * Returns stocks cached in percpu and reset cached information.
2195 */
2196 static void drain_stock(struct memcg_stock_pcp *stock)
2197 {
2198 struct mem_cgroup *old = stock->cached;
2199
2200 if (stock->nr_pages) {
2201 page_counter_uncharge(&old->memory, stock->nr_pages);
2202 if (do_memsw_account())
2203 page_counter_uncharge(&old->memsw, stock->nr_pages);
2204 css_put_many(&old->css, stock->nr_pages);
2205 stock->nr_pages = 0;
2206 }
2207 stock->cached = NULL;
2208 }
2209
2210 static void drain_local_stock(struct work_struct *dummy)
2211 {
2212 struct memcg_stock_pcp *stock;
2213 unsigned long flags;
2214
2215 /*
2216 * The only protection from memory hotplug vs. drain_stock races is
2217 * that we always operate on local CPU stock here with IRQ disabled
2218 */
2219 local_irq_save(flags);
2220
2221 stock = this_cpu_ptr(&memcg_stock);
2222 drain_stock(stock);
2223 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2224
2225 local_irq_restore(flags);
2226 }
2227
2228 /*
2229 * Cache charges(val) to local per_cpu area.
2230 * This will be consumed by consume_stock() function, later.
2231 */
2232 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2233 {
2234 struct memcg_stock_pcp *stock;
2235 unsigned long flags;
2236
2237 local_irq_save(flags);
2238
2239 stock = this_cpu_ptr(&memcg_stock);
2240 if (stock->cached != memcg) { /* reset if necessary */
2241 drain_stock(stock);
2242 stock->cached = memcg;
2243 }
2244 stock->nr_pages += nr_pages;
2245
2246 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2247 drain_stock(stock);
2248
2249 local_irq_restore(flags);
2250 }
2251
2252 /*
2253 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2254 * of the hierarchy under it.
2255 */
2256 static void drain_all_stock(struct mem_cgroup *root_memcg)
2257 {
2258 int cpu, curcpu;
2259
2260 /* If someone's already draining, avoid adding running more workers. */
2261 if (!mutex_trylock(&percpu_charge_mutex))
2262 return;
2263 /*
2264 * Notify other cpus that system-wide "drain" is running
2265 * We do not care about races with the cpu hotplug because cpu down
2266 * as well as workers from this path always operate on the local
2267 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2268 */
2269 curcpu = get_cpu();
2270 for_each_online_cpu(cpu) {
2271 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2272 struct mem_cgroup *memcg;
2273
2274 memcg = stock->cached;
2275 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2276 continue;
2277 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2278 css_put(&memcg->css);
2279 continue;
2280 }
2281 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2282 if (cpu == curcpu)
2283 drain_local_stock(&stock->work);
2284 else
2285 schedule_work_on(cpu, &stock->work);
2286 }
2287 css_put(&memcg->css);
2288 }
2289 put_cpu();
2290 mutex_unlock(&percpu_charge_mutex);
2291 }
2292
2293 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2294 {
2295 struct memcg_stock_pcp *stock;
2296 struct mem_cgroup *memcg, *mi;
2297
2298 stock = &per_cpu(memcg_stock, cpu);
2299 drain_stock(stock);
2300
2301 for_each_mem_cgroup(memcg) {
2302 int i;
2303
2304 for (i = 0; i < MEMCG_NR_STAT; i++) {
2305 int nid;
2306 long x;
2307
2308 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2309 if (x)
2310 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2311 atomic_long_add(x, &memcg->vmstats[i]);
2312
2313 if (i >= NR_VM_NODE_STAT_ITEMS)
2314 continue;
2315
2316 for_each_node(nid) {
2317 struct mem_cgroup_per_node *pn;
2318
2319 pn = mem_cgroup_nodeinfo(memcg, nid);
2320 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2321 if (x)
2322 do {
2323 atomic_long_add(x, &pn->lruvec_stat[i]);
2324 } while ((pn = parent_nodeinfo(pn, nid)));
2325 }
2326 }
2327
2328 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2329 long x;
2330
2331 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2332 if (x)
2333 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2334 atomic_long_add(x, &memcg->vmevents[i]);
2335 }
2336 }
2337
2338 return 0;
2339 }
2340
2341 static void reclaim_high(struct mem_cgroup *memcg,
2342 unsigned int nr_pages,
2343 gfp_t gfp_mask)
2344 {
2345 do {
2346 if (page_counter_read(&memcg->memory) <= memcg->high)
2347 continue;
2348 memcg_memory_event(memcg, MEMCG_HIGH);
2349 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2350 } while ((memcg = parent_mem_cgroup(memcg)));
2351 }
2352
2353 static void high_work_func(struct work_struct *work)
2354 {
2355 struct mem_cgroup *memcg;
2356
2357 memcg = container_of(work, struct mem_cgroup, high_work);
2358 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2359 }
2360
2361 /*
2362 * Scheduled by try_charge() to be executed from the userland return path
2363 * and reclaims memory over the high limit.
2364 */
2365 void mem_cgroup_handle_over_high(void)
2366 {
2367 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2368 struct mem_cgroup *memcg;
2369
2370 if (likely(!nr_pages))
2371 return;
2372
2373 memcg = get_mem_cgroup_from_mm(current->mm);
2374 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2375 css_put(&memcg->css);
2376 current->memcg_nr_pages_over_high = 0;
2377 }
2378
2379 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2380 unsigned int nr_pages)
2381 {
2382 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2383 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2384 struct mem_cgroup *mem_over_limit;
2385 struct page_counter *counter;
2386 unsigned long nr_reclaimed;
2387 bool may_swap = true;
2388 bool drained = false;
2389 enum oom_status oom_status;
2390
2391 if (mem_cgroup_is_root(memcg))
2392 return 0;
2393 retry:
2394 if (consume_stock(memcg, nr_pages))
2395 return 0;
2396
2397 if (!do_memsw_account() ||
2398 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2399 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2400 goto done_restock;
2401 if (do_memsw_account())
2402 page_counter_uncharge(&memcg->memsw, batch);
2403 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2404 } else {
2405 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2406 may_swap = false;
2407 }
2408
2409 if (batch > nr_pages) {
2410 batch = nr_pages;
2411 goto retry;
2412 }
2413
2414 /*
2415 * Unlike in global OOM situations, memcg is not in a physical
2416 * memory shortage. Allow dying and OOM-killed tasks to
2417 * bypass the last charges so that they can exit quickly and
2418 * free their memory.
2419 */
2420 if (unlikely(should_force_charge()))
2421 goto force;
2422
2423 /*
2424 * Prevent unbounded recursion when reclaim operations need to
2425 * allocate memory. This might exceed the limits temporarily,
2426 * but we prefer facilitating memory reclaim and getting back
2427 * under the limit over triggering OOM kills in these cases.
2428 */
2429 if (unlikely(current->flags & PF_MEMALLOC))
2430 goto force;
2431
2432 if (unlikely(task_in_memcg_oom(current)))
2433 goto nomem;
2434
2435 if (!gfpflags_allow_blocking(gfp_mask))
2436 goto nomem;
2437
2438 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2439
2440 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2441 gfp_mask, may_swap);
2442
2443 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2444 goto retry;
2445
2446 if (!drained) {
2447 drain_all_stock(mem_over_limit);
2448 drained = true;
2449 goto retry;
2450 }
2451
2452 if (gfp_mask & __GFP_NORETRY)
2453 goto nomem;
2454 /*
2455 * Even though the limit is exceeded at this point, reclaim
2456 * may have been able to free some pages. Retry the charge
2457 * before killing the task.
2458 *
2459 * Only for regular pages, though: huge pages are rather
2460 * unlikely to succeed so close to the limit, and we fall back
2461 * to regular pages anyway in case of failure.
2462 */
2463 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2464 goto retry;
2465 /*
2466 * At task move, charge accounts can be doubly counted. So, it's
2467 * better to wait until the end of task_move if something is going on.
2468 */
2469 if (mem_cgroup_wait_acct_move(mem_over_limit))
2470 goto retry;
2471
2472 if (nr_retries--)
2473 goto retry;
2474
2475 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2476 goto nomem;
2477
2478 if (gfp_mask & __GFP_NOFAIL)
2479 goto force;
2480
2481 if (fatal_signal_pending(current))
2482 goto force;
2483
2484 /*
2485 * keep retrying as long as the memcg oom killer is able to make
2486 * a forward progress or bypass the charge if the oom killer
2487 * couldn't make any progress.
2488 */
2489 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2490 get_order(nr_pages * PAGE_SIZE));
2491 switch (oom_status) {
2492 case OOM_SUCCESS:
2493 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2494 goto retry;
2495 case OOM_FAILED:
2496 goto force;
2497 default:
2498 goto nomem;
2499 }
2500 nomem:
2501 if (!(gfp_mask & __GFP_NOFAIL))
2502 return -ENOMEM;
2503 force:
2504 /*
2505 * The allocation either can't fail or will lead to more memory
2506 * being freed very soon. Allow memory usage go over the limit
2507 * temporarily by force charging it.
2508 */
2509 page_counter_charge(&memcg->memory, nr_pages);
2510 if (do_memsw_account())
2511 page_counter_charge(&memcg->memsw, nr_pages);
2512 css_get_many(&memcg->css, nr_pages);
2513
2514 return 0;
2515
2516 done_restock:
2517 css_get_many(&memcg->css, batch);
2518 if (batch > nr_pages)
2519 refill_stock(memcg, batch - nr_pages);
2520
2521 /*
2522 * If the hierarchy is above the normal consumption range, schedule
2523 * reclaim on returning to userland. We can perform reclaim here
2524 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2525 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2526 * not recorded as it most likely matches current's and won't
2527 * change in the meantime. As high limit is checked again before
2528 * reclaim, the cost of mismatch is negligible.
2529 */
2530 do {
2531 if (page_counter_read(&memcg->memory) > memcg->high) {
2532 /* Don't bother a random interrupted task */
2533 if (in_interrupt()) {
2534 schedule_work(&memcg->high_work);
2535 break;
2536 }
2537 current->memcg_nr_pages_over_high += batch;
2538 set_notify_resume(current);
2539 break;
2540 }
2541 } while ((memcg = parent_mem_cgroup(memcg)));
2542
2543 return 0;
2544 }
2545
2546 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2547 {
2548 if (mem_cgroup_is_root(memcg))
2549 return;
2550
2551 page_counter_uncharge(&memcg->memory, nr_pages);
2552 if (do_memsw_account())
2553 page_counter_uncharge(&memcg->memsw, nr_pages);
2554
2555 css_put_many(&memcg->css, nr_pages);
2556 }
2557
2558 static void lock_page_lru(struct page *page, int *isolated)
2559 {
2560 pg_data_t *pgdat = page_pgdat(page);
2561
2562 spin_lock_irq(&pgdat->lru_lock);
2563 if (PageLRU(page)) {
2564 struct lruvec *lruvec;
2565
2566 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2567 ClearPageLRU(page);
2568 del_page_from_lru_list(page, lruvec, page_lru(page));
2569 *isolated = 1;
2570 } else
2571 *isolated = 0;
2572 }
2573
2574 static void unlock_page_lru(struct page *page, int isolated)
2575 {
2576 pg_data_t *pgdat = page_pgdat(page);
2577
2578 if (isolated) {
2579 struct lruvec *lruvec;
2580
2581 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2582 VM_BUG_ON_PAGE(PageLRU(page), page);
2583 SetPageLRU(page);
2584 add_page_to_lru_list(page, lruvec, page_lru(page));
2585 }
2586 spin_unlock_irq(&pgdat->lru_lock);
2587 }
2588
2589 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2590 bool lrucare)
2591 {
2592 int isolated;
2593
2594 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2595
2596 /*
2597 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2598 * may already be on some other mem_cgroup's LRU. Take care of it.
2599 */
2600 if (lrucare)
2601 lock_page_lru(page, &isolated);
2602
2603 /*
2604 * Nobody should be changing or seriously looking at
2605 * page->mem_cgroup at this point:
2606 *
2607 * - the page is uncharged
2608 *
2609 * - the page is off-LRU
2610 *
2611 * - an anonymous fault has exclusive page access, except for
2612 * a locked page table
2613 *
2614 * - a page cache insertion, a swapin fault, or a migration
2615 * have the page locked
2616 */
2617 page->mem_cgroup = memcg;
2618
2619 if (lrucare)
2620 unlock_page_lru(page, isolated);
2621 }
2622
2623 #ifdef CONFIG_MEMCG_KMEM
2624 static int memcg_alloc_cache_id(void)
2625 {
2626 int id, size;
2627 int err;
2628
2629 id = ida_simple_get(&memcg_cache_ida,
2630 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2631 if (id < 0)
2632 return id;
2633
2634 if (id < memcg_nr_cache_ids)
2635 return id;
2636
2637 /*
2638 * There's no space for the new id in memcg_caches arrays,
2639 * so we have to grow them.
2640 */
2641 down_write(&memcg_cache_ids_sem);
2642
2643 size = 2 * (id + 1);
2644 if (size < MEMCG_CACHES_MIN_SIZE)
2645 size = MEMCG_CACHES_MIN_SIZE;
2646 else if (size > MEMCG_CACHES_MAX_SIZE)
2647 size = MEMCG_CACHES_MAX_SIZE;
2648
2649 err = memcg_update_all_caches(size);
2650 if (!err)
2651 err = memcg_update_all_list_lrus(size);
2652 if (!err)
2653 memcg_nr_cache_ids = size;
2654
2655 up_write(&memcg_cache_ids_sem);
2656
2657 if (err) {
2658 ida_simple_remove(&memcg_cache_ida, id);
2659 return err;
2660 }
2661 return id;
2662 }
2663
2664 static void memcg_free_cache_id(int id)
2665 {
2666 ida_simple_remove(&memcg_cache_ida, id);
2667 }
2668
2669 struct memcg_kmem_cache_create_work {
2670 struct mem_cgroup *memcg;
2671 struct kmem_cache *cachep;
2672 struct work_struct work;
2673 };
2674
2675 static void memcg_kmem_cache_create_func(struct work_struct *w)
2676 {
2677 struct memcg_kmem_cache_create_work *cw =
2678 container_of(w, struct memcg_kmem_cache_create_work, work);
2679 struct mem_cgroup *memcg = cw->memcg;
2680 struct kmem_cache *cachep = cw->cachep;
2681
2682 memcg_create_kmem_cache(memcg, cachep);
2683
2684 css_put(&memcg->css);
2685 kfree(cw);
2686 }
2687
2688 /*
2689 * Enqueue the creation of a per-memcg kmem_cache.
2690 */
2691 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2692 struct kmem_cache *cachep)
2693 {
2694 struct memcg_kmem_cache_create_work *cw;
2695
2696 if (!css_tryget_online(&memcg->css))
2697 return;
2698
2699 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2700 if (!cw)
2701 return;
2702
2703 cw->memcg = memcg;
2704 cw->cachep = cachep;
2705 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2706
2707 queue_work(memcg_kmem_cache_wq, &cw->work);
2708 }
2709
2710 static inline bool memcg_kmem_bypass(void)
2711 {
2712 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2713 return true;
2714 return false;
2715 }
2716
2717 /**
2718 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2719 * @cachep: the original global kmem cache
2720 *
2721 * Return the kmem_cache we're supposed to use for a slab allocation.
2722 * We try to use the current memcg's version of the cache.
2723 *
2724 * If the cache does not exist yet, if we are the first user of it, we
2725 * create it asynchronously in a workqueue and let the current allocation
2726 * go through with the original cache.
2727 *
2728 * This function takes a reference to the cache it returns to assure it
2729 * won't get destroyed while we are working with it. Once the caller is
2730 * done with it, memcg_kmem_put_cache() must be called to release the
2731 * reference.
2732 */
2733 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2734 {
2735 struct mem_cgroup *memcg;
2736 struct kmem_cache *memcg_cachep;
2737 struct memcg_cache_array *arr;
2738 int kmemcg_id;
2739
2740 VM_BUG_ON(!is_root_cache(cachep));
2741
2742 if (memcg_kmem_bypass())
2743 return cachep;
2744
2745 rcu_read_lock();
2746
2747 if (unlikely(current->active_memcg))
2748 memcg = current->active_memcg;
2749 else
2750 memcg = mem_cgroup_from_task(current);
2751
2752 if (!memcg || memcg == root_mem_cgroup)
2753 goto out_unlock;
2754
2755 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2756 if (kmemcg_id < 0)
2757 goto out_unlock;
2758
2759 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2760
2761 /*
2762 * Make sure we will access the up-to-date value. The code updating
2763 * memcg_caches issues a write barrier to match the data dependency
2764 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2765 */
2766 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2767
2768 /*
2769 * If we are in a safe context (can wait, and not in interrupt
2770 * context), we could be be predictable and return right away.
2771 * This would guarantee that the allocation being performed
2772 * already belongs in the new cache.
2773 *
2774 * However, there are some clashes that can arrive from locking.
2775 * For instance, because we acquire the slab_mutex while doing
2776 * memcg_create_kmem_cache, this means no further allocation
2777 * could happen with the slab_mutex held. So it's better to
2778 * defer everything.
2779 *
2780 * If the memcg is dying or memcg_cache is about to be released,
2781 * don't bother creating new kmem_caches. Because memcg_cachep
2782 * is ZEROed as the fist step of kmem offlining, we don't need
2783 * percpu_ref_tryget_live() here. css_tryget_online() check in
2784 * memcg_schedule_kmem_cache_create() will prevent us from
2785 * creation of a new kmem_cache.
2786 */
2787 if (unlikely(!memcg_cachep))
2788 memcg_schedule_kmem_cache_create(memcg, cachep);
2789 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2790 cachep = memcg_cachep;
2791 out_unlock:
2792 rcu_read_unlock();
2793 return cachep;
2794 }
2795
2796 /**
2797 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2798 * @cachep: the cache returned by memcg_kmem_get_cache
2799 */
2800 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2801 {
2802 if (!is_root_cache(cachep))
2803 percpu_ref_put(&cachep->memcg_params.refcnt);
2804 }
2805
2806 /**
2807 * __memcg_kmem_charge_memcg: charge a kmem page
2808 * @page: page to charge
2809 * @gfp: reclaim mode
2810 * @order: allocation order
2811 * @memcg: memory cgroup to charge
2812 *
2813 * Returns 0 on success, an error code on failure.
2814 */
2815 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2816 struct mem_cgroup *memcg)
2817 {
2818 unsigned int nr_pages = 1 << order;
2819 struct page_counter *counter;
2820 int ret;
2821
2822 ret = try_charge(memcg, gfp, nr_pages);
2823 if (ret)
2824 return ret;
2825
2826 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2827 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2828 cancel_charge(memcg, nr_pages);
2829 return -ENOMEM;
2830 }
2831 return 0;
2832 }
2833
2834 /**
2835 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2836 * @page: page to charge
2837 * @gfp: reclaim mode
2838 * @order: allocation order
2839 *
2840 * Returns 0 on success, an error code on failure.
2841 */
2842 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2843 {
2844 struct mem_cgroup *memcg;
2845 int ret = 0;
2846
2847 if (memcg_kmem_bypass())
2848 return 0;
2849
2850 memcg = get_mem_cgroup_from_current();
2851 if (!mem_cgroup_is_root(memcg)) {
2852 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2853 if (!ret) {
2854 page->mem_cgroup = memcg;
2855 __SetPageKmemcg(page);
2856 }
2857 }
2858 css_put(&memcg->css);
2859 return ret;
2860 }
2861
2862 /**
2863 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2864 * @memcg: memcg to uncharge
2865 * @nr_pages: number of pages to uncharge
2866 */
2867 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2868 unsigned int nr_pages)
2869 {
2870 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2871 page_counter_uncharge(&memcg->kmem, nr_pages);
2872
2873 page_counter_uncharge(&memcg->memory, nr_pages);
2874 if (do_memsw_account())
2875 page_counter_uncharge(&memcg->memsw, nr_pages);
2876 }
2877 /**
2878 * __memcg_kmem_uncharge: uncharge a kmem page
2879 * @page: page to uncharge
2880 * @order: allocation order
2881 */
2882 void __memcg_kmem_uncharge(struct page *page, int order)
2883 {
2884 struct mem_cgroup *memcg = page->mem_cgroup;
2885 unsigned int nr_pages = 1 << order;
2886
2887 if (!memcg)
2888 return;
2889
2890 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2891 __memcg_kmem_uncharge_memcg(memcg, nr_pages);
2892 page->mem_cgroup = NULL;
2893
2894 /* slab pages do not have PageKmemcg flag set */
2895 if (PageKmemcg(page))
2896 __ClearPageKmemcg(page);
2897
2898 css_put_many(&memcg->css, nr_pages);
2899 }
2900 #endif /* CONFIG_MEMCG_KMEM */
2901
2902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2903
2904 /*
2905 * Because tail pages are not marked as "used", set it. We're under
2906 * pgdat->lru_lock and migration entries setup in all page mappings.
2907 */
2908 void mem_cgroup_split_huge_fixup(struct page *head)
2909 {
2910 int i;
2911
2912 if (mem_cgroup_disabled())
2913 return;
2914
2915 for (i = 1; i < HPAGE_PMD_NR; i++)
2916 head[i].mem_cgroup = head->mem_cgroup;
2917
2918 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2919 }
2920 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2921
2922 #ifdef CONFIG_MEMCG_SWAP
2923 /**
2924 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2925 * @entry: swap entry to be moved
2926 * @from: mem_cgroup which the entry is moved from
2927 * @to: mem_cgroup which the entry is moved to
2928 *
2929 * It succeeds only when the swap_cgroup's record for this entry is the same
2930 * as the mem_cgroup's id of @from.
2931 *
2932 * Returns 0 on success, -EINVAL on failure.
2933 *
2934 * The caller must have charged to @to, IOW, called page_counter_charge() about
2935 * both res and memsw, and called css_get().
2936 */
2937 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2938 struct mem_cgroup *from, struct mem_cgroup *to)
2939 {
2940 unsigned short old_id, new_id;
2941
2942 old_id = mem_cgroup_id(from);
2943 new_id = mem_cgroup_id(to);
2944
2945 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2946 mod_memcg_state(from, MEMCG_SWAP, -1);
2947 mod_memcg_state(to, MEMCG_SWAP, 1);
2948 return 0;
2949 }
2950 return -EINVAL;
2951 }
2952 #else
2953 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2954 struct mem_cgroup *from, struct mem_cgroup *to)
2955 {
2956 return -EINVAL;
2957 }
2958 #endif
2959
2960 static DEFINE_MUTEX(memcg_max_mutex);
2961
2962 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2963 unsigned long max, bool memsw)
2964 {
2965 bool enlarge = false;
2966 bool drained = false;
2967 int ret;
2968 bool limits_invariant;
2969 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2970
2971 do {
2972 if (signal_pending(current)) {
2973 ret = -EINTR;
2974 break;
2975 }
2976
2977 mutex_lock(&memcg_max_mutex);
2978 /*
2979 * Make sure that the new limit (memsw or memory limit) doesn't
2980 * break our basic invariant rule memory.max <= memsw.max.
2981 */
2982 limits_invariant = memsw ? max >= memcg->memory.max :
2983 max <= memcg->memsw.max;
2984 if (!limits_invariant) {
2985 mutex_unlock(&memcg_max_mutex);
2986 ret = -EINVAL;
2987 break;
2988 }
2989 if (max > counter->max)
2990 enlarge = true;
2991 ret = page_counter_set_max(counter, max);
2992 mutex_unlock(&memcg_max_mutex);
2993
2994 if (!ret)
2995 break;
2996
2997 if (!drained) {
2998 drain_all_stock(memcg);
2999 drained = true;
3000 continue;
3001 }
3002
3003 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3004 GFP_KERNEL, !memsw)) {
3005 ret = -EBUSY;
3006 break;
3007 }
3008 } while (true);
3009
3010 if (!ret && enlarge)
3011 memcg_oom_recover(memcg);
3012
3013 return ret;
3014 }
3015
3016 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3017 gfp_t gfp_mask,
3018 unsigned long *total_scanned)
3019 {
3020 unsigned long nr_reclaimed = 0;
3021 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3022 unsigned long reclaimed;
3023 int loop = 0;
3024 struct mem_cgroup_tree_per_node *mctz;
3025 unsigned long excess;
3026 unsigned long nr_scanned;
3027
3028 if (order > 0)
3029 return 0;
3030
3031 mctz = soft_limit_tree_node(pgdat->node_id);
3032
3033 /*
3034 * Do not even bother to check the largest node if the root
3035 * is empty. Do it lockless to prevent lock bouncing. Races
3036 * are acceptable as soft limit is best effort anyway.
3037 */
3038 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3039 return 0;
3040
3041 /*
3042 * This loop can run a while, specially if mem_cgroup's continuously
3043 * keep exceeding their soft limit and putting the system under
3044 * pressure
3045 */
3046 do {
3047 if (next_mz)
3048 mz = next_mz;
3049 else
3050 mz = mem_cgroup_largest_soft_limit_node(mctz);
3051 if (!mz)
3052 break;
3053
3054 nr_scanned = 0;
3055 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3056 gfp_mask, &nr_scanned);
3057 nr_reclaimed += reclaimed;
3058 *total_scanned += nr_scanned;
3059 spin_lock_irq(&mctz->lock);
3060 __mem_cgroup_remove_exceeded(mz, mctz);
3061
3062 /*
3063 * If we failed to reclaim anything from this memory cgroup
3064 * it is time to move on to the next cgroup
3065 */
3066 next_mz = NULL;
3067 if (!reclaimed)
3068 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3069
3070 excess = soft_limit_excess(mz->memcg);
3071 /*
3072 * One school of thought says that we should not add
3073 * back the node to the tree if reclaim returns 0.
3074 * But our reclaim could return 0, simply because due
3075 * to priority we are exposing a smaller subset of
3076 * memory to reclaim from. Consider this as a longer
3077 * term TODO.
3078 */
3079 /* If excess == 0, no tree ops */
3080 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3081 spin_unlock_irq(&mctz->lock);
3082 css_put(&mz->memcg->css);
3083 loop++;
3084 /*
3085 * Could not reclaim anything and there are no more
3086 * mem cgroups to try or we seem to be looping without
3087 * reclaiming anything.
3088 */
3089 if (!nr_reclaimed &&
3090 (next_mz == NULL ||
3091 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3092 break;
3093 } while (!nr_reclaimed);
3094 if (next_mz)
3095 css_put(&next_mz->memcg->css);
3096 return nr_reclaimed;
3097 }
3098
3099 /*
3100 * Test whether @memcg has children, dead or alive. Note that this
3101 * function doesn't care whether @memcg has use_hierarchy enabled and
3102 * returns %true if there are child csses according to the cgroup
3103 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3104 */
3105 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3106 {
3107 bool ret;
3108
3109 rcu_read_lock();
3110 ret = css_next_child(NULL, &memcg->css);
3111 rcu_read_unlock();
3112 return ret;
3113 }
3114
3115 /*
3116 * Reclaims as many pages from the given memcg as possible.
3117 *
3118 * Caller is responsible for holding css reference for memcg.
3119 */
3120 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3121 {
3122 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3123
3124 /* we call try-to-free pages for make this cgroup empty */
3125 lru_add_drain_all();
3126
3127 drain_all_stock(memcg);
3128
3129 /* try to free all pages in this cgroup */
3130 while (nr_retries && page_counter_read(&memcg->memory)) {
3131 int progress;
3132
3133 if (signal_pending(current))
3134 return -EINTR;
3135
3136 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3137 GFP_KERNEL, true);
3138 if (!progress) {
3139 nr_retries--;
3140 /* maybe some writeback is necessary */
3141 congestion_wait(BLK_RW_ASYNC, HZ/10);
3142 }
3143
3144 }
3145
3146 return 0;
3147 }
3148
3149 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3150 char *buf, size_t nbytes,
3151 loff_t off)
3152 {
3153 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3154
3155 if (mem_cgroup_is_root(memcg))
3156 return -EINVAL;
3157 return mem_cgroup_force_empty(memcg) ?: nbytes;
3158 }
3159
3160 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3161 struct cftype *cft)
3162 {
3163 return mem_cgroup_from_css(css)->use_hierarchy;
3164 }
3165
3166 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3167 struct cftype *cft, u64 val)
3168 {
3169 int retval = 0;
3170 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3171 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3172
3173 if (memcg->use_hierarchy == val)
3174 return 0;
3175
3176 /*
3177 * If parent's use_hierarchy is set, we can't make any modifications
3178 * in the child subtrees. If it is unset, then the change can
3179 * occur, provided the current cgroup has no children.
3180 *
3181 * For the root cgroup, parent_mem is NULL, we allow value to be
3182 * set if there are no children.
3183 */
3184 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3185 (val == 1 || val == 0)) {
3186 if (!memcg_has_children(memcg))
3187 memcg->use_hierarchy = val;
3188 else
3189 retval = -EBUSY;
3190 } else
3191 retval = -EINVAL;
3192
3193 return retval;
3194 }
3195
3196 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3197 {
3198 unsigned long val;
3199
3200 if (mem_cgroup_is_root(memcg)) {
3201 val = memcg_page_state(memcg, MEMCG_CACHE) +
3202 memcg_page_state(memcg, MEMCG_RSS);
3203 if (swap)
3204 val += memcg_page_state(memcg, MEMCG_SWAP);
3205 } else {
3206 if (!swap)
3207 val = page_counter_read(&memcg->memory);
3208 else
3209 val = page_counter_read(&memcg->memsw);
3210 }
3211 return val;
3212 }
3213
3214 enum {
3215 RES_USAGE,
3216 RES_LIMIT,
3217 RES_MAX_USAGE,
3218 RES_FAILCNT,
3219 RES_SOFT_LIMIT,
3220 };
3221
3222 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3223 struct cftype *cft)
3224 {
3225 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3226 struct page_counter *counter;
3227
3228 switch (MEMFILE_TYPE(cft->private)) {
3229 case _MEM:
3230 counter = &memcg->memory;
3231 break;
3232 case _MEMSWAP:
3233 counter = &memcg->memsw;
3234 break;
3235 case _KMEM:
3236 counter = &memcg->kmem;
3237 break;
3238 case _TCP:
3239 counter = &memcg->tcpmem;
3240 break;
3241 default:
3242 BUG();
3243 }
3244
3245 switch (MEMFILE_ATTR(cft->private)) {
3246 case RES_USAGE:
3247 if (counter == &memcg->memory)
3248 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3249 if (counter == &memcg->memsw)
3250 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3251 return (u64)page_counter_read(counter) * PAGE_SIZE;
3252 case RES_LIMIT:
3253 return (u64)counter->max * PAGE_SIZE;
3254 case RES_MAX_USAGE:
3255 return (u64)counter->watermark * PAGE_SIZE;
3256 case RES_FAILCNT:
3257 return counter->failcnt;
3258 case RES_SOFT_LIMIT:
3259 return (u64)memcg->soft_limit * PAGE_SIZE;
3260 default:
3261 BUG();
3262 }
3263 }
3264
3265 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg, bool slab_only)
3266 {
3267 unsigned long stat[MEMCG_NR_STAT];
3268 struct mem_cgroup *mi;
3269 int node, cpu, i;
3270 int min_idx, max_idx;
3271
3272 if (slab_only) {
3273 min_idx = NR_SLAB_RECLAIMABLE;
3274 max_idx = NR_SLAB_UNRECLAIMABLE;
3275 } else {
3276 min_idx = 0;
3277 max_idx = MEMCG_NR_STAT;
3278 }
3279
3280 for (i = min_idx; i < max_idx; i++)
3281 stat[i] = 0;
3282
3283 for_each_online_cpu(cpu)
3284 for (i = min_idx; i < max_idx; i++)
3285 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3286
3287 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3288 for (i = min_idx; i < max_idx; i++)
3289 atomic_long_add(stat[i], &mi->vmstats[i]);
3290
3291 if (!slab_only)
3292 max_idx = NR_VM_NODE_STAT_ITEMS;
3293
3294 for_each_node(node) {
3295 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3296 struct mem_cgroup_per_node *pi;
3297
3298 for (i = min_idx; i < max_idx; i++)
3299 stat[i] = 0;
3300
3301 for_each_online_cpu(cpu)
3302 for (i = min_idx; i < max_idx; i++)
3303 stat[i] += per_cpu(
3304 pn->lruvec_stat_cpu->count[i], cpu);
3305
3306 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3307 for (i = min_idx; i < max_idx; i++)
3308 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3309 }
3310 }
3311
3312 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3313 {
3314 unsigned long events[NR_VM_EVENT_ITEMS];
3315 struct mem_cgroup *mi;
3316 int cpu, i;
3317
3318 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3319 events[i] = 0;
3320
3321 for_each_online_cpu(cpu)
3322 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3323 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3324 cpu);
3325
3326 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3327 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3328 atomic_long_add(events[i], &mi->vmevents[i]);
3329 }
3330
3331 #ifdef CONFIG_MEMCG_KMEM
3332 static int memcg_online_kmem(struct mem_cgroup *memcg)
3333 {
3334 int memcg_id;
3335
3336 if (cgroup_memory_nokmem)
3337 return 0;
3338
3339 BUG_ON(memcg->kmemcg_id >= 0);
3340 BUG_ON(memcg->kmem_state);
3341
3342 memcg_id = memcg_alloc_cache_id();
3343 if (memcg_id < 0)
3344 return memcg_id;
3345
3346 static_branch_inc(&memcg_kmem_enabled_key);
3347 /*
3348 * A memory cgroup is considered kmem-online as soon as it gets
3349 * kmemcg_id. Setting the id after enabling static branching will
3350 * guarantee no one starts accounting before all call sites are
3351 * patched.
3352 */
3353 memcg->kmemcg_id = memcg_id;
3354 memcg->kmem_state = KMEM_ONLINE;
3355 INIT_LIST_HEAD(&memcg->kmem_caches);
3356
3357 return 0;
3358 }
3359
3360 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3361 {
3362 struct cgroup_subsys_state *css;
3363 struct mem_cgroup *parent, *child;
3364 int kmemcg_id;
3365
3366 if (memcg->kmem_state != KMEM_ONLINE)
3367 return;
3368 /*
3369 * Clear the online state before clearing memcg_caches array
3370 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3371 * guarantees that no cache will be created for this cgroup
3372 * after we are done (see memcg_create_kmem_cache()).
3373 */
3374 memcg->kmem_state = KMEM_ALLOCATED;
3375
3376 parent = parent_mem_cgroup(memcg);
3377 if (!parent)
3378 parent = root_mem_cgroup;
3379
3380 /*
3381 * Deactivate and reparent kmem_caches. Then flush percpu
3382 * slab statistics to have precise values at the parent and
3383 * all ancestor levels. It's required to keep slab stats
3384 * accurate after the reparenting of kmem_caches.
3385 */
3386 memcg_deactivate_kmem_caches(memcg, parent);
3387 memcg_flush_percpu_vmstats(memcg, true);
3388
3389 kmemcg_id = memcg->kmemcg_id;
3390 BUG_ON(kmemcg_id < 0);
3391
3392 /*
3393 * Change kmemcg_id of this cgroup and all its descendants to the
3394 * parent's id, and then move all entries from this cgroup's list_lrus
3395 * to ones of the parent. After we have finished, all list_lrus
3396 * corresponding to this cgroup are guaranteed to remain empty. The
3397 * ordering is imposed by list_lru_node->lock taken by
3398 * memcg_drain_all_list_lrus().
3399 */
3400 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3401 css_for_each_descendant_pre(css, &memcg->css) {
3402 child = mem_cgroup_from_css(css);
3403 BUG_ON(child->kmemcg_id != kmemcg_id);
3404 child->kmemcg_id = parent->kmemcg_id;
3405 if (!memcg->use_hierarchy)
3406 break;
3407 }
3408 rcu_read_unlock();
3409
3410 memcg_drain_all_list_lrus(kmemcg_id, parent);
3411
3412 memcg_free_cache_id(kmemcg_id);
3413 }
3414
3415 static void memcg_free_kmem(struct mem_cgroup *memcg)
3416 {
3417 /* css_alloc() failed, offlining didn't happen */
3418 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3419 memcg_offline_kmem(memcg);
3420
3421 if (memcg->kmem_state == KMEM_ALLOCATED) {
3422 WARN_ON(!list_empty(&memcg->kmem_caches));
3423 static_branch_dec(&memcg_kmem_enabled_key);
3424 }
3425 }
3426 #else
3427 static int memcg_online_kmem(struct mem_cgroup *memcg)
3428 {
3429 return 0;
3430 }
3431 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3432 {
3433 }
3434 static void memcg_free_kmem(struct mem_cgroup *memcg)
3435 {
3436 }
3437 #endif /* CONFIG_MEMCG_KMEM */
3438
3439 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3440 unsigned long max)
3441 {
3442 int ret;
3443
3444 mutex_lock(&memcg_max_mutex);
3445 ret = page_counter_set_max(&memcg->kmem, max);
3446 mutex_unlock(&memcg_max_mutex);
3447 return ret;
3448 }
3449
3450 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3451 {
3452 int ret;
3453
3454 mutex_lock(&memcg_max_mutex);
3455
3456 ret = page_counter_set_max(&memcg->tcpmem, max);
3457 if (ret)
3458 goto out;
3459
3460 if (!memcg->tcpmem_active) {
3461 /*
3462 * The active flag needs to be written after the static_key
3463 * update. This is what guarantees that the socket activation
3464 * function is the last one to run. See mem_cgroup_sk_alloc()
3465 * for details, and note that we don't mark any socket as
3466 * belonging to this memcg until that flag is up.
3467 *
3468 * We need to do this, because static_keys will span multiple
3469 * sites, but we can't control their order. If we mark a socket
3470 * as accounted, but the accounting functions are not patched in
3471 * yet, we'll lose accounting.
3472 *
3473 * We never race with the readers in mem_cgroup_sk_alloc(),
3474 * because when this value change, the code to process it is not
3475 * patched in yet.
3476 */
3477 static_branch_inc(&memcg_sockets_enabled_key);
3478 memcg->tcpmem_active = true;
3479 }
3480 out:
3481 mutex_unlock(&memcg_max_mutex);
3482 return ret;
3483 }
3484
3485 /*
3486 * The user of this function is...
3487 * RES_LIMIT.
3488 */
3489 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3490 char *buf, size_t nbytes, loff_t off)
3491 {
3492 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3493 unsigned long nr_pages;
3494 int ret;
3495
3496 buf = strstrip(buf);
3497 ret = page_counter_memparse(buf, "-1", &nr_pages);
3498 if (ret)
3499 return ret;
3500
3501 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3502 case RES_LIMIT:
3503 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3504 ret = -EINVAL;
3505 break;
3506 }
3507 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3508 case _MEM:
3509 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3510 break;
3511 case _MEMSWAP:
3512 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3513 break;
3514 case _KMEM:
3515 ret = memcg_update_kmem_max(memcg, nr_pages);
3516 break;
3517 case _TCP:
3518 ret = memcg_update_tcp_max(memcg, nr_pages);
3519 break;
3520 }
3521 break;
3522 case RES_SOFT_LIMIT:
3523 memcg->soft_limit = nr_pages;
3524 ret = 0;
3525 break;
3526 }
3527 return ret ?: nbytes;
3528 }
3529
3530 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3531 size_t nbytes, loff_t off)
3532 {
3533 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3534 struct page_counter *counter;
3535
3536 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3537 case _MEM:
3538 counter = &memcg->memory;
3539 break;
3540 case _MEMSWAP:
3541 counter = &memcg->memsw;
3542 break;
3543 case _KMEM:
3544 counter = &memcg->kmem;
3545 break;
3546 case _TCP:
3547 counter = &memcg->tcpmem;
3548 break;
3549 default:
3550 BUG();
3551 }
3552
3553 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3554 case RES_MAX_USAGE:
3555 page_counter_reset_watermark(counter);
3556 break;
3557 case RES_FAILCNT:
3558 counter->failcnt = 0;
3559 break;
3560 default:
3561 BUG();
3562 }
3563
3564 return nbytes;
3565 }
3566
3567 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3568 struct cftype *cft)
3569 {
3570 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3571 }
3572
3573 #ifdef CONFIG_MMU
3574 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3575 struct cftype *cft, u64 val)
3576 {
3577 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3578
3579 if (val & ~MOVE_MASK)
3580 return -EINVAL;
3581
3582 /*
3583 * No kind of locking is needed in here, because ->can_attach() will
3584 * check this value once in the beginning of the process, and then carry
3585 * on with stale data. This means that changes to this value will only
3586 * affect task migrations starting after the change.
3587 */
3588 memcg->move_charge_at_immigrate = val;
3589 return 0;
3590 }
3591 #else
3592 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3593 struct cftype *cft, u64 val)
3594 {
3595 return -ENOSYS;
3596 }
3597 #endif
3598
3599 #ifdef CONFIG_NUMA
3600
3601 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3602 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3603 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3604
3605 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3606 int nid, unsigned int lru_mask)
3607 {
3608 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3609 unsigned long nr = 0;
3610 enum lru_list lru;
3611
3612 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3613
3614 for_each_lru(lru) {
3615 if (!(BIT(lru) & lru_mask))
3616 continue;
3617 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3618 }
3619 return nr;
3620 }
3621
3622 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3623 unsigned int lru_mask)
3624 {
3625 unsigned long nr = 0;
3626 enum lru_list lru;
3627
3628 for_each_lru(lru) {
3629 if (!(BIT(lru) & lru_mask))
3630 continue;
3631 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3632 }
3633 return nr;
3634 }
3635
3636 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3637 {
3638 struct numa_stat {
3639 const char *name;
3640 unsigned int lru_mask;
3641 };
3642
3643 static const struct numa_stat stats[] = {
3644 { "total", LRU_ALL },
3645 { "file", LRU_ALL_FILE },
3646 { "anon", LRU_ALL_ANON },
3647 { "unevictable", BIT(LRU_UNEVICTABLE) },
3648 };
3649 const struct numa_stat *stat;
3650 int nid;
3651 unsigned long nr;
3652 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3653
3654 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3655 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3656 seq_printf(m, "%s=%lu", stat->name, nr);
3657 for_each_node_state(nid, N_MEMORY) {
3658 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3659 stat->lru_mask);
3660 seq_printf(m, " N%d=%lu", nid, nr);
3661 }
3662 seq_putc(m, '\n');
3663 }
3664
3665 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3666 struct mem_cgroup *iter;
3667
3668 nr = 0;
3669 for_each_mem_cgroup_tree(iter, memcg)
3670 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3671 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3672 for_each_node_state(nid, N_MEMORY) {
3673 nr = 0;
3674 for_each_mem_cgroup_tree(iter, memcg)
3675 nr += mem_cgroup_node_nr_lru_pages(
3676 iter, nid, stat->lru_mask);
3677 seq_printf(m, " N%d=%lu", nid, nr);
3678 }
3679 seq_putc(m, '\n');
3680 }
3681
3682 return 0;
3683 }
3684 #endif /* CONFIG_NUMA */
3685
3686 static const unsigned int memcg1_stats[] = {
3687 MEMCG_CACHE,
3688 MEMCG_RSS,
3689 MEMCG_RSS_HUGE,
3690 NR_SHMEM,
3691 NR_FILE_MAPPED,
3692 NR_FILE_DIRTY,
3693 NR_WRITEBACK,
3694 MEMCG_SWAP,
3695 };
3696
3697 static const char *const memcg1_stat_names[] = {
3698 "cache",
3699 "rss",
3700 "rss_huge",
3701 "shmem",
3702 "mapped_file",
3703 "dirty",
3704 "writeback",
3705 "swap",
3706 };
3707
3708 /* Universal VM events cgroup1 shows, original sort order */
3709 static const unsigned int memcg1_events[] = {
3710 PGPGIN,
3711 PGPGOUT,
3712 PGFAULT,
3713 PGMAJFAULT,
3714 };
3715
3716 static const char *const memcg1_event_names[] = {
3717 "pgpgin",
3718 "pgpgout",
3719 "pgfault",
3720 "pgmajfault",
3721 };
3722
3723 static int memcg_stat_show(struct seq_file *m, void *v)
3724 {
3725 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3726 unsigned long memory, memsw;
3727 struct mem_cgroup *mi;
3728 unsigned int i;
3729
3730 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3731 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3732
3733 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3734 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3735 continue;
3736 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3737 memcg_page_state_local(memcg, memcg1_stats[i]) *
3738 PAGE_SIZE);
3739 }
3740
3741 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3742 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3743 memcg_events_local(memcg, memcg1_events[i]));
3744
3745 for (i = 0; i < NR_LRU_LISTS; i++)
3746 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3747 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3748 PAGE_SIZE);
3749
3750 /* Hierarchical information */
3751 memory = memsw = PAGE_COUNTER_MAX;
3752 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3753 memory = min(memory, mi->memory.max);
3754 memsw = min(memsw, mi->memsw.max);
3755 }
3756 seq_printf(m, "hierarchical_memory_limit %llu\n",
3757 (u64)memory * PAGE_SIZE);
3758 if (do_memsw_account())
3759 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3760 (u64)memsw * PAGE_SIZE);
3761
3762 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3763 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3764 continue;
3765 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3766 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3767 PAGE_SIZE);
3768 }
3769
3770 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3771 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3772 (u64)memcg_events(memcg, memcg1_events[i]));
3773
3774 for (i = 0; i < NR_LRU_LISTS; i++)
3775 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3776 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3777 PAGE_SIZE);
3778
3779 #ifdef CONFIG_DEBUG_VM
3780 {
3781 pg_data_t *pgdat;
3782 struct mem_cgroup_per_node *mz;
3783 struct zone_reclaim_stat *rstat;
3784 unsigned long recent_rotated[2] = {0, 0};
3785 unsigned long recent_scanned[2] = {0, 0};
3786
3787 for_each_online_pgdat(pgdat) {
3788 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3789 rstat = &mz->lruvec.reclaim_stat;
3790
3791 recent_rotated[0] += rstat->recent_rotated[0];
3792 recent_rotated[1] += rstat->recent_rotated[1];
3793 recent_scanned[0] += rstat->recent_scanned[0];
3794 recent_scanned[1] += rstat->recent_scanned[1];
3795 }
3796 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3797 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3798 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3799 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3800 }
3801 #endif
3802
3803 return 0;
3804 }
3805
3806 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3807 struct cftype *cft)
3808 {
3809 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3810
3811 return mem_cgroup_swappiness(memcg);
3812 }
3813
3814 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3815 struct cftype *cft, u64 val)
3816 {
3817 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3818
3819 if (val > 100)
3820 return -EINVAL;
3821
3822 if (css->parent)
3823 memcg->swappiness = val;
3824 else
3825 vm_swappiness = val;
3826
3827 return 0;
3828 }
3829
3830 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3831 {
3832 struct mem_cgroup_threshold_ary *t;
3833 unsigned long usage;
3834 int i;
3835
3836 rcu_read_lock();
3837 if (!swap)
3838 t = rcu_dereference(memcg->thresholds.primary);
3839 else
3840 t = rcu_dereference(memcg->memsw_thresholds.primary);
3841
3842 if (!t)
3843 goto unlock;
3844
3845 usage = mem_cgroup_usage(memcg, swap);
3846
3847 /*
3848 * current_threshold points to threshold just below or equal to usage.
3849 * If it's not true, a threshold was crossed after last
3850 * call of __mem_cgroup_threshold().
3851 */
3852 i = t->current_threshold;
3853
3854 /*
3855 * Iterate backward over array of thresholds starting from
3856 * current_threshold and check if a threshold is crossed.
3857 * If none of thresholds below usage is crossed, we read
3858 * only one element of the array here.
3859 */
3860 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3861 eventfd_signal(t->entries[i].eventfd, 1);
3862
3863 /* i = current_threshold + 1 */
3864 i++;
3865
3866 /*
3867 * Iterate forward over array of thresholds starting from
3868 * current_threshold+1 and check if a threshold is crossed.
3869 * If none of thresholds above usage is crossed, we read
3870 * only one element of the array here.
3871 */
3872 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3873 eventfd_signal(t->entries[i].eventfd, 1);
3874
3875 /* Update current_threshold */
3876 t->current_threshold = i - 1;
3877 unlock:
3878 rcu_read_unlock();
3879 }
3880
3881 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3882 {
3883 while (memcg) {
3884 __mem_cgroup_threshold(memcg, false);
3885 if (do_memsw_account())
3886 __mem_cgroup_threshold(memcg, true);
3887
3888 memcg = parent_mem_cgroup(memcg);
3889 }
3890 }
3891
3892 static int compare_thresholds(const void *a, const void *b)
3893 {
3894 const struct mem_cgroup_threshold *_a = a;
3895 const struct mem_cgroup_threshold *_b = b;
3896
3897 if (_a->threshold > _b->threshold)
3898 return 1;
3899
3900 if (_a->threshold < _b->threshold)
3901 return -1;
3902
3903 return 0;
3904 }
3905
3906 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3907 {
3908 struct mem_cgroup_eventfd_list *ev;
3909
3910 spin_lock(&memcg_oom_lock);
3911
3912 list_for_each_entry(ev, &memcg->oom_notify, list)
3913 eventfd_signal(ev->eventfd, 1);
3914
3915 spin_unlock(&memcg_oom_lock);
3916 return 0;
3917 }
3918
3919 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3920 {
3921 struct mem_cgroup *iter;
3922
3923 for_each_mem_cgroup_tree(iter, memcg)
3924 mem_cgroup_oom_notify_cb(iter);
3925 }
3926
3927 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3928 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3929 {
3930 struct mem_cgroup_thresholds *thresholds;
3931 struct mem_cgroup_threshold_ary *new;
3932 unsigned long threshold;
3933 unsigned long usage;
3934 int i, size, ret;
3935
3936 ret = page_counter_memparse(args, "-1", &threshold);
3937 if (ret)
3938 return ret;
3939
3940 mutex_lock(&memcg->thresholds_lock);
3941
3942 if (type == _MEM) {
3943 thresholds = &memcg->thresholds;
3944 usage = mem_cgroup_usage(memcg, false);
3945 } else if (type == _MEMSWAP) {
3946 thresholds = &memcg->memsw_thresholds;
3947 usage = mem_cgroup_usage(memcg, true);
3948 } else
3949 BUG();
3950
3951 /* Check if a threshold crossed before adding a new one */
3952 if (thresholds->primary)
3953 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3954
3955 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3956
3957 /* Allocate memory for new array of thresholds */
3958 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3959 if (!new) {
3960 ret = -ENOMEM;
3961 goto unlock;
3962 }
3963 new->size = size;
3964
3965 /* Copy thresholds (if any) to new array */
3966 if (thresholds->primary) {
3967 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3968 sizeof(struct mem_cgroup_threshold));
3969 }
3970
3971 /* Add new threshold */
3972 new->entries[size - 1].eventfd = eventfd;
3973 new->entries[size - 1].threshold = threshold;
3974
3975 /* Sort thresholds. Registering of new threshold isn't time-critical */
3976 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3977 compare_thresholds, NULL);
3978
3979 /* Find current threshold */
3980 new->current_threshold = -1;
3981 for (i = 0; i < size; i++) {
3982 if (new->entries[i].threshold <= usage) {
3983 /*
3984 * new->current_threshold will not be used until
3985 * rcu_assign_pointer(), so it's safe to increment
3986 * it here.
3987 */
3988 ++new->current_threshold;
3989 } else
3990 break;
3991 }
3992
3993 /* Free old spare buffer and save old primary buffer as spare */
3994 kfree(thresholds->spare);
3995 thresholds->spare = thresholds->primary;
3996
3997 rcu_assign_pointer(thresholds->primary, new);
3998
3999 /* To be sure that nobody uses thresholds */
4000 synchronize_rcu();
4001
4002 unlock:
4003 mutex_unlock(&memcg->thresholds_lock);
4004
4005 return ret;
4006 }
4007
4008 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4009 struct eventfd_ctx *eventfd, const char *args)
4010 {
4011 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4012 }
4013
4014 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4015 struct eventfd_ctx *eventfd, const char *args)
4016 {
4017 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4018 }
4019
4020 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4021 struct eventfd_ctx *eventfd, enum res_type type)
4022 {
4023 struct mem_cgroup_thresholds *thresholds;
4024 struct mem_cgroup_threshold_ary *new;
4025 unsigned long usage;
4026 int i, j, size;
4027
4028 mutex_lock(&memcg->thresholds_lock);
4029
4030 if (type == _MEM) {
4031 thresholds = &memcg->thresholds;
4032 usage = mem_cgroup_usage(memcg, false);
4033 } else if (type == _MEMSWAP) {
4034 thresholds = &memcg->memsw_thresholds;
4035 usage = mem_cgroup_usage(memcg, true);
4036 } else
4037 BUG();
4038
4039 if (!thresholds->primary)
4040 goto unlock;
4041
4042 /* Check if a threshold crossed before removing */
4043 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4044
4045 /* Calculate new number of threshold */
4046 size = 0;
4047 for (i = 0; i < thresholds->primary->size; i++) {
4048 if (thresholds->primary->entries[i].eventfd != eventfd)
4049 size++;
4050 }
4051
4052 new = thresholds->spare;
4053
4054 /* Set thresholds array to NULL if we don't have thresholds */
4055 if (!size) {
4056 kfree(new);
4057 new = NULL;
4058 goto swap_buffers;
4059 }
4060
4061 new->size = size;
4062
4063 /* Copy thresholds and find current threshold */
4064 new->current_threshold = -1;
4065 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4066 if (thresholds->primary->entries[i].eventfd == eventfd)
4067 continue;
4068
4069 new->entries[j] = thresholds->primary->entries[i];
4070 if (new->entries[j].threshold <= usage) {
4071 /*
4072 * new->current_threshold will not be used
4073 * until rcu_assign_pointer(), so it's safe to increment
4074 * it here.
4075 */
4076 ++new->current_threshold;
4077 }
4078 j++;
4079 }
4080
4081 swap_buffers:
4082 /* Swap primary and spare array */
4083 thresholds->spare = thresholds->primary;
4084
4085 rcu_assign_pointer(thresholds->primary, new);
4086
4087 /* To be sure that nobody uses thresholds */
4088 synchronize_rcu();
4089
4090 /* If all events are unregistered, free the spare array */
4091 if (!new) {
4092 kfree(thresholds->spare);
4093 thresholds->spare = NULL;
4094 }
4095 unlock:
4096 mutex_unlock(&memcg->thresholds_lock);
4097 }
4098
4099 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4100 struct eventfd_ctx *eventfd)
4101 {
4102 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4103 }
4104
4105 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4106 struct eventfd_ctx *eventfd)
4107 {
4108 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4109 }
4110
4111 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4112 struct eventfd_ctx *eventfd, const char *args)
4113 {
4114 struct mem_cgroup_eventfd_list *event;
4115
4116 event = kmalloc(sizeof(*event), GFP_KERNEL);
4117 if (!event)
4118 return -ENOMEM;
4119
4120 spin_lock(&memcg_oom_lock);
4121
4122 event->eventfd = eventfd;
4123 list_add(&event->list, &memcg->oom_notify);
4124
4125 /* already in OOM ? */
4126 if (memcg->under_oom)
4127 eventfd_signal(eventfd, 1);
4128 spin_unlock(&memcg_oom_lock);
4129
4130 return 0;
4131 }
4132
4133 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4134 struct eventfd_ctx *eventfd)
4135 {
4136 struct mem_cgroup_eventfd_list *ev, *tmp;
4137
4138 spin_lock(&memcg_oom_lock);
4139
4140 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4141 if (ev->eventfd == eventfd) {
4142 list_del(&ev->list);
4143 kfree(ev);
4144 }
4145 }
4146
4147 spin_unlock(&memcg_oom_lock);
4148 }
4149
4150 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4151 {
4152 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4153
4154 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4155 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4156 seq_printf(sf, "oom_kill %lu\n",
4157 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4158 return 0;
4159 }
4160
4161 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4162 struct cftype *cft, u64 val)
4163 {
4164 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4165
4166 /* cannot set to root cgroup and only 0 and 1 are allowed */
4167 if (!css->parent || !((val == 0) || (val == 1)))
4168 return -EINVAL;
4169
4170 memcg->oom_kill_disable = val;
4171 if (!val)
4172 memcg_oom_recover(memcg);
4173
4174 return 0;
4175 }
4176
4177 #ifdef CONFIG_CGROUP_WRITEBACK
4178
4179 #include <trace/events/writeback.h>
4180
4181 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4182 {
4183 return wb_domain_init(&memcg->cgwb_domain, gfp);
4184 }
4185
4186 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4187 {
4188 wb_domain_exit(&memcg->cgwb_domain);
4189 }
4190
4191 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4192 {
4193 wb_domain_size_changed(&memcg->cgwb_domain);
4194 }
4195
4196 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4197 {
4198 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4199
4200 if (!memcg->css.parent)
4201 return NULL;
4202
4203 return &memcg->cgwb_domain;
4204 }
4205
4206 /*
4207 * idx can be of type enum memcg_stat_item or node_stat_item.
4208 * Keep in sync with memcg_exact_page().
4209 */
4210 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4211 {
4212 long x = atomic_long_read(&memcg->vmstats[idx]);
4213 int cpu;
4214
4215 for_each_online_cpu(cpu)
4216 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4217 if (x < 0)
4218 x = 0;
4219 return x;
4220 }
4221
4222 /**
4223 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4224 * @wb: bdi_writeback in question
4225 * @pfilepages: out parameter for number of file pages
4226 * @pheadroom: out parameter for number of allocatable pages according to memcg
4227 * @pdirty: out parameter for number of dirty pages
4228 * @pwriteback: out parameter for number of pages under writeback
4229 *
4230 * Determine the numbers of file, headroom, dirty, and writeback pages in
4231 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4232 * is a bit more involved.
4233 *
4234 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4235 * headroom is calculated as the lowest headroom of itself and the
4236 * ancestors. Note that this doesn't consider the actual amount of
4237 * available memory in the system. The caller should further cap
4238 * *@pheadroom accordingly.
4239 */
4240 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4241 unsigned long *pheadroom, unsigned long *pdirty,
4242 unsigned long *pwriteback)
4243 {
4244 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4245 struct mem_cgroup *parent;
4246
4247 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4248
4249 /* this should eventually include NR_UNSTABLE_NFS */
4250 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4251 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4252 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4253 *pheadroom = PAGE_COUNTER_MAX;
4254
4255 while ((parent = parent_mem_cgroup(memcg))) {
4256 unsigned long ceiling = min(memcg->memory.max, memcg->high);
4257 unsigned long used = page_counter_read(&memcg->memory);
4258
4259 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4260 memcg = parent;
4261 }
4262 }
4263
4264 /*
4265 * Foreign dirty flushing
4266 *
4267 * There's an inherent mismatch between memcg and writeback. The former
4268 * trackes ownership per-page while the latter per-inode. This was a
4269 * deliberate design decision because honoring per-page ownership in the
4270 * writeback path is complicated, may lead to higher CPU and IO overheads
4271 * and deemed unnecessary given that write-sharing an inode across
4272 * different cgroups isn't a common use-case.
4273 *
4274 * Combined with inode majority-writer ownership switching, this works well
4275 * enough in most cases but there are some pathological cases. For
4276 * example, let's say there are two cgroups A and B which keep writing to
4277 * different but confined parts of the same inode. B owns the inode and
4278 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4279 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4280 * triggering background writeback. A will be slowed down without a way to
4281 * make writeback of the dirty pages happen.
4282 *
4283 * Conditions like the above can lead to a cgroup getting repatedly and
4284 * severely throttled after making some progress after each
4285 * dirty_expire_interval while the underyling IO device is almost
4286 * completely idle.
4287 *
4288 * Solving this problem completely requires matching the ownership tracking
4289 * granularities between memcg and writeback in either direction. However,
4290 * the more egregious behaviors can be avoided by simply remembering the
4291 * most recent foreign dirtying events and initiating remote flushes on
4292 * them when local writeback isn't enough to keep the memory clean enough.
4293 *
4294 * The following two functions implement such mechanism. When a foreign
4295 * page - a page whose memcg and writeback ownerships don't match - is
4296 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4297 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4298 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4299 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4300 * foreign bdi_writebacks which haven't expired. Both the numbers of
4301 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4302 * limited to MEMCG_CGWB_FRN_CNT.
4303 *
4304 * The mechanism only remembers IDs and doesn't hold any object references.
4305 * As being wrong occasionally doesn't matter, updates and accesses to the
4306 * records are lockless and racy.
4307 */
4308 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4309 struct bdi_writeback *wb)
4310 {
4311 struct mem_cgroup *memcg = page->mem_cgroup;
4312 struct memcg_cgwb_frn *frn;
4313 u64 now = get_jiffies_64();
4314 u64 oldest_at = now;
4315 int oldest = -1;
4316 int i;
4317
4318 trace_track_foreign_dirty(page, wb);
4319
4320 /*
4321 * Pick the slot to use. If there is already a slot for @wb, keep
4322 * using it. If not replace the oldest one which isn't being
4323 * written out.
4324 */
4325 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4326 frn = &memcg->cgwb_frn[i];
4327 if (frn->bdi_id == wb->bdi->id &&
4328 frn->memcg_id == wb->memcg_css->id)
4329 break;
4330 if (time_before64(frn->at, oldest_at) &&
4331 atomic_read(&frn->done.cnt) == 1) {
4332 oldest = i;
4333 oldest_at = frn->at;
4334 }
4335 }
4336
4337 if (i < MEMCG_CGWB_FRN_CNT) {
4338 /*
4339 * Re-using an existing one. Update timestamp lazily to
4340 * avoid making the cacheline hot. We want them to be
4341 * reasonably up-to-date and significantly shorter than
4342 * dirty_expire_interval as that's what expires the record.
4343 * Use the shorter of 1s and dirty_expire_interval / 8.
4344 */
4345 unsigned long update_intv =
4346 min_t(unsigned long, HZ,
4347 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4348
4349 if (time_before64(frn->at, now - update_intv))
4350 frn->at = now;
4351 } else if (oldest >= 0) {
4352 /* replace the oldest free one */
4353 frn = &memcg->cgwb_frn[oldest];
4354 frn->bdi_id = wb->bdi->id;
4355 frn->memcg_id = wb->memcg_css->id;
4356 frn->at = now;
4357 }
4358 }
4359
4360 /* issue foreign writeback flushes for recorded foreign dirtying events */
4361 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4362 {
4363 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4364 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4365 u64 now = jiffies_64;
4366 int i;
4367
4368 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4369 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4370
4371 /*
4372 * If the record is older than dirty_expire_interval,
4373 * writeback on it has already started. No need to kick it
4374 * off again. Also, don't start a new one if there's
4375 * already one in flight.
4376 */
4377 if (time_after64(frn->at, now - intv) &&
4378 atomic_read(&frn->done.cnt) == 1) {
4379 frn->at = 0;
4380 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4381 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4382 WB_REASON_FOREIGN_FLUSH,
4383 &frn->done);
4384 }
4385 }
4386 }
4387
4388 #else /* CONFIG_CGROUP_WRITEBACK */
4389
4390 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4391 {
4392 return 0;
4393 }
4394
4395 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4396 {
4397 }
4398
4399 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4400 {
4401 }
4402
4403 #endif /* CONFIG_CGROUP_WRITEBACK */
4404
4405 /*
4406 * DO NOT USE IN NEW FILES.
4407 *
4408 * "cgroup.event_control" implementation.
4409 *
4410 * This is way over-engineered. It tries to support fully configurable
4411 * events for each user. Such level of flexibility is completely
4412 * unnecessary especially in the light of the planned unified hierarchy.
4413 *
4414 * Please deprecate this and replace with something simpler if at all
4415 * possible.
4416 */
4417
4418 /*
4419 * Unregister event and free resources.
4420 *
4421 * Gets called from workqueue.
4422 */
4423 static void memcg_event_remove(struct work_struct *work)
4424 {
4425 struct mem_cgroup_event *event =
4426 container_of(work, struct mem_cgroup_event, remove);
4427 struct mem_cgroup *memcg = event->memcg;
4428
4429 remove_wait_queue(event->wqh, &event->wait);
4430
4431 event->unregister_event(memcg, event->eventfd);
4432
4433 /* Notify userspace the event is going away. */
4434 eventfd_signal(event->eventfd, 1);
4435
4436 eventfd_ctx_put(event->eventfd);
4437 kfree(event);
4438 css_put(&memcg->css);
4439 }
4440
4441 /*
4442 * Gets called on EPOLLHUP on eventfd when user closes it.
4443 *
4444 * Called with wqh->lock held and interrupts disabled.
4445 */
4446 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4447 int sync, void *key)
4448 {
4449 struct mem_cgroup_event *event =
4450 container_of(wait, struct mem_cgroup_event, wait);
4451 struct mem_cgroup *memcg = event->memcg;
4452 __poll_t flags = key_to_poll(key);
4453
4454 if (flags & EPOLLHUP) {
4455 /*
4456 * If the event has been detached at cgroup removal, we
4457 * can simply return knowing the other side will cleanup
4458 * for us.
4459 *
4460 * We can't race against event freeing since the other
4461 * side will require wqh->lock via remove_wait_queue(),
4462 * which we hold.
4463 */
4464 spin_lock(&memcg->event_list_lock);
4465 if (!list_empty(&event->list)) {
4466 list_del_init(&event->list);
4467 /*
4468 * We are in atomic context, but cgroup_event_remove()
4469 * may sleep, so we have to call it in workqueue.
4470 */
4471 schedule_work(&event->remove);
4472 }
4473 spin_unlock(&memcg->event_list_lock);
4474 }
4475
4476 return 0;
4477 }
4478
4479 static void memcg_event_ptable_queue_proc(struct file *file,
4480 wait_queue_head_t *wqh, poll_table *pt)
4481 {
4482 struct mem_cgroup_event *event =
4483 container_of(pt, struct mem_cgroup_event, pt);
4484
4485 event->wqh = wqh;
4486 add_wait_queue(wqh, &event->wait);
4487 }
4488
4489 /*
4490 * DO NOT USE IN NEW FILES.
4491 *
4492 * Parse input and register new cgroup event handler.
4493 *
4494 * Input must be in format '<event_fd> <control_fd> <args>'.
4495 * Interpretation of args is defined by control file implementation.
4496 */
4497 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4498 char *buf, size_t nbytes, loff_t off)
4499 {
4500 struct cgroup_subsys_state *css = of_css(of);
4501 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4502 struct mem_cgroup_event *event;
4503 struct cgroup_subsys_state *cfile_css;
4504 unsigned int efd, cfd;
4505 struct fd efile;
4506 struct fd cfile;
4507 const char *name;
4508 char *endp;
4509 int ret;
4510
4511 buf = strstrip(buf);
4512
4513 efd = simple_strtoul(buf, &endp, 10);
4514 if (*endp != ' ')
4515 return -EINVAL;
4516 buf = endp + 1;
4517
4518 cfd = simple_strtoul(buf, &endp, 10);
4519 if ((*endp != ' ') && (*endp != '\0'))
4520 return -EINVAL;
4521 buf = endp + 1;
4522
4523 event = kzalloc(sizeof(*event), GFP_KERNEL);
4524 if (!event)
4525 return -ENOMEM;
4526
4527 event->memcg = memcg;
4528 INIT_LIST_HEAD(&event->list);
4529 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4530 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4531 INIT_WORK(&event->remove, memcg_event_remove);
4532
4533 efile = fdget(efd);
4534 if (!efile.file) {
4535 ret = -EBADF;
4536 goto out_kfree;
4537 }
4538
4539 event->eventfd = eventfd_ctx_fileget(efile.file);
4540 if (IS_ERR(event->eventfd)) {
4541 ret = PTR_ERR(event->eventfd);
4542 goto out_put_efile;
4543 }
4544
4545 cfile = fdget(cfd);
4546 if (!cfile.file) {
4547 ret = -EBADF;
4548 goto out_put_eventfd;
4549 }
4550
4551 /* the process need read permission on control file */
4552 /* AV: shouldn't we check that it's been opened for read instead? */
4553 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4554 if (ret < 0)
4555 goto out_put_cfile;
4556
4557 /*
4558 * Determine the event callbacks and set them in @event. This used
4559 * to be done via struct cftype but cgroup core no longer knows
4560 * about these events. The following is crude but the whole thing
4561 * is for compatibility anyway.
4562 *
4563 * DO NOT ADD NEW FILES.
4564 */
4565 name = cfile.file->f_path.dentry->d_name.name;
4566
4567 if (!strcmp(name, "memory.usage_in_bytes")) {
4568 event->register_event = mem_cgroup_usage_register_event;
4569 event->unregister_event = mem_cgroup_usage_unregister_event;
4570 } else if (!strcmp(name, "memory.oom_control")) {
4571 event->register_event = mem_cgroup_oom_register_event;
4572 event->unregister_event = mem_cgroup_oom_unregister_event;
4573 } else if (!strcmp(name, "memory.pressure_level")) {
4574 event->register_event = vmpressure_register_event;
4575 event->unregister_event = vmpressure_unregister_event;
4576 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4577 event->register_event = memsw_cgroup_usage_register_event;
4578 event->unregister_event = memsw_cgroup_usage_unregister_event;
4579 } else {
4580 ret = -EINVAL;
4581 goto out_put_cfile;
4582 }
4583
4584 /*
4585 * Verify @cfile should belong to @css. Also, remaining events are
4586 * automatically removed on cgroup destruction but the removal is
4587 * asynchronous, so take an extra ref on @css.
4588 */
4589 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4590 &memory_cgrp_subsys);
4591 ret = -EINVAL;
4592 if (IS_ERR(cfile_css))
4593 goto out_put_cfile;
4594 if (cfile_css != css) {
4595 css_put(cfile_css);
4596 goto out_put_cfile;
4597 }
4598
4599 ret = event->register_event(memcg, event->eventfd, buf);
4600 if (ret)
4601 goto out_put_css;
4602
4603 vfs_poll(efile.file, &event->pt);
4604
4605 spin_lock(&memcg->event_list_lock);
4606 list_add(&event->list, &memcg->event_list);
4607 spin_unlock(&memcg->event_list_lock);
4608
4609 fdput(cfile);
4610 fdput(efile);
4611
4612 return nbytes;
4613
4614 out_put_css:
4615 css_put(css);
4616 out_put_cfile:
4617 fdput(cfile);
4618 out_put_eventfd:
4619 eventfd_ctx_put(event->eventfd);
4620 out_put_efile:
4621 fdput(efile);
4622 out_kfree:
4623 kfree(event);
4624
4625 return ret;
4626 }
4627
4628 static struct cftype mem_cgroup_legacy_files[] = {
4629 {
4630 .name = "usage_in_bytes",
4631 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4632 .read_u64 = mem_cgroup_read_u64,
4633 },
4634 {
4635 .name = "max_usage_in_bytes",
4636 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4637 .write = mem_cgroup_reset,
4638 .read_u64 = mem_cgroup_read_u64,
4639 },
4640 {
4641 .name = "limit_in_bytes",
4642 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4643 .write = mem_cgroup_write,
4644 .read_u64 = mem_cgroup_read_u64,
4645 },
4646 {
4647 .name = "soft_limit_in_bytes",
4648 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4649 .write = mem_cgroup_write,
4650 .read_u64 = mem_cgroup_read_u64,
4651 },
4652 {
4653 .name = "failcnt",
4654 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4655 .write = mem_cgroup_reset,
4656 .read_u64 = mem_cgroup_read_u64,
4657 },
4658 {
4659 .name = "stat",
4660 .seq_show = memcg_stat_show,
4661 },
4662 {
4663 .name = "force_empty",
4664 .write = mem_cgroup_force_empty_write,
4665 },
4666 {
4667 .name = "use_hierarchy",
4668 .write_u64 = mem_cgroup_hierarchy_write,
4669 .read_u64 = mem_cgroup_hierarchy_read,
4670 },
4671 {
4672 .name = "cgroup.event_control", /* XXX: for compat */
4673 .write = memcg_write_event_control,
4674 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4675 },
4676 {
4677 .name = "swappiness",
4678 .read_u64 = mem_cgroup_swappiness_read,
4679 .write_u64 = mem_cgroup_swappiness_write,
4680 },
4681 {
4682 .name = "move_charge_at_immigrate",
4683 .read_u64 = mem_cgroup_move_charge_read,
4684 .write_u64 = mem_cgroup_move_charge_write,
4685 },
4686 {
4687 .name = "oom_control",
4688 .seq_show = mem_cgroup_oom_control_read,
4689 .write_u64 = mem_cgroup_oom_control_write,
4690 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4691 },
4692 {
4693 .name = "pressure_level",
4694 },
4695 #ifdef CONFIG_NUMA
4696 {
4697 .name = "numa_stat",
4698 .seq_show = memcg_numa_stat_show,
4699 },
4700 #endif
4701 {
4702 .name = "kmem.limit_in_bytes",
4703 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4704 .write = mem_cgroup_write,
4705 .read_u64 = mem_cgroup_read_u64,
4706 },
4707 {
4708 .name = "kmem.usage_in_bytes",
4709 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4710 .read_u64 = mem_cgroup_read_u64,
4711 },
4712 {
4713 .name = "kmem.failcnt",
4714 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4715 .write = mem_cgroup_reset,
4716 .read_u64 = mem_cgroup_read_u64,
4717 },
4718 {
4719 .name = "kmem.max_usage_in_bytes",
4720 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4721 .write = mem_cgroup_reset,
4722 .read_u64 = mem_cgroup_read_u64,
4723 },
4724 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4725 {
4726 .name = "kmem.slabinfo",
4727 .seq_start = memcg_slab_start,
4728 .seq_next = memcg_slab_next,
4729 .seq_stop = memcg_slab_stop,
4730 .seq_show = memcg_slab_show,
4731 },
4732 #endif
4733 {
4734 .name = "kmem.tcp.limit_in_bytes",
4735 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4736 .write = mem_cgroup_write,
4737 .read_u64 = mem_cgroup_read_u64,
4738 },
4739 {
4740 .name = "kmem.tcp.usage_in_bytes",
4741 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4742 .read_u64 = mem_cgroup_read_u64,
4743 },
4744 {
4745 .name = "kmem.tcp.failcnt",
4746 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4747 .write = mem_cgroup_reset,
4748 .read_u64 = mem_cgroup_read_u64,
4749 },
4750 {
4751 .name = "kmem.tcp.max_usage_in_bytes",
4752 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4753 .write = mem_cgroup_reset,
4754 .read_u64 = mem_cgroup_read_u64,
4755 },
4756 { }, /* terminate */
4757 };
4758
4759 /*
4760 * Private memory cgroup IDR
4761 *
4762 * Swap-out records and page cache shadow entries need to store memcg
4763 * references in constrained space, so we maintain an ID space that is
4764 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4765 * memory-controlled cgroups to 64k.
4766 *
4767 * However, there usually are many references to the oflline CSS after
4768 * the cgroup has been destroyed, such as page cache or reclaimable
4769 * slab objects, that don't need to hang on to the ID. We want to keep
4770 * those dead CSS from occupying IDs, or we might quickly exhaust the
4771 * relatively small ID space and prevent the creation of new cgroups
4772 * even when there are much fewer than 64k cgroups - possibly none.
4773 *
4774 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4775 * be freed and recycled when it's no longer needed, which is usually
4776 * when the CSS is offlined.
4777 *
4778 * The only exception to that are records of swapped out tmpfs/shmem
4779 * pages that need to be attributed to live ancestors on swapin. But
4780 * those references are manageable from userspace.
4781 */
4782
4783 static DEFINE_IDR(mem_cgroup_idr);
4784
4785 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4786 {
4787 if (memcg->id.id > 0) {
4788 idr_remove(&mem_cgroup_idr, memcg->id.id);
4789 memcg->id.id = 0;
4790 }
4791 }
4792
4793 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4794 {
4795 refcount_add(n, &memcg->id.ref);
4796 }
4797
4798 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4799 {
4800 if (refcount_sub_and_test(n, &memcg->id.ref)) {
4801 mem_cgroup_id_remove(memcg);
4802
4803 /* Memcg ID pins CSS */
4804 css_put(&memcg->css);
4805 }
4806 }
4807
4808 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4809 {
4810 mem_cgroup_id_get_many(memcg, 1);
4811 }
4812
4813 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4814 {
4815 mem_cgroup_id_put_many(memcg, 1);
4816 }
4817
4818 /**
4819 * mem_cgroup_from_id - look up a memcg from a memcg id
4820 * @id: the memcg id to look up
4821 *
4822 * Caller must hold rcu_read_lock().
4823 */
4824 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4825 {
4826 WARN_ON_ONCE(!rcu_read_lock_held());
4827 return idr_find(&mem_cgroup_idr, id);
4828 }
4829
4830 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4831 {
4832 struct mem_cgroup_per_node *pn;
4833 int tmp = node;
4834 /*
4835 * This routine is called against possible nodes.
4836 * But it's BUG to call kmalloc() against offline node.
4837 *
4838 * TODO: this routine can waste much memory for nodes which will
4839 * never be onlined. It's better to use memory hotplug callback
4840 * function.
4841 */
4842 if (!node_state(node, N_NORMAL_MEMORY))
4843 tmp = -1;
4844 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4845 if (!pn)
4846 return 1;
4847
4848 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4849 if (!pn->lruvec_stat_local) {
4850 kfree(pn);
4851 return 1;
4852 }
4853
4854 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4855 if (!pn->lruvec_stat_cpu) {
4856 free_percpu(pn->lruvec_stat_local);
4857 kfree(pn);
4858 return 1;
4859 }
4860
4861 lruvec_init(&pn->lruvec);
4862 pn->usage_in_excess = 0;
4863 pn->on_tree = false;
4864 pn->memcg = memcg;
4865
4866 memcg->nodeinfo[node] = pn;
4867 return 0;
4868 }
4869
4870 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4871 {
4872 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4873
4874 if (!pn)
4875 return;
4876
4877 free_percpu(pn->lruvec_stat_cpu);
4878 free_percpu(pn->lruvec_stat_local);
4879 kfree(pn);
4880 }
4881
4882 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4883 {
4884 int node;
4885
4886 /*
4887 * Flush percpu vmstats and vmevents to guarantee the value correctness
4888 * on parent's and all ancestor levels.
4889 */
4890 memcg_flush_percpu_vmstats(memcg, false);
4891 memcg_flush_percpu_vmevents(memcg);
4892 for_each_node(node)
4893 free_mem_cgroup_per_node_info(memcg, node);
4894 free_percpu(memcg->vmstats_percpu);
4895 free_percpu(memcg->vmstats_local);
4896 kfree(memcg);
4897 }
4898
4899 static void mem_cgroup_free(struct mem_cgroup *memcg)
4900 {
4901 memcg_wb_domain_exit(memcg);
4902 __mem_cgroup_free(memcg);
4903 }
4904
4905 static struct mem_cgroup *mem_cgroup_alloc(void)
4906 {
4907 struct mem_cgroup *memcg;
4908 unsigned int size;
4909 int node;
4910 int __maybe_unused i;
4911
4912 size = sizeof(struct mem_cgroup);
4913 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4914
4915 memcg = kzalloc(size, GFP_KERNEL);
4916 if (!memcg)
4917 return NULL;
4918
4919 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4920 1, MEM_CGROUP_ID_MAX,
4921 GFP_KERNEL);
4922 if (memcg->id.id < 0)
4923 goto fail;
4924
4925 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4926 if (!memcg->vmstats_local)
4927 goto fail;
4928
4929 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4930 if (!memcg->vmstats_percpu)
4931 goto fail;
4932
4933 for_each_node(node)
4934 if (alloc_mem_cgroup_per_node_info(memcg, node))
4935 goto fail;
4936
4937 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4938 goto fail;
4939
4940 INIT_WORK(&memcg->high_work, high_work_func);
4941 memcg->last_scanned_node = MAX_NUMNODES;
4942 INIT_LIST_HEAD(&memcg->oom_notify);
4943 mutex_init(&memcg->thresholds_lock);
4944 spin_lock_init(&memcg->move_lock);
4945 vmpressure_init(&memcg->vmpressure);
4946 INIT_LIST_HEAD(&memcg->event_list);
4947 spin_lock_init(&memcg->event_list_lock);
4948 memcg->socket_pressure = jiffies;
4949 #ifdef CONFIG_MEMCG_KMEM
4950 memcg->kmemcg_id = -1;
4951 #endif
4952 #ifdef CONFIG_CGROUP_WRITEBACK
4953 INIT_LIST_HEAD(&memcg->cgwb_list);
4954 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
4955 memcg->cgwb_frn[i].done =
4956 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
4957 #endif
4958 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4959 return memcg;
4960 fail:
4961 mem_cgroup_id_remove(memcg);
4962 __mem_cgroup_free(memcg);
4963 return NULL;
4964 }
4965
4966 static struct cgroup_subsys_state * __ref
4967 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4968 {
4969 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4970 struct mem_cgroup *memcg;
4971 long error = -ENOMEM;
4972
4973 memcg = mem_cgroup_alloc();
4974 if (!memcg)
4975 return ERR_PTR(error);
4976
4977 memcg->high = PAGE_COUNTER_MAX;
4978 memcg->soft_limit = PAGE_COUNTER_MAX;
4979 if (parent) {
4980 memcg->swappiness = mem_cgroup_swappiness(parent);
4981 memcg->oom_kill_disable = parent->oom_kill_disable;
4982 }
4983 if (parent && parent->use_hierarchy) {
4984 memcg->use_hierarchy = true;
4985 page_counter_init(&memcg->memory, &parent->memory);
4986 page_counter_init(&memcg->swap, &parent->swap);
4987 page_counter_init(&memcg->memsw, &parent->memsw);
4988 page_counter_init(&memcg->kmem, &parent->kmem);
4989 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4990 } else {
4991 page_counter_init(&memcg->memory, NULL);
4992 page_counter_init(&memcg->swap, NULL);
4993 page_counter_init(&memcg->memsw, NULL);
4994 page_counter_init(&memcg->kmem, NULL);
4995 page_counter_init(&memcg->tcpmem, NULL);
4996 /*
4997 * Deeper hierachy with use_hierarchy == false doesn't make
4998 * much sense so let cgroup subsystem know about this
4999 * unfortunate state in our controller.
5000 */
5001 if (parent != root_mem_cgroup)
5002 memory_cgrp_subsys.broken_hierarchy = true;
5003 }
5004
5005 /* The following stuff does not apply to the root */
5006 if (!parent) {
5007 #ifdef CONFIG_MEMCG_KMEM
5008 INIT_LIST_HEAD(&memcg->kmem_caches);
5009 #endif
5010 root_mem_cgroup = memcg;
5011 return &memcg->css;
5012 }
5013
5014 error = memcg_online_kmem(memcg);
5015 if (error)
5016 goto fail;
5017
5018 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5019 static_branch_inc(&memcg_sockets_enabled_key);
5020
5021 return &memcg->css;
5022 fail:
5023 mem_cgroup_id_remove(memcg);
5024 mem_cgroup_free(memcg);
5025 return ERR_PTR(-ENOMEM);
5026 }
5027
5028 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5029 {
5030 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5031
5032 /*
5033 * A memcg must be visible for memcg_expand_shrinker_maps()
5034 * by the time the maps are allocated. So, we allocate maps
5035 * here, when for_each_mem_cgroup() can't skip it.
5036 */
5037 if (memcg_alloc_shrinker_maps(memcg)) {
5038 mem_cgroup_id_remove(memcg);
5039 return -ENOMEM;
5040 }
5041
5042 /* Online state pins memcg ID, memcg ID pins CSS */
5043 refcount_set(&memcg->id.ref, 1);
5044 css_get(css);
5045 return 0;
5046 }
5047
5048 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5049 {
5050 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5051 struct mem_cgroup_event *event, *tmp;
5052
5053 /*
5054 * Unregister events and notify userspace.
5055 * Notify userspace about cgroup removing only after rmdir of cgroup
5056 * directory to avoid race between userspace and kernelspace.
5057 */
5058 spin_lock(&memcg->event_list_lock);
5059 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5060 list_del_init(&event->list);
5061 schedule_work(&event->remove);
5062 }
5063 spin_unlock(&memcg->event_list_lock);
5064
5065 page_counter_set_min(&memcg->memory, 0);
5066 page_counter_set_low(&memcg->memory, 0);
5067
5068 memcg_offline_kmem(memcg);
5069 wb_memcg_offline(memcg);
5070
5071 drain_all_stock(memcg);
5072
5073 mem_cgroup_id_put(memcg);
5074 }
5075
5076 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5077 {
5078 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5079
5080 invalidate_reclaim_iterators(memcg);
5081 }
5082
5083 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5084 {
5085 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5086 int __maybe_unused i;
5087
5088 #ifdef CONFIG_CGROUP_WRITEBACK
5089 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5090 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5091 #endif
5092 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5093 static_branch_dec(&memcg_sockets_enabled_key);
5094
5095 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5096 static_branch_dec(&memcg_sockets_enabled_key);
5097
5098 vmpressure_cleanup(&memcg->vmpressure);
5099 cancel_work_sync(&memcg->high_work);
5100 mem_cgroup_remove_from_trees(memcg);
5101 memcg_free_shrinker_maps(memcg);
5102 memcg_free_kmem(memcg);
5103 mem_cgroup_free(memcg);
5104 }
5105
5106 /**
5107 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5108 * @css: the target css
5109 *
5110 * Reset the states of the mem_cgroup associated with @css. This is
5111 * invoked when the userland requests disabling on the default hierarchy
5112 * but the memcg is pinned through dependency. The memcg should stop
5113 * applying policies and should revert to the vanilla state as it may be
5114 * made visible again.
5115 *
5116 * The current implementation only resets the essential configurations.
5117 * This needs to be expanded to cover all the visible parts.
5118 */
5119 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5120 {
5121 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5122
5123 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5124 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5125 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5126 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5127 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5128 page_counter_set_min(&memcg->memory, 0);
5129 page_counter_set_low(&memcg->memory, 0);
5130 memcg->high = PAGE_COUNTER_MAX;
5131 memcg->soft_limit = PAGE_COUNTER_MAX;
5132 memcg_wb_domain_size_changed(memcg);
5133 }
5134
5135 #ifdef CONFIG_MMU
5136 /* Handlers for move charge at task migration. */
5137 static int mem_cgroup_do_precharge(unsigned long count)
5138 {
5139 int ret;
5140
5141 /* Try a single bulk charge without reclaim first, kswapd may wake */
5142 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5143 if (!ret) {
5144 mc.precharge += count;
5145 return ret;
5146 }
5147
5148 /* Try charges one by one with reclaim, but do not retry */
5149 while (count--) {
5150 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5151 if (ret)
5152 return ret;
5153 mc.precharge++;
5154 cond_resched();
5155 }
5156 return 0;
5157 }
5158
5159 union mc_target {
5160 struct page *page;
5161 swp_entry_t ent;
5162 };
5163
5164 enum mc_target_type {
5165 MC_TARGET_NONE = 0,
5166 MC_TARGET_PAGE,
5167 MC_TARGET_SWAP,
5168 MC_TARGET_DEVICE,
5169 };
5170
5171 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5172 unsigned long addr, pte_t ptent)
5173 {
5174 struct page *page = vm_normal_page(vma, addr, ptent);
5175
5176 if (!page || !page_mapped(page))
5177 return NULL;
5178 if (PageAnon(page)) {
5179 if (!(mc.flags & MOVE_ANON))
5180 return NULL;
5181 } else {
5182 if (!(mc.flags & MOVE_FILE))
5183 return NULL;
5184 }
5185 if (!get_page_unless_zero(page))
5186 return NULL;
5187
5188 return page;
5189 }
5190
5191 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5192 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5193 pte_t ptent, swp_entry_t *entry)
5194 {
5195 struct page *page = NULL;
5196 swp_entry_t ent = pte_to_swp_entry(ptent);
5197
5198 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5199 return NULL;
5200
5201 /*
5202 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5203 * a device and because they are not accessible by CPU they are store
5204 * as special swap entry in the CPU page table.
5205 */
5206 if (is_device_private_entry(ent)) {
5207 page = device_private_entry_to_page(ent);
5208 /*
5209 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5210 * a refcount of 1 when free (unlike normal page)
5211 */
5212 if (!page_ref_add_unless(page, 1, 1))
5213 return NULL;
5214 return page;
5215 }
5216
5217 /*
5218 * Because lookup_swap_cache() updates some statistics counter,
5219 * we call find_get_page() with swapper_space directly.
5220 */
5221 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5222 if (do_memsw_account())
5223 entry->val = ent.val;
5224
5225 return page;
5226 }
5227 #else
5228 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5229 pte_t ptent, swp_entry_t *entry)
5230 {
5231 return NULL;
5232 }
5233 #endif
5234
5235 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5236 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5237 {
5238 struct page *page = NULL;
5239 struct address_space *mapping;
5240 pgoff_t pgoff;
5241
5242 if (!vma->vm_file) /* anonymous vma */
5243 return NULL;
5244 if (!(mc.flags & MOVE_FILE))
5245 return NULL;
5246
5247 mapping = vma->vm_file->f_mapping;
5248 pgoff = linear_page_index(vma, addr);
5249
5250 /* page is moved even if it's not RSS of this task(page-faulted). */
5251 #ifdef CONFIG_SWAP
5252 /* shmem/tmpfs may report page out on swap: account for that too. */
5253 if (shmem_mapping(mapping)) {
5254 page = find_get_entry(mapping, pgoff);
5255 if (xa_is_value(page)) {
5256 swp_entry_t swp = radix_to_swp_entry(page);
5257 if (do_memsw_account())
5258 *entry = swp;
5259 page = find_get_page(swap_address_space(swp),
5260 swp_offset(swp));
5261 }
5262 } else
5263 page = find_get_page(mapping, pgoff);
5264 #else
5265 page = find_get_page(mapping, pgoff);
5266 #endif
5267 return page;
5268 }
5269
5270 /**
5271 * mem_cgroup_move_account - move account of the page
5272 * @page: the page
5273 * @compound: charge the page as compound or small page
5274 * @from: mem_cgroup which the page is moved from.
5275 * @to: mem_cgroup which the page is moved to. @from != @to.
5276 *
5277 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5278 *
5279 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5280 * from old cgroup.
5281 */
5282 static int mem_cgroup_move_account(struct page *page,
5283 bool compound,
5284 struct mem_cgroup *from,
5285 struct mem_cgroup *to)
5286 {
5287 unsigned long flags;
5288 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5289 int ret;
5290 bool anon;
5291
5292 VM_BUG_ON(from == to);
5293 VM_BUG_ON_PAGE(PageLRU(page), page);
5294 VM_BUG_ON(compound && !PageTransHuge(page));
5295
5296 /*
5297 * Prevent mem_cgroup_migrate() from looking at
5298 * page->mem_cgroup of its source page while we change it.
5299 */
5300 ret = -EBUSY;
5301 if (!trylock_page(page))
5302 goto out;
5303
5304 ret = -EINVAL;
5305 if (page->mem_cgroup != from)
5306 goto out_unlock;
5307
5308 anon = PageAnon(page);
5309
5310 spin_lock_irqsave(&from->move_lock, flags);
5311
5312 if (!anon && page_mapped(page)) {
5313 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
5314 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
5315 }
5316
5317 /*
5318 * move_lock grabbed above and caller set from->moving_account, so
5319 * mod_memcg_page_state will serialize updates to PageDirty.
5320 * So mapping should be stable for dirty pages.
5321 */
5322 if (!anon && PageDirty(page)) {
5323 struct address_space *mapping = page_mapping(page);
5324
5325 if (mapping_cap_account_dirty(mapping)) {
5326 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
5327 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
5328 }
5329 }
5330
5331 if (PageWriteback(page)) {
5332 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
5333 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
5334 }
5335
5336 /*
5337 * It is safe to change page->mem_cgroup here because the page
5338 * is referenced, charged, and isolated - we can't race with
5339 * uncharging, charging, migration, or LRU putback.
5340 */
5341
5342 /* caller should have done css_get */
5343 page->mem_cgroup = to;
5344 spin_unlock_irqrestore(&from->move_lock, flags);
5345
5346 ret = 0;
5347
5348 local_irq_disable();
5349 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5350 memcg_check_events(to, page);
5351 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5352 memcg_check_events(from, page);
5353 local_irq_enable();
5354 out_unlock:
5355 unlock_page(page);
5356 out:
5357 return ret;
5358 }
5359
5360 /**
5361 * get_mctgt_type - get target type of moving charge
5362 * @vma: the vma the pte to be checked belongs
5363 * @addr: the address corresponding to the pte to be checked
5364 * @ptent: the pte to be checked
5365 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5366 *
5367 * Returns
5368 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5369 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5370 * move charge. if @target is not NULL, the page is stored in target->page
5371 * with extra refcnt got(Callers should handle it).
5372 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5373 * target for charge migration. if @target is not NULL, the entry is stored
5374 * in target->ent.
5375 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5376 * (so ZONE_DEVICE page and thus not on the lru).
5377 * For now we such page is charge like a regular page would be as for all
5378 * intent and purposes it is just special memory taking the place of a
5379 * regular page.
5380 *
5381 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5382 *
5383 * Called with pte lock held.
5384 */
5385
5386 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5387 unsigned long addr, pte_t ptent, union mc_target *target)
5388 {
5389 struct page *page = NULL;
5390 enum mc_target_type ret = MC_TARGET_NONE;
5391 swp_entry_t ent = { .val = 0 };
5392
5393 if (pte_present(ptent))
5394 page = mc_handle_present_pte(vma, addr, ptent);
5395 else if (is_swap_pte(ptent))
5396 page = mc_handle_swap_pte(vma, ptent, &ent);
5397 else if (pte_none(ptent))
5398 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5399
5400 if (!page && !ent.val)
5401 return ret;
5402 if (page) {
5403 /*
5404 * Do only loose check w/o serialization.
5405 * mem_cgroup_move_account() checks the page is valid or
5406 * not under LRU exclusion.
5407 */
5408 if (page->mem_cgroup == mc.from) {
5409 ret = MC_TARGET_PAGE;
5410 if (is_device_private_page(page))
5411 ret = MC_TARGET_DEVICE;
5412 if (target)
5413 target->page = page;
5414 }
5415 if (!ret || !target)
5416 put_page(page);
5417 }
5418 /*
5419 * There is a swap entry and a page doesn't exist or isn't charged.
5420 * But we cannot move a tail-page in a THP.
5421 */
5422 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5423 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5424 ret = MC_TARGET_SWAP;
5425 if (target)
5426 target->ent = ent;
5427 }
5428 return ret;
5429 }
5430
5431 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5432 /*
5433 * We don't consider PMD mapped swapping or file mapped pages because THP does
5434 * not support them for now.
5435 * Caller should make sure that pmd_trans_huge(pmd) is true.
5436 */
5437 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5438 unsigned long addr, pmd_t pmd, union mc_target *target)
5439 {
5440 struct page *page = NULL;
5441 enum mc_target_type ret = MC_TARGET_NONE;
5442
5443 if (unlikely(is_swap_pmd(pmd))) {
5444 VM_BUG_ON(thp_migration_supported() &&
5445 !is_pmd_migration_entry(pmd));
5446 return ret;
5447 }
5448 page = pmd_page(pmd);
5449 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5450 if (!(mc.flags & MOVE_ANON))
5451 return ret;
5452 if (page->mem_cgroup == mc.from) {
5453 ret = MC_TARGET_PAGE;
5454 if (target) {
5455 get_page(page);
5456 target->page = page;
5457 }
5458 }
5459 return ret;
5460 }
5461 #else
5462 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5463 unsigned long addr, pmd_t pmd, union mc_target *target)
5464 {
5465 return MC_TARGET_NONE;
5466 }
5467 #endif
5468
5469 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5470 unsigned long addr, unsigned long end,
5471 struct mm_walk *walk)
5472 {
5473 struct vm_area_struct *vma = walk->vma;
5474 pte_t *pte;
5475 spinlock_t *ptl;
5476
5477 ptl = pmd_trans_huge_lock(pmd, vma);
5478 if (ptl) {
5479 /*
5480 * Note their can not be MC_TARGET_DEVICE for now as we do not
5481 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5482 * this might change.
5483 */
5484 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5485 mc.precharge += HPAGE_PMD_NR;
5486 spin_unlock(ptl);
5487 return 0;
5488 }
5489
5490 if (pmd_trans_unstable(pmd))
5491 return 0;
5492 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5493 for (; addr != end; pte++, addr += PAGE_SIZE)
5494 if (get_mctgt_type(vma, addr, *pte, NULL))
5495 mc.precharge++; /* increment precharge temporarily */
5496 pte_unmap_unlock(pte - 1, ptl);
5497 cond_resched();
5498
5499 return 0;
5500 }
5501
5502 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5503 {
5504 unsigned long precharge;
5505
5506 struct mm_walk mem_cgroup_count_precharge_walk = {
5507 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5508 .mm = mm,
5509 };
5510 down_read(&mm->mmap_sem);
5511 walk_page_range(0, mm->highest_vm_end,
5512 &mem_cgroup_count_precharge_walk);
5513 up_read(&mm->mmap_sem);
5514
5515 precharge = mc.precharge;
5516 mc.precharge = 0;
5517
5518 return precharge;
5519 }
5520
5521 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5522 {
5523 unsigned long precharge = mem_cgroup_count_precharge(mm);
5524
5525 VM_BUG_ON(mc.moving_task);
5526 mc.moving_task = current;
5527 return mem_cgroup_do_precharge(precharge);
5528 }
5529
5530 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5531 static void __mem_cgroup_clear_mc(void)
5532 {
5533 struct mem_cgroup *from = mc.from;
5534 struct mem_cgroup *to = mc.to;
5535
5536 /* we must uncharge all the leftover precharges from mc.to */
5537 if (mc.precharge) {
5538 cancel_charge(mc.to, mc.precharge);
5539 mc.precharge = 0;
5540 }
5541 /*
5542 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5543 * we must uncharge here.
5544 */
5545 if (mc.moved_charge) {
5546 cancel_charge(mc.from, mc.moved_charge);
5547 mc.moved_charge = 0;
5548 }
5549 /* we must fixup refcnts and charges */
5550 if (mc.moved_swap) {
5551 /* uncharge swap account from the old cgroup */
5552 if (!mem_cgroup_is_root(mc.from))
5553 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5554
5555 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5556
5557 /*
5558 * we charged both to->memory and to->memsw, so we
5559 * should uncharge to->memory.
5560 */
5561 if (!mem_cgroup_is_root(mc.to))
5562 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5563
5564 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5565 css_put_many(&mc.to->css, mc.moved_swap);
5566
5567 mc.moved_swap = 0;
5568 }
5569 memcg_oom_recover(from);
5570 memcg_oom_recover(to);
5571 wake_up_all(&mc.waitq);
5572 }
5573
5574 static void mem_cgroup_clear_mc(void)
5575 {
5576 struct mm_struct *mm = mc.mm;
5577
5578 /*
5579 * we must clear moving_task before waking up waiters at the end of
5580 * task migration.
5581 */
5582 mc.moving_task = NULL;
5583 __mem_cgroup_clear_mc();
5584 spin_lock(&mc.lock);
5585 mc.from = NULL;
5586 mc.to = NULL;
5587 mc.mm = NULL;
5588 spin_unlock(&mc.lock);
5589
5590 mmput(mm);
5591 }
5592
5593 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5594 {
5595 struct cgroup_subsys_state *css;
5596 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5597 struct mem_cgroup *from;
5598 struct task_struct *leader, *p;
5599 struct mm_struct *mm;
5600 unsigned long move_flags;
5601 int ret = 0;
5602
5603 /* charge immigration isn't supported on the default hierarchy */
5604 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5605 return 0;
5606
5607 /*
5608 * Multi-process migrations only happen on the default hierarchy
5609 * where charge immigration is not used. Perform charge
5610 * immigration if @tset contains a leader and whine if there are
5611 * multiple.
5612 */
5613 p = NULL;
5614 cgroup_taskset_for_each_leader(leader, css, tset) {
5615 WARN_ON_ONCE(p);
5616 p = leader;
5617 memcg = mem_cgroup_from_css(css);
5618 }
5619 if (!p)
5620 return 0;
5621
5622 /*
5623 * We are now commited to this value whatever it is. Changes in this
5624 * tunable will only affect upcoming migrations, not the current one.
5625 * So we need to save it, and keep it going.
5626 */
5627 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5628 if (!move_flags)
5629 return 0;
5630
5631 from = mem_cgroup_from_task(p);
5632
5633 VM_BUG_ON(from == memcg);
5634
5635 mm = get_task_mm(p);
5636 if (!mm)
5637 return 0;
5638 /* We move charges only when we move a owner of the mm */
5639 if (mm->owner == p) {
5640 VM_BUG_ON(mc.from);
5641 VM_BUG_ON(mc.to);
5642 VM_BUG_ON(mc.precharge);
5643 VM_BUG_ON(mc.moved_charge);
5644 VM_BUG_ON(mc.moved_swap);
5645
5646 spin_lock(&mc.lock);
5647 mc.mm = mm;
5648 mc.from = from;
5649 mc.to = memcg;
5650 mc.flags = move_flags;
5651 spin_unlock(&mc.lock);
5652 /* We set mc.moving_task later */
5653
5654 ret = mem_cgroup_precharge_mc(mm);
5655 if (ret)
5656 mem_cgroup_clear_mc();
5657 } else {
5658 mmput(mm);
5659 }
5660 return ret;
5661 }
5662
5663 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5664 {
5665 if (mc.to)
5666 mem_cgroup_clear_mc();
5667 }
5668
5669 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5670 unsigned long addr, unsigned long end,
5671 struct mm_walk *walk)
5672 {
5673 int ret = 0;
5674 struct vm_area_struct *vma = walk->vma;
5675 pte_t *pte;
5676 spinlock_t *ptl;
5677 enum mc_target_type target_type;
5678 union mc_target target;
5679 struct page *page;
5680
5681 ptl = pmd_trans_huge_lock(pmd, vma);
5682 if (ptl) {
5683 if (mc.precharge < HPAGE_PMD_NR) {
5684 spin_unlock(ptl);
5685 return 0;
5686 }
5687 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5688 if (target_type == MC_TARGET_PAGE) {
5689 page = target.page;
5690 if (!isolate_lru_page(page)) {
5691 if (!mem_cgroup_move_account(page, true,
5692 mc.from, mc.to)) {
5693 mc.precharge -= HPAGE_PMD_NR;
5694 mc.moved_charge += HPAGE_PMD_NR;
5695 }
5696 putback_lru_page(page);
5697 }
5698 put_page(page);
5699 } else if (target_type == MC_TARGET_DEVICE) {
5700 page = target.page;
5701 if (!mem_cgroup_move_account(page, true,
5702 mc.from, mc.to)) {
5703 mc.precharge -= HPAGE_PMD_NR;
5704 mc.moved_charge += HPAGE_PMD_NR;
5705 }
5706 put_page(page);
5707 }
5708 spin_unlock(ptl);
5709 return 0;
5710 }
5711
5712 if (pmd_trans_unstable(pmd))
5713 return 0;
5714 retry:
5715 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5716 for (; addr != end; addr += PAGE_SIZE) {
5717 pte_t ptent = *(pte++);
5718 bool device = false;
5719 swp_entry_t ent;
5720
5721 if (!mc.precharge)
5722 break;
5723
5724 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5725 case MC_TARGET_DEVICE:
5726 device = true;
5727 /* fall through */
5728 case MC_TARGET_PAGE:
5729 page = target.page;
5730 /*
5731 * We can have a part of the split pmd here. Moving it
5732 * can be done but it would be too convoluted so simply
5733 * ignore such a partial THP and keep it in original
5734 * memcg. There should be somebody mapping the head.
5735 */
5736 if (PageTransCompound(page))
5737 goto put;
5738 if (!device && isolate_lru_page(page))
5739 goto put;
5740 if (!mem_cgroup_move_account(page, false,
5741 mc.from, mc.to)) {
5742 mc.precharge--;
5743 /* we uncharge from mc.from later. */
5744 mc.moved_charge++;
5745 }
5746 if (!device)
5747 putback_lru_page(page);
5748 put: /* get_mctgt_type() gets the page */
5749 put_page(page);
5750 break;
5751 case MC_TARGET_SWAP:
5752 ent = target.ent;
5753 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5754 mc.precharge--;
5755 /* we fixup refcnts and charges later. */
5756 mc.moved_swap++;
5757 }
5758 break;
5759 default:
5760 break;
5761 }
5762 }
5763 pte_unmap_unlock(pte - 1, ptl);
5764 cond_resched();
5765
5766 if (addr != end) {
5767 /*
5768 * We have consumed all precharges we got in can_attach().
5769 * We try charge one by one, but don't do any additional
5770 * charges to mc.to if we have failed in charge once in attach()
5771 * phase.
5772 */
5773 ret = mem_cgroup_do_precharge(1);
5774 if (!ret)
5775 goto retry;
5776 }
5777
5778 return ret;
5779 }
5780
5781 static void mem_cgroup_move_charge(void)
5782 {
5783 struct mm_walk mem_cgroup_move_charge_walk = {
5784 .pmd_entry = mem_cgroup_move_charge_pte_range,
5785 .mm = mc.mm,
5786 };
5787
5788 lru_add_drain_all();
5789 /*
5790 * Signal lock_page_memcg() to take the memcg's move_lock
5791 * while we're moving its pages to another memcg. Then wait
5792 * for already started RCU-only updates to finish.
5793 */
5794 atomic_inc(&mc.from->moving_account);
5795 synchronize_rcu();
5796 retry:
5797 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5798 /*
5799 * Someone who are holding the mmap_sem might be waiting in
5800 * waitq. So we cancel all extra charges, wake up all waiters,
5801 * and retry. Because we cancel precharges, we might not be able
5802 * to move enough charges, but moving charge is a best-effort
5803 * feature anyway, so it wouldn't be a big problem.
5804 */
5805 __mem_cgroup_clear_mc();
5806 cond_resched();
5807 goto retry;
5808 }
5809 /*
5810 * When we have consumed all precharges and failed in doing
5811 * additional charge, the page walk just aborts.
5812 */
5813 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5814
5815 up_read(&mc.mm->mmap_sem);
5816 atomic_dec(&mc.from->moving_account);
5817 }
5818
5819 static void mem_cgroup_move_task(void)
5820 {
5821 if (mc.to) {
5822 mem_cgroup_move_charge();
5823 mem_cgroup_clear_mc();
5824 }
5825 }
5826 #else /* !CONFIG_MMU */
5827 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5828 {
5829 return 0;
5830 }
5831 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5832 {
5833 }
5834 static void mem_cgroup_move_task(void)
5835 {
5836 }
5837 #endif
5838
5839 /*
5840 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5841 * to verify whether we're attached to the default hierarchy on each mount
5842 * attempt.
5843 */
5844 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5845 {
5846 /*
5847 * use_hierarchy is forced on the default hierarchy. cgroup core
5848 * guarantees that @root doesn't have any children, so turning it
5849 * on for the root memcg is enough.
5850 */
5851 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5852 root_mem_cgroup->use_hierarchy = true;
5853 else
5854 root_mem_cgroup->use_hierarchy = false;
5855 }
5856
5857 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5858 {
5859 if (value == PAGE_COUNTER_MAX)
5860 seq_puts(m, "max\n");
5861 else
5862 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5863
5864 return 0;
5865 }
5866
5867 static u64 memory_current_read(struct cgroup_subsys_state *css,
5868 struct cftype *cft)
5869 {
5870 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5871
5872 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5873 }
5874
5875 static int memory_min_show(struct seq_file *m, void *v)
5876 {
5877 return seq_puts_memcg_tunable(m,
5878 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5879 }
5880
5881 static ssize_t memory_min_write(struct kernfs_open_file *of,
5882 char *buf, size_t nbytes, loff_t off)
5883 {
5884 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5885 unsigned long min;
5886 int err;
5887
5888 buf = strstrip(buf);
5889 err = page_counter_memparse(buf, "max", &min);
5890 if (err)
5891 return err;
5892
5893 page_counter_set_min(&memcg->memory, min);
5894
5895 return nbytes;
5896 }
5897
5898 static int memory_low_show(struct seq_file *m, void *v)
5899 {
5900 return seq_puts_memcg_tunable(m,
5901 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5902 }
5903
5904 static ssize_t memory_low_write(struct kernfs_open_file *of,
5905 char *buf, size_t nbytes, loff_t off)
5906 {
5907 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5908 unsigned long low;
5909 int err;
5910
5911 buf = strstrip(buf);
5912 err = page_counter_memparse(buf, "max", &low);
5913 if (err)
5914 return err;
5915
5916 page_counter_set_low(&memcg->memory, low);
5917
5918 return nbytes;
5919 }
5920
5921 static int memory_high_show(struct seq_file *m, void *v)
5922 {
5923 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5924 }
5925
5926 static ssize_t memory_high_write(struct kernfs_open_file *of,
5927 char *buf, size_t nbytes, loff_t off)
5928 {
5929 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5930 unsigned long nr_pages;
5931 unsigned long high;
5932 int err;
5933
5934 buf = strstrip(buf);
5935 err = page_counter_memparse(buf, "max", &high);
5936 if (err)
5937 return err;
5938
5939 memcg->high = high;
5940
5941 nr_pages = page_counter_read(&memcg->memory);
5942 if (nr_pages > high)
5943 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5944 GFP_KERNEL, true);
5945
5946 memcg_wb_domain_size_changed(memcg);
5947 return nbytes;
5948 }
5949
5950 static int memory_max_show(struct seq_file *m, void *v)
5951 {
5952 return seq_puts_memcg_tunable(m,
5953 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
5954 }
5955
5956 static ssize_t memory_max_write(struct kernfs_open_file *of,
5957 char *buf, size_t nbytes, loff_t off)
5958 {
5959 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5960 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5961 bool drained = false;
5962 unsigned long max;
5963 int err;
5964
5965 buf = strstrip(buf);
5966 err = page_counter_memparse(buf, "max", &max);
5967 if (err)
5968 return err;
5969
5970 xchg(&memcg->memory.max, max);
5971
5972 for (;;) {
5973 unsigned long nr_pages = page_counter_read(&memcg->memory);
5974
5975 if (nr_pages <= max)
5976 break;
5977
5978 if (signal_pending(current)) {
5979 err = -EINTR;
5980 break;
5981 }
5982
5983 if (!drained) {
5984 drain_all_stock(memcg);
5985 drained = true;
5986 continue;
5987 }
5988
5989 if (nr_reclaims) {
5990 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5991 GFP_KERNEL, true))
5992 nr_reclaims--;
5993 continue;
5994 }
5995
5996 memcg_memory_event(memcg, MEMCG_OOM);
5997 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5998 break;
5999 }
6000
6001 memcg_wb_domain_size_changed(memcg);
6002 return nbytes;
6003 }
6004
6005 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6006 {
6007 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6008 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6009 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6010 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6011 seq_printf(m, "oom_kill %lu\n",
6012 atomic_long_read(&events[MEMCG_OOM_KILL]));
6013 }
6014
6015 static int memory_events_show(struct seq_file *m, void *v)
6016 {
6017 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6018
6019 __memory_events_show(m, memcg->memory_events);
6020 return 0;
6021 }
6022
6023 static int memory_events_local_show(struct seq_file *m, void *v)
6024 {
6025 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6026
6027 __memory_events_show(m, memcg->memory_events_local);
6028 return 0;
6029 }
6030
6031 static int memory_stat_show(struct seq_file *m, void *v)
6032 {
6033 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6034 char *buf;
6035
6036 buf = memory_stat_format(memcg);
6037 if (!buf)
6038 return -ENOMEM;
6039 seq_puts(m, buf);
6040 kfree(buf);
6041 return 0;
6042 }
6043
6044 static int memory_oom_group_show(struct seq_file *m, void *v)
6045 {
6046 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6047
6048 seq_printf(m, "%d\n", memcg->oom_group);
6049
6050 return 0;
6051 }
6052
6053 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6054 char *buf, size_t nbytes, loff_t off)
6055 {
6056 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6057 int ret, oom_group;
6058
6059 buf = strstrip(buf);
6060 if (!buf)
6061 return -EINVAL;
6062
6063 ret = kstrtoint(buf, 0, &oom_group);
6064 if (ret)
6065 return ret;
6066
6067 if (oom_group != 0 && oom_group != 1)
6068 return -EINVAL;
6069
6070 memcg->oom_group = oom_group;
6071
6072 return nbytes;
6073 }
6074
6075 static struct cftype memory_files[] = {
6076 {
6077 .name = "current",
6078 .flags = CFTYPE_NOT_ON_ROOT,
6079 .read_u64 = memory_current_read,
6080 },
6081 {
6082 .name = "min",
6083 .flags = CFTYPE_NOT_ON_ROOT,
6084 .seq_show = memory_min_show,
6085 .write = memory_min_write,
6086 },
6087 {
6088 .name = "low",
6089 .flags = CFTYPE_NOT_ON_ROOT,
6090 .seq_show = memory_low_show,
6091 .write = memory_low_write,
6092 },
6093 {
6094 .name = "high",
6095 .flags = CFTYPE_NOT_ON_ROOT,
6096 .seq_show = memory_high_show,
6097 .write = memory_high_write,
6098 },
6099 {
6100 .name = "max",
6101 .flags = CFTYPE_NOT_ON_ROOT,
6102 .seq_show = memory_max_show,
6103 .write = memory_max_write,
6104 },
6105 {
6106 .name = "events",
6107 .flags = CFTYPE_NOT_ON_ROOT,
6108 .file_offset = offsetof(struct mem_cgroup, events_file),
6109 .seq_show = memory_events_show,
6110 },
6111 {
6112 .name = "events.local",
6113 .flags = CFTYPE_NOT_ON_ROOT,
6114 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6115 .seq_show = memory_events_local_show,
6116 },
6117 {
6118 .name = "stat",
6119 .flags = CFTYPE_NOT_ON_ROOT,
6120 .seq_show = memory_stat_show,
6121 },
6122 {
6123 .name = "oom.group",
6124 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6125 .seq_show = memory_oom_group_show,
6126 .write = memory_oom_group_write,
6127 },
6128 { } /* terminate */
6129 };
6130
6131 struct cgroup_subsys memory_cgrp_subsys = {
6132 .css_alloc = mem_cgroup_css_alloc,
6133 .css_online = mem_cgroup_css_online,
6134 .css_offline = mem_cgroup_css_offline,
6135 .css_released = mem_cgroup_css_released,
6136 .css_free = mem_cgroup_css_free,
6137 .css_reset = mem_cgroup_css_reset,
6138 .can_attach = mem_cgroup_can_attach,
6139 .cancel_attach = mem_cgroup_cancel_attach,
6140 .post_attach = mem_cgroup_move_task,
6141 .bind = mem_cgroup_bind,
6142 .dfl_cftypes = memory_files,
6143 .legacy_cftypes = mem_cgroup_legacy_files,
6144 .early_init = 0,
6145 };
6146
6147 /**
6148 * mem_cgroup_protected - check if memory consumption is in the normal range
6149 * @root: the top ancestor of the sub-tree being checked
6150 * @memcg: the memory cgroup to check
6151 *
6152 * WARNING: This function is not stateless! It can only be used as part
6153 * of a top-down tree iteration, not for isolated queries.
6154 *
6155 * Returns one of the following:
6156 * MEMCG_PROT_NONE: cgroup memory is not protected
6157 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6158 * an unprotected supply of reclaimable memory from other cgroups.
6159 * MEMCG_PROT_MIN: cgroup memory is protected
6160 *
6161 * @root is exclusive; it is never protected when looked at directly
6162 *
6163 * To provide a proper hierarchical behavior, effective memory.min/low values
6164 * are used. Below is the description of how effective memory.low is calculated.
6165 * Effective memory.min values is calculated in the same way.
6166 *
6167 * Effective memory.low is always equal or less than the original memory.low.
6168 * If there is no memory.low overcommittment (which is always true for
6169 * top-level memory cgroups), these two values are equal.
6170 * Otherwise, it's a part of parent's effective memory.low,
6171 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6172 * memory.low usages, where memory.low usage is the size of actually
6173 * protected memory.
6174 *
6175 * low_usage
6176 * elow = min( memory.low, parent->elow * ------------------ ),
6177 * siblings_low_usage
6178 *
6179 * | memory.current, if memory.current < memory.low
6180 * low_usage = |
6181 * | 0, otherwise.
6182 *
6183 *
6184 * Such definition of the effective memory.low provides the expected
6185 * hierarchical behavior: parent's memory.low value is limiting
6186 * children, unprotected memory is reclaimed first and cgroups,
6187 * which are not using their guarantee do not affect actual memory
6188 * distribution.
6189 *
6190 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6191 *
6192 * A A/memory.low = 2G, A/memory.current = 6G
6193 * //\\
6194 * BC DE B/memory.low = 3G B/memory.current = 2G
6195 * C/memory.low = 1G C/memory.current = 2G
6196 * D/memory.low = 0 D/memory.current = 2G
6197 * E/memory.low = 10G E/memory.current = 0
6198 *
6199 * and the memory pressure is applied, the following memory distribution
6200 * is expected (approximately):
6201 *
6202 * A/memory.current = 2G
6203 *
6204 * B/memory.current = 1.3G
6205 * C/memory.current = 0.6G
6206 * D/memory.current = 0
6207 * E/memory.current = 0
6208 *
6209 * These calculations require constant tracking of the actual low usages
6210 * (see propagate_protected_usage()), as well as recursive calculation of
6211 * effective memory.low values. But as we do call mem_cgroup_protected()
6212 * path for each memory cgroup top-down from the reclaim,
6213 * it's possible to optimize this part, and save calculated elow
6214 * for next usage. This part is intentionally racy, but it's ok,
6215 * as memory.low is a best-effort mechanism.
6216 */
6217 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6218 struct mem_cgroup *memcg)
6219 {
6220 struct mem_cgroup *parent;
6221 unsigned long emin, parent_emin;
6222 unsigned long elow, parent_elow;
6223 unsigned long usage;
6224
6225 if (mem_cgroup_disabled())
6226 return MEMCG_PROT_NONE;
6227
6228 if (!root)
6229 root = root_mem_cgroup;
6230 if (memcg == root)
6231 return MEMCG_PROT_NONE;
6232
6233 usage = page_counter_read(&memcg->memory);
6234 if (!usage)
6235 return MEMCG_PROT_NONE;
6236
6237 emin = memcg->memory.min;
6238 elow = memcg->memory.low;
6239
6240 parent = parent_mem_cgroup(memcg);
6241 /* No parent means a non-hierarchical mode on v1 memcg */
6242 if (!parent)
6243 return MEMCG_PROT_NONE;
6244
6245 if (parent == root)
6246 goto exit;
6247
6248 parent_emin = READ_ONCE(parent->memory.emin);
6249 emin = min(emin, parent_emin);
6250 if (emin && parent_emin) {
6251 unsigned long min_usage, siblings_min_usage;
6252
6253 min_usage = min(usage, memcg->memory.min);
6254 siblings_min_usage = atomic_long_read(
6255 &parent->memory.children_min_usage);
6256
6257 if (min_usage && siblings_min_usage)
6258 emin = min(emin, parent_emin * min_usage /
6259 siblings_min_usage);
6260 }
6261
6262 parent_elow = READ_ONCE(parent->memory.elow);
6263 elow = min(elow, parent_elow);
6264 if (elow && parent_elow) {
6265 unsigned long low_usage, siblings_low_usage;
6266
6267 low_usage = min(usage, memcg->memory.low);
6268 siblings_low_usage = atomic_long_read(
6269 &parent->memory.children_low_usage);
6270
6271 if (low_usage && siblings_low_usage)
6272 elow = min(elow, parent_elow * low_usage /
6273 siblings_low_usage);
6274 }
6275
6276 exit:
6277 memcg->memory.emin = emin;
6278 memcg->memory.elow = elow;
6279
6280 if (usage <= emin)
6281 return MEMCG_PROT_MIN;
6282 else if (usage <= elow)
6283 return MEMCG_PROT_LOW;
6284 else
6285 return MEMCG_PROT_NONE;
6286 }
6287
6288 /**
6289 * mem_cgroup_try_charge - try charging a page
6290 * @page: page to charge
6291 * @mm: mm context of the victim
6292 * @gfp_mask: reclaim mode
6293 * @memcgp: charged memcg return
6294 * @compound: charge the page as compound or small page
6295 *
6296 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6297 * pages according to @gfp_mask if necessary.
6298 *
6299 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6300 * Otherwise, an error code is returned.
6301 *
6302 * After page->mapping has been set up, the caller must finalize the
6303 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6304 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6305 */
6306 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6307 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6308 bool compound)
6309 {
6310 struct mem_cgroup *memcg = NULL;
6311 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6312 int ret = 0;
6313
6314 if (mem_cgroup_disabled())
6315 goto out;
6316
6317 if (PageSwapCache(page)) {
6318 /*
6319 * Every swap fault against a single page tries to charge the
6320 * page, bail as early as possible. shmem_unuse() encounters
6321 * already charged pages, too. The USED bit is protected by
6322 * the page lock, which serializes swap cache removal, which
6323 * in turn serializes uncharging.
6324 */
6325 VM_BUG_ON_PAGE(!PageLocked(page), page);
6326 if (compound_head(page)->mem_cgroup)
6327 goto out;
6328
6329 if (do_swap_account) {
6330 swp_entry_t ent = { .val = page_private(page), };
6331 unsigned short id = lookup_swap_cgroup_id(ent);
6332
6333 rcu_read_lock();
6334 memcg = mem_cgroup_from_id(id);
6335 if (memcg && !css_tryget_online(&memcg->css))
6336 memcg = NULL;
6337 rcu_read_unlock();
6338 }
6339 }
6340
6341 if (!memcg)
6342 memcg = get_mem_cgroup_from_mm(mm);
6343
6344 ret = try_charge(memcg, gfp_mask, nr_pages);
6345
6346 css_put(&memcg->css);
6347 out:
6348 *memcgp = memcg;
6349 return ret;
6350 }
6351
6352 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6353 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6354 bool compound)
6355 {
6356 struct mem_cgroup *memcg;
6357 int ret;
6358
6359 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6360 memcg = *memcgp;
6361 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6362 return ret;
6363 }
6364
6365 /**
6366 * mem_cgroup_commit_charge - commit a page charge
6367 * @page: page to charge
6368 * @memcg: memcg to charge the page to
6369 * @lrucare: page might be on LRU already
6370 * @compound: charge the page as compound or small page
6371 *
6372 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6373 * after page->mapping has been set up. This must happen atomically
6374 * as part of the page instantiation, i.e. under the page table lock
6375 * for anonymous pages, under the page lock for page and swap cache.
6376 *
6377 * In addition, the page must not be on the LRU during the commit, to
6378 * prevent racing with task migration. If it might be, use @lrucare.
6379 *
6380 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6381 */
6382 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6383 bool lrucare, bool compound)
6384 {
6385 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6386
6387 VM_BUG_ON_PAGE(!page->mapping, page);
6388 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6389
6390 if (mem_cgroup_disabled())
6391 return;
6392 /*
6393 * Swap faults will attempt to charge the same page multiple
6394 * times. But reuse_swap_page() might have removed the page
6395 * from swapcache already, so we can't check PageSwapCache().
6396 */
6397 if (!memcg)
6398 return;
6399
6400 commit_charge(page, memcg, lrucare);
6401
6402 local_irq_disable();
6403 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6404 memcg_check_events(memcg, page);
6405 local_irq_enable();
6406
6407 if (do_memsw_account() && PageSwapCache(page)) {
6408 swp_entry_t entry = { .val = page_private(page) };
6409 /*
6410 * The swap entry might not get freed for a long time,
6411 * let's not wait for it. The page already received a
6412 * memory+swap charge, drop the swap entry duplicate.
6413 */
6414 mem_cgroup_uncharge_swap(entry, nr_pages);
6415 }
6416 }
6417
6418 /**
6419 * mem_cgroup_cancel_charge - cancel a page charge
6420 * @page: page to charge
6421 * @memcg: memcg to charge the page to
6422 * @compound: charge the page as compound or small page
6423 *
6424 * Cancel a charge transaction started by mem_cgroup_try_charge().
6425 */
6426 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6427 bool compound)
6428 {
6429 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6430
6431 if (mem_cgroup_disabled())
6432 return;
6433 /*
6434 * Swap faults will attempt to charge the same page multiple
6435 * times. But reuse_swap_page() might have removed the page
6436 * from swapcache already, so we can't check PageSwapCache().
6437 */
6438 if (!memcg)
6439 return;
6440
6441 cancel_charge(memcg, nr_pages);
6442 }
6443
6444 struct uncharge_gather {
6445 struct mem_cgroup *memcg;
6446 unsigned long pgpgout;
6447 unsigned long nr_anon;
6448 unsigned long nr_file;
6449 unsigned long nr_kmem;
6450 unsigned long nr_huge;
6451 unsigned long nr_shmem;
6452 struct page *dummy_page;
6453 };
6454
6455 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6456 {
6457 memset(ug, 0, sizeof(*ug));
6458 }
6459
6460 static void uncharge_batch(const struct uncharge_gather *ug)
6461 {
6462 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6463 unsigned long flags;
6464
6465 if (!mem_cgroup_is_root(ug->memcg)) {
6466 page_counter_uncharge(&ug->memcg->memory, nr_pages);
6467 if (do_memsw_account())
6468 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6469 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6470 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6471 memcg_oom_recover(ug->memcg);
6472 }
6473
6474 local_irq_save(flags);
6475 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6476 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6477 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6478 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6479 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6480 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6481 memcg_check_events(ug->memcg, ug->dummy_page);
6482 local_irq_restore(flags);
6483
6484 if (!mem_cgroup_is_root(ug->memcg))
6485 css_put_many(&ug->memcg->css, nr_pages);
6486 }
6487
6488 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6489 {
6490 VM_BUG_ON_PAGE(PageLRU(page), page);
6491 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6492 !PageHWPoison(page) , page);
6493
6494 if (!page->mem_cgroup)
6495 return;
6496
6497 /*
6498 * Nobody should be changing or seriously looking at
6499 * page->mem_cgroup at this point, we have fully
6500 * exclusive access to the page.
6501 */
6502
6503 if (ug->memcg != page->mem_cgroup) {
6504 if (ug->memcg) {
6505 uncharge_batch(ug);
6506 uncharge_gather_clear(ug);
6507 }
6508 ug->memcg = page->mem_cgroup;
6509 }
6510
6511 if (!PageKmemcg(page)) {
6512 unsigned int nr_pages = 1;
6513
6514 if (PageTransHuge(page)) {
6515 nr_pages <<= compound_order(page);
6516 ug->nr_huge += nr_pages;
6517 }
6518 if (PageAnon(page))
6519 ug->nr_anon += nr_pages;
6520 else {
6521 ug->nr_file += nr_pages;
6522 if (PageSwapBacked(page))
6523 ug->nr_shmem += nr_pages;
6524 }
6525 ug->pgpgout++;
6526 } else {
6527 ug->nr_kmem += 1 << compound_order(page);
6528 __ClearPageKmemcg(page);
6529 }
6530
6531 ug->dummy_page = page;
6532 page->mem_cgroup = NULL;
6533 }
6534
6535 static void uncharge_list(struct list_head *page_list)
6536 {
6537 struct uncharge_gather ug;
6538 struct list_head *next;
6539
6540 uncharge_gather_clear(&ug);
6541
6542 /*
6543 * Note that the list can be a single page->lru; hence the
6544 * do-while loop instead of a simple list_for_each_entry().
6545 */
6546 next = page_list->next;
6547 do {
6548 struct page *page;
6549
6550 page = list_entry(next, struct page, lru);
6551 next = page->lru.next;
6552
6553 uncharge_page(page, &ug);
6554 } while (next != page_list);
6555
6556 if (ug.memcg)
6557 uncharge_batch(&ug);
6558 }
6559
6560 /**
6561 * mem_cgroup_uncharge - uncharge a page
6562 * @page: page to uncharge
6563 *
6564 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6565 * mem_cgroup_commit_charge().
6566 */
6567 void mem_cgroup_uncharge(struct page *page)
6568 {
6569 struct uncharge_gather ug;
6570
6571 if (mem_cgroup_disabled())
6572 return;
6573
6574 /* Don't touch page->lru of any random page, pre-check: */
6575 if (!page->mem_cgroup)
6576 return;
6577
6578 uncharge_gather_clear(&ug);
6579 uncharge_page(page, &ug);
6580 uncharge_batch(&ug);
6581 }
6582
6583 /**
6584 * mem_cgroup_uncharge_list - uncharge a list of page
6585 * @page_list: list of pages to uncharge
6586 *
6587 * Uncharge a list of pages previously charged with
6588 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6589 */
6590 void mem_cgroup_uncharge_list(struct list_head *page_list)
6591 {
6592 if (mem_cgroup_disabled())
6593 return;
6594
6595 if (!list_empty(page_list))
6596 uncharge_list(page_list);
6597 }
6598
6599 /**
6600 * mem_cgroup_migrate - charge a page's replacement
6601 * @oldpage: currently circulating page
6602 * @newpage: replacement page
6603 *
6604 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6605 * be uncharged upon free.
6606 *
6607 * Both pages must be locked, @newpage->mapping must be set up.
6608 */
6609 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6610 {
6611 struct mem_cgroup *memcg;
6612 unsigned int nr_pages;
6613 bool compound;
6614 unsigned long flags;
6615
6616 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6617 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6618 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6619 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6620 newpage);
6621
6622 if (mem_cgroup_disabled())
6623 return;
6624
6625 /* Page cache replacement: new page already charged? */
6626 if (newpage->mem_cgroup)
6627 return;
6628
6629 /* Swapcache readahead pages can get replaced before being charged */
6630 memcg = oldpage->mem_cgroup;
6631 if (!memcg)
6632 return;
6633
6634 /* Force-charge the new page. The old one will be freed soon */
6635 compound = PageTransHuge(newpage);
6636 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6637
6638 page_counter_charge(&memcg->memory, nr_pages);
6639 if (do_memsw_account())
6640 page_counter_charge(&memcg->memsw, nr_pages);
6641 css_get_many(&memcg->css, nr_pages);
6642
6643 commit_charge(newpage, memcg, false);
6644
6645 local_irq_save(flags);
6646 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6647 memcg_check_events(memcg, newpage);
6648 local_irq_restore(flags);
6649 }
6650
6651 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6652 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6653
6654 void mem_cgroup_sk_alloc(struct sock *sk)
6655 {
6656 struct mem_cgroup *memcg;
6657
6658 if (!mem_cgroup_sockets_enabled)
6659 return;
6660
6661 /*
6662 * Socket cloning can throw us here with sk_memcg already
6663 * filled. It won't however, necessarily happen from
6664 * process context. So the test for root memcg given
6665 * the current task's memcg won't help us in this case.
6666 *
6667 * Respecting the original socket's memcg is a better
6668 * decision in this case.
6669 */
6670 if (sk->sk_memcg) {
6671 css_get(&sk->sk_memcg->css);
6672 return;
6673 }
6674
6675 rcu_read_lock();
6676 memcg = mem_cgroup_from_task(current);
6677 if (memcg == root_mem_cgroup)
6678 goto out;
6679 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6680 goto out;
6681 if (css_tryget_online(&memcg->css))
6682 sk->sk_memcg = memcg;
6683 out:
6684 rcu_read_unlock();
6685 }
6686
6687 void mem_cgroup_sk_free(struct sock *sk)
6688 {
6689 if (sk->sk_memcg)
6690 css_put(&sk->sk_memcg->css);
6691 }
6692
6693 /**
6694 * mem_cgroup_charge_skmem - charge socket memory
6695 * @memcg: memcg to charge
6696 * @nr_pages: number of pages to charge
6697 *
6698 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6699 * @memcg's configured limit, %false if the charge had to be forced.
6700 */
6701 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6702 {
6703 gfp_t gfp_mask = GFP_KERNEL;
6704
6705 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6706 struct page_counter *fail;
6707
6708 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6709 memcg->tcpmem_pressure = 0;
6710 return true;
6711 }
6712 page_counter_charge(&memcg->tcpmem, nr_pages);
6713 memcg->tcpmem_pressure = 1;
6714 return false;
6715 }
6716
6717 /* Don't block in the packet receive path */
6718 if (in_softirq())
6719 gfp_mask = GFP_NOWAIT;
6720
6721 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6722
6723 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6724 return true;
6725
6726 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6727 return false;
6728 }
6729
6730 /**
6731 * mem_cgroup_uncharge_skmem - uncharge socket memory
6732 * @memcg: memcg to uncharge
6733 * @nr_pages: number of pages to uncharge
6734 */
6735 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6736 {
6737 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6738 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6739 return;
6740 }
6741
6742 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6743
6744 refill_stock(memcg, nr_pages);
6745 }
6746
6747 static int __init cgroup_memory(char *s)
6748 {
6749 char *token;
6750
6751 while ((token = strsep(&s, ",")) != NULL) {
6752 if (!*token)
6753 continue;
6754 if (!strcmp(token, "nosocket"))
6755 cgroup_memory_nosocket = true;
6756 if (!strcmp(token, "nokmem"))
6757 cgroup_memory_nokmem = true;
6758 }
6759 return 0;
6760 }
6761 __setup("cgroup.memory=", cgroup_memory);
6762
6763 /*
6764 * subsys_initcall() for memory controller.
6765 *
6766 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6767 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6768 * basically everything that doesn't depend on a specific mem_cgroup structure
6769 * should be initialized from here.
6770 */
6771 static int __init mem_cgroup_init(void)
6772 {
6773 int cpu, node;
6774
6775 #ifdef CONFIG_MEMCG_KMEM
6776 /*
6777 * Kmem cache creation is mostly done with the slab_mutex held,
6778 * so use a workqueue with limited concurrency to avoid stalling
6779 * all worker threads in case lots of cgroups are created and
6780 * destroyed simultaneously.
6781 */
6782 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6783 BUG_ON(!memcg_kmem_cache_wq);
6784 #endif
6785
6786 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6787 memcg_hotplug_cpu_dead);
6788
6789 for_each_possible_cpu(cpu)
6790 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6791 drain_local_stock);
6792
6793 for_each_node(node) {
6794 struct mem_cgroup_tree_per_node *rtpn;
6795
6796 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6797 node_online(node) ? node : NUMA_NO_NODE);
6798
6799 rtpn->rb_root = RB_ROOT;
6800 rtpn->rb_rightmost = NULL;
6801 spin_lock_init(&rtpn->lock);
6802 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6803 }
6804
6805 return 0;
6806 }
6807 subsys_initcall(mem_cgroup_init);
6808
6809 #ifdef CONFIG_MEMCG_SWAP
6810 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6811 {
6812 while (!refcount_inc_not_zero(&memcg->id.ref)) {
6813 /*
6814 * The root cgroup cannot be destroyed, so it's refcount must
6815 * always be >= 1.
6816 */
6817 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6818 VM_BUG_ON(1);
6819 break;
6820 }
6821 memcg = parent_mem_cgroup(memcg);
6822 if (!memcg)
6823 memcg = root_mem_cgroup;
6824 }
6825 return memcg;
6826 }
6827
6828 /**
6829 * mem_cgroup_swapout - transfer a memsw charge to swap
6830 * @page: page whose memsw charge to transfer
6831 * @entry: swap entry to move the charge to
6832 *
6833 * Transfer the memsw charge of @page to @entry.
6834 */
6835 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6836 {
6837 struct mem_cgroup *memcg, *swap_memcg;
6838 unsigned int nr_entries;
6839 unsigned short oldid;
6840
6841 VM_BUG_ON_PAGE(PageLRU(page), page);
6842 VM_BUG_ON_PAGE(page_count(page), page);
6843
6844 if (!do_memsw_account())
6845 return;
6846
6847 memcg = page->mem_cgroup;
6848
6849 /* Readahead page, never charged */
6850 if (!memcg)
6851 return;
6852
6853 /*
6854 * In case the memcg owning these pages has been offlined and doesn't
6855 * have an ID allocated to it anymore, charge the closest online
6856 * ancestor for the swap instead and transfer the memory+swap charge.
6857 */
6858 swap_memcg = mem_cgroup_id_get_online(memcg);
6859 nr_entries = hpage_nr_pages(page);
6860 /* Get references for the tail pages, too */
6861 if (nr_entries > 1)
6862 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6863 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6864 nr_entries);
6865 VM_BUG_ON_PAGE(oldid, page);
6866 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6867
6868 page->mem_cgroup = NULL;
6869
6870 if (!mem_cgroup_is_root(memcg))
6871 page_counter_uncharge(&memcg->memory, nr_entries);
6872
6873 if (memcg != swap_memcg) {
6874 if (!mem_cgroup_is_root(swap_memcg))
6875 page_counter_charge(&swap_memcg->memsw, nr_entries);
6876 page_counter_uncharge(&memcg->memsw, nr_entries);
6877 }
6878
6879 /*
6880 * Interrupts should be disabled here because the caller holds the
6881 * i_pages lock which is taken with interrupts-off. It is
6882 * important here to have the interrupts disabled because it is the
6883 * only synchronisation we have for updating the per-CPU variables.
6884 */
6885 VM_BUG_ON(!irqs_disabled());
6886 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6887 -nr_entries);
6888 memcg_check_events(memcg, page);
6889
6890 if (!mem_cgroup_is_root(memcg))
6891 css_put_many(&memcg->css, nr_entries);
6892 }
6893
6894 /**
6895 * mem_cgroup_try_charge_swap - try charging swap space for a page
6896 * @page: page being added to swap
6897 * @entry: swap entry to charge
6898 *
6899 * Try to charge @page's memcg for the swap space at @entry.
6900 *
6901 * Returns 0 on success, -ENOMEM on failure.
6902 */
6903 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6904 {
6905 unsigned int nr_pages = hpage_nr_pages(page);
6906 struct page_counter *counter;
6907 struct mem_cgroup *memcg;
6908 unsigned short oldid;
6909
6910 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6911 return 0;
6912
6913 memcg = page->mem_cgroup;
6914
6915 /* Readahead page, never charged */
6916 if (!memcg)
6917 return 0;
6918
6919 if (!entry.val) {
6920 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6921 return 0;
6922 }
6923
6924 memcg = mem_cgroup_id_get_online(memcg);
6925
6926 if (!mem_cgroup_is_root(memcg) &&
6927 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6928 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6929 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6930 mem_cgroup_id_put(memcg);
6931 return -ENOMEM;
6932 }
6933
6934 /* Get references for the tail pages, too */
6935 if (nr_pages > 1)
6936 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6937 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6938 VM_BUG_ON_PAGE(oldid, page);
6939 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6940
6941 return 0;
6942 }
6943
6944 /**
6945 * mem_cgroup_uncharge_swap - uncharge swap space
6946 * @entry: swap entry to uncharge
6947 * @nr_pages: the amount of swap space to uncharge
6948 */
6949 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6950 {
6951 struct mem_cgroup *memcg;
6952 unsigned short id;
6953
6954 if (!do_swap_account)
6955 return;
6956
6957 id = swap_cgroup_record(entry, 0, nr_pages);
6958 rcu_read_lock();
6959 memcg = mem_cgroup_from_id(id);
6960 if (memcg) {
6961 if (!mem_cgroup_is_root(memcg)) {
6962 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6963 page_counter_uncharge(&memcg->swap, nr_pages);
6964 else
6965 page_counter_uncharge(&memcg->memsw, nr_pages);
6966 }
6967 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6968 mem_cgroup_id_put_many(memcg, nr_pages);
6969 }
6970 rcu_read_unlock();
6971 }
6972
6973 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6974 {
6975 long nr_swap_pages = get_nr_swap_pages();
6976
6977 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6978 return nr_swap_pages;
6979 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6980 nr_swap_pages = min_t(long, nr_swap_pages,
6981 READ_ONCE(memcg->swap.max) -
6982 page_counter_read(&memcg->swap));
6983 return nr_swap_pages;
6984 }
6985
6986 bool mem_cgroup_swap_full(struct page *page)
6987 {
6988 struct mem_cgroup *memcg;
6989
6990 VM_BUG_ON_PAGE(!PageLocked(page), page);
6991
6992 if (vm_swap_full())
6993 return true;
6994 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6995 return false;
6996
6997 memcg = page->mem_cgroup;
6998 if (!memcg)
6999 return false;
7000
7001 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7002 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
7003 return true;
7004
7005 return false;
7006 }
7007
7008 /* for remember boot option*/
7009 #ifdef CONFIG_MEMCG_SWAP_ENABLED
7010 static int really_do_swap_account __initdata = 1;
7011 #else
7012 static int really_do_swap_account __initdata;
7013 #endif
7014
7015 static int __init enable_swap_account(char *s)
7016 {
7017 if (!strcmp(s, "1"))
7018 really_do_swap_account = 1;
7019 else if (!strcmp(s, "0"))
7020 really_do_swap_account = 0;
7021 return 1;
7022 }
7023 __setup("swapaccount=", enable_swap_account);
7024
7025 static u64 swap_current_read(struct cgroup_subsys_state *css,
7026 struct cftype *cft)
7027 {
7028 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7029
7030 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7031 }
7032
7033 static int swap_max_show(struct seq_file *m, void *v)
7034 {
7035 return seq_puts_memcg_tunable(m,
7036 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7037 }
7038
7039 static ssize_t swap_max_write(struct kernfs_open_file *of,
7040 char *buf, size_t nbytes, loff_t off)
7041 {
7042 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7043 unsigned long max;
7044 int err;
7045
7046 buf = strstrip(buf);
7047 err = page_counter_memparse(buf, "max", &max);
7048 if (err)
7049 return err;
7050
7051 xchg(&memcg->swap.max, max);
7052
7053 return nbytes;
7054 }
7055
7056 static int swap_events_show(struct seq_file *m, void *v)
7057 {
7058 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7059
7060 seq_printf(m, "max %lu\n",
7061 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7062 seq_printf(m, "fail %lu\n",
7063 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7064
7065 return 0;
7066 }
7067
7068 static struct cftype swap_files[] = {
7069 {
7070 .name = "swap.current",
7071 .flags = CFTYPE_NOT_ON_ROOT,
7072 .read_u64 = swap_current_read,
7073 },
7074 {
7075 .name = "swap.max",
7076 .flags = CFTYPE_NOT_ON_ROOT,
7077 .seq_show = swap_max_show,
7078 .write = swap_max_write,
7079 },
7080 {
7081 .name = "swap.events",
7082 .flags = CFTYPE_NOT_ON_ROOT,
7083 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7084 .seq_show = swap_events_show,
7085 },
7086 { } /* terminate */
7087 };
7088
7089 static struct cftype memsw_cgroup_files[] = {
7090 {
7091 .name = "memsw.usage_in_bytes",
7092 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7093 .read_u64 = mem_cgroup_read_u64,
7094 },
7095 {
7096 .name = "memsw.max_usage_in_bytes",
7097 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7098 .write = mem_cgroup_reset,
7099 .read_u64 = mem_cgroup_read_u64,
7100 },
7101 {
7102 .name = "memsw.limit_in_bytes",
7103 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7104 .write = mem_cgroup_write,
7105 .read_u64 = mem_cgroup_read_u64,
7106 },
7107 {
7108 .name = "memsw.failcnt",
7109 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7110 .write = mem_cgroup_reset,
7111 .read_u64 = mem_cgroup_read_u64,
7112 },
7113 { }, /* terminate */
7114 };
7115
7116 static int __init mem_cgroup_swap_init(void)
7117 {
7118 if (!mem_cgroup_disabled() && really_do_swap_account) {
7119 do_swap_account = 1;
7120 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7121 swap_files));
7122 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7123 memsw_cgroup_files));
7124 }
7125 return 0;
7126 }
7127 subsys_initcall(mem_cgroup_swap_init);
7128
7129 #endif /* CONFIG_MEMCG_SWAP */