]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memcontrol.c
Merge tag 'nfc-next-4.4-2' of git://git.kernel.org/pub/scm/linux/kernel/git/sameo...
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include <net/tcp_memcontrol.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 #define MEM_CGROUP_RECLAIM_RETRIES 5
79 static struct mem_cgroup *root_mem_cgroup __read_mostly;
80 struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
81
82 /* Whether the swap controller is active */
83 #ifdef CONFIG_MEMCG_SWAP
84 int do_swap_account __read_mostly;
85 #else
86 #define do_swap_account 0
87 #endif
88
89 static const char * const mem_cgroup_stat_names[] = {
90 "cache",
91 "rss",
92 "rss_huge",
93 "mapped_file",
94 "dirty",
95 "writeback",
96 "swap",
97 };
98
99 static const char * const mem_cgroup_events_names[] = {
100 "pgpgin",
101 "pgpgout",
102 "pgfault",
103 "pgmajfault",
104 };
105
106 static const char * const mem_cgroup_lru_names[] = {
107 "inactive_anon",
108 "active_anon",
109 "inactive_file",
110 "active_file",
111 "unevictable",
112 };
113
114 #define THRESHOLDS_EVENTS_TARGET 128
115 #define SOFTLIMIT_EVENTS_TARGET 1024
116 #define NUMAINFO_EVENTS_TARGET 1024
117
118 /*
119 * Cgroups above their limits are maintained in a RB-Tree, independent of
120 * their hierarchy representation
121 */
122
123 struct mem_cgroup_tree_per_zone {
124 struct rb_root rb_root;
125 spinlock_t lock;
126 };
127
128 struct mem_cgroup_tree_per_node {
129 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
130 };
131
132 struct mem_cgroup_tree {
133 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
134 };
135
136 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
137
138 /* for OOM */
139 struct mem_cgroup_eventfd_list {
140 struct list_head list;
141 struct eventfd_ctx *eventfd;
142 };
143
144 /*
145 * cgroup_event represents events which userspace want to receive.
146 */
147 struct mem_cgroup_event {
148 /*
149 * memcg which the event belongs to.
150 */
151 struct mem_cgroup *memcg;
152 /*
153 * eventfd to signal userspace about the event.
154 */
155 struct eventfd_ctx *eventfd;
156 /*
157 * Each of these stored in a list by the cgroup.
158 */
159 struct list_head list;
160 /*
161 * register_event() callback will be used to add new userspace
162 * waiter for changes related to this event. Use eventfd_signal()
163 * on eventfd to send notification to userspace.
164 */
165 int (*register_event)(struct mem_cgroup *memcg,
166 struct eventfd_ctx *eventfd, const char *args);
167 /*
168 * unregister_event() callback will be called when userspace closes
169 * the eventfd or on cgroup removing. This callback must be set,
170 * if you want provide notification functionality.
171 */
172 void (*unregister_event)(struct mem_cgroup *memcg,
173 struct eventfd_ctx *eventfd);
174 /*
175 * All fields below needed to unregister event when
176 * userspace closes eventfd.
177 */
178 poll_table pt;
179 wait_queue_head_t *wqh;
180 wait_queue_t wait;
181 struct work_struct remove;
182 };
183
184 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
185 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
186
187 /* Stuffs for move charges at task migration. */
188 /*
189 * Types of charges to be moved.
190 */
191 #define MOVE_ANON 0x1U
192 #define MOVE_FILE 0x2U
193 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
194
195 /* "mc" and its members are protected by cgroup_mutex */
196 static struct move_charge_struct {
197 spinlock_t lock; /* for from, to */
198 struct mem_cgroup *from;
199 struct mem_cgroup *to;
200 unsigned long flags;
201 unsigned long precharge;
202 unsigned long moved_charge;
203 unsigned long moved_swap;
204 struct task_struct *moving_task; /* a task moving charges */
205 wait_queue_head_t waitq; /* a waitq for other context */
206 } mc = {
207 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
208 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
209 };
210
211 /*
212 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
213 * limit reclaim to prevent infinite loops, if they ever occur.
214 */
215 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
216 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
217
218 enum charge_type {
219 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
220 MEM_CGROUP_CHARGE_TYPE_ANON,
221 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
222 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
223 NR_CHARGE_TYPE,
224 };
225
226 /* for encoding cft->private value on file */
227 enum res_type {
228 _MEM,
229 _MEMSWAP,
230 _OOM_TYPE,
231 _KMEM,
232 };
233
234 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
235 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
236 #define MEMFILE_ATTR(val) ((val) & 0xffff)
237 /* Used for OOM nofiier */
238 #define OOM_CONTROL (0)
239
240 /*
241 * The memcg_create_mutex will be held whenever a new cgroup is created.
242 * As a consequence, any change that needs to protect against new child cgroups
243 * appearing has to hold it as well.
244 */
245 static DEFINE_MUTEX(memcg_create_mutex);
246
247 /* Some nice accessors for the vmpressure. */
248 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
249 {
250 if (!memcg)
251 memcg = root_mem_cgroup;
252 return &memcg->vmpressure;
253 }
254
255 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
256 {
257 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
258 }
259
260 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
261 {
262 return (memcg == root_mem_cgroup);
263 }
264
265 /*
266 * We restrict the id in the range of [1, 65535], so it can fit into
267 * an unsigned short.
268 */
269 #define MEM_CGROUP_ID_MAX USHRT_MAX
270
271 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
272 {
273 return memcg->css.id;
274 }
275
276 /*
277 * A helper function to get mem_cgroup from ID. must be called under
278 * rcu_read_lock(). The caller is responsible for calling
279 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
280 * refcnt from swap can be called against removed memcg.)
281 */
282 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
283 {
284 struct cgroup_subsys_state *css;
285
286 css = css_from_id(id, &memory_cgrp_subsys);
287 return mem_cgroup_from_css(css);
288 }
289
290 /* Writing them here to avoid exposing memcg's inner layout */
291 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
292
293 void sock_update_memcg(struct sock *sk)
294 {
295 if (mem_cgroup_sockets_enabled) {
296 struct mem_cgroup *memcg;
297 struct cg_proto *cg_proto;
298
299 BUG_ON(!sk->sk_prot->proto_cgroup);
300
301 /* Socket cloning can throw us here with sk_cgrp already
302 * filled. It won't however, necessarily happen from
303 * process context. So the test for root memcg given
304 * the current task's memcg won't help us in this case.
305 *
306 * Respecting the original socket's memcg is a better
307 * decision in this case.
308 */
309 if (sk->sk_cgrp) {
310 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
311 css_get(&sk->sk_cgrp->memcg->css);
312 return;
313 }
314
315 rcu_read_lock();
316 memcg = mem_cgroup_from_task(current);
317 cg_proto = sk->sk_prot->proto_cgroup(memcg);
318 if (cg_proto && test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags) &&
319 css_tryget_online(&memcg->css)) {
320 sk->sk_cgrp = cg_proto;
321 }
322 rcu_read_unlock();
323 }
324 }
325 EXPORT_SYMBOL(sock_update_memcg);
326
327 void sock_release_memcg(struct sock *sk)
328 {
329 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
330 struct mem_cgroup *memcg;
331 WARN_ON(!sk->sk_cgrp->memcg);
332 memcg = sk->sk_cgrp->memcg;
333 css_put(&sk->sk_cgrp->memcg->css);
334 }
335 }
336
337 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
338 {
339 if (!memcg || mem_cgroup_is_root(memcg))
340 return NULL;
341
342 return &memcg->tcp_mem;
343 }
344 EXPORT_SYMBOL(tcp_proto_cgroup);
345
346 #endif
347
348 #ifdef CONFIG_MEMCG_KMEM
349 /*
350 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
351 * The main reason for not using cgroup id for this:
352 * this works better in sparse environments, where we have a lot of memcgs,
353 * but only a few kmem-limited. Or also, if we have, for instance, 200
354 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
355 * 200 entry array for that.
356 *
357 * The current size of the caches array is stored in memcg_nr_cache_ids. It
358 * will double each time we have to increase it.
359 */
360 static DEFINE_IDA(memcg_cache_ida);
361 int memcg_nr_cache_ids;
362
363 /* Protects memcg_nr_cache_ids */
364 static DECLARE_RWSEM(memcg_cache_ids_sem);
365
366 void memcg_get_cache_ids(void)
367 {
368 down_read(&memcg_cache_ids_sem);
369 }
370
371 void memcg_put_cache_ids(void)
372 {
373 up_read(&memcg_cache_ids_sem);
374 }
375
376 /*
377 * MIN_SIZE is different than 1, because we would like to avoid going through
378 * the alloc/free process all the time. In a small machine, 4 kmem-limited
379 * cgroups is a reasonable guess. In the future, it could be a parameter or
380 * tunable, but that is strictly not necessary.
381 *
382 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
383 * this constant directly from cgroup, but it is understandable that this is
384 * better kept as an internal representation in cgroup.c. In any case, the
385 * cgrp_id space is not getting any smaller, and we don't have to necessarily
386 * increase ours as well if it increases.
387 */
388 #define MEMCG_CACHES_MIN_SIZE 4
389 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
390
391 /*
392 * A lot of the calls to the cache allocation functions are expected to be
393 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
394 * conditional to this static branch, we'll have to allow modules that does
395 * kmem_cache_alloc and the such to see this symbol as well
396 */
397 struct static_key memcg_kmem_enabled_key;
398 EXPORT_SYMBOL(memcg_kmem_enabled_key);
399
400 #endif /* CONFIG_MEMCG_KMEM */
401
402 static struct mem_cgroup_per_zone *
403 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
404 {
405 int nid = zone_to_nid(zone);
406 int zid = zone_idx(zone);
407
408 return &memcg->nodeinfo[nid]->zoneinfo[zid];
409 }
410
411 /**
412 * mem_cgroup_css_from_page - css of the memcg associated with a page
413 * @page: page of interest
414 *
415 * If memcg is bound to the default hierarchy, css of the memcg associated
416 * with @page is returned. The returned css remains associated with @page
417 * until it is released.
418 *
419 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
420 * is returned.
421 *
422 * XXX: The above description of behavior on the default hierarchy isn't
423 * strictly true yet as replace_page_cache_page() can modify the
424 * association before @page is released even on the default hierarchy;
425 * however, the current and planned usages don't mix the the two functions
426 * and replace_page_cache_page() will soon be updated to make the invariant
427 * actually true.
428 */
429 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
430 {
431 struct mem_cgroup *memcg;
432
433 rcu_read_lock();
434
435 memcg = page->mem_cgroup;
436
437 if (!memcg || !cgroup_on_dfl(memcg->css.cgroup))
438 memcg = root_mem_cgroup;
439
440 rcu_read_unlock();
441 return &memcg->css;
442 }
443
444 /**
445 * page_cgroup_ino - return inode number of the memcg a page is charged to
446 * @page: the page
447 *
448 * Look up the closest online ancestor of the memory cgroup @page is charged to
449 * and return its inode number or 0 if @page is not charged to any cgroup. It
450 * is safe to call this function without holding a reference to @page.
451 *
452 * Note, this function is inherently racy, because there is nothing to prevent
453 * the cgroup inode from getting torn down and potentially reallocated a moment
454 * after page_cgroup_ino() returns, so it only should be used by callers that
455 * do not care (such as procfs interfaces).
456 */
457 ino_t page_cgroup_ino(struct page *page)
458 {
459 struct mem_cgroup *memcg;
460 unsigned long ino = 0;
461
462 rcu_read_lock();
463 memcg = READ_ONCE(page->mem_cgroup);
464 while (memcg && !(memcg->css.flags & CSS_ONLINE))
465 memcg = parent_mem_cgroup(memcg);
466 if (memcg)
467 ino = cgroup_ino(memcg->css.cgroup);
468 rcu_read_unlock();
469 return ino;
470 }
471
472 static struct mem_cgroup_per_zone *
473 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
474 {
475 int nid = page_to_nid(page);
476 int zid = page_zonenum(page);
477
478 return &memcg->nodeinfo[nid]->zoneinfo[zid];
479 }
480
481 static struct mem_cgroup_tree_per_zone *
482 soft_limit_tree_node_zone(int nid, int zid)
483 {
484 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
485 }
486
487 static struct mem_cgroup_tree_per_zone *
488 soft_limit_tree_from_page(struct page *page)
489 {
490 int nid = page_to_nid(page);
491 int zid = page_zonenum(page);
492
493 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
494 }
495
496 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
497 struct mem_cgroup_tree_per_zone *mctz,
498 unsigned long new_usage_in_excess)
499 {
500 struct rb_node **p = &mctz->rb_root.rb_node;
501 struct rb_node *parent = NULL;
502 struct mem_cgroup_per_zone *mz_node;
503
504 if (mz->on_tree)
505 return;
506
507 mz->usage_in_excess = new_usage_in_excess;
508 if (!mz->usage_in_excess)
509 return;
510 while (*p) {
511 parent = *p;
512 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
513 tree_node);
514 if (mz->usage_in_excess < mz_node->usage_in_excess)
515 p = &(*p)->rb_left;
516 /*
517 * We can't avoid mem cgroups that are over their soft
518 * limit by the same amount
519 */
520 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
521 p = &(*p)->rb_right;
522 }
523 rb_link_node(&mz->tree_node, parent, p);
524 rb_insert_color(&mz->tree_node, &mctz->rb_root);
525 mz->on_tree = true;
526 }
527
528 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
529 struct mem_cgroup_tree_per_zone *mctz)
530 {
531 if (!mz->on_tree)
532 return;
533 rb_erase(&mz->tree_node, &mctz->rb_root);
534 mz->on_tree = false;
535 }
536
537 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
538 struct mem_cgroup_tree_per_zone *mctz)
539 {
540 unsigned long flags;
541
542 spin_lock_irqsave(&mctz->lock, flags);
543 __mem_cgroup_remove_exceeded(mz, mctz);
544 spin_unlock_irqrestore(&mctz->lock, flags);
545 }
546
547 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
548 {
549 unsigned long nr_pages = page_counter_read(&memcg->memory);
550 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
551 unsigned long excess = 0;
552
553 if (nr_pages > soft_limit)
554 excess = nr_pages - soft_limit;
555
556 return excess;
557 }
558
559 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
560 {
561 unsigned long excess;
562 struct mem_cgroup_per_zone *mz;
563 struct mem_cgroup_tree_per_zone *mctz;
564
565 mctz = soft_limit_tree_from_page(page);
566 /*
567 * Necessary to update all ancestors when hierarchy is used.
568 * because their event counter is not touched.
569 */
570 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
571 mz = mem_cgroup_page_zoneinfo(memcg, page);
572 excess = soft_limit_excess(memcg);
573 /*
574 * We have to update the tree if mz is on RB-tree or
575 * mem is over its softlimit.
576 */
577 if (excess || mz->on_tree) {
578 unsigned long flags;
579
580 spin_lock_irqsave(&mctz->lock, flags);
581 /* if on-tree, remove it */
582 if (mz->on_tree)
583 __mem_cgroup_remove_exceeded(mz, mctz);
584 /*
585 * Insert again. mz->usage_in_excess will be updated.
586 * If excess is 0, no tree ops.
587 */
588 __mem_cgroup_insert_exceeded(mz, mctz, excess);
589 spin_unlock_irqrestore(&mctz->lock, flags);
590 }
591 }
592 }
593
594 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
595 {
596 struct mem_cgroup_tree_per_zone *mctz;
597 struct mem_cgroup_per_zone *mz;
598 int nid, zid;
599
600 for_each_node(nid) {
601 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
602 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
603 mctz = soft_limit_tree_node_zone(nid, zid);
604 mem_cgroup_remove_exceeded(mz, mctz);
605 }
606 }
607 }
608
609 static struct mem_cgroup_per_zone *
610 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
611 {
612 struct rb_node *rightmost = NULL;
613 struct mem_cgroup_per_zone *mz;
614
615 retry:
616 mz = NULL;
617 rightmost = rb_last(&mctz->rb_root);
618 if (!rightmost)
619 goto done; /* Nothing to reclaim from */
620
621 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
622 /*
623 * Remove the node now but someone else can add it back,
624 * we will to add it back at the end of reclaim to its correct
625 * position in the tree.
626 */
627 __mem_cgroup_remove_exceeded(mz, mctz);
628 if (!soft_limit_excess(mz->memcg) ||
629 !css_tryget_online(&mz->memcg->css))
630 goto retry;
631 done:
632 return mz;
633 }
634
635 static struct mem_cgroup_per_zone *
636 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
637 {
638 struct mem_cgroup_per_zone *mz;
639
640 spin_lock_irq(&mctz->lock);
641 mz = __mem_cgroup_largest_soft_limit_node(mctz);
642 spin_unlock_irq(&mctz->lock);
643 return mz;
644 }
645
646 /*
647 * Return page count for single (non recursive) @memcg.
648 *
649 * Implementation Note: reading percpu statistics for memcg.
650 *
651 * Both of vmstat[] and percpu_counter has threshold and do periodic
652 * synchronization to implement "quick" read. There are trade-off between
653 * reading cost and precision of value. Then, we may have a chance to implement
654 * a periodic synchronization of counter in memcg's counter.
655 *
656 * But this _read() function is used for user interface now. The user accounts
657 * memory usage by memory cgroup and he _always_ requires exact value because
658 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
659 * have to visit all online cpus and make sum. So, for now, unnecessary
660 * synchronization is not implemented. (just implemented for cpu hotplug)
661 *
662 * If there are kernel internal actions which can make use of some not-exact
663 * value, and reading all cpu value can be performance bottleneck in some
664 * common workload, threshold and synchronization as vmstat[] should be
665 * implemented.
666 */
667 static unsigned long
668 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
669 {
670 long val = 0;
671 int cpu;
672
673 /* Per-cpu values can be negative, use a signed accumulator */
674 for_each_possible_cpu(cpu)
675 val += per_cpu(memcg->stat->count[idx], cpu);
676 /*
677 * Summing races with updates, so val may be negative. Avoid exposing
678 * transient negative values.
679 */
680 if (val < 0)
681 val = 0;
682 return val;
683 }
684
685 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
686 enum mem_cgroup_events_index idx)
687 {
688 unsigned long val = 0;
689 int cpu;
690
691 for_each_possible_cpu(cpu)
692 val += per_cpu(memcg->stat->events[idx], cpu);
693 return val;
694 }
695
696 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
697 struct page *page,
698 int nr_pages)
699 {
700 /*
701 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
702 * counted as CACHE even if it's on ANON LRU.
703 */
704 if (PageAnon(page))
705 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
706 nr_pages);
707 else
708 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
709 nr_pages);
710
711 if (PageTransHuge(page))
712 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
713 nr_pages);
714
715 /* pagein of a big page is an event. So, ignore page size */
716 if (nr_pages > 0)
717 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
718 else {
719 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
720 nr_pages = -nr_pages; /* for event */
721 }
722
723 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
724 }
725
726 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
727 int nid,
728 unsigned int lru_mask)
729 {
730 unsigned long nr = 0;
731 int zid;
732
733 VM_BUG_ON((unsigned)nid >= nr_node_ids);
734
735 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
736 struct mem_cgroup_per_zone *mz;
737 enum lru_list lru;
738
739 for_each_lru(lru) {
740 if (!(BIT(lru) & lru_mask))
741 continue;
742 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
743 nr += mz->lru_size[lru];
744 }
745 }
746 return nr;
747 }
748
749 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
750 unsigned int lru_mask)
751 {
752 unsigned long nr = 0;
753 int nid;
754
755 for_each_node_state(nid, N_MEMORY)
756 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
757 return nr;
758 }
759
760 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
761 enum mem_cgroup_events_target target)
762 {
763 unsigned long val, next;
764
765 val = __this_cpu_read(memcg->stat->nr_page_events);
766 next = __this_cpu_read(memcg->stat->targets[target]);
767 /* from time_after() in jiffies.h */
768 if ((long)next - (long)val < 0) {
769 switch (target) {
770 case MEM_CGROUP_TARGET_THRESH:
771 next = val + THRESHOLDS_EVENTS_TARGET;
772 break;
773 case MEM_CGROUP_TARGET_SOFTLIMIT:
774 next = val + SOFTLIMIT_EVENTS_TARGET;
775 break;
776 case MEM_CGROUP_TARGET_NUMAINFO:
777 next = val + NUMAINFO_EVENTS_TARGET;
778 break;
779 default:
780 break;
781 }
782 __this_cpu_write(memcg->stat->targets[target], next);
783 return true;
784 }
785 return false;
786 }
787
788 /*
789 * Check events in order.
790 *
791 */
792 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
793 {
794 /* threshold event is triggered in finer grain than soft limit */
795 if (unlikely(mem_cgroup_event_ratelimit(memcg,
796 MEM_CGROUP_TARGET_THRESH))) {
797 bool do_softlimit;
798 bool do_numainfo __maybe_unused;
799
800 do_softlimit = mem_cgroup_event_ratelimit(memcg,
801 MEM_CGROUP_TARGET_SOFTLIMIT);
802 #if MAX_NUMNODES > 1
803 do_numainfo = mem_cgroup_event_ratelimit(memcg,
804 MEM_CGROUP_TARGET_NUMAINFO);
805 #endif
806 mem_cgroup_threshold(memcg);
807 if (unlikely(do_softlimit))
808 mem_cgroup_update_tree(memcg, page);
809 #if MAX_NUMNODES > 1
810 if (unlikely(do_numainfo))
811 atomic_inc(&memcg->numainfo_events);
812 #endif
813 }
814 }
815
816 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
817 {
818 /*
819 * mm_update_next_owner() may clear mm->owner to NULL
820 * if it races with swapoff, page migration, etc.
821 * So this can be called with p == NULL.
822 */
823 if (unlikely(!p))
824 return NULL;
825
826 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
827 }
828 EXPORT_SYMBOL(mem_cgroup_from_task);
829
830 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
831 {
832 struct mem_cgroup *memcg = NULL;
833
834 rcu_read_lock();
835 do {
836 /*
837 * Page cache insertions can happen withou an
838 * actual mm context, e.g. during disk probing
839 * on boot, loopback IO, acct() writes etc.
840 */
841 if (unlikely(!mm))
842 memcg = root_mem_cgroup;
843 else {
844 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
845 if (unlikely(!memcg))
846 memcg = root_mem_cgroup;
847 }
848 } while (!css_tryget_online(&memcg->css));
849 rcu_read_unlock();
850 return memcg;
851 }
852
853 /**
854 * mem_cgroup_iter - iterate over memory cgroup hierarchy
855 * @root: hierarchy root
856 * @prev: previously returned memcg, NULL on first invocation
857 * @reclaim: cookie for shared reclaim walks, NULL for full walks
858 *
859 * Returns references to children of the hierarchy below @root, or
860 * @root itself, or %NULL after a full round-trip.
861 *
862 * Caller must pass the return value in @prev on subsequent
863 * invocations for reference counting, or use mem_cgroup_iter_break()
864 * to cancel a hierarchy walk before the round-trip is complete.
865 *
866 * Reclaimers can specify a zone and a priority level in @reclaim to
867 * divide up the memcgs in the hierarchy among all concurrent
868 * reclaimers operating on the same zone and priority.
869 */
870 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
871 struct mem_cgroup *prev,
872 struct mem_cgroup_reclaim_cookie *reclaim)
873 {
874 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
875 struct cgroup_subsys_state *css = NULL;
876 struct mem_cgroup *memcg = NULL;
877 struct mem_cgroup *pos = NULL;
878
879 if (mem_cgroup_disabled())
880 return NULL;
881
882 if (!root)
883 root = root_mem_cgroup;
884
885 if (prev && !reclaim)
886 pos = prev;
887
888 if (!root->use_hierarchy && root != root_mem_cgroup) {
889 if (prev)
890 goto out;
891 return root;
892 }
893
894 rcu_read_lock();
895
896 if (reclaim) {
897 struct mem_cgroup_per_zone *mz;
898
899 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
900 iter = &mz->iter[reclaim->priority];
901
902 if (prev && reclaim->generation != iter->generation)
903 goto out_unlock;
904
905 do {
906 pos = READ_ONCE(iter->position);
907 /*
908 * A racing update may change the position and
909 * put the last reference, hence css_tryget(),
910 * or retry to see the updated position.
911 */
912 } while (pos && !css_tryget(&pos->css));
913 }
914
915 if (pos)
916 css = &pos->css;
917
918 for (;;) {
919 css = css_next_descendant_pre(css, &root->css);
920 if (!css) {
921 /*
922 * Reclaimers share the hierarchy walk, and a
923 * new one might jump in right at the end of
924 * the hierarchy - make sure they see at least
925 * one group and restart from the beginning.
926 */
927 if (!prev)
928 continue;
929 break;
930 }
931
932 /*
933 * Verify the css and acquire a reference. The root
934 * is provided by the caller, so we know it's alive
935 * and kicking, and don't take an extra reference.
936 */
937 memcg = mem_cgroup_from_css(css);
938
939 if (css == &root->css)
940 break;
941
942 if (css_tryget(css)) {
943 /*
944 * Make sure the memcg is initialized:
945 * mem_cgroup_css_online() orders the the
946 * initialization against setting the flag.
947 */
948 if (smp_load_acquire(&memcg->initialized))
949 break;
950
951 css_put(css);
952 }
953
954 memcg = NULL;
955 }
956
957 if (reclaim) {
958 if (cmpxchg(&iter->position, pos, memcg) == pos) {
959 if (memcg)
960 css_get(&memcg->css);
961 if (pos)
962 css_put(&pos->css);
963 }
964
965 /*
966 * pairs with css_tryget when dereferencing iter->position
967 * above.
968 */
969 if (pos)
970 css_put(&pos->css);
971
972 if (!memcg)
973 iter->generation++;
974 else if (!prev)
975 reclaim->generation = iter->generation;
976 }
977
978 out_unlock:
979 rcu_read_unlock();
980 out:
981 if (prev && prev != root)
982 css_put(&prev->css);
983
984 return memcg;
985 }
986
987 /**
988 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
989 * @root: hierarchy root
990 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
991 */
992 void mem_cgroup_iter_break(struct mem_cgroup *root,
993 struct mem_cgroup *prev)
994 {
995 if (!root)
996 root = root_mem_cgroup;
997 if (prev && prev != root)
998 css_put(&prev->css);
999 }
1000
1001 /*
1002 * Iteration constructs for visiting all cgroups (under a tree). If
1003 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1004 * be used for reference counting.
1005 */
1006 #define for_each_mem_cgroup_tree(iter, root) \
1007 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1008 iter != NULL; \
1009 iter = mem_cgroup_iter(root, iter, NULL))
1010
1011 #define for_each_mem_cgroup(iter) \
1012 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1013 iter != NULL; \
1014 iter = mem_cgroup_iter(NULL, iter, NULL))
1015
1016 /**
1017 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1018 * @zone: zone of the wanted lruvec
1019 * @memcg: memcg of the wanted lruvec
1020 *
1021 * Returns the lru list vector holding pages for the given @zone and
1022 * @mem. This can be the global zone lruvec, if the memory controller
1023 * is disabled.
1024 */
1025 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1026 struct mem_cgroup *memcg)
1027 {
1028 struct mem_cgroup_per_zone *mz;
1029 struct lruvec *lruvec;
1030
1031 if (mem_cgroup_disabled()) {
1032 lruvec = &zone->lruvec;
1033 goto out;
1034 }
1035
1036 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1037 lruvec = &mz->lruvec;
1038 out:
1039 /*
1040 * Since a node can be onlined after the mem_cgroup was created,
1041 * we have to be prepared to initialize lruvec->zone here;
1042 * and if offlined then reonlined, we need to reinitialize it.
1043 */
1044 if (unlikely(lruvec->zone != zone))
1045 lruvec->zone = zone;
1046 return lruvec;
1047 }
1048
1049 /**
1050 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1051 * @page: the page
1052 * @zone: zone of the page
1053 *
1054 * This function is only safe when following the LRU page isolation
1055 * and putback protocol: the LRU lock must be held, and the page must
1056 * either be PageLRU() or the caller must have isolated/allocated it.
1057 */
1058 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1059 {
1060 struct mem_cgroup_per_zone *mz;
1061 struct mem_cgroup *memcg;
1062 struct lruvec *lruvec;
1063
1064 if (mem_cgroup_disabled()) {
1065 lruvec = &zone->lruvec;
1066 goto out;
1067 }
1068
1069 memcg = page->mem_cgroup;
1070 /*
1071 * Swapcache readahead pages are added to the LRU - and
1072 * possibly migrated - before they are charged.
1073 */
1074 if (!memcg)
1075 memcg = root_mem_cgroup;
1076
1077 mz = mem_cgroup_page_zoneinfo(memcg, page);
1078 lruvec = &mz->lruvec;
1079 out:
1080 /*
1081 * Since a node can be onlined after the mem_cgroup was created,
1082 * we have to be prepared to initialize lruvec->zone here;
1083 * and if offlined then reonlined, we need to reinitialize it.
1084 */
1085 if (unlikely(lruvec->zone != zone))
1086 lruvec->zone = zone;
1087 return lruvec;
1088 }
1089
1090 /**
1091 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1092 * @lruvec: mem_cgroup per zone lru vector
1093 * @lru: index of lru list the page is sitting on
1094 * @nr_pages: positive when adding or negative when removing
1095 *
1096 * This function must be called when a page is added to or removed from an
1097 * lru list.
1098 */
1099 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1100 int nr_pages)
1101 {
1102 struct mem_cgroup_per_zone *mz;
1103 unsigned long *lru_size;
1104
1105 if (mem_cgroup_disabled())
1106 return;
1107
1108 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1109 lru_size = mz->lru_size + lru;
1110 *lru_size += nr_pages;
1111 VM_BUG_ON((long)(*lru_size) < 0);
1112 }
1113
1114 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1115 {
1116 struct mem_cgroup *task_memcg;
1117 struct task_struct *p;
1118 bool ret;
1119
1120 p = find_lock_task_mm(task);
1121 if (p) {
1122 task_memcg = get_mem_cgroup_from_mm(p->mm);
1123 task_unlock(p);
1124 } else {
1125 /*
1126 * All threads may have already detached their mm's, but the oom
1127 * killer still needs to detect if they have already been oom
1128 * killed to prevent needlessly killing additional tasks.
1129 */
1130 rcu_read_lock();
1131 task_memcg = mem_cgroup_from_task(task);
1132 css_get(&task_memcg->css);
1133 rcu_read_unlock();
1134 }
1135 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1136 css_put(&task_memcg->css);
1137 return ret;
1138 }
1139
1140 #define mem_cgroup_from_counter(counter, member) \
1141 container_of(counter, struct mem_cgroup, member)
1142
1143 /**
1144 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1145 * @memcg: the memory cgroup
1146 *
1147 * Returns the maximum amount of memory @mem can be charged with, in
1148 * pages.
1149 */
1150 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1151 {
1152 unsigned long margin = 0;
1153 unsigned long count;
1154 unsigned long limit;
1155
1156 count = page_counter_read(&memcg->memory);
1157 limit = READ_ONCE(memcg->memory.limit);
1158 if (count < limit)
1159 margin = limit - count;
1160
1161 if (do_swap_account) {
1162 count = page_counter_read(&memcg->memsw);
1163 limit = READ_ONCE(memcg->memsw.limit);
1164 if (count <= limit)
1165 margin = min(margin, limit - count);
1166 }
1167
1168 return margin;
1169 }
1170
1171 /*
1172 * A routine for checking "mem" is under move_account() or not.
1173 *
1174 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1175 * moving cgroups. This is for waiting at high-memory pressure
1176 * caused by "move".
1177 */
1178 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1179 {
1180 struct mem_cgroup *from;
1181 struct mem_cgroup *to;
1182 bool ret = false;
1183 /*
1184 * Unlike task_move routines, we access mc.to, mc.from not under
1185 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1186 */
1187 spin_lock(&mc.lock);
1188 from = mc.from;
1189 to = mc.to;
1190 if (!from)
1191 goto unlock;
1192
1193 ret = mem_cgroup_is_descendant(from, memcg) ||
1194 mem_cgroup_is_descendant(to, memcg);
1195 unlock:
1196 spin_unlock(&mc.lock);
1197 return ret;
1198 }
1199
1200 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1201 {
1202 if (mc.moving_task && current != mc.moving_task) {
1203 if (mem_cgroup_under_move(memcg)) {
1204 DEFINE_WAIT(wait);
1205 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1206 /* moving charge context might have finished. */
1207 if (mc.moving_task)
1208 schedule();
1209 finish_wait(&mc.waitq, &wait);
1210 return true;
1211 }
1212 }
1213 return false;
1214 }
1215
1216 #define K(x) ((x) << (PAGE_SHIFT-10))
1217 /**
1218 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1219 * @memcg: The memory cgroup that went over limit
1220 * @p: Task that is going to be killed
1221 *
1222 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1223 * enabled
1224 */
1225 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1226 {
1227 /* oom_info_lock ensures that parallel ooms do not interleave */
1228 static DEFINE_MUTEX(oom_info_lock);
1229 struct mem_cgroup *iter;
1230 unsigned int i;
1231
1232 mutex_lock(&oom_info_lock);
1233 rcu_read_lock();
1234
1235 if (p) {
1236 pr_info("Task in ");
1237 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1238 pr_cont(" killed as a result of limit of ");
1239 } else {
1240 pr_info("Memory limit reached of cgroup ");
1241 }
1242
1243 pr_cont_cgroup_path(memcg->css.cgroup);
1244 pr_cont("\n");
1245
1246 rcu_read_unlock();
1247
1248 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1249 K((u64)page_counter_read(&memcg->memory)),
1250 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1251 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1252 K((u64)page_counter_read(&memcg->memsw)),
1253 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1254 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1255 K((u64)page_counter_read(&memcg->kmem)),
1256 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1257
1258 for_each_mem_cgroup_tree(iter, memcg) {
1259 pr_info("Memory cgroup stats for ");
1260 pr_cont_cgroup_path(iter->css.cgroup);
1261 pr_cont(":");
1262
1263 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1264 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1265 continue;
1266 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1267 K(mem_cgroup_read_stat(iter, i)));
1268 }
1269
1270 for (i = 0; i < NR_LRU_LISTS; i++)
1271 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1272 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1273
1274 pr_cont("\n");
1275 }
1276 mutex_unlock(&oom_info_lock);
1277 }
1278
1279 /*
1280 * This function returns the number of memcg under hierarchy tree. Returns
1281 * 1(self count) if no children.
1282 */
1283 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1284 {
1285 int num = 0;
1286 struct mem_cgroup *iter;
1287
1288 for_each_mem_cgroup_tree(iter, memcg)
1289 num++;
1290 return num;
1291 }
1292
1293 /*
1294 * Return the memory (and swap, if configured) limit for a memcg.
1295 */
1296 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1297 {
1298 unsigned long limit;
1299
1300 limit = memcg->memory.limit;
1301 if (mem_cgroup_swappiness(memcg)) {
1302 unsigned long memsw_limit;
1303
1304 memsw_limit = memcg->memsw.limit;
1305 limit = min(limit + total_swap_pages, memsw_limit);
1306 }
1307 return limit;
1308 }
1309
1310 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1311 int order)
1312 {
1313 struct oom_control oc = {
1314 .zonelist = NULL,
1315 .nodemask = NULL,
1316 .gfp_mask = gfp_mask,
1317 .order = order,
1318 };
1319 struct mem_cgroup *iter;
1320 unsigned long chosen_points = 0;
1321 unsigned long totalpages;
1322 unsigned int points = 0;
1323 struct task_struct *chosen = NULL;
1324
1325 mutex_lock(&oom_lock);
1326
1327 /*
1328 * If current has a pending SIGKILL or is exiting, then automatically
1329 * select it. The goal is to allow it to allocate so that it may
1330 * quickly exit and free its memory.
1331 */
1332 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1333 mark_oom_victim(current);
1334 goto unlock;
1335 }
1336
1337 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1338 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1339 for_each_mem_cgroup_tree(iter, memcg) {
1340 struct css_task_iter it;
1341 struct task_struct *task;
1342
1343 css_task_iter_start(&iter->css, &it);
1344 while ((task = css_task_iter_next(&it))) {
1345 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1346 case OOM_SCAN_SELECT:
1347 if (chosen)
1348 put_task_struct(chosen);
1349 chosen = task;
1350 chosen_points = ULONG_MAX;
1351 get_task_struct(chosen);
1352 /* fall through */
1353 case OOM_SCAN_CONTINUE:
1354 continue;
1355 case OOM_SCAN_ABORT:
1356 css_task_iter_end(&it);
1357 mem_cgroup_iter_break(memcg, iter);
1358 if (chosen)
1359 put_task_struct(chosen);
1360 goto unlock;
1361 case OOM_SCAN_OK:
1362 break;
1363 };
1364 points = oom_badness(task, memcg, NULL, totalpages);
1365 if (!points || points < chosen_points)
1366 continue;
1367 /* Prefer thread group leaders for display purposes */
1368 if (points == chosen_points &&
1369 thread_group_leader(chosen))
1370 continue;
1371
1372 if (chosen)
1373 put_task_struct(chosen);
1374 chosen = task;
1375 chosen_points = points;
1376 get_task_struct(chosen);
1377 }
1378 css_task_iter_end(&it);
1379 }
1380
1381 if (chosen) {
1382 points = chosen_points * 1000 / totalpages;
1383 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1384 "Memory cgroup out of memory");
1385 }
1386 unlock:
1387 mutex_unlock(&oom_lock);
1388 }
1389
1390 #if MAX_NUMNODES > 1
1391
1392 /**
1393 * test_mem_cgroup_node_reclaimable
1394 * @memcg: the target memcg
1395 * @nid: the node ID to be checked.
1396 * @noswap : specify true here if the user wants flle only information.
1397 *
1398 * This function returns whether the specified memcg contains any
1399 * reclaimable pages on a node. Returns true if there are any reclaimable
1400 * pages in the node.
1401 */
1402 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1403 int nid, bool noswap)
1404 {
1405 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1406 return true;
1407 if (noswap || !total_swap_pages)
1408 return false;
1409 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1410 return true;
1411 return false;
1412
1413 }
1414
1415 /*
1416 * Always updating the nodemask is not very good - even if we have an empty
1417 * list or the wrong list here, we can start from some node and traverse all
1418 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1419 *
1420 */
1421 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1422 {
1423 int nid;
1424 /*
1425 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1426 * pagein/pageout changes since the last update.
1427 */
1428 if (!atomic_read(&memcg->numainfo_events))
1429 return;
1430 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1431 return;
1432
1433 /* make a nodemask where this memcg uses memory from */
1434 memcg->scan_nodes = node_states[N_MEMORY];
1435
1436 for_each_node_mask(nid, node_states[N_MEMORY]) {
1437
1438 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1439 node_clear(nid, memcg->scan_nodes);
1440 }
1441
1442 atomic_set(&memcg->numainfo_events, 0);
1443 atomic_set(&memcg->numainfo_updating, 0);
1444 }
1445
1446 /*
1447 * Selecting a node where we start reclaim from. Because what we need is just
1448 * reducing usage counter, start from anywhere is O,K. Considering
1449 * memory reclaim from current node, there are pros. and cons.
1450 *
1451 * Freeing memory from current node means freeing memory from a node which
1452 * we'll use or we've used. So, it may make LRU bad. And if several threads
1453 * hit limits, it will see a contention on a node. But freeing from remote
1454 * node means more costs for memory reclaim because of memory latency.
1455 *
1456 * Now, we use round-robin. Better algorithm is welcomed.
1457 */
1458 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1459 {
1460 int node;
1461
1462 mem_cgroup_may_update_nodemask(memcg);
1463 node = memcg->last_scanned_node;
1464
1465 node = next_node(node, memcg->scan_nodes);
1466 if (node == MAX_NUMNODES)
1467 node = first_node(memcg->scan_nodes);
1468 /*
1469 * We call this when we hit limit, not when pages are added to LRU.
1470 * No LRU may hold pages because all pages are UNEVICTABLE or
1471 * memcg is too small and all pages are not on LRU. In that case,
1472 * we use curret node.
1473 */
1474 if (unlikely(node == MAX_NUMNODES))
1475 node = numa_node_id();
1476
1477 memcg->last_scanned_node = node;
1478 return node;
1479 }
1480 #else
1481 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1482 {
1483 return 0;
1484 }
1485 #endif
1486
1487 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1488 struct zone *zone,
1489 gfp_t gfp_mask,
1490 unsigned long *total_scanned)
1491 {
1492 struct mem_cgroup *victim = NULL;
1493 int total = 0;
1494 int loop = 0;
1495 unsigned long excess;
1496 unsigned long nr_scanned;
1497 struct mem_cgroup_reclaim_cookie reclaim = {
1498 .zone = zone,
1499 .priority = 0,
1500 };
1501
1502 excess = soft_limit_excess(root_memcg);
1503
1504 while (1) {
1505 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1506 if (!victim) {
1507 loop++;
1508 if (loop >= 2) {
1509 /*
1510 * If we have not been able to reclaim
1511 * anything, it might because there are
1512 * no reclaimable pages under this hierarchy
1513 */
1514 if (!total)
1515 break;
1516 /*
1517 * We want to do more targeted reclaim.
1518 * excess >> 2 is not to excessive so as to
1519 * reclaim too much, nor too less that we keep
1520 * coming back to reclaim from this cgroup
1521 */
1522 if (total >= (excess >> 2) ||
1523 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1524 break;
1525 }
1526 continue;
1527 }
1528 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1529 zone, &nr_scanned);
1530 *total_scanned += nr_scanned;
1531 if (!soft_limit_excess(root_memcg))
1532 break;
1533 }
1534 mem_cgroup_iter_break(root_memcg, victim);
1535 return total;
1536 }
1537
1538 #ifdef CONFIG_LOCKDEP
1539 static struct lockdep_map memcg_oom_lock_dep_map = {
1540 .name = "memcg_oom_lock",
1541 };
1542 #endif
1543
1544 static DEFINE_SPINLOCK(memcg_oom_lock);
1545
1546 /*
1547 * Check OOM-Killer is already running under our hierarchy.
1548 * If someone is running, return false.
1549 */
1550 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1551 {
1552 struct mem_cgroup *iter, *failed = NULL;
1553
1554 spin_lock(&memcg_oom_lock);
1555
1556 for_each_mem_cgroup_tree(iter, memcg) {
1557 if (iter->oom_lock) {
1558 /*
1559 * this subtree of our hierarchy is already locked
1560 * so we cannot give a lock.
1561 */
1562 failed = iter;
1563 mem_cgroup_iter_break(memcg, iter);
1564 break;
1565 } else
1566 iter->oom_lock = true;
1567 }
1568
1569 if (failed) {
1570 /*
1571 * OK, we failed to lock the whole subtree so we have
1572 * to clean up what we set up to the failing subtree
1573 */
1574 for_each_mem_cgroup_tree(iter, memcg) {
1575 if (iter == failed) {
1576 mem_cgroup_iter_break(memcg, iter);
1577 break;
1578 }
1579 iter->oom_lock = false;
1580 }
1581 } else
1582 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1583
1584 spin_unlock(&memcg_oom_lock);
1585
1586 return !failed;
1587 }
1588
1589 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1590 {
1591 struct mem_cgroup *iter;
1592
1593 spin_lock(&memcg_oom_lock);
1594 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1595 for_each_mem_cgroup_tree(iter, memcg)
1596 iter->oom_lock = false;
1597 spin_unlock(&memcg_oom_lock);
1598 }
1599
1600 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1601 {
1602 struct mem_cgroup *iter;
1603
1604 spin_lock(&memcg_oom_lock);
1605 for_each_mem_cgroup_tree(iter, memcg)
1606 iter->under_oom++;
1607 spin_unlock(&memcg_oom_lock);
1608 }
1609
1610 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1611 {
1612 struct mem_cgroup *iter;
1613
1614 /*
1615 * When a new child is created while the hierarchy is under oom,
1616 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1617 */
1618 spin_lock(&memcg_oom_lock);
1619 for_each_mem_cgroup_tree(iter, memcg)
1620 if (iter->under_oom > 0)
1621 iter->under_oom--;
1622 spin_unlock(&memcg_oom_lock);
1623 }
1624
1625 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1626
1627 struct oom_wait_info {
1628 struct mem_cgroup *memcg;
1629 wait_queue_t wait;
1630 };
1631
1632 static int memcg_oom_wake_function(wait_queue_t *wait,
1633 unsigned mode, int sync, void *arg)
1634 {
1635 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1636 struct mem_cgroup *oom_wait_memcg;
1637 struct oom_wait_info *oom_wait_info;
1638
1639 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1640 oom_wait_memcg = oom_wait_info->memcg;
1641
1642 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1643 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1644 return 0;
1645 return autoremove_wake_function(wait, mode, sync, arg);
1646 }
1647
1648 static void memcg_oom_recover(struct mem_cgroup *memcg)
1649 {
1650 /*
1651 * For the following lockless ->under_oom test, the only required
1652 * guarantee is that it must see the state asserted by an OOM when
1653 * this function is called as a result of userland actions
1654 * triggered by the notification of the OOM. This is trivially
1655 * achieved by invoking mem_cgroup_mark_under_oom() before
1656 * triggering notification.
1657 */
1658 if (memcg && memcg->under_oom)
1659 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1660 }
1661
1662 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1663 {
1664 if (!current->memcg_oom.may_oom)
1665 return;
1666 /*
1667 * We are in the middle of the charge context here, so we
1668 * don't want to block when potentially sitting on a callstack
1669 * that holds all kinds of filesystem and mm locks.
1670 *
1671 * Also, the caller may handle a failed allocation gracefully
1672 * (like optional page cache readahead) and so an OOM killer
1673 * invocation might not even be necessary.
1674 *
1675 * That's why we don't do anything here except remember the
1676 * OOM context and then deal with it at the end of the page
1677 * fault when the stack is unwound, the locks are released,
1678 * and when we know whether the fault was overall successful.
1679 */
1680 css_get(&memcg->css);
1681 current->memcg_oom.memcg = memcg;
1682 current->memcg_oom.gfp_mask = mask;
1683 current->memcg_oom.order = order;
1684 }
1685
1686 /**
1687 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1688 * @handle: actually kill/wait or just clean up the OOM state
1689 *
1690 * This has to be called at the end of a page fault if the memcg OOM
1691 * handler was enabled.
1692 *
1693 * Memcg supports userspace OOM handling where failed allocations must
1694 * sleep on a waitqueue until the userspace task resolves the
1695 * situation. Sleeping directly in the charge context with all kinds
1696 * of locks held is not a good idea, instead we remember an OOM state
1697 * in the task and mem_cgroup_oom_synchronize() has to be called at
1698 * the end of the page fault to complete the OOM handling.
1699 *
1700 * Returns %true if an ongoing memcg OOM situation was detected and
1701 * completed, %false otherwise.
1702 */
1703 bool mem_cgroup_oom_synchronize(bool handle)
1704 {
1705 struct mem_cgroup *memcg = current->memcg_oom.memcg;
1706 struct oom_wait_info owait;
1707 bool locked;
1708
1709 /* OOM is global, do not handle */
1710 if (!memcg)
1711 return false;
1712
1713 if (!handle || oom_killer_disabled)
1714 goto cleanup;
1715
1716 owait.memcg = memcg;
1717 owait.wait.flags = 0;
1718 owait.wait.func = memcg_oom_wake_function;
1719 owait.wait.private = current;
1720 INIT_LIST_HEAD(&owait.wait.task_list);
1721
1722 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1723 mem_cgroup_mark_under_oom(memcg);
1724
1725 locked = mem_cgroup_oom_trylock(memcg);
1726
1727 if (locked)
1728 mem_cgroup_oom_notify(memcg);
1729
1730 if (locked && !memcg->oom_kill_disable) {
1731 mem_cgroup_unmark_under_oom(memcg);
1732 finish_wait(&memcg_oom_waitq, &owait.wait);
1733 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1734 current->memcg_oom.order);
1735 } else {
1736 schedule();
1737 mem_cgroup_unmark_under_oom(memcg);
1738 finish_wait(&memcg_oom_waitq, &owait.wait);
1739 }
1740
1741 if (locked) {
1742 mem_cgroup_oom_unlock(memcg);
1743 /*
1744 * There is no guarantee that an OOM-lock contender
1745 * sees the wakeups triggered by the OOM kill
1746 * uncharges. Wake any sleepers explicitely.
1747 */
1748 memcg_oom_recover(memcg);
1749 }
1750 cleanup:
1751 current->memcg_oom.memcg = NULL;
1752 css_put(&memcg->css);
1753 return true;
1754 }
1755
1756 /**
1757 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1758 * @page: page that is going to change accounted state
1759 *
1760 * This function must mark the beginning of an accounted page state
1761 * change to prevent double accounting when the page is concurrently
1762 * being moved to another memcg:
1763 *
1764 * memcg = mem_cgroup_begin_page_stat(page);
1765 * if (TestClearPageState(page))
1766 * mem_cgroup_update_page_stat(memcg, state, -1);
1767 * mem_cgroup_end_page_stat(memcg);
1768 */
1769 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1770 {
1771 struct mem_cgroup *memcg;
1772 unsigned long flags;
1773
1774 /*
1775 * The RCU lock is held throughout the transaction. The fast
1776 * path can get away without acquiring the memcg->move_lock
1777 * because page moving starts with an RCU grace period.
1778 *
1779 * The RCU lock also protects the memcg from being freed when
1780 * the page state that is going to change is the only thing
1781 * preventing the page from being uncharged.
1782 * E.g. end-writeback clearing PageWriteback(), which allows
1783 * migration to go ahead and uncharge the page before the
1784 * account transaction might be complete.
1785 */
1786 rcu_read_lock();
1787
1788 if (mem_cgroup_disabled())
1789 return NULL;
1790 again:
1791 memcg = page->mem_cgroup;
1792 if (unlikely(!memcg))
1793 return NULL;
1794
1795 if (atomic_read(&memcg->moving_account) <= 0)
1796 return memcg;
1797
1798 spin_lock_irqsave(&memcg->move_lock, flags);
1799 if (memcg != page->mem_cgroup) {
1800 spin_unlock_irqrestore(&memcg->move_lock, flags);
1801 goto again;
1802 }
1803
1804 /*
1805 * When charge migration first begins, we can have locked and
1806 * unlocked page stat updates happening concurrently. Track
1807 * the task who has the lock for mem_cgroup_end_page_stat().
1808 */
1809 memcg->move_lock_task = current;
1810 memcg->move_lock_flags = flags;
1811
1812 return memcg;
1813 }
1814 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1815
1816 /**
1817 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1818 * @memcg: the memcg that was accounted against
1819 */
1820 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1821 {
1822 if (memcg && memcg->move_lock_task == current) {
1823 unsigned long flags = memcg->move_lock_flags;
1824
1825 memcg->move_lock_task = NULL;
1826 memcg->move_lock_flags = 0;
1827
1828 spin_unlock_irqrestore(&memcg->move_lock, flags);
1829 }
1830
1831 rcu_read_unlock();
1832 }
1833 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1834
1835 /*
1836 * size of first charge trial. "32" comes from vmscan.c's magic value.
1837 * TODO: maybe necessary to use big numbers in big irons.
1838 */
1839 #define CHARGE_BATCH 32U
1840 struct memcg_stock_pcp {
1841 struct mem_cgroup *cached; /* this never be root cgroup */
1842 unsigned int nr_pages;
1843 struct work_struct work;
1844 unsigned long flags;
1845 #define FLUSHING_CACHED_CHARGE 0
1846 };
1847 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1848 static DEFINE_MUTEX(percpu_charge_mutex);
1849
1850 /**
1851 * consume_stock: Try to consume stocked charge on this cpu.
1852 * @memcg: memcg to consume from.
1853 * @nr_pages: how many pages to charge.
1854 *
1855 * The charges will only happen if @memcg matches the current cpu's memcg
1856 * stock, and at least @nr_pages are available in that stock. Failure to
1857 * service an allocation will refill the stock.
1858 *
1859 * returns true if successful, false otherwise.
1860 */
1861 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1862 {
1863 struct memcg_stock_pcp *stock;
1864 bool ret = false;
1865
1866 if (nr_pages > CHARGE_BATCH)
1867 return ret;
1868
1869 stock = &get_cpu_var(memcg_stock);
1870 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1871 stock->nr_pages -= nr_pages;
1872 ret = true;
1873 }
1874 put_cpu_var(memcg_stock);
1875 return ret;
1876 }
1877
1878 /*
1879 * Returns stocks cached in percpu and reset cached information.
1880 */
1881 static void drain_stock(struct memcg_stock_pcp *stock)
1882 {
1883 struct mem_cgroup *old = stock->cached;
1884
1885 if (stock->nr_pages) {
1886 page_counter_uncharge(&old->memory, stock->nr_pages);
1887 if (do_swap_account)
1888 page_counter_uncharge(&old->memsw, stock->nr_pages);
1889 css_put_many(&old->css, stock->nr_pages);
1890 stock->nr_pages = 0;
1891 }
1892 stock->cached = NULL;
1893 }
1894
1895 /*
1896 * This must be called under preempt disabled or must be called by
1897 * a thread which is pinned to local cpu.
1898 */
1899 static void drain_local_stock(struct work_struct *dummy)
1900 {
1901 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1902 drain_stock(stock);
1903 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1904 }
1905
1906 /*
1907 * Cache charges(val) to local per_cpu area.
1908 * This will be consumed by consume_stock() function, later.
1909 */
1910 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1911 {
1912 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1913
1914 if (stock->cached != memcg) { /* reset if necessary */
1915 drain_stock(stock);
1916 stock->cached = memcg;
1917 }
1918 stock->nr_pages += nr_pages;
1919 put_cpu_var(memcg_stock);
1920 }
1921
1922 /*
1923 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1924 * of the hierarchy under it.
1925 */
1926 static void drain_all_stock(struct mem_cgroup *root_memcg)
1927 {
1928 int cpu, curcpu;
1929
1930 /* If someone's already draining, avoid adding running more workers. */
1931 if (!mutex_trylock(&percpu_charge_mutex))
1932 return;
1933 /* Notify other cpus that system-wide "drain" is running */
1934 get_online_cpus();
1935 curcpu = get_cpu();
1936 for_each_online_cpu(cpu) {
1937 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1938 struct mem_cgroup *memcg;
1939
1940 memcg = stock->cached;
1941 if (!memcg || !stock->nr_pages)
1942 continue;
1943 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1944 continue;
1945 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1946 if (cpu == curcpu)
1947 drain_local_stock(&stock->work);
1948 else
1949 schedule_work_on(cpu, &stock->work);
1950 }
1951 }
1952 put_cpu();
1953 put_online_cpus();
1954 mutex_unlock(&percpu_charge_mutex);
1955 }
1956
1957 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1958 unsigned long action,
1959 void *hcpu)
1960 {
1961 int cpu = (unsigned long)hcpu;
1962 struct memcg_stock_pcp *stock;
1963
1964 if (action == CPU_ONLINE)
1965 return NOTIFY_OK;
1966
1967 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1968 return NOTIFY_OK;
1969
1970 stock = &per_cpu(memcg_stock, cpu);
1971 drain_stock(stock);
1972 return NOTIFY_OK;
1973 }
1974
1975 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1976 unsigned int nr_pages)
1977 {
1978 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1979 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1980 struct mem_cgroup *mem_over_limit;
1981 struct page_counter *counter;
1982 unsigned long nr_reclaimed;
1983 bool may_swap = true;
1984 bool drained = false;
1985 int ret = 0;
1986
1987 if (mem_cgroup_is_root(memcg))
1988 goto done;
1989 retry:
1990 if (consume_stock(memcg, nr_pages))
1991 goto done;
1992
1993 if (!do_swap_account ||
1994 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1995 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
1996 goto done_restock;
1997 if (do_swap_account)
1998 page_counter_uncharge(&memcg->memsw, batch);
1999 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2000 } else {
2001 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2002 may_swap = false;
2003 }
2004
2005 if (batch > nr_pages) {
2006 batch = nr_pages;
2007 goto retry;
2008 }
2009
2010 /*
2011 * Unlike in global OOM situations, memcg is not in a physical
2012 * memory shortage. Allow dying and OOM-killed tasks to
2013 * bypass the last charges so that they can exit quickly and
2014 * free their memory.
2015 */
2016 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2017 fatal_signal_pending(current) ||
2018 current->flags & PF_EXITING))
2019 goto bypass;
2020
2021 if (unlikely(task_in_memcg_oom(current)))
2022 goto nomem;
2023
2024 if (!(gfp_mask & __GFP_WAIT))
2025 goto nomem;
2026
2027 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2028
2029 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2030 gfp_mask, may_swap);
2031
2032 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2033 goto retry;
2034
2035 if (!drained) {
2036 drain_all_stock(mem_over_limit);
2037 drained = true;
2038 goto retry;
2039 }
2040
2041 if (gfp_mask & __GFP_NORETRY)
2042 goto nomem;
2043 /*
2044 * Even though the limit is exceeded at this point, reclaim
2045 * may have been able to free some pages. Retry the charge
2046 * before killing the task.
2047 *
2048 * Only for regular pages, though: huge pages are rather
2049 * unlikely to succeed so close to the limit, and we fall back
2050 * to regular pages anyway in case of failure.
2051 */
2052 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2053 goto retry;
2054 /*
2055 * At task move, charge accounts can be doubly counted. So, it's
2056 * better to wait until the end of task_move if something is going on.
2057 */
2058 if (mem_cgroup_wait_acct_move(mem_over_limit))
2059 goto retry;
2060
2061 if (nr_retries--)
2062 goto retry;
2063
2064 if (gfp_mask & __GFP_NOFAIL)
2065 goto bypass;
2066
2067 if (fatal_signal_pending(current))
2068 goto bypass;
2069
2070 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2071
2072 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2073 nomem:
2074 if (!(gfp_mask & __GFP_NOFAIL))
2075 return -ENOMEM;
2076 bypass:
2077 return -EINTR;
2078
2079 done_restock:
2080 css_get_many(&memcg->css, batch);
2081 if (batch > nr_pages)
2082 refill_stock(memcg, batch - nr_pages);
2083 if (!(gfp_mask & __GFP_WAIT))
2084 goto done;
2085 /*
2086 * If the hierarchy is above the normal consumption range,
2087 * make the charging task trim their excess contribution.
2088 */
2089 do {
2090 if (page_counter_read(&memcg->memory) <= memcg->high)
2091 continue;
2092 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2093 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2094 } while ((memcg = parent_mem_cgroup(memcg)));
2095 done:
2096 return ret;
2097 }
2098
2099 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2100 {
2101 if (mem_cgroup_is_root(memcg))
2102 return;
2103
2104 page_counter_uncharge(&memcg->memory, nr_pages);
2105 if (do_swap_account)
2106 page_counter_uncharge(&memcg->memsw, nr_pages);
2107
2108 css_put_many(&memcg->css, nr_pages);
2109 }
2110
2111 static void lock_page_lru(struct page *page, int *isolated)
2112 {
2113 struct zone *zone = page_zone(page);
2114
2115 spin_lock_irq(&zone->lru_lock);
2116 if (PageLRU(page)) {
2117 struct lruvec *lruvec;
2118
2119 lruvec = mem_cgroup_page_lruvec(page, zone);
2120 ClearPageLRU(page);
2121 del_page_from_lru_list(page, lruvec, page_lru(page));
2122 *isolated = 1;
2123 } else
2124 *isolated = 0;
2125 }
2126
2127 static void unlock_page_lru(struct page *page, int isolated)
2128 {
2129 struct zone *zone = page_zone(page);
2130
2131 if (isolated) {
2132 struct lruvec *lruvec;
2133
2134 lruvec = mem_cgroup_page_lruvec(page, zone);
2135 VM_BUG_ON_PAGE(PageLRU(page), page);
2136 SetPageLRU(page);
2137 add_page_to_lru_list(page, lruvec, page_lru(page));
2138 }
2139 spin_unlock_irq(&zone->lru_lock);
2140 }
2141
2142 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2143 bool lrucare)
2144 {
2145 int isolated;
2146
2147 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2148
2149 /*
2150 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2151 * may already be on some other mem_cgroup's LRU. Take care of it.
2152 */
2153 if (lrucare)
2154 lock_page_lru(page, &isolated);
2155
2156 /*
2157 * Nobody should be changing or seriously looking at
2158 * page->mem_cgroup at this point:
2159 *
2160 * - the page is uncharged
2161 *
2162 * - the page is off-LRU
2163 *
2164 * - an anonymous fault has exclusive page access, except for
2165 * a locked page table
2166 *
2167 * - a page cache insertion, a swapin fault, or a migration
2168 * have the page locked
2169 */
2170 page->mem_cgroup = memcg;
2171
2172 if (lrucare)
2173 unlock_page_lru(page, isolated);
2174 }
2175
2176 #ifdef CONFIG_MEMCG_KMEM
2177 int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2178 unsigned long nr_pages)
2179 {
2180 struct page_counter *counter;
2181 int ret = 0;
2182
2183 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2184 if (ret < 0)
2185 return ret;
2186
2187 ret = try_charge(memcg, gfp, nr_pages);
2188 if (ret == -EINTR) {
2189 /*
2190 * try_charge() chose to bypass to root due to OOM kill or
2191 * fatal signal. Since our only options are to either fail
2192 * the allocation or charge it to this cgroup, do it as a
2193 * temporary condition. But we can't fail. From a kmem/slab
2194 * perspective, the cache has already been selected, by
2195 * mem_cgroup_kmem_get_cache(), so it is too late to change
2196 * our minds.
2197 *
2198 * This condition will only trigger if the task entered
2199 * memcg_charge_kmem in a sane state, but was OOM-killed
2200 * during try_charge() above. Tasks that were already dying
2201 * when the allocation triggers should have been already
2202 * directed to the root cgroup in memcontrol.h
2203 */
2204 page_counter_charge(&memcg->memory, nr_pages);
2205 if (do_swap_account)
2206 page_counter_charge(&memcg->memsw, nr_pages);
2207 css_get_many(&memcg->css, nr_pages);
2208 ret = 0;
2209 } else if (ret)
2210 page_counter_uncharge(&memcg->kmem, nr_pages);
2211
2212 return ret;
2213 }
2214
2215 void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2216 {
2217 page_counter_uncharge(&memcg->memory, nr_pages);
2218 if (do_swap_account)
2219 page_counter_uncharge(&memcg->memsw, nr_pages);
2220
2221 page_counter_uncharge(&memcg->kmem, nr_pages);
2222
2223 css_put_many(&memcg->css, nr_pages);
2224 }
2225
2226 static int memcg_alloc_cache_id(void)
2227 {
2228 int id, size;
2229 int err;
2230
2231 id = ida_simple_get(&memcg_cache_ida,
2232 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2233 if (id < 0)
2234 return id;
2235
2236 if (id < memcg_nr_cache_ids)
2237 return id;
2238
2239 /*
2240 * There's no space for the new id in memcg_caches arrays,
2241 * so we have to grow them.
2242 */
2243 down_write(&memcg_cache_ids_sem);
2244
2245 size = 2 * (id + 1);
2246 if (size < MEMCG_CACHES_MIN_SIZE)
2247 size = MEMCG_CACHES_MIN_SIZE;
2248 else if (size > MEMCG_CACHES_MAX_SIZE)
2249 size = MEMCG_CACHES_MAX_SIZE;
2250
2251 err = memcg_update_all_caches(size);
2252 if (!err)
2253 err = memcg_update_all_list_lrus(size);
2254 if (!err)
2255 memcg_nr_cache_ids = size;
2256
2257 up_write(&memcg_cache_ids_sem);
2258
2259 if (err) {
2260 ida_simple_remove(&memcg_cache_ida, id);
2261 return err;
2262 }
2263 return id;
2264 }
2265
2266 static void memcg_free_cache_id(int id)
2267 {
2268 ida_simple_remove(&memcg_cache_ida, id);
2269 }
2270
2271 struct memcg_kmem_cache_create_work {
2272 struct mem_cgroup *memcg;
2273 struct kmem_cache *cachep;
2274 struct work_struct work;
2275 };
2276
2277 static void memcg_kmem_cache_create_func(struct work_struct *w)
2278 {
2279 struct memcg_kmem_cache_create_work *cw =
2280 container_of(w, struct memcg_kmem_cache_create_work, work);
2281 struct mem_cgroup *memcg = cw->memcg;
2282 struct kmem_cache *cachep = cw->cachep;
2283
2284 memcg_create_kmem_cache(memcg, cachep);
2285
2286 css_put(&memcg->css);
2287 kfree(cw);
2288 }
2289
2290 /*
2291 * Enqueue the creation of a per-memcg kmem_cache.
2292 */
2293 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2294 struct kmem_cache *cachep)
2295 {
2296 struct memcg_kmem_cache_create_work *cw;
2297
2298 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2299 if (!cw)
2300 return;
2301
2302 css_get(&memcg->css);
2303
2304 cw->memcg = memcg;
2305 cw->cachep = cachep;
2306 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2307
2308 schedule_work(&cw->work);
2309 }
2310
2311 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2312 struct kmem_cache *cachep)
2313 {
2314 /*
2315 * We need to stop accounting when we kmalloc, because if the
2316 * corresponding kmalloc cache is not yet created, the first allocation
2317 * in __memcg_schedule_kmem_cache_create will recurse.
2318 *
2319 * However, it is better to enclose the whole function. Depending on
2320 * the debugging options enabled, INIT_WORK(), for instance, can
2321 * trigger an allocation. This too, will make us recurse. Because at
2322 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2323 * the safest choice is to do it like this, wrapping the whole function.
2324 */
2325 current->memcg_kmem_skip_account = 1;
2326 __memcg_schedule_kmem_cache_create(memcg, cachep);
2327 current->memcg_kmem_skip_account = 0;
2328 }
2329
2330 /*
2331 * Return the kmem_cache we're supposed to use for a slab allocation.
2332 * We try to use the current memcg's version of the cache.
2333 *
2334 * If the cache does not exist yet, if we are the first user of it,
2335 * we either create it immediately, if possible, or create it asynchronously
2336 * in a workqueue.
2337 * In the latter case, we will let the current allocation go through with
2338 * the original cache.
2339 *
2340 * Can't be called in interrupt context or from kernel threads.
2341 * This function needs to be called with rcu_read_lock() held.
2342 */
2343 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2344 {
2345 struct mem_cgroup *memcg;
2346 struct kmem_cache *memcg_cachep;
2347 int kmemcg_id;
2348
2349 VM_BUG_ON(!is_root_cache(cachep));
2350
2351 if (current->memcg_kmem_skip_account)
2352 return cachep;
2353
2354 memcg = get_mem_cgroup_from_mm(current->mm);
2355 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2356 if (kmemcg_id < 0)
2357 goto out;
2358
2359 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2360 if (likely(memcg_cachep))
2361 return memcg_cachep;
2362
2363 /*
2364 * If we are in a safe context (can wait, and not in interrupt
2365 * context), we could be be predictable and return right away.
2366 * This would guarantee that the allocation being performed
2367 * already belongs in the new cache.
2368 *
2369 * However, there are some clashes that can arrive from locking.
2370 * For instance, because we acquire the slab_mutex while doing
2371 * memcg_create_kmem_cache, this means no further allocation
2372 * could happen with the slab_mutex held. So it's better to
2373 * defer everything.
2374 */
2375 memcg_schedule_kmem_cache_create(memcg, cachep);
2376 out:
2377 css_put(&memcg->css);
2378 return cachep;
2379 }
2380
2381 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2382 {
2383 if (!is_root_cache(cachep))
2384 css_put(&cachep->memcg_params.memcg->css);
2385 }
2386
2387 /*
2388 * We need to verify if the allocation against current->mm->owner's memcg is
2389 * possible for the given order. But the page is not allocated yet, so we'll
2390 * need a further commit step to do the final arrangements.
2391 *
2392 * It is possible for the task to switch cgroups in this mean time, so at
2393 * commit time, we can't rely on task conversion any longer. We'll then use
2394 * the handle argument to return to the caller which cgroup we should commit
2395 * against. We could also return the memcg directly and avoid the pointer
2396 * passing, but a boolean return value gives better semantics considering
2397 * the compiled-out case as well.
2398 *
2399 * Returning true means the allocation is possible.
2400 */
2401 bool
2402 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2403 {
2404 struct mem_cgroup *memcg;
2405 int ret;
2406
2407 *_memcg = NULL;
2408
2409 memcg = get_mem_cgroup_from_mm(current->mm);
2410
2411 if (!memcg_kmem_is_active(memcg)) {
2412 css_put(&memcg->css);
2413 return true;
2414 }
2415
2416 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2417 if (!ret)
2418 *_memcg = memcg;
2419
2420 css_put(&memcg->css);
2421 return (ret == 0);
2422 }
2423
2424 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2425 int order)
2426 {
2427 VM_BUG_ON(mem_cgroup_is_root(memcg));
2428
2429 /* The page allocation failed. Revert */
2430 if (!page) {
2431 memcg_uncharge_kmem(memcg, 1 << order);
2432 return;
2433 }
2434 page->mem_cgroup = memcg;
2435 }
2436
2437 void __memcg_kmem_uncharge_pages(struct page *page, int order)
2438 {
2439 struct mem_cgroup *memcg = page->mem_cgroup;
2440
2441 if (!memcg)
2442 return;
2443
2444 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2445
2446 memcg_uncharge_kmem(memcg, 1 << order);
2447 page->mem_cgroup = NULL;
2448 }
2449
2450 struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2451 {
2452 struct mem_cgroup *memcg = NULL;
2453 struct kmem_cache *cachep;
2454 struct page *page;
2455
2456 page = virt_to_head_page(ptr);
2457 if (PageSlab(page)) {
2458 cachep = page->slab_cache;
2459 if (!is_root_cache(cachep))
2460 memcg = cachep->memcg_params.memcg;
2461 } else
2462 /* page allocated by alloc_kmem_pages */
2463 memcg = page->mem_cgroup;
2464
2465 return memcg;
2466 }
2467 #endif /* CONFIG_MEMCG_KMEM */
2468
2469 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2470
2471 /*
2472 * Because tail pages are not marked as "used", set it. We're under
2473 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2474 * charge/uncharge will be never happen and move_account() is done under
2475 * compound_lock(), so we don't have to take care of races.
2476 */
2477 void mem_cgroup_split_huge_fixup(struct page *head)
2478 {
2479 int i;
2480
2481 if (mem_cgroup_disabled())
2482 return;
2483
2484 for (i = 1; i < HPAGE_PMD_NR; i++)
2485 head[i].mem_cgroup = head->mem_cgroup;
2486
2487 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2488 HPAGE_PMD_NR);
2489 }
2490 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2491
2492 #ifdef CONFIG_MEMCG_SWAP
2493 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2494 bool charge)
2495 {
2496 int val = (charge) ? 1 : -1;
2497 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2498 }
2499
2500 /**
2501 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2502 * @entry: swap entry to be moved
2503 * @from: mem_cgroup which the entry is moved from
2504 * @to: mem_cgroup which the entry is moved to
2505 *
2506 * It succeeds only when the swap_cgroup's record for this entry is the same
2507 * as the mem_cgroup's id of @from.
2508 *
2509 * Returns 0 on success, -EINVAL on failure.
2510 *
2511 * The caller must have charged to @to, IOW, called page_counter_charge() about
2512 * both res and memsw, and called css_get().
2513 */
2514 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2515 struct mem_cgroup *from, struct mem_cgroup *to)
2516 {
2517 unsigned short old_id, new_id;
2518
2519 old_id = mem_cgroup_id(from);
2520 new_id = mem_cgroup_id(to);
2521
2522 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2523 mem_cgroup_swap_statistics(from, false);
2524 mem_cgroup_swap_statistics(to, true);
2525 return 0;
2526 }
2527 return -EINVAL;
2528 }
2529 #else
2530 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2531 struct mem_cgroup *from, struct mem_cgroup *to)
2532 {
2533 return -EINVAL;
2534 }
2535 #endif
2536
2537 static DEFINE_MUTEX(memcg_limit_mutex);
2538
2539 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2540 unsigned long limit)
2541 {
2542 unsigned long curusage;
2543 unsigned long oldusage;
2544 bool enlarge = false;
2545 int retry_count;
2546 int ret;
2547
2548 /*
2549 * For keeping hierarchical_reclaim simple, how long we should retry
2550 * is depends on callers. We set our retry-count to be function
2551 * of # of children which we should visit in this loop.
2552 */
2553 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2554 mem_cgroup_count_children(memcg);
2555
2556 oldusage = page_counter_read(&memcg->memory);
2557
2558 do {
2559 if (signal_pending(current)) {
2560 ret = -EINTR;
2561 break;
2562 }
2563
2564 mutex_lock(&memcg_limit_mutex);
2565 if (limit > memcg->memsw.limit) {
2566 mutex_unlock(&memcg_limit_mutex);
2567 ret = -EINVAL;
2568 break;
2569 }
2570 if (limit > memcg->memory.limit)
2571 enlarge = true;
2572 ret = page_counter_limit(&memcg->memory, limit);
2573 mutex_unlock(&memcg_limit_mutex);
2574
2575 if (!ret)
2576 break;
2577
2578 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2579
2580 curusage = page_counter_read(&memcg->memory);
2581 /* Usage is reduced ? */
2582 if (curusage >= oldusage)
2583 retry_count--;
2584 else
2585 oldusage = curusage;
2586 } while (retry_count);
2587
2588 if (!ret && enlarge)
2589 memcg_oom_recover(memcg);
2590
2591 return ret;
2592 }
2593
2594 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2595 unsigned long limit)
2596 {
2597 unsigned long curusage;
2598 unsigned long oldusage;
2599 bool enlarge = false;
2600 int retry_count;
2601 int ret;
2602
2603 /* see mem_cgroup_resize_res_limit */
2604 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2605 mem_cgroup_count_children(memcg);
2606
2607 oldusage = page_counter_read(&memcg->memsw);
2608
2609 do {
2610 if (signal_pending(current)) {
2611 ret = -EINTR;
2612 break;
2613 }
2614
2615 mutex_lock(&memcg_limit_mutex);
2616 if (limit < memcg->memory.limit) {
2617 mutex_unlock(&memcg_limit_mutex);
2618 ret = -EINVAL;
2619 break;
2620 }
2621 if (limit > memcg->memsw.limit)
2622 enlarge = true;
2623 ret = page_counter_limit(&memcg->memsw, limit);
2624 mutex_unlock(&memcg_limit_mutex);
2625
2626 if (!ret)
2627 break;
2628
2629 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2630
2631 curusage = page_counter_read(&memcg->memsw);
2632 /* Usage is reduced ? */
2633 if (curusage >= oldusage)
2634 retry_count--;
2635 else
2636 oldusage = curusage;
2637 } while (retry_count);
2638
2639 if (!ret && enlarge)
2640 memcg_oom_recover(memcg);
2641
2642 return ret;
2643 }
2644
2645 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2646 gfp_t gfp_mask,
2647 unsigned long *total_scanned)
2648 {
2649 unsigned long nr_reclaimed = 0;
2650 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2651 unsigned long reclaimed;
2652 int loop = 0;
2653 struct mem_cgroup_tree_per_zone *mctz;
2654 unsigned long excess;
2655 unsigned long nr_scanned;
2656
2657 if (order > 0)
2658 return 0;
2659
2660 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2661 /*
2662 * This loop can run a while, specially if mem_cgroup's continuously
2663 * keep exceeding their soft limit and putting the system under
2664 * pressure
2665 */
2666 do {
2667 if (next_mz)
2668 mz = next_mz;
2669 else
2670 mz = mem_cgroup_largest_soft_limit_node(mctz);
2671 if (!mz)
2672 break;
2673
2674 nr_scanned = 0;
2675 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2676 gfp_mask, &nr_scanned);
2677 nr_reclaimed += reclaimed;
2678 *total_scanned += nr_scanned;
2679 spin_lock_irq(&mctz->lock);
2680 __mem_cgroup_remove_exceeded(mz, mctz);
2681
2682 /*
2683 * If we failed to reclaim anything from this memory cgroup
2684 * it is time to move on to the next cgroup
2685 */
2686 next_mz = NULL;
2687 if (!reclaimed)
2688 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2689
2690 excess = soft_limit_excess(mz->memcg);
2691 /*
2692 * One school of thought says that we should not add
2693 * back the node to the tree if reclaim returns 0.
2694 * But our reclaim could return 0, simply because due
2695 * to priority we are exposing a smaller subset of
2696 * memory to reclaim from. Consider this as a longer
2697 * term TODO.
2698 */
2699 /* If excess == 0, no tree ops */
2700 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2701 spin_unlock_irq(&mctz->lock);
2702 css_put(&mz->memcg->css);
2703 loop++;
2704 /*
2705 * Could not reclaim anything and there are no more
2706 * mem cgroups to try or we seem to be looping without
2707 * reclaiming anything.
2708 */
2709 if (!nr_reclaimed &&
2710 (next_mz == NULL ||
2711 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2712 break;
2713 } while (!nr_reclaimed);
2714 if (next_mz)
2715 css_put(&next_mz->memcg->css);
2716 return nr_reclaimed;
2717 }
2718
2719 /*
2720 * Test whether @memcg has children, dead or alive. Note that this
2721 * function doesn't care whether @memcg has use_hierarchy enabled and
2722 * returns %true if there are child csses according to the cgroup
2723 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2724 */
2725 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2726 {
2727 bool ret;
2728
2729 /*
2730 * The lock does not prevent addition or deletion of children, but
2731 * it prevents a new child from being initialized based on this
2732 * parent in css_online(), so it's enough to decide whether
2733 * hierarchically inherited attributes can still be changed or not.
2734 */
2735 lockdep_assert_held(&memcg_create_mutex);
2736
2737 rcu_read_lock();
2738 ret = css_next_child(NULL, &memcg->css);
2739 rcu_read_unlock();
2740 return ret;
2741 }
2742
2743 /*
2744 * Reclaims as many pages from the given memcg as possible and moves
2745 * the rest to the parent.
2746 *
2747 * Caller is responsible for holding css reference for memcg.
2748 */
2749 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2750 {
2751 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2752
2753 /* we call try-to-free pages for make this cgroup empty */
2754 lru_add_drain_all();
2755 /* try to free all pages in this cgroup */
2756 while (nr_retries && page_counter_read(&memcg->memory)) {
2757 int progress;
2758
2759 if (signal_pending(current))
2760 return -EINTR;
2761
2762 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2763 GFP_KERNEL, true);
2764 if (!progress) {
2765 nr_retries--;
2766 /* maybe some writeback is necessary */
2767 congestion_wait(BLK_RW_ASYNC, HZ/10);
2768 }
2769
2770 }
2771
2772 return 0;
2773 }
2774
2775 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2776 char *buf, size_t nbytes,
2777 loff_t off)
2778 {
2779 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2780
2781 if (mem_cgroup_is_root(memcg))
2782 return -EINVAL;
2783 return mem_cgroup_force_empty(memcg) ?: nbytes;
2784 }
2785
2786 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2787 struct cftype *cft)
2788 {
2789 return mem_cgroup_from_css(css)->use_hierarchy;
2790 }
2791
2792 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2793 struct cftype *cft, u64 val)
2794 {
2795 int retval = 0;
2796 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2797 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2798
2799 mutex_lock(&memcg_create_mutex);
2800
2801 if (memcg->use_hierarchy == val)
2802 goto out;
2803
2804 /*
2805 * If parent's use_hierarchy is set, we can't make any modifications
2806 * in the child subtrees. If it is unset, then the change can
2807 * occur, provided the current cgroup has no children.
2808 *
2809 * For the root cgroup, parent_mem is NULL, we allow value to be
2810 * set if there are no children.
2811 */
2812 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2813 (val == 1 || val == 0)) {
2814 if (!memcg_has_children(memcg))
2815 memcg->use_hierarchy = val;
2816 else
2817 retval = -EBUSY;
2818 } else
2819 retval = -EINVAL;
2820
2821 out:
2822 mutex_unlock(&memcg_create_mutex);
2823
2824 return retval;
2825 }
2826
2827 static unsigned long tree_stat(struct mem_cgroup *memcg,
2828 enum mem_cgroup_stat_index idx)
2829 {
2830 struct mem_cgroup *iter;
2831 unsigned long val = 0;
2832
2833 for_each_mem_cgroup_tree(iter, memcg)
2834 val += mem_cgroup_read_stat(iter, idx);
2835
2836 return val;
2837 }
2838
2839 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2840 {
2841 u64 val;
2842
2843 if (mem_cgroup_is_root(memcg)) {
2844 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2845 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2846 if (swap)
2847 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2848 } else {
2849 if (!swap)
2850 val = page_counter_read(&memcg->memory);
2851 else
2852 val = page_counter_read(&memcg->memsw);
2853 }
2854 return val << PAGE_SHIFT;
2855 }
2856
2857 enum {
2858 RES_USAGE,
2859 RES_LIMIT,
2860 RES_MAX_USAGE,
2861 RES_FAILCNT,
2862 RES_SOFT_LIMIT,
2863 };
2864
2865 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2866 struct cftype *cft)
2867 {
2868 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2869 struct page_counter *counter;
2870
2871 switch (MEMFILE_TYPE(cft->private)) {
2872 case _MEM:
2873 counter = &memcg->memory;
2874 break;
2875 case _MEMSWAP:
2876 counter = &memcg->memsw;
2877 break;
2878 case _KMEM:
2879 counter = &memcg->kmem;
2880 break;
2881 default:
2882 BUG();
2883 }
2884
2885 switch (MEMFILE_ATTR(cft->private)) {
2886 case RES_USAGE:
2887 if (counter == &memcg->memory)
2888 return mem_cgroup_usage(memcg, false);
2889 if (counter == &memcg->memsw)
2890 return mem_cgroup_usage(memcg, true);
2891 return (u64)page_counter_read(counter) * PAGE_SIZE;
2892 case RES_LIMIT:
2893 return (u64)counter->limit * PAGE_SIZE;
2894 case RES_MAX_USAGE:
2895 return (u64)counter->watermark * PAGE_SIZE;
2896 case RES_FAILCNT:
2897 return counter->failcnt;
2898 case RES_SOFT_LIMIT:
2899 return (u64)memcg->soft_limit * PAGE_SIZE;
2900 default:
2901 BUG();
2902 }
2903 }
2904
2905 #ifdef CONFIG_MEMCG_KMEM
2906 static int memcg_activate_kmem(struct mem_cgroup *memcg,
2907 unsigned long nr_pages)
2908 {
2909 int err = 0;
2910 int memcg_id;
2911
2912 BUG_ON(memcg->kmemcg_id >= 0);
2913 BUG_ON(memcg->kmem_acct_activated);
2914 BUG_ON(memcg->kmem_acct_active);
2915
2916 /*
2917 * For simplicity, we won't allow this to be disabled. It also can't
2918 * be changed if the cgroup has children already, or if tasks had
2919 * already joined.
2920 *
2921 * If tasks join before we set the limit, a person looking at
2922 * kmem.usage_in_bytes will have no way to determine when it took
2923 * place, which makes the value quite meaningless.
2924 *
2925 * After it first became limited, changes in the value of the limit are
2926 * of course permitted.
2927 */
2928 mutex_lock(&memcg_create_mutex);
2929 if (cgroup_has_tasks(memcg->css.cgroup) ||
2930 (memcg->use_hierarchy && memcg_has_children(memcg)))
2931 err = -EBUSY;
2932 mutex_unlock(&memcg_create_mutex);
2933 if (err)
2934 goto out;
2935
2936 memcg_id = memcg_alloc_cache_id();
2937 if (memcg_id < 0) {
2938 err = memcg_id;
2939 goto out;
2940 }
2941
2942 /*
2943 * We couldn't have accounted to this cgroup, because it hasn't got
2944 * activated yet, so this should succeed.
2945 */
2946 err = page_counter_limit(&memcg->kmem, nr_pages);
2947 VM_BUG_ON(err);
2948
2949 static_key_slow_inc(&memcg_kmem_enabled_key);
2950 /*
2951 * A memory cgroup is considered kmem-active as soon as it gets
2952 * kmemcg_id. Setting the id after enabling static branching will
2953 * guarantee no one starts accounting before all call sites are
2954 * patched.
2955 */
2956 memcg->kmemcg_id = memcg_id;
2957 memcg->kmem_acct_activated = true;
2958 memcg->kmem_acct_active = true;
2959 out:
2960 return err;
2961 }
2962
2963 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2964 unsigned long limit)
2965 {
2966 int ret;
2967
2968 mutex_lock(&memcg_limit_mutex);
2969 if (!memcg_kmem_is_active(memcg))
2970 ret = memcg_activate_kmem(memcg, limit);
2971 else
2972 ret = page_counter_limit(&memcg->kmem, limit);
2973 mutex_unlock(&memcg_limit_mutex);
2974 return ret;
2975 }
2976
2977 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2978 {
2979 int ret = 0;
2980 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2981
2982 if (!parent)
2983 return 0;
2984
2985 mutex_lock(&memcg_limit_mutex);
2986 /*
2987 * If the parent cgroup is not kmem-active now, it cannot be activated
2988 * after this point, because it has at least one child already.
2989 */
2990 if (memcg_kmem_is_active(parent))
2991 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
2992 mutex_unlock(&memcg_limit_mutex);
2993 return ret;
2994 }
2995 #else
2996 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2997 unsigned long limit)
2998 {
2999 return -EINVAL;
3000 }
3001 #endif /* CONFIG_MEMCG_KMEM */
3002
3003 /*
3004 * The user of this function is...
3005 * RES_LIMIT.
3006 */
3007 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3008 char *buf, size_t nbytes, loff_t off)
3009 {
3010 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3011 unsigned long nr_pages;
3012 int ret;
3013
3014 buf = strstrip(buf);
3015 ret = page_counter_memparse(buf, "-1", &nr_pages);
3016 if (ret)
3017 return ret;
3018
3019 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3020 case RES_LIMIT:
3021 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3022 ret = -EINVAL;
3023 break;
3024 }
3025 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3026 case _MEM:
3027 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3028 break;
3029 case _MEMSWAP:
3030 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3031 break;
3032 case _KMEM:
3033 ret = memcg_update_kmem_limit(memcg, nr_pages);
3034 break;
3035 }
3036 break;
3037 case RES_SOFT_LIMIT:
3038 memcg->soft_limit = nr_pages;
3039 ret = 0;
3040 break;
3041 }
3042 return ret ?: nbytes;
3043 }
3044
3045 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3046 size_t nbytes, loff_t off)
3047 {
3048 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3049 struct page_counter *counter;
3050
3051 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3052 case _MEM:
3053 counter = &memcg->memory;
3054 break;
3055 case _MEMSWAP:
3056 counter = &memcg->memsw;
3057 break;
3058 case _KMEM:
3059 counter = &memcg->kmem;
3060 break;
3061 default:
3062 BUG();
3063 }
3064
3065 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3066 case RES_MAX_USAGE:
3067 page_counter_reset_watermark(counter);
3068 break;
3069 case RES_FAILCNT:
3070 counter->failcnt = 0;
3071 break;
3072 default:
3073 BUG();
3074 }
3075
3076 return nbytes;
3077 }
3078
3079 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3080 struct cftype *cft)
3081 {
3082 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3083 }
3084
3085 #ifdef CONFIG_MMU
3086 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3087 struct cftype *cft, u64 val)
3088 {
3089 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3090
3091 if (val & ~MOVE_MASK)
3092 return -EINVAL;
3093
3094 /*
3095 * No kind of locking is needed in here, because ->can_attach() will
3096 * check this value once in the beginning of the process, and then carry
3097 * on with stale data. This means that changes to this value will only
3098 * affect task migrations starting after the change.
3099 */
3100 memcg->move_charge_at_immigrate = val;
3101 return 0;
3102 }
3103 #else
3104 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3105 struct cftype *cft, u64 val)
3106 {
3107 return -ENOSYS;
3108 }
3109 #endif
3110
3111 #ifdef CONFIG_NUMA
3112 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3113 {
3114 struct numa_stat {
3115 const char *name;
3116 unsigned int lru_mask;
3117 };
3118
3119 static const struct numa_stat stats[] = {
3120 { "total", LRU_ALL },
3121 { "file", LRU_ALL_FILE },
3122 { "anon", LRU_ALL_ANON },
3123 { "unevictable", BIT(LRU_UNEVICTABLE) },
3124 };
3125 const struct numa_stat *stat;
3126 int nid;
3127 unsigned long nr;
3128 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3129
3130 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3131 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3132 seq_printf(m, "%s=%lu", stat->name, nr);
3133 for_each_node_state(nid, N_MEMORY) {
3134 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3135 stat->lru_mask);
3136 seq_printf(m, " N%d=%lu", nid, nr);
3137 }
3138 seq_putc(m, '\n');
3139 }
3140
3141 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3142 struct mem_cgroup *iter;
3143
3144 nr = 0;
3145 for_each_mem_cgroup_tree(iter, memcg)
3146 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3147 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3148 for_each_node_state(nid, N_MEMORY) {
3149 nr = 0;
3150 for_each_mem_cgroup_tree(iter, memcg)
3151 nr += mem_cgroup_node_nr_lru_pages(
3152 iter, nid, stat->lru_mask);
3153 seq_printf(m, " N%d=%lu", nid, nr);
3154 }
3155 seq_putc(m, '\n');
3156 }
3157
3158 return 0;
3159 }
3160 #endif /* CONFIG_NUMA */
3161
3162 static int memcg_stat_show(struct seq_file *m, void *v)
3163 {
3164 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3165 unsigned long memory, memsw;
3166 struct mem_cgroup *mi;
3167 unsigned int i;
3168
3169 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3170 MEM_CGROUP_STAT_NSTATS);
3171 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3172 MEM_CGROUP_EVENTS_NSTATS);
3173 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3174
3175 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3176 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3177 continue;
3178 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3179 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3180 }
3181
3182 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3183 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3184 mem_cgroup_read_events(memcg, i));
3185
3186 for (i = 0; i < NR_LRU_LISTS; i++)
3187 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3188 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3189
3190 /* Hierarchical information */
3191 memory = memsw = PAGE_COUNTER_MAX;
3192 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3193 memory = min(memory, mi->memory.limit);
3194 memsw = min(memsw, mi->memsw.limit);
3195 }
3196 seq_printf(m, "hierarchical_memory_limit %llu\n",
3197 (u64)memory * PAGE_SIZE);
3198 if (do_swap_account)
3199 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3200 (u64)memsw * PAGE_SIZE);
3201
3202 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3203 unsigned long long val = 0;
3204
3205 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3206 continue;
3207 for_each_mem_cgroup_tree(mi, memcg)
3208 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3209 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3210 }
3211
3212 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3213 unsigned long long val = 0;
3214
3215 for_each_mem_cgroup_tree(mi, memcg)
3216 val += mem_cgroup_read_events(mi, i);
3217 seq_printf(m, "total_%s %llu\n",
3218 mem_cgroup_events_names[i], val);
3219 }
3220
3221 for (i = 0; i < NR_LRU_LISTS; i++) {
3222 unsigned long long val = 0;
3223
3224 for_each_mem_cgroup_tree(mi, memcg)
3225 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3226 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3227 }
3228
3229 #ifdef CONFIG_DEBUG_VM
3230 {
3231 int nid, zid;
3232 struct mem_cgroup_per_zone *mz;
3233 struct zone_reclaim_stat *rstat;
3234 unsigned long recent_rotated[2] = {0, 0};
3235 unsigned long recent_scanned[2] = {0, 0};
3236
3237 for_each_online_node(nid)
3238 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3239 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3240 rstat = &mz->lruvec.reclaim_stat;
3241
3242 recent_rotated[0] += rstat->recent_rotated[0];
3243 recent_rotated[1] += rstat->recent_rotated[1];
3244 recent_scanned[0] += rstat->recent_scanned[0];
3245 recent_scanned[1] += rstat->recent_scanned[1];
3246 }
3247 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3248 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3249 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3250 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3251 }
3252 #endif
3253
3254 return 0;
3255 }
3256
3257 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3258 struct cftype *cft)
3259 {
3260 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3261
3262 return mem_cgroup_swappiness(memcg);
3263 }
3264
3265 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3266 struct cftype *cft, u64 val)
3267 {
3268 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3269
3270 if (val > 100)
3271 return -EINVAL;
3272
3273 if (css->parent)
3274 memcg->swappiness = val;
3275 else
3276 vm_swappiness = val;
3277
3278 return 0;
3279 }
3280
3281 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3282 {
3283 struct mem_cgroup_threshold_ary *t;
3284 unsigned long usage;
3285 int i;
3286
3287 rcu_read_lock();
3288 if (!swap)
3289 t = rcu_dereference(memcg->thresholds.primary);
3290 else
3291 t = rcu_dereference(memcg->memsw_thresholds.primary);
3292
3293 if (!t)
3294 goto unlock;
3295
3296 usage = mem_cgroup_usage(memcg, swap);
3297
3298 /*
3299 * current_threshold points to threshold just below or equal to usage.
3300 * If it's not true, a threshold was crossed after last
3301 * call of __mem_cgroup_threshold().
3302 */
3303 i = t->current_threshold;
3304
3305 /*
3306 * Iterate backward over array of thresholds starting from
3307 * current_threshold and check if a threshold is crossed.
3308 * If none of thresholds below usage is crossed, we read
3309 * only one element of the array here.
3310 */
3311 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3312 eventfd_signal(t->entries[i].eventfd, 1);
3313
3314 /* i = current_threshold + 1 */
3315 i++;
3316
3317 /*
3318 * Iterate forward over array of thresholds starting from
3319 * current_threshold+1 and check if a threshold is crossed.
3320 * If none of thresholds above usage is crossed, we read
3321 * only one element of the array here.
3322 */
3323 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3324 eventfd_signal(t->entries[i].eventfd, 1);
3325
3326 /* Update current_threshold */
3327 t->current_threshold = i - 1;
3328 unlock:
3329 rcu_read_unlock();
3330 }
3331
3332 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3333 {
3334 while (memcg) {
3335 __mem_cgroup_threshold(memcg, false);
3336 if (do_swap_account)
3337 __mem_cgroup_threshold(memcg, true);
3338
3339 memcg = parent_mem_cgroup(memcg);
3340 }
3341 }
3342
3343 static int compare_thresholds(const void *a, const void *b)
3344 {
3345 const struct mem_cgroup_threshold *_a = a;
3346 const struct mem_cgroup_threshold *_b = b;
3347
3348 if (_a->threshold > _b->threshold)
3349 return 1;
3350
3351 if (_a->threshold < _b->threshold)
3352 return -1;
3353
3354 return 0;
3355 }
3356
3357 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3358 {
3359 struct mem_cgroup_eventfd_list *ev;
3360
3361 spin_lock(&memcg_oom_lock);
3362
3363 list_for_each_entry(ev, &memcg->oom_notify, list)
3364 eventfd_signal(ev->eventfd, 1);
3365
3366 spin_unlock(&memcg_oom_lock);
3367 return 0;
3368 }
3369
3370 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3371 {
3372 struct mem_cgroup *iter;
3373
3374 for_each_mem_cgroup_tree(iter, memcg)
3375 mem_cgroup_oom_notify_cb(iter);
3376 }
3377
3378 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3379 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3380 {
3381 struct mem_cgroup_thresholds *thresholds;
3382 struct mem_cgroup_threshold_ary *new;
3383 unsigned long threshold;
3384 unsigned long usage;
3385 int i, size, ret;
3386
3387 ret = page_counter_memparse(args, "-1", &threshold);
3388 if (ret)
3389 return ret;
3390 threshold <<= PAGE_SHIFT;
3391
3392 mutex_lock(&memcg->thresholds_lock);
3393
3394 if (type == _MEM) {
3395 thresholds = &memcg->thresholds;
3396 usage = mem_cgroup_usage(memcg, false);
3397 } else if (type == _MEMSWAP) {
3398 thresholds = &memcg->memsw_thresholds;
3399 usage = mem_cgroup_usage(memcg, true);
3400 } else
3401 BUG();
3402
3403 /* Check if a threshold crossed before adding a new one */
3404 if (thresholds->primary)
3405 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3406
3407 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3408
3409 /* Allocate memory for new array of thresholds */
3410 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3411 GFP_KERNEL);
3412 if (!new) {
3413 ret = -ENOMEM;
3414 goto unlock;
3415 }
3416 new->size = size;
3417
3418 /* Copy thresholds (if any) to new array */
3419 if (thresholds->primary) {
3420 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3421 sizeof(struct mem_cgroup_threshold));
3422 }
3423
3424 /* Add new threshold */
3425 new->entries[size - 1].eventfd = eventfd;
3426 new->entries[size - 1].threshold = threshold;
3427
3428 /* Sort thresholds. Registering of new threshold isn't time-critical */
3429 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3430 compare_thresholds, NULL);
3431
3432 /* Find current threshold */
3433 new->current_threshold = -1;
3434 for (i = 0; i < size; i++) {
3435 if (new->entries[i].threshold <= usage) {
3436 /*
3437 * new->current_threshold will not be used until
3438 * rcu_assign_pointer(), so it's safe to increment
3439 * it here.
3440 */
3441 ++new->current_threshold;
3442 } else
3443 break;
3444 }
3445
3446 /* Free old spare buffer and save old primary buffer as spare */
3447 kfree(thresholds->spare);
3448 thresholds->spare = thresholds->primary;
3449
3450 rcu_assign_pointer(thresholds->primary, new);
3451
3452 /* To be sure that nobody uses thresholds */
3453 synchronize_rcu();
3454
3455 unlock:
3456 mutex_unlock(&memcg->thresholds_lock);
3457
3458 return ret;
3459 }
3460
3461 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3462 struct eventfd_ctx *eventfd, const char *args)
3463 {
3464 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3465 }
3466
3467 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3468 struct eventfd_ctx *eventfd, const char *args)
3469 {
3470 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3471 }
3472
3473 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3474 struct eventfd_ctx *eventfd, enum res_type type)
3475 {
3476 struct mem_cgroup_thresholds *thresholds;
3477 struct mem_cgroup_threshold_ary *new;
3478 unsigned long usage;
3479 int i, j, size;
3480
3481 mutex_lock(&memcg->thresholds_lock);
3482
3483 if (type == _MEM) {
3484 thresholds = &memcg->thresholds;
3485 usage = mem_cgroup_usage(memcg, false);
3486 } else if (type == _MEMSWAP) {
3487 thresholds = &memcg->memsw_thresholds;
3488 usage = mem_cgroup_usage(memcg, true);
3489 } else
3490 BUG();
3491
3492 if (!thresholds->primary)
3493 goto unlock;
3494
3495 /* Check if a threshold crossed before removing */
3496 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3497
3498 /* Calculate new number of threshold */
3499 size = 0;
3500 for (i = 0; i < thresholds->primary->size; i++) {
3501 if (thresholds->primary->entries[i].eventfd != eventfd)
3502 size++;
3503 }
3504
3505 new = thresholds->spare;
3506
3507 /* Set thresholds array to NULL if we don't have thresholds */
3508 if (!size) {
3509 kfree(new);
3510 new = NULL;
3511 goto swap_buffers;
3512 }
3513
3514 new->size = size;
3515
3516 /* Copy thresholds and find current threshold */
3517 new->current_threshold = -1;
3518 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3519 if (thresholds->primary->entries[i].eventfd == eventfd)
3520 continue;
3521
3522 new->entries[j] = thresholds->primary->entries[i];
3523 if (new->entries[j].threshold <= usage) {
3524 /*
3525 * new->current_threshold will not be used
3526 * until rcu_assign_pointer(), so it's safe to increment
3527 * it here.
3528 */
3529 ++new->current_threshold;
3530 }
3531 j++;
3532 }
3533
3534 swap_buffers:
3535 /* Swap primary and spare array */
3536 thresholds->spare = thresholds->primary;
3537 /* If all events are unregistered, free the spare array */
3538 if (!new) {
3539 kfree(thresholds->spare);
3540 thresholds->spare = NULL;
3541 }
3542
3543 rcu_assign_pointer(thresholds->primary, new);
3544
3545 /* To be sure that nobody uses thresholds */
3546 synchronize_rcu();
3547 unlock:
3548 mutex_unlock(&memcg->thresholds_lock);
3549 }
3550
3551 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3552 struct eventfd_ctx *eventfd)
3553 {
3554 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3555 }
3556
3557 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3558 struct eventfd_ctx *eventfd)
3559 {
3560 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3561 }
3562
3563 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3564 struct eventfd_ctx *eventfd, const char *args)
3565 {
3566 struct mem_cgroup_eventfd_list *event;
3567
3568 event = kmalloc(sizeof(*event), GFP_KERNEL);
3569 if (!event)
3570 return -ENOMEM;
3571
3572 spin_lock(&memcg_oom_lock);
3573
3574 event->eventfd = eventfd;
3575 list_add(&event->list, &memcg->oom_notify);
3576
3577 /* already in OOM ? */
3578 if (memcg->under_oom)
3579 eventfd_signal(eventfd, 1);
3580 spin_unlock(&memcg_oom_lock);
3581
3582 return 0;
3583 }
3584
3585 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3586 struct eventfd_ctx *eventfd)
3587 {
3588 struct mem_cgroup_eventfd_list *ev, *tmp;
3589
3590 spin_lock(&memcg_oom_lock);
3591
3592 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3593 if (ev->eventfd == eventfd) {
3594 list_del(&ev->list);
3595 kfree(ev);
3596 }
3597 }
3598
3599 spin_unlock(&memcg_oom_lock);
3600 }
3601
3602 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3603 {
3604 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3605
3606 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3607 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3608 return 0;
3609 }
3610
3611 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3612 struct cftype *cft, u64 val)
3613 {
3614 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3615
3616 /* cannot set to root cgroup and only 0 and 1 are allowed */
3617 if (!css->parent || !((val == 0) || (val == 1)))
3618 return -EINVAL;
3619
3620 memcg->oom_kill_disable = val;
3621 if (!val)
3622 memcg_oom_recover(memcg);
3623
3624 return 0;
3625 }
3626
3627 #ifdef CONFIG_MEMCG_KMEM
3628 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3629 {
3630 int ret;
3631
3632 ret = memcg_propagate_kmem(memcg);
3633 if (ret)
3634 return ret;
3635
3636 return mem_cgroup_sockets_init(memcg, ss);
3637 }
3638
3639 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3640 {
3641 struct cgroup_subsys_state *css;
3642 struct mem_cgroup *parent, *child;
3643 int kmemcg_id;
3644
3645 if (!memcg->kmem_acct_active)
3646 return;
3647
3648 /*
3649 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3650 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3651 * guarantees no cache will be created for this cgroup after we are
3652 * done (see memcg_create_kmem_cache()).
3653 */
3654 memcg->kmem_acct_active = false;
3655
3656 memcg_deactivate_kmem_caches(memcg);
3657
3658 kmemcg_id = memcg->kmemcg_id;
3659 BUG_ON(kmemcg_id < 0);
3660
3661 parent = parent_mem_cgroup(memcg);
3662 if (!parent)
3663 parent = root_mem_cgroup;
3664
3665 /*
3666 * Change kmemcg_id of this cgroup and all its descendants to the
3667 * parent's id, and then move all entries from this cgroup's list_lrus
3668 * to ones of the parent. After we have finished, all list_lrus
3669 * corresponding to this cgroup are guaranteed to remain empty. The
3670 * ordering is imposed by list_lru_node->lock taken by
3671 * memcg_drain_all_list_lrus().
3672 */
3673 css_for_each_descendant_pre(css, &memcg->css) {
3674 child = mem_cgroup_from_css(css);
3675 BUG_ON(child->kmemcg_id != kmemcg_id);
3676 child->kmemcg_id = parent->kmemcg_id;
3677 if (!memcg->use_hierarchy)
3678 break;
3679 }
3680 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3681
3682 memcg_free_cache_id(kmemcg_id);
3683 }
3684
3685 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3686 {
3687 if (memcg->kmem_acct_activated) {
3688 memcg_destroy_kmem_caches(memcg);
3689 static_key_slow_dec(&memcg_kmem_enabled_key);
3690 WARN_ON(page_counter_read(&memcg->kmem));
3691 }
3692 mem_cgroup_sockets_destroy(memcg);
3693 }
3694 #else
3695 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3696 {
3697 return 0;
3698 }
3699
3700 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3701 {
3702 }
3703
3704 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3705 {
3706 }
3707 #endif
3708
3709 #ifdef CONFIG_CGROUP_WRITEBACK
3710
3711 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3712 {
3713 return &memcg->cgwb_list;
3714 }
3715
3716 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3717 {
3718 return wb_domain_init(&memcg->cgwb_domain, gfp);
3719 }
3720
3721 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3722 {
3723 wb_domain_exit(&memcg->cgwb_domain);
3724 }
3725
3726 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3727 {
3728 wb_domain_size_changed(&memcg->cgwb_domain);
3729 }
3730
3731 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3732 {
3733 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3734
3735 if (!memcg->css.parent)
3736 return NULL;
3737
3738 return &memcg->cgwb_domain;
3739 }
3740
3741 /**
3742 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3743 * @wb: bdi_writeback in question
3744 * @pavail: out parameter for number of available pages
3745 * @pdirty: out parameter for number of dirty pages
3746 * @pwriteback: out parameter for number of pages under writeback
3747 *
3748 * Determine the numbers of available, dirty, and writeback pages in @wb's
3749 * memcg. Dirty and writeback are self-explanatory. Available is a bit
3750 * more involved.
3751 *
3752 * A memcg's headroom is "min(max, high) - used". The available memory is
3753 * calculated as the lowest headroom of itself and the ancestors plus the
3754 * number of pages already being used for file pages. Note that this
3755 * doesn't consider the actual amount of available memory in the system.
3756 * The caller should further cap *@pavail accordingly.
3757 */
3758 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pavail,
3759 unsigned long *pdirty, unsigned long *pwriteback)
3760 {
3761 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3762 struct mem_cgroup *parent;
3763 unsigned long head_room = PAGE_COUNTER_MAX;
3764 unsigned long file_pages;
3765
3766 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3767
3768 /* this should eventually include NR_UNSTABLE_NFS */
3769 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3770
3771 file_pages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3772 (1 << LRU_ACTIVE_FILE));
3773 while ((parent = parent_mem_cgroup(memcg))) {
3774 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3775 unsigned long used = page_counter_read(&memcg->memory);
3776
3777 head_room = min(head_room, ceiling - min(ceiling, used));
3778 memcg = parent;
3779 }
3780
3781 *pavail = file_pages + head_room;
3782 }
3783
3784 #else /* CONFIG_CGROUP_WRITEBACK */
3785
3786 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3787 {
3788 return 0;
3789 }
3790
3791 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3792 {
3793 }
3794
3795 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3796 {
3797 }
3798
3799 #endif /* CONFIG_CGROUP_WRITEBACK */
3800
3801 /*
3802 * DO NOT USE IN NEW FILES.
3803 *
3804 * "cgroup.event_control" implementation.
3805 *
3806 * This is way over-engineered. It tries to support fully configurable
3807 * events for each user. Such level of flexibility is completely
3808 * unnecessary especially in the light of the planned unified hierarchy.
3809 *
3810 * Please deprecate this and replace with something simpler if at all
3811 * possible.
3812 */
3813
3814 /*
3815 * Unregister event and free resources.
3816 *
3817 * Gets called from workqueue.
3818 */
3819 static void memcg_event_remove(struct work_struct *work)
3820 {
3821 struct mem_cgroup_event *event =
3822 container_of(work, struct mem_cgroup_event, remove);
3823 struct mem_cgroup *memcg = event->memcg;
3824
3825 remove_wait_queue(event->wqh, &event->wait);
3826
3827 event->unregister_event(memcg, event->eventfd);
3828
3829 /* Notify userspace the event is going away. */
3830 eventfd_signal(event->eventfd, 1);
3831
3832 eventfd_ctx_put(event->eventfd);
3833 kfree(event);
3834 css_put(&memcg->css);
3835 }
3836
3837 /*
3838 * Gets called on POLLHUP on eventfd when user closes it.
3839 *
3840 * Called with wqh->lock held and interrupts disabled.
3841 */
3842 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3843 int sync, void *key)
3844 {
3845 struct mem_cgroup_event *event =
3846 container_of(wait, struct mem_cgroup_event, wait);
3847 struct mem_cgroup *memcg = event->memcg;
3848 unsigned long flags = (unsigned long)key;
3849
3850 if (flags & POLLHUP) {
3851 /*
3852 * If the event has been detached at cgroup removal, we
3853 * can simply return knowing the other side will cleanup
3854 * for us.
3855 *
3856 * We can't race against event freeing since the other
3857 * side will require wqh->lock via remove_wait_queue(),
3858 * which we hold.
3859 */
3860 spin_lock(&memcg->event_list_lock);
3861 if (!list_empty(&event->list)) {
3862 list_del_init(&event->list);
3863 /*
3864 * We are in atomic context, but cgroup_event_remove()
3865 * may sleep, so we have to call it in workqueue.
3866 */
3867 schedule_work(&event->remove);
3868 }
3869 spin_unlock(&memcg->event_list_lock);
3870 }
3871
3872 return 0;
3873 }
3874
3875 static void memcg_event_ptable_queue_proc(struct file *file,
3876 wait_queue_head_t *wqh, poll_table *pt)
3877 {
3878 struct mem_cgroup_event *event =
3879 container_of(pt, struct mem_cgroup_event, pt);
3880
3881 event->wqh = wqh;
3882 add_wait_queue(wqh, &event->wait);
3883 }
3884
3885 /*
3886 * DO NOT USE IN NEW FILES.
3887 *
3888 * Parse input and register new cgroup event handler.
3889 *
3890 * Input must be in format '<event_fd> <control_fd> <args>'.
3891 * Interpretation of args is defined by control file implementation.
3892 */
3893 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3894 char *buf, size_t nbytes, loff_t off)
3895 {
3896 struct cgroup_subsys_state *css = of_css(of);
3897 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3898 struct mem_cgroup_event *event;
3899 struct cgroup_subsys_state *cfile_css;
3900 unsigned int efd, cfd;
3901 struct fd efile;
3902 struct fd cfile;
3903 const char *name;
3904 char *endp;
3905 int ret;
3906
3907 buf = strstrip(buf);
3908
3909 efd = simple_strtoul(buf, &endp, 10);
3910 if (*endp != ' ')
3911 return -EINVAL;
3912 buf = endp + 1;
3913
3914 cfd = simple_strtoul(buf, &endp, 10);
3915 if ((*endp != ' ') && (*endp != '\0'))
3916 return -EINVAL;
3917 buf = endp + 1;
3918
3919 event = kzalloc(sizeof(*event), GFP_KERNEL);
3920 if (!event)
3921 return -ENOMEM;
3922
3923 event->memcg = memcg;
3924 INIT_LIST_HEAD(&event->list);
3925 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3926 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3927 INIT_WORK(&event->remove, memcg_event_remove);
3928
3929 efile = fdget(efd);
3930 if (!efile.file) {
3931 ret = -EBADF;
3932 goto out_kfree;
3933 }
3934
3935 event->eventfd = eventfd_ctx_fileget(efile.file);
3936 if (IS_ERR(event->eventfd)) {
3937 ret = PTR_ERR(event->eventfd);
3938 goto out_put_efile;
3939 }
3940
3941 cfile = fdget(cfd);
3942 if (!cfile.file) {
3943 ret = -EBADF;
3944 goto out_put_eventfd;
3945 }
3946
3947 /* the process need read permission on control file */
3948 /* AV: shouldn't we check that it's been opened for read instead? */
3949 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3950 if (ret < 0)
3951 goto out_put_cfile;
3952
3953 /*
3954 * Determine the event callbacks and set them in @event. This used
3955 * to be done via struct cftype but cgroup core no longer knows
3956 * about these events. The following is crude but the whole thing
3957 * is for compatibility anyway.
3958 *
3959 * DO NOT ADD NEW FILES.
3960 */
3961 name = cfile.file->f_path.dentry->d_name.name;
3962
3963 if (!strcmp(name, "memory.usage_in_bytes")) {
3964 event->register_event = mem_cgroup_usage_register_event;
3965 event->unregister_event = mem_cgroup_usage_unregister_event;
3966 } else if (!strcmp(name, "memory.oom_control")) {
3967 event->register_event = mem_cgroup_oom_register_event;
3968 event->unregister_event = mem_cgroup_oom_unregister_event;
3969 } else if (!strcmp(name, "memory.pressure_level")) {
3970 event->register_event = vmpressure_register_event;
3971 event->unregister_event = vmpressure_unregister_event;
3972 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3973 event->register_event = memsw_cgroup_usage_register_event;
3974 event->unregister_event = memsw_cgroup_usage_unregister_event;
3975 } else {
3976 ret = -EINVAL;
3977 goto out_put_cfile;
3978 }
3979
3980 /*
3981 * Verify @cfile should belong to @css. Also, remaining events are
3982 * automatically removed on cgroup destruction but the removal is
3983 * asynchronous, so take an extra ref on @css.
3984 */
3985 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3986 &memory_cgrp_subsys);
3987 ret = -EINVAL;
3988 if (IS_ERR(cfile_css))
3989 goto out_put_cfile;
3990 if (cfile_css != css) {
3991 css_put(cfile_css);
3992 goto out_put_cfile;
3993 }
3994
3995 ret = event->register_event(memcg, event->eventfd, buf);
3996 if (ret)
3997 goto out_put_css;
3998
3999 efile.file->f_op->poll(efile.file, &event->pt);
4000
4001 spin_lock(&memcg->event_list_lock);
4002 list_add(&event->list, &memcg->event_list);
4003 spin_unlock(&memcg->event_list_lock);
4004
4005 fdput(cfile);
4006 fdput(efile);
4007
4008 return nbytes;
4009
4010 out_put_css:
4011 css_put(css);
4012 out_put_cfile:
4013 fdput(cfile);
4014 out_put_eventfd:
4015 eventfd_ctx_put(event->eventfd);
4016 out_put_efile:
4017 fdput(efile);
4018 out_kfree:
4019 kfree(event);
4020
4021 return ret;
4022 }
4023
4024 static struct cftype mem_cgroup_legacy_files[] = {
4025 {
4026 .name = "usage_in_bytes",
4027 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4028 .read_u64 = mem_cgroup_read_u64,
4029 },
4030 {
4031 .name = "max_usage_in_bytes",
4032 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4033 .write = mem_cgroup_reset,
4034 .read_u64 = mem_cgroup_read_u64,
4035 },
4036 {
4037 .name = "limit_in_bytes",
4038 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4039 .write = mem_cgroup_write,
4040 .read_u64 = mem_cgroup_read_u64,
4041 },
4042 {
4043 .name = "soft_limit_in_bytes",
4044 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4045 .write = mem_cgroup_write,
4046 .read_u64 = mem_cgroup_read_u64,
4047 },
4048 {
4049 .name = "failcnt",
4050 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4051 .write = mem_cgroup_reset,
4052 .read_u64 = mem_cgroup_read_u64,
4053 },
4054 {
4055 .name = "stat",
4056 .seq_show = memcg_stat_show,
4057 },
4058 {
4059 .name = "force_empty",
4060 .write = mem_cgroup_force_empty_write,
4061 },
4062 {
4063 .name = "use_hierarchy",
4064 .write_u64 = mem_cgroup_hierarchy_write,
4065 .read_u64 = mem_cgroup_hierarchy_read,
4066 },
4067 {
4068 .name = "cgroup.event_control", /* XXX: for compat */
4069 .write = memcg_write_event_control,
4070 .flags = CFTYPE_NO_PREFIX,
4071 .mode = S_IWUGO,
4072 },
4073 {
4074 .name = "swappiness",
4075 .read_u64 = mem_cgroup_swappiness_read,
4076 .write_u64 = mem_cgroup_swappiness_write,
4077 },
4078 {
4079 .name = "move_charge_at_immigrate",
4080 .read_u64 = mem_cgroup_move_charge_read,
4081 .write_u64 = mem_cgroup_move_charge_write,
4082 },
4083 {
4084 .name = "oom_control",
4085 .seq_show = mem_cgroup_oom_control_read,
4086 .write_u64 = mem_cgroup_oom_control_write,
4087 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4088 },
4089 {
4090 .name = "pressure_level",
4091 },
4092 #ifdef CONFIG_NUMA
4093 {
4094 .name = "numa_stat",
4095 .seq_show = memcg_numa_stat_show,
4096 },
4097 #endif
4098 #ifdef CONFIG_MEMCG_KMEM
4099 {
4100 .name = "kmem.limit_in_bytes",
4101 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4102 .write = mem_cgroup_write,
4103 .read_u64 = mem_cgroup_read_u64,
4104 },
4105 {
4106 .name = "kmem.usage_in_bytes",
4107 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4108 .read_u64 = mem_cgroup_read_u64,
4109 },
4110 {
4111 .name = "kmem.failcnt",
4112 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4113 .write = mem_cgroup_reset,
4114 .read_u64 = mem_cgroup_read_u64,
4115 },
4116 {
4117 .name = "kmem.max_usage_in_bytes",
4118 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4119 .write = mem_cgroup_reset,
4120 .read_u64 = mem_cgroup_read_u64,
4121 },
4122 #ifdef CONFIG_SLABINFO
4123 {
4124 .name = "kmem.slabinfo",
4125 .seq_start = slab_start,
4126 .seq_next = slab_next,
4127 .seq_stop = slab_stop,
4128 .seq_show = memcg_slab_show,
4129 },
4130 #endif
4131 #endif
4132 { }, /* terminate */
4133 };
4134
4135 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4136 {
4137 struct mem_cgroup_per_node *pn;
4138 struct mem_cgroup_per_zone *mz;
4139 int zone, tmp = node;
4140 /*
4141 * This routine is called against possible nodes.
4142 * But it's BUG to call kmalloc() against offline node.
4143 *
4144 * TODO: this routine can waste much memory for nodes which will
4145 * never be onlined. It's better to use memory hotplug callback
4146 * function.
4147 */
4148 if (!node_state(node, N_NORMAL_MEMORY))
4149 tmp = -1;
4150 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4151 if (!pn)
4152 return 1;
4153
4154 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4155 mz = &pn->zoneinfo[zone];
4156 lruvec_init(&mz->lruvec);
4157 mz->usage_in_excess = 0;
4158 mz->on_tree = false;
4159 mz->memcg = memcg;
4160 }
4161 memcg->nodeinfo[node] = pn;
4162 return 0;
4163 }
4164
4165 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4166 {
4167 kfree(memcg->nodeinfo[node]);
4168 }
4169
4170 static struct mem_cgroup *mem_cgroup_alloc(void)
4171 {
4172 struct mem_cgroup *memcg;
4173 size_t size;
4174
4175 size = sizeof(struct mem_cgroup);
4176 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4177
4178 memcg = kzalloc(size, GFP_KERNEL);
4179 if (!memcg)
4180 return NULL;
4181
4182 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4183 if (!memcg->stat)
4184 goto out_free;
4185
4186 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4187 goto out_free_stat;
4188
4189 return memcg;
4190
4191 out_free_stat:
4192 free_percpu(memcg->stat);
4193 out_free:
4194 kfree(memcg);
4195 return NULL;
4196 }
4197
4198 /*
4199 * At destroying mem_cgroup, references from swap_cgroup can remain.
4200 * (scanning all at force_empty is too costly...)
4201 *
4202 * Instead of clearing all references at force_empty, we remember
4203 * the number of reference from swap_cgroup and free mem_cgroup when
4204 * it goes down to 0.
4205 *
4206 * Removal of cgroup itself succeeds regardless of refs from swap.
4207 */
4208
4209 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4210 {
4211 int node;
4212
4213 mem_cgroup_remove_from_trees(memcg);
4214
4215 for_each_node(node)
4216 free_mem_cgroup_per_zone_info(memcg, node);
4217
4218 free_percpu(memcg->stat);
4219 memcg_wb_domain_exit(memcg);
4220 kfree(memcg);
4221 }
4222
4223 /*
4224 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4225 */
4226 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4227 {
4228 if (!memcg->memory.parent)
4229 return NULL;
4230 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4231 }
4232 EXPORT_SYMBOL(parent_mem_cgroup);
4233
4234 static struct cgroup_subsys_state * __ref
4235 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4236 {
4237 struct mem_cgroup *memcg;
4238 long error = -ENOMEM;
4239 int node;
4240
4241 memcg = mem_cgroup_alloc();
4242 if (!memcg)
4243 return ERR_PTR(error);
4244
4245 for_each_node(node)
4246 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4247 goto free_out;
4248
4249 /* root ? */
4250 if (parent_css == NULL) {
4251 root_mem_cgroup = memcg;
4252 mem_cgroup_root_css = &memcg->css;
4253 page_counter_init(&memcg->memory, NULL);
4254 memcg->high = PAGE_COUNTER_MAX;
4255 memcg->soft_limit = PAGE_COUNTER_MAX;
4256 page_counter_init(&memcg->memsw, NULL);
4257 page_counter_init(&memcg->kmem, NULL);
4258 }
4259
4260 memcg->last_scanned_node = MAX_NUMNODES;
4261 INIT_LIST_HEAD(&memcg->oom_notify);
4262 memcg->move_charge_at_immigrate = 0;
4263 mutex_init(&memcg->thresholds_lock);
4264 spin_lock_init(&memcg->move_lock);
4265 vmpressure_init(&memcg->vmpressure);
4266 INIT_LIST_HEAD(&memcg->event_list);
4267 spin_lock_init(&memcg->event_list_lock);
4268 #ifdef CONFIG_MEMCG_KMEM
4269 memcg->kmemcg_id = -1;
4270 #endif
4271 #ifdef CONFIG_CGROUP_WRITEBACK
4272 INIT_LIST_HEAD(&memcg->cgwb_list);
4273 #endif
4274 return &memcg->css;
4275
4276 free_out:
4277 __mem_cgroup_free(memcg);
4278 return ERR_PTR(error);
4279 }
4280
4281 static int
4282 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4283 {
4284 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4285 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4286 int ret;
4287
4288 if (css->id > MEM_CGROUP_ID_MAX)
4289 return -ENOSPC;
4290
4291 if (!parent)
4292 return 0;
4293
4294 mutex_lock(&memcg_create_mutex);
4295
4296 memcg->use_hierarchy = parent->use_hierarchy;
4297 memcg->oom_kill_disable = parent->oom_kill_disable;
4298 memcg->swappiness = mem_cgroup_swappiness(parent);
4299
4300 if (parent->use_hierarchy) {
4301 page_counter_init(&memcg->memory, &parent->memory);
4302 memcg->high = PAGE_COUNTER_MAX;
4303 memcg->soft_limit = PAGE_COUNTER_MAX;
4304 page_counter_init(&memcg->memsw, &parent->memsw);
4305 page_counter_init(&memcg->kmem, &parent->kmem);
4306
4307 /*
4308 * No need to take a reference to the parent because cgroup
4309 * core guarantees its existence.
4310 */
4311 } else {
4312 page_counter_init(&memcg->memory, NULL);
4313 memcg->high = PAGE_COUNTER_MAX;
4314 memcg->soft_limit = PAGE_COUNTER_MAX;
4315 page_counter_init(&memcg->memsw, NULL);
4316 page_counter_init(&memcg->kmem, NULL);
4317 /*
4318 * Deeper hierachy with use_hierarchy == false doesn't make
4319 * much sense so let cgroup subsystem know about this
4320 * unfortunate state in our controller.
4321 */
4322 if (parent != root_mem_cgroup)
4323 memory_cgrp_subsys.broken_hierarchy = true;
4324 }
4325 mutex_unlock(&memcg_create_mutex);
4326
4327 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4328 if (ret)
4329 return ret;
4330
4331 /*
4332 * Make sure the memcg is initialized: mem_cgroup_iter()
4333 * orders reading memcg->initialized against its callers
4334 * reading the memcg members.
4335 */
4336 smp_store_release(&memcg->initialized, 1);
4337
4338 return 0;
4339 }
4340
4341 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4342 {
4343 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4344 struct mem_cgroup_event *event, *tmp;
4345
4346 /*
4347 * Unregister events and notify userspace.
4348 * Notify userspace about cgroup removing only after rmdir of cgroup
4349 * directory to avoid race between userspace and kernelspace.
4350 */
4351 spin_lock(&memcg->event_list_lock);
4352 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4353 list_del_init(&event->list);
4354 schedule_work(&event->remove);
4355 }
4356 spin_unlock(&memcg->event_list_lock);
4357
4358 vmpressure_cleanup(&memcg->vmpressure);
4359
4360 memcg_deactivate_kmem(memcg);
4361
4362 wb_memcg_offline(memcg);
4363 }
4364
4365 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4366 {
4367 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4368
4369 memcg_destroy_kmem(memcg);
4370 __mem_cgroup_free(memcg);
4371 }
4372
4373 /**
4374 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4375 * @css: the target css
4376 *
4377 * Reset the states of the mem_cgroup associated with @css. This is
4378 * invoked when the userland requests disabling on the default hierarchy
4379 * but the memcg is pinned through dependency. The memcg should stop
4380 * applying policies and should revert to the vanilla state as it may be
4381 * made visible again.
4382 *
4383 * The current implementation only resets the essential configurations.
4384 * This needs to be expanded to cover all the visible parts.
4385 */
4386 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4387 {
4388 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4389
4390 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4391 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4392 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4393 memcg->low = 0;
4394 memcg->high = PAGE_COUNTER_MAX;
4395 memcg->soft_limit = PAGE_COUNTER_MAX;
4396 memcg_wb_domain_size_changed(memcg);
4397 }
4398
4399 #ifdef CONFIG_MMU
4400 /* Handlers for move charge at task migration. */
4401 static int mem_cgroup_do_precharge(unsigned long count)
4402 {
4403 int ret;
4404
4405 /* Try a single bulk charge without reclaim first */
4406 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4407 if (!ret) {
4408 mc.precharge += count;
4409 return ret;
4410 }
4411 if (ret == -EINTR) {
4412 cancel_charge(root_mem_cgroup, count);
4413 return ret;
4414 }
4415
4416 /* Try charges one by one with reclaim */
4417 while (count--) {
4418 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4419 /*
4420 * In case of failure, any residual charges against
4421 * mc.to will be dropped by mem_cgroup_clear_mc()
4422 * later on. However, cancel any charges that are
4423 * bypassed to root right away or they'll be lost.
4424 */
4425 if (ret == -EINTR)
4426 cancel_charge(root_mem_cgroup, 1);
4427 if (ret)
4428 return ret;
4429 mc.precharge++;
4430 cond_resched();
4431 }
4432 return 0;
4433 }
4434
4435 /**
4436 * get_mctgt_type - get target type of moving charge
4437 * @vma: the vma the pte to be checked belongs
4438 * @addr: the address corresponding to the pte to be checked
4439 * @ptent: the pte to be checked
4440 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4441 *
4442 * Returns
4443 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4444 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4445 * move charge. if @target is not NULL, the page is stored in target->page
4446 * with extra refcnt got(Callers should handle it).
4447 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4448 * target for charge migration. if @target is not NULL, the entry is stored
4449 * in target->ent.
4450 *
4451 * Called with pte lock held.
4452 */
4453 union mc_target {
4454 struct page *page;
4455 swp_entry_t ent;
4456 };
4457
4458 enum mc_target_type {
4459 MC_TARGET_NONE = 0,
4460 MC_TARGET_PAGE,
4461 MC_TARGET_SWAP,
4462 };
4463
4464 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4465 unsigned long addr, pte_t ptent)
4466 {
4467 struct page *page = vm_normal_page(vma, addr, ptent);
4468
4469 if (!page || !page_mapped(page))
4470 return NULL;
4471 if (PageAnon(page)) {
4472 if (!(mc.flags & MOVE_ANON))
4473 return NULL;
4474 } else {
4475 if (!(mc.flags & MOVE_FILE))
4476 return NULL;
4477 }
4478 if (!get_page_unless_zero(page))
4479 return NULL;
4480
4481 return page;
4482 }
4483
4484 #ifdef CONFIG_SWAP
4485 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4486 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4487 {
4488 struct page *page = NULL;
4489 swp_entry_t ent = pte_to_swp_entry(ptent);
4490
4491 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4492 return NULL;
4493 /*
4494 * Because lookup_swap_cache() updates some statistics counter,
4495 * we call find_get_page() with swapper_space directly.
4496 */
4497 page = find_get_page(swap_address_space(ent), ent.val);
4498 if (do_swap_account)
4499 entry->val = ent.val;
4500
4501 return page;
4502 }
4503 #else
4504 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4505 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4506 {
4507 return NULL;
4508 }
4509 #endif
4510
4511 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4512 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4513 {
4514 struct page *page = NULL;
4515 struct address_space *mapping;
4516 pgoff_t pgoff;
4517
4518 if (!vma->vm_file) /* anonymous vma */
4519 return NULL;
4520 if (!(mc.flags & MOVE_FILE))
4521 return NULL;
4522
4523 mapping = vma->vm_file->f_mapping;
4524 pgoff = linear_page_index(vma, addr);
4525
4526 /* page is moved even if it's not RSS of this task(page-faulted). */
4527 #ifdef CONFIG_SWAP
4528 /* shmem/tmpfs may report page out on swap: account for that too. */
4529 if (shmem_mapping(mapping)) {
4530 page = find_get_entry(mapping, pgoff);
4531 if (radix_tree_exceptional_entry(page)) {
4532 swp_entry_t swp = radix_to_swp_entry(page);
4533 if (do_swap_account)
4534 *entry = swp;
4535 page = find_get_page(swap_address_space(swp), swp.val);
4536 }
4537 } else
4538 page = find_get_page(mapping, pgoff);
4539 #else
4540 page = find_get_page(mapping, pgoff);
4541 #endif
4542 return page;
4543 }
4544
4545 /**
4546 * mem_cgroup_move_account - move account of the page
4547 * @page: the page
4548 * @nr_pages: number of regular pages (>1 for huge pages)
4549 * @from: mem_cgroup which the page is moved from.
4550 * @to: mem_cgroup which the page is moved to. @from != @to.
4551 *
4552 * The caller must confirm following.
4553 * - page is not on LRU (isolate_page() is useful.)
4554 * - compound_lock is held when nr_pages > 1
4555 *
4556 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4557 * from old cgroup.
4558 */
4559 static int mem_cgroup_move_account(struct page *page,
4560 unsigned int nr_pages,
4561 struct mem_cgroup *from,
4562 struct mem_cgroup *to)
4563 {
4564 unsigned long flags;
4565 int ret;
4566 bool anon;
4567
4568 VM_BUG_ON(from == to);
4569 VM_BUG_ON_PAGE(PageLRU(page), page);
4570 /*
4571 * The page is isolated from LRU. So, collapse function
4572 * will not handle this page. But page splitting can happen.
4573 * Do this check under compound_page_lock(). The caller should
4574 * hold it.
4575 */
4576 ret = -EBUSY;
4577 if (nr_pages > 1 && !PageTransHuge(page))
4578 goto out;
4579
4580 /*
4581 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4582 * of its source page while we change it: page migration takes
4583 * both pages off the LRU, but page cache replacement doesn't.
4584 */
4585 if (!trylock_page(page))
4586 goto out;
4587
4588 ret = -EINVAL;
4589 if (page->mem_cgroup != from)
4590 goto out_unlock;
4591
4592 anon = PageAnon(page);
4593
4594 spin_lock_irqsave(&from->move_lock, flags);
4595
4596 if (!anon && page_mapped(page)) {
4597 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4598 nr_pages);
4599 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4600 nr_pages);
4601 }
4602
4603 /*
4604 * move_lock grabbed above and caller set from->moving_account, so
4605 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4606 * So mapping should be stable for dirty pages.
4607 */
4608 if (!anon && PageDirty(page)) {
4609 struct address_space *mapping = page_mapping(page);
4610
4611 if (mapping_cap_account_dirty(mapping)) {
4612 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4613 nr_pages);
4614 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4615 nr_pages);
4616 }
4617 }
4618
4619 if (PageWriteback(page)) {
4620 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4621 nr_pages);
4622 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4623 nr_pages);
4624 }
4625
4626 /*
4627 * It is safe to change page->mem_cgroup here because the page
4628 * is referenced, charged, and isolated - we can't race with
4629 * uncharging, charging, migration, or LRU putback.
4630 */
4631
4632 /* caller should have done css_get */
4633 page->mem_cgroup = to;
4634 spin_unlock_irqrestore(&from->move_lock, flags);
4635
4636 ret = 0;
4637
4638 local_irq_disable();
4639 mem_cgroup_charge_statistics(to, page, nr_pages);
4640 memcg_check_events(to, page);
4641 mem_cgroup_charge_statistics(from, page, -nr_pages);
4642 memcg_check_events(from, page);
4643 local_irq_enable();
4644 out_unlock:
4645 unlock_page(page);
4646 out:
4647 return ret;
4648 }
4649
4650 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4651 unsigned long addr, pte_t ptent, union mc_target *target)
4652 {
4653 struct page *page = NULL;
4654 enum mc_target_type ret = MC_TARGET_NONE;
4655 swp_entry_t ent = { .val = 0 };
4656
4657 if (pte_present(ptent))
4658 page = mc_handle_present_pte(vma, addr, ptent);
4659 else if (is_swap_pte(ptent))
4660 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4661 else if (pte_none(ptent))
4662 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4663
4664 if (!page && !ent.val)
4665 return ret;
4666 if (page) {
4667 /*
4668 * Do only loose check w/o serialization.
4669 * mem_cgroup_move_account() checks the page is valid or
4670 * not under LRU exclusion.
4671 */
4672 if (page->mem_cgroup == mc.from) {
4673 ret = MC_TARGET_PAGE;
4674 if (target)
4675 target->page = page;
4676 }
4677 if (!ret || !target)
4678 put_page(page);
4679 }
4680 /* There is a swap entry and a page doesn't exist or isn't charged */
4681 if (ent.val && !ret &&
4682 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4683 ret = MC_TARGET_SWAP;
4684 if (target)
4685 target->ent = ent;
4686 }
4687 return ret;
4688 }
4689
4690 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4691 /*
4692 * We don't consider swapping or file mapped pages because THP does not
4693 * support them for now.
4694 * Caller should make sure that pmd_trans_huge(pmd) is true.
4695 */
4696 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4697 unsigned long addr, pmd_t pmd, union mc_target *target)
4698 {
4699 struct page *page = NULL;
4700 enum mc_target_type ret = MC_TARGET_NONE;
4701
4702 page = pmd_page(pmd);
4703 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4704 if (!(mc.flags & MOVE_ANON))
4705 return ret;
4706 if (page->mem_cgroup == mc.from) {
4707 ret = MC_TARGET_PAGE;
4708 if (target) {
4709 get_page(page);
4710 target->page = page;
4711 }
4712 }
4713 return ret;
4714 }
4715 #else
4716 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4717 unsigned long addr, pmd_t pmd, union mc_target *target)
4718 {
4719 return MC_TARGET_NONE;
4720 }
4721 #endif
4722
4723 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4724 unsigned long addr, unsigned long end,
4725 struct mm_walk *walk)
4726 {
4727 struct vm_area_struct *vma = walk->vma;
4728 pte_t *pte;
4729 spinlock_t *ptl;
4730
4731 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4732 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4733 mc.precharge += HPAGE_PMD_NR;
4734 spin_unlock(ptl);
4735 return 0;
4736 }
4737
4738 if (pmd_trans_unstable(pmd))
4739 return 0;
4740 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4741 for (; addr != end; pte++, addr += PAGE_SIZE)
4742 if (get_mctgt_type(vma, addr, *pte, NULL))
4743 mc.precharge++; /* increment precharge temporarily */
4744 pte_unmap_unlock(pte - 1, ptl);
4745 cond_resched();
4746
4747 return 0;
4748 }
4749
4750 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4751 {
4752 unsigned long precharge;
4753
4754 struct mm_walk mem_cgroup_count_precharge_walk = {
4755 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4756 .mm = mm,
4757 };
4758 down_read(&mm->mmap_sem);
4759 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4760 up_read(&mm->mmap_sem);
4761
4762 precharge = mc.precharge;
4763 mc.precharge = 0;
4764
4765 return precharge;
4766 }
4767
4768 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4769 {
4770 unsigned long precharge = mem_cgroup_count_precharge(mm);
4771
4772 VM_BUG_ON(mc.moving_task);
4773 mc.moving_task = current;
4774 return mem_cgroup_do_precharge(precharge);
4775 }
4776
4777 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4778 static void __mem_cgroup_clear_mc(void)
4779 {
4780 struct mem_cgroup *from = mc.from;
4781 struct mem_cgroup *to = mc.to;
4782
4783 /* we must uncharge all the leftover precharges from mc.to */
4784 if (mc.precharge) {
4785 cancel_charge(mc.to, mc.precharge);
4786 mc.precharge = 0;
4787 }
4788 /*
4789 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4790 * we must uncharge here.
4791 */
4792 if (mc.moved_charge) {
4793 cancel_charge(mc.from, mc.moved_charge);
4794 mc.moved_charge = 0;
4795 }
4796 /* we must fixup refcnts and charges */
4797 if (mc.moved_swap) {
4798 /* uncharge swap account from the old cgroup */
4799 if (!mem_cgroup_is_root(mc.from))
4800 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4801
4802 /*
4803 * we charged both to->memory and to->memsw, so we
4804 * should uncharge to->memory.
4805 */
4806 if (!mem_cgroup_is_root(mc.to))
4807 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4808
4809 css_put_many(&mc.from->css, mc.moved_swap);
4810
4811 /* we've already done css_get(mc.to) */
4812 mc.moved_swap = 0;
4813 }
4814 memcg_oom_recover(from);
4815 memcg_oom_recover(to);
4816 wake_up_all(&mc.waitq);
4817 }
4818
4819 static void mem_cgroup_clear_mc(void)
4820 {
4821 /*
4822 * we must clear moving_task before waking up waiters at the end of
4823 * task migration.
4824 */
4825 mc.moving_task = NULL;
4826 __mem_cgroup_clear_mc();
4827 spin_lock(&mc.lock);
4828 mc.from = NULL;
4829 mc.to = NULL;
4830 spin_unlock(&mc.lock);
4831 }
4832
4833 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
4834 struct cgroup_taskset *tset)
4835 {
4836 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4837 struct mem_cgroup *from;
4838 struct task_struct *p;
4839 struct mm_struct *mm;
4840 unsigned long move_flags;
4841 int ret = 0;
4842
4843 /*
4844 * We are now commited to this value whatever it is. Changes in this
4845 * tunable will only affect upcoming migrations, not the current one.
4846 * So we need to save it, and keep it going.
4847 */
4848 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4849 if (!move_flags)
4850 return 0;
4851
4852 p = cgroup_taskset_first(tset);
4853 from = mem_cgroup_from_task(p);
4854
4855 VM_BUG_ON(from == memcg);
4856
4857 mm = get_task_mm(p);
4858 if (!mm)
4859 return 0;
4860 /* We move charges only when we move a owner of the mm */
4861 if (mm->owner == p) {
4862 VM_BUG_ON(mc.from);
4863 VM_BUG_ON(mc.to);
4864 VM_BUG_ON(mc.precharge);
4865 VM_BUG_ON(mc.moved_charge);
4866 VM_BUG_ON(mc.moved_swap);
4867
4868 spin_lock(&mc.lock);
4869 mc.from = from;
4870 mc.to = memcg;
4871 mc.flags = move_flags;
4872 spin_unlock(&mc.lock);
4873 /* We set mc.moving_task later */
4874
4875 ret = mem_cgroup_precharge_mc(mm);
4876 if (ret)
4877 mem_cgroup_clear_mc();
4878 }
4879 mmput(mm);
4880 return ret;
4881 }
4882
4883 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
4884 struct cgroup_taskset *tset)
4885 {
4886 if (mc.to)
4887 mem_cgroup_clear_mc();
4888 }
4889
4890 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4891 unsigned long addr, unsigned long end,
4892 struct mm_walk *walk)
4893 {
4894 int ret = 0;
4895 struct vm_area_struct *vma = walk->vma;
4896 pte_t *pte;
4897 spinlock_t *ptl;
4898 enum mc_target_type target_type;
4899 union mc_target target;
4900 struct page *page;
4901
4902 /*
4903 * We don't take compound_lock() here but no race with splitting thp
4904 * happens because:
4905 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
4906 * under splitting, which means there's no concurrent thp split,
4907 * - if another thread runs into split_huge_page() just after we
4908 * entered this if-block, the thread must wait for page table lock
4909 * to be unlocked in __split_huge_page_splitting(), where the main
4910 * part of thp split is not executed yet.
4911 */
4912 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4913 if (mc.precharge < HPAGE_PMD_NR) {
4914 spin_unlock(ptl);
4915 return 0;
4916 }
4917 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4918 if (target_type == MC_TARGET_PAGE) {
4919 page = target.page;
4920 if (!isolate_lru_page(page)) {
4921 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
4922 mc.from, mc.to)) {
4923 mc.precharge -= HPAGE_PMD_NR;
4924 mc.moved_charge += HPAGE_PMD_NR;
4925 }
4926 putback_lru_page(page);
4927 }
4928 put_page(page);
4929 }
4930 spin_unlock(ptl);
4931 return 0;
4932 }
4933
4934 if (pmd_trans_unstable(pmd))
4935 return 0;
4936 retry:
4937 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4938 for (; addr != end; addr += PAGE_SIZE) {
4939 pte_t ptent = *(pte++);
4940 swp_entry_t ent;
4941
4942 if (!mc.precharge)
4943 break;
4944
4945 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4946 case MC_TARGET_PAGE:
4947 page = target.page;
4948 if (isolate_lru_page(page))
4949 goto put;
4950 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4951 mc.precharge--;
4952 /* we uncharge from mc.from later. */
4953 mc.moved_charge++;
4954 }
4955 putback_lru_page(page);
4956 put: /* get_mctgt_type() gets the page */
4957 put_page(page);
4958 break;
4959 case MC_TARGET_SWAP:
4960 ent = target.ent;
4961 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4962 mc.precharge--;
4963 /* we fixup refcnts and charges later. */
4964 mc.moved_swap++;
4965 }
4966 break;
4967 default:
4968 break;
4969 }
4970 }
4971 pte_unmap_unlock(pte - 1, ptl);
4972 cond_resched();
4973
4974 if (addr != end) {
4975 /*
4976 * We have consumed all precharges we got in can_attach().
4977 * We try charge one by one, but don't do any additional
4978 * charges to mc.to if we have failed in charge once in attach()
4979 * phase.
4980 */
4981 ret = mem_cgroup_do_precharge(1);
4982 if (!ret)
4983 goto retry;
4984 }
4985
4986 return ret;
4987 }
4988
4989 static void mem_cgroup_move_charge(struct mm_struct *mm)
4990 {
4991 struct mm_walk mem_cgroup_move_charge_walk = {
4992 .pmd_entry = mem_cgroup_move_charge_pte_range,
4993 .mm = mm,
4994 };
4995
4996 lru_add_drain_all();
4997 /*
4998 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4999 * move_lock while we're moving its pages to another memcg.
5000 * Then wait for already started RCU-only updates to finish.
5001 */
5002 atomic_inc(&mc.from->moving_account);
5003 synchronize_rcu();
5004 retry:
5005 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5006 /*
5007 * Someone who are holding the mmap_sem might be waiting in
5008 * waitq. So we cancel all extra charges, wake up all waiters,
5009 * and retry. Because we cancel precharges, we might not be able
5010 * to move enough charges, but moving charge is a best-effort
5011 * feature anyway, so it wouldn't be a big problem.
5012 */
5013 __mem_cgroup_clear_mc();
5014 cond_resched();
5015 goto retry;
5016 }
5017 /*
5018 * When we have consumed all precharges and failed in doing
5019 * additional charge, the page walk just aborts.
5020 */
5021 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5022 up_read(&mm->mmap_sem);
5023 atomic_dec(&mc.from->moving_account);
5024 }
5025
5026 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5027 struct cgroup_taskset *tset)
5028 {
5029 struct task_struct *p = cgroup_taskset_first(tset);
5030 struct mm_struct *mm = get_task_mm(p);
5031
5032 if (mm) {
5033 if (mc.to)
5034 mem_cgroup_move_charge(mm);
5035 mmput(mm);
5036 }
5037 if (mc.to)
5038 mem_cgroup_clear_mc();
5039 }
5040 #else /* !CONFIG_MMU */
5041 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5042 struct cgroup_taskset *tset)
5043 {
5044 return 0;
5045 }
5046 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5047 struct cgroup_taskset *tset)
5048 {
5049 }
5050 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5051 struct cgroup_taskset *tset)
5052 {
5053 }
5054 #endif
5055
5056 /*
5057 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5058 * to verify whether we're attached to the default hierarchy on each mount
5059 * attempt.
5060 */
5061 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5062 {
5063 /*
5064 * use_hierarchy is forced on the default hierarchy. cgroup core
5065 * guarantees that @root doesn't have any children, so turning it
5066 * on for the root memcg is enough.
5067 */
5068 if (cgroup_on_dfl(root_css->cgroup))
5069 root_mem_cgroup->use_hierarchy = true;
5070 else
5071 root_mem_cgroup->use_hierarchy = false;
5072 }
5073
5074 static u64 memory_current_read(struct cgroup_subsys_state *css,
5075 struct cftype *cft)
5076 {
5077 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5078 }
5079
5080 static int memory_low_show(struct seq_file *m, void *v)
5081 {
5082 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5083 unsigned long low = READ_ONCE(memcg->low);
5084
5085 if (low == PAGE_COUNTER_MAX)
5086 seq_puts(m, "max\n");
5087 else
5088 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5089
5090 return 0;
5091 }
5092
5093 static ssize_t memory_low_write(struct kernfs_open_file *of,
5094 char *buf, size_t nbytes, loff_t off)
5095 {
5096 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5097 unsigned long low;
5098 int err;
5099
5100 buf = strstrip(buf);
5101 err = page_counter_memparse(buf, "max", &low);
5102 if (err)
5103 return err;
5104
5105 memcg->low = low;
5106
5107 return nbytes;
5108 }
5109
5110 static int memory_high_show(struct seq_file *m, void *v)
5111 {
5112 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5113 unsigned long high = READ_ONCE(memcg->high);
5114
5115 if (high == PAGE_COUNTER_MAX)
5116 seq_puts(m, "max\n");
5117 else
5118 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5119
5120 return 0;
5121 }
5122
5123 static ssize_t memory_high_write(struct kernfs_open_file *of,
5124 char *buf, size_t nbytes, loff_t off)
5125 {
5126 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5127 unsigned long high;
5128 int err;
5129
5130 buf = strstrip(buf);
5131 err = page_counter_memparse(buf, "max", &high);
5132 if (err)
5133 return err;
5134
5135 memcg->high = high;
5136
5137 memcg_wb_domain_size_changed(memcg);
5138 return nbytes;
5139 }
5140
5141 static int memory_max_show(struct seq_file *m, void *v)
5142 {
5143 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5144 unsigned long max = READ_ONCE(memcg->memory.limit);
5145
5146 if (max == PAGE_COUNTER_MAX)
5147 seq_puts(m, "max\n");
5148 else
5149 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5150
5151 return 0;
5152 }
5153
5154 static ssize_t memory_max_write(struct kernfs_open_file *of,
5155 char *buf, size_t nbytes, loff_t off)
5156 {
5157 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5158 unsigned long max;
5159 int err;
5160
5161 buf = strstrip(buf);
5162 err = page_counter_memparse(buf, "max", &max);
5163 if (err)
5164 return err;
5165
5166 err = mem_cgroup_resize_limit(memcg, max);
5167 if (err)
5168 return err;
5169
5170 memcg_wb_domain_size_changed(memcg);
5171 return nbytes;
5172 }
5173
5174 static int memory_events_show(struct seq_file *m, void *v)
5175 {
5176 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5177
5178 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5179 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5180 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5181 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5182
5183 return 0;
5184 }
5185
5186 static struct cftype memory_files[] = {
5187 {
5188 .name = "current",
5189 .read_u64 = memory_current_read,
5190 },
5191 {
5192 .name = "low",
5193 .flags = CFTYPE_NOT_ON_ROOT,
5194 .seq_show = memory_low_show,
5195 .write = memory_low_write,
5196 },
5197 {
5198 .name = "high",
5199 .flags = CFTYPE_NOT_ON_ROOT,
5200 .seq_show = memory_high_show,
5201 .write = memory_high_write,
5202 },
5203 {
5204 .name = "max",
5205 .flags = CFTYPE_NOT_ON_ROOT,
5206 .seq_show = memory_max_show,
5207 .write = memory_max_write,
5208 },
5209 {
5210 .name = "events",
5211 .flags = CFTYPE_NOT_ON_ROOT,
5212 .seq_show = memory_events_show,
5213 },
5214 { } /* terminate */
5215 };
5216
5217 struct cgroup_subsys memory_cgrp_subsys = {
5218 .css_alloc = mem_cgroup_css_alloc,
5219 .css_online = mem_cgroup_css_online,
5220 .css_offline = mem_cgroup_css_offline,
5221 .css_free = mem_cgroup_css_free,
5222 .css_reset = mem_cgroup_css_reset,
5223 .can_attach = mem_cgroup_can_attach,
5224 .cancel_attach = mem_cgroup_cancel_attach,
5225 .attach = mem_cgroup_move_task,
5226 .bind = mem_cgroup_bind,
5227 .dfl_cftypes = memory_files,
5228 .legacy_cftypes = mem_cgroup_legacy_files,
5229 .early_init = 0,
5230 };
5231
5232 /**
5233 * mem_cgroup_low - check if memory consumption is below the normal range
5234 * @root: the highest ancestor to consider
5235 * @memcg: the memory cgroup to check
5236 *
5237 * Returns %true if memory consumption of @memcg, and that of all
5238 * configurable ancestors up to @root, is below the normal range.
5239 */
5240 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5241 {
5242 if (mem_cgroup_disabled())
5243 return false;
5244
5245 /*
5246 * The toplevel group doesn't have a configurable range, so
5247 * it's never low when looked at directly, and it is not
5248 * considered an ancestor when assessing the hierarchy.
5249 */
5250
5251 if (memcg == root_mem_cgroup)
5252 return false;
5253
5254 if (page_counter_read(&memcg->memory) >= memcg->low)
5255 return false;
5256
5257 while (memcg != root) {
5258 memcg = parent_mem_cgroup(memcg);
5259
5260 if (memcg == root_mem_cgroup)
5261 break;
5262
5263 if (page_counter_read(&memcg->memory) >= memcg->low)
5264 return false;
5265 }
5266 return true;
5267 }
5268
5269 /**
5270 * mem_cgroup_try_charge - try charging a page
5271 * @page: page to charge
5272 * @mm: mm context of the victim
5273 * @gfp_mask: reclaim mode
5274 * @memcgp: charged memcg return
5275 *
5276 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5277 * pages according to @gfp_mask if necessary.
5278 *
5279 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5280 * Otherwise, an error code is returned.
5281 *
5282 * After page->mapping has been set up, the caller must finalize the
5283 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5284 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5285 */
5286 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5287 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5288 {
5289 struct mem_cgroup *memcg = NULL;
5290 unsigned int nr_pages = 1;
5291 int ret = 0;
5292
5293 if (mem_cgroup_disabled())
5294 goto out;
5295
5296 if (PageSwapCache(page)) {
5297 /*
5298 * Every swap fault against a single page tries to charge the
5299 * page, bail as early as possible. shmem_unuse() encounters
5300 * already charged pages, too. The USED bit is protected by
5301 * the page lock, which serializes swap cache removal, which
5302 * in turn serializes uncharging.
5303 */
5304 VM_BUG_ON_PAGE(!PageLocked(page), page);
5305 if (page->mem_cgroup)
5306 goto out;
5307
5308 if (do_swap_account) {
5309 swp_entry_t ent = { .val = page_private(page), };
5310 unsigned short id = lookup_swap_cgroup_id(ent);
5311
5312 rcu_read_lock();
5313 memcg = mem_cgroup_from_id(id);
5314 if (memcg && !css_tryget_online(&memcg->css))
5315 memcg = NULL;
5316 rcu_read_unlock();
5317 }
5318 }
5319
5320 if (PageTransHuge(page)) {
5321 nr_pages <<= compound_order(page);
5322 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5323 }
5324
5325 if (!memcg)
5326 memcg = get_mem_cgroup_from_mm(mm);
5327
5328 ret = try_charge(memcg, gfp_mask, nr_pages);
5329
5330 css_put(&memcg->css);
5331
5332 if (ret == -EINTR) {
5333 memcg = root_mem_cgroup;
5334 ret = 0;
5335 }
5336 out:
5337 *memcgp = memcg;
5338 return ret;
5339 }
5340
5341 /**
5342 * mem_cgroup_commit_charge - commit a page charge
5343 * @page: page to charge
5344 * @memcg: memcg to charge the page to
5345 * @lrucare: page might be on LRU already
5346 *
5347 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5348 * after page->mapping has been set up. This must happen atomically
5349 * as part of the page instantiation, i.e. under the page table lock
5350 * for anonymous pages, under the page lock for page and swap cache.
5351 *
5352 * In addition, the page must not be on the LRU during the commit, to
5353 * prevent racing with task migration. If it might be, use @lrucare.
5354 *
5355 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5356 */
5357 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5358 bool lrucare)
5359 {
5360 unsigned int nr_pages = 1;
5361
5362 VM_BUG_ON_PAGE(!page->mapping, page);
5363 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5364
5365 if (mem_cgroup_disabled())
5366 return;
5367 /*
5368 * Swap faults will attempt to charge the same page multiple
5369 * times. But reuse_swap_page() might have removed the page
5370 * from swapcache already, so we can't check PageSwapCache().
5371 */
5372 if (!memcg)
5373 return;
5374
5375 commit_charge(page, memcg, lrucare);
5376
5377 if (PageTransHuge(page)) {
5378 nr_pages <<= compound_order(page);
5379 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5380 }
5381
5382 local_irq_disable();
5383 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5384 memcg_check_events(memcg, page);
5385 local_irq_enable();
5386
5387 if (do_swap_account && PageSwapCache(page)) {
5388 swp_entry_t entry = { .val = page_private(page) };
5389 /*
5390 * The swap entry might not get freed for a long time,
5391 * let's not wait for it. The page already received a
5392 * memory+swap charge, drop the swap entry duplicate.
5393 */
5394 mem_cgroup_uncharge_swap(entry);
5395 }
5396 }
5397
5398 /**
5399 * mem_cgroup_cancel_charge - cancel a page charge
5400 * @page: page to charge
5401 * @memcg: memcg to charge the page to
5402 *
5403 * Cancel a charge transaction started by mem_cgroup_try_charge().
5404 */
5405 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5406 {
5407 unsigned int nr_pages = 1;
5408
5409 if (mem_cgroup_disabled())
5410 return;
5411 /*
5412 * Swap faults will attempt to charge the same page multiple
5413 * times. But reuse_swap_page() might have removed the page
5414 * from swapcache already, so we can't check PageSwapCache().
5415 */
5416 if (!memcg)
5417 return;
5418
5419 if (PageTransHuge(page)) {
5420 nr_pages <<= compound_order(page);
5421 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5422 }
5423
5424 cancel_charge(memcg, nr_pages);
5425 }
5426
5427 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5428 unsigned long nr_anon, unsigned long nr_file,
5429 unsigned long nr_huge, struct page *dummy_page)
5430 {
5431 unsigned long nr_pages = nr_anon + nr_file;
5432 unsigned long flags;
5433
5434 if (!mem_cgroup_is_root(memcg)) {
5435 page_counter_uncharge(&memcg->memory, nr_pages);
5436 if (do_swap_account)
5437 page_counter_uncharge(&memcg->memsw, nr_pages);
5438 memcg_oom_recover(memcg);
5439 }
5440
5441 local_irq_save(flags);
5442 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5443 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5444 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5445 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5446 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5447 memcg_check_events(memcg, dummy_page);
5448 local_irq_restore(flags);
5449
5450 if (!mem_cgroup_is_root(memcg))
5451 css_put_many(&memcg->css, nr_pages);
5452 }
5453
5454 static void uncharge_list(struct list_head *page_list)
5455 {
5456 struct mem_cgroup *memcg = NULL;
5457 unsigned long nr_anon = 0;
5458 unsigned long nr_file = 0;
5459 unsigned long nr_huge = 0;
5460 unsigned long pgpgout = 0;
5461 struct list_head *next;
5462 struct page *page;
5463
5464 next = page_list->next;
5465 do {
5466 unsigned int nr_pages = 1;
5467
5468 page = list_entry(next, struct page, lru);
5469 next = page->lru.next;
5470
5471 VM_BUG_ON_PAGE(PageLRU(page), page);
5472 VM_BUG_ON_PAGE(page_count(page), page);
5473
5474 if (!page->mem_cgroup)
5475 continue;
5476
5477 /*
5478 * Nobody should be changing or seriously looking at
5479 * page->mem_cgroup at this point, we have fully
5480 * exclusive access to the page.
5481 */
5482
5483 if (memcg != page->mem_cgroup) {
5484 if (memcg) {
5485 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5486 nr_huge, page);
5487 pgpgout = nr_anon = nr_file = nr_huge = 0;
5488 }
5489 memcg = page->mem_cgroup;
5490 }
5491
5492 if (PageTransHuge(page)) {
5493 nr_pages <<= compound_order(page);
5494 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5495 nr_huge += nr_pages;
5496 }
5497
5498 if (PageAnon(page))
5499 nr_anon += nr_pages;
5500 else
5501 nr_file += nr_pages;
5502
5503 page->mem_cgroup = NULL;
5504
5505 pgpgout++;
5506 } while (next != page_list);
5507
5508 if (memcg)
5509 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5510 nr_huge, page);
5511 }
5512
5513 /**
5514 * mem_cgroup_uncharge - uncharge a page
5515 * @page: page to uncharge
5516 *
5517 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5518 * mem_cgroup_commit_charge().
5519 */
5520 void mem_cgroup_uncharge(struct page *page)
5521 {
5522 if (mem_cgroup_disabled())
5523 return;
5524
5525 /* Don't touch page->lru of any random page, pre-check: */
5526 if (!page->mem_cgroup)
5527 return;
5528
5529 INIT_LIST_HEAD(&page->lru);
5530 uncharge_list(&page->lru);
5531 }
5532
5533 /**
5534 * mem_cgroup_uncharge_list - uncharge a list of page
5535 * @page_list: list of pages to uncharge
5536 *
5537 * Uncharge a list of pages previously charged with
5538 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5539 */
5540 void mem_cgroup_uncharge_list(struct list_head *page_list)
5541 {
5542 if (mem_cgroup_disabled())
5543 return;
5544
5545 if (!list_empty(page_list))
5546 uncharge_list(page_list);
5547 }
5548
5549 /**
5550 * mem_cgroup_migrate - migrate a charge to another page
5551 * @oldpage: currently charged page
5552 * @newpage: page to transfer the charge to
5553 * @lrucare: either or both pages might be on the LRU already
5554 *
5555 * Migrate the charge from @oldpage to @newpage.
5556 *
5557 * Both pages must be locked, @newpage->mapping must be set up.
5558 */
5559 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5560 bool lrucare)
5561 {
5562 struct mem_cgroup *memcg;
5563 int isolated;
5564
5565 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5566 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5567 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5568 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5569 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5570 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5571 newpage);
5572
5573 if (mem_cgroup_disabled())
5574 return;
5575
5576 /* Page cache replacement: new page already charged? */
5577 if (newpage->mem_cgroup)
5578 return;
5579
5580 /*
5581 * Swapcache readahead pages can get migrated before being
5582 * charged, and migration from compaction can happen to an
5583 * uncharged page when the PFN walker finds a page that
5584 * reclaim just put back on the LRU but has not released yet.
5585 */
5586 memcg = oldpage->mem_cgroup;
5587 if (!memcg)
5588 return;
5589
5590 if (lrucare)
5591 lock_page_lru(oldpage, &isolated);
5592
5593 oldpage->mem_cgroup = NULL;
5594
5595 if (lrucare)
5596 unlock_page_lru(oldpage, isolated);
5597
5598 commit_charge(newpage, memcg, lrucare);
5599 }
5600
5601 /*
5602 * subsys_initcall() for memory controller.
5603 *
5604 * Some parts like hotcpu_notifier() have to be initialized from this context
5605 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5606 * everything that doesn't depend on a specific mem_cgroup structure should
5607 * be initialized from here.
5608 */
5609 static int __init mem_cgroup_init(void)
5610 {
5611 int cpu, node;
5612
5613 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5614
5615 for_each_possible_cpu(cpu)
5616 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5617 drain_local_stock);
5618
5619 for_each_node(node) {
5620 struct mem_cgroup_tree_per_node *rtpn;
5621 int zone;
5622
5623 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5624 node_online(node) ? node : NUMA_NO_NODE);
5625
5626 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5627 struct mem_cgroup_tree_per_zone *rtpz;
5628
5629 rtpz = &rtpn->rb_tree_per_zone[zone];
5630 rtpz->rb_root = RB_ROOT;
5631 spin_lock_init(&rtpz->lock);
5632 }
5633 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5634 }
5635
5636 return 0;
5637 }
5638 subsys_initcall(mem_cgroup_init);
5639
5640 #ifdef CONFIG_MEMCG_SWAP
5641 /**
5642 * mem_cgroup_swapout - transfer a memsw charge to swap
5643 * @page: page whose memsw charge to transfer
5644 * @entry: swap entry to move the charge to
5645 *
5646 * Transfer the memsw charge of @page to @entry.
5647 */
5648 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5649 {
5650 struct mem_cgroup *memcg;
5651 unsigned short oldid;
5652
5653 VM_BUG_ON_PAGE(PageLRU(page), page);
5654 VM_BUG_ON_PAGE(page_count(page), page);
5655
5656 if (!do_swap_account)
5657 return;
5658
5659 memcg = page->mem_cgroup;
5660
5661 /* Readahead page, never charged */
5662 if (!memcg)
5663 return;
5664
5665 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5666 VM_BUG_ON_PAGE(oldid, page);
5667 mem_cgroup_swap_statistics(memcg, true);
5668
5669 page->mem_cgroup = NULL;
5670
5671 if (!mem_cgroup_is_root(memcg))
5672 page_counter_uncharge(&memcg->memory, 1);
5673
5674 /*
5675 * Interrupts should be disabled here because the caller holds the
5676 * mapping->tree_lock lock which is taken with interrupts-off. It is
5677 * important here to have the interrupts disabled because it is the
5678 * only synchronisation we have for udpating the per-CPU variables.
5679 */
5680 VM_BUG_ON(!irqs_disabled());
5681 mem_cgroup_charge_statistics(memcg, page, -1);
5682 memcg_check_events(memcg, page);
5683 }
5684
5685 /**
5686 * mem_cgroup_uncharge_swap - uncharge a swap entry
5687 * @entry: swap entry to uncharge
5688 *
5689 * Drop the memsw charge associated with @entry.
5690 */
5691 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5692 {
5693 struct mem_cgroup *memcg;
5694 unsigned short id;
5695
5696 if (!do_swap_account)
5697 return;
5698
5699 id = swap_cgroup_record(entry, 0);
5700 rcu_read_lock();
5701 memcg = mem_cgroup_from_id(id);
5702 if (memcg) {
5703 if (!mem_cgroup_is_root(memcg))
5704 page_counter_uncharge(&memcg->memsw, 1);
5705 mem_cgroup_swap_statistics(memcg, false);
5706 css_put(&memcg->css);
5707 }
5708 rcu_read_unlock();
5709 }
5710
5711 /* for remember boot option*/
5712 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5713 static int really_do_swap_account __initdata = 1;
5714 #else
5715 static int really_do_swap_account __initdata;
5716 #endif
5717
5718 static int __init enable_swap_account(char *s)
5719 {
5720 if (!strcmp(s, "1"))
5721 really_do_swap_account = 1;
5722 else if (!strcmp(s, "0"))
5723 really_do_swap_account = 0;
5724 return 1;
5725 }
5726 __setup("swapaccount=", enable_swap_account);
5727
5728 static struct cftype memsw_cgroup_files[] = {
5729 {
5730 .name = "memsw.usage_in_bytes",
5731 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5732 .read_u64 = mem_cgroup_read_u64,
5733 },
5734 {
5735 .name = "memsw.max_usage_in_bytes",
5736 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5737 .write = mem_cgroup_reset,
5738 .read_u64 = mem_cgroup_read_u64,
5739 },
5740 {
5741 .name = "memsw.limit_in_bytes",
5742 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5743 .write = mem_cgroup_write,
5744 .read_u64 = mem_cgroup_read_u64,
5745 },
5746 {
5747 .name = "memsw.failcnt",
5748 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5749 .write = mem_cgroup_reset,
5750 .read_u64 = mem_cgroup_read_u64,
5751 },
5752 { }, /* terminate */
5753 };
5754
5755 static int __init mem_cgroup_swap_init(void)
5756 {
5757 if (!mem_cgroup_disabled() && really_do_swap_account) {
5758 do_swap_account = 1;
5759 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5760 memsw_cgroup_files));
5761 }
5762 return 0;
5763 }
5764 subsys_initcall(mem_cgroup_swap_init);
5765
5766 #endif /* CONFIG_MEMCG_SWAP */