]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/memcontrol.c
memcg: introduce charge-commit-cancel style of functions
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/page-flags.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bit_spinlock.h>
28 #include <linux/rcupdate.h>
29 #include <linux/slab.h>
30 #include <linux/swap.h>
31 #include <linux/spinlock.h>
32 #include <linux/fs.h>
33 #include <linux/seq_file.h>
34 #include <linux/vmalloc.h>
35 #include <linux/mm_inline.h>
36 #include <linux/page_cgroup.h>
37
38 #include <asm/uaccess.h>
39
40 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
41 #define MEM_CGROUP_RECLAIM_RETRIES 5
42
43 /*
44 * Statistics for memory cgroup.
45 */
46 enum mem_cgroup_stat_index {
47 /*
48 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
49 */
50 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
51 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
52 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
53 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
54
55 MEM_CGROUP_STAT_NSTATS,
56 };
57
58 struct mem_cgroup_stat_cpu {
59 s64 count[MEM_CGROUP_STAT_NSTATS];
60 } ____cacheline_aligned_in_smp;
61
62 struct mem_cgroup_stat {
63 struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
64 };
65
66 /*
67 * For accounting under irq disable, no need for increment preempt count.
68 */
69 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
70 enum mem_cgroup_stat_index idx, int val)
71 {
72 stat->count[idx] += val;
73 }
74
75 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
76 enum mem_cgroup_stat_index idx)
77 {
78 int cpu;
79 s64 ret = 0;
80 for_each_possible_cpu(cpu)
81 ret += stat->cpustat[cpu].count[idx];
82 return ret;
83 }
84
85 /*
86 * per-zone information in memory controller.
87 */
88 struct mem_cgroup_per_zone {
89 /*
90 * spin_lock to protect the per cgroup LRU
91 */
92 spinlock_t lru_lock;
93 struct list_head lists[NR_LRU_LISTS];
94 unsigned long count[NR_LRU_LISTS];
95 };
96 /* Macro for accessing counter */
97 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
98
99 struct mem_cgroup_per_node {
100 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
101 };
102
103 struct mem_cgroup_lru_info {
104 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
105 };
106
107 /*
108 * The memory controller data structure. The memory controller controls both
109 * page cache and RSS per cgroup. We would eventually like to provide
110 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
111 * to help the administrator determine what knobs to tune.
112 *
113 * TODO: Add a water mark for the memory controller. Reclaim will begin when
114 * we hit the water mark. May be even add a low water mark, such that
115 * no reclaim occurs from a cgroup at it's low water mark, this is
116 * a feature that will be implemented much later in the future.
117 */
118 struct mem_cgroup {
119 struct cgroup_subsys_state css;
120 /*
121 * the counter to account for memory usage
122 */
123 struct res_counter res;
124 /*
125 * Per cgroup active and inactive list, similar to the
126 * per zone LRU lists.
127 */
128 struct mem_cgroup_lru_info info;
129
130 int prev_priority; /* for recording reclaim priority */
131 /*
132 * statistics.
133 */
134 struct mem_cgroup_stat stat;
135 };
136 static struct mem_cgroup init_mem_cgroup;
137
138 enum charge_type {
139 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
140 MEM_CGROUP_CHARGE_TYPE_MAPPED,
141 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
142 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
143 NR_CHARGE_TYPE,
144 };
145
146 /* only for here (for easy reading.) */
147 #define PCGF_CACHE (1UL << PCG_CACHE)
148 #define PCGF_USED (1UL << PCG_USED)
149 #define PCGF_ACTIVE (1UL << PCG_ACTIVE)
150 #define PCGF_LOCK (1UL << PCG_LOCK)
151 #define PCGF_FILE (1UL << PCG_FILE)
152 static const unsigned long
153 pcg_default_flags[NR_CHARGE_TYPE] = {
154 PCGF_CACHE | PCGF_FILE | PCGF_USED | PCGF_LOCK, /* File Cache */
155 PCGF_ACTIVE | PCGF_USED | PCGF_LOCK, /* Anon */
156 PCGF_ACTIVE | PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
157 0, /* FORCE */
158 };
159
160 /*
161 * Always modified under lru lock. Then, not necessary to preempt_disable()
162 */
163 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
164 struct page_cgroup *pc,
165 bool charge)
166 {
167 int val = (charge)? 1 : -1;
168 struct mem_cgroup_stat *stat = &mem->stat;
169 struct mem_cgroup_stat_cpu *cpustat;
170
171 VM_BUG_ON(!irqs_disabled());
172
173 cpustat = &stat->cpustat[smp_processor_id()];
174 if (PageCgroupCache(pc))
175 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
176 else
177 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
178
179 if (charge)
180 __mem_cgroup_stat_add_safe(cpustat,
181 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
182 else
183 __mem_cgroup_stat_add_safe(cpustat,
184 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
185 }
186
187 static struct mem_cgroup_per_zone *
188 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
189 {
190 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
191 }
192
193 static struct mem_cgroup_per_zone *
194 page_cgroup_zoneinfo(struct page_cgroup *pc)
195 {
196 struct mem_cgroup *mem = pc->mem_cgroup;
197 int nid = page_cgroup_nid(pc);
198 int zid = page_cgroup_zid(pc);
199
200 return mem_cgroup_zoneinfo(mem, nid, zid);
201 }
202
203 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
204 enum lru_list idx)
205 {
206 int nid, zid;
207 struct mem_cgroup_per_zone *mz;
208 u64 total = 0;
209
210 for_each_online_node(nid)
211 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
212 mz = mem_cgroup_zoneinfo(mem, nid, zid);
213 total += MEM_CGROUP_ZSTAT(mz, idx);
214 }
215 return total;
216 }
217
218 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
219 {
220 return container_of(cgroup_subsys_state(cont,
221 mem_cgroup_subsys_id), struct mem_cgroup,
222 css);
223 }
224
225 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
226 {
227 /*
228 * mm_update_next_owner() may clear mm->owner to NULL
229 * if it races with swapoff, page migration, etc.
230 * So this can be called with p == NULL.
231 */
232 if (unlikely(!p))
233 return NULL;
234
235 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
236 struct mem_cgroup, css);
237 }
238
239 static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz,
240 struct page_cgroup *pc)
241 {
242 int lru = LRU_BASE;
243
244 if (PageCgroupUnevictable(pc))
245 lru = LRU_UNEVICTABLE;
246 else {
247 if (PageCgroupActive(pc))
248 lru += LRU_ACTIVE;
249 if (PageCgroupFile(pc))
250 lru += LRU_FILE;
251 }
252
253 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
254
255 mem_cgroup_charge_statistics(pc->mem_cgroup, pc, false);
256 list_del(&pc->lru);
257 }
258
259 static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz,
260 struct page_cgroup *pc)
261 {
262 int lru = LRU_BASE;
263
264 if (PageCgroupUnevictable(pc))
265 lru = LRU_UNEVICTABLE;
266 else {
267 if (PageCgroupActive(pc))
268 lru += LRU_ACTIVE;
269 if (PageCgroupFile(pc))
270 lru += LRU_FILE;
271 }
272
273 MEM_CGROUP_ZSTAT(mz, lru) += 1;
274 list_add(&pc->lru, &mz->lists[lru]);
275
276 mem_cgroup_charge_statistics(pc->mem_cgroup, pc, true);
277 }
278
279 static void __mem_cgroup_move_lists(struct page_cgroup *pc, enum lru_list lru)
280 {
281 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
282 int active = PageCgroupActive(pc);
283 int file = PageCgroupFile(pc);
284 int unevictable = PageCgroupUnevictable(pc);
285 enum lru_list from = unevictable ? LRU_UNEVICTABLE :
286 (LRU_FILE * !!file + !!active);
287
288 if (lru == from)
289 return;
290
291 MEM_CGROUP_ZSTAT(mz, from) -= 1;
292 /*
293 * However this is done under mz->lru_lock, another flags, which
294 * are not related to LRU, will be modified from out-of-lock.
295 * We have to use atomic set/clear flags.
296 */
297 if (is_unevictable_lru(lru)) {
298 ClearPageCgroupActive(pc);
299 SetPageCgroupUnevictable(pc);
300 } else {
301 if (is_active_lru(lru))
302 SetPageCgroupActive(pc);
303 else
304 ClearPageCgroupActive(pc);
305 ClearPageCgroupUnevictable(pc);
306 }
307
308 MEM_CGROUP_ZSTAT(mz, lru) += 1;
309 list_move(&pc->lru, &mz->lists[lru]);
310 }
311
312 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
313 {
314 int ret;
315
316 task_lock(task);
317 ret = task->mm && mm_match_cgroup(task->mm, mem);
318 task_unlock(task);
319 return ret;
320 }
321
322 /*
323 * This routine assumes that the appropriate zone's lru lock is already held
324 */
325 void mem_cgroup_move_lists(struct page *page, enum lru_list lru)
326 {
327 struct page_cgroup *pc;
328 struct mem_cgroup_per_zone *mz;
329 unsigned long flags;
330
331 if (mem_cgroup_subsys.disabled)
332 return;
333
334 /*
335 * We cannot lock_page_cgroup while holding zone's lru_lock,
336 * because other holders of lock_page_cgroup can be interrupted
337 * with an attempt to rotate_reclaimable_page. But we cannot
338 * safely get to page_cgroup without it, so just try_lock it:
339 * mem_cgroup_isolate_pages allows for page left on wrong list.
340 */
341 pc = lookup_page_cgroup(page);
342 if (!trylock_page_cgroup(pc))
343 return;
344 if (pc && PageCgroupUsed(pc)) {
345 mz = page_cgroup_zoneinfo(pc);
346 spin_lock_irqsave(&mz->lru_lock, flags);
347 __mem_cgroup_move_lists(pc, lru);
348 spin_unlock_irqrestore(&mz->lru_lock, flags);
349 }
350 unlock_page_cgroup(pc);
351 }
352
353 /*
354 * Calculate mapped_ratio under memory controller. This will be used in
355 * vmscan.c for deteremining we have to reclaim mapped pages.
356 */
357 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
358 {
359 long total, rss;
360
361 /*
362 * usage is recorded in bytes. But, here, we assume the number of
363 * physical pages can be represented by "long" on any arch.
364 */
365 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
366 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
367 return (int)((rss * 100L) / total);
368 }
369
370 /*
371 * prev_priority control...this will be used in memory reclaim path.
372 */
373 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
374 {
375 return mem->prev_priority;
376 }
377
378 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
379 {
380 if (priority < mem->prev_priority)
381 mem->prev_priority = priority;
382 }
383
384 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
385 {
386 mem->prev_priority = priority;
387 }
388
389 /*
390 * Calculate # of pages to be scanned in this priority/zone.
391 * See also vmscan.c
392 *
393 * priority starts from "DEF_PRIORITY" and decremented in each loop.
394 * (see include/linux/mmzone.h)
395 */
396
397 long mem_cgroup_calc_reclaim(struct mem_cgroup *mem, struct zone *zone,
398 int priority, enum lru_list lru)
399 {
400 long nr_pages;
401 int nid = zone->zone_pgdat->node_id;
402 int zid = zone_idx(zone);
403 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
404
405 nr_pages = MEM_CGROUP_ZSTAT(mz, lru);
406
407 return (nr_pages >> priority);
408 }
409
410 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
411 struct list_head *dst,
412 unsigned long *scanned, int order,
413 int mode, struct zone *z,
414 struct mem_cgroup *mem_cont,
415 int active, int file)
416 {
417 unsigned long nr_taken = 0;
418 struct page *page;
419 unsigned long scan;
420 LIST_HEAD(pc_list);
421 struct list_head *src;
422 struct page_cgroup *pc, *tmp;
423 int nid = z->zone_pgdat->node_id;
424 int zid = zone_idx(z);
425 struct mem_cgroup_per_zone *mz;
426 int lru = LRU_FILE * !!file + !!active;
427
428 BUG_ON(!mem_cont);
429 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
430 src = &mz->lists[lru];
431
432 spin_lock(&mz->lru_lock);
433 scan = 0;
434 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
435 if (scan >= nr_to_scan)
436 break;
437 if (unlikely(!PageCgroupUsed(pc)))
438 continue;
439 page = pc->page;
440
441 if (unlikely(!PageLRU(page)))
442 continue;
443
444 /*
445 * TODO: play better with lumpy reclaim, grabbing anything.
446 */
447 if (PageUnevictable(page) ||
448 (PageActive(page) && !active) ||
449 (!PageActive(page) && active)) {
450 __mem_cgroup_move_lists(pc, page_lru(page));
451 continue;
452 }
453
454 scan++;
455 list_move(&pc->lru, &pc_list);
456
457 if (__isolate_lru_page(page, mode, file) == 0) {
458 list_move(&page->lru, dst);
459 nr_taken++;
460 }
461 }
462
463 list_splice(&pc_list, src);
464 spin_unlock(&mz->lru_lock);
465
466 *scanned = scan;
467 return nr_taken;
468 }
469
470
471 /**
472 * mem_cgroup_try_charge - get charge of PAGE_SIZE.
473 * @mm: an mm_struct which is charged against. (when *memcg is NULL)
474 * @gfp_mask: gfp_mask for reclaim.
475 * @memcg: a pointer to memory cgroup which is charged against.
476 *
477 * charge against memory cgroup pointed by *memcg. if *memcg == NULL, estimated
478 * memory cgroup from @mm is got and stored in *memcg.
479 *
480 * Returns 0 if success. -ENOMEM at failure.
481 */
482
483 int mem_cgroup_try_charge(struct mm_struct *mm,
484 gfp_t gfp_mask, struct mem_cgroup **memcg)
485 {
486 struct mem_cgroup *mem;
487 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
488 /*
489 * We always charge the cgroup the mm_struct belongs to.
490 * The mm_struct's mem_cgroup changes on task migration if the
491 * thread group leader migrates. It's possible that mm is not
492 * set, if so charge the init_mm (happens for pagecache usage).
493 */
494 if (likely(!*memcg)) {
495 rcu_read_lock();
496 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
497 if (unlikely(!mem)) {
498 rcu_read_unlock();
499 return 0;
500 }
501 /*
502 * For every charge from the cgroup, increment reference count
503 */
504 css_get(&mem->css);
505 *memcg = mem;
506 rcu_read_unlock();
507 } else {
508 mem = *memcg;
509 css_get(&mem->css);
510 }
511
512
513 while (unlikely(res_counter_charge(&mem->res, PAGE_SIZE))) {
514 if (!(gfp_mask & __GFP_WAIT))
515 goto nomem;
516
517 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
518 continue;
519
520 /*
521 * try_to_free_mem_cgroup_pages() might not give us a full
522 * picture of reclaim. Some pages are reclaimed and might be
523 * moved to swap cache or just unmapped from the cgroup.
524 * Check the limit again to see if the reclaim reduced the
525 * current usage of the cgroup before giving up
526 */
527 if (res_counter_check_under_limit(&mem->res))
528 continue;
529
530 if (!nr_retries--) {
531 mem_cgroup_out_of_memory(mem, gfp_mask);
532 goto nomem;
533 }
534 }
535 return 0;
536 nomem:
537 css_put(&mem->css);
538 return -ENOMEM;
539 }
540
541 /*
542 * commit a charge got by mem_cgroup_try_charge() and makes page_cgroup to be
543 * USED state. If already USED, uncharge and return.
544 */
545
546 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
547 struct page_cgroup *pc,
548 enum charge_type ctype)
549 {
550 struct mem_cgroup_per_zone *mz;
551 unsigned long flags;
552
553 /* try_charge() can return NULL to *memcg, taking care of it. */
554 if (!mem)
555 return;
556
557 lock_page_cgroup(pc);
558 if (unlikely(PageCgroupUsed(pc))) {
559 unlock_page_cgroup(pc);
560 res_counter_uncharge(&mem->res, PAGE_SIZE);
561 css_put(&mem->css);
562 return;
563 }
564 pc->mem_cgroup = mem;
565 /*
566 * If a page is accounted as a page cache, insert to inactive list.
567 * If anon, insert to active list.
568 */
569 pc->flags = pcg_default_flags[ctype];
570
571 mz = page_cgroup_zoneinfo(pc);
572
573 spin_lock_irqsave(&mz->lru_lock, flags);
574 __mem_cgroup_add_list(mz, pc);
575 spin_unlock_irqrestore(&mz->lru_lock, flags);
576 unlock_page_cgroup(pc);
577 }
578
579 /*
580 * Charge the memory controller for page usage.
581 * Return
582 * 0 if the charge was successful
583 * < 0 if the cgroup is over its limit
584 */
585 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
586 gfp_t gfp_mask, enum charge_type ctype,
587 struct mem_cgroup *memcg)
588 {
589 struct mem_cgroup *mem;
590 struct page_cgroup *pc;
591 int ret;
592
593 pc = lookup_page_cgroup(page);
594 /* can happen at boot */
595 if (unlikely(!pc))
596 return 0;
597 prefetchw(pc);
598
599 mem = memcg;
600 ret = mem_cgroup_try_charge(mm, gfp_mask, &mem);
601 if (ret)
602 return ret;
603
604 __mem_cgroup_commit_charge(mem, pc, ctype);
605 return 0;
606 }
607
608 int mem_cgroup_newpage_charge(struct page *page,
609 struct mm_struct *mm, gfp_t gfp_mask)
610 {
611 if (mem_cgroup_subsys.disabled)
612 return 0;
613 if (PageCompound(page))
614 return 0;
615 /*
616 * If already mapped, we don't have to account.
617 * If page cache, page->mapping has address_space.
618 * But page->mapping may have out-of-use anon_vma pointer,
619 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
620 * is NULL.
621 */
622 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
623 return 0;
624 if (unlikely(!mm))
625 mm = &init_mm;
626 return mem_cgroup_charge_common(page, mm, gfp_mask,
627 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
628 }
629
630 /*
631 * same as mem_cgroup_newpage_charge(), now.
632 * But what we assume is different from newpage, and this is special case.
633 * treat this in special function. easy for maintenance.
634 */
635
636 int mem_cgroup_charge_migrate_fixup(struct page *page,
637 struct mm_struct *mm, gfp_t gfp_mask)
638 {
639 if (mem_cgroup_subsys.disabled)
640 return 0;
641
642 if (PageCompound(page))
643 return 0;
644
645 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
646 return 0;
647
648 if (unlikely(!mm))
649 mm = &init_mm;
650
651 return mem_cgroup_charge_common(page, mm, gfp_mask,
652 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
653 }
654
655
656
657
658 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
659 gfp_t gfp_mask)
660 {
661 if (mem_cgroup_subsys.disabled)
662 return 0;
663 if (PageCompound(page))
664 return 0;
665 /*
666 * Corner case handling. This is called from add_to_page_cache()
667 * in usual. But some FS (shmem) precharges this page before calling it
668 * and call add_to_page_cache() with GFP_NOWAIT.
669 *
670 * For GFP_NOWAIT case, the page may be pre-charged before calling
671 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
672 * charge twice. (It works but has to pay a bit larger cost.)
673 */
674 if (!(gfp_mask & __GFP_WAIT)) {
675 struct page_cgroup *pc;
676
677
678 pc = lookup_page_cgroup(page);
679 if (!pc)
680 return 0;
681 lock_page_cgroup(pc);
682 if (PageCgroupUsed(pc)) {
683 unlock_page_cgroup(pc);
684 return 0;
685 }
686 unlock_page_cgroup(pc);
687 }
688
689 if (unlikely(!mm))
690 mm = &init_mm;
691
692 if (page_is_file_cache(page))
693 return mem_cgroup_charge_common(page, mm, gfp_mask,
694 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
695 else
696 return mem_cgroup_charge_common(page, mm, gfp_mask,
697 MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
698 }
699
700
701 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
702 {
703 struct page_cgroup *pc;
704
705 if (mem_cgroup_subsys.disabled)
706 return;
707 if (!ptr)
708 return;
709 pc = lookup_page_cgroup(page);
710 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
711 }
712
713 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
714 {
715 if (mem_cgroup_subsys.disabled)
716 return;
717 if (!mem)
718 return;
719 res_counter_uncharge(&mem->res, PAGE_SIZE);
720 css_put(&mem->css);
721 }
722
723
724 /*
725 * uncharge if !page_mapped(page)
726 */
727 static void
728 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
729 {
730 struct page_cgroup *pc;
731 struct mem_cgroup *mem;
732 struct mem_cgroup_per_zone *mz;
733 unsigned long flags;
734
735 if (mem_cgroup_subsys.disabled)
736 return;
737
738 /*
739 * Check if our page_cgroup is valid
740 */
741 pc = lookup_page_cgroup(page);
742 if (unlikely(!pc || !PageCgroupUsed(pc)))
743 return;
744
745 lock_page_cgroup(pc);
746 if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED && page_mapped(page))
747 || !PageCgroupUsed(pc)) {
748 /* This happens at race in zap_pte_range() and do_swap_page()*/
749 unlock_page_cgroup(pc);
750 return;
751 }
752 ClearPageCgroupUsed(pc);
753 mem = pc->mem_cgroup;
754
755 mz = page_cgroup_zoneinfo(pc);
756 spin_lock_irqsave(&mz->lru_lock, flags);
757 __mem_cgroup_remove_list(mz, pc);
758 spin_unlock_irqrestore(&mz->lru_lock, flags);
759 unlock_page_cgroup(pc);
760
761 res_counter_uncharge(&mem->res, PAGE_SIZE);
762 css_put(&mem->css);
763
764 return;
765 }
766
767 void mem_cgroup_uncharge_page(struct page *page)
768 {
769 /* early check. */
770 if (page_mapped(page))
771 return;
772 if (page->mapping && !PageAnon(page))
773 return;
774 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
775 }
776
777 void mem_cgroup_uncharge_cache_page(struct page *page)
778 {
779 VM_BUG_ON(page_mapped(page));
780 VM_BUG_ON(page->mapping);
781 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
782 }
783
784 /*
785 * Before starting migration, account against new page.
786 */
787 int mem_cgroup_prepare_migration(struct page *page, struct page *newpage)
788 {
789 struct page_cgroup *pc;
790 struct mem_cgroup *mem = NULL;
791 enum charge_type ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
792 int ret = 0;
793
794 if (mem_cgroup_subsys.disabled)
795 return 0;
796
797 pc = lookup_page_cgroup(page);
798 lock_page_cgroup(pc);
799 if (PageCgroupUsed(pc)) {
800 mem = pc->mem_cgroup;
801 css_get(&mem->css);
802 if (PageCgroupCache(pc)) {
803 if (page_is_file_cache(page))
804 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
805 else
806 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
807 }
808 }
809 unlock_page_cgroup(pc);
810 if (mem) {
811 ret = mem_cgroup_charge_common(newpage, NULL, GFP_KERNEL,
812 ctype, mem);
813 css_put(&mem->css);
814 }
815 return ret;
816 }
817
818 /* remove redundant charge if migration failed*/
819 void mem_cgroup_end_migration(struct page *newpage)
820 {
821 /*
822 * At success, page->mapping is not NULL.
823 * special rollback care is necessary when
824 * 1. at migration failure. (newpage->mapping is cleared in this case)
825 * 2. the newpage was moved but not remapped again because the task
826 * exits and the newpage is obsolete. In this case, the new page
827 * may be a swapcache. So, we just call mem_cgroup_uncharge_page()
828 * always for avoiding mess. The page_cgroup will be removed if
829 * unnecessary. File cache pages is still on radix-tree. Don't
830 * care it.
831 */
832 if (!newpage->mapping)
833 __mem_cgroup_uncharge_common(newpage,
834 MEM_CGROUP_CHARGE_TYPE_FORCE);
835 else if (PageAnon(newpage))
836 mem_cgroup_uncharge_page(newpage);
837 }
838
839 /*
840 * A call to try to shrink memory usage under specified resource controller.
841 * This is typically used for page reclaiming for shmem for reducing side
842 * effect of page allocation from shmem, which is used by some mem_cgroup.
843 */
844 int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
845 {
846 struct mem_cgroup *mem;
847 int progress = 0;
848 int retry = MEM_CGROUP_RECLAIM_RETRIES;
849
850 if (mem_cgroup_subsys.disabled)
851 return 0;
852 if (!mm)
853 return 0;
854
855 rcu_read_lock();
856 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
857 if (unlikely(!mem)) {
858 rcu_read_unlock();
859 return 0;
860 }
861 css_get(&mem->css);
862 rcu_read_unlock();
863
864 do {
865 progress = try_to_free_mem_cgroup_pages(mem, gfp_mask);
866 progress += res_counter_check_under_limit(&mem->res);
867 } while (!progress && --retry);
868
869 css_put(&mem->css);
870 if (!retry)
871 return -ENOMEM;
872 return 0;
873 }
874
875 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
876 unsigned long long val)
877 {
878
879 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
880 int progress;
881 int ret = 0;
882
883 while (res_counter_set_limit(&memcg->res, val)) {
884 if (signal_pending(current)) {
885 ret = -EINTR;
886 break;
887 }
888 if (!retry_count) {
889 ret = -EBUSY;
890 break;
891 }
892 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL);
893 if (!progress)
894 retry_count--;
895 }
896 return ret;
897 }
898
899
900 /*
901 * This routine traverse page_cgroup in given list and drop them all.
902 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
903 */
904 #define FORCE_UNCHARGE_BATCH (128)
905 static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
906 struct mem_cgroup_per_zone *mz,
907 enum lru_list lru)
908 {
909 struct page_cgroup *pc;
910 struct page *page;
911 int count = FORCE_UNCHARGE_BATCH;
912 unsigned long flags;
913 struct list_head *list;
914
915 list = &mz->lists[lru];
916
917 spin_lock_irqsave(&mz->lru_lock, flags);
918 while (!list_empty(list)) {
919 pc = list_entry(list->prev, struct page_cgroup, lru);
920 page = pc->page;
921 if (!PageCgroupUsed(pc))
922 break;
923 get_page(page);
924 spin_unlock_irqrestore(&mz->lru_lock, flags);
925 /*
926 * Check if this page is on LRU. !LRU page can be found
927 * if it's under page migration.
928 */
929 if (PageLRU(page)) {
930 __mem_cgroup_uncharge_common(page,
931 MEM_CGROUP_CHARGE_TYPE_FORCE);
932 put_page(page);
933 if (--count <= 0) {
934 count = FORCE_UNCHARGE_BATCH;
935 cond_resched();
936 }
937 } else {
938 spin_lock_irqsave(&mz->lru_lock, flags);
939 break;
940 }
941 spin_lock_irqsave(&mz->lru_lock, flags);
942 }
943 spin_unlock_irqrestore(&mz->lru_lock, flags);
944 }
945
946 /*
947 * make mem_cgroup's charge to be 0 if there is no task.
948 * This enables deleting this mem_cgroup.
949 */
950 static int mem_cgroup_force_empty(struct mem_cgroup *mem)
951 {
952 int ret = -EBUSY;
953 int node, zid;
954
955 css_get(&mem->css);
956 /*
957 * page reclaim code (kswapd etc..) will move pages between
958 * active_list <-> inactive_list while we don't take a lock.
959 * So, we have to do loop here until all lists are empty.
960 */
961 while (mem->res.usage > 0) {
962 if (atomic_read(&mem->css.cgroup->count) > 0)
963 goto out;
964 /* This is for making all *used* pages to be on LRU. */
965 lru_add_drain_all();
966 for_each_node_state(node, N_POSSIBLE)
967 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
968 struct mem_cgroup_per_zone *mz;
969 enum lru_list l;
970 mz = mem_cgroup_zoneinfo(mem, node, zid);
971 for_each_lru(l)
972 mem_cgroup_force_empty_list(mem, mz, l);
973 }
974 cond_resched();
975 }
976 ret = 0;
977 out:
978 css_put(&mem->css);
979 return ret;
980 }
981
982 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
983 {
984 return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res,
985 cft->private);
986 }
987 /*
988 * The user of this function is...
989 * RES_LIMIT.
990 */
991 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
992 const char *buffer)
993 {
994 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
995 unsigned long long val;
996 int ret;
997
998 switch (cft->private) {
999 case RES_LIMIT:
1000 /* This function does all necessary parse...reuse it */
1001 ret = res_counter_memparse_write_strategy(buffer, &val);
1002 if (!ret)
1003 ret = mem_cgroup_resize_limit(memcg, val);
1004 break;
1005 default:
1006 ret = -EINVAL; /* should be BUG() ? */
1007 break;
1008 }
1009 return ret;
1010 }
1011
1012 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
1013 {
1014 struct mem_cgroup *mem;
1015
1016 mem = mem_cgroup_from_cont(cont);
1017 switch (event) {
1018 case RES_MAX_USAGE:
1019 res_counter_reset_max(&mem->res);
1020 break;
1021 case RES_FAILCNT:
1022 res_counter_reset_failcnt(&mem->res);
1023 break;
1024 }
1025 return 0;
1026 }
1027
1028 static int mem_force_empty_write(struct cgroup *cont, unsigned int event)
1029 {
1030 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont));
1031 }
1032
1033 static const struct mem_cgroup_stat_desc {
1034 const char *msg;
1035 u64 unit;
1036 } mem_cgroup_stat_desc[] = {
1037 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1038 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
1039 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1040 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
1041 };
1042
1043 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1044 struct cgroup_map_cb *cb)
1045 {
1046 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1047 struct mem_cgroup_stat *stat = &mem_cont->stat;
1048 int i;
1049
1050 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1051 s64 val;
1052
1053 val = mem_cgroup_read_stat(stat, i);
1054 val *= mem_cgroup_stat_desc[i].unit;
1055 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
1056 }
1057 /* showing # of active pages */
1058 {
1059 unsigned long active_anon, inactive_anon;
1060 unsigned long active_file, inactive_file;
1061 unsigned long unevictable;
1062
1063 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1064 LRU_INACTIVE_ANON);
1065 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1066 LRU_ACTIVE_ANON);
1067 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1068 LRU_INACTIVE_FILE);
1069 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1070 LRU_ACTIVE_FILE);
1071 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1072 LRU_UNEVICTABLE);
1073
1074 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1075 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1076 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1077 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
1078 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1079
1080 }
1081 return 0;
1082 }
1083
1084 static struct cftype mem_cgroup_files[] = {
1085 {
1086 .name = "usage_in_bytes",
1087 .private = RES_USAGE,
1088 .read_u64 = mem_cgroup_read,
1089 },
1090 {
1091 .name = "max_usage_in_bytes",
1092 .private = RES_MAX_USAGE,
1093 .trigger = mem_cgroup_reset,
1094 .read_u64 = mem_cgroup_read,
1095 },
1096 {
1097 .name = "limit_in_bytes",
1098 .private = RES_LIMIT,
1099 .write_string = mem_cgroup_write,
1100 .read_u64 = mem_cgroup_read,
1101 },
1102 {
1103 .name = "failcnt",
1104 .private = RES_FAILCNT,
1105 .trigger = mem_cgroup_reset,
1106 .read_u64 = mem_cgroup_read,
1107 },
1108 {
1109 .name = "force_empty",
1110 .trigger = mem_force_empty_write,
1111 },
1112 {
1113 .name = "stat",
1114 .read_map = mem_control_stat_show,
1115 },
1116 };
1117
1118 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1119 {
1120 struct mem_cgroup_per_node *pn;
1121 struct mem_cgroup_per_zone *mz;
1122 enum lru_list l;
1123 int zone, tmp = node;
1124 /*
1125 * This routine is called against possible nodes.
1126 * But it's BUG to call kmalloc() against offline node.
1127 *
1128 * TODO: this routine can waste much memory for nodes which will
1129 * never be onlined. It's better to use memory hotplug callback
1130 * function.
1131 */
1132 if (!node_state(node, N_NORMAL_MEMORY))
1133 tmp = -1;
1134 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
1135 if (!pn)
1136 return 1;
1137
1138 mem->info.nodeinfo[node] = pn;
1139 memset(pn, 0, sizeof(*pn));
1140
1141 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1142 mz = &pn->zoneinfo[zone];
1143 spin_lock_init(&mz->lru_lock);
1144 for_each_lru(l)
1145 INIT_LIST_HEAD(&mz->lists[l]);
1146 }
1147 return 0;
1148 }
1149
1150 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1151 {
1152 kfree(mem->info.nodeinfo[node]);
1153 }
1154
1155 static struct mem_cgroup *mem_cgroup_alloc(void)
1156 {
1157 struct mem_cgroup *mem;
1158
1159 if (sizeof(*mem) < PAGE_SIZE)
1160 mem = kmalloc(sizeof(*mem), GFP_KERNEL);
1161 else
1162 mem = vmalloc(sizeof(*mem));
1163
1164 if (mem)
1165 memset(mem, 0, sizeof(*mem));
1166 return mem;
1167 }
1168
1169 static void mem_cgroup_free(struct mem_cgroup *mem)
1170 {
1171 if (sizeof(*mem) < PAGE_SIZE)
1172 kfree(mem);
1173 else
1174 vfree(mem);
1175 }
1176
1177
1178 static struct cgroup_subsys_state *
1179 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1180 {
1181 struct mem_cgroup *mem;
1182 int node;
1183
1184 if (unlikely((cont->parent) == NULL)) {
1185 mem = &init_mem_cgroup;
1186 } else {
1187 mem = mem_cgroup_alloc();
1188 if (!mem)
1189 return ERR_PTR(-ENOMEM);
1190 }
1191
1192 res_counter_init(&mem->res);
1193
1194 for_each_node_state(node, N_POSSIBLE)
1195 if (alloc_mem_cgroup_per_zone_info(mem, node))
1196 goto free_out;
1197
1198 return &mem->css;
1199 free_out:
1200 for_each_node_state(node, N_POSSIBLE)
1201 free_mem_cgroup_per_zone_info(mem, node);
1202 if (cont->parent != NULL)
1203 mem_cgroup_free(mem);
1204 return ERR_PTR(-ENOMEM);
1205 }
1206
1207 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1208 struct cgroup *cont)
1209 {
1210 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1211 mem_cgroup_force_empty(mem);
1212 }
1213
1214 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1215 struct cgroup *cont)
1216 {
1217 int node;
1218 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1219
1220 for_each_node_state(node, N_POSSIBLE)
1221 free_mem_cgroup_per_zone_info(mem, node);
1222
1223 mem_cgroup_free(mem_cgroup_from_cont(cont));
1224 }
1225
1226 static int mem_cgroup_populate(struct cgroup_subsys *ss,
1227 struct cgroup *cont)
1228 {
1229 return cgroup_add_files(cont, ss, mem_cgroup_files,
1230 ARRAY_SIZE(mem_cgroup_files));
1231 }
1232
1233 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1234 struct cgroup *cont,
1235 struct cgroup *old_cont,
1236 struct task_struct *p)
1237 {
1238 struct mm_struct *mm;
1239 struct mem_cgroup *mem, *old_mem;
1240
1241 mm = get_task_mm(p);
1242 if (mm == NULL)
1243 return;
1244
1245 mem = mem_cgroup_from_cont(cont);
1246 old_mem = mem_cgroup_from_cont(old_cont);
1247
1248 /*
1249 * Only thread group leaders are allowed to migrate, the mm_struct is
1250 * in effect owned by the leader
1251 */
1252 if (!thread_group_leader(p))
1253 goto out;
1254
1255 out:
1256 mmput(mm);
1257 }
1258
1259 struct cgroup_subsys mem_cgroup_subsys = {
1260 .name = "memory",
1261 .subsys_id = mem_cgroup_subsys_id,
1262 .create = mem_cgroup_create,
1263 .pre_destroy = mem_cgroup_pre_destroy,
1264 .destroy = mem_cgroup_destroy,
1265 .populate = mem_cgroup_populate,
1266 .attach = mem_cgroup_move_task,
1267 .early_init = 0,
1268 };