1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
73 #include <linux/uaccess.h>
75 #include <trace/events/vmscan.h>
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly
;
78 EXPORT_SYMBOL(memory_cgrp_subsys
);
80 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
82 #define MEM_CGROUP_RECLAIM_RETRIES 5
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket
;
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem
;
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly
;
94 #define do_swap_account 0
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys
) && do_swap_account
;
103 static const char *const mem_cgroup_lru_names
[] = {
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET 1024
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
120 struct mem_cgroup_tree_per_node
{
121 struct rb_root rb_root
;
125 struct mem_cgroup_tree
{
126 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
129 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
132 struct mem_cgroup_eventfd_list
{
133 struct list_head list
;
134 struct eventfd_ctx
*eventfd
;
138 * cgroup_event represents events which userspace want to receive.
140 struct mem_cgroup_event
{
142 * memcg which the event belongs to.
144 struct mem_cgroup
*memcg
;
146 * eventfd to signal userspace about the event.
148 struct eventfd_ctx
*eventfd
;
150 * Each of these stored in a list by the cgroup.
152 struct list_head list
;
154 * register_event() callback will be used to add new userspace
155 * waiter for changes related to this event. Use eventfd_signal()
156 * on eventfd to send notification to userspace.
158 int (*register_event
)(struct mem_cgroup
*memcg
,
159 struct eventfd_ctx
*eventfd
, const char *args
);
161 * unregister_event() callback will be called when userspace closes
162 * the eventfd or on cgroup removing. This callback must be set,
163 * if you want provide notification functionality.
165 void (*unregister_event
)(struct mem_cgroup
*memcg
,
166 struct eventfd_ctx
*eventfd
);
168 * All fields below needed to unregister event when
169 * userspace closes eventfd.
172 wait_queue_head_t
*wqh
;
173 wait_queue_entry_t wait
;
174 struct work_struct remove
;
177 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
178 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
180 /* Stuffs for move charges at task migration. */
182 * Types of charges to be moved.
184 #define MOVE_ANON 0x1U
185 #define MOVE_FILE 0x2U
186 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
188 /* "mc" and its members are protected by cgroup_mutex */
189 static struct move_charge_struct
{
190 spinlock_t lock
; /* for from, to */
191 struct mm_struct
*mm
;
192 struct mem_cgroup
*from
;
193 struct mem_cgroup
*to
;
195 unsigned long precharge
;
196 unsigned long moved_charge
;
197 unsigned long moved_swap
;
198 struct task_struct
*moving_task
; /* a task moving charges */
199 wait_queue_head_t waitq
; /* a waitq for other context */
201 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
202 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
206 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
207 * limit reclaim to prevent infinite loops, if they ever occur.
209 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
210 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
213 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
214 MEM_CGROUP_CHARGE_TYPE_ANON
,
215 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
216 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
220 /* for encoding cft->private value on file */
229 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
230 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
231 #define MEMFILE_ATTR(val) ((val) & 0xffff)
232 /* Used for OOM nofiier */
233 #define OOM_CONTROL (0)
235 /* Some nice accessors for the vmpressure. */
236 struct vmpressure
*memcg_to_vmpressure(struct mem_cgroup
*memcg
)
239 memcg
= root_mem_cgroup
;
240 return &memcg
->vmpressure
;
243 struct cgroup_subsys_state
*vmpressure_to_css(struct vmpressure
*vmpr
)
245 return &container_of(vmpr
, struct mem_cgroup
, vmpressure
)->css
;
248 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
250 return (memcg
== root_mem_cgroup
);
255 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
256 * The main reason for not using cgroup id for this:
257 * this works better in sparse environments, where we have a lot of memcgs,
258 * but only a few kmem-limited. Or also, if we have, for instance, 200
259 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
260 * 200 entry array for that.
262 * The current size of the caches array is stored in memcg_nr_cache_ids. It
263 * will double each time we have to increase it.
265 static DEFINE_IDA(memcg_cache_ida
);
266 int memcg_nr_cache_ids
;
268 /* Protects memcg_nr_cache_ids */
269 static DECLARE_RWSEM(memcg_cache_ids_sem
);
271 void memcg_get_cache_ids(void)
273 down_read(&memcg_cache_ids_sem
);
276 void memcg_put_cache_ids(void)
278 up_read(&memcg_cache_ids_sem
);
282 * MIN_SIZE is different than 1, because we would like to avoid going through
283 * the alloc/free process all the time. In a small machine, 4 kmem-limited
284 * cgroups is a reasonable guess. In the future, it could be a parameter or
285 * tunable, but that is strictly not necessary.
287 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
288 * this constant directly from cgroup, but it is understandable that this is
289 * better kept as an internal representation in cgroup.c. In any case, the
290 * cgrp_id space is not getting any smaller, and we don't have to necessarily
291 * increase ours as well if it increases.
293 #define MEMCG_CACHES_MIN_SIZE 4
294 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
297 * A lot of the calls to the cache allocation functions are expected to be
298 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
299 * conditional to this static branch, we'll have to allow modules that does
300 * kmem_cache_alloc and the such to see this symbol as well
302 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key
);
303 EXPORT_SYMBOL(memcg_kmem_enabled_key
);
305 struct workqueue_struct
*memcg_kmem_cache_wq
;
307 #endif /* !CONFIG_SLOB */
310 * mem_cgroup_css_from_page - css of the memcg associated with a page
311 * @page: page of interest
313 * If memcg is bound to the default hierarchy, css of the memcg associated
314 * with @page is returned. The returned css remains associated with @page
315 * until it is released.
317 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
320 struct cgroup_subsys_state
*mem_cgroup_css_from_page(struct page
*page
)
322 struct mem_cgroup
*memcg
;
324 memcg
= page
->mem_cgroup
;
326 if (!memcg
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
327 memcg
= root_mem_cgroup
;
333 * page_cgroup_ino - return inode number of the memcg a page is charged to
336 * Look up the closest online ancestor of the memory cgroup @page is charged to
337 * and return its inode number or 0 if @page is not charged to any cgroup. It
338 * is safe to call this function without holding a reference to @page.
340 * Note, this function is inherently racy, because there is nothing to prevent
341 * the cgroup inode from getting torn down and potentially reallocated a moment
342 * after page_cgroup_ino() returns, so it only should be used by callers that
343 * do not care (such as procfs interfaces).
345 ino_t
page_cgroup_ino(struct page
*page
)
347 struct mem_cgroup
*memcg
;
348 unsigned long ino
= 0;
351 memcg
= READ_ONCE(page
->mem_cgroup
);
352 while (memcg
&& !(memcg
->css
.flags
& CSS_ONLINE
))
353 memcg
= parent_mem_cgroup(memcg
);
355 ino
= cgroup_ino(memcg
->css
.cgroup
);
360 static struct mem_cgroup_per_node
*
361 mem_cgroup_page_nodeinfo(struct mem_cgroup
*memcg
, struct page
*page
)
363 int nid
= page_to_nid(page
);
365 return memcg
->nodeinfo
[nid
];
368 static struct mem_cgroup_tree_per_node
*
369 soft_limit_tree_node(int nid
)
371 return soft_limit_tree
.rb_tree_per_node
[nid
];
374 static struct mem_cgroup_tree_per_node
*
375 soft_limit_tree_from_page(struct page
*page
)
377 int nid
= page_to_nid(page
);
379 return soft_limit_tree
.rb_tree_per_node
[nid
];
382 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node
*mz
,
383 struct mem_cgroup_tree_per_node
*mctz
,
384 unsigned long new_usage_in_excess
)
386 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
387 struct rb_node
*parent
= NULL
;
388 struct mem_cgroup_per_node
*mz_node
;
393 mz
->usage_in_excess
= new_usage_in_excess
;
394 if (!mz
->usage_in_excess
)
398 mz_node
= rb_entry(parent
, struct mem_cgroup_per_node
,
400 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
403 * We can't avoid mem cgroups that are over their soft
404 * limit by the same amount
406 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
409 rb_link_node(&mz
->tree_node
, parent
, p
);
410 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
414 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node
*mz
,
415 struct mem_cgroup_tree_per_node
*mctz
)
419 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
423 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node
*mz
,
424 struct mem_cgroup_tree_per_node
*mctz
)
428 spin_lock_irqsave(&mctz
->lock
, flags
);
429 __mem_cgroup_remove_exceeded(mz
, mctz
);
430 spin_unlock_irqrestore(&mctz
->lock
, flags
);
433 static unsigned long soft_limit_excess(struct mem_cgroup
*memcg
)
435 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
436 unsigned long soft_limit
= READ_ONCE(memcg
->soft_limit
);
437 unsigned long excess
= 0;
439 if (nr_pages
> soft_limit
)
440 excess
= nr_pages
- soft_limit
;
445 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
447 unsigned long excess
;
448 struct mem_cgroup_per_node
*mz
;
449 struct mem_cgroup_tree_per_node
*mctz
;
451 mctz
= soft_limit_tree_from_page(page
);
455 * Necessary to update all ancestors when hierarchy is used.
456 * because their event counter is not touched.
458 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
459 mz
= mem_cgroup_page_nodeinfo(memcg
, page
);
460 excess
= soft_limit_excess(memcg
);
462 * We have to update the tree if mz is on RB-tree or
463 * mem is over its softlimit.
465 if (excess
|| mz
->on_tree
) {
468 spin_lock_irqsave(&mctz
->lock
, flags
);
469 /* if on-tree, remove it */
471 __mem_cgroup_remove_exceeded(mz
, mctz
);
473 * Insert again. mz->usage_in_excess will be updated.
474 * If excess is 0, no tree ops.
476 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
477 spin_unlock_irqrestore(&mctz
->lock
, flags
);
482 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
484 struct mem_cgroup_tree_per_node
*mctz
;
485 struct mem_cgroup_per_node
*mz
;
489 mz
= mem_cgroup_nodeinfo(memcg
, nid
);
490 mctz
= soft_limit_tree_node(nid
);
492 mem_cgroup_remove_exceeded(mz
, mctz
);
496 static struct mem_cgroup_per_node
*
497 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node
*mctz
)
499 struct rb_node
*rightmost
= NULL
;
500 struct mem_cgroup_per_node
*mz
;
504 rightmost
= rb_last(&mctz
->rb_root
);
506 goto done
; /* Nothing to reclaim from */
508 mz
= rb_entry(rightmost
, struct mem_cgroup_per_node
, tree_node
);
510 * Remove the node now but someone else can add it back,
511 * we will to add it back at the end of reclaim to its correct
512 * position in the tree.
514 __mem_cgroup_remove_exceeded(mz
, mctz
);
515 if (!soft_limit_excess(mz
->memcg
) ||
516 !css_tryget_online(&mz
->memcg
->css
))
522 static struct mem_cgroup_per_node
*
523 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node
*mctz
)
525 struct mem_cgroup_per_node
*mz
;
527 spin_lock_irq(&mctz
->lock
);
528 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
529 spin_unlock_irq(&mctz
->lock
);
534 * Return page count for single (non recursive) @memcg.
536 * Implementation Note: reading percpu statistics for memcg.
538 * Both of vmstat[] and percpu_counter has threshold and do periodic
539 * synchronization to implement "quick" read. There are trade-off between
540 * reading cost and precision of value. Then, we may have a chance to implement
541 * a periodic synchronization of counter in memcg's counter.
543 * But this _read() function is used for user interface now. The user accounts
544 * memory usage by memory cgroup and he _always_ requires exact value because
545 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
546 * have to visit all online cpus and make sum. So, for now, unnecessary
547 * synchronization is not implemented. (just implemented for cpu hotplug)
549 * If there are kernel internal actions which can make use of some not-exact
550 * value, and reading all cpu value can be performance bottleneck in some
551 * common workload, threshold and synchronization as vmstat[] should be
555 static unsigned long memcg_sum_events(struct mem_cgroup
*memcg
,
556 enum memcg_event_item event
)
558 unsigned long val
= 0;
561 for_each_possible_cpu(cpu
)
562 val
+= per_cpu(memcg
->stat
->events
[event
], cpu
);
566 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
568 bool compound
, int nr_pages
)
571 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
572 * counted as CACHE even if it's on ANON LRU.
575 __this_cpu_add(memcg
->stat
->count
[MEMCG_RSS
], nr_pages
);
577 __this_cpu_add(memcg
->stat
->count
[MEMCG_CACHE
], nr_pages
);
578 if (PageSwapBacked(page
))
579 __this_cpu_add(memcg
->stat
->count
[NR_SHMEM
], nr_pages
);
583 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
584 __this_cpu_add(memcg
->stat
->count
[MEMCG_RSS_HUGE
], nr_pages
);
587 /* pagein of a big page is an event. So, ignore page size */
589 __this_cpu_inc(memcg
->stat
->events
[PGPGIN
]);
591 __this_cpu_inc(memcg
->stat
->events
[PGPGOUT
]);
592 nr_pages
= -nr_pages
; /* for event */
595 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
598 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
599 int nid
, unsigned int lru_mask
)
601 struct lruvec
*lruvec
= mem_cgroup_lruvec(NODE_DATA(nid
), memcg
);
602 unsigned long nr
= 0;
605 VM_BUG_ON((unsigned)nid
>= nr_node_ids
);
608 if (!(BIT(lru
) & lru_mask
))
610 nr
+= mem_cgroup_get_lru_size(lruvec
, lru
);
615 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
616 unsigned int lru_mask
)
618 unsigned long nr
= 0;
621 for_each_node_state(nid
, N_MEMORY
)
622 nr
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
626 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
627 enum mem_cgroup_events_target target
)
629 unsigned long val
, next
;
631 val
= __this_cpu_read(memcg
->stat
->nr_page_events
);
632 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
633 /* from time_after() in jiffies.h */
634 if ((long)(next
- val
) < 0) {
636 case MEM_CGROUP_TARGET_THRESH
:
637 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
639 case MEM_CGROUP_TARGET_SOFTLIMIT
:
640 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
642 case MEM_CGROUP_TARGET_NUMAINFO
:
643 next
= val
+ NUMAINFO_EVENTS_TARGET
;
648 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
655 * Check events in order.
658 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
660 /* threshold event is triggered in finer grain than soft limit */
661 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
662 MEM_CGROUP_TARGET_THRESH
))) {
664 bool do_numainfo __maybe_unused
;
666 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
667 MEM_CGROUP_TARGET_SOFTLIMIT
);
669 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
670 MEM_CGROUP_TARGET_NUMAINFO
);
672 mem_cgroup_threshold(memcg
);
673 if (unlikely(do_softlimit
))
674 mem_cgroup_update_tree(memcg
, page
);
676 if (unlikely(do_numainfo
))
677 atomic_inc(&memcg
->numainfo_events
);
682 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
685 * mm_update_next_owner() may clear mm->owner to NULL
686 * if it races with swapoff, page migration, etc.
687 * So this can be called with p == NULL.
692 return mem_cgroup_from_css(task_css(p
, memory_cgrp_id
));
694 EXPORT_SYMBOL(mem_cgroup_from_task
);
696 static struct mem_cgroup
*get_mem_cgroup_from_mm(struct mm_struct
*mm
)
698 struct mem_cgroup
*memcg
= NULL
;
703 * Page cache insertions can happen withou an
704 * actual mm context, e.g. during disk probing
705 * on boot, loopback IO, acct() writes etc.
708 memcg
= root_mem_cgroup
;
710 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
711 if (unlikely(!memcg
))
712 memcg
= root_mem_cgroup
;
714 } while (!css_tryget_online(&memcg
->css
));
720 * mem_cgroup_iter - iterate over memory cgroup hierarchy
721 * @root: hierarchy root
722 * @prev: previously returned memcg, NULL on first invocation
723 * @reclaim: cookie for shared reclaim walks, NULL for full walks
725 * Returns references to children of the hierarchy below @root, or
726 * @root itself, or %NULL after a full round-trip.
728 * Caller must pass the return value in @prev on subsequent
729 * invocations for reference counting, or use mem_cgroup_iter_break()
730 * to cancel a hierarchy walk before the round-trip is complete.
732 * Reclaimers can specify a zone and a priority level in @reclaim to
733 * divide up the memcgs in the hierarchy among all concurrent
734 * reclaimers operating on the same zone and priority.
736 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
737 struct mem_cgroup
*prev
,
738 struct mem_cgroup_reclaim_cookie
*reclaim
)
740 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
741 struct cgroup_subsys_state
*css
= NULL
;
742 struct mem_cgroup
*memcg
= NULL
;
743 struct mem_cgroup
*pos
= NULL
;
745 if (mem_cgroup_disabled())
749 root
= root_mem_cgroup
;
751 if (prev
&& !reclaim
)
754 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
763 struct mem_cgroup_per_node
*mz
;
765 mz
= mem_cgroup_nodeinfo(root
, reclaim
->pgdat
->node_id
);
766 iter
= &mz
->iter
[reclaim
->priority
];
768 if (prev
&& reclaim
->generation
!= iter
->generation
)
772 pos
= READ_ONCE(iter
->position
);
773 if (!pos
|| css_tryget(&pos
->css
))
776 * css reference reached zero, so iter->position will
777 * be cleared by ->css_released. However, we should not
778 * rely on this happening soon, because ->css_released
779 * is called from a work queue, and by busy-waiting we
780 * might block it. So we clear iter->position right
783 (void)cmpxchg(&iter
->position
, pos
, NULL
);
791 css
= css_next_descendant_pre(css
, &root
->css
);
794 * Reclaimers share the hierarchy walk, and a
795 * new one might jump in right at the end of
796 * the hierarchy - make sure they see at least
797 * one group and restart from the beginning.
805 * Verify the css and acquire a reference. The root
806 * is provided by the caller, so we know it's alive
807 * and kicking, and don't take an extra reference.
809 memcg
= mem_cgroup_from_css(css
);
811 if (css
== &root
->css
)
822 * The position could have already been updated by a competing
823 * thread, so check that the value hasn't changed since we read
824 * it to avoid reclaiming from the same cgroup twice.
826 (void)cmpxchg(&iter
->position
, pos
, memcg
);
834 reclaim
->generation
= iter
->generation
;
840 if (prev
&& prev
!= root
)
847 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
848 * @root: hierarchy root
849 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
851 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
852 struct mem_cgroup
*prev
)
855 root
= root_mem_cgroup
;
856 if (prev
&& prev
!= root
)
860 static void invalidate_reclaim_iterators(struct mem_cgroup
*dead_memcg
)
862 struct mem_cgroup
*memcg
= dead_memcg
;
863 struct mem_cgroup_reclaim_iter
*iter
;
864 struct mem_cgroup_per_node
*mz
;
868 while ((memcg
= parent_mem_cgroup(memcg
))) {
870 mz
= mem_cgroup_nodeinfo(memcg
, nid
);
871 for (i
= 0; i
<= DEF_PRIORITY
; i
++) {
873 cmpxchg(&iter
->position
,
881 * Iteration constructs for visiting all cgroups (under a tree). If
882 * loops are exited prematurely (break), mem_cgroup_iter_break() must
883 * be used for reference counting.
885 #define for_each_mem_cgroup_tree(iter, root) \
886 for (iter = mem_cgroup_iter(root, NULL, NULL); \
888 iter = mem_cgroup_iter(root, iter, NULL))
890 #define for_each_mem_cgroup(iter) \
891 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
893 iter = mem_cgroup_iter(NULL, iter, NULL))
896 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
897 * @memcg: hierarchy root
898 * @fn: function to call for each task
899 * @arg: argument passed to @fn
901 * This function iterates over tasks attached to @memcg or to any of its
902 * descendants and calls @fn for each task. If @fn returns a non-zero
903 * value, the function breaks the iteration loop and returns the value.
904 * Otherwise, it will iterate over all tasks and return 0.
906 * This function must not be called for the root memory cgroup.
908 int mem_cgroup_scan_tasks(struct mem_cgroup
*memcg
,
909 int (*fn
)(struct task_struct
*, void *), void *arg
)
911 struct mem_cgroup
*iter
;
914 BUG_ON(memcg
== root_mem_cgroup
);
916 for_each_mem_cgroup_tree(iter
, memcg
) {
917 struct css_task_iter it
;
918 struct task_struct
*task
;
920 css_task_iter_start(&iter
->css
, &it
);
921 while (!ret
&& (task
= css_task_iter_next(&it
)))
923 css_task_iter_end(&it
);
925 mem_cgroup_iter_break(memcg
, iter
);
933 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
935 * @zone: zone of the page
937 * This function is only safe when following the LRU page isolation
938 * and putback protocol: the LRU lock must be held, and the page must
939 * either be PageLRU() or the caller must have isolated/allocated it.
941 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct pglist_data
*pgdat
)
943 struct mem_cgroup_per_node
*mz
;
944 struct mem_cgroup
*memcg
;
945 struct lruvec
*lruvec
;
947 if (mem_cgroup_disabled()) {
948 lruvec
= &pgdat
->lruvec
;
952 memcg
= page
->mem_cgroup
;
954 * Swapcache readahead pages are added to the LRU - and
955 * possibly migrated - before they are charged.
958 memcg
= root_mem_cgroup
;
960 mz
= mem_cgroup_page_nodeinfo(memcg
, page
);
961 lruvec
= &mz
->lruvec
;
964 * Since a node can be onlined after the mem_cgroup was created,
965 * we have to be prepared to initialize lruvec->zone here;
966 * and if offlined then reonlined, we need to reinitialize it.
968 if (unlikely(lruvec
->pgdat
!= pgdat
))
969 lruvec
->pgdat
= pgdat
;
974 * mem_cgroup_update_lru_size - account for adding or removing an lru page
975 * @lruvec: mem_cgroup per zone lru vector
976 * @lru: index of lru list the page is sitting on
977 * @zid: zone id of the accounted pages
978 * @nr_pages: positive when adding or negative when removing
980 * This function must be called under lru_lock, just before a page is added
981 * to or just after a page is removed from an lru list (that ordering being
982 * so as to allow it to check that lru_size 0 is consistent with list_empty).
984 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
985 int zid
, int nr_pages
)
987 struct mem_cgroup_per_node
*mz
;
988 unsigned long *lru_size
;
991 if (mem_cgroup_disabled())
994 mz
= container_of(lruvec
, struct mem_cgroup_per_node
, lruvec
);
995 lru_size
= &mz
->lru_zone_size
[zid
][lru
];
998 *lru_size
+= nr_pages
;
1001 if (WARN_ONCE(size
< 0,
1002 "%s(%p, %d, %d): lru_size %ld\n",
1003 __func__
, lruvec
, lru
, nr_pages
, size
)) {
1009 *lru_size
+= nr_pages
;
1012 bool task_in_mem_cgroup(struct task_struct
*task
, struct mem_cgroup
*memcg
)
1014 struct mem_cgroup
*task_memcg
;
1015 struct task_struct
*p
;
1018 p
= find_lock_task_mm(task
);
1020 task_memcg
= get_mem_cgroup_from_mm(p
->mm
);
1024 * All threads may have already detached their mm's, but the oom
1025 * killer still needs to detect if they have already been oom
1026 * killed to prevent needlessly killing additional tasks.
1029 task_memcg
= mem_cgroup_from_task(task
);
1030 css_get(&task_memcg
->css
);
1033 ret
= mem_cgroup_is_descendant(task_memcg
, memcg
);
1034 css_put(&task_memcg
->css
);
1039 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1040 * @memcg: the memory cgroup
1042 * Returns the maximum amount of memory @mem can be charged with, in
1045 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1047 unsigned long margin
= 0;
1048 unsigned long count
;
1049 unsigned long limit
;
1051 count
= page_counter_read(&memcg
->memory
);
1052 limit
= READ_ONCE(memcg
->memory
.limit
);
1054 margin
= limit
- count
;
1056 if (do_memsw_account()) {
1057 count
= page_counter_read(&memcg
->memsw
);
1058 limit
= READ_ONCE(memcg
->memsw
.limit
);
1060 margin
= min(margin
, limit
- count
);
1069 * A routine for checking "mem" is under move_account() or not.
1071 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1072 * moving cgroups. This is for waiting at high-memory pressure
1075 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1077 struct mem_cgroup
*from
;
1078 struct mem_cgroup
*to
;
1081 * Unlike task_move routines, we access mc.to, mc.from not under
1082 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1084 spin_lock(&mc
.lock
);
1090 ret
= mem_cgroup_is_descendant(from
, memcg
) ||
1091 mem_cgroup_is_descendant(to
, memcg
);
1093 spin_unlock(&mc
.lock
);
1097 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1099 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1100 if (mem_cgroup_under_move(memcg
)) {
1102 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1103 /* moving charge context might have finished. */
1106 finish_wait(&mc
.waitq
, &wait
);
1113 unsigned int memcg1_stats
[] = {
1124 static const char *const memcg1_stat_names
[] = {
1135 #define K(x) ((x) << (PAGE_SHIFT-10))
1137 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1138 * @memcg: The memory cgroup that went over limit
1139 * @p: Task that is going to be killed
1141 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1144 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1146 struct mem_cgroup
*iter
;
1152 pr_info("Task in ");
1153 pr_cont_cgroup_path(task_cgroup(p
, memory_cgrp_id
));
1154 pr_cont(" killed as a result of limit of ");
1156 pr_info("Memory limit reached of cgroup ");
1159 pr_cont_cgroup_path(memcg
->css
.cgroup
);
1164 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1165 K((u64
)page_counter_read(&memcg
->memory
)),
1166 K((u64
)memcg
->memory
.limit
), memcg
->memory
.failcnt
);
1167 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1168 K((u64
)page_counter_read(&memcg
->memsw
)),
1169 K((u64
)memcg
->memsw
.limit
), memcg
->memsw
.failcnt
);
1170 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1171 K((u64
)page_counter_read(&memcg
->kmem
)),
1172 K((u64
)memcg
->kmem
.limit
), memcg
->kmem
.failcnt
);
1174 for_each_mem_cgroup_tree(iter
, memcg
) {
1175 pr_info("Memory cgroup stats for ");
1176 pr_cont_cgroup_path(iter
->css
.cgroup
);
1179 for (i
= 0; i
< ARRAY_SIZE(memcg1_stats
); i
++) {
1180 if (memcg1_stats
[i
] == MEMCG_SWAP
&& !do_swap_account
)
1182 pr_cont(" %s:%luKB", memcg1_stat_names
[i
],
1183 K(memcg_page_state(iter
, memcg1_stats
[i
])));
1186 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
1187 pr_cont(" %s:%luKB", mem_cgroup_lru_names
[i
],
1188 K(mem_cgroup_nr_lru_pages(iter
, BIT(i
))));
1195 * This function returns the number of memcg under hierarchy tree. Returns
1196 * 1(self count) if no children.
1198 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1201 struct mem_cgroup
*iter
;
1203 for_each_mem_cgroup_tree(iter
, memcg
)
1209 * Return the memory (and swap, if configured) limit for a memcg.
1211 unsigned long mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1213 unsigned long limit
;
1215 limit
= memcg
->memory
.limit
;
1216 if (mem_cgroup_swappiness(memcg
)) {
1217 unsigned long memsw_limit
;
1218 unsigned long swap_limit
;
1220 memsw_limit
= memcg
->memsw
.limit
;
1221 swap_limit
= memcg
->swap
.limit
;
1222 swap_limit
= min(swap_limit
, (unsigned long)total_swap_pages
);
1223 limit
= min(limit
+ swap_limit
, memsw_limit
);
1228 static bool mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1231 struct oom_control oc
= {
1235 .gfp_mask
= gfp_mask
,
1240 mutex_lock(&oom_lock
);
1241 ret
= out_of_memory(&oc
);
1242 mutex_unlock(&oom_lock
);
1246 #if MAX_NUMNODES > 1
1249 * test_mem_cgroup_node_reclaimable
1250 * @memcg: the target memcg
1251 * @nid: the node ID to be checked.
1252 * @noswap : specify true here if the user wants flle only information.
1254 * This function returns whether the specified memcg contains any
1255 * reclaimable pages on a node. Returns true if there are any reclaimable
1256 * pages in the node.
1258 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1259 int nid
, bool noswap
)
1261 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1263 if (noswap
|| !total_swap_pages
)
1265 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1272 * Always updating the nodemask is not very good - even if we have an empty
1273 * list or the wrong list here, we can start from some node and traverse all
1274 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1277 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1281 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1282 * pagein/pageout changes since the last update.
1284 if (!atomic_read(&memcg
->numainfo_events
))
1286 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1289 /* make a nodemask where this memcg uses memory from */
1290 memcg
->scan_nodes
= node_states
[N_MEMORY
];
1292 for_each_node_mask(nid
, node_states
[N_MEMORY
]) {
1294 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1295 node_clear(nid
, memcg
->scan_nodes
);
1298 atomic_set(&memcg
->numainfo_events
, 0);
1299 atomic_set(&memcg
->numainfo_updating
, 0);
1303 * Selecting a node where we start reclaim from. Because what we need is just
1304 * reducing usage counter, start from anywhere is O,K. Considering
1305 * memory reclaim from current node, there are pros. and cons.
1307 * Freeing memory from current node means freeing memory from a node which
1308 * we'll use or we've used. So, it may make LRU bad. And if several threads
1309 * hit limits, it will see a contention on a node. But freeing from remote
1310 * node means more costs for memory reclaim because of memory latency.
1312 * Now, we use round-robin. Better algorithm is welcomed.
1314 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1318 mem_cgroup_may_update_nodemask(memcg
);
1319 node
= memcg
->last_scanned_node
;
1321 node
= next_node_in(node
, memcg
->scan_nodes
);
1323 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1324 * last time it really checked all the LRUs due to rate limiting.
1325 * Fallback to the current node in that case for simplicity.
1327 if (unlikely(node
== MAX_NUMNODES
))
1328 node
= numa_node_id();
1330 memcg
->last_scanned_node
= node
;
1334 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1340 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
1343 unsigned long *total_scanned
)
1345 struct mem_cgroup
*victim
= NULL
;
1348 unsigned long excess
;
1349 unsigned long nr_scanned
;
1350 struct mem_cgroup_reclaim_cookie reclaim
= {
1355 excess
= soft_limit_excess(root_memcg
);
1358 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
1363 * If we have not been able to reclaim
1364 * anything, it might because there are
1365 * no reclaimable pages under this hierarchy
1370 * We want to do more targeted reclaim.
1371 * excess >> 2 is not to excessive so as to
1372 * reclaim too much, nor too less that we keep
1373 * coming back to reclaim from this cgroup
1375 if (total
>= (excess
>> 2) ||
1376 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
1381 total
+= mem_cgroup_shrink_node(victim
, gfp_mask
, false,
1382 pgdat
, &nr_scanned
);
1383 *total_scanned
+= nr_scanned
;
1384 if (!soft_limit_excess(root_memcg
))
1387 mem_cgroup_iter_break(root_memcg
, victim
);
1391 #ifdef CONFIG_LOCKDEP
1392 static struct lockdep_map memcg_oom_lock_dep_map
= {
1393 .name
= "memcg_oom_lock",
1397 static DEFINE_SPINLOCK(memcg_oom_lock
);
1400 * Check OOM-Killer is already running under our hierarchy.
1401 * If someone is running, return false.
1403 static bool mem_cgroup_oom_trylock(struct mem_cgroup
*memcg
)
1405 struct mem_cgroup
*iter
, *failed
= NULL
;
1407 spin_lock(&memcg_oom_lock
);
1409 for_each_mem_cgroup_tree(iter
, memcg
) {
1410 if (iter
->oom_lock
) {
1412 * this subtree of our hierarchy is already locked
1413 * so we cannot give a lock.
1416 mem_cgroup_iter_break(memcg
, iter
);
1419 iter
->oom_lock
= true;
1424 * OK, we failed to lock the whole subtree so we have
1425 * to clean up what we set up to the failing subtree
1427 for_each_mem_cgroup_tree(iter
, memcg
) {
1428 if (iter
== failed
) {
1429 mem_cgroup_iter_break(memcg
, iter
);
1432 iter
->oom_lock
= false;
1435 mutex_acquire(&memcg_oom_lock_dep_map
, 0, 1, _RET_IP_
);
1437 spin_unlock(&memcg_oom_lock
);
1442 static void mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
1444 struct mem_cgroup
*iter
;
1446 spin_lock(&memcg_oom_lock
);
1447 mutex_release(&memcg_oom_lock_dep_map
, 1, _RET_IP_
);
1448 for_each_mem_cgroup_tree(iter
, memcg
)
1449 iter
->oom_lock
= false;
1450 spin_unlock(&memcg_oom_lock
);
1453 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
1455 struct mem_cgroup
*iter
;
1457 spin_lock(&memcg_oom_lock
);
1458 for_each_mem_cgroup_tree(iter
, memcg
)
1460 spin_unlock(&memcg_oom_lock
);
1463 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
1465 struct mem_cgroup
*iter
;
1468 * When a new child is created while the hierarchy is under oom,
1469 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1471 spin_lock(&memcg_oom_lock
);
1472 for_each_mem_cgroup_tree(iter
, memcg
)
1473 if (iter
->under_oom
> 0)
1475 spin_unlock(&memcg_oom_lock
);
1478 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1480 struct oom_wait_info
{
1481 struct mem_cgroup
*memcg
;
1482 wait_queue_entry_t wait
;
1485 static int memcg_oom_wake_function(wait_queue_entry_t
*wait
,
1486 unsigned mode
, int sync
, void *arg
)
1488 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
1489 struct mem_cgroup
*oom_wait_memcg
;
1490 struct oom_wait_info
*oom_wait_info
;
1492 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1493 oom_wait_memcg
= oom_wait_info
->memcg
;
1495 if (!mem_cgroup_is_descendant(wake_memcg
, oom_wait_memcg
) &&
1496 !mem_cgroup_is_descendant(oom_wait_memcg
, wake_memcg
))
1498 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1501 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
1504 * For the following lockless ->under_oom test, the only required
1505 * guarantee is that it must see the state asserted by an OOM when
1506 * this function is called as a result of userland actions
1507 * triggered by the notification of the OOM. This is trivially
1508 * achieved by invoking mem_cgroup_mark_under_oom() before
1509 * triggering notification.
1511 if (memcg
&& memcg
->under_oom
)
1512 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
1515 static void mem_cgroup_oom(struct mem_cgroup
*memcg
, gfp_t mask
, int order
)
1517 if (!current
->memcg_may_oom
)
1520 * We are in the middle of the charge context here, so we
1521 * don't want to block when potentially sitting on a callstack
1522 * that holds all kinds of filesystem and mm locks.
1524 * Also, the caller may handle a failed allocation gracefully
1525 * (like optional page cache readahead) and so an OOM killer
1526 * invocation might not even be necessary.
1528 * That's why we don't do anything here except remember the
1529 * OOM context and then deal with it at the end of the page
1530 * fault when the stack is unwound, the locks are released,
1531 * and when we know whether the fault was overall successful.
1533 css_get(&memcg
->css
);
1534 current
->memcg_in_oom
= memcg
;
1535 current
->memcg_oom_gfp_mask
= mask
;
1536 current
->memcg_oom_order
= order
;
1540 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1541 * @handle: actually kill/wait or just clean up the OOM state
1543 * This has to be called at the end of a page fault if the memcg OOM
1544 * handler was enabled.
1546 * Memcg supports userspace OOM handling where failed allocations must
1547 * sleep on a waitqueue until the userspace task resolves the
1548 * situation. Sleeping directly in the charge context with all kinds
1549 * of locks held is not a good idea, instead we remember an OOM state
1550 * in the task and mem_cgroup_oom_synchronize() has to be called at
1551 * the end of the page fault to complete the OOM handling.
1553 * Returns %true if an ongoing memcg OOM situation was detected and
1554 * completed, %false otherwise.
1556 bool mem_cgroup_oom_synchronize(bool handle
)
1558 struct mem_cgroup
*memcg
= current
->memcg_in_oom
;
1559 struct oom_wait_info owait
;
1562 /* OOM is global, do not handle */
1569 owait
.memcg
= memcg
;
1570 owait
.wait
.flags
= 0;
1571 owait
.wait
.func
= memcg_oom_wake_function
;
1572 owait
.wait
.private = current
;
1573 INIT_LIST_HEAD(&owait
.wait
.entry
);
1575 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1576 mem_cgroup_mark_under_oom(memcg
);
1578 locked
= mem_cgroup_oom_trylock(memcg
);
1581 mem_cgroup_oom_notify(memcg
);
1583 if (locked
&& !memcg
->oom_kill_disable
) {
1584 mem_cgroup_unmark_under_oom(memcg
);
1585 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1586 mem_cgroup_out_of_memory(memcg
, current
->memcg_oom_gfp_mask
,
1587 current
->memcg_oom_order
);
1590 mem_cgroup_unmark_under_oom(memcg
);
1591 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1595 mem_cgroup_oom_unlock(memcg
);
1597 * There is no guarantee that an OOM-lock contender
1598 * sees the wakeups triggered by the OOM kill
1599 * uncharges. Wake any sleepers explicitely.
1601 memcg_oom_recover(memcg
);
1604 current
->memcg_in_oom
= NULL
;
1605 css_put(&memcg
->css
);
1610 * lock_page_memcg - lock a page->mem_cgroup binding
1613 * This function protects unlocked LRU pages from being moved to
1616 * It ensures lifetime of the returned memcg. Caller is responsible
1617 * for the lifetime of the page; __unlock_page_memcg() is available
1618 * when @page might get freed inside the locked section.
1620 struct mem_cgroup
*lock_page_memcg(struct page
*page
)
1622 struct mem_cgroup
*memcg
;
1623 unsigned long flags
;
1626 * The RCU lock is held throughout the transaction. The fast
1627 * path can get away without acquiring the memcg->move_lock
1628 * because page moving starts with an RCU grace period.
1630 * The RCU lock also protects the memcg from being freed when
1631 * the page state that is going to change is the only thing
1632 * preventing the page itself from being freed. E.g. writeback
1633 * doesn't hold a page reference and relies on PG_writeback to
1634 * keep off truncation, migration and so forth.
1638 if (mem_cgroup_disabled())
1641 memcg
= page
->mem_cgroup
;
1642 if (unlikely(!memcg
))
1645 if (atomic_read(&memcg
->moving_account
) <= 0)
1648 spin_lock_irqsave(&memcg
->move_lock
, flags
);
1649 if (memcg
!= page
->mem_cgroup
) {
1650 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1655 * When charge migration first begins, we can have locked and
1656 * unlocked page stat updates happening concurrently. Track
1657 * the task who has the lock for unlock_page_memcg().
1659 memcg
->move_lock_task
= current
;
1660 memcg
->move_lock_flags
= flags
;
1664 EXPORT_SYMBOL(lock_page_memcg
);
1667 * __unlock_page_memcg - unlock and unpin a memcg
1670 * Unlock and unpin a memcg returned by lock_page_memcg().
1672 void __unlock_page_memcg(struct mem_cgroup
*memcg
)
1674 if (memcg
&& memcg
->move_lock_task
== current
) {
1675 unsigned long flags
= memcg
->move_lock_flags
;
1677 memcg
->move_lock_task
= NULL
;
1678 memcg
->move_lock_flags
= 0;
1680 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1687 * unlock_page_memcg - unlock a page->mem_cgroup binding
1690 void unlock_page_memcg(struct page
*page
)
1692 __unlock_page_memcg(page
->mem_cgroup
);
1694 EXPORT_SYMBOL(unlock_page_memcg
);
1697 * size of first charge trial. "32" comes from vmscan.c's magic value.
1698 * TODO: maybe necessary to use big numbers in big irons.
1700 #define CHARGE_BATCH 32U
1701 struct memcg_stock_pcp
{
1702 struct mem_cgroup
*cached
; /* this never be root cgroup */
1703 unsigned int nr_pages
;
1704 struct work_struct work
;
1705 unsigned long flags
;
1706 #define FLUSHING_CACHED_CHARGE 0
1708 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1709 static DEFINE_MUTEX(percpu_charge_mutex
);
1712 * consume_stock: Try to consume stocked charge on this cpu.
1713 * @memcg: memcg to consume from.
1714 * @nr_pages: how many pages to charge.
1716 * The charges will only happen if @memcg matches the current cpu's memcg
1717 * stock, and at least @nr_pages are available in that stock. Failure to
1718 * service an allocation will refill the stock.
1720 * returns true if successful, false otherwise.
1722 static bool consume_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1724 struct memcg_stock_pcp
*stock
;
1725 unsigned long flags
;
1728 if (nr_pages
> CHARGE_BATCH
)
1731 local_irq_save(flags
);
1733 stock
= this_cpu_ptr(&memcg_stock
);
1734 if (memcg
== stock
->cached
&& stock
->nr_pages
>= nr_pages
) {
1735 stock
->nr_pages
-= nr_pages
;
1739 local_irq_restore(flags
);
1745 * Returns stocks cached in percpu and reset cached information.
1747 static void drain_stock(struct memcg_stock_pcp
*stock
)
1749 struct mem_cgroup
*old
= stock
->cached
;
1751 if (stock
->nr_pages
) {
1752 page_counter_uncharge(&old
->memory
, stock
->nr_pages
);
1753 if (do_memsw_account())
1754 page_counter_uncharge(&old
->memsw
, stock
->nr_pages
);
1755 css_put_many(&old
->css
, stock
->nr_pages
);
1756 stock
->nr_pages
= 0;
1758 stock
->cached
= NULL
;
1761 static void drain_local_stock(struct work_struct
*dummy
)
1763 struct memcg_stock_pcp
*stock
;
1764 unsigned long flags
;
1766 local_irq_save(flags
);
1768 stock
= this_cpu_ptr(&memcg_stock
);
1770 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
1772 local_irq_restore(flags
);
1776 * Cache charges(val) to local per_cpu area.
1777 * This will be consumed by consume_stock() function, later.
1779 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1781 struct memcg_stock_pcp
*stock
;
1782 unsigned long flags
;
1784 local_irq_save(flags
);
1786 stock
= this_cpu_ptr(&memcg_stock
);
1787 if (stock
->cached
!= memcg
) { /* reset if necessary */
1789 stock
->cached
= memcg
;
1791 stock
->nr_pages
+= nr_pages
;
1793 local_irq_restore(flags
);
1797 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1798 * of the hierarchy under it.
1800 static void drain_all_stock(struct mem_cgroup
*root_memcg
)
1804 /* If someone's already draining, avoid adding running more workers. */
1805 if (!mutex_trylock(&percpu_charge_mutex
))
1807 /* Notify other cpus that system-wide "drain" is running */
1810 for_each_online_cpu(cpu
) {
1811 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
1812 struct mem_cgroup
*memcg
;
1814 memcg
= stock
->cached
;
1815 if (!memcg
|| !stock
->nr_pages
)
1817 if (!mem_cgroup_is_descendant(memcg
, root_memcg
))
1819 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
1821 drain_local_stock(&stock
->work
);
1823 schedule_work_on(cpu
, &stock
->work
);
1828 mutex_unlock(&percpu_charge_mutex
);
1831 static int memcg_hotplug_cpu_dead(unsigned int cpu
)
1833 struct memcg_stock_pcp
*stock
;
1835 stock
= &per_cpu(memcg_stock
, cpu
);
1840 static void reclaim_high(struct mem_cgroup
*memcg
,
1841 unsigned int nr_pages
,
1845 if (page_counter_read(&memcg
->memory
) <= memcg
->high
)
1847 mem_cgroup_event(memcg
, MEMCG_HIGH
);
1848 try_to_free_mem_cgroup_pages(memcg
, nr_pages
, gfp_mask
, true);
1849 } while ((memcg
= parent_mem_cgroup(memcg
)));
1852 static void high_work_func(struct work_struct
*work
)
1854 struct mem_cgroup
*memcg
;
1856 memcg
= container_of(work
, struct mem_cgroup
, high_work
);
1857 reclaim_high(memcg
, CHARGE_BATCH
, GFP_KERNEL
);
1861 * Scheduled by try_charge() to be executed from the userland return path
1862 * and reclaims memory over the high limit.
1864 void mem_cgroup_handle_over_high(void)
1866 unsigned int nr_pages
= current
->memcg_nr_pages_over_high
;
1867 struct mem_cgroup
*memcg
;
1869 if (likely(!nr_pages
))
1872 memcg
= get_mem_cgroup_from_mm(current
->mm
);
1873 reclaim_high(memcg
, nr_pages
, GFP_KERNEL
);
1874 css_put(&memcg
->css
);
1875 current
->memcg_nr_pages_over_high
= 0;
1878 static int try_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1879 unsigned int nr_pages
)
1881 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
1882 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1883 struct mem_cgroup
*mem_over_limit
;
1884 struct page_counter
*counter
;
1885 unsigned long nr_reclaimed
;
1886 bool may_swap
= true;
1887 bool drained
= false;
1889 if (mem_cgroup_is_root(memcg
))
1892 if (consume_stock(memcg
, nr_pages
))
1895 if (!do_memsw_account() ||
1896 page_counter_try_charge(&memcg
->memsw
, batch
, &counter
)) {
1897 if (page_counter_try_charge(&memcg
->memory
, batch
, &counter
))
1899 if (do_memsw_account())
1900 page_counter_uncharge(&memcg
->memsw
, batch
);
1901 mem_over_limit
= mem_cgroup_from_counter(counter
, memory
);
1903 mem_over_limit
= mem_cgroup_from_counter(counter
, memsw
);
1907 if (batch
> nr_pages
) {
1913 * Unlike in global OOM situations, memcg is not in a physical
1914 * memory shortage. Allow dying and OOM-killed tasks to
1915 * bypass the last charges so that they can exit quickly and
1916 * free their memory.
1918 if (unlikely(test_thread_flag(TIF_MEMDIE
) ||
1919 fatal_signal_pending(current
) ||
1920 current
->flags
& PF_EXITING
))
1924 * Prevent unbounded recursion when reclaim operations need to
1925 * allocate memory. This might exceed the limits temporarily,
1926 * but we prefer facilitating memory reclaim and getting back
1927 * under the limit over triggering OOM kills in these cases.
1929 if (unlikely(current
->flags
& PF_MEMALLOC
))
1932 if (unlikely(task_in_memcg_oom(current
)))
1935 if (!gfpflags_allow_blocking(gfp_mask
))
1938 mem_cgroup_event(mem_over_limit
, MEMCG_MAX
);
1940 nr_reclaimed
= try_to_free_mem_cgroup_pages(mem_over_limit
, nr_pages
,
1941 gfp_mask
, may_swap
);
1943 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
1947 drain_all_stock(mem_over_limit
);
1952 if (gfp_mask
& __GFP_NORETRY
)
1955 * Even though the limit is exceeded at this point, reclaim
1956 * may have been able to free some pages. Retry the charge
1957 * before killing the task.
1959 * Only for regular pages, though: huge pages are rather
1960 * unlikely to succeed so close to the limit, and we fall back
1961 * to regular pages anyway in case of failure.
1963 if (nr_reclaimed
&& nr_pages
<= (1 << PAGE_ALLOC_COSTLY_ORDER
))
1966 * At task move, charge accounts can be doubly counted. So, it's
1967 * better to wait until the end of task_move if something is going on.
1969 if (mem_cgroup_wait_acct_move(mem_over_limit
))
1975 if (gfp_mask
& __GFP_NOFAIL
)
1978 if (fatal_signal_pending(current
))
1981 mem_cgroup_event(mem_over_limit
, MEMCG_OOM
);
1983 mem_cgroup_oom(mem_over_limit
, gfp_mask
,
1984 get_order(nr_pages
* PAGE_SIZE
));
1986 if (!(gfp_mask
& __GFP_NOFAIL
))
1990 * The allocation either can't fail or will lead to more memory
1991 * being freed very soon. Allow memory usage go over the limit
1992 * temporarily by force charging it.
1994 page_counter_charge(&memcg
->memory
, nr_pages
);
1995 if (do_memsw_account())
1996 page_counter_charge(&memcg
->memsw
, nr_pages
);
1997 css_get_many(&memcg
->css
, nr_pages
);
2002 css_get_many(&memcg
->css
, batch
);
2003 if (batch
> nr_pages
)
2004 refill_stock(memcg
, batch
- nr_pages
);
2007 * If the hierarchy is above the normal consumption range, schedule
2008 * reclaim on returning to userland. We can perform reclaim here
2009 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2010 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2011 * not recorded as it most likely matches current's and won't
2012 * change in the meantime. As high limit is checked again before
2013 * reclaim, the cost of mismatch is negligible.
2016 if (page_counter_read(&memcg
->memory
) > memcg
->high
) {
2017 /* Don't bother a random interrupted task */
2018 if (in_interrupt()) {
2019 schedule_work(&memcg
->high_work
);
2022 current
->memcg_nr_pages_over_high
+= batch
;
2023 set_notify_resume(current
);
2026 } while ((memcg
= parent_mem_cgroup(memcg
)));
2031 static void cancel_charge(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2033 if (mem_cgroup_is_root(memcg
))
2036 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2037 if (do_memsw_account())
2038 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2040 css_put_many(&memcg
->css
, nr_pages
);
2043 static void lock_page_lru(struct page
*page
, int *isolated
)
2045 struct zone
*zone
= page_zone(page
);
2047 spin_lock_irq(zone_lru_lock(zone
));
2048 if (PageLRU(page
)) {
2049 struct lruvec
*lruvec
;
2051 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
2053 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2059 static void unlock_page_lru(struct page
*page
, int isolated
)
2061 struct zone
*zone
= page_zone(page
);
2064 struct lruvec
*lruvec
;
2066 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
2067 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2069 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2071 spin_unlock_irq(zone_lru_lock(zone
));
2074 static void commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
2079 VM_BUG_ON_PAGE(page
->mem_cgroup
, page
);
2082 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2083 * may already be on some other mem_cgroup's LRU. Take care of it.
2086 lock_page_lru(page
, &isolated
);
2089 * Nobody should be changing or seriously looking at
2090 * page->mem_cgroup at this point:
2092 * - the page is uncharged
2094 * - the page is off-LRU
2096 * - an anonymous fault has exclusive page access, except for
2097 * a locked page table
2099 * - a page cache insertion, a swapin fault, or a migration
2100 * have the page locked
2102 page
->mem_cgroup
= memcg
;
2105 unlock_page_lru(page
, isolated
);
2109 static int memcg_alloc_cache_id(void)
2114 id
= ida_simple_get(&memcg_cache_ida
,
2115 0, MEMCG_CACHES_MAX_SIZE
, GFP_KERNEL
);
2119 if (id
< memcg_nr_cache_ids
)
2123 * There's no space for the new id in memcg_caches arrays,
2124 * so we have to grow them.
2126 down_write(&memcg_cache_ids_sem
);
2128 size
= 2 * (id
+ 1);
2129 if (size
< MEMCG_CACHES_MIN_SIZE
)
2130 size
= MEMCG_CACHES_MIN_SIZE
;
2131 else if (size
> MEMCG_CACHES_MAX_SIZE
)
2132 size
= MEMCG_CACHES_MAX_SIZE
;
2134 err
= memcg_update_all_caches(size
);
2136 err
= memcg_update_all_list_lrus(size
);
2138 memcg_nr_cache_ids
= size
;
2140 up_write(&memcg_cache_ids_sem
);
2143 ida_simple_remove(&memcg_cache_ida
, id
);
2149 static void memcg_free_cache_id(int id
)
2151 ida_simple_remove(&memcg_cache_ida
, id
);
2154 struct memcg_kmem_cache_create_work
{
2155 struct mem_cgroup
*memcg
;
2156 struct kmem_cache
*cachep
;
2157 struct work_struct work
;
2160 static void memcg_kmem_cache_create_func(struct work_struct
*w
)
2162 struct memcg_kmem_cache_create_work
*cw
=
2163 container_of(w
, struct memcg_kmem_cache_create_work
, work
);
2164 struct mem_cgroup
*memcg
= cw
->memcg
;
2165 struct kmem_cache
*cachep
= cw
->cachep
;
2167 memcg_create_kmem_cache(memcg
, cachep
);
2169 css_put(&memcg
->css
);
2174 * Enqueue the creation of a per-memcg kmem_cache.
2176 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2177 struct kmem_cache
*cachep
)
2179 struct memcg_kmem_cache_create_work
*cw
;
2181 cw
= kmalloc(sizeof(*cw
), GFP_NOWAIT
);
2185 css_get(&memcg
->css
);
2188 cw
->cachep
= cachep
;
2189 INIT_WORK(&cw
->work
, memcg_kmem_cache_create_func
);
2191 queue_work(memcg_kmem_cache_wq
, &cw
->work
);
2194 static void memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2195 struct kmem_cache
*cachep
)
2198 * We need to stop accounting when we kmalloc, because if the
2199 * corresponding kmalloc cache is not yet created, the first allocation
2200 * in __memcg_schedule_kmem_cache_create will recurse.
2202 * However, it is better to enclose the whole function. Depending on
2203 * the debugging options enabled, INIT_WORK(), for instance, can
2204 * trigger an allocation. This too, will make us recurse. Because at
2205 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2206 * the safest choice is to do it like this, wrapping the whole function.
2208 current
->memcg_kmem_skip_account
= 1;
2209 __memcg_schedule_kmem_cache_create(memcg
, cachep
);
2210 current
->memcg_kmem_skip_account
= 0;
2213 static inline bool memcg_kmem_bypass(void)
2215 if (in_interrupt() || !current
->mm
|| (current
->flags
& PF_KTHREAD
))
2221 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2222 * @cachep: the original global kmem cache
2224 * Return the kmem_cache we're supposed to use for a slab allocation.
2225 * We try to use the current memcg's version of the cache.
2227 * If the cache does not exist yet, if we are the first user of it, we
2228 * create it asynchronously in a workqueue and let the current allocation
2229 * go through with the original cache.
2231 * This function takes a reference to the cache it returns to assure it
2232 * won't get destroyed while we are working with it. Once the caller is
2233 * done with it, memcg_kmem_put_cache() must be called to release the
2236 struct kmem_cache
*memcg_kmem_get_cache(struct kmem_cache
*cachep
)
2238 struct mem_cgroup
*memcg
;
2239 struct kmem_cache
*memcg_cachep
;
2242 VM_BUG_ON(!is_root_cache(cachep
));
2244 if (memcg_kmem_bypass())
2247 if (current
->memcg_kmem_skip_account
)
2250 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2251 kmemcg_id
= READ_ONCE(memcg
->kmemcg_id
);
2255 memcg_cachep
= cache_from_memcg_idx(cachep
, kmemcg_id
);
2256 if (likely(memcg_cachep
))
2257 return memcg_cachep
;
2260 * If we are in a safe context (can wait, and not in interrupt
2261 * context), we could be be predictable and return right away.
2262 * This would guarantee that the allocation being performed
2263 * already belongs in the new cache.
2265 * However, there are some clashes that can arrive from locking.
2266 * For instance, because we acquire the slab_mutex while doing
2267 * memcg_create_kmem_cache, this means no further allocation
2268 * could happen with the slab_mutex held. So it's better to
2271 memcg_schedule_kmem_cache_create(memcg
, cachep
);
2273 css_put(&memcg
->css
);
2278 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2279 * @cachep: the cache returned by memcg_kmem_get_cache
2281 void memcg_kmem_put_cache(struct kmem_cache
*cachep
)
2283 if (!is_root_cache(cachep
))
2284 css_put(&cachep
->memcg_params
.memcg
->css
);
2288 * memcg_kmem_charge: charge a kmem page
2289 * @page: page to charge
2290 * @gfp: reclaim mode
2291 * @order: allocation order
2292 * @memcg: memory cgroup to charge
2294 * Returns 0 on success, an error code on failure.
2296 int memcg_kmem_charge_memcg(struct page
*page
, gfp_t gfp
, int order
,
2297 struct mem_cgroup
*memcg
)
2299 unsigned int nr_pages
= 1 << order
;
2300 struct page_counter
*counter
;
2303 ret
= try_charge(memcg
, gfp
, nr_pages
);
2307 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) &&
2308 !page_counter_try_charge(&memcg
->kmem
, nr_pages
, &counter
)) {
2309 cancel_charge(memcg
, nr_pages
);
2313 page
->mem_cgroup
= memcg
;
2319 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2320 * @page: page to charge
2321 * @gfp: reclaim mode
2322 * @order: allocation order
2324 * Returns 0 on success, an error code on failure.
2326 int memcg_kmem_charge(struct page
*page
, gfp_t gfp
, int order
)
2328 struct mem_cgroup
*memcg
;
2331 if (memcg_kmem_bypass())
2334 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2335 if (!mem_cgroup_is_root(memcg
)) {
2336 ret
= memcg_kmem_charge_memcg(page
, gfp
, order
, memcg
);
2338 __SetPageKmemcg(page
);
2340 css_put(&memcg
->css
);
2344 * memcg_kmem_uncharge: uncharge a kmem page
2345 * @page: page to uncharge
2346 * @order: allocation order
2348 void memcg_kmem_uncharge(struct page
*page
, int order
)
2350 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
2351 unsigned int nr_pages
= 1 << order
;
2356 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg
), page
);
2358 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
))
2359 page_counter_uncharge(&memcg
->kmem
, nr_pages
);
2361 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2362 if (do_memsw_account())
2363 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2365 page
->mem_cgroup
= NULL
;
2367 /* slab pages do not have PageKmemcg flag set */
2368 if (PageKmemcg(page
))
2369 __ClearPageKmemcg(page
);
2371 css_put_many(&memcg
->css
, nr_pages
);
2373 #endif /* !CONFIG_SLOB */
2375 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2378 * Because tail pages are not marked as "used", set it. We're under
2379 * zone_lru_lock and migration entries setup in all page mappings.
2381 void mem_cgroup_split_huge_fixup(struct page
*head
)
2385 if (mem_cgroup_disabled())
2388 for (i
= 1; i
< HPAGE_PMD_NR
; i
++)
2389 head
[i
].mem_cgroup
= head
->mem_cgroup
;
2391 __this_cpu_sub(head
->mem_cgroup
->stat
->count
[MEMCG_RSS_HUGE
],
2394 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2396 #ifdef CONFIG_MEMCG_SWAP
2397 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
2400 this_cpu_add(memcg
->stat
->count
[MEMCG_SWAP
], nr_entries
);
2404 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2405 * @entry: swap entry to be moved
2406 * @from: mem_cgroup which the entry is moved from
2407 * @to: mem_cgroup which the entry is moved to
2409 * It succeeds only when the swap_cgroup's record for this entry is the same
2410 * as the mem_cgroup's id of @from.
2412 * Returns 0 on success, -EINVAL on failure.
2414 * The caller must have charged to @to, IOW, called page_counter_charge() about
2415 * both res and memsw, and called css_get().
2417 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
2418 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2420 unsigned short old_id
, new_id
;
2422 old_id
= mem_cgroup_id(from
);
2423 new_id
= mem_cgroup_id(to
);
2425 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
2426 mem_cgroup_swap_statistics(from
, -1);
2427 mem_cgroup_swap_statistics(to
, 1);
2433 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
2434 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2440 static DEFINE_MUTEX(memcg_limit_mutex
);
2442 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
2443 unsigned long limit
)
2445 unsigned long curusage
;
2446 unsigned long oldusage
;
2447 bool enlarge
= false;
2452 * For keeping hierarchical_reclaim simple, how long we should retry
2453 * is depends on callers. We set our retry-count to be function
2454 * of # of children which we should visit in this loop.
2456 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
*
2457 mem_cgroup_count_children(memcg
);
2459 oldusage
= page_counter_read(&memcg
->memory
);
2462 if (signal_pending(current
)) {
2467 mutex_lock(&memcg_limit_mutex
);
2468 if (limit
> memcg
->memsw
.limit
) {
2469 mutex_unlock(&memcg_limit_mutex
);
2473 if (limit
> memcg
->memory
.limit
)
2475 ret
= page_counter_limit(&memcg
->memory
, limit
);
2476 mutex_unlock(&memcg_limit_mutex
);
2481 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, true);
2483 curusage
= page_counter_read(&memcg
->memory
);
2484 /* Usage is reduced ? */
2485 if (curusage
>= oldusage
)
2488 oldusage
= curusage
;
2489 } while (retry_count
);
2491 if (!ret
&& enlarge
)
2492 memcg_oom_recover(memcg
);
2497 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
2498 unsigned long limit
)
2500 unsigned long curusage
;
2501 unsigned long oldusage
;
2502 bool enlarge
= false;
2506 /* see mem_cgroup_resize_res_limit */
2507 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
*
2508 mem_cgroup_count_children(memcg
);
2510 oldusage
= page_counter_read(&memcg
->memsw
);
2513 if (signal_pending(current
)) {
2518 mutex_lock(&memcg_limit_mutex
);
2519 if (limit
< memcg
->memory
.limit
) {
2520 mutex_unlock(&memcg_limit_mutex
);
2524 if (limit
> memcg
->memsw
.limit
)
2526 ret
= page_counter_limit(&memcg
->memsw
, limit
);
2527 mutex_unlock(&memcg_limit_mutex
);
2532 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, false);
2534 curusage
= page_counter_read(&memcg
->memsw
);
2535 /* Usage is reduced ? */
2536 if (curusage
>= oldusage
)
2539 oldusage
= curusage
;
2540 } while (retry_count
);
2542 if (!ret
&& enlarge
)
2543 memcg_oom_recover(memcg
);
2548 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t
*pgdat
, int order
,
2550 unsigned long *total_scanned
)
2552 unsigned long nr_reclaimed
= 0;
2553 struct mem_cgroup_per_node
*mz
, *next_mz
= NULL
;
2554 unsigned long reclaimed
;
2556 struct mem_cgroup_tree_per_node
*mctz
;
2557 unsigned long excess
;
2558 unsigned long nr_scanned
;
2563 mctz
= soft_limit_tree_node(pgdat
->node_id
);
2566 * Do not even bother to check the largest node if the root
2567 * is empty. Do it lockless to prevent lock bouncing. Races
2568 * are acceptable as soft limit is best effort anyway.
2570 if (!mctz
|| RB_EMPTY_ROOT(&mctz
->rb_root
))
2574 * This loop can run a while, specially if mem_cgroup's continuously
2575 * keep exceeding their soft limit and putting the system under
2582 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
2587 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, pgdat
,
2588 gfp_mask
, &nr_scanned
);
2589 nr_reclaimed
+= reclaimed
;
2590 *total_scanned
+= nr_scanned
;
2591 spin_lock_irq(&mctz
->lock
);
2592 __mem_cgroup_remove_exceeded(mz
, mctz
);
2595 * If we failed to reclaim anything from this memory cgroup
2596 * it is time to move on to the next cgroup
2600 next_mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
2602 excess
= soft_limit_excess(mz
->memcg
);
2604 * One school of thought says that we should not add
2605 * back the node to the tree if reclaim returns 0.
2606 * But our reclaim could return 0, simply because due
2607 * to priority we are exposing a smaller subset of
2608 * memory to reclaim from. Consider this as a longer
2611 /* If excess == 0, no tree ops */
2612 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
2613 spin_unlock_irq(&mctz
->lock
);
2614 css_put(&mz
->memcg
->css
);
2617 * Could not reclaim anything and there are no more
2618 * mem cgroups to try or we seem to be looping without
2619 * reclaiming anything.
2621 if (!nr_reclaimed
&&
2623 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
2625 } while (!nr_reclaimed
);
2627 css_put(&next_mz
->memcg
->css
);
2628 return nr_reclaimed
;
2632 * Test whether @memcg has children, dead or alive. Note that this
2633 * function doesn't care whether @memcg has use_hierarchy enabled and
2634 * returns %true if there are child csses according to the cgroup
2635 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2637 static inline bool memcg_has_children(struct mem_cgroup
*memcg
)
2642 ret
= css_next_child(NULL
, &memcg
->css
);
2648 * Reclaims as many pages from the given memcg as possible.
2650 * Caller is responsible for holding css reference for memcg.
2652 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
)
2654 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2656 /* we call try-to-free pages for make this cgroup empty */
2657 lru_add_drain_all();
2658 /* try to free all pages in this cgroup */
2659 while (nr_retries
&& page_counter_read(&memcg
->memory
)) {
2662 if (signal_pending(current
))
2665 progress
= try_to_free_mem_cgroup_pages(memcg
, 1,
2669 /* maybe some writeback is necessary */
2670 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2678 static ssize_t
mem_cgroup_force_empty_write(struct kernfs_open_file
*of
,
2679 char *buf
, size_t nbytes
,
2682 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
2684 if (mem_cgroup_is_root(memcg
))
2686 return mem_cgroup_force_empty(memcg
) ?: nbytes
;
2689 static u64
mem_cgroup_hierarchy_read(struct cgroup_subsys_state
*css
,
2692 return mem_cgroup_from_css(css
)->use_hierarchy
;
2695 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state
*css
,
2696 struct cftype
*cft
, u64 val
)
2699 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2700 struct mem_cgroup
*parent_memcg
= mem_cgroup_from_css(memcg
->css
.parent
);
2702 if (memcg
->use_hierarchy
== val
)
2706 * If parent's use_hierarchy is set, we can't make any modifications
2707 * in the child subtrees. If it is unset, then the change can
2708 * occur, provided the current cgroup has no children.
2710 * For the root cgroup, parent_mem is NULL, we allow value to be
2711 * set if there are no children.
2713 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
2714 (val
== 1 || val
== 0)) {
2715 if (!memcg_has_children(memcg
))
2716 memcg
->use_hierarchy
= val
;
2725 static void tree_stat(struct mem_cgroup
*memcg
, unsigned long *stat
)
2727 struct mem_cgroup
*iter
;
2730 memset(stat
, 0, sizeof(*stat
) * MEMCG_NR_STAT
);
2732 for_each_mem_cgroup_tree(iter
, memcg
) {
2733 for (i
= 0; i
< MEMCG_NR_STAT
; i
++)
2734 stat
[i
] += memcg_page_state(iter
, i
);
2738 static void tree_events(struct mem_cgroup
*memcg
, unsigned long *events
)
2740 struct mem_cgroup
*iter
;
2743 memset(events
, 0, sizeof(*events
) * MEMCG_NR_EVENTS
);
2745 for_each_mem_cgroup_tree(iter
, memcg
) {
2746 for (i
= 0; i
< MEMCG_NR_EVENTS
; i
++)
2747 events
[i
] += memcg_sum_events(iter
, i
);
2751 static unsigned long mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
2753 unsigned long val
= 0;
2755 if (mem_cgroup_is_root(memcg
)) {
2756 struct mem_cgroup
*iter
;
2758 for_each_mem_cgroup_tree(iter
, memcg
) {
2759 val
+= memcg_page_state(iter
, MEMCG_CACHE
);
2760 val
+= memcg_page_state(iter
, MEMCG_RSS
);
2762 val
+= memcg_page_state(iter
, MEMCG_SWAP
);
2766 val
= page_counter_read(&memcg
->memory
);
2768 val
= page_counter_read(&memcg
->memsw
);
2781 static u64
mem_cgroup_read_u64(struct cgroup_subsys_state
*css
,
2784 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2785 struct page_counter
*counter
;
2787 switch (MEMFILE_TYPE(cft
->private)) {
2789 counter
= &memcg
->memory
;
2792 counter
= &memcg
->memsw
;
2795 counter
= &memcg
->kmem
;
2798 counter
= &memcg
->tcpmem
;
2804 switch (MEMFILE_ATTR(cft
->private)) {
2806 if (counter
== &memcg
->memory
)
2807 return (u64
)mem_cgroup_usage(memcg
, false) * PAGE_SIZE
;
2808 if (counter
== &memcg
->memsw
)
2809 return (u64
)mem_cgroup_usage(memcg
, true) * PAGE_SIZE
;
2810 return (u64
)page_counter_read(counter
) * PAGE_SIZE
;
2812 return (u64
)counter
->limit
* PAGE_SIZE
;
2814 return (u64
)counter
->watermark
* PAGE_SIZE
;
2816 return counter
->failcnt
;
2817 case RES_SOFT_LIMIT
:
2818 return (u64
)memcg
->soft_limit
* PAGE_SIZE
;
2825 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
2829 if (cgroup_memory_nokmem
)
2832 BUG_ON(memcg
->kmemcg_id
>= 0);
2833 BUG_ON(memcg
->kmem_state
);
2835 memcg_id
= memcg_alloc_cache_id();
2839 static_branch_inc(&memcg_kmem_enabled_key
);
2841 * A memory cgroup is considered kmem-online as soon as it gets
2842 * kmemcg_id. Setting the id after enabling static branching will
2843 * guarantee no one starts accounting before all call sites are
2846 memcg
->kmemcg_id
= memcg_id
;
2847 memcg
->kmem_state
= KMEM_ONLINE
;
2848 INIT_LIST_HEAD(&memcg
->kmem_caches
);
2853 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
2855 struct cgroup_subsys_state
*css
;
2856 struct mem_cgroup
*parent
, *child
;
2859 if (memcg
->kmem_state
!= KMEM_ONLINE
)
2862 * Clear the online state before clearing memcg_caches array
2863 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2864 * guarantees that no cache will be created for this cgroup
2865 * after we are done (see memcg_create_kmem_cache()).
2867 memcg
->kmem_state
= KMEM_ALLOCATED
;
2869 memcg_deactivate_kmem_caches(memcg
);
2871 kmemcg_id
= memcg
->kmemcg_id
;
2872 BUG_ON(kmemcg_id
< 0);
2874 parent
= parent_mem_cgroup(memcg
);
2876 parent
= root_mem_cgroup
;
2879 * Change kmemcg_id of this cgroup and all its descendants to the
2880 * parent's id, and then move all entries from this cgroup's list_lrus
2881 * to ones of the parent. After we have finished, all list_lrus
2882 * corresponding to this cgroup are guaranteed to remain empty. The
2883 * ordering is imposed by list_lru_node->lock taken by
2884 * memcg_drain_all_list_lrus().
2886 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2887 css_for_each_descendant_pre(css
, &memcg
->css
) {
2888 child
= mem_cgroup_from_css(css
);
2889 BUG_ON(child
->kmemcg_id
!= kmemcg_id
);
2890 child
->kmemcg_id
= parent
->kmemcg_id
;
2891 if (!memcg
->use_hierarchy
)
2896 memcg_drain_all_list_lrus(kmemcg_id
, parent
->kmemcg_id
);
2898 memcg_free_cache_id(kmemcg_id
);
2901 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
2903 /* css_alloc() failed, offlining didn't happen */
2904 if (unlikely(memcg
->kmem_state
== KMEM_ONLINE
))
2905 memcg_offline_kmem(memcg
);
2907 if (memcg
->kmem_state
== KMEM_ALLOCATED
) {
2908 memcg_destroy_kmem_caches(memcg
);
2909 static_branch_dec(&memcg_kmem_enabled_key
);
2910 WARN_ON(page_counter_read(&memcg
->kmem
));
2914 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
2918 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
2921 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
2924 #endif /* !CONFIG_SLOB */
2926 static int memcg_update_kmem_limit(struct mem_cgroup
*memcg
,
2927 unsigned long limit
)
2931 mutex_lock(&memcg_limit_mutex
);
2932 ret
= page_counter_limit(&memcg
->kmem
, limit
);
2933 mutex_unlock(&memcg_limit_mutex
);
2937 static int memcg_update_tcp_limit(struct mem_cgroup
*memcg
, unsigned long limit
)
2941 mutex_lock(&memcg_limit_mutex
);
2943 ret
= page_counter_limit(&memcg
->tcpmem
, limit
);
2947 if (!memcg
->tcpmem_active
) {
2949 * The active flag needs to be written after the static_key
2950 * update. This is what guarantees that the socket activation
2951 * function is the last one to run. See mem_cgroup_sk_alloc()
2952 * for details, and note that we don't mark any socket as
2953 * belonging to this memcg until that flag is up.
2955 * We need to do this, because static_keys will span multiple
2956 * sites, but we can't control their order. If we mark a socket
2957 * as accounted, but the accounting functions are not patched in
2958 * yet, we'll lose accounting.
2960 * We never race with the readers in mem_cgroup_sk_alloc(),
2961 * because when this value change, the code to process it is not
2964 static_branch_inc(&memcg_sockets_enabled_key
);
2965 memcg
->tcpmem_active
= true;
2968 mutex_unlock(&memcg_limit_mutex
);
2973 * The user of this function is...
2976 static ssize_t
mem_cgroup_write(struct kernfs_open_file
*of
,
2977 char *buf
, size_t nbytes
, loff_t off
)
2979 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
2980 unsigned long nr_pages
;
2983 buf
= strstrip(buf
);
2984 ret
= page_counter_memparse(buf
, "-1", &nr_pages
);
2988 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
2990 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
2994 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
2996 ret
= mem_cgroup_resize_limit(memcg
, nr_pages
);
2999 ret
= mem_cgroup_resize_memsw_limit(memcg
, nr_pages
);
3002 ret
= memcg_update_kmem_limit(memcg
, nr_pages
);
3005 ret
= memcg_update_tcp_limit(memcg
, nr_pages
);
3009 case RES_SOFT_LIMIT
:
3010 memcg
->soft_limit
= nr_pages
;
3014 return ret
?: nbytes
;
3017 static ssize_t
mem_cgroup_reset(struct kernfs_open_file
*of
, char *buf
,
3018 size_t nbytes
, loff_t off
)
3020 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3021 struct page_counter
*counter
;
3023 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3025 counter
= &memcg
->memory
;
3028 counter
= &memcg
->memsw
;
3031 counter
= &memcg
->kmem
;
3034 counter
= &memcg
->tcpmem
;
3040 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3042 page_counter_reset_watermark(counter
);
3045 counter
->failcnt
= 0;
3054 static u64
mem_cgroup_move_charge_read(struct cgroup_subsys_state
*css
,
3057 return mem_cgroup_from_css(css
)->move_charge_at_immigrate
;
3061 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3062 struct cftype
*cft
, u64 val
)
3064 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3066 if (val
& ~MOVE_MASK
)
3070 * No kind of locking is needed in here, because ->can_attach() will
3071 * check this value once in the beginning of the process, and then carry
3072 * on with stale data. This means that changes to this value will only
3073 * affect task migrations starting after the change.
3075 memcg
->move_charge_at_immigrate
= val
;
3079 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3080 struct cftype
*cft
, u64 val
)
3087 static int memcg_numa_stat_show(struct seq_file
*m
, void *v
)
3091 unsigned int lru_mask
;
3094 static const struct numa_stat stats
[] = {
3095 { "total", LRU_ALL
},
3096 { "file", LRU_ALL_FILE
},
3097 { "anon", LRU_ALL_ANON
},
3098 { "unevictable", BIT(LRU_UNEVICTABLE
) },
3100 const struct numa_stat
*stat
;
3103 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3105 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3106 nr
= mem_cgroup_nr_lru_pages(memcg
, stat
->lru_mask
);
3107 seq_printf(m
, "%s=%lu", stat
->name
, nr
);
3108 for_each_node_state(nid
, N_MEMORY
) {
3109 nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
3111 seq_printf(m
, " N%d=%lu", nid
, nr
);
3116 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3117 struct mem_cgroup
*iter
;
3120 for_each_mem_cgroup_tree(iter
, memcg
)
3121 nr
+= mem_cgroup_nr_lru_pages(iter
, stat
->lru_mask
);
3122 seq_printf(m
, "hierarchical_%s=%lu", stat
->name
, nr
);
3123 for_each_node_state(nid
, N_MEMORY
) {
3125 for_each_mem_cgroup_tree(iter
, memcg
)
3126 nr
+= mem_cgroup_node_nr_lru_pages(
3127 iter
, nid
, stat
->lru_mask
);
3128 seq_printf(m
, " N%d=%lu", nid
, nr
);
3135 #endif /* CONFIG_NUMA */
3137 /* Universal VM events cgroup1 shows, original sort order */
3138 unsigned int memcg1_events
[] = {
3145 static const char *const memcg1_event_names
[] = {
3152 static int memcg_stat_show(struct seq_file
*m
, void *v
)
3154 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3155 unsigned long memory
, memsw
;
3156 struct mem_cgroup
*mi
;
3159 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names
) != ARRAY_SIZE(memcg1_stats
));
3160 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
3162 for (i
= 0; i
< ARRAY_SIZE(memcg1_stats
); i
++) {
3163 if (memcg1_stats
[i
] == MEMCG_SWAP
&& !do_memsw_account())
3165 seq_printf(m
, "%s %lu\n", memcg1_stat_names
[i
],
3166 memcg_page_state(memcg
, memcg1_stats
[i
]) *
3170 for (i
= 0; i
< ARRAY_SIZE(memcg1_events
); i
++)
3171 seq_printf(m
, "%s %lu\n", memcg1_event_names
[i
],
3172 memcg_sum_events(memcg
, memcg1_events
[i
]));
3174 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
3175 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
3176 mem_cgroup_nr_lru_pages(memcg
, BIT(i
)) * PAGE_SIZE
);
3178 /* Hierarchical information */
3179 memory
= memsw
= PAGE_COUNTER_MAX
;
3180 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
)) {
3181 memory
= min(memory
, mi
->memory
.limit
);
3182 memsw
= min(memsw
, mi
->memsw
.limit
);
3184 seq_printf(m
, "hierarchical_memory_limit %llu\n",
3185 (u64
)memory
* PAGE_SIZE
);
3186 if (do_memsw_account())
3187 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
3188 (u64
)memsw
* PAGE_SIZE
);
3190 for (i
= 0; i
< ARRAY_SIZE(memcg1_stats
); i
++) {
3191 unsigned long long val
= 0;
3193 if (memcg1_stats
[i
] == MEMCG_SWAP
&& !do_memsw_account())
3195 for_each_mem_cgroup_tree(mi
, memcg
)
3196 val
+= memcg_page_state(mi
, memcg1_stats
[i
]) *
3198 seq_printf(m
, "total_%s %llu\n", memcg1_stat_names
[i
], val
);
3201 for (i
= 0; i
< ARRAY_SIZE(memcg1_events
); i
++) {
3202 unsigned long long val
= 0;
3204 for_each_mem_cgroup_tree(mi
, memcg
)
3205 val
+= memcg_sum_events(mi
, memcg1_events
[i
]);
3206 seq_printf(m
, "total_%s %llu\n", memcg1_event_names
[i
], val
);
3209 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
3210 unsigned long long val
= 0;
3212 for_each_mem_cgroup_tree(mi
, memcg
)
3213 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
)) * PAGE_SIZE
;
3214 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
], val
);
3217 #ifdef CONFIG_DEBUG_VM
3220 struct mem_cgroup_per_node
*mz
;
3221 struct zone_reclaim_stat
*rstat
;
3222 unsigned long recent_rotated
[2] = {0, 0};
3223 unsigned long recent_scanned
[2] = {0, 0};
3225 for_each_online_pgdat(pgdat
) {
3226 mz
= mem_cgroup_nodeinfo(memcg
, pgdat
->node_id
);
3227 rstat
= &mz
->lruvec
.reclaim_stat
;
3229 recent_rotated
[0] += rstat
->recent_rotated
[0];
3230 recent_rotated
[1] += rstat
->recent_rotated
[1];
3231 recent_scanned
[0] += rstat
->recent_scanned
[0];
3232 recent_scanned
[1] += rstat
->recent_scanned
[1];
3234 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
3235 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
3236 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
3237 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
3244 static u64
mem_cgroup_swappiness_read(struct cgroup_subsys_state
*css
,
3247 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3249 return mem_cgroup_swappiness(memcg
);
3252 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state
*css
,
3253 struct cftype
*cft
, u64 val
)
3255 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3261 memcg
->swappiness
= val
;
3263 vm_swappiness
= val
;
3268 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
3270 struct mem_cgroup_threshold_ary
*t
;
3271 unsigned long usage
;
3276 t
= rcu_dereference(memcg
->thresholds
.primary
);
3278 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
3283 usage
= mem_cgroup_usage(memcg
, swap
);
3286 * current_threshold points to threshold just below or equal to usage.
3287 * If it's not true, a threshold was crossed after last
3288 * call of __mem_cgroup_threshold().
3290 i
= t
->current_threshold
;
3293 * Iterate backward over array of thresholds starting from
3294 * current_threshold and check if a threshold is crossed.
3295 * If none of thresholds below usage is crossed, we read
3296 * only one element of the array here.
3298 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
3299 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3301 /* i = current_threshold + 1 */
3305 * Iterate forward over array of thresholds starting from
3306 * current_threshold+1 and check if a threshold is crossed.
3307 * If none of thresholds above usage is crossed, we read
3308 * only one element of the array here.
3310 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
3311 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3313 /* Update current_threshold */
3314 t
->current_threshold
= i
- 1;
3319 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
3322 __mem_cgroup_threshold(memcg
, false);
3323 if (do_memsw_account())
3324 __mem_cgroup_threshold(memcg
, true);
3326 memcg
= parent_mem_cgroup(memcg
);
3330 static int compare_thresholds(const void *a
, const void *b
)
3332 const struct mem_cgroup_threshold
*_a
= a
;
3333 const struct mem_cgroup_threshold
*_b
= b
;
3335 if (_a
->threshold
> _b
->threshold
)
3338 if (_a
->threshold
< _b
->threshold
)
3344 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
3346 struct mem_cgroup_eventfd_list
*ev
;
3348 spin_lock(&memcg_oom_lock
);
3350 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
3351 eventfd_signal(ev
->eventfd
, 1);
3353 spin_unlock(&memcg_oom_lock
);
3357 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
3359 struct mem_cgroup
*iter
;
3361 for_each_mem_cgroup_tree(iter
, memcg
)
3362 mem_cgroup_oom_notify_cb(iter
);
3365 static int __mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3366 struct eventfd_ctx
*eventfd
, const char *args
, enum res_type type
)
3368 struct mem_cgroup_thresholds
*thresholds
;
3369 struct mem_cgroup_threshold_ary
*new;
3370 unsigned long threshold
;
3371 unsigned long usage
;
3374 ret
= page_counter_memparse(args
, "-1", &threshold
);
3378 mutex_lock(&memcg
->thresholds_lock
);
3381 thresholds
= &memcg
->thresholds
;
3382 usage
= mem_cgroup_usage(memcg
, false);
3383 } else if (type
== _MEMSWAP
) {
3384 thresholds
= &memcg
->memsw_thresholds
;
3385 usage
= mem_cgroup_usage(memcg
, true);
3389 /* Check if a threshold crossed before adding a new one */
3390 if (thresholds
->primary
)
3391 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3393 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
3395 /* Allocate memory for new array of thresholds */
3396 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
3404 /* Copy thresholds (if any) to new array */
3405 if (thresholds
->primary
) {
3406 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
3407 sizeof(struct mem_cgroup_threshold
));
3410 /* Add new threshold */
3411 new->entries
[size
- 1].eventfd
= eventfd
;
3412 new->entries
[size
- 1].threshold
= threshold
;
3414 /* Sort thresholds. Registering of new threshold isn't time-critical */
3415 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
3416 compare_thresholds
, NULL
);
3418 /* Find current threshold */
3419 new->current_threshold
= -1;
3420 for (i
= 0; i
< size
; i
++) {
3421 if (new->entries
[i
].threshold
<= usage
) {
3423 * new->current_threshold will not be used until
3424 * rcu_assign_pointer(), so it's safe to increment
3427 ++new->current_threshold
;
3432 /* Free old spare buffer and save old primary buffer as spare */
3433 kfree(thresholds
->spare
);
3434 thresholds
->spare
= thresholds
->primary
;
3436 rcu_assign_pointer(thresholds
->primary
, new);
3438 /* To be sure that nobody uses thresholds */
3442 mutex_unlock(&memcg
->thresholds_lock
);
3447 static int mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3448 struct eventfd_ctx
*eventfd
, const char *args
)
3450 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEM
);
3453 static int memsw_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3454 struct eventfd_ctx
*eventfd
, const char *args
)
3456 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEMSWAP
);
3459 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3460 struct eventfd_ctx
*eventfd
, enum res_type type
)
3462 struct mem_cgroup_thresholds
*thresholds
;
3463 struct mem_cgroup_threshold_ary
*new;
3464 unsigned long usage
;
3467 mutex_lock(&memcg
->thresholds_lock
);
3470 thresholds
= &memcg
->thresholds
;
3471 usage
= mem_cgroup_usage(memcg
, false);
3472 } else if (type
== _MEMSWAP
) {
3473 thresholds
= &memcg
->memsw_thresholds
;
3474 usage
= mem_cgroup_usage(memcg
, true);
3478 if (!thresholds
->primary
)
3481 /* Check if a threshold crossed before removing */
3482 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3484 /* Calculate new number of threshold */
3486 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
3487 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
3491 new = thresholds
->spare
;
3493 /* Set thresholds array to NULL if we don't have thresholds */
3502 /* Copy thresholds and find current threshold */
3503 new->current_threshold
= -1;
3504 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
3505 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
3508 new->entries
[j
] = thresholds
->primary
->entries
[i
];
3509 if (new->entries
[j
].threshold
<= usage
) {
3511 * new->current_threshold will not be used
3512 * until rcu_assign_pointer(), so it's safe to increment
3515 ++new->current_threshold
;
3521 /* Swap primary and spare array */
3522 thresholds
->spare
= thresholds
->primary
;
3524 rcu_assign_pointer(thresholds
->primary
, new);
3526 /* To be sure that nobody uses thresholds */
3529 /* If all events are unregistered, free the spare array */
3531 kfree(thresholds
->spare
);
3532 thresholds
->spare
= NULL
;
3535 mutex_unlock(&memcg
->thresholds_lock
);
3538 static void mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3539 struct eventfd_ctx
*eventfd
)
3541 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEM
);
3544 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3545 struct eventfd_ctx
*eventfd
)
3547 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEMSWAP
);
3550 static int mem_cgroup_oom_register_event(struct mem_cgroup
*memcg
,
3551 struct eventfd_ctx
*eventfd
, const char *args
)
3553 struct mem_cgroup_eventfd_list
*event
;
3555 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
3559 spin_lock(&memcg_oom_lock
);
3561 event
->eventfd
= eventfd
;
3562 list_add(&event
->list
, &memcg
->oom_notify
);
3564 /* already in OOM ? */
3565 if (memcg
->under_oom
)
3566 eventfd_signal(eventfd
, 1);
3567 spin_unlock(&memcg_oom_lock
);
3572 static void mem_cgroup_oom_unregister_event(struct mem_cgroup
*memcg
,
3573 struct eventfd_ctx
*eventfd
)
3575 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
3577 spin_lock(&memcg_oom_lock
);
3579 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
3580 if (ev
->eventfd
== eventfd
) {
3581 list_del(&ev
->list
);
3586 spin_unlock(&memcg_oom_lock
);
3589 static int mem_cgroup_oom_control_read(struct seq_file
*sf
, void *v
)
3591 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(sf
));
3593 seq_printf(sf
, "oom_kill_disable %d\n", memcg
->oom_kill_disable
);
3594 seq_printf(sf
, "under_oom %d\n", (bool)memcg
->under_oom
);
3595 seq_printf(sf
, "oom_kill %lu\n", memcg_sum_events(memcg
, OOM_KILL
));
3599 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state
*css
,
3600 struct cftype
*cft
, u64 val
)
3602 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3604 /* cannot set to root cgroup and only 0 and 1 are allowed */
3605 if (!css
->parent
|| !((val
== 0) || (val
== 1)))
3608 memcg
->oom_kill_disable
= val
;
3610 memcg_oom_recover(memcg
);
3615 #ifdef CONFIG_CGROUP_WRITEBACK
3617 struct list_head
*mem_cgroup_cgwb_list(struct mem_cgroup
*memcg
)
3619 return &memcg
->cgwb_list
;
3622 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
3624 return wb_domain_init(&memcg
->cgwb_domain
, gfp
);
3627 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
3629 wb_domain_exit(&memcg
->cgwb_domain
);
3632 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
3634 wb_domain_size_changed(&memcg
->cgwb_domain
);
3637 struct wb_domain
*mem_cgroup_wb_domain(struct bdi_writeback
*wb
)
3639 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3641 if (!memcg
->css
.parent
)
3644 return &memcg
->cgwb_domain
;
3648 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3649 * @wb: bdi_writeback in question
3650 * @pfilepages: out parameter for number of file pages
3651 * @pheadroom: out parameter for number of allocatable pages according to memcg
3652 * @pdirty: out parameter for number of dirty pages
3653 * @pwriteback: out parameter for number of pages under writeback
3655 * Determine the numbers of file, headroom, dirty, and writeback pages in
3656 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3657 * is a bit more involved.
3659 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3660 * headroom is calculated as the lowest headroom of itself and the
3661 * ancestors. Note that this doesn't consider the actual amount of
3662 * available memory in the system. The caller should further cap
3663 * *@pheadroom accordingly.
3665 void mem_cgroup_wb_stats(struct bdi_writeback
*wb
, unsigned long *pfilepages
,
3666 unsigned long *pheadroom
, unsigned long *pdirty
,
3667 unsigned long *pwriteback
)
3669 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3670 struct mem_cgroup
*parent
;
3672 *pdirty
= memcg_page_state(memcg
, NR_FILE_DIRTY
);
3674 /* this should eventually include NR_UNSTABLE_NFS */
3675 *pwriteback
= memcg_page_state(memcg
, NR_WRITEBACK
);
3676 *pfilepages
= mem_cgroup_nr_lru_pages(memcg
, (1 << LRU_INACTIVE_FILE
) |
3677 (1 << LRU_ACTIVE_FILE
));
3678 *pheadroom
= PAGE_COUNTER_MAX
;
3680 while ((parent
= parent_mem_cgroup(memcg
))) {
3681 unsigned long ceiling
= min(memcg
->memory
.limit
, memcg
->high
);
3682 unsigned long used
= page_counter_read(&memcg
->memory
);
3684 *pheadroom
= min(*pheadroom
, ceiling
- min(ceiling
, used
));
3689 #else /* CONFIG_CGROUP_WRITEBACK */
3691 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
3696 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
3700 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
3704 #endif /* CONFIG_CGROUP_WRITEBACK */
3707 * DO NOT USE IN NEW FILES.
3709 * "cgroup.event_control" implementation.
3711 * This is way over-engineered. It tries to support fully configurable
3712 * events for each user. Such level of flexibility is completely
3713 * unnecessary especially in the light of the planned unified hierarchy.
3715 * Please deprecate this and replace with something simpler if at all
3720 * Unregister event and free resources.
3722 * Gets called from workqueue.
3724 static void memcg_event_remove(struct work_struct
*work
)
3726 struct mem_cgroup_event
*event
=
3727 container_of(work
, struct mem_cgroup_event
, remove
);
3728 struct mem_cgroup
*memcg
= event
->memcg
;
3730 remove_wait_queue(event
->wqh
, &event
->wait
);
3732 event
->unregister_event(memcg
, event
->eventfd
);
3734 /* Notify userspace the event is going away. */
3735 eventfd_signal(event
->eventfd
, 1);
3737 eventfd_ctx_put(event
->eventfd
);
3739 css_put(&memcg
->css
);
3743 * Gets called on POLLHUP on eventfd when user closes it.
3745 * Called with wqh->lock held and interrupts disabled.
3747 static int memcg_event_wake(wait_queue_entry_t
*wait
, unsigned mode
,
3748 int sync
, void *key
)
3750 struct mem_cgroup_event
*event
=
3751 container_of(wait
, struct mem_cgroup_event
, wait
);
3752 struct mem_cgroup
*memcg
= event
->memcg
;
3753 unsigned long flags
= (unsigned long)key
;
3755 if (flags
& POLLHUP
) {
3757 * If the event has been detached at cgroup removal, we
3758 * can simply return knowing the other side will cleanup
3761 * We can't race against event freeing since the other
3762 * side will require wqh->lock via remove_wait_queue(),
3765 spin_lock(&memcg
->event_list_lock
);
3766 if (!list_empty(&event
->list
)) {
3767 list_del_init(&event
->list
);
3769 * We are in atomic context, but cgroup_event_remove()
3770 * may sleep, so we have to call it in workqueue.
3772 schedule_work(&event
->remove
);
3774 spin_unlock(&memcg
->event_list_lock
);
3780 static void memcg_event_ptable_queue_proc(struct file
*file
,
3781 wait_queue_head_t
*wqh
, poll_table
*pt
)
3783 struct mem_cgroup_event
*event
=
3784 container_of(pt
, struct mem_cgroup_event
, pt
);
3787 add_wait_queue(wqh
, &event
->wait
);
3791 * DO NOT USE IN NEW FILES.
3793 * Parse input and register new cgroup event handler.
3795 * Input must be in format '<event_fd> <control_fd> <args>'.
3796 * Interpretation of args is defined by control file implementation.
3798 static ssize_t
memcg_write_event_control(struct kernfs_open_file
*of
,
3799 char *buf
, size_t nbytes
, loff_t off
)
3801 struct cgroup_subsys_state
*css
= of_css(of
);
3802 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3803 struct mem_cgroup_event
*event
;
3804 struct cgroup_subsys_state
*cfile_css
;
3805 unsigned int efd
, cfd
;
3812 buf
= strstrip(buf
);
3814 efd
= simple_strtoul(buf
, &endp
, 10);
3819 cfd
= simple_strtoul(buf
, &endp
, 10);
3820 if ((*endp
!= ' ') && (*endp
!= '\0'))
3824 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
3828 event
->memcg
= memcg
;
3829 INIT_LIST_HEAD(&event
->list
);
3830 init_poll_funcptr(&event
->pt
, memcg_event_ptable_queue_proc
);
3831 init_waitqueue_func_entry(&event
->wait
, memcg_event_wake
);
3832 INIT_WORK(&event
->remove
, memcg_event_remove
);
3840 event
->eventfd
= eventfd_ctx_fileget(efile
.file
);
3841 if (IS_ERR(event
->eventfd
)) {
3842 ret
= PTR_ERR(event
->eventfd
);
3849 goto out_put_eventfd
;
3852 /* the process need read permission on control file */
3853 /* AV: shouldn't we check that it's been opened for read instead? */
3854 ret
= inode_permission(file_inode(cfile
.file
), MAY_READ
);
3859 * Determine the event callbacks and set them in @event. This used
3860 * to be done via struct cftype but cgroup core no longer knows
3861 * about these events. The following is crude but the whole thing
3862 * is for compatibility anyway.
3864 * DO NOT ADD NEW FILES.
3866 name
= cfile
.file
->f_path
.dentry
->d_name
.name
;
3868 if (!strcmp(name
, "memory.usage_in_bytes")) {
3869 event
->register_event
= mem_cgroup_usage_register_event
;
3870 event
->unregister_event
= mem_cgroup_usage_unregister_event
;
3871 } else if (!strcmp(name
, "memory.oom_control")) {
3872 event
->register_event
= mem_cgroup_oom_register_event
;
3873 event
->unregister_event
= mem_cgroup_oom_unregister_event
;
3874 } else if (!strcmp(name
, "memory.pressure_level")) {
3875 event
->register_event
= vmpressure_register_event
;
3876 event
->unregister_event
= vmpressure_unregister_event
;
3877 } else if (!strcmp(name
, "memory.memsw.usage_in_bytes")) {
3878 event
->register_event
= memsw_cgroup_usage_register_event
;
3879 event
->unregister_event
= memsw_cgroup_usage_unregister_event
;
3886 * Verify @cfile should belong to @css. Also, remaining events are
3887 * automatically removed on cgroup destruction but the removal is
3888 * asynchronous, so take an extra ref on @css.
3890 cfile_css
= css_tryget_online_from_dir(cfile
.file
->f_path
.dentry
->d_parent
,
3891 &memory_cgrp_subsys
);
3893 if (IS_ERR(cfile_css
))
3895 if (cfile_css
!= css
) {
3900 ret
= event
->register_event(memcg
, event
->eventfd
, buf
);
3904 efile
.file
->f_op
->poll(efile
.file
, &event
->pt
);
3906 spin_lock(&memcg
->event_list_lock
);
3907 list_add(&event
->list
, &memcg
->event_list
);
3908 spin_unlock(&memcg
->event_list_lock
);
3920 eventfd_ctx_put(event
->eventfd
);
3929 static struct cftype mem_cgroup_legacy_files
[] = {
3931 .name
= "usage_in_bytes",
3932 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
3933 .read_u64
= mem_cgroup_read_u64
,
3936 .name
= "max_usage_in_bytes",
3937 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
3938 .write
= mem_cgroup_reset
,
3939 .read_u64
= mem_cgroup_read_u64
,
3942 .name
= "limit_in_bytes",
3943 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
3944 .write
= mem_cgroup_write
,
3945 .read_u64
= mem_cgroup_read_u64
,
3948 .name
= "soft_limit_in_bytes",
3949 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
3950 .write
= mem_cgroup_write
,
3951 .read_u64
= mem_cgroup_read_u64
,
3955 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
3956 .write
= mem_cgroup_reset
,
3957 .read_u64
= mem_cgroup_read_u64
,
3961 .seq_show
= memcg_stat_show
,
3964 .name
= "force_empty",
3965 .write
= mem_cgroup_force_empty_write
,
3968 .name
= "use_hierarchy",
3969 .write_u64
= mem_cgroup_hierarchy_write
,
3970 .read_u64
= mem_cgroup_hierarchy_read
,
3973 .name
= "cgroup.event_control", /* XXX: for compat */
3974 .write
= memcg_write_event_control
,
3975 .flags
= CFTYPE_NO_PREFIX
| CFTYPE_WORLD_WRITABLE
,
3978 .name
= "swappiness",
3979 .read_u64
= mem_cgroup_swappiness_read
,
3980 .write_u64
= mem_cgroup_swappiness_write
,
3983 .name
= "move_charge_at_immigrate",
3984 .read_u64
= mem_cgroup_move_charge_read
,
3985 .write_u64
= mem_cgroup_move_charge_write
,
3988 .name
= "oom_control",
3989 .seq_show
= mem_cgroup_oom_control_read
,
3990 .write_u64
= mem_cgroup_oom_control_write
,
3991 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
3994 .name
= "pressure_level",
3998 .name
= "numa_stat",
3999 .seq_show
= memcg_numa_stat_show
,
4003 .name
= "kmem.limit_in_bytes",
4004 .private = MEMFILE_PRIVATE(_KMEM
, RES_LIMIT
),
4005 .write
= mem_cgroup_write
,
4006 .read_u64
= mem_cgroup_read_u64
,
4009 .name
= "kmem.usage_in_bytes",
4010 .private = MEMFILE_PRIVATE(_KMEM
, RES_USAGE
),
4011 .read_u64
= mem_cgroup_read_u64
,
4014 .name
= "kmem.failcnt",
4015 .private = MEMFILE_PRIVATE(_KMEM
, RES_FAILCNT
),
4016 .write
= mem_cgroup_reset
,
4017 .read_u64
= mem_cgroup_read_u64
,
4020 .name
= "kmem.max_usage_in_bytes",
4021 .private = MEMFILE_PRIVATE(_KMEM
, RES_MAX_USAGE
),
4022 .write
= mem_cgroup_reset
,
4023 .read_u64
= mem_cgroup_read_u64
,
4025 #ifdef CONFIG_SLABINFO
4027 .name
= "kmem.slabinfo",
4028 .seq_start
= memcg_slab_start
,
4029 .seq_next
= memcg_slab_next
,
4030 .seq_stop
= memcg_slab_stop
,
4031 .seq_show
= memcg_slab_show
,
4035 .name
= "kmem.tcp.limit_in_bytes",
4036 .private = MEMFILE_PRIVATE(_TCP
, RES_LIMIT
),
4037 .write
= mem_cgroup_write
,
4038 .read_u64
= mem_cgroup_read_u64
,
4041 .name
= "kmem.tcp.usage_in_bytes",
4042 .private = MEMFILE_PRIVATE(_TCP
, RES_USAGE
),
4043 .read_u64
= mem_cgroup_read_u64
,
4046 .name
= "kmem.tcp.failcnt",
4047 .private = MEMFILE_PRIVATE(_TCP
, RES_FAILCNT
),
4048 .write
= mem_cgroup_reset
,
4049 .read_u64
= mem_cgroup_read_u64
,
4052 .name
= "kmem.tcp.max_usage_in_bytes",
4053 .private = MEMFILE_PRIVATE(_TCP
, RES_MAX_USAGE
),
4054 .write
= mem_cgroup_reset
,
4055 .read_u64
= mem_cgroup_read_u64
,
4057 { }, /* terminate */
4061 * Private memory cgroup IDR
4063 * Swap-out records and page cache shadow entries need to store memcg
4064 * references in constrained space, so we maintain an ID space that is
4065 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4066 * memory-controlled cgroups to 64k.
4068 * However, there usually are many references to the oflline CSS after
4069 * the cgroup has been destroyed, such as page cache or reclaimable
4070 * slab objects, that don't need to hang on to the ID. We want to keep
4071 * those dead CSS from occupying IDs, or we might quickly exhaust the
4072 * relatively small ID space and prevent the creation of new cgroups
4073 * even when there are much fewer than 64k cgroups - possibly none.
4075 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4076 * be freed and recycled when it's no longer needed, which is usually
4077 * when the CSS is offlined.
4079 * The only exception to that are records of swapped out tmpfs/shmem
4080 * pages that need to be attributed to live ancestors on swapin. But
4081 * those references are manageable from userspace.
4084 static DEFINE_IDR(mem_cgroup_idr
);
4086 static void mem_cgroup_id_get_many(struct mem_cgroup
*memcg
, unsigned int n
)
4088 VM_BUG_ON(atomic_read(&memcg
->id
.ref
) <= 0);
4089 atomic_add(n
, &memcg
->id
.ref
);
4092 static void mem_cgroup_id_put_many(struct mem_cgroup
*memcg
, unsigned int n
)
4094 VM_BUG_ON(atomic_read(&memcg
->id
.ref
) < n
);
4095 if (atomic_sub_and_test(n
, &memcg
->id
.ref
)) {
4096 idr_remove(&mem_cgroup_idr
, memcg
->id
.id
);
4099 /* Memcg ID pins CSS */
4100 css_put(&memcg
->css
);
4104 static inline void mem_cgroup_id_get(struct mem_cgroup
*memcg
)
4106 mem_cgroup_id_get_many(memcg
, 1);
4109 static inline void mem_cgroup_id_put(struct mem_cgroup
*memcg
)
4111 mem_cgroup_id_put_many(memcg
, 1);
4115 * mem_cgroup_from_id - look up a memcg from a memcg id
4116 * @id: the memcg id to look up
4118 * Caller must hold rcu_read_lock().
4120 struct mem_cgroup
*mem_cgroup_from_id(unsigned short id
)
4122 WARN_ON_ONCE(!rcu_read_lock_held());
4123 return idr_find(&mem_cgroup_idr
, id
);
4126 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup
*memcg
, int node
)
4128 struct mem_cgroup_per_node
*pn
;
4131 * This routine is called against possible nodes.
4132 * But it's BUG to call kmalloc() against offline node.
4134 * TODO: this routine can waste much memory for nodes which will
4135 * never be onlined. It's better to use memory hotplug callback
4138 if (!node_state(node
, N_NORMAL_MEMORY
))
4140 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4144 pn
->lruvec_stat
= alloc_percpu(struct lruvec_stat
);
4145 if (!pn
->lruvec_stat
) {
4150 lruvec_init(&pn
->lruvec
);
4151 pn
->usage_in_excess
= 0;
4152 pn
->on_tree
= false;
4155 memcg
->nodeinfo
[node
] = pn
;
4159 static void free_mem_cgroup_per_node_info(struct mem_cgroup
*memcg
, int node
)
4161 struct mem_cgroup_per_node
*pn
= memcg
->nodeinfo
[node
];
4163 free_percpu(pn
->lruvec_stat
);
4167 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
4172 free_mem_cgroup_per_node_info(memcg
, node
);
4173 free_percpu(memcg
->stat
);
4177 static void mem_cgroup_free(struct mem_cgroup
*memcg
)
4179 memcg_wb_domain_exit(memcg
);
4180 __mem_cgroup_free(memcg
);
4183 static struct mem_cgroup
*mem_cgroup_alloc(void)
4185 struct mem_cgroup
*memcg
;
4189 size
= sizeof(struct mem_cgroup
);
4190 size
+= nr_node_ids
* sizeof(struct mem_cgroup_per_node
*);
4192 memcg
= kzalloc(size
, GFP_KERNEL
);
4196 memcg
->id
.id
= idr_alloc(&mem_cgroup_idr
, NULL
,
4197 1, MEM_CGROUP_ID_MAX
,
4199 if (memcg
->id
.id
< 0)
4202 memcg
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4207 if (alloc_mem_cgroup_per_node_info(memcg
, node
))
4210 if (memcg_wb_domain_init(memcg
, GFP_KERNEL
))
4213 INIT_WORK(&memcg
->high_work
, high_work_func
);
4214 memcg
->last_scanned_node
= MAX_NUMNODES
;
4215 INIT_LIST_HEAD(&memcg
->oom_notify
);
4216 mutex_init(&memcg
->thresholds_lock
);
4217 spin_lock_init(&memcg
->move_lock
);
4218 vmpressure_init(&memcg
->vmpressure
);
4219 INIT_LIST_HEAD(&memcg
->event_list
);
4220 spin_lock_init(&memcg
->event_list_lock
);
4221 memcg
->socket_pressure
= jiffies
;
4223 memcg
->kmemcg_id
= -1;
4225 #ifdef CONFIG_CGROUP_WRITEBACK
4226 INIT_LIST_HEAD(&memcg
->cgwb_list
);
4228 idr_replace(&mem_cgroup_idr
, memcg
, memcg
->id
.id
);
4231 if (memcg
->id
.id
> 0)
4232 idr_remove(&mem_cgroup_idr
, memcg
->id
.id
);
4233 __mem_cgroup_free(memcg
);
4237 static struct cgroup_subsys_state
* __ref
4238 mem_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
4240 struct mem_cgroup
*parent
= mem_cgroup_from_css(parent_css
);
4241 struct mem_cgroup
*memcg
;
4242 long error
= -ENOMEM
;
4244 memcg
= mem_cgroup_alloc();
4246 return ERR_PTR(error
);
4248 memcg
->high
= PAGE_COUNTER_MAX
;
4249 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4251 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
4252 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
4254 if (parent
&& parent
->use_hierarchy
) {
4255 memcg
->use_hierarchy
= true;
4256 page_counter_init(&memcg
->memory
, &parent
->memory
);
4257 page_counter_init(&memcg
->swap
, &parent
->swap
);
4258 page_counter_init(&memcg
->memsw
, &parent
->memsw
);
4259 page_counter_init(&memcg
->kmem
, &parent
->kmem
);
4260 page_counter_init(&memcg
->tcpmem
, &parent
->tcpmem
);
4262 page_counter_init(&memcg
->memory
, NULL
);
4263 page_counter_init(&memcg
->swap
, NULL
);
4264 page_counter_init(&memcg
->memsw
, NULL
);
4265 page_counter_init(&memcg
->kmem
, NULL
);
4266 page_counter_init(&memcg
->tcpmem
, NULL
);
4268 * Deeper hierachy with use_hierarchy == false doesn't make
4269 * much sense so let cgroup subsystem know about this
4270 * unfortunate state in our controller.
4272 if (parent
!= root_mem_cgroup
)
4273 memory_cgrp_subsys
.broken_hierarchy
= true;
4276 /* The following stuff does not apply to the root */
4278 root_mem_cgroup
= memcg
;
4282 error
= memcg_online_kmem(memcg
);
4286 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4287 static_branch_inc(&memcg_sockets_enabled_key
);
4291 mem_cgroup_free(memcg
);
4292 return ERR_PTR(-ENOMEM
);
4295 static int mem_cgroup_css_online(struct cgroup_subsys_state
*css
)
4297 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4299 /* Online state pins memcg ID, memcg ID pins CSS */
4300 atomic_set(&memcg
->id
.ref
, 1);
4305 static void mem_cgroup_css_offline(struct cgroup_subsys_state
*css
)
4307 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4308 struct mem_cgroup_event
*event
, *tmp
;
4311 * Unregister events and notify userspace.
4312 * Notify userspace about cgroup removing only after rmdir of cgroup
4313 * directory to avoid race between userspace and kernelspace.
4315 spin_lock(&memcg
->event_list_lock
);
4316 list_for_each_entry_safe(event
, tmp
, &memcg
->event_list
, list
) {
4317 list_del_init(&event
->list
);
4318 schedule_work(&event
->remove
);
4320 spin_unlock(&memcg
->event_list_lock
);
4322 memcg_offline_kmem(memcg
);
4323 wb_memcg_offline(memcg
);
4325 mem_cgroup_id_put(memcg
);
4328 static void mem_cgroup_css_released(struct cgroup_subsys_state
*css
)
4330 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4332 invalidate_reclaim_iterators(memcg
);
4335 static void mem_cgroup_css_free(struct cgroup_subsys_state
*css
)
4337 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4339 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4340 static_branch_dec(&memcg_sockets_enabled_key
);
4342 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && memcg
->tcpmem_active
)
4343 static_branch_dec(&memcg_sockets_enabled_key
);
4345 vmpressure_cleanup(&memcg
->vmpressure
);
4346 cancel_work_sync(&memcg
->high_work
);
4347 mem_cgroup_remove_from_trees(memcg
);
4348 memcg_free_kmem(memcg
);
4349 mem_cgroup_free(memcg
);
4353 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4354 * @css: the target css
4356 * Reset the states of the mem_cgroup associated with @css. This is
4357 * invoked when the userland requests disabling on the default hierarchy
4358 * but the memcg is pinned through dependency. The memcg should stop
4359 * applying policies and should revert to the vanilla state as it may be
4360 * made visible again.
4362 * The current implementation only resets the essential configurations.
4363 * This needs to be expanded to cover all the visible parts.
4365 static void mem_cgroup_css_reset(struct cgroup_subsys_state
*css
)
4367 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4369 page_counter_limit(&memcg
->memory
, PAGE_COUNTER_MAX
);
4370 page_counter_limit(&memcg
->swap
, PAGE_COUNTER_MAX
);
4371 page_counter_limit(&memcg
->memsw
, PAGE_COUNTER_MAX
);
4372 page_counter_limit(&memcg
->kmem
, PAGE_COUNTER_MAX
);
4373 page_counter_limit(&memcg
->tcpmem
, PAGE_COUNTER_MAX
);
4375 memcg
->high
= PAGE_COUNTER_MAX
;
4376 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4377 memcg_wb_domain_size_changed(memcg
);
4381 /* Handlers for move charge at task migration. */
4382 static int mem_cgroup_do_precharge(unsigned long count
)
4386 /* Try a single bulk charge without reclaim first, kswapd may wake */
4387 ret
= try_charge(mc
.to
, GFP_KERNEL
& ~__GFP_DIRECT_RECLAIM
, count
);
4389 mc
.precharge
+= count
;
4393 /* Try charges one by one with reclaim, but do not retry */
4395 ret
= try_charge(mc
.to
, GFP_KERNEL
| __GFP_NORETRY
, 1);
4409 enum mc_target_type
{
4415 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
4416 unsigned long addr
, pte_t ptent
)
4418 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
4420 if (!page
|| !page_mapped(page
))
4422 if (PageAnon(page
)) {
4423 if (!(mc
.flags
& MOVE_ANON
))
4426 if (!(mc
.flags
& MOVE_FILE
))
4429 if (!get_page_unless_zero(page
))
4436 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4437 pte_t ptent
, swp_entry_t
*entry
)
4439 struct page
*page
= NULL
;
4440 swp_entry_t ent
= pte_to_swp_entry(ptent
);
4442 if (!(mc
.flags
& MOVE_ANON
) || non_swap_entry(ent
))
4445 * Because lookup_swap_cache() updates some statistics counter,
4446 * we call find_get_page() with swapper_space directly.
4448 page
= find_get_page(swap_address_space(ent
), swp_offset(ent
));
4449 if (do_memsw_account())
4450 entry
->val
= ent
.val
;
4455 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4456 pte_t ptent
, swp_entry_t
*entry
)
4462 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
4463 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4465 struct page
*page
= NULL
;
4466 struct address_space
*mapping
;
4469 if (!vma
->vm_file
) /* anonymous vma */
4471 if (!(mc
.flags
& MOVE_FILE
))
4474 mapping
= vma
->vm_file
->f_mapping
;
4475 pgoff
= linear_page_index(vma
, addr
);
4477 /* page is moved even if it's not RSS of this task(page-faulted). */
4479 /* shmem/tmpfs may report page out on swap: account for that too. */
4480 if (shmem_mapping(mapping
)) {
4481 page
= find_get_entry(mapping
, pgoff
);
4482 if (radix_tree_exceptional_entry(page
)) {
4483 swp_entry_t swp
= radix_to_swp_entry(page
);
4484 if (do_memsw_account())
4486 page
= find_get_page(swap_address_space(swp
),
4490 page
= find_get_page(mapping
, pgoff
);
4492 page
= find_get_page(mapping
, pgoff
);
4498 * mem_cgroup_move_account - move account of the page
4500 * @compound: charge the page as compound or small page
4501 * @from: mem_cgroup which the page is moved from.
4502 * @to: mem_cgroup which the page is moved to. @from != @to.
4504 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4506 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4509 static int mem_cgroup_move_account(struct page
*page
,
4511 struct mem_cgroup
*from
,
4512 struct mem_cgroup
*to
)
4514 unsigned long flags
;
4515 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
4519 VM_BUG_ON(from
== to
);
4520 VM_BUG_ON_PAGE(PageLRU(page
), page
);
4521 VM_BUG_ON(compound
&& !PageTransHuge(page
));
4524 * Prevent mem_cgroup_migrate() from looking at
4525 * page->mem_cgroup of its source page while we change it.
4528 if (!trylock_page(page
))
4532 if (page
->mem_cgroup
!= from
)
4535 anon
= PageAnon(page
);
4537 spin_lock_irqsave(&from
->move_lock
, flags
);
4539 if (!anon
&& page_mapped(page
)) {
4540 __this_cpu_sub(from
->stat
->count
[NR_FILE_MAPPED
], nr_pages
);
4541 __this_cpu_add(to
->stat
->count
[NR_FILE_MAPPED
], nr_pages
);
4545 * move_lock grabbed above and caller set from->moving_account, so
4546 * mod_memcg_page_state will serialize updates to PageDirty.
4547 * So mapping should be stable for dirty pages.
4549 if (!anon
&& PageDirty(page
)) {
4550 struct address_space
*mapping
= page_mapping(page
);
4552 if (mapping_cap_account_dirty(mapping
)) {
4553 __this_cpu_sub(from
->stat
->count
[NR_FILE_DIRTY
],
4555 __this_cpu_add(to
->stat
->count
[NR_FILE_DIRTY
],
4560 if (PageWriteback(page
)) {
4561 __this_cpu_sub(from
->stat
->count
[NR_WRITEBACK
], nr_pages
);
4562 __this_cpu_add(to
->stat
->count
[NR_WRITEBACK
], nr_pages
);
4566 * It is safe to change page->mem_cgroup here because the page
4567 * is referenced, charged, and isolated - we can't race with
4568 * uncharging, charging, migration, or LRU putback.
4571 /* caller should have done css_get */
4572 page
->mem_cgroup
= to
;
4573 spin_unlock_irqrestore(&from
->move_lock
, flags
);
4577 local_irq_disable();
4578 mem_cgroup_charge_statistics(to
, page
, compound
, nr_pages
);
4579 memcg_check_events(to
, page
);
4580 mem_cgroup_charge_statistics(from
, page
, compound
, -nr_pages
);
4581 memcg_check_events(from
, page
);
4590 * get_mctgt_type - get target type of moving charge
4591 * @vma: the vma the pte to be checked belongs
4592 * @addr: the address corresponding to the pte to be checked
4593 * @ptent: the pte to be checked
4594 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4597 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4598 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4599 * move charge. if @target is not NULL, the page is stored in target->page
4600 * with extra refcnt got(Callers should handle it).
4601 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4602 * target for charge migration. if @target is not NULL, the entry is stored
4605 * Called with pte lock held.
4608 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
4609 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
4611 struct page
*page
= NULL
;
4612 enum mc_target_type ret
= MC_TARGET_NONE
;
4613 swp_entry_t ent
= { .val
= 0 };
4615 if (pte_present(ptent
))
4616 page
= mc_handle_present_pte(vma
, addr
, ptent
);
4617 else if (is_swap_pte(ptent
))
4618 page
= mc_handle_swap_pte(vma
, ptent
, &ent
);
4619 else if (pte_none(ptent
))
4620 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
4622 if (!page
&& !ent
.val
)
4626 * Do only loose check w/o serialization.
4627 * mem_cgroup_move_account() checks the page is valid or
4628 * not under LRU exclusion.
4630 if (page
->mem_cgroup
== mc
.from
) {
4631 ret
= MC_TARGET_PAGE
;
4633 target
->page
= page
;
4635 if (!ret
|| !target
)
4638 /* There is a swap entry and a page doesn't exist or isn't charged */
4639 if (ent
.val
&& !ret
&&
4640 mem_cgroup_id(mc
.from
) == lookup_swap_cgroup_id(ent
)) {
4641 ret
= MC_TARGET_SWAP
;
4648 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4650 * We don't consider swapping or file mapped pages because THP does not
4651 * support them for now.
4652 * Caller should make sure that pmd_trans_huge(pmd) is true.
4654 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
4655 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
4657 struct page
*page
= NULL
;
4658 enum mc_target_type ret
= MC_TARGET_NONE
;
4660 page
= pmd_page(pmd
);
4661 VM_BUG_ON_PAGE(!page
|| !PageHead(page
), page
);
4662 if (!(mc
.flags
& MOVE_ANON
))
4664 if (page
->mem_cgroup
== mc
.from
) {
4665 ret
= MC_TARGET_PAGE
;
4668 target
->page
= page
;
4674 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
4675 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
4677 return MC_TARGET_NONE
;
4681 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
4682 unsigned long addr
, unsigned long end
,
4683 struct mm_walk
*walk
)
4685 struct vm_area_struct
*vma
= walk
->vma
;
4689 ptl
= pmd_trans_huge_lock(pmd
, vma
);
4691 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
4692 mc
.precharge
+= HPAGE_PMD_NR
;
4697 if (pmd_trans_unstable(pmd
))
4699 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4700 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
4701 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
4702 mc
.precharge
++; /* increment precharge temporarily */
4703 pte_unmap_unlock(pte
- 1, ptl
);
4709 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
4711 unsigned long precharge
;
4713 struct mm_walk mem_cgroup_count_precharge_walk
= {
4714 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
4717 down_read(&mm
->mmap_sem
);
4718 walk_page_range(0, mm
->highest_vm_end
,
4719 &mem_cgroup_count_precharge_walk
);
4720 up_read(&mm
->mmap_sem
);
4722 precharge
= mc
.precharge
;
4728 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
4730 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
4732 VM_BUG_ON(mc
.moving_task
);
4733 mc
.moving_task
= current
;
4734 return mem_cgroup_do_precharge(precharge
);
4737 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4738 static void __mem_cgroup_clear_mc(void)
4740 struct mem_cgroup
*from
= mc
.from
;
4741 struct mem_cgroup
*to
= mc
.to
;
4743 /* we must uncharge all the leftover precharges from mc.to */
4745 cancel_charge(mc
.to
, mc
.precharge
);
4749 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4750 * we must uncharge here.
4752 if (mc
.moved_charge
) {
4753 cancel_charge(mc
.from
, mc
.moved_charge
);
4754 mc
.moved_charge
= 0;
4756 /* we must fixup refcnts and charges */
4757 if (mc
.moved_swap
) {
4758 /* uncharge swap account from the old cgroup */
4759 if (!mem_cgroup_is_root(mc
.from
))
4760 page_counter_uncharge(&mc
.from
->memsw
, mc
.moved_swap
);
4762 mem_cgroup_id_put_many(mc
.from
, mc
.moved_swap
);
4765 * we charged both to->memory and to->memsw, so we
4766 * should uncharge to->memory.
4768 if (!mem_cgroup_is_root(mc
.to
))
4769 page_counter_uncharge(&mc
.to
->memory
, mc
.moved_swap
);
4771 mem_cgroup_id_get_many(mc
.to
, mc
.moved_swap
);
4772 css_put_many(&mc
.to
->css
, mc
.moved_swap
);
4776 memcg_oom_recover(from
);
4777 memcg_oom_recover(to
);
4778 wake_up_all(&mc
.waitq
);
4781 static void mem_cgroup_clear_mc(void)
4783 struct mm_struct
*mm
= mc
.mm
;
4786 * we must clear moving_task before waking up waiters at the end of
4789 mc
.moving_task
= NULL
;
4790 __mem_cgroup_clear_mc();
4791 spin_lock(&mc
.lock
);
4795 spin_unlock(&mc
.lock
);
4800 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
4802 struct cgroup_subsys_state
*css
;
4803 struct mem_cgroup
*memcg
= NULL
; /* unneeded init to make gcc happy */
4804 struct mem_cgroup
*from
;
4805 struct task_struct
*leader
, *p
;
4806 struct mm_struct
*mm
;
4807 unsigned long move_flags
;
4810 /* charge immigration isn't supported on the default hierarchy */
4811 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
4815 * Multi-process migrations only happen on the default hierarchy
4816 * where charge immigration is not used. Perform charge
4817 * immigration if @tset contains a leader and whine if there are
4821 cgroup_taskset_for_each_leader(leader
, css
, tset
) {
4824 memcg
= mem_cgroup_from_css(css
);
4830 * We are now commited to this value whatever it is. Changes in this
4831 * tunable will only affect upcoming migrations, not the current one.
4832 * So we need to save it, and keep it going.
4834 move_flags
= READ_ONCE(memcg
->move_charge_at_immigrate
);
4838 from
= mem_cgroup_from_task(p
);
4840 VM_BUG_ON(from
== memcg
);
4842 mm
= get_task_mm(p
);
4845 /* We move charges only when we move a owner of the mm */
4846 if (mm
->owner
== p
) {
4849 VM_BUG_ON(mc
.precharge
);
4850 VM_BUG_ON(mc
.moved_charge
);
4851 VM_BUG_ON(mc
.moved_swap
);
4853 spin_lock(&mc
.lock
);
4857 mc
.flags
= move_flags
;
4858 spin_unlock(&mc
.lock
);
4859 /* We set mc.moving_task later */
4861 ret
= mem_cgroup_precharge_mc(mm
);
4863 mem_cgroup_clear_mc();
4870 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
4873 mem_cgroup_clear_mc();
4876 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
4877 unsigned long addr
, unsigned long end
,
4878 struct mm_walk
*walk
)
4881 struct vm_area_struct
*vma
= walk
->vma
;
4884 enum mc_target_type target_type
;
4885 union mc_target target
;
4888 ptl
= pmd_trans_huge_lock(pmd
, vma
);
4890 if (mc
.precharge
< HPAGE_PMD_NR
) {
4894 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
4895 if (target_type
== MC_TARGET_PAGE
) {
4897 if (!isolate_lru_page(page
)) {
4898 if (!mem_cgroup_move_account(page
, true,
4900 mc
.precharge
-= HPAGE_PMD_NR
;
4901 mc
.moved_charge
+= HPAGE_PMD_NR
;
4903 putback_lru_page(page
);
4911 if (pmd_trans_unstable(pmd
))
4914 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4915 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
4916 pte_t ptent
= *(pte
++);
4922 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
4923 case MC_TARGET_PAGE
:
4926 * We can have a part of the split pmd here. Moving it
4927 * can be done but it would be too convoluted so simply
4928 * ignore such a partial THP and keep it in original
4929 * memcg. There should be somebody mapping the head.
4931 if (PageTransCompound(page
))
4933 if (isolate_lru_page(page
))
4935 if (!mem_cgroup_move_account(page
, false,
4938 /* we uncharge from mc.from later. */
4941 putback_lru_page(page
);
4942 put
: /* get_mctgt_type() gets the page */
4945 case MC_TARGET_SWAP
:
4947 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
4949 /* we fixup refcnts and charges later. */
4957 pte_unmap_unlock(pte
- 1, ptl
);
4962 * We have consumed all precharges we got in can_attach().
4963 * We try charge one by one, but don't do any additional
4964 * charges to mc.to if we have failed in charge once in attach()
4967 ret
= mem_cgroup_do_precharge(1);
4975 static void mem_cgroup_move_charge(void)
4977 struct mm_walk mem_cgroup_move_charge_walk
= {
4978 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
4982 lru_add_drain_all();
4984 * Signal lock_page_memcg() to take the memcg's move_lock
4985 * while we're moving its pages to another memcg. Then wait
4986 * for already started RCU-only updates to finish.
4988 atomic_inc(&mc
.from
->moving_account
);
4991 if (unlikely(!down_read_trylock(&mc
.mm
->mmap_sem
))) {
4993 * Someone who are holding the mmap_sem might be waiting in
4994 * waitq. So we cancel all extra charges, wake up all waiters,
4995 * and retry. Because we cancel precharges, we might not be able
4996 * to move enough charges, but moving charge is a best-effort
4997 * feature anyway, so it wouldn't be a big problem.
4999 __mem_cgroup_clear_mc();
5004 * When we have consumed all precharges and failed in doing
5005 * additional charge, the page walk just aborts.
5007 walk_page_range(0, mc
.mm
->highest_vm_end
, &mem_cgroup_move_charge_walk
);
5009 up_read(&mc
.mm
->mmap_sem
);
5010 atomic_dec(&mc
.from
->moving_account
);
5013 static void mem_cgroup_move_task(void)
5016 mem_cgroup_move_charge();
5017 mem_cgroup_clear_mc();
5020 #else /* !CONFIG_MMU */
5021 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
5025 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
5028 static void mem_cgroup_move_task(void)
5034 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5035 * to verify whether we're attached to the default hierarchy on each mount
5038 static void mem_cgroup_bind(struct cgroup_subsys_state
*root_css
)
5041 * use_hierarchy is forced on the default hierarchy. cgroup core
5042 * guarantees that @root doesn't have any children, so turning it
5043 * on for the root memcg is enough.
5045 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5046 root_mem_cgroup
->use_hierarchy
= true;
5048 root_mem_cgroup
->use_hierarchy
= false;
5051 static u64
memory_current_read(struct cgroup_subsys_state
*css
,
5054 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5056 return (u64
)page_counter_read(&memcg
->memory
) * PAGE_SIZE
;
5059 static int memory_low_show(struct seq_file
*m
, void *v
)
5061 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5062 unsigned long low
= READ_ONCE(memcg
->low
);
5064 if (low
== PAGE_COUNTER_MAX
)
5065 seq_puts(m
, "max\n");
5067 seq_printf(m
, "%llu\n", (u64
)low
* PAGE_SIZE
);
5072 static ssize_t
memory_low_write(struct kernfs_open_file
*of
,
5073 char *buf
, size_t nbytes
, loff_t off
)
5075 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5079 buf
= strstrip(buf
);
5080 err
= page_counter_memparse(buf
, "max", &low
);
5089 static int memory_high_show(struct seq_file
*m
, void *v
)
5091 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5092 unsigned long high
= READ_ONCE(memcg
->high
);
5094 if (high
== PAGE_COUNTER_MAX
)
5095 seq_puts(m
, "max\n");
5097 seq_printf(m
, "%llu\n", (u64
)high
* PAGE_SIZE
);
5102 static ssize_t
memory_high_write(struct kernfs_open_file
*of
,
5103 char *buf
, size_t nbytes
, loff_t off
)
5105 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5106 unsigned long nr_pages
;
5110 buf
= strstrip(buf
);
5111 err
= page_counter_memparse(buf
, "max", &high
);
5117 nr_pages
= page_counter_read(&memcg
->memory
);
5118 if (nr_pages
> high
)
5119 try_to_free_mem_cgroup_pages(memcg
, nr_pages
- high
,
5122 memcg_wb_domain_size_changed(memcg
);
5126 static int memory_max_show(struct seq_file
*m
, void *v
)
5128 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5129 unsigned long max
= READ_ONCE(memcg
->memory
.limit
);
5131 if (max
== PAGE_COUNTER_MAX
)
5132 seq_puts(m
, "max\n");
5134 seq_printf(m
, "%llu\n", (u64
)max
* PAGE_SIZE
);
5139 static ssize_t
memory_max_write(struct kernfs_open_file
*of
,
5140 char *buf
, size_t nbytes
, loff_t off
)
5142 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5143 unsigned int nr_reclaims
= MEM_CGROUP_RECLAIM_RETRIES
;
5144 bool drained
= false;
5148 buf
= strstrip(buf
);
5149 err
= page_counter_memparse(buf
, "max", &max
);
5153 xchg(&memcg
->memory
.limit
, max
);
5156 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
5158 if (nr_pages
<= max
)
5161 if (signal_pending(current
)) {
5167 drain_all_stock(memcg
);
5173 if (!try_to_free_mem_cgroup_pages(memcg
, nr_pages
- max
,
5179 mem_cgroup_event(memcg
, MEMCG_OOM
);
5180 if (!mem_cgroup_out_of_memory(memcg
, GFP_KERNEL
, 0))
5184 memcg_wb_domain_size_changed(memcg
);
5188 static int memory_events_show(struct seq_file
*m
, void *v
)
5190 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5192 seq_printf(m
, "low %lu\n", memcg_sum_events(memcg
, MEMCG_LOW
));
5193 seq_printf(m
, "high %lu\n", memcg_sum_events(memcg
, MEMCG_HIGH
));
5194 seq_printf(m
, "max %lu\n", memcg_sum_events(memcg
, MEMCG_MAX
));
5195 seq_printf(m
, "oom %lu\n", memcg_sum_events(memcg
, MEMCG_OOM
));
5196 seq_printf(m
, "oom_kill %lu\n", memcg_sum_events(memcg
, OOM_KILL
));
5201 static int memory_stat_show(struct seq_file
*m
, void *v
)
5203 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5204 unsigned long stat
[MEMCG_NR_STAT
];
5205 unsigned long events
[MEMCG_NR_EVENTS
];
5209 * Provide statistics on the state of the memory subsystem as
5210 * well as cumulative event counters that show past behavior.
5212 * This list is ordered following a combination of these gradients:
5213 * 1) generic big picture -> specifics and details
5214 * 2) reflecting userspace activity -> reflecting kernel heuristics
5216 * Current memory state:
5219 tree_stat(memcg
, stat
);
5220 tree_events(memcg
, events
);
5222 seq_printf(m
, "anon %llu\n",
5223 (u64
)stat
[MEMCG_RSS
] * PAGE_SIZE
);
5224 seq_printf(m
, "file %llu\n",
5225 (u64
)stat
[MEMCG_CACHE
] * PAGE_SIZE
);
5226 seq_printf(m
, "kernel_stack %llu\n",
5227 (u64
)stat
[MEMCG_KERNEL_STACK_KB
] * 1024);
5228 seq_printf(m
, "slab %llu\n",
5229 (u64
)(stat
[NR_SLAB_RECLAIMABLE
] +
5230 stat
[NR_SLAB_UNRECLAIMABLE
]) * PAGE_SIZE
);
5231 seq_printf(m
, "sock %llu\n",
5232 (u64
)stat
[MEMCG_SOCK
] * PAGE_SIZE
);
5234 seq_printf(m
, "shmem %llu\n",
5235 (u64
)stat
[NR_SHMEM
] * PAGE_SIZE
);
5236 seq_printf(m
, "file_mapped %llu\n",
5237 (u64
)stat
[NR_FILE_MAPPED
] * PAGE_SIZE
);
5238 seq_printf(m
, "file_dirty %llu\n",
5239 (u64
)stat
[NR_FILE_DIRTY
] * PAGE_SIZE
);
5240 seq_printf(m
, "file_writeback %llu\n",
5241 (u64
)stat
[NR_WRITEBACK
] * PAGE_SIZE
);
5243 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
5244 struct mem_cgroup
*mi
;
5245 unsigned long val
= 0;
5247 for_each_mem_cgroup_tree(mi
, memcg
)
5248 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
));
5249 seq_printf(m
, "%s %llu\n",
5250 mem_cgroup_lru_names
[i
], (u64
)val
* PAGE_SIZE
);
5253 seq_printf(m
, "slab_reclaimable %llu\n",
5254 (u64
)stat
[NR_SLAB_RECLAIMABLE
] * PAGE_SIZE
);
5255 seq_printf(m
, "slab_unreclaimable %llu\n",
5256 (u64
)stat
[NR_SLAB_UNRECLAIMABLE
] * PAGE_SIZE
);
5258 /* Accumulated memory events */
5260 seq_printf(m
, "pgfault %lu\n", events
[PGFAULT
]);
5261 seq_printf(m
, "pgmajfault %lu\n", events
[PGMAJFAULT
]);
5263 seq_printf(m
, "pgrefill %lu\n", events
[PGREFILL
]);
5264 seq_printf(m
, "pgscan %lu\n", events
[PGSCAN_KSWAPD
] +
5265 events
[PGSCAN_DIRECT
]);
5266 seq_printf(m
, "pgsteal %lu\n", events
[PGSTEAL_KSWAPD
] +
5267 events
[PGSTEAL_DIRECT
]);
5268 seq_printf(m
, "pgactivate %lu\n", events
[PGACTIVATE
]);
5269 seq_printf(m
, "pgdeactivate %lu\n", events
[PGDEACTIVATE
]);
5270 seq_printf(m
, "pglazyfree %lu\n", events
[PGLAZYFREE
]);
5271 seq_printf(m
, "pglazyfreed %lu\n", events
[PGLAZYFREED
]);
5273 seq_printf(m
, "workingset_refault %lu\n",
5274 stat
[WORKINGSET_REFAULT
]);
5275 seq_printf(m
, "workingset_activate %lu\n",
5276 stat
[WORKINGSET_ACTIVATE
]);
5277 seq_printf(m
, "workingset_nodereclaim %lu\n",
5278 stat
[WORKINGSET_NODERECLAIM
]);
5283 static struct cftype memory_files
[] = {
5286 .flags
= CFTYPE_NOT_ON_ROOT
,
5287 .read_u64
= memory_current_read
,
5291 .flags
= CFTYPE_NOT_ON_ROOT
,
5292 .seq_show
= memory_low_show
,
5293 .write
= memory_low_write
,
5297 .flags
= CFTYPE_NOT_ON_ROOT
,
5298 .seq_show
= memory_high_show
,
5299 .write
= memory_high_write
,
5303 .flags
= CFTYPE_NOT_ON_ROOT
,
5304 .seq_show
= memory_max_show
,
5305 .write
= memory_max_write
,
5309 .flags
= CFTYPE_NOT_ON_ROOT
,
5310 .file_offset
= offsetof(struct mem_cgroup
, events_file
),
5311 .seq_show
= memory_events_show
,
5315 .flags
= CFTYPE_NOT_ON_ROOT
,
5316 .seq_show
= memory_stat_show
,
5321 struct cgroup_subsys memory_cgrp_subsys
= {
5322 .css_alloc
= mem_cgroup_css_alloc
,
5323 .css_online
= mem_cgroup_css_online
,
5324 .css_offline
= mem_cgroup_css_offline
,
5325 .css_released
= mem_cgroup_css_released
,
5326 .css_free
= mem_cgroup_css_free
,
5327 .css_reset
= mem_cgroup_css_reset
,
5328 .can_attach
= mem_cgroup_can_attach
,
5329 .cancel_attach
= mem_cgroup_cancel_attach
,
5330 .post_attach
= mem_cgroup_move_task
,
5331 .bind
= mem_cgroup_bind
,
5332 .dfl_cftypes
= memory_files
,
5333 .legacy_cftypes
= mem_cgroup_legacy_files
,
5338 * mem_cgroup_low - check if memory consumption is below the normal range
5339 * @root: the top ancestor of the sub-tree being checked
5340 * @memcg: the memory cgroup to check
5342 * Returns %true if memory consumption of @memcg, and that of all
5343 * ancestors up to (but not including) @root, is below the normal range.
5345 * @root is exclusive; it is never low when looked at directly and isn't
5346 * checked when traversing the hierarchy.
5348 * Excluding @root enables using memory.low to prioritize memory usage
5349 * between cgroups within a subtree of the hierarchy that is limited by
5350 * memory.high or memory.max.
5352 * For example, given cgroup A with children B and C:
5360 * 1. A/memory.current > A/memory.high
5361 * 2. A/B/memory.current < A/B/memory.low
5362 * 3. A/C/memory.current >= A/C/memory.low
5364 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
5365 * should reclaim from 'C' until 'A' is no longer high or until we can
5366 * no longer reclaim from 'C'. If 'A', i.e. @root, isn't excluded by
5367 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
5368 * low and we will reclaim indiscriminately from both 'B' and 'C'.
5370 bool mem_cgroup_low(struct mem_cgroup
*root
, struct mem_cgroup
*memcg
)
5372 if (mem_cgroup_disabled())
5376 root
= root_mem_cgroup
;
5380 for (; memcg
!= root
; memcg
= parent_mem_cgroup(memcg
)) {
5381 if (page_counter_read(&memcg
->memory
) >= memcg
->low
)
5389 * mem_cgroup_try_charge - try charging a page
5390 * @page: page to charge
5391 * @mm: mm context of the victim
5392 * @gfp_mask: reclaim mode
5393 * @memcgp: charged memcg return
5394 * @compound: charge the page as compound or small page
5396 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5397 * pages according to @gfp_mask if necessary.
5399 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5400 * Otherwise, an error code is returned.
5402 * After page->mapping has been set up, the caller must finalize the
5403 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5404 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5406 int mem_cgroup_try_charge(struct page
*page
, struct mm_struct
*mm
,
5407 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
,
5410 struct mem_cgroup
*memcg
= NULL
;
5411 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5414 if (mem_cgroup_disabled())
5417 if (PageSwapCache(page
)) {
5419 * Every swap fault against a single page tries to charge the
5420 * page, bail as early as possible. shmem_unuse() encounters
5421 * already charged pages, too. The USED bit is protected by
5422 * the page lock, which serializes swap cache removal, which
5423 * in turn serializes uncharging.
5425 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
5426 if (page
->mem_cgroup
)
5429 if (do_swap_account
) {
5430 swp_entry_t ent
= { .val
= page_private(page
), };
5431 unsigned short id
= lookup_swap_cgroup_id(ent
);
5434 memcg
= mem_cgroup_from_id(id
);
5435 if (memcg
&& !css_tryget_online(&memcg
->css
))
5442 memcg
= get_mem_cgroup_from_mm(mm
);
5444 ret
= try_charge(memcg
, gfp_mask
, nr_pages
);
5446 css_put(&memcg
->css
);
5453 * mem_cgroup_commit_charge - commit a page charge
5454 * @page: page to charge
5455 * @memcg: memcg to charge the page to
5456 * @lrucare: page might be on LRU already
5457 * @compound: charge the page as compound or small page
5459 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5460 * after page->mapping has been set up. This must happen atomically
5461 * as part of the page instantiation, i.e. under the page table lock
5462 * for anonymous pages, under the page lock for page and swap cache.
5464 * In addition, the page must not be on the LRU during the commit, to
5465 * prevent racing with task migration. If it might be, use @lrucare.
5467 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5469 void mem_cgroup_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
5470 bool lrucare
, bool compound
)
5472 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5474 VM_BUG_ON_PAGE(!page
->mapping
, page
);
5475 VM_BUG_ON_PAGE(PageLRU(page
) && !lrucare
, page
);
5477 if (mem_cgroup_disabled())
5480 * Swap faults will attempt to charge the same page multiple
5481 * times. But reuse_swap_page() might have removed the page
5482 * from swapcache already, so we can't check PageSwapCache().
5487 commit_charge(page
, memcg
, lrucare
);
5489 local_irq_disable();
5490 mem_cgroup_charge_statistics(memcg
, page
, compound
, nr_pages
);
5491 memcg_check_events(memcg
, page
);
5494 if (do_memsw_account() && PageSwapCache(page
)) {
5495 swp_entry_t entry
= { .val
= page_private(page
) };
5497 * The swap entry might not get freed for a long time,
5498 * let's not wait for it. The page already received a
5499 * memory+swap charge, drop the swap entry duplicate.
5501 mem_cgroup_uncharge_swap(entry
, nr_pages
);
5506 * mem_cgroup_cancel_charge - cancel a page charge
5507 * @page: page to charge
5508 * @memcg: memcg to charge the page to
5509 * @compound: charge the page as compound or small page
5511 * Cancel a charge transaction started by mem_cgroup_try_charge().
5513 void mem_cgroup_cancel_charge(struct page
*page
, struct mem_cgroup
*memcg
,
5516 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5518 if (mem_cgroup_disabled())
5521 * Swap faults will attempt to charge the same page multiple
5522 * times. But reuse_swap_page() might have removed the page
5523 * from swapcache already, so we can't check PageSwapCache().
5528 cancel_charge(memcg
, nr_pages
);
5531 static void uncharge_batch(struct mem_cgroup
*memcg
, unsigned long pgpgout
,
5532 unsigned long nr_anon
, unsigned long nr_file
,
5533 unsigned long nr_kmem
, unsigned long nr_huge
,
5534 unsigned long nr_shmem
, struct page
*dummy_page
)
5536 unsigned long nr_pages
= nr_anon
+ nr_file
+ nr_kmem
;
5537 unsigned long flags
;
5539 if (!mem_cgroup_is_root(memcg
)) {
5540 page_counter_uncharge(&memcg
->memory
, nr_pages
);
5541 if (do_memsw_account())
5542 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
5543 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && nr_kmem
)
5544 page_counter_uncharge(&memcg
->kmem
, nr_kmem
);
5545 memcg_oom_recover(memcg
);
5548 local_irq_save(flags
);
5549 __this_cpu_sub(memcg
->stat
->count
[MEMCG_RSS
], nr_anon
);
5550 __this_cpu_sub(memcg
->stat
->count
[MEMCG_CACHE
], nr_file
);
5551 __this_cpu_sub(memcg
->stat
->count
[MEMCG_RSS_HUGE
], nr_huge
);
5552 __this_cpu_sub(memcg
->stat
->count
[NR_SHMEM
], nr_shmem
);
5553 __this_cpu_add(memcg
->stat
->events
[PGPGOUT
], pgpgout
);
5554 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
5555 memcg_check_events(memcg
, dummy_page
);
5556 local_irq_restore(flags
);
5558 if (!mem_cgroup_is_root(memcg
))
5559 css_put_many(&memcg
->css
, nr_pages
);
5562 static void uncharge_list(struct list_head
*page_list
)
5564 struct mem_cgroup
*memcg
= NULL
;
5565 unsigned long nr_shmem
= 0;
5566 unsigned long nr_anon
= 0;
5567 unsigned long nr_file
= 0;
5568 unsigned long nr_huge
= 0;
5569 unsigned long nr_kmem
= 0;
5570 unsigned long pgpgout
= 0;
5571 struct list_head
*next
;
5575 * Note that the list can be a single page->lru; hence the
5576 * do-while loop instead of a simple list_for_each_entry().
5578 next
= page_list
->next
;
5580 page
= list_entry(next
, struct page
, lru
);
5581 next
= page
->lru
.next
;
5583 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5584 VM_BUG_ON_PAGE(!PageHWPoison(page
) && page_count(page
), page
);
5586 if (!page
->mem_cgroup
)
5590 * Nobody should be changing or seriously looking at
5591 * page->mem_cgroup at this point, we have fully
5592 * exclusive access to the page.
5595 if (memcg
!= page
->mem_cgroup
) {
5597 uncharge_batch(memcg
, pgpgout
, nr_anon
, nr_file
,
5598 nr_kmem
, nr_huge
, nr_shmem
, page
);
5599 pgpgout
= nr_anon
= nr_file
= nr_kmem
= 0;
5600 nr_huge
= nr_shmem
= 0;
5602 memcg
= page
->mem_cgroup
;
5605 if (!PageKmemcg(page
)) {
5606 unsigned int nr_pages
= 1;
5608 if (PageTransHuge(page
)) {
5609 nr_pages
<<= compound_order(page
);
5610 nr_huge
+= nr_pages
;
5613 nr_anon
+= nr_pages
;
5615 nr_file
+= nr_pages
;
5616 if (PageSwapBacked(page
))
5617 nr_shmem
+= nr_pages
;
5621 nr_kmem
+= 1 << compound_order(page
);
5622 __ClearPageKmemcg(page
);
5625 page
->mem_cgroup
= NULL
;
5626 } while (next
!= page_list
);
5629 uncharge_batch(memcg
, pgpgout
, nr_anon
, nr_file
,
5630 nr_kmem
, nr_huge
, nr_shmem
, page
);
5634 * mem_cgroup_uncharge - uncharge a page
5635 * @page: page to uncharge
5637 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5638 * mem_cgroup_commit_charge().
5640 void mem_cgroup_uncharge(struct page
*page
)
5642 if (mem_cgroup_disabled())
5645 /* Don't touch page->lru of any random page, pre-check: */
5646 if (!page
->mem_cgroup
)
5649 INIT_LIST_HEAD(&page
->lru
);
5650 uncharge_list(&page
->lru
);
5654 * mem_cgroup_uncharge_list - uncharge a list of page
5655 * @page_list: list of pages to uncharge
5657 * Uncharge a list of pages previously charged with
5658 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5660 void mem_cgroup_uncharge_list(struct list_head
*page_list
)
5662 if (mem_cgroup_disabled())
5665 if (!list_empty(page_list
))
5666 uncharge_list(page_list
);
5670 * mem_cgroup_migrate - charge a page's replacement
5671 * @oldpage: currently circulating page
5672 * @newpage: replacement page
5674 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5675 * be uncharged upon free.
5677 * Both pages must be locked, @newpage->mapping must be set up.
5679 void mem_cgroup_migrate(struct page
*oldpage
, struct page
*newpage
)
5681 struct mem_cgroup
*memcg
;
5682 unsigned int nr_pages
;
5684 unsigned long flags
;
5686 VM_BUG_ON_PAGE(!PageLocked(oldpage
), oldpage
);
5687 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
5688 VM_BUG_ON_PAGE(PageAnon(oldpage
) != PageAnon(newpage
), newpage
);
5689 VM_BUG_ON_PAGE(PageTransHuge(oldpage
) != PageTransHuge(newpage
),
5692 if (mem_cgroup_disabled())
5695 /* Page cache replacement: new page already charged? */
5696 if (newpage
->mem_cgroup
)
5699 /* Swapcache readahead pages can get replaced before being charged */
5700 memcg
= oldpage
->mem_cgroup
;
5704 /* Force-charge the new page. The old one will be freed soon */
5705 compound
= PageTransHuge(newpage
);
5706 nr_pages
= compound
? hpage_nr_pages(newpage
) : 1;
5708 page_counter_charge(&memcg
->memory
, nr_pages
);
5709 if (do_memsw_account())
5710 page_counter_charge(&memcg
->memsw
, nr_pages
);
5711 css_get_many(&memcg
->css
, nr_pages
);
5713 commit_charge(newpage
, memcg
, false);
5715 local_irq_save(flags
);
5716 mem_cgroup_charge_statistics(memcg
, newpage
, compound
, nr_pages
);
5717 memcg_check_events(memcg
, newpage
);
5718 local_irq_restore(flags
);
5721 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key
);
5722 EXPORT_SYMBOL(memcg_sockets_enabled_key
);
5724 void mem_cgroup_sk_alloc(struct sock
*sk
)
5726 struct mem_cgroup
*memcg
;
5728 if (!mem_cgroup_sockets_enabled
)
5732 * Socket cloning can throw us here with sk_memcg already
5733 * filled. It won't however, necessarily happen from
5734 * process context. So the test for root memcg given
5735 * the current task's memcg won't help us in this case.
5737 * Respecting the original socket's memcg is a better
5738 * decision in this case.
5741 BUG_ON(mem_cgroup_is_root(sk
->sk_memcg
));
5742 css_get(&sk
->sk_memcg
->css
);
5747 memcg
= mem_cgroup_from_task(current
);
5748 if (memcg
== root_mem_cgroup
)
5750 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !memcg
->tcpmem_active
)
5752 if (css_tryget_online(&memcg
->css
))
5753 sk
->sk_memcg
= memcg
;
5758 void mem_cgroup_sk_free(struct sock
*sk
)
5761 css_put(&sk
->sk_memcg
->css
);
5765 * mem_cgroup_charge_skmem - charge socket memory
5766 * @memcg: memcg to charge
5767 * @nr_pages: number of pages to charge
5769 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5770 * @memcg's configured limit, %false if the charge had to be forced.
5772 bool mem_cgroup_charge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
5774 gfp_t gfp_mask
= GFP_KERNEL
;
5776 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
5777 struct page_counter
*fail
;
5779 if (page_counter_try_charge(&memcg
->tcpmem
, nr_pages
, &fail
)) {
5780 memcg
->tcpmem_pressure
= 0;
5783 page_counter_charge(&memcg
->tcpmem
, nr_pages
);
5784 memcg
->tcpmem_pressure
= 1;
5788 /* Don't block in the packet receive path */
5790 gfp_mask
= GFP_NOWAIT
;
5792 this_cpu_add(memcg
->stat
->count
[MEMCG_SOCK
], nr_pages
);
5794 if (try_charge(memcg
, gfp_mask
, nr_pages
) == 0)
5797 try_charge(memcg
, gfp_mask
|__GFP_NOFAIL
, nr_pages
);
5802 * mem_cgroup_uncharge_skmem - uncharge socket memory
5803 * @memcg - memcg to uncharge
5804 * @nr_pages - number of pages to uncharge
5806 void mem_cgroup_uncharge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
5808 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
5809 page_counter_uncharge(&memcg
->tcpmem
, nr_pages
);
5813 this_cpu_sub(memcg
->stat
->count
[MEMCG_SOCK
], nr_pages
);
5815 page_counter_uncharge(&memcg
->memory
, nr_pages
);
5816 css_put_many(&memcg
->css
, nr_pages
);
5819 static int __init
cgroup_memory(char *s
)
5823 while ((token
= strsep(&s
, ",")) != NULL
) {
5826 if (!strcmp(token
, "nosocket"))
5827 cgroup_memory_nosocket
= true;
5828 if (!strcmp(token
, "nokmem"))
5829 cgroup_memory_nokmem
= true;
5833 __setup("cgroup.memory=", cgroup_memory
);
5836 * subsys_initcall() for memory controller.
5838 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5839 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5840 * basically everything that doesn't depend on a specific mem_cgroup structure
5841 * should be initialized from here.
5843 static int __init
mem_cgroup_init(void)
5849 * Kmem cache creation is mostly done with the slab_mutex held,
5850 * so use a workqueue with limited concurrency to avoid stalling
5851 * all worker threads in case lots of cgroups are created and
5852 * destroyed simultaneously.
5854 memcg_kmem_cache_wq
= alloc_workqueue("memcg_kmem_cache", 0, 1);
5855 BUG_ON(!memcg_kmem_cache_wq
);
5858 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD
, "mm/memctrl:dead", NULL
,
5859 memcg_hotplug_cpu_dead
);
5861 for_each_possible_cpu(cpu
)
5862 INIT_WORK(&per_cpu_ptr(&memcg_stock
, cpu
)->work
,
5865 for_each_node(node
) {
5866 struct mem_cgroup_tree_per_node
*rtpn
;
5868 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
,
5869 node_online(node
) ? node
: NUMA_NO_NODE
);
5871 rtpn
->rb_root
= RB_ROOT
;
5872 spin_lock_init(&rtpn
->lock
);
5873 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
5878 subsys_initcall(mem_cgroup_init
);
5880 #ifdef CONFIG_MEMCG_SWAP
5881 static struct mem_cgroup
*mem_cgroup_id_get_online(struct mem_cgroup
*memcg
)
5883 while (!atomic_inc_not_zero(&memcg
->id
.ref
)) {
5885 * The root cgroup cannot be destroyed, so it's refcount must
5888 if (WARN_ON_ONCE(memcg
== root_mem_cgroup
)) {
5892 memcg
= parent_mem_cgroup(memcg
);
5894 memcg
= root_mem_cgroup
;
5900 * mem_cgroup_swapout - transfer a memsw charge to swap
5901 * @page: page whose memsw charge to transfer
5902 * @entry: swap entry to move the charge to
5904 * Transfer the memsw charge of @page to @entry.
5906 void mem_cgroup_swapout(struct page
*page
, swp_entry_t entry
)
5908 struct mem_cgroup
*memcg
, *swap_memcg
;
5909 unsigned short oldid
;
5911 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5912 VM_BUG_ON_PAGE(page_count(page
), page
);
5914 if (!do_memsw_account())
5917 memcg
= page
->mem_cgroup
;
5919 /* Readahead page, never charged */
5924 * In case the memcg owning these pages has been offlined and doesn't
5925 * have an ID allocated to it anymore, charge the closest online
5926 * ancestor for the swap instead and transfer the memory+swap charge.
5928 swap_memcg
= mem_cgroup_id_get_online(memcg
);
5929 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(swap_memcg
), 1);
5930 VM_BUG_ON_PAGE(oldid
, page
);
5931 mem_cgroup_swap_statistics(swap_memcg
, 1);
5933 page
->mem_cgroup
= NULL
;
5935 if (!mem_cgroup_is_root(memcg
))
5936 page_counter_uncharge(&memcg
->memory
, 1);
5938 if (memcg
!= swap_memcg
) {
5939 if (!mem_cgroup_is_root(swap_memcg
))
5940 page_counter_charge(&swap_memcg
->memsw
, 1);
5941 page_counter_uncharge(&memcg
->memsw
, 1);
5945 * Interrupts should be disabled here because the caller holds the
5946 * mapping->tree_lock lock which is taken with interrupts-off. It is
5947 * important here to have the interrupts disabled because it is the
5948 * only synchronisation we have for udpating the per-CPU variables.
5950 VM_BUG_ON(!irqs_disabled());
5951 mem_cgroup_charge_statistics(memcg
, page
, false, -1);
5952 memcg_check_events(memcg
, page
);
5954 if (!mem_cgroup_is_root(memcg
))
5955 css_put(&memcg
->css
);
5959 * mem_cgroup_try_charge_swap - try charging swap space for a page
5960 * @page: page being added to swap
5961 * @entry: swap entry to charge
5963 * Try to charge @page's memcg for the swap space at @entry.
5965 * Returns 0 on success, -ENOMEM on failure.
5967 int mem_cgroup_try_charge_swap(struct page
*page
, swp_entry_t entry
)
5969 unsigned int nr_pages
= hpage_nr_pages(page
);
5970 struct page_counter
*counter
;
5971 struct mem_cgroup
*memcg
;
5972 unsigned short oldid
;
5974 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) || !do_swap_account
)
5977 memcg
= page
->mem_cgroup
;
5979 /* Readahead page, never charged */
5983 memcg
= mem_cgroup_id_get_online(memcg
);
5985 if (!mem_cgroup_is_root(memcg
) &&
5986 !page_counter_try_charge(&memcg
->swap
, nr_pages
, &counter
)) {
5987 mem_cgroup_id_put(memcg
);
5991 /* Get references for the tail pages, too */
5993 mem_cgroup_id_get_many(memcg
, nr_pages
- 1);
5994 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(memcg
), nr_pages
);
5995 VM_BUG_ON_PAGE(oldid
, page
);
5996 mem_cgroup_swap_statistics(memcg
, nr_pages
);
6002 * mem_cgroup_uncharge_swap - uncharge swap space
6003 * @entry: swap entry to uncharge
6004 * @nr_pages: the amount of swap space to uncharge
6006 void mem_cgroup_uncharge_swap(swp_entry_t entry
, unsigned int nr_pages
)
6008 struct mem_cgroup
*memcg
;
6011 if (!do_swap_account
)
6014 id
= swap_cgroup_record(entry
, 0, nr_pages
);
6016 memcg
= mem_cgroup_from_id(id
);
6018 if (!mem_cgroup_is_root(memcg
)) {
6019 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
6020 page_counter_uncharge(&memcg
->swap
, nr_pages
);
6022 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
6024 mem_cgroup_swap_statistics(memcg
, -nr_pages
);
6025 mem_cgroup_id_put_many(memcg
, nr_pages
);
6030 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup
*memcg
)
6032 long nr_swap_pages
= get_nr_swap_pages();
6034 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
6035 return nr_swap_pages
;
6036 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
6037 nr_swap_pages
= min_t(long, nr_swap_pages
,
6038 READ_ONCE(memcg
->swap
.limit
) -
6039 page_counter_read(&memcg
->swap
));
6040 return nr_swap_pages
;
6043 bool mem_cgroup_swap_full(struct page
*page
)
6045 struct mem_cgroup
*memcg
;
6047 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
6051 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
6054 memcg
= page
->mem_cgroup
;
6058 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
6059 if (page_counter_read(&memcg
->swap
) * 2 >= memcg
->swap
.limit
)
6065 /* for remember boot option*/
6066 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6067 static int really_do_swap_account __initdata
= 1;
6069 static int really_do_swap_account __initdata
;
6072 static int __init
enable_swap_account(char *s
)
6074 if (!strcmp(s
, "1"))
6075 really_do_swap_account
= 1;
6076 else if (!strcmp(s
, "0"))
6077 really_do_swap_account
= 0;
6080 __setup("swapaccount=", enable_swap_account
);
6082 static u64
swap_current_read(struct cgroup_subsys_state
*css
,
6085 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
6087 return (u64
)page_counter_read(&memcg
->swap
) * PAGE_SIZE
;
6090 static int swap_max_show(struct seq_file
*m
, void *v
)
6092 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
6093 unsigned long max
= READ_ONCE(memcg
->swap
.limit
);
6095 if (max
== PAGE_COUNTER_MAX
)
6096 seq_puts(m
, "max\n");
6098 seq_printf(m
, "%llu\n", (u64
)max
* PAGE_SIZE
);
6103 static ssize_t
swap_max_write(struct kernfs_open_file
*of
,
6104 char *buf
, size_t nbytes
, loff_t off
)
6106 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
6110 buf
= strstrip(buf
);
6111 err
= page_counter_memparse(buf
, "max", &max
);
6115 mutex_lock(&memcg_limit_mutex
);
6116 err
= page_counter_limit(&memcg
->swap
, max
);
6117 mutex_unlock(&memcg_limit_mutex
);
6124 static struct cftype swap_files
[] = {
6126 .name
= "swap.current",
6127 .flags
= CFTYPE_NOT_ON_ROOT
,
6128 .read_u64
= swap_current_read
,
6132 .flags
= CFTYPE_NOT_ON_ROOT
,
6133 .seq_show
= swap_max_show
,
6134 .write
= swap_max_write
,
6139 static struct cftype memsw_cgroup_files
[] = {
6141 .name
= "memsw.usage_in_bytes",
6142 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
6143 .read_u64
= mem_cgroup_read_u64
,
6146 .name
= "memsw.max_usage_in_bytes",
6147 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
6148 .write
= mem_cgroup_reset
,
6149 .read_u64
= mem_cgroup_read_u64
,
6152 .name
= "memsw.limit_in_bytes",
6153 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
6154 .write
= mem_cgroup_write
,
6155 .read_u64
= mem_cgroup_read_u64
,
6158 .name
= "memsw.failcnt",
6159 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
6160 .write
= mem_cgroup_reset
,
6161 .read_u64
= mem_cgroup_read_u64
,
6163 { }, /* terminate */
6166 static int __init
mem_cgroup_swap_init(void)
6168 if (!mem_cgroup_disabled() && really_do_swap_account
) {
6169 do_swap_account
= 1;
6170 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys
,
6172 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys
,
6173 memsw_cgroup_files
));
6177 subsys_initcall(mem_cgroup_swap_init
);
6179 #endif /* CONFIG_MEMCG_SWAP */