]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memcontrol.c
Merge branch 'nvme-4.13' of git://git.infradead.org/nvme into for-linus
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
58 #include <linux/fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
68 #include "internal.h"
69 #include <net/sock.h>
70 #include <net/ip.h>
71 #include "slab.h"
72
73 #include <linux/uaccess.h>
74
75 #include <trace/events/vmscan.h>
76
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81
82 #define MEM_CGROUP_RECLAIM_RETRIES 5
83
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket;
86
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem;
89
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly;
93 #else
94 #define do_swap_account 0
95 #endif
96
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
99 {
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 }
102
103 static const char *const mem_cgroup_lru_names[] = {
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109 };
110
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET 1024
114
115 /*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
120 struct mem_cgroup_tree_per_node {
121 struct rb_root rb_root;
122 spinlock_t lock;
123 };
124
125 struct mem_cgroup_tree {
126 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
127 };
128
129 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
130
131 /* for OOM */
132 struct mem_cgroup_eventfd_list {
133 struct list_head list;
134 struct eventfd_ctx *eventfd;
135 };
136
137 /*
138 * cgroup_event represents events which userspace want to receive.
139 */
140 struct mem_cgroup_event {
141 /*
142 * memcg which the event belongs to.
143 */
144 struct mem_cgroup *memcg;
145 /*
146 * eventfd to signal userspace about the event.
147 */
148 struct eventfd_ctx *eventfd;
149 /*
150 * Each of these stored in a list by the cgroup.
151 */
152 struct list_head list;
153 /*
154 * register_event() callback will be used to add new userspace
155 * waiter for changes related to this event. Use eventfd_signal()
156 * on eventfd to send notification to userspace.
157 */
158 int (*register_event)(struct mem_cgroup *memcg,
159 struct eventfd_ctx *eventfd, const char *args);
160 /*
161 * unregister_event() callback will be called when userspace closes
162 * the eventfd or on cgroup removing. This callback must be set,
163 * if you want provide notification functionality.
164 */
165 void (*unregister_event)(struct mem_cgroup *memcg,
166 struct eventfd_ctx *eventfd);
167 /*
168 * All fields below needed to unregister event when
169 * userspace closes eventfd.
170 */
171 poll_table pt;
172 wait_queue_head_t *wqh;
173 wait_queue_entry_t wait;
174 struct work_struct remove;
175 };
176
177 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
178 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
179
180 /* Stuffs for move charges at task migration. */
181 /*
182 * Types of charges to be moved.
183 */
184 #define MOVE_ANON 0x1U
185 #define MOVE_FILE 0x2U
186 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
187
188 /* "mc" and its members are protected by cgroup_mutex */
189 static struct move_charge_struct {
190 spinlock_t lock; /* for from, to */
191 struct mm_struct *mm;
192 struct mem_cgroup *from;
193 struct mem_cgroup *to;
194 unsigned long flags;
195 unsigned long precharge;
196 unsigned long moved_charge;
197 unsigned long moved_swap;
198 struct task_struct *moving_task; /* a task moving charges */
199 wait_queue_head_t waitq; /* a waitq for other context */
200 } mc = {
201 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
202 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
203 };
204
205 /*
206 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
207 * limit reclaim to prevent infinite loops, if they ever occur.
208 */
209 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
210 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
211
212 enum charge_type {
213 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
214 MEM_CGROUP_CHARGE_TYPE_ANON,
215 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
216 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
217 NR_CHARGE_TYPE,
218 };
219
220 /* for encoding cft->private value on file */
221 enum res_type {
222 _MEM,
223 _MEMSWAP,
224 _OOM_TYPE,
225 _KMEM,
226 _TCP,
227 };
228
229 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
230 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
231 #define MEMFILE_ATTR(val) ((val) & 0xffff)
232 /* Used for OOM nofiier */
233 #define OOM_CONTROL (0)
234
235 /* Some nice accessors for the vmpressure. */
236 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
237 {
238 if (!memcg)
239 memcg = root_mem_cgroup;
240 return &memcg->vmpressure;
241 }
242
243 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
244 {
245 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
246 }
247
248 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
249 {
250 return (memcg == root_mem_cgroup);
251 }
252
253 #ifndef CONFIG_SLOB
254 /*
255 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
256 * The main reason for not using cgroup id for this:
257 * this works better in sparse environments, where we have a lot of memcgs,
258 * but only a few kmem-limited. Or also, if we have, for instance, 200
259 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
260 * 200 entry array for that.
261 *
262 * The current size of the caches array is stored in memcg_nr_cache_ids. It
263 * will double each time we have to increase it.
264 */
265 static DEFINE_IDA(memcg_cache_ida);
266 int memcg_nr_cache_ids;
267
268 /* Protects memcg_nr_cache_ids */
269 static DECLARE_RWSEM(memcg_cache_ids_sem);
270
271 void memcg_get_cache_ids(void)
272 {
273 down_read(&memcg_cache_ids_sem);
274 }
275
276 void memcg_put_cache_ids(void)
277 {
278 up_read(&memcg_cache_ids_sem);
279 }
280
281 /*
282 * MIN_SIZE is different than 1, because we would like to avoid going through
283 * the alloc/free process all the time. In a small machine, 4 kmem-limited
284 * cgroups is a reasonable guess. In the future, it could be a parameter or
285 * tunable, but that is strictly not necessary.
286 *
287 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
288 * this constant directly from cgroup, but it is understandable that this is
289 * better kept as an internal representation in cgroup.c. In any case, the
290 * cgrp_id space is not getting any smaller, and we don't have to necessarily
291 * increase ours as well if it increases.
292 */
293 #define MEMCG_CACHES_MIN_SIZE 4
294 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
295
296 /*
297 * A lot of the calls to the cache allocation functions are expected to be
298 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
299 * conditional to this static branch, we'll have to allow modules that does
300 * kmem_cache_alloc and the such to see this symbol as well
301 */
302 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
303 EXPORT_SYMBOL(memcg_kmem_enabled_key);
304
305 struct workqueue_struct *memcg_kmem_cache_wq;
306
307 #endif /* !CONFIG_SLOB */
308
309 /**
310 * mem_cgroup_css_from_page - css of the memcg associated with a page
311 * @page: page of interest
312 *
313 * If memcg is bound to the default hierarchy, css of the memcg associated
314 * with @page is returned. The returned css remains associated with @page
315 * until it is released.
316 *
317 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
318 * is returned.
319 */
320 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
321 {
322 struct mem_cgroup *memcg;
323
324 memcg = page->mem_cgroup;
325
326 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
327 memcg = root_mem_cgroup;
328
329 return &memcg->css;
330 }
331
332 /**
333 * page_cgroup_ino - return inode number of the memcg a page is charged to
334 * @page: the page
335 *
336 * Look up the closest online ancestor of the memory cgroup @page is charged to
337 * and return its inode number or 0 if @page is not charged to any cgroup. It
338 * is safe to call this function without holding a reference to @page.
339 *
340 * Note, this function is inherently racy, because there is nothing to prevent
341 * the cgroup inode from getting torn down and potentially reallocated a moment
342 * after page_cgroup_ino() returns, so it only should be used by callers that
343 * do not care (such as procfs interfaces).
344 */
345 ino_t page_cgroup_ino(struct page *page)
346 {
347 struct mem_cgroup *memcg;
348 unsigned long ino = 0;
349
350 rcu_read_lock();
351 memcg = READ_ONCE(page->mem_cgroup);
352 while (memcg && !(memcg->css.flags & CSS_ONLINE))
353 memcg = parent_mem_cgroup(memcg);
354 if (memcg)
355 ino = cgroup_ino(memcg->css.cgroup);
356 rcu_read_unlock();
357 return ino;
358 }
359
360 static struct mem_cgroup_per_node *
361 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
362 {
363 int nid = page_to_nid(page);
364
365 return memcg->nodeinfo[nid];
366 }
367
368 static struct mem_cgroup_tree_per_node *
369 soft_limit_tree_node(int nid)
370 {
371 return soft_limit_tree.rb_tree_per_node[nid];
372 }
373
374 static struct mem_cgroup_tree_per_node *
375 soft_limit_tree_from_page(struct page *page)
376 {
377 int nid = page_to_nid(page);
378
379 return soft_limit_tree.rb_tree_per_node[nid];
380 }
381
382 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
383 struct mem_cgroup_tree_per_node *mctz,
384 unsigned long new_usage_in_excess)
385 {
386 struct rb_node **p = &mctz->rb_root.rb_node;
387 struct rb_node *parent = NULL;
388 struct mem_cgroup_per_node *mz_node;
389
390 if (mz->on_tree)
391 return;
392
393 mz->usage_in_excess = new_usage_in_excess;
394 if (!mz->usage_in_excess)
395 return;
396 while (*p) {
397 parent = *p;
398 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
399 tree_node);
400 if (mz->usage_in_excess < mz_node->usage_in_excess)
401 p = &(*p)->rb_left;
402 /*
403 * We can't avoid mem cgroups that are over their soft
404 * limit by the same amount
405 */
406 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
407 p = &(*p)->rb_right;
408 }
409 rb_link_node(&mz->tree_node, parent, p);
410 rb_insert_color(&mz->tree_node, &mctz->rb_root);
411 mz->on_tree = true;
412 }
413
414 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
415 struct mem_cgroup_tree_per_node *mctz)
416 {
417 if (!mz->on_tree)
418 return;
419 rb_erase(&mz->tree_node, &mctz->rb_root);
420 mz->on_tree = false;
421 }
422
423 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
424 struct mem_cgroup_tree_per_node *mctz)
425 {
426 unsigned long flags;
427
428 spin_lock_irqsave(&mctz->lock, flags);
429 __mem_cgroup_remove_exceeded(mz, mctz);
430 spin_unlock_irqrestore(&mctz->lock, flags);
431 }
432
433 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
434 {
435 unsigned long nr_pages = page_counter_read(&memcg->memory);
436 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
437 unsigned long excess = 0;
438
439 if (nr_pages > soft_limit)
440 excess = nr_pages - soft_limit;
441
442 return excess;
443 }
444
445 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
446 {
447 unsigned long excess;
448 struct mem_cgroup_per_node *mz;
449 struct mem_cgroup_tree_per_node *mctz;
450
451 mctz = soft_limit_tree_from_page(page);
452 if (!mctz)
453 return;
454 /*
455 * Necessary to update all ancestors when hierarchy is used.
456 * because their event counter is not touched.
457 */
458 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
459 mz = mem_cgroup_page_nodeinfo(memcg, page);
460 excess = soft_limit_excess(memcg);
461 /*
462 * We have to update the tree if mz is on RB-tree or
463 * mem is over its softlimit.
464 */
465 if (excess || mz->on_tree) {
466 unsigned long flags;
467
468 spin_lock_irqsave(&mctz->lock, flags);
469 /* if on-tree, remove it */
470 if (mz->on_tree)
471 __mem_cgroup_remove_exceeded(mz, mctz);
472 /*
473 * Insert again. mz->usage_in_excess will be updated.
474 * If excess is 0, no tree ops.
475 */
476 __mem_cgroup_insert_exceeded(mz, mctz, excess);
477 spin_unlock_irqrestore(&mctz->lock, flags);
478 }
479 }
480 }
481
482 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
483 {
484 struct mem_cgroup_tree_per_node *mctz;
485 struct mem_cgroup_per_node *mz;
486 int nid;
487
488 for_each_node(nid) {
489 mz = mem_cgroup_nodeinfo(memcg, nid);
490 mctz = soft_limit_tree_node(nid);
491 if (mctz)
492 mem_cgroup_remove_exceeded(mz, mctz);
493 }
494 }
495
496 static struct mem_cgroup_per_node *
497 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
498 {
499 struct rb_node *rightmost = NULL;
500 struct mem_cgroup_per_node *mz;
501
502 retry:
503 mz = NULL;
504 rightmost = rb_last(&mctz->rb_root);
505 if (!rightmost)
506 goto done; /* Nothing to reclaim from */
507
508 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
509 /*
510 * Remove the node now but someone else can add it back,
511 * we will to add it back at the end of reclaim to its correct
512 * position in the tree.
513 */
514 __mem_cgroup_remove_exceeded(mz, mctz);
515 if (!soft_limit_excess(mz->memcg) ||
516 !css_tryget_online(&mz->memcg->css))
517 goto retry;
518 done:
519 return mz;
520 }
521
522 static struct mem_cgroup_per_node *
523 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
524 {
525 struct mem_cgroup_per_node *mz;
526
527 spin_lock_irq(&mctz->lock);
528 mz = __mem_cgroup_largest_soft_limit_node(mctz);
529 spin_unlock_irq(&mctz->lock);
530 return mz;
531 }
532
533 /*
534 * Return page count for single (non recursive) @memcg.
535 *
536 * Implementation Note: reading percpu statistics for memcg.
537 *
538 * Both of vmstat[] and percpu_counter has threshold and do periodic
539 * synchronization to implement "quick" read. There are trade-off between
540 * reading cost and precision of value. Then, we may have a chance to implement
541 * a periodic synchronization of counter in memcg's counter.
542 *
543 * But this _read() function is used for user interface now. The user accounts
544 * memory usage by memory cgroup and he _always_ requires exact value because
545 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
546 * have to visit all online cpus and make sum. So, for now, unnecessary
547 * synchronization is not implemented. (just implemented for cpu hotplug)
548 *
549 * If there are kernel internal actions which can make use of some not-exact
550 * value, and reading all cpu value can be performance bottleneck in some
551 * common workload, threshold and synchronization as vmstat[] should be
552 * implemented.
553 */
554
555 static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
556 enum memcg_event_item event)
557 {
558 unsigned long val = 0;
559 int cpu;
560
561 for_each_possible_cpu(cpu)
562 val += per_cpu(memcg->stat->events[event], cpu);
563 return val;
564 }
565
566 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
567 struct page *page,
568 bool compound, int nr_pages)
569 {
570 /*
571 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
572 * counted as CACHE even if it's on ANON LRU.
573 */
574 if (PageAnon(page))
575 __this_cpu_add(memcg->stat->count[MEMCG_RSS], nr_pages);
576 else {
577 __this_cpu_add(memcg->stat->count[MEMCG_CACHE], nr_pages);
578 if (PageSwapBacked(page))
579 __this_cpu_add(memcg->stat->count[NR_SHMEM], nr_pages);
580 }
581
582 if (compound) {
583 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
584 __this_cpu_add(memcg->stat->count[MEMCG_RSS_HUGE], nr_pages);
585 }
586
587 /* pagein of a big page is an event. So, ignore page size */
588 if (nr_pages > 0)
589 __this_cpu_inc(memcg->stat->events[PGPGIN]);
590 else {
591 __this_cpu_inc(memcg->stat->events[PGPGOUT]);
592 nr_pages = -nr_pages; /* for event */
593 }
594
595 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
596 }
597
598 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
599 int nid, unsigned int lru_mask)
600 {
601 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
602 unsigned long nr = 0;
603 enum lru_list lru;
604
605 VM_BUG_ON((unsigned)nid >= nr_node_ids);
606
607 for_each_lru(lru) {
608 if (!(BIT(lru) & lru_mask))
609 continue;
610 nr += mem_cgroup_get_lru_size(lruvec, lru);
611 }
612 return nr;
613 }
614
615 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
616 unsigned int lru_mask)
617 {
618 unsigned long nr = 0;
619 int nid;
620
621 for_each_node_state(nid, N_MEMORY)
622 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
623 return nr;
624 }
625
626 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
627 enum mem_cgroup_events_target target)
628 {
629 unsigned long val, next;
630
631 val = __this_cpu_read(memcg->stat->nr_page_events);
632 next = __this_cpu_read(memcg->stat->targets[target]);
633 /* from time_after() in jiffies.h */
634 if ((long)(next - val) < 0) {
635 switch (target) {
636 case MEM_CGROUP_TARGET_THRESH:
637 next = val + THRESHOLDS_EVENTS_TARGET;
638 break;
639 case MEM_CGROUP_TARGET_SOFTLIMIT:
640 next = val + SOFTLIMIT_EVENTS_TARGET;
641 break;
642 case MEM_CGROUP_TARGET_NUMAINFO:
643 next = val + NUMAINFO_EVENTS_TARGET;
644 break;
645 default:
646 break;
647 }
648 __this_cpu_write(memcg->stat->targets[target], next);
649 return true;
650 }
651 return false;
652 }
653
654 /*
655 * Check events in order.
656 *
657 */
658 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
659 {
660 /* threshold event is triggered in finer grain than soft limit */
661 if (unlikely(mem_cgroup_event_ratelimit(memcg,
662 MEM_CGROUP_TARGET_THRESH))) {
663 bool do_softlimit;
664 bool do_numainfo __maybe_unused;
665
666 do_softlimit = mem_cgroup_event_ratelimit(memcg,
667 MEM_CGROUP_TARGET_SOFTLIMIT);
668 #if MAX_NUMNODES > 1
669 do_numainfo = mem_cgroup_event_ratelimit(memcg,
670 MEM_CGROUP_TARGET_NUMAINFO);
671 #endif
672 mem_cgroup_threshold(memcg);
673 if (unlikely(do_softlimit))
674 mem_cgroup_update_tree(memcg, page);
675 #if MAX_NUMNODES > 1
676 if (unlikely(do_numainfo))
677 atomic_inc(&memcg->numainfo_events);
678 #endif
679 }
680 }
681
682 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
683 {
684 /*
685 * mm_update_next_owner() may clear mm->owner to NULL
686 * if it races with swapoff, page migration, etc.
687 * So this can be called with p == NULL.
688 */
689 if (unlikely(!p))
690 return NULL;
691
692 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
693 }
694 EXPORT_SYMBOL(mem_cgroup_from_task);
695
696 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
697 {
698 struct mem_cgroup *memcg = NULL;
699
700 rcu_read_lock();
701 do {
702 /*
703 * Page cache insertions can happen withou an
704 * actual mm context, e.g. during disk probing
705 * on boot, loopback IO, acct() writes etc.
706 */
707 if (unlikely(!mm))
708 memcg = root_mem_cgroup;
709 else {
710 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
711 if (unlikely(!memcg))
712 memcg = root_mem_cgroup;
713 }
714 } while (!css_tryget_online(&memcg->css));
715 rcu_read_unlock();
716 return memcg;
717 }
718
719 /**
720 * mem_cgroup_iter - iterate over memory cgroup hierarchy
721 * @root: hierarchy root
722 * @prev: previously returned memcg, NULL on first invocation
723 * @reclaim: cookie for shared reclaim walks, NULL for full walks
724 *
725 * Returns references to children of the hierarchy below @root, or
726 * @root itself, or %NULL after a full round-trip.
727 *
728 * Caller must pass the return value in @prev on subsequent
729 * invocations for reference counting, or use mem_cgroup_iter_break()
730 * to cancel a hierarchy walk before the round-trip is complete.
731 *
732 * Reclaimers can specify a zone and a priority level in @reclaim to
733 * divide up the memcgs in the hierarchy among all concurrent
734 * reclaimers operating on the same zone and priority.
735 */
736 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
737 struct mem_cgroup *prev,
738 struct mem_cgroup_reclaim_cookie *reclaim)
739 {
740 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
741 struct cgroup_subsys_state *css = NULL;
742 struct mem_cgroup *memcg = NULL;
743 struct mem_cgroup *pos = NULL;
744
745 if (mem_cgroup_disabled())
746 return NULL;
747
748 if (!root)
749 root = root_mem_cgroup;
750
751 if (prev && !reclaim)
752 pos = prev;
753
754 if (!root->use_hierarchy && root != root_mem_cgroup) {
755 if (prev)
756 goto out;
757 return root;
758 }
759
760 rcu_read_lock();
761
762 if (reclaim) {
763 struct mem_cgroup_per_node *mz;
764
765 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
766 iter = &mz->iter[reclaim->priority];
767
768 if (prev && reclaim->generation != iter->generation)
769 goto out_unlock;
770
771 while (1) {
772 pos = READ_ONCE(iter->position);
773 if (!pos || css_tryget(&pos->css))
774 break;
775 /*
776 * css reference reached zero, so iter->position will
777 * be cleared by ->css_released. However, we should not
778 * rely on this happening soon, because ->css_released
779 * is called from a work queue, and by busy-waiting we
780 * might block it. So we clear iter->position right
781 * away.
782 */
783 (void)cmpxchg(&iter->position, pos, NULL);
784 }
785 }
786
787 if (pos)
788 css = &pos->css;
789
790 for (;;) {
791 css = css_next_descendant_pre(css, &root->css);
792 if (!css) {
793 /*
794 * Reclaimers share the hierarchy walk, and a
795 * new one might jump in right at the end of
796 * the hierarchy - make sure they see at least
797 * one group and restart from the beginning.
798 */
799 if (!prev)
800 continue;
801 break;
802 }
803
804 /*
805 * Verify the css and acquire a reference. The root
806 * is provided by the caller, so we know it's alive
807 * and kicking, and don't take an extra reference.
808 */
809 memcg = mem_cgroup_from_css(css);
810
811 if (css == &root->css)
812 break;
813
814 if (css_tryget(css))
815 break;
816
817 memcg = NULL;
818 }
819
820 if (reclaim) {
821 /*
822 * The position could have already been updated by a competing
823 * thread, so check that the value hasn't changed since we read
824 * it to avoid reclaiming from the same cgroup twice.
825 */
826 (void)cmpxchg(&iter->position, pos, memcg);
827
828 if (pos)
829 css_put(&pos->css);
830
831 if (!memcg)
832 iter->generation++;
833 else if (!prev)
834 reclaim->generation = iter->generation;
835 }
836
837 out_unlock:
838 rcu_read_unlock();
839 out:
840 if (prev && prev != root)
841 css_put(&prev->css);
842
843 return memcg;
844 }
845
846 /**
847 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
848 * @root: hierarchy root
849 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
850 */
851 void mem_cgroup_iter_break(struct mem_cgroup *root,
852 struct mem_cgroup *prev)
853 {
854 if (!root)
855 root = root_mem_cgroup;
856 if (prev && prev != root)
857 css_put(&prev->css);
858 }
859
860 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
861 {
862 struct mem_cgroup *memcg = dead_memcg;
863 struct mem_cgroup_reclaim_iter *iter;
864 struct mem_cgroup_per_node *mz;
865 int nid;
866 int i;
867
868 while ((memcg = parent_mem_cgroup(memcg))) {
869 for_each_node(nid) {
870 mz = mem_cgroup_nodeinfo(memcg, nid);
871 for (i = 0; i <= DEF_PRIORITY; i++) {
872 iter = &mz->iter[i];
873 cmpxchg(&iter->position,
874 dead_memcg, NULL);
875 }
876 }
877 }
878 }
879
880 /*
881 * Iteration constructs for visiting all cgroups (under a tree). If
882 * loops are exited prematurely (break), mem_cgroup_iter_break() must
883 * be used for reference counting.
884 */
885 #define for_each_mem_cgroup_tree(iter, root) \
886 for (iter = mem_cgroup_iter(root, NULL, NULL); \
887 iter != NULL; \
888 iter = mem_cgroup_iter(root, iter, NULL))
889
890 #define for_each_mem_cgroup(iter) \
891 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
892 iter != NULL; \
893 iter = mem_cgroup_iter(NULL, iter, NULL))
894
895 /**
896 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
897 * @memcg: hierarchy root
898 * @fn: function to call for each task
899 * @arg: argument passed to @fn
900 *
901 * This function iterates over tasks attached to @memcg or to any of its
902 * descendants and calls @fn for each task. If @fn returns a non-zero
903 * value, the function breaks the iteration loop and returns the value.
904 * Otherwise, it will iterate over all tasks and return 0.
905 *
906 * This function must not be called for the root memory cgroup.
907 */
908 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
909 int (*fn)(struct task_struct *, void *), void *arg)
910 {
911 struct mem_cgroup *iter;
912 int ret = 0;
913
914 BUG_ON(memcg == root_mem_cgroup);
915
916 for_each_mem_cgroup_tree(iter, memcg) {
917 struct css_task_iter it;
918 struct task_struct *task;
919
920 css_task_iter_start(&iter->css, &it);
921 while (!ret && (task = css_task_iter_next(&it)))
922 ret = fn(task, arg);
923 css_task_iter_end(&it);
924 if (ret) {
925 mem_cgroup_iter_break(memcg, iter);
926 break;
927 }
928 }
929 return ret;
930 }
931
932 /**
933 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
934 * @page: the page
935 * @zone: zone of the page
936 *
937 * This function is only safe when following the LRU page isolation
938 * and putback protocol: the LRU lock must be held, and the page must
939 * either be PageLRU() or the caller must have isolated/allocated it.
940 */
941 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
942 {
943 struct mem_cgroup_per_node *mz;
944 struct mem_cgroup *memcg;
945 struct lruvec *lruvec;
946
947 if (mem_cgroup_disabled()) {
948 lruvec = &pgdat->lruvec;
949 goto out;
950 }
951
952 memcg = page->mem_cgroup;
953 /*
954 * Swapcache readahead pages are added to the LRU - and
955 * possibly migrated - before they are charged.
956 */
957 if (!memcg)
958 memcg = root_mem_cgroup;
959
960 mz = mem_cgroup_page_nodeinfo(memcg, page);
961 lruvec = &mz->lruvec;
962 out:
963 /*
964 * Since a node can be onlined after the mem_cgroup was created,
965 * we have to be prepared to initialize lruvec->zone here;
966 * and if offlined then reonlined, we need to reinitialize it.
967 */
968 if (unlikely(lruvec->pgdat != pgdat))
969 lruvec->pgdat = pgdat;
970 return lruvec;
971 }
972
973 /**
974 * mem_cgroup_update_lru_size - account for adding or removing an lru page
975 * @lruvec: mem_cgroup per zone lru vector
976 * @lru: index of lru list the page is sitting on
977 * @zid: zone id of the accounted pages
978 * @nr_pages: positive when adding or negative when removing
979 *
980 * This function must be called under lru_lock, just before a page is added
981 * to or just after a page is removed from an lru list (that ordering being
982 * so as to allow it to check that lru_size 0 is consistent with list_empty).
983 */
984 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
985 int zid, int nr_pages)
986 {
987 struct mem_cgroup_per_node *mz;
988 unsigned long *lru_size;
989 long size;
990
991 if (mem_cgroup_disabled())
992 return;
993
994 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
995 lru_size = &mz->lru_zone_size[zid][lru];
996
997 if (nr_pages < 0)
998 *lru_size += nr_pages;
999
1000 size = *lru_size;
1001 if (WARN_ONCE(size < 0,
1002 "%s(%p, %d, %d): lru_size %ld\n",
1003 __func__, lruvec, lru, nr_pages, size)) {
1004 VM_BUG_ON(1);
1005 *lru_size = 0;
1006 }
1007
1008 if (nr_pages > 0)
1009 *lru_size += nr_pages;
1010 }
1011
1012 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1013 {
1014 struct mem_cgroup *task_memcg;
1015 struct task_struct *p;
1016 bool ret;
1017
1018 p = find_lock_task_mm(task);
1019 if (p) {
1020 task_memcg = get_mem_cgroup_from_mm(p->mm);
1021 task_unlock(p);
1022 } else {
1023 /*
1024 * All threads may have already detached their mm's, but the oom
1025 * killer still needs to detect if they have already been oom
1026 * killed to prevent needlessly killing additional tasks.
1027 */
1028 rcu_read_lock();
1029 task_memcg = mem_cgroup_from_task(task);
1030 css_get(&task_memcg->css);
1031 rcu_read_unlock();
1032 }
1033 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1034 css_put(&task_memcg->css);
1035 return ret;
1036 }
1037
1038 /**
1039 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1040 * @memcg: the memory cgroup
1041 *
1042 * Returns the maximum amount of memory @mem can be charged with, in
1043 * pages.
1044 */
1045 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1046 {
1047 unsigned long margin = 0;
1048 unsigned long count;
1049 unsigned long limit;
1050
1051 count = page_counter_read(&memcg->memory);
1052 limit = READ_ONCE(memcg->memory.limit);
1053 if (count < limit)
1054 margin = limit - count;
1055
1056 if (do_memsw_account()) {
1057 count = page_counter_read(&memcg->memsw);
1058 limit = READ_ONCE(memcg->memsw.limit);
1059 if (count <= limit)
1060 margin = min(margin, limit - count);
1061 else
1062 margin = 0;
1063 }
1064
1065 return margin;
1066 }
1067
1068 /*
1069 * A routine for checking "mem" is under move_account() or not.
1070 *
1071 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1072 * moving cgroups. This is for waiting at high-memory pressure
1073 * caused by "move".
1074 */
1075 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1076 {
1077 struct mem_cgroup *from;
1078 struct mem_cgroup *to;
1079 bool ret = false;
1080 /*
1081 * Unlike task_move routines, we access mc.to, mc.from not under
1082 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1083 */
1084 spin_lock(&mc.lock);
1085 from = mc.from;
1086 to = mc.to;
1087 if (!from)
1088 goto unlock;
1089
1090 ret = mem_cgroup_is_descendant(from, memcg) ||
1091 mem_cgroup_is_descendant(to, memcg);
1092 unlock:
1093 spin_unlock(&mc.lock);
1094 return ret;
1095 }
1096
1097 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1098 {
1099 if (mc.moving_task && current != mc.moving_task) {
1100 if (mem_cgroup_under_move(memcg)) {
1101 DEFINE_WAIT(wait);
1102 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1103 /* moving charge context might have finished. */
1104 if (mc.moving_task)
1105 schedule();
1106 finish_wait(&mc.waitq, &wait);
1107 return true;
1108 }
1109 }
1110 return false;
1111 }
1112
1113 unsigned int memcg1_stats[] = {
1114 MEMCG_CACHE,
1115 MEMCG_RSS,
1116 MEMCG_RSS_HUGE,
1117 NR_SHMEM,
1118 NR_FILE_MAPPED,
1119 NR_FILE_DIRTY,
1120 NR_WRITEBACK,
1121 MEMCG_SWAP,
1122 };
1123
1124 static const char *const memcg1_stat_names[] = {
1125 "cache",
1126 "rss",
1127 "rss_huge",
1128 "shmem",
1129 "mapped_file",
1130 "dirty",
1131 "writeback",
1132 "swap",
1133 };
1134
1135 #define K(x) ((x) << (PAGE_SHIFT-10))
1136 /**
1137 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1138 * @memcg: The memory cgroup that went over limit
1139 * @p: Task that is going to be killed
1140 *
1141 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1142 * enabled
1143 */
1144 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1145 {
1146 struct mem_cgroup *iter;
1147 unsigned int i;
1148
1149 rcu_read_lock();
1150
1151 if (p) {
1152 pr_info("Task in ");
1153 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1154 pr_cont(" killed as a result of limit of ");
1155 } else {
1156 pr_info("Memory limit reached of cgroup ");
1157 }
1158
1159 pr_cont_cgroup_path(memcg->css.cgroup);
1160 pr_cont("\n");
1161
1162 rcu_read_unlock();
1163
1164 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1165 K((u64)page_counter_read(&memcg->memory)),
1166 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1167 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1168 K((u64)page_counter_read(&memcg->memsw)),
1169 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1170 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1171 K((u64)page_counter_read(&memcg->kmem)),
1172 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1173
1174 for_each_mem_cgroup_tree(iter, memcg) {
1175 pr_info("Memory cgroup stats for ");
1176 pr_cont_cgroup_path(iter->css.cgroup);
1177 pr_cont(":");
1178
1179 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1180 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1181 continue;
1182 pr_cont(" %s:%luKB", memcg1_stat_names[i],
1183 K(memcg_page_state(iter, memcg1_stats[i])));
1184 }
1185
1186 for (i = 0; i < NR_LRU_LISTS; i++)
1187 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1188 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1189
1190 pr_cont("\n");
1191 }
1192 }
1193
1194 /*
1195 * This function returns the number of memcg under hierarchy tree. Returns
1196 * 1(self count) if no children.
1197 */
1198 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1199 {
1200 int num = 0;
1201 struct mem_cgroup *iter;
1202
1203 for_each_mem_cgroup_tree(iter, memcg)
1204 num++;
1205 return num;
1206 }
1207
1208 /*
1209 * Return the memory (and swap, if configured) limit for a memcg.
1210 */
1211 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1212 {
1213 unsigned long limit;
1214
1215 limit = memcg->memory.limit;
1216 if (mem_cgroup_swappiness(memcg)) {
1217 unsigned long memsw_limit;
1218 unsigned long swap_limit;
1219
1220 memsw_limit = memcg->memsw.limit;
1221 swap_limit = memcg->swap.limit;
1222 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1223 limit = min(limit + swap_limit, memsw_limit);
1224 }
1225 return limit;
1226 }
1227
1228 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1229 int order)
1230 {
1231 struct oom_control oc = {
1232 .zonelist = NULL,
1233 .nodemask = NULL,
1234 .memcg = memcg,
1235 .gfp_mask = gfp_mask,
1236 .order = order,
1237 };
1238 bool ret;
1239
1240 mutex_lock(&oom_lock);
1241 ret = out_of_memory(&oc);
1242 mutex_unlock(&oom_lock);
1243 return ret;
1244 }
1245
1246 #if MAX_NUMNODES > 1
1247
1248 /**
1249 * test_mem_cgroup_node_reclaimable
1250 * @memcg: the target memcg
1251 * @nid: the node ID to be checked.
1252 * @noswap : specify true here if the user wants flle only information.
1253 *
1254 * This function returns whether the specified memcg contains any
1255 * reclaimable pages on a node. Returns true if there are any reclaimable
1256 * pages in the node.
1257 */
1258 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1259 int nid, bool noswap)
1260 {
1261 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1262 return true;
1263 if (noswap || !total_swap_pages)
1264 return false;
1265 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1266 return true;
1267 return false;
1268
1269 }
1270
1271 /*
1272 * Always updating the nodemask is not very good - even if we have an empty
1273 * list or the wrong list here, we can start from some node and traverse all
1274 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1275 *
1276 */
1277 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1278 {
1279 int nid;
1280 /*
1281 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1282 * pagein/pageout changes since the last update.
1283 */
1284 if (!atomic_read(&memcg->numainfo_events))
1285 return;
1286 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1287 return;
1288
1289 /* make a nodemask where this memcg uses memory from */
1290 memcg->scan_nodes = node_states[N_MEMORY];
1291
1292 for_each_node_mask(nid, node_states[N_MEMORY]) {
1293
1294 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1295 node_clear(nid, memcg->scan_nodes);
1296 }
1297
1298 atomic_set(&memcg->numainfo_events, 0);
1299 atomic_set(&memcg->numainfo_updating, 0);
1300 }
1301
1302 /*
1303 * Selecting a node where we start reclaim from. Because what we need is just
1304 * reducing usage counter, start from anywhere is O,K. Considering
1305 * memory reclaim from current node, there are pros. and cons.
1306 *
1307 * Freeing memory from current node means freeing memory from a node which
1308 * we'll use or we've used. So, it may make LRU bad. And if several threads
1309 * hit limits, it will see a contention on a node. But freeing from remote
1310 * node means more costs for memory reclaim because of memory latency.
1311 *
1312 * Now, we use round-robin. Better algorithm is welcomed.
1313 */
1314 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1315 {
1316 int node;
1317
1318 mem_cgroup_may_update_nodemask(memcg);
1319 node = memcg->last_scanned_node;
1320
1321 node = next_node_in(node, memcg->scan_nodes);
1322 /*
1323 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1324 * last time it really checked all the LRUs due to rate limiting.
1325 * Fallback to the current node in that case for simplicity.
1326 */
1327 if (unlikely(node == MAX_NUMNODES))
1328 node = numa_node_id();
1329
1330 memcg->last_scanned_node = node;
1331 return node;
1332 }
1333 #else
1334 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1335 {
1336 return 0;
1337 }
1338 #endif
1339
1340 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1341 pg_data_t *pgdat,
1342 gfp_t gfp_mask,
1343 unsigned long *total_scanned)
1344 {
1345 struct mem_cgroup *victim = NULL;
1346 int total = 0;
1347 int loop = 0;
1348 unsigned long excess;
1349 unsigned long nr_scanned;
1350 struct mem_cgroup_reclaim_cookie reclaim = {
1351 .pgdat = pgdat,
1352 .priority = 0,
1353 };
1354
1355 excess = soft_limit_excess(root_memcg);
1356
1357 while (1) {
1358 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1359 if (!victim) {
1360 loop++;
1361 if (loop >= 2) {
1362 /*
1363 * If we have not been able to reclaim
1364 * anything, it might because there are
1365 * no reclaimable pages under this hierarchy
1366 */
1367 if (!total)
1368 break;
1369 /*
1370 * We want to do more targeted reclaim.
1371 * excess >> 2 is not to excessive so as to
1372 * reclaim too much, nor too less that we keep
1373 * coming back to reclaim from this cgroup
1374 */
1375 if (total >= (excess >> 2) ||
1376 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1377 break;
1378 }
1379 continue;
1380 }
1381 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1382 pgdat, &nr_scanned);
1383 *total_scanned += nr_scanned;
1384 if (!soft_limit_excess(root_memcg))
1385 break;
1386 }
1387 mem_cgroup_iter_break(root_memcg, victim);
1388 return total;
1389 }
1390
1391 #ifdef CONFIG_LOCKDEP
1392 static struct lockdep_map memcg_oom_lock_dep_map = {
1393 .name = "memcg_oom_lock",
1394 };
1395 #endif
1396
1397 static DEFINE_SPINLOCK(memcg_oom_lock);
1398
1399 /*
1400 * Check OOM-Killer is already running under our hierarchy.
1401 * If someone is running, return false.
1402 */
1403 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1404 {
1405 struct mem_cgroup *iter, *failed = NULL;
1406
1407 spin_lock(&memcg_oom_lock);
1408
1409 for_each_mem_cgroup_tree(iter, memcg) {
1410 if (iter->oom_lock) {
1411 /*
1412 * this subtree of our hierarchy is already locked
1413 * so we cannot give a lock.
1414 */
1415 failed = iter;
1416 mem_cgroup_iter_break(memcg, iter);
1417 break;
1418 } else
1419 iter->oom_lock = true;
1420 }
1421
1422 if (failed) {
1423 /*
1424 * OK, we failed to lock the whole subtree so we have
1425 * to clean up what we set up to the failing subtree
1426 */
1427 for_each_mem_cgroup_tree(iter, memcg) {
1428 if (iter == failed) {
1429 mem_cgroup_iter_break(memcg, iter);
1430 break;
1431 }
1432 iter->oom_lock = false;
1433 }
1434 } else
1435 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1436
1437 spin_unlock(&memcg_oom_lock);
1438
1439 return !failed;
1440 }
1441
1442 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1443 {
1444 struct mem_cgroup *iter;
1445
1446 spin_lock(&memcg_oom_lock);
1447 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1448 for_each_mem_cgroup_tree(iter, memcg)
1449 iter->oom_lock = false;
1450 spin_unlock(&memcg_oom_lock);
1451 }
1452
1453 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1454 {
1455 struct mem_cgroup *iter;
1456
1457 spin_lock(&memcg_oom_lock);
1458 for_each_mem_cgroup_tree(iter, memcg)
1459 iter->under_oom++;
1460 spin_unlock(&memcg_oom_lock);
1461 }
1462
1463 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1464 {
1465 struct mem_cgroup *iter;
1466
1467 /*
1468 * When a new child is created while the hierarchy is under oom,
1469 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1470 */
1471 spin_lock(&memcg_oom_lock);
1472 for_each_mem_cgroup_tree(iter, memcg)
1473 if (iter->under_oom > 0)
1474 iter->under_oom--;
1475 spin_unlock(&memcg_oom_lock);
1476 }
1477
1478 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1479
1480 struct oom_wait_info {
1481 struct mem_cgroup *memcg;
1482 wait_queue_entry_t wait;
1483 };
1484
1485 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1486 unsigned mode, int sync, void *arg)
1487 {
1488 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1489 struct mem_cgroup *oom_wait_memcg;
1490 struct oom_wait_info *oom_wait_info;
1491
1492 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1493 oom_wait_memcg = oom_wait_info->memcg;
1494
1495 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1496 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1497 return 0;
1498 return autoremove_wake_function(wait, mode, sync, arg);
1499 }
1500
1501 static void memcg_oom_recover(struct mem_cgroup *memcg)
1502 {
1503 /*
1504 * For the following lockless ->under_oom test, the only required
1505 * guarantee is that it must see the state asserted by an OOM when
1506 * this function is called as a result of userland actions
1507 * triggered by the notification of the OOM. This is trivially
1508 * achieved by invoking mem_cgroup_mark_under_oom() before
1509 * triggering notification.
1510 */
1511 if (memcg && memcg->under_oom)
1512 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1513 }
1514
1515 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1516 {
1517 if (!current->memcg_may_oom)
1518 return;
1519 /*
1520 * We are in the middle of the charge context here, so we
1521 * don't want to block when potentially sitting on a callstack
1522 * that holds all kinds of filesystem and mm locks.
1523 *
1524 * Also, the caller may handle a failed allocation gracefully
1525 * (like optional page cache readahead) and so an OOM killer
1526 * invocation might not even be necessary.
1527 *
1528 * That's why we don't do anything here except remember the
1529 * OOM context and then deal with it at the end of the page
1530 * fault when the stack is unwound, the locks are released,
1531 * and when we know whether the fault was overall successful.
1532 */
1533 css_get(&memcg->css);
1534 current->memcg_in_oom = memcg;
1535 current->memcg_oom_gfp_mask = mask;
1536 current->memcg_oom_order = order;
1537 }
1538
1539 /**
1540 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1541 * @handle: actually kill/wait or just clean up the OOM state
1542 *
1543 * This has to be called at the end of a page fault if the memcg OOM
1544 * handler was enabled.
1545 *
1546 * Memcg supports userspace OOM handling where failed allocations must
1547 * sleep on a waitqueue until the userspace task resolves the
1548 * situation. Sleeping directly in the charge context with all kinds
1549 * of locks held is not a good idea, instead we remember an OOM state
1550 * in the task and mem_cgroup_oom_synchronize() has to be called at
1551 * the end of the page fault to complete the OOM handling.
1552 *
1553 * Returns %true if an ongoing memcg OOM situation was detected and
1554 * completed, %false otherwise.
1555 */
1556 bool mem_cgroup_oom_synchronize(bool handle)
1557 {
1558 struct mem_cgroup *memcg = current->memcg_in_oom;
1559 struct oom_wait_info owait;
1560 bool locked;
1561
1562 /* OOM is global, do not handle */
1563 if (!memcg)
1564 return false;
1565
1566 if (!handle)
1567 goto cleanup;
1568
1569 owait.memcg = memcg;
1570 owait.wait.flags = 0;
1571 owait.wait.func = memcg_oom_wake_function;
1572 owait.wait.private = current;
1573 INIT_LIST_HEAD(&owait.wait.entry);
1574
1575 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1576 mem_cgroup_mark_under_oom(memcg);
1577
1578 locked = mem_cgroup_oom_trylock(memcg);
1579
1580 if (locked)
1581 mem_cgroup_oom_notify(memcg);
1582
1583 if (locked && !memcg->oom_kill_disable) {
1584 mem_cgroup_unmark_under_oom(memcg);
1585 finish_wait(&memcg_oom_waitq, &owait.wait);
1586 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1587 current->memcg_oom_order);
1588 } else {
1589 schedule();
1590 mem_cgroup_unmark_under_oom(memcg);
1591 finish_wait(&memcg_oom_waitq, &owait.wait);
1592 }
1593
1594 if (locked) {
1595 mem_cgroup_oom_unlock(memcg);
1596 /*
1597 * There is no guarantee that an OOM-lock contender
1598 * sees the wakeups triggered by the OOM kill
1599 * uncharges. Wake any sleepers explicitely.
1600 */
1601 memcg_oom_recover(memcg);
1602 }
1603 cleanup:
1604 current->memcg_in_oom = NULL;
1605 css_put(&memcg->css);
1606 return true;
1607 }
1608
1609 /**
1610 * lock_page_memcg - lock a page->mem_cgroup binding
1611 * @page: the page
1612 *
1613 * This function protects unlocked LRU pages from being moved to
1614 * another cgroup.
1615 *
1616 * It ensures lifetime of the returned memcg. Caller is responsible
1617 * for the lifetime of the page; __unlock_page_memcg() is available
1618 * when @page might get freed inside the locked section.
1619 */
1620 struct mem_cgroup *lock_page_memcg(struct page *page)
1621 {
1622 struct mem_cgroup *memcg;
1623 unsigned long flags;
1624
1625 /*
1626 * The RCU lock is held throughout the transaction. The fast
1627 * path can get away without acquiring the memcg->move_lock
1628 * because page moving starts with an RCU grace period.
1629 *
1630 * The RCU lock also protects the memcg from being freed when
1631 * the page state that is going to change is the only thing
1632 * preventing the page itself from being freed. E.g. writeback
1633 * doesn't hold a page reference and relies on PG_writeback to
1634 * keep off truncation, migration and so forth.
1635 */
1636 rcu_read_lock();
1637
1638 if (mem_cgroup_disabled())
1639 return NULL;
1640 again:
1641 memcg = page->mem_cgroup;
1642 if (unlikely(!memcg))
1643 return NULL;
1644
1645 if (atomic_read(&memcg->moving_account) <= 0)
1646 return memcg;
1647
1648 spin_lock_irqsave(&memcg->move_lock, flags);
1649 if (memcg != page->mem_cgroup) {
1650 spin_unlock_irqrestore(&memcg->move_lock, flags);
1651 goto again;
1652 }
1653
1654 /*
1655 * When charge migration first begins, we can have locked and
1656 * unlocked page stat updates happening concurrently. Track
1657 * the task who has the lock for unlock_page_memcg().
1658 */
1659 memcg->move_lock_task = current;
1660 memcg->move_lock_flags = flags;
1661
1662 return memcg;
1663 }
1664 EXPORT_SYMBOL(lock_page_memcg);
1665
1666 /**
1667 * __unlock_page_memcg - unlock and unpin a memcg
1668 * @memcg: the memcg
1669 *
1670 * Unlock and unpin a memcg returned by lock_page_memcg().
1671 */
1672 void __unlock_page_memcg(struct mem_cgroup *memcg)
1673 {
1674 if (memcg && memcg->move_lock_task == current) {
1675 unsigned long flags = memcg->move_lock_flags;
1676
1677 memcg->move_lock_task = NULL;
1678 memcg->move_lock_flags = 0;
1679
1680 spin_unlock_irqrestore(&memcg->move_lock, flags);
1681 }
1682
1683 rcu_read_unlock();
1684 }
1685
1686 /**
1687 * unlock_page_memcg - unlock a page->mem_cgroup binding
1688 * @page: the page
1689 */
1690 void unlock_page_memcg(struct page *page)
1691 {
1692 __unlock_page_memcg(page->mem_cgroup);
1693 }
1694 EXPORT_SYMBOL(unlock_page_memcg);
1695
1696 /*
1697 * size of first charge trial. "32" comes from vmscan.c's magic value.
1698 * TODO: maybe necessary to use big numbers in big irons.
1699 */
1700 #define CHARGE_BATCH 32U
1701 struct memcg_stock_pcp {
1702 struct mem_cgroup *cached; /* this never be root cgroup */
1703 unsigned int nr_pages;
1704 struct work_struct work;
1705 unsigned long flags;
1706 #define FLUSHING_CACHED_CHARGE 0
1707 };
1708 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1709 static DEFINE_MUTEX(percpu_charge_mutex);
1710
1711 /**
1712 * consume_stock: Try to consume stocked charge on this cpu.
1713 * @memcg: memcg to consume from.
1714 * @nr_pages: how many pages to charge.
1715 *
1716 * The charges will only happen if @memcg matches the current cpu's memcg
1717 * stock, and at least @nr_pages are available in that stock. Failure to
1718 * service an allocation will refill the stock.
1719 *
1720 * returns true if successful, false otherwise.
1721 */
1722 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1723 {
1724 struct memcg_stock_pcp *stock;
1725 unsigned long flags;
1726 bool ret = false;
1727
1728 if (nr_pages > CHARGE_BATCH)
1729 return ret;
1730
1731 local_irq_save(flags);
1732
1733 stock = this_cpu_ptr(&memcg_stock);
1734 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1735 stock->nr_pages -= nr_pages;
1736 ret = true;
1737 }
1738
1739 local_irq_restore(flags);
1740
1741 return ret;
1742 }
1743
1744 /*
1745 * Returns stocks cached in percpu and reset cached information.
1746 */
1747 static void drain_stock(struct memcg_stock_pcp *stock)
1748 {
1749 struct mem_cgroup *old = stock->cached;
1750
1751 if (stock->nr_pages) {
1752 page_counter_uncharge(&old->memory, stock->nr_pages);
1753 if (do_memsw_account())
1754 page_counter_uncharge(&old->memsw, stock->nr_pages);
1755 css_put_many(&old->css, stock->nr_pages);
1756 stock->nr_pages = 0;
1757 }
1758 stock->cached = NULL;
1759 }
1760
1761 static void drain_local_stock(struct work_struct *dummy)
1762 {
1763 struct memcg_stock_pcp *stock;
1764 unsigned long flags;
1765
1766 local_irq_save(flags);
1767
1768 stock = this_cpu_ptr(&memcg_stock);
1769 drain_stock(stock);
1770 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1771
1772 local_irq_restore(flags);
1773 }
1774
1775 /*
1776 * Cache charges(val) to local per_cpu area.
1777 * This will be consumed by consume_stock() function, later.
1778 */
1779 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1780 {
1781 struct memcg_stock_pcp *stock;
1782 unsigned long flags;
1783
1784 local_irq_save(flags);
1785
1786 stock = this_cpu_ptr(&memcg_stock);
1787 if (stock->cached != memcg) { /* reset if necessary */
1788 drain_stock(stock);
1789 stock->cached = memcg;
1790 }
1791 stock->nr_pages += nr_pages;
1792
1793 local_irq_restore(flags);
1794 }
1795
1796 /*
1797 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1798 * of the hierarchy under it.
1799 */
1800 static void drain_all_stock(struct mem_cgroup *root_memcg)
1801 {
1802 int cpu, curcpu;
1803
1804 /* If someone's already draining, avoid adding running more workers. */
1805 if (!mutex_trylock(&percpu_charge_mutex))
1806 return;
1807 /* Notify other cpus that system-wide "drain" is running */
1808 get_online_cpus();
1809 curcpu = get_cpu();
1810 for_each_online_cpu(cpu) {
1811 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1812 struct mem_cgroup *memcg;
1813
1814 memcg = stock->cached;
1815 if (!memcg || !stock->nr_pages)
1816 continue;
1817 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1818 continue;
1819 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1820 if (cpu == curcpu)
1821 drain_local_stock(&stock->work);
1822 else
1823 schedule_work_on(cpu, &stock->work);
1824 }
1825 }
1826 put_cpu();
1827 put_online_cpus();
1828 mutex_unlock(&percpu_charge_mutex);
1829 }
1830
1831 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1832 {
1833 struct memcg_stock_pcp *stock;
1834
1835 stock = &per_cpu(memcg_stock, cpu);
1836 drain_stock(stock);
1837 return 0;
1838 }
1839
1840 static void reclaim_high(struct mem_cgroup *memcg,
1841 unsigned int nr_pages,
1842 gfp_t gfp_mask)
1843 {
1844 do {
1845 if (page_counter_read(&memcg->memory) <= memcg->high)
1846 continue;
1847 mem_cgroup_event(memcg, MEMCG_HIGH);
1848 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1849 } while ((memcg = parent_mem_cgroup(memcg)));
1850 }
1851
1852 static void high_work_func(struct work_struct *work)
1853 {
1854 struct mem_cgroup *memcg;
1855
1856 memcg = container_of(work, struct mem_cgroup, high_work);
1857 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1858 }
1859
1860 /*
1861 * Scheduled by try_charge() to be executed from the userland return path
1862 * and reclaims memory over the high limit.
1863 */
1864 void mem_cgroup_handle_over_high(void)
1865 {
1866 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1867 struct mem_cgroup *memcg;
1868
1869 if (likely(!nr_pages))
1870 return;
1871
1872 memcg = get_mem_cgroup_from_mm(current->mm);
1873 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1874 css_put(&memcg->css);
1875 current->memcg_nr_pages_over_high = 0;
1876 }
1877
1878 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1879 unsigned int nr_pages)
1880 {
1881 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1882 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1883 struct mem_cgroup *mem_over_limit;
1884 struct page_counter *counter;
1885 unsigned long nr_reclaimed;
1886 bool may_swap = true;
1887 bool drained = false;
1888
1889 if (mem_cgroup_is_root(memcg))
1890 return 0;
1891 retry:
1892 if (consume_stock(memcg, nr_pages))
1893 return 0;
1894
1895 if (!do_memsw_account() ||
1896 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1897 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1898 goto done_restock;
1899 if (do_memsw_account())
1900 page_counter_uncharge(&memcg->memsw, batch);
1901 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1902 } else {
1903 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1904 may_swap = false;
1905 }
1906
1907 if (batch > nr_pages) {
1908 batch = nr_pages;
1909 goto retry;
1910 }
1911
1912 /*
1913 * Unlike in global OOM situations, memcg is not in a physical
1914 * memory shortage. Allow dying and OOM-killed tasks to
1915 * bypass the last charges so that they can exit quickly and
1916 * free their memory.
1917 */
1918 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1919 fatal_signal_pending(current) ||
1920 current->flags & PF_EXITING))
1921 goto force;
1922
1923 /*
1924 * Prevent unbounded recursion when reclaim operations need to
1925 * allocate memory. This might exceed the limits temporarily,
1926 * but we prefer facilitating memory reclaim and getting back
1927 * under the limit over triggering OOM kills in these cases.
1928 */
1929 if (unlikely(current->flags & PF_MEMALLOC))
1930 goto force;
1931
1932 if (unlikely(task_in_memcg_oom(current)))
1933 goto nomem;
1934
1935 if (!gfpflags_allow_blocking(gfp_mask))
1936 goto nomem;
1937
1938 mem_cgroup_event(mem_over_limit, MEMCG_MAX);
1939
1940 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1941 gfp_mask, may_swap);
1942
1943 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1944 goto retry;
1945
1946 if (!drained) {
1947 drain_all_stock(mem_over_limit);
1948 drained = true;
1949 goto retry;
1950 }
1951
1952 if (gfp_mask & __GFP_NORETRY)
1953 goto nomem;
1954 /*
1955 * Even though the limit is exceeded at this point, reclaim
1956 * may have been able to free some pages. Retry the charge
1957 * before killing the task.
1958 *
1959 * Only for regular pages, though: huge pages are rather
1960 * unlikely to succeed so close to the limit, and we fall back
1961 * to regular pages anyway in case of failure.
1962 */
1963 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1964 goto retry;
1965 /*
1966 * At task move, charge accounts can be doubly counted. So, it's
1967 * better to wait until the end of task_move if something is going on.
1968 */
1969 if (mem_cgroup_wait_acct_move(mem_over_limit))
1970 goto retry;
1971
1972 if (nr_retries--)
1973 goto retry;
1974
1975 if (gfp_mask & __GFP_NOFAIL)
1976 goto force;
1977
1978 if (fatal_signal_pending(current))
1979 goto force;
1980
1981 mem_cgroup_event(mem_over_limit, MEMCG_OOM);
1982
1983 mem_cgroup_oom(mem_over_limit, gfp_mask,
1984 get_order(nr_pages * PAGE_SIZE));
1985 nomem:
1986 if (!(gfp_mask & __GFP_NOFAIL))
1987 return -ENOMEM;
1988 force:
1989 /*
1990 * The allocation either can't fail or will lead to more memory
1991 * being freed very soon. Allow memory usage go over the limit
1992 * temporarily by force charging it.
1993 */
1994 page_counter_charge(&memcg->memory, nr_pages);
1995 if (do_memsw_account())
1996 page_counter_charge(&memcg->memsw, nr_pages);
1997 css_get_many(&memcg->css, nr_pages);
1998
1999 return 0;
2000
2001 done_restock:
2002 css_get_many(&memcg->css, batch);
2003 if (batch > nr_pages)
2004 refill_stock(memcg, batch - nr_pages);
2005
2006 /*
2007 * If the hierarchy is above the normal consumption range, schedule
2008 * reclaim on returning to userland. We can perform reclaim here
2009 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2010 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2011 * not recorded as it most likely matches current's and won't
2012 * change in the meantime. As high limit is checked again before
2013 * reclaim, the cost of mismatch is negligible.
2014 */
2015 do {
2016 if (page_counter_read(&memcg->memory) > memcg->high) {
2017 /* Don't bother a random interrupted task */
2018 if (in_interrupt()) {
2019 schedule_work(&memcg->high_work);
2020 break;
2021 }
2022 current->memcg_nr_pages_over_high += batch;
2023 set_notify_resume(current);
2024 break;
2025 }
2026 } while ((memcg = parent_mem_cgroup(memcg)));
2027
2028 return 0;
2029 }
2030
2031 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2032 {
2033 if (mem_cgroup_is_root(memcg))
2034 return;
2035
2036 page_counter_uncharge(&memcg->memory, nr_pages);
2037 if (do_memsw_account())
2038 page_counter_uncharge(&memcg->memsw, nr_pages);
2039
2040 css_put_many(&memcg->css, nr_pages);
2041 }
2042
2043 static void lock_page_lru(struct page *page, int *isolated)
2044 {
2045 struct zone *zone = page_zone(page);
2046
2047 spin_lock_irq(zone_lru_lock(zone));
2048 if (PageLRU(page)) {
2049 struct lruvec *lruvec;
2050
2051 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2052 ClearPageLRU(page);
2053 del_page_from_lru_list(page, lruvec, page_lru(page));
2054 *isolated = 1;
2055 } else
2056 *isolated = 0;
2057 }
2058
2059 static void unlock_page_lru(struct page *page, int isolated)
2060 {
2061 struct zone *zone = page_zone(page);
2062
2063 if (isolated) {
2064 struct lruvec *lruvec;
2065
2066 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2067 VM_BUG_ON_PAGE(PageLRU(page), page);
2068 SetPageLRU(page);
2069 add_page_to_lru_list(page, lruvec, page_lru(page));
2070 }
2071 spin_unlock_irq(zone_lru_lock(zone));
2072 }
2073
2074 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2075 bool lrucare)
2076 {
2077 int isolated;
2078
2079 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2080
2081 /*
2082 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2083 * may already be on some other mem_cgroup's LRU. Take care of it.
2084 */
2085 if (lrucare)
2086 lock_page_lru(page, &isolated);
2087
2088 /*
2089 * Nobody should be changing or seriously looking at
2090 * page->mem_cgroup at this point:
2091 *
2092 * - the page is uncharged
2093 *
2094 * - the page is off-LRU
2095 *
2096 * - an anonymous fault has exclusive page access, except for
2097 * a locked page table
2098 *
2099 * - a page cache insertion, a swapin fault, or a migration
2100 * have the page locked
2101 */
2102 page->mem_cgroup = memcg;
2103
2104 if (lrucare)
2105 unlock_page_lru(page, isolated);
2106 }
2107
2108 #ifndef CONFIG_SLOB
2109 static int memcg_alloc_cache_id(void)
2110 {
2111 int id, size;
2112 int err;
2113
2114 id = ida_simple_get(&memcg_cache_ida,
2115 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2116 if (id < 0)
2117 return id;
2118
2119 if (id < memcg_nr_cache_ids)
2120 return id;
2121
2122 /*
2123 * There's no space for the new id in memcg_caches arrays,
2124 * so we have to grow them.
2125 */
2126 down_write(&memcg_cache_ids_sem);
2127
2128 size = 2 * (id + 1);
2129 if (size < MEMCG_CACHES_MIN_SIZE)
2130 size = MEMCG_CACHES_MIN_SIZE;
2131 else if (size > MEMCG_CACHES_MAX_SIZE)
2132 size = MEMCG_CACHES_MAX_SIZE;
2133
2134 err = memcg_update_all_caches(size);
2135 if (!err)
2136 err = memcg_update_all_list_lrus(size);
2137 if (!err)
2138 memcg_nr_cache_ids = size;
2139
2140 up_write(&memcg_cache_ids_sem);
2141
2142 if (err) {
2143 ida_simple_remove(&memcg_cache_ida, id);
2144 return err;
2145 }
2146 return id;
2147 }
2148
2149 static void memcg_free_cache_id(int id)
2150 {
2151 ida_simple_remove(&memcg_cache_ida, id);
2152 }
2153
2154 struct memcg_kmem_cache_create_work {
2155 struct mem_cgroup *memcg;
2156 struct kmem_cache *cachep;
2157 struct work_struct work;
2158 };
2159
2160 static void memcg_kmem_cache_create_func(struct work_struct *w)
2161 {
2162 struct memcg_kmem_cache_create_work *cw =
2163 container_of(w, struct memcg_kmem_cache_create_work, work);
2164 struct mem_cgroup *memcg = cw->memcg;
2165 struct kmem_cache *cachep = cw->cachep;
2166
2167 memcg_create_kmem_cache(memcg, cachep);
2168
2169 css_put(&memcg->css);
2170 kfree(cw);
2171 }
2172
2173 /*
2174 * Enqueue the creation of a per-memcg kmem_cache.
2175 */
2176 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2177 struct kmem_cache *cachep)
2178 {
2179 struct memcg_kmem_cache_create_work *cw;
2180
2181 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2182 if (!cw)
2183 return;
2184
2185 css_get(&memcg->css);
2186
2187 cw->memcg = memcg;
2188 cw->cachep = cachep;
2189 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2190
2191 queue_work(memcg_kmem_cache_wq, &cw->work);
2192 }
2193
2194 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2195 struct kmem_cache *cachep)
2196 {
2197 /*
2198 * We need to stop accounting when we kmalloc, because if the
2199 * corresponding kmalloc cache is not yet created, the first allocation
2200 * in __memcg_schedule_kmem_cache_create will recurse.
2201 *
2202 * However, it is better to enclose the whole function. Depending on
2203 * the debugging options enabled, INIT_WORK(), for instance, can
2204 * trigger an allocation. This too, will make us recurse. Because at
2205 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2206 * the safest choice is to do it like this, wrapping the whole function.
2207 */
2208 current->memcg_kmem_skip_account = 1;
2209 __memcg_schedule_kmem_cache_create(memcg, cachep);
2210 current->memcg_kmem_skip_account = 0;
2211 }
2212
2213 static inline bool memcg_kmem_bypass(void)
2214 {
2215 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2216 return true;
2217 return false;
2218 }
2219
2220 /**
2221 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2222 * @cachep: the original global kmem cache
2223 *
2224 * Return the kmem_cache we're supposed to use for a slab allocation.
2225 * We try to use the current memcg's version of the cache.
2226 *
2227 * If the cache does not exist yet, if we are the first user of it, we
2228 * create it asynchronously in a workqueue and let the current allocation
2229 * go through with the original cache.
2230 *
2231 * This function takes a reference to the cache it returns to assure it
2232 * won't get destroyed while we are working with it. Once the caller is
2233 * done with it, memcg_kmem_put_cache() must be called to release the
2234 * reference.
2235 */
2236 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2237 {
2238 struct mem_cgroup *memcg;
2239 struct kmem_cache *memcg_cachep;
2240 int kmemcg_id;
2241
2242 VM_BUG_ON(!is_root_cache(cachep));
2243
2244 if (memcg_kmem_bypass())
2245 return cachep;
2246
2247 if (current->memcg_kmem_skip_account)
2248 return cachep;
2249
2250 memcg = get_mem_cgroup_from_mm(current->mm);
2251 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2252 if (kmemcg_id < 0)
2253 goto out;
2254
2255 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2256 if (likely(memcg_cachep))
2257 return memcg_cachep;
2258
2259 /*
2260 * If we are in a safe context (can wait, and not in interrupt
2261 * context), we could be be predictable and return right away.
2262 * This would guarantee that the allocation being performed
2263 * already belongs in the new cache.
2264 *
2265 * However, there are some clashes that can arrive from locking.
2266 * For instance, because we acquire the slab_mutex while doing
2267 * memcg_create_kmem_cache, this means no further allocation
2268 * could happen with the slab_mutex held. So it's better to
2269 * defer everything.
2270 */
2271 memcg_schedule_kmem_cache_create(memcg, cachep);
2272 out:
2273 css_put(&memcg->css);
2274 return cachep;
2275 }
2276
2277 /**
2278 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2279 * @cachep: the cache returned by memcg_kmem_get_cache
2280 */
2281 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2282 {
2283 if (!is_root_cache(cachep))
2284 css_put(&cachep->memcg_params.memcg->css);
2285 }
2286
2287 /**
2288 * memcg_kmem_charge: charge a kmem page
2289 * @page: page to charge
2290 * @gfp: reclaim mode
2291 * @order: allocation order
2292 * @memcg: memory cgroup to charge
2293 *
2294 * Returns 0 on success, an error code on failure.
2295 */
2296 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2297 struct mem_cgroup *memcg)
2298 {
2299 unsigned int nr_pages = 1 << order;
2300 struct page_counter *counter;
2301 int ret;
2302
2303 ret = try_charge(memcg, gfp, nr_pages);
2304 if (ret)
2305 return ret;
2306
2307 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2308 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2309 cancel_charge(memcg, nr_pages);
2310 return -ENOMEM;
2311 }
2312
2313 page->mem_cgroup = memcg;
2314
2315 return 0;
2316 }
2317
2318 /**
2319 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2320 * @page: page to charge
2321 * @gfp: reclaim mode
2322 * @order: allocation order
2323 *
2324 * Returns 0 on success, an error code on failure.
2325 */
2326 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2327 {
2328 struct mem_cgroup *memcg;
2329 int ret = 0;
2330
2331 if (memcg_kmem_bypass())
2332 return 0;
2333
2334 memcg = get_mem_cgroup_from_mm(current->mm);
2335 if (!mem_cgroup_is_root(memcg)) {
2336 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2337 if (!ret)
2338 __SetPageKmemcg(page);
2339 }
2340 css_put(&memcg->css);
2341 return ret;
2342 }
2343 /**
2344 * memcg_kmem_uncharge: uncharge a kmem page
2345 * @page: page to uncharge
2346 * @order: allocation order
2347 */
2348 void memcg_kmem_uncharge(struct page *page, int order)
2349 {
2350 struct mem_cgroup *memcg = page->mem_cgroup;
2351 unsigned int nr_pages = 1 << order;
2352
2353 if (!memcg)
2354 return;
2355
2356 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2357
2358 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2359 page_counter_uncharge(&memcg->kmem, nr_pages);
2360
2361 page_counter_uncharge(&memcg->memory, nr_pages);
2362 if (do_memsw_account())
2363 page_counter_uncharge(&memcg->memsw, nr_pages);
2364
2365 page->mem_cgroup = NULL;
2366
2367 /* slab pages do not have PageKmemcg flag set */
2368 if (PageKmemcg(page))
2369 __ClearPageKmemcg(page);
2370
2371 css_put_many(&memcg->css, nr_pages);
2372 }
2373 #endif /* !CONFIG_SLOB */
2374
2375 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2376
2377 /*
2378 * Because tail pages are not marked as "used", set it. We're under
2379 * zone_lru_lock and migration entries setup in all page mappings.
2380 */
2381 void mem_cgroup_split_huge_fixup(struct page *head)
2382 {
2383 int i;
2384
2385 if (mem_cgroup_disabled())
2386 return;
2387
2388 for (i = 1; i < HPAGE_PMD_NR; i++)
2389 head[i].mem_cgroup = head->mem_cgroup;
2390
2391 __this_cpu_sub(head->mem_cgroup->stat->count[MEMCG_RSS_HUGE],
2392 HPAGE_PMD_NR);
2393 }
2394 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2395
2396 #ifdef CONFIG_MEMCG_SWAP
2397 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2398 int nr_entries)
2399 {
2400 this_cpu_add(memcg->stat->count[MEMCG_SWAP], nr_entries);
2401 }
2402
2403 /**
2404 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2405 * @entry: swap entry to be moved
2406 * @from: mem_cgroup which the entry is moved from
2407 * @to: mem_cgroup which the entry is moved to
2408 *
2409 * It succeeds only when the swap_cgroup's record for this entry is the same
2410 * as the mem_cgroup's id of @from.
2411 *
2412 * Returns 0 on success, -EINVAL on failure.
2413 *
2414 * The caller must have charged to @to, IOW, called page_counter_charge() about
2415 * both res and memsw, and called css_get().
2416 */
2417 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2418 struct mem_cgroup *from, struct mem_cgroup *to)
2419 {
2420 unsigned short old_id, new_id;
2421
2422 old_id = mem_cgroup_id(from);
2423 new_id = mem_cgroup_id(to);
2424
2425 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2426 mem_cgroup_swap_statistics(from, -1);
2427 mem_cgroup_swap_statistics(to, 1);
2428 return 0;
2429 }
2430 return -EINVAL;
2431 }
2432 #else
2433 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2434 struct mem_cgroup *from, struct mem_cgroup *to)
2435 {
2436 return -EINVAL;
2437 }
2438 #endif
2439
2440 static DEFINE_MUTEX(memcg_limit_mutex);
2441
2442 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2443 unsigned long limit)
2444 {
2445 unsigned long curusage;
2446 unsigned long oldusage;
2447 bool enlarge = false;
2448 int retry_count;
2449 int ret;
2450
2451 /*
2452 * For keeping hierarchical_reclaim simple, how long we should retry
2453 * is depends on callers. We set our retry-count to be function
2454 * of # of children which we should visit in this loop.
2455 */
2456 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2457 mem_cgroup_count_children(memcg);
2458
2459 oldusage = page_counter_read(&memcg->memory);
2460
2461 do {
2462 if (signal_pending(current)) {
2463 ret = -EINTR;
2464 break;
2465 }
2466
2467 mutex_lock(&memcg_limit_mutex);
2468 if (limit > memcg->memsw.limit) {
2469 mutex_unlock(&memcg_limit_mutex);
2470 ret = -EINVAL;
2471 break;
2472 }
2473 if (limit > memcg->memory.limit)
2474 enlarge = true;
2475 ret = page_counter_limit(&memcg->memory, limit);
2476 mutex_unlock(&memcg_limit_mutex);
2477
2478 if (!ret)
2479 break;
2480
2481 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2482
2483 curusage = page_counter_read(&memcg->memory);
2484 /* Usage is reduced ? */
2485 if (curusage >= oldusage)
2486 retry_count--;
2487 else
2488 oldusage = curusage;
2489 } while (retry_count);
2490
2491 if (!ret && enlarge)
2492 memcg_oom_recover(memcg);
2493
2494 return ret;
2495 }
2496
2497 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2498 unsigned long limit)
2499 {
2500 unsigned long curusage;
2501 unsigned long oldusage;
2502 bool enlarge = false;
2503 int retry_count;
2504 int ret;
2505
2506 /* see mem_cgroup_resize_res_limit */
2507 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2508 mem_cgroup_count_children(memcg);
2509
2510 oldusage = page_counter_read(&memcg->memsw);
2511
2512 do {
2513 if (signal_pending(current)) {
2514 ret = -EINTR;
2515 break;
2516 }
2517
2518 mutex_lock(&memcg_limit_mutex);
2519 if (limit < memcg->memory.limit) {
2520 mutex_unlock(&memcg_limit_mutex);
2521 ret = -EINVAL;
2522 break;
2523 }
2524 if (limit > memcg->memsw.limit)
2525 enlarge = true;
2526 ret = page_counter_limit(&memcg->memsw, limit);
2527 mutex_unlock(&memcg_limit_mutex);
2528
2529 if (!ret)
2530 break;
2531
2532 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2533
2534 curusage = page_counter_read(&memcg->memsw);
2535 /* Usage is reduced ? */
2536 if (curusage >= oldusage)
2537 retry_count--;
2538 else
2539 oldusage = curusage;
2540 } while (retry_count);
2541
2542 if (!ret && enlarge)
2543 memcg_oom_recover(memcg);
2544
2545 return ret;
2546 }
2547
2548 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2549 gfp_t gfp_mask,
2550 unsigned long *total_scanned)
2551 {
2552 unsigned long nr_reclaimed = 0;
2553 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2554 unsigned long reclaimed;
2555 int loop = 0;
2556 struct mem_cgroup_tree_per_node *mctz;
2557 unsigned long excess;
2558 unsigned long nr_scanned;
2559
2560 if (order > 0)
2561 return 0;
2562
2563 mctz = soft_limit_tree_node(pgdat->node_id);
2564
2565 /*
2566 * Do not even bother to check the largest node if the root
2567 * is empty. Do it lockless to prevent lock bouncing. Races
2568 * are acceptable as soft limit is best effort anyway.
2569 */
2570 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2571 return 0;
2572
2573 /*
2574 * This loop can run a while, specially if mem_cgroup's continuously
2575 * keep exceeding their soft limit and putting the system under
2576 * pressure
2577 */
2578 do {
2579 if (next_mz)
2580 mz = next_mz;
2581 else
2582 mz = mem_cgroup_largest_soft_limit_node(mctz);
2583 if (!mz)
2584 break;
2585
2586 nr_scanned = 0;
2587 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2588 gfp_mask, &nr_scanned);
2589 nr_reclaimed += reclaimed;
2590 *total_scanned += nr_scanned;
2591 spin_lock_irq(&mctz->lock);
2592 __mem_cgroup_remove_exceeded(mz, mctz);
2593
2594 /*
2595 * If we failed to reclaim anything from this memory cgroup
2596 * it is time to move on to the next cgroup
2597 */
2598 next_mz = NULL;
2599 if (!reclaimed)
2600 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2601
2602 excess = soft_limit_excess(mz->memcg);
2603 /*
2604 * One school of thought says that we should not add
2605 * back the node to the tree if reclaim returns 0.
2606 * But our reclaim could return 0, simply because due
2607 * to priority we are exposing a smaller subset of
2608 * memory to reclaim from. Consider this as a longer
2609 * term TODO.
2610 */
2611 /* If excess == 0, no tree ops */
2612 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2613 spin_unlock_irq(&mctz->lock);
2614 css_put(&mz->memcg->css);
2615 loop++;
2616 /*
2617 * Could not reclaim anything and there are no more
2618 * mem cgroups to try or we seem to be looping without
2619 * reclaiming anything.
2620 */
2621 if (!nr_reclaimed &&
2622 (next_mz == NULL ||
2623 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2624 break;
2625 } while (!nr_reclaimed);
2626 if (next_mz)
2627 css_put(&next_mz->memcg->css);
2628 return nr_reclaimed;
2629 }
2630
2631 /*
2632 * Test whether @memcg has children, dead or alive. Note that this
2633 * function doesn't care whether @memcg has use_hierarchy enabled and
2634 * returns %true if there are child csses according to the cgroup
2635 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2636 */
2637 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2638 {
2639 bool ret;
2640
2641 rcu_read_lock();
2642 ret = css_next_child(NULL, &memcg->css);
2643 rcu_read_unlock();
2644 return ret;
2645 }
2646
2647 /*
2648 * Reclaims as many pages from the given memcg as possible.
2649 *
2650 * Caller is responsible for holding css reference for memcg.
2651 */
2652 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2653 {
2654 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2655
2656 /* we call try-to-free pages for make this cgroup empty */
2657 lru_add_drain_all();
2658 /* try to free all pages in this cgroup */
2659 while (nr_retries && page_counter_read(&memcg->memory)) {
2660 int progress;
2661
2662 if (signal_pending(current))
2663 return -EINTR;
2664
2665 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2666 GFP_KERNEL, true);
2667 if (!progress) {
2668 nr_retries--;
2669 /* maybe some writeback is necessary */
2670 congestion_wait(BLK_RW_ASYNC, HZ/10);
2671 }
2672
2673 }
2674
2675 return 0;
2676 }
2677
2678 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2679 char *buf, size_t nbytes,
2680 loff_t off)
2681 {
2682 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2683
2684 if (mem_cgroup_is_root(memcg))
2685 return -EINVAL;
2686 return mem_cgroup_force_empty(memcg) ?: nbytes;
2687 }
2688
2689 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2690 struct cftype *cft)
2691 {
2692 return mem_cgroup_from_css(css)->use_hierarchy;
2693 }
2694
2695 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2696 struct cftype *cft, u64 val)
2697 {
2698 int retval = 0;
2699 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2700 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2701
2702 if (memcg->use_hierarchy == val)
2703 return 0;
2704
2705 /*
2706 * If parent's use_hierarchy is set, we can't make any modifications
2707 * in the child subtrees. If it is unset, then the change can
2708 * occur, provided the current cgroup has no children.
2709 *
2710 * For the root cgroup, parent_mem is NULL, we allow value to be
2711 * set if there are no children.
2712 */
2713 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2714 (val == 1 || val == 0)) {
2715 if (!memcg_has_children(memcg))
2716 memcg->use_hierarchy = val;
2717 else
2718 retval = -EBUSY;
2719 } else
2720 retval = -EINVAL;
2721
2722 return retval;
2723 }
2724
2725 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2726 {
2727 struct mem_cgroup *iter;
2728 int i;
2729
2730 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2731
2732 for_each_mem_cgroup_tree(iter, memcg) {
2733 for (i = 0; i < MEMCG_NR_STAT; i++)
2734 stat[i] += memcg_page_state(iter, i);
2735 }
2736 }
2737
2738 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2739 {
2740 struct mem_cgroup *iter;
2741 int i;
2742
2743 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2744
2745 for_each_mem_cgroup_tree(iter, memcg) {
2746 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2747 events[i] += memcg_sum_events(iter, i);
2748 }
2749 }
2750
2751 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2752 {
2753 unsigned long val = 0;
2754
2755 if (mem_cgroup_is_root(memcg)) {
2756 struct mem_cgroup *iter;
2757
2758 for_each_mem_cgroup_tree(iter, memcg) {
2759 val += memcg_page_state(iter, MEMCG_CACHE);
2760 val += memcg_page_state(iter, MEMCG_RSS);
2761 if (swap)
2762 val += memcg_page_state(iter, MEMCG_SWAP);
2763 }
2764 } else {
2765 if (!swap)
2766 val = page_counter_read(&memcg->memory);
2767 else
2768 val = page_counter_read(&memcg->memsw);
2769 }
2770 return val;
2771 }
2772
2773 enum {
2774 RES_USAGE,
2775 RES_LIMIT,
2776 RES_MAX_USAGE,
2777 RES_FAILCNT,
2778 RES_SOFT_LIMIT,
2779 };
2780
2781 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2782 struct cftype *cft)
2783 {
2784 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2785 struct page_counter *counter;
2786
2787 switch (MEMFILE_TYPE(cft->private)) {
2788 case _MEM:
2789 counter = &memcg->memory;
2790 break;
2791 case _MEMSWAP:
2792 counter = &memcg->memsw;
2793 break;
2794 case _KMEM:
2795 counter = &memcg->kmem;
2796 break;
2797 case _TCP:
2798 counter = &memcg->tcpmem;
2799 break;
2800 default:
2801 BUG();
2802 }
2803
2804 switch (MEMFILE_ATTR(cft->private)) {
2805 case RES_USAGE:
2806 if (counter == &memcg->memory)
2807 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2808 if (counter == &memcg->memsw)
2809 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2810 return (u64)page_counter_read(counter) * PAGE_SIZE;
2811 case RES_LIMIT:
2812 return (u64)counter->limit * PAGE_SIZE;
2813 case RES_MAX_USAGE:
2814 return (u64)counter->watermark * PAGE_SIZE;
2815 case RES_FAILCNT:
2816 return counter->failcnt;
2817 case RES_SOFT_LIMIT:
2818 return (u64)memcg->soft_limit * PAGE_SIZE;
2819 default:
2820 BUG();
2821 }
2822 }
2823
2824 #ifndef CONFIG_SLOB
2825 static int memcg_online_kmem(struct mem_cgroup *memcg)
2826 {
2827 int memcg_id;
2828
2829 if (cgroup_memory_nokmem)
2830 return 0;
2831
2832 BUG_ON(memcg->kmemcg_id >= 0);
2833 BUG_ON(memcg->kmem_state);
2834
2835 memcg_id = memcg_alloc_cache_id();
2836 if (memcg_id < 0)
2837 return memcg_id;
2838
2839 static_branch_inc(&memcg_kmem_enabled_key);
2840 /*
2841 * A memory cgroup is considered kmem-online as soon as it gets
2842 * kmemcg_id. Setting the id after enabling static branching will
2843 * guarantee no one starts accounting before all call sites are
2844 * patched.
2845 */
2846 memcg->kmemcg_id = memcg_id;
2847 memcg->kmem_state = KMEM_ONLINE;
2848 INIT_LIST_HEAD(&memcg->kmem_caches);
2849
2850 return 0;
2851 }
2852
2853 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2854 {
2855 struct cgroup_subsys_state *css;
2856 struct mem_cgroup *parent, *child;
2857 int kmemcg_id;
2858
2859 if (memcg->kmem_state != KMEM_ONLINE)
2860 return;
2861 /*
2862 * Clear the online state before clearing memcg_caches array
2863 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2864 * guarantees that no cache will be created for this cgroup
2865 * after we are done (see memcg_create_kmem_cache()).
2866 */
2867 memcg->kmem_state = KMEM_ALLOCATED;
2868
2869 memcg_deactivate_kmem_caches(memcg);
2870
2871 kmemcg_id = memcg->kmemcg_id;
2872 BUG_ON(kmemcg_id < 0);
2873
2874 parent = parent_mem_cgroup(memcg);
2875 if (!parent)
2876 parent = root_mem_cgroup;
2877
2878 /*
2879 * Change kmemcg_id of this cgroup and all its descendants to the
2880 * parent's id, and then move all entries from this cgroup's list_lrus
2881 * to ones of the parent. After we have finished, all list_lrus
2882 * corresponding to this cgroup are guaranteed to remain empty. The
2883 * ordering is imposed by list_lru_node->lock taken by
2884 * memcg_drain_all_list_lrus().
2885 */
2886 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2887 css_for_each_descendant_pre(css, &memcg->css) {
2888 child = mem_cgroup_from_css(css);
2889 BUG_ON(child->kmemcg_id != kmemcg_id);
2890 child->kmemcg_id = parent->kmemcg_id;
2891 if (!memcg->use_hierarchy)
2892 break;
2893 }
2894 rcu_read_unlock();
2895
2896 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2897
2898 memcg_free_cache_id(kmemcg_id);
2899 }
2900
2901 static void memcg_free_kmem(struct mem_cgroup *memcg)
2902 {
2903 /* css_alloc() failed, offlining didn't happen */
2904 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2905 memcg_offline_kmem(memcg);
2906
2907 if (memcg->kmem_state == KMEM_ALLOCATED) {
2908 memcg_destroy_kmem_caches(memcg);
2909 static_branch_dec(&memcg_kmem_enabled_key);
2910 WARN_ON(page_counter_read(&memcg->kmem));
2911 }
2912 }
2913 #else
2914 static int memcg_online_kmem(struct mem_cgroup *memcg)
2915 {
2916 return 0;
2917 }
2918 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2919 {
2920 }
2921 static void memcg_free_kmem(struct mem_cgroup *memcg)
2922 {
2923 }
2924 #endif /* !CONFIG_SLOB */
2925
2926 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2927 unsigned long limit)
2928 {
2929 int ret;
2930
2931 mutex_lock(&memcg_limit_mutex);
2932 ret = page_counter_limit(&memcg->kmem, limit);
2933 mutex_unlock(&memcg_limit_mutex);
2934 return ret;
2935 }
2936
2937 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2938 {
2939 int ret;
2940
2941 mutex_lock(&memcg_limit_mutex);
2942
2943 ret = page_counter_limit(&memcg->tcpmem, limit);
2944 if (ret)
2945 goto out;
2946
2947 if (!memcg->tcpmem_active) {
2948 /*
2949 * The active flag needs to be written after the static_key
2950 * update. This is what guarantees that the socket activation
2951 * function is the last one to run. See mem_cgroup_sk_alloc()
2952 * for details, and note that we don't mark any socket as
2953 * belonging to this memcg until that flag is up.
2954 *
2955 * We need to do this, because static_keys will span multiple
2956 * sites, but we can't control their order. If we mark a socket
2957 * as accounted, but the accounting functions are not patched in
2958 * yet, we'll lose accounting.
2959 *
2960 * We never race with the readers in mem_cgroup_sk_alloc(),
2961 * because when this value change, the code to process it is not
2962 * patched in yet.
2963 */
2964 static_branch_inc(&memcg_sockets_enabled_key);
2965 memcg->tcpmem_active = true;
2966 }
2967 out:
2968 mutex_unlock(&memcg_limit_mutex);
2969 return ret;
2970 }
2971
2972 /*
2973 * The user of this function is...
2974 * RES_LIMIT.
2975 */
2976 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2977 char *buf, size_t nbytes, loff_t off)
2978 {
2979 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2980 unsigned long nr_pages;
2981 int ret;
2982
2983 buf = strstrip(buf);
2984 ret = page_counter_memparse(buf, "-1", &nr_pages);
2985 if (ret)
2986 return ret;
2987
2988 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2989 case RES_LIMIT:
2990 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2991 ret = -EINVAL;
2992 break;
2993 }
2994 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2995 case _MEM:
2996 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2997 break;
2998 case _MEMSWAP:
2999 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3000 break;
3001 case _KMEM:
3002 ret = memcg_update_kmem_limit(memcg, nr_pages);
3003 break;
3004 case _TCP:
3005 ret = memcg_update_tcp_limit(memcg, nr_pages);
3006 break;
3007 }
3008 break;
3009 case RES_SOFT_LIMIT:
3010 memcg->soft_limit = nr_pages;
3011 ret = 0;
3012 break;
3013 }
3014 return ret ?: nbytes;
3015 }
3016
3017 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3018 size_t nbytes, loff_t off)
3019 {
3020 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3021 struct page_counter *counter;
3022
3023 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3024 case _MEM:
3025 counter = &memcg->memory;
3026 break;
3027 case _MEMSWAP:
3028 counter = &memcg->memsw;
3029 break;
3030 case _KMEM:
3031 counter = &memcg->kmem;
3032 break;
3033 case _TCP:
3034 counter = &memcg->tcpmem;
3035 break;
3036 default:
3037 BUG();
3038 }
3039
3040 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3041 case RES_MAX_USAGE:
3042 page_counter_reset_watermark(counter);
3043 break;
3044 case RES_FAILCNT:
3045 counter->failcnt = 0;
3046 break;
3047 default:
3048 BUG();
3049 }
3050
3051 return nbytes;
3052 }
3053
3054 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3055 struct cftype *cft)
3056 {
3057 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3058 }
3059
3060 #ifdef CONFIG_MMU
3061 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3062 struct cftype *cft, u64 val)
3063 {
3064 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3065
3066 if (val & ~MOVE_MASK)
3067 return -EINVAL;
3068
3069 /*
3070 * No kind of locking is needed in here, because ->can_attach() will
3071 * check this value once in the beginning of the process, and then carry
3072 * on with stale data. This means that changes to this value will only
3073 * affect task migrations starting after the change.
3074 */
3075 memcg->move_charge_at_immigrate = val;
3076 return 0;
3077 }
3078 #else
3079 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3080 struct cftype *cft, u64 val)
3081 {
3082 return -ENOSYS;
3083 }
3084 #endif
3085
3086 #ifdef CONFIG_NUMA
3087 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3088 {
3089 struct numa_stat {
3090 const char *name;
3091 unsigned int lru_mask;
3092 };
3093
3094 static const struct numa_stat stats[] = {
3095 { "total", LRU_ALL },
3096 { "file", LRU_ALL_FILE },
3097 { "anon", LRU_ALL_ANON },
3098 { "unevictable", BIT(LRU_UNEVICTABLE) },
3099 };
3100 const struct numa_stat *stat;
3101 int nid;
3102 unsigned long nr;
3103 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3104
3105 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3106 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3107 seq_printf(m, "%s=%lu", stat->name, nr);
3108 for_each_node_state(nid, N_MEMORY) {
3109 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3110 stat->lru_mask);
3111 seq_printf(m, " N%d=%lu", nid, nr);
3112 }
3113 seq_putc(m, '\n');
3114 }
3115
3116 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3117 struct mem_cgroup *iter;
3118
3119 nr = 0;
3120 for_each_mem_cgroup_tree(iter, memcg)
3121 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3122 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3123 for_each_node_state(nid, N_MEMORY) {
3124 nr = 0;
3125 for_each_mem_cgroup_tree(iter, memcg)
3126 nr += mem_cgroup_node_nr_lru_pages(
3127 iter, nid, stat->lru_mask);
3128 seq_printf(m, " N%d=%lu", nid, nr);
3129 }
3130 seq_putc(m, '\n');
3131 }
3132
3133 return 0;
3134 }
3135 #endif /* CONFIG_NUMA */
3136
3137 /* Universal VM events cgroup1 shows, original sort order */
3138 unsigned int memcg1_events[] = {
3139 PGPGIN,
3140 PGPGOUT,
3141 PGFAULT,
3142 PGMAJFAULT,
3143 };
3144
3145 static const char *const memcg1_event_names[] = {
3146 "pgpgin",
3147 "pgpgout",
3148 "pgfault",
3149 "pgmajfault",
3150 };
3151
3152 static int memcg_stat_show(struct seq_file *m, void *v)
3153 {
3154 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3155 unsigned long memory, memsw;
3156 struct mem_cgroup *mi;
3157 unsigned int i;
3158
3159 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3160 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3161
3162 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3163 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3164 continue;
3165 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3166 memcg_page_state(memcg, memcg1_stats[i]) *
3167 PAGE_SIZE);
3168 }
3169
3170 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3171 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3172 memcg_sum_events(memcg, memcg1_events[i]));
3173
3174 for (i = 0; i < NR_LRU_LISTS; i++)
3175 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3176 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3177
3178 /* Hierarchical information */
3179 memory = memsw = PAGE_COUNTER_MAX;
3180 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3181 memory = min(memory, mi->memory.limit);
3182 memsw = min(memsw, mi->memsw.limit);
3183 }
3184 seq_printf(m, "hierarchical_memory_limit %llu\n",
3185 (u64)memory * PAGE_SIZE);
3186 if (do_memsw_account())
3187 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3188 (u64)memsw * PAGE_SIZE);
3189
3190 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3191 unsigned long long val = 0;
3192
3193 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3194 continue;
3195 for_each_mem_cgroup_tree(mi, memcg)
3196 val += memcg_page_state(mi, memcg1_stats[i]) *
3197 PAGE_SIZE;
3198 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3199 }
3200
3201 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3202 unsigned long long val = 0;
3203
3204 for_each_mem_cgroup_tree(mi, memcg)
3205 val += memcg_sum_events(mi, memcg1_events[i]);
3206 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3207 }
3208
3209 for (i = 0; i < NR_LRU_LISTS; i++) {
3210 unsigned long long val = 0;
3211
3212 for_each_mem_cgroup_tree(mi, memcg)
3213 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3214 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3215 }
3216
3217 #ifdef CONFIG_DEBUG_VM
3218 {
3219 pg_data_t *pgdat;
3220 struct mem_cgroup_per_node *mz;
3221 struct zone_reclaim_stat *rstat;
3222 unsigned long recent_rotated[2] = {0, 0};
3223 unsigned long recent_scanned[2] = {0, 0};
3224
3225 for_each_online_pgdat(pgdat) {
3226 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3227 rstat = &mz->lruvec.reclaim_stat;
3228
3229 recent_rotated[0] += rstat->recent_rotated[0];
3230 recent_rotated[1] += rstat->recent_rotated[1];
3231 recent_scanned[0] += rstat->recent_scanned[0];
3232 recent_scanned[1] += rstat->recent_scanned[1];
3233 }
3234 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3235 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3236 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3237 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3238 }
3239 #endif
3240
3241 return 0;
3242 }
3243
3244 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3245 struct cftype *cft)
3246 {
3247 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3248
3249 return mem_cgroup_swappiness(memcg);
3250 }
3251
3252 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3253 struct cftype *cft, u64 val)
3254 {
3255 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3256
3257 if (val > 100)
3258 return -EINVAL;
3259
3260 if (css->parent)
3261 memcg->swappiness = val;
3262 else
3263 vm_swappiness = val;
3264
3265 return 0;
3266 }
3267
3268 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3269 {
3270 struct mem_cgroup_threshold_ary *t;
3271 unsigned long usage;
3272 int i;
3273
3274 rcu_read_lock();
3275 if (!swap)
3276 t = rcu_dereference(memcg->thresholds.primary);
3277 else
3278 t = rcu_dereference(memcg->memsw_thresholds.primary);
3279
3280 if (!t)
3281 goto unlock;
3282
3283 usage = mem_cgroup_usage(memcg, swap);
3284
3285 /*
3286 * current_threshold points to threshold just below or equal to usage.
3287 * If it's not true, a threshold was crossed after last
3288 * call of __mem_cgroup_threshold().
3289 */
3290 i = t->current_threshold;
3291
3292 /*
3293 * Iterate backward over array of thresholds starting from
3294 * current_threshold and check if a threshold is crossed.
3295 * If none of thresholds below usage is crossed, we read
3296 * only one element of the array here.
3297 */
3298 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3299 eventfd_signal(t->entries[i].eventfd, 1);
3300
3301 /* i = current_threshold + 1 */
3302 i++;
3303
3304 /*
3305 * Iterate forward over array of thresholds starting from
3306 * current_threshold+1 and check if a threshold is crossed.
3307 * If none of thresholds above usage is crossed, we read
3308 * only one element of the array here.
3309 */
3310 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3311 eventfd_signal(t->entries[i].eventfd, 1);
3312
3313 /* Update current_threshold */
3314 t->current_threshold = i - 1;
3315 unlock:
3316 rcu_read_unlock();
3317 }
3318
3319 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3320 {
3321 while (memcg) {
3322 __mem_cgroup_threshold(memcg, false);
3323 if (do_memsw_account())
3324 __mem_cgroup_threshold(memcg, true);
3325
3326 memcg = parent_mem_cgroup(memcg);
3327 }
3328 }
3329
3330 static int compare_thresholds(const void *a, const void *b)
3331 {
3332 const struct mem_cgroup_threshold *_a = a;
3333 const struct mem_cgroup_threshold *_b = b;
3334
3335 if (_a->threshold > _b->threshold)
3336 return 1;
3337
3338 if (_a->threshold < _b->threshold)
3339 return -1;
3340
3341 return 0;
3342 }
3343
3344 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3345 {
3346 struct mem_cgroup_eventfd_list *ev;
3347
3348 spin_lock(&memcg_oom_lock);
3349
3350 list_for_each_entry(ev, &memcg->oom_notify, list)
3351 eventfd_signal(ev->eventfd, 1);
3352
3353 spin_unlock(&memcg_oom_lock);
3354 return 0;
3355 }
3356
3357 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3358 {
3359 struct mem_cgroup *iter;
3360
3361 for_each_mem_cgroup_tree(iter, memcg)
3362 mem_cgroup_oom_notify_cb(iter);
3363 }
3364
3365 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3366 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3367 {
3368 struct mem_cgroup_thresholds *thresholds;
3369 struct mem_cgroup_threshold_ary *new;
3370 unsigned long threshold;
3371 unsigned long usage;
3372 int i, size, ret;
3373
3374 ret = page_counter_memparse(args, "-1", &threshold);
3375 if (ret)
3376 return ret;
3377
3378 mutex_lock(&memcg->thresholds_lock);
3379
3380 if (type == _MEM) {
3381 thresholds = &memcg->thresholds;
3382 usage = mem_cgroup_usage(memcg, false);
3383 } else if (type == _MEMSWAP) {
3384 thresholds = &memcg->memsw_thresholds;
3385 usage = mem_cgroup_usage(memcg, true);
3386 } else
3387 BUG();
3388
3389 /* Check if a threshold crossed before adding a new one */
3390 if (thresholds->primary)
3391 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3392
3393 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3394
3395 /* Allocate memory for new array of thresholds */
3396 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3397 GFP_KERNEL);
3398 if (!new) {
3399 ret = -ENOMEM;
3400 goto unlock;
3401 }
3402 new->size = size;
3403
3404 /* Copy thresholds (if any) to new array */
3405 if (thresholds->primary) {
3406 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3407 sizeof(struct mem_cgroup_threshold));
3408 }
3409
3410 /* Add new threshold */
3411 new->entries[size - 1].eventfd = eventfd;
3412 new->entries[size - 1].threshold = threshold;
3413
3414 /* Sort thresholds. Registering of new threshold isn't time-critical */
3415 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3416 compare_thresholds, NULL);
3417
3418 /* Find current threshold */
3419 new->current_threshold = -1;
3420 for (i = 0; i < size; i++) {
3421 if (new->entries[i].threshold <= usage) {
3422 /*
3423 * new->current_threshold will not be used until
3424 * rcu_assign_pointer(), so it's safe to increment
3425 * it here.
3426 */
3427 ++new->current_threshold;
3428 } else
3429 break;
3430 }
3431
3432 /* Free old spare buffer and save old primary buffer as spare */
3433 kfree(thresholds->spare);
3434 thresholds->spare = thresholds->primary;
3435
3436 rcu_assign_pointer(thresholds->primary, new);
3437
3438 /* To be sure that nobody uses thresholds */
3439 synchronize_rcu();
3440
3441 unlock:
3442 mutex_unlock(&memcg->thresholds_lock);
3443
3444 return ret;
3445 }
3446
3447 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3448 struct eventfd_ctx *eventfd, const char *args)
3449 {
3450 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3451 }
3452
3453 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3454 struct eventfd_ctx *eventfd, const char *args)
3455 {
3456 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3457 }
3458
3459 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3460 struct eventfd_ctx *eventfd, enum res_type type)
3461 {
3462 struct mem_cgroup_thresholds *thresholds;
3463 struct mem_cgroup_threshold_ary *new;
3464 unsigned long usage;
3465 int i, j, size;
3466
3467 mutex_lock(&memcg->thresholds_lock);
3468
3469 if (type == _MEM) {
3470 thresholds = &memcg->thresholds;
3471 usage = mem_cgroup_usage(memcg, false);
3472 } else if (type == _MEMSWAP) {
3473 thresholds = &memcg->memsw_thresholds;
3474 usage = mem_cgroup_usage(memcg, true);
3475 } else
3476 BUG();
3477
3478 if (!thresholds->primary)
3479 goto unlock;
3480
3481 /* Check if a threshold crossed before removing */
3482 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3483
3484 /* Calculate new number of threshold */
3485 size = 0;
3486 for (i = 0; i < thresholds->primary->size; i++) {
3487 if (thresholds->primary->entries[i].eventfd != eventfd)
3488 size++;
3489 }
3490
3491 new = thresholds->spare;
3492
3493 /* Set thresholds array to NULL if we don't have thresholds */
3494 if (!size) {
3495 kfree(new);
3496 new = NULL;
3497 goto swap_buffers;
3498 }
3499
3500 new->size = size;
3501
3502 /* Copy thresholds and find current threshold */
3503 new->current_threshold = -1;
3504 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3505 if (thresholds->primary->entries[i].eventfd == eventfd)
3506 continue;
3507
3508 new->entries[j] = thresholds->primary->entries[i];
3509 if (new->entries[j].threshold <= usage) {
3510 /*
3511 * new->current_threshold will not be used
3512 * until rcu_assign_pointer(), so it's safe to increment
3513 * it here.
3514 */
3515 ++new->current_threshold;
3516 }
3517 j++;
3518 }
3519
3520 swap_buffers:
3521 /* Swap primary and spare array */
3522 thresholds->spare = thresholds->primary;
3523
3524 rcu_assign_pointer(thresholds->primary, new);
3525
3526 /* To be sure that nobody uses thresholds */
3527 synchronize_rcu();
3528
3529 /* If all events are unregistered, free the spare array */
3530 if (!new) {
3531 kfree(thresholds->spare);
3532 thresholds->spare = NULL;
3533 }
3534 unlock:
3535 mutex_unlock(&memcg->thresholds_lock);
3536 }
3537
3538 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3539 struct eventfd_ctx *eventfd)
3540 {
3541 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3542 }
3543
3544 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3545 struct eventfd_ctx *eventfd)
3546 {
3547 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3548 }
3549
3550 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3551 struct eventfd_ctx *eventfd, const char *args)
3552 {
3553 struct mem_cgroup_eventfd_list *event;
3554
3555 event = kmalloc(sizeof(*event), GFP_KERNEL);
3556 if (!event)
3557 return -ENOMEM;
3558
3559 spin_lock(&memcg_oom_lock);
3560
3561 event->eventfd = eventfd;
3562 list_add(&event->list, &memcg->oom_notify);
3563
3564 /* already in OOM ? */
3565 if (memcg->under_oom)
3566 eventfd_signal(eventfd, 1);
3567 spin_unlock(&memcg_oom_lock);
3568
3569 return 0;
3570 }
3571
3572 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3573 struct eventfd_ctx *eventfd)
3574 {
3575 struct mem_cgroup_eventfd_list *ev, *tmp;
3576
3577 spin_lock(&memcg_oom_lock);
3578
3579 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3580 if (ev->eventfd == eventfd) {
3581 list_del(&ev->list);
3582 kfree(ev);
3583 }
3584 }
3585
3586 spin_unlock(&memcg_oom_lock);
3587 }
3588
3589 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3590 {
3591 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3592
3593 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3594 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3595 seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3596 return 0;
3597 }
3598
3599 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3600 struct cftype *cft, u64 val)
3601 {
3602 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3603
3604 /* cannot set to root cgroup and only 0 and 1 are allowed */
3605 if (!css->parent || !((val == 0) || (val == 1)))
3606 return -EINVAL;
3607
3608 memcg->oom_kill_disable = val;
3609 if (!val)
3610 memcg_oom_recover(memcg);
3611
3612 return 0;
3613 }
3614
3615 #ifdef CONFIG_CGROUP_WRITEBACK
3616
3617 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3618 {
3619 return &memcg->cgwb_list;
3620 }
3621
3622 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3623 {
3624 return wb_domain_init(&memcg->cgwb_domain, gfp);
3625 }
3626
3627 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3628 {
3629 wb_domain_exit(&memcg->cgwb_domain);
3630 }
3631
3632 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3633 {
3634 wb_domain_size_changed(&memcg->cgwb_domain);
3635 }
3636
3637 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3638 {
3639 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3640
3641 if (!memcg->css.parent)
3642 return NULL;
3643
3644 return &memcg->cgwb_domain;
3645 }
3646
3647 /**
3648 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3649 * @wb: bdi_writeback in question
3650 * @pfilepages: out parameter for number of file pages
3651 * @pheadroom: out parameter for number of allocatable pages according to memcg
3652 * @pdirty: out parameter for number of dirty pages
3653 * @pwriteback: out parameter for number of pages under writeback
3654 *
3655 * Determine the numbers of file, headroom, dirty, and writeback pages in
3656 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3657 * is a bit more involved.
3658 *
3659 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3660 * headroom is calculated as the lowest headroom of itself and the
3661 * ancestors. Note that this doesn't consider the actual amount of
3662 * available memory in the system. The caller should further cap
3663 * *@pheadroom accordingly.
3664 */
3665 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3666 unsigned long *pheadroom, unsigned long *pdirty,
3667 unsigned long *pwriteback)
3668 {
3669 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3670 struct mem_cgroup *parent;
3671
3672 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3673
3674 /* this should eventually include NR_UNSTABLE_NFS */
3675 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3676 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3677 (1 << LRU_ACTIVE_FILE));
3678 *pheadroom = PAGE_COUNTER_MAX;
3679
3680 while ((parent = parent_mem_cgroup(memcg))) {
3681 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3682 unsigned long used = page_counter_read(&memcg->memory);
3683
3684 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3685 memcg = parent;
3686 }
3687 }
3688
3689 #else /* CONFIG_CGROUP_WRITEBACK */
3690
3691 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3692 {
3693 return 0;
3694 }
3695
3696 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3697 {
3698 }
3699
3700 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3701 {
3702 }
3703
3704 #endif /* CONFIG_CGROUP_WRITEBACK */
3705
3706 /*
3707 * DO NOT USE IN NEW FILES.
3708 *
3709 * "cgroup.event_control" implementation.
3710 *
3711 * This is way over-engineered. It tries to support fully configurable
3712 * events for each user. Such level of flexibility is completely
3713 * unnecessary especially in the light of the planned unified hierarchy.
3714 *
3715 * Please deprecate this and replace with something simpler if at all
3716 * possible.
3717 */
3718
3719 /*
3720 * Unregister event and free resources.
3721 *
3722 * Gets called from workqueue.
3723 */
3724 static void memcg_event_remove(struct work_struct *work)
3725 {
3726 struct mem_cgroup_event *event =
3727 container_of(work, struct mem_cgroup_event, remove);
3728 struct mem_cgroup *memcg = event->memcg;
3729
3730 remove_wait_queue(event->wqh, &event->wait);
3731
3732 event->unregister_event(memcg, event->eventfd);
3733
3734 /* Notify userspace the event is going away. */
3735 eventfd_signal(event->eventfd, 1);
3736
3737 eventfd_ctx_put(event->eventfd);
3738 kfree(event);
3739 css_put(&memcg->css);
3740 }
3741
3742 /*
3743 * Gets called on POLLHUP on eventfd when user closes it.
3744 *
3745 * Called with wqh->lock held and interrupts disabled.
3746 */
3747 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3748 int sync, void *key)
3749 {
3750 struct mem_cgroup_event *event =
3751 container_of(wait, struct mem_cgroup_event, wait);
3752 struct mem_cgroup *memcg = event->memcg;
3753 unsigned long flags = (unsigned long)key;
3754
3755 if (flags & POLLHUP) {
3756 /*
3757 * If the event has been detached at cgroup removal, we
3758 * can simply return knowing the other side will cleanup
3759 * for us.
3760 *
3761 * We can't race against event freeing since the other
3762 * side will require wqh->lock via remove_wait_queue(),
3763 * which we hold.
3764 */
3765 spin_lock(&memcg->event_list_lock);
3766 if (!list_empty(&event->list)) {
3767 list_del_init(&event->list);
3768 /*
3769 * We are in atomic context, but cgroup_event_remove()
3770 * may sleep, so we have to call it in workqueue.
3771 */
3772 schedule_work(&event->remove);
3773 }
3774 spin_unlock(&memcg->event_list_lock);
3775 }
3776
3777 return 0;
3778 }
3779
3780 static void memcg_event_ptable_queue_proc(struct file *file,
3781 wait_queue_head_t *wqh, poll_table *pt)
3782 {
3783 struct mem_cgroup_event *event =
3784 container_of(pt, struct mem_cgroup_event, pt);
3785
3786 event->wqh = wqh;
3787 add_wait_queue(wqh, &event->wait);
3788 }
3789
3790 /*
3791 * DO NOT USE IN NEW FILES.
3792 *
3793 * Parse input and register new cgroup event handler.
3794 *
3795 * Input must be in format '<event_fd> <control_fd> <args>'.
3796 * Interpretation of args is defined by control file implementation.
3797 */
3798 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3799 char *buf, size_t nbytes, loff_t off)
3800 {
3801 struct cgroup_subsys_state *css = of_css(of);
3802 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3803 struct mem_cgroup_event *event;
3804 struct cgroup_subsys_state *cfile_css;
3805 unsigned int efd, cfd;
3806 struct fd efile;
3807 struct fd cfile;
3808 const char *name;
3809 char *endp;
3810 int ret;
3811
3812 buf = strstrip(buf);
3813
3814 efd = simple_strtoul(buf, &endp, 10);
3815 if (*endp != ' ')
3816 return -EINVAL;
3817 buf = endp + 1;
3818
3819 cfd = simple_strtoul(buf, &endp, 10);
3820 if ((*endp != ' ') && (*endp != '\0'))
3821 return -EINVAL;
3822 buf = endp + 1;
3823
3824 event = kzalloc(sizeof(*event), GFP_KERNEL);
3825 if (!event)
3826 return -ENOMEM;
3827
3828 event->memcg = memcg;
3829 INIT_LIST_HEAD(&event->list);
3830 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3831 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3832 INIT_WORK(&event->remove, memcg_event_remove);
3833
3834 efile = fdget(efd);
3835 if (!efile.file) {
3836 ret = -EBADF;
3837 goto out_kfree;
3838 }
3839
3840 event->eventfd = eventfd_ctx_fileget(efile.file);
3841 if (IS_ERR(event->eventfd)) {
3842 ret = PTR_ERR(event->eventfd);
3843 goto out_put_efile;
3844 }
3845
3846 cfile = fdget(cfd);
3847 if (!cfile.file) {
3848 ret = -EBADF;
3849 goto out_put_eventfd;
3850 }
3851
3852 /* the process need read permission on control file */
3853 /* AV: shouldn't we check that it's been opened for read instead? */
3854 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3855 if (ret < 0)
3856 goto out_put_cfile;
3857
3858 /*
3859 * Determine the event callbacks and set them in @event. This used
3860 * to be done via struct cftype but cgroup core no longer knows
3861 * about these events. The following is crude but the whole thing
3862 * is for compatibility anyway.
3863 *
3864 * DO NOT ADD NEW FILES.
3865 */
3866 name = cfile.file->f_path.dentry->d_name.name;
3867
3868 if (!strcmp(name, "memory.usage_in_bytes")) {
3869 event->register_event = mem_cgroup_usage_register_event;
3870 event->unregister_event = mem_cgroup_usage_unregister_event;
3871 } else if (!strcmp(name, "memory.oom_control")) {
3872 event->register_event = mem_cgroup_oom_register_event;
3873 event->unregister_event = mem_cgroup_oom_unregister_event;
3874 } else if (!strcmp(name, "memory.pressure_level")) {
3875 event->register_event = vmpressure_register_event;
3876 event->unregister_event = vmpressure_unregister_event;
3877 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3878 event->register_event = memsw_cgroup_usage_register_event;
3879 event->unregister_event = memsw_cgroup_usage_unregister_event;
3880 } else {
3881 ret = -EINVAL;
3882 goto out_put_cfile;
3883 }
3884
3885 /*
3886 * Verify @cfile should belong to @css. Also, remaining events are
3887 * automatically removed on cgroup destruction but the removal is
3888 * asynchronous, so take an extra ref on @css.
3889 */
3890 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3891 &memory_cgrp_subsys);
3892 ret = -EINVAL;
3893 if (IS_ERR(cfile_css))
3894 goto out_put_cfile;
3895 if (cfile_css != css) {
3896 css_put(cfile_css);
3897 goto out_put_cfile;
3898 }
3899
3900 ret = event->register_event(memcg, event->eventfd, buf);
3901 if (ret)
3902 goto out_put_css;
3903
3904 efile.file->f_op->poll(efile.file, &event->pt);
3905
3906 spin_lock(&memcg->event_list_lock);
3907 list_add(&event->list, &memcg->event_list);
3908 spin_unlock(&memcg->event_list_lock);
3909
3910 fdput(cfile);
3911 fdput(efile);
3912
3913 return nbytes;
3914
3915 out_put_css:
3916 css_put(css);
3917 out_put_cfile:
3918 fdput(cfile);
3919 out_put_eventfd:
3920 eventfd_ctx_put(event->eventfd);
3921 out_put_efile:
3922 fdput(efile);
3923 out_kfree:
3924 kfree(event);
3925
3926 return ret;
3927 }
3928
3929 static struct cftype mem_cgroup_legacy_files[] = {
3930 {
3931 .name = "usage_in_bytes",
3932 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3933 .read_u64 = mem_cgroup_read_u64,
3934 },
3935 {
3936 .name = "max_usage_in_bytes",
3937 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3938 .write = mem_cgroup_reset,
3939 .read_u64 = mem_cgroup_read_u64,
3940 },
3941 {
3942 .name = "limit_in_bytes",
3943 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3944 .write = mem_cgroup_write,
3945 .read_u64 = mem_cgroup_read_u64,
3946 },
3947 {
3948 .name = "soft_limit_in_bytes",
3949 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3950 .write = mem_cgroup_write,
3951 .read_u64 = mem_cgroup_read_u64,
3952 },
3953 {
3954 .name = "failcnt",
3955 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3956 .write = mem_cgroup_reset,
3957 .read_u64 = mem_cgroup_read_u64,
3958 },
3959 {
3960 .name = "stat",
3961 .seq_show = memcg_stat_show,
3962 },
3963 {
3964 .name = "force_empty",
3965 .write = mem_cgroup_force_empty_write,
3966 },
3967 {
3968 .name = "use_hierarchy",
3969 .write_u64 = mem_cgroup_hierarchy_write,
3970 .read_u64 = mem_cgroup_hierarchy_read,
3971 },
3972 {
3973 .name = "cgroup.event_control", /* XXX: for compat */
3974 .write = memcg_write_event_control,
3975 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3976 },
3977 {
3978 .name = "swappiness",
3979 .read_u64 = mem_cgroup_swappiness_read,
3980 .write_u64 = mem_cgroup_swappiness_write,
3981 },
3982 {
3983 .name = "move_charge_at_immigrate",
3984 .read_u64 = mem_cgroup_move_charge_read,
3985 .write_u64 = mem_cgroup_move_charge_write,
3986 },
3987 {
3988 .name = "oom_control",
3989 .seq_show = mem_cgroup_oom_control_read,
3990 .write_u64 = mem_cgroup_oom_control_write,
3991 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3992 },
3993 {
3994 .name = "pressure_level",
3995 },
3996 #ifdef CONFIG_NUMA
3997 {
3998 .name = "numa_stat",
3999 .seq_show = memcg_numa_stat_show,
4000 },
4001 #endif
4002 {
4003 .name = "kmem.limit_in_bytes",
4004 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4005 .write = mem_cgroup_write,
4006 .read_u64 = mem_cgroup_read_u64,
4007 },
4008 {
4009 .name = "kmem.usage_in_bytes",
4010 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4011 .read_u64 = mem_cgroup_read_u64,
4012 },
4013 {
4014 .name = "kmem.failcnt",
4015 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4016 .write = mem_cgroup_reset,
4017 .read_u64 = mem_cgroup_read_u64,
4018 },
4019 {
4020 .name = "kmem.max_usage_in_bytes",
4021 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4022 .write = mem_cgroup_reset,
4023 .read_u64 = mem_cgroup_read_u64,
4024 },
4025 #ifdef CONFIG_SLABINFO
4026 {
4027 .name = "kmem.slabinfo",
4028 .seq_start = memcg_slab_start,
4029 .seq_next = memcg_slab_next,
4030 .seq_stop = memcg_slab_stop,
4031 .seq_show = memcg_slab_show,
4032 },
4033 #endif
4034 {
4035 .name = "kmem.tcp.limit_in_bytes",
4036 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4037 .write = mem_cgroup_write,
4038 .read_u64 = mem_cgroup_read_u64,
4039 },
4040 {
4041 .name = "kmem.tcp.usage_in_bytes",
4042 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4043 .read_u64 = mem_cgroup_read_u64,
4044 },
4045 {
4046 .name = "kmem.tcp.failcnt",
4047 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4048 .write = mem_cgroup_reset,
4049 .read_u64 = mem_cgroup_read_u64,
4050 },
4051 {
4052 .name = "kmem.tcp.max_usage_in_bytes",
4053 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4054 .write = mem_cgroup_reset,
4055 .read_u64 = mem_cgroup_read_u64,
4056 },
4057 { }, /* terminate */
4058 };
4059
4060 /*
4061 * Private memory cgroup IDR
4062 *
4063 * Swap-out records and page cache shadow entries need to store memcg
4064 * references in constrained space, so we maintain an ID space that is
4065 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4066 * memory-controlled cgroups to 64k.
4067 *
4068 * However, there usually are many references to the oflline CSS after
4069 * the cgroup has been destroyed, such as page cache or reclaimable
4070 * slab objects, that don't need to hang on to the ID. We want to keep
4071 * those dead CSS from occupying IDs, or we might quickly exhaust the
4072 * relatively small ID space and prevent the creation of new cgroups
4073 * even when there are much fewer than 64k cgroups - possibly none.
4074 *
4075 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4076 * be freed and recycled when it's no longer needed, which is usually
4077 * when the CSS is offlined.
4078 *
4079 * The only exception to that are records of swapped out tmpfs/shmem
4080 * pages that need to be attributed to live ancestors on swapin. But
4081 * those references are manageable from userspace.
4082 */
4083
4084 static DEFINE_IDR(mem_cgroup_idr);
4085
4086 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4087 {
4088 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4089 atomic_add(n, &memcg->id.ref);
4090 }
4091
4092 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4093 {
4094 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4095 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4096 idr_remove(&mem_cgroup_idr, memcg->id.id);
4097 memcg->id.id = 0;
4098
4099 /* Memcg ID pins CSS */
4100 css_put(&memcg->css);
4101 }
4102 }
4103
4104 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4105 {
4106 mem_cgroup_id_get_many(memcg, 1);
4107 }
4108
4109 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4110 {
4111 mem_cgroup_id_put_many(memcg, 1);
4112 }
4113
4114 /**
4115 * mem_cgroup_from_id - look up a memcg from a memcg id
4116 * @id: the memcg id to look up
4117 *
4118 * Caller must hold rcu_read_lock().
4119 */
4120 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4121 {
4122 WARN_ON_ONCE(!rcu_read_lock_held());
4123 return idr_find(&mem_cgroup_idr, id);
4124 }
4125
4126 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4127 {
4128 struct mem_cgroup_per_node *pn;
4129 int tmp = node;
4130 /*
4131 * This routine is called against possible nodes.
4132 * But it's BUG to call kmalloc() against offline node.
4133 *
4134 * TODO: this routine can waste much memory for nodes which will
4135 * never be onlined. It's better to use memory hotplug callback
4136 * function.
4137 */
4138 if (!node_state(node, N_NORMAL_MEMORY))
4139 tmp = -1;
4140 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4141 if (!pn)
4142 return 1;
4143
4144 pn->lruvec_stat = alloc_percpu(struct lruvec_stat);
4145 if (!pn->lruvec_stat) {
4146 kfree(pn);
4147 return 1;
4148 }
4149
4150 lruvec_init(&pn->lruvec);
4151 pn->usage_in_excess = 0;
4152 pn->on_tree = false;
4153 pn->memcg = memcg;
4154
4155 memcg->nodeinfo[node] = pn;
4156 return 0;
4157 }
4158
4159 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4160 {
4161 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4162
4163 free_percpu(pn->lruvec_stat);
4164 kfree(pn);
4165 }
4166
4167 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4168 {
4169 int node;
4170
4171 for_each_node(node)
4172 free_mem_cgroup_per_node_info(memcg, node);
4173 free_percpu(memcg->stat);
4174 kfree(memcg);
4175 }
4176
4177 static void mem_cgroup_free(struct mem_cgroup *memcg)
4178 {
4179 memcg_wb_domain_exit(memcg);
4180 __mem_cgroup_free(memcg);
4181 }
4182
4183 static struct mem_cgroup *mem_cgroup_alloc(void)
4184 {
4185 struct mem_cgroup *memcg;
4186 size_t size;
4187 int node;
4188
4189 size = sizeof(struct mem_cgroup);
4190 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4191
4192 memcg = kzalloc(size, GFP_KERNEL);
4193 if (!memcg)
4194 return NULL;
4195
4196 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4197 1, MEM_CGROUP_ID_MAX,
4198 GFP_KERNEL);
4199 if (memcg->id.id < 0)
4200 goto fail;
4201
4202 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4203 if (!memcg->stat)
4204 goto fail;
4205
4206 for_each_node(node)
4207 if (alloc_mem_cgroup_per_node_info(memcg, node))
4208 goto fail;
4209
4210 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4211 goto fail;
4212
4213 INIT_WORK(&memcg->high_work, high_work_func);
4214 memcg->last_scanned_node = MAX_NUMNODES;
4215 INIT_LIST_HEAD(&memcg->oom_notify);
4216 mutex_init(&memcg->thresholds_lock);
4217 spin_lock_init(&memcg->move_lock);
4218 vmpressure_init(&memcg->vmpressure);
4219 INIT_LIST_HEAD(&memcg->event_list);
4220 spin_lock_init(&memcg->event_list_lock);
4221 memcg->socket_pressure = jiffies;
4222 #ifndef CONFIG_SLOB
4223 memcg->kmemcg_id = -1;
4224 #endif
4225 #ifdef CONFIG_CGROUP_WRITEBACK
4226 INIT_LIST_HEAD(&memcg->cgwb_list);
4227 #endif
4228 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4229 return memcg;
4230 fail:
4231 if (memcg->id.id > 0)
4232 idr_remove(&mem_cgroup_idr, memcg->id.id);
4233 __mem_cgroup_free(memcg);
4234 return NULL;
4235 }
4236
4237 static struct cgroup_subsys_state * __ref
4238 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4239 {
4240 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4241 struct mem_cgroup *memcg;
4242 long error = -ENOMEM;
4243
4244 memcg = mem_cgroup_alloc();
4245 if (!memcg)
4246 return ERR_PTR(error);
4247
4248 memcg->high = PAGE_COUNTER_MAX;
4249 memcg->soft_limit = PAGE_COUNTER_MAX;
4250 if (parent) {
4251 memcg->swappiness = mem_cgroup_swappiness(parent);
4252 memcg->oom_kill_disable = parent->oom_kill_disable;
4253 }
4254 if (parent && parent->use_hierarchy) {
4255 memcg->use_hierarchy = true;
4256 page_counter_init(&memcg->memory, &parent->memory);
4257 page_counter_init(&memcg->swap, &parent->swap);
4258 page_counter_init(&memcg->memsw, &parent->memsw);
4259 page_counter_init(&memcg->kmem, &parent->kmem);
4260 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4261 } else {
4262 page_counter_init(&memcg->memory, NULL);
4263 page_counter_init(&memcg->swap, NULL);
4264 page_counter_init(&memcg->memsw, NULL);
4265 page_counter_init(&memcg->kmem, NULL);
4266 page_counter_init(&memcg->tcpmem, NULL);
4267 /*
4268 * Deeper hierachy with use_hierarchy == false doesn't make
4269 * much sense so let cgroup subsystem know about this
4270 * unfortunate state in our controller.
4271 */
4272 if (parent != root_mem_cgroup)
4273 memory_cgrp_subsys.broken_hierarchy = true;
4274 }
4275
4276 /* The following stuff does not apply to the root */
4277 if (!parent) {
4278 root_mem_cgroup = memcg;
4279 return &memcg->css;
4280 }
4281
4282 error = memcg_online_kmem(memcg);
4283 if (error)
4284 goto fail;
4285
4286 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4287 static_branch_inc(&memcg_sockets_enabled_key);
4288
4289 return &memcg->css;
4290 fail:
4291 mem_cgroup_free(memcg);
4292 return ERR_PTR(-ENOMEM);
4293 }
4294
4295 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4296 {
4297 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4298
4299 /* Online state pins memcg ID, memcg ID pins CSS */
4300 atomic_set(&memcg->id.ref, 1);
4301 css_get(css);
4302 return 0;
4303 }
4304
4305 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4306 {
4307 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4308 struct mem_cgroup_event *event, *tmp;
4309
4310 /*
4311 * Unregister events and notify userspace.
4312 * Notify userspace about cgroup removing only after rmdir of cgroup
4313 * directory to avoid race between userspace and kernelspace.
4314 */
4315 spin_lock(&memcg->event_list_lock);
4316 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4317 list_del_init(&event->list);
4318 schedule_work(&event->remove);
4319 }
4320 spin_unlock(&memcg->event_list_lock);
4321
4322 memcg_offline_kmem(memcg);
4323 wb_memcg_offline(memcg);
4324
4325 mem_cgroup_id_put(memcg);
4326 }
4327
4328 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4329 {
4330 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4331
4332 invalidate_reclaim_iterators(memcg);
4333 }
4334
4335 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4336 {
4337 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4338
4339 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4340 static_branch_dec(&memcg_sockets_enabled_key);
4341
4342 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4343 static_branch_dec(&memcg_sockets_enabled_key);
4344
4345 vmpressure_cleanup(&memcg->vmpressure);
4346 cancel_work_sync(&memcg->high_work);
4347 mem_cgroup_remove_from_trees(memcg);
4348 memcg_free_kmem(memcg);
4349 mem_cgroup_free(memcg);
4350 }
4351
4352 /**
4353 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4354 * @css: the target css
4355 *
4356 * Reset the states of the mem_cgroup associated with @css. This is
4357 * invoked when the userland requests disabling on the default hierarchy
4358 * but the memcg is pinned through dependency. The memcg should stop
4359 * applying policies and should revert to the vanilla state as it may be
4360 * made visible again.
4361 *
4362 * The current implementation only resets the essential configurations.
4363 * This needs to be expanded to cover all the visible parts.
4364 */
4365 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4366 {
4367 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4368
4369 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4370 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4371 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4372 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4373 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4374 memcg->low = 0;
4375 memcg->high = PAGE_COUNTER_MAX;
4376 memcg->soft_limit = PAGE_COUNTER_MAX;
4377 memcg_wb_domain_size_changed(memcg);
4378 }
4379
4380 #ifdef CONFIG_MMU
4381 /* Handlers for move charge at task migration. */
4382 static int mem_cgroup_do_precharge(unsigned long count)
4383 {
4384 int ret;
4385
4386 /* Try a single bulk charge without reclaim first, kswapd may wake */
4387 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4388 if (!ret) {
4389 mc.precharge += count;
4390 return ret;
4391 }
4392
4393 /* Try charges one by one with reclaim, but do not retry */
4394 while (count--) {
4395 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4396 if (ret)
4397 return ret;
4398 mc.precharge++;
4399 cond_resched();
4400 }
4401 return 0;
4402 }
4403
4404 union mc_target {
4405 struct page *page;
4406 swp_entry_t ent;
4407 };
4408
4409 enum mc_target_type {
4410 MC_TARGET_NONE = 0,
4411 MC_TARGET_PAGE,
4412 MC_TARGET_SWAP,
4413 };
4414
4415 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4416 unsigned long addr, pte_t ptent)
4417 {
4418 struct page *page = vm_normal_page(vma, addr, ptent);
4419
4420 if (!page || !page_mapped(page))
4421 return NULL;
4422 if (PageAnon(page)) {
4423 if (!(mc.flags & MOVE_ANON))
4424 return NULL;
4425 } else {
4426 if (!(mc.flags & MOVE_FILE))
4427 return NULL;
4428 }
4429 if (!get_page_unless_zero(page))
4430 return NULL;
4431
4432 return page;
4433 }
4434
4435 #ifdef CONFIG_SWAP
4436 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4437 pte_t ptent, swp_entry_t *entry)
4438 {
4439 struct page *page = NULL;
4440 swp_entry_t ent = pte_to_swp_entry(ptent);
4441
4442 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4443 return NULL;
4444 /*
4445 * Because lookup_swap_cache() updates some statistics counter,
4446 * we call find_get_page() with swapper_space directly.
4447 */
4448 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4449 if (do_memsw_account())
4450 entry->val = ent.val;
4451
4452 return page;
4453 }
4454 #else
4455 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4456 pte_t ptent, swp_entry_t *entry)
4457 {
4458 return NULL;
4459 }
4460 #endif
4461
4462 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4463 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4464 {
4465 struct page *page = NULL;
4466 struct address_space *mapping;
4467 pgoff_t pgoff;
4468
4469 if (!vma->vm_file) /* anonymous vma */
4470 return NULL;
4471 if (!(mc.flags & MOVE_FILE))
4472 return NULL;
4473
4474 mapping = vma->vm_file->f_mapping;
4475 pgoff = linear_page_index(vma, addr);
4476
4477 /* page is moved even if it's not RSS of this task(page-faulted). */
4478 #ifdef CONFIG_SWAP
4479 /* shmem/tmpfs may report page out on swap: account for that too. */
4480 if (shmem_mapping(mapping)) {
4481 page = find_get_entry(mapping, pgoff);
4482 if (radix_tree_exceptional_entry(page)) {
4483 swp_entry_t swp = radix_to_swp_entry(page);
4484 if (do_memsw_account())
4485 *entry = swp;
4486 page = find_get_page(swap_address_space(swp),
4487 swp_offset(swp));
4488 }
4489 } else
4490 page = find_get_page(mapping, pgoff);
4491 #else
4492 page = find_get_page(mapping, pgoff);
4493 #endif
4494 return page;
4495 }
4496
4497 /**
4498 * mem_cgroup_move_account - move account of the page
4499 * @page: the page
4500 * @compound: charge the page as compound or small page
4501 * @from: mem_cgroup which the page is moved from.
4502 * @to: mem_cgroup which the page is moved to. @from != @to.
4503 *
4504 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4505 *
4506 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4507 * from old cgroup.
4508 */
4509 static int mem_cgroup_move_account(struct page *page,
4510 bool compound,
4511 struct mem_cgroup *from,
4512 struct mem_cgroup *to)
4513 {
4514 unsigned long flags;
4515 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4516 int ret;
4517 bool anon;
4518
4519 VM_BUG_ON(from == to);
4520 VM_BUG_ON_PAGE(PageLRU(page), page);
4521 VM_BUG_ON(compound && !PageTransHuge(page));
4522
4523 /*
4524 * Prevent mem_cgroup_migrate() from looking at
4525 * page->mem_cgroup of its source page while we change it.
4526 */
4527 ret = -EBUSY;
4528 if (!trylock_page(page))
4529 goto out;
4530
4531 ret = -EINVAL;
4532 if (page->mem_cgroup != from)
4533 goto out_unlock;
4534
4535 anon = PageAnon(page);
4536
4537 spin_lock_irqsave(&from->move_lock, flags);
4538
4539 if (!anon && page_mapped(page)) {
4540 __this_cpu_sub(from->stat->count[NR_FILE_MAPPED], nr_pages);
4541 __this_cpu_add(to->stat->count[NR_FILE_MAPPED], nr_pages);
4542 }
4543
4544 /*
4545 * move_lock grabbed above and caller set from->moving_account, so
4546 * mod_memcg_page_state will serialize updates to PageDirty.
4547 * So mapping should be stable for dirty pages.
4548 */
4549 if (!anon && PageDirty(page)) {
4550 struct address_space *mapping = page_mapping(page);
4551
4552 if (mapping_cap_account_dirty(mapping)) {
4553 __this_cpu_sub(from->stat->count[NR_FILE_DIRTY],
4554 nr_pages);
4555 __this_cpu_add(to->stat->count[NR_FILE_DIRTY],
4556 nr_pages);
4557 }
4558 }
4559
4560 if (PageWriteback(page)) {
4561 __this_cpu_sub(from->stat->count[NR_WRITEBACK], nr_pages);
4562 __this_cpu_add(to->stat->count[NR_WRITEBACK], nr_pages);
4563 }
4564
4565 /*
4566 * It is safe to change page->mem_cgroup here because the page
4567 * is referenced, charged, and isolated - we can't race with
4568 * uncharging, charging, migration, or LRU putback.
4569 */
4570
4571 /* caller should have done css_get */
4572 page->mem_cgroup = to;
4573 spin_unlock_irqrestore(&from->move_lock, flags);
4574
4575 ret = 0;
4576
4577 local_irq_disable();
4578 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4579 memcg_check_events(to, page);
4580 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4581 memcg_check_events(from, page);
4582 local_irq_enable();
4583 out_unlock:
4584 unlock_page(page);
4585 out:
4586 return ret;
4587 }
4588
4589 /**
4590 * get_mctgt_type - get target type of moving charge
4591 * @vma: the vma the pte to be checked belongs
4592 * @addr: the address corresponding to the pte to be checked
4593 * @ptent: the pte to be checked
4594 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4595 *
4596 * Returns
4597 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4598 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4599 * move charge. if @target is not NULL, the page is stored in target->page
4600 * with extra refcnt got(Callers should handle it).
4601 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4602 * target for charge migration. if @target is not NULL, the entry is stored
4603 * in target->ent.
4604 *
4605 * Called with pte lock held.
4606 */
4607
4608 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4609 unsigned long addr, pte_t ptent, union mc_target *target)
4610 {
4611 struct page *page = NULL;
4612 enum mc_target_type ret = MC_TARGET_NONE;
4613 swp_entry_t ent = { .val = 0 };
4614
4615 if (pte_present(ptent))
4616 page = mc_handle_present_pte(vma, addr, ptent);
4617 else if (is_swap_pte(ptent))
4618 page = mc_handle_swap_pte(vma, ptent, &ent);
4619 else if (pte_none(ptent))
4620 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4621
4622 if (!page && !ent.val)
4623 return ret;
4624 if (page) {
4625 /*
4626 * Do only loose check w/o serialization.
4627 * mem_cgroup_move_account() checks the page is valid or
4628 * not under LRU exclusion.
4629 */
4630 if (page->mem_cgroup == mc.from) {
4631 ret = MC_TARGET_PAGE;
4632 if (target)
4633 target->page = page;
4634 }
4635 if (!ret || !target)
4636 put_page(page);
4637 }
4638 /* There is a swap entry and a page doesn't exist or isn't charged */
4639 if (ent.val && !ret &&
4640 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4641 ret = MC_TARGET_SWAP;
4642 if (target)
4643 target->ent = ent;
4644 }
4645 return ret;
4646 }
4647
4648 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4649 /*
4650 * We don't consider swapping or file mapped pages because THP does not
4651 * support them for now.
4652 * Caller should make sure that pmd_trans_huge(pmd) is true.
4653 */
4654 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4655 unsigned long addr, pmd_t pmd, union mc_target *target)
4656 {
4657 struct page *page = NULL;
4658 enum mc_target_type ret = MC_TARGET_NONE;
4659
4660 page = pmd_page(pmd);
4661 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4662 if (!(mc.flags & MOVE_ANON))
4663 return ret;
4664 if (page->mem_cgroup == mc.from) {
4665 ret = MC_TARGET_PAGE;
4666 if (target) {
4667 get_page(page);
4668 target->page = page;
4669 }
4670 }
4671 return ret;
4672 }
4673 #else
4674 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4675 unsigned long addr, pmd_t pmd, union mc_target *target)
4676 {
4677 return MC_TARGET_NONE;
4678 }
4679 #endif
4680
4681 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4682 unsigned long addr, unsigned long end,
4683 struct mm_walk *walk)
4684 {
4685 struct vm_area_struct *vma = walk->vma;
4686 pte_t *pte;
4687 spinlock_t *ptl;
4688
4689 ptl = pmd_trans_huge_lock(pmd, vma);
4690 if (ptl) {
4691 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4692 mc.precharge += HPAGE_PMD_NR;
4693 spin_unlock(ptl);
4694 return 0;
4695 }
4696
4697 if (pmd_trans_unstable(pmd))
4698 return 0;
4699 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4700 for (; addr != end; pte++, addr += PAGE_SIZE)
4701 if (get_mctgt_type(vma, addr, *pte, NULL))
4702 mc.precharge++; /* increment precharge temporarily */
4703 pte_unmap_unlock(pte - 1, ptl);
4704 cond_resched();
4705
4706 return 0;
4707 }
4708
4709 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4710 {
4711 unsigned long precharge;
4712
4713 struct mm_walk mem_cgroup_count_precharge_walk = {
4714 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4715 .mm = mm,
4716 };
4717 down_read(&mm->mmap_sem);
4718 walk_page_range(0, mm->highest_vm_end,
4719 &mem_cgroup_count_precharge_walk);
4720 up_read(&mm->mmap_sem);
4721
4722 precharge = mc.precharge;
4723 mc.precharge = 0;
4724
4725 return precharge;
4726 }
4727
4728 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4729 {
4730 unsigned long precharge = mem_cgroup_count_precharge(mm);
4731
4732 VM_BUG_ON(mc.moving_task);
4733 mc.moving_task = current;
4734 return mem_cgroup_do_precharge(precharge);
4735 }
4736
4737 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4738 static void __mem_cgroup_clear_mc(void)
4739 {
4740 struct mem_cgroup *from = mc.from;
4741 struct mem_cgroup *to = mc.to;
4742
4743 /* we must uncharge all the leftover precharges from mc.to */
4744 if (mc.precharge) {
4745 cancel_charge(mc.to, mc.precharge);
4746 mc.precharge = 0;
4747 }
4748 /*
4749 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4750 * we must uncharge here.
4751 */
4752 if (mc.moved_charge) {
4753 cancel_charge(mc.from, mc.moved_charge);
4754 mc.moved_charge = 0;
4755 }
4756 /* we must fixup refcnts and charges */
4757 if (mc.moved_swap) {
4758 /* uncharge swap account from the old cgroup */
4759 if (!mem_cgroup_is_root(mc.from))
4760 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4761
4762 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4763
4764 /*
4765 * we charged both to->memory and to->memsw, so we
4766 * should uncharge to->memory.
4767 */
4768 if (!mem_cgroup_is_root(mc.to))
4769 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4770
4771 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4772 css_put_many(&mc.to->css, mc.moved_swap);
4773
4774 mc.moved_swap = 0;
4775 }
4776 memcg_oom_recover(from);
4777 memcg_oom_recover(to);
4778 wake_up_all(&mc.waitq);
4779 }
4780
4781 static void mem_cgroup_clear_mc(void)
4782 {
4783 struct mm_struct *mm = mc.mm;
4784
4785 /*
4786 * we must clear moving_task before waking up waiters at the end of
4787 * task migration.
4788 */
4789 mc.moving_task = NULL;
4790 __mem_cgroup_clear_mc();
4791 spin_lock(&mc.lock);
4792 mc.from = NULL;
4793 mc.to = NULL;
4794 mc.mm = NULL;
4795 spin_unlock(&mc.lock);
4796
4797 mmput(mm);
4798 }
4799
4800 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4801 {
4802 struct cgroup_subsys_state *css;
4803 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4804 struct mem_cgroup *from;
4805 struct task_struct *leader, *p;
4806 struct mm_struct *mm;
4807 unsigned long move_flags;
4808 int ret = 0;
4809
4810 /* charge immigration isn't supported on the default hierarchy */
4811 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4812 return 0;
4813
4814 /*
4815 * Multi-process migrations only happen on the default hierarchy
4816 * where charge immigration is not used. Perform charge
4817 * immigration if @tset contains a leader and whine if there are
4818 * multiple.
4819 */
4820 p = NULL;
4821 cgroup_taskset_for_each_leader(leader, css, tset) {
4822 WARN_ON_ONCE(p);
4823 p = leader;
4824 memcg = mem_cgroup_from_css(css);
4825 }
4826 if (!p)
4827 return 0;
4828
4829 /*
4830 * We are now commited to this value whatever it is. Changes in this
4831 * tunable will only affect upcoming migrations, not the current one.
4832 * So we need to save it, and keep it going.
4833 */
4834 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4835 if (!move_flags)
4836 return 0;
4837
4838 from = mem_cgroup_from_task(p);
4839
4840 VM_BUG_ON(from == memcg);
4841
4842 mm = get_task_mm(p);
4843 if (!mm)
4844 return 0;
4845 /* We move charges only when we move a owner of the mm */
4846 if (mm->owner == p) {
4847 VM_BUG_ON(mc.from);
4848 VM_BUG_ON(mc.to);
4849 VM_BUG_ON(mc.precharge);
4850 VM_BUG_ON(mc.moved_charge);
4851 VM_BUG_ON(mc.moved_swap);
4852
4853 spin_lock(&mc.lock);
4854 mc.mm = mm;
4855 mc.from = from;
4856 mc.to = memcg;
4857 mc.flags = move_flags;
4858 spin_unlock(&mc.lock);
4859 /* We set mc.moving_task later */
4860
4861 ret = mem_cgroup_precharge_mc(mm);
4862 if (ret)
4863 mem_cgroup_clear_mc();
4864 } else {
4865 mmput(mm);
4866 }
4867 return ret;
4868 }
4869
4870 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4871 {
4872 if (mc.to)
4873 mem_cgroup_clear_mc();
4874 }
4875
4876 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4877 unsigned long addr, unsigned long end,
4878 struct mm_walk *walk)
4879 {
4880 int ret = 0;
4881 struct vm_area_struct *vma = walk->vma;
4882 pte_t *pte;
4883 spinlock_t *ptl;
4884 enum mc_target_type target_type;
4885 union mc_target target;
4886 struct page *page;
4887
4888 ptl = pmd_trans_huge_lock(pmd, vma);
4889 if (ptl) {
4890 if (mc.precharge < HPAGE_PMD_NR) {
4891 spin_unlock(ptl);
4892 return 0;
4893 }
4894 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4895 if (target_type == MC_TARGET_PAGE) {
4896 page = target.page;
4897 if (!isolate_lru_page(page)) {
4898 if (!mem_cgroup_move_account(page, true,
4899 mc.from, mc.to)) {
4900 mc.precharge -= HPAGE_PMD_NR;
4901 mc.moved_charge += HPAGE_PMD_NR;
4902 }
4903 putback_lru_page(page);
4904 }
4905 put_page(page);
4906 }
4907 spin_unlock(ptl);
4908 return 0;
4909 }
4910
4911 if (pmd_trans_unstable(pmd))
4912 return 0;
4913 retry:
4914 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4915 for (; addr != end; addr += PAGE_SIZE) {
4916 pte_t ptent = *(pte++);
4917 swp_entry_t ent;
4918
4919 if (!mc.precharge)
4920 break;
4921
4922 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4923 case MC_TARGET_PAGE:
4924 page = target.page;
4925 /*
4926 * We can have a part of the split pmd here. Moving it
4927 * can be done but it would be too convoluted so simply
4928 * ignore such a partial THP and keep it in original
4929 * memcg. There should be somebody mapping the head.
4930 */
4931 if (PageTransCompound(page))
4932 goto put;
4933 if (isolate_lru_page(page))
4934 goto put;
4935 if (!mem_cgroup_move_account(page, false,
4936 mc.from, mc.to)) {
4937 mc.precharge--;
4938 /* we uncharge from mc.from later. */
4939 mc.moved_charge++;
4940 }
4941 putback_lru_page(page);
4942 put: /* get_mctgt_type() gets the page */
4943 put_page(page);
4944 break;
4945 case MC_TARGET_SWAP:
4946 ent = target.ent;
4947 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4948 mc.precharge--;
4949 /* we fixup refcnts and charges later. */
4950 mc.moved_swap++;
4951 }
4952 break;
4953 default:
4954 break;
4955 }
4956 }
4957 pte_unmap_unlock(pte - 1, ptl);
4958 cond_resched();
4959
4960 if (addr != end) {
4961 /*
4962 * We have consumed all precharges we got in can_attach().
4963 * We try charge one by one, but don't do any additional
4964 * charges to mc.to if we have failed in charge once in attach()
4965 * phase.
4966 */
4967 ret = mem_cgroup_do_precharge(1);
4968 if (!ret)
4969 goto retry;
4970 }
4971
4972 return ret;
4973 }
4974
4975 static void mem_cgroup_move_charge(void)
4976 {
4977 struct mm_walk mem_cgroup_move_charge_walk = {
4978 .pmd_entry = mem_cgroup_move_charge_pte_range,
4979 .mm = mc.mm,
4980 };
4981
4982 lru_add_drain_all();
4983 /*
4984 * Signal lock_page_memcg() to take the memcg's move_lock
4985 * while we're moving its pages to another memcg. Then wait
4986 * for already started RCU-only updates to finish.
4987 */
4988 atomic_inc(&mc.from->moving_account);
4989 synchronize_rcu();
4990 retry:
4991 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4992 /*
4993 * Someone who are holding the mmap_sem might be waiting in
4994 * waitq. So we cancel all extra charges, wake up all waiters,
4995 * and retry. Because we cancel precharges, we might not be able
4996 * to move enough charges, but moving charge is a best-effort
4997 * feature anyway, so it wouldn't be a big problem.
4998 */
4999 __mem_cgroup_clear_mc();
5000 cond_resched();
5001 goto retry;
5002 }
5003 /*
5004 * When we have consumed all precharges and failed in doing
5005 * additional charge, the page walk just aborts.
5006 */
5007 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5008
5009 up_read(&mc.mm->mmap_sem);
5010 atomic_dec(&mc.from->moving_account);
5011 }
5012
5013 static void mem_cgroup_move_task(void)
5014 {
5015 if (mc.to) {
5016 mem_cgroup_move_charge();
5017 mem_cgroup_clear_mc();
5018 }
5019 }
5020 #else /* !CONFIG_MMU */
5021 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5022 {
5023 return 0;
5024 }
5025 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5026 {
5027 }
5028 static void mem_cgroup_move_task(void)
5029 {
5030 }
5031 #endif
5032
5033 /*
5034 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5035 * to verify whether we're attached to the default hierarchy on each mount
5036 * attempt.
5037 */
5038 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5039 {
5040 /*
5041 * use_hierarchy is forced on the default hierarchy. cgroup core
5042 * guarantees that @root doesn't have any children, so turning it
5043 * on for the root memcg is enough.
5044 */
5045 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5046 root_mem_cgroup->use_hierarchy = true;
5047 else
5048 root_mem_cgroup->use_hierarchy = false;
5049 }
5050
5051 static u64 memory_current_read(struct cgroup_subsys_state *css,
5052 struct cftype *cft)
5053 {
5054 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5055
5056 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5057 }
5058
5059 static int memory_low_show(struct seq_file *m, void *v)
5060 {
5061 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5062 unsigned long low = READ_ONCE(memcg->low);
5063
5064 if (low == PAGE_COUNTER_MAX)
5065 seq_puts(m, "max\n");
5066 else
5067 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5068
5069 return 0;
5070 }
5071
5072 static ssize_t memory_low_write(struct kernfs_open_file *of,
5073 char *buf, size_t nbytes, loff_t off)
5074 {
5075 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5076 unsigned long low;
5077 int err;
5078
5079 buf = strstrip(buf);
5080 err = page_counter_memparse(buf, "max", &low);
5081 if (err)
5082 return err;
5083
5084 memcg->low = low;
5085
5086 return nbytes;
5087 }
5088
5089 static int memory_high_show(struct seq_file *m, void *v)
5090 {
5091 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5092 unsigned long high = READ_ONCE(memcg->high);
5093
5094 if (high == PAGE_COUNTER_MAX)
5095 seq_puts(m, "max\n");
5096 else
5097 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5098
5099 return 0;
5100 }
5101
5102 static ssize_t memory_high_write(struct kernfs_open_file *of,
5103 char *buf, size_t nbytes, loff_t off)
5104 {
5105 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5106 unsigned long nr_pages;
5107 unsigned long high;
5108 int err;
5109
5110 buf = strstrip(buf);
5111 err = page_counter_memparse(buf, "max", &high);
5112 if (err)
5113 return err;
5114
5115 memcg->high = high;
5116
5117 nr_pages = page_counter_read(&memcg->memory);
5118 if (nr_pages > high)
5119 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5120 GFP_KERNEL, true);
5121
5122 memcg_wb_domain_size_changed(memcg);
5123 return nbytes;
5124 }
5125
5126 static int memory_max_show(struct seq_file *m, void *v)
5127 {
5128 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5129 unsigned long max = READ_ONCE(memcg->memory.limit);
5130
5131 if (max == PAGE_COUNTER_MAX)
5132 seq_puts(m, "max\n");
5133 else
5134 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5135
5136 return 0;
5137 }
5138
5139 static ssize_t memory_max_write(struct kernfs_open_file *of,
5140 char *buf, size_t nbytes, loff_t off)
5141 {
5142 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5143 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5144 bool drained = false;
5145 unsigned long max;
5146 int err;
5147
5148 buf = strstrip(buf);
5149 err = page_counter_memparse(buf, "max", &max);
5150 if (err)
5151 return err;
5152
5153 xchg(&memcg->memory.limit, max);
5154
5155 for (;;) {
5156 unsigned long nr_pages = page_counter_read(&memcg->memory);
5157
5158 if (nr_pages <= max)
5159 break;
5160
5161 if (signal_pending(current)) {
5162 err = -EINTR;
5163 break;
5164 }
5165
5166 if (!drained) {
5167 drain_all_stock(memcg);
5168 drained = true;
5169 continue;
5170 }
5171
5172 if (nr_reclaims) {
5173 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5174 GFP_KERNEL, true))
5175 nr_reclaims--;
5176 continue;
5177 }
5178
5179 mem_cgroup_event(memcg, MEMCG_OOM);
5180 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5181 break;
5182 }
5183
5184 memcg_wb_domain_size_changed(memcg);
5185 return nbytes;
5186 }
5187
5188 static int memory_events_show(struct seq_file *m, void *v)
5189 {
5190 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5191
5192 seq_printf(m, "low %lu\n", memcg_sum_events(memcg, MEMCG_LOW));
5193 seq_printf(m, "high %lu\n", memcg_sum_events(memcg, MEMCG_HIGH));
5194 seq_printf(m, "max %lu\n", memcg_sum_events(memcg, MEMCG_MAX));
5195 seq_printf(m, "oom %lu\n", memcg_sum_events(memcg, MEMCG_OOM));
5196 seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
5197
5198 return 0;
5199 }
5200
5201 static int memory_stat_show(struct seq_file *m, void *v)
5202 {
5203 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5204 unsigned long stat[MEMCG_NR_STAT];
5205 unsigned long events[MEMCG_NR_EVENTS];
5206 int i;
5207
5208 /*
5209 * Provide statistics on the state of the memory subsystem as
5210 * well as cumulative event counters that show past behavior.
5211 *
5212 * This list is ordered following a combination of these gradients:
5213 * 1) generic big picture -> specifics and details
5214 * 2) reflecting userspace activity -> reflecting kernel heuristics
5215 *
5216 * Current memory state:
5217 */
5218
5219 tree_stat(memcg, stat);
5220 tree_events(memcg, events);
5221
5222 seq_printf(m, "anon %llu\n",
5223 (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5224 seq_printf(m, "file %llu\n",
5225 (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5226 seq_printf(m, "kernel_stack %llu\n",
5227 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5228 seq_printf(m, "slab %llu\n",
5229 (u64)(stat[NR_SLAB_RECLAIMABLE] +
5230 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5231 seq_printf(m, "sock %llu\n",
5232 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5233
5234 seq_printf(m, "shmem %llu\n",
5235 (u64)stat[NR_SHMEM] * PAGE_SIZE);
5236 seq_printf(m, "file_mapped %llu\n",
5237 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5238 seq_printf(m, "file_dirty %llu\n",
5239 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5240 seq_printf(m, "file_writeback %llu\n",
5241 (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5242
5243 for (i = 0; i < NR_LRU_LISTS; i++) {
5244 struct mem_cgroup *mi;
5245 unsigned long val = 0;
5246
5247 for_each_mem_cgroup_tree(mi, memcg)
5248 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5249 seq_printf(m, "%s %llu\n",
5250 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5251 }
5252
5253 seq_printf(m, "slab_reclaimable %llu\n",
5254 (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5255 seq_printf(m, "slab_unreclaimable %llu\n",
5256 (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5257
5258 /* Accumulated memory events */
5259
5260 seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5261 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5262
5263 seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5264 seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5265 events[PGSCAN_DIRECT]);
5266 seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5267 events[PGSTEAL_DIRECT]);
5268 seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5269 seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5270 seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5271 seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5272
5273 seq_printf(m, "workingset_refault %lu\n",
5274 stat[WORKINGSET_REFAULT]);
5275 seq_printf(m, "workingset_activate %lu\n",
5276 stat[WORKINGSET_ACTIVATE]);
5277 seq_printf(m, "workingset_nodereclaim %lu\n",
5278 stat[WORKINGSET_NODERECLAIM]);
5279
5280 return 0;
5281 }
5282
5283 static struct cftype memory_files[] = {
5284 {
5285 .name = "current",
5286 .flags = CFTYPE_NOT_ON_ROOT,
5287 .read_u64 = memory_current_read,
5288 },
5289 {
5290 .name = "low",
5291 .flags = CFTYPE_NOT_ON_ROOT,
5292 .seq_show = memory_low_show,
5293 .write = memory_low_write,
5294 },
5295 {
5296 .name = "high",
5297 .flags = CFTYPE_NOT_ON_ROOT,
5298 .seq_show = memory_high_show,
5299 .write = memory_high_write,
5300 },
5301 {
5302 .name = "max",
5303 .flags = CFTYPE_NOT_ON_ROOT,
5304 .seq_show = memory_max_show,
5305 .write = memory_max_write,
5306 },
5307 {
5308 .name = "events",
5309 .flags = CFTYPE_NOT_ON_ROOT,
5310 .file_offset = offsetof(struct mem_cgroup, events_file),
5311 .seq_show = memory_events_show,
5312 },
5313 {
5314 .name = "stat",
5315 .flags = CFTYPE_NOT_ON_ROOT,
5316 .seq_show = memory_stat_show,
5317 },
5318 { } /* terminate */
5319 };
5320
5321 struct cgroup_subsys memory_cgrp_subsys = {
5322 .css_alloc = mem_cgroup_css_alloc,
5323 .css_online = mem_cgroup_css_online,
5324 .css_offline = mem_cgroup_css_offline,
5325 .css_released = mem_cgroup_css_released,
5326 .css_free = mem_cgroup_css_free,
5327 .css_reset = mem_cgroup_css_reset,
5328 .can_attach = mem_cgroup_can_attach,
5329 .cancel_attach = mem_cgroup_cancel_attach,
5330 .post_attach = mem_cgroup_move_task,
5331 .bind = mem_cgroup_bind,
5332 .dfl_cftypes = memory_files,
5333 .legacy_cftypes = mem_cgroup_legacy_files,
5334 .early_init = 0,
5335 };
5336
5337 /**
5338 * mem_cgroup_low - check if memory consumption is below the normal range
5339 * @root: the top ancestor of the sub-tree being checked
5340 * @memcg: the memory cgroup to check
5341 *
5342 * Returns %true if memory consumption of @memcg, and that of all
5343 * ancestors up to (but not including) @root, is below the normal range.
5344 *
5345 * @root is exclusive; it is never low when looked at directly and isn't
5346 * checked when traversing the hierarchy.
5347 *
5348 * Excluding @root enables using memory.low to prioritize memory usage
5349 * between cgroups within a subtree of the hierarchy that is limited by
5350 * memory.high or memory.max.
5351 *
5352 * For example, given cgroup A with children B and C:
5353 *
5354 * A
5355 * / \
5356 * B C
5357 *
5358 * and
5359 *
5360 * 1. A/memory.current > A/memory.high
5361 * 2. A/B/memory.current < A/B/memory.low
5362 * 3. A/C/memory.current >= A/C/memory.low
5363 *
5364 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
5365 * should reclaim from 'C' until 'A' is no longer high or until we can
5366 * no longer reclaim from 'C'. If 'A', i.e. @root, isn't excluded by
5367 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
5368 * low and we will reclaim indiscriminately from both 'B' and 'C'.
5369 */
5370 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5371 {
5372 if (mem_cgroup_disabled())
5373 return false;
5374
5375 if (!root)
5376 root = root_mem_cgroup;
5377 if (memcg == root)
5378 return false;
5379
5380 for (; memcg != root; memcg = parent_mem_cgroup(memcg)) {
5381 if (page_counter_read(&memcg->memory) >= memcg->low)
5382 return false;
5383 }
5384
5385 return true;
5386 }
5387
5388 /**
5389 * mem_cgroup_try_charge - try charging a page
5390 * @page: page to charge
5391 * @mm: mm context of the victim
5392 * @gfp_mask: reclaim mode
5393 * @memcgp: charged memcg return
5394 * @compound: charge the page as compound or small page
5395 *
5396 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5397 * pages according to @gfp_mask if necessary.
5398 *
5399 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5400 * Otherwise, an error code is returned.
5401 *
5402 * After page->mapping has been set up, the caller must finalize the
5403 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5404 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5405 */
5406 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5407 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5408 bool compound)
5409 {
5410 struct mem_cgroup *memcg = NULL;
5411 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5412 int ret = 0;
5413
5414 if (mem_cgroup_disabled())
5415 goto out;
5416
5417 if (PageSwapCache(page)) {
5418 /*
5419 * Every swap fault against a single page tries to charge the
5420 * page, bail as early as possible. shmem_unuse() encounters
5421 * already charged pages, too. The USED bit is protected by
5422 * the page lock, which serializes swap cache removal, which
5423 * in turn serializes uncharging.
5424 */
5425 VM_BUG_ON_PAGE(!PageLocked(page), page);
5426 if (page->mem_cgroup)
5427 goto out;
5428
5429 if (do_swap_account) {
5430 swp_entry_t ent = { .val = page_private(page), };
5431 unsigned short id = lookup_swap_cgroup_id(ent);
5432
5433 rcu_read_lock();
5434 memcg = mem_cgroup_from_id(id);
5435 if (memcg && !css_tryget_online(&memcg->css))
5436 memcg = NULL;
5437 rcu_read_unlock();
5438 }
5439 }
5440
5441 if (!memcg)
5442 memcg = get_mem_cgroup_from_mm(mm);
5443
5444 ret = try_charge(memcg, gfp_mask, nr_pages);
5445
5446 css_put(&memcg->css);
5447 out:
5448 *memcgp = memcg;
5449 return ret;
5450 }
5451
5452 /**
5453 * mem_cgroup_commit_charge - commit a page charge
5454 * @page: page to charge
5455 * @memcg: memcg to charge the page to
5456 * @lrucare: page might be on LRU already
5457 * @compound: charge the page as compound or small page
5458 *
5459 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5460 * after page->mapping has been set up. This must happen atomically
5461 * as part of the page instantiation, i.e. under the page table lock
5462 * for anonymous pages, under the page lock for page and swap cache.
5463 *
5464 * In addition, the page must not be on the LRU during the commit, to
5465 * prevent racing with task migration. If it might be, use @lrucare.
5466 *
5467 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5468 */
5469 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5470 bool lrucare, bool compound)
5471 {
5472 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5473
5474 VM_BUG_ON_PAGE(!page->mapping, page);
5475 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5476
5477 if (mem_cgroup_disabled())
5478 return;
5479 /*
5480 * Swap faults will attempt to charge the same page multiple
5481 * times. But reuse_swap_page() might have removed the page
5482 * from swapcache already, so we can't check PageSwapCache().
5483 */
5484 if (!memcg)
5485 return;
5486
5487 commit_charge(page, memcg, lrucare);
5488
5489 local_irq_disable();
5490 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5491 memcg_check_events(memcg, page);
5492 local_irq_enable();
5493
5494 if (do_memsw_account() && PageSwapCache(page)) {
5495 swp_entry_t entry = { .val = page_private(page) };
5496 /*
5497 * The swap entry might not get freed for a long time,
5498 * let's not wait for it. The page already received a
5499 * memory+swap charge, drop the swap entry duplicate.
5500 */
5501 mem_cgroup_uncharge_swap(entry, nr_pages);
5502 }
5503 }
5504
5505 /**
5506 * mem_cgroup_cancel_charge - cancel a page charge
5507 * @page: page to charge
5508 * @memcg: memcg to charge the page to
5509 * @compound: charge the page as compound or small page
5510 *
5511 * Cancel a charge transaction started by mem_cgroup_try_charge().
5512 */
5513 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5514 bool compound)
5515 {
5516 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5517
5518 if (mem_cgroup_disabled())
5519 return;
5520 /*
5521 * Swap faults will attempt to charge the same page multiple
5522 * times. But reuse_swap_page() might have removed the page
5523 * from swapcache already, so we can't check PageSwapCache().
5524 */
5525 if (!memcg)
5526 return;
5527
5528 cancel_charge(memcg, nr_pages);
5529 }
5530
5531 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5532 unsigned long nr_anon, unsigned long nr_file,
5533 unsigned long nr_kmem, unsigned long nr_huge,
5534 unsigned long nr_shmem, struct page *dummy_page)
5535 {
5536 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5537 unsigned long flags;
5538
5539 if (!mem_cgroup_is_root(memcg)) {
5540 page_counter_uncharge(&memcg->memory, nr_pages);
5541 if (do_memsw_account())
5542 page_counter_uncharge(&memcg->memsw, nr_pages);
5543 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5544 page_counter_uncharge(&memcg->kmem, nr_kmem);
5545 memcg_oom_recover(memcg);
5546 }
5547
5548 local_irq_save(flags);
5549 __this_cpu_sub(memcg->stat->count[MEMCG_RSS], nr_anon);
5550 __this_cpu_sub(memcg->stat->count[MEMCG_CACHE], nr_file);
5551 __this_cpu_sub(memcg->stat->count[MEMCG_RSS_HUGE], nr_huge);
5552 __this_cpu_sub(memcg->stat->count[NR_SHMEM], nr_shmem);
5553 __this_cpu_add(memcg->stat->events[PGPGOUT], pgpgout);
5554 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5555 memcg_check_events(memcg, dummy_page);
5556 local_irq_restore(flags);
5557
5558 if (!mem_cgroup_is_root(memcg))
5559 css_put_many(&memcg->css, nr_pages);
5560 }
5561
5562 static void uncharge_list(struct list_head *page_list)
5563 {
5564 struct mem_cgroup *memcg = NULL;
5565 unsigned long nr_shmem = 0;
5566 unsigned long nr_anon = 0;
5567 unsigned long nr_file = 0;
5568 unsigned long nr_huge = 0;
5569 unsigned long nr_kmem = 0;
5570 unsigned long pgpgout = 0;
5571 struct list_head *next;
5572 struct page *page;
5573
5574 /*
5575 * Note that the list can be a single page->lru; hence the
5576 * do-while loop instead of a simple list_for_each_entry().
5577 */
5578 next = page_list->next;
5579 do {
5580 page = list_entry(next, struct page, lru);
5581 next = page->lru.next;
5582
5583 VM_BUG_ON_PAGE(PageLRU(page), page);
5584 VM_BUG_ON_PAGE(!PageHWPoison(page) && page_count(page), page);
5585
5586 if (!page->mem_cgroup)
5587 continue;
5588
5589 /*
5590 * Nobody should be changing or seriously looking at
5591 * page->mem_cgroup at this point, we have fully
5592 * exclusive access to the page.
5593 */
5594
5595 if (memcg != page->mem_cgroup) {
5596 if (memcg) {
5597 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5598 nr_kmem, nr_huge, nr_shmem, page);
5599 pgpgout = nr_anon = nr_file = nr_kmem = 0;
5600 nr_huge = nr_shmem = 0;
5601 }
5602 memcg = page->mem_cgroup;
5603 }
5604
5605 if (!PageKmemcg(page)) {
5606 unsigned int nr_pages = 1;
5607
5608 if (PageTransHuge(page)) {
5609 nr_pages <<= compound_order(page);
5610 nr_huge += nr_pages;
5611 }
5612 if (PageAnon(page))
5613 nr_anon += nr_pages;
5614 else {
5615 nr_file += nr_pages;
5616 if (PageSwapBacked(page))
5617 nr_shmem += nr_pages;
5618 }
5619 pgpgout++;
5620 } else {
5621 nr_kmem += 1 << compound_order(page);
5622 __ClearPageKmemcg(page);
5623 }
5624
5625 page->mem_cgroup = NULL;
5626 } while (next != page_list);
5627
5628 if (memcg)
5629 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5630 nr_kmem, nr_huge, nr_shmem, page);
5631 }
5632
5633 /**
5634 * mem_cgroup_uncharge - uncharge a page
5635 * @page: page to uncharge
5636 *
5637 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5638 * mem_cgroup_commit_charge().
5639 */
5640 void mem_cgroup_uncharge(struct page *page)
5641 {
5642 if (mem_cgroup_disabled())
5643 return;
5644
5645 /* Don't touch page->lru of any random page, pre-check: */
5646 if (!page->mem_cgroup)
5647 return;
5648
5649 INIT_LIST_HEAD(&page->lru);
5650 uncharge_list(&page->lru);
5651 }
5652
5653 /**
5654 * mem_cgroup_uncharge_list - uncharge a list of page
5655 * @page_list: list of pages to uncharge
5656 *
5657 * Uncharge a list of pages previously charged with
5658 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5659 */
5660 void mem_cgroup_uncharge_list(struct list_head *page_list)
5661 {
5662 if (mem_cgroup_disabled())
5663 return;
5664
5665 if (!list_empty(page_list))
5666 uncharge_list(page_list);
5667 }
5668
5669 /**
5670 * mem_cgroup_migrate - charge a page's replacement
5671 * @oldpage: currently circulating page
5672 * @newpage: replacement page
5673 *
5674 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5675 * be uncharged upon free.
5676 *
5677 * Both pages must be locked, @newpage->mapping must be set up.
5678 */
5679 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5680 {
5681 struct mem_cgroup *memcg;
5682 unsigned int nr_pages;
5683 bool compound;
5684 unsigned long flags;
5685
5686 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5687 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5688 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5689 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5690 newpage);
5691
5692 if (mem_cgroup_disabled())
5693 return;
5694
5695 /* Page cache replacement: new page already charged? */
5696 if (newpage->mem_cgroup)
5697 return;
5698
5699 /* Swapcache readahead pages can get replaced before being charged */
5700 memcg = oldpage->mem_cgroup;
5701 if (!memcg)
5702 return;
5703
5704 /* Force-charge the new page. The old one will be freed soon */
5705 compound = PageTransHuge(newpage);
5706 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5707
5708 page_counter_charge(&memcg->memory, nr_pages);
5709 if (do_memsw_account())
5710 page_counter_charge(&memcg->memsw, nr_pages);
5711 css_get_many(&memcg->css, nr_pages);
5712
5713 commit_charge(newpage, memcg, false);
5714
5715 local_irq_save(flags);
5716 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5717 memcg_check_events(memcg, newpage);
5718 local_irq_restore(flags);
5719 }
5720
5721 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5722 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5723
5724 void mem_cgroup_sk_alloc(struct sock *sk)
5725 {
5726 struct mem_cgroup *memcg;
5727
5728 if (!mem_cgroup_sockets_enabled)
5729 return;
5730
5731 /*
5732 * Socket cloning can throw us here with sk_memcg already
5733 * filled. It won't however, necessarily happen from
5734 * process context. So the test for root memcg given
5735 * the current task's memcg won't help us in this case.
5736 *
5737 * Respecting the original socket's memcg is a better
5738 * decision in this case.
5739 */
5740 if (sk->sk_memcg) {
5741 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5742 css_get(&sk->sk_memcg->css);
5743 return;
5744 }
5745
5746 rcu_read_lock();
5747 memcg = mem_cgroup_from_task(current);
5748 if (memcg == root_mem_cgroup)
5749 goto out;
5750 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5751 goto out;
5752 if (css_tryget_online(&memcg->css))
5753 sk->sk_memcg = memcg;
5754 out:
5755 rcu_read_unlock();
5756 }
5757
5758 void mem_cgroup_sk_free(struct sock *sk)
5759 {
5760 if (sk->sk_memcg)
5761 css_put(&sk->sk_memcg->css);
5762 }
5763
5764 /**
5765 * mem_cgroup_charge_skmem - charge socket memory
5766 * @memcg: memcg to charge
5767 * @nr_pages: number of pages to charge
5768 *
5769 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5770 * @memcg's configured limit, %false if the charge had to be forced.
5771 */
5772 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5773 {
5774 gfp_t gfp_mask = GFP_KERNEL;
5775
5776 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5777 struct page_counter *fail;
5778
5779 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5780 memcg->tcpmem_pressure = 0;
5781 return true;
5782 }
5783 page_counter_charge(&memcg->tcpmem, nr_pages);
5784 memcg->tcpmem_pressure = 1;
5785 return false;
5786 }
5787
5788 /* Don't block in the packet receive path */
5789 if (in_softirq())
5790 gfp_mask = GFP_NOWAIT;
5791
5792 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5793
5794 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5795 return true;
5796
5797 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5798 return false;
5799 }
5800
5801 /**
5802 * mem_cgroup_uncharge_skmem - uncharge socket memory
5803 * @memcg - memcg to uncharge
5804 * @nr_pages - number of pages to uncharge
5805 */
5806 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5807 {
5808 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5809 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5810 return;
5811 }
5812
5813 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5814
5815 page_counter_uncharge(&memcg->memory, nr_pages);
5816 css_put_many(&memcg->css, nr_pages);
5817 }
5818
5819 static int __init cgroup_memory(char *s)
5820 {
5821 char *token;
5822
5823 while ((token = strsep(&s, ",")) != NULL) {
5824 if (!*token)
5825 continue;
5826 if (!strcmp(token, "nosocket"))
5827 cgroup_memory_nosocket = true;
5828 if (!strcmp(token, "nokmem"))
5829 cgroup_memory_nokmem = true;
5830 }
5831 return 0;
5832 }
5833 __setup("cgroup.memory=", cgroup_memory);
5834
5835 /*
5836 * subsys_initcall() for memory controller.
5837 *
5838 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5839 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5840 * basically everything that doesn't depend on a specific mem_cgroup structure
5841 * should be initialized from here.
5842 */
5843 static int __init mem_cgroup_init(void)
5844 {
5845 int cpu, node;
5846
5847 #ifndef CONFIG_SLOB
5848 /*
5849 * Kmem cache creation is mostly done with the slab_mutex held,
5850 * so use a workqueue with limited concurrency to avoid stalling
5851 * all worker threads in case lots of cgroups are created and
5852 * destroyed simultaneously.
5853 */
5854 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5855 BUG_ON(!memcg_kmem_cache_wq);
5856 #endif
5857
5858 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5859 memcg_hotplug_cpu_dead);
5860
5861 for_each_possible_cpu(cpu)
5862 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5863 drain_local_stock);
5864
5865 for_each_node(node) {
5866 struct mem_cgroup_tree_per_node *rtpn;
5867
5868 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5869 node_online(node) ? node : NUMA_NO_NODE);
5870
5871 rtpn->rb_root = RB_ROOT;
5872 spin_lock_init(&rtpn->lock);
5873 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5874 }
5875
5876 return 0;
5877 }
5878 subsys_initcall(mem_cgroup_init);
5879
5880 #ifdef CONFIG_MEMCG_SWAP
5881 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5882 {
5883 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5884 /*
5885 * The root cgroup cannot be destroyed, so it's refcount must
5886 * always be >= 1.
5887 */
5888 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5889 VM_BUG_ON(1);
5890 break;
5891 }
5892 memcg = parent_mem_cgroup(memcg);
5893 if (!memcg)
5894 memcg = root_mem_cgroup;
5895 }
5896 return memcg;
5897 }
5898
5899 /**
5900 * mem_cgroup_swapout - transfer a memsw charge to swap
5901 * @page: page whose memsw charge to transfer
5902 * @entry: swap entry to move the charge to
5903 *
5904 * Transfer the memsw charge of @page to @entry.
5905 */
5906 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5907 {
5908 struct mem_cgroup *memcg, *swap_memcg;
5909 unsigned short oldid;
5910
5911 VM_BUG_ON_PAGE(PageLRU(page), page);
5912 VM_BUG_ON_PAGE(page_count(page), page);
5913
5914 if (!do_memsw_account())
5915 return;
5916
5917 memcg = page->mem_cgroup;
5918
5919 /* Readahead page, never charged */
5920 if (!memcg)
5921 return;
5922
5923 /*
5924 * In case the memcg owning these pages has been offlined and doesn't
5925 * have an ID allocated to it anymore, charge the closest online
5926 * ancestor for the swap instead and transfer the memory+swap charge.
5927 */
5928 swap_memcg = mem_cgroup_id_get_online(memcg);
5929 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 1);
5930 VM_BUG_ON_PAGE(oldid, page);
5931 mem_cgroup_swap_statistics(swap_memcg, 1);
5932
5933 page->mem_cgroup = NULL;
5934
5935 if (!mem_cgroup_is_root(memcg))
5936 page_counter_uncharge(&memcg->memory, 1);
5937
5938 if (memcg != swap_memcg) {
5939 if (!mem_cgroup_is_root(swap_memcg))
5940 page_counter_charge(&swap_memcg->memsw, 1);
5941 page_counter_uncharge(&memcg->memsw, 1);
5942 }
5943
5944 /*
5945 * Interrupts should be disabled here because the caller holds the
5946 * mapping->tree_lock lock which is taken with interrupts-off. It is
5947 * important here to have the interrupts disabled because it is the
5948 * only synchronisation we have for udpating the per-CPU variables.
5949 */
5950 VM_BUG_ON(!irqs_disabled());
5951 mem_cgroup_charge_statistics(memcg, page, false, -1);
5952 memcg_check_events(memcg, page);
5953
5954 if (!mem_cgroup_is_root(memcg))
5955 css_put(&memcg->css);
5956 }
5957
5958 /**
5959 * mem_cgroup_try_charge_swap - try charging swap space for a page
5960 * @page: page being added to swap
5961 * @entry: swap entry to charge
5962 *
5963 * Try to charge @page's memcg for the swap space at @entry.
5964 *
5965 * Returns 0 on success, -ENOMEM on failure.
5966 */
5967 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5968 {
5969 unsigned int nr_pages = hpage_nr_pages(page);
5970 struct page_counter *counter;
5971 struct mem_cgroup *memcg;
5972 unsigned short oldid;
5973
5974 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5975 return 0;
5976
5977 memcg = page->mem_cgroup;
5978
5979 /* Readahead page, never charged */
5980 if (!memcg)
5981 return 0;
5982
5983 memcg = mem_cgroup_id_get_online(memcg);
5984
5985 if (!mem_cgroup_is_root(memcg) &&
5986 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5987 mem_cgroup_id_put(memcg);
5988 return -ENOMEM;
5989 }
5990
5991 /* Get references for the tail pages, too */
5992 if (nr_pages > 1)
5993 mem_cgroup_id_get_many(memcg, nr_pages - 1);
5994 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
5995 VM_BUG_ON_PAGE(oldid, page);
5996 mem_cgroup_swap_statistics(memcg, nr_pages);
5997
5998 return 0;
5999 }
6000
6001 /**
6002 * mem_cgroup_uncharge_swap - uncharge swap space
6003 * @entry: swap entry to uncharge
6004 * @nr_pages: the amount of swap space to uncharge
6005 */
6006 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6007 {
6008 struct mem_cgroup *memcg;
6009 unsigned short id;
6010
6011 if (!do_swap_account)
6012 return;
6013
6014 id = swap_cgroup_record(entry, 0, nr_pages);
6015 rcu_read_lock();
6016 memcg = mem_cgroup_from_id(id);
6017 if (memcg) {
6018 if (!mem_cgroup_is_root(memcg)) {
6019 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6020 page_counter_uncharge(&memcg->swap, nr_pages);
6021 else
6022 page_counter_uncharge(&memcg->memsw, nr_pages);
6023 }
6024 mem_cgroup_swap_statistics(memcg, -nr_pages);
6025 mem_cgroup_id_put_many(memcg, nr_pages);
6026 }
6027 rcu_read_unlock();
6028 }
6029
6030 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6031 {
6032 long nr_swap_pages = get_nr_swap_pages();
6033
6034 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6035 return nr_swap_pages;
6036 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6037 nr_swap_pages = min_t(long, nr_swap_pages,
6038 READ_ONCE(memcg->swap.limit) -
6039 page_counter_read(&memcg->swap));
6040 return nr_swap_pages;
6041 }
6042
6043 bool mem_cgroup_swap_full(struct page *page)
6044 {
6045 struct mem_cgroup *memcg;
6046
6047 VM_BUG_ON_PAGE(!PageLocked(page), page);
6048
6049 if (vm_swap_full())
6050 return true;
6051 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6052 return false;
6053
6054 memcg = page->mem_cgroup;
6055 if (!memcg)
6056 return false;
6057
6058 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6059 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
6060 return true;
6061
6062 return false;
6063 }
6064
6065 /* for remember boot option*/
6066 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6067 static int really_do_swap_account __initdata = 1;
6068 #else
6069 static int really_do_swap_account __initdata;
6070 #endif
6071
6072 static int __init enable_swap_account(char *s)
6073 {
6074 if (!strcmp(s, "1"))
6075 really_do_swap_account = 1;
6076 else if (!strcmp(s, "0"))
6077 really_do_swap_account = 0;
6078 return 1;
6079 }
6080 __setup("swapaccount=", enable_swap_account);
6081
6082 static u64 swap_current_read(struct cgroup_subsys_state *css,
6083 struct cftype *cft)
6084 {
6085 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6086
6087 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6088 }
6089
6090 static int swap_max_show(struct seq_file *m, void *v)
6091 {
6092 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6093 unsigned long max = READ_ONCE(memcg->swap.limit);
6094
6095 if (max == PAGE_COUNTER_MAX)
6096 seq_puts(m, "max\n");
6097 else
6098 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6099
6100 return 0;
6101 }
6102
6103 static ssize_t swap_max_write(struct kernfs_open_file *of,
6104 char *buf, size_t nbytes, loff_t off)
6105 {
6106 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6107 unsigned long max;
6108 int err;
6109
6110 buf = strstrip(buf);
6111 err = page_counter_memparse(buf, "max", &max);
6112 if (err)
6113 return err;
6114
6115 mutex_lock(&memcg_limit_mutex);
6116 err = page_counter_limit(&memcg->swap, max);
6117 mutex_unlock(&memcg_limit_mutex);
6118 if (err)
6119 return err;
6120
6121 return nbytes;
6122 }
6123
6124 static struct cftype swap_files[] = {
6125 {
6126 .name = "swap.current",
6127 .flags = CFTYPE_NOT_ON_ROOT,
6128 .read_u64 = swap_current_read,
6129 },
6130 {
6131 .name = "swap.max",
6132 .flags = CFTYPE_NOT_ON_ROOT,
6133 .seq_show = swap_max_show,
6134 .write = swap_max_write,
6135 },
6136 { } /* terminate */
6137 };
6138
6139 static struct cftype memsw_cgroup_files[] = {
6140 {
6141 .name = "memsw.usage_in_bytes",
6142 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6143 .read_u64 = mem_cgroup_read_u64,
6144 },
6145 {
6146 .name = "memsw.max_usage_in_bytes",
6147 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6148 .write = mem_cgroup_reset,
6149 .read_u64 = mem_cgroup_read_u64,
6150 },
6151 {
6152 .name = "memsw.limit_in_bytes",
6153 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6154 .write = mem_cgroup_write,
6155 .read_u64 = mem_cgroup_read_u64,
6156 },
6157 {
6158 .name = "memsw.failcnt",
6159 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6160 .write = mem_cgroup_reset,
6161 .read_u64 = mem_cgroup_read_u64,
6162 },
6163 { }, /* terminate */
6164 };
6165
6166 static int __init mem_cgroup_swap_init(void)
6167 {
6168 if (!mem_cgroup_disabled() && really_do_swap_account) {
6169 do_swap_account = 1;
6170 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6171 swap_files));
6172 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6173 memsw_cgroup_files));
6174 }
6175 return 0;
6176 }
6177 subsys_initcall(mem_cgroup_swap_init);
6178
6179 #endif /* CONFIG_MEMCG_SWAP */