]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/memcontrol.c
Merge branch 'akpm' (patches from Andrew)
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <linux/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account 0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
129
130 /*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135 struct mem_cgroup_tree_per_node {
136 struct rb_root rb_root;
137 spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree {
141 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
142 };
143
144 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
145
146 /* for OOM */
147 struct mem_cgroup_eventfd_list {
148 struct list_head list;
149 struct eventfd_ctx *eventfd;
150 };
151
152 /*
153 * cgroup_event represents events which userspace want to receive.
154 */
155 struct mem_cgroup_event {
156 /*
157 * memcg which the event belongs to.
158 */
159 struct mem_cgroup *memcg;
160 /*
161 * eventfd to signal userspace about the event.
162 */
163 struct eventfd_ctx *eventfd;
164 /*
165 * Each of these stored in a list by the cgroup.
166 */
167 struct list_head list;
168 /*
169 * register_event() callback will be used to add new userspace
170 * waiter for changes related to this event. Use eventfd_signal()
171 * on eventfd to send notification to userspace.
172 */
173 int (*register_event)(struct mem_cgroup *memcg,
174 struct eventfd_ctx *eventfd, const char *args);
175 /*
176 * unregister_event() callback will be called when userspace closes
177 * the eventfd or on cgroup removing. This callback must be set,
178 * if you want provide notification functionality.
179 */
180 void (*unregister_event)(struct mem_cgroup *memcg,
181 struct eventfd_ctx *eventfd);
182 /*
183 * All fields below needed to unregister event when
184 * userspace closes eventfd.
185 */
186 poll_table pt;
187 wait_queue_head_t *wqh;
188 wait_queue_t wait;
189 struct work_struct remove;
190 };
191
192 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
194
195 /* Stuffs for move charges at task migration. */
196 /*
197 * Types of charges to be moved.
198 */
199 #define MOVE_ANON 0x1U
200 #define MOVE_FILE 0x2U
201 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
202
203 /* "mc" and its members are protected by cgroup_mutex */
204 static struct move_charge_struct {
205 spinlock_t lock; /* for from, to */
206 struct mm_struct *mm;
207 struct mem_cgroup *from;
208 struct mem_cgroup *to;
209 unsigned long flags;
210 unsigned long precharge;
211 unsigned long moved_charge;
212 unsigned long moved_swap;
213 struct task_struct *moving_task; /* a task moving charges */
214 wait_queue_head_t waitq; /* a waitq for other context */
215 } mc = {
216 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
217 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
218 };
219
220 /*
221 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222 * limit reclaim to prevent infinite loops, if they ever occur.
223 */
224 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
225 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
226
227 enum charge_type {
228 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
229 MEM_CGROUP_CHARGE_TYPE_ANON,
230 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
231 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
232 NR_CHARGE_TYPE,
233 };
234
235 /* for encoding cft->private value on file */
236 enum res_type {
237 _MEM,
238 _MEMSWAP,
239 _OOM_TYPE,
240 _KMEM,
241 _TCP,
242 };
243
244 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
246 #define MEMFILE_ATTR(val) ((val) & 0xffff)
247 /* Used for OOM nofiier */
248 #define OOM_CONTROL (0)
249
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252 {
253 if (!memcg)
254 memcg = root_mem_cgroup;
255 return &memcg->vmpressure;
256 }
257
258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259 {
260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261 }
262
263 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
264 {
265 return (memcg == root_mem_cgroup);
266 }
267
268 #ifndef CONFIG_SLOB
269 /*
270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
271 * The main reason for not using cgroup id for this:
272 * this works better in sparse environments, where we have a lot of memcgs,
273 * but only a few kmem-limited. Or also, if we have, for instance, 200
274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
275 * 200 entry array for that.
276 *
277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
278 * will double each time we have to increase it.
279 */
280 static DEFINE_IDA(memcg_cache_ida);
281 int memcg_nr_cache_ids;
282
283 /* Protects memcg_nr_cache_ids */
284 static DECLARE_RWSEM(memcg_cache_ids_sem);
285
286 void memcg_get_cache_ids(void)
287 {
288 down_read(&memcg_cache_ids_sem);
289 }
290
291 void memcg_put_cache_ids(void)
292 {
293 up_read(&memcg_cache_ids_sem);
294 }
295
296 /*
297 * MIN_SIZE is different than 1, because we would like to avoid going through
298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
299 * cgroups is a reasonable guess. In the future, it could be a parameter or
300 * tunable, but that is strictly not necessary.
301 *
302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303 * this constant directly from cgroup, but it is understandable that this is
304 * better kept as an internal representation in cgroup.c. In any case, the
305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
306 * increase ours as well if it increases.
307 */
308 #define MEMCG_CACHES_MIN_SIZE 4
309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
310
311 /*
312 * A lot of the calls to the cache allocation functions are expected to be
313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314 * conditional to this static branch, we'll have to allow modules that does
315 * kmem_cache_alloc and the such to see this symbol as well
316 */
317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318 EXPORT_SYMBOL(memcg_kmem_enabled_key);
319
320 #endif /* !CONFIG_SLOB */
321
322 /**
323 * mem_cgroup_css_from_page - css of the memcg associated with a page
324 * @page: page of interest
325 *
326 * If memcg is bound to the default hierarchy, css of the memcg associated
327 * with @page is returned. The returned css remains associated with @page
328 * until it is released.
329 *
330 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
331 * is returned.
332 */
333 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
334 {
335 struct mem_cgroup *memcg;
336
337 memcg = page->mem_cgroup;
338
339 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
340 memcg = root_mem_cgroup;
341
342 return &memcg->css;
343 }
344
345 /**
346 * page_cgroup_ino - return inode number of the memcg a page is charged to
347 * @page: the page
348 *
349 * Look up the closest online ancestor of the memory cgroup @page is charged to
350 * and return its inode number or 0 if @page is not charged to any cgroup. It
351 * is safe to call this function without holding a reference to @page.
352 *
353 * Note, this function is inherently racy, because there is nothing to prevent
354 * the cgroup inode from getting torn down and potentially reallocated a moment
355 * after page_cgroup_ino() returns, so it only should be used by callers that
356 * do not care (such as procfs interfaces).
357 */
358 ino_t page_cgroup_ino(struct page *page)
359 {
360 struct mem_cgroup *memcg;
361 unsigned long ino = 0;
362
363 rcu_read_lock();
364 memcg = READ_ONCE(page->mem_cgroup);
365 while (memcg && !(memcg->css.flags & CSS_ONLINE))
366 memcg = parent_mem_cgroup(memcg);
367 if (memcg)
368 ino = cgroup_ino(memcg->css.cgroup);
369 rcu_read_unlock();
370 return ino;
371 }
372
373 static struct mem_cgroup_per_node *
374 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
375 {
376 int nid = page_to_nid(page);
377
378 return memcg->nodeinfo[nid];
379 }
380
381 static struct mem_cgroup_tree_per_node *
382 soft_limit_tree_node(int nid)
383 {
384 return soft_limit_tree.rb_tree_per_node[nid];
385 }
386
387 static struct mem_cgroup_tree_per_node *
388 soft_limit_tree_from_page(struct page *page)
389 {
390 int nid = page_to_nid(page);
391
392 return soft_limit_tree.rb_tree_per_node[nid];
393 }
394
395 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
396 struct mem_cgroup_tree_per_node *mctz,
397 unsigned long new_usage_in_excess)
398 {
399 struct rb_node **p = &mctz->rb_root.rb_node;
400 struct rb_node *parent = NULL;
401 struct mem_cgroup_per_node *mz_node;
402
403 if (mz->on_tree)
404 return;
405
406 mz->usage_in_excess = new_usage_in_excess;
407 if (!mz->usage_in_excess)
408 return;
409 while (*p) {
410 parent = *p;
411 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
412 tree_node);
413 if (mz->usage_in_excess < mz_node->usage_in_excess)
414 p = &(*p)->rb_left;
415 /*
416 * We can't avoid mem cgroups that are over their soft
417 * limit by the same amount
418 */
419 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
420 p = &(*p)->rb_right;
421 }
422 rb_link_node(&mz->tree_node, parent, p);
423 rb_insert_color(&mz->tree_node, &mctz->rb_root);
424 mz->on_tree = true;
425 }
426
427 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
428 struct mem_cgroup_tree_per_node *mctz)
429 {
430 if (!mz->on_tree)
431 return;
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
434 }
435
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
438 {
439 unsigned long flags;
440
441 spin_lock_irqsave(&mctz->lock, flags);
442 __mem_cgroup_remove_exceeded(mz, mctz);
443 spin_unlock_irqrestore(&mctz->lock, flags);
444 }
445
446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447 {
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 unsigned long excess = 0;
451
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
454
455 return excess;
456 }
457
458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459 {
460 unsigned long excess;
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
463
464 mctz = soft_limit_tree_from_page(page);
465 /*
466 * Necessary to update all ancestors when hierarchy is used.
467 * because their event counter is not touched.
468 */
469 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
470 mz = mem_cgroup_page_nodeinfo(memcg, page);
471 excess = soft_limit_excess(memcg);
472 /*
473 * We have to update the tree if mz is on RB-tree or
474 * mem is over its softlimit.
475 */
476 if (excess || mz->on_tree) {
477 unsigned long flags;
478
479 spin_lock_irqsave(&mctz->lock, flags);
480 /* if on-tree, remove it */
481 if (mz->on_tree)
482 __mem_cgroup_remove_exceeded(mz, mctz);
483 /*
484 * Insert again. mz->usage_in_excess will be updated.
485 * If excess is 0, no tree ops.
486 */
487 __mem_cgroup_insert_exceeded(mz, mctz, excess);
488 spin_unlock_irqrestore(&mctz->lock, flags);
489 }
490 }
491 }
492
493 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
494 {
495 struct mem_cgroup_tree_per_node *mctz;
496 struct mem_cgroup_per_node *mz;
497 int nid;
498
499 for_each_node(nid) {
500 mz = mem_cgroup_nodeinfo(memcg, nid);
501 mctz = soft_limit_tree_node(nid);
502 mem_cgroup_remove_exceeded(mz, mctz);
503 }
504 }
505
506 static struct mem_cgroup_per_node *
507 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
508 {
509 struct rb_node *rightmost = NULL;
510 struct mem_cgroup_per_node *mz;
511
512 retry:
513 mz = NULL;
514 rightmost = rb_last(&mctz->rb_root);
515 if (!rightmost)
516 goto done; /* Nothing to reclaim from */
517
518 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
519 /*
520 * Remove the node now but someone else can add it back,
521 * we will to add it back at the end of reclaim to its correct
522 * position in the tree.
523 */
524 __mem_cgroup_remove_exceeded(mz, mctz);
525 if (!soft_limit_excess(mz->memcg) ||
526 !css_tryget_online(&mz->memcg->css))
527 goto retry;
528 done:
529 return mz;
530 }
531
532 static struct mem_cgroup_per_node *
533 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
534 {
535 struct mem_cgroup_per_node *mz;
536
537 spin_lock_irq(&mctz->lock);
538 mz = __mem_cgroup_largest_soft_limit_node(mctz);
539 spin_unlock_irq(&mctz->lock);
540 return mz;
541 }
542
543 /*
544 * Return page count for single (non recursive) @memcg.
545 *
546 * Implementation Note: reading percpu statistics for memcg.
547 *
548 * Both of vmstat[] and percpu_counter has threshold and do periodic
549 * synchronization to implement "quick" read. There are trade-off between
550 * reading cost and precision of value. Then, we may have a chance to implement
551 * a periodic synchronization of counter in memcg's counter.
552 *
553 * But this _read() function is used for user interface now. The user accounts
554 * memory usage by memory cgroup and he _always_ requires exact value because
555 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
556 * have to visit all online cpus and make sum. So, for now, unnecessary
557 * synchronization is not implemented. (just implemented for cpu hotplug)
558 *
559 * If there are kernel internal actions which can make use of some not-exact
560 * value, and reading all cpu value can be performance bottleneck in some
561 * common workload, threshold and synchronization as vmstat[] should be
562 * implemented.
563 */
564 static unsigned long
565 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
566 {
567 long val = 0;
568 int cpu;
569
570 /* Per-cpu values can be negative, use a signed accumulator */
571 for_each_possible_cpu(cpu)
572 val += per_cpu(memcg->stat->count[idx], cpu);
573 /*
574 * Summing races with updates, so val may be negative. Avoid exposing
575 * transient negative values.
576 */
577 if (val < 0)
578 val = 0;
579 return val;
580 }
581
582 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
583 enum mem_cgroup_events_index idx)
584 {
585 unsigned long val = 0;
586 int cpu;
587
588 for_each_possible_cpu(cpu)
589 val += per_cpu(memcg->stat->events[idx], cpu);
590 return val;
591 }
592
593 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
594 struct page *page,
595 bool compound, int nr_pages)
596 {
597 /*
598 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
599 * counted as CACHE even if it's on ANON LRU.
600 */
601 if (PageAnon(page))
602 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
603 nr_pages);
604 else
605 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
606 nr_pages);
607
608 if (compound) {
609 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
610 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
611 nr_pages);
612 }
613
614 /* pagein of a big page is an event. So, ignore page size */
615 if (nr_pages > 0)
616 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
617 else {
618 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
619 nr_pages = -nr_pages; /* for event */
620 }
621
622 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
623 }
624
625 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
626 int nid, unsigned int lru_mask)
627 {
628 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
629 unsigned long nr = 0;
630 enum lru_list lru;
631
632 VM_BUG_ON((unsigned)nid >= nr_node_ids);
633
634 for_each_lru(lru) {
635 if (!(BIT(lru) & lru_mask))
636 continue;
637 nr += mem_cgroup_get_lru_size(lruvec, lru);
638 }
639 return nr;
640 }
641
642 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
643 unsigned int lru_mask)
644 {
645 unsigned long nr = 0;
646 int nid;
647
648 for_each_node_state(nid, N_MEMORY)
649 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
650 return nr;
651 }
652
653 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
654 enum mem_cgroup_events_target target)
655 {
656 unsigned long val, next;
657
658 val = __this_cpu_read(memcg->stat->nr_page_events);
659 next = __this_cpu_read(memcg->stat->targets[target]);
660 /* from time_after() in jiffies.h */
661 if ((long)next - (long)val < 0) {
662 switch (target) {
663 case MEM_CGROUP_TARGET_THRESH:
664 next = val + THRESHOLDS_EVENTS_TARGET;
665 break;
666 case MEM_CGROUP_TARGET_SOFTLIMIT:
667 next = val + SOFTLIMIT_EVENTS_TARGET;
668 break;
669 case MEM_CGROUP_TARGET_NUMAINFO:
670 next = val + NUMAINFO_EVENTS_TARGET;
671 break;
672 default:
673 break;
674 }
675 __this_cpu_write(memcg->stat->targets[target], next);
676 return true;
677 }
678 return false;
679 }
680
681 /*
682 * Check events in order.
683 *
684 */
685 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
686 {
687 /* threshold event is triggered in finer grain than soft limit */
688 if (unlikely(mem_cgroup_event_ratelimit(memcg,
689 MEM_CGROUP_TARGET_THRESH))) {
690 bool do_softlimit;
691 bool do_numainfo __maybe_unused;
692
693 do_softlimit = mem_cgroup_event_ratelimit(memcg,
694 MEM_CGROUP_TARGET_SOFTLIMIT);
695 #if MAX_NUMNODES > 1
696 do_numainfo = mem_cgroup_event_ratelimit(memcg,
697 MEM_CGROUP_TARGET_NUMAINFO);
698 #endif
699 mem_cgroup_threshold(memcg);
700 if (unlikely(do_softlimit))
701 mem_cgroup_update_tree(memcg, page);
702 #if MAX_NUMNODES > 1
703 if (unlikely(do_numainfo))
704 atomic_inc(&memcg->numainfo_events);
705 #endif
706 }
707 }
708
709 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
710 {
711 /*
712 * mm_update_next_owner() may clear mm->owner to NULL
713 * if it races with swapoff, page migration, etc.
714 * So this can be called with p == NULL.
715 */
716 if (unlikely(!p))
717 return NULL;
718
719 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
720 }
721 EXPORT_SYMBOL(mem_cgroup_from_task);
722
723 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
724 {
725 struct mem_cgroup *memcg = NULL;
726
727 rcu_read_lock();
728 do {
729 /*
730 * Page cache insertions can happen withou an
731 * actual mm context, e.g. during disk probing
732 * on boot, loopback IO, acct() writes etc.
733 */
734 if (unlikely(!mm))
735 memcg = root_mem_cgroup;
736 else {
737 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
738 if (unlikely(!memcg))
739 memcg = root_mem_cgroup;
740 }
741 } while (!css_tryget_online(&memcg->css));
742 rcu_read_unlock();
743 return memcg;
744 }
745
746 /**
747 * mem_cgroup_iter - iterate over memory cgroup hierarchy
748 * @root: hierarchy root
749 * @prev: previously returned memcg, NULL on first invocation
750 * @reclaim: cookie for shared reclaim walks, NULL for full walks
751 *
752 * Returns references to children of the hierarchy below @root, or
753 * @root itself, or %NULL after a full round-trip.
754 *
755 * Caller must pass the return value in @prev on subsequent
756 * invocations for reference counting, or use mem_cgroup_iter_break()
757 * to cancel a hierarchy walk before the round-trip is complete.
758 *
759 * Reclaimers can specify a zone and a priority level in @reclaim to
760 * divide up the memcgs in the hierarchy among all concurrent
761 * reclaimers operating on the same zone and priority.
762 */
763 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
764 struct mem_cgroup *prev,
765 struct mem_cgroup_reclaim_cookie *reclaim)
766 {
767 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
768 struct cgroup_subsys_state *css = NULL;
769 struct mem_cgroup *memcg = NULL;
770 struct mem_cgroup *pos = NULL;
771
772 if (mem_cgroup_disabled())
773 return NULL;
774
775 if (!root)
776 root = root_mem_cgroup;
777
778 if (prev && !reclaim)
779 pos = prev;
780
781 if (!root->use_hierarchy && root != root_mem_cgroup) {
782 if (prev)
783 goto out;
784 return root;
785 }
786
787 rcu_read_lock();
788
789 if (reclaim) {
790 struct mem_cgroup_per_node *mz;
791
792 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
793 iter = &mz->iter[reclaim->priority];
794
795 if (prev && reclaim->generation != iter->generation)
796 goto out_unlock;
797
798 while (1) {
799 pos = READ_ONCE(iter->position);
800 if (!pos || css_tryget(&pos->css))
801 break;
802 /*
803 * css reference reached zero, so iter->position will
804 * be cleared by ->css_released. However, we should not
805 * rely on this happening soon, because ->css_released
806 * is called from a work queue, and by busy-waiting we
807 * might block it. So we clear iter->position right
808 * away.
809 */
810 (void)cmpxchg(&iter->position, pos, NULL);
811 }
812 }
813
814 if (pos)
815 css = &pos->css;
816
817 for (;;) {
818 css = css_next_descendant_pre(css, &root->css);
819 if (!css) {
820 /*
821 * Reclaimers share the hierarchy walk, and a
822 * new one might jump in right at the end of
823 * the hierarchy - make sure they see at least
824 * one group and restart from the beginning.
825 */
826 if (!prev)
827 continue;
828 break;
829 }
830
831 /*
832 * Verify the css and acquire a reference. The root
833 * is provided by the caller, so we know it's alive
834 * and kicking, and don't take an extra reference.
835 */
836 memcg = mem_cgroup_from_css(css);
837
838 if (css == &root->css)
839 break;
840
841 if (css_tryget(css))
842 break;
843
844 memcg = NULL;
845 }
846
847 if (reclaim) {
848 /*
849 * The position could have already been updated by a competing
850 * thread, so check that the value hasn't changed since we read
851 * it to avoid reclaiming from the same cgroup twice.
852 */
853 (void)cmpxchg(&iter->position, pos, memcg);
854
855 if (pos)
856 css_put(&pos->css);
857
858 if (!memcg)
859 iter->generation++;
860 else if (!prev)
861 reclaim->generation = iter->generation;
862 }
863
864 out_unlock:
865 rcu_read_unlock();
866 out:
867 if (prev && prev != root)
868 css_put(&prev->css);
869
870 return memcg;
871 }
872
873 /**
874 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
875 * @root: hierarchy root
876 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
877 */
878 void mem_cgroup_iter_break(struct mem_cgroup *root,
879 struct mem_cgroup *prev)
880 {
881 if (!root)
882 root = root_mem_cgroup;
883 if (prev && prev != root)
884 css_put(&prev->css);
885 }
886
887 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
888 {
889 struct mem_cgroup *memcg = dead_memcg;
890 struct mem_cgroup_reclaim_iter *iter;
891 struct mem_cgroup_per_node *mz;
892 int nid;
893 int i;
894
895 while ((memcg = parent_mem_cgroup(memcg))) {
896 for_each_node(nid) {
897 mz = mem_cgroup_nodeinfo(memcg, nid);
898 for (i = 0; i <= DEF_PRIORITY; i++) {
899 iter = &mz->iter[i];
900 cmpxchg(&iter->position,
901 dead_memcg, NULL);
902 }
903 }
904 }
905 }
906
907 /*
908 * Iteration constructs for visiting all cgroups (under a tree). If
909 * loops are exited prematurely (break), mem_cgroup_iter_break() must
910 * be used for reference counting.
911 */
912 #define for_each_mem_cgroup_tree(iter, root) \
913 for (iter = mem_cgroup_iter(root, NULL, NULL); \
914 iter != NULL; \
915 iter = mem_cgroup_iter(root, iter, NULL))
916
917 #define for_each_mem_cgroup(iter) \
918 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
919 iter != NULL; \
920 iter = mem_cgroup_iter(NULL, iter, NULL))
921
922 /**
923 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
924 * @memcg: hierarchy root
925 * @fn: function to call for each task
926 * @arg: argument passed to @fn
927 *
928 * This function iterates over tasks attached to @memcg or to any of its
929 * descendants and calls @fn for each task. If @fn returns a non-zero
930 * value, the function breaks the iteration loop and returns the value.
931 * Otherwise, it will iterate over all tasks and return 0.
932 *
933 * This function must not be called for the root memory cgroup.
934 */
935 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
936 int (*fn)(struct task_struct *, void *), void *arg)
937 {
938 struct mem_cgroup *iter;
939 int ret = 0;
940
941 BUG_ON(memcg == root_mem_cgroup);
942
943 for_each_mem_cgroup_tree(iter, memcg) {
944 struct css_task_iter it;
945 struct task_struct *task;
946
947 css_task_iter_start(&iter->css, &it);
948 while (!ret && (task = css_task_iter_next(&it)))
949 ret = fn(task, arg);
950 css_task_iter_end(&it);
951 if (ret) {
952 mem_cgroup_iter_break(memcg, iter);
953 break;
954 }
955 }
956 return ret;
957 }
958
959 /**
960 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
961 * @page: the page
962 * @zone: zone of the page
963 *
964 * This function is only safe when following the LRU page isolation
965 * and putback protocol: the LRU lock must be held, and the page must
966 * either be PageLRU() or the caller must have isolated/allocated it.
967 */
968 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
969 {
970 struct mem_cgroup_per_node *mz;
971 struct mem_cgroup *memcg;
972 struct lruvec *lruvec;
973
974 if (mem_cgroup_disabled()) {
975 lruvec = &pgdat->lruvec;
976 goto out;
977 }
978
979 memcg = page->mem_cgroup;
980 /*
981 * Swapcache readahead pages are added to the LRU - and
982 * possibly migrated - before they are charged.
983 */
984 if (!memcg)
985 memcg = root_mem_cgroup;
986
987 mz = mem_cgroup_page_nodeinfo(memcg, page);
988 lruvec = &mz->lruvec;
989 out:
990 /*
991 * Since a node can be onlined after the mem_cgroup was created,
992 * we have to be prepared to initialize lruvec->zone here;
993 * and if offlined then reonlined, we need to reinitialize it.
994 */
995 if (unlikely(lruvec->pgdat != pgdat))
996 lruvec->pgdat = pgdat;
997 return lruvec;
998 }
999
1000 /**
1001 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1002 * @lruvec: mem_cgroup per zone lru vector
1003 * @lru: index of lru list the page is sitting on
1004 * @zid: zone id of the accounted pages
1005 * @nr_pages: positive when adding or negative when removing
1006 *
1007 * This function must be called under lru_lock, just before a page is added
1008 * to or just after a page is removed from an lru list (that ordering being
1009 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1010 */
1011 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1012 int zid, int nr_pages)
1013 {
1014 struct mem_cgroup_per_node *mz;
1015 unsigned long *lru_size;
1016 long size;
1017
1018 if (mem_cgroup_disabled())
1019 return;
1020
1021 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1022 lru_size = &mz->lru_zone_size[zid][lru];
1023
1024 if (nr_pages < 0)
1025 *lru_size += nr_pages;
1026
1027 size = *lru_size;
1028 if (WARN_ONCE(size < 0,
1029 "%s(%p, %d, %d): lru_size %ld\n",
1030 __func__, lruvec, lru, nr_pages, size)) {
1031 VM_BUG_ON(1);
1032 *lru_size = 0;
1033 }
1034
1035 if (nr_pages > 0)
1036 *lru_size += nr_pages;
1037 }
1038
1039 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1040 {
1041 struct mem_cgroup *task_memcg;
1042 struct task_struct *p;
1043 bool ret;
1044
1045 p = find_lock_task_mm(task);
1046 if (p) {
1047 task_memcg = get_mem_cgroup_from_mm(p->mm);
1048 task_unlock(p);
1049 } else {
1050 /*
1051 * All threads may have already detached their mm's, but the oom
1052 * killer still needs to detect if they have already been oom
1053 * killed to prevent needlessly killing additional tasks.
1054 */
1055 rcu_read_lock();
1056 task_memcg = mem_cgroup_from_task(task);
1057 css_get(&task_memcg->css);
1058 rcu_read_unlock();
1059 }
1060 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1061 css_put(&task_memcg->css);
1062 return ret;
1063 }
1064
1065 /**
1066 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1067 * @memcg: the memory cgroup
1068 *
1069 * Returns the maximum amount of memory @mem can be charged with, in
1070 * pages.
1071 */
1072 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1073 {
1074 unsigned long margin = 0;
1075 unsigned long count;
1076 unsigned long limit;
1077
1078 count = page_counter_read(&memcg->memory);
1079 limit = READ_ONCE(memcg->memory.limit);
1080 if (count < limit)
1081 margin = limit - count;
1082
1083 if (do_memsw_account()) {
1084 count = page_counter_read(&memcg->memsw);
1085 limit = READ_ONCE(memcg->memsw.limit);
1086 if (count <= limit)
1087 margin = min(margin, limit - count);
1088 else
1089 margin = 0;
1090 }
1091
1092 return margin;
1093 }
1094
1095 /*
1096 * A routine for checking "mem" is under move_account() or not.
1097 *
1098 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1099 * moving cgroups. This is for waiting at high-memory pressure
1100 * caused by "move".
1101 */
1102 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1103 {
1104 struct mem_cgroup *from;
1105 struct mem_cgroup *to;
1106 bool ret = false;
1107 /*
1108 * Unlike task_move routines, we access mc.to, mc.from not under
1109 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1110 */
1111 spin_lock(&mc.lock);
1112 from = mc.from;
1113 to = mc.to;
1114 if (!from)
1115 goto unlock;
1116
1117 ret = mem_cgroup_is_descendant(from, memcg) ||
1118 mem_cgroup_is_descendant(to, memcg);
1119 unlock:
1120 spin_unlock(&mc.lock);
1121 return ret;
1122 }
1123
1124 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1125 {
1126 if (mc.moving_task && current != mc.moving_task) {
1127 if (mem_cgroup_under_move(memcg)) {
1128 DEFINE_WAIT(wait);
1129 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1130 /* moving charge context might have finished. */
1131 if (mc.moving_task)
1132 schedule();
1133 finish_wait(&mc.waitq, &wait);
1134 return true;
1135 }
1136 }
1137 return false;
1138 }
1139
1140 #define K(x) ((x) << (PAGE_SHIFT-10))
1141 /**
1142 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1143 * @memcg: The memory cgroup that went over limit
1144 * @p: Task that is going to be killed
1145 *
1146 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1147 * enabled
1148 */
1149 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1150 {
1151 struct mem_cgroup *iter;
1152 unsigned int i;
1153
1154 rcu_read_lock();
1155
1156 if (p) {
1157 pr_info("Task in ");
1158 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1159 pr_cont(" killed as a result of limit of ");
1160 } else {
1161 pr_info("Memory limit reached of cgroup ");
1162 }
1163
1164 pr_cont_cgroup_path(memcg->css.cgroup);
1165 pr_cont("\n");
1166
1167 rcu_read_unlock();
1168
1169 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1170 K((u64)page_counter_read(&memcg->memory)),
1171 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1172 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1173 K((u64)page_counter_read(&memcg->memsw)),
1174 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1175 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1176 K((u64)page_counter_read(&memcg->kmem)),
1177 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1178
1179 for_each_mem_cgroup_tree(iter, memcg) {
1180 pr_info("Memory cgroup stats for ");
1181 pr_cont_cgroup_path(iter->css.cgroup);
1182 pr_cont(":");
1183
1184 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1185 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1186 continue;
1187 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1188 K(mem_cgroup_read_stat(iter, i)));
1189 }
1190
1191 for (i = 0; i < NR_LRU_LISTS; i++)
1192 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1193 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1194
1195 pr_cont("\n");
1196 }
1197 }
1198
1199 /*
1200 * This function returns the number of memcg under hierarchy tree. Returns
1201 * 1(self count) if no children.
1202 */
1203 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1204 {
1205 int num = 0;
1206 struct mem_cgroup *iter;
1207
1208 for_each_mem_cgroup_tree(iter, memcg)
1209 num++;
1210 return num;
1211 }
1212
1213 /*
1214 * Return the memory (and swap, if configured) limit for a memcg.
1215 */
1216 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1217 {
1218 unsigned long limit;
1219
1220 limit = memcg->memory.limit;
1221 if (mem_cgroup_swappiness(memcg)) {
1222 unsigned long memsw_limit;
1223 unsigned long swap_limit;
1224
1225 memsw_limit = memcg->memsw.limit;
1226 swap_limit = memcg->swap.limit;
1227 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1228 limit = min(limit + swap_limit, memsw_limit);
1229 }
1230 return limit;
1231 }
1232
1233 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1234 int order)
1235 {
1236 struct oom_control oc = {
1237 .zonelist = NULL,
1238 .nodemask = NULL,
1239 .memcg = memcg,
1240 .gfp_mask = gfp_mask,
1241 .order = order,
1242 };
1243 bool ret;
1244
1245 mutex_lock(&oom_lock);
1246 ret = out_of_memory(&oc);
1247 mutex_unlock(&oom_lock);
1248 return ret;
1249 }
1250
1251 #if MAX_NUMNODES > 1
1252
1253 /**
1254 * test_mem_cgroup_node_reclaimable
1255 * @memcg: the target memcg
1256 * @nid: the node ID to be checked.
1257 * @noswap : specify true here if the user wants flle only information.
1258 *
1259 * This function returns whether the specified memcg contains any
1260 * reclaimable pages on a node. Returns true if there are any reclaimable
1261 * pages in the node.
1262 */
1263 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1264 int nid, bool noswap)
1265 {
1266 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1267 return true;
1268 if (noswap || !total_swap_pages)
1269 return false;
1270 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1271 return true;
1272 return false;
1273
1274 }
1275
1276 /*
1277 * Always updating the nodemask is not very good - even if we have an empty
1278 * list or the wrong list here, we can start from some node and traverse all
1279 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1280 *
1281 */
1282 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1283 {
1284 int nid;
1285 /*
1286 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1287 * pagein/pageout changes since the last update.
1288 */
1289 if (!atomic_read(&memcg->numainfo_events))
1290 return;
1291 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1292 return;
1293
1294 /* make a nodemask where this memcg uses memory from */
1295 memcg->scan_nodes = node_states[N_MEMORY];
1296
1297 for_each_node_mask(nid, node_states[N_MEMORY]) {
1298
1299 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1300 node_clear(nid, memcg->scan_nodes);
1301 }
1302
1303 atomic_set(&memcg->numainfo_events, 0);
1304 atomic_set(&memcg->numainfo_updating, 0);
1305 }
1306
1307 /*
1308 * Selecting a node where we start reclaim from. Because what we need is just
1309 * reducing usage counter, start from anywhere is O,K. Considering
1310 * memory reclaim from current node, there are pros. and cons.
1311 *
1312 * Freeing memory from current node means freeing memory from a node which
1313 * we'll use or we've used. So, it may make LRU bad. And if several threads
1314 * hit limits, it will see a contention on a node. But freeing from remote
1315 * node means more costs for memory reclaim because of memory latency.
1316 *
1317 * Now, we use round-robin. Better algorithm is welcomed.
1318 */
1319 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1320 {
1321 int node;
1322
1323 mem_cgroup_may_update_nodemask(memcg);
1324 node = memcg->last_scanned_node;
1325
1326 node = next_node_in(node, memcg->scan_nodes);
1327 /*
1328 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1329 * last time it really checked all the LRUs due to rate limiting.
1330 * Fallback to the current node in that case for simplicity.
1331 */
1332 if (unlikely(node == MAX_NUMNODES))
1333 node = numa_node_id();
1334
1335 memcg->last_scanned_node = node;
1336 return node;
1337 }
1338 #else
1339 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1340 {
1341 return 0;
1342 }
1343 #endif
1344
1345 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1346 pg_data_t *pgdat,
1347 gfp_t gfp_mask,
1348 unsigned long *total_scanned)
1349 {
1350 struct mem_cgroup *victim = NULL;
1351 int total = 0;
1352 int loop = 0;
1353 unsigned long excess;
1354 unsigned long nr_scanned;
1355 struct mem_cgroup_reclaim_cookie reclaim = {
1356 .pgdat = pgdat,
1357 .priority = 0,
1358 };
1359
1360 excess = soft_limit_excess(root_memcg);
1361
1362 while (1) {
1363 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1364 if (!victim) {
1365 loop++;
1366 if (loop >= 2) {
1367 /*
1368 * If we have not been able to reclaim
1369 * anything, it might because there are
1370 * no reclaimable pages under this hierarchy
1371 */
1372 if (!total)
1373 break;
1374 /*
1375 * We want to do more targeted reclaim.
1376 * excess >> 2 is not to excessive so as to
1377 * reclaim too much, nor too less that we keep
1378 * coming back to reclaim from this cgroup
1379 */
1380 if (total >= (excess >> 2) ||
1381 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1382 break;
1383 }
1384 continue;
1385 }
1386 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1387 pgdat, &nr_scanned);
1388 *total_scanned += nr_scanned;
1389 if (!soft_limit_excess(root_memcg))
1390 break;
1391 }
1392 mem_cgroup_iter_break(root_memcg, victim);
1393 return total;
1394 }
1395
1396 #ifdef CONFIG_LOCKDEP
1397 static struct lockdep_map memcg_oom_lock_dep_map = {
1398 .name = "memcg_oom_lock",
1399 };
1400 #endif
1401
1402 static DEFINE_SPINLOCK(memcg_oom_lock);
1403
1404 /*
1405 * Check OOM-Killer is already running under our hierarchy.
1406 * If someone is running, return false.
1407 */
1408 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1409 {
1410 struct mem_cgroup *iter, *failed = NULL;
1411
1412 spin_lock(&memcg_oom_lock);
1413
1414 for_each_mem_cgroup_tree(iter, memcg) {
1415 if (iter->oom_lock) {
1416 /*
1417 * this subtree of our hierarchy is already locked
1418 * so we cannot give a lock.
1419 */
1420 failed = iter;
1421 mem_cgroup_iter_break(memcg, iter);
1422 break;
1423 } else
1424 iter->oom_lock = true;
1425 }
1426
1427 if (failed) {
1428 /*
1429 * OK, we failed to lock the whole subtree so we have
1430 * to clean up what we set up to the failing subtree
1431 */
1432 for_each_mem_cgroup_tree(iter, memcg) {
1433 if (iter == failed) {
1434 mem_cgroup_iter_break(memcg, iter);
1435 break;
1436 }
1437 iter->oom_lock = false;
1438 }
1439 } else
1440 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1441
1442 spin_unlock(&memcg_oom_lock);
1443
1444 return !failed;
1445 }
1446
1447 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1448 {
1449 struct mem_cgroup *iter;
1450
1451 spin_lock(&memcg_oom_lock);
1452 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1453 for_each_mem_cgroup_tree(iter, memcg)
1454 iter->oom_lock = false;
1455 spin_unlock(&memcg_oom_lock);
1456 }
1457
1458 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1459 {
1460 struct mem_cgroup *iter;
1461
1462 spin_lock(&memcg_oom_lock);
1463 for_each_mem_cgroup_tree(iter, memcg)
1464 iter->under_oom++;
1465 spin_unlock(&memcg_oom_lock);
1466 }
1467
1468 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1469 {
1470 struct mem_cgroup *iter;
1471
1472 /*
1473 * When a new child is created while the hierarchy is under oom,
1474 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1475 */
1476 spin_lock(&memcg_oom_lock);
1477 for_each_mem_cgroup_tree(iter, memcg)
1478 if (iter->under_oom > 0)
1479 iter->under_oom--;
1480 spin_unlock(&memcg_oom_lock);
1481 }
1482
1483 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1484
1485 struct oom_wait_info {
1486 struct mem_cgroup *memcg;
1487 wait_queue_t wait;
1488 };
1489
1490 static int memcg_oom_wake_function(wait_queue_t *wait,
1491 unsigned mode, int sync, void *arg)
1492 {
1493 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1494 struct mem_cgroup *oom_wait_memcg;
1495 struct oom_wait_info *oom_wait_info;
1496
1497 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1498 oom_wait_memcg = oom_wait_info->memcg;
1499
1500 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1501 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1502 return 0;
1503 return autoremove_wake_function(wait, mode, sync, arg);
1504 }
1505
1506 static void memcg_oom_recover(struct mem_cgroup *memcg)
1507 {
1508 /*
1509 * For the following lockless ->under_oom test, the only required
1510 * guarantee is that it must see the state asserted by an OOM when
1511 * this function is called as a result of userland actions
1512 * triggered by the notification of the OOM. This is trivially
1513 * achieved by invoking mem_cgroup_mark_under_oom() before
1514 * triggering notification.
1515 */
1516 if (memcg && memcg->under_oom)
1517 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1518 }
1519
1520 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1521 {
1522 if (!current->memcg_may_oom)
1523 return;
1524 /*
1525 * We are in the middle of the charge context here, so we
1526 * don't want to block when potentially sitting on a callstack
1527 * that holds all kinds of filesystem and mm locks.
1528 *
1529 * Also, the caller may handle a failed allocation gracefully
1530 * (like optional page cache readahead) and so an OOM killer
1531 * invocation might not even be necessary.
1532 *
1533 * That's why we don't do anything here except remember the
1534 * OOM context and then deal with it at the end of the page
1535 * fault when the stack is unwound, the locks are released,
1536 * and when we know whether the fault was overall successful.
1537 */
1538 css_get(&memcg->css);
1539 current->memcg_in_oom = memcg;
1540 current->memcg_oom_gfp_mask = mask;
1541 current->memcg_oom_order = order;
1542 }
1543
1544 /**
1545 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1546 * @handle: actually kill/wait or just clean up the OOM state
1547 *
1548 * This has to be called at the end of a page fault if the memcg OOM
1549 * handler was enabled.
1550 *
1551 * Memcg supports userspace OOM handling where failed allocations must
1552 * sleep on a waitqueue until the userspace task resolves the
1553 * situation. Sleeping directly in the charge context with all kinds
1554 * of locks held is not a good idea, instead we remember an OOM state
1555 * in the task and mem_cgroup_oom_synchronize() has to be called at
1556 * the end of the page fault to complete the OOM handling.
1557 *
1558 * Returns %true if an ongoing memcg OOM situation was detected and
1559 * completed, %false otherwise.
1560 */
1561 bool mem_cgroup_oom_synchronize(bool handle)
1562 {
1563 struct mem_cgroup *memcg = current->memcg_in_oom;
1564 struct oom_wait_info owait;
1565 bool locked;
1566
1567 /* OOM is global, do not handle */
1568 if (!memcg)
1569 return false;
1570
1571 if (!handle)
1572 goto cleanup;
1573
1574 owait.memcg = memcg;
1575 owait.wait.flags = 0;
1576 owait.wait.func = memcg_oom_wake_function;
1577 owait.wait.private = current;
1578 INIT_LIST_HEAD(&owait.wait.task_list);
1579
1580 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1581 mem_cgroup_mark_under_oom(memcg);
1582
1583 locked = mem_cgroup_oom_trylock(memcg);
1584
1585 if (locked)
1586 mem_cgroup_oom_notify(memcg);
1587
1588 if (locked && !memcg->oom_kill_disable) {
1589 mem_cgroup_unmark_under_oom(memcg);
1590 finish_wait(&memcg_oom_waitq, &owait.wait);
1591 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1592 current->memcg_oom_order);
1593 } else {
1594 schedule();
1595 mem_cgroup_unmark_under_oom(memcg);
1596 finish_wait(&memcg_oom_waitq, &owait.wait);
1597 }
1598
1599 if (locked) {
1600 mem_cgroup_oom_unlock(memcg);
1601 /*
1602 * There is no guarantee that an OOM-lock contender
1603 * sees the wakeups triggered by the OOM kill
1604 * uncharges. Wake any sleepers explicitely.
1605 */
1606 memcg_oom_recover(memcg);
1607 }
1608 cleanup:
1609 current->memcg_in_oom = NULL;
1610 css_put(&memcg->css);
1611 return true;
1612 }
1613
1614 /**
1615 * lock_page_memcg - lock a page->mem_cgroup binding
1616 * @page: the page
1617 *
1618 * This function protects unlocked LRU pages from being moved to
1619 * another cgroup and stabilizes their page->mem_cgroup binding.
1620 */
1621 void lock_page_memcg(struct page *page)
1622 {
1623 struct mem_cgroup *memcg;
1624 unsigned long flags;
1625
1626 /*
1627 * The RCU lock is held throughout the transaction. The fast
1628 * path can get away without acquiring the memcg->move_lock
1629 * because page moving starts with an RCU grace period.
1630 */
1631 rcu_read_lock();
1632
1633 if (mem_cgroup_disabled())
1634 return;
1635 again:
1636 memcg = page->mem_cgroup;
1637 if (unlikely(!memcg))
1638 return;
1639
1640 if (atomic_read(&memcg->moving_account) <= 0)
1641 return;
1642
1643 spin_lock_irqsave(&memcg->move_lock, flags);
1644 if (memcg != page->mem_cgroup) {
1645 spin_unlock_irqrestore(&memcg->move_lock, flags);
1646 goto again;
1647 }
1648
1649 /*
1650 * When charge migration first begins, we can have locked and
1651 * unlocked page stat updates happening concurrently. Track
1652 * the task who has the lock for unlock_page_memcg().
1653 */
1654 memcg->move_lock_task = current;
1655 memcg->move_lock_flags = flags;
1656
1657 return;
1658 }
1659 EXPORT_SYMBOL(lock_page_memcg);
1660
1661 /**
1662 * unlock_page_memcg - unlock a page->mem_cgroup binding
1663 * @page: the page
1664 */
1665 void unlock_page_memcg(struct page *page)
1666 {
1667 struct mem_cgroup *memcg = page->mem_cgroup;
1668
1669 if (memcg && memcg->move_lock_task == current) {
1670 unsigned long flags = memcg->move_lock_flags;
1671
1672 memcg->move_lock_task = NULL;
1673 memcg->move_lock_flags = 0;
1674
1675 spin_unlock_irqrestore(&memcg->move_lock, flags);
1676 }
1677
1678 rcu_read_unlock();
1679 }
1680 EXPORT_SYMBOL(unlock_page_memcg);
1681
1682 /*
1683 * size of first charge trial. "32" comes from vmscan.c's magic value.
1684 * TODO: maybe necessary to use big numbers in big irons.
1685 */
1686 #define CHARGE_BATCH 32U
1687 struct memcg_stock_pcp {
1688 struct mem_cgroup *cached; /* this never be root cgroup */
1689 unsigned int nr_pages;
1690 struct work_struct work;
1691 unsigned long flags;
1692 #define FLUSHING_CACHED_CHARGE 0
1693 };
1694 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1695 static DEFINE_MUTEX(percpu_charge_mutex);
1696
1697 /**
1698 * consume_stock: Try to consume stocked charge on this cpu.
1699 * @memcg: memcg to consume from.
1700 * @nr_pages: how many pages to charge.
1701 *
1702 * The charges will only happen if @memcg matches the current cpu's memcg
1703 * stock, and at least @nr_pages are available in that stock. Failure to
1704 * service an allocation will refill the stock.
1705 *
1706 * returns true if successful, false otherwise.
1707 */
1708 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1709 {
1710 struct memcg_stock_pcp *stock;
1711 unsigned long flags;
1712 bool ret = false;
1713
1714 if (nr_pages > CHARGE_BATCH)
1715 return ret;
1716
1717 local_irq_save(flags);
1718
1719 stock = this_cpu_ptr(&memcg_stock);
1720 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1721 stock->nr_pages -= nr_pages;
1722 ret = true;
1723 }
1724
1725 local_irq_restore(flags);
1726
1727 return ret;
1728 }
1729
1730 /*
1731 * Returns stocks cached in percpu and reset cached information.
1732 */
1733 static void drain_stock(struct memcg_stock_pcp *stock)
1734 {
1735 struct mem_cgroup *old = stock->cached;
1736
1737 if (stock->nr_pages) {
1738 page_counter_uncharge(&old->memory, stock->nr_pages);
1739 if (do_memsw_account())
1740 page_counter_uncharge(&old->memsw, stock->nr_pages);
1741 css_put_many(&old->css, stock->nr_pages);
1742 stock->nr_pages = 0;
1743 }
1744 stock->cached = NULL;
1745 }
1746
1747 static void drain_local_stock(struct work_struct *dummy)
1748 {
1749 struct memcg_stock_pcp *stock;
1750 unsigned long flags;
1751
1752 local_irq_save(flags);
1753
1754 stock = this_cpu_ptr(&memcg_stock);
1755 drain_stock(stock);
1756 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1757
1758 local_irq_restore(flags);
1759 }
1760
1761 /*
1762 * Cache charges(val) to local per_cpu area.
1763 * This will be consumed by consume_stock() function, later.
1764 */
1765 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1766 {
1767 struct memcg_stock_pcp *stock;
1768 unsigned long flags;
1769
1770 local_irq_save(flags);
1771
1772 stock = this_cpu_ptr(&memcg_stock);
1773 if (stock->cached != memcg) { /* reset if necessary */
1774 drain_stock(stock);
1775 stock->cached = memcg;
1776 }
1777 stock->nr_pages += nr_pages;
1778
1779 local_irq_restore(flags);
1780 }
1781
1782 /*
1783 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1784 * of the hierarchy under it.
1785 */
1786 static void drain_all_stock(struct mem_cgroup *root_memcg)
1787 {
1788 int cpu, curcpu;
1789
1790 /* If someone's already draining, avoid adding running more workers. */
1791 if (!mutex_trylock(&percpu_charge_mutex))
1792 return;
1793 /* Notify other cpus that system-wide "drain" is running */
1794 get_online_cpus();
1795 curcpu = get_cpu();
1796 for_each_online_cpu(cpu) {
1797 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1798 struct mem_cgroup *memcg;
1799
1800 memcg = stock->cached;
1801 if (!memcg || !stock->nr_pages)
1802 continue;
1803 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1804 continue;
1805 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1806 if (cpu == curcpu)
1807 drain_local_stock(&stock->work);
1808 else
1809 schedule_work_on(cpu, &stock->work);
1810 }
1811 }
1812 put_cpu();
1813 put_online_cpus();
1814 mutex_unlock(&percpu_charge_mutex);
1815 }
1816
1817 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1818 {
1819 struct memcg_stock_pcp *stock;
1820
1821 stock = &per_cpu(memcg_stock, cpu);
1822 drain_stock(stock);
1823 return 0;
1824 }
1825
1826 static void reclaim_high(struct mem_cgroup *memcg,
1827 unsigned int nr_pages,
1828 gfp_t gfp_mask)
1829 {
1830 do {
1831 if (page_counter_read(&memcg->memory) <= memcg->high)
1832 continue;
1833 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1834 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1835 } while ((memcg = parent_mem_cgroup(memcg)));
1836 }
1837
1838 static void high_work_func(struct work_struct *work)
1839 {
1840 struct mem_cgroup *memcg;
1841
1842 memcg = container_of(work, struct mem_cgroup, high_work);
1843 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1844 }
1845
1846 /*
1847 * Scheduled by try_charge() to be executed from the userland return path
1848 * and reclaims memory over the high limit.
1849 */
1850 void mem_cgroup_handle_over_high(void)
1851 {
1852 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1853 struct mem_cgroup *memcg;
1854
1855 if (likely(!nr_pages))
1856 return;
1857
1858 memcg = get_mem_cgroup_from_mm(current->mm);
1859 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1860 css_put(&memcg->css);
1861 current->memcg_nr_pages_over_high = 0;
1862 }
1863
1864 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1865 unsigned int nr_pages)
1866 {
1867 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1868 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1869 struct mem_cgroup *mem_over_limit;
1870 struct page_counter *counter;
1871 unsigned long nr_reclaimed;
1872 bool may_swap = true;
1873 bool drained = false;
1874
1875 if (mem_cgroup_is_root(memcg))
1876 return 0;
1877 retry:
1878 if (consume_stock(memcg, nr_pages))
1879 return 0;
1880
1881 if (!do_memsw_account() ||
1882 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1883 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1884 goto done_restock;
1885 if (do_memsw_account())
1886 page_counter_uncharge(&memcg->memsw, batch);
1887 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1888 } else {
1889 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1890 may_swap = false;
1891 }
1892
1893 if (batch > nr_pages) {
1894 batch = nr_pages;
1895 goto retry;
1896 }
1897
1898 /*
1899 * Unlike in global OOM situations, memcg is not in a physical
1900 * memory shortage. Allow dying and OOM-killed tasks to
1901 * bypass the last charges so that they can exit quickly and
1902 * free their memory.
1903 */
1904 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1905 fatal_signal_pending(current) ||
1906 current->flags & PF_EXITING))
1907 goto force;
1908
1909 /*
1910 * Prevent unbounded recursion when reclaim operations need to
1911 * allocate memory. This might exceed the limits temporarily,
1912 * but we prefer facilitating memory reclaim and getting back
1913 * under the limit over triggering OOM kills in these cases.
1914 */
1915 if (unlikely(current->flags & PF_MEMALLOC))
1916 goto force;
1917
1918 if (unlikely(task_in_memcg_oom(current)))
1919 goto nomem;
1920
1921 if (!gfpflags_allow_blocking(gfp_mask))
1922 goto nomem;
1923
1924 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1925
1926 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1927 gfp_mask, may_swap);
1928
1929 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1930 goto retry;
1931
1932 if (!drained) {
1933 drain_all_stock(mem_over_limit);
1934 drained = true;
1935 goto retry;
1936 }
1937
1938 if (gfp_mask & __GFP_NORETRY)
1939 goto nomem;
1940 /*
1941 * Even though the limit is exceeded at this point, reclaim
1942 * may have been able to free some pages. Retry the charge
1943 * before killing the task.
1944 *
1945 * Only for regular pages, though: huge pages are rather
1946 * unlikely to succeed so close to the limit, and we fall back
1947 * to regular pages anyway in case of failure.
1948 */
1949 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1950 goto retry;
1951 /*
1952 * At task move, charge accounts can be doubly counted. So, it's
1953 * better to wait until the end of task_move if something is going on.
1954 */
1955 if (mem_cgroup_wait_acct_move(mem_over_limit))
1956 goto retry;
1957
1958 if (nr_retries--)
1959 goto retry;
1960
1961 if (gfp_mask & __GFP_NOFAIL)
1962 goto force;
1963
1964 if (fatal_signal_pending(current))
1965 goto force;
1966
1967 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1968
1969 mem_cgroup_oom(mem_over_limit, gfp_mask,
1970 get_order(nr_pages * PAGE_SIZE));
1971 nomem:
1972 if (!(gfp_mask & __GFP_NOFAIL))
1973 return -ENOMEM;
1974 force:
1975 /*
1976 * The allocation either can't fail or will lead to more memory
1977 * being freed very soon. Allow memory usage go over the limit
1978 * temporarily by force charging it.
1979 */
1980 page_counter_charge(&memcg->memory, nr_pages);
1981 if (do_memsw_account())
1982 page_counter_charge(&memcg->memsw, nr_pages);
1983 css_get_many(&memcg->css, nr_pages);
1984
1985 return 0;
1986
1987 done_restock:
1988 css_get_many(&memcg->css, batch);
1989 if (batch > nr_pages)
1990 refill_stock(memcg, batch - nr_pages);
1991
1992 /*
1993 * If the hierarchy is above the normal consumption range, schedule
1994 * reclaim on returning to userland. We can perform reclaim here
1995 * if __GFP_RECLAIM but let's always punt for simplicity and so that
1996 * GFP_KERNEL can consistently be used during reclaim. @memcg is
1997 * not recorded as it most likely matches current's and won't
1998 * change in the meantime. As high limit is checked again before
1999 * reclaim, the cost of mismatch is negligible.
2000 */
2001 do {
2002 if (page_counter_read(&memcg->memory) > memcg->high) {
2003 /* Don't bother a random interrupted task */
2004 if (in_interrupt()) {
2005 schedule_work(&memcg->high_work);
2006 break;
2007 }
2008 current->memcg_nr_pages_over_high += batch;
2009 set_notify_resume(current);
2010 break;
2011 }
2012 } while ((memcg = parent_mem_cgroup(memcg)));
2013
2014 return 0;
2015 }
2016
2017 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2018 {
2019 if (mem_cgroup_is_root(memcg))
2020 return;
2021
2022 page_counter_uncharge(&memcg->memory, nr_pages);
2023 if (do_memsw_account())
2024 page_counter_uncharge(&memcg->memsw, nr_pages);
2025
2026 css_put_many(&memcg->css, nr_pages);
2027 }
2028
2029 static void lock_page_lru(struct page *page, int *isolated)
2030 {
2031 struct zone *zone = page_zone(page);
2032
2033 spin_lock_irq(zone_lru_lock(zone));
2034 if (PageLRU(page)) {
2035 struct lruvec *lruvec;
2036
2037 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2038 ClearPageLRU(page);
2039 del_page_from_lru_list(page, lruvec, page_lru(page));
2040 *isolated = 1;
2041 } else
2042 *isolated = 0;
2043 }
2044
2045 static void unlock_page_lru(struct page *page, int isolated)
2046 {
2047 struct zone *zone = page_zone(page);
2048
2049 if (isolated) {
2050 struct lruvec *lruvec;
2051
2052 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2053 VM_BUG_ON_PAGE(PageLRU(page), page);
2054 SetPageLRU(page);
2055 add_page_to_lru_list(page, lruvec, page_lru(page));
2056 }
2057 spin_unlock_irq(zone_lru_lock(zone));
2058 }
2059
2060 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2061 bool lrucare)
2062 {
2063 int isolated;
2064
2065 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2066
2067 /*
2068 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2069 * may already be on some other mem_cgroup's LRU. Take care of it.
2070 */
2071 if (lrucare)
2072 lock_page_lru(page, &isolated);
2073
2074 /*
2075 * Nobody should be changing or seriously looking at
2076 * page->mem_cgroup at this point:
2077 *
2078 * - the page is uncharged
2079 *
2080 * - the page is off-LRU
2081 *
2082 * - an anonymous fault has exclusive page access, except for
2083 * a locked page table
2084 *
2085 * - a page cache insertion, a swapin fault, or a migration
2086 * have the page locked
2087 */
2088 page->mem_cgroup = memcg;
2089
2090 if (lrucare)
2091 unlock_page_lru(page, isolated);
2092 }
2093
2094 #ifndef CONFIG_SLOB
2095 static int memcg_alloc_cache_id(void)
2096 {
2097 int id, size;
2098 int err;
2099
2100 id = ida_simple_get(&memcg_cache_ida,
2101 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2102 if (id < 0)
2103 return id;
2104
2105 if (id < memcg_nr_cache_ids)
2106 return id;
2107
2108 /*
2109 * There's no space for the new id in memcg_caches arrays,
2110 * so we have to grow them.
2111 */
2112 down_write(&memcg_cache_ids_sem);
2113
2114 size = 2 * (id + 1);
2115 if (size < MEMCG_CACHES_MIN_SIZE)
2116 size = MEMCG_CACHES_MIN_SIZE;
2117 else if (size > MEMCG_CACHES_MAX_SIZE)
2118 size = MEMCG_CACHES_MAX_SIZE;
2119
2120 err = memcg_update_all_caches(size);
2121 if (!err)
2122 err = memcg_update_all_list_lrus(size);
2123 if (!err)
2124 memcg_nr_cache_ids = size;
2125
2126 up_write(&memcg_cache_ids_sem);
2127
2128 if (err) {
2129 ida_simple_remove(&memcg_cache_ida, id);
2130 return err;
2131 }
2132 return id;
2133 }
2134
2135 static void memcg_free_cache_id(int id)
2136 {
2137 ida_simple_remove(&memcg_cache_ida, id);
2138 }
2139
2140 struct memcg_kmem_cache_create_work {
2141 struct mem_cgroup *memcg;
2142 struct kmem_cache *cachep;
2143 struct work_struct work;
2144 };
2145
2146 static struct workqueue_struct *memcg_kmem_cache_create_wq;
2147
2148 static void memcg_kmem_cache_create_func(struct work_struct *w)
2149 {
2150 struct memcg_kmem_cache_create_work *cw =
2151 container_of(w, struct memcg_kmem_cache_create_work, work);
2152 struct mem_cgroup *memcg = cw->memcg;
2153 struct kmem_cache *cachep = cw->cachep;
2154
2155 memcg_create_kmem_cache(memcg, cachep);
2156
2157 css_put(&memcg->css);
2158 kfree(cw);
2159 }
2160
2161 /*
2162 * Enqueue the creation of a per-memcg kmem_cache.
2163 */
2164 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2165 struct kmem_cache *cachep)
2166 {
2167 struct memcg_kmem_cache_create_work *cw;
2168
2169 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2170 if (!cw)
2171 return;
2172
2173 css_get(&memcg->css);
2174
2175 cw->memcg = memcg;
2176 cw->cachep = cachep;
2177 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2178
2179 queue_work(memcg_kmem_cache_create_wq, &cw->work);
2180 }
2181
2182 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2183 struct kmem_cache *cachep)
2184 {
2185 /*
2186 * We need to stop accounting when we kmalloc, because if the
2187 * corresponding kmalloc cache is not yet created, the first allocation
2188 * in __memcg_schedule_kmem_cache_create will recurse.
2189 *
2190 * However, it is better to enclose the whole function. Depending on
2191 * the debugging options enabled, INIT_WORK(), for instance, can
2192 * trigger an allocation. This too, will make us recurse. Because at
2193 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2194 * the safest choice is to do it like this, wrapping the whole function.
2195 */
2196 current->memcg_kmem_skip_account = 1;
2197 __memcg_schedule_kmem_cache_create(memcg, cachep);
2198 current->memcg_kmem_skip_account = 0;
2199 }
2200
2201 static inline bool memcg_kmem_bypass(void)
2202 {
2203 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2204 return true;
2205 return false;
2206 }
2207
2208 /**
2209 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2210 * @cachep: the original global kmem cache
2211 *
2212 * Return the kmem_cache we're supposed to use for a slab allocation.
2213 * We try to use the current memcg's version of the cache.
2214 *
2215 * If the cache does not exist yet, if we are the first user of it, we
2216 * create it asynchronously in a workqueue and let the current allocation
2217 * go through with the original cache.
2218 *
2219 * This function takes a reference to the cache it returns to assure it
2220 * won't get destroyed while we are working with it. Once the caller is
2221 * done with it, memcg_kmem_put_cache() must be called to release the
2222 * reference.
2223 */
2224 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2225 {
2226 struct mem_cgroup *memcg;
2227 struct kmem_cache *memcg_cachep;
2228 int kmemcg_id;
2229
2230 VM_BUG_ON(!is_root_cache(cachep));
2231
2232 if (memcg_kmem_bypass())
2233 return cachep;
2234
2235 if (current->memcg_kmem_skip_account)
2236 return cachep;
2237
2238 memcg = get_mem_cgroup_from_mm(current->mm);
2239 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2240 if (kmemcg_id < 0)
2241 goto out;
2242
2243 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2244 if (likely(memcg_cachep))
2245 return memcg_cachep;
2246
2247 /*
2248 * If we are in a safe context (can wait, and not in interrupt
2249 * context), we could be be predictable and return right away.
2250 * This would guarantee that the allocation being performed
2251 * already belongs in the new cache.
2252 *
2253 * However, there are some clashes that can arrive from locking.
2254 * For instance, because we acquire the slab_mutex while doing
2255 * memcg_create_kmem_cache, this means no further allocation
2256 * could happen with the slab_mutex held. So it's better to
2257 * defer everything.
2258 */
2259 memcg_schedule_kmem_cache_create(memcg, cachep);
2260 out:
2261 css_put(&memcg->css);
2262 return cachep;
2263 }
2264
2265 /**
2266 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2267 * @cachep: the cache returned by memcg_kmem_get_cache
2268 */
2269 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2270 {
2271 if (!is_root_cache(cachep))
2272 css_put(&cachep->memcg_params.memcg->css);
2273 }
2274
2275 /**
2276 * memcg_kmem_charge: charge a kmem page
2277 * @page: page to charge
2278 * @gfp: reclaim mode
2279 * @order: allocation order
2280 * @memcg: memory cgroup to charge
2281 *
2282 * Returns 0 on success, an error code on failure.
2283 */
2284 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2285 struct mem_cgroup *memcg)
2286 {
2287 unsigned int nr_pages = 1 << order;
2288 struct page_counter *counter;
2289 int ret;
2290
2291 ret = try_charge(memcg, gfp, nr_pages);
2292 if (ret)
2293 return ret;
2294
2295 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2296 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2297 cancel_charge(memcg, nr_pages);
2298 return -ENOMEM;
2299 }
2300
2301 page->mem_cgroup = memcg;
2302
2303 return 0;
2304 }
2305
2306 /**
2307 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2308 * @page: page to charge
2309 * @gfp: reclaim mode
2310 * @order: allocation order
2311 *
2312 * Returns 0 on success, an error code on failure.
2313 */
2314 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2315 {
2316 struct mem_cgroup *memcg;
2317 int ret = 0;
2318
2319 if (memcg_kmem_bypass())
2320 return 0;
2321
2322 memcg = get_mem_cgroup_from_mm(current->mm);
2323 if (!mem_cgroup_is_root(memcg)) {
2324 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2325 if (!ret)
2326 __SetPageKmemcg(page);
2327 }
2328 css_put(&memcg->css);
2329 return ret;
2330 }
2331 /**
2332 * memcg_kmem_uncharge: uncharge a kmem page
2333 * @page: page to uncharge
2334 * @order: allocation order
2335 */
2336 void memcg_kmem_uncharge(struct page *page, int order)
2337 {
2338 struct mem_cgroup *memcg = page->mem_cgroup;
2339 unsigned int nr_pages = 1 << order;
2340
2341 if (!memcg)
2342 return;
2343
2344 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2345
2346 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2347 page_counter_uncharge(&memcg->kmem, nr_pages);
2348
2349 page_counter_uncharge(&memcg->memory, nr_pages);
2350 if (do_memsw_account())
2351 page_counter_uncharge(&memcg->memsw, nr_pages);
2352
2353 page->mem_cgroup = NULL;
2354
2355 /* slab pages do not have PageKmemcg flag set */
2356 if (PageKmemcg(page))
2357 __ClearPageKmemcg(page);
2358
2359 css_put_many(&memcg->css, nr_pages);
2360 }
2361 #endif /* !CONFIG_SLOB */
2362
2363 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2364
2365 /*
2366 * Because tail pages are not marked as "used", set it. We're under
2367 * zone_lru_lock and migration entries setup in all page mappings.
2368 */
2369 void mem_cgroup_split_huge_fixup(struct page *head)
2370 {
2371 int i;
2372
2373 if (mem_cgroup_disabled())
2374 return;
2375
2376 for (i = 1; i < HPAGE_PMD_NR; i++)
2377 head[i].mem_cgroup = head->mem_cgroup;
2378
2379 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2380 HPAGE_PMD_NR);
2381 }
2382 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2383
2384 #ifdef CONFIG_MEMCG_SWAP
2385 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2386 bool charge)
2387 {
2388 int val = (charge) ? 1 : -1;
2389 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2390 }
2391
2392 /**
2393 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2394 * @entry: swap entry to be moved
2395 * @from: mem_cgroup which the entry is moved from
2396 * @to: mem_cgroup which the entry is moved to
2397 *
2398 * It succeeds only when the swap_cgroup's record for this entry is the same
2399 * as the mem_cgroup's id of @from.
2400 *
2401 * Returns 0 on success, -EINVAL on failure.
2402 *
2403 * The caller must have charged to @to, IOW, called page_counter_charge() about
2404 * both res and memsw, and called css_get().
2405 */
2406 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2407 struct mem_cgroup *from, struct mem_cgroup *to)
2408 {
2409 unsigned short old_id, new_id;
2410
2411 old_id = mem_cgroup_id(from);
2412 new_id = mem_cgroup_id(to);
2413
2414 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2415 mem_cgroup_swap_statistics(from, false);
2416 mem_cgroup_swap_statistics(to, true);
2417 return 0;
2418 }
2419 return -EINVAL;
2420 }
2421 #else
2422 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2423 struct mem_cgroup *from, struct mem_cgroup *to)
2424 {
2425 return -EINVAL;
2426 }
2427 #endif
2428
2429 static DEFINE_MUTEX(memcg_limit_mutex);
2430
2431 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2432 unsigned long limit)
2433 {
2434 unsigned long curusage;
2435 unsigned long oldusage;
2436 bool enlarge = false;
2437 int retry_count;
2438 int ret;
2439
2440 /*
2441 * For keeping hierarchical_reclaim simple, how long we should retry
2442 * is depends on callers. We set our retry-count to be function
2443 * of # of children which we should visit in this loop.
2444 */
2445 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2446 mem_cgroup_count_children(memcg);
2447
2448 oldusage = page_counter_read(&memcg->memory);
2449
2450 do {
2451 if (signal_pending(current)) {
2452 ret = -EINTR;
2453 break;
2454 }
2455
2456 mutex_lock(&memcg_limit_mutex);
2457 if (limit > memcg->memsw.limit) {
2458 mutex_unlock(&memcg_limit_mutex);
2459 ret = -EINVAL;
2460 break;
2461 }
2462 if (limit > memcg->memory.limit)
2463 enlarge = true;
2464 ret = page_counter_limit(&memcg->memory, limit);
2465 mutex_unlock(&memcg_limit_mutex);
2466
2467 if (!ret)
2468 break;
2469
2470 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2471
2472 curusage = page_counter_read(&memcg->memory);
2473 /* Usage is reduced ? */
2474 if (curusage >= oldusage)
2475 retry_count--;
2476 else
2477 oldusage = curusage;
2478 } while (retry_count);
2479
2480 if (!ret && enlarge)
2481 memcg_oom_recover(memcg);
2482
2483 return ret;
2484 }
2485
2486 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2487 unsigned long limit)
2488 {
2489 unsigned long curusage;
2490 unsigned long oldusage;
2491 bool enlarge = false;
2492 int retry_count;
2493 int ret;
2494
2495 /* see mem_cgroup_resize_res_limit */
2496 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2497 mem_cgroup_count_children(memcg);
2498
2499 oldusage = page_counter_read(&memcg->memsw);
2500
2501 do {
2502 if (signal_pending(current)) {
2503 ret = -EINTR;
2504 break;
2505 }
2506
2507 mutex_lock(&memcg_limit_mutex);
2508 if (limit < memcg->memory.limit) {
2509 mutex_unlock(&memcg_limit_mutex);
2510 ret = -EINVAL;
2511 break;
2512 }
2513 if (limit > memcg->memsw.limit)
2514 enlarge = true;
2515 ret = page_counter_limit(&memcg->memsw, limit);
2516 mutex_unlock(&memcg_limit_mutex);
2517
2518 if (!ret)
2519 break;
2520
2521 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2522
2523 curusage = page_counter_read(&memcg->memsw);
2524 /* Usage is reduced ? */
2525 if (curusage >= oldusage)
2526 retry_count--;
2527 else
2528 oldusage = curusage;
2529 } while (retry_count);
2530
2531 if (!ret && enlarge)
2532 memcg_oom_recover(memcg);
2533
2534 return ret;
2535 }
2536
2537 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2538 gfp_t gfp_mask,
2539 unsigned long *total_scanned)
2540 {
2541 unsigned long nr_reclaimed = 0;
2542 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2543 unsigned long reclaimed;
2544 int loop = 0;
2545 struct mem_cgroup_tree_per_node *mctz;
2546 unsigned long excess;
2547 unsigned long nr_scanned;
2548
2549 if (order > 0)
2550 return 0;
2551
2552 mctz = soft_limit_tree_node(pgdat->node_id);
2553
2554 /*
2555 * Do not even bother to check the largest node if the root
2556 * is empty. Do it lockless to prevent lock bouncing. Races
2557 * are acceptable as soft limit is best effort anyway.
2558 */
2559 if (RB_EMPTY_ROOT(&mctz->rb_root))
2560 return 0;
2561
2562 /*
2563 * This loop can run a while, specially if mem_cgroup's continuously
2564 * keep exceeding their soft limit and putting the system under
2565 * pressure
2566 */
2567 do {
2568 if (next_mz)
2569 mz = next_mz;
2570 else
2571 mz = mem_cgroup_largest_soft_limit_node(mctz);
2572 if (!mz)
2573 break;
2574
2575 nr_scanned = 0;
2576 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2577 gfp_mask, &nr_scanned);
2578 nr_reclaimed += reclaimed;
2579 *total_scanned += nr_scanned;
2580 spin_lock_irq(&mctz->lock);
2581 __mem_cgroup_remove_exceeded(mz, mctz);
2582
2583 /*
2584 * If we failed to reclaim anything from this memory cgroup
2585 * it is time to move on to the next cgroup
2586 */
2587 next_mz = NULL;
2588 if (!reclaimed)
2589 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2590
2591 excess = soft_limit_excess(mz->memcg);
2592 /*
2593 * One school of thought says that we should not add
2594 * back the node to the tree if reclaim returns 0.
2595 * But our reclaim could return 0, simply because due
2596 * to priority we are exposing a smaller subset of
2597 * memory to reclaim from. Consider this as a longer
2598 * term TODO.
2599 */
2600 /* If excess == 0, no tree ops */
2601 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2602 spin_unlock_irq(&mctz->lock);
2603 css_put(&mz->memcg->css);
2604 loop++;
2605 /*
2606 * Could not reclaim anything and there are no more
2607 * mem cgroups to try or we seem to be looping without
2608 * reclaiming anything.
2609 */
2610 if (!nr_reclaimed &&
2611 (next_mz == NULL ||
2612 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2613 break;
2614 } while (!nr_reclaimed);
2615 if (next_mz)
2616 css_put(&next_mz->memcg->css);
2617 return nr_reclaimed;
2618 }
2619
2620 /*
2621 * Test whether @memcg has children, dead or alive. Note that this
2622 * function doesn't care whether @memcg has use_hierarchy enabled and
2623 * returns %true if there are child csses according to the cgroup
2624 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2625 */
2626 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2627 {
2628 bool ret;
2629
2630 rcu_read_lock();
2631 ret = css_next_child(NULL, &memcg->css);
2632 rcu_read_unlock();
2633 return ret;
2634 }
2635
2636 /*
2637 * Reclaims as many pages from the given memcg as possible.
2638 *
2639 * Caller is responsible for holding css reference for memcg.
2640 */
2641 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2642 {
2643 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2644
2645 /* we call try-to-free pages for make this cgroup empty */
2646 lru_add_drain_all();
2647 /* try to free all pages in this cgroup */
2648 while (nr_retries && page_counter_read(&memcg->memory)) {
2649 int progress;
2650
2651 if (signal_pending(current))
2652 return -EINTR;
2653
2654 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2655 GFP_KERNEL, true);
2656 if (!progress) {
2657 nr_retries--;
2658 /* maybe some writeback is necessary */
2659 congestion_wait(BLK_RW_ASYNC, HZ/10);
2660 }
2661
2662 }
2663
2664 return 0;
2665 }
2666
2667 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2668 char *buf, size_t nbytes,
2669 loff_t off)
2670 {
2671 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2672
2673 if (mem_cgroup_is_root(memcg))
2674 return -EINVAL;
2675 return mem_cgroup_force_empty(memcg) ?: nbytes;
2676 }
2677
2678 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2679 struct cftype *cft)
2680 {
2681 return mem_cgroup_from_css(css)->use_hierarchy;
2682 }
2683
2684 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2685 struct cftype *cft, u64 val)
2686 {
2687 int retval = 0;
2688 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2689 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2690
2691 if (memcg->use_hierarchy == val)
2692 return 0;
2693
2694 /*
2695 * If parent's use_hierarchy is set, we can't make any modifications
2696 * in the child subtrees. If it is unset, then the change can
2697 * occur, provided the current cgroup has no children.
2698 *
2699 * For the root cgroup, parent_mem is NULL, we allow value to be
2700 * set if there are no children.
2701 */
2702 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2703 (val == 1 || val == 0)) {
2704 if (!memcg_has_children(memcg))
2705 memcg->use_hierarchy = val;
2706 else
2707 retval = -EBUSY;
2708 } else
2709 retval = -EINVAL;
2710
2711 return retval;
2712 }
2713
2714 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2715 {
2716 struct mem_cgroup *iter;
2717 int i;
2718
2719 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2720
2721 for_each_mem_cgroup_tree(iter, memcg) {
2722 for (i = 0; i < MEMCG_NR_STAT; i++)
2723 stat[i] += mem_cgroup_read_stat(iter, i);
2724 }
2725 }
2726
2727 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2728 {
2729 struct mem_cgroup *iter;
2730 int i;
2731
2732 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2733
2734 for_each_mem_cgroup_tree(iter, memcg) {
2735 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2736 events[i] += mem_cgroup_read_events(iter, i);
2737 }
2738 }
2739
2740 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2741 {
2742 unsigned long val = 0;
2743
2744 if (mem_cgroup_is_root(memcg)) {
2745 struct mem_cgroup *iter;
2746
2747 for_each_mem_cgroup_tree(iter, memcg) {
2748 val += mem_cgroup_read_stat(iter,
2749 MEM_CGROUP_STAT_CACHE);
2750 val += mem_cgroup_read_stat(iter,
2751 MEM_CGROUP_STAT_RSS);
2752 if (swap)
2753 val += mem_cgroup_read_stat(iter,
2754 MEM_CGROUP_STAT_SWAP);
2755 }
2756 } else {
2757 if (!swap)
2758 val = page_counter_read(&memcg->memory);
2759 else
2760 val = page_counter_read(&memcg->memsw);
2761 }
2762 return val;
2763 }
2764
2765 enum {
2766 RES_USAGE,
2767 RES_LIMIT,
2768 RES_MAX_USAGE,
2769 RES_FAILCNT,
2770 RES_SOFT_LIMIT,
2771 };
2772
2773 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2774 struct cftype *cft)
2775 {
2776 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2777 struct page_counter *counter;
2778
2779 switch (MEMFILE_TYPE(cft->private)) {
2780 case _MEM:
2781 counter = &memcg->memory;
2782 break;
2783 case _MEMSWAP:
2784 counter = &memcg->memsw;
2785 break;
2786 case _KMEM:
2787 counter = &memcg->kmem;
2788 break;
2789 case _TCP:
2790 counter = &memcg->tcpmem;
2791 break;
2792 default:
2793 BUG();
2794 }
2795
2796 switch (MEMFILE_ATTR(cft->private)) {
2797 case RES_USAGE:
2798 if (counter == &memcg->memory)
2799 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2800 if (counter == &memcg->memsw)
2801 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2802 return (u64)page_counter_read(counter) * PAGE_SIZE;
2803 case RES_LIMIT:
2804 return (u64)counter->limit * PAGE_SIZE;
2805 case RES_MAX_USAGE:
2806 return (u64)counter->watermark * PAGE_SIZE;
2807 case RES_FAILCNT:
2808 return counter->failcnt;
2809 case RES_SOFT_LIMIT:
2810 return (u64)memcg->soft_limit * PAGE_SIZE;
2811 default:
2812 BUG();
2813 }
2814 }
2815
2816 #ifndef CONFIG_SLOB
2817 static int memcg_online_kmem(struct mem_cgroup *memcg)
2818 {
2819 int memcg_id;
2820
2821 if (cgroup_memory_nokmem)
2822 return 0;
2823
2824 BUG_ON(memcg->kmemcg_id >= 0);
2825 BUG_ON(memcg->kmem_state);
2826
2827 memcg_id = memcg_alloc_cache_id();
2828 if (memcg_id < 0)
2829 return memcg_id;
2830
2831 static_branch_inc(&memcg_kmem_enabled_key);
2832 /*
2833 * A memory cgroup is considered kmem-online as soon as it gets
2834 * kmemcg_id. Setting the id after enabling static branching will
2835 * guarantee no one starts accounting before all call sites are
2836 * patched.
2837 */
2838 memcg->kmemcg_id = memcg_id;
2839 memcg->kmem_state = KMEM_ONLINE;
2840
2841 return 0;
2842 }
2843
2844 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2845 {
2846 struct cgroup_subsys_state *css;
2847 struct mem_cgroup *parent, *child;
2848 int kmemcg_id;
2849
2850 if (memcg->kmem_state != KMEM_ONLINE)
2851 return;
2852 /*
2853 * Clear the online state before clearing memcg_caches array
2854 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2855 * guarantees that no cache will be created for this cgroup
2856 * after we are done (see memcg_create_kmem_cache()).
2857 */
2858 memcg->kmem_state = KMEM_ALLOCATED;
2859
2860 memcg_deactivate_kmem_caches(memcg);
2861
2862 kmemcg_id = memcg->kmemcg_id;
2863 BUG_ON(kmemcg_id < 0);
2864
2865 parent = parent_mem_cgroup(memcg);
2866 if (!parent)
2867 parent = root_mem_cgroup;
2868
2869 /*
2870 * Change kmemcg_id of this cgroup and all its descendants to the
2871 * parent's id, and then move all entries from this cgroup's list_lrus
2872 * to ones of the parent. After we have finished, all list_lrus
2873 * corresponding to this cgroup are guaranteed to remain empty. The
2874 * ordering is imposed by list_lru_node->lock taken by
2875 * memcg_drain_all_list_lrus().
2876 */
2877 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2878 css_for_each_descendant_pre(css, &memcg->css) {
2879 child = mem_cgroup_from_css(css);
2880 BUG_ON(child->kmemcg_id != kmemcg_id);
2881 child->kmemcg_id = parent->kmemcg_id;
2882 if (!memcg->use_hierarchy)
2883 break;
2884 }
2885 rcu_read_unlock();
2886
2887 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2888
2889 memcg_free_cache_id(kmemcg_id);
2890 }
2891
2892 static void memcg_free_kmem(struct mem_cgroup *memcg)
2893 {
2894 /* css_alloc() failed, offlining didn't happen */
2895 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2896 memcg_offline_kmem(memcg);
2897
2898 if (memcg->kmem_state == KMEM_ALLOCATED) {
2899 memcg_destroy_kmem_caches(memcg);
2900 static_branch_dec(&memcg_kmem_enabled_key);
2901 WARN_ON(page_counter_read(&memcg->kmem));
2902 }
2903 }
2904 #else
2905 static int memcg_online_kmem(struct mem_cgroup *memcg)
2906 {
2907 return 0;
2908 }
2909 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2910 {
2911 }
2912 static void memcg_free_kmem(struct mem_cgroup *memcg)
2913 {
2914 }
2915 #endif /* !CONFIG_SLOB */
2916
2917 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2918 unsigned long limit)
2919 {
2920 int ret;
2921
2922 mutex_lock(&memcg_limit_mutex);
2923 ret = page_counter_limit(&memcg->kmem, limit);
2924 mutex_unlock(&memcg_limit_mutex);
2925 return ret;
2926 }
2927
2928 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2929 {
2930 int ret;
2931
2932 mutex_lock(&memcg_limit_mutex);
2933
2934 ret = page_counter_limit(&memcg->tcpmem, limit);
2935 if (ret)
2936 goto out;
2937
2938 if (!memcg->tcpmem_active) {
2939 /*
2940 * The active flag needs to be written after the static_key
2941 * update. This is what guarantees that the socket activation
2942 * function is the last one to run. See mem_cgroup_sk_alloc()
2943 * for details, and note that we don't mark any socket as
2944 * belonging to this memcg until that flag is up.
2945 *
2946 * We need to do this, because static_keys will span multiple
2947 * sites, but we can't control their order. If we mark a socket
2948 * as accounted, but the accounting functions are not patched in
2949 * yet, we'll lose accounting.
2950 *
2951 * We never race with the readers in mem_cgroup_sk_alloc(),
2952 * because when this value change, the code to process it is not
2953 * patched in yet.
2954 */
2955 static_branch_inc(&memcg_sockets_enabled_key);
2956 memcg->tcpmem_active = true;
2957 }
2958 out:
2959 mutex_unlock(&memcg_limit_mutex);
2960 return ret;
2961 }
2962
2963 /*
2964 * The user of this function is...
2965 * RES_LIMIT.
2966 */
2967 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2968 char *buf, size_t nbytes, loff_t off)
2969 {
2970 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2971 unsigned long nr_pages;
2972 int ret;
2973
2974 buf = strstrip(buf);
2975 ret = page_counter_memparse(buf, "-1", &nr_pages);
2976 if (ret)
2977 return ret;
2978
2979 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2980 case RES_LIMIT:
2981 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2982 ret = -EINVAL;
2983 break;
2984 }
2985 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2986 case _MEM:
2987 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2988 break;
2989 case _MEMSWAP:
2990 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2991 break;
2992 case _KMEM:
2993 ret = memcg_update_kmem_limit(memcg, nr_pages);
2994 break;
2995 case _TCP:
2996 ret = memcg_update_tcp_limit(memcg, nr_pages);
2997 break;
2998 }
2999 break;
3000 case RES_SOFT_LIMIT:
3001 memcg->soft_limit = nr_pages;
3002 ret = 0;
3003 break;
3004 }
3005 return ret ?: nbytes;
3006 }
3007
3008 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3009 size_t nbytes, loff_t off)
3010 {
3011 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3012 struct page_counter *counter;
3013
3014 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3015 case _MEM:
3016 counter = &memcg->memory;
3017 break;
3018 case _MEMSWAP:
3019 counter = &memcg->memsw;
3020 break;
3021 case _KMEM:
3022 counter = &memcg->kmem;
3023 break;
3024 case _TCP:
3025 counter = &memcg->tcpmem;
3026 break;
3027 default:
3028 BUG();
3029 }
3030
3031 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3032 case RES_MAX_USAGE:
3033 page_counter_reset_watermark(counter);
3034 break;
3035 case RES_FAILCNT:
3036 counter->failcnt = 0;
3037 break;
3038 default:
3039 BUG();
3040 }
3041
3042 return nbytes;
3043 }
3044
3045 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3046 struct cftype *cft)
3047 {
3048 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3049 }
3050
3051 #ifdef CONFIG_MMU
3052 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3053 struct cftype *cft, u64 val)
3054 {
3055 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3056
3057 if (val & ~MOVE_MASK)
3058 return -EINVAL;
3059
3060 /*
3061 * No kind of locking is needed in here, because ->can_attach() will
3062 * check this value once in the beginning of the process, and then carry
3063 * on with stale data. This means that changes to this value will only
3064 * affect task migrations starting after the change.
3065 */
3066 memcg->move_charge_at_immigrate = val;
3067 return 0;
3068 }
3069 #else
3070 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3071 struct cftype *cft, u64 val)
3072 {
3073 return -ENOSYS;
3074 }
3075 #endif
3076
3077 #ifdef CONFIG_NUMA
3078 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3079 {
3080 struct numa_stat {
3081 const char *name;
3082 unsigned int lru_mask;
3083 };
3084
3085 static const struct numa_stat stats[] = {
3086 { "total", LRU_ALL },
3087 { "file", LRU_ALL_FILE },
3088 { "anon", LRU_ALL_ANON },
3089 { "unevictable", BIT(LRU_UNEVICTABLE) },
3090 };
3091 const struct numa_stat *stat;
3092 int nid;
3093 unsigned long nr;
3094 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3095
3096 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3097 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3098 seq_printf(m, "%s=%lu", stat->name, nr);
3099 for_each_node_state(nid, N_MEMORY) {
3100 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3101 stat->lru_mask);
3102 seq_printf(m, " N%d=%lu", nid, nr);
3103 }
3104 seq_putc(m, '\n');
3105 }
3106
3107 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3108 struct mem_cgroup *iter;
3109
3110 nr = 0;
3111 for_each_mem_cgroup_tree(iter, memcg)
3112 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3113 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3114 for_each_node_state(nid, N_MEMORY) {
3115 nr = 0;
3116 for_each_mem_cgroup_tree(iter, memcg)
3117 nr += mem_cgroup_node_nr_lru_pages(
3118 iter, nid, stat->lru_mask);
3119 seq_printf(m, " N%d=%lu", nid, nr);
3120 }
3121 seq_putc(m, '\n');
3122 }
3123
3124 return 0;
3125 }
3126 #endif /* CONFIG_NUMA */
3127
3128 static int memcg_stat_show(struct seq_file *m, void *v)
3129 {
3130 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3131 unsigned long memory, memsw;
3132 struct mem_cgroup *mi;
3133 unsigned int i;
3134
3135 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3136 MEM_CGROUP_STAT_NSTATS);
3137 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3138 MEM_CGROUP_EVENTS_NSTATS);
3139 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3140
3141 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3142 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3143 continue;
3144 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3145 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3146 }
3147
3148 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3149 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3150 mem_cgroup_read_events(memcg, i));
3151
3152 for (i = 0; i < NR_LRU_LISTS; i++)
3153 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3154 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3155
3156 /* Hierarchical information */
3157 memory = memsw = PAGE_COUNTER_MAX;
3158 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3159 memory = min(memory, mi->memory.limit);
3160 memsw = min(memsw, mi->memsw.limit);
3161 }
3162 seq_printf(m, "hierarchical_memory_limit %llu\n",
3163 (u64)memory * PAGE_SIZE);
3164 if (do_memsw_account())
3165 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3166 (u64)memsw * PAGE_SIZE);
3167
3168 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3169 unsigned long long val = 0;
3170
3171 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3172 continue;
3173 for_each_mem_cgroup_tree(mi, memcg)
3174 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3175 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3176 }
3177
3178 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3179 unsigned long long val = 0;
3180
3181 for_each_mem_cgroup_tree(mi, memcg)
3182 val += mem_cgroup_read_events(mi, i);
3183 seq_printf(m, "total_%s %llu\n",
3184 mem_cgroup_events_names[i], val);
3185 }
3186
3187 for (i = 0; i < NR_LRU_LISTS; i++) {
3188 unsigned long long val = 0;
3189
3190 for_each_mem_cgroup_tree(mi, memcg)
3191 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3192 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3193 }
3194
3195 #ifdef CONFIG_DEBUG_VM
3196 {
3197 pg_data_t *pgdat;
3198 struct mem_cgroup_per_node *mz;
3199 struct zone_reclaim_stat *rstat;
3200 unsigned long recent_rotated[2] = {0, 0};
3201 unsigned long recent_scanned[2] = {0, 0};
3202
3203 for_each_online_pgdat(pgdat) {
3204 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3205 rstat = &mz->lruvec.reclaim_stat;
3206
3207 recent_rotated[0] += rstat->recent_rotated[0];
3208 recent_rotated[1] += rstat->recent_rotated[1];
3209 recent_scanned[0] += rstat->recent_scanned[0];
3210 recent_scanned[1] += rstat->recent_scanned[1];
3211 }
3212 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3213 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3214 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3215 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3216 }
3217 #endif
3218
3219 return 0;
3220 }
3221
3222 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3223 struct cftype *cft)
3224 {
3225 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3226
3227 return mem_cgroup_swappiness(memcg);
3228 }
3229
3230 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3231 struct cftype *cft, u64 val)
3232 {
3233 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3234
3235 if (val > 100)
3236 return -EINVAL;
3237
3238 if (css->parent)
3239 memcg->swappiness = val;
3240 else
3241 vm_swappiness = val;
3242
3243 return 0;
3244 }
3245
3246 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3247 {
3248 struct mem_cgroup_threshold_ary *t;
3249 unsigned long usage;
3250 int i;
3251
3252 rcu_read_lock();
3253 if (!swap)
3254 t = rcu_dereference(memcg->thresholds.primary);
3255 else
3256 t = rcu_dereference(memcg->memsw_thresholds.primary);
3257
3258 if (!t)
3259 goto unlock;
3260
3261 usage = mem_cgroup_usage(memcg, swap);
3262
3263 /*
3264 * current_threshold points to threshold just below or equal to usage.
3265 * If it's not true, a threshold was crossed after last
3266 * call of __mem_cgroup_threshold().
3267 */
3268 i = t->current_threshold;
3269
3270 /*
3271 * Iterate backward over array of thresholds starting from
3272 * current_threshold and check if a threshold is crossed.
3273 * If none of thresholds below usage is crossed, we read
3274 * only one element of the array here.
3275 */
3276 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3277 eventfd_signal(t->entries[i].eventfd, 1);
3278
3279 /* i = current_threshold + 1 */
3280 i++;
3281
3282 /*
3283 * Iterate forward over array of thresholds starting from
3284 * current_threshold+1 and check if a threshold is crossed.
3285 * If none of thresholds above usage is crossed, we read
3286 * only one element of the array here.
3287 */
3288 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3289 eventfd_signal(t->entries[i].eventfd, 1);
3290
3291 /* Update current_threshold */
3292 t->current_threshold = i - 1;
3293 unlock:
3294 rcu_read_unlock();
3295 }
3296
3297 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3298 {
3299 while (memcg) {
3300 __mem_cgroup_threshold(memcg, false);
3301 if (do_memsw_account())
3302 __mem_cgroup_threshold(memcg, true);
3303
3304 memcg = parent_mem_cgroup(memcg);
3305 }
3306 }
3307
3308 static int compare_thresholds(const void *a, const void *b)
3309 {
3310 const struct mem_cgroup_threshold *_a = a;
3311 const struct mem_cgroup_threshold *_b = b;
3312
3313 if (_a->threshold > _b->threshold)
3314 return 1;
3315
3316 if (_a->threshold < _b->threshold)
3317 return -1;
3318
3319 return 0;
3320 }
3321
3322 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3323 {
3324 struct mem_cgroup_eventfd_list *ev;
3325
3326 spin_lock(&memcg_oom_lock);
3327
3328 list_for_each_entry(ev, &memcg->oom_notify, list)
3329 eventfd_signal(ev->eventfd, 1);
3330
3331 spin_unlock(&memcg_oom_lock);
3332 return 0;
3333 }
3334
3335 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3336 {
3337 struct mem_cgroup *iter;
3338
3339 for_each_mem_cgroup_tree(iter, memcg)
3340 mem_cgroup_oom_notify_cb(iter);
3341 }
3342
3343 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3344 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3345 {
3346 struct mem_cgroup_thresholds *thresholds;
3347 struct mem_cgroup_threshold_ary *new;
3348 unsigned long threshold;
3349 unsigned long usage;
3350 int i, size, ret;
3351
3352 ret = page_counter_memparse(args, "-1", &threshold);
3353 if (ret)
3354 return ret;
3355
3356 mutex_lock(&memcg->thresholds_lock);
3357
3358 if (type == _MEM) {
3359 thresholds = &memcg->thresholds;
3360 usage = mem_cgroup_usage(memcg, false);
3361 } else if (type == _MEMSWAP) {
3362 thresholds = &memcg->memsw_thresholds;
3363 usage = mem_cgroup_usage(memcg, true);
3364 } else
3365 BUG();
3366
3367 /* Check if a threshold crossed before adding a new one */
3368 if (thresholds->primary)
3369 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3370
3371 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3372
3373 /* Allocate memory for new array of thresholds */
3374 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3375 GFP_KERNEL);
3376 if (!new) {
3377 ret = -ENOMEM;
3378 goto unlock;
3379 }
3380 new->size = size;
3381
3382 /* Copy thresholds (if any) to new array */
3383 if (thresholds->primary) {
3384 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3385 sizeof(struct mem_cgroup_threshold));
3386 }
3387
3388 /* Add new threshold */
3389 new->entries[size - 1].eventfd = eventfd;
3390 new->entries[size - 1].threshold = threshold;
3391
3392 /* Sort thresholds. Registering of new threshold isn't time-critical */
3393 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3394 compare_thresholds, NULL);
3395
3396 /* Find current threshold */
3397 new->current_threshold = -1;
3398 for (i = 0; i < size; i++) {
3399 if (new->entries[i].threshold <= usage) {
3400 /*
3401 * new->current_threshold will not be used until
3402 * rcu_assign_pointer(), so it's safe to increment
3403 * it here.
3404 */
3405 ++new->current_threshold;
3406 } else
3407 break;
3408 }
3409
3410 /* Free old spare buffer and save old primary buffer as spare */
3411 kfree(thresholds->spare);
3412 thresholds->spare = thresholds->primary;
3413
3414 rcu_assign_pointer(thresholds->primary, new);
3415
3416 /* To be sure that nobody uses thresholds */
3417 synchronize_rcu();
3418
3419 unlock:
3420 mutex_unlock(&memcg->thresholds_lock);
3421
3422 return ret;
3423 }
3424
3425 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3426 struct eventfd_ctx *eventfd, const char *args)
3427 {
3428 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3429 }
3430
3431 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3432 struct eventfd_ctx *eventfd, const char *args)
3433 {
3434 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3435 }
3436
3437 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3438 struct eventfd_ctx *eventfd, enum res_type type)
3439 {
3440 struct mem_cgroup_thresholds *thresholds;
3441 struct mem_cgroup_threshold_ary *new;
3442 unsigned long usage;
3443 int i, j, size;
3444
3445 mutex_lock(&memcg->thresholds_lock);
3446
3447 if (type == _MEM) {
3448 thresholds = &memcg->thresholds;
3449 usage = mem_cgroup_usage(memcg, false);
3450 } else if (type == _MEMSWAP) {
3451 thresholds = &memcg->memsw_thresholds;
3452 usage = mem_cgroup_usage(memcg, true);
3453 } else
3454 BUG();
3455
3456 if (!thresholds->primary)
3457 goto unlock;
3458
3459 /* Check if a threshold crossed before removing */
3460 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3461
3462 /* Calculate new number of threshold */
3463 size = 0;
3464 for (i = 0; i < thresholds->primary->size; i++) {
3465 if (thresholds->primary->entries[i].eventfd != eventfd)
3466 size++;
3467 }
3468
3469 new = thresholds->spare;
3470
3471 /* Set thresholds array to NULL if we don't have thresholds */
3472 if (!size) {
3473 kfree(new);
3474 new = NULL;
3475 goto swap_buffers;
3476 }
3477
3478 new->size = size;
3479
3480 /* Copy thresholds and find current threshold */
3481 new->current_threshold = -1;
3482 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3483 if (thresholds->primary->entries[i].eventfd == eventfd)
3484 continue;
3485
3486 new->entries[j] = thresholds->primary->entries[i];
3487 if (new->entries[j].threshold <= usage) {
3488 /*
3489 * new->current_threshold will not be used
3490 * until rcu_assign_pointer(), so it's safe to increment
3491 * it here.
3492 */
3493 ++new->current_threshold;
3494 }
3495 j++;
3496 }
3497
3498 swap_buffers:
3499 /* Swap primary and spare array */
3500 thresholds->spare = thresholds->primary;
3501
3502 rcu_assign_pointer(thresholds->primary, new);
3503
3504 /* To be sure that nobody uses thresholds */
3505 synchronize_rcu();
3506
3507 /* If all events are unregistered, free the spare array */
3508 if (!new) {
3509 kfree(thresholds->spare);
3510 thresholds->spare = NULL;
3511 }
3512 unlock:
3513 mutex_unlock(&memcg->thresholds_lock);
3514 }
3515
3516 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3517 struct eventfd_ctx *eventfd)
3518 {
3519 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3520 }
3521
3522 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3523 struct eventfd_ctx *eventfd)
3524 {
3525 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3526 }
3527
3528 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3529 struct eventfd_ctx *eventfd, const char *args)
3530 {
3531 struct mem_cgroup_eventfd_list *event;
3532
3533 event = kmalloc(sizeof(*event), GFP_KERNEL);
3534 if (!event)
3535 return -ENOMEM;
3536
3537 spin_lock(&memcg_oom_lock);
3538
3539 event->eventfd = eventfd;
3540 list_add(&event->list, &memcg->oom_notify);
3541
3542 /* already in OOM ? */
3543 if (memcg->under_oom)
3544 eventfd_signal(eventfd, 1);
3545 spin_unlock(&memcg_oom_lock);
3546
3547 return 0;
3548 }
3549
3550 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3551 struct eventfd_ctx *eventfd)
3552 {
3553 struct mem_cgroup_eventfd_list *ev, *tmp;
3554
3555 spin_lock(&memcg_oom_lock);
3556
3557 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3558 if (ev->eventfd == eventfd) {
3559 list_del(&ev->list);
3560 kfree(ev);
3561 }
3562 }
3563
3564 spin_unlock(&memcg_oom_lock);
3565 }
3566
3567 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3568 {
3569 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3570
3571 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3572 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3573 return 0;
3574 }
3575
3576 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3577 struct cftype *cft, u64 val)
3578 {
3579 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3580
3581 /* cannot set to root cgroup and only 0 and 1 are allowed */
3582 if (!css->parent || !((val == 0) || (val == 1)))
3583 return -EINVAL;
3584
3585 memcg->oom_kill_disable = val;
3586 if (!val)
3587 memcg_oom_recover(memcg);
3588
3589 return 0;
3590 }
3591
3592 #ifdef CONFIG_CGROUP_WRITEBACK
3593
3594 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3595 {
3596 return &memcg->cgwb_list;
3597 }
3598
3599 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3600 {
3601 return wb_domain_init(&memcg->cgwb_domain, gfp);
3602 }
3603
3604 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3605 {
3606 wb_domain_exit(&memcg->cgwb_domain);
3607 }
3608
3609 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3610 {
3611 wb_domain_size_changed(&memcg->cgwb_domain);
3612 }
3613
3614 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3615 {
3616 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3617
3618 if (!memcg->css.parent)
3619 return NULL;
3620
3621 return &memcg->cgwb_domain;
3622 }
3623
3624 /**
3625 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3626 * @wb: bdi_writeback in question
3627 * @pfilepages: out parameter for number of file pages
3628 * @pheadroom: out parameter for number of allocatable pages according to memcg
3629 * @pdirty: out parameter for number of dirty pages
3630 * @pwriteback: out parameter for number of pages under writeback
3631 *
3632 * Determine the numbers of file, headroom, dirty, and writeback pages in
3633 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3634 * is a bit more involved.
3635 *
3636 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3637 * headroom is calculated as the lowest headroom of itself and the
3638 * ancestors. Note that this doesn't consider the actual amount of
3639 * available memory in the system. The caller should further cap
3640 * *@pheadroom accordingly.
3641 */
3642 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3643 unsigned long *pheadroom, unsigned long *pdirty,
3644 unsigned long *pwriteback)
3645 {
3646 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3647 struct mem_cgroup *parent;
3648
3649 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3650
3651 /* this should eventually include NR_UNSTABLE_NFS */
3652 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3653 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3654 (1 << LRU_ACTIVE_FILE));
3655 *pheadroom = PAGE_COUNTER_MAX;
3656
3657 while ((parent = parent_mem_cgroup(memcg))) {
3658 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3659 unsigned long used = page_counter_read(&memcg->memory);
3660
3661 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3662 memcg = parent;
3663 }
3664 }
3665
3666 #else /* CONFIG_CGROUP_WRITEBACK */
3667
3668 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3669 {
3670 return 0;
3671 }
3672
3673 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3674 {
3675 }
3676
3677 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3678 {
3679 }
3680
3681 #endif /* CONFIG_CGROUP_WRITEBACK */
3682
3683 /*
3684 * DO NOT USE IN NEW FILES.
3685 *
3686 * "cgroup.event_control" implementation.
3687 *
3688 * This is way over-engineered. It tries to support fully configurable
3689 * events for each user. Such level of flexibility is completely
3690 * unnecessary especially in the light of the planned unified hierarchy.
3691 *
3692 * Please deprecate this and replace with something simpler if at all
3693 * possible.
3694 */
3695
3696 /*
3697 * Unregister event and free resources.
3698 *
3699 * Gets called from workqueue.
3700 */
3701 static void memcg_event_remove(struct work_struct *work)
3702 {
3703 struct mem_cgroup_event *event =
3704 container_of(work, struct mem_cgroup_event, remove);
3705 struct mem_cgroup *memcg = event->memcg;
3706
3707 remove_wait_queue(event->wqh, &event->wait);
3708
3709 event->unregister_event(memcg, event->eventfd);
3710
3711 /* Notify userspace the event is going away. */
3712 eventfd_signal(event->eventfd, 1);
3713
3714 eventfd_ctx_put(event->eventfd);
3715 kfree(event);
3716 css_put(&memcg->css);
3717 }
3718
3719 /*
3720 * Gets called on POLLHUP on eventfd when user closes it.
3721 *
3722 * Called with wqh->lock held and interrupts disabled.
3723 */
3724 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3725 int sync, void *key)
3726 {
3727 struct mem_cgroup_event *event =
3728 container_of(wait, struct mem_cgroup_event, wait);
3729 struct mem_cgroup *memcg = event->memcg;
3730 unsigned long flags = (unsigned long)key;
3731
3732 if (flags & POLLHUP) {
3733 /*
3734 * If the event has been detached at cgroup removal, we
3735 * can simply return knowing the other side will cleanup
3736 * for us.
3737 *
3738 * We can't race against event freeing since the other
3739 * side will require wqh->lock via remove_wait_queue(),
3740 * which we hold.
3741 */
3742 spin_lock(&memcg->event_list_lock);
3743 if (!list_empty(&event->list)) {
3744 list_del_init(&event->list);
3745 /*
3746 * We are in atomic context, but cgroup_event_remove()
3747 * may sleep, so we have to call it in workqueue.
3748 */
3749 schedule_work(&event->remove);
3750 }
3751 spin_unlock(&memcg->event_list_lock);
3752 }
3753
3754 return 0;
3755 }
3756
3757 static void memcg_event_ptable_queue_proc(struct file *file,
3758 wait_queue_head_t *wqh, poll_table *pt)
3759 {
3760 struct mem_cgroup_event *event =
3761 container_of(pt, struct mem_cgroup_event, pt);
3762
3763 event->wqh = wqh;
3764 add_wait_queue(wqh, &event->wait);
3765 }
3766
3767 /*
3768 * DO NOT USE IN NEW FILES.
3769 *
3770 * Parse input and register new cgroup event handler.
3771 *
3772 * Input must be in format '<event_fd> <control_fd> <args>'.
3773 * Interpretation of args is defined by control file implementation.
3774 */
3775 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3776 char *buf, size_t nbytes, loff_t off)
3777 {
3778 struct cgroup_subsys_state *css = of_css(of);
3779 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3780 struct mem_cgroup_event *event;
3781 struct cgroup_subsys_state *cfile_css;
3782 unsigned int efd, cfd;
3783 struct fd efile;
3784 struct fd cfile;
3785 const char *name;
3786 char *endp;
3787 int ret;
3788
3789 buf = strstrip(buf);
3790
3791 efd = simple_strtoul(buf, &endp, 10);
3792 if (*endp != ' ')
3793 return -EINVAL;
3794 buf = endp + 1;
3795
3796 cfd = simple_strtoul(buf, &endp, 10);
3797 if ((*endp != ' ') && (*endp != '\0'))
3798 return -EINVAL;
3799 buf = endp + 1;
3800
3801 event = kzalloc(sizeof(*event), GFP_KERNEL);
3802 if (!event)
3803 return -ENOMEM;
3804
3805 event->memcg = memcg;
3806 INIT_LIST_HEAD(&event->list);
3807 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3808 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3809 INIT_WORK(&event->remove, memcg_event_remove);
3810
3811 efile = fdget(efd);
3812 if (!efile.file) {
3813 ret = -EBADF;
3814 goto out_kfree;
3815 }
3816
3817 event->eventfd = eventfd_ctx_fileget(efile.file);
3818 if (IS_ERR(event->eventfd)) {
3819 ret = PTR_ERR(event->eventfd);
3820 goto out_put_efile;
3821 }
3822
3823 cfile = fdget(cfd);
3824 if (!cfile.file) {
3825 ret = -EBADF;
3826 goto out_put_eventfd;
3827 }
3828
3829 /* the process need read permission on control file */
3830 /* AV: shouldn't we check that it's been opened for read instead? */
3831 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3832 if (ret < 0)
3833 goto out_put_cfile;
3834
3835 /*
3836 * Determine the event callbacks and set them in @event. This used
3837 * to be done via struct cftype but cgroup core no longer knows
3838 * about these events. The following is crude but the whole thing
3839 * is for compatibility anyway.
3840 *
3841 * DO NOT ADD NEW FILES.
3842 */
3843 name = cfile.file->f_path.dentry->d_name.name;
3844
3845 if (!strcmp(name, "memory.usage_in_bytes")) {
3846 event->register_event = mem_cgroup_usage_register_event;
3847 event->unregister_event = mem_cgroup_usage_unregister_event;
3848 } else if (!strcmp(name, "memory.oom_control")) {
3849 event->register_event = mem_cgroup_oom_register_event;
3850 event->unregister_event = mem_cgroup_oom_unregister_event;
3851 } else if (!strcmp(name, "memory.pressure_level")) {
3852 event->register_event = vmpressure_register_event;
3853 event->unregister_event = vmpressure_unregister_event;
3854 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3855 event->register_event = memsw_cgroup_usage_register_event;
3856 event->unregister_event = memsw_cgroup_usage_unregister_event;
3857 } else {
3858 ret = -EINVAL;
3859 goto out_put_cfile;
3860 }
3861
3862 /*
3863 * Verify @cfile should belong to @css. Also, remaining events are
3864 * automatically removed on cgroup destruction but the removal is
3865 * asynchronous, so take an extra ref on @css.
3866 */
3867 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3868 &memory_cgrp_subsys);
3869 ret = -EINVAL;
3870 if (IS_ERR(cfile_css))
3871 goto out_put_cfile;
3872 if (cfile_css != css) {
3873 css_put(cfile_css);
3874 goto out_put_cfile;
3875 }
3876
3877 ret = event->register_event(memcg, event->eventfd, buf);
3878 if (ret)
3879 goto out_put_css;
3880
3881 efile.file->f_op->poll(efile.file, &event->pt);
3882
3883 spin_lock(&memcg->event_list_lock);
3884 list_add(&event->list, &memcg->event_list);
3885 spin_unlock(&memcg->event_list_lock);
3886
3887 fdput(cfile);
3888 fdput(efile);
3889
3890 return nbytes;
3891
3892 out_put_css:
3893 css_put(css);
3894 out_put_cfile:
3895 fdput(cfile);
3896 out_put_eventfd:
3897 eventfd_ctx_put(event->eventfd);
3898 out_put_efile:
3899 fdput(efile);
3900 out_kfree:
3901 kfree(event);
3902
3903 return ret;
3904 }
3905
3906 static struct cftype mem_cgroup_legacy_files[] = {
3907 {
3908 .name = "usage_in_bytes",
3909 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3910 .read_u64 = mem_cgroup_read_u64,
3911 },
3912 {
3913 .name = "max_usage_in_bytes",
3914 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3915 .write = mem_cgroup_reset,
3916 .read_u64 = mem_cgroup_read_u64,
3917 },
3918 {
3919 .name = "limit_in_bytes",
3920 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3921 .write = mem_cgroup_write,
3922 .read_u64 = mem_cgroup_read_u64,
3923 },
3924 {
3925 .name = "soft_limit_in_bytes",
3926 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3927 .write = mem_cgroup_write,
3928 .read_u64 = mem_cgroup_read_u64,
3929 },
3930 {
3931 .name = "failcnt",
3932 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3933 .write = mem_cgroup_reset,
3934 .read_u64 = mem_cgroup_read_u64,
3935 },
3936 {
3937 .name = "stat",
3938 .seq_show = memcg_stat_show,
3939 },
3940 {
3941 .name = "force_empty",
3942 .write = mem_cgroup_force_empty_write,
3943 },
3944 {
3945 .name = "use_hierarchy",
3946 .write_u64 = mem_cgroup_hierarchy_write,
3947 .read_u64 = mem_cgroup_hierarchy_read,
3948 },
3949 {
3950 .name = "cgroup.event_control", /* XXX: for compat */
3951 .write = memcg_write_event_control,
3952 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3953 },
3954 {
3955 .name = "swappiness",
3956 .read_u64 = mem_cgroup_swappiness_read,
3957 .write_u64 = mem_cgroup_swappiness_write,
3958 },
3959 {
3960 .name = "move_charge_at_immigrate",
3961 .read_u64 = mem_cgroup_move_charge_read,
3962 .write_u64 = mem_cgroup_move_charge_write,
3963 },
3964 {
3965 .name = "oom_control",
3966 .seq_show = mem_cgroup_oom_control_read,
3967 .write_u64 = mem_cgroup_oom_control_write,
3968 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3969 },
3970 {
3971 .name = "pressure_level",
3972 },
3973 #ifdef CONFIG_NUMA
3974 {
3975 .name = "numa_stat",
3976 .seq_show = memcg_numa_stat_show,
3977 },
3978 #endif
3979 {
3980 .name = "kmem.limit_in_bytes",
3981 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3982 .write = mem_cgroup_write,
3983 .read_u64 = mem_cgroup_read_u64,
3984 },
3985 {
3986 .name = "kmem.usage_in_bytes",
3987 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3988 .read_u64 = mem_cgroup_read_u64,
3989 },
3990 {
3991 .name = "kmem.failcnt",
3992 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3993 .write = mem_cgroup_reset,
3994 .read_u64 = mem_cgroup_read_u64,
3995 },
3996 {
3997 .name = "kmem.max_usage_in_bytes",
3998 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
3999 .write = mem_cgroup_reset,
4000 .read_u64 = mem_cgroup_read_u64,
4001 },
4002 #ifdef CONFIG_SLABINFO
4003 {
4004 .name = "kmem.slabinfo",
4005 .seq_start = slab_start,
4006 .seq_next = slab_next,
4007 .seq_stop = slab_stop,
4008 .seq_show = memcg_slab_show,
4009 },
4010 #endif
4011 {
4012 .name = "kmem.tcp.limit_in_bytes",
4013 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4014 .write = mem_cgroup_write,
4015 .read_u64 = mem_cgroup_read_u64,
4016 },
4017 {
4018 .name = "kmem.tcp.usage_in_bytes",
4019 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4020 .read_u64 = mem_cgroup_read_u64,
4021 },
4022 {
4023 .name = "kmem.tcp.failcnt",
4024 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4025 .write = mem_cgroup_reset,
4026 .read_u64 = mem_cgroup_read_u64,
4027 },
4028 {
4029 .name = "kmem.tcp.max_usage_in_bytes",
4030 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4031 .write = mem_cgroup_reset,
4032 .read_u64 = mem_cgroup_read_u64,
4033 },
4034 { }, /* terminate */
4035 };
4036
4037 /*
4038 * Private memory cgroup IDR
4039 *
4040 * Swap-out records and page cache shadow entries need to store memcg
4041 * references in constrained space, so we maintain an ID space that is
4042 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4043 * memory-controlled cgroups to 64k.
4044 *
4045 * However, there usually are many references to the oflline CSS after
4046 * the cgroup has been destroyed, such as page cache or reclaimable
4047 * slab objects, that don't need to hang on to the ID. We want to keep
4048 * those dead CSS from occupying IDs, or we might quickly exhaust the
4049 * relatively small ID space and prevent the creation of new cgroups
4050 * even when there are much fewer than 64k cgroups - possibly none.
4051 *
4052 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4053 * be freed and recycled when it's no longer needed, which is usually
4054 * when the CSS is offlined.
4055 *
4056 * The only exception to that are records of swapped out tmpfs/shmem
4057 * pages that need to be attributed to live ancestors on swapin. But
4058 * those references are manageable from userspace.
4059 */
4060
4061 static DEFINE_IDR(mem_cgroup_idr);
4062
4063 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4064 {
4065 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4066 atomic_add(n, &memcg->id.ref);
4067 }
4068
4069 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4070 {
4071 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4072 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4073 idr_remove(&mem_cgroup_idr, memcg->id.id);
4074 memcg->id.id = 0;
4075
4076 /* Memcg ID pins CSS */
4077 css_put(&memcg->css);
4078 }
4079 }
4080
4081 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4082 {
4083 mem_cgroup_id_get_many(memcg, 1);
4084 }
4085
4086 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4087 {
4088 mem_cgroup_id_put_many(memcg, 1);
4089 }
4090
4091 /**
4092 * mem_cgroup_from_id - look up a memcg from a memcg id
4093 * @id: the memcg id to look up
4094 *
4095 * Caller must hold rcu_read_lock().
4096 */
4097 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4098 {
4099 WARN_ON_ONCE(!rcu_read_lock_held());
4100 return idr_find(&mem_cgroup_idr, id);
4101 }
4102
4103 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4104 {
4105 struct mem_cgroup_per_node *pn;
4106 int tmp = node;
4107 /*
4108 * This routine is called against possible nodes.
4109 * But it's BUG to call kmalloc() against offline node.
4110 *
4111 * TODO: this routine can waste much memory for nodes which will
4112 * never be onlined. It's better to use memory hotplug callback
4113 * function.
4114 */
4115 if (!node_state(node, N_NORMAL_MEMORY))
4116 tmp = -1;
4117 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4118 if (!pn)
4119 return 1;
4120
4121 lruvec_init(&pn->lruvec);
4122 pn->usage_in_excess = 0;
4123 pn->on_tree = false;
4124 pn->memcg = memcg;
4125
4126 memcg->nodeinfo[node] = pn;
4127 return 0;
4128 }
4129
4130 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4131 {
4132 kfree(memcg->nodeinfo[node]);
4133 }
4134
4135 static void mem_cgroup_free(struct mem_cgroup *memcg)
4136 {
4137 int node;
4138
4139 memcg_wb_domain_exit(memcg);
4140 for_each_node(node)
4141 free_mem_cgroup_per_node_info(memcg, node);
4142 free_percpu(memcg->stat);
4143 kfree(memcg);
4144 }
4145
4146 static struct mem_cgroup *mem_cgroup_alloc(void)
4147 {
4148 struct mem_cgroup *memcg;
4149 size_t size;
4150 int node;
4151
4152 size = sizeof(struct mem_cgroup);
4153 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4154
4155 memcg = kzalloc(size, GFP_KERNEL);
4156 if (!memcg)
4157 return NULL;
4158
4159 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4160 1, MEM_CGROUP_ID_MAX,
4161 GFP_KERNEL);
4162 if (memcg->id.id < 0)
4163 goto fail;
4164
4165 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4166 if (!memcg->stat)
4167 goto fail;
4168
4169 for_each_node(node)
4170 if (alloc_mem_cgroup_per_node_info(memcg, node))
4171 goto fail;
4172
4173 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4174 goto fail;
4175
4176 INIT_WORK(&memcg->high_work, high_work_func);
4177 memcg->last_scanned_node = MAX_NUMNODES;
4178 INIT_LIST_HEAD(&memcg->oom_notify);
4179 mutex_init(&memcg->thresholds_lock);
4180 spin_lock_init(&memcg->move_lock);
4181 vmpressure_init(&memcg->vmpressure);
4182 INIT_LIST_HEAD(&memcg->event_list);
4183 spin_lock_init(&memcg->event_list_lock);
4184 memcg->socket_pressure = jiffies;
4185 #ifndef CONFIG_SLOB
4186 memcg->kmemcg_id = -1;
4187 #endif
4188 #ifdef CONFIG_CGROUP_WRITEBACK
4189 INIT_LIST_HEAD(&memcg->cgwb_list);
4190 #endif
4191 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4192 return memcg;
4193 fail:
4194 if (memcg->id.id > 0)
4195 idr_remove(&mem_cgroup_idr, memcg->id.id);
4196 mem_cgroup_free(memcg);
4197 return NULL;
4198 }
4199
4200 static struct cgroup_subsys_state * __ref
4201 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4202 {
4203 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4204 struct mem_cgroup *memcg;
4205 long error = -ENOMEM;
4206
4207 memcg = mem_cgroup_alloc();
4208 if (!memcg)
4209 return ERR_PTR(error);
4210
4211 memcg->high = PAGE_COUNTER_MAX;
4212 memcg->soft_limit = PAGE_COUNTER_MAX;
4213 if (parent) {
4214 memcg->swappiness = mem_cgroup_swappiness(parent);
4215 memcg->oom_kill_disable = parent->oom_kill_disable;
4216 }
4217 if (parent && parent->use_hierarchy) {
4218 memcg->use_hierarchy = true;
4219 page_counter_init(&memcg->memory, &parent->memory);
4220 page_counter_init(&memcg->swap, &parent->swap);
4221 page_counter_init(&memcg->memsw, &parent->memsw);
4222 page_counter_init(&memcg->kmem, &parent->kmem);
4223 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4224 } else {
4225 page_counter_init(&memcg->memory, NULL);
4226 page_counter_init(&memcg->swap, NULL);
4227 page_counter_init(&memcg->memsw, NULL);
4228 page_counter_init(&memcg->kmem, NULL);
4229 page_counter_init(&memcg->tcpmem, NULL);
4230 /*
4231 * Deeper hierachy with use_hierarchy == false doesn't make
4232 * much sense so let cgroup subsystem know about this
4233 * unfortunate state in our controller.
4234 */
4235 if (parent != root_mem_cgroup)
4236 memory_cgrp_subsys.broken_hierarchy = true;
4237 }
4238
4239 /* The following stuff does not apply to the root */
4240 if (!parent) {
4241 root_mem_cgroup = memcg;
4242 return &memcg->css;
4243 }
4244
4245 error = memcg_online_kmem(memcg);
4246 if (error)
4247 goto fail;
4248
4249 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4250 static_branch_inc(&memcg_sockets_enabled_key);
4251
4252 return &memcg->css;
4253 fail:
4254 mem_cgroup_free(memcg);
4255 return ERR_PTR(-ENOMEM);
4256 }
4257
4258 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4259 {
4260 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4261
4262 /* Online state pins memcg ID, memcg ID pins CSS */
4263 atomic_set(&memcg->id.ref, 1);
4264 css_get(css);
4265 return 0;
4266 }
4267
4268 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4269 {
4270 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4271 struct mem_cgroup_event *event, *tmp;
4272
4273 /*
4274 * Unregister events and notify userspace.
4275 * Notify userspace about cgroup removing only after rmdir of cgroup
4276 * directory to avoid race between userspace and kernelspace.
4277 */
4278 spin_lock(&memcg->event_list_lock);
4279 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4280 list_del_init(&event->list);
4281 schedule_work(&event->remove);
4282 }
4283 spin_unlock(&memcg->event_list_lock);
4284
4285 memcg_offline_kmem(memcg);
4286 wb_memcg_offline(memcg);
4287
4288 mem_cgroup_id_put(memcg);
4289 }
4290
4291 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4292 {
4293 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4294
4295 invalidate_reclaim_iterators(memcg);
4296 }
4297
4298 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4299 {
4300 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4301
4302 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4303 static_branch_dec(&memcg_sockets_enabled_key);
4304
4305 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4306 static_branch_dec(&memcg_sockets_enabled_key);
4307
4308 vmpressure_cleanup(&memcg->vmpressure);
4309 cancel_work_sync(&memcg->high_work);
4310 mem_cgroup_remove_from_trees(memcg);
4311 memcg_free_kmem(memcg);
4312 mem_cgroup_free(memcg);
4313 }
4314
4315 /**
4316 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4317 * @css: the target css
4318 *
4319 * Reset the states of the mem_cgroup associated with @css. This is
4320 * invoked when the userland requests disabling on the default hierarchy
4321 * but the memcg is pinned through dependency. The memcg should stop
4322 * applying policies and should revert to the vanilla state as it may be
4323 * made visible again.
4324 *
4325 * The current implementation only resets the essential configurations.
4326 * This needs to be expanded to cover all the visible parts.
4327 */
4328 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4329 {
4330 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4331
4332 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4333 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4334 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4335 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4336 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4337 memcg->low = 0;
4338 memcg->high = PAGE_COUNTER_MAX;
4339 memcg->soft_limit = PAGE_COUNTER_MAX;
4340 memcg_wb_domain_size_changed(memcg);
4341 }
4342
4343 #ifdef CONFIG_MMU
4344 /* Handlers for move charge at task migration. */
4345 static int mem_cgroup_do_precharge(unsigned long count)
4346 {
4347 int ret;
4348
4349 /* Try a single bulk charge without reclaim first, kswapd may wake */
4350 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4351 if (!ret) {
4352 mc.precharge += count;
4353 return ret;
4354 }
4355
4356 /* Try charges one by one with reclaim, but do not retry */
4357 while (count--) {
4358 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4359 if (ret)
4360 return ret;
4361 mc.precharge++;
4362 cond_resched();
4363 }
4364 return 0;
4365 }
4366
4367 union mc_target {
4368 struct page *page;
4369 swp_entry_t ent;
4370 };
4371
4372 enum mc_target_type {
4373 MC_TARGET_NONE = 0,
4374 MC_TARGET_PAGE,
4375 MC_TARGET_SWAP,
4376 };
4377
4378 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4379 unsigned long addr, pte_t ptent)
4380 {
4381 struct page *page = vm_normal_page(vma, addr, ptent);
4382
4383 if (!page || !page_mapped(page))
4384 return NULL;
4385 if (PageAnon(page)) {
4386 if (!(mc.flags & MOVE_ANON))
4387 return NULL;
4388 } else {
4389 if (!(mc.flags & MOVE_FILE))
4390 return NULL;
4391 }
4392 if (!get_page_unless_zero(page))
4393 return NULL;
4394
4395 return page;
4396 }
4397
4398 #ifdef CONFIG_SWAP
4399 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4400 pte_t ptent, swp_entry_t *entry)
4401 {
4402 struct page *page = NULL;
4403 swp_entry_t ent = pte_to_swp_entry(ptent);
4404
4405 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4406 return NULL;
4407 /*
4408 * Because lookup_swap_cache() updates some statistics counter,
4409 * we call find_get_page() with swapper_space directly.
4410 */
4411 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4412 if (do_memsw_account())
4413 entry->val = ent.val;
4414
4415 return page;
4416 }
4417 #else
4418 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4419 pte_t ptent, swp_entry_t *entry)
4420 {
4421 return NULL;
4422 }
4423 #endif
4424
4425 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4426 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4427 {
4428 struct page *page = NULL;
4429 struct address_space *mapping;
4430 pgoff_t pgoff;
4431
4432 if (!vma->vm_file) /* anonymous vma */
4433 return NULL;
4434 if (!(mc.flags & MOVE_FILE))
4435 return NULL;
4436
4437 mapping = vma->vm_file->f_mapping;
4438 pgoff = linear_page_index(vma, addr);
4439
4440 /* page is moved even if it's not RSS of this task(page-faulted). */
4441 #ifdef CONFIG_SWAP
4442 /* shmem/tmpfs may report page out on swap: account for that too. */
4443 if (shmem_mapping(mapping)) {
4444 page = find_get_entry(mapping, pgoff);
4445 if (radix_tree_exceptional_entry(page)) {
4446 swp_entry_t swp = radix_to_swp_entry(page);
4447 if (do_memsw_account())
4448 *entry = swp;
4449 page = find_get_page(swap_address_space(swp),
4450 swp_offset(swp));
4451 }
4452 } else
4453 page = find_get_page(mapping, pgoff);
4454 #else
4455 page = find_get_page(mapping, pgoff);
4456 #endif
4457 return page;
4458 }
4459
4460 /**
4461 * mem_cgroup_move_account - move account of the page
4462 * @page: the page
4463 * @compound: charge the page as compound or small page
4464 * @from: mem_cgroup which the page is moved from.
4465 * @to: mem_cgroup which the page is moved to. @from != @to.
4466 *
4467 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4468 *
4469 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4470 * from old cgroup.
4471 */
4472 static int mem_cgroup_move_account(struct page *page,
4473 bool compound,
4474 struct mem_cgroup *from,
4475 struct mem_cgroup *to)
4476 {
4477 unsigned long flags;
4478 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4479 int ret;
4480 bool anon;
4481
4482 VM_BUG_ON(from == to);
4483 VM_BUG_ON_PAGE(PageLRU(page), page);
4484 VM_BUG_ON(compound && !PageTransHuge(page));
4485
4486 /*
4487 * Prevent mem_cgroup_migrate() from looking at
4488 * page->mem_cgroup of its source page while we change it.
4489 */
4490 ret = -EBUSY;
4491 if (!trylock_page(page))
4492 goto out;
4493
4494 ret = -EINVAL;
4495 if (page->mem_cgroup != from)
4496 goto out_unlock;
4497
4498 anon = PageAnon(page);
4499
4500 spin_lock_irqsave(&from->move_lock, flags);
4501
4502 if (!anon && page_mapped(page)) {
4503 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4504 nr_pages);
4505 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4506 nr_pages);
4507 }
4508
4509 /*
4510 * move_lock grabbed above and caller set from->moving_account, so
4511 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4512 * So mapping should be stable for dirty pages.
4513 */
4514 if (!anon && PageDirty(page)) {
4515 struct address_space *mapping = page_mapping(page);
4516
4517 if (mapping_cap_account_dirty(mapping)) {
4518 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4519 nr_pages);
4520 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4521 nr_pages);
4522 }
4523 }
4524
4525 if (PageWriteback(page)) {
4526 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4527 nr_pages);
4528 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4529 nr_pages);
4530 }
4531
4532 /*
4533 * It is safe to change page->mem_cgroup here because the page
4534 * is referenced, charged, and isolated - we can't race with
4535 * uncharging, charging, migration, or LRU putback.
4536 */
4537
4538 /* caller should have done css_get */
4539 page->mem_cgroup = to;
4540 spin_unlock_irqrestore(&from->move_lock, flags);
4541
4542 ret = 0;
4543
4544 local_irq_disable();
4545 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4546 memcg_check_events(to, page);
4547 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4548 memcg_check_events(from, page);
4549 local_irq_enable();
4550 out_unlock:
4551 unlock_page(page);
4552 out:
4553 return ret;
4554 }
4555
4556 /**
4557 * get_mctgt_type - get target type of moving charge
4558 * @vma: the vma the pte to be checked belongs
4559 * @addr: the address corresponding to the pte to be checked
4560 * @ptent: the pte to be checked
4561 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4562 *
4563 * Returns
4564 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4565 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4566 * move charge. if @target is not NULL, the page is stored in target->page
4567 * with extra refcnt got(Callers should handle it).
4568 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4569 * target for charge migration. if @target is not NULL, the entry is stored
4570 * in target->ent.
4571 *
4572 * Called with pte lock held.
4573 */
4574
4575 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4576 unsigned long addr, pte_t ptent, union mc_target *target)
4577 {
4578 struct page *page = NULL;
4579 enum mc_target_type ret = MC_TARGET_NONE;
4580 swp_entry_t ent = { .val = 0 };
4581
4582 if (pte_present(ptent))
4583 page = mc_handle_present_pte(vma, addr, ptent);
4584 else if (is_swap_pte(ptent))
4585 page = mc_handle_swap_pte(vma, ptent, &ent);
4586 else if (pte_none(ptent))
4587 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4588
4589 if (!page && !ent.val)
4590 return ret;
4591 if (page) {
4592 /*
4593 * Do only loose check w/o serialization.
4594 * mem_cgroup_move_account() checks the page is valid or
4595 * not under LRU exclusion.
4596 */
4597 if (page->mem_cgroup == mc.from) {
4598 ret = MC_TARGET_PAGE;
4599 if (target)
4600 target->page = page;
4601 }
4602 if (!ret || !target)
4603 put_page(page);
4604 }
4605 /* There is a swap entry and a page doesn't exist or isn't charged */
4606 if (ent.val && !ret &&
4607 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4608 ret = MC_TARGET_SWAP;
4609 if (target)
4610 target->ent = ent;
4611 }
4612 return ret;
4613 }
4614
4615 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4616 /*
4617 * We don't consider swapping or file mapped pages because THP does not
4618 * support them for now.
4619 * Caller should make sure that pmd_trans_huge(pmd) is true.
4620 */
4621 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4622 unsigned long addr, pmd_t pmd, union mc_target *target)
4623 {
4624 struct page *page = NULL;
4625 enum mc_target_type ret = MC_TARGET_NONE;
4626
4627 page = pmd_page(pmd);
4628 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4629 if (!(mc.flags & MOVE_ANON))
4630 return ret;
4631 if (page->mem_cgroup == mc.from) {
4632 ret = MC_TARGET_PAGE;
4633 if (target) {
4634 get_page(page);
4635 target->page = page;
4636 }
4637 }
4638 return ret;
4639 }
4640 #else
4641 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4642 unsigned long addr, pmd_t pmd, union mc_target *target)
4643 {
4644 return MC_TARGET_NONE;
4645 }
4646 #endif
4647
4648 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4649 unsigned long addr, unsigned long end,
4650 struct mm_walk *walk)
4651 {
4652 struct vm_area_struct *vma = walk->vma;
4653 pte_t *pte;
4654 spinlock_t *ptl;
4655
4656 ptl = pmd_trans_huge_lock(pmd, vma);
4657 if (ptl) {
4658 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4659 mc.precharge += HPAGE_PMD_NR;
4660 spin_unlock(ptl);
4661 return 0;
4662 }
4663
4664 if (pmd_trans_unstable(pmd))
4665 return 0;
4666 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4667 for (; addr != end; pte++, addr += PAGE_SIZE)
4668 if (get_mctgt_type(vma, addr, *pte, NULL))
4669 mc.precharge++; /* increment precharge temporarily */
4670 pte_unmap_unlock(pte - 1, ptl);
4671 cond_resched();
4672
4673 return 0;
4674 }
4675
4676 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4677 {
4678 unsigned long precharge;
4679
4680 struct mm_walk mem_cgroup_count_precharge_walk = {
4681 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4682 .mm = mm,
4683 };
4684 down_read(&mm->mmap_sem);
4685 walk_page_range(0, mm->highest_vm_end,
4686 &mem_cgroup_count_precharge_walk);
4687 up_read(&mm->mmap_sem);
4688
4689 precharge = mc.precharge;
4690 mc.precharge = 0;
4691
4692 return precharge;
4693 }
4694
4695 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4696 {
4697 unsigned long precharge = mem_cgroup_count_precharge(mm);
4698
4699 VM_BUG_ON(mc.moving_task);
4700 mc.moving_task = current;
4701 return mem_cgroup_do_precharge(precharge);
4702 }
4703
4704 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4705 static void __mem_cgroup_clear_mc(void)
4706 {
4707 struct mem_cgroup *from = mc.from;
4708 struct mem_cgroup *to = mc.to;
4709
4710 /* we must uncharge all the leftover precharges from mc.to */
4711 if (mc.precharge) {
4712 cancel_charge(mc.to, mc.precharge);
4713 mc.precharge = 0;
4714 }
4715 /*
4716 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4717 * we must uncharge here.
4718 */
4719 if (mc.moved_charge) {
4720 cancel_charge(mc.from, mc.moved_charge);
4721 mc.moved_charge = 0;
4722 }
4723 /* we must fixup refcnts and charges */
4724 if (mc.moved_swap) {
4725 /* uncharge swap account from the old cgroup */
4726 if (!mem_cgroup_is_root(mc.from))
4727 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4728
4729 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4730
4731 /*
4732 * we charged both to->memory and to->memsw, so we
4733 * should uncharge to->memory.
4734 */
4735 if (!mem_cgroup_is_root(mc.to))
4736 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4737
4738 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4739 css_put_many(&mc.to->css, mc.moved_swap);
4740
4741 mc.moved_swap = 0;
4742 }
4743 memcg_oom_recover(from);
4744 memcg_oom_recover(to);
4745 wake_up_all(&mc.waitq);
4746 }
4747
4748 static void mem_cgroup_clear_mc(void)
4749 {
4750 struct mm_struct *mm = mc.mm;
4751
4752 /*
4753 * we must clear moving_task before waking up waiters at the end of
4754 * task migration.
4755 */
4756 mc.moving_task = NULL;
4757 __mem_cgroup_clear_mc();
4758 spin_lock(&mc.lock);
4759 mc.from = NULL;
4760 mc.to = NULL;
4761 mc.mm = NULL;
4762 spin_unlock(&mc.lock);
4763
4764 mmput(mm);
4765 }
4766
4767 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4768 {
4769 struct cgroup_subsys_state *css;
4770 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4771 struct mem_cgroup *from;
4772 struct task_struct *leader, *p;
4773 struct mm_struct *mm;
4774 unsigned long move_flags;
4775 int ret = 0;
4776
4777 /* charge immigration isn't supported on the default hierarchy */
4778 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4779 return 0;
4780
4781 /*
4782 * Multi-process migrations only happen on the default hierarchy
4783 * where charge immigration is not used. Perform charge
4784 * immigration if @tset contains a leader and whine if there are
4785 * multiple.
4786 */
4787 p = NULL;
4788 cgroup_taskset_for_each_leader(leader, css, tset) {
4789 WARN_ON_ONCE(p);
4790 p = leader;
4791 memcg = mem_cgroup_from_css(css);
4792 }
4793 if (!p)
4794 return 0;
4795
4796 /*
4797 * We are now commited to this value whatever it is. Changes in this
4798 * tunable will only affect upcoming migrations, not the current one.
4799 * So we need to save it, and keep it going.
4800 */
4801 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4802 if (!move_flags)
4803 return 0;
4804
4805 from = mem_cgroup_from_task(p);
4806
4807 VM_BUG_ON(from == memcg);
4808
4809 mm = get_task_mm(p);
4810 if (!mm)
4811 return 0;
4812 /* We move charges only when we move a owner of the mm */
4813 if (mm->owner == p) {
4814 VM_BUG_ON(mc.from);
4815 VM_BUG_ON(mc.to);
4816 VM_BUG_ON(mc.precharge);
4817 VM_BUG_ON(mc.moved_charge);
4818 VM_BUG_ON(mc.moved_swap);
4819
4820 spin_lock(&mc.lock);
4821 mc.mm = mm;
4822 mc.from = from;
4823 mc.to = memcg;
4824 mc.flags = move_flags;
4825 spin_unlock(&mc.lock);
4826 /* We set mc.moving_task later */
4827
4828 ret = mem_cgroup_precharge_mc(mm);
4829 if (ret)
4830 mem_cgroup_clear_mc();
4831 } else {
4832 mmput(mm);
4833 }
4834 return ret;
4835 }
4836
4837 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4838 {
4839 if (mc.to)
4840 mem_cgroup_clear_mc();
4841 }
4842
4843 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4844 unsigned long addr, unsigned long end,
4845 struct mm_walk *walk)
4846 {
4847 int ret = 0;
4848 struct vm_area_struct *vma = walk->vma;
4849 pte_t *pte;
4850 spinlock_t *ptl;
4851 enum mc_target_type target_type;
4852 union mc_target target;
4853 struct page *page;
4854
4855 ptl = pmd_trans_huge_lock(pmd, vma);
4856 if (ptl) {
4857 if (mc.precharge < HPAGE_PMD_NR) {
4858 spin_unlock(ptl);
4859 return 0;
4860 }
4861 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4862 if (target_type == MC_TARGET_PAGE) {
4863 page = target.page;
4864 if (!isolate_lru_page(page)) {
4865 if (!mem_cgroup_move_account(page, true,
4866 mc.from, mc.to)) {
4867 mc.precharge -= HPAGE_PMD_NR;
4868 mc.moved_charge += HPAGE_PMD_NR;
4869 }
4870 putback_lru_page(page);
4871 }
4872 put_page(page);
4873 }
4874 spin_unlock(ptl);
4875 return 0;
4876 }
4877
4878 if (pmd_trans_unstable(pmd))
4879 return 0;
4880 retry:
4881 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4882 for (; addr != end; addr += PAGE_SIZE) {
4883 pte_t ptent = *(pte++);
4884 swp_entry_t ent;
4885
4886 if (!mc.precharge)
4887 break;
4888
4889 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4890 case MC_TARGET_PAGE:
4891 page = target.page;
4892 /*
4893 * We can have a part of the split pmd here. Moving it
4894 * can be done but it would be too convoluted so simply
4895 * ignore such a partial THP and keep it in original
4896 * memcg. There should be somebody mapping the head.
4897 */
4898 if (PageTransCompound(page))
4899 goto put;
4900 if (isolate_lru_page(page))
4901 goto put;
4902 if (!mem_cgroup_move_account(page, false,
4903 mc.from, mc.to)) {
4904 mc.precharge--;
4905 /* we uncharge from mc.from later. */
4906 mc.moved_charge++;
4907 }
4908 putback_lru_page(page);
4909 put: /* get_mctgt_type() gets the page */
4910 put_page(page);
4911 break;
4912 case MC_TARGET_SWAP:
4913 ent = target.ent;
4914 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4915 mc.precharge--;
4916 /* we fixup refcnts and charges later. */
4917 mc.moved_swap++;
4918 }
4919 break;
4920 default:
4921 break;
4922 }
4923 }
4924 pte_unmap_unlock(pte - 1, ptl);
4925 cond_resched();
4926
4927 if (addr != end) {
4928 /*
4929 * We have consumed all precharges we got in can_attach().
4930 * We try charge one by one, but don't do any additional
4931 * charges to mc.to if we have failed in charge once in attach()
4932 * phase.
4933 */
4934 ret = mem_cgroup_do_precharge(1);
4935 if (!ret)
4936 goto retry;
4937 }
4938
4939 return ret;
4940 }
4941
4942 static void mem_cgroup_move_charge(void)
4943 {
4944 struct mm_walk mem_cgroup_move_charge_walk = {
4945 .pmd_entry = mem_cgroup_move_charge_pte_range,
4946 .mm = mc.mm,
4947 };
4948
4949 lru_add_drain_all();
4950 /*
4951 * Signal lock_page_memcg() to take the memcg's move_lock
4952 * while we're moving its pages to another memcg. Then wait
4953 * for already started RCU-only updates to finish.
4954 */
4955 atomic_inc(&mc.from->moving_account);
4956 synchronize_rcu();
4957 retry:
4958 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4959 /*
4960 * Someone who are holding the mmap_sem might be waiting in
4961 * waitq. So we cancel all extra charges, wake up all waiters,
4962 * and retry. Because we cancel precharges, we might not be able
4963 * to move enough charges, but moving charge is a best-effort
4964 * feature anyway, so it wouldn't be a big problem.
4965 */
4966 __mem_cgroup_clear_mc();
4967 cond_resched();
4968 goto retry;
4969 }
4970 /*
4971 * When we have consumed all precharges and failed in doing
4972 * additional charge, the page walk just aborts.
4973 */
4974 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
4975
4976 up_read(&mc.mm->mmap_sem);
4977 atomic_dec(&mc.from->moving_account);
4978 }
4979
4980 static void mem_cgroup_move_task(void)
4981 {
4982 if (mc.to) {
4983 mem_cgroup_move_charge();
4984 mem_cgroup_clear_mc();
4985 }
4986 }
4987 #else /* !CONFIG_MMU */
4988 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4989 {
4990 return 0;
4991 }
4992 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4993 {
4994 }
4995 static void mem_cgroup_move_task(void)
4996 {
4997 }
4998 #endif
4999
5000 /*
5001 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5002 * to verify whether we're attached to the default hierarchy on each mount
5003 * attempt.
5004 */
5005 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5006 {
5007 /*
5008 * use_hierarchy is forced on the default hierarchy. cgroup core
5009 * guarantees that @root doesn't have any children, so turning it
5010 * on for the root memcg is enough.
5011 */
5012 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5013 root_mem_cgroup->use_hierarchy = true;
5014 else
5015 root_mem_cgroup->use_hierarchy = false;
5016 }
5017
5018 static u64 memory_current_read(struct cgroup_subsys_state *css,
5019 struct cftype *cft)
5020 {
5021 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5022
5023 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5024 }
5025
5026 static int memory_low_show(struct seq_file *m, void *v)
5027 {
5028 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5029 unsigned long low = READ_ONCE(memcg->low);
5030
5031 if (low == PAGE_COUNTER_MAX)
5032 seq_puts(m, "max\n");
5033 else
5034 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5035
5036 return 0;
5037 }
5038
5039 static ssize_t memory_low_write(struct kernfs_open_file *of,
5040 char *buf, size_t nbytes, loff_t off)
5041 {
5042 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5043 unsigned long low;
5044 int err;
5045
5046 buf = strstrip(buf);
5047 err = page_counter_memparse(buf, "max", &low);
5048 if (err)
5049 return err;
5050
5051 memcg->low = low;
5052
5053 return nbytes;
5054 }
5055
5056 static int memory_high_show(struct seq_file *m, void *v)
5057 {
5058 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5059 unsigned long high = READ_ONCE(memcg->high);
5060
5061 if (high == PAGE_COUNTER_MAX)
5062 seq_puts(m, "max\n");
5063 else
5064 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5065
5066 return 0;
5067 }
5068
5069 static ssize_t memory_high_write(struct kernfs_open_file *of,
5070 char *buf, size_t nbytes, loff_t off)
5071 {
5072 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5073 unsigned long nr_pages;
5074 unsigned long high;
5075 int err;
5076
5077 buf = strstrip(buf);
5078 err = page_counter_memparse(buf, "max", &high);
5079 if (err)
5080 return err;
5081
5082 memcg->high = high;
5083
5084 nr_pages = page_counter_read(&memcg->memory);
5085 if (nr_pages > high)
5086 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5087 GFP_KERNEL, true);
5088
5089 memcg_wb_domain_size_changed(memcg);
5090 return nbytes;
5091 }
5092
5093 static int memory_max_show(struct seq_file *m, void *v)
5094 {
5095 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5096 unsigned long max = READ_ONCE(memcg->memory.limit);
5097
5098 if (max == PAGE_COUNTER_MAX)
5099 seq_puts(m, "max\n");
5100 else
5101 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5102
5103 return 0;
5104 }
5105
5106 static ssize_t memory_max_write(struct kernfs_open_file *of,
5107 char *buf, size_t nbytes, loff_t off)
5108 {
5109 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5110 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5111 bool drained = false;
5112 unsigned long max;
5113 int err;
5114
5115 buf = strstrip(buf);
5116 err = page_counter_memparse(buf, "max", &max);
5117 if (err)
5118 return err;
5119
5120 xchg(&memcg->memory.limit, max);
5121
5122 for (;;) {
5123 unsigned long nr_pages = page_counter_read(&memcg->memory);
5124
5125 if (nr_pages <= max)
5126 break;
5127
5128 if (signal_pending(current)) {
5129 err = -EINTR;
5130 break;
5131 }
5132
5133 if (!drained) {
5134 drain_all_stock(memcg);
5135 drained = true;
5136 continue;
5137 }
5138
5139 if (nr_reclaims) {
5140 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5141 GFP_KERNEL, true))
5142 nr_reclaims--;
5143 continue;
5144 }
5145
5146 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5147 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5148 break;
5149 }
5150
5151 memcg_wb_domain_size_changed(memcg);
5152 return nbytes;
5153 }
5154
5155 static int memory_events_show(struct seq_file *m, void *v)
5156 {
5157 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5158
5159 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5160 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5161 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5162 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5163
5164 return 0;
5165 }
5166
5167 static int memory_stat_show(struct seq_file *m, void *v)
5168 {
5169 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5170 unsigned long stat[MEMCG_NR_STAT];
5171 unsigned long events[MEMCG_NR_EVENTS];
5172 int i;
5173
5174 /*
5175 * Provide statistics on the state of the memory subsystem as
5176 * well as cumulative event counters that show past behavior.
5177 *
5178 * This list is ordered following a combination of these gradients:
5179 * 1) generic big picture -> specifics and details
5180 * 2) reflecting userspace activity -> reflecting kernel heuristics
5181 *
5182 * Current memory state:
5183 */
5184
5185 tree_stat(memcg, stat);
5186 tree_events(memcg, events);
5187
5188 seq_printf(m, "anon %llu\n",
5189 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5190 seq_printf(m, "file %llu\n",
5191 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5192 seq_printf(m, "kernel_stack %llu\n",
5193 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5194 seq_printf(m, "slab %llu\n",
5195 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5196 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5197 seq_printf(m, "sock %llu\n",
5198 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5199
5200 seq_printf(m, "file_mapped %llu\n",
5201 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5202 seq_printf(m, "file_dirty %llu\n",
5203 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5204 seq_printf(m, "file_writeback %llu\n",
5205 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5206
5207 for (i = 0; i < NR_LRU_LISTS; i++) {
5208 struct mem_cgroup *mi;
5209 unsigned long val = 0;
5210
5211 for_each_mem_cgroup_tree(mi, memcg)
5212 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5213 seq_printf(m, "%s %llu\n",
5214 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5215 }
5216
5217 seq_printf(m, "slab_reclaimable %llu\n",
5218 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5219 seq_printf(m, "slab_unreclaimable %llu\n",
5220 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5221
5222 /* Accumulated memory events */
5223
5224 seq_printf(m, "pgfault %lu\n",
5225 events[MEM_CGROUP_EVENTS_PGFAULT]);
5226 seq_printf(m, "pgmajfault %lu\n",
5227 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5228
5229 return 0;
5230 }
5231
5232 static struct cftype memory_files[] = {
5233 {
5234 .name = "current",
5235 .flags = CFTYPE_NOT_ON_ROOT,
5236 .read_u64 = memory_current_read,
5237 },
5238 {
5239 .name = "low",
5240 .flags = CFTYPE_NOT_ON_ROOT,
5241 .seq_show = memory_low_show,
5242 .write = memory_low_write,
5243 },
5244 {
5245 .name = "high",
5246 .flags = CFTYPE_NOT_ON_ROOT,
5247 .seq_show = memory_high_show,
5248 .write = memory_high_write,
5249 },
5250 {
5251 .name = "max",
5252 .flags = CFTYPE_NOT_ON_ROOT,
5253 .seq_show = memory_max_show,
5254 .write = memory_max_write,
5255 },
5256 {
5257 .name = "events",
5258 .flags = CFTYPE_NOT_ON_ROOT,
5259 .file_offset = offsetof(struct mem_cgroup, events_file),
5260 .seq_show = memory_events_show,
5261 },
5262 {
5263 .name = "stat",
5264 .flags = CFTYPE_NOT_ON_ROOT,
5265 .seq_show = memory_stat_show,
5266 },
5267 { } /* terminate */
5268 };
5269
5270 struct cgroup_subsys memory_cgrp_subsys = {
5271 .css_alloc = mem_cgroup_css_alloc,
5272 .css_online = mem_cgroup_css_online,
5273 .css_offline = mem_cgroup_css_offline,
5274 .css_released = mem_cgroup_css_released,
5275 .css_free = mem_cgroup_css_free,
5276 .css_reset = mem_cgroup_css_reset,
5277 .can_attach = mem_cgroup_can_attach,
5278 .cancel_attach = mem_cgroup_cancel_attach,
5279 .post_attach = mem_cgroup_move_task,
5280 .bind = mem_cgroup_bind,
5281 .dfl_cftypes = memory_files,
5282 .legacy_cftypes = mem_cgroup_legacy_files,
5283 .early_init = 0,
5284 };
5285
5286 /**
5287 * mem_cgroup_low - check if memory consumption is below the normal range
5288 * @root: the highest ancestor to consider
5289 * @memcg: the memory cgroup to check
5290 *
5291 * Returns %true if memory consumption of @memcg, and that of all
5292 * configurable ancestors up to @root, is below the normal range.
5293 */
5294 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5295 {
5296 if (mem_cgroup_disabled())
5297 return false;
5298
5299 /*
5300 * The toplevel group doesn't have a configurable range, so
5301 * it's never low when looked at directly, and it is not
5302 * considered an ancestor when assessing the hierarchy.
5303 */
5304
5305 if (memcg == root_mem_cgroup)
5306 return false;
5307
5308 if (page_counter_read(&memcg->memory) >= memcg->low)
5309 return false;
5310
5311 while (memcg != root) {
5312 memcg = parent_mem_cgroup(memcg);
5313
5314 if (memcg == root_mem_cgroup)
5315 break;
5316
5317 if (page_counter_read(&memcg->memory) >= memcg->low)
5318 return false;
5319 }
5320 return true;
5321 }
5322
5323 /**
5324 * mem_cgroup_try_charge - try charging a page
5325 * @page: page to charge
5326 * @mm: mm context of the victim
5327 * @gfp_mask: reclaim mode
5328 * @memcgp: charged memcg return
5329 * @compound: charge the page as compound or small page
5330 *
5331 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5332 * pages according to @gfp_mask if necessary.
5333 *
5334 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5335 * Otherwise, an error code is returned.
5336 *
5337 * After page->mapping has been set up, the caller must finalize the
5338 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5339 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5340 */
5341 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5342 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5343 bool compound)
5344 {
5345 struct mem_cgroup *memcg = NULL;
5346 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5347 int ret = 0;
5348
5349 if (mem_cgroup_disabled())
5350 goto out;
5351
5352 if (PageSwapCache(page)) {
5353 /*
5354 * Every swap fault against a single page tries to charge the
5355 * page, bail as early as possible. shmem_unuse() encounters
5356 * already charged pages, too. The USED bit is protected by
5357 * the page lock, which serializes swap cache removal, which
5358 * in turn serializes uncharging.
5359 */
5360 VM_BUG_ON_PAGE(!PageLocked(page), page);
5361 if (page->mem_cgroup)
5362 goto out;
5363
5364 if (do_swap_account) {
5365 swp_entry_t ent = { .val = page_private(page), };
5366 unsigned short id = lookup_swap_cgroup_id(ent);
5367
5368 rcu_read_lock();
5369 memcg = mem_cgroup_from_id(id);
5370 if (memcg && !css_tryget_online(&memcg->css))
5371 memcg = NULL;
5372 rcu_read_unlock();
5373 }
5374 }
5375
5376 if (!memcg)
5377 memcg = get_mem_cgroup_from_mm(mm);
5378
5379 ret = try_charge(memcg, gfp_mask, nr_pages);
5380
5381 css_put(&memcg->css);
5382 out:
5383 *memcgp = memcg;
5384 return ret;
5385 }
5386
5387 /**
5388 * mem_cgroup_commit_charge - commit a page charge
5389 * @page: page to charge
5390 * @memcg: memcg to charge the page to
5391 * @lrucare: page might be on LRU already
5392 * @compound: charge the page as compound or small page
5393 *
5394 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5395 * after page->mapping has been set up. This must happen atomically
5396 * as part of the page instantiation, i.e. under the page table lock
5397 * for anonymous pages, under the page lock for page and swap cache.
5398 *
5399 * In addition, the page must not be on the LRU during the commit, to
5400 * prevent racing with task migration. If it might be, use @lrucare.
5401 *
5402 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5403 */
5404 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5405 bool lrucare, bool compound)
5406 {
5407 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5408
5409 VM_BUG_ON_PAGE(!page->mapping, page);
5410 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5411
5412 if (mem_cgroup_disabled())
5413 return;
5414 /*
5415 * Swap faults will attempt to charge the same page multiple
5416 * times. But reuse_swap_page() might have removed the page
5417 * from swapcache already, so we can't check PageSwapCache().
5418 */
5419 if (!memcg)
5420 return;
5421
5422 commit_charge(page, memcg, lrucare);
5423
5424 local_irq_disable();
5425 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5426 memcg_check_events(memcg, page);
5427 local_irq_enable();
5428
5429 if (do_memsw_account() && PageSwapCache(page)) {
5430 swp_entry_t entry = { .val = page_private(page) };
5431 /*
5432 * The swap entry might not get freed for a long time,
5433 * let's not wait for it. The page already received a
5434 * memory+swap charge, drop the swap entry duplicate.
5435 */
5436 mem_cgroup_uncharge_swap(entry);
5437 }
5438 }
5439
5440 /**
5441 * mem_cgroup_cancel_charge - cancel a page charge
5442 * @page: page to charge
5443 * @memcg: memcg to charge the page to
5444 * @compound: charge the page as compound or small page
5445 *
5446 * Cancel a charge transaction started by mem_cgroup_try_charge().
5447 */
5448 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5449 bool compound)
5450 {
5451 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5452
5453 if (mem_cgroup_disabled())
5454 return;
5455 /*
5456 * Swap faults will attempt to charge the same page multiple
5457 * times. But reuse_swap_page() might have removed the page
5458 * from swapcache already, so we can't check PageSwapCache().
5459 */
5460 if (!memcg)
5461 return;
5462
5463 cancel_charge(memcg, nr_pages);
5464 }
5465
5466 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5467 unsigned long nr_anon, unsigned long nr_file,
5468 unsigned long nr_huge, unsigned long nr_kmem,
5469 struct page *dummy_page)
5470 {
5471 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5472 unsigned long flags;
5473
5474 if (!mem_cgroup_is_root(memcg)) {
5475 page_counter_uncharge(&memcg->memory, nr_pages);
5476 if (do_memsw_account())
5477 page_counter_uncharge(&memcg->memsw, nr_pages);
5478 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5479 page_counter_uncharge(&memcg->kmem, nr_kmem);
5480 memcg_oom_recover(memcg);
5481 }
5482
5483 local_irq_save(flags);
5484 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5485 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5486 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5487 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5488 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5489 memcg_check_events(memcg, dummy_page);
5490 local_irq_restore(flags);
5491
5492 if (!mem_cgroup_is_root(memcg))
5493 css_put_many(&memcg->css, nr_pages);
5494 }
5495
5496 static void uncharge_list(struct list_head *page_list)
5497 {
5498 struct mem_cgroup *memcg = NULL;
5499 unsigned long nr_anon = 0;
5500 unsigned long nr_file = 0;
5501 unsigned long nr_huge = 0;
5502 unsigned long nr_kmem = 0;
5503 unsigned long pgpgout = 0;
5504 struct list_head *next;
5505 struct page *page;
5506
5507 /*
5508 * Note that the list can be a single page->lru; hence the
5509 * do-while loop instead of a simple list_for_each_entry().
5510 */
5511 next = page_list->next;
5512 do {
5513 page = list_entry(next, struct page, lru);
5514 next = page->lru.next;
5515
5516 VM_BUG_ON_PAGE(PageLRU(page), page);
5517 VM_BUG_ON_PAGE(page_count(page), page);
5518
5519 if (!page->mem_cgroup)
5520 continue;
5521
5522 /*
5523 * Nobody should be changing or seriously looking at
5524 * page->mem_cgroup at this point, we have fully
5525 * exclusive access to the page.
5526 */
5527
5528 if (memcg != page->mem_cgroup) {
5529 if (memcg) {
5530 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5531 nr_huge, nr_kmem, page);
5532 pgpgout = nr_anon = nr_file =
5533 nr_huge = nr_kmem = 0;
5534 }
5535 memcg = page->mem_cgroup;
5536 }
5537
5538 if (!PageKmemcg(page)) {
5539 unsigned int nr_pages = 1;
5540
5541 if (PageTransHuge(page)) {
5542 nr_pages <<= compound_order(page);
5543 nr_huge += nr_pages;
5544 }
5545 if (PageAnon(page))
5546 nr_anon += nr_pages;
5547 else
5548 nr_file += nr_pages;
5549 pgpgout++;
5550 } else {
5551 nr_kmem += 1 << compound_order(page);
5552 __ClearPageKmemcg(page);
5553 }
5554
5555 page->mem_cgroup = NULL;
5556 } while (next != page_list);
5557
5558 if (memcg)
5559 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5560 nr_huge, nr_kmem, page);
5561 }
5562
5563 /**
5564 * mem_cgroup_uncharge - uncharge a page
5565 * @page: page to uncharge
5566 *
5567 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5568 * mem_cgroup_commit_charge().
5569 */
5570 void mem_cgroup_uncharge(struct page *page)
5571 {
5572 if (mem_cgroup_disabled())
5573 return;
5574
5575 /* Don't touch page->lru of any random page, pre-check: */
5576 if (!page->mem_cgroup)
5577 return;
5578
5579 INIT_LIST_HEAD(&page->lru);
5580 uncharge_list(&page->lru);
5581 }
5582
5583 /**
5584 * mem_cgroup_uncharge_list - uncharge a list of page
5585 * @page_list: list of pages to uncharge
5586 *
5587 * Uncharge a list of pages previously charged with
5588 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5589 */
5590 void mem_cgroup_uncharge_list(struct list_head *page_list)
5591 {
5592 if (mem_cgroup_disabled())
5593 return;
5594
5595 if (!list_empty(page_list))
5596 uncharge_list(page_list);
5597 }
5598
5599 /**
5600 * mem_cgroup_migrate - charge a page's replacement
5601 * @oldpage: currently circulating page
5602 * @newpage: replacement page
5603 *
5604 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5605 * be uncharged upon free.
5606 *
5607 * Both pages must be locked, @newpage->mapping must be set up.
5608 */
5609 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5610 {
5611 struct mem_cgroup *memcg;
5612 unsigned int nr_pages;
5613 bool compound;
5614 unsigned long flags;
5615
5616 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5617 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5618 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5619 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5620 newpage);
5621
5622 if (mem_cgroup_disabled())
5623 return;
5624
5625 /* Page cache replacement: new page already charged? */
5626 if (newpage->mem_cgroup)
5627 return;
5628
5629 /* Swapcache readahead pages can get replaced before being charged */
5630 memcg = oldpage->mem_cgroup;
5631 if (!memcg)
5632 return;
5633
5634 /* Force-charge the new page. The old one will be freed soon */
5635 compound = PageTransHuge(newpage);
5636 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5637
5638 page_counter_charge(&memcg->memory, nr_pages);
5639 if (do_memsw_account())
5640 page_counter_charge(&memcg->memsw, nr_pages);
5641 css_get_many(&memcg->css, nr_pages);
5642
5643 commit_charge(newpage, memcg, false);
5644
5645 local_irq_save(flags);
5646 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5647 memcg_check_events(memcg, newpage);
5648 local_irq_restore(flags);
5649 }
5650
5651 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5652 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5653
5654 void mem_cgroup_sk_alloc(struct sock *sk)
5655 {
5656 struct mem_cgroup *memcg;
5657
5658 if (!mem_cgroup_sockets_enabled)
5659 return;
5660
5661 /*
5662 * Socket cloning can throw us here with sk_memcg already
5663 * filled. It won't however, necessarily happen from
5664 * process context. So the test for root memcg given
5665 * the current task's memcg won't help us in this case.
5666 *
5667 * Respecting the original socket's memcg is a better
5668 * decision in this case.
5669 */
5670 if (sk->sk_memcg) {
5671 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5672 css_get(&sk->sk_memcg->css);
5673 return;
5674 }
5675
5676 rcu_read_lock();
5677 memcg = mem_cgroup_from_task(current);
5678 if (memcg == root_mem_cgroup)
5679 goto out;
5680 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5681 goto out;
5682 if (css_tryget_online(&memcg->css))
5683 sk->sk_memcg = memcg;
5684 out:
5685 rcu_read_unlock();
5686 }
5687
5688 void mem_cgroup_sk_free(struct sock *sk)
5689 {
5690 if (sk->sk_memcg)
5691 css_put(&sk->sk_memcg->css);
5692 }
5693
5694 /**
5695 * mem_cgroup_charge_skmem - charge socket memory
5696 * @memcg: memcg to charge
5697 * @nr_pages: number of pages to charge
5698 *
5699 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5700 * @memcg's configured limit, %false if the charge had to be forced.
5701 */
5702 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5703 {
5704 gfp_t gfp_mask = GFP_KERNEL;
5705
5706 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5707 struct page_counter *fail;
5708
5709 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5710 memcg->tcpmem_pressure = 0;
5711 return true;
5712 }
5713 page_counter_charge(&memcg->tcpmem, nr_pages);
5714 memcg->tcpmem_pressure = 1;
5715 return false;
5716 }
5717
5718 /* Don't block in the packet receive path */
5719 if (in_softirq())
5720 gfp_mask = GFP_NOWAIT;
5721
5722 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5723
5724 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5725 return true;
5726
5727 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5728 return false;
5729 }
5730
5731 /**
5732 * mem_cgroup_uncharge_skmem - uncharge socket memory
5733 * @memcg - memcg to uncharge
5734 * @nr_pages - number of pages to uncharge
5735 */
5736 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5737 {
5738 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5739 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5740 return;
5741 }
5742
5743 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5744
5745 page_counter_uncharge(&memcg->memory, nr_pages);
5746 css_put_many(&memcg->css, nr_pages);
5747 }
5748
5749 static int __init cgroup_memory(char *s)
5750 {
5751 char *token;
5752
5753 while ((token = strsep(&s, ",")) != NULL) {
5754 if (!*token)
5755 continue;
5756 if (!strcmp(token, "nosocket"))
5757 cgroup_memory_nosocket = true;
5758 if (!strcmp(token, "nokmem"))
5759 cgroup_memory_nokmem = true;
5760 }
5761 return 0;
5762 }
5763 __setup("cgroup.memory=", cgroup_memory);
5764
5765 /*
5766 * subsys_initcall() for memory controller.
5767 *
5768 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5769 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5770 * basically everything that doesn't depend on a specific mem_cgroup structure
5771 * should be initialized from here.
5772 */
5773 static int __init mem_cgroup_init(void)
5774 {
5775 int cpu, node;
5776
5777 #ifndef CONFIG_SLOB
5778 /*
5779 * Kmem cache creation is mostly done with the slab_mutex held,
5780 * so use a special workqueue to avoid stalling all worker
5781 * threads in case lots of cgroups are created simultaneously.
5782 */
5783 memcg_kmem_cache_create_wq =
5784 alloc_ordered_workqueue("memcg_kmem_cache_create", 0);
5785 BUG_ON(!memcg_kmem_cache_create_wq);
5786 #endif
5787
5788 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5789 memcg_hotplug_cpu_dead);
5790
5791 for_each_possible_cpu(cpu)
5792 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5793 drain_local_stock);
5794
5795 for_each_node(node) {
5796 struct mem_cgroup_tree_per_node *rtpn;
5797
5798 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5799 node_online(node) ? node : NUMA_NO_NODE);
5800
5801 rtpn->rb_root = RB_ROOT;
5802 spin_lock_init(&rtpn->lock);
5803 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5804 }
5805
5806 return 0;
5807 }
5808 subsys_initcall(mem_cgroup_init);
5809
5810 #ifdef CONFIG_MEMCG_SWAP
5811 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5812 {
5813 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5814 /*
5815 * The root cgroup cannot be destroyed, so it's refcount must
5816 * always be >= 1.
5817 */
5818 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5819 VM_BUG_ON(1);
5820 break;
5821 }
5822 memcg = parent_mem_cgroup(memcg);
5823 if (!memcg)
5824 memcg = root_mem_cgroup;
5825 }
5826 return memcg;
5827 }
5828
5829 /**
5830 * mem_cgroup_swapout - transfer a memsw charge to swap
5831 * @page: page whose memsw charge to transfer
5832 * @entry: swap entry to move the charge to
5833 *
5834 * Transfer the memsw charge of @page to @entry.
5835 */
5836 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5837 {
5838 struct mem_cgroup *memcg, *swap_memcg;
5839 unsigned short oldid;
5840
5841 VM_BUG_ON_PAGE(PageLRU(page), page);
5842 VM_BUG_ON_PAGE(page_count(page), page);
5843
5844 if (!do_memsw_account())
5845 return;
5846
5847 memcg = page->mem_cgroup;
5848
5849 /* Readahead page, never charged */
5850 if (!memcg)
5851 return;
5852
5853 /*
5854 * In case the memcg owning these pages has been offlined and doesn't
5855 * have an ID allocated to it anymore, charge the closest online
5856 * ancestor for the swap instead and transfer the memory+swap charge.
5857 */
5858 swap_memcg = mem_cgroup_id_get_online(memcg);
5859 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5860 VM_BUG_ON_PAGE(oldid, page);
5861 mem_cgroup_swap_statistics(swap_memcg, true);
5862
5863 page->mem_cgroup = NULL;
5864
5865 if (!mem_cgroup_is_root(memcg))
5866 page_counter_uncharge(&memcg->memory, 1);
5867
5868 if (memcg != swap_memcg) {
5869 if (!mem_cgroup_is_root(swap_memcg))
5870 page_counter_charge(&swap_memcg->memsw, 1);
5871 page_counter_uncharge(&memcg->memsw, 1);
5872 }
5873
5874 /*
5875 * Interrupts should be disabled here because the caller holds the
5876 * mapping->tree_lock lock which is taken with interrupts-off. It is
5877 * important here to have the interrupts disabled because it is the
5878 * only synchronisation we have for udpating the per-CPU variables.
5879 */
5880 VM_BUG_ON(!irqs_disabled());
5881 mem_cgroup_charge_statistics(memcg, page, false, -1);
5882 memcg_check_events(memcg, page);
5883
5884 if (!mem_cgroup_is_root(memcg))
5885 css_put(&memcg->css);
5886 }
5887
5888 /*
5889 * mem_cgroup_try_charge_swap - try charging a swap entry
5890 * @page: page being added to swap
5891 * @entry: swap entry to charge
5892 *
5893 * Try to charge @entry to the memcg that @page belongs to.
5894 *
5895 * Returns 0 on success, -ENOMEM on failure.
5896 */
5897 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5898 {
5899 struct mem_cgroup *memcg;
5900 struct page_counter *counter;
5901 unsigned short oldid;
5902
5903 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5904 return 0;
5905
5906 memcg = page->mem_cgroup;
5907
5908 /* Readahead page, never charged */
5909 if (!memcg)
5910 return 0;
5911
5912 memcg = mem_cgroup_id_get_online(memcg);
5913
5914 if (!mem_cgroup_is_root(memcg) &&
5915 !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5916 mem_cgroup_id_put(memcg);
5917 return -ENOMEM;
5918 }
5919
5920 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5921 VM_BUG_ON_PAGE(oldid, page);
5922 mem_cgroup_swap_statistics(memcg, true);
5923
5924 return 0;
5925 }
5926
5927 /**
5928 * mem_cgroup_uncharge_swap - uncharge a swap entry
5929 * @entry: swap entry to uncharge
5930 *
5931 * Drop the swap charge associated with @entry.
5932 */
5933 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5934 {
5935 struct mem_cgroup *memcg;
5936 unsigned short id;
5937
5938 if (!do_swap_account)
5939 return;
5940
5941 id = swap_cgroup_record(entry, 0);
5942 rcu_read_lock();
5943 memcg = mem_cgroup_from_id(id);
5944 if (memcg) {
5945 if (!mem_cgroup_is_root(memcg)) {
5946 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5947 page_counter_uncharge(&memcg->swap, 1);
5948 else
5949 page_counter_uncharge(&memcg->memsw, 1);
5950 }
5951 mem_cgroup_swap_statistics(memcg, false);
5952 mem_cgroup_id_put(memcg);
5953 }
5954 rcu_read_unlock();
5955 }
5956
5957 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5958 {
5959 long nr_swap_pages = get_nr_swap_pages();
5960
5961 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5962 return nr_swap_pages;
5963 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5964 nr_swap_pages = min_t(long, nr_swap_pages,
5965 READ_ONCE(memcg->swap.limit) -
5966 page_counter_read(&memcg->swap));
5967 return nr_swap_pages;
5968 }
5969
5970 bool mem_cgroup_swap_full(struct page *page)
5971 {
5972 struct mem_cgroup *memcg;
5973
5974 VM_BUG_ON_PAGE(!PageLocked(page), page);
5975
5976 if (vm_swap_full())
5977 return true;
5978 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5979 return false;
5980
5981 memcg = page->mem_cgroup;
5982 if (!memcg)
5983 return false;
5984
5985 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5986 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5987 return true;
5988
5989 return false;
5990 }
5991
5992 /* for remember boot option*/
5993 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5994 static int really_do_swap_account __initdata = 1;
5995 #else
5996 static int really_do_swap_account __initdata;
5997 #endif
5998
5999 static int __init enable_swap_account(char *s)
6000 {
6001 if (!strcmp(s, "1"))
6002 really_do_swap_account = 1;
6003 else if (!strcmp(s, "0"))
6004 really_do_swap_account = 0;
6005 return 1;
6006 }
6007 __setup("swapaccount=", enable_swap_account);
6008
6009 static u64 swap_current_read(struct cgroup_subsys_state *css,
6010 struct cftype *cft)
6011 {
6012 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6013
6014 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6015 }
6016
6017 static int swap_max_show(struct seq_file *m, void *v)
6018 {
6019 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6020 unsigned long max = READ_ONCE(memcg->swap.limit);
6021
6022 if (max == PAGE_COUNTER_MAX)
6023 seq_puts(m, "max\n");
6024 else
6025 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6026
6027 return 0;
6028 }
6029
6030 static ssize_t swap_max_write(struct kernfs_open_file *of,
6031 char *buf, size_t nbytes, loff_t off)
6032 {
6033 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6034 unsigned long max;
6035 int err;
6036
6037 buf = strstrip(buf);
6038 err = page_counter_memparse(buf, "max", &max);
6039 if (err)
6040 return err;
6041
6042 mutex_lock(&memcg_limit_mutex);
6043 err = page_counter_limit(&memcg->swap, max);
6044 mutex_unlock(&memcg_limit_mutex);
6045 if (err)
6046 return err;
6047
6048 return nbytes;
6049 }
6050
6051 static struct cftype swap_files[] = {
6052 {
6053 .name = "swap.current",
6054 .flags = CFTYPE_NOT_ON_ROOT,
6055 .read_u64 = swap_current_read,
6056 },
6057 {
6058 .name = "swap.max",
6059 .flags = CFTYPE_NOT_ON_ROOT,
6060 .seq_show = swap_max_show,
6061 .write = swap_max_write,
6062 },
6063 { } /* terminate */
6064 };
6065
6066 static struct cftype memsw_cgroup_files[] = {
6067 {
6068 .name = "memsw.usage_in_bytes",
6069 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6070 .read_u64 = mem_cgroup_read_u64,
6071 },
6072 {
6073 .name = "memsw.max_usage_in_bytes",
6074 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6075 .write = mem_cgroup_reset,
6076 .read_u64 = mem_cgroup_read_u64,
6077 },
6078 {
6079 .name = "memsw.limit_in_bytes",
6080 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6081 .write = mem_cgroup_write,
6082 .read_u64 = mem_cgroup_read_u64,
6083 },
6084 {
6085 .name = "memsw.failcnt",
6086 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6087 .write = mem_cgroup_reset,
6088 .read_u64 = mem_cgroup_read_u64,
6089 },
6090 { }, /* terminate */
6091 };
6092
6093 static int __init mem_cgroup_swap_init(void)
6094 {
6095 if (!mem_cgroup_disabled() && really_do_swap_account) {
6096 do_swap_account = 1;
6097 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6098 swap_files));
6099 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6100 memsw_cgroup_files));
6101 }
6102 return 0;
6103 }
6104 subsys_initcall(mem_cgroup_swap_init);
6105
6106 #endif /* CONFIG_MEMCG_SWAP */