]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memcontrol.c
CGroup API files: add cgroup map data type
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/page-flags.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bit_spinlock.h>
28 #include <linux/rcupdate.h>
29 #include <linux/swap.h>
30 #include <linux/spinlock.h>
31 #include <linux/fs.h>
32 #include <linux/seq_file.h>
33
34 #include <asm/uaccess.h>
35
36 struct cgroup_subsys mem_cgroup_subsys;
37 static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
38
39 /*
40 * Statistics for memory cgroup.
41 */
42 enum mem_cgroup_stat_index {
43 /*
44 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
45 */
46 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
47 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
48
49 MEM_CGROUP_STAT_NSTATS,
50 };
51
52 struct mem_cgroup_stat_cpu {
53 s64 count[MEM_CGROUP_STAT_NSTATS];
54 } ____cacheline_aligned_in_smp;
55
56 struct mem_cgroup_stat {
57 struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
58 };
59
60 /*
61 * For accounting under irq disable, no need for increment preempt count.
62 */
63 static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
64 enum mem_cgroup_stat_index idx, int val)
65 {
66 int cpu = smp_processor_id();
67 stat->cpustat[cpu].count[idx] += val;
68 }
69
70 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
71 enum mem_cgroup_stat_index idx)
72 {
73 int cpu;
74 s64 ret = 0;
75 for_each_possible_cpu(cpu)
76 ret += stat->cpustat[cpu].count[idx];
77 return ret;
78 }
79
80 /*
81 * per-zone information in memory controller.
82 */
83
84 enum mem_cgroup_zstat_index {
85 MEM_CGROUP_ZSTAT_ACTIVE,
86 MEM_CGROUP_ZSTAT_INACTIVE,
87
88 NR_MEM_CGROUP_ZSTAT,
89 };
90
91 struct mem_cgroup_per_zone {
92 /*
93 * spin_lock to protect the per cgroup LRU
94 */
95 spinlock_t lru_lock;
96 struct list_head active_list;
97 struct list_head inactive_list;
98 unsigned long count[NR_MEM_CGROUP_ZSTAT];
99 };
100 /* Macro for accessing counter */
101 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
102
103 struct mem_cgroup_per_node {
104 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
105 };
106
107 struct mem_cgroup_lru_info {
108 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
109 };
110
111 /*
112 * The memory controller data structure. The memory controller controls both
113 * page cache and RSS per cgroup. We would eventually like to provide
114 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
115 * to help the administrator determine what knobs to tune.
116 *
117 * TODO: Add a water mark for the memory controller. Reclaim will begin when
118 * we hit the water mark. May be even add a low water mark, such that
119 * no reclaim occurs from a cgroup at it's low water mark, this is
120 * a feature that will be implemented much later in the future.
121 */
122 struct mem_cgroup {
123 struct cgroup_subsys_state css;
124 /*
125 * the counter to account for memory usage
126 */
127 struct res_counter res;
128 /*
129 * Per cgroup active and inactive list, similar to the
130 * per zone LRU lists.
131 */
132 struct mem_cgroup_lru_info info;
133
134 int prev_priority; /* for recording reclaim priority */
135 /*
136 * statistics.
137 */
138 struct mem_cgroup_stat stat;
139 };
140 static struct mem_cgroup init_mem_cgroup;
141
142 /*
143 * We use the lower bit of the page->page_cgroup pointer as a bit spin
144 * lock. We need to ensure that page->page_cgroup is at least two
145 * byte aligned (based on comments from Nick Piggin). But since
146 * bit_spin_lock doesn't actually set that lock bit in a non-debug
147 * uniprocessor kernel, we should avoid setting it here too.
148 */
149 #define PAGE_CGROUP_LOCK_BIT 0x0
150 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
151 #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
152 #else
153 #define PAGE_CGROUP_LOCK 0x0
154 #endif
155
156 /*
157 * A page_cgroup page is associated with every page descriptor. The
158 * page_cgroup helps us identify information about the cgroup
159 */
160 struct page_cgroup {
161 struct list_head lru; /* per cgroup LRU list */
162 struct page *page;
163 struct mem_cgroup *mem_cgroup;
164 int ref_cnt; /* cached, mapped, migrating */
165 int flags;
166 };
167 #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
168 #define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
169
170 static int page_cgroup_nid(struct page_cgroup *pc)
171 {
172 return page_to_nid(pc->page);
173 }
174
175 static enum zone_type page_cgroup_zid(struct page_cgroup *pc)
176 {
177 return page_zonenum(pc->page);
178 }
179
180 enum charge_type {
181 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
182 MEM_CGROUP_CHARGE_TYPE_MAPPED,
183 };
184
185 /*
186 * Always modified under lru lock. Then, not necessary to preempt_disable()
187 */
188 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
189 bool charge)
190 {
191 int val = (charge)? 1 : -1;
192 struct mem_cgroup_stat *stat = &mem->stat;
193
194 VM_BUG_ON(!irqs_disabled());
195 if (flags & PAGE_CGROUP_FLAG_CACHE)
196 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val);
197 else
198 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
199 }
200
201 static struct mem_cgroup_per_zone *
202 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
203 {
204 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
205 }
206
207 static struct mem_cgroup_per_zone *
208 page_cgroup_zoneinfo(struct page_cgroup *pc)
209 {
210 struct mem_cgroup *mem = pc->mem_cgroup;
211 int nid = page_cgroup_nid(pc);
212 int zid = page_cgroup_zid(pc);
213
214 return mem_cgroup_zoneinfo(mem, nid, zid);
215 }
216
217 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
218 enum mem_cgroup_zstat_index idx)
219 {
220 int nid, zid;
221 struct mem_cgroup_per_zone *mz;
222 u64 total = 0;
223
224 for_each_online_node(nid)
225 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
226 mz = mem_cgroup_zoneinfo(mem, nid, zid);
227 total += MEM_CGROUP_ZSTAT(mz, idx);
228 }
229 return total;
230 }
231
232 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
233 {
234 return container_of(cgroup_subsys_state(cont,
235 mem_cgroup_subsys_id), struct mem_cgroup,
236 css);
237 }
238
239 static struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
240 {
241 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
242 struct mem_cgroup, css);
243 }
244
245 void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
246 {
247 struct mem_cgroup *mem;
248
249 mem = mem_cgroup_from_task(p);
250 css_get(&mem->css);
251 mm->mem_cgroup = mem;
252 }
253
254 void mm_free_cgroup(struct mm_struct *mm)
255 {
256 css_put(&mm->mem_cgroup->css);
257 }
258
259 static inline int page_cgroup_locked(struct page *page)
260 {
261 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
262 }
263
264 static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
265 {
266 VM_BUG_ON(!page_cgroup_locked(page));
267 page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
268 }
269
270 struct page_cgroup *page_get_page_cgroup(struct page *page)
271 {
272 return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK);
273 }
274
275 static void lock_page_cgroup(struct page *page)
276 {
277 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
278 }
279
280 static int try_lock_page_cgroup(struct page *page)
281 {
282 return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
283 }
284
285 static void unlock_page_cgroup(struct page *page)
286 {
287 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
288 }
289
290 static void __mem_cgroup_remove_list(struct page_cgroup *pc)
291 {
292 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
293 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
294
295 if (from)
296 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
297 else
298 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
299
300 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
301 list_del_init(&pc->lru);
302 }
303
304 static void __mem_cgroup_add_list(struct page_cgroup *pc)
305 {
306 int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
307 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
308
309 if (!to) {
310 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
311 list_add(&pc->lru, &mz->inactive_list);
312 } else {
313 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
314 list_add(&pc->lru, &mz->active_list);
315 }
316 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
317 }
318
319 static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
320 {
321 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
322 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
323
324 if (from)
325 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
326 else
327 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
328
329 if (active) {
330 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
331 pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
332 list_move(&pc->lru, &mz->active_list);
333 } else {
334 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
335 pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
336 list_move(&pc->lru, &mz->inactive_list);
337 }
338 }
339
340 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
341 {
342 int ret;
343
344 task_lock(task);
345 ret = task->mm && mm_match_cgroup(task->mm, mem);
346 task_unlock(task);
347 return ret;
348 }
349
350 /*
351 * This routine assumes that the appropriate zone's lru lock is already held
352 */
353 void mem_cgroup_move_lists(struct page *page, bool active)
354 {
355 struct page_cgroup *pc;
356 struct mem_cgroup_per_zone *mz;
357 unsigned long flags;
358
359 /*
360 * We cannot lock_page_cgroup while holding zone's lru_lock,
361 * because other holders of lock_page_cgroup can be interrupted
362 * with an attempt to rotate_reclaimable_page. But we cannot
363 * safely get to page_cgroup without it, so just try_lock it:
364 * mem_cgroup_isolate_pages allows for page left on wrong list.
365 */
366 if (!try_lock_page_cgroup(page))
367 return;
368
369 pc = page_get_page_cgroup(page);
370 if (pc) {
371 mz = page_cgroup_zoneinfo(pc);
372 spin_lock_irqsave(&mz->lru_lock, flags);
373 __mem_cgroup_move_lists(pc, active);
374 spin_unlock_irqrestore(&mz->lru_lock, flags);
375 }
376 unlock_page_cgroup(page);
377 }
378
379 /*
380 * Calculate mapped_ratio under memory controller. This will be used in
381 * vmscan.c for deteremining we have to reclaim mapped pages.
382 */
383 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
384 {
385 long total, rss;
386
387 /*
388 * usage is recorded in bytes. But, here, we assume the number of
389 * physical pages can be represented by "long" on any arch.
390 */
391 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
392 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
393 return (int)((rss * 100L) / total);
394 }
395
396 /*
397 * This function is called from vmscan.c. In page reclaiming loop. balance
398 * between active and inactive list is calculated. For memory controller
399 * page reclaiming, we should use using mem_cgroup's imbalance rather than
400 * zone's global lru imbalance.
401 */
402 long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
403 {
404 unsigned long active, inactive;
405 /* active and inactive are the number of pages. 'long' is ok.*/
406 active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
407 inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
408 return (long) (active / (inactive + 1));
409 }
410
411 /*
412 * prev_priority control...this will be used in memory reclaim path.
413 */
414 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
415 {
416 return mem->prev_priority;
417 }
418
419 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
420 {
421 if (priority < mem->prev_priority)
422 mem->prev_priority = priority;
423 }
424
425 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
426 {
427 mem->prev_priority = priority;
428 }
429
430 /*
431 * Calculate # of pages to be scanned in this priority/zone.
432 * See also vmscan.c
433 *
434 * priority starts from "DEF_PRIORITY" and decremented in each loop.
435 * (see include/linux/mmzone.h)
436 */
437
438 long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
439 struct zone *zone, int priority)
440 {
441 long nr_active;
442 int nid = zone->zone_pgdat->node_id;
443 int zid = zone_idx(zone);
444 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
445
446 nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
447 return (nr_active >> priority);
448 }
449
450 long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
451 struct zone *zone, int priority)
452 {
453 long nr_inactive;
454 int nid = zone->zone_pgdat->node_id;
455 int zid = zone_idx(zone);
456 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
457
458 nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
459 return (nr_inactive >> priority);
460 }
461
462 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
463 struct list_head *dst,
464 unsigned long *scanned, int order,
465 int mode, struct zone *z,
466 struct mem_cgroup *mem_cont,
467 int active)
468 {
469 unsigned long nr_taken = 0;
470 struct page *page;
471 unsigned long scan;
472 LIST_HEAD(pc_list);
473 struct list_head *src;
474 struct page_cgroup *pc, *tmp;
475 int nid = z->zone_pgdat->node_id;
476 int zid = zone_idx(z);
477 struct mem_cgroup_per_zone *mz;
478
479 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
480 if (active)
481 src = &mz->active_list;
482 else
483 src = &mz->inactive_list;
484
485
486 spin_lock(&mz->lru_lock);
487 scan = 0;
488 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
489 if (scan >= nr_to_scan)
490 break;
491 page = pc->page;
492
493 if (unlikely(!PageLRU(page)))
494 continue;
495
496 if (PageActive(page) && !active) {
497 __mem_cgroup_move_lists(pc, true);
498 continue;
499 }
500 if (!PageActive(page) && active) {
501 __mem_cgroup_move_lists(pc, false);
502 continue;
503 }
504
505 scan++;
506 list_move(&pc->lru, &pc_list);
507
508 if (__isolate_lru_page(page, mode) == 0) {
509 list_move(&page->lru, dst);
510 nr_taken++;
511 }
512 }
513
514 list_splice(&pc_list, src);
515 spin_unlock(&mz->lru_lock);
516
517 *scanned = scan;
518 return nr_taken;
519 }
520
521 /*
522 * Charge the memory controller for page usage.
523 * Return
524 * 0 if the charge was successful
525 * < 0 if the cgroup is over its limit
526 */
527 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
528 gfp_t gfp_mask, enum charge_type ctype)
529 {
530 struct mem_cgroup *mem;
531 struct page_cgroup *pc;
532 unsigned long flags;
533 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
534 struct mem_cgroup_per_zone *mz;
535
536 if (mem_cgroup_subsys.disabled)
537 return 0;
538
539 /*
540 * Should page_cgroup's go to their own slab?
541 * One could optimize the performance of the charging routine
542 * by saving a bit in the page_flags and using it as a lock
543 * to see if the cgroup page already has a page_cgroup associated
544 * with it
545 */
546 retry:
547 lock_page_cgroup(page);
548 pc = page_get_page_cgroup(page);
549 /*
550 * The page_cgroup exists and
551 * the page has already been accounted.
552 */
553 if (pc) {
554 VM_BUG_ON(pc->page != page);
555 VM_BUG_ON(pc->ref_cnt <= 0);
556
557 pc->ref_cnt++;
558 unlock_page_cgroup(page);
559 goto done;
560 }
561 unlock_page_cgroup(page);
562
563 pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
564 if (pc == NULL)
565 goto err;
566
567 /*
568 * We always charge the cgroup the mm_struct belongs to.
569 * The mm_struct's mem_cgroup changes on task migration if the
570 * thread group leader migrates. It's possible that mm is not
571 * set, if so charge the init_mm (happens for pagecache usage).
572 */
573 if (!mm)
574 mm = &init_mm;
575
576 rcu_read_lock();
577 mem = rcu_dereference(mm->mem_cgroup);
578 /*
579 * For every charge from the cgroup, increment reference count
580 */
581 css_get(&mem->css);
582 rcu_read_unlock();
583
584 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
585 if (!(gfp_mask & __GFP_WAIT))
586 goto out;
587
588 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
589 continue;
590
591 /*
592 * try_to_free_mem_cgroup_pages() might not give us a full
593 * picture of reclaim. Some pages are reclaimed and might be
594 * moved to swap cache or just unmapped from the cgroup.
595 * Check the limit again to see if the reclaim reduced the
596 * current usage of the cgroup before giving up
597 */
598 if (res_counter_check_under_limit(&mem->res))
599 continue;
600
601 if (!nr_retries--) {
602 mem_cgroup_out_of_memory(mem, gfp_mask);
603 goto out;
604 }
605 congestion_wait(WRITE, HZ/10);
606 }
607
608 pc->ref_cnt = 1;
609 pc->mem_cgroup = mem;
610 pc->page = page;
611 pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
612 if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
613 pc->flags |= PAGE_CGROUP_FLAG_CACHE;
614
615 lock_page_cgroup(page);
616 if (page_get_page_cgroup(page)) {
617 unlock_page_cgroup(page);
618 /*
619 * Another charge has been added to this page already.
620 * We take lock_page_cgroup(page) again and read
621 * page->cgroup, increment refcnt.... just retry is OK.
622 */
623 res_counter_uncharge(&mem->res, PAGE_SIZE);
624 css_put(&mem->css);
625 kfree(pc);
626 goto retry;
627 }
628 page_assign_page_cgroup(page, pc);
629
630 mz = page_cgroup_zoneinfo(pc);
631 spin_lock_irqsave(&mz->lru_lock, flags);
632 __mem_cgroup_add_list(pc);
633 spin_unlock_irqrestore(&mz->lru_lock, flags);
634
635 unlock_page_cgroup(page);
636 done:
637 return 0;
638 out:
639 css_put(&mem->css);
640 kfree(pc);
641 err:
642 return -ENOMEM;
643 }
644
645 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
646 {
647 return mem_cgroup_charge_common(page, mm, gfp_mask,
648 MEM_CGROUP_CHARGE_TYPE_MAPPED);
649 }
650
651 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
652 gfp_t gfp_mask)
653 {
654 if (!mm)
655 mm = &init_mm;
656 return mem_cgroup_charge_common(page, mm, gfp_mask,
657 MEM_CGROUP_CHARGE_TYPE_CACHE);
658 }
659
660 /*
661 * Uncharging is always a welcome operation, we never complain, simply
662 * uncharge.
663 */
664 void mem_cgroup_uncharge_page(struct page *page)
665 {
666 struct page_cgroup *pc;
667 struct mem_cgroup *mem;
668 struct mem_cgroup_per_zone *mz;
669 unsigned long flags;
670
671 if (mem_cgroup_subsys.disabled)
672 return;
673
674 /*
675 * Check if our page_cgroup is valid
676 */
677 lock_page_cgroup(page);
678 pc = page_get_page_cgroup(page);
679 if (!pc)
680 goto unlock;
681
682 VM_BUG_ON(pc->page != page);
683 VM_BUG_ON(pc->ref_cnt <= 0);
684
685 if (--(pc->ref_cnt) == 0) {
686 mz = page_cgroup_zoneinfo(pc);
687 spin_lock_irqsave(&mz->lru_lock, flags);
688 __mem_cgroup_remove_list(pc);
689 spin_unlock_irqrestore(&mz->lru_lock, flags);
690
691 page_assign_page_cgroup(page, NULL);
692 unlock_page_cgroup(page);
693
694 mem = pc->mem_cgroup;
695 res_counter_uncharge(&mem->res, PAGE_SIZE);
696 css_put(&mem->css);
697
698 kfree(pc);
699 return;
700 }
701
702 unlock:
703 unlock_page_cgroup(page);
704 }
705
706 /*
707 * Returns non-zero if a page (under migration) has valid page_cgroup member.
708 * Refcnt of page_cgroup is incremented.
709 */
710 int mem_cgroup_prepare_migration(struct page *page)
711 {
712 struct page_cgroup *pc;
713
714 if (mem_cgroup_subsys.disabled)
715 return 0;
716
717 lock_page_cgroup(page);
718 pc = page_get_page_cgroup(page);
719 if (pc)
720 pc->ref_cnt++;
721 unlock_page_cgroup(page);
722 return pc != NULL;
723 }
724
725 void mem_cgroup_end_migration(struct page *page)
726 {
727 mem_cgroup_uncharge_page(page);
728 }
729
730 /*
731 * We know both *page* and *newpage* are now not-on-LRU and PG_locked.
732 * And no race with uncharge() routines because page_cgroup for *page*
733 * has extra one reference by mem_cgroup_prepare_migration.
734 */
735 void mem_cgroup_page_migration(struct page *page, struct page *newpage)
736 {
737 struct page_cgroup *pc;
738 struct mem_cgroup_per_zone *mz;
739 unsigned long flags;
740
741 lock_page_cgroup(page);
742 pc = page_get_page_cgroup(page);
743 if (!pc) {
744 unlock_page_cgroup(page);
745 return;
746 }
747
748 mz = page_cgroup_zoneinfo(pc);
749 spin_lock_irqsave(&mz->lru_lock, flags);
750 __mem_cgroup_remove_list(pc);
751 spin_unlock_irqrestore(&mz->lru_lock, flags);
752
753 page_assign_page_cgroup(page, NULL);
754 unlock_page_cgroup(page);
755
756 pc->page = newpage;
757 lock_page_cgroup(newpage);
758 page_assign_page_cgroup(newpage, pc);
759
760 mz = page_cgroup_zoneinfo(pc);
761 spin_lock_irqsave(&mz->lru_lock, flags);
762 __mem_cgroup_add_list(pc);
763 spin_unlock_irqrestore(&mz->lru_lock, flags);
764
765 unlock_page_cgroup(newpage);
766 }
767
768 /*
769 * This routine traverse page_cgroup in given list and drop them all.
770 * This routine ignores page_cgroup->ref_cnt.
771 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
772 */
773 #define FORCE_UNCHARGE_BATCH (128)
774 static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
775 struct mem_cgroup_per_zone *mz,
776 int active)
777 {
778 struct page_cgroup *pc;
779 struct page *page;
780 int count = FORCE_UNCHARGE_BATCH;
781 unsigned long flags;
782 struct list_head *list;
783
784 if (active)
785 list = &mz->active_list;
786 else
787 list = &mz->inactive_list;
788
789 spin_lock_irqsave(&mz->lru_lock, flags);
790 while (!list_empty(list)) {
791 pc = list_entry(list->prev, struct page_cgroup, lru);
792 page = pc->page;
793 get_page(page);
794 spin_unlock_irqrestore(&mz->lru_lock, flags);
795 mem_cgroup_uncharge_page(page);
796 put_page(page);
797 if (--count <= 0) {
798 count = FORCE_UNCHARGE_BATCH;
799 cond_resched();
800 }
801 spin_lock_irqsave(&mz->lru_lock, flags);
802 }
803 spin_unlock_irqrestore(&mz->lru_lock, flags);
804 }
805
806 /*
807 * make mem_cgroup's charge to be 0 if there is no task.
808 * This enables deleting this mem_cgroup.
809 */
810 static int mem_cgroup_force_empty(struct mem_cgroup *mem)
811 {
812 int ret = -EBUSY;
813 int node, zid;
814
815 if (mem_cgroup_subsys.disabled)
816 return 0;
817
818 css_get(&mem->css);
819 /*
820 * page reclaim code (kswapd etc..) will move pages between
821 * active_list <-> inactive_list while we don't take a lock.
822 * So, we have to do loop here until all lists are empty.
823 */
824 while (mem->res.usage > 0) {
825 if (atomic_read(&mem->css.cgroup->count) > 0)
826 goto out;
827 for_each_node_state(node, N_POSSIBLE)
828 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
829 struct mem_cgroup_per_zone *mz;
830 mz = mem_cgroup_zoneinfo(mem, node, zid);
831 /* drop all page_cgroup in active_list */
832 mem_cgroup_force_empty_list(mem, mz, 1);
833 /* drop all page_cgroup in inactive_list */
834 mem_cgroup_force_empty_list(mem, mz, 0);
835 }
836 }
837 ret = 0;
838 out:
839 css_put(&mem->css);
840 return ret;
841 }
842
843 static int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
844 {
845 *tmp = memparse(buf, &buf);
846 if (*buf != '\0')
847 return -EINVAL;
848
849 /*
850 * Round up the value to the closest page size
851 */
852 *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
853 return 0;
854 }
855
856 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
857 {
858 return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res,
859 cft->private);
860 }
861
862 static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
863 struct file *file, const char __user *userbuf,
864 size_t nbytes, loff_t *ppos)
865 {
866 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
867 cft->private, userbuf, nbytes, ppos,
868 mem_cgroup_write_strategy);
869 }
870
871 static ssize_t mem_force_empty_write(struct cgroup *cont,
872 struct cftype *cft, struct file *file,
873 const char __user *userbuf,
874 size_t nbytes, loff_t *ppos)
875 {
876 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
877 int ret = mem_cgroup_force_empty(mem);
878 if (!ret)
879 ret = nbytes;
880 return ret;
881 }
882
883 /*
884 * Note: This should be removed if cgroup supports write-only file.
885 */
886 static ssize_t mem_force_empty_read(struct cgroup *cont,
887 struct cftype *cft,
888 struct file *file, char __user *userbuf,
889 size_t nbytes, loff_t *ppos)
890 {
891 return -EINVAL;
892 }
893
894 static const struct mem_cgroup_stat_desc {
895 const char *msg;
896 u64 unit;
897 } mem_cgroup_stat_desc[] = {
898 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
899 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
900 };
901
902 static int mem_control_stat_show(struct seq_file *m, void *arg)
903 {
904 struct cgroup *cont = m->private;
905 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
906 struct mem_cgroup_stat *stat = &mem_cont->stat;
907 int i;
908
909 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
910 s64 val;
911
912 val = mem_cgroup_read_stat(stat, i);
913 val *= mem_cgroup_stat_desc[i].unit;
914 seq_printf(m, "%s %lld\n", mem_cgroup_stat_desc[i].msg,
915 (long long)val);
916 }
917 /* showing # of active pages */
918 {
919 unsigned long active, inactive;
920
921 inactive = mem_cgroup_get_all_zonestat(mem_cont,
922 MEM_CGROUP_ZSTAT_INACTIVE);
923 active = mem_cgroup_get_all_zonestat(mem_cont,
924 MEM_CGROUP_ZSTAT_ACTIVE);
925 seq_printf(m, "active %ld\n", (active) * PAGE_SIZE);
926 seq_printf(m, "inactive %ld\n", (inactive) * PAGE_SIZE);
927 }
928 return 0;
929 }
930
931 static const struct file_operations mem_control_stat_file_operations = {
932 .read = seq_read,
933 .llseek = seq_lseek,
934 .release = single_release,
935 };
936
937 static int mem_control_stat_open(struct inode *unused, struct file *file)
938 {
939 /* XXX __d_cont */
940 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
941
942 file->f_op = &mem_control_stat_file_operations;
943 return single_open(file, mem_control_stat_show, cont);
944 }
945
946 static struct cftype mem_cgroup_files[] = {
947 {
948 .name = "usage_in_bytes",
949 .private = RES_USAGE,
950 .read_u64 = mem_cgroup_read,
951 },
952 {
953 .name = "limit_in_bytes",
954 .private = RES_LIMIT,
955 .write = mem_cgroup_write,
956 .read_u64 = mem_cgroup_read,
957 },
958 {
959 .name = "failcnt",
960 .private = RES_FAILCNT,
961 .read_u64 = mem_cgroup_read,
962 },
963 {
964 .name = "force_empty",
965 .write = mem_force_empty_write,
966 .read = mem_force_empty_read,
967 },
968 {
969 .name = "stat",
970 .open = mem_control_stat_open,
971 },
972 };
973
974 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
975 {
976 struct mem_cgroup_per_node *pn;
977 struct mem_cgroup_per_zone *mz;
978 int zone, tmp = node;
979 /*
980 * This routine is called against possible nodes.
981 * But it's BUG to call kmalloc() against offline node.
982 *
983 * TODO: this routine can waste much memory for nodes which will
984 * never be onlined. It's better to use memory hotplug callback
985 * function.
986 */
987 if (!node_state(node, N_NORMAL_MEMORY))
988 tmp = -1;
989 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
990 if (!pn)
991 return 1;
992
993 mem->info.nodeinfo[node] = pn;
994 memset(pn, 0, sizeof(*pn));
995
996 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
997 mz = &pn->zoneinfo[zone];
998 INIT_LIST_HEAD(&mz->active_list);
999 INIT_LIST_HEAD(&mz->inactive_list);
1000 spin_lock_init(&mz->lru_lock);
1001 }
1002 return 0;
1003 }
1004
1005 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1006 {
1007 kfree(mem->info.nodeinfo[node]);
1008 }
1009
1010 static struct cgroup_subsys_state *
1011 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1012 {
1013 struct mem_cgroup *mem;
1014 int node;
1015
1016 if (unlikely((cont->parent) == NULL)) {
1017 mem = &init_mem_cgroup;
1018 init_mm.mem_cgroup = mem;
1019 } else
1020 mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
1021
1022 if (mem == NULL)
1023 return ERR_PTR(-ENOMEM);
1024
1025 res_counter_init(&mem->res);
1026
1027 memset(&mem->info, 0, sizeof(mem->info));
1028
1029 for_each_node_state(node, N_POSSIBLE)
1030 if (alloc_mem_cgroup_per_zone_info(mem, node))
1031 goto free_out;
1032
1033 return &mem->css;
1034 free_out:
1035 for_each_node_state(node, N_POSSIBLE)
1036 free_mem_cgroup_per_zone_info(mem, node);
1037 if (cont->parent != NULL)
1038 kfree(mem);
1039 return ERR_PTR(-ENOMEM);
1040 }
1041
1042 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1043 struct cgroup *cont)
1044 {
1045 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1046 mem_cgroup_force_empty(mem);
1047 }
1048
1049 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1050 struct cgroup *cont)
1051 {
1052 int node;
1053 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1054
1055 for_each_node_state(node, N_POSSIBLE)
1056 free_mem_cgroup_per_zone_info(mem, node);
1057
1058 kfree(mem_cgroup_from_cont(cont));
1059 }
1060
1061 static int mem_cgroup_populate(struct cgroup_subsys *ss,
1062 struct cgroup *cont)
1063 {
1064 if (mem_cgroup_subsys.disabled)
1065 return 0;
1066 return cgroup_add_files(cont, ss, mem_cgroup_files,
1067 ARRAY_SIZE(mem_cgroup_files));
1068 }
1069
1070 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1071 struct cgroup *cont,
1072 struct cgroup *old_cont,
1073 struct task_struct *p)
1074 {
1075 struct mm_struct *mm;
1076 struct mem_cgroup *mem, *old_mem;
1077
1078 if (mem_cgroup_subsys.disabled)
1079 return;
1080
1081 mm = get_task_mm(p);
1082 if (mm == NULL)
1083 return;
1084
1085 mem = mem_cgroup_from_cont(cont);
1086 old_mem = mem_cgroup_from_cont(old_cont);
1087
1088 if (mem == old_mem)
1089 goto out;
1090
1091 /*
1092 * Only thread group leaders are allowed to migrate, the mm_struct is
1093 * in effect owned by the leader
1094 */
1095 if (!thread_group_leader(p))
1096 goto out;
1097
1098 css_get(&mem->css);
1099 rcu_assign_pointer(mm->mem_cgroup, mem);
1100 css_put(&old_mem->css);
1101
1102 out:
1103 mmput(mm);
1104 }
1105
1106 struct cgroup_subsys mem_cgroup_subsys = {
1107 .name = "memory",
1108 .subsys_id = mem_cgroup_subsys_id,
1109 .create = mem_cgroup_create,
1110 .pre_destroy = mem_cgroup_pre_destroy,
1111 .destroy = mem_cgroup_destroy,
1112 .populate = mem_cgroup_populate,
1113 .attach = mem_cgroup_move_task,
1114 .early_init = 0,
1115 };