]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memcontrol.c
Merge tag 'xfs-5.10-fixes-7' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66
67 #include <linux/uaccess.h>
68
69 #include <trace/events/vmscan.h>
70
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75
76 /* Active memory cgroup to use from an interrupt context */
77 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
78
79 /* Socket memory accounting disabled? */
80 static bool cgroup_memory_nosocket;
81
82 /* Kernel memory accounting disabled? */
83 static bool cgroup_memory_nokmem;
84
85 /* Whether the swap controller is active */
86 #ifdef CONFIG_MEMCG_SWAP
87 bool cgroup_memory_noswap __read_mostly;
88 #else
89 #define cgroup_memory_noswap 1
90 #endif
91
92 #ifdef CONFIG_CGROUP_WRITEBACK
93 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
94 #endif
95
96 /* Whether legacy memory+swap accounting is active */
97 static bool do_memsw_account(void)
98 {
99 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
100 }
101
102 #define THRESHOLDS_EVENTS_TARGET 128
103 #define SOFTLIMIT_EVENTS_TARGET 1024
104
105 /*
106 * Cgroups above their limits are maintained in a RB-Tree, independent of
107 * their hierarchy representation
108 */
109
110 struct mem_cgroup_tree_per_node {
111 struct rb_root rb_root;
112 struct rb_node *rb_rightmost;
113 spinlock_t lock;
114 };
115
116 struct mem_cgroup_tree {
117 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
118 };
119
120 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
121
122 /* for OOM */
123 struct mem_cgroup_eventfd_list {
124 struct list_head list;
125 struct eventfd_ctx *eventfd;
126 };
127
128 /*
129 * cgroup_event represents events which userspace want to receive.
130 */
131 struct mem_cgroup_event {
132 /*
133 * memcg which the event belongs to.
134 */
135 struct mem_cgroup *memcg;
136 /*
137 * eventfd to signal userspace about the event.
138 */
139 struct eventfd_ctx *eventfd;
140 /*
141 * Each of these stored in a list by the cgroup.
142 */
143 struct list_head list;
144 /*
145 * register_event() callback will be used to add new userspace
146 * waiter for changes related to this event. Use eventfd_signal()
147 * on eventfd to send notification to userspace.
148 */
149 int (*register_event)(struct mem_cgroup *memcg,
150 struct eventfd_ctx *eventfd, const char *args);
151 /*
152 * unregister_event() callback will be called when userspace closes
153 * the eventfd or on cgroup removing. This callback must be set,
154 * if you want provide notification functionality.
155 */
156 void (*unregister_event)(struct mem_cgroup *memcg,
157 struct eventfd_ctx *eventfd);
158 /*
159 * All fields below needed to unregister event when
160 * userspace closes eventfd.
161 */
162 poll_table pt;
163 wait_queue_head_t *wqh;
164 wait_queue_entry_t wait;
165 struct work_struct remove;
166 };
167
168 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
169 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
170
171 /* Stuffs for move charges at task migration. */
172 /*
173 * Types of charges to be moved.
174 */
175 #define MOVE_ANON 0x1U
176 #define MOVE_FILE 0x2U
177 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
178
179 /* "mc" and its members are protected by cgroup_mutex */
180 static struct move_charge_struct {
181 spinlock_t lock; /* for from, to */
182 struct mm_struct *mm;
183 struct mem_cgroup *from;
184 struct mem_cgroup *to;
185 unsigned long flags;
186 unsigned long precharge;
187 unsigned long moved_charge;
188 unsigned long moved_swap;
189 struct task_struct *moving_task; /* a task moving charges */
190 wait_queue_head_t waitq; /* a waitq for other context */
191 } mc = {
192 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
193 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
194 };
195
196 /*
197 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
198 * limit reclaim to prevent infinite loops, if they ever occur.
199 */
200 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
201 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
202
203 /* for encoding cft->private value on file */
204 enum res_type {
205 _MEM,
206 _MEMSWAP,
207 _OOM_TYPE,
208 _KMEM,
209 _TCP,
210 };
211
212 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
213 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
214 #define MEMFILE_ATTR(val) ((val) & 0xffff)
215 /* Used for OOM nofiier */
216 #define OOM_CONTROL (0)
217
218 /*
219 * Iteration constructs for visiting all cgroups (under a tree). If
220 * loops are exited prematurely (break), mem_cgroup_iter_break() must
221 * be used for reference counting.
222 */
223 #define for_each_mem_cgroup_tree(iter, root) \
224 for (iter = mem_cgroup_iter(root, NULL, NULL); \
225 iter != NULL; \
226 iter = mem_cgroup_iter(root, iter, NULL))
227
228 #define for_each_mem_cgroup(iter) \
229 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(NULL, iter, NULL))
232
233 static inline bool should_force_charge(void)
234 {
235 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 (current->flags & PF_EXITING);
237 }
238
239 /* Some nice accessors for the vmpressure. */
240 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241 {
242 if (!memcg)
243 memcg = root_mem_cgroup;
244 return &memcg->vmpressure;
245 }
246
247 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
248 {
249 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
250 }
251
252 #ifdef CONFIG_MEMCG_KMEM
253 extern spinlock_t css_set_lock;
254
255 static void obj_cgroup_release(struct percpu_ref *ref)
256 {
257 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
258 struct mem_cgroup *memcg;
259 unsigned int nr_bytes;
260 unsigned int nr_pages;
261 unsigned long flags;
262
263 /*
264 * At this point all allocated objects are freed, and
265 * objcg->nr_charged_bytes can't have an arbitrary byte value.
266 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
267 *
268 * The following sequence can lead to it:
269 * 1) CPU0: objcg == stock->cached_objcg
270 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
271 * PAGE_SIZE bytes are charged
272 * 3) CPU1: a process from another memcg is allocating something,
273 * the stock if flushed,
274 * objcg->nr_charged_bytes = PAGE_SIZE - 92
275 * 5) CPU0: we do release this object,
276 * 92 bytes are added to stock->nr_bytes
277 * 6) CPU0: stock is flushed,
278 * 92 bytes are added to objcg->nr_charged_bytes
279 *
280 * In the result, nr_charged_bytes == PAGE_SIZE.
281 * This page will be uncharged in obj_cgroup_release().
282 */
283 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
284 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
285 nr_pages = nr_bytes >> PAGE_SHIFT;
286
287 spin_lock_irqsave(&css_set_lock, flags);
288 memcg = obj_cgroup_memcg(objcg);
289 if (nr_pages)
290 __memcg_kmem_uncharge(memcg, nr_pages);
291 list_del(&objcg->list);
292 mem_cgroup_put(memcg);
293 spin_unlock_irqrestore(&css_set_lock, flags);
294
295 percpu_ref_exit(ref);
296 kfree_rcu(objcg, rcu);
297 }
298
299 static struct obj_cgroup *obj_cgroup_alloc(void)
300 {
301 struct obj_cgroup *objcg;
302 int ret;
303
304 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
305 if (!objcg)
306 return NULL;
307
308 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
309 GFP_KERNEL);
310 if (ret) {
311 kfree(objcg);
312 return NULL;
313 }
314 INIT_LIST_HEAD(&objcg->list);
315 return objcg;
316 }
317
318 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
319 struct mem_cgroup *parent)
320 {
321 struct obj_cgroup *objcg, *iter;
322
323 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
324
325 spin_lock_irq(&css_set_lock);
326
327 /* Move active objcg to the parent's list */
328 xchg(&objcg->memcg, parent);
329 css_get(&parent->css);
330 list_add(&objcg->list, &parent->objcg_list);
331
332 /* Move already reparented objcgs to the parent's list */
333 list_for_each_entry(iter, &memcg->objcg_list, list) {
334 css_get(&parent->css);
335 xchg(&iter->memcg, parent);
336 css_put(&memcg->css);
337 }
338 list_splice(&memcg->objcg_list, &parent->objcg_list);
339
340 spin_unlock_irq(&css_set_lock);
341
342 percpu_ref_kill(&objcg->refcnt);
343 }
344
345 /*
346 * This will be used as a shrinker list's index.
347 * The main reason for not using cgroup id for this:
348 * this works better in sparse environments, where we have a lot of memcgs,
349 * but only a few kmem-limited. Or also, if we have, for instance, 200
350 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
351 * 200 entry array for that.
352 *
353 * The current size of the caches array is stored in memcg_nr_cache_ids. It
354 * will double each time we have to increase it.
355 */
356 static DEFINE_IDA(memcg_cache_ida);
357 int memcg_nr_cache_ids;
358
359 /* Protects memcg_nr_cache_ids */
360 static DECLARE_RWSEM(memcg_cache_ids_sem);
361
362 void memcg_get_cache_ids(void)
363 {
364 down_read(&memcg_cache_ids_sem);
365 }
366
367 void memcg_put_cache_ids(void)
368 {
369 up_read(&memcg_cache_ids_sem);
370 }
371
372 /*
373 * MIN_SIZE is different than 1, because we would like to avoid going through
374 * the alloc/free process all the time. In a small machine, 4 kmem-limited
375 * cgroups is a reasonable guess. In the future, it could be a parameter or
376 * tunable, but that is strictly not necessary.
377 *
378 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
379 * this constant directly from cgroup, but it is understandable that this is
380 * better kept as an internal representation in cgroup.c. In any case, the
381 * cgrp_id space is not getting any smaller, and we don't have to necessarily
382 * increase ours as well if it increases.
383 */
384 #define MEMCG_CACHES_MIN_SIZE 4
385 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
386
387 /*
388 * A lot of the calls to the cache allocation functions are expected to be
389 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
390 * conditional to this static branch, we'll have to allow modules that does
391 * kmem_cache_alloc and the such to see this symbol as well
392 */
393 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
394 EXPORT_SYMBOL(memcg_kmem_enabled_key);
395 #endif
396
397 static int memcg_shrinker_map_size;
398 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
399
400 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
401 {
402 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
403 }
404
405 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
406 int size, int old_size)
407 {
408 struct memcg_shrinker_map *new, *old;
409 int nid;
410
411 lockdep_assert_held(&memcg_shrinker_map_mutex);
412
413 for_each_node(nid) {
414 old = rcu_dereference_protected(
415 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
416 /* Not yet online memcg */
417 if (!old)
418 return 0;
419
420 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
421 if (!new)
422 return -ENOMEM;
423
424 /* Set all old bits, clear all new bits */
425 memset(new->map, (int)0xff, old_size);
426 memset((void *)new->map + old_size, 0, size - old_size);
427
428 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
429 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
430 }
431
432 return 0;
433 }
434
435 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
436 {
437 struct mem_cgroup_per_node *pn;
438 struct memcg_shrinker_map *map;
439 int nid;
440
441 if (mem_cgroup_is_root(memcg))
442 return;
443
444 for_each_node(nid) {
445 pn = mem_cgroup_nodeinfo(memcg, nid);
446 map = rcu_dereference_protected(pn->shrinker_map, true);
447 if (map)
448 kvfree(map);
449 rcu_assign_pointer(pn->shrinker_map, NULL);
450 }
451 }
452
453 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
454 {
455 struct memcg_shrinker_map *map;
456 int nid, size, ret = 0;
457
458 if (mem_cgroup_is_root(memcg))
459 return 0;
460
461 mutex_lock(&memcg_shrinker_map_mutex);
462 size = memcg_shrinker_map_size;
463 for_each_node(nid) {
464 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
465 if (!map) {
466 memcg_free_shrinker_maps(memcg);
467 ret = -ENOMEM;
468 break;
469 }
470 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
471 }
472 mutex_unlock(&memcg_shrinker_map_mutex);
473
474 return ret;
475 }
476
477 int memcg_expand_shrinker_maps(int new_id)
478 {
479 int size, old_size, ret = 0;
480 struct mem_cgroup *memcg;
481
482 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
483 old_size = memcg_shrinker_map_size;
484 if (size <= old_size)
485 return 0;
486
487 mutex_lock(&memcg_shrinker_map_mutex);
488 if (!root_mem_cgroup)
489 goto unlock;
490
491 for_each_mem_cgroup(memcg) {
492 if (mem_cgroup_is_root(memcg))
493 continue;
494 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
495 if (ret) {
496 mem_cgroup_iter_break(NULL, memcg);
497 goto unlock;
498 }
499 }
500 unlock:
501 if (!ret)
502 memcg_shrinker_map_size = size;
503 mutex_unlock(&memcg_shrinker_map_mutex);
504 return ret;
505 }
506
507 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
508 {
509 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
510 struct memcg_shrinker_map *map;
511
512 rcu_read_lock();
513 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
514 /* Pairs with smp mb in shrink_slab() */
515 smp_mb__before_atomic();
516 set_bit(shrinker_id, map->map);
517 rcu_read_unlock();
518 }
519 }
520
521 /**
522 * mem_cgroup_css_from_page - css of the memcg associated with a page
523 * @page: page of interest
524 *
525 * If memcg is bound to the default hierarchy, css of the memcg associated
526 * with @page is returned. The returned css remains associated with @page
527 * until it is released.
528 *
529 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
530 * is returned.
531 */
532 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
533 {
534 struct mem_cgroup *memcg;
535
536 memcg = page->mem_cgroup;
537
538 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
539 memcg = root_mem_cgroup;
540
541 return &memcg->css;
542 }
543
544 /**
545 * page_cgroup_ino - return inode number of the memcg a page is charged to
546 * @page: the page
547 *
548 * Look up the closest online ancestor of the memory cgroup @page is charged to
549 * and return its inode number or 0 if @page is not charged to any cgroup. It
550 * is safe to call this function without holding a reference to @page.
551 *
552 * Note, this function is inherently racy, because there is nothing to prevent
553 * the cgroup inode from getting torn down and potentially reallocated a moment
554 * after page_cgroup_ino() returns, so it only should be used by callers that
555 * do not care (such as procfs interfaces).
556 */
557 ino_t page_cgroup_ino(struct page *page)
558 {
559 struct mem_cgroup *memcg;
560 unsigned long ino = 0;
561
562 rcu_read_lock();
563 memcg = page->mem_cgroup;
564
565 /*
566 * The lowest bit set means that memcg isn't a valid
567 * memcg pointer, but a obj_cgroups pointer.
568 * In this case the page is shared and doesn't belong
569 * to any specific memory cgroup.
570 */
571 if ((unsigned long) memcg & 0x1UL)
572 memcg = NULL;
573
574 while (memcg && !(memcg->css.flags & CSS_ONLINE))
575 memcg = parent_mem_cgroup(memcg);
576 if (memcg)
577 ino = cgroup_ino(memcg->css.cgroup);
578 rcu_read_unlock();
579 return ino;
580 }
581
582 static struct mem_cgroup_per_node *
583 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
584 {
585 int nid = page_to_nid(page);
586
587 return memcg->nodeinfo[nid];
588 }
589
590 static struct mem_cgroup_tree_per_node *
591 soft_limit_tree_node(int nid)
592 {
593 return soft_limit_tree.rb_tree_per_node[nid];
594 }
595
596 static struct mem_cgroup_tree_per_node *
597 soft_limit_tree_from_page(struct page *page)
598 {
599 int nid = page_to_nid(page);
600
601 return soft_limit_tree.rb_tree_per_node[nid];
602 }
603
604 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
605 struct mem_cgroup_tree_per_node *mctz,
606 unsigned long new_usage_in_excess)
607 {
608 struct rb_node **p = &mctz->rb_root.rb_node;
609 struct rb_node *parent = NULL;
610 struct mem_cgroup_per_node *mz_node;
611 bool rightmost = true;
612
613 if (mz->on_tree)
614 return;
615
616 mz->usage_in_excess = new_usage_in_excess;
617 if (!mz->usage_in_excess)
618 return;
619 while (*p) {
620 parent = *p;
621 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
622 tree_node);
623 if (mz->usage_in_excess < mz_node->usage_in_excess) {
624 p = &(*p)->rb_left;
625 rightmost = false;
626 }
627
628 /*
629 * We can't avoid mem cgroups that are over their soft
630 * limit by the same amount
631 */
632 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
633 p = &(*p)->rb_right;
634 }
635
636 if (rightmost)
637 mctz->rb_rightmost = &mz->tree_node;
638
639 rb_link_node(&mz->tree_node, parent, p);
640 rb_insert_color(&mz->tree_node, &mctz->rb_root);
641 mz->on_tree = true;
642 }
643
644 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
645 struct mem_cgroup_tree_per_node *mctz)
646 {
647 if (!mz->on_tree)
648 return;
649
650 if (&mz->tree_node == mctz->rb_rightmost)
651 mctz->rb_rightmost = rb_prev(&mz->tree_node);
652
653 rb_erase(&mz->tree_node, &mctz->rb_root);
654 mz->on_tree = false;
655 }
656
657 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
658 struct mem_cgroup_tree_per_node *mctz)
659 {
660 unsigned long flags;
661
662 spin_lock_irqsave(&mctz->lock, flags);
663 __mem_cgroup_remove_exceeded(mz, mctz);
664 spin_unlock_irqrestore(&mctz->lock, flags);
665 }
666
667 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
668 {
669 unsigned long nr_pages = page_counter_read(&memcg->memory);
670 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
671 unsigned long excess = 0;
672
673 if (nr_pages > soft_limit)
674 excess = nr_pages - soft_limit;
675
676 return excess;
677 }
678
679 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
680 {
681 unsigned long excess;
682 struct mem_cgroup_per_node *mz;
683 struct mem_cgroup_tree_per_node *mctz;
684
685 mctz = soft_limit_tree_from_page(page);
686 if (!mctz)
687 return;
688 /*
689 * Necessary to update all ancestors when hierarchy is used.
690 * because their event counter is not touched.
691 */
692 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
693 mz = mem_cgroup_page_nodeinfo(memcg, page);
694 excess = soft_limit_excess(memcg);
695 /*
696 * We have to update the tree if mz is on RB-tree or
697 * mem is over its softlimit.
698 */
699 if (excess || mz->on_tree) {
700 unsigned long flags;
701
702 spin_lock_irqsave(&mctz->lock, flags);
703 /* if on-tree, remove it */
704 if (mz->on_tree)
705 __mem_cgroup_remove_exceeded(mz, mctz);
706 /*
707 * Insert again. mz->usage_in_excess will be updated.
708 * If excess is 0, no tree ops.
709 */
710 __mem_cgroup_insert_exceeded(mz, mctz, excess);
711 spin_unlock_irqrestore(&mctz->lock, flags);
712 }
713 }
714 }
715
716 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
717 {
718 struct mem_cgroup_tree_per_node *mctz;
719 struct mem_cgroup_per_node *mz;
720 int nid;
721
722 for_each_node(nid) {
723 mz = mem_cgroup_nodeinfo(memcg, nid);
724 mctz = soft_limit_tree_node(nid);
725 if (mctz)
726 mem_cgroup_remove_exceeded(mz, mctz);
727 }
728 }
729
730 static struct mem_cgroup_per_node *
731 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
732 {
733 struct mem_cgroup_per_node *mz;
734
735 retry:
736 mz = NULL;
737 if (!mctz->rb_rightmost)
738 goto done; /* Nothing to reclaim from */
739
740 mz = rb_entry(mctz->rb_rightmost,
741 struct mem_cgroup_per_node, tree_node);
742 /*
743 * Remove the node now but someone else can add it back,
744 * we will to add it back at the end of reclaim to its correct
745 * position in the tree.
746 */
747 __mem_cgroup_remove_exceeded(mz, mctz);
748 if (!soft_limit_excess(mz->memcg) ||
749 !css_tryget(&mz->memcg->css))
750 goto retry;
751 done:
752 return mz;
753 }
754
755 static struct mem_cgroup_per_node *
756 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
757 {
758 struct mem_cgroup_per_node *mz;
759
760 spin_lock_irq(&mctz->lock);
761 mz = __mem_cgroup_largest_soft_limit_node(mctz);
762 spin_unlock_irq(&mctz->lock);
763 return mz;
764 }
765
766 /**
767 * __mod_memcg_state - update cgroup memory statistics
768 * @memcg: the memory cgroup
769 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
770 * @val: delta to add to the counter, can be negative
771 */
772 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
773 {
774 long x, threshold = MEMCG_CHARGE_BATCH;
775
776 if (mem_cgroup_disabled())
777 return;
778
779 if (memcg_stat_item_in_bytes(idx))
780 threshold <<= PAGE_SHIFT;
781
782 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
783 if (unlikely(abs(x) > threshold)) {
784 struct mem_cgroup *mi;
785
786 /*
787 * Batch local counters to keep them in sync with
788 * the hierarchical ones.
789 */
790 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
791 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
792 atomic_long_add(x, &mi->vmstats[idx]);
793 x = 0;
794 }
795 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
796 }
797
798 static struct mem_cgroup_per_node *
799 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
800 {
801 struct mem_cgroup *parent;
802
803 parent = parent_mem_cgroup(pn->memcg);
804 if (!parent)
805 return NULL;
806 return mem_cgroup_nodeinfo(parent, nid);
807 }
808
809 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
810 int val)
811 {
812 struct mem_cgroup_per_node *pn;
813 struct mem_cgroup *memcg;
814 long x, threshold = MEMCG_CHARGE_BATCH;
815
816 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
817 memcg = pn->memcg;
818
819 /* Update memcg */
820 __mod_memcg_state(memcg, idx, val);
821
822 /* Update lruvec */
823 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
824
825 if (vmstat_item_in_bytes(idx))
826 threshold <<= PAGE_SHIFT;
827
828 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
829 if (unlikely(abs(x) > threshold)) {
830 pg_data_t *pgdat = lruvec_pgdat(lruvec);
831 struct mem_cgroup_per_node *pi;
832
833 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
834 atomic_long_add(x, &pi->lruvec_stat[idx]);
835 x = 0;
836 }
837 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
838 }
839
840 /**
841 * __mod_lruvec_state - update lruvec memory statistics
842 * @lruvec: the lruvec
843 * @idx: the stat item
844 * @val: delta to add to the counter, can be negative
845 *
846 * The lruvec is the intersection of the NUMA node and a cgroup. This
847 * function updates the all three counters that are affected by a
848 * change of state at this level: per-node, per-cgroup, per-lruvec.
849 */
850 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
851 int val)
852 {
853 /* Update node */
854 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
855
856 /* Update memcg and lruvec */
857 if (!mem_cgroup_disabled())
858 __mod_memcg_lruvec_state(lruvec, idx, val);
859 }
860
861 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
862 {
863 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
864 struct mem_cgroup *memcg;
865 struct lruvec *lruvec;
866
867 rcu_read_lock();
868 memcg = mem_cgroup_from_obj(p);
869
870 /* Untracked pages have no memcg, no lruvec. Update only the node */
871 if (!memcg || memcg == root_mem_cgroup) {
872 __mod_node_page_state(pgdat, idx, val);
873 } else {
874 lruvec = mem_cgroup_lruvec(memcg, pgdat);
875 __mod_lruvec_state(lruvec, idx, val);
876 }
877 rcu_read_unlock();
878 }
879
880 void mod_memcg_obj_state(void *p, int idx, int val)
881 {
882 struct mem_cgroup *memcg;
883
884 rcu_read_lock();
885 memcg = mem_cgroup_from_obj(p);
886 if (memcg)
887 mod_memcg_state(memcg, idx, val);
888 rcu_read_unlock();
889 }
890
891 /**
892 * __count_memcg_events - account VM events in a cgroup
893 * @memcg: the memory cgroup
894 * @idx: the event item
895 * @count: the number of events that occured
896 */
897 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
898 unsigned long count)
899 {
900 unsigned long x;
901
902 if (mem_cgroup_disabled())
903 return;
904
905 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
906 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
907 struct mem_cgroup *mi;
908
909 /*
910 * Batch local counters to keep them in sync with
911 * the hierarchical ones.
912 */
913 __this_cpu_add(memcg->vmstats_local->events[idx], x);
914 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
915 atomic_long_add(x, &mi->vmevents[idx]);
916 x = 0;
917 }
918 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
919 }
920
921 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
922 {
923 return atomic_long_read(&memcg->vmevents[event]);
924 }
925
926 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
927 {
928 long x = 0;
929 int cpu;
930
931 for_each_possible_cpu(cpu)
932 x += per_cpu(memcg->vmstats_local->events[event], cpu);
933 return x;
934 }
935
936 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
937 struct page *page,
938 int nr_pages)
939 {
940 /* pagein of a big page is an event. So, ignore page size */
941 if (nr_pages > 0)
942 __count_memcg_events(memcg, PGPGIN, 1);
943 else {
944 __count_memcg_events(memcg, PGPGOUT, 1);
945 nr_pages = -nr_pages; /* for event */
946 }
947
948 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
949 }
950
951 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
952 enum mem_cgroup_events_target target)
953 {
954 unsigned long val, next;
955
956 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
957 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
958 /* from time_after() in jiffies.h */
959 if ((long)(next - val) < 0) {
960 switch (target) {
961 case MEM_CGROUP_TARGET_THRESH:
962 next = val + THRESHOLDS_EVENTS_TARGET;
963 break;
964 case MEM_CGROUP_TARGET_SOFTLIMIT:
965 next = val + SOFTLIMIT_EVENTS_TARGET;
966 break;
967 default:
968 break;
969 }
970 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
971 return true;
972 }
973 return false;
974 }
975
976 /*
977 * Check events in order.
978 *
979 */
980 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
981 {
982 /* threshold event is triggered in finer grain than soft limit */
983 if (unlikely(mem_cgroup_event_ratelimit(memcg,
984 MEM_CGROUP_TARGET_THRESH))) {
985 bool do_softlimit;
986
987 do_softlimit = mem_cgroup_event_ratelimit(memcg,
988 MEM_CGROUP_TARGET_SOFTLIMIT);
989 mem_cgroup_threshold(memcg);
990 if (unlikely(do_softlimit))
991 mem_cgroup_update_tree(memcg, page);
992 }
993 }
994
995 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
996 {
997 /*
998 * mm_update_next_owner() may clear mm->owner to NULL
999 * if it races with swapoff, page migration, etc.
1000 * So this can be called with p == NULL.
1001 */
1002 if (unlikely(!p))
1003 return NULL;
1004
1005 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1006 }
1007 EXPORT_SYMBOL(mem_cgroup_from_task);
1008
1009 /**
1010 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1011 * @mm: mm from which memcg should be extracted. It can be NULL.
1012 *
1013 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1014 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1015 * returned.
1016 */
1017 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1018 {
1019 struct mem_cgroup *memcg;
1020
1021 if (mem_cgroup_disabled())
1022 return NULL;
1023
1024 rcu_read_lock();
1025 do {
1026 /*
1027 * Page cache insertions can happen withou an
1028 * actual mm context, e.g. during disk probing
1029 * on boot, loopback IO, acct() writes etc.
1030 */
1031 if (unlikely(!mm))
1032 memcg = root_mem_cgroup;
1033 else {
1034 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1035 if (unlikely(!memcg))
1036 memcg = root_mem_cgroup;
1037 }
1038 } while (!css_tryget(&memcg->css));
1039 rcu_read_unlock();
1040 return memcg;
1041 }
1042 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1043
1044 /**
1045 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1046 * @page: page from which memcg should be extracted.
1047 *
1048 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1049 * root_mem_cgroup is returned.
1050 */
1051 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1052 {
1053 struct mem_cgroup *memcg = page->mem_cgroup;
1054
1055 if (mem_cgroup_disabled())
1056 return NULL;
1057
1058 rcu_read_lock();
1059 /* Page should not get uncharged and freed memcg under us. */
1060 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1061 memcg = root_mem_cgroup;
1062 rcu_read_unlock();
1063 return memcg;
1064 }
1065 EXPORT_SYMBOL(get_mem_cgroup_from_page);
1066
1067 static __always_inline struct mem_cgroup *active_memcg(void)
1068 {
1069 if (in_interrupt())
1070 return this_cpu_read(int_active_memcg);
1071 else
1072 return current->active_memcg;
1073 }
1074
1075 static __always_inline struct mem_cgroup *get_active_memcg(void)
1076 {
1077 struct mem_cgroup *memcg;
1078
1079 rcu_read_lock();
1080 memcg = active_memcg();
1081 if (memcg) {
1082 /* current->active_memcg must hold a ref. */
1083 if (WARN_ON_ONCE(!css_tryget(&memcg->css)))
1084 memcg = root_mem_cgroup;
1085 else
1086 memcg = current->active_memcg;
1087 }
1088 rcu_read_unlock();
1089
1090 return memcg;
1091 }
1092
1093 static __always_inline bool memcg_kmem_bypass(void)
1094 {
1095 /* Allow remote memcg charging from any context. */
1096 if (unlikely(active_memcg()))
1097 return false;
1098
1099 /* Memcg to charge can't be determined. */
1100 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1101 return true;
1102
1103 return false;
1104 }
1105
1106 /**
1107 * If active memcg is set, do not fallback to current->mm->memcg.
1108 */
1109 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1110 {
1111 if (memcg_kmem_bypass())
1112 return NULL;
1113
1114 if (unlikely(active_memcg()))
1115 return get_active_memcg();
1116
1117 return get_mem_cgroup_from_mm(current->mm);
1118 }
1119
1120 /**
1121 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1122 * @root: hierarchy root
1123 * @prev: previously returned memcg, NULL on first invocation
1124 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1125 *
1126 * Returns references to children of the hierarchy below @root, or
1127 * @root itself, or %NULL after a full round-trip.
1128 *
1129 * Caller must pass the return value in @prev on subsequent
1130 * invocations for reference counting, or use mem_cgroup_iter_break()
1131 * to cancel a hierarchy walk before the round-trip is complete.
1132 *
1133 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1134 * in the hierarchy among all concurrent reclaimers operating on the
1135 * same node.
1136 */
1137 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1138 struct mem_cgroup *prev,
1139 struct mem_cgroup_reclaim_cookie *reclaim)
1140 {
1141 struct mem_cgroup_reclaim_iter *iter;
1142 struct cgroup_subsys_state *css = NULL;
1143 struct mem_cgroup *memcg = NULL;
1144 struct mem_cgroup *pos = NULL;
1145
1146 if (mem_cgroup_disabled())
1147 return NULL;
1148
1149 if (!root)
1150 root = root_mem_cgroup;
1151
1152 if (prev && !reclaim)
1153 pos = prev;
1154
1155 if (!root->use_hierarchy && root != root_mem_cgroup) {
1156 if (prev)
1157 goto out;
1158 return root;
1159 }
1160
1161 rcu_read_lock();
1162
1163 if (reclaim) {
1164 struct mem_cgroup_per_node *mz;
1165
1166 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1167 iter = &mz->iter;
1168
1169 if (prev && reclaim->generation != iter->generation)
1170 goto out_unlock;
1171
1172 while (1) {
1173 pos = READ_ONCE(iter->position);
1174 if (!pos || css_tryget(&pos->css))
1175 break;
1176 /*
1177 * css reference reached zero, so iter->position will
1178 * be cleared by ->css_released. However, we should not
1179 * rely on this happening soon, because ->css_released
1180 * is called from a work queue, and by busy-waiting we
1181 * might block it. So we clear iter->position right
1182 * away.
1183 */
1184 (void)cmpxchg(&iter->position, pos, NULL);
1185 }
1186 }
1187
1188 if (pos)
1189 css = &pos->css;
1190
1191 for (;;) {
1192 css = css_next_descendant_pre(css, &root->css);
1193 if (!css) {
1194 /*
1195 * Reclaimers share the hierarchy walk, and a
1196 * new one might jump in right at the end of
1197 * the hierarchy - make sure they see at least
1198 * one group and restart from the beginning.
1199 */
1200 if (!prev)
1201 continue;
1202 break;
1203 }
1204
1205 /*
1206 * Verify the css and acquire a reference. The root
1207 * is provided by the caller, so we know it's alive
1208 * and kicking, and don't take an extra reference.
1209 */
1210 memcg = mem_cgroup_from_css(css);
1211
1212 if (css == &root->css)
1213 break;
1214
1215 if (css_tryget(css))
1216 break;
1217
1218 memcg = NULL;
1219 }
1220
1221 if (reclaim) {
1222 /*
1223 * The position could have already been updated by a competing
1224 * thread, so check that the value hasn't changed since we read
1225 * it to avoid reclaiming from the same cgroup twice.
1226 */
1227 (void)cmpxchg(&iter->position, pos, memcg);
1228
1229 if (pos)
1230 css_put(&pos->css);
1231
1232 if (!memcg)
1233 iter->generation++;
1234 else if (!prev)
1235 reclaim->generation = iter->generation;
1236 }
1237
1238 out_unlock:
1239 rcu_read_unlock();
1240 out:
1241 if (prev && prev != root)
1242 css_put(&prev->css);
1243
1244 return memcg;
1245 }
1246
1247 /**
1248 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1249 * @root: hierarchy root
1250 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1251 */
1252 void mem_cgroup_iter_break(struct mem_cgroup *root,
1253 struct mem_cgroup *prev)
1254 {
1255 if (!root)
1256 root = root_mem_cgroup;
1257 if (prev && prev != root)
1258 css_put(&prev->css);
1259 }
1260
1261 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1262 struct mem_cgroup *dead_memcg)
1263 {
1264 struct mem_cgroup_reclaim_iter *iter;
1265 struct mem_cgroup_per_node *mz;
1266 int nid;
1267
1268 for_each_node(nid) {
1269 mz = mem_cgroup_nodeinfo(from, nid);
1270 iter = &mz->iter;
1271 cmpxchg(&iter->position, dead_memcg, NULL);
1272 }
1273 }
1274
1275 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1276 {
1277 struct mem_cgroup *memcg = dead_memcg;
1278 struct mem_cgroup *last;
1279
1280 do {
1281 __invalidate_reclaim_iterators(memcg, dead_memcg);
1282 last = memcg;
1283 } while ((memcg = parent_mem_cgroup(memcg)));
1284
1285 /*
1286 * When cgruop1 non-hierarchy mode is used,
1287 * parent_mem_cgroup() does not walk all the way up to the
1288 * cgroup root (root_mem_cgroup). So we have to handle
1289 * dead_memcg from cgroup root separately.
1290 */
1291 if (last != root_mem_cgroup)
1292 __invalidate_reclaim_iterators(root_mem_cgroup,
1293 dead_memcg);
1294 }
1295
1296 /**
1297 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1298 * @memcg: hierarchy root
1299 * @fn: function to call for each task
1300 * @arg: argument passed to @fn
1301 *
1302 * This function iterates over tasks attached to @memcg or to any of its
1303 * descendants and calls @fn for each task. If @fn returns a non-zero
1304 * value, the function breaks the iteration loop and returns the value.
1305 * Otherwise, it will iterate over all tasks and return 0.
1306 *
1307 * This function must not be called for the root memory cgroup.
1308 */
1309 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1310 int (*fn)(struct task_struct *, void *), void *arg)
1311 {
1312 struct mem_cgroup *iter;
1313 int ret = 0;
1314
1315 BUG_ON(memcg == root_mem_cgroup);
1316
1317 for_each_mem_cgroup_tree(iter, memcg) {
1318 struct css_task_iter it;
1319 struct task_struct *task;
1320
1321 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1322 while (!ret && (task = css_task_iter_next(&it)))
1323 ret = fn(task, arg);
1324 css_task_iter_end(&it);
1325 if (ret) {
1326 mem_cgroup_iter_break(memcg, iter);
1327 break;
1328 }
1329 }
1330 return ret;
1331 }
1332
1333 /**
1334 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1335 * @page: the page
1336 * @pgdat: pgdat of the page
1337 *
1338 * This function relies on page->mem_cgroup being stable - see the
1339 * access rules in commit_charge().
1340 */
1341 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1342 {
1343 struct mem_cgroup_per_node *mz;
1344 struct mem_cgroup *memcg;
1345 struct lruvec *lruvec;
1346
1347 if (mem_cgroup_disabled()) {
1348 lruvec = &pgdat->__lruvec;
1349 goto out;
1350 }
1351
1352 memcg = page->mem_cgroup;
1353 /*
1354 * Swapcache readahead pages are added to the LRU - and
1355 * possibly migrated - before they are charged.
1356 */
1357 if (!memcg)
1358 memcg = root_mem_cgroup;
1359
1360 mz = mem_cgroup_page_nodeinfo(memcg, page);
1361 lruvec = &mz->lruvec;
1362 out:
1363 /*
1364 * Since a node can be onlined after the mem_cgroup was created,
1365 * we have to be prepared to initialize lruvec->zone here;
1366 * and if offlined then reonlined, we need to reinitialize it.
1367 */
1368 if (unlikely(lruvec->pgdat != pgdat))
1369 lruvec->pgdat = pgdat;
1370 return lruvec;
1371 }
1372
1373 /**
1374 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1375 * @lruvec: mem_cgroup per zone lru vector
1376 * @lru: index of lru list the page is sitting on
1377 * @zid: zone id of the accounted pages
1378 * @nr_pages: positive when adding or negative when removing
1379 *
1380 * This function must be called under lru_lock, just before a page is added
1381 * to or just after a page is removed from an lru list (that ordering being
1382 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1383 */
1384 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1385 int zid, int nr_pages)
1386 {
1387 struct mem_cgroup_per_node *mz;
1388 unsigned long *lru_size;
1389 long size;
1390
1391 if (mem_cgroup_disabled())
1392 return;
1393
1394 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1395 lru_size = &mz->lru_zone_size[zid][lru];
1396
1397 if (nr_pages < 0)
1398 *lru_size += nr_pages;
1399
1400 size = *lru_size;
1401 if (WARN_ONCE(size < 0,
1402 "%s(%p, %d, %d): lru_size %ld\n",
1403 __func__, lruvec, lru, nr_pages, size)) {
1404 VM_BUG_ON(1);
1405 *lru_size = 0;
1406 }
1407
1408 if (nr_pages > 0)
1409 *lru_size += nr_pages;
1410 }
1411
1412 /**
1413 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1414 * @memcg: the memory cgroup
1415 *
1416 * Returns the maximum amount of memory @mem can be charged with, in
1417 * pages.
1418 */
1419 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1420 {
1421 unsigned long margin = 0;
1422 unsigned long count;
1423 unsigned long limit;
1424
1425 count = page_counter_read(&memcg->memory);
1426 limit = READ_ONCE(memcg->memory.max);
1427 if (count < limit)
1428 margin = limit - count;
1429
1430 if (do_memsw_account()) {
1431 count = page_counter_read(&memcg->memsw);
1432 limit = READ_ONCE(memcg->memsw.max);
1433 if (count < limit)
1434 margin = min(margin, limit - count);
1435 else
1436 margin = 0;
1437 }
1438
1439 return margin;
1440 }
1441
1442 /*
1443 * A routine for checking "mem" is under move_account() or not.
1444 *
1445 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1446 * moving cgroups. This is for waiting at high-memory pressure
1447 * caused by "move".
1448 */
1449 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1450 {
1451 struct mem_cgroup *from;
1452 struct mem_cgroup *to;
1453 bool ret = false;
1454 /*
1455 * Unlike task_move routines, we access mc.to, mc.from not under
1456 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1457 */
1458 spin_lock(&mc.lock);
1459 from = mc.from;
1460 to = mc.to;
1461 if (!from)
1462 goto unlock;
1463
1464 ret = mem_cgroup_is_descendant(from, memcg) ||
1465 mem_cgroup_is_descendant(to, memcg);
1466 unlock:
1467 spin_unlock(&mc.lock);
1468 return ret;
1469 }
1470
1471 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1472 {
1473 if (mc.moving_task && current != mc.moving_task) {
1474 if (mem_cgroup_under_move(memcg)) {
1475 DEFINE_WAIT(wait);
1476 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1477 /* moving charge context might have finished. */
1478 if (mc.moving_task)
1479 schedule();
1480 finish_wait(&mc.waitq, &wait);
1481 return true;
1482 }
1483 }
1484 return false;
1485 }
1486
1487 struct memory_stat {
1488 const char *name;
1489 unsigned int ratio;
1490 unsigned int idx;
1491 };
1492
1493 static struct memory_stat memory_stats[] = {
1494 { "anon", PAGE_SIZE, NR_ANON_MAPPED },
1495 { "file", PAGE_SIZE, NR_FILE_PAGES },
1496 { "kernel_stack", 1024, NR_KERNEL_STACK_KB },
1497 { "percpu", 1, MEMCG_PERCPU_B },
1498 { "sock", PAGE_SIZE, MEMCG_SOCK },
1499 { "shmem", PAGE_SIZE, NR_SHMEM },
1500 { "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
1501 { "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
1502 { "file_writeback", PAGE_SIZE, NR_WRITEBACK },
1503 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1504 /*
1505 * The ratio will be initialized in memory_stats_init(). Because
1506 * on some architectures, the macro of HPAGE_PMD_SIZE is not
1507 * constant(e.g. powerpc).
1508 */
1509 { "anon_thp", 0, NR_ANON_THPS },
1510 #endif
1511 { "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
1512 { "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
1513 { "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
1514 { "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
1515 { "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
1516
1517 /*
1518 * Note: The slab_reclaimable and slab_unreclaimable must be
1519 * together and slab_reclaimable must be in front.
1520 */
1521 { "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
1522 { "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
1523
1524 /* The memory events */
1525 { "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
1526 { "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
1527 { "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
1528 { "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
1529 { "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
1530 { "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
1531 { "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
1532 };
1533
1534 static int __init memory_stats_init(void)
1535 {
1536 int i;
1537
1538 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1540 if (memory_stats[i].idx == NR_ANON_THPS)
1541 memory_stats[i].ratio = HPAGE_PMD_SIZE;
1542 #endif
1543 VM_BUG_ON(!memory_stats[i].ratio);
1544 VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
1545 }
1546
1547 return 0;
1548 }
1549 pure_initcall(memory_stats_init);
1550
1551 static char *memory_stat_format(struct mem_cgroup *memcg)
1552 {
1553 struct seq_buf s;
1554 int i;
1555
1556 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1557 if (!s.buffer)
1558 return NULL;
1559
1560 /*
1561 * Provide statistics on the state of the memory subsystem as
1562 * well as cumulative event counters that show past behavior.
1563 *
1564 * This list is ordered following a combination of these gradients:
1565 * 1) generic big picture -> specifics and details
1566 * 2) reflecting userspace activity -> reflecting kernel heuristics
1567 *
1568 * Current memory state:
1569 */
1570
1571 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1572 u64 size;
1573
1574 size = memcg_page_state(memcg, memory_stats[i].idx);
1575 size *= memory_stats[i].ratio;
1576 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1577
1578 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1579 size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1580 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
1581 seq_buf_printf(&s, "slab %llu\n", size);
1582 }
1583 }
1584
1585 /* Accumulated memory events */
1586
1587 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1588 memcg_events(memcg, PGFAULT));
1589 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1590 memcg_events(memcg, PGMAJFAULT));
1591 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1592 memcg_events(memcg, PGREFILL));
1593 seq_buf_printf(&s, "pgscan %lu\n",
1594 memcg_events(memcg, PGSCAN_KSWAPD) +
1595 memcg_events(memcg, PGSCAN_DIRECT));
1596 seq_buf_printf(&s, "pgsteal %lu\n",
1597 memcg_events(memcg, PGSTEAL_KSWAPD) +
1598 memcg_events(memcg, PGSTEAL_DIRECT));
1599 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1600 memcg_events(memcg, PGACTIVATE));
1601 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1602 memcg_events(memcg, PGDEACTIVATE));
1603 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1604 memcg_events(memcg, PGLAZYFREE));
1605 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1606 memcg_events(memcg, PGLAZYFREED));
1607
1608 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1609 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1610 memcg_events(memcg, THP_FAULT_ALLOC));
1611 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1612 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1613 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1614
1615 /* The above should easily fit into one page */
1616 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1617
1618 return s.buffer;
1619 }
1620
1621 #define K(x) ((x) << (PAGE_SHIFT-10))
1622 /**
1623 * mem_cgroup_print_oom_context: Print OOM information relevant to
1624 * memory controller.
1625 * @memcg: The memory cgroup that went over limit
1626 * @p: Task that is going to be killed
1627 *
1628 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1629 * enabled
1630 */
1631 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1632 {
1633 rcu_read_lock();
1634
1635 if (memcg) {
1636 pr_cont(",oom_memcg=");
1637 pr_cont_cgroup_path(memcg->css.cgroup);
1638 } else
1639 pr_cont(",global_oom");
1640 if (p) {
1641 pr_cont(",task_memcg=");
1642 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1643 }
1644 rcu_read_unlock();
1645 }
1646
1647 /**
1648 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1649 * memory controller.
1650 * @memcg: The memory cgroup that went over limit
1651 */
1652 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1653 {
1654 char *buf;
1655
1656 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1657 K((u64)page_counter_read(&memcg->memory)),
1658 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1659 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1660 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1661 K((u64)page_counter_read(&memcg->swap)),
1662 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1663 else {
1664 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1665 K((u64)page_counter_read(&memcg->memsw)),
1666 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1667 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1668 K((u64)page_counter_read(&memcg->kmem)),
1669 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1670 }
1671
1672 pr_info("Memory cgroup stats for ");
1673 pr_cont_cgroup_path(memcg->css.cgroup);
1674 pr_cont(":");
1675 buf = memory_stat_format(memcg);
1676 if (!buf)
1677 return;
1678 pr_info("%s", buf);
1679 kfree(buf);
1680 }
1681
1682 /*
1683 * Return the memory (and swap, if configured) limit for a memcg.
1684 */
1685 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1686 {
1687 unsigned long max = READ_ONCE(memcg->memory.max);
1688
1689 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1690 if (mem_cgroup_swappiness(memcg))
1691 max += min(READ_ONCE(memcg->swap.max),
1692 (unsigned long)total_swap_pages);
1693 } else { /* v1 */
1694 if (mem_cgroup_swappiness(memcg)) {
1695 /* Calculate swap excess capacity from memsw limit */
1696 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1697
1698 max += min(swap, (unsigned long)total_swap_pages);
1699 }
1700 }
1701 return max;
1702 }
1703
1704 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1705 {
1706 return page_counter_read(&memcg->memory);
1707 }
1708
1709 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1710 int order)
1711 {
1712 struct oom_control oc = {
1713 .zonelist = NULL,
1714 .nodemask = NULL,
1715 .memcg = memcg,
1716 .gfp_mask = gfp_mask,
1717 .order = order,
1718 };
1719 bool ret = true;
1720
1721 if (mutex_lock_killable(&oom_lock))
1722 return true;
1723
1724 if (mem_cgroup_margin(memcg) >= (1 << order))
1725 goto unlock;
1726
1727 /*
1728 * A few threads which were not waiting at mutex_lock_killable() can
1729 * fail to bail out. Therefore, check again after holding oom_lock.
1730 */
1731 ret = should_force_charge() || out_of_memory(&oc);
1732
1733 unlock:
1734 mutex_unlock(&oom_lock);
1735 return ret;
1736 }
1737
1738 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1739 pg_data_t *pgdat,
1740 gfp_t gfp_mask,
1741 unsigned long *total_scanned)
1742 {
1743 struct mem_cgroup *victim = NULL;
1744 int total = 0;
1745 int loop = 0;
1746 unsigned long excess;
1747 unsigned long nr_scanned;
1748 struct mem_cgroup_reclaim_cookie reclaim = {
1749 .pgdat = pgdat,
1750 };
1751
1752 excess = soft_limit_excess(root_memcg);
1753
1754 while (1) {
1755 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1756 if (!victim) {
1757 loop++;
1758 if (loop >= 2) {
1759 /*
1760 * If we have not been able to reclaim
1761 * anything, it might because there are
1762 * no reclaimable pages under this hierarchy
1763 */
1764 if (!total)
1765 break;
1766 /*
1767 * We want to do more targeted reclaim.
1768 * excess >> 2 is not to excessive so as to
1769 * reclaim too much, nor too less that we keep
1770 * coming back to reclaim from this cgroup
1771 */
1772 if (total >= (excess >> 2) ||
1773 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1774 break;
1775 }
1776 continue;
1777 }
1778 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1779 pgdat, &nr_scanned);
1780 *total_scanned += nr_scanned;
1781 if (!soft_limit_excess(root_memcg))
1782 break;
1783 }
1784 mem_cgroup_iter_break(root_memcg, victim);
1785 return total;
1786 }
1787
1788 #ifdef CONFIG_LOCKDEP
1789 static struct lockdep_map memcg_oom_lock_dep_map = {
1790 .name = "memcg_oom_lock",
1791 };
1792 #endif
1793
1794 static DEFINE_SPINLOCK(memcg_oom_lock);
1795
1796 /*
1797 * Check OOM-Killer is already running under our hierarchy.
1798 * If someone is running, return false.
1799 */
1800 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1801 {
1802 struct mem_cgroup *iter, *failed = NULL;
1803
1804 spin_lock(&memcg_oom_lock);
1805
1806 for_each_mem_cgroup_tree(iter, memcg) {
1807 if (iter->oom_lock) {
1808 /*
1809 * this subtree of our hierarchy is already locked
1810 * so we cannot give a lock.
1811 */
1812 failed = iter;
1813 mem_cgroup_iter_break(memcg, iter);
1814 break;
1815 } else
1816 iter->oom_lock = true;
1817 }
1818
1819 if (failed) {
1820 /*
1821 * OK, we failed to lock the whole subtree so we have
1822 * to clean up what we set up to the failing subtree
1823 */
1824 for_each_mem_cgroup_tree(iter, memcg) {
1825 if (iter == failed) {
1826 mem_cgroup_iter_break(memcg, iter);
1827 break;
1828 }
1829 iter->oom_lock = false;
1830 }
1831 } else
1832 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1833
1834 spin_unlock(&memcg_oom_lock);
1835
1836 return !failed;
1837 }
1838
1839 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1840 {
1841 struct mem_cgroup *iter;
1842
1843 spin_lock(&memcg_oom_lock);
1844 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1845 for_each_mem_cgroup_tree(iter, memcg)
1846 iter->oom_lock = false;
1847 spin_unlock(&memcg_oom_lock);
1848 }
1849
1850 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1851 {
1852 struct mem_cgroup *iter;
1853
1854 spin_lock(&memcg_oom_lock);
1855 for_each_mem_cgroup_tree(iter, memcg)
1856 iter->under_oom++;
1857 spin_unlock(&memcg_oom_lock);
1858 }
1859
1860 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1861 {
1862 struct mem_cgroup *iter;
1863
1864 /*
1865 * Be careful about under_oom underflows becase a child memcg
1866 * could have been added after mem_cgroup_mark_under_oom.
1867 */
1868 spin_lock(&memcg_oom_lock);
1869 for_each_mem_cgroup_tree(iter, memcg)
1870 if (iter->under_oom > 0)
1871 iter->under_oom--;
1872 spin_unlock(&memcg_oom_lock);
1873 }
1874
1875 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1876
1877 struct oom_wait_info {
1878 struct mem_cgroup *memcg;
1879 wait_queue_entry_t wait;
1880 };
1881
1882 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1883 unsigned mode, int sync, void *arg)
1884 {
1885 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1886 struct mem_cgroup *oom_wait_memcg;
1887 struct oom_wait_info *oom_wait_info;
1888
1889 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1890 oom_wait_memcg = oom_wait_info->memcg;
1891
1892 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1893 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1894 return 0;
1895 return autoremove_wake_function(wait, mode, sync, arg);
1896 }
1897
1898 static void memcg_oom_recover(struct mem_cgroup *memcg)
1899 {
1900 /*
1901 * For the following lockless ->under_oom test, the only required
1902 * guarantee is that it must see the state asserted by an OOM when
1903 * this function is called as a result of userland actions
1904 * triggered by the notification of the OOM. This is trivially
1905 * achieved by invoking mem_cgroup_mark_under_oom() before
1906 * triggering notification.
1907 */
1908 if (memcg && memcg->under_oom)
1909 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1910 }
1911
1912 enum oom_status {
1913 OOM_SUCCESS,
1914 OOM_FAILED,
1915 OOM_ASYNC,
1916 OOM_SKIPPED
1917 };
1918
1919 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1920 {
1921 enum oom_status ret;
1922 bool locked;
1923
1924 if (order > PAGE_ALLOC_COSTLY_ORDER)
1925 return OOM_SKIPPED;
1926
1927 memcg_memory_event(memcg, MEMCG_OOM);
1928
1929 /*
1930 * We are in the middle of the charge context here, so we
1931 * don't want to block when potentially sitting on a callstack
1932 * that holds all kinds of filesystem and mm locks.
1933 *
1934 * cgroup1 allows disabling the OOM killer and waiting for outside
1935 * handling until the charge can succeed; remember the context and put
1936 * the task to sleep at the end of the page fault when all locks are
1937 * released.
1938 *
1939 * On the other hand, in-kernel OOM killer allows for an async victim
1940 * memory reclaim (oom_reaper) and that means that we are not solely
1941 * relying on the oom victim to make a forward progress and we can
1942 * invoke the oom killer here.
1943 *
1944 * Please note that mem_cgroup_out_of_memory might fail to find a
1945 * victim and then we have to bail out from the charge path.
1946 */
1947 if (memcg->oom_kill_disable) {
1948 if (!current->in_user_fault)
1949 return OOM_SKIPPED;
1950 css_get(&memcg->css);
1951 current->memcg_in_oom = memcg;
1952 current->memcg_oom_gfp_mask = mask;
1953 current->memcg_oom_order = order;
1954
1955 return OOM_ASYNC;
1956 }
1957
1958 mem_cgroup_mark_under_oom(memcg);
1959
1960 locked = mem_cgroup_oom_trylock(memcg);
1961
1962 if (locked)
1963 mem_cgroup_oom_notify(memcg);
1964
1965 mem_cgroup_unmark_under_oom(memcg);
1966 if (mem_cgroup_out_of_memory(memcg, mask, order))
1967 ret = OOM_SUCCESS;
1968 else
1969 ret = OOM_FAILED;
1970
1971 if (locked)
1972 mem_cgroup_oom_unlock(memcg);
1973
1974 return ret;
1975 }
1976
1977 /**
1978 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1979 * @handle: actually kill/wait or just clean up the OOM state
1980 *
1981 * This has to be called at the end of a page fault if the memcg OOM
1982 * handler was enabled.
1983 *
1984 * Memcg supports userspace OOM handling where failed allocations must
1985 * sleep on a waitqueue until the userspace task resolves the
1986 * situation. Sleeping directly in the charge context with all kinds
1987 * of locks held is not a good idea, instead we remember an OOM state
1988 * in the task and mem_cgroup_oom_synchronize() has to be called at
1989 * the end of the page fault to complete the OOM handling.
1990 *
1991 * Returns %true if an ongoing memcg OOM situation was detected and
1992 * completed, %false otherwise.
1993 */
1994 bool mem_cgroup_oom_synchronize(bool handle)
1995 {
1996 struct mem_cgroup *memcg = current->memcg_in_oom;
1997 struct oom_wait_info owait;
1998 bool locked;
1999
2000 /* OOM is global, do not handle */
2001 if (!memcg)
2002 return false;
2003
2004 if (!handle)
2005 goto cleanup;
2006
2007 owait.memcg = memcg;
2008 owait.wait.flags = 0;
2009 owait.wait.func = memcg_oom_wake_function;
2010 owait.wait.private = current;
2011 INIT_LIST_HEAD(&owait.wait.entry);
2012
2013 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2014 mem_cgroup_mark_under_oom(memcg);
2015
2016 locked = mem_cgroup_oom_trylock(memcg);
2017
2018 if (locked)
2019 mem_cgroup_oom_notify(memcg);
2020
2021 if (locked && !memcg->oom_kill_disable) {
2022 mem_cgroup_unmark_under_oom(memcg);
2023 finish_wait(&memcg_oom_waitq, &owait.wait);
2024 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2025 current->memcg_oom_order);
2026 } else {
2027 schedule();
2028 mem_cgroup_unmark_under_oom(memcg);
2029 finish_wait(&memcg_oom_waitq, &owait.wait);
2030 }
2031
2032 if (locked) {
2033 mem_cgroup_oom_unlock(memcg);
2034 /*
2035 * There is no guarantee that an OOM-lock contender
2036 * sees the wakeups triggered by the OOM kill
2037 * uncharges. Wake any sleepers explicitely.
2038 */
2039 memcg_oom_recover(memcg);
2040 }
2041 cleanup:
2042 current->memcg_in_oom = NULL;
2043 css_put(&memcg->css);
2044 return true;
2045 }
2046
2047 /**
2048 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2049 * @victim: task to be killed by the OOM killer
2050 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2051 *
2052 * Returns a pointer to a memory cgroup, which has to be cleaned up
2053 * by killing all belonging OOM-killable tasks.
2054 *
2055 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2056 */
2057 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2058 struct mem_cgroup *oom_domain)
2059 {
2060 struct mem_cgroup *oom_group = NULL;
2061 struct mem_cgroup *memcg;
2062
2063 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2064 return NULL;
2065
2066 if (!oom_domain)
2067 oom_domain = root_mem_cgroup;
2068
2069 rcu_read_lock();
2070
2071 memcg = mem_cgroup_from_task(victim);
2072 if (memcg == root_mem_cgroup)
2073 goto out;
2074
2075 /*
2076 * If the victim task has been asynchronously moved to a different
2077 * memory cgroup, we might end up killing tasks outside oom_domain.
2078 * In this case it's better to ignore memory.group.oom.
2079 */
2080 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2081 goto out;
2082
2083 /*
2084 * Traverse the memory cgroup hierarchy from the victim task's
2085 * cgroup up to the OOMing cgroup (or root) to find the
2086 * highest-level memory cgroup with oom.group set.
2087 */
2088 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2089 if (memcg->oom_group)
2090 oom_group = memcg;
2091
2092 if (memcg == oom_domain)
2093 break;
2094 }
2095
2096 if (oom_group)
2097 css_get(&oom_group->css);
2098 out:
2099 rcu_read_unlock();
2100
2101 return oom_group;
2102 }
2103
2104 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2105 {
2106 pr_info("Tasks in ");
2107 pr_cont_cgroup_path(memcg->css.cgroup);
2108 pr_cont(" are going to be killed due to memory.oom.group set\n");
2109 }
2110
2111 /**
2112 * lock_page_memcg - lock a page->mem_cgroup binding
2113 * @page: the page
2114 *
2115 * This function protects unlocked LRU pages from being moved to
2116 * another cgroup.
2117 *
2118 * It ensures lifetime of the returned memcg. Caller is responsible
2119 * for the lifetime of the page; __unlock_page_memcg() is available
2120 * when @page might get freed inside the locked section.
2121 */
2122 struct mem_cgroup *lock_page_memcg(struct page *page)
2123 {
2124 struct page *head = compound_head(page); /* rmap on tail pages */
2125 struct mem_cgroup *memcg;
2126 unsigned long flags;
2127
2128 /*
2129 * The RCU lock is held throughout the transaction. The fast
2130 * path can get away without acquiring the memcg->move_lock
2131 * because page moving starts with an RCU grace period.
2132 *
2133 * The RCU lock also protects the memcg from being freed when
2134 * the page state that is going to change is the only thing
2135 * preventing the page itself from being freed. E.g. writeback
2136 * doesn't hold a page reference and relies on PG_writeback to
2137 * keep off truncation, migration and so forth.
2138 */
2139 rcu_read_lock();
2140
2141 if (mem_cgroup_disabled())
2142 return NULL;
2143 again:
2144 memcg = head->mem_cgroup;
2145 if (unlikely(!memcg))
2146 return NULL;
2147
2148 if (atomic_read(&memcg->moving_account) <= 0)
2149 return memcg;
2150
2151 spin_lock_irqsave(&memcg->move_lock, flags);
2152 if (memcg != head->mem_cgroup) {
2153 spin_unlock_irqrestore(&memcg->move_lock, flags);
2154 goto again;
2155 }
2156
2157 /*
2158 * When charge migration first begins, we can have locked and
2159 * unlocked page stat updates happening concurrently. Track
2160 * the task who has the lock for unlock_page_memcg().
2161 */
2162 memcg->move_lock_task = current;
2163 memcg->move_lock_flags = flags;
2164
2165 return memcg;
2166 }
2167 EXPORT_SYMBOL(lock_page_memcg);
2168
2169 /**
2170 * __unlock_page_memcg - unlock and unpin a memcg
2171 * @memcg: the memcg
2172 *
2173 * Unlock and unpin a memcg returned by lock_page_memcg().
2174 */
2175 void __unlock_page_memcg(struct mem_cgroup *memcg)
2176 {
2177 if (memcg && memcg->move_lock_task == current) {
2178 unsigned long flags = memcg->move_lock_flags;
2179
2180 memcg->move_lock_task = NULL;
2181 memcg->move_lock_flags = 0;
2182
2183 spin_unlock_irqrestore(&memcg->move_lock, flags);
2184 }
2185
2186 rcu_read_unlock();
2187 }
2188
2189 /**
2190 * unlock_page_memcg - unlock a page->mem_cgroup binding
2191 * @page: the page
2192 */
2193 void unlock_page_memcg(struct page *page)
2194 {
2195 struct page *head = compound_head(page);
2196
2197 __unlock_page_memcg(head->mem_cgroup);
2198 }
2199 EXPORT_SYMBOL(unlock_page_memcg);
2200
2201 struct memcg_stock_pcp {
2202 struct mem_cgroup *cached; /* this never be root cgroup */
2203 unsigned int nr_pages;
2204
2205 #ifdef CONFIG_MEMCG_KMEM
2206 struct obj_cgroup *cached_objcg;
2207 unsigned int nr_bytes;
2208 #endif
2209
2210 struct work_struct work;
2211 unsigned long flags;
2212 #define FLUSHING_CACHED_CHARGE 0
2213 };
2214 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2215 static DEFINE_MUTEX(percpu_charge_mutex);
2216
2217 #ifdef CONFIG_MEMCG_KMEM
2218 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2219 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2220 struct mem_cgroup *root_memcg);
2221
2222 #else
2223 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2224 {
2225 }
2226 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2227 struct mem_cgroup *root_memcg)
2228 {
2229 return false;
2230 }
2231 #endif
2232
2233 /**
2234 * consume_stock: Try to consume stocked charge on this cpu.
2235 * @memcg: memcg to consume from.
2236 * @nr_pages: how many pages to charge.
2237 *
2238 * The charges will only happen if @memcg matches the current cpu's memcg
2239 * stock, and at least @nr_pages are available in that stock. Failure to
2240 * service an allocation will refill the stock.
2241 *
2242 * returns true if successful, false otherwise.
2243 */
2244 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2245 {
2246 struct memcg_stock_pcp *stock;
2247 unsigned long flags;
2248 bool ret = false;
2249
2250 if (nr_pages > MEMCG_CHARGE_BATCH)
2251 return ret;
2252
2253 local_irq_save(flags);
2254
2255 stock = this_cpu_ptr(&memcg_stock);
2256 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2257 stock->nr_pages -= nr_pages;
2258 ret = true;
2259 }
2260
2261 local_irq_restore(flags);
2262
2263 return ret;
2264 }
2265
2266 /*
2267 * Returns stocks cached in percpu and reset cached information.
2268 */
2269 static void drain_stock(struct memcg_stock_pcp *stock)
2270 {
2271 struct mem_cgroup *old = stock->cached;
2272
2273 if (!old)
2274 return;
2275
2276 if (stock->nr_pages) {
2277 page_counter_uncharge(&old->memory, stock->nr_pages);
2278 if (do_memsw_account())
2279 page_counter_uncharge(&old->memsw, stock->nr_pages);
2280 stock->nr_pages = 0;
2281 }
2282
2283 css_put(&old->css);
2284 stock->cached = NULL;
2285 }
2286
2287 static void drain_local_stock(struct work_struct *dummy)
2288 {
2289 struct memcg_stock_pcp *stock;
2290 unsigned long flags;
2291
2292 /*
2293 * The only protection from memory hotplug vs. drain_stock races is
2294 * that we always operate on local CPU stock here with IRQ disabled
2295 */
2296 local_irq_save(flags);
2297
2298 stock = this_cpu_ptr(&memcg_stock);
2299 drain_obj_stock(stock);
2300 drain_stock(stock);
2301 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2302
2303 local_irq_restore(flags);
2304 }
2305
2306 /*
2307 * Cache charges(val) to local per_cpu area.
2308 * This will be consumed by consume_stock() function, later.
2309 */
2310 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2311 {
2312 struct memcg_stock_pcp *stock;
2313 unsigned long flags;
2314
2315 local_irq_save(flags);
2316
2317 stock = this_cpu_ptr(&memcg_stock);
2318 if (stock->cached != memcg) { /* reset if necessary */
2319 drain_stock(stock);
2320 css_get(&memcg->css);
2321 stock->cached = memcg;
2322 }
2323 stock->nr_pages += nr_pages;
2324
2325 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2326 drain_stock(stock);
2327
2328 local_irq_restore(flags);
2329 }
2330
2331 /*
2332 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2333 * of the hierarchy under it.
2334 */
2335 static void drain_all_stock(struct mem_cgroup *root_memcg)
2336 {
2337 int cpu, curcpu;
2338
2339 /* If someone's already draining, avoid adding running more workers. */
2340 if (!mutex_trylock(&percpu_charge_mutex))
2341 return;
2342 /*
2343 * Notify other cpus that system-wide "drain" is running
2344 * We do not care about races with the cpu hotplug because cpu down
2345 * as well as workers from this path always operate on the local
2346 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2347 */
2348 curcpu = get_cpu();
2349 for_each_online_cpu(cpu) {
2350 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2351 struct mem_cgroup *memcg;
2352 bool flush = false;
2353
2354 rcu_read_lock();
2355 memcg = stock->cached;
2356 if (memcg && stock->nr_pages &&
2357 mem_cgroup_is_descendant(memcg, root_memcg))
2358 flush = true;
2359 if (obj_stock_flush_required(stock, root_memcg))
2360 flush = true;
2361 rcu_read_unlock();
2362
2363 if (flush &&
2364 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2365 if (cpu == curcpu)
2366 drain_local_stock(&stock->work);
2367 else
2368 schedule_work_on(cpu, &stock->work);
2369 }
2370 }
2371 put_cpu();
2372 mutex_unlock(&percpu_charge_mutex);
2373 }
2374
2375 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2376 {
2377 struct memcg_stock_pcp *stock;
2378 struct mem_cgroup *memcg, *mi;
2379
2380 stock = &per_cpu(memcg_stock, cpu);
2381 drain_stock(stock);
2382
2383 for_each_mem_cgroup(memcg) {
2384 int i;
2385
2386 for (i = 0; i < MEMCG_NR_STAT; i++) {
2387 int nid;
2388 long x;
2389
2390 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2391 if (x)
2392 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2393 atomic_long_add(x, &memcg->vmstats[i]);
2394
2395 if (i >= NR_VM_NODE_STAT_ITEMS)
2396 continue;
2397
2398 for_each_node(nid) {
2399 struct mem_cgroup_per_node *pn;
2400
2401 pn = mem_cgroup_nodeinfo(memcg, nid);
2402 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2403 if (x)
2404 do {
2405 atomic_long_add(x, &pn->lruvec_stat[i]);
2406 } while ((pn = parent_nodeinfo(pn, nid)));
2407 }
2408 }
2409
2410 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2411 long x;
2412
2413 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2414 if (x)
2415 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2416 atomic_long_add(x, &memcg->vmevents[i]);
2417 }
2418 }
2419
2420 return 0;
2421 }
2422
2423 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2424 unsigned int nr_pages,
2425 gfp_t gfp_mask)
2426 {
2427 unsigned long nr_reclaimed = 0;
2428
2429 do {
2430 unsigned long pflags;
2431
2432 if (page_counter_read(&memcg->memory) <=
2433 READ_ONCE(memcg->memory.high))
2434 continue;
2435
2436 memcg_memory_event(memcg, MEMCG_HIGH);
2437
2438 psi_memstall_enter(&pflags);
2439 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2440 gfp_mask, true);
2441 psi_memstall_leave(&pflags);
2442 } while ((memcg = parent_mem_cgroup(memcg)) &&
2443 !mem_cgroup_is_root(memcg));
2444
2445 return nr_reclaimed;
2446 }
2447
2448 static void high_work_func(struct work_struct *work)
2449 {
2450 struct mem_cgroup *memcg;
2451
2452 memcg = container_of(work, struct mem_cgroup, high_work);
2453 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2454 }
2455
2456 /*
2457 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2458 * enough to still cause a significant slowdown in most cases, while still
2459 * allowing diagnostics and tracing to proceed without becoming stuck.
2460 */
2461 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2462
2463 /*
2464 * When calculating the delay, we use these either side of the exponentiation to
2465 * maintain precision and scale to a reasonable number of jiffies (see the table
2466 * below.
2467 *
2468 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2469 * overage ratio to a delay.
2470 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2471 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2472 * to produce a reasonable delay curve.
2473 *
2474 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2475 * reasonable delay curve compared to precision-adjusted overage, not
2476 * penalising heavily at first, but still making sure that growth beyond the
2477 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2478 * example, with a high of 100 megabytes:
2479 *
2480 * +-------+------------------------+
2481 * | usage | time to allocate in ms |
2482 * +-------+------------------------+
2483 * | 100M | 0 |
2484 * | 101M | 6 |
2485 * | 102M | 25 |
2486 * | 103M | 57 |
2487 * | 104M | 102 |
2488 * | 105M | 159 |
2489 * | 106M | 230 |
2490 * | 107M | 313 |
2491 * | 108M | 409 |
2492 * | 109M | 518 |
2493 * | 110M | 639 |
2494 * | 111M | 774 |
2495 * | 112M | 921 |
2496 * | 113M | 1081 |
2497 * | 114M | 1254 |
2498 * | 115M | 1439 |
2499 * | 116M | 1638 |
2500 * | 117M | 1849 |
2501 * | 118M | 2000 |
2502 * | 119M | 2000 |
2503 * | 120M | 2000 |
2504 * +-------+------------------------+
2505 */
2506 #define MEMCG_DELAY_PRECISION_SHIFT 20
2507 #define MEMCG_DELAY_SCALING_SHIFT 14
2508
2509 static u64 calculate_overage(unsigned long usage, unsigned long high)
2510 {
2511 u64 overage;
2512
2513 if (usage <= high)
2514 return 0;
2515
2516 /*
2517 * Prevent division by 0 in overage calculation by acting as if
2518 * it was a threshold of 1 page
2519 */
2520 high = max(high, 1UL);
2521
2522 overage = usage - high;
2523 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2524 return div64_u64(overage, high);
2525 }
2526
2527 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2528 {
2529 u64 overage, max_overage = 0;
2530
2531 do {
2532 overage = calculate_overage(page_counter_read(&memcg->memory),
2533 READ_ONCE(memcg->memory.high));
2534 max_overage = max(overage, max_overage);
2535 } while ((memcg = parent_mem_cgroup(memcg)) &&
2536 !mem_cgroup_is_root(memcg));
2537
2538 return max_overage;
2539 }
2540
2541 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2542 {
2543 u64 overage, max_overage = 0;
2544
2545 do {
2546 overage = calculate_overage(page_counter_read(&memcg->swap),
2547 READ_ONCE(memcg->swap.high));
2548 if (overage)
2549 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2550 max_overage = max(overage, max_overage);
2551 } while ((memcg = parent_mem_cgroup(memcg)) &&
2552 !mem_cgroup_is_root(memcg));
2553
2554 return max_overage;
2555 }
2556
2557 /*
2558 * Get the number of jiffies that we should penalise a mischievous cgroup which
2559 * is exceeding its memory.high by checking both it and its ancestors.
2560 */
2561 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2562 unsigned int nr_pages,
2563 u64 max_overage)
2564 {
2565 unsigned long penalty_jiffies;
2566
2567 if (!max_overage)
2568 return 0;
2569
2570 /*
2571 * We use overage compared to memory.high to calculate the number of
2572 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2573 * fairly lenient on small overages, and increasingly harsh when the
2574 * memcg in question makes it clear that it has no intention of stopping
2575 * its crazy behaviour, so we exponentially increase the delay based on
2576 * overage amount.
2577 */
2578 penalty_jiffies = max_overage * max_overage * HZ;
2579 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2580 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2581
2582 /*
2583 * Factor in the task's own contribution to the overage, such that four
2584 * N-sized allocations are throttled approximately the same as one
2585 * 4N-sized allocation.
2586 *
2587 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2588 * larger the current charge patch is than that.
2589 */
2590 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2591 }
2592
2593 /*
2594 * Scheduled by try_charge() to be executed from the userland return path
2595 * and reclaims memory over the high limit.
2596 */
2597 void mem_cgroup_handle_over_high(void)
2598 {
2599 unsigned long penalty_jiffies;
2600 unsigned long pflags;
2601 unsigned long nr_reclaimed;
2602 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2603 int nr_retries = MAX_RECLAIM_RETRIES;
2604 struct mem_cgroup *memcg;
2605 bool in_retry = false;
2606
2607 if (likely(!nr_pages))
2608 return;
2609
2610 memcg = get_mem_cgroup_from_mm(current->mm);
2611 current->memcg_nr_pages_over_high = 0;
2612
2613 retry_reclaim:
2614 /*
2615 * The allocating task should reclaim at least the batch size, but for
2616 * subsequent retries we only want to do what's necessary to prevent oom
2617 * or breaching resource isolation.
2618 *
2619 * This is distinct from memory.max or page allocator behaviour because
2620 * memory.high is currently batched, whereas memory.max and the page
2621 * allocator run every time an allocation is made.
2622 */
2623 nr_reclaimed = reclaim_high(memcg,
2624 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2625 GFP_KERNEL);
2626
2627 /*
2628 * memory.high is breached and reclaim is unable to keep up. Throttle
2629 * allocators proactively to slow down excessive growth.
2630 */
2631 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2632 mem_find_max_overage(memcg));
2633
2634 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2635 swap_find_max_overage(memcg));
2636
2637 /*
2638 * Clamp the max delay per usermode return so as to still keep the
2639 * application moving forwards and also permit diagnostics, albeit
2640 * extremely slowly.
2641 */
2642 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2643
2644 /*
2645 * Don't sleep if the amount of jiffies this memcg owes us is so low
2646 * that it's not even worth doing, in an attempt to be nice to those who
2647 * go only a small amount over their memory.high value and maybe haven't
2648 * been aggressively reclaimed enough yet.
2649 */
2650 if (penalty_jiffies <= HZ / 100)
2651 goto out;
2652
2653 /*
2654 * If reclaim is making forward progress but we're still over
2655 * memory.high, we want to encourage that rather than doing allocator
2656 * throttling.
2657 */
2658 if (nr_reclaimed || nr_retries--) {
2659 in_retry = true;
2660 goto retry_reclaim;
2661 }
2662
2663 /*
2664 * If we exit early, we're guaranteed to die (since
2665 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2666 * need to account for any ill-begotten jiffies to pay them off later.
2667 */
2668 psi_memstall_enter(&pflags);
2669 schedule_timeout_killable(penalty_jiffies);
2670 psi_memstall_leave(&pflags);
2671
2672 out:
2673 css_put(&memcg->css);
2674 }
2675
2676 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2677 unsigned int nr_pages)
2678 {
2679 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2680 int nr_retries = MAX_RECLAIM_RETRIES;
2681 struct mem_cgroup *mem_over_limit;
2682 struct page_counter *counter;
2683 enum oom_status oom_status;
2684 unsigned long nr_reclaimed;
2685 bool may_swap = true;
2686 bool drained = false;
2687 unsigned long pflags;
2688
2689 if (mem_cgroup_is_root(memcg))
2690 return 0;
2691 retry:
2692 if (consume_stock(memcg, nr_pages))
2693 return 0;
2694
2695 if (!do_memsw_account() ||
2696 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2697 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2698 goto done_restock;
2699 if (do_memsw_account())
2700 page_counter_uncharge(&memcg->memsw, batch);
2701 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2702 } else {
2703 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2704 may_swap = false;
2705 }
2706
2707 if (batch > nr_pages) {
2708 batch = nr_pages;
2709 goto retry;
2710 }
2711
2712 /*
2713 * Memcg doesn't have a dedicated reserve for atomic
2714 * allocations. But like the global atomic pool, we need to
2715 * put the burden of reclaim on regular allocation requests
2716 * and let these go through as privileged allocations.
2717 */
2718 if (gfp_mask & __GFP_ATOMIC)
2719 goto force;
2720
2721 /*
2722 * Unlike in global OOM situations, memcg is not in a physical
2723 * memory shortage. Allow dying and OOM-killed tasks to
2724 * bypass the last charges so that they can exit quickly and
2725 * free their memory.
2726 */
2727 if (unlikely(should_force_charge()))
2728 goto force;
2729
2730 /*
2731 * Prevent unbounded recursion when reclaim operations need to
2732 * allocate memory. This might exceed the limits temporarily,
2733 * but we prefer facilitating memory reclaim and getting back
2734 * under the limit over triggering OOM kills in these cases.
2735 */
2736 if (unlikely(current->flags & PF_MEMALLOC))
2737 goto force;
2738
2739 if (unlikely(task_in_memcg_oom(current)))
2740 goto nomem;
2741
2742 if (!gfpflags_allow_blocking(gfp_mask))
2743 goto nomem;
2744
2745 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2746
2747 psi_memstall_enter(&pflags);
2748 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2749 gfp_mask, may_swap);
2750 psi_memstall_leave(&pflags);
2751
2752 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2753 goto retry;
2754
2755 if (!drained) {
2756 drain_all_stock(mem_over_limit);
2757 drained = true;
2758 goto retry;
2759 }
2760
2761 if (gfp_mask & __GFP_NORETRY)
2762 goto nomem;
2763 /*
2764 * Even though the limit is exceeded at this point, reclaim
2765 * may have been able to free some pages. Retry the charge
2766 * before killing the task.
2767 *
2768 * Only for regular pages, though: huge pages are rather
2769 * unlikely to succeed so close to the limit, and we fall back
2770 * to regular pages anyway in case of failure.
2771 */
2772 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2773 goto retry;
2774 /*
2775 * At task move, charge accounts can be doubly counted. So, it's
2776 * better to wait until the end of task_move if something is going on.
2777 */
2778 if (mem_cgroup_wait_acct_move(mem_over_limit))
2779 goto retry;
2780
2781 if (nr_retries--)
2782 goto retry;
2783
2784 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2785 goto nomem;
2786
2787 if (gfp_mask & __GFP_NOFAIL)
2788 goto force;
2789
2790 if (fatal_signal_pending(current))
2791 goto force;
2792
2793 /*
2794 * keep retrying as long as the memcg oom killer is able to make
2795 * a forward progress or bypass the charge if the oom killer
2796 * couldn't make any progress.
2797 */
2798 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2799 get_order(nr_pages * PAGE_SIZE));
2800 switch (oom_status) {
2801 case OOM_SUCCESS:
2802 nr_retries = MAX_RECLAIM_RETRIES;
2803 goto retry;
2804 case OOM_FAILED:
2805 goto force;
2806 default:
2807 goto nomem;
2808 }
2809 nomem:
2810 if (!(gfp_mask & __GFP_NOFAIL))
2811 return -ENOMEM;
2812 force:
2813 /*
2814 * The allocation either can't fail or will lead to more memory
2815 * being freed very soon. Allow memory usage go over the limit
2816 * temporarily by force charging it.
2817 */
2818 page_counter_charge(&memcg->memory, nr_pages);
2819 if (do_memsw_account())
2820 page_counter_charge(&memcg->memsw, nr_pages);
2821
2822 return 0;
2823
2824 done_restock:
2825 if (batch > nr_pages)
2826 refill_stock(memcg, batch - nr_pages);
2827
2828 /*
2829 * If the hierarchy is above the normal consumption range, schedule
2830 * reclaim on returning to userland. We can perform reclaim here
2831 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2832 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2833 * not recorded as it most likely matches current's and won't
2834 * change in the meantime. As high limit is checked again before
2835 * reclaim, the cost of mismatch is negligible.
2836 */
2837 do {
2838 bool mem_high, swap_high;
2839
2840 mem_high = page_counter_read(&memcg->memory) >
2841 READ_ONCE(memcg->memory.high);
2842 swap_high = page_counter_read(&memcg->swap) >
2843 READ_ONCE(memcg->swap.high);
2844
2845 /* Don't bother a random interrupted task */
2846 if (in_interrupt()) {
2847 if (mem_high) {
2848 schedule_work(&memcg->high_work);
2849 break;
2850 }
2851 continue;
2852 }
2853
2854 if (mem_high || swap_high) {
2855 /*
2856 * The allocating tasks in this cgroup will need to do
2857 * reclaim or be throttled to prevent further growth
2858 * of the memory or swap footprints.
2859 *
2860 * Target some best-effort fairness between the tasks,
2861 * and distribute reclaim work and delay penalties
2862 * based on how much each task is actually allocating.
2863 */
2864 current->memcg_nr_pages_over_high += batch;
2865 set_notify_resume(current);
2866 break;
2867 }
2868 } while ((memcg = parent_mem_cgroup(memcg)));
2869
2870 return 0;
2871 }
2872
2873 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2874 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2875 {
2876 if (mem_cgroup_is_root(memcg))
2877 return;
2878
2879 page_counter_uncharge(&memcg->memory, nr_pages);
2880 if (do_memsw_account())
2881 page_counter_uncharge(&memcg->memsw, nr_pages);
2882 }
2883 #endif
2884
2885 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2886 {
2887 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2888 /*
2889 * Any of the following ensures page->mem_cgroup stability:
2890 *
2891 * - the page lock
2892 * - LRU isolation
2893 * - lock_page_memcg()
2894 * - exclusive reference
2895 */
2896 page->mem_cgroup = memcg;
2897 }
2898
2899 #ifdef CONFIG_MEMCG_KMEM
2900 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2901 gfp_t gfp)
2902 {
2903 unsigned int objects = objs_per_slab_page(s, page);
2904 void *vec;
2905
2906 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2907 page_to_nid(page));
2908 if (!vec)
2909 return -ENOMEM;
2910
2911 if (cmpxchg(&page->obj_cgroups, NULL,
2912 (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
2913 kfree(vec);
2914 else
2915 kmemleak_not_leak(vec);
2916
2917 return 0;
2918 }
2919
2920 /*
2921 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2922 *
2923 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2924 * cgroup_mutex, etc.
2925 */
2926 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2927 {
2928 struct page *page;
2929
2930 if (mem_cgroup_disabled())
2931 return NULL;
2932
2933 page = virt_to_head_page(p);
2934
2935 /*
2936 * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer
2937 * or a pointer to obj_cgroup vector. In the latter case the lowest
2938 * bit of the pointer is set.
2939 * The page->mem_cgroup pointer can be asynchronously changed
2940 * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed
2941 * from a valid memcg pointer to objcg vector or back.
2942 */
2943 if (!page->mem_cgroup)
2944 return NULL;
2945
2946 /*
2947 * Slab objects are accounted individually, not per-page.
2948 * Memcg membership data for each individual object is saved in
2949 * the page->obj_cgroups.
2950 */
2951 if (page_has_obj_cgroups(page)) {
2952 struct obj_cgroup *objcg;
2953 unsigned int off;
2954
2955 off = obj_to_index(page->slab_cache, page, p);
2956 objcg = page_obj_cgroups(page)[off];
2957 if (objcg)
2958 return obj_cgroup_memcg(objcg);
2959
2960 return NULL;
2961 }
2962
2963 /* All other pages use page->mem_cgroup */
2964 return page->mem_cgroup;
2965 }
2966
2967 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2968 {
2969 struct obj_cgroup *objcg = NULL;
2970 struct mem_cgroup *memcg;
2971
2972 if (memcg_kmem_bypass())
2973 return NULL;
2974
2975 rcu_read_lock();
2976 if (unlikely(active_memcg()))
2977 memcg = active_memcg();
2978 else
2979 memcg = mem_cgroup_from_task(current);
2980
2981 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2982 objcg = rcu_dereference(memcg->objcg);
2983 if (objcg && obj_cgroup_tryget(objcg))
2984 break;
2985 }
2986 rcu_read_unlock();
2987
2988 return objcg;
2989 }
2990
2991 static int memcg_alloc_cache_id(void)
2992 {
2993 int id, size;
2994 int err;
2995
2996 id = ida_simple_get(&memcg_cache_ida,
2997 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2998 if (id < 0)
2999 return id;
3000
3001 if (id < memcg_nr_cache_ids)
3002 return id;
3003
3004 /*
3005 * There's no space for the new id in memcg_caches arrays,
3006 * so we have to grow them.
3007 */
3008 down_write(&memcg_cache_ids_sem);
3009
3010 size = 2 * (id + 1);
3011 if (size < MEMCG_CACHES_MIN_SIZE)
3012 size = MEMCG_CACHES_MIN_SIZE;
3013 else if (size > MEMCG_CACHES_MAX_SIZE)
3014 size = MEMCG_CACHES_MAX_SIZE;
3015
3016 err = memcg_update_all_list_lrus(size);
3017 if (!err)
3018 memcg_nr_cache_ids = size;
3019
3020 up_write(&memcg_cache_ids_sem);
3021
3022 if (err) {
3023 ida_simple_remove(&memcg_cache_ida, id);
3024 return err;
3025 }
3026 return id;
3027 }
3028
3029 static void memcg_free_cache_id(int id)
3030 {
3031 ida_simple_remove(&memcg_cache_ida, id);
3032 }
3033
3034 /**
3035 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3036 * @memcg: memory cgroup to charge
3037 * @gfp: reclaim mode
3038 * @nr_pages: number of pages to charge
3039 *
3040 * Returns 0 on success, an error code on failure.
3041 */
3042 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3043 unsigned int nr_pages)
3044 {
3045 struct page_counter *counter;
3046 int ret;
3047
3048 ret = try_charge(memcg, gfp, nr_pages);
3049 if (ret)
3050 return ret;
3051
3052 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3053 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3054
3055 /*
3056 * Enforce __GFP_NOFAIL allocation because callers are not
3057 * prepared to see failures and likely do not have any failure
3058 * handling code.
3059 */
3060 if (gfp & __GFP_NOFAIL) {
3061 page_counter_charge(&memcg->kmem, nr_pages);
3062 return 0;
3063 }
3064 cancel_charge(memcg, nr_pages);
3065 return -ENOMEM;
3066 }
3067 return 0;
3068 }
3069
3070 /**
3071 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3072 * @memcg: memcg to uncharge
3073 * @nr_pages: number of pages to uncharge
3074 */
3075 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3076 {
3077 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3078 page_counter_uncharge(&memcg->kmem, nr_pages);
3079
3080 page_counter_uncharge(&memcg->memory, nr_pages);
3081 if (do_memsw_account())
3082 page_counter_uncharge(&memcg->memsw, nr_pages);
3083 }
3084
3085 /**
3086 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3087 * @page: page to charge
3088 * @gfp: reclaim mode
3089 * @order: allocation order
3090 *
3091 * Returns 0 on success, an error code on failure.
3092 */
3093 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3094 {
3095 struct mem_cgroup *memcg;
3096 int ret = 0;
3097
3098 memcg = get_mem_cgroup_from_current();
3099 if (memcg && !mem_cgroup_is_root(memcg)) {
3100 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3101 if (!ret) {
3102 page->mem_cgroup = memcg;
3103 __SetPageKmemcg(page);
3104 return 0;
3105 }
3106 css_put(&memcg->css);
3107 }
3108 return ret;
3109 }
3110
3111 /**
3112 * __memcg_kmem_uncharge_page: uncharge a kmem page
3113 * @page: page to uncharge
3114 * @order: allocation order
3115 */
3116 void __memcg_kmem_uncharge_page(struct page *page, int order)
3117 {
3118 struct mem_cgroup *memcg = page->mem_cgroup;
3119 unsigned int nr_pages = 1 << order;
3120
3121 if (!memcg)
3122 return;
3123
3124 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3125 __memcg_kmem_uncharge(memcg, nr_pages);
3126 page->mem_cgroup = NULL;
3127 css_put(&memcg->css);
3128
3129 /* slab pages do not have PageKmemcg flag set */
3130 if (PageKmemcg(page))
3131 __ClearPageKmemcg(page);
3132 }
3133
3134 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3135 {
3136 struct memcg_stock_pcp *stock;
3137 unsigned long flags;
3138 bool ret = false;
3139
3140 local_irq_save(flags);
3141
3142 stock = this_cpu_ptr(&memcg_stock);
3143 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3144 stock->nr_bytes -= nr_bytes;
3145 ret = true;
3146 }
3147
3148 local_irq_restore(flags);
3149
3150 return ret;
3151 }
3152
3153 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3154 {
3155 struct obj_cgroup *old = stock->cached_objcg;
3156
3157 if (!old)
3158 return;
3159
3160 if (stock->nr_bytes) {
3161 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3162 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3163
3164 if (nr_pages) {
3165 rcu_read_lock();
3166 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3167 rcu_read_unlock();
3168 }
3169
3170 /*
3171 * The leftover is flushed to the centralized per-memcg value.
3172 * On the next attempt to refill obj stock it will be moved
3173 * to a per-cpu stock (probably, on an other CPU), see
3174 * refill_obj_stock().
3175 *
3176 * How often it's flushed is a trade-off between the memory
3177 * limit enforcement accuracy and potential CPU contention,
3178 * so it might be changed in the future.
3179 */
3180 atomic_add(nr_bytes, &old->nr_charged_bytes);
3181 stock->nr_bytes = 0;
3182 }
3183
3184 obj_cgroup_put(old);
3185 stock->cached_objcg = NULL;
3186 }
3187
3188 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3189 struct mem_cgroup *root_memcg)
3190 {
3191 struct mem_cgroup *memcg;
3192
3193 if (stock->cached_objcg) {
3194 memcg = obj_cgroup_memcg(stock->cached_objcg);
3195 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3196 return true;
3197 }
3198
3199 return false;
3200 }
3201
3202 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3203 {
3204 struct memcg_stock_pcp *stock;
3205 unsigned long flags;
3206
3207 local_irq_save(flags);
3208
3209 stock = this_cpu_ptr(&memcg_stock);
3210 if (stock->cached_objcg != objcg) { /* reset if necessary */
3211 drain_obj_stock(stock);
3212 obj_cgroup_get(objcg);
3213 stock->cached_objcg = objcg;
3214 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3215 }
3216 stock->nr_bytes += nr_bytes;
3217
3218 if (stock->nr_bytes > PAGE_SIZE)
3219 drain_obj_stock(stock);
3220
3221 local_irq_restore(flags);
3222 }
3223
3224 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3225 {
3226 struct mem_cgroup *memcg;
3227 unsigned int nr_pages, nr_bytes;
3228 int ret;
3229
3230 if (consume_obj_stock(objcg, size))
3231 return 0;
3232
3233 /*
3234 * In theory, memcg->nr_charged_bytes can have enough
3235 * pre-charged bytes to satisfy the allocation. However,
3236 * flushing memcg->nr_charged_bytes requires two atomic
3237 * operations, and memcg->nr_charged_bytes can't be big,
3238 * so it's better to ignore it and try grab some new pages.
3239 * memcg->nr_charged_bytes will be flushed in
3240 * refill_obj_stock(), called from this function or
3241 * independently later.
3242 */
3243 rcu_read_lock();
3244 memcg = obj_cgroup_memcg(objcg);
3245 css_get(&memcg->css);
3246 rcu_read_unlock();
3247
3248 nr_pages = size >> PAGE_SHIFT;
3249 nr_bytes = size & (PAGE_SIZE - 1);
3250
3251 if (nr_bytes)
3252 nr_pages += 1;
3253
3254 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3255 if (!ret && nr_bytes)
3256 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3257
3258 css_put(&memcg->css);
3259 return ret;
3260 }
3261
3262 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3263 {
3264 refill_obj_stock(objcg, size);
3265 }
3266
3267 #endif /* CONFIG_MEMCG_KMEM */
3268
3269 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3270
3271 /*
3272 * Because tail pages are not marked as "used", set it. We're under
3273 * pgdat->lru_lock and migration entries setup in all page mappings.
3274 */
3275 void mem_cgroup_split_huge_fixup(struct page *head)
3276 {
3277 struct mem_cgroup *memcg = head->mem_cgroup;
3278 int i;
3279
3280 if (mem_cgroup_disabled())
3281 return;
3282
3283 for (i = 1; i < HPAGE_PMD_NR; i++) {
3284 css_get(&memcg->css);
3285 head[i].mem_cgroup = memcg;
3286 }
3287 }
3288 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3289
3290 #ifdef CONFIG_MEMCG_SWAP
3291 /**
3292 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3293 * @entry: swap entry to be moved
3294 * @from: mem_cgroup which the entry is moved from
3295 * @to: mem_cgroup which the entry is moved to
3296 *
3297 * It succeeds only when the swap_cgroup's record for this entry is the same
3298 * as the mem_cgroup's id of @from.
3299 *
3300 * Returns 0 on success, -EINVAL on failure.
3301 *
3302 * The caller must have charged to @to, IOW, called page_counter_charge() about
3303 * both res and memsw, and called css_get().
3304 */
3305 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3306 struct mem_cgroup *from, struct mem_cgroup *to)
3307 {
3308 unsigned short old_id, new_id;
3309
3310 old_id = mem_cgroup_id(from);
3311 new_id = mem_cgroup_id(to);
3312
3313 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3314 mod_memcg_state(from, MEMCG_SWAP, -1);
3315 mod_memcg_state(to, MEMCG_SWAP, 1);
3316 return 0;
3317 }
3318 return -EINVAL;
3319 }
3320 #else
3321 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3322 struct mem_cgroup *from, struct mem_cgroup *to)
3323 {
3324 return -EINVAL;
3325 }
3326 #endif
3327
3328 static DEFINE_MUTEX(memcg_max_mutex);
3329
3330 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3331 unsigned long max, bool memsw)
3332 {
3333 bool enlarge = false;
3334 bool drained = false;
3335 int ret;
3336 bool limits_invariant;
3337 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3338
3339 do {
3340 if (signal_pending(current)) {
3341 ret = -EINTR;
3342 break;
3343 }
3344
3345 mutex_lock(&memcg_max_mutex);
3346 /*
3347 * Make sure that the new limit (memsw or memory limit) doesn't
3348 * break our basic invariant rule memory.max <= memsw.max.
3349 */
3350 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3351 max <= memcg->memsw.max;
3352 if (!limits_invariant) {
3353 mutex_unlock(&memcg_max_mutex);
3354 ret = -EINVAL;
3355 break;
3356 }
3357 if (max > counter->max)
3358 enlarge = true;
3359 ret = page_counter_set_max(counter, max);
3360 mutex_unlock(&memcg_max_mutex);
3361
3362 if (!ret)
3363 break;
3364
3365 if (!drained) {
3366 drain_all_stock(memcg);
3367 drained = true;
3368 continue;
3369 }
3370
3371 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3372 GFP_KERNEL, !memsw)) {
3373 ret = -EBUSY;
3374 break;
3375 }
3376 } while (true);
3377
3378 if (!ret && enlarge)
3379 memcg_oom_recover(memcg);
3380
3381 return ret;
3382 }
3383
3384 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3385 gfp_t gfp_mask,
3386 unsigned long *total_scanned)
3387 {
3388 unsigned long nr_reclaimed = 0;
3389 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3390 unsigned long reclaimed;
3391 int loop = 0;
3392 struct mem_cgroup_tree_per_node *mctz;
3393 unsigned long excess;
3394 unsigned long nr_scanned;
3395
3396 if (order > 0)
3397 return 0;
3398
3399 mctz = soft_limit_tree_node(pgdat->node_id);
3400
3401 /*
3402 * Do not even bother to check the largest node if the root
3403 * is empty. Do it lockless to prevent lock bouncing. Races
3404 * are acceptable as soft limit is best effort anyway.
3405 */
3406 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3407 return 0;
3408
3409 /*
3410 * This loop can run a while, specially if mem_cgroup's continuously
3411 * keep exceeding their soft limit and putting the system under
3412 * pressure
3413 */
3414 do {
3415 if (next_mz)
3416 mz = next_mz;
3417 else
3418 mz = mem_cgroup_largest_soft_limit_node(mctz);
3419 if (!mz)
3420 break;
3421
3422 nr_scanned = 0;
3423 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3424 gfp_mask, &nr_scanned);
3425 nr_reclaimed += reclaimed;
3426 *total_scanned += nr_scanned;
3427 spin_lock_irq(&mctz->lock);
3428 __mem_cgroup_remove_exceeded(mz, mctz);
3429
3430 /*
3431 * If we failed to reclaim anything from this memory cgroup
3432 * it is time to move on to the next cgroup
3433 */
3434 next_mz = NULL;
3435 if (!reclaimed)
3436 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3437
3438 excess = soft_limit_excess(mz->memcg);
3439 /*
3440 * One school of thought says that we should not add
3441 * back the node to the tree if reclaim returns 0.
3442 * But our reclaim could return 0, simply because due
3443 * to priority we are exposing a smaller subset of
3444 * memory to reclaim from. Consider this as a longer
3445 * term TODO.
3446 */
3447 /* If excess == 0, no tree ops */
3448 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3449 spin_unlock_irq(&mctz->lock);
3450 css_put(&mz->memcg->css);
3451 loop++;
3452 /*
3453 * Could not reclaim anything and there are no more
3454 * mem cgroups to try or we seem to be looping without
3455 * reclaiming anything.
3456 */
3457 if (!nr_reclaimed &&
3458 (next_mz == NULL ||
3459 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3460 break;
3461 } while (!nr_reclaimed);
3462 if (next_mz)
3463 css_put(&next_mz->memcg->css);
3464 return nr_reclaimed;
3465 }
3466
3467 /*
3468 * Test whether @memcg has children, dead or alive. Note that this
3469 * function doesn't care whether @memcg has use_hierarchy enabled and
3470 * returns %true if there are child csses according to the cgroup
3471 * hierarchy. Testing use_hierarchy is the caller's responsibility.
3472 */
3473 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3474 {
3475 bool ret;
3476
3477 rcu_read_lock();
3478 ret = css_next_child(NULL, &memcg->css);
3479 rcu_read_unlock();
3480 return ret;
3481 }
3482
3483 /*
3484 * Reclaims as many pages from the given memcg as possible.
3485 *
3486 * Caller is responsible for holding css reference for memcg.
3487 */
3488 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3489 {
3490 int nr_retries = MAX_RECLAIM_RETRIES;
3491
3492 /* we call try-to-free pages for make this cgroup empty */
3493 lru_add_drain_all();
3494
3495 drain_all_stock(memcg);
3496
3497 /* try to free all pages in this cgroup */
3498 while (nr_retries && page_counter_read(&memcg->memory)) {
3499 int progress;
3500
3501 if (signal_pending(current))
3502 return -EINTR;
3503
3504 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3505 GFP_KERNEL, true);
3506 if (!progress) {
3507 nr_retries--;
3508 /* maybe some writeback is necessary */
3509 congestion_wait(BLK_RW_ASYNC, HZ/10);
3510 }
3511
3512 }
3513
3514 return 0;
3515 }
3516
3517 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3518 char *buf, size_t nbytes,
3519 loff_t off)
3520 {
3521 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3522
3523 if (mem_cgroup_is_root(memcg))
3524 return -EINVAL;
3525 return mem_cgroup_force_empty(memcg) ?: nbytes;
3526 }
3527
3528 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3529 struct cftype *cft)
3530 {
3531 return mem_cgroup_from_css(css)->use_hierarchy;
3532 }
3533
3534 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3535 struct cftype *cft, u64 val)
3536 {
3537 int retval = 0;
3538 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3539 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3540
3541 if (memcg->use_hierarchy == val)
3542 return 0;
3543
3544 /*
3545 * If parent's use_hierarchy is set, we can't make any modifications
3546 * in the child subtrees. If it is unset, then the change can
3547 * occur, provided the current cgroup has no children.
3548 *
3549 * For the root cgroup, parent_mem is NULL, we allow value to be
3550 * set if there are no children.
3551 */
3552 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3553 (val == 1 || val == 0)) {
3554 if (!memcg_has_children(memcg))
3555 memcg->use_hierarchy = val;
3556 else
3557 retval = -EBUSY;
3558 } else
3559 retval = -EINVAL;
3560
3561 return retval;
3562 }
3563
3564 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3565 {
3566 unsigned long val;
3567
3568 if (mem_cgroup_is_root(memcg)) {
3569 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3570 memcg_page_state(memcg, NR_ANON_MAPPED);
3571 if (swap)
3572 val += memcg_page_state(memcg, MEMCG_SWAP);
3573 } else {
3574 if (!swap)
3575 val = page_counter_read(&memcg->memory);
3576 else
3577 val = page_counter_read(&memcg->memsw);
3578 }
3579 return val;
3580 }
3581
3582 enum {
3583 RES_USAGE,
3584 RES_LIMIT,
3585 RES_MAX_USAGE,
3586 RES_FAILCNT,
3587 RES_SOFT_LIMIT,
3588 };
3589
3590 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3591 struct cftype *cft)
3592 {
3593 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3594 struct page_counter *counter;
3595
3596 switch (MEMFILE_TYPE(cft->private)) {
3597 case _MEM:
3598 counter = &memcg->memory;
3599 break;
3600 case _MEMSWAP:
3601 counter = &memcg->memsw;
3602 break;
3603 case _KMEM:
3604 counter = &memcg->kmem;
3605 break;
3606 case _TCP:
3607 counter = &memcg->tcpmem;
3608 break;
3609 default:
3610 BUG();
3611 }
3612
3613 switch (MEMFILE_ATTR(cft->private)) {
3614 case RES_USAGE:
3615 if (counter == &memcg->memory)
3616 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3617 if (counter == &memcg->memsw)
3618 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3619 return (u64)page_counter_read(counter) * PAGE_SIZE;
3620 case RES_LIMIT:
3621 return (u64)counter->max * PAGE_SIZE;
3622 case RES_MAX_USAGE:
3623 return (u64)counter->watermark * PAGE_SIZE;
3624 case RES_FAILCNT:
3625 return counter->failcnt;
3626 case RES_SOFT_LIMIT:
3627 return (u64)memcg->soft_limit * PAGE_SIZE;
3628 default:
3629 BUG();
3630 }
3631 }
3632
3633 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3634 {
3635 unsigned long stat[MEMCG_NR_STAT] = {0};
3636 struct mem_cgroup *mi;
3637 int node, cpu, i;
3638
3639 for_each_online_cpu(cpu)
3640 for (i = 0; i < MEMCG_NR_STAT; i++)
3641 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3642
3643 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3644 for (i = 0; i < MEMCG_NR_STAT; i++)
3645 atomic_long_add(stat[i], &mi->vmstats[i]);
3646
3647 for_each_node(node) {
3648 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3649 struct mem_cgroup_per_node *pi;
3650
3651 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3652 stat[i] = 0;
3653
3654 for_each_online_cpu(cpu)
3655 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3656 stat[i] += per_cpu(
3657 pn->lruvec_stat_cpu->count[i], cpu);
3658
3659 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3660 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3661 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3662 }
3663 }
3664
3665 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3666 {
3667 unsigned long events[NR_VM_EVENT_ITEMS];
3668 struct mem_cgroup *mi;
3669 int cpu, i;
3670
3671 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3672 events[i] = 0;
3673
3674 for_each_online_cpu(cpu)
3675 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3676 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3677 cpu);
3678
3679 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3680 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3681 atomic_long_add(events[i], &mi->vmevents[i]);
3682 }
3683
3684 #ifdef CONFIG_MEMCG_KMEM
3685 static int memcg_online_kmem(struct mem_cgroup *memcg)
3686 {
3687 struct obj_cgroup *objcg;
3688 int memcg_id;
3689
3690 if (cgroup_memory_nokmem)
3691 return 0;
3692
3693 BUG_ON(memcg->kmemcg_id >= 0);
3694 BUG_ON(memcg->kmem_state);
3695
3696 memcg_id = memcg_alloc_cache_id();
3697 if (memcg_id < 0)
3698 return memcg_id;
3699
3700 objcg = obj_cgroup_alloc();
3701 if (!objcg) {
3702 memcg_free_cache_id(memcg_id);
3703 return -ENOMEM;
3704 }
3705 objcg->memcg = memcg;
3706 rcu_assign_pointer(memcg->objcg, objcg);
3707
3708 static_branch_enable(&memcg_kmem_enabled_key);
3709
3710 /*
3711 * A memory cgroup is considered kmem-online as soon as it gets
3712 * kmemcg_id. Setting the id after enabling static branching will
3713 * guarantee no one starts accounting before all call sites are
3714 * patched.
3715 */
3716 memcg->kmemcg_id = memcg_id;
3717 memcg->kmem_state = KMEM_ONLINE;
3718
3719 return 0;
3720 }
3721
3722 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3723 {
3724 struct cgroup_subsys_state *css;
3725 struct mem_cgroup *parent, *child;
3726 int kmemcg_id;
3727
3728 if (memcg->kmem_state != KMEM_ONLINE)
3729 return;
3730
3731 memcg->kmem_state = KMEM_ALLOCATED;
3732
3733 parent = parent_mem_cgroup(memcg);
3734 if (!parent)
3735 parent = root_mem_cgroup;
3736
3737 memcg_reparent_objcgs(memcg, parent);
3738
3739 kmemcg_id = memcg->kmemcg_id;
3740 BUG_ON(kmemcg_id < 0);
3741
3742 /*
3743 * Change kmemcg_id of this cgroup and all its descendants to the
3744 * parent's id, and then move all entries from this cgroup's list_lrus
3745 * to ones of the parent. After we have finished, all list_lrus
3746 * corresponding to this cgroup are guaranteed to remain empty. The
3747 * ordering is imposed by list_lru_node->lock taken by
3748 * memcg_drain_all_list_lrus().
3749 */
3750 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3751 css_for_each_descendant_pre(css, &memcg->css) {
3752 child = mem_cgroup_from_css(css);
3753 BUG_ON(child->kmemcg_id != kmemcg_id);
3754 child->kmemcg_id = parent->kmemcg_id;
3755 if (!memcg->use_hierarchy)
3756 break;
3757 }
3758 rcu_read_unlock();
3759
3760 memcg_drain_all_list_lrus(kmemcg_id, parent);
3761
3762 memcg_free_cache_id(kmemcg_id);
3763 }
3764
3765 static void memcg_free_kmem(struct mem_cgroup *memcg)
3766 {
3767 /* css_alloc() failed, offlining didn't happen */
3768 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3769 memcg_offline_kmem(memcg);
3770 }
3771 #else
3772 static int memcg_online_kmem(struct mem_cgroup *memcg)
3773 {
3774 return 0;
3775 }
3776 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3777 {
3778 }
3779 static void memcg_free_kmem(struct mem_cgroup *memcg)
3780 {
3781 }
3782 #endif /* CONFIG_MEMCG_KMEM */
3783
3784 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3785 unsigned long max)
3786 {
3787 int ret;
3788
3789 mutex_lock(&memcg_max_mutex);
3790 ret = page_counter_set_max(&memcg->kmem, max);
3791 mutex_unlock(&memcg_max_mutex);
3792 return ret;
3793 }
3794
3795 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3796 {
3797 int ret;
3798
3799 mutex_lock(&memcg_max_mutex);
3800
3801 ret = page_counter_set_max(&memcg->tcpmem, max);
3802 if (ret)
3803 goto out;
3804
3805 if (!memcg->tcpmem_active) {
3806 /*
3807 * The active flag needs to be written after the static_key
3808 * update. This is what guarantees that the socket activation
3809 * function is the last one to run. See mem_cgroup_sk_alloc()
3810 * for details, and note that we don't mark any socket as
3811 * belonging to this memcg until that flag is up.
3812 *
3813 * We need to do this, because static_keys will span multiple
3814 * sites, but we can't control their order. If we mark a socket
3815 * as accounted, but the accounting functions are not patched in
3816 * yet, we'll lose accounting.
3817 *
3818 * We never race with the readers in mem_cgroup_sk_alloc(),
3819 * because when this value change, the code to process it is not
3820 * patched in yet.
3821 */
3822 static_branch_inc(&memcg_sockets_enabled_key);
3823 memcg->tcpmem_active = true;
3824 }
3825 out:
3826 mutex_unlock(&memcg_max_mutex);
3827 return ret;
3828 }
3829
3830 /*
3831 * The user of this function is...
3832 * RES_LIMIT.
3833 */
3834 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3835 char *buf, size_t nbytes, loff_t off)
3836 {
3837 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3838 unsigned long nr_pages;
3839 int ret;
3840
3841 buf = strstrip(buf);
3842 ret = page_counter_memparse(buf, "-1", &nr_pages);
3843 if (ret)
3844 return ret;
3845
3846 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3847 case RES_LIMIT:
3848 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3849 ret = -EINVAL;
3850 break;
3851 }
3852 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3853 case _MEM:
3854 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3855 break;
3856 case _MEMSWAP:
3857 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3858 break;
3859 case _KMEM:
3860 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3861 "Please report your usecase to linux-mm@kvack.org if you "
3862 "depend on this functionality.\n");
3863 ret = memcg_update_kmem_max(memcg, nr_pages);
3864 break;
3865 case _TCP:
3866 ret = memcg_update_tcp_max(memcg, nr_pages);
3867 break;
3868 }
3869 break;
3870 case RES_SOFT_LIMIT:
3871 memcg->soft_limit = nr_pages;
3872 ret = 0;
3873 break;
3874 }
3875 return ret ?: nbytes;
3876 }
3877
3878 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3879 size_t nbytes, loff_t off)
3880 {
3881 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3882 struct page_counter *counter;
3883
3884 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3885 case _MEM:
3886 counter = &memcg->memory;
3887 break;
3888 case _MEMSWAP:
3889 counter = &memcg->memsw;
3890 break;
3891 case _KMEM:
3892 counter = &memcg->kmem;
3893 break;
3894 case _TCP:
3895 counter = &memcg->tcpmem;
3896 break;
3897 default:
3898 BUG();
3899 }
3900
3901 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3902 case RES_MAX_USAGE:
3903 page_counter_reset_watermark(counter);
3904 break;
3905 case RES_FAILCNT:
3906 counter->failcnt = 0;
3907 break;
3908 default:
3909 BUG();
3910 }
3911
3912 return nbytes;
3913 }
3914
3915 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3916 struct cftype *cft)
3917 {
3918 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3919 }
3920
3921 #ifdef CONFIG_MMU
3922 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3923 struct cftype *cft, u64 val)
3924 {
3925 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3926
3927 if (val & ~MOVE_MASK)
3928 return -EINVAL;
3929
3930 /*
3931 * No kind of locking is needed in here, because ->can_attach() will
3932 * check this value once in the beginning of the process, and then carry
3933 * on with stale data. This means that changes to this value will only
3934 * affect task migrations starting after the change.
3935 */
3936 memcg->move_charge_at_immigrate = val;
3937 return 0;
3938 }
3939 #else
3940 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3941 struct cftype *cft, u64 val)
3942 {
3943 return -ENOSYS;
3944 }
3945 #endif
3946
3947 #ifdef CONFIG_NUMA
3948
3949 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3950 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3951 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3952
3953 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3954 int nid, unsigned int lru_mask, bool tree)
3955 {
3956 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3957 unsigned long nr = 0;
3958 enum lru_list lru;
3959
3960 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3961
3962 for_each_lru(lru) {
3963 if (!(BIT(lru) & lru_mask))
3964 continue;
3965 if (tree)
3966 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3967 else
3968 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3969 }
3970 return nr;
3971 }
3972
3973 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3974 unsigned int lru_mask,
3975 bool tree)
3976 {
3977 unsigned long nr = 0;
3978 enum lru_list lru;
3979
3980 for_each_lru(lru) {
3981 if (!(BIT(lru) & lru_mask))
3982 continue;
3983 if (tree)
3984 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3985 else
3986 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3987 }
3988 return nr;
3989 }
3990
3991 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3992 {
3993 struct numa_stat {
3994 const char *name;
3995 unsigned int lru_mask;
3996 };
3997
3998 static const struct numa_stat stats[] = {
3999 { "total", LRU_ALL },
4000 { "file", LRU_ALL_FILE },
4001 { "anon", LRU_ALL_ANON },
4002 { "unevictable", BIT(LRU_UNEVICTABLE) },
4003 };
4004 const struct numa_stat *stat;
4005 int nid;
4006 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4007
4008 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4009 seq_printf(m, "%s=%lu", stat->name,
4010 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4011 false));
4012 for_each_node_state(nid, N_MEMORY)
4013 seq_printf(m, " N%d=%lu", nid,
4014 mem_cgroup_node_nr_lru_pages(memcg, nid,
4015 stat->lru_mask, false));
4016 seq_putc(m, '\n');
4017 }
4018
4019 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4020
4021 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4022 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4023 true));
4024 for_each_node_state(nid, N_MEMORY)
4025 seq_printf(m, " N%d=%lu", nid,
4026 mem_cgroup_node_nr_lru_pages(memcg, nid,
4027 stat->lru_mask, true));
4028 seq_putc(m, '\n');
4029 }
4030
4031 return 0;
4032 }
4033 #endif /* CONFIG_NUMA */
4034
4035 static const unsigned int memcg1_stats[] = {
4036 NR_FILE_PAGES,
4037 NR_ANON_MAPPED,
4038 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4039 NR_ANON_THPS,
4040 #endif
4041 NR_SHMEM,
4042 NR_FILE_MAPPED,
4043 NR_FILE_DIRTY,
4044 NR_WRITEBACK,
4045 MEMCG_SWAP,
4046 };
4047
4048 static const char *const memcg1_stat_names[] = {
4049 "cache",
4050 "rss",
4051 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4052 "rss_huge",
4053 #endif
4054 "shmem",
4055 "mapped_file",
4056 "dirty",
4057 "writeback",
4058 "swap",
4059 };
4060
4061 /* Universal VM events cgroup1 shows, original sort order */
4062 static const unsigned int memcg1_events[] = {
4063 PGPGIN,
4064 PGPGOUT,
4065 PGFAULT,
4066 PGMAJFAULT,
4067 };
4068
4069 static int memcg_stat_show(struct seq_file *m, void *v)
4070 {
4071 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4072 unsigned long memory, memsw;
4073 struct mem_cgroup *mi;
4074 unsigned int i;
4075
4076 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4077
4078 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4079 unsigned long nr;
4080
4081 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4082 continue;
4083 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4084 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4085 if (memcg1_stats[i] == NR_ANON_THPS)
4086 nr *= HPAGE_PMD_NR;
4087 #endif
4088 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4089 }
4090
4091 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4092 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4093 memcg_events_local(memcg, memcg1_events[i]));
4094
4095 for (i = 0; i < NR_LRU_LISTS; i++)
4096 seq_printf(m, "%s %lu\n", lru_list_name(i),
4097 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4098 PAGE_SIZE);
4099
4100 /* Hierarchical information */
4101 memory = memsw = PAGE_COUNTER_MAX;
4102 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4103 memory = min(memory, READ_ONCE(mi->memory.max));
4104 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4105 }
4106 seq_printf(m, "hierarchical_memory_limit %llu\n",
4107 (u64)memory * PAGE_SIZE);
4108 if (do_memsw_account())
4109 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4110 (u64)memsw * PAGE_SIZE);
4111
4112 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4113 unsigned long nr;
4114
4115 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4116 continue;
4117 nr = memcg_page_state(memcg, memcg1_stats[i]);
4118 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4119 if (memcg1_stats[i] == NR_ANON_THPS)
4120 nr *= HPAGE_PMD_NR;
4121 #endif
4122 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4123 (u64)nr * PAGE_SIZE);
4124 }
4125
4126 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4127 seq_printf(m, "total_%s %llu\n",
4128 vm_event_name(memcg1_events[i]),
4129 (u64)memcg_events(memcg, memcg1_events[i]));
4130
4131 for (i = 0; i < NR_LRU_LISTS; i++)
4132 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4133 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4134 PAGE_SIZE);
4135
4136 #ifdef CONFIG_DEBUG_VM
4137 {
4138 pg_data_t *pgdat;
4139 struct mem_cgroup_per_node *mz;
4140 unsigned long anon_cost = 0;
4141 unsigned long file_cost = 0;
4142
4143 for_each_online_pgdat(pgdat) {
4144 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4145
4146 anon_cost += mz->lruvec.anon_cost;
4147 file_cost += mz->lruvec.file_cost;
4148 }
4149 seq_printf(m, "anon_cost %lu\n", anon_cost);
4150 seq_printf(m, "file_cost %lu\n", file_cost);
4151 }
4152 #endif
4153
4154 return 0;
4155 }
4156
4157 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4158 struct cftype *cft)
4159 {
4160 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4161
4162 return mem_cgroup_swappiness(memcg);
4163 }
4164
4165 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4166 struct cftype *cft, u64 val)
4167 {
4168 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4169
4170 if (val > 100)
4171 return -EINVAL;
4172
4173 if (css->parent)
4174 memcg->swappiness = val;
4175 else
4176 vm_swappiness = val;
4177
4178 return 0;
4179 }
4180
4181 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4182 {
4183 struct mem_cgroup_threshold_ary *t;
4184 unsigned long usage;
4185 int i;
4186
4187 rcu_read_lock();
4188 if (!swap)
4189 t = rcu_dereference(memcg->thresholds.primary);
4190 else
4191 t = rcu_dereference(memcg->memsw_thresholds.primary);
4192
4193 if (!t)
4194 goto unlock;
4195
4196 usage = mem_cgroup_usage(memcg, swap);
4197
4198 /*
4199 * current_threshold points to threshold just below or equal to usage.
4200 * If it's not true, a threshold was crossed after last
4201 * call of __mem_cgroup_threshold().
4202 */
4203 i = t->current_threshold;
4204
4205 /*
4206 * Iterate backward over array of thresholds starting from
4207 * current_threshold and check if a threshold is crossed.
4208 * If none of thresholds below usage is crossed, we read
4209 * only one element of the array here.
4210 */
4211 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4212 eventfd_signal(t->entries[i].eventfd, 1);
4213
4214 /* i = current_threshold + 1 */
4215 i++;
4216
4217 /*
4218 * Iterate forward over array of thresholds starting from
4219 * current_threshold+1 and check if a threshold is crossed.
4220 * If none of thresholds above usage is crossed, we read
4221 * only one element of the array here.
4222 */
4223 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4224 eventfd_signal(t->entries[i].eventfd, 1);
4225
4226 /* Update current_threshold */
4227 t->current_threshold = i - 1;
4228 unlock:
4229 rcu_read_unlock();
4230 }
4231
4232 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4233 {
4234 while (memcg) {
4235 __mem_cgroup_threshold(memcg, false);
4236 if (do_memsw_account())
4237 __mem_cgroup_threshold(memcg, true);
4238
4239 memcg = parent_mem_cgroup(memcg);
4240 }
4241 }
4242
4243 static int compare_thresholds(const void *a, const void *b)
4244 {
4245 const struct mem_cgroup_threshold *_a = a;
4246 const struct mem_cgroup_threshold *_b = b;
4247
4248 if (_a->threshold > _b->threshold)
4249 return 1;
4250
4251 if (_a->threshold < _b->threshold)
4252 return -1;
4253
4254 return 0;
4255 }
4256
4257 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4258 {
4259 struct mem_cgroup_eventfd_list *ev;
4260
4261 spin_lock(&memcg_oom_lock);
4262
4263 list_for_each_entry(ev, &memcg->oom_notify, list)
4264 eventfd_signal(ev->eventfd, 1);
4265
4266 spin_unlock(&memcg_oom_lock);
4267 return 0;
4268 }
4269
4270 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4271 {
4272 struct mem_cgroup *iter;
4273
4274 for_each_mem_cgroup_tree(iter, memcg)
4275 mem_cgroup_oom_notify_cb(iter);
4276 }
4277
4278 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4279 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4280 {
4281 struct mem_cgroup_thresholds *thresholds;
4282 struct mem_cgroup_threshold_ary *new;
4283 unsigned long threshold;
4284 unsigned long usage;
4285 int i, size, ret;
4286
4287 ret = page_counter_memparse(args, "-1", &threshold);
4288 if (ret)
4289 return ret;
4290
4291 mutex_lock(&memcg->thresholds_lock);
4292
4293 if (type == _MEM) {
4294 thresholds = &memcg->thresholds;
4295 usage = mem_cgroup_usage(memcg, false);
4296 } else if (type == _MEMSWAP) {
4297 thresholds = &memcg->memsw_thresholds;
4298 usage = mem_cgroup_usage(memcg, true);
4299 } else
4300 BUG();
4301
4302 /* Check if a threshold crossed before adding a new one */
4303 if (thresholds->primary)
4304 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4305
4306 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4307
4308 /* Allocate memory for new array of thresholds */
4309 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4310 if (!new) {
4311 ret = -ENOMEM;
4312 goto unlock;
4313 }
4314 new->size = size;
4315
4316 /* Copy thresholds (if any) to new array */
4317 if (thresholds->primary)
4318 memcpy(new->entries, thresholds->primary->entries,
4319 flex_array_size(new, entries, size - 1));
4320
4321 /* Add new threshold */
4322 new->entries[size - 1].eventfd = eventfd;
4323 new->entries[size - 1].threshold = threshold;
4324
4325 /* Sort thresholds. Registering of new threshold isn't time-critical */
4326 sort(new->entries, size, sizeof(*new->entries),
4327 compare_thresholds, NULL);
4328
4329 /* Find current threshold */
4330 new->current_threshold = -1;
4331 for (i = 0; i < size; i++) {
4332 if (new->entries[i].threshold <= usage) {
4333 /*
4334 * new->current_threshold will not be used until
4335 * rcu_assign_pointer(), so it's safe to increment
4336 * it here.
4337 */
4338 ++new->current_threshold;
4339 } else
4340 break;
4341 }
4342
4343 /* Free old spare buffer and save old primary buffer as spare */
4344 kfree(thresholds->spare);
4345 thresholds->spare = thresholds->primary;
4346
4347 rcu_assign_pointer(thresholds->primary, new);
4348
4349 /* To be sure that nobody uses thresholds */
4350 synchronize_rcu();
4351
4352 unlock:
4353 mutex_unlock(&memcg->thresholds_lock);
4354
4355 return ret;
4356 }
4357
4358 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4359 struct eventfd_ctx *eventfd, const char *args)
4360 {
4361 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4362 }
4363
4364 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4365 struct eventfd_ctx *eventfd, const char *args)
4366 {
4367 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4368 }
4369
4370 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4371 struct eventfd_ctx *eventfd, enum res_type type)
4372 {
4373 struct mem_cgroup_thresholds *thresholds;
4374 struct mem_cgroup_threshold_ary *new;
4375 unsigned long usage;
4376 int i, j, size, entries;
4377
4378 mutex_lock(&memcg->thresholds_lock);
4379
4380 if (type == _MEM) {
4381 thresholds = &memcg->thresholds;
4382 usage = mem_cgroup_usage(memcg, false);
4383 } else if (type == _MEMSWAP) {
4384 thresholds = &memcg->memsw_thresholds;
4385 usage = mem_cgroup_usage(memcg, true);
4386 } else
4387 BUG();
4388
4389 if (!thresholds->primary)
4390 goto unlock;
4391
4392 /* Check if a threshold crossed before removing */
4393 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4394
4395 /* Calculate new number of threshold */
4396 size = entries = 0;
4397 for (i = 0; i < thresholds->primary->size; i++) {
4398 if (thresholds->primary->entries[i].eventfd != eventfd)
4399 size++;
4400 else
4401 entries++;
4402 }
4403
4404 new = thresholds->spare;
4405
4406 /* If no items related to eventfd have been cleared, nothing to do */
4407 if (!entries)
4408 goto unlock;
4409
4410 /* Set thresholds array to NULL if we don't have thresholds */
4411 if (!size) {
4412 kfree(new);
4413 new = NULL;
4414 goto swap_buffers;
4415 }
4416
4417 new->size = size;
4418
4419 /* Copy thresholds and find current threshold */
4420 new->current_threshold = -1;
4421 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4422 if (thresholds->primary->entries[i].eventfd == eventfd)
4423 continue;
4424
4425 new->entries[j] = thresholds->primary->entries[i];
4426 if (new->entries[j].threshold <= usage) {
4427 /*
4428 * new->current_threshold will not be used
4429 * until rcu_assign_pointer(), so it's safe to increment
4430 * it here.
4431 */
4432 ++new->current_threshold;
4433 }
4434 j++;
4435 }
4436
4437 swap_buffers:
4438 /* Swap primary and spare array */
4439 thresholds->spare = thresholds->primary;
4440
4441 rcu_assign_pointer(thresholds->primary, new);
4442
4443 /* To be sure that nobody uses thresholds */
4444 synchronize_rcu();
4445
4446 /* If all events are unregistered, free the spare array */
4447 if (!new) {
4448 kfree(thresholds->spare);
4449 thresholds->spare = NULL;
4450 }
4451 unlock:
4452 mutex_unlock(&memcg->thresholds_lock);
4453 }
4454
4455 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4456 struct eventfd_ctx *eventfd)
4457 {
4458 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4459 }
4460
4461 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4462 struct eventfd_ctx *eventfd)
4463 {
4464 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4465 }
4466
4467 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4468 struct eventfd_ctx *eventfd, const char *args)
4469 {
4470 struct mem_cgroup_eventfd_list *event;
4471
4472 event = kmalloc(sizeof(*event), GFP_KERNEL);
4473 if (!event)
4474 return -ENOMEM;
4475
4476 spin_lock(&memcg_oom_lock);
4477
4478 event->eventfd = eventfd;
4479 list_add(&event->list, &memcg->oom_notify);
4480
4481 /* already in OOM ? */
4482 if (memcg->under_oom)
4483 eventfd_signal(eventfd, 1);
4484 spin_unlock(&memcg_oom_lock);
4485
4486 return 0;
4487 }
4488
4489 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4490 struct eventfd_ctx *eventfd)
4491 {
4492 struct mem_cgroup_eventfd_list *ev, *tmp;
4493
4494 spin_lock(&memcg_oom_lock);
4495
4496 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4497 if (ev->eventfd == eventfd) {
4498 list_del(&ev->list);
4499 kfree(ev);
4500 }
4501 }
4502
4503 spin_unlock(&memcg_oom_lock);
4504 }
4505
4506 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4507 {
4508 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4509
4510 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4511 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4512 seq_printf(sf, "oom_kill %lu\n",
4513 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4514 return 0;
4515 }
4516
4517 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4518 struct cftype *cft, u64 val)
4519 {
4520 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4521
4522 /* cannot set to root cgroup and only 0 and 1 are allowed */
4523 if (!css->parent || !((val == 0) || (val == 1)))
4524 return -EINVAL;
4525
4526 memcg->oom_kill_disable = val;
4527 if (!val)
4528 memcg_oom_recover(memcg);
4529
4530 return 0;
4531 }
4532
4533 #ifdef CONFIG_CGROUP_WRITEBACK
4534
4535 #include <trace/events/writeback.h>
4536
4537 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4538 {
4539 return wb_domain_init(&memcg->cgwb_domain, gfp);
4540 }
4541
4542 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4543 {
4544 wb_domain_exit(&memcg->cgwb_domain);
4545 }
4546
4547 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4548 {
4549 wb_domain_size_changed(&memcg->cgwb_domain);
4550 }
4551
4552 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4553 {
4554 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4555
4556 if (!memcg->css.parent)
4557 return NULL;
4558
4559 return &memcg->cgwb_domain;
4560 }
4561
4562 /*
4563 * idx can be of type enum memcg_stat_item or node_stat_item.
4564 * Keep in sync with memcg_exact_page().
4565 */
4566 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4567 {
4568 long x = atomic_long_read(&memcg->vmstats[idx]);
4569 int cpu;
4570
4571 for_each_online_cpu(cpu)
4572 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4573 if (x < 0)
4574 x = 0;
4575 return x;
4576 }
4577
4578 /**
4579 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4580 * @wb: bdi_writeback in question
4581 * @pfilepages: out parameter for number of file pages
4582 * @pheadroom: out parameter for number of allocatable pages according to memcg
4583 * @pdirty: out parameter for number of dirty pages
4584 * @pwriteback: out parameter for number of pages under writeback
4585 *
4586 * Determine the numbers of file, headroom, dirty, and writeback pages in
4587 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4588 * is a bit more involved.
4589 *
4590 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4591 * headroom is calculated as the lowest headroom of itself and the
4592 * ancestors. Note that this doesn't consider the actual amount of
4593 * available memory in the system. The caller should further cap
4594 * *@pheadroom accordingly.
4595 */
4596 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4597 unsigned long *pheadroom, unsigned long *pdirty,
4598 unsigned long *pwriteback)
4599 {
4600 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4601 struct mem_cgroup *parent;
4602
4603 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4604
4605 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4606 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4607 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4608 *pheadroom = PAGE_COUNTER_MAX;
4609
4610 while ((parent = parent_mem_cgroup(memcg))) {
4611 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4612 READ_ONCE(memcg->memory.high));
4613 unsigned long used = page_counter_read(&memcg->memory);
4614
4615 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4616 memcg = parent;
4617 }
4618 }
4619
4620 /*
4621 * Foreign dirty flushing
4622 *
4623 * There's an inherent mismatch between memcg and writeback. The former
4624 * trackes ownership per-page while the latter per-inode. This was a
4625 * deliberate design decision because honoring per-page ownership in the
4626 * writeback path is complicated, may lead to higher CPU and IO overheads
4627 * and deemed unnecessary given that write-sharing an inode across
4628 * different cgroups isn't a common use-case.
4629 *
4630 * Combined with inode majority-writer ownership switching, this works well
4631 * enough in most cases but there are some pathological cases. For
4632 * example, let's say there are two cgroups A and B which keep writing to
4633 * different but confined parts of the same inode. B owns the inode and
4634 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4635 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4636 * triggering background writeback. A will be slowed down without a way to
4637 * make writeback of the dirty pages happen.
4638 *
4639 * Conditions like the above can lead to a cgroup getting repatedly and
4640 * severely throttled after making some progress after each
4641 * dirty_expire_interval while the underyling IO device is almost
4642 * completely idle.
4643 *
4644 * Solving this problem completely requires matching the ownership tracking
4645 * granularities between memcg and writeback in either direction. However,
4646 * the more egregious behaviors can be avoided by simply remembering the
4647 * most recent foreign dirtying events and initiating remote flushes on
4648 * them when local writeback isn't enough to keep the memory clean enough.
4649 *
4650 * The following two functions implement such mechanism. When a foreign
4651 * page - a page whose memcg and writeback ownerships don't match - is
4652 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4653 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4654 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4655 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4656 * foreign bdi_writebacks which haven't expired. Both the numbers of
4657 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4658 * limited to MEMCG_CGWB_FRN_CNT.
4659 *
4660 * The mechanism only remembers IDs and doesn't hold any object references.
4661 * As being wrong occasionally doesn't matter, updates and accesses to the
4662 * records are lockless and racy.
4663 */
4664 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4665 struct bdi_writeback *wb)
4666 {
4667 struct mem_cgroup *memcg = page->mem_cgroup;
4668 struct memcg_cgwb_frn *frn;
4669 u64 now = get_jiffies_64();
4670 u64 oldest_at = now;
4671 int oldest = -1;
4672 int i;
4673
4674 trace_track_foreign_dirty(page, wb);
4675
4676 /*
4677 * Pick the slot to use. If there is already a slot for @wb, keep
4678 * using it. If not replace the oldest one which isn't being
4679 * written out.
4680 */
4681 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4682 frn = &memcg->cgwb_frn[i];
4683 if (frn->bdi_id == wb->bdi->id &&
4684 frn->memcg_id == wb->memcg_css->id)
4685 break;
4686 if (time_before64(frn->at, oldest_at) &&
4687 atomic_read(&frn->done.cnt) == 1) {
4688 oldest = i;
4689 oldest_at = frn->at;
4690 }
4691 }
4692
4693 if (i < MEMCG_CGWB_FRN_CNT) {
4694 /*
4695 * Re-using an existing one. Update timestamp lazily to
4696 * avoid making the cacheline hot. We want them to be
4697 * reasonably up-to-date and significantly shorter than
4698 * dirty_expire_interval as that's what expires the record.
4699 * Use the shorter of 1s and dirty_expire_interval / 8.
4700 */
4701 unsigned long update_intv =
4702 min_t(unsigned long, HZ,
4703 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4704
4705 if (time_before64(frn->at, now - update_intv))
4706 frn->at = now;
4707 } else if (oldest >= 0) {
4708 /* replace the oldest free one */
4709 frn = &memcg->cgwb_frn[oldest];
4710 frn->bdi_id = wb->bdi->id;
4711 frn->memcg_id = wb->memcg_css->id;
4712 frn->at = now;
4713 }
4714 }
4715
4716 /* issue foreign writeback flushes for recorded foreign dirtying events */
4717 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4718 {
4719 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4720 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4721 u64 now = jiffies_64;
4722 int i;
4723
4724 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4725 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4726
4727 /*
4728 * If the record is older than dirty_expire_interval,
4729 * writeback on it has already started. No need to kick it
4730 * off again. Also, don't start a new one if there's
4731 * already one in flight.
4732 */
4733 if (time_after64(frn->at, now - intv) &&
4734 atomic_read(&frn->done.cnt) == 1) {
4735 frn->at = 0;
4736 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4737 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4738 WB_REASON_FOREIGN_FLUSH,
4739 &frn->done);
4740 }
4741 }
4742 }
4743
4744 #else /* CONFIG_CGROUP_WRITEBACK */
4745
4746 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4747 {
4748 return 0;
4749 }
4750
4751 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4752 {
4753 }
4754
4755 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4756 {
4757 }
4758
4759 #endif /* CONFIG_CGROUP_WRITEBACK */
4760
4761 /*
4762 * DO NOT USE IN NEW FILES.
4763 *
4764 * "cgroup.event_control" implementation.
4765 *
4766 * This is way over-engineered. It tries to support fully configurable
4767 * events for each user. Such level of flexibility is completely
4768 * unnecessary especially in the light of the planned unified hierarchy.
4769 *
4770 * Please deprecate this and replace with something simpler if at all
4771 * possible.
4772 */
4773
4774 /*
4775 * Unregister event and free resources.
4776 *
4777 * Gets called from workqueue.
4778 */
4779 static void memcg_event_remove(struct work_struct *work)
4780 {
4781 struct mem_cgroup_event *event =
4782 container_of(work, struct mem_cgroup_event, remove);
4783 struct mem_cgroup *memcg = event->memcg;
4784
4785 remove_wait_queue(event->wqh, &event->wait);
4786
4787 event->unregister_event(memcg, event->eventfd);
4788
4789 /* Notify userspace the event is going away. */
4790 eventfd_signal(event->eventfd, 1);
4791
4792 eventfd_ctx_put(event->eventfd);
4793 kfree(event);
4794 css_put(&memcg->css);
4795 }
4796
4797 /*
4798 * Gets called on EPOLLHUP on eventfd when user closes it.
4799 *
4800 * Called with wqh->lock held and interrupts disabled.
4801 */
4802 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4803 int sync, void *key)
4804 {
4805 struct mem_cgroup_event *event =
4806 container_of(wait, struct mem_cgroup_event, wait);
4807 struct mem_cgroup *memcg = event->memcg;
4808 __poll_t flags = key_to_poll(key);
4809
4810 if (flags & EPOLLHUP) {
4811 /*
4812 * If the event has been detached at cgroup removal, we
4813 * can simply return knowing the other side will cleanup
4814 * for us.
4815 *
4816 * We can't race against event freeing since the other
4817 * side will require wqh->lock via remove_wait_queue(),
4818 * which we hold.
4819 */
4820 spin_lock(&memcg->event_list_lock);
4821 if (!list_empty(&event->list)) {
4822 list_del_init(&event->list);
4823 /*
4824 * We are in atomic context, but cgroup_event_remove()
4825 * may sleep, so we have to call it in workqueue.
4826 */
4827 schedule_work(&event->remove);
4828 }
4829 spin_unlock(&memcg->event_list_lock);
4830 }
4831
4832 return 0;
4833 }
4834
4835 static void memcg_event_ptable_queue_proc(struct file *file,
4836 wait_queue_head_t *wqh, poll_table *pt)
4837 {
4838 struct mem_cgroup_event *event =
4839 container_of(pt, struct mem_cgroup_event, pt);
4840
4841 event->wqh = wqh;
4842 add_wait_queue(wqh, &event->wait);
4843 }
4844
4845 /*
4846 * DO NOT USE IN NEW FILES.
4847 *
4848 * Parse input and register new cgroup event handler.
4849 *
4850 * Input must be in format '<event_fd> <control_fd> <args>'.
4851 * Interpretation of args is defined by control file implementation.
4852 */
4853 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4854 char *buf, size_t nbytes, loff_t off)
4855 {
4856 struct cgroup_subsys_state *css = of_css(of);
4857 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4858 struct mem_cgroup_event *event;
4859 struct cgroup_subsys_state *cfile_css;
4860 unsigned int efd, cfd;
4861 struct fd efile;
4862 struct fd cfile;
4863 const char *name;
4864 char *endp;
4865 int ret;
4866
4867 buf = strstrip(buf);
4868
4869 efd = simple_strtoul(buf, &endp, 10);
4870 if (*endp != ' ')
4871 return -EINVAL;
4872 buf = endp + 1;
4873
4874 cfd = simple_strtoul(buf, &endp, 10);
4875 if ((*endp != ' ') && (*endp != '\0'))
4876 return -EINVAL;
4877 buf = endp + 1;
4878
4879 event = kzalloc(sizeof(*event), GFP_KERNEL);
4880 if (!event)
4881 return -ENOMEM;
4882
4883 event->memcg = memcg;
4884 INIT_LIST_HEAD(&event->list);
4885 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4886 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4887 INIT_WORK(&event->remove, memcg_event_remove);
4888
4889 efile = fdget(efd);
4890 if (!efile.file) {
4891 ret = -EBADF;
4892 goto out_kfree;
4893 }
4894
4895 event->eventfd = eventfd_ctx_fileget(efile.file);
4896 if (IS_ERR(event->eventfd)) {
4897 ret = PTR_ERR(event->eventfd);
4898 goto out_put_efile;
4899 }
4900
4901 cfile = fdget(cfd);
4902 if (!cfile.file) {
4903 ret = -EBADF;
4904 goto out_put_eventfd;
4905 }
4906
4907 /* the process need read permission on control file */
4908 /* AV: shouldn't we check that it's been opened for read instead? */
4909 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4910 if (ret < 0)
4911 goto out_put_cfile;
4912
4913 /*
4914 * Determine the event callbacks and set them in @event. This used
4915 * to be done via struct cftype but cgroup core no longer knows
4916 * about these events. The following is crude but the whole thing
4917 * is for compatibility anyway.
4918 *
4919 * DO NOT ADD NEW FILES.
4920 */
4921 name = cfile.file->f_path.dentry->d_name.name;
4922
4923 if (!strcmp(name, "memory.usage_in_bytes")) {
4924 event->register_event = mem_cgroup_usage_register_event;
4925 event->unregister_event = mem_cgroup_usage_unregister_event;
4926 } else if (!strcmp(name, "memory.oom_control")) {
4927 event->register_event = mem_cgroup_oom_register_event;
4928 event->unregister_event = mem_cgroup_oom_unregister_event;
4929 } else if (!strcmp(name, "memory.pressure_level")) {
4930 event->register_event = vmpressure_register_event;
4931 event->unregister_event = vmpressure_unregister_event;
4932 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4933 event->register_event = memsw_cgroup_usage_register_event;
4934 event->unregister_event = memsw_cgroup_usage_unregister_event;
4935 } else {
4936 ret = -EINVAL;
4937 goto out_put_cfile;
4938 }
4939
4940 /*
4941 * Verify @cfile should belong to @css. Also, remaining events are
4942 * automatically removed on cgroup destruction but the removal is
4943 * asynchronous, so take an extra ref on @css.
4944 */
4945 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4946 &memory_cgrp_subsys);
4947 ret = -EINVAL;
4948 if (IS_ERR(cfile_css))
4949 goto out_put_cfile;
4950 if (cfile_css != css) {
4951 css_put(cfile_css);
4952 goto out_put_cfile;
4953 }
4954
4955 ret = event->register_event(memcg, event->eventfd, buf);
4956 if (ret)
4957 goto out_put_css;
4958
4959 vfs_poll(efile.file, &event->pt);
4960
4961 spin_lock(&memcg->event_list_lock);
4962 list_add(&event->list, &memcg->event_list);
4963 spin_unlock(&memcg->event_list_lock);
4964
4965 fdput(cfile);
4966 fdput(efile);
4967
4968 return nbytes;
4969
4970 out_put_css:
4971 css_put(css);
4972 out_put_cfile:
4973 fdput(cfile);
4974 out_put_eventfd:
4975 eventfd_ctx_put(event->eventfd);
4976 out_put_efile:
4977 fdput(efile);
4978 out_kfree:
4979 kfree(event);
4980
4981 return ret;
4982 }
4983
4984 static struct cftype mem_cgroup_legacy_files[] = {
4985 {
4986 .name = "usage_in_bytes",
4987 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4988 .read_u64 = mem_cgroup_read_u64,
4989 },
4990 {
4991 .name = "max_usage_in_bytes",
4992 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4993 .write = mem_cgroup_reset,
4994 .read_u64 = mem_cgroup_read_u64,
4995 },
4996 {
4997 .name = "limit_in_bytes",
4998 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4999 .write = mem_cgroup_write,
5000 .read_u64 = mem_cgroup_read_u64,
5001 },
5002 {
5003 .name = "soft_limit_in_bytes",
5004 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5005 .write = mem_cgroup_write,
5006 .read_u64 = mem_cgroup_read_u64,
5007 },
5008 {
5009 .name = "failcnt",
5010 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5011 .write = mem_cgroup_reset,
5012 .read_u64 = mem_cgroup_read_u64,
5013 },
5014 {
5015 .name = "stat",
5016 .seq_show = memcg_stat_show,
5017 },
5018 {
5019 .name = "force_empty",
5020 .write = mem_cgroup_force_empty_write,
5021 },
5022 {
5023 .name = "use_hierarchy",
5024 .write_u64 = mem_cgroup_hierarchy_write,
5025 .read_u64 = mem_cgroup_hierarchy_read,
5026 },
5027 {
5028 .name = "cgroup.event_control", /* XXX: for compat */
5029 .write = memcg_write_event_control,
5030 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5031 },
5032 {
5033 .name = "swappiness",
5034 .read_u64 = mem_cgroup_swappiness_read,
5035 .write_u64 = mem_cgroup_swappiness_write,
5036 },
5037 {
5038 .name = "move_charge_at_immigrate",
5039 .read_u64 = mem_cgroup_move_charge_read,
5040 .write_u64 = mem_cgroup_move_charge_write,
5041 },
5042 {
5043 .name = "oom_control",
5044 .seq_show = mem_cgroup_oom_control_read,
5045 .write_u64 = mem_cgroup_oom_control_write,
5046 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5047 },
5048 {
5049 .name = "pressure_level",
5050 },
5051 #ifdef CONFIG_NUMA
5052 {
5053 .name = "numa_stat",
5054 .seq_show = memcg_numa_stat_show,
5055 },
5056 #endif
5057 {
5058 .name = "kmem.limit_in_bytes",
5059 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5060 .write = mem_cgroup_write,
5061 .read_u64 = mem_cgroup_read_u64,
5062 },
5063 {
5064 .name = "kmem.usage_in_bytes",
5065 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5066 .read_u64 = mem_cgroup_read_u64,
5067 },
5068 {
5069 .name = "kmem.failcnt",
5070 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5071 .write = mem_cgroup_reset,
5072 .read_u64 = mem_cgroup_read_u64,
5073 },
5074 {
5075 .name = "kmem.max_usage_in_bytes",
5076 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5077 .write = mem_cgroup_reset,
5078 .read_u64 = mem_cgroup_read_u64,
5079 },
5080 #if defined(CONFIG_MEMCG_KMEM) && \
5081 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5082 {
5083 .name = "kmem.slabinfo",
5084 .seq_show = memcg_slab_show,
5085 },
5086 #endif
5087 {
5088 .name = "kmem.tcp.limit_in_bytes",
5089 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5090 .write = mem_cgroup_write,
5091 .read_u64 = mem_cgroup_read_u64,
5092 },
5093 {
5094 .name = "kmem.tcp.usage_in_bytes",
5095 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5096 .read_u64 = mem_cgroup_read_u64,
5097 },
5098 {
5099 .name = "kmem.tcp.failcnt",
5100 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5101 .write = mem_cgroup_reset,
5102 .read_u64 = mem_cgroup_read_u64,
5103 },
5104 {
5105 .name = "kmem.tcp.max_usage_in_bytes",
5106 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5107 .write = mem_cgroup_reset,
5108 .read_u64 = mem_cgroup_read_u64,
5109 },
5110 { }, /* terminate */
5111 };
5112
5113 /*
5114 * Private memory cgroup IDR
5115 *
5116 * Swap-out records and page cache shadow entries need to store memcg
5117 * references in constrained space, so we maintain an ID space that is
5118 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5119 * memory-controlled cgroups to 64k.
5120 *
5121 * However, there usually are many references to the offline CSS after
5122 * the cgroup has been destroyed, such as page cache or reclaimable
5123 * slab objects, that don't need to hang on to the ID. We want to keep
5124 * those dead CSS from occupying IDs, or we might quickly exhaust the
5125 * relatively small ID space and prevent the creation of new cgroups
5126 * even when there are much fewer than 64k cgroups - possibly none.
5127 *
5128 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5129 * be freed and recycled when it's no longer needed, which is usually
5130 * when the CSS is offlined.
5131 *
5132 * The only exception to that are records of swapped out tmpfs/shmem
5133 * pages that need to be attributed to live ancestors on swapin. But
5134 * those references are manageable from userspace.
5135 */
5136
5137 static DEFINE_IDR(mem_cgroup_idr);
5138
5139 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5140 {
5141 if (memcg->id.id > 0) {
5142 idr_remove(&mem_cgroup_idr, memcg->id.id);
5143 memcg->id.id = 0;
5144 }
5145 }
5146
5147 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5148 unsigned int n)
5149 {
5150 refcount_add(n, &memcg->id.ref);
5151 }
5152
5153 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5154 {
5155 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5156 mem_cgroup_id_remove(memcg);
5157
5158 /* Memcg ID pins CSS */
5159 css_put(&memcg->css);
5160 }
5161 }
5162
5163 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5164 {
5165 mem_cgroup_id_put_many(memcg, 1);
5166 }
5167
5168 /**
5169 * mem_cgroup_from_id - look up a memcg from a memcg id
5170 * @id: the memcg id to look up
5171 *
5172 * Caller must hold rcu_read_lock().
5173 */
5174 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5175 {
5176 WARN_ON_ONCE(!rcu_read_lock_held());
5177 return idr_find(&mem_cgroup_idr, id);
5178 }
5179
5180 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5181 {
5182 struct mem_cgroup_per_node *pn;
5183 int tmp = node;
5184 /*
5185 * This routine is called against possible nodes.
5186 * But it's BUG to call kmalloc() against offline node.
5187 *
5188 * TODO: this routine can waste much memory for nodes which will
5189 * never be onlined. It's better to use memory hotplug callback
5190 * function.
5191 */
5192 if (!node_state(node, N_NORMAL_MEMORY))
5193 tmp = -1;
5194 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5195 if (!pn)
5196 return 1;
5197
5198 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5199 GFP_KERNEL_ACCOUNT);
5200 if (!pn->lruvec_stat_local) {
5201 kfree(pn);
5202 return 1;
5203 }
5204
5205 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5206 GFP_KERNEL_ACCOUNT);
5207 if (!pn->lruvec_stat_cpu) {
5208 free_percpu(pn->lruvec_stat_local);
5209 kfree(pn);
5210 return 1;
5211 }
5212
5213 lruvec_init(&pn->lruvec);
5214 pn->usage_in_excess = 0;
5215 pn->on_tree = false;
5216 pn->memcg = memcg;
5217
5218 memcg->nodeinfo[node] = pn;
5219 return 0;
5220 }
5221
5222 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5223 {
5224 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5225
5226 if (!pn)
5227 return;
5228
5229 free_percpu(pn->lruvec_stat_cpu);
5230 free_percpu(pn->lruvec_stat_local);
5231 kfree(pn);
5232 }
5233
5234 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5235 {
5236 int node;
5237
5238 for_each_node(node)
5239 free_mem_cgroup_per_node_info(memcg, node);
5240 free_percpu(memcg->vmstats_percpu);
5241 free_percpu(memcg->vmstats_local);
5242 kfree(memcg);
5243 }
5244
5245 static void mem_cgroup_free(struct mem_cgroup *memcg)
5246 {
5247 memcg_wb_domain_exit(memcg);
5248 /*
5249 * Flush percpu vmstats and vmevents to guarantee the value correctness
5250 * on parent's and all ancestor levels.
5251 */
5252 memcg_flush_percpu_vmstats(memcg);
5253 memcg_flush_percpu_vmevents(memcg);
5254 __mem_cgroup_free(memcg);
5255 }
5256
5257 static struct mem_cgroup *mem_cgroup_alloc(void)
5258 {
5259 struct mem_cgroup *memcg;
5260 unsigned int size;
5261 int node;
5262 int __maybe_unused i;
5263 long error = -ENOMEM;
5264
5265 size = sizeof(struct mem_cgroup);
5266 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5267
5268 memcg = kzalloc(size, GFP_KERNEL);
5269 if (!memcg)
5270 return ERR_PTR(error);
5271
5272 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5273 1, MEM_CGROUP_ID_MAX,
5274 GFP_KERNEL);
5275 if (memcg->id.id < 0) {
5276 error = memcg->id.id;
5277 goto fail;
5278 }
5279
5280 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5281 GFP_KERNEL_ACCOUNT);
5282 if (!memcg->vmstats_local)
5283 goto fail;
5284
5285 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5286 GFP_KERNEL_ACCOUNT);
5287 if (!memcg->vmstats_percpu)
5288 goto fail;
5289
5290 for_each_node(node)
5291 if (alloc_mem_cgroup_per_node_info(memcg, node))
5292 goto fail;
5293
5294 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5295 goto fail;
5296
5297 INIT_WORK(&memcg->high_work, high_work_func);
5298 INIT_LIST_HEAD(&memcg->oom_notify);
5299 mutex_init(&memcg->thresholds_lock);
5300 spin_lock_init(&memcg->move_lock);
5301 vmpressure_init(&memcg->vmpressure);
5302 INIT_LIST_HEAD(&memcg->event_list);
5303 spin_lock_init(&memcg->event_list_lock);
5304 memcg->socket_pressure = jiffies;
5305 #ifdef CONFIG_MEMCG_KMEM
5306 memcg->kmemcg_id = -1;
5307 INIT_LIST_HEAD(&memcg->objcg_list);
5308 #endif
5309 #ifdef CONFIG_CGROUP_WRITEBACK
5310 INIT_LIST_HEAD(&memcg->cgwb_list);
5311 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5312 memcg->cgwb_frn[i].done =
5313 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5314 #endif
5315 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5316 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5317 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5318 memcg->deferred_split_queue.split_queue_len = 0;
5319 #endif
5320 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5321 return memcg;
5322 fail:
5323 mem_cgroup_id_remove(memcg);
5324 __mem_cgroup_free(memcg);
5325 return ERR_PTR(error);
5326 }
5327
5328 static struct cgroup_subsys_state * __ref
5329 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5330 {
5331 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5332 struct mem_cgroup *memcg, *old_memcg;
5333 long error = -ENOMEM;
5334
5335 old_memcg = set_active_memcg(parent);
5336 memcg = mem_cgroup_alloc();
5337 set_active_memcg(old_memcg);
5338 if (IS_ERR(memcg))
5339 return ERR_CAST(memcg);
5340
5341 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5342 memcg->soft_limit = PAGE_COUNTER_MAX;
5343 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5344 if (parent) {
5345 memcg->swappiness = mem_cgroup_swappiness(parent);
5346 memcg->oom_kill_disable = parent->oom_kill_disable;
5347 }
5348 if (!parent) {
5349 page_counter_init(&memcg->memory, NULL);
5350 page_counter_init(&memcg->swap, NULL);
5351 page_counter_init(&memcg->kmem, NULL);
5352 page_counter_init(&memcg->tcpmem, NULL);
5353 } else if (parent->use_hierarchy) {
5354 memcg->use_hierarchy = true;
5355 page_counter_init(&memcg->memory, &parent->memory);
5356 page_counter_init(&memcg->swap, &parent->swap);
5357 page_counter_init(&memcg->kmem, &parent->kmem);
5358 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5359 } else {
5360 page_counter_init(&memcg->memory, &root_mem_cgroup->memory);
5361 page_counter_init(&memcg->swap, &root_mem_cgroup->swap);
5362 page_counter_init(&memcg->kmem, &root_mem_cgroup->kmem);
5363 page_counter_init(&memcg->tcpmem, &root_mem_cgroup->tcpmem);
5364 /*
5365 * Deeper hierachy with use_hierarchy == false doesn't make
5366 * much sense so let cgroup subsystem know about this
5367 * unfortunate state in our controller.
5368 */
5369 if (parent != root_mem_cgroup)
5370 memory_cgrp_subsys.broken_hierarchy = true;
5371 }
5372
5373 /* The following stuff does not apply to the root */
5374 if (!parent) {
5375 root_mem_cgroup = memcg;
5376 return &memcg->css;
5377 }
5378
5379 error = memcg_online_kmem(memcg);
5380 if (error)
5381 goto fail;
5382
5383 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5384 static_branch_inc(&memcg_sockets_enabled_key);
5385
5386 return &memcg->css;
5387 fail:
5388 mem_cgroup_id_remove(memcg);
5389 mem_cgroup_free(memcg);
5390 return ERR_PTR(error);
5391 }
5392
5393 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5394 {
5395 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5396
5397 /*
5398 * A memcg must be visible for memcg_expand_shrinker_maps()
5399 * by the time the maps are allocated. So, we allocate maps
5400 * here, when for_each_mem_cgroup() can't skip it.
5401 */
5402 if (memcg_alloc_shrinker_maps(memcg)) {
5403 mem_cgroup_id_remove(memcg);
5404 return -ENOMEM;
5405 }
5406
5407 /* Online state pins memcg ID, memcg ID pins CSS */
5408 refcount_set(&memcg->id.ref, 1);
5409 css_get(css);
5410 return 0;
5411 }
5412
5413 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5414 {
5415 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5416 struct mem_cgroup_event *event, *tmp;
5417
5418 /*
5419 * Unregister events and notify userspace.
5420 * Notify userspace about cgroup removing only after rmdir of cgroup
5421 * directory to avoid race between userspace and kernelspace.
5422 */
5423 spin_lock(&memcg->event_list_lock);
5424 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5425 list_del_init(&event->list);
5426 schedule_work(&event->remove);
5427 }
5428 spin_unlock(&memcg->event_list_lock);
5429
5430 page_counter_set_min(&memcg->memory, 0);
5431 page_counter_set_low(&memcg->memory, 0);
5432
5433 memcg_offline_kmem(memcg);
5434 wb_memcg_offline(memcg);
5435
5436 drain_all_stock(memcg);
5437
5438 mem_cgroup_id_put(memcg);
5439 }
5440
5441 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5442 {
5443 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5444
5445 invalidate_reclaim_iterators(memcg);
5446 }
5447
5448 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5449 {
5450 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5451 int __maybe_unused i;
5452
5453 #ifdef CONFIG_CGROUP_WRITEBACK
5454 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5455 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5456 #endif
5457 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5458 static_branch_dec(&memcg_sockets_enabled_key);
5459
5460 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5461 static_branch_dec(&memcg_sockets_enabled_key);
5462
5463 vmpressure_cleanup(&memcg->vmpressure);
5464 cancel_work_sync(&memcg->high_work);
5465 mem_cgroup_remove_from_trees(memcg);
5466 memcg_free_shrinker_maps(memcg);
5467 memcg_free_kmem(memcg);
5468 mem_cgroup_free(memcg);
5469 }
5470
5471 /**
5472 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5473 * @css: the target css
5474 *
5475 * Reset the states of the mem_cgroup associated with @css. This is
5476 * invoked when the userland requests disabling on the default hierarchy
5477 * but the memcg is pinned through dependency. The memcg should stop
5478 * applying policies and should revert to the vanilla state as it may be
5479 * made visible again.
5480 *
5481 * The current implementation only resets the essential configurations.
5482 * This needs to be expanded to cover all the visible parts.
5483 */
5484 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5485 {
5486 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5487
5488 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5489 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5490 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5491 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5492 page_counter_set_min(&memcg->memory, 0);
5493 page_counter_set_low(&memcg->memory, 0);
5494 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5495 memcg->soft_limit = PAGE_COUNTER_MAX;
5496 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5497 memcg_wb_domain_size_changed(memcg);
5498 }
5499
5500 #ifdef CONFIG_MMU
5501 /* Handlers for move charge at task migration. */
5502 static int mem_cgroup_do_precharge(unsigned long count)
5503 {
5504 int ret;
5505
5506 /* Try a single bulk charge without reclaim first, kswapd may wake */
5507 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5508 if (!ret) {
5509 mc.precharge += count;
5510 return ret;
5511 }
5512
5513 /* Try charges one by one with reclaim, but do not retry */
5514 while (count--) {
5515 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5516 if (ret)
5517 return ret;
5518 mc.precharge++;
5519 cond_resched();
5520 }
5521 return 0;
5522 }
5523
5524 union mc_target {
5525 struct page *page;
5526 swp_entry_t ent;
5527 };
5528
5529 enum mc_target_type {
5530 MC_TARGET_NONE = 0,
5531 MC_TARGET_PAGE,
5532 MC_TARGET_SWAP,
5533 MC_TARGET_DEVICE,
5534 };
5535
5536 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5537 unsigned long addr, pte_t ptent)
5538 {
5539 struct page *page = vm_normal_page(vma, addr, ptent);
5540
5541 if (!page || !page_mapped(page))
5542 return NULL;
5543 if (PageAnon(page)) {
5544 if (!(mc.flags & MOVE_ANON))
5545 return NULL;
5546 } else {
5547 if (!(mc.flags & MOVE_FILE))
5548 return NULL;
5549 }
5550 if (!get_page_unless_zero(page))
5551 return NULL;
5552
5553 return page;
5554 }
5555
5556 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5557 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5558 pte_t ptent, swp_entry_t *entry)
5559 {
5560 struct page *page = NULL;
5561 swp_entry_t ent = pte_to_swp_entry(ptent);
5562
5563 if (!(mc.flags & MOVE_ANON))
5564 return NULL;
5565
5566 /*
5567 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5568 * a device and because they are not accessible by CPU they are store
5569 * as special swap entry in the CPU page table.
5570 */
5571 if (is_device_private_entry(ent)) {
5572 page = device_private_entry_to_page(ent);
5573 /*
5574 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5575 * a refcount of 1 when free (unlike normal page)
5576 */
5577 if (!page_ref_add_unless(page, 1, 1))
5578 return NULL;
5579 return page;
5580 }
5581
5582 if (non_swap_entry(ent))
5583 return NULL;
5584
5585 /*
5586 * Because lookup_swap_cache() updates some statistics counter,
5587 * we call find_get_page() with swapper_space directly.
5588 */
5589 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5590 entry->val = ent.val;
5591
5592 return page;
5593 }
5594 #else
5595 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5596 pte_t ptent, swp_entry_t *entry)
5597 {
5598 return NULL;
5599 }
5600 #endif
5601
5602 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5603 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5604 {
5605 if (!vma->vm_file) /* anonymous vma */
5606 return NULL;
5607 if (!(mc.flags & MOVE_FILE))
5608 return NULL;
5609
5610 /* page is moved even if it's not RSS of this task(page-faulted). */
5611 /* shmem/tmpfs may report page out on swap: account for that too. */
5612 return find_get_incore_page(vma->vm_file->f_mapping,
5613 linear_page_index(vma, addr));
5614 }
5615
5616 /**
5617 * mem_cgroup_move_account - move account of the page
5618 * @page: the page
5619 * @compound: charge the page as compound or small page
5620 * @from: mem_cgroup which the page is moved from.
5621 * @to: mem_cgroup which the page is moved to. @from != @to.
5622 *
5623 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5624 *
5625 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5626 * from old cgroup.
5627 */
5628 static int mem_cgroup_move_account(struct page *page,
5629 bool compound,
5630 struct mem_cgroup *from,
5631 struct mem_cgroup *to)
5632 {
5633 struct lruvec *from_vec, *to_vec;
5634 struct pglist_data *pgdat;
5635 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5636 int ret;
5637
5638 VM_BUG_ON(from == to);
5639 VM_BUG_ON_PAGE(PageLRU(page), page);
5640 VM_BUG_ON(compound && !PageTransHuge(page));
5641
5642 /*
5643 * Prevent mem_cgroup_migrate() from looking at
5644 * page->mem_cgroup of its source page while we change it.
5645 */
5646 ret = -EBUSY;
5647 if (!trylock_page(page))
5648 goto out;
5649
5650 ret = -EINVAL;
5651 if (page->mem_cgroup != from)
5652 goto out_unlock;
5653
5654 pgdat = page_pgdat(page);
5655 from_vec = mem_cgroup_lruvec(from, pgdat);
5656 to_vec = mem_cgroup_lruvec(to, pgdat);
5657
5658 lock_page_memcg(page);
5659
5660 if (PageAnon(page)) {
5661 if (page_mapped(page)) {
5662 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5663 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5664 if (PageTransHuge(page)) {
5665 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5666 -nr_pages);
5667 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5668 nr_pages);
5669 }
5670
5671 }
5672 } else {
5673 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5674 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5675
5676 if (PageSwapBacked(page)) {
5677 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5678 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5679 }
5680
5681 if (page_mapped(page)) {
5682 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5683 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5684 }
5685
5686 if (PageDirty(page)) {
5687 struct address_space *mapping = page_mapping(page);
5688
5689 if (mapping_can_writeback(mapping)) {
5690 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5691 -nr_pages);
5692 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5693 nr_pages);
5694 }
5695 }
5696 }
5697
5698 if (PageWriteback(page)) {
5699 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5700 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5701 }
5702
5703 /*
5704 * All state has been migrated, let's switch to the new memcg.
5705 *
5706 * It is safe to change page->mem_cgroup here because the page
5707 * is referenced, charged, isolated, and locked: we can't race
5708 * with (un)charging, migration, LRU putback, or anything else
5709 * that would rely on a stable page->mem_cgroup.
5710 *
5711 * Note that lock_page_memcg is a memcg lock, not a page lock,
5712 * to save space. As soon as we switch page->mem_cgroup to a
5713 * new memcg that isn't locked, the above state can change
5714 * concurrently again. Make sure we're truly done with it.
5715 */
5716 smp_mb();
5717
5718 css_get(&to->css);
5719 css_put(&from->css);
5720
5721 page->mem_cgroup = to;
5722
5723 __unlock_page_memcg(from);
5724
5725 ret = 0;
5726
5727 local_irq_disable();
5728 mem_cgroup_charge_statistics(to, page, nr_pages);
5729 memcg_check_events(to, page);
5730 mem_cgroup_charge_statistics(from, page, -nr_pages);
5731 memcg_check_events(from, page);
5732 local_irq_enable();
5733 out_unlock:
5734 unlock_page(page);
5735 out:
5736 return ret;
5737 }
5738
5739 /**
5740 * get_mctgt_type - get target type of moving charge
5741 * @vma: the vma the pte to be checked belongs
5742 * @addr: the address corresponding to the pte to be checked
5743 * @ptent: the pte to be checked
5744 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5745 *
5746 * Returns
5747 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5748 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5749 * move charge. if @target is not NULL, the page is stored in target->page
5750 * with extra refcnt got(Callers should handle it).
5751 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5752 * target for charge migration. if @target is not NULL, the entry is stored
5753 * in target->ent.
5754 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5755 * (so ZONE_DEVICE page and thus not on the lru).
5756 * For now we such page is charge like a regular page would be as for all
5757 * intent and purposes it is just special memory taking the place of a
5758 * regular page.
5759 *
5760 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5761 *
5762 * Called with pte lock held.
5763 */
5764
5765 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5766 unsigned long addr, pte_t ptent, union mc_target *target)
5767 {
5768 struct page *page = NULL;
5769 enum mc_target_type ret = MC_TARGET_NONE;
5770 swp_entry_t ent = { .val = 0 };
5771
5772 if (pte_present(ptent))
5773 page = mc_handle_present_pte(vma, addr, ptent);
5774 else if (is_swap_pte(ptent))
5775 page = mc_handle_swap_pte(vma, ptent, &ent);
5776 else if (pte_none(ptent))
5777 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5778
5779 if (!page && !ent.val)
5780 return ret;
5781 if (page) {
5782 /*
5783 * Do only loose check w/o serialization.
5784 * mem_cgroup_move_account() checks the page is valid or
5785 * not under LRU exclusion.
5786 */
5787 if (page->mem_cgroup == mc.from) {
5788 ret = MC_TARGET_PAGE;
5789 if (is_device_private_page(page))
5790 ret = MC_TARGET_DEVICE;
5791 if (target)
5792 target->page = page;
5793 }
5794 if (!ret || !target)
5795 put_page(page);
5796 }
5797 /*
5798 * There is a swap entry and a page doesn't exist or isn't charged.
5799 * But we cannot move a tail-page in a THP.
5800 */
5801 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5802 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5803 ret = MC_TARGET_SWAP;
5804 if (target)
5805 target->ent = ent;
5806 }
5807 return ret;
5808 }
5809
5810 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5811 /*
5812 * We don't consider PMD mapped swapping or file mapped pages because THP does
5813 * not support them for now.
5814 * Caller should make sure that pmd_trans_huge(pmd) is true.
5815 */
5816 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5817 unsigned long addr, pmd_t pmd, union mc_target *target)
5818 {
5819 struct page *page = NULL;
5820 enum mc_target_type ret = MC_TARGET_NONE;
5821
5822 if (unlikely(is_swap_pmd(pmd))) {
5823 VM_BUG_ON(thp_migration_supported() &&
5824 !is_pmd_migration_entry(pmd));
5825 return ret;
5826 }
5827 page = pmd_page(pmd);
5828 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5829 if (!(mc.flags & MOVE_ANON))
5830 return ret;
5831 if (page->mem_cgroup == mc.from) {
5832 ret = MC_TARGET_PAGE;
5833 if (target) {
5834 get_page(page);
5835 target->page = page;
5836 }
5837 }
5838 return ret;
5839 }
5840 #else
5841 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5842 unsigned long addr, pmd_t pmd, union mc_target *target)
5843 {
5844 return MC_TARGET_NONE;
5845 }
5846 #endif
5847
5848 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5849 unsigned long addr, unsigned long end,
5850 struct mm_walk *walk)
5851 {
5852 struct vm_area_struct *vma = walk->vma;
5853 pte_t *pte;
5854 spinlock_t *ptl;
5855
5856 ptl = pmd_trans_huge_lock(pmd, vma);
5857 if (ptl) {
5858 /*
5859 * Note their can not be MC_TARGET_DEVICE for now as we do not
5860 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5861 * this might change.
5862 */
5863 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5864 mc.precharge += HPAGE_PMD_NR;
5865 spin_unlock(ptl);
5866 return 0;
5867 }
5868
5869 if (pmd_trans_unstable(pmd))
5870 return 0;
5871 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5872 for (; addr != end; pte++, addr += PAGE_SIZE)
5873 if (get_mctgt_type(vma, addr, *pte, NULL))
5874 mc.precharge++; /* increment precharge temporarily */
5875 pte_unmap_unlock(pte - 1, ptl);
5876 cond_resched();
5877
5878 return 0;
5879 }
5880
5881 static const struct mm_walk_ops precharge_walk_ops = {
5882 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5883 };
5884
5885 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5886 {
5887 unsigned long precharge;
5888
5889 mmap_read_lock(mm);
5890 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5891 mmap_read_unlock(mm);
5892
5893 precharge = mc.precharge;
5894 mc.precharge = 0;
5895
5896 return precharge;
5897 }
5898
5899 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5900 {
5901 unsigned long precharge = mem_cgroup_count_precharge(mm);
5902
5903 VM_BUG_ON(mc.moving_task);
5904 mc.moving_task = current;
5905 return mem_cgroup_do_precharge(precharge);
5906 }
5907
5908 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5909 static void __mem_cgroup_clear_mc(void)
5910 {
5911 struct mem_cgroup *from = mc.from;
5912 struct mem_cgroup *to = mc.to;
5913
5914 /* we must uncharge all the leftover precharges from mc.to */
5915 if (mc.precharge) {
5916 cancel_charge(mc.to, mc.precharge);
5917 mc.precharge = 0;
5918 }
5919 /*
5920 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5921 * we must uncharge here.
5922 */
5923 if (mc.moved_charge) {
5924 cancel_charge(mc.from, mc.moved_charge);
5925 mc.moved_charge = 0;
5926 }
5927 /* we must fixup refcnts and charges */
5928 if (mc.moved_swap) {
5929 /* uncharge swap account from the old cgroup */
5930 if (!mem_cgroup_is_root(mc.from))
5931 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5932
5933 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5934
5935 /*
5936 * we charged both to->memory and to->memsw, so we
5937 * should uncharge to->memory.
5938 */
5939 if (!mem_cgroup_is_root(mc.to))
5940 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5941
5942 mc.moved_swap = 0;
5943 }
5944 memcg_oom_recover(from);
5945 memcg_oom_recover(to);
5946 wake_up_all(&mc.waitq);
5947 }
5948
5949 static void mem_cgroup_clear_mc(void)
5950 {
5951 struct mm_struct *mm = mc.mm;
5952
5953 /*
5954 * we must clear moving_task before waking up waiters at the end of
5955 * task migration.
5956 */
5957 mc.moving_task = NULL;
5958 __mem_cgroup_clear_mc();
5959 spin_lock(&mc.lock);
5960 mc.from = NULL;
5961 mc.to = NULL;
5962 mc.mm = NULL;
5963 spin_unlock(&mc.lock);
5964
5965 mmput(mm);
5966 }
5967
5968 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5969 {
5970 struct cgroup_subsys_state *css;
5971 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5972 struct mem_cgroup *from;
5973 struct task_struct *leader, *p;
5974 struct mm_struct *mm;
5975 unsigned long move_flags;
5976 int ret = 0;
5977
5978 /* charge immigration isn't supported on the default hierarchy */
5979 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5980 return 0;
5981
5982 /*
5983 * Multi-process migrations only happen on the default hierarchy
5984 * where charge immigration is not used. Perform charge
5985 * immigration if @tset contains a leader and whine if there are
5986 * multiple.
5987 */
5988 p = NULL;
5989 cgroup_taskset_for_each_leader(leader, css, tset) {
5990 WARN_ON_ONCE(p);
5991 p = leader;
5992 memcg = mem_cgroup_from_css(css);
5993 }
5994 if (!p)
5995 return 0;
5996
5997 /*
5998 * We are now commited to this value whatever it is. Changes in this
5999 * tunable will only affect upcoming migrations, not the current one.
6000 * So we need to save it, and keep it going.
6001 */
6002 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6003 if (!move_flags)
6004 return 0;
6005
6006 from = mem_cgroup_from_task(p);
6007
6008 VM_BUG_ON(from == memcg);
6009
6010 mm = get_task_mm(p);
6011 if (!mm)
6012 return 0;
6013 /* We move charges only when we move a owner of the mm */
6014 if (mm->owner == p) {
6015 VM_BUG_ON(mc.from);
6016 VM_BUG_ON(mc.to);
6017 VM_BUG_ON(mc.precharge);
6018 VM_BUG_ON(mc.moved_charge);
6019 VM_BUG_ON(mc.moved_swap);
6020
6021 spin_lock(&mc.lock);
6022 mc.mm = mm;
6023 mc.from = from;
6024 mc.to = memcg;
6025 mc.flags = move_flags;
6026 spin_unlock(&mc.lock);
6027 /* We set mc.moving_task later */
6028
6029 ret = mem_cgroup_precharge_mc(mm);
6030 if (ret)
6031 mem_cgroup_clear_mc();
6032 } else {
6033 mmput(mm);
6034 }
6035 return ret;
6036 }
6037
6038 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6039 {
6040 if (mc.to)
6041 mem_cgroup_clear_mc();
6042 }
6043
6044 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6045 unsigned long addr, unsigned long end,
6046 struct mm_walk *walk)
6047 {
6048 int ret = 0;
6049 struct vm_area_struct *vma = walk->vma;
6050 pte_t *pte;
6051 spinlock_t *ptl;
6052 enum mc_target_type target_type;
6053 union mc_target target;
6054 struct page *page;
6055
6056 ptl = pmd_trans_huge_lock(pmd, vma);
6057 if (ptl) {
6058 if (mc.precharge < HPAGE_PMD_NR) {
6059 spin_unlock(ptl);
6060 return 0;
6061 }
6062 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6063 if (target_type == MC_TARGET_PAGE) {
6064 page = target.page;
6065 if (!isolate_lru_page(page)) {
6066 if (!mem_cgroup_move_account(page, true,
6067 mc.from, mc.to)) {
6068 mc.precharge -= HPAGE_PMD_NR;
6069 mc.moved_charge += HPAGE_PMD_NR;
6070 }
6071 putback_lru_page(page);
6072 }
6073 put_page(page);
6074 } else if (target_type == MC_TARGET_DEVICE) {
6075 page = target.page;
6076 if (!mem_cgroup_move_account(page, true,
6077 mc.from, mc.to)) {
6078 mc.precharge -= HPAGE_PMD_NR;
6079 mc.moved_charge += HPAGE_PMD_NR;
6080 }
6081 put_page(page);
6082 }
6083 spin_unlock(ptl);
6084 return 0;
6085 }
6086
6087 if (pmd_trans_unstable(pmd))
6088 return 0;
6089 retry:
6090 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6091 for (; addr != end; addr += PAGE_SIZE) {
6092 pte_t ptent = *(pte++);
6093 bool device = false;
6094 swp_entry_t ent;
6095
6096 if (!mc.precharge)
6097 break;
6098
6099 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6100 case MC_TARGET_DEVICE:
6101 device = true;
6102 fallthrough;
6103 case MC_TARGET_PAGE:
6104 page = target.page;
6105 /*
6106 * We can have a part of the split pmd here. Moving it
6107 * can be done but it would be too convoluted so simply
6108 * ignore such a partial THP and keep it in original
6109 * memcg. There should be somebody mapping the head.
6110 */
6111 if (PageTransCompound(page))
6112 goto put;
6113 if (!device && isolate_lru_page(page))
6114 goto put;
6115 if (!mem_cgroup_move_account(page, false,
6116 mc.from, mc.to)) {
6117 mc.precharge--;
6118 /* we uncharge from mc.from later. */
6119 mc.moved_charge++;
6120 }
6121 if (!device)
6122 putback_lru_page(page);
6123 put: /* get_mctgt_type() gets the page */
6124 put_page(page);
6125 break;
6126 case MC_TARGET_SWAP:
6127 ent = target.ent;
6128 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6129 mc.precharge--;
6130 mem_cgroup_id_get_many(mc.to, 1);
6131 /* we fixup other refcnts and charges later. */
6132 mc.moved_swap++;
6133 }
6134 break;
6135 default:
6136 break;
6137 }
6138 }
6139 pte_unmap_unlock(pte - 1, ptl);
6140 cond_resched();
6141
6142 if (addr != end) {
6143 /*
6144 * We have consumed all precharges we got in can_attach().
6145 * We try charge one by one, but don't do any additional
6146 * charges to mc.to if we have failed in charge once in attach()
6147 * phase.
6148 */
6149 ret = mem_cgroup_do_precharge(1);
6150 if (!ret)
6151 goto retry;
6152 }
6153
6154 return ret;
6155 }
6156
6157 static const struct mm_walk_ops charge_walk_ops = {
6158 .pmd_entry = mem_cgroup_move_charge_pte_range,
6159 };
6160
6161 static void mem_cgroup_move_charge(void)
6162 {
6163 lru_add_drain_all();
6164 /*
6165 * Signal lock_page_memcg() to take the memcg's move_lock
6166 * while we're moving its pages to another memcg. Then wait
6167 * for already started RCU-only updates to finish.
6168 */
6169 atomic_inc(&mc.from->moving_account);
6170 synchronize_rcu();
6171 retry:
6172 if (unlikely(!mmap_read_trylock(mc.mm))) {
6173 /*
6174 * Someone who are holding the mmap_lock might be waiting in
6175 * waitq. So we cancel all extra charges, wake up all waiters,
6176 * and retry. Because we cancel precharges, we might not be able
6177 * to move enough charges, but moving charge is a best-effort
6178 * feature anyway, so it wouldn't be a big problem.
6179 */
6180 __mem_cgroup_clear_mc();
6181 cond_resched();
6182 goto retry;
6183 }
6184 /*
6185 * When we have consumed all precharges and failed in doing
6186 * additional charge, the page walk just aborts.
6187 */
6188 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6189 NULL);
6190
6191 mmap_read_unlock(mc.mm);
6192 atomic_dec(&mc.from->moving_account);
6193 }
6194
6195 static void mem_cgroup_move_task(void)
6196 {
6197 if (mc.to) {
6198 mem_cgroup_move_charge();
6199 mem_cgroup_clear_mc();
6200 }
6201 }
6202 #else /* !CONFIG_MMU */
6203 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6204 {
6205 return 0;
6206 }
6207 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6208 {
6209 }
6210 static void mem_cgroup_move_task(void)
6211 {
6212 }
6213 #endif
6214
6215 /*
6216 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6217 * to verify whether we're attached to the default hierarchy on each mount
6218 * attempt.
6219 */
6220 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6221 {
6222 /*
6223 * use_hierarchy is forced on the default hierarchy. cgroup core
6224 * guarantees that @root doesn't have any children, so turning it
6225 * on for the root memcg is enough.
6226 */
6227 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6228 root_mem_cgroup->use_hierarchy = true;
6229 else
6230 root_mem_cgroup->use_hierarchy = false;
6231 }
6232
6233 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6234 {
6235 if (value == PAGE_COUNTER_MAX)
6236 seq_puts(m, "max\n");
6237 else
6238 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6239
6240 return 0;
6241 }
6242
6243 static u64 memory_current_read(struct cgroup_subsys_state *css,
6244 struct cftype *cft)
6245 {
6246 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6247
6248 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6249 }
6250
6251 static int memory_min_show(struct seq_file *m, void *v)
6252 {
6253 return seq_puts_memcg_tunable(m,
6254 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6255 }
6256
6257 static ssize_t memory_min_write(struct kernfs_open_file *of,
6258 char *buf, size_t nbytes, loff_t off)
6259 {
6260 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6261 unsigned long min;
6262 int err;
6263
6264 buf = strstrip(buf);
6265 err = page_counter_memparse(buf, "max", &min);
6266 if (err)
6267 return err;
6268
6269 page_counter_set_min(&memcg->memory, min);
6270
6271 return nbytes;
6272 }
6273
6274 static int memory_low_show(struct seq_file *m, void *v)
6275 {
6276 return seq_puts_memcg_tunable(m,
6277 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6278 }
6279
6280 static ssize_t memory_low_write(struct kernfs_open_file *of,
6281 char *buf, size_t nbytes, loff_t off)
6282 {
6283 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6284 unsigned long low;
6285 int err;
6286
6287 buf = strstrip(buf);
6288 err = page_counter_memparse(buf, "max", &low);
6289 if (err)
6290 return err;
6291
6292 page_counter_set_low(&memcg->memory, low);
6293
6294 return nbytes;
6295 }
6296
6297 static int memory_high_show(struct seq_file *m, void *v)
6298 {
6299 return seq_puts_memcg_tunable(m,
6300 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6301 }
6302
6303 static ssize_t memory_high_write(struct kernfs_open_file *of,
6304 char *buf, size_t nbytes, loff_t off)
6305 {
6306 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6307 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6308 bool drained = false;
6309 unsigned long high;
6310 int err;
6311
6312 buf = strstrip(buf);
6313 err = page_counter_memparse(buf, "max", &high);
6314 if (err)
6315 return err;
6316
6317 for (;;) {
6318 unsigned long nr_pages = page_counter_read(&memcg->memory);
6319 unsigned long reclaimed;
6320
6321 if (nr_pages <= high)
6322 break;
6323
6324 if (signal_pending(current))
6325 break;
6326
6327 if (!drained) {
6328 drain_all_stock(memcg);
6329 drained = true;
6330 continue;
6331 }
6332
6333 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6334 GFP_KERNEL, true);
6335
6336 if (!reclaimed && !nr_retries--)
6337 break;
6338 }
6339
6340 page_counter_set_high(&memcg->memory, high);
6341
6342 memcg_wb_domain_size_changed(memcg);
6343
6344 return nbytes;
6345 }
6346
6347 static int memory_max_show(struct seq_file *m, void *v)
6348 {
6349 return seq_puts_memcg_tunable(m,
6350 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6351 }
6352
6353 static ssize_t memory_max_write(struct kernfs_open_file *of,
6354 char *buf, size_t nbytes, loff_t off)
6355 {
6356 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6357 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6358 bool drained = false;
6359 unsigned long max;
6360 int err;
6361
6362 buf = strstrip(buf);
6363 err = page_counter_memparse(buf, "max", &max);
6364 if (err)
6365 return err;
6366
6367 xchg(&memcg->memory.max, max);
6368
6369 for (;;) {
6370 unsigned long nr_pages = page_counter_read(&memcg->memory);
6371
6372 if (nr_pages <= max)
6373 break;
6374
6375 if (signal_pending(current))
6376 break;
6377
6378 if (!drained) {
6379 drain_all_stock(memcg);
6380 drained = true;
6381 continue;
6382 }
6383
6384 if (nr_reclaims) {
6385 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6386 GFP_KERNEL, true))
6387 nr_reclaims--;
6388 continue;
6389 }
6390
6391 memcg_memory_event(memcg, MEMCG_OOM);
6392 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6393 break;
6394 }
6395
6396 memcg_wb_domain_size_changed(memcg);
6397 return nbytes;
6398 }
6399
6400 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6401 {
6402 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6403 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6404 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6405 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6406 seq_printf(m, "oom_kill %lu\n",
6407 atomic_long_read(&events[MEMCG_OOM_KILL]));
6408 }
6409
6410 static int memory_events_show(struct seq_file *m, void *v)
6411 {
6412 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6413
6414 __memory_events_show(m, memcg->memory_events);
6415 return 0;
6416 }
6417
6418 static int memory_events_local_show(struct seq_file *m, void *v)
6419 {
6420 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6421
6422 __memory_events_show(m, memcg->memory_events_local);
6423 return 0;
6424 }
6425
6426 static int memory_stat_show(struct seq_file *m, void *v)
6427 {
6428 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6429 char *buf;
6430
6431 buf = memory_stat_format(memcg);
6432 if (!buf)
6433 return -ENOMEM;
6434 seq_puts(m, buf);
6435 kfree(buf);
6436 return 0;
6437 }
6438
6439 #ifdef CONFIG_NUMA
6440 static int memory_numa_stat_show(struct seq_file *m, void *v)
6441 {
6442 int i;
6443 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6444
6445 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6446 int nid;
6447
6448 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6449 continue;
6450
6451 seq_printf(m, "%s", memory_stats[i].name);
6452 for_each_node_state(nid, N_MEMORY) {
6453 u64 size;
6454 struct lruvec *lruvec;
6455
6456 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6457 size = lruvec_page_state(lruvec, memory_stats[i].idx);
6458 size *= memory_stats[i].ratio;
6459 seq_printf(m, " N%d=%llu", nid, size);
6460 }
6461 seq_putc(m, '\n');
6462 }
6463
6464 return 0;
6465 }
6466 #endif
6467
6468 static int memory_oom_group_show(struct seq_file *m, void *v)
6469 {
6470 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6471
6472 seq_printf(m, "%d\n", memcg->oom_group);
6473
6474 return 0;
6475 }
6476
6477 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6478 char *buf, size_t nbytes, loff_t off)
6479 {
6480 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6481 int ret, oom_group;
6482
6483 buf = strstrip(buf);
6484 if (!buf)
6485 return -EINVAL;
6486
6487 ret = kstrtoint(buf, 0, &oom_group);
6488 if (ret)
6489 return ret;
6490
6491 if (oom_group != 0 && oom_group != 1)
6492 return -EINVAL;
6493
6494 memcg->oom_group = oom_group;
6495
6496 return nbytes;
6497 }
6498
6499 static struct cftype memory_files[] = {
6500 {
6501 .name = "current",
6502 .flags = CFTYPE_NOT_ON_ROOT,
6503 .read_u64 = memory_current_read,
6504 },
6505 {
6506 .name = "min",
6507 .flags = CFTYPE_NOT_ON_ROOT,
6508 .seq_show = memory_min_show,
6509 .write = memory_min_write,
6510 },
6511 {
6512 .name = "low",
6513 .flags = CFTYPE_NOT_ON_ROOT,
6514 .seq_show = memory_low_show,
6515 .write = memory_low_write,
6516 },
6517 {
6518 .name = "high",
6519 .flags = CFTYPE_NOT_ON_ROOT,
6520 .seq_show = memory_high_show,
6521 .write = memory_high_write,
6522 },
6523 {
6524 .name = "max",
6525 .flags = CFTYPE_NOT_ON_ROOT,
6526 .seq_show = memory_max_show,
6527 .write = memory_max_write,
6528 },
6529 {
6530 .name = "events",
6531 .flags = CFTYPE_NOT_ON_ROOT,
6532 .file_offset = offsetof(struct mem_cgroup, events_file),
6533 .seq_show = memory_events_show,
6534 },
6535 {
6536 .name = "events.local",
6537 .flags = CFTYPE_NOT_ON_ROOT,
6538 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6539 .seq_show = memory_events_local_show,
6540 },
6541 {
6542 .name = "stat",
6543 .seq_show = memory_stat_show,
6544 },
6545 #ifdef CONFIG_NUMA
6546 {
6547 .name = "numa_stat",
6548 .seq_show = memory_numa_stat_show,
6549 },
6550 #endif
6551 {
6552 .name = "oom.group",
6553 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6554 .seq_show = memory_oom_group_show,
6555 .write = memory_oom_group_write,
6556 },
6557 { } /* terminate */
6558 };
6559
6560 struct cgroup_subsys memory_cgrp_subsys = {
6561 .css_alloc = mem_cgroup_css_alloc,
6562 .css_online = mem_cgroup_css_online,
6563 .css_offline = mem_cgroup_css_offline,
6564 .css_released = mem_cgroup_css_released,
6565 .css_free = mem_cgroup_css_free,
6566 .css_reset = mem_cgroup_css_reset,
6567 .can_attach = mem_cgroup_can_attach,
6568 .cancel_attach = mem_cgroup_cancel_attach,
6569 .post_attach = mem_cgroup_move_task,
6570 .bind = mem_cgroup_bind,
6571 .dfl_cftypes = memory_files,
6572 .legacy_cftypes = mem_cgroup_legacy_files,
6573 .early_init = 0,
6574 };
6575
6576 /*
6577 * This function calculates an individual cgroup's effective
6578 * protection which is derived from its own memory.min/low, its
6579 * parent's and siblings' settings, as well as the actual memory
6580 * distribution in the tree.
6581 *
6582 * The following rules apply to the effective protection values:
6583 *
6584 * 1. At the first level of reclaim, effective protection is equal to
6585 * the declared protection in memory.min and memory.low.
6586 *
6587 * 2. To enable safe delegation of the protection configuration, at
6588 * subsequent levels the effective protection is capped to the
6589 * parent's effective protection.
6590 *
6591 * 3. To make complex and dynamic subtrees easier to configure, the
6592 * user is allowed to overcommit the declared protection at a given
6593 * level. If that is the case, the parent's effective protection is
6594 * distributed to the children in proportion to how much protection
6595 * they have declared and how much of it they are utilizing.
6596 *
6597 * This makes distribution proportional, but also work-conserving:
6598 * if one cgroup claims much more protection than it uses memory,
6599 * the unused remainder is available to its siblings.
6600 *
6601 * 4. Conversely, when the declared protection is undercommitted at a
6602 * given level, the distribution of the larger parental protection
6603 * budget is NOT proportional. A cgroup's protection from a sibling
6604 * is capped to its own memory.min/low setting.
6605 *
6606 * 5. However, to allow protecting recursive subtrees from each other
6607 * without having to declare each individual cgroup's fixed share
6608 * of the ancestor's claim to protection, any unutilized -
6609 * "floating" - protection from up the tree is distributed in
6610 * proportion to each cgroup's *usage*. This makes the protection
6611 * neutral wrt sibling cgroups and lets them compete freely over
6612 * the shared parental protection budget, but it protects the
6613 * subtree as a whole from neighboring subtrees.
6614 *
6615 * Note that 4. and 5. are not in conflict: 4. is about protecting
6616 * against immediate siblings whereas 5. is about protecting against
6617 * neighboring subtrees.
6618 */
6619 static unsigned long effective_protection(unsigned long usage,
6620 unsigned long parent_usage,
6621 unsigned long setting,
6622 unsigned long parent_effective,
6623 unsigned long siblings_protected)
6624 {
6625 unsigned long protected;
6626 unsigned long ep;
6627
6628 protected = min(usage, setting);
6629 /*
6630 * If all cgroups at this level combined claim and use more
6631 * protection then what the parent affords them, distribute
6632 * shares in proportion to utilization.
6633 *
6634 * We are using actual utilization rather than the statically
6635 * claimed protection in order to be work-conserving: claimed
6636 * but unused protection is available to siblings that would
6637 * otherwise get a smaller chunk than what they claimed.
6638 */
6639 if (siblings_protected > parent_effective)
6640 return protected * parent_effective / siblings_protected;
6641
6642 /*
6643 * Ok, utilized protection of all children is within what the
6644 * parent affords them, so we know whatever this child claims
6645 * and utilizes is effectively protected.
6646 *
6647 * If there is unprotected usage beyond this value, reclaim
6648 * will apply pressure in proportion to that amount.
6649 *
6650 * If there is unutilized protection, the cgroup will be fully
6651 * shielded from reclaim, but we do return a smaller value for
6652 * protection than what the group could enjoy in theory. This
6653 * is okay. With the overcommit distribution above, effective
6654 * protection is always dependent on how memory is actually
6655 * consumed among the siblings anyway.
6656 */
6657 ep = protected;
6658
6659 /*
6660 * If the children aren't claiming (all of) the protection
6661 * afforded to them by the parent, distribute the remainder in
6662 * proportion to the (unprotected) memory of each cgroup. That
6663 * way, cgroups that aren't explicitly prioritized wrt each
6664 * other compete freely over the allowance, but they are
6665 * collectively protected from neighboring trees.
6666 *
6667 * We're using unprotected memory for the weight so that if
6668 * some cgroups DO claim explicit protection, we don't protect
6669 * the same bytes twice.
6670 *
6671 * Check both usage and parent_usage against the respective
6672 * protected values. One should imply the other, but they
6673 * aren't read atomically - make sure the division is sane.
6674 */
6675 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6676 return ep;
6677 if (parent_effective > siblings_protected &&
6678 parent_usage > siblings_protected &&
6679 usage > protected) {
6680 unsigned long unclaimed;
6681
6682 unclaimed = parent_effective - siblings_protected;
6683 unclaimed *= usage - protected;
6684 unclaimed /= parent_usage - siblings_protected;
6685
6686 ep += unclaimed;
6687 }
6688
6689 return ep;
6690 }
6691
6692 /**
6693 * mem_cgroup_protected - check if memory consumption is in the normal range
6694 * @root: the top ancestor of the sub-tree being checked
6695 * @memcg: the memory cgroup to check
6696 *
6697 * WARNING: This function is not stateless! It can only be used as part
6698 * of a top-down tree iteration, not for isolated queries.
6699 */
6700 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6701 struct mem_cgroup *memcg)
6702 {
6703 unsigned long usage, parent_usage;
6704 struct mem_cgroup *parent;
6705
6706 if (mem_cgroup_disabled())
6707 return;
6708
6709 if (!root)
6710 root = root_mem_cgroup;
6711
6712 /*
6713 * Effective values of the reclaim targets are ignored so they
6714 * can be stale. Have a look at mem_cgroup_protection for more
6715 * details.
6716 * TODO: calculation should be more robust so that we do not need
6717 * that special casing.
6718 */
6719 if (memcg == root)
6720 return;
6721
6722 usage = page_counter_read(&memcg->memory);
6723 if (!usage)
6724 return;
6725
6726 parent = parent_mem_cgroup(memcg);
6727 /* No parent means a non-hierarchical mode on v1 memcg */
6728 if (!parent)
6729 return;
6730
6731 if (parent == root) {
6732 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6733 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6734 return;
6735 }
6736
6737 parent_usage = page_counter_read(&parent->memory);
6738
6739 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6740 READ_ONCE(memcg->memory.min),
6741 READ_ONCE(parent->memory.emin),
6742 atomic_long_read(&parent->memory.children_min_usage)));
6743
6744 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6745 READ_ONCE(memcg->memory.low),
6746 READ_ONCE(parent->memory.elow),
6747 atomic_long_read(&parent->memory.children_low_usage)));
6748 }
6749
6750 /**
6751 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6752 * @page: page to charge
6753 * @mm: mm context of the victim
6754 * @gfp_mask: reclaim mode
6755 *
6756 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6757 * pages according to @gfp_mask if necessary.
6758 *
6759 * Returns 0 on success. Otherwise, an error code is returned.
6760 */
6761 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6762 {
6763 unsigned int nr_pages = thp_nr_pages(page);
6764 struct mem_cgroup *memcg = NULL;
6765 int ret = 0;
6766
6767 if (mem_cgroup_disabled())
6768 goto out;
6769
6770 if (PageSwapCache(page)) {
6771 swp_entry_t ent = { .val = page_private(page), };
6772 unsigned short id;
6773
6774 /*
6775 * Every swap fault against a single page tries to charge the
6776 * page, bail as early as possible. shmem_unuse() encounters
6777 * already charged pages, too. page->mem_cgroup is protected
6778 * by the page lock, which serializes swap cache removal, which
6779 * in turn serializes uncharging.
6780 */
6781 VM_BUG_ON_PAGE(!PageLocked(page), page);
6782 if (compound_head(page)->mem_cgroup)
6783 goto out;
6784
6785 id = lookup_swap_cgroup_id(ent);
6786 rcu_read_lock();
6787 memcg = mem_cgroup_from_id(id);
6788 if (memcg && !css_tryget_online(&memcg->css))
6789 memcg = NULL;
6790 rcu_read_unlock();
6791 }
6792
6793 if (!memcg)
6794 memcg = get_mem_cgroup_from_mm(mm);
6795
6796 ret = try_charge(memcg, gfp_mask, nr_pages);
6797 if (ret)
6798 goto out_put;
6799
6800 css_get(&memcg->css);
6801 commit_charge(page, memcg);
6802
6803 local_irq_disable();
6804 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6805 memcg_check_events(memcg, page);
6806 local_irq_enable();
6807
6808 if (PageSwapCache(page)) {
6809 swp_entry_t entry = { .val = page_private(page) };
6810 /*
6811 * The swap entry might not get freed for a long time,
6812 * let's not wait for it. The page already received a
6813 * memory+swap charge, drop the swap entry duplicate.
6814 */
6815 mem_cgroup_uncharge_swap(entry, nr_pages);
6816 }
6817
6818 out_put:
6819 css_put(&memcg->css);
6820 out:
6821 return ret;
6822 }
6823
6824 struct uncharge_gather {
6825 struct mem_cgroup *memcg;
6826 unsigned long nr_pages;
6827 unsigned long pgpgout;
6828 unsigned long nr_kmem;
6829 struct page *dummy_page;
6830 };
6831
6832 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6833 {
6834 memset(ug, 0, sizeof(*ug));
6835 }
6836
6837 static void uncharge_batch(const struct uncharge_gather *ug)
6838 {
6839 unsigned long flags;
6840
6841 if (!mem_cgroup_is_root(ug->memcg)) {
6842 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6843 if (do_memsw_account())
6844 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6845 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6846 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6847 memcg_oom_recover(ug->memcg);
6848 }
6849
6850 local_irq_save(flags);
6851 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6852 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6853 memcg_check_events(ug->memcg, ug->dummy_page);
6854 local_irq_restore(flags);
6855
6856 /* drop reference from uncharge_page */
6857 css_put(&ug->memcg->css);
6858 }
6859
6860 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6861 {
6862 unsigned long nr_pages;
6863
6864 VM_BUG_ON_PAGE(PageLRU(page), page);
6865
6866 if (!page->mem_cgroup)
6867 return;
6868
6869 /*
6870 * Nobody should be changing or seriously looking at
6871 * page->mem_cgroup at this point, we have fully
6872 * exclusive access to the page.
6873 */
6874
6875 if (ug->memcg != page->mem_cgroup) {
6876 if (ug->memcg) {
6877 uncharge_batch(ug);
6878 uncharge_gather_clear(ug);
6879 }
6880 ug->memcg = page->mem_cgroup;
6881
6882 /* pairs with css_put in uncharge_batch */
6883 css_get(&ug->memcg->css);
6884 }
6885
6886 nr_pages = compound_nr(page);
6887 ug->nr_pages += nr_pages;
6888
6889 if (!PageKmemcg(page)) {
6890 ug->pgpgout++;
6891 } else {
6892 ug->nr_kmem += nr_pages;
6893 __ClearPageKmemcg(page);
6894 }
6895
6896 ug->dummy_page = page;
6897 page->mem_cgroup = NULL;
6898 css_put(&ug->memcg->css);
6899 }
6900
6901 static void uncharge_list(struct list_head *page_list)
6902 {
6903 struct uncharge_gather ug;
6904 struct list_head *next;
6905
6906 uncharge_gather_clear(&ug);
6907
6908 /*
6909 * Note that the list can be a single page->lru; hence the
6910 * do-while loop instead of a simple list_for_each_entry().
6911 */
6912 next = page_list->next;
6913 do {
6914 struct page *page;
6915
6916 page = list_entry(next, struct page, lru);
6917 next = page->lru.next;
6918
6919 uncharge_page(page, &ug);
6920 } while (next != page_list);
6921
6922 if (ug.memcg)
6923 uncharge_batch(&ug);
6924 }
6925
6926 /**
6927 * mem_cgroup_uncharge - uncharge a page
6928 * @page: page to uncharge
6929 *
6930 * Uncharge a page previously charged with mem_cgroup_charge().
6931 */
6932 void mem_cgroup_uncharge(struct page *page)
6933 {
6934 struct uncharge_gather ug;
6935
6936 if (mem_cgroup_disabled())
6937 return;
6938
6939 /* Don't touch page->lru of any random page, pre-check: */
6940 if (!page->mem_cgroup)
6941 return;
6942
6943 uncharge_gather_clear(&ug);
6944 uncharge_page(page, &ug);
6945 uncharge_batch(&ug);
6946 }
6947
6948 /**
6949 * mem_cgroup_uncharge_list - uncharge a list of page
6950 * @page_list: list of pages to uncharge
6951 *
6952 * Uncharge a list of pages previously charged with
6953 * mem_cgroup_charge().
6954 */
6955 void mem_cgroup_uncharge_list(struct list_head *page_list)
6956 {
6957 if (mem_cgroup_disabled())
6958 return;
6959
6960 if (!list_empty(page_list))
6961 uncharge_list(page_list);
6962 }
6963
6964 /**
6965 * mem_cgroup_migrate - charge a page's replacement
6966 * @oldpage: currently circulating page
6967 * @newpage: replacement page
6968 *
6969 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6970 * be uncharged upon free.
6971 *
6972 * Both pages must be locked, @newpage->mapping must be set up.
6973 */
6974 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6975 {
6976 struct mem_cgroup *memcg;
6977 unsigned int nr_pages;
6978 unsigned long flags;
6979
6980 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6981 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6982 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6983 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6984 newpage);
6985
6986 if (mem_cgroup_disabled())
6987 return;
6988
6989 /* Page cache replacement: new page already charged? */
6990 if (newpage->mem_cgroup)
6991 return;
6992
6993 /* Swapcache readahead pages can get replaced before being charged */
6994 memcg = oldpage->mem_cgroup;
6995 if (!memcg)
6996 return;
6997
6998 /* Force-charge the new page. The old one will be freed soon */
6999 nr_pages = thp_nr_pages(newpage);
7000
7001 page_counter_charge(&memcg->memory, nr_pages);
7002 if (do_memsw_account())
7003 page_counter_charge(&memcg->memsw, nr_pages);
7004
7005 css_get(&memcg->css);
7006 commit_charge(newpage, memcg);
7007
7008 local_irq_save(flags);
7009 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7010 memcg_check_events(memcg, newpage);
7011 local_irq_restore(flags);
7012 }
7013
7014 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7015 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7016
7017 void mem_cgroup_sk_alloc(struct sock *sk)
7018 {
7019 struct mem_cgroup *memcg;
7020
7021 if (!mem_cgroup_sockets_enabled)
7022 return;
7023
7024 /* Do not associate the sock with unrelated interrupted task's memcg. */
7025 if (in_interrupt())
7026 return;
7027
7028 rcu_read_lock();
7029 memcg = mem_cgroup_from_task(current);
7030 if (memcg == root_mem_cgroup)
7031 goto out;
7032 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7033 goto out;
7034 if (css_tryget(&memcg->css))
7035 sk->sk_memcg = memcg;
7036 out:
7037 rcu_read_unlock();
7038 }
7039
7040 void mem_cgroup_sk_free(struct sock *sk)
7041 {
7042 if (sk->sk_memcg)
7043 css_put(&sk->sk_memcg->css);
7044 }
7045
7046 /**
7047 * mem_cgroup_charge_skmem - charge socket memory
7048 * @memcg: memcg to charge
7049 * @nr_pages: number of pages to charge
7050 *
7051 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7052 * @memcg's configured limit, %false if the charge had to be forced.
7053 */
7054 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7055 {
7056 gfp_t gfp_mask = GFP_KERNEL;
7057
7058 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7059 struct page_counter *fail;
7060
7061 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7062 memcg->tcpmem_pressure = 0;
7063 return true;
7064 }
7065 page_counter_charge(&memcg->tcpmem, nr_pages);
7066 memcg->tcpmem_pressure = 1;
7067 return false;
7068 }
7069
7070 /* Don't block in the packet receive path */
7071 if (in_softirq())
7072 gfp_mask = GFP_NOWAIT;
7073
7074 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7075
7076 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7077 return true;
7078
7079 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7080 return false;
7081 }
7082
7083 /**
7084 * mem_cgroup_uncharge_skmem - uncharge socket memory
7085 * @memcg: memcg to uncharge
7086 * @nr_pages: number of pages to uncharge
7087 */
7088 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7089 {
7090 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7091 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7092 return;
7093 }
7094
7095 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7096
7097 refill_stock(memcg, nr_pages);
7098 }
7099
7100 static int __init cgroup_memory(char *s)
7101 {
7102 char *token;
7103
7104 while ((token = strsep(&s, ",")) != NULL) {
7105 if (!*token)
7106 continue;
7107 if (!strcmp(token, "nosocket"))
7108 cgroup_memory_nosocket = true;
7109 if (!strcmp(token, "nokmem"))
7110 cgroup_memory_nokmem = true;
7111 }
7112 return 0;
7113 }
7114 __setup("cgroup.memory=", cgroup_memory);
7115
7116 /*
7117 * subsys_initcall() for memory controller.
7118 *
7119 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7120 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7121 * basically everything that doesn't depend on a specific mem_cgroup structure
7122 * should be initialized from here.
7123 */
7124 static int __init mem_cgroup_init(void)
7125 {
7126 int cpu, node;
7127
7128 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7129 memcg_hotplug_cpu_dead);
7130
7131 for_each_possible_cpu(cpu)
7132 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7133 drain_local_stock);
7134
7135 for_each_node(node) {
7136 struct mem_cgroup_tree_per_node *rtpn;
7137
7138 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7139 node_online(node) ? node : NUMA_NO_NODE);
7140
7141 rtpn->rb_root = RB_ROOT;
7142 rtpn->rb_rightmost = NULL;
7143 spin_lock_init(&rtpn->lock);
7144 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7145 }
7146
7147 return 0;
7148 }
7149 subsys_initcall(mem_cgroup_init);
7150
7151 #ifdef CONFIG_MEMCG_SWAP
7152 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7153 {
7154 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7155 /*
7156 * The root cgroup cannot be destroyed, so it's refcount must
7157 * always be >= 1.
7158 */
7159 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7160 VM_BUG_ON(1);
7161 break;
7162 }
7163 memcg = parent_mem_cgroup(memcg);
7164 if (!memcg)
7165 memcg = root_mem_cgroup;
7166 }
7167 return memcg;
7168 }
7169
7170 /**
7171 * mem_cgroup_swapout - transfer a memsw charge to swap
7172 * @page: page whose memsw charge to transfer
7173 * @entry: swap entry to move the charge to
7174 *
7175 * Transfer the memsw charge of @page to @entry.
7176 */
7177 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7178 {
7179 struct mem_cgroup *memcg, *swap_memcg;
7180 unsigned int nr_entries;
7181 unsigned short oldid;
7182
7183 VM_BUG_ON_PAGE(PageLRU(page), page);
7184 VM_BUG_ON_PAGE(page_count(page), page);
7185
7186 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7187 return;
7188
7189 memcg = page->mem_cgroup;
7190
7191 /* Readahead page, never charged */
7192 if (!memcg)
7193 return;
7194
7195 /*
7196 * In case the memcg owning these pages has been offlined and doesn't
7197 * have an ID allocated to it anymore, charge the closest online
7198 * ancestor for the swap instead and transfer the memory+swap charge.
7199 */
7200 swap_memcg = mem_cgroup_id_get_online(memcg);
7201 nr_entries = thp_nr_pages(page);
7202 /* Get references for the tail pages, too */
7203 if (nr_entries > 1)
7204 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7205 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7206 nr_entries);
7207 VM_BUG_ON_PAGE(oldid, page);
7208 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7209
7210 page->mem_cgroup = NULL;
7211
7212 if (!mem_cgroup_is_root(memcg))
7213 page_counter_uncharge(&memcg->memory, nr_entries);
7214
7215 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7216 if (!mem_cgroup_is_root(swap_memcg))
7217 page_counter_charge(&swap_memcg->memsw, nr_entries);
7218 page_counter_uncharge(&memcg->memsw, nr_entries);
7219 }
7220
7221 /*
7222 * Interrupts should be disabled here because the caller holds the
7223 * i_pages lock which is taken with interrupts-off. It is
7224 * important here to have the interrupts disabled because it is the
7225 * only synchronisation we have for updating the per-CPU variables.
7226 */
7227 VM_BUG_ON(!irqs_disabled());
7228 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7229 memcg_check_events(memcg, page);
7230
7231 css_put(&memcg->css);
7232 }
7233
7234 /**
7235 * mem_cgroup_try_charge_swap - try charging swap space for a page
7236 * @page: page being added to swap
7237 * @entry: swap entry to charge
7238 *
7239 * Try to charge @page's memcg for the swap space at @entry.
7240 *
7241 * Returns 0 on success, -ENOMEM on failure.
7242 */
7243 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7244 {
7245 unsigned int nr_pages = thp_nr_pages(page);
7246 struct page_counter *counter;
7247 struct mem_cgroup *memcg;
7248 unsigned short oldid;
7249
7250 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7251 return 0;
7252
7253 memcg = page->mem_cgroup;
7254
7255 /* Readahead page, never charged */
7256 if (!memcg)
7257 return 0;
7258
7259 if (!entry.val) {
7260 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7261 return 0;
7262 }
7263
7264 memcg = mem_cgroup_id_get_online(memcg);
7265
7266 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7267 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7268 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7269 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7270 mem_cgroup_id_put(memcg);
7271 return -ENOMEM;
7272 }
7273
7274 /* Get references for the tail pages, too */
7275 if (nr_pages > 1)
7276 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7277 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7278 VM_BUG_ON_PAGE(oldid, page);
7279 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7280
7281 return 0;
7282 }
7283
7284 /**
7285 * mem_cgroup_uncharge_swap - uncharge swap space
7286 * @entry: swap entry to uncharge
7287 * @nr_pages: the amount of swap space to uncharge
7288 */
7289 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7290 {
7291 struct mem_cgroup *memcg;
7292 unsigned short id;
7293
7294 id = swap_cgroup_record(entry, 0, nr_pages);
7295 rcu_read_lock();
7296 memcg = mem_cgroup_from_id(id);
7297 if (memcg) {
7298 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7299 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7300 page_counter_uncharge(&memcg->swap, nr_pages);
7301 else
7302 page_counter_uncharge(&memcg->memsw, nr_pages);
7303 }
7304 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7305 mem_cgroup_id_put_many(memcg, nr_pages);
7306 }
7307 rcu_read_unlock();
7308 }
7309
7310 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7311 {
7312 long nr_swap_pages = get_nr_swap_pages();
7313
7314 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7315 return nr_swap_pages;
7316 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7317 nr_swap_pages = min_t(long, nr_swap_pages,
7318 READ_ONCE(memcg->swap.max) -
7319 page_counter_read(&memcg->swap));
7320 return nr_swap_pages;
7321 }
7322
7323 bool mem_cgroup_swap_full(struct page *page)
7324 {
7325 struct mem_cgroup *memcg;
7326
7327 VM_BUG_ON_PAGE(!PageLocked(page), page);
7328
7329 if (vm_swap_full())
7330 return true;
7331 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7332 return false;
7333
7334 memcg = page->mem_cgroup;
7335 if (!memcg)
7336 return false;
7337
7338 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7339 unsigned long usage = page_counter_read(&memcg->swap);
7340
7341 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7342 usage * 2 >= READ_ONCE(memcg->swap.max))
7343 return true;
7344 }
7345
7346 return false;
7347 }
7348
7349 static int __init setup_swap_account(char *s)
7350 {
7351 if (!strcmp(s, "1"))
7352 cgroup_memory_noswap = 0;
7353 else if (!strcmp(s, "0"))
7354 cgroup_memory_noswap = 1;
7355 return 1;
7356 }
7357 __setup("swapaccount=", setup_swap_account);
7358
7359 static u64 swap_current_read(struct cgroup_subsys_state *css,
7360 struct cftype *cft)
7361 {
7362 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7363
7364 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7365 }
7366
7367 static int swap_high_show(struct seq_file *m, void *v)
7368 {
7369 return seq_puts_memcg_tunable(m,
7370 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7371 }
7372
7373 static ssize_t swap_high_write(struct kernfs_open_file *of,
7374 char *buf, size_t nbytes, loff_t off)
7375 {
7376 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7377 unsigned long high;
7378 int err;
7379
7380 buf = strstrip(buf);
7381 err = page_counter_memparse(buf, "max", &high);
7382 if (err)
7383 return err;
7384
7385 page_counter_set_high(&memcg->swap, high);
7386
7387 return nbytes;
7388 }
7389
7390 static int swap_max_show(struct seq_file *m, void *v)
7391 {
7392 return seq_puts_memcg_tunable(m,
7393 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7394 }
7395
7396 static ssize_t swap_max_write(struct kernfs_open_file *of,
7397 char *buf, size_t nbytes, loff_t off)
7398 {
7399 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7400 unsigned long max;
7401 int err;
7402
7403 buf = strstrip(buf);
7404 err = page_counter_memparse(buf, "max", &max);
7405 if (err)
7406 return err;
7407
7408 xchg(&memcg->swap.max, max);
7409
7410 return nbytes;
7411 }
7412
7413 static int swap_events_show(struct seq_file *m, void *v)
7414 {
7415 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7416
7417 seq_printf(m, "high %lu\n",
7418 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7419 seq_printf(m, "max %lu\n",
7420 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7421 seq_printf(m, "fail %lu\n",
7422 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7423
7424 return 0;
7425 }
7426
7427 static struct cftype swap_files[] = {
7428 {
7429 .name = "swap.current",
7430 .flags = CFTYPE_NOT_ON_ROOT,
7431 .read_u64 = swap_current_read,
7432 },
7433 {
7434 .name = "swap.high",
7435 .flags = CFTYPE_NOT_ON_ROOT,
7436 .seq_show = swap_high_show,
7437 .write = swap_high_write,
7438 },
7439 {
7440 .name = "swap.max",
7441 .flags = CFTYPE_NOT_ON_ROOT,
7442 .seq_show = swap_max_show,
7443 .write = swap_max_write,
7444 },
7445 {
7446 .name = "swap.events",
7447 .flags = CFTYPE_NOT_ON_ROOT,
7448 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7449 .seq_show = swap_events_show,
7450 },
7451 { } /* terminate */
7452 };
7453
7454 static struct cftype memsw_files[] = {
7455 {
7456 .name = "memsw.usage_in_bytes",
7457 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7458 .read_u64 = mem_cgroup_read_u64,
7459 },
7460 {
7461 .name = "memsw.max_usage_in_bytes",
7462 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7463 .write = mem_cgroup_reset,
7464 .read_u64 = mem_cgroup_read_u64,
7465 },
7466 {
7467 .name = "memsw.limit_in_bytes",
7468 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7469 .write = mem_cgroup_write,
7470 .read_u64 = mem_cgroup_read_u64,
7471 },
7472 {
7473 .name = "memsw.failcnt",
7474 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7475 .write = mem_cgroup_reset,
7476 .read_u64 = mem_cgroup_read_u64,
7477 },
7478 { }, /* terminate */
7479 };
7480
7481 /*
7482 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7483 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7484 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7485 * boot parameter. This may result in premature OOPS inside
7486 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7487 */
7488 static int __init mem_cgroup_swap_init(void)
7489 {
7490 /* No memory control -> no swap control */
7491 if (mem_cgroup_disabled())
7492 cgroup_memory_noswap = true;
7493
7494 if (cgroup_memory_noswap)
7495 return 0;
7496
7497 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7498 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7499
7500 return 0;
7501 }
7502 core_initcall(mem_cgroup_swap_init);
7503
7504 #endif /* CONFIG_MEMCG_SWAP */