]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/memcontrol.c
memcg: swapout refcnt fix
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/mutex.h>
31 #include <linux/slab.h>
32 #include <linux/swap.h>
33 #include <linux/spinlock.h>
34 #include <linux/fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/vmalloc.h>
37 #include <linux/mm_inline.h>
38 #include <linux/page_cgroup.h>
39 #include "internal.h"
40
41 #include <asm/uaccess.h>
42
43 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
44 #define MEM_CGROUP_RECLAIM_RETRIES 5
45
46 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48 int do_swap_account __read_mostly;
49 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50 #else
51 #define do_swap_account (0)
52 #endif
53
54
55 /*
56 * Statistics for memory cgroup.
57 */
58 enum mem_cgroup_stat_index {
59 /*
60 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
61 */
62 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
63 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
64 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
65 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
66
67 MEM_CGROUP_STAT_NSTATS,
68 };
69
70 struct mem_cgroup_stat_cpu {
71 s64 count[MEM_CGROUP_STAT_NSTATS];
72 } ____cacheline_aligned_in_smp;
73
74 struct mem_cgroup_stat {
75 struct mem_cgroup_stat_cpu cpustat[0];
76 };
77
78 /*
79 * For accounting under irq disable, no need for increment preempt count.
80 */
81 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
82 enum mem_cgroup_stat_index idx, int val)
83 {
84 stat->count[idx] += val;
85 }
86
87 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
88 enum mem_cgroup_stat_index idx)
89 {
90 int cpu;
91 s64 ret = 0;
92 for_each_possible_cpu(cpu)
93 ret += stat->cpustat[cpu].count[idx];
94 return ret;
95 }
96
97 /*
98 * per-zone information in memory controller.
99 */
100 struct mem_cgroup_per_zone {
101 /*
102 * spin_lock to protect the per cgroup LRU
103 */
104 struct list_head lists[NR_LRU_LISTS];
105 unsigned long count[NR_LRU_LISTS];
106 };
107 /* Macro for accessing counter */
108 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
109
110 struct mem_cgroup_per_node {
111 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
112 };
113
114 struct mem_cgroup_lru_info {
115 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
116 };
117
118 /*
119 * The memory controller data structure. The memory controller controls both
120 * page cache and RSS per cgroup. We would eventually like to provide
121 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
122 * to help the administrator determine what knobs to tune.
123 *
124 * TODO: Add a water mark for the memory controller. Reclaim will begin when
125 * we hit the water mark. May be even add a low water mark, such that
126 * no reclaim occurs from a cgroup at it's low water mark, this is
127 * a feature that will be implemented much later in the future.
128 */
129 struct mem_cgroup {
130 struct cgroup_subsys_state css;
131 /*
132 * the counter to account for memory usage
133 */
134 struct res_counter res;
135 /*
136 * the counter to account for mem+swap usage.
137 */
138 struct res_counter memsw;
139 /*
140 * Per cgroup active and inactive list, similar to the
141 * per zone LRU lists.
142 */
143 struct mem_cgroup_lru_info info;
144
145 int prev_priority; /* for recording reclaim priority */
146
147 /*
148 * While reclaiming in a hiearchy, we cache the last child we
149 * reclaimed from. Protected by cgroup_lock()
150 */
151 struct mem_cgroup *last_scanned_child;
152 /*
153 * Should the accounting and control be hierarchical, per subtree?
154 */
155 bool use_hierarchy;
156 unsigned long last_oom_jiffies;
157 int obsolete;
158 atomic_t refcnt;
159 /*
160 * statistics. This must be placed at the end of memcg.
161 */
162 struct mem_cgroup_stat stat;
163 };
164
165 enum charge_type {
166 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
167 MEM_CGROUP_CHARGE_TYPE_MAPPED,
168 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
169 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
170 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
171 NR_CHARGE_TYPE,
172 };
173
174 /* only for here (for easy reading.) */
175 #define PCGF_CACHE (1UL << PCG_CACHE)
176 #define PCGF_USED (1UL << PCG_USED)
177 #define PCGF_LOCK (1UL << PCG_LOCK)
178 static const unsigned long
179 pcg_default_flags[NR_CHARGE_TYPE] = {
180 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
181 PCGF_USED | PCGF_LOCK, /* Anon */
182 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
183 0, /* FORCE */
184 };
185
186
187 /* for encoding cft->private value on file */
188 #define _MEM (0)
189 #define _MEMSWAP (1)
190 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
191 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
192 #define MEMFILE_ATTR(val) ((val) & 0xffff)
193
194 static void mem_cgroup_get(struct mem_cgroup *mem);
195 static void mem_cgroup_put(struct mem_cgroup *mem);
196
197 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
198 struct page_cgroup *pc,
199 bool charge)
200 {
201 int val = (charge)? 1 : -1;
202 struct mem_cgroup_stat *stat = &mem->stat;
203 struct mem_cgroup_stat_cpu *cpustat;
204 int cpu = get_cpu();
205
206 cpustat = &stat->cpustat[cpu];
207 if (PageCgroupCache(pc))
208 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
209 else
210 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
211
212 if (charge)
213 __mem_cgroup_stat_add_safe(cpustat,
214 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
215 else
216 __mem_cgroup_stat_add_safe(cpustat,
217 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
218 put_cpu();
219 }
220
221 static struct mem_cgroup_per_zone *
222 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
223 {
224 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
225 }
226
227 static struct mem_cgroup_per_zone *
228 page_cgroup_zoneinfo(struct page_cgroup *pc)
229 {
230 struct mem_cgroup *mem = pc->mem_cgroup;
231 int nid = page_cgroup_nid(pc);
232 int zid = page_cgroup_zid(pc);
233
234 return mem_cgroup_zoneinfo(mem, nid, zid);
235 }
236
237 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
238 enum lru_list idx)
239 {
240 int nid, zid;
241 struct mem_cgroup_per_zone *mz;
242 u64 total = 0;
243
244 for_each_online_node(nid)
245 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
246 mz = mem_cgroup_zoneinfo(mem, nid, zid);
247 total += MEM_CGROUP_ZSTAT(mz, idx);
248 }
249 return total;
250 }
251
252 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
253 {
254 return container_of(cgroup_subsys_state(cont,
255 mem_cgroup_subsys_id), struct mem_cgroup,
256 css);
257 }
258
259 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
260 {
261 /*
262 * mm_update_next_owner() may clear mm->owner to NULL
263 * if it races with swapoff, page migration, etc.
264 * So this can be called with p == NULL.
265 */
266 if (unlikely(!p))
267 return NULL;
268
269 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
270 struct mem_cgroup, css);
271 }
272
273 /*
274 * Following LRU functions are allowed to be used without PCG_LOCK.
275 * Operations are called by routine of global LRU independently from memcg.
276 * What we have to take care of here is validness of pc->mem_cgroup.
277 *
278 * Changes to pc->mem_cgroup happens when
279 * 1. charge
280 * 2. moving account
281 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
282 * It is added to LRU before charge.
283 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
284 * When moving account, the page is not on LRU. It's isolated.
285 */
286
287 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
288 {
289 struct page_cgroup *pc;
290 struct mem_cgroup *mem;
291 struct mem_cgroup_per_zone *mz;
292
293 if (mem_cgroup_disabled())
294 return;
295 pc = lookup_page_cgroup(page);
296 /* can happen while we handle swapcache. */
297 if (list_empty(&pc->lru))
298 return;
299 mz = page_cgroup_zoneinfo(pc);
300 mem = pc->mem_cgroup;
301 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
302 list_del_init(&pc->lru);
303 return;
304 }
305
306 void mem_cgroup_del_lru(struct page *page)
307 {
308 mem_cgroup_del_lru_list(page, page_lru(page));
309 }
310
311 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
312 {
313 struct mem_cgroup_per_zone *mz;
314 struct page_cgroup *pc;
315
316 if (mem_cgroup_disabled())
317 return;
318
319 pc = lookup_page_cgroup(page);
320 smp_rmb();
321 /* unused page is not rotated. */
322 if (!PageCgroupUsed(pc))
323 return;
324 mz = page_cgroup_zoneinfo(pc);
325 list_move(&pc->lru, &mz->lists[lru]);
326 }
327
328 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
329 {
330 struct page_cgroup *pc;
331 struct mem_cgroup_per_zone *mz;
332
333 if (mem_cgroup_disabled())
334 return;
335 pc = lookup_page_cgroup(page);
336 /* barrier to sync with "charge" */
337 smp_rmb();
338 if (!PageCgroupUsed(pc))
339 return;
340
341 mz = page_cgroup_zoneinfo(pc);
342 MEM_CGROUP_ZSTAT(mz, lru) += 1;
343 list_add(&pc->lru, &mz->lists[lru]);
344 }
345 /*
346 * To add swapcache into LRU. Be careful to all this function.
347 * zone->lru_lock shouldn't be held and irq must not be disabled.
348 */
349 static void mem_cgroup_lru_fixup(struct page *page)
350 {
351 if (!isolate_lru_page(page))
352 putback_lru_page(page);
353 }
354
355 void mem_cgroup_move_lists(struct page *page,
356 enum lru_list from, enum lru_list to)
357 {
358 if (mem_cgroup_disabled())
359 return;
360 mem_cgroup_del_lru_list(page, from);
361 mem_cgroup_add_lru_list(page, to);
362 }
363
364 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
365 {
366 int ret;
367
368 task_lock(task);
369 ret = task->mm && mm_match_cgroup(task->mm, mem);
370 task_unlock(task);
371 return ret;
372 }
373
374 /*
375 * Calculate mapped_ratio under memory controller. This will be used in
376 * vmscan.c for deteremining we have to reclaim mapped pages.
377 */
378 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
379 {
380 long total, rss;
381
382 /*
383 * usage is recorded in bytes. But, here, we assume the number of
384 * physical pages can be represented by "long" on any arch.
385 */
386 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
387 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
388 return (int)((rss * 100L) / total);
389 }
390
391 /*
392 * prev_priority control...this will be used in memory reclaim path.
393 */
394 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
395 {
396 return mem->prev_priority;
397 }
398
399 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
400 {
401 if (priority < mem->prev_priority)
402 mem->prev_priority = priority;
403 }
404
405 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
406 {
407 mem->prev_priority = priority;
408 }
409
410 /*
411 * Calculate # of pages to be scanned in this priority/zone.
412 * See also vmscan.c
413 *
414 * priority starts from "DEF_PRIORITY" and decremented in each loop.
415 * (see include/linux/mmzone.h)
416 */
417
418 long mem_cgroup_calc_reclaim(struct mem_cgroup *mem, struct zone *zone,
419 int priority, enum lru_list lru)
420 {
421 long nr_pages;
422 int nid = zone->zone_pgdat->node_id;
423 int zid = zone_idx(zone);
424 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
425
426 nr_pages = MEM_CGROUP_ZSTAT(mz, lru);
427
428 return (nr_pages >> priority);
429 }
430
431 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
432 struct list_head *dst,
433 unsigned long *scanned, int order,
434 int mode, struct zone *z,
435 struct mem_cgroup *mem_cont,
436 int active, int file)
437 {
438 unsigned long nr_taken = 0;
439 struct page *page;
440 unsigned long scan;
441 LIST_HEAD(pc_list);
442 struct list_head *src;
443 struct page_cgroup *pc, *tmp;
444 int nid = z->zone_pgdat->node_id;
445 int zid = zone_idx(z);
446 struct mem_cgroup_per_zone *mz;
447 int lru = LRU_FILE * !!file + !!active;
448
449 BUG_ON(!mem_cont);
450 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
451 src = &mz->lists[lru];
452
453 scan = 0;
454 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
455 if (scan >= nr_to_scan)
456 break;
457
458 page = pc->page;
459 if (unlikely(!PageCgroupUsed(pc)))
460 continue;
461 if (unlikely(!PageLRU(page)))
462 continue;
463
464 scan++;
465 if (__isolate_lru_page(page, mode, file) == 0) {
466 list_move(&page->lru, dst);
467 nr_taken++;
468 }
469 }
470
471 *scanned = scan;
472 return nr_taken;
473 }
474
475 #define mem_cgroup_from_res_counter(counter, member) \
476 container_of(counter, struct mem_cgroup, member)
477
478 /*
479 * This routine finds the DFS walk successor. This routine should be
480 * called with cgroup_mutex held
481 */
482 static struct mem_cgroup *
483 mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
484 {
485 struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
486
487 curr_cgroup = curr->css.cgroup;
488 root_cgroup = root_mem->css.cgroup;
489
490 if (!list_empty(&curr_cgroup->children)) {
491 /*
492 * Walk down to children
493 */
494 mem_cgroup_put(curr);
495 cgroup = list_entry(curr_cgroup->children.next,
496 struct cgroup, sibling);
497 curr = mem_cgroup_from_cont(cgroup);
498 mem_cgroup_get(curr);
499 goto done;
500 }
501
502 visit_parent:
503 if (curr_cgroup == root_cgroup) {
504 mem_cgroup_put(curr);
505 curr = root_mem;
506 mem_cgroup_get(curr);
507 goto done;
508 }
509
510 /*
511 * Goto next sibling
512 */
513 if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
514 mem_cgroup_put(curr);
515 cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
516 sibling);
517 curr = mem_cgroup_from_cont(cgroup);
518 mem_cgroup_get(curr);
519 goto done;
520 }
521
522 /*
523 * Go up to next parent and next parent's sibling if need be
524 */
525 curr_cgroup = curr_cgroup->parent;
526 goto visit_parent;
527
528 done:
529 root_mem->last_scanned_child = curr;
530 return curr;
531 }
532
533 /*
534 * Visit the first child (need not be the first child as per the ordering
535 * of the cgroup list, since we track last_scanned_child) of @mem and use
536 * that to reclaim free pages from.
537 */
538 static struct mem_cgroup *
539 mem_cgroup_get_first_node(struct mem_cgroup *root_mem)
540 {
541 struct cgroup *cgroup;
542 struct mem_cgroup *ret;
543 bool obsolete = (root_mem->last_scanned_child &&
544 root_mem->last_scanned_child->obsolete);
545
546 /*
547 * Scan all children under the mem_cgroup mem
548 */
549 cgroup_lock();
550 if (list_empty(&root_mem->css.cgroup->children)) {
551 ret = root_mem;
552 goto done;
553 }
554
555 if (!root_mem->last_scanned_child || obsolete) {
556
557 if (obsolete)
558 mem_cgroup_put(root_mem->last_scanned_child);
559
560 cgroup = list_first_entry(&root_mem->css.cgroup->children,
561 struct cgroup, sibling);
562 ret = mem_cgroup_from_cont(cgroup);
563 mem_cgroup_get(ret);
564 } else
565 ret = mem_cgroup_get_next_node(root_mem->last_scanned_child,
566 root_mem);
567
568 done:
569 root_mem->last_scanned_child = ret;
570 cgroup_unlock();
571 return ret;
572 }
573
574 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
575 {
576 if (do_swap_account) {
577 if (res_counter_check_under_limit(&mem->res) &&
578 res_counter_check_under_limit(&mem->memsw))
579 return true;
580 } else
581 if (res_counter_check_under_limit(&mem->res))
582 return true;
583 return false;
584 }
585
586 /*
587 * Dance down the hierarchy if needed to reclaim memory. We remember the
588 * last child we reclaimed from, so that we don't end up penalizing
589 * one child extensively based on its position in the children list.
590 *
591 * root_mem is the original ancestor that we've been reclaim from.
592 */
593 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
594 gfp_t gfp_mask, bool noswap)
595 {
596 struct mem_cgroup *next_mem;
597 int ret = 0;
598
599 /*
600 * Reclaim unconditionally and don't check for return value.
601 * We need to reclaim in the current group and down the tree.
602 * One might think about checking for children before reclaiming,
603 * but there might be left over accounting, even after children
604 * have left.
605 */
606 ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap);
607 if (mem_cgroup_check_under_limit(root_mem))
608 return 0;
609
610 next_mem = mem_cgroup_get_first_node(root_mem);
611
612 while (next_mem != root_mem) {
613 if (next_mem->obsolete) {
614 mem_cgroup_put(next_mem);
615 cgroup_lock();
616 next_mem = mem_cgroup_get_first_node(root_mem);
617 cgroup_unlock();
618 continue;
619 }
620 ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap);
621 if (mem_cgroup_check_under_limit(root_mem))
622 return 0;
623 cgroup_lock();
624 next_mem = mem_cgroup_get_next_node(next_mem, root_mem);
625 cgroup_unlock();
626 }
627 return ret;
628 }
629
630 bool mem_cgroup_oom_called(struct task_struct *task)
631 {
632 bool ret = false;
633 struct mem_cgroup *mem;
634 struct mm_struct *mm;
635
636 rcu_read_lock();
637 mm = task->mm;
638 if (!mm)
639 mm = &init_mm;
640 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
641 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
642 ret = true;
643 rcu_read_unlock();
644 return ret;
645 }
646 /*
647 * Unlike exported interface, "oom" parameter is added. if oom==true,
648 * oom-killer can be invoked.
649 */
650 static int __mem_cgroup_try_charge(struct mm_struct *mm,
651 gfp_t gfp_mask, struct mem_cgroup **memcg,
652 bool oom)
653 {
654 struct mem_cgroup *mem, *mem_over_limit;
655 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
656 struct res_counter *fail_res;
657
658 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
659 /* Don't account this! */
660 *memcg = NULL;
661 return 0;
662 }
663
664 /*
665 * We always charge the cgroup the mm_struct belongs to.
666 * The mm_struct's mem_cgroup changes on task migration if the
667 * thread group leader migrates. It's possible that mm is not
668 * set, if so charge the init_mm (happens for pagecache usage).
669 */
670 if (likely(!*memcg)) {
671 rcu_read_lock();
672 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
673 if (unlikely(!mem)) {
674 rcu_read_unlock();
675 return 0;
676 }
677 /*
678 * For every charge from the cgroup, increment reference count
679 */
680 css_get(&mem->css);
681 *memcg = mem;
682 rcu_read_unlock();
683 } else {
684 mem = *memcg;
685 css_get(&mem->css);
686 }
687
688 while (1) {
689 int ret;
690 bool noswap = false;
691
692 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
693 if (likely(!ret)) {
694 if (!do_swap_account)
695 break;
696 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
697 &fail_res);
698 if (likely(!ret))
699 break;
700 /* mem+swap counter fails */
701 res_counter_uncharge(&mem->res, PAGE_SIZE);
702 noswap = true;
703 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
704 memsw);
705 } else
706 /* mem counter fails */
707 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
708 res);
709
710 if (!(gfp_mask & __GFP_WAIT))
711 goto nomem;
712
713 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
714 noswap);
715
716 /*
717 * try_to_free_mem_cgroup_pages() might not give us a full
718 * picture of reclaim. Some pages are reclaimed and might be
719 * moved to swap cache or just unmapped from the cgroup.
720 * Check the limit again to see if the reclaim reduced the
721 * current usage of the cgroup before giving up
722 *
723 */
724 if (mem_cgroup_check_under_limit(mem_over_limit))
725 continue;
726
727 if (!nr_retries--) {
728 if (oom) {
729 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
730 mem_over_limit->last_oom_jiffies = jiffies;
731 }
732 goto nomem;
733 }
734 }
735 return 0;
736 nomem:
737 css_put(&mem->css);
738 return -ENOMEM;
739 }
740
741 /**
742 * mem_cgroup_try_charge - get charge of PAGE_SIZE.
743 * @mm: an mm_struct which is charged against. (when *memcg is NULL)
744 * @gfp_mask: gfp_mask for reclaim.
745 * @memcg: a pointer to memory cgroup which is charged against.
746 *
747 * charge against memory cgroup pointed by *memcg. if *memcg == NULL, estimated
748 * memory cgroup from @mm is got and stored in *memcg.
749 *
750 * Returns 0 if success. -ENOMEM at failure.
751 * This call can invoke OOM-Killer.
752 */
753
754 int mem_cgroup_try_charge(struct mm_struct *mm,
755 gfp_t mask, struct mem_cgroup **memcg)
756 {
757 return __mem_cgroup_try_charge(mm, mask, memcg, true);
758 }
759
760 /*
761 * commit a charge got by mem_cgroup_try_charge() and makes page_cgroup to be
762 * USED state. If already USED, uncharge and return.
763 */
764
765 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
766 struct page_cgroup *pc,
767 enum charge_type ctype)
768 {
769 /* try_charge() can return NULL to *memcg, taking care of it. */
770 if (!mem)
771 return;
772
773 lock_page_cgroup(pc);
774 if (unlikely(PageCgroupUsed(pc))) {
775 unlock_page_cgroup(pc);
776 res_counter_uncharge(&mem->res, PAGE_SIZE);
777 if (do_swap_account)
778 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
779 css_put(&mem->css);
780 return;
781 }
782 pc->mem_cgroup = mem;
783 smp_wmb();
784 pc->flags = pcg_default_flags[ctype];
785
786 mem_cgroup_charge_statistics(mem, pc, true);
787
788 unlock_page_cgroup(pc);
789 }
790
791 /**
792 * mem_cgroup_move_account - move account of the page
793 * @pc: page_cgroup of the page.
794 * @from: mem_cgroup which the page is moved from.
795 * @to: mem_cgroup which the page is moved to. @from != @to.
796 *
797 * The caller must confirm following.
798 * - page is not on LRU (isolate_page() is useful.)
799 *
800 * returns 0 at success,
801 * returns -EBUSY when lock is busy or "pc" is unstable.
802 *
803 * This function does "uncharge" from old cgroup but doesn't do "charge" to
804 * new cgroup. It should be done by a caller.
805 */
806
807 static int mem_cgroup_move_account(struct page_cgroup *pc,
808 struct mem_cgroup *from, struct mem_cgroup *to)
809 {
810 struct mem_cgroup_per_zone *from_mz, *to_mz;
811 int nid, zid;
812 int ret = -EBUSY;
813
814 VM_BUG_ON(from == to);
815 VM_BUG_ON(PageLRU(pc->page));
816
817 nid = page_cgroup_nid(pc);
818 zid = page_cgroup_zid(pc);
819 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
820 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
821
822 if (!trylock_page_cgroup(pc))
823 return ret;
824
825 if (!PageCgroupUsed(pc))
826 goto out;
827
828 if (pc->mem_cgroup != from)
829 goto out;
830
831 css_put(&from->css);
832 res_counter_uncharge(&from->res, PAGE_SIZE);
833 mem_cgroup_charge_statistics(from, pc, false);
834 if (do_swap_account)
835 res_counter_uncharge(&from->memsw, PAGE_SIZE);
836 pc->mem_cgroup = to;
837 mem_cgroup_charge_statistics(to, pc, true);
838 css_get(&to->css);
839 ret = 0;
840 out:
841 unlock_page_cgroup(pc);
842 return ret;
843 }
844
845 /*
846 * move charges to its parent.
847 */
848
849 static int mem_cgroup_move_parent(struct page_cgroup *pc,
850 struct mem_cgroup *child,
851 gfp_t gfp_mask)
852 {
853 struct page *page = pc->page;
854 struct cgroup *cg = child->css.cgroup;
855 struct cgroup *pcg = cg->parent;
856 struct mem_cgroup *parent;
857 int ret;
858
859 /* Is ROOT ? */
860 if (!pcg)
861 return -EINVAL;
862
863
864 parent = mem_cgroup_from_cont(pcg);
865
866
867 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
868 if (ret || !parent)
869 return ret;
870
871 if (!get_page_unless_zero(page))
872 return -EBUSY;
873
874 ret = isolate_lru_page(page);
875
876 if (ret)
877 goto cancel;
878
879 ret = mem_cgroup_move_account(pc, child, parent);
880
881 /* drop extra refcnt by try_charge() (move_account increment one) */
882 css_put(&parent->css);
883 putback_lru_page(page);
884 if (!ret) {
885 put_page(page);
886 return 0;
887 }
888 /* uncharge if move fails */
889 cancel:
890 res_counter_uncharge(&parent->res, PAGE_SIZE);
891 if (do_swap_account)
892 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
893 put_page(page);
894 return ret;
895 }
896
897 /*
898 * Charge the memory controller for page usage.
899 * Return
900 * 0 if the charge was successful
901 * < 0 if the cgroup is over its limit
902 */
903 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
904 gfp_t gfp_mask, enum charge_type ctype,
905 struct mem_cgroup *memcg)
906 {
907 struct mem_cgroup *mem;
908 struct page_cgroup *pc;
909 int ret;
910
911 pc = lookup_page_cgroup(page);
912 /* can happen at boot */
913 if (unlikely(!pc))
914 return 0;
915 prefetchw(pc);
916
917 mem = memcg;
918 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
919 if (ret || !mem)
920 return ret;
921
922 __mem_cgroup_commit_charge(mem, pc, ctype);
923 return 0;
924 }
925
926 int mem_cgroup_newpage_charge(struct page *page,
927 struct mm_struct *mm, gfp_t gfp_mask)
928 {
929 if (mem_cgroup_disabled())
930 return 0;
931 if (PageCompound(page))
932 return 0;
933 /*
934 * If already mapped, we don't have to account.
935 * If page cache, page->mapping has address_space.
936 * But page->mapping may have out-of-use anon_vma pointer,
937 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
938 * is NULL.
939 */
940 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
941 return 0;
942 if (unlikely(!mm))
943 mm = &init_mm;
944 return mem_cgroup_charge_common(page, mm, gfp_mask,
945 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
946 }
947
948 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
949 gfp_t gfp_mask)
950 {
951 if (mem_cgroup_disabled())
952 return 0;
953 if (PageCompound(page))
954 return 0;
955 /*
956 * Corner case handling. This is called from add_to_page_cache()
957 * in usual. But some FS (shmem) precharges this page before calling it
958 * and call add_to_page_cache() with GFP_NOWAIT.
959 *
960 * For GFP_NOWAIT case, the page may be pre-charged before calling
961 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
962 * charge twice. (It works but has to pay a bit larger cost.)
963 */
964 if (!(gfp_mask & __GFP_WAIT)) {
965 struct page_cgroup *pc;
966
967
968 pc = lookup_page_cgroup(page);
969 if (!pc)
970 return 0;
971 lock_page_cgroup(pc);
972 if (PageCgroupUsed(pc)) {
973 unlock_page_cgroup(pc);
974 return 0;
975 }
976 unlock_page_cgroup(pc);
977 }
978
979 if (unlikely(!mm))
980 mm = &init_mm;
981
982 if (page_is_file_cache(page))
983 return mem_cgroup_charge_common(page, mm, gfp_mask,
984 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
985 else
986 return mem_cgroup_charge_common(page, mm, gfp_mask,
987 MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
988 }
989
990 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
991 struct page *page,
992 gfp_t mask, struct mem_cgroup **ptr)
993 {
994 struct mem_cgroup *mem;
995 swp_entry_t ent;
996
997 if (mem_cgroup_disabled())
998 return 0;
999
1000 if (!do_swap_account)
1001 goto charge_cur_mm;
1002
1003 /*
1004 * A racing thread's fault, or swapoff, may have already updated
1005 * the pte, and even removed page from swap cache: return success
1006 * to go on to do_swap_page()'s pte_same() test, which should fail.
1007 */
1008 if (!PageSwapCache(page))
1009 return 0;
1010
1011 ent.val = page_private(page);
1012
1013 mem = lookup_swap_cgroup(ent);
1014 if (!mem || mem->obsolete)
1015 goto charge_cur_mm;
1016 *ptr = mem;
1017 return __mem_cgroup_try_charge(NULL, mask, ptr, true);
1018 charge_cur_mm:
1019 if (unlikely(!mm))
1020 mm = &init_mm;
1021 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1022 }
1023
1024 #ifdef CONFIG_SWAP
1025
1026 int mem_cgroup_cache_charge_swapin(struct page *page,
1027 struct mm_struct *mm, gfp_t mask, bool locked)
1028 {
1029 int ret = 0;
1030
1031 if (mem_cgroup_disabled())
1032 return 0;
1033 if (unlikely(!mm))
1034 mm = &init_mm;
1035 if (!locked)
1036 lock_page(page);
1037 /*
1038 * If not locked, the page can be dropped from SwapCache until
1039 * we reach here.
1040 */
1041 if (PageSwapCache(page)) {
1042 struct mem_cgroup *mem = NULL;
1043 swp_entry_t ent;
1044
1045 ent.val = page_private(page);
1046 if (do_swap_account) {
1047 mem = lookup_swap_cgroup(ent);
1048 if (mem && mem->obsolete)
1049 mem = NULL;
1050 if (mem)
1051 mm = NULL;
1052 }
1053 ret = mem_cgroup_charge_common(page, mm, mask,
1054 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1055
1056 if (!ret && do_swap_account) {
1057 /* avoid double counting */
1058 mem = swap_cgroup_record(ent, NULL);
1059 if (mem) {
1060 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1061 mem_cgroup_put(mem);
1062 }
1063 }
1064 }
1065 if (!locked)
1066 unlock_page(page);
1067 /* add this page(page_cgroup) to the LRU we want. */
1068 mem_cgroup_lru_fixup(page);
1069
1070 return ret;
1071 }
1072 #endif
1073
1074 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1075 {
1076 struct page_cgroup *pc;
1077
1078 if (mem_cgroup_disabled())
1079 return;
1080 if (!ptr)
1081 return;
1082 pc = lookup_page_cgroup(page);
1083 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1084 /*
1085 * Now swap is on-memory. This means this page may be
1086 * counted both as mem and swap....double count.
1087 * Fix it by uncharging from memsw. This SwapCache is stable
1088 * because we're still under lock_page().
1089 */
1090 if (do_swap_account) {
1091 swp_entry_t ent = {.val = page_private(page)};
1092 struct mem_cgroup *memcg;
1093 memcg = swap_cgroup_record(ent, NULL);
1094 if (memcg) {
1095 /* If memcg is obsolete, memcg can be != ptr */
1096 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1097 mem_cgroup_put(memcg);
1098 }
1099
1100 }
1101 /* add this page(page_cgroup) to the LRU we want. */
1102 mem_cgroup_lru_fixup(page);
1103 }
1104
1105 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1106 {
1107 if (mem_cgroup_disabled())
1108 return;
1109 if (!mem)
1110 return;
1111 res_counter_uncharge(&mem->res, PAGE_SIZE);
1112 if (do_swap_account)
1113 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1114 css_put(&mem->css);
1115 }
1116
1117
1118 /*
1119 * uncharge if !page_mapped(page)
1120 */
1121 static struct mem_cgroup *
1122 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1123 {
1124 struct page_cgroup *pc;
1125 struct mem_cgroup *mem = NULL;
1126 struct mem_cgroup_per_zone *mz;
1127
1128 if (mem_cgroup_disabled())
1129 return NULL;
1130
1131 if (PageSwapCache(page))
1132 return NULL;
1133
1134 /*
1135 * Check if our page_cgroup is valid
1136 */
1137 pc = lookup_page_cgroup(page);
1138 if (unlikely(!pc || !PageCgroupUsed(pc)))
1139 return NULL;
1140
1141 lock_page_cgroup(pc);
1142
1143 mem = pc->mem_cgroup;
1144
1145 if (!PageCgroupUsed(pc))
1146 goto unlock_out;
1147
1148 switch (ctype) {
1149 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1150 if (page_mapped(page))
1151 goto unlock_out;
1152 break;
1153 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1154 if (!PageAnon(page)) { /* Shared memory */
1155 if (page->mapping && !page_is_file_cache(page))
1156 goto unlock_out;
1157 } else if (page_mapped(page)) /* Anon */
1158 goto unlock_out;
1159 break;
1160 default:
1161 break;
1162 }
1163
1164 res_counter_uncharge(&mem->res, PAGE_SIZE);
1165 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1166 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1167
1168 mem_cgroup_charge_statistics(mem, pc, false);
1169 ClearPageCgroupUsed(pc);
1170
1171 mz = page_cgroup_zoneinfo(pc);
1172 unlock_page_cgroup(pc);
1173
1174 /* at swapout, this memcg will be accessed to record to swap */
1175 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1176 css_put(&mem->css);
1177
1178 return mem;
1179
1180 unlock_out:
1181 unlock_page_cgroup(pc);
1182 return NULL;
1183 }
1184
1185 void mem_cgroup_uncharge_page(struct page *page)
1186 {
1187 /* early check. */
1188 if (page_mapped(page))
1189 return;
1190 if (page->mapping && !PageAnon(page))
1191 return;
1192 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1193 }
1194
1195 void mem_cgroup_uncharge_cache_page(struct page *page)
1196 {
1197 VM_BUG_ON(page_mapped(page));
1198 VM_BUG_ON(page->mapping);
1199 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1200 }
1201
1202 /*
1203 * called from __delete_from_swap_cache() and drop "page" account.
1204 * memcg information is recorded to swap_cgroup of "ent"
1205 */
1206 void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1207 {
1208 struct mem_cgroup *memcg;
1209
1210 memcg = __mem_cgroup_uncharge_common(page,
1211 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1212 /* record memcg information */
1213 if (do_swap_account && memcg) {
1214 swap_cgroup_record(ent, memcg);
1215 mem_cgroup_get(memcg);
1216 }
1217 if (memcg)
1218 css_put(&memcg->css);
1219 }
1220
1221 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1222 /*
1223 * called from swap_entry_free(). remove record in swap_cgroup and
1224 * uncharge "memsw" account.
1225 */
1226 void mem_cgroup_uncharge_swap(swp_entry_t ent)
1227 {
1228 struct mem_cgroup *memcg;
1229
1230 if (!do_swap_account)
1231 return;
1232
1233 memcg = swap_cgroup_record(ent, NULL);
1234 if (memcg) {
1235 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1236 mem_cgroup_put(memcg);
1237 }
1238 }
1239 #endif
1240
1241 /*
1242 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1243 * page belongs to.
1244 */
1245 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1246 {
1247 struct page_cgroup *pc;
1248 struct mem_cgroup *mem = NULL;
1249 int ret = 0;
1250
1251 if (mem_cgroup_disabled())
1252 return 0;
1253
1254 pc = lookup_page_cgroup(page);
1255 lock_page_cgroup(pc);
1256 if (PageCgroupUsed(pc)) {
1257 mem = pc->mem_cgroup;
1258 css_get(&mem->css);
1259 }
1260 unlock_page_cgroup(pc);
1261
1262 if (mem) {
1263 ret = mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem);
1264 css_put(&mem->css);
1265 }
1266 *ptr = mem;
1267 return ret;
1268 }
1269
1270 /* remove redundant charge if migration failed*/
1271 void mem_cgroup_end_migration(struct mem_cgroup *mem,
1272 struct page *oldpage, struct page *newpage)
1273 {
1274 struct page *target, *unused;
1275 struct page_cgroup *pc;
1276 enum charge_type ctype;
1277
1278 if (!mem)
1279 return;
1280
1281 /* at migration success, oldpage->mapping is NULL. */
1282 if (oldpage->mapping) {
1283 target = oldpage;
1284 unused = NULL;
1285 } else {
1286 target = newpage;
1287 unused = oldpage;
1288 }
1289
1290 if (PageAnon(target))
1291 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1292 else if (page_is_file_cache(target))
1293 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1294 else
1295 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1296
1297 /* unused page is not on radix-tree now. */
1298 if (unused)
1299 __mem_cgroup_uncharge_common(unused, ctype);
1300
1301 pc = lookup_page_cgroup(target);
1302 /*
1303 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1304 * So, double-counting is effectively avoided.
1305 */
1306 __mem_cgroup_commit_charge(mem, pc, ctype);
1307
1308 /*
1309 * Both of oldpage and newpage are still under lock_page().
1310 * Then, we don't have to care about race in radix-tree.
1311 * But we have to be careful that this page is unmapped or not.
1312 *
1313 * There is a case for !page_mapped(). At the start of
1314 * migration, oldpage was mapped. But now, it's zapped.
1315 * But we know *target* page is not freed/reused under us.
1316 * mem_cgroup_uncharge_page() does all necessary checks.
1317 */
1318 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1319 mem_cgroup_uncharge_page(target);
1320 }
1321
1322 /*
1323 * A call to try to shrink memory usage under specified resource controller.
1324 * This is typically used for page reclaiming for shmem for reducing side
1325 * effect of page allocation from shmem, which is used by some mem_cgroup.
1326 */
1327 int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
1328 {
1329 struct mem_cgroup *mem;
1330 int progress = 0;
1331 int retry = MEM_CGROUP_RECLAIM_RETRIES;
1332
1333 if (mem_cgroup_disabled())
1334 return 0;
1335 if (!mm)
1336 return 0;
1337
1338 rcu_read_lock();
1339 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
1340 if (unlikely(!mem)) {
1341 rcu_read_unlock();
1342 return 0;
1343 }
1344 css_get(&mem->css);
1345 rcu_read_unlock();
1346
1347 do {
1348 progress = try_to_free_mem_cgroup_pages(mem, gfp_mask, true);
1349 progress += mem_cgroup_check_under_limit(mem);
1350 } while (!progress && --retry);
1351
1352 css_put(&mem->css);
1353 if (!retry)
1354 return -ENOMEM;
1355 return 0;
1356 }
1357
1358 static DEFINE_MUTEX(set_limit_mutex);
1359
1360 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1361 unsigned long long val)
1362 {
1363
1364 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1365 int progress;
1366 u64 memswlimit;
1367 int ret = 0;
1368
1369 while (retry_count) {
1370 if (signal_pending(current)) {
1371 ret = -EINTR;
1372 break;
1373 }
1374 /*
1375 * Rather than hide all in some function, I do this in
1376 * open coded manner. You see what this really does.
1377 * We have to guarantee mem->res.limit < mem->memsw.limit.
1378 */
1379 mutex_lock(&set_limit_mutex);
1380 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1381 if (memswlimit < val) {
1382 ret = -EINVAL;
1383 mutex_unlock(&set_limit_mutex);
1384 break;
1385 }
1386 ret = res_counter_set_limit(&memcg->res, val);
1387 mutex_unlock(&set_limit_mutex);
1388
1389 if (!ret)
1390 break;
1391
1392 progress = try_to_free_mem_cgroup_pages(memcg,
1393 GFP_KERNEL, false);
1394 if (!progress) retry_count--;
1395 }
1396 return ret;
1397 }
1398
1399 int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1400 unsigned long long val)
1401 {
1402 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1403 u64 memlimit, oldusage, curusage;
1404 int ret;
1405
1406 if (!do_swap_account)
1407 return -EINVAL;
1408
1409 while (retry_count) {
1410 if (signal_pending(current)) {
1411 ret = -EINTR;
1412 break;
1413 }
1414 /*
1415 * Rather than hide all in some function, I do this in
1416 * open coded manner. You see what this really does.
1417 * We have to guarantee mem->res.limit < mem->memsw.limit.
1418 */
1419 mutex_lock(&set_limit_mutex);
1420 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1421 if (memlimit > val) {
1422 ret = -EINVAL;
1423 mutex_unlock(&set_limit_mutex);
1424 break;
1425 }
1426 ret = res_counter_set_limit(&memcg->memsw, val);
1427 mutex_unlock(&set_limit_mutex);
1428
1429 if (!ret)
1430 break;
1431
1432 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1433 try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, true);
1434 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1435 if (curusage >= oldusage)
1436 retry_count--;
1437 }
1438 return ret;
1439 }
1440
1441 /*
1442 * This routine traverse page_cgroup in given list and drop them all.
1443 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1444 */
1445 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1446 int node, int zid, enum lru_list lru)
1447 {
1448 struct zone *zone;
1449 struct mem_cgroup_per_zone *mz;
1450 struct page_cgroup *pc, *busy;
1451 unsigned long flags, loop;
1452 struct list_head *list;
1453 int ret = 0;
1454
1455 zone = &NODE_DATA(node)->node_zones[zid];
1456 mz = mem_cgroup_zoneinfo(mem, node, zid);
1457 list = &mz->lists[lru];
1458
1459 loop = MEM_CGROUP_ZSTAT(mz, lru);
1460 /* give some margin against EBUSY etc...*/
1461 loop += 256;
1462 busy = NULL;
1463 while (loop--) {
1464 ret = 0;
1465 spin_lock_irqsave(&zone->lru_lock, flags);
1466 if (list_empty(list)) {
1467 spin_unlock_irqrestore(&zone->lru_lock, flags);
1468 break;
1469 }
1470 pc = list_entry(list->prev, struct page_cgroup, lru);
1471 if (busy == pc) {
1472 list_move(&pc->lru, list);
1473 busy = 0;
1474 spin_unlock_irqrestore(&zone->lru_lock, flags);
1475 continue;
1476 }
1477 spin_unlock_irqrestore(&zone->lru_lock, flags);
1478
1479 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1480 if (ret == -ENOMEM)
1481 break;
1482
1483 if (ret == -EBUSY || ret == -EINVAL) {
1484 /* found lock contention or "pc" is obsolete. */
1485 busy = pc;
1486 cond_resched();
1487 } else
1488 busy = NULL;
1489 }
1490
1491 if (!ret && !list_empty(list))
1492 return -EBUSY;
1493 return ret;
1494 }
1495
1496 /*
1497 * make mem_cgroup's charge to be 0 if there is no task.
1498 * This enables deleting this mem_cgroup.
1499 */
1500 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1501 {
1502 int ret;
1503 int node, zid, shrink;
1504 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1505 struct cgroup *cgrp = mem->css.cgroup;
1506
1507 css_get(&mem->css);
1508
1509 shrink = 0;
1510 /* should free all ? */
1511 if (free_all)
1512 goto try_to_free;
1513 move_account:
1514 while (mem->res.usage > 0) {
1515 ret = -EBUSY;
1516 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1517 goto out;
1518 ret = -EINTR;
1519 if (signal_pending(current))
1520 goto out;
1521 /* This is for making all *used* pages to be on LRU. */
1522 lru_add_drain_all();
1523 ret = 0;
1524 for_each_node_state(node, N_POSSIBLE) {
1525 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1526 enum lru_list l;
1527 for_each_lru(l) {
1528 ret = mem_cgroup_force_empty_list(mem,
1529 node, zid, l);
1530 if (ret)
1531 break;
1532 }
1533 }
1534 if (ret)
1535 break;
1536 }
1537 /* it seems parent cgroup doesn't have enough mem */
1538 if (ret == -ENOMEM)
1539 goto try_to_free;
1540 cond_resched();
1541 }
1542 ret = 0;
1543 out:
1544 css_put(&mem->css);
1545 return ret;
1546
1547 try_to_free:
1548 /* returns EBUSY if there is a task or if we come here twice. */
1549 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1550 ret = -EBUSY;
1551 goto out;
1552 }
1553 /* we call try-to-free pages for make this cgroup empty */
1554 lru_add_drain_all();
1555 /* try to free all pages in this cgroup */
1556 shrink = 1;
1557 while (nr_retries && mem->res.usage > 0) {
1558 int progress;
1559
1560 if (signal_pending(current)) {
1561 ret = -EINTR;
1562 goto out;
1563 }
1564 progress = try_to_free_mem_cgroup_pages(mem,
1565 GFP_KERNEL, false);
1566 if (!progress) {
1567 nr_retries--;
1568 /* maybe some writeback is necessary */
1569 congestion_wait(WRITE, HZ/10);
1570 }
1571
1572 }
1573 lru_add_drain();
1574 /* try move_account...there may be some *locked* pages. */
1575 if (mem->res.usage)
1576 goto move_account;
1577 ret = 0;
1578 goto out;
1579 }
1580
1581 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1582 {
1583 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1584 }
1585
1586
1587 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1588 {
1589 return mem_cgroup_from_cont(cont)->use_hierarchy;
1590 }
1591
1592 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1593 u64 val)
1594 {
1595 int retval = 0;
1596 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1597 struct cgroup *parent = cont->parent;
1598 struct mem_cgroup *parent_mem = NULL;
1599
1600 if (parent)
1601 parent_mem = mem_cgroup_from_cont(parent);
1602
1603 cgroup_lock();
1604 /*
1605 * If parent's use_hiearchy is set, we can't make any modifications
1606 * in the child subtrees. If it is unset, then the change can
1607 * occur, provided the current cgroup has no children.
1608 *
1609 * For the root cgroup, parent_mem is NULL, we allow value to be
1610 * set if there are no children.
1611 */
1612 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1613 (val == 1 || val == 0)) {
1614 if (list_empty(&cont->children))
1615 mem->use_hierarchy = val;
1616 else
1617 retval = -EBUSY;
1618 } else
1619 retval = -EINVAL;
1620 cgroup_unlock();
1621
1622 return retval;
1623 }
1624
1625 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
1626 {
1627 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1628 u64 val = 0;
1629 int type, name;
1630
1631 type = MEMFILE_TYPE(cft->private);
1632 name = MEMFILE_ATTR(cft->private);
1633 switch (type) {
1634 case _MEM:
1635 val = res_counter_read_u64(&mem->res, name);
1636 break;
1637 case _MEMSWAP:
1638 if (do_swap_account)
1639 val = res_counter_read_u64(&mem->memsw, name);
1640 break;
1641 default:
1642 BUG();
1643 break;
1644 }
1645 return val;
1646 }
1647 /*
1648 * The user of this function is...
1649 * RES_LIMIT.
1650 */
1651 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1652 const char *buffer)
1653 {
1654 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1655 int type, name;
1656 unsigned long long val;
1657 int ret;
1658
1659 type = MEMFILE_TYPE(cft->private);
1660 name = MEMFILE_ATTR(cft->private);
1661 switch (name) {
1662 case RES_LIMIT:
1663 /* This function does all necessary parse...reuse it */
1664 ret = res_counter_memparse_write_strategy(buffer, &val);
1665 if (ret)
1666 break;
1667 if (type == _MEM)
1668 ret = mem_cgroup_resize_limit(memcg, val);
1669 else
1670 ret = mem_cgroup_resize_memsw_limit(memcg, val);
1671 break;
1672 default:
1673 ret = -EINVAL; /* should be BUG() ? */
1674 break;
1675 }
1676 return ret;
1677 }
1678
1679 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
1680 {
1681 struct mem_cgroup *mem;
1682 int type, name;
1683
1684 mem = mem_cgroup_from_cont(cont);
1685 type = MEMFILE_TYPE(event);
1686 name = MEMFILE_ATTR(event);
1687 switch (name) {
1688 case RES_MAX_USAGE:
1689 if (type == _MEM)
1690 res_counter_reset_max(&mem->res);
1691 else
1692 res_counter_reset_max(&mem->memsw);
1693 break;
1694 case RES_FAILCNT:
1695 if (type == _MEM)
1696 res_counter_reset_failcnt(&mem->res);
1697 else
1698 res_counter_reset_failcnt(&mem->memsw);
1699 break;
1700 }
1701 return 0;
1702 }
1703
1704 static const struct mem_cgroup_stat_desc {
1705 const char *msg;
1706 u64 unit;
1707 } mem_cgroup_stat_desc[] = {
1708 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1709 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
1710 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1711 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
1712 };
1713
1714 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1715 struct cgroup_map_cb *cb)
1716 {
1717 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1718 struct mem_cgroup_stat *stat = &mem_cont->stat;
1719 int i;
1720
1721 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1722 s64 val;
1723
1724 val = mem_cgroup_read_stat(stat, i);
1725 val *= mem_cgroup_stat_desc[i].unit;
1726 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
1727 }
1728 /* showing # of active pages */
1729 {
1730 unsigned long active_anon, inactive_anon;
1731 unsigned long active_file, inactive_file;
1732 unsigned long unevictable;
1733
1734 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1735 LRU_INACTIVE_ANON);
1736 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1737 LRU_ACTIVE_ANON);
1738 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1739 LRU_INACTIVE_FILE);
1740 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1741 LRU_ACTIVE_FILE);
1742 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1743 LRU_UNEVICTABLE);
1744
1745 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1746 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1747 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1748 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
1749 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1750
1751 }
1752 return 0;
1753 }
1754
1755
1756 static struct cftype mem_cgroup_files[] = {
1757 {
1758 .name = "usage_in_bytes",
1759 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
1760 .read_u64 = mem_cgroup_read,
1761 },
1762 {
1763 .name = "max_usage_in_bytes",
1764 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
1765 .trigger = mem_cgroup_reset,
1766 .read_u64 = mem_cgroup_read,
1767 },
1768 {
1769 .name = "limit_in_bytes",
1770 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
1771 .write_string = mem_cgroup_write,
1772 .read_u64 = mem_cgroup_read,
1773 },
1774 {
1775 .name = "failcnt",
1776 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
1777 .trigger = mem_cgroup_reset,
1778 .read_u64 = mem_cgroup_read,
1779 },
1780 {
1781 .name = "stat",
1782 .read_map = mem_control_stat_show,
1783 },
1784 {
1785 .name = "force_empty",
1786 .trigger = mem_cgroup_force_empty_write,
1787 },
1788 {
1789 .name = "use_hierarchy",
1790 .write_u64 = mem_cgroup_hierarchy_write,
1791 .read_u64 = mem_cgroup_hierarchy_read,
1792 },
1793 };
1794
1795 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1796 static struct cftype memsw_cgroup_files[] = {
1797 {
1798 .name = "memsw.usage_in_bytes",
1799 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
1800 .read_u64 = mem_cgroup_read,
1801 },
1802 {
1803 .name = "memsw.max_usage_in_bytes",
1804 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
1805 .trigger = mem_cgroup_reset,
1806 .read_u64 = mem_cgroup_read,
1807 },
1808 {
1809 .name = "memsw.limit_in_bytes",
1810 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
1811 .write_string = mem_cgroup_write,
1812 .read_u64 = mem_cgroup_read,
1813 },
1814 {
1815 .name = "memsw.failcnt",
1816 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
1817 .trigger = mem_cgroup_reset,
1818 .read_u64 = mem_cgroup_read,
1819 },
1820 };
1821
1822 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
1823 {
1824 if (!do_swap_account)
1825 return 0;
1826 return cgroup_add_files(cont, ss, memsw_cgroup_files,
1827 ARRAY_SIZE(memsw_cgroup_files));
1828 };
1829 #else
1830 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
1831 {
1832 return 0;
1833 }
1834 #endif
1835
1836 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1837 {
1838 struct mem_cgroup_per_node *pn;
1839 struct mem_cgroup_per_zone *mz;
1840 enum lru_list l;
1841 int zone, tmp = node;
1842 /*
1843 * This routine is called against possible nodes.
1844 * But it's BUG to call kmalloc() against offline node.
1845 *
1846 * TODO: this routine can waste much memory for nodes which will
1847 * never be onlined. It's better to use memory hotplug callback
1848 * function.
1849 */
1850 if (!node_state(node, N_NORMAL_MEMORY))
1851 tmp = -1;
1852 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
1853 if (!pn)
1854 return 1;
1855
1856 mem->info.nodeinfo[node] = pn;
1857 memset(pn, 0, sizeof(*pn));
1858
1859 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1860 mz = &pn->zoneinfo[zone];
1861 for_each_lru(l)
1862 INIT_LIST_HEAD(&mz->lists[l]);
1863 }
1864 return 0;
1865 }
1866
1867 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1868 {
1869 kfree(mem->info.nodeinfo[node]);
1870 }
1871
1872 static int mem_cgroup_size(void)
1873 {
1874 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
1875 return sizeof(struct mem_cgroup) + cpustat_size;
1876 }
1877
1878 static struct mem_cgroup *mem_cgroup_alloc(void)
1879 {
1880 struct mem_cgroup *mem;
1881 int size = mem_cgroup_size();
1882
1883 if (size < PAGE_SIZE)
1884 mem = kmalloc(size, GFP_KERNEL);
1885 else
1886 mem = vmalloc(size);
1887
1888 if (mem)
1889 memset(mem, 0, size);
1890 return mem;
1891 }
1892
1893 /*
1894 * At destroying mem_cgroup, references from swap_cgroup can remain.
1895 * (scanning all at force_empty is too costly...)
1896 *
1897 * Instead of clearing all references at force_empty, we remember
1898 * the number of reference from swap_cgroup and free mem_cgroup when
1899 * it goes down to 0.
1900 *
1901 * When mem_cgroup is destroyed, mem->obsolete will be set to 0 and
1902 * entry which points to this memcg will be ignore at swapin.
1903 *
1904 * Removal of cgroup itself succeeds regardless of refs from swap.
1905 */
1906
1907 static void mem_cgroup_free(struct mem_cgroup *mem)
1908 {
1909 int node;
1910
1911 if (atomic_read(&mem->refcnt) > 0)
1912 return;
1913
1914
1915 for_each_node_state(node, N_POSSIBLE)
1916 free_mem_cgroup_per_zone_info(mem, node);
1917
1918 if (mem_cgroup_size() < PAGE_SIZE)
1919 kfree(mem);
1920 else
1921 vfree(mem);
1922 }
1923
1924 static void mem_cgroup_get(struct mem_cgroup *mem)
1925 {
1926 atomic_inc(&mem->refcnt);
1927 }
1928
1929 static void mem_cgroup_put(struct mem_cgroup *mem)
1930 {
1931 if (atomic_dec_and_test(&mem->refcnt)) {
1932 if (!mem->obsolete)
1933 return;
1934 mem_cgroup_free(mem);
1935 }
1936 }
1937
1938
1939 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1940 static void __init enable_swap_cgroup(void)
1941 {
1942 if (!mem_cgroup_disabled() && really_do_swap_account)
1943 do_swap_account = 1;
1944 }
1945 #else
1946 static void __init enable_swap_cgroup(void)
1947 {
1948 }
1949 #endif
1950
1951 static struct cgroup_subsys_state *
1952 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1953 {
1954 struct mem_cgroup *mem, *parent;
1955 int node;
1956
1957 mem = mem_cgroup_alloc();
1958 if (!mem)
1959 return ERR_PTR(-ENOMEM);
1960
1961 for_each_node_state(node, N_POSSIBLE)
1962 if (alloc_mem_cgroup_per_zone_info(mem, node))
1963 goto free_out;
1964 /* root ? */
1965 if (cont->parent == NULL) {
1966 enable_swap_cgroup();
1967 parent = NULL;
1968 } else {
1969 parent = mem_cgroup_from_cont(cont->parent);
1970 mem->use_hierarchy = parent->use_hierarchy;
1971 }
1972
1973 if (parent && parent->use_hierarchy) {
1974 res_counter_init(&mem->res, &parent->res);
1975 res_counter_init(&mem->memsw, &parent->memsw);
1976 } else {
1977 res_counter_init(&mem->res, NULL);
1978 res_counter_init(&mem->memsw, NULL);
1979 }
1980
1981 mem->last_scanned_child = NULL;
1982
1983 return &mem->css;
1984 free_out:
1985 for_each_node_state(node, N_POSSIBLE)
1986 free_mem_cgroup_per_zone_info(mem, node);
1987 mem_cgroup_free(mem);
1988 return ERR_PTR(-ENOMEM);
1989 }
1990
1991 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1992 struct cgroup *cont)
1993 {
1994 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1995 mem->obsolete = 1;
1996 mem_cgroup_force_empty(mem, false);
1997 }
1998
1999 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2000 struct cgroup *cont)
2001 {
2002 mem_cgroup_free(mem_cgroup_from_cont(cont));
2003 }
2004
2005 static int mem_cgroup_populate(struct cgroup_subsys *ss,
2006 struct cgroup *cont)
2007 {
2008 int ret;
2009
2010 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2011 ARRAY_SIZE(mem_cgroup_files));
2012
2013 if (!ret)
2014 ret = register_memsw_files(cont, ss);
2015 return ret;
2016 }
2017
2018 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2019 struct cgroup *cont,
2020 struct cgroup *old_cont,
2021 struct task_struct *p)
2022 {
2023 /*
2024 * FIXME: It's better to move charges of this process from old
2025 * memcg to new memcg. But it's just on TODO-List now.
2026 */
2027 }
2028
2029 struct cgroup_subsys mem_cgroup_subsys = {
2030 .name = "memory",
2031 .subsys_id = mem_cgroup_subsys_id,
2032 .create = mem_cgroup_create,
2033 .pre_destroy = mem_cgroup_pre_destroy,
2034 .destroy = mem_cgroup_destroy,
2035 .populate = mem_cgroup_populate,
2036 .attach = mem_cgroup_move_task,
2037 .early_init = 0,
2038 };
2039
2040 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2041
2042 static int __init disable_swap_account(char *s)
2043 {
2044 really_do_swap_account = 0;
2045 return 1;
2046 }
2047 __setup("noswapaccount", disable_swap_account);
2048 #endif