]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/memcontrol.c
Merge remote-tracking branch 'mkp-scsi/4.10/scsi-fixes' into fixes
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <linux/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account 0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
129
130 /*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135 struct mem_cgroup_tree_per_node {
136 struct rb_root rb_root;
137 spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree {
141 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
142 };
143
144 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
145
146 /* for OOM */
147 struct mem_cgroup_eventfd_list {
148 struct list_head list;
149 struct eventfd_ctx *eventfd;
150 };
151
152 /*
153 * cgroup_event represents events which userspace want to receive.
154 */
155 struct mem_cgroup_event {
156 /*
157 * memcg which the event belongs to.
158 */
159 struct mem_cgroup *memcg;
160 /*
161 * eventfd to signal userspace about the event.
162 */
163 struct eventfd_ctx *eventfd;
164 /*
165 * Each of these stored in a list by the cgroup.
166 */
167 struct list_head list;
168 /*
169 * register_event() callback will be used to add new userspace
170 * waiter for changes related to this event. Use eventfd_signal()
171 * on eventfd to send notification to userspace.
172 */
173 int (*register_event)(struct mem_cgroup *memcg,
174 struct eventfd_ctx *eventfd, const char *args);
175 /*
176 * unregister_event() callback will be called when userspace closes
177 * the eventfd or on cgroup removing. This callback must be set,
178 * if you want provide notification functionality.
179 */
180 void (*unregister_event)(struct mem_cgroup *memcg,
181 struct eventfd_ctx *eventfd);
182 /*
183 * All fields below needed to unregister event when
184 * userspace closes eventfd.
185 */
186 poll_table pt;
187 wait_queue_head_t *wqh;
188 wait_queue_t wait;
189 struct work_struct remove;
190 };
191
192 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
194
195 /* Stuffs for move charges at task migration. */
196 /*
197 * Types of charges to be moved.
198 */
199 #define MOVE_ANON 0x1U
200 #define MOVE_FILE 0x2U
201 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
202
203 /* "mc" and its members are protected by cgroup_mutex */
204 static struct move_charge_struct {
205 spinlock_t lock; /* for from, to */
206 struct mm_struct *mm;
207 struct mem_cgroup *from;
208 struct mem_cgroup *to;
209 unsigned long flags;
210 unsigned long precharge;
211 unsigned long moved_charge;
212 unsigned long moved_swap;
213 struct task_struct *moving_task; /* a task moving charges */
214 wait_queue_head_t waitq; /* a waitq for other context */
215 } mc = {
216 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
217 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
218 };
219
220 /*
221 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222 * limit reclaim to prevent infinite loops, if they ever occur.
223 */
224 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
225 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
226
227 enum charge_type {
228 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
229 MEM_CGROUP_CHARGE_TYPE_ANON,
230 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
231 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
232 NR_CHARGE_TYPE,
233 };
234
235 /* for encoding cft->private value on file */
236 enum res_type {
237 _MEM,
238 _MEMSWAP,
239 _OOM_TYPE,
240 _KMEM,
241 _TCP,
242 };
243
244 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
246 #define MEMFILE_ATTR(val) ((val) & 0xffff)
247 /* Used for OOM nofiier */
248 #define OOM_CONTROL (0)
249
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252 {
253 if (!memcg)
254 memcg = root_mem_cgroup;
255 return &memcg->vmpressure;
256 }
257
258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259 {
260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261 }
262
263 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
264 {
265 return (memcg == root_mem_cgroup);
266 }
267
268 #ifndef CONFIG_SLOB
269 /*
270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
271 * The main reason for not using cgroup id for this:
272 * this works better in sparse environments, where we have a lot of memcgs,
273 * but only a few kmem-limited. Or also, if we have, for instance, 200
274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
275 * 200 entry array for that.
276 *
277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
278 * will double each time we have to increase it.
279 */
280 static DEFINE_IDA(memcg_cache_ida);
281 int memcg_nr_cache_ids;
282
283 /* Protects memcg_nr_cache_ids */
284 static DECLARE_RWSEM(memcg_cache_ids_sem);
285
286 void memcg_get_cache_ids(void)
287 {
288 down_read(&memcg_cache_ids_sem);
289 }
290
291 void memcg_put_cache_ids(void)
292 {
293 up_read(&memcg_cache_ids_sem);
294 }
295
296 /*
297 * MIN_SIZE is different than 1, because we would like to avoid going through
298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
299 * cgroups is a reasonable guess. In the future, it could be a parameter or
300 * tunable, but that is strictly not necessary.
301 *
302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303 * this constant directly from cgroup, but it is understandable that this is
304 * better kept as an internal representation in cgroup.c. In any case, the
305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
306 * increase ours as well if it increases.
307 */
308 #define MEMCG_CACHES_MIN_SIZE 4
309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
310
311 /*
312 * A lot of the calls to the cache allocation functions are expected to be
313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314 * conditional to this static branch, we'll have to allow modules that does
315 * kmem_cache_alloc and the such to see this symbol as well
316 */
317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318 EXPORT_SYMBOL(memcg_kmem_enabled_key);
319
320 #endif /* !CONFIG_SLOB */
321
322 /**
323 * mem_cgroup_css_from_page - css of the memcg associated with a page
324 * @page: page of interest
325 *
326 * If memcg is bound to the default hierarchy, css of the memcg associated
327 * with @page is returned. The returned css remains associated with @page
328 * until it is released.
329 *
330 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
331 * is returned.
332 */
333 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
334 {
335 struct mem_cgroup *memcg;
336
337 memcg = page->mem_cgroup;
338
339 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
340 memcg = root_mem_cgroup;
341
342 return &memcg->css;
343 }
344
345 /**
346 * page_cgroup_ino - return inode number of the memcg a page is charged to
347 * @page: the page
348 *
349 * Look up the closest online ancestor of the memory cgroup @page is charged to
350 * and return its inode number or 0 if @page is not charged to any cgroup. It
351 * is safe to call this function without holding a reference to @page.
352 *
353 * Note, this function is inherently racy, because there is nothing to prevent
354 * the cgroup inode from getting torn down and potentially reallocated a moment
355 * after page_cgroup_ino() returns, so it only should be used by callers that
356 * do not care (such as procfs interfaces).
357 */
358 ino_t page_cgroup_ino(struct page *page)
359 {
360 struct mem_cgroup *memcg;
361 unsigned long ino = 0;
362
363 rcu_read_lock();
364 memcg = READ_ONCE(page->mem_cgroup);
365 while (memcg && !(memcg->css.flags & CSS_ONLINE))
366 memcg = parent_mem_cgroup(memcg);
367 if (memcg)
368 ino = cgroup_ino(memcg->css.cgroup);
369 rcu_read_unlock();
370 return ino;
371 }
372
373 static struct mem_cgroup_per_node *
374 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
375 {
376 int nid = page_to_nid(page);
377
378 return memcg->nodeinfo[nid];
379 }
380
381 static struct mem_cgroup_tree_per_node *
382 soft_limit_tree_node(int nid)
383 {
384 return soft_limit_tree.rb_tree_per_node[nid];
385 }
386
387 static struct mem_cgroup_tree_per_node *
388 soft_limit_tree_from_page(struct page *page)
389 {
390 int nid = page_to_nid(page);
391
392 return soft_limit_tree.rb_tree_per_node[nid];
393 }
394
395 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
396 struct mem_cgroup_tree_per_node *mctz,
397 unsigned long new_usage_in_excess)
398 {
399 struct rb_node **p = &mctz->rb_root.rb_node;
400 struct rb_node *parent = NULL;
401 struct mem_cgroup_per_node *mz_node;
402
403 if (mz->on_tree)
404 return;
405
406 mz->usage_in_excess = new_usage_in_excess;
407 if (!mz->usage_in_excess)
408 return;
409 while (*p) {
410 parent = *p;
411 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
412 tree_node);
413 if (mz->usage_in_excess < mz_node->usage_in_excess)
414 p = &(*p)->rb_left;
415 /*
416 * We can't avoid mem cgroups that are over their soft
417 * limit by the same amount
418 */
419 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
420 p = &(*p)->rb_right;
421 }
422 rb_link_node(&mz->tree_node, parent, p);
423 rb_insert_color(&mz->tree_node, &mctz->rb_root);
424 mz->on_tree = true;
425 }
426
427 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
428 struct mem_cgroup_tree_per_node *mctz)
429 {
430 if (!mz->on_tree)
431 return;
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
434 }
435
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
438 {
439 unsigned long flags;
440
441 spin_lock_irqsave(&mctz->lock, flags);
442 __mem_cgroup_remove_exceeded(mz, mctz);
443 spin_unlock_irqrestore(&mctz->lock, flags);
444 }
445
446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447 {
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 unsigned long excess = 0;
451
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
454
455 return excess;
456 }
457
458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459 {
460 unsigned long excess;
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
463
464 mctz = soft_limit_tree_from_page(page);
465 /*
466 * Necessary to update all ancestors when hierarchy is used.
467 * because their event counter is not touched.
468 */
469 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
470 mz = mem_cgroup_page_nodeinfo(memcg, page);
471 excess = soft_limit_excess(memcg);
472 /*
473 * We have to update the tree if mz is on RB-tree or
474 * mem is over its softlimit.
475 */
476 if (excess || mz->on_tree) {
477 unsigned long flags;
478
479 spin_lock_irqsave(&mctz->lock, flags);
480 /* if on-tree, remove it */
481 if (mz->on_tree)
482 __mem_cgroup_remove_exceeded(mz, mctz);
483 /*
484 * Insert again. mz->usage_in_excess will be updated.
485 * If excess is 0, no tree ops.
486 */
487 __mem_cgroup_insert_exceeded(mz, mctz, excess);
488 spin_unlock_irqrestore(&mctz->lock, flags);
489 }
490 }
491 }
492
493 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
494 {
495 struct mem_cgroup_tree_per_node *mctz;
496 struct mem_cgroup_per_node *mz;
497 int nid;
498
499 for_each_node(nid) {
500 mz = mem_cgroup_nodeinfo(memcg, nid);
501 mctz = soft_limit_tree_node(nid);
502 mem_cgroup_remove_exceeded(mz, mctz);
503 }
504 }
505
506 static struct mem_cgroup_per_node *
507 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
508 {
509 struct rb_node *rightmost = NULL;
510 struct mem_cgroup_per_node *mz;
511
512 retry:
513 mz = NULL;
514 rightmost = rb_last(&mctz->rb_root);
515 if (!rightmost)
516 goto done; /* Nothing to reclaim from */
517
518 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
519 /*
520 * Remove the node now but someone else can add it back,
521 * we will to add it back at the end of reclaim to its correct
522 * position in the tree.
523 */
524 __mem_cgroup_remove_exceeded(mz, mctz);
525 if (!soft_limit_excess(mz->memcg) ||
526 !css_tryget_online(&mz->memcg->css))
527 goto retry;
528 done:
529 return mz;
530 }
531
532 static struct mem_cgroup_per_node *
533 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
534 {
535 struct mem_cgroup_per_node *mz;
536
537 spin_lock_irq(&mctz->lock);
538 mz = __mem_cgroup_largest_soft_limit_node(mctz);
539 spin_unlock_irq(&mctz->lock);
540 return mz;
541 }
542
543 /*
544 * Return page count for single (non recursive) @memcg.
545 *
546 * Implementation Note: reading percpu statistics for memcg.
547 *
548 * Both of vmstat[] and percpu_counter has threshold and do periodic
549 * synchronization to implement "quick" read. There are trade-off between
550 * reading cost and precision of value. Then, we may have a chance to implement
551 * a periodic synchronization of counter in memcg's counter.
552 *
553 * But this _read() function is used for user interface now. The user accounts
554 * memory usage by memory cgroup and he _always_ requires exact value because
555 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
556 * have to visit all online cpus and make sum. So, for now, unnecessary
557 * synchronization is not implemented. (just implemented for cpu hotplug)
558 *
559 * If there are kernel internal actions which can make use of some not-exact
560 * value, and reading all cpu value can be performance bottleneck in some
561 * common workload, threshold and synchronization as vmstat[] should be
562 * implemented.
563 */
564 static unsigned long
565 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
566 {
567 long val = 0;
568 int cpu;
569
570 /* Per-cpu values can be negative, use a signed accumulator */
571 for_each_possible_cpu(cpu)
572 val += per_cpu(memcg->stat->count[idx], cpu);
573 /*
574 * Summing races with updates, so val may be negative. Avoid exposing
575 * transient negative values.
576 */
577 if (val < 0)
578 val = 0;
579 return val;
580 }
581
582 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
583 enum mem_cgroup_events_index idx)
584 {
585 unsigned long val = 0;
586 int cpu;
587
588 for_each_possible_cpu(cpu)
589 val += per_cpu(memcg->stat->events[idx], cpu);
590 return val;
591 }
592
593 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
594 struct page *page,
595 bool compound, int nr_pages)
596 {
597 /*
598 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
599 * counted as CACHE even if it's on ANON LRU.
600 */
601 if (PageAnon(page))
602 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
603 nr_pages);
604 else
605 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
606 nr_pages);
607
608 if (compound) {
609 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
610 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
611 nr_pages);
612 }
613
614 /* pagein of a big page is an event. So, ignore page size */
615 if (nr_pages > 0)
616 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
617 else {
618 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
619 nr_pages = -nr_pages; /* for event */
620 }
621
622 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
623 }
624
625 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
626 int nid, unsigned int lru_mask)
627 {
628 unsigned long nr = 0;
629 struct mem_cgroup_per_node *mz;
630 enum lru_list lru;
631
632 VM_BUG_ON((unsigned)nid >= nr_node_ids);
633
634 for_each_lru(lru) {
635 if (!(BIT(lru) & lru_mask))
636 continue;
637 mz = mem_cgroup_nodeinfo(memcg, nid);
638 nr += mz->lru_size[lru];
639 }
640 return nr;
641 }
642
643 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
644 unsigned int lru_mask)
645 {
646 unsigned long nr = 0;
647 int nid;
648
649 for_each_node_state(nid, N_MEMORY)
650 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
651 return nr;
652 }
653
654 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
655 enum mem_cgroup_events_target target)
656 {
657 unsigned long val, next;
658
659 val = __this_cpu_read(memcg->stat->nr_page_events);
660 next = __this_cpu_read(memcg->stat->targets[target]);
661 /* from time_after() in jiffies.h */
662 if ((long)next - (long)val < 0) {
663 switch (target) {
664 case MEM_CGROUP_TARGET_THRESH:
665 next = val + THRESHOLDS_EVENTS_TARGET;
666 break;
667 case MEM_CGROUP_TARGET_SOFTLIMIT:
668 next = val + SOFTLIMIT_EVENTS_TARGET;
669 break;
670 case MEM_CGROUP_TARGET_NUMAINFO:
671 next = val + NUMAINFO_EVENTS_TARGET;
672 break;
673 default:
674 break;
675 }
676 __this_cpu_write(memcg->stat->targets[target], next);
677 return true;
678 }
679 return false;
680 }
681
682 /*
683 * Check events in order.
684 *
685 */
686 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
687 {
688 /* threshold event is triggered in finer grain than soft limit */
689 if (unlikely(mem_cgroup_event_ratelimit(memcg,
690 MEM_CGROUP_TARGET_THRESH))) {
691 bool do_softlimit;
692 bool do_numainfo __maybe_unused;
693
694 do_softlimit = mem_cgroup_event_ratelimit(memcg,
695 MEM_CGROUP_TARGET_SOFTLIMIT);
696 #if MAX_NUMNODES > 1
697 do_numainfo = mem_cgroup_event_ratelimit(memcg,
698 MEM_CGROUP_TARGET_NUMAINFO);
699 #endif
700 mem_cgroup_threshold(memcg);
701 if (unlikely(do_softlimit))
702 mem_cgroup_update_tree(memcg, page);
703 #if MAX_NUMNODES > 1
704 if (unlikely(do_numainfo))
705 atomic_inc(&memcg->numainfo_events);
706 #endif
707 }
708 }
709
710 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
711 {
712 /*
713 * mm_update_next_owner() may clear mm->owner to NULL
714 * if it races with swapoff, page migration, etc.
715 * So this can be called with p == NULL.
716 */
717 if (unlikely(!p))
718 return NULL;
719
720 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
721 }
722 EXPORT_SYMBOL(mem_cgroup_from_task);
723
724 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
725 {
726 struct mem_cgroup *memcg = NULL;
727
728 rcu_read_lock();
729 do {
730 /*
731 * Page cache insertions can happen withou an
732 * actual mm context, e.g. during disk probing
733 * on boot, loopback IO, acct() writes etc.
734 */
735 if (unlikely(!mm))
736 memcg = root_mem_cgroup;
737 else {
738 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
739 if (unlikely(!memcg))
740 memcg = root_mem_cgroup;
741 }
742 } while (!css_tryget_online(&memcg->css));
743 rcu_read_unlock();
744 return memcg;
745 }
746
747 /**
748 * mem_cgroup_iter - iterate over memory cgroup hierarchy
749 * @root: hierarchy root
750 * @prev: previously returned memcg, NULL on first invocation
751 * @reclaim: cookie for shared reclaim walks, NULL for full walks
752 *
753 * Returns references to children of the hierarchy below @root, or
754 * @root itself, or %NULL after a full round-trip.
755 *
756 * Caller must pass the return value in @prev on subsequent
757 * invocations for reference counting, or use mem_cgroup_iter_break()
758 * to cancel a hierarchy walk before the round-trip is complete.
759 *
760 * Reclaimers can specify a zone and a priority level in @reclaim to
761 * divide up the memcgs in the hierarchy among all concurrent
762 * reclaimers operating on the same zone and priority.
763 */
764 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
765 struct mem_cgroup *prev,
766 struct mem_cgroup_reclaim_cookie *reclaim)
767 {
768 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
769 struct cgroup_subsys_state *css = NULL;
770 struct mem_cgroup *memcg = NULL;
771 struct mem_cgroup *pos = NULL;
772
773 if (mem_cgroup_disabled())
774 return NULL;
775
776 if (!root)
777 root = root_mem_cgroup;
778
779 if (prev && !reclaim)
780 pos = prev;
781
782 if (!root->use_hierarchy && root != root_mem_cgroup) {
783 if (prev)
784 goto out;
785 return root;
786 }
787
788 rcu_read_lock();
789
790 if (reclaim) {
791 struct mem_cgroup_per_node *mz;
792
793 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
794 iter = &mz->iter[reclaim->priority];
795
796 if (prev && reclaim->generation != iter->generation)
797 goto out_unlock;
798
799 while (1) {
800 pos = READ_ONCE(iter->position);
801 if (!pos || css_tryget(&pos->css))
802 break;
803 /*
804 * css reference reached zero, so iter->position will
805 * be cleared by ->css_released. However, we should not
806 * rely on this happening soon, because ->css_released
807 * is called from a work queue, and by busy-waiting we
808 * might block it. So we clear iter->position right
809 * away.
810 */
811 (void)cmpxchg(&iter->position, pos, NULL);
812 }
813 }
814
815 if (pos)
816 css = &pos->css;
817
818 for (;;) {
819 css = css_next_descendant_pre(css, &root->css);
820 if (!css) {
821 /*
822 * Reclaimers share the hierarchy walk, and a
823 * new one might jump in right at the end of
824 * the hierarchy - make sure they see at least
825 * one group and restart from the beginning.
826 */
827 if (!prev)
828 continue;
829 break;
830 }
831
832 /*
833 * Verify the css and acquire a reference. The root
834 * is provided by the caller, so we know it's alive
835 * and kicking, and don't take an extra reference.
836 */
837 memcg = mem_cgroup_from_css(css);
838
839 if (css == &root->css)
840 break;
841
842 if (css_tryget(css))
843 break;
844
845 memcg = NULL;
846 }
847
848 if (reclaim) {
849 /*
850 * The position could have already been updated by a competing
851 * thread, so check that the value hasn't changed since we read
852 * it to avoid reclaiming from the same cgroup twice.
853 */
854 (void)cmpxchg(&iter->position, pos, memcg);
855
856 if (pos)
857 css_put(&pos->css);
858
859 if (!memcg)
860 iter->generation++;
861 else if (!prev)
862 reclaim->generation = iter->generation;
863 }
864
865 out_unlock:
866 rcu_read_unlock();
867 out:
868 if (prev && prev != root)
869 css_put(&prev->css);
870
871 return memcg;
872 }
873
874 /**
875 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
876 * @root: hierarchy root
877 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
878 */
879 void mem_cgroup_iter_break(struct mem_cgroup *root,
880 struct mem_cgroup *prev)
881 {
882 if (!root)
883 root = root_mem_cgroup;
884 if (prev && prev != root)
885 css_put(&prev->css);
886 }
887
888 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
889 {
890 struct mem_cgroup *memcg = dead_memcg;
891 struct mem_cgroup_reclaim_iter *iter;
892 struct mem_cgroup_per_node *mz;
893 int nid;
894 int i;
895
896 while ((memcg = parent_mem_cgroup(memcg))) {
897 for_each_node(nid) {
898 mz = mem_cgroup_nodeinfo(memcg, nid);
899 for (i = 0; i <= DEF_PRIORITY; i++) {
900 iter = &mz->iter[i];
901 cmpxchg(&iter->position,
902 dead_memcg, NULL);
903 }
904 }
905 }
906 }
907
908 /*
909 * Iteration constructs for visiting all cgroups (under a tree). If
910 * loops are exited prematurely (break), mem_cgroup_iter_break() must
911 * be used for reference counting.
912 */
913 #define for_each_mem_cgroup_tree(iter, root) \
914 for (iter = mem_cgroup_iter(root, NULL, NULL); \
915 iter != NULL; \
916 iter = mem_cgroup_iter(root, iter, NULL))
917
918 #define for_each_mem_cgroup(iter) \
919 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
920 iter != NULL; \
921 iter = mem_cgroup_iter(NULL, iter, NULL))
922
923 /**
924 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
925 * @memcg: hierarchy root
926 * @fn: function to call for each task
927 * @arg: argument passed to @fn
928 *
929 * This function iterates over tasks attached to @memcg or to any of its
930 * descendants and calls @fn for each task. If @fn returns a non-zero
931 * value, the function breaks the iteration loop and returns the value.
932 * Otherwise, it will iterate over all tasks and return 0.
933 *
934 * This function must not be called for the root memory cgroup.
935 */
936 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
937 int (*fn)(struct task_struct *, void *), void *arg)
938 {
939 struct mem_cgroup *iter;
940 int ret = 0;
941
942 BUG_ON(memcg == root_mem_cgroup);
943
944 for_each_mem_cgroup_tree(iter, memcg) {
945 struct css_task_iter it;
946 struct task_struct *task;
947
948 css_task_iter_start(&iter->css, &it);
949 while (!ret && (task = css_task_iter_next(&it)))
950 ret = fn(task, arg);
951 css_task_iter_end(&it);
952 if (ret) {
953 mem_cgroup_iter_break(memcg, iter);
954 break;
955 }
956 }
957 return ret;
958 }
959
960 /**
961 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
962 * @page: the page
963 * @zone: zone of the page
964 *
965 * This function is only safe when following the LRU page isolation
966 * and putback protocol: the LRU lock must be held, and the page must
967 * either be PageLRU() or the caller must have isolated/allocated it.
968 */
969 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
970 {
971 struct mem_cgroup_per_node *mz;
972 struct mem_cgroup *memcg;
973 struct lruvec *lruvec;
974
975 if (mem_cgroup_disabled()) {
976 lruvec = &pgdat->lruvec;
977 goto out;
978 }
979
980 memcg = page->mem_cgroup;
981 /*
982 * Swapcache readahead pages are added to the LRU - and
983 * possibly migrated - before they are charged.
984 */
985 if (!memcg)
986 memcg = root_mem_cgroup;
987
988 mz = mem_cgroup_page_nodeinfo(memcg, page);
989 lruvec = &mz->lruvec;
990 out:
991 /*
992 * Since a node can be onlined after the mem_cgroup was created,
993 * we have to be prepared to initialize lruvec->zone here;
994 * and if offlined then reonlined, we need to reinitialize it.
995 */
996 if (unlikely(lruvec->pgdat != pgdat))
997 lruvec->pgdat = pgdat;
998 return lruvec;
999 }
1000
1001 /**
1002 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1003 * @lruvec: mem_cgroup per zone lru vector
1004 * @lru: index of lru list the page is sitting on
1005 * @nr_pages: positive when adding or negative when removing
1006 *
1007 * This function must be called under lru_lock, just before a page is added
1008 * to or just after a page is removed from an lru list (that ordering being
1009 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1010 */
1011 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1012 int nr_pages)
1013 {
1014 struct mem_cgroup_per_node *mz;
1015 unsigned long *lru_size;
1016 long size;
1017 bool empty;
1018
1019 if (mem_cgroup_disabled())
1020 return;
1021
1022 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1023 lru_size = mz->lru_size + lru;
1024 empty = list_empty(lruvec->lists + lru);
1025
1026 if (nr_pages < 0)
1027 *lru_size += nr_pages;
1028
1029 size = *lru_size;
1030 if (WARN_ONCE(size < 0 || empty != !size,
1031 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
1032 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1033 VM_BUG_ON(1);
1034 *lru_size = 0;
1035 }
1036
1037 if (nr_pages > 0)
1038 *lru_size += nr_pages;
1039 }
1040
1041 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1042 {
1043 struct mem_cgroup *task_memcg;
1044 struct task_struct *p;
1045 bool ret;
1046
1047 p = find_lock_task_mm(task);
1048 if (p) {
1049 task_memcg = get_mem_cgroup_from_mm(p->mm);
1050 task_unlock(p);
1051 } else {
1052 /*
1053 * All threads may have already detached their mm's, but the oom
1054 * killer still needs to detect if they have already been oom
1055 * killed to prevent needlessly killing additional tasks.
1056 */
1057 rcu_read_lock();
1058 task_memcg = mem_cgroup_from_task(task);
1059 css_get(&task_memcg->css);
1060 rcu_read_unlock();
1061 }
1062 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1063 css_put(&task_memcg->css);
1064 return ret;
1065 }
1066
1067 /**
1068 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1069 * @memcg: the memory cgroup
1070 *
1071 * Returns the maximum amount of memory @mem can be charged with, in
1072 * pages.
1073 */
1074 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1075 {
1076 unsigned long margin = 0;
1077 unsigned long count;
1078 unsigned long limit;
1079
1080 count = page_counter_read(&memcg->memory);
1081 limit = READ_ONCE(memcg->memory.limit);
1082 if (count < limit)
1083 margin = limit - count;
1084
1085 if (do_memsw_account()) {
1086 count = page_counter_read(&memcg->memsw);
1087 limit = READ_ONCE(memcg->memsw.limit);
1088 if (count <= limit)
1089 margin = min(margin, limit - count);
1090 else
1091 margin = 0;
1092 }
1093
1094 return margin;
1095 }
1096
1097 /*
1098 * A routine for checking "mem" is under move_account() or not.
1099 *
1100 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1101 * moving cgroups. This is for waiting at high-memory pressure
1102 * caused by "move".
1103 */
1104 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1105 {
1106 struct mem_cgroup *from;
1107 struct mem_cgroup *to;
1108 bool ret = false;
1109 /*
1110 * Unlike task_move routines, we access mc.to, mc.from not under
1111 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1112 */
1113 spin_lock(&mc.lock);
1114 from = mc.from;
1115 to = mc.to;
1116 if (!from)
1117 goto unlock;
1118
1119 ret = mem_cgroup_is_descendant(from, memcg) ||
1120 mem_cgroup_is_descendant(to, memcg);
1121 unlock:
1122 spin_unlock(&mc.lock);
1123 return ret;
1124 }
1125
1126 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1127 {
1128 if (mc.moving_task && current != mc.moving_task) {
1129 if (mem_cgroup_under_move(memcg)) {
1130 DEFINE_WAIT(wait);
1131 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1132 /* moving charge context might have finished. */
1133 if (mc.moving_task)
1134 schedule();
1135 finish_wait(&mc.waitq, &wait);
1136 return true;
1137 }
1138 }
1139 return false;
1140 }
1141
1142 #define K(x) ((x) << (PAGE_SHIFT-10))
1143 /**
1144 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1145 * @memcg: The memory cgroup that went over limit
1146 * @p: Task that is going to be killed
1147 *
1148 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1149 * enabled
1150 */
1151 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1152 {
1153 struct mem_cgroup *iter;
1154 unsigned int i;
1155
1156 rcu_read_lock();
1157
1158 if (p) {
1159 pr_info("Task in ");
1160 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1161 pr_cont(" killed as a result of limit of ");
1162 } else {
1163 pr_info("Memory limit reached of cgroup ");
1164 }
1165
1166 pr_cont_cgroup_path(memcg->css.cgroup);
1167 pr_cont("\n");
1168
1169 rcu_read_unlock();
1170
1171 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1172 K((u64)page_counter_read(&memcg->memory)),
1173 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1174 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1175 K((u64)page_counter_read(&memcg->memsw)),
1176 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1177 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1178 K((u64)page_counter_read(&memcg->kmem)),
1179 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1180
1181 for_each_mem_cgroup_tree(iter, memcg) {
1182 pr_info("Memory cgroup stats for ");
1183 pr_cont_cgroup_path(iter->css.cgroup);
1184 pr_cont(":");
1185
1186 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1187 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1188 continue;
1189 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1190 K(mem_cgroup_read_stat(iter, i)));
1191 }
1192
1193 for (i = 0; i < NR_LRU_LISTS; i++)
1194 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1195 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1196
1197 pr_cont("\n");
1198 }
1199 }
1200
1201 /*
1202 * This function returns the number of memcg under hierarchy tree. Returns
1203 * 1(self count) if no children.
1204 */
1205 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1206 {
1207 int num = 0;
1208 struct mem_cgroup *iter;
1209
1210 for_each_mem_cgroup_tree(iter, memcg)
1211 num++;
1212 return num;
1213 }
1214
1215 /*
1216 * Return the memory (and swap, if configured) limit for a memcg.
1217 */
1218 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1219 {
1220 unsigned long limit;
1221
1222 limit = memcg->memory.limit;
1223 if (mem_cgroup_swappiness(memcg)) {
1224 unsigned long memsw_limit;
1225 unsigned long swap_limit;
1226
1227 memsw_limit = memcg->memsw.limit;
1228 swap_limit = memcg->swap.limit;
1229 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1230 limit = min(limit + swap_limit, memsw_limit);
1231 }
1232 return limit;
1233 }
1234
1235 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1236 int order)
1237 {
1238 struct oom_control oc = {
1239 .zonelist = NULL,
1240 .nodemask = NULL,
1241 .memcg = memcg,
1242 .gfp_mask = gfp_mask,
1243 .order = order,
1244 };
1245 bool ret;
1246
1247 mutex_lock(&oom_lock);
1248 ret = out_of_memory(&oc);
1249 mutex_unlock(&oom_lock);
1250 return ret;
1251 }
1252
1253 #if MAX_NUMNODES > 1
1254
1255 /**
1256 * test_mem_cgroup_node_reclaimable
1257 * @memcg: the target memcg
1258 * @nid: the node ID to be checked.
1259 * @noswap : specify true here if the user wants flle only information.
1260 *
1261 * This function returns whether the specified memcg contains any
1262 * reclaimable pages on a node. Returns true if there are any reclaimable
1263 * pages in the node.
1264 */
1265 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1266 int nid, bool noswap)
1267 {
1268 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1269 return true;
1270 if (noswap || !total_swap_pages)
1271 return false;
1272 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1273 return true;
1274 return false;
1275
1276 }
1277
1278 /*
1279 * Always updating the nodemask is not very good - even if we have an empty
1280 * list or the wrong list here, we can start from some node and traverse all
1281 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1282 *
1283 */
1284 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1285 {
1286 int nid;
1287 /*
1288 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1289 * pagein/pageout changes since the last update.
1290 */
1291 if (!atomic_read(&memcg->numainfo_events))
1292 return;
1293 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1294 return;
1295
1296 /* make a nodemask where this memcg uses memory from */
1297 memcg->scan_nodes = node_states[N_MEMORY];
1298
1299 for_each_node_mask(nid, node_states[N_MEMORY]) {
1300
1301 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1302 node_clear(nid, memcg->scan_nodes);
1303 }
1304
1305 atomic_set(&memcg->numainfo_events, 0);
1306 atomic_set(&memcg->numainfo_updating, 0);
1307 }
1308
1309 /*
1310 * Selecting a node where we start reclaim from. Because what we need is just
1311 * reducing usage counter, start from anywhere is O,K. Considering
1312 * memory reclaim from current node, there are pros. and cons.
1313 *
1314 * Freeing memory from current node means freeing memory from a node which
1315 * we'll use or we've used. So, it may make LRU bad. And if several threads
1316 * hit limits, it will see a contention on a node. But freeing from remote
1317 * node means more costs for memory reclaim because of memory latency.
1318 *
1319 * Now, we use round-robin. Better algorithm is welcomed.
1320 */
1321 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1322 {
1323 int node;
1324
1325 mem_cgroup_may_update_nodemask(memcg);
1326 node = memcg->last_scanned_node;
1327
1328 node = next_node_in(node, memcg->scan_nodes);
1329 /*
1330 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1331 * last time it really checked all the LRUs due to rate limiting.
1332 * Fallback to the current node in that case for simplicity.
1333 */
1334 if (unlikely(node == MAX_NUMNODES))
1335 node = numa_node_id();
1336
1337 memcg->last_scanned_node = node;
1338 return node;
1339 }
1340 #else
1341 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1342 {
1343 return 0;
1344 }
1345 #endif
1346
1347 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1348 pg_data_t *pgdat,
1349 gfp_t gfp_mask,
1350 unsigned long *total_scanned)
1351 {
1352 struct mem_cgroup *victim = NULL;
1353 int total = 0;
1354 int loop = 0;
1355 unsigned long excess;
1356 unsigned long nr_scanned;
1357 struct mem_cgroup_reclaim_cookie reclaim = {
1358 .pgdat = pgdat,
1359 .priority = 0,
1360 };
1361
1362 excess = soft_limit_excess(root_memcg);
1363
1364 while (1) {
1365 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1366 if (!victim) {
1367 loop++;
1368 if (loop >= 2) {
1369 /*
1370 * If we have not been able to reclaim
1371 * anything, it might because there are
1372 * no reclaimable pages under this hierarchy
1373 */
1374 if (!total)
1375 break;
1376 /*
1377 * We want to do more targeted reclaim.
1378 * excess >> 2 is not to excessive so as to
1379 * reclaim too much, nor too less that we keep
1380 * coming back to reclaim from this cgroup
1381 */
1382 if (total >= (excess >> 2) ||
1383 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1384 break;
1385 }
1386 continue;
1387 }
1388 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1389 pgdat, &nr_scanned);
1390 *total_scanned += nr_scanned;
1391 if (!soft_limit_excess(root_memcg))
1392 break;
1393 }
1394 mem_cgroup_iter_break(root_memcg, victim);
1395 return total;
1396 }
1397
1398 #ifdef CONFIG_LOCKDEP
1399 static struct lockdep_map memcg_oom_lock_dep_map = {
1400 .name = "memcg_oom_lock",
1401 };
1402 #endif
1403
1404 static DEFINE_SPINLOCK(memcg_oom_lock);
1405
1406 /*
1407 * Check OOM-Killer is already running under our hierarchy.
1408 * If someone is running, return false.
1409 */
1410 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1411 {
1412 struct mem_cgroup *iter, *failed = NULL;
1413
1414 spin_lock(&memcg_oom_lock);
1415
1416 for_each_mem_cgroup_tree(iter, memcg) {
1417 if (iter->oom_lock) {
1418 /*
1419 * this subtree of our hierarchy is already locked
1420 * so we cannot give a lock.
1421 */
1422 failed = iter;
1423 mem_cgroup_iter_break(memcg, iter);
1424 break;
1425 } else
1426 iter->oom_lock = true;
1427 }
1428
1429 if (failed) {
1430 /*
1431 * OK, we failed to lock the whole subtree so we have
1432 * to clean up what we set up to the failing subtree
1433 */
1434 for_each_mem_cgroup_tree(iter, memcg) {
1435 if (iter == failed) {
1436 mem_cgroup_iter_break(memcg, iter);
1437 break;
1438 }
1439 iter->oom_lock = false;
1440 }
1441 } else
1442 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1443
1444 spin_unlock(&memcg_oom_lock);
1445
1446 return !failed;
1447 }
1448
1449 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1450 {
1451 struct mem_cgroup *iter;
1452
1453 spin_lock(&memcg_oom_lock);
1454 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1455 for_each_mem_cgroup_tree(iter, memcg)
1456 iter->oom_lock = false;
1457 spin_unlock(&memcg_oom_lock);
1458 }
1459
1460 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1461 {
1462 struct mem_cgroup *iter;
1463
1464 spin_lock(&memcg_oom_lock);
1465 for_each_mem_cgroup_tree(iter, memcg)
1466 iter->under_oom++;
1467 spin_unlock(&memcg_oom_lock);
1468 }
1469
1470 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1471 {
1472 struct mem_cgroup *iter;
1473
1474 /*
1475 * When a new child is created while the hierarchy is under oom,
1476 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1477 */
1478 spin_lock(&memcg_oom_lock);
1479 for_each_mem_cgroup_tree(iter, memcg)
1480 if (iter->under_oom > 0)
1481 iter->under_oom--;
1482 spin_unlock(&memcg_oom_lock);
1483 }
1484
1485 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1486
1487 struct oom_wait_info {
1488 struct mem_cgroup *memcg;
1489 wait_queue_t wait;
1490 };
1491
1492 static int memcg_oom_wake_function(wait_queue_t *wait,
1493 unsigned mode, int sync, void *arg)
1494 {
1495 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1496 struct mem_cgroup *oom_wait_memcg;
1497 struct oom_wait_info *oom_wait_info;
1498
1499 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1500 oom_wait_memcg = oom_wait_info->memcg;
1501
1502 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1503 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1504 return 0;
1505 return autoremove_wake_function(wait, mode, sync, arg);
1506 }
1507
1508 static void memcg_oom_recover(struct mem_cgroup *memcg)
1509 {
1510 /*
1511 * For the following lockless ->under_oom test, the only required
1512 * guarantee is that it must see the state asserted by an OOM when
1513 * this function is called as a result of userland actions
1514 * triggered by the notification of the OOM. This is trivially
1515 * achieved by invoking mem_cgroup_mark_under_oom() before
1516 * triggering notification.
1517 */
1518 if (memcg && memcg->under_oom)
1519 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1520 }
1521
1522 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1523 {
1524 if (!current->memcg_may_oom)
1525 return;
1526 /*
1527 * We are in the middle of the charge context here, so we
1528 * don't want to block when potentially sitting on a callstack
1529 * that holds all kinds of filesystem and mm locks.
1530 *
1531 * Also, the caller may handle a failed allocation gracefully
1532 * (like optional page cache readahead) and so an OOM killer
1533 * invocation might not even be necessary.
1534 *
1535 * That's why we don't do anything here except remember the
1536 * OOM context and then deal with it at the end of the page
1537 * fault when the stack is unwound, the locks are released,
1538 * and when we know whether the fault was overall successful.
1539 */
1540 css_get(&memcg->css);
1541 current->memcg_in_oom = memcg;
1542 current->memcg_oom_gfp_mask = mask;
1543 current->memcg_oom_order = order;
1544 }
1545
1546 /**
1547 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1548 * @handle: actually kill/wait or just clean up the OOM state
1549 *
1550 * This has to be called at the end of a page fault if the memcg OOM
1551 * handler was enabled.
1552 *
1553 * Memcg supports userspace OOM handling where failed allocations must
1554 * sleep on a waitqueue until the userspace task resolves the
1555 * situation. Sleeping directly in the charge context with all kinds
1556 * of locks held is not a good idea, instead we remember an OOM state
1557 * in the task and mem_cgroup_oom_synchronize() has to be called at
1558 * the end of the page fault to complete the OOM handling.
1559 *
1560 * Returns %true if an ongoing memcg OOM situation was detected and
1561 * completed, %false otherwise.
1562 */
1563 bool mem_cgroup_oom_synchronize(bool handle)
1564 {
1565 struct mem_cgroup *memcg = current->memcg_in_oom;
1566 struct oom_wait_info owait;
1567 bool locked;
1568
1569 /* OOM is global, do not handle */
1570 if (!memcg)
1571 return false;
1572
1573 if (!handle)
1574 goto cleanup;
1575
1576 owait.memcg = memcg;
1577 owait.wait.flags = 0;
1578 owait.wait.func = memcg_oom_wake_function;
1579 owait.wait.private = current;
1580 INIT_LIST_HEAD(&owait.wait.task_list);
1581
1582 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1583 mem_cgroup_mark_under_oom(memcg);
1584
1585 locked = mem_cgroup_oom_trylock(memcg);
1586
1587 if (locked)
1588 mem_cgroup_oom_notify(memcg);
1589
1590 if (locked && !memcg->oom_kill_disable) {
1591 mem_cgroup_unmark_under_oom(memcg);
1592 finish_wait(&memcg_oom_waitq, &owait.wait);
1593 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1594 current->memcg_oom_order);
1595 } else {
1596 schedule();
1597 mem_cgroup_unmark_under_oom(memcg);
1598 finish_wait(&memcg_oom_waitq, &owait.wait);
1599 }
1600
1601 if (locked) {
1602 mem_cgroup_oom_unlock(memcg);
1603 /*
1604 * There is no guarantee that an OOM-lock contender
1605 * sees the wakeups triggered by the OOM kill
1606 * uncharges. Wake any sleepers explicitely.
1607 */
1608 memcg_oom_recover(memcg);
1609 }
1610 cleanup:
1611 current->memcg_in_oom = NULL;
1612 css_put(&memcg->css);
1613 return true;
1614 }
1615
1616 /**
1617 * lock_page_memcg - lock a page->mem_cgroup binding
1618 * @page: the page
1619 *
1620 * This function protects unlocked LRU pages from being moved to
1621 * another cgroup and stabilizes their page->mem_cgroup binding.
1622 */
1623 void lock_page_memcg(struct page *page)
1624 {
1625 struct mem_cgroup *memcg;
1626 unsigned long flags;
1627
1628 /*
1629 * The RCU lock is held throughout the transaction. The fast
1630 * path can get away without acquiring the memcg->move_lock
1631 * because page moving starts with an RCU grace period.
1632 */
1633 rcu_read_lock();
1634
1635 if (mem_cgroup_disabled())
1636 return;
1637 again:
1638 memcg = page->mem_cgroup;
1639 if (unlikely(!memcg))
1640 return;
1641
1642 if (atomic_read(&memcg->moving_account) <= 0)
1643 return;
1644
1645 spin_lock_irqsave(&memcg->move_lock, flags);
1646 if (memcg != page->mem_cgroup) {
1647 spin_unlock_irqrestore(&memcg->move_lock, flags);
1648 goto again;
1649 }
1650
1651 /*
1652 * When charge migration first begins, we can have locked and
1653 * unlocked page stat updates happening concurrently. Track
1654 * the task who has the lock for unlock_page_memcg().
1655 */
1656 memcg->move_lock_task = current;
1657 memcg->move_lock_flags = flags;
1658
1659 return;
1660 }
1661 EXPORT_SYMBOL(lock_page_memcg);
1662
1663 /**
1664 * unlock_page_memcg - unlock a page->mem_cgroup binding
1665 * @page: the page
1666 */
1667 void unlock_page_memcg(struct page *page)
1668 {
1669 struct mem_cgroup *memcg = page->mem_cgroup;
1670
1671 if (memcg && memcg->move_lock_task == current) {
1672 unsigned long flags = memcg->move_lock_flags;
1673
1674 memcg->move_lock_task = NULL;
1675 memcg->move_lock_flags = 0;
1676
1677 spin_unlock_irqrestore(&memcg->move_lock, flags);
1678 }
1679
1680 rcu_read_unlock();
1681 }
1682 EXPORT_SYMBOL(unlock_page_memcg);
1683
1684 /*
1685 * size of first charge trial. "32" comes from vmscan.c's magic value.
1686 * TODO: maybe necessary to use big numbers in big irons.
1687 */
1688 #define CHARGE_BATCH 32U
1689 struct memcg_stock_pcp {
1690 struct mem_cgroup *cached; /* this never be root cgroup */
1691 unsigned int nr_pages;
1692 struct work_struct work;
1693 unsigned long flags;
1694 #define FLUSHING_CACHED_CHARGE 0
1695 };
1696 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1697 static DEFINE_MUTEX(percpu_charge_mutex);
1698
1699 /**
1700 * consume_stock: Try to consume stocked charge on this cpu.
1701 * @memcg: memcg to consume from.
1702 * @nr_pages: how many pages to charge.
1703 *
1704 * The charges will only happen if @memcg matches the current cpu's memcg
1705 * stock, and at least @nr_pages are available in that stock. Failure to
1706 * service an allocation will refill the stock.
1707 *
1708 * returns true if successful, false otherwise.
1709 */
1710 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1711 {
1712 struct memcg_stock_pcp *stock;
1713 unsigned long flags;
1714 bool ret = false;
1715
1716 if (nr_pages > CHARGE_BATCH)
1717 return ret;
1718
1719 local_irq_save(flags);
1720
1721 stock = this_cpu_ptr(&memcg_stock);
1722 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1723 stock->nr_pages -= nr_pages;
1724 ret = true;
1725 }
1726
1727 local_irq_restore(flags);
1728
1729 return ret;
1730 }
1731
1732 /*
1733 * Returns stocks cached in percpu and reset cached information.
1734 */
1735 static void drain_stock(struct memcg_stock_pcp *stock)
1736 {
1737 struct mem_cgroup *old = stock->cached;
1738
1739 if (stock->nr_pages) {
1740 page_counter_uncharge(&old->memory, stock->nr_pages);
1741 if (do_memsw_account())
1742 page_counter_uncharge(&old->memsw, stock->nr_pages);
1743 css_put_many(&old->css, stock->nr_pages);
1744 stock->nr_pages = 0;
1745 }
1746 stock->cached = NULL;
1747 }
1748
1749 static void drain_local_stock(struct work_struct *dummy)
1750 {
1751 struct memcg_stock_pcp *stock;
1752 unsigned long flags;
1753
1754 local_irq_save(flags);
1755
1756 stock = this_cpu_ptr(&memcg_stock);
1757 drain_stock(stock);
1758 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1759
1760 local_irq_restore(flags);
1761 }
1762
1763 /*
1764 * Cache charges(val) to local per_cpu area.
1765 * This will be consumed by consume_stock() function, later.
1766 */
1767 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1768 {
1769 struct memcg_stock_pcp *stock;
1770 unsigned long flags;
1771
1772 local_irq_save(flags);
1773
1774 stock = this_cpu_ptr(&memcg_stock);
1775 if (stock->cached != memcg) { /* reset if necessary */
1776 drain_stock(stock);
1777 stock->cached = memcg;
1778 }
1779 stock->nr_pages += nr_pages;
1780
1781 local_irq_restore(flags);
1782 }
1783
1784 /*
1785 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1786 * of the hierarchy under it.
1787 */
1788 static void drain_all_stock(struct mem_cgroup *root_memcg)
1789 {
1790 int cpu, curcpu;
1791
1792 /* If someone's already draining, avoid adding running more workers. */
1793 if (!mutex_trylock(&percpu_charge_mutex))
1794 return;
1795 /* Notify other cpus that system-wide "drain" is running */
1796 get_online_cpus();
1797 curcpu = get_cpu();
1798 for_each_online_cpu(cpu) {
1799 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1800 struct mem_cgroup *memcg;
1801
1802 memcg = stock->cached;
1803 if (!memcg || !stock->nr_pages)
1804 continue;
1805 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1806 continue;
1807 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1808 if (cpu == curcpu)
1809 drain_local_stock(&stock->work);
1810 else
1811 schedule_work_on(cpu, &stock->work);
1812 }
1813 }
1814 put_cpu();
1815 put_online_cpus();
1816 mutex_unlock(&percpu_charge_mutex);
1817 }
1818
1819 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1820 {
1821 struct memcg_stock_pcp *stock;
1822
1823 stock = &per_cpu(memcg_stock, cpu);
1824 drain_stock(stock);
1825 return 0;
1826 }
1827
1828 static void reclaim_high(struct mem_cgroup *memcg,
1829 unsigned int nr_pages,
1830 gfp_t gfp_mask)
1831 {
1832 do {
1833 if (page_counter_read(&memcg->memory) <= memcg->high)
1834 continue;
1835 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1836 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1837 } while ((memcg = parent_mem_cgroup(memcg)));
1838 }
1839
1840 static void high_work_func(struct work_struct *work)
1841 {
1842 struct mem_cgroup *memcg;
1843
1844 memcg = container_of(work, struct mem_cgroup, high_work);
1845 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1846 }
1847
1848 /*
1849 * Scheduled by try_charge() to be executed from the userland return path
1850 * and reclaims memory over the high limit.
1851 */
1852 void mem_cgroup_handle_over_high(void)
1853 {
1854 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1855 struct mem_cgroup *memcg;
1856
1857 if (likely(!nr_pages))
1858 return;
1859
1860 memcg = get_mem_cgroup_from_mm(current->mm);
1861 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1862 css_put(&memcg->css);
1863 current->memcg_nr_pages_over_high = 0;
1864 }
1865
1866 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1867 unsigned int nr_pages)
1868 {
1869 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1870 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1871 struct mem_cgroup *mem_over_limit;
1872 struct page_counter *counter;
1873 unsigned long nr_reclaimed;
1874 bool may_swap = true;
1875 bool drained = false;
1876
1877 if (mem_cgroup_is_root(memcg))
1878 return 0;
1879 retry:
1880 if (consume_stock(memcg, nr_pages))
1881 return 0;
1882
1883 if (!do_memsw_account() ||
1884 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1885 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1886 goto done_restock;
1887 if (do_memsw_account())
1888 page_counter_uncharge(&memcg->memsw, batch);
1889 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1890 } else {
1891 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1892 may_swap = false;
1893 }
1894
1895 if (batch > nr_pages) {
1896 batch = nr_pages;
1897 goto retry;
1898 }
1899
1900 /*
1901 * Unlike in global OOM situations, memcg is not in a physical
1902 * memory shortage. Allow dying and OOM-killed tasks to
1903 * bypass the last charges so that they can exit quickly and
1904 * free their memory.
1905 */
1906 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1907 fatal_signal_pending(current) ||
1908 current->flags & PF_EXITING))
1909 goto force;
1910
1911 /*
1912 * Prevent unbounded recursion when reclaim operations need to
1913 * allocate memory. This might exceed the limits temporarily,
1914 * but we prefer facilitating memory reclaim and getting back
1915 * under the limit over triggering OOM kills in these cases.
1916 */
1917 if (unlikely(current->flags & PF_MEMALLOC))
1918 goto force;
1919
1920 if (unlikely(task_in_memcg_oom(current)))
1921 goto nomem;
1922
1923 if (!gfpflags_allow_blocking(gfp_mask))
1924 goto nomem;
1925
1926 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1927
1928 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1929 gfp_mask, may_swap);
1930
1931 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1932 goto retry;
1933
1934 if (!drained) {
1935 drain_all_stock(mem_over_limit);
1936 drained = true;
1937 goto retry;
1938 }
1939
1940 if (gfp_mask & __GFP_NORETRY)
1941 goto nomem;
1942 /*
1943 * Even though the limit is exceeded at this point, reclaim
1944 * may have been able to free some pages. Retry the charge
1945 * before killing the task.
1946 *
1947 * Only for regular pages, though: huge pages are rather
1948 * unlikely to succeed so close to the limit, and we fall back
1949 * to regular pages anyway in case of failure.
1950 */
1951 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1952 goto retry;
1953 /*
1954 * At task move, charge accounts can be doubly counted. So, it's
1955 * better to wait until the end of task_move if something is going on.
1956 */
1957 if (mem_cgroup_wait_acct_move(mem_over_limit))
1958 goto retry;
1959
1960 if (nr_retries--)
1961 goto retry;
1962
1963 if (gfp_mask & __GFP_NOFAIL)
1964 goto force;
1965
1966 if (fatal_signal_pending(current))
1967 goto force;
1968
1969 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1970
1971 mem_cgroup_oom(mem_over_limit, gfp_mask,
1972 get_order(nr_pages * PAGE_SIZE));
1973 nomem:
1974 if (!(gfp_mask & __GFP_NOFAIL))
1975 return -ENOMEM;
1976 force:
1977 /*
1978 * The allocation either can't fail or will lead to more memory
1979 * being freed very soon. Allow memory usage go over the limit
1980 * temporarily by force charging it.
1981 */
1982 page_counter_charge(&memcg->memory, nr_pages);
1983 if (do_memsw_account())
1984 page_counter_charge(&memcg->memsw, nr_pages);
1985 css_get_many(&memcg->css, nr_pages);
1986
1987 return 0;
1988
1989 done_restock:
1990 css_get_many(&memcg->css, batch);
1991 if (batch > nr_pages)
1992 refill_stock(memcg, batch - nr_pages);
1993
1994 /*
1995 * If the hierarchy is above the normal consumption range, schedule
1996 * reclaim on returning to userland. We can perform reclaim here
1997 * if __GFP_RECLAIM but let's always punt for simplicity and so that
1998 * GFP_KERNEL can consistently be used during reclaim. @memcg is
1999 * not recorded as it most likely matches current's and won't
2000 * change in the meantime. As high limit is checked again before
2001 * reclaim, the cost of mismatch is negligible.
2002 */
2003 do {
2004 if (page_counter_read(&memcg->memory) > memcg->high) {
2005 /* Don't bother a random interrupted task */
2006 if (in_interrupt()) {
2007 schedule_work(&memcg->high_work);
2008 break;
2009 }
2010 current->memcg_nr_pages_over_high += batch;
2011 set_notify_resume(current);
2012 break;
2013 }
2014 } while ((memcg = parent_mem_cgroup(memcg)));
2015
2016 return 0;
2017 }
2018
2019 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2020 {
2021 if (mem_cgroup_is_root(memcg))
2022 return;
2023
2024 page_counter_uncharge(&memcg->memory, nr_pages);
2025 if (do_memsw_account())
2026 page_counter_uncharge(&memcg->memsw, nr_pages);
2027
2028 css_put_many(&memcg->css, nr_pages);
2029 }
2030
2031 static void lock_page_lru(struct page *page, int *isolated)
2032 {
2033 struct zone *zone = page_zone(page);
2034
2035 spin_lock_irq(zone_lru_lock(zone));
2036 if (PageLRU(page)) {
2037 struct lruvec *lruvec;
2038
2039 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2040 ClearPageLRU(page);
2041 del_page_from_lru_list(page, lruvec, page_lru(page));
2042 *isolated = 1;
2043 } else
2044 *isolated = 0;
2045 }
2046
2047 static void unlock_page_lru(struct page *page, int isolated)
2048 {
2049 struct zone *zone = page_zone(page);
2050
2051 if (isolated) {
2052 struct lruvec *lruvec;
2053
2054 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2055 VM_BUG_ON_PAGE(PageLRU(page), page);
2056 SetPageLRU(page);
2057 add_page_to_lru_list(page, lruvec, page_lru(page));
2058 }
2059 spin_unlock_irq(zone_lru_lock(zone));
2060 }
2061
2062 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2063 bool lrucare)
2064 {
2065 int isolated;
2066
2067 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2068
2069 /*
2070 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2071 * may already be on some other mem_cgroup's LRU. Take care of it.
2072 */
2073 if (lrucare)
2074 lock_page_lru(page, &isolated);
2075
2076 /*
2077 * Nobody should be changing or seriously looking at
2078 * page->mem_cgroup at this point:
2079 *
2080 * - the page is uncharged
2081 *
2082 * - the page is off-LRU
2083 *
2084 * - an anonymous fault has exclusive page access, except for
2085 * a locked page table
2086 *
2087 * - a page cache insertion, a swapin fault, or a migration
2088 * have the page locked
2089 */
2090 page->mem_cgroup = memcg;
2091
2092 if (lrucare)
2093 unlock_page_lru(page, isolated);
2094 }
2095
2096 #ifndef CONFIG_SLOB
2097 static int memcg_alloc_cache_id(void)
2098 {
2099 int id, size;
2100 int err;
2101
2102 id = ida_simple_get(&memcg_cache_ida,
2103 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2104 if (id < 0)
2105 return id;
2106
2107 if (id < memcg_nr_cache_ids)
2108 return id;
2109
2110 /*
2111 * There's no space for the new id in memcg_caches arrays,
2112 * so we have to grow them.
2113 */
2114 down_write(&memcg_cache_ids_sem);
2115
2116 size = 2 * (id + 1);
2117 if (size < MEMCG_CACHES_MIN_SIZE)
2118 size = MEMCG_CACHES_MIN_SIZE;
2119 else if (size > MEMCG_CACHES_MAX_SIZE)
2120 size = MEMCG_CACHES_MAX_SIZE;
2121
2122 err = memcg_update_all_caches(size);
2123 if (!err)
2124 err = memcg_update_all_list_lrus(size);
2125 if (!err)
2126 memcg_nr_cache_ids = size;
2127
2128 up_write(&memcg_cache_ids_sem);
2129
2130 if (err) {
2131 ida_simple_remove(&memcg_cache_ida, id);
2132 return err;
2133 }
2134 return id;
2135 }
2136
2137 static void memcg_free_cache_id(int id)
2138 {
2139 ida_simple_remove(&memcg_cache_ida, id);
2140 }
2141
2142 struct memcg_kmem_cache_create_work {
2143 struct mem_cgroup *memcg;
2144 struct kmem_cache *cachep;
2145 struct work_struct work;
2146 };
2147
2148 static struct workqueue_struct *memcg_kmem_cache_create_wq;
2149
2150 static void memcg_kmem_cache_create_func(struct work_struct *w)
2151 {
2152 struct memcg_kmem_cache_create_work *cw =
2153 container_of(w, struct memcg_kmem_cache_create_work, work);
2154 struct mem_cgroup *memcg = cw->memcg;
2155 struct kmem_cache *cachep = cw->cachep;
2156
2157 memcg_create_kmem_cache(memcg, cachep);
2158
2159 css_put(&memcg->css);
2160 kfree(cw);
2161 }
2162
2163 /*
2164 * Enqueue the creation of a per-memcg kmem_cache.
2165 */
2166 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2167 struct kmem_cache *cachep)
2168 {
2169 struct memcg_kmem_cache_create_work *cw;
2170
2171 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2172 if (!cw)
2173 return;
2174
2175 css_get(&memcg->css);
2176
2177 cw->memcg = memcg;
2178 cw->cachep = cachep;
2179 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2180
2181 queue_work(memcg_kmem_cache_create_wq, &cw->work);
2182 }
2183
2184 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2185 struct kmem_cache *cachep)
2186 {
2187 /*
2188 * We need to stop accounting when we kmalloc, because if the
2189 * corresponding kmalloc cache is not yet created, the first allocation
2190 * in __memcg_schedule_kmem_cache_create will recurse.
2191 *
2192 * However, it is better to enclose the whole function. Depending on
2193 * the debugging options enabled, INIT_WORK(), for instance, can
2194 * trigger an allocation. This too, will make us recurse. Because at
2195 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2196 * the safest choice is to do it like this, wrapping the whole function.
2197 */
2198 current->memcg_kmem_skip_account = 1;
2199 __memcg_schedule_kmem_cache_create(memcg, cachep);
2200 current->memcg_kmem_skip_account = 0;
2201 }
2202
2203 static inline bool memcg_kmem_bypass(void)
2204 {
2205 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2206 return true;
2207 return false;
2208 }
2209
2210 /**
2211 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2212 * @cachep: the original global kmem cache
2213 *
2214 * Return the kmem_cache we're supposed to use for a slab allocation.
2215 * We try to use the current memcg's version of the cache.
2216 *
2217 * If the cache does not exist yet, if we are the first user of it, we
2218 * create it asynchronously in a workqueue and let the current allocation
2219 * go through with the original cache.
2220 *
2221 * This function takes a reference to the cache it returns to assure it
2222 * won't get destroyed while we are working with it. Once the caller is
2223 * done with it, memcg_kmem_put_cache() must be called to release the
2224 * reference.
2225 */
2226 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2227 {
2228 struct mem_cgroup *memcg;
2229 struct kmem_cache *memcg_cachep;
2230 int kmemcg_id;
2231
2232 VM_BUG_ON(!is_root_cache(cachep));
2233
2234 if (memcg_kmem_bypass())
2235 return cachep;
2236
2237 if (current->memcg_kmem_skip_account)
2238 return cachep;
2239
2240 memcg = get_mem_cgroup_from_mm(current->mm);
2241 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2242 if (kmemcg_id < 0)
2243 goto out;
2244
2245 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2246 if (likely(memcg_cachep))
2247 return memcg_cachep;
2248
2249 /*
2250 * If we are in a safe context (can wait, and not in interrupt
2251 * context), we could be be predictable and return right away.
2252 * This would guarantee that the allocation being performed
2253 * already belongs in the new cache.
2254 *
2255 * However, there are some clashes that can arrive from locking.
2256 * For instance, because we acquire the slab_mutex while doing
2257 * memcg_create_kmem_cache, this means no further allocation
2258 * could happen with the slab_mutex held. So it's better to
2259 * defer everything.
2260 */
2261 memcg_schedule_kmem_cache_create(memcg, cachep);
2262 out:
2263 css_put(&memcg->css);
2264 return cachep;
2265 }
2266
2267 /**
2268 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2269 * @cachep: the cache returned by memcg_kmem_get_cache
2270 */
2271 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2272 {
2273 if (!is_root_cache(cachep))
2274 css_put(&cachep->memcg_params.memcg->css);
2275 }
2276
2277 /**
2278 * memcg_kmem_charge: charge a kmem page
2279 * @page: page to charge
2280 * @gfp: reclaim mode
2281 * @order: allocation order
2282 * @memcg: memory cgroup to charge
2283 *
2284 * Returns 0 on success, an error code on failure.
2285 */
2286 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2287 struct mem_cgroup *memcg)
2288 {
2289 unsigned int nr_pages = 1 << order;
2290 struct page_counter *counter;
2291 int ret;
2292
2293 ret = try_charge(memcg, gfp, nr_pages);
2294 if (ret)
2295 return ret;
2296
2297 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2298 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2299 cancel_charge(memcg, nr_pages);
2300 return -ENOMEM;
2301 }
2302
2303 page->mem_cgroup = memcg;
2304
2305 return 0;
2306 }
2307
2308 /**
2309 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2310 * @page: page to charge
2311 * @gfp: reclaim mode
2312 * @order: allocation order
2313 *
2314 * Returns 0 on success, an error code on failure.
2315 */
2316 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2317 {
2318 struct mem_cgroup *memcg;
2319 int ret = 0;
2320
2321 if (memcg_kmem_bypass())
2322 return 0;
2323
2324 memcg = get_mem_cgroup_from_mm(current->mm);
2325 if (!mem_cgroup_is_root(memcg)) {
2326 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2327 if (!ret)
2328 __SetPageKmemcg(page);
2329 }
2330 css_put(&memcg->css);
2331 return ret;
2332 }
2333 /**
2334 * memcg_kmem_uncharge: uncharge a kmem page
2335 * @page: page to uncharge
2336 * @order: allocation order
2337 */
2338 void memcg_kmem_uncharge(struct page *page, int order)
2339 {
2340 struct mem_cgroup *memcg = page->mem_cgroup;
2341 unsigned int nr_pages = 1 << order;
2342
2343 if (!memcg)
2344 return;
2345
2346 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2347
2348 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2349 page_counter_uncharge(&memcg->kmem, nr_pages);
2350
2351 page_counter_uncharge(&memcg->memory, nr_pages);
2352 if (do_memsw_account())
2353 page_counter_uncharge(&memcg->memsw, nr_pages);
2354
2355 page->mem_cgroup = NULL;
2356
2357 /* slab pages do not have PageKmemcg flag set */
2358 if (PageKmemcg(page))
2359 __ClearPageKmemcg(page);
2360
2361 css_put_many(&memcg->css, nr_pages);
2362 }
2363 #endif /* !CONFIG_SLOB */
2364
2365 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2366
2367 /*
2368 * Because tail pages are not marked as "used", set it. We're under
2369 * zone_lru_lock and migration entries setup in all page mappings.
2370 */
2371 void mem_cgroup_split_huge_fixup(struct page *head)
2372 {
2373 int i;
2374
2375 if (mem_cgroup_disabled())
2376 return;
2377
2378 for (i = 1; i < HPAGE_PMD_NR; i++)
2379 head[i].mem_cgroup = head->mem_cgroup;
2380
2381 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2382 HPAGE_PMD_NR);
2383 }
2384 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2385
2386 #ifdef CONFIG_MEMCG_SWAP
2387 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2388 bool charge)
2389 {
2390 int val = (charge) ? 1 : -1;
2391 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2392 }
2393
2394 /**
2395 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2396 * @entry: swap entry to be moved
2397 * @from: mem_cgroup which the entry is moved from
2398 * @to: mem_cgroup which the entry is moved to
2399 *
2400 * It succeeds only when the swap_cgroup's record for this entry is the same
2401 * as the mem_cgroup's id of @from.
2402 *
2403 * Returns 0 on success, -EINVAL on failure.
2404 *
2405 * The caller must have charged to @to, IOW, called page_counter_charge() about
2406 * both res and memsw, and called css_get().
2407 */
2408 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2409 struct mem_cgroup *from, struct mem_cgroup *to)
2410 {
2411 unsigned short old_id, new_id;
2412
2413 old_id = mem_cgroup_id(from);
2414 new_id = mem_cgroup_id(to);
2415
2416 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2417 mem_cgroup_swap_statistics(from, false);
2418 mem_cgroup_swap_statistics(to, true);
2419 return 0;
2420 }
2421 return -EINVAL;
2422 }
2423 #else
2424 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2425 struct mem_cgroup *from, struct mem_cgroup *to)
2426 {
2427 return -EINVAL;
2428 }
2429 #endif
2430
2431 static DEFINE_MUTEX(memcg_limit_mutex);
2432
2433 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2434 unsigned long limit)
2435 {
2436 unsigned long curusage;
2437 unsigned long oldusage;
2438 bool enlarge = false;
2439 int retry_count;
2440 int ret;
2441
2442 /*
2443 * For keeping hierarchical_reclaim simple, how long we should retry
2444 * is depends on callers. We set our retry-count to be function
2445 * of # of children which we should visit in this loop.
2446 */
2447 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2448 mem_cgroup_count_children(memcg);
2449
2450 oldusage = page_counter_read(&memcg->memory);
2451
2452 do {
2453 if (signal_pending(current)) {
2454 ret = -EINTR;
2455 break;
2456 }
2457
2458 mutex_lock(&memcg_limit_mutex);
2459 if (limit > memcg->memsw.limit) {
2460 mutex_unlock(&memcg_limit_mutex);
2461 ret = -EINVAL;
2462 break;
2463 }
2464 if (limit > memcg->memory.limit)
2465 enlarge = true;
2466 ret = page_counter_limit(&memcg->memory, limit);
2467 mutex_unlock(&memcg_limit_mutex);
2468
2469 if (!ret)
2470 break;
2471
2472 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2473
2474 curusage = page_counter_read(&memcg->memory);
2475 /* Usage is reduced ? */
2476 if (curusage >= oldusage)
2477 retry_count--;
2478 else
2479 oldusage = curusage;
2480 } while (retry_count);
2481
2482 if (!ret && enlarge)
2483 memcg_oom_recover(memcg);
2484
2485 return ret;
2486 }
2487
2488 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2489 unsigned long limit)
2490 {
2491 unsigned long curusage;
2492 unsigned long oldusage;
2493 bool enlarge = false;
2494 int retry_count;
2495 int ret;
2496
2497 /* see mem_cgroup_resize_res_limit */
2498 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2499 mem_cgroup_count_children(memcg);
2500
2501 oldusage = page_counter_read(&memcg->memsw);
2502
2503 do {
2504 if (signal_pending(current)) {
2505 ret = -EINTR;
2506 break;
2507 }
2508
2509 mutex_lock(&memcg_limit_mutex);
2510 if (limit < memcg->memory.limit) {
2511 mutex_unlock(&memcg_limit_mutex);
2512 ret = -EINVAL;
2513 break;
2514 }
2515 if (limit > memcg->memsw.limit)
2516 enlarge = true;
2517 ret = page_counter_limit(&memcg->memsw, limit);
2518 mutex_unlock(&memcg_limit_mutex);
2519
2520 if (!ret)
2521 break;
2522
2523 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2524
2525 curusage = page_counter_read(&memcg->memsw);
2526 /* Usage is reduced ? */
2527 if (curusage >= oldusage)
2528 retry_count--;
2529 else
2530 oldusage = curusage;
2531 } while (retry_count);
2532
2533 if (!ret && enlarge)
2534 memcg_oom_recover(memcg);
2535
2536 return ret;
2537 }
2538
2539 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2540 gfp_t gfp_mask,
2541 unsigned long *total_scanned)
2542 {
2543 unsigned long nr_reclaimed = 0;
2544 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2545 unsigned long reclaimed;
2546 int loop = 0;
2547 struct mem_cgroup_tree_per_node *mctz;
2548 unsigned long excess;
2549 unsigned long nr_scanned;
2550
2551 if (order > 0)
2552 return 0;
2553
2554 mctz = soft_limit_tree_node(pgdat->node_id);
2555
2556 /*
2557 * Do not even bother to check the largest node if the root
2558 * is empty. Do it lockless to prevent lock bouncing. Races
2559 * are acceptable as soft limit is best effort anyway.
2560 */
2561 if (RB_EMPTY_ROOT(&mctz->rb_root))
2562 return 0;
2563
2564 /*
2565 * This loop can run a while, specially if mem_cgroup's continuously
2566 * keep exceeding their soft limit and putting the system under
2567 * pressure
2568 */
2569 do {
2570 if (next_mz)
2571 mz = next_mz;
2572 else
2573 mz = mem_cgroup_largest_soft_limit_node(mctz);
2574 if (!mz)
2575 break;
2576
2577 nr_scanned = 0;
2578 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2579 gfp_mask, &nr_scanned);
2580 nr_reclaimed += reclaimed;
2581 *total_scanned += nr_scanned;
2582 spin_lock_irq(&mctz->lock);
2583 __mem_cgroup_remove_exceeded(mz, mctz);
2584
2585 /*
2586 * If we failed to reclaim anything from this memory cgroup
2587 * it is time to move on to the next cgroup
2588 */
2589 next_mz = NULL;
2590 if (!reclaimed)
2591 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2592
2593 excess = soft_limit_excess(mz->memcg);
2594 /*
2595 * One school of thought says that we should not add
2596 * back the node to the tree if reclaim returns 0.
2597 * But our reclaim could return 0, simply because due
2598 * to priority we are exposing a smaller subset of
2599 * memory to reclaim from. Consider this as a longer
2600 * term TODO.
2601 */
2602 /* If excess == 0, no tree ops */
2603 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2604 spin_unlock_irq(&mctz->lock);
2605 css_put(&mz->memcg->css);
2606 loop++;
2607 /*
2608 * Could not reclaim anything and there are no more
2609 * mem cgroups to try or we seem to be looping without
2610 * reclaiming anything.
2611 */
2612 if (!nr_reclaimed &&
2613 (next_mz == NULL ||
2614 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2615 break;
2616 } while (!nr_reclaimed);
2617 if (next_mz)
2618 css_put(&next_mz->memcg->css);
2619 return nr_reclaimed;
2620 }
2621
2622 /*
2623 * Test whether @memcg has children, dead or alive. Note that this
2624 * function doesn't care whether @memcg has use_hierarchy enabled and
2625 * returns %true if there are child csses according to the cgroup
2626 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2627 */
2628 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2629 {
2630 bool ret;
2631
2632 rcu_read_lock();
2633 ret = css_next_child(NULL, &memcg->css);
2634 rcu_read_unlock();
2635 return ret;
2636 }
2637
2638 /*
2639 * Reclaims as many pages from the given memcg as possible.
2640 *
2641 * Caller is responsible for holding css reference for memcg.
2642 */
2643 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2644 {
2645 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2646
2647 /* we call try-to-free pages for make this cgroup empty */
2648 lru_add_drain_all();
2649 /* try to free all pages in this cgroup */
2650 while (nr_retries && page_counter_read(&memcg->memory)) {
2651 int progress;
2652
2653 if (signal_pending(current))
2654 return -EINTR;
2655
2656 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2657 GFP_KERNEL, true);
2658 if (!progress) {
2659 nr_retries--;
2660 /* maybe some writeback is necessary */
2661 congestion_wait(BLK_RW_ASYNC, HZ/10);
2662 }
2663
2664 }
2665
2666 return 0;
2667 }
2668
2669 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2670 char *buf, size_t nbytes,
2671 loff_t off)
2672 {
2673 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2674
2675 if (mem_cgroup_is_root(memcg))
2676 return -EINVAL;
2677 return mem_cgroup_force_empty(memcg) ?: nbytes;
2678 }
2679
2680 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2681 struct cftype *cft)
2682 {
2683 return mem_cgroup_from_css(css)->use_hierarchy;
2684 }
2685
2686 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2687 struct cftype *cft, u64 val)
2688 {
2689 int retval = 0;
2690 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2691 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2692
2693 if (memcg->use_hierarchy == val)
2694 return 0;
2695
2696 /*
2697 * If parent's use_hierarchy is set, we can't make any modifications
2698 * in the child subtrees. If it is unset, then the change can
2699 * occur, provided the current cgroup has no children.
2700 *
2701 * For the root cgroup, parent_mem is NULL, we allow value to be
2702 * set if there are no children.
2703 */
2704 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2705 (val == 1 || val == 0)) {
2706 if (!memcg_has_children(memcg))
2707 memcg->use_hierarchy = val;
2708 else
2709 retval = -EBUSY;
2710 } else
2711 retval = -EINVAL;
2712
2713 return retval;
2714 }
2715
2716 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2717 {
2718 struct mem_cgroup *iter;
2719 int i;
2720
2721 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2722
2723 for_each_mem_cgroup_tree(iter, memcg) {
2724 for (i = 0; i < MEMCG_NR_STAT; i++)
2725 stat[i] += mem_cgroup_read_stat(iter, i);
2726 }
2727 }
2728
2729 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2730 {
2731 struct mem_cgroup *iter;
2732 int i;
2733
2734 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2735
2736 for_each_mem_cgroup_tree(iter, memcg) {
2737 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2738 events[i] += mem_cgroup_read_events(iter, i);
2739 }
2740 }
2741
2742 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2743 {
2744 unsigned long val = 0;
2745
2746 if (mem_cgroup_is_root(memcg)) {
2747 struct mem_cgroup *iter;
2748
2749 for_each_mem_cgroup_tree(iter, memcg) {
2750 val += mem_cgroup_read_stat(iter,
2751 MEM_CGROUP_STAT_CACHE);
2752 val += mem_cgroup_read_stat(iter,
2753 MEM_CGROUP_STAT_RSS);
2754 if (swap)
2755 val += mem_cgroup_read_stat(iter,
2756 MEM_CGROUP_STAT_SWAP);
2757 }
2758 } else {
2759 if (!swap)
2760 val = page_counter_read(&memcg->memory);
2761 else
2762 val = page_counter_read(&memcg->memsw);
2763 }
2764 return val;
2765 }
2766
2767 enum {
2768 RES_USAGE,
2769 RES_LIMIT,
2770 RES_MAX_USAGE,
2771 RES_FAILCNT,
2772 RES_SOFT_LIMIT,
2773 };
2774
2775 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2776 struct cftype *cft)
2777 {
2778 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2779 struct page_counter *counter;
2780
2781 switch (MEMFILE_TYPE(cft->private)) {
2782 case _MEM:
2783 counter = &memcg->memory;
2784 break;
2785 case _MEMSWAP:
2786 counter = &memcg->memsw;
2787 break;
2788 case _KMEM:
2789 counter = &memcg->kmem;
2790 break;
2791 case _TCP:
2792 counter = &memcg->tcpmem;
2793 break;
2794 default:
2795 BUG();
2796 }
2797
2798 switch (MEMFILE_ATTR(cft->private)) {
2799 case RES_USAGE:
2800 if (counter == &memcg->memory)
2801 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2802 if (counter == &memcg->memsw)
2803 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2804 return (u64)page_counter_read(counter) * PAGE_SIZE;
2805 case RES_LIMIT:
2806 return (u64)counter->limit * PAGE_SIZE;
2807 case RES_MAX_USAGE:
2808 return (u64)counter->watermark * PAGE_SIZE;
2809 case RES_FAILCNT:
2810 return counter->failcnt;
2811 case RES_SOFT_LIMIT:
2812 return (u64)memcg->soft_limit * PAGE_SIZE;
2813 default:
2814 BUG();
2815 }
2816 }
2817
2818 #ifndef CONFIG_SLOB
2819 static int memcg_online_kmem(struct mem_cgroup *memcg)
2820 {
2821 int memcg_id;
2822
2823 if (cgroup_memory_nokmem)
2824 return 0;
2825
2826 BUG_ON(memcg->kmemcg_id >= 0);
2827 BUG_ON(memcg->kmem_state);
2828
2829 memcg_id = memcg_alloc_cache_id();
2830 if (memcg_id < 0)
2831 return memcg_id;
2832
2833 static_branch_inc(&memcg_kmem_enabled_key);
2834 /*
2835 * A memory cgroup is considered kmem-online as soon as it gets
2836 * kmemcg_id. Setting the id after enabling static branching will
2837 * guarantee no one starts accounting before all call sites are
2838 * patched.
2839 */
2840 memcg->kmemcg_id = memcg_id;
2841 memcg->kmem_state = KMEM_ONLINE;
2842
2843 return 0;
2844 }
2845
2846 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2847 {
2848 struct cgroup_subsys_state *css;
2849 struct mem_cgroup *parent, *child;
2850 int kmemcg_id;
2851
2852 if (memcg->kmem_state != KMEM_ONLINE)
2853 return;
2854 /*
2855 * Clear the online state before clearing memcg_caches array
2856 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2857 * guarantees that no cache will be created for this cgroup
2858 * after we are done (see memcg_create_kmem_cache()).
2859 */
2860 memcg->kmem_state = KMEM_ALLOCATED;
2861
2862 memcg_deactivate_kmem_caches(memcg);
2863
2864 kmemcg_id = memcg->kmemcg_id;
2865 BUG_ON(kmemcg_id < 0);
2866
2867 parent = parent_mem_cgroup(memcg);
2868 if (!parent)
2869 parent = root_mem_cgroup;
2870
2871 /*
2872 * Change kmemcg_id of this cgroup and all its descendants to the
2873 * parent's id, and then move all entries from this cgroup's list_lrus
2874 * to ones of the parent. After we have finished, all list_lrus
2875 * corresponding to this cgroup are guaranteed to remain empty. The
2876 * ordering is imposed by list_lru_node->lock taken by
2877 * memcg_drain_all_list_lrus().
2878 */
2879 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2880 css_for_each_descendant_pre(css, &memcg->css) {
2881 child = mem_cgroup_from_css(css);
2882 BUG_ON(child->kmemcg_id != kmemcg_id);
2883 child->kmemcg_id = parent->kmemcg_id;
2884 if (!memcg->use_hierarchy)
2885 break;
2886 }
2887 rcu_read_unlock();
2888
2889 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2890
2891 memcg_free_cache_id(kmemcg_id);
2892 }
2893
2894 static void memcg_free_kmem(struct mem_cgroup *memcg)
2895 {
2896 /* css_alloc() failed, offlining didn't happen */
2897 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2898 memcg_offline_kmem(memcg);
2899
2900 if (memcg->kmem_state == KMEM_ALLOCATED) {
2901 memcg_destroy_kmem_caches(memcg);
2902 static_branch_dec(&memcg_kmem_enabled_key);
2903 WARN_ON(page_counter_read(&memcg->kmem));
2904 }
2905 }
2906 #else
2907 static int memcg_online_kmem(struct mem_cgroup *memcg)
2908 {
2909 return 0;
2910 }
2911 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2912 {
2913 }
2914 static void memcg_free_kmem(struct mem_cgroup *memcg)
2915 {
2916 }
2917 #endif /* !CONFIG_SLOB */
2918
2919 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2920 unsigned long limit)
2921 {
2922 int ret;
2923
2924 mutex_lock(&memcg_limit_mutex);
2925 ret = page_counter_limit(&memcg->kmem, limit);
2926 mutex_unlock(&memcg_limit_mutex);
2927 return ret;
2928 }
2929
2930 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2931 {
2932 int ret;
2933
2934 mutex_lock(&memcg_limit_mutex);
2935
2936 ret = page_counter_limit(&memcg->tcpmem, limit);
2937 if (ret)
2938 goto out;
2939
2940 if (!memcg->tcpmem_active) {
2941 /*
2942 * The active flag needs to be written after the static_key
2943 * update. This is what guarantees that the socket activation
2944 * function is the last one to run. See mem_cgroup_sk_alloc()
2945 * for details, and note that we don't mark any socket as
2946 * belonging to this memcg until that flag is up.
2947 *
2948 * We need to do this, because static_keys will span multiple
2949 * sites, but we can't control their order. If we mark a socket
2950 * as accounted, but the accounting functions are not patched in
2951 * yet, we'll lose accounting.
2952 *
2953 * We never race with the readers in mem_cgroup_sk_alloc(),
2954 * because when this value change, the code to process it is not
2955 * patched in yet.
2956 */
2957 static_branch_inc(&memcg_sockets_enabled_key);
2958 memcg->tcpmem_active = true;
2959 }
2960 out:
2961 mutex_unlock(&memcg_limit_mutex);
2962 return ret;
2963 }
2964
2965 /*
2966 * The user of this function is...
2967 * RES_LIMIT.
2968 */
2969 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2970 char *buf, size_t nbytes, loff_t off)
2971 {
2972 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2973 unsigned long nr_pages;
2974 int ret;
2975
2976 buf = strstrip(buf);
2977 ret = page_counter_memparse(buf, "-1", &nr_pages);
2978 if (ret)
2979 return ret;
2980
2981 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2982 case RES_LIMIT:
2983 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2984 ret = -EINVAL;
2985 break;
2986 }
2987 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2988 case _MEM:
2989 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2990 break;
2991 case _MEMSWAP:
2992 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2993 break;
2994 case _KMEM:
2995 ret = memcg_update_kmem_limit(memcg, nr_pages);
2996 break;
2997 case _TCP:
2998 ret = memcg_update_tcp_limit(memcg, nr_pages);
2999 break;
3000 }
3001 break;
3002 case RES_SOFT_LIMIT:
3003 memcg->soft_limit = nr_pages;
3004 ret = 0;
3005 break;
3006 }
3007 return ret ?: nbytes;
3008 }
3009
3010 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3011 size_t nbytes, loff_t off)
3012 {
3013 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3014 struct page_counter *counter;
3015
3016 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3017 case _MEM:
3018 counter = &memcg->memory;
3019 break;
3020 case _MEMSWAP:
3021 counter = &memcg->memsw;
3022 break;
3023 case _KMEM:
3024 counter = &memcg->kmem;
3025 break;
3026 case _TCP:
3027 counter = &memcg->tcpmem;
3028 break;
3029 default:
3030 BUG();
3031 }
3032
3033 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3034 case RES_MAX_USAGE:
3035 page_counter_reset_watermark(counter);
3036 break;
3037 case RES_FAILCNT:
3038 counter->failcnt = 0;
3039 break;
3040 default:
3041 BUG();
3042 }
3043
3044 return nbytes;
3045 }
3046
3047 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3048 struct cftype *cft)
3049 {
3050 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3051 }
3052
3053 #ifdef CONFIG_MMU
3054 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3055 struct cftype *cft, u64 val)
3056 {
3057 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3058
3059 if (val & ~MOVE_MASK)
3060 return -EINVAL;
3061
3062 /*
3063 * No kind of locking is needed in here, because ->can_attach() will
3064 * check this value once in the beginning of the process, and then carry
3065 * on with stale data. This means that changes to this value will only
3066 * affect task migrations starting after the change.
3067 */
3068 memcg->move_charge_at_immigrate = val;
3069 return 0;
3070 }
3071 #else
3072 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3073 struct cftype *cft, u64 val)
3074 {
3075 return -ENOSYS;
3076 }
3077 #endif
3078
3079 #ifdef CONFIG_NUMA
3080 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3081 {
3082 struct numa_stat {
3083 const char *name;
3084 unsigned int lru_mask;
3085 };
3086
3087 static const struct numa_stat stats[] = {
3088 { "total", LRU_ALL },
3089 { "file", LRU_ALL_FILE },
3090 { "anon", LRU_ALL_ANON },
3091 { "unevictable", BIT(LRU_UNEVICTABLE) },
3092 };
3093 const struct numa_stat *stat;
3094 int nid;
3095 unsigned long nr;
3096 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3097
3098 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3099 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3100 seq_printf(m, "%s=%lu", stat->name, nr);
3101 for_each_node_state(nid, N_MEMORY) {
3102 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3103 stat->lru_mask);
3104 seq_printf(m, " N%d=%lu", nid, nr);
3105 }
3106 seq_putc(m, '\n');
3107 }
3108
3109 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3110 struct mem_cgroup *iter;
3111
3112 nr = 0;
3113 for_each_mem_cgroup_tree(iter, memcg)
3114 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3115 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3116 for_each_node_state(nid, N_MEMORY) {
3117 nr = 0;
3118 for_each_mem_cgroup_tree(iter, memcg)
3119 nr += mem_cgroup_node_nr_lru_pages(
3120 iter, nid, stat->lru_mask);
3121 seq_printf(m, " N%d=%lu", nid, nr);
3122 }
3123 seq_putc(m, '\n');
3124 }
3125
3126 return 0;
3127 }
3128 #endif /* CONFIG_NUMA */
3129
3130 static int memcg_stat_show(struct seq_file *m, void *v)
3131 {
3132 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3133 unsigned long memory, memsw;
3134 struct mem_cgroup *mi;
3135 unsigned int i;
3136
3137 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3138 MEM_CGROUP_STAT_NSTATS);
3139 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3140 MEM_CGROUP_EVENTS_NSTATS);
3141 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3142
3143 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3144 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3145 continue;
3146 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3147 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3148 }
3149
3150 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3151 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3152 mem_cgroup_read_events(memcg, i));
3153
3154 for (i = 0; i < NR_LRU_LISTS; i++)
3155 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3156 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3157
3158 /* Hierarchical information */
3159 memory = memsw = PAGE_COUNTER_MAX;
3160 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3161 memory = min(memory, mi->memory.limit);
3162 memsw = min(memsw, mi->memsw.limit);
3163 }
3164 seq_printf(m, "hierarchical_memory_limit %llu\n",
3165 (u64)memory * PAGE_SIZE);
3166 if (do_memsw_account())
3167 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3168 (u64)memsw * PAGE_SIZE);
3169
3170 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3171 unsigned long long val = 0;
3172
3173 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3174 continue;
3175 for_each_mem_cgroup_tree(mi, memcg)
3176 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3177 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3178 }
3179
3180 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3181 unsigned long long val = 0;
3182
3183 for_each_mem_cgroup_tree(mi, memcg)
3184 val += mem_cgroup_read_events(mi, i);
3185 seq_printf(m, "total_%s %llu\n",
3186 mem_cgroup_events_names[i], val);
3187 }
3188
3189 for (i = 0; i < NR_LRU_LISTS; i++) {
3190 unsigned long long val = 0;
3191
3192 for_each_mem_cgroup_tree(mi, memcg)
3193 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3194 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3195 }
3196
3197 #ifdef CONFIG_DEBUG_VM
3198 {
3199 pg_data_t *pgdat;
3200 struct mem_cgroup_per_node *mz;
3201 struct zone_reclaim_stat *rstat;
3202 unsigned long recent_rotated[2] = {0, 0};
3203 unsigned long recent_scanned[2] = {0, 0};
3204
3205 for_each_online_pgdat(pgdat) {
3206 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3207 rstat = &mz->lruvec.reclaim_stat;
3208
3209 recent_rotated[0] += rstat->recent_rotated[0];
3210 recent_rotated[1] += rstat->recent_rotated[1];
3211 recent_scanned[0] += rstat->recent_scanned[0];
3212 recent_scanned[1] += rstat->recent_scanned[1];
3213 }
3214 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3215 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3216 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3217 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3218 }
3219 #endif
3220
3221 return 0;
3222 }
3223
3224 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3225 struct cftype *cft)
3226 {
3227 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3228
3229 return mem_cgroup_swappiness(memcg);
3230 }
3231
3232 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3233 struct cftype *cft, u64 val)
3234 {
3235 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3236
3237 if (val > 100)
3238 return -EINVAL;
3239
3240 if (css->parent)
3241 memcg->swappiness = val;
3242 else
3243 vm_swappiness = val;
3244
3245 return 0;
3246 }
3247
3248 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3249 {
3250 struct mem_cgroup_threshold_ary *t;
3251 unsigned long usage;
3252 int i;
3253
3254 rcu_read_lock();
3255 if (!swap)
3256 t = rcu_dereference(memcg->thresholds.primary);
3257 else
3258 t = rcu_dereference(memcg->memsw_thresholds.primary);
3259
3260 if (!t)
3261 goto unlock;
3262
3263 usage = mem_cgroup_usage(memcg, swap);
3264
3265 /*
3266 * current_threshold points to threshold just below or equal to usage.
3267 * If it's not true, a threshold was crossed after last
3268 * call of __mem_cgroup_threshold().
3269 */
3270 i = t->current_threshold;
3271
3272 /*
3273 * Iterate backward over array of thresholds starting from
3274 * current_threshold and check if a threshold is crossed.
3275 * If none of thresholds below usage is crossed, we read
3276 * only one element of the array here.
3277 */
3278 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3279 eventfd_signal(t->entries[i].eventfd, 1);
3280
3281 /* i = current_threshold + 1 */
3282 i++;
3283
3284 /*
3285 * Iterate forward over array of thresholds starting from
3286 * current_threshold+1 and check if a threshold is crossed.
3287 * If none of thresholds above usage is crossed, we read
3288 * only one element of the array here.
3289 */
3290 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3291 eventfd_signal(t->entries[i].eventfd, 1);
3292
3293 /* Update current_threshold */
3294 t->current_threshold = i - 1;
3295 unlock:
3296 rcu_read_unlock();
3297 }
3298
3299 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3300 {
3301 while (memcg) {
3302 __mem_cgroup_threshold(memcg, false);
3303 if (do_memsw_account())
3304 __mem_cgroup_threshold(memcg, true);
3305
3306 memcg = parent_mem_cgroup(memcg);
3307 }
3308 }
3309
3310 static int compare_thresholds(const void *a, const void *b)
3311 {
3312 const struct mem_cgroup_threshold *_a = a;
3313 const struct mem_cgroup_threshold *_b = b;
3314
3315 if (_a->threshold > _b->threshold)
3316 return 1;
3317
3318 if (_a->threshold < _b->threshold)
3319 return -1;
3320
3321 return 0;
3322 }
3323
3324 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3325 {
3326 struct mem_cgroup_eventfd_list *ev;
3327
3328 spin_lock(&memcg_oom_lock);
3329
3330 list_for_each_entry(ev, &memcg->oom_notify, list)
3331 eventfd_signal(ev->eventfd, 1);
3332
3333 spin_unlock(&memcg_oom_lock);
3334 return 0;
3335 }
3336
3337 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3338 {
3339 struct mem_cgroup *iter;
3340
3341 for_each_mem_cgroup_tree(iter, memcg)
3342 mem_cgroup_oom_notify_cb(iter);
3343 }
3344
3345 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3346 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3347 {
3348 struct mem_cgroup_thresholds *thresholds;
3349 struct mem_cgroup_threshold_ary *new;
3350 unsigned long threshold;
3351 unsigned long usage;
3352 int i, size, ret;
3353
3354 ret = page_counter_memparse(args, "-1", &threshold);
3355 if (ret)
3356 return ret;
3357
3358 mutex_lock(&memcg->thresholds_lock);
3359
3360 if (type == _MEM) {
3361 thresholds = &memcg->thresholds;
3362 usage = mem_cgroup_usage(memcg, false);
3363 } else if (type == _MEMSWAP) {
3364 thresholds = &memcg->memsw_thresholds;
3365 usage = mem_cgroup_usage(memcg, true);
3366 } else
3367 BUG();
3368
3369 /* Check if a threshold crossed before adding a new one */
3370 if (thresholds->primary)
3371 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3372
3373 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3374
3375 /* Allocate memory for new array of thresholds */
3376 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3377 GFP_KERNEL);
3378 if (!new) {
3379 ret = -ENOMEM;
3380 goto unlock;
3381 }
3382 new->size = size;
3383
3384 /* Copy thresholds (if any) to new array */
3385 if (thresholds->primary) {
3386 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3387 sizeof(struct mem_cgroup_threshold));
3388 }
3389
3390 /* Add new threshold */
3391 new->entries[size - 1].eventfd = eventfd;
3392 new->entries[size - 1].threshold = threshold;
3393
3394 /* Sort thresholds. Registering of new threshold isn't time-critical */
3395 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3396 compare_thresholds, NULL);
3397
3398 /* Find current threshold */
3399 new->current_threshold = -1;
3400 for (i = 0; i < size; i++) {
3401 if (new->entries[i].threshold <= usage) {
3402 /*
3403 * new->current_threshold will not be used until
3404 * rcu_assign_pointer(), so it's safe to increment
3405 * it here.
3406 */
3407 ++new->current_threshold;
3408 } else
3409 break;
3410 }
3411
3412 /* Free old spare buffer and save old primary buffer as spare */
3413 kfree(thresholds->spare);
3414 thresholds->spare = thresholds->primary;
3415
3416 rcu_assign_pointer(thresholds->primary, new);
3417
3418 /* To be sure that nobody uses thresholds */
3419 synchronize_rcu();
3420
3421 unlock:
3422 mutex_unlock(&memcg->thresholds_lock);
3423
3424 return ret;
3425 }
3426
3427 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3428 struct eventfd_ctx *eventfd, const char *args)
3429 {
3430 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3431 }
3432
3433 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3434 struct eventfd_ctx *eventfd, const char *args)
3435 {
3436 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3437 }
3438
3439 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3440 struct eventfd_ctx *eventfd, enum res_type type)
3441 {
3442 struct mem_cgroup_thresholds *thresholds;
3443 struct mem_cgroup_threshold_ary *new;
3444 unsigned long usage;
3445 int i, j, size;
3446
3447 mutex_lock(&memcg->thresholds_lock);
3448
3449 if (type == _MEM) {
3450 thresholds = &memcg->thresholds;
3451 usage = mem_cgroup_usage(memcg, false);
3452 } else if (type == _MEMSWAP) {
3453 thresholds = &memcg->memsw_thresholds;
3454 usage = mem_cgroup_usage(memcg, true);
3455 } else
3456 BUG();
3457
3458 if (!thresholds->primary)
3459 goto unlock;
3460
3461 /* Check if a threshold crossed before removing */
3462 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3463
3464 /* Calculate new number of threshold */
3465 size = 0;
3466 for (i = 0; i < thresholds->primary->size; i++) {
3467 if (thresholds->primary->entries[i].eventfd != eventfd)
3468 size++;
3469 }
3470
3471 new = thresholds->spare;
3472
3473 /* Set thresholds array to NULL if we don't have thresholds */
3474 if (!size) {
3475 kfree(new);
3476 new = NULL;
3477 goto swap_buffers;
3478 }
3479
3480 new->size = size;
3481
3482 /* Copy thresholds and find current threshold */
3483 new->current_threshold = -1;
3484 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3485 if (thresholds->primary->entries[i].eventfd == eventfd)
3486 continue;
3487
3488 new->entries[j] = thresholds->primary->entries[i];
3489 if (new->entries[j].threshold <= usage) {
3490 /*
3491 * new->current_threshold will not be used
3492 * until rcu_assign_pointer(), so it's safe to increment
3493 * it here.
3494 */
3495 ++new->current_threshold;
3496 }
3497 j++;
3498 }
3499
3500 swap_buffers:
3501 /* Swap primary and spare array */
3502 thresholds->spare = thresholds->primary;
3503
3504 rcu_assign_pointer(thresholds->primary, new);
3505
3506 /* To be sure that nobody uses thresholds */
3507 synchronize_rcu();
3508
3509 /* If all events are unregistered, free the spare array */
3510 if (!new) {
3511 kfree(thresholds->spare);
3512 thresholds->spare = NULL;
3513 }
3514 unlock:
3515 mutex_unlock(&memcg->thresholds_lock);
3516 }
3517
3518 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3519 struct eventfd_ctx *eventfd)
3520 {
3521 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3522 }
3523
3524 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3525 struct eventfd_ctx *eventfd)
3526 {
3527 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3528 }
3529
3530 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3531 struct eventfd_ctx *eventfd, const char *args)
3532 {
3533 struct mem_cgroup_eventfd_list *event;
3534
3535 event = kmalloc(sizeof(*event), GFP_KERNEL);
3536 if (!event)
3537 return -ENOMEM;
3538
3539 spin_lock(&memcg_oom_lock);
3540
3541 event->eventfd = eventfd;
3542 list_add(&event->list, &memcg->oom_notify);
3543
3544 /* already in OOM ? */
3545 if (memcg->under_oom)
3546 eventfd_signal(eventfd, 1);
3547 spin_unlock(&memcg_oom_lock);
3548
3549 return 0;
3550 }
3551
3552 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3553 struct eventfd_ctx *eventfd)
3554 {
3555 struct mem_cgroup_eventfd_list *ev, *tmp;
3556
3557 spin_lock(&memcg_oom_lock);
3558
3559 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3560 if (ev->eventfd == eventfd) {
3561 list_del(&ev->list);
3562 kfree(ev);
3563 }
3564 }
3565
3566 spin_unlock(&memcg_oom_lock);
3567 }
3568
3569 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3570 {
3571 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3572
3573 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3574 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3575 return 0;
3576 }
3577
3578 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3579 struct cftype *cft, u64 val)
3580 {
3581 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3582
3583 /* cannot set to root cgroup and only 0 and 1 are allowed */
3584 if (!css->parent || !((val == 0) || (val == 1)))
3585 return -EINVAL;
3586
3587 memcg->oom_kill_disable = val;
3588 if (!val)
3589 memcg_oom_recover(memcg);
3590
3591 return 0;
3592 }
3593
3594 #ifdef CONFIG_CGROUP_WRITEBACK
3595
3596 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3597 {
3598 return &memcg->cgwb_list;
3599 }
3600
3601 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3602 {
3603 return wb_domain_init(&memcg->cgwb_domain, gfp);
3604 }
3605
3606 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3607 {
3608 wb_domain_exit(&memcg->cgwb_domain);
3609 }
3610
3611 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3612 {
3613 wb_domain_size_changed(&memcg->cgwb_domain);
3614 }
3615
3616 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3617 {
3618 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3619
3620 if (!memcg->css.parent)
3621 return NULL;
3622
3623 return &memcg->cgwb_domain;
3624 }
3625
3626 /**
3627 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3628 * @wb: bdi_writeback in question
3629 * @pfilepages: out parameter for number of file pages
3630 * @pheadroom: out parameter for number of allocatable pages according to memcg
3631 * @pdirty: out parameter for number of dirty pages
3632 * @pwriteback: out parameter for number of pages under writeback
3633 *
3634 * Determine the numbers of file, headroom, dirty, and writeback pages in
3635 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3636 * is a bit more involved.
3637 *
3638 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3639 * headroom is calculated as the lowest headroom of itself and the
3640 * ancestors. Note that this doesn't consider the actual amount of
3641 * available memory in the system. The caller should further cap
3642 * *@pheadroom accordingly.
3643 */
3644 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3645 unsigned long *pheadroom, unsigned long *pdirty,
3646 unsigned long *pwriteback)
3647 {
3648 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3649 struct mem_cgroup *parent;
3650
3651 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3652
3653 /* this should eventually include NR_UNSTABLE_NFS */
3654 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3655 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3656 (1 << LRU_ACTIVE_FILE));
3657 *pheadroom = PAGE_COUNTER_MAX;
3658
3659 while ((parent = parent_mem_cgroup(memcg))) {
3660 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3661 unsigned long used = page_counter_read(&memcg->memory);
3662
3663 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3664 memcg = parent;
3665 }
3666 }
3667
3668 #else /* CONFIG_CGROUP_WRITEBACK */
3669
3670 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3671 {
3672 return 0;
3673 }
3674
3675 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3676 {
3677 }
3678
3679 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3680 {
3681 }
3682
3683 #endif /* CONFIG_CGROUP_WRITEBACK */
3684
3685 /*
3686 * DO NOT USE IN NEW FILES.
3687 *
3688 * "cgroup.event_control" implementation.
3689 *
3690 * This is way over-engineered. It tries to support fully configurable
3691 * events for each user. Such level of flexibility is completely
3692 * unnecessary especially in the light of the planned unified hierarchy.
3693 *
3694 * Please deprecate this and replace with something simpler if at all
3695 * possible.
3696 */
3697
3698 /*
3699 * Unregister event and free resources.
3700 *
3701 * Gets called from workqueue.
3702 */
3703 static void memcg_event_remove(struct work_struct *work)
3704 {
3705 struct mem_cgroup_event *event =
3706 container_of(work, struct mem_cgroup_event, remove);
3707 struct mem_cgroup *memcg = event->memcg;
3708
3709 remove_wait_queue(event->wqh, &event->wait);
3710
3711 event->unregister_event(memcg, event->eventfd);
3712
3713 /* Notify userspace the event is going away. */
3714 eventfd_signal(event->eventfd, 1);
3715
3716 eventfd_ctx_put(event->eventfd);
3717 kfree(event);
3718 css_put(&memcg->css);
3719 }
3720
3721 /*
3722 * Gets called on POLLHUP on eventfd when user closes it.
3723 *
3724 * Called with wqh->lock held and interrupts disabled.
3725 */
3726 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3727 int sync, void *key)
3728 {
3729 struct mem_cgroup_event *event =
3730 container_of(wait, struct mem_cgroup_event, wait);
3731 struct mem_cgroup *memcg = event->memcg;
3732 unsigned long flags = (unsigned long)key;
3733
3734 if (flags & POLLHUP) {
3735 /*
3736 * If the event has been detached at cgroup removal, we
3737 * can simply return knowing the other side will cleanup
3738 * for us.
3739 *
3740 * We can't race against event freeing since the other
3741 * side will require wqh->lock via remove_wait_queue(),
3742 * which we hold.
3743 */
3744 spin_lock(&memcg->event_list_lock);
3745 if (!list_empty(&event->list)) {
3746 list_del_init(&event->list);
3747 /*
3748 * We are in atomic context, but cgroup_event_remove()
3749 * may sleep, so we have to call it in workqueue.
3750 */
3751 schedule_work(&event->remove);
3752 }
3753 spin_unlock(&memcg->event_list_lock);
3754 }
3755
3756 return 0;
3757 }
3758
3759 static void memcg_event_ptable_queue_proc(struct file *file,
3760 wait_queue_head_t *wqh, poll_table *pt)
3761 {
3762 struct mem_cgroup_event *event =
3763 container_of(pt, struct mem_cgroup_event, pt);
3764
3765 event->wqh = wqh;
3766 add_wait_queue(wqh, &event->wait);
3767 }
3768
3769 /*
3770 * DO NOT USE IN NEW FILES.
3771 *
3772 * Parse input and register new cgroup event handler.
3773 *
3774 * Input must be in format '<event_fd> <control_fd> <args>'.
3775 * Interpretation of args is defined by control file implementation.
3776 */
3777 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3778 char *buf, size_t nbytes, loff_t off)
3779 {
3780 struct cgroup_subsys_state *css = of_css(of);
3781 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3782 struct mem_cgroup_event *event;
3783 struct cgroup_subsys_state *cfile_css;
3784 unsigned int efd, cfd;
3785 struct fd efile;
3786 struct fd cfile;
3787 const char *name;
3788 char *endp;
3789 int ret;
3790
3791 buf = strstrip(buf);
3792
3793 efd = simple_strtoul(buf, &endp, 10);
3794 if (*endp != ' ')
3795 return -EINVAL;
3796 buf = endp + 1;
3797
3798 cfd = simple_strtoul(buf, &endp, 10);
3799 if ((*endp != ' ') && (*endp != '\0'))
3800 return -EINVAL;
3801 buf = endp + 1;
3802
3803 event = kzalloc(sizeof(*event), GFP_KERNEL);
3804 if (!event)
3805 return -ENOMEM;
3806
3807 event->memcg = memcg;
3808 INIT_LIST_HEAD(&event->list);
3809 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3810 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3811 INIT_WORK(&event->remove, memcg_event_remove);
3812
3813 efile = fdget(efd);
3814 if (!efile.file) {
3815 ret = -EBADF;
3816 goto out_kfree;
3817 }
3818
3819 event->eventfd = eventfd_ctx_fileget(efile.file);
3820 if (IS_ERR(event->eventfd)) {
3821 ret = PTR_ERR(event->eventfd);
3822 goto out_put_efile;
3823 }
3824
3825 cfile = fdget(cfd);
3826 if (!cfile.file) {
3827 ret = -EBADF;
3828 goto out_put_eventfd;
3829 }
3830
3831 /* the process need read permission on control file */
3832 /* AV: shouldn't we check that it's been opened for read instead? */
3833 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3834 if (ret < 0)
3835 goto out_put_cfile;
3836
3837 /*
3838 * Determine the event callbacks and set them in @event. This used
3839 * to be done via struct cftype but cgroup core no longer knows
3840 * about these events. The following is crude but the whole thing
3841 * is for compatibility anyway.
3842 *
3843 * DO NOT ADD NEW FILES.
3844 */
3845 name = cfile.file->f_path.dentry->d_name.name;
3846
3847 if (!strcmp(name, "memory.usage_in_bytes")) {
3848 event->register_event = mem_cgroup_usage_register_event;
3849 event->unregister_event = mem_cgroup_usage_unregister_event;
3850 } else if (!strcmp(name, "memory.oom_control")) {
3851 event->register_event = mem_cgroup_oom_register_event;
3852 event->unregister_event = mem_cgroup_oom_unregister_event;
3853 } else if (!strcmp(name, "memory.pressure_level")) {
3854 event->register_event = vmpressure_register_event;
3855 event->unregister_event = vmpressure_unregister_event;
3856 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3857 event->register_event = memsw_cgroup_usage_register_event;
3858 event->unregister_event = memsw_cgroup_usage_unregister_event;
3859 } else {
3860 ret = -EINVAL;
3861 goto out_put_cfile;
3862 }
3863
3864 /*
3865 * Verify @cfile should belong to @css. Also, remaining events are
3866 * automatically removed on cgroup destruction but the removal is
3867 * asynchronous, so take an extra ref on @css.
3868 */
3869 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3870 &memory_cgrp_subsys);
3871 ret = -EINVAL;
3872 if (IS_ERR(cfile_css))
3873 goto out_put_cfile;
3874 if (cfile_css != css) {
3875 css_put(cfile_css);
3876 goto out_put_cfile;
3877 }
3878
3879 ret = event->register_event(memcg, event->eventfd, buf);
3880 if (ret)
3881 goto out_put_css;
3882
3883 efile.file->f_op->poll(efile.file, &event->pt);
3884
3885 spin_lock(&memcg->event_list_lock);
3886 list_add(&event->list, &memcg->event_list);
3887 spin_unlock(&memcg->event_list_lock);
3888
3889 fdput(cfile);
3890 fdput(efile);
3891
3892 return nbytes;
3893
3894 out_put_css:
3895 css_put(css);
3896 out_put_cfile:
3897 fdput(cfile);
3898 out_put_eventfd:
3899 eventfd_ctx_put(event->eventfd);
3900 out_put_efile:
3901 fdput(efile);
3902 out_kfree:
3903 kfree(event);
3904
3905 return ret;
3906 }
3907
3908 static struct cftype mem_cgroup_legacy_files[] = {
3909 {
3910 .name = "usage_in_bytes",
3911 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3912 .read_u64 = mem_cgroup_read_u64,
3913 },
3914 {
3915 .name = "max_usage_in_bytes",
3916 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3917 .write = mem_cgroup_reset,
3918 .read_u64 = mem_cgroup_read_u64,
3919 },
3920 {
3921 .name = "limit_in_bytes",
3922 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3923 .write = mem_cgroup_write,
3924 .read_u64 = mem_cgroup_read_u64,
3925 },
3926 {
3927 .name = "soft_limit_in_bytes",
3928 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3929 .write = mem_cgroup_write,
3930 .read_u64 = mem_cgroup_read_u64,
3931 },
3932 {
3933 .name = "failcnt",
3934 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3935 .write = mem_cgroup_reset,
3936 .read_u64 = mem_cgroup_read_u64,
3937 },
3938 {
3939 .name = "stat",
3940 .seq_show = memcg_stat_show,
3941 },
3942 {
3943 .name = "force_empty",
3944 .write = mem_cgroup_force_empty_write,
3945 },
3946 {
3947 .name = "use_hierarchy",
3948 .write_u64 = mem_cgroup_hierarchy_write,
3949 .read_u64 = mem_cgroup_hierarchy_read,
3950 },
3951 {
3952 .name = "cgroup.event_control", /* XXX: for compat */
3953 .write = memcg_write_event_control,
3954 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3955 },
3956 {
3957 .name = "swappiness",
3958 .read_u64 = mem_cgroup_swappiness_read,
3959 .write_u64 = mem_cgroup_swappiness_write,
3960 },
3961 {
3962 .name = "move_charge_at_immigrate",
3963 .read_u64 = mem_cgroup_move_charge_read,
3964 .write_u64 = mem_cgroup_move_charge_write,
3965 },
3966 {
3967 .name = "oom_control",
3968 .seq_show = mem_cgroup_oom_control_read,
3969 .write_u64 = mem_cgroup_oom_control_write,
3970 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3971 },
3972 {
3973 .name = "pressure_level",
3974 },
3975 #ifdef CONFIG_NUMA
3976 {
3977 .name = "numa_stat",
3978 .seq_show = memcg_numa_stat_show,
3979 },
3980 #endif
3981 {
3982 .name = "kmem.limit_in_bytes",
3983 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3984 .write = mem_cgroup_write,
3985 .read_u64 = mem_cgroup_read_u64,
3986 },
3987 {
3988 .name = "kmem.usage_in_bytes",
3989 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3990 .read_u64 = mem_cgroup_read_u64,
3991 },
3992 {
3993 .name = "kmem.failcnt",
3994 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3995 .write = mem_cgroup_reset,
3996 .read_u64 = mem_cgroup_read_u64,
3997 },
3998 {
3999 .name = "kmem.max_usage_in_bytes",
4000 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4001 .write = mem_cgroup_reset,
4002 .read_u64 = mem_cgroup_read_u64,
4003 },
4004 #ifdef CONFIG_SLABINFO
4005 {
4006 .name = "kmem.slabinfo",
4007 .seq_start = slab_start,
4008 .seq_next = slab_next,
4009 .seq_stop = slab_stop,
4010 .seq_show = memcg_slab_show,
4011 },
4012 #endif
4013 {
4014 .name = "kmem.tcp.limit_in_bytes",
4015 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4016 .write = mem_cgroup_write,
4017 .read_u64 = mem_cgroup_read_u64,
4018 },
4019 {
4020 .name = "kmem.tcp.usage_in_bytes",
4021 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4022 .read_u64 = mem_cgroup_read_u64,
4023 },
4024 {
4025 .name = "kmem.tcp.failcnt",
4026 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4027 .write = mem_cgroup_reset,
4028 .read_u64 = mem_cgroup_read_u64,
4029 },
4030 {
4031 .name = "kmem.tcp.max_usage_in_bytes",
4032 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4033 .write = mem_cgroup_reset,
4034 .read_u64 = mem_cgroup_read_u64,
4035 },
4036 { }, /* terminate */
4037 };
4038
4039 /*
4040 * Private memory cgroup IDR
4041 *
4042 * Swap-out records and page cache shadow entries need to store memcg
4043 * references in constrained space, so we maintain an ID space that is
4044 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4045 * memory-controlled cgroups to 64k.
4046 *
4047 * However, there usually are many references to the oflline CSS after
4048 * the cgroup has been destroyed, such as page cache or reclaimable
4049 * slab objects, that don't need to hang on to the ID. We want to keep
4050 * those dead CSS from occupying IDs, or we might quickly exhaust the
4051 * relatively small ID space and prevent the creation of new cgroups
4052 * even when there are much fewer than 64k cgroups - possibly none.
4053 *
4054 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4055 * be freed and recycled when it's no longer needed, which is usually
4056 * when the CSS is offlined.
4057 *
4058 * The only exception to that are records of swapped out tmpfs/shmem
4059 * pages that need to be attributed to live ancestors on swapin. But
4060 * those references are manageable from userspace.
4061 */
4062
4063 static DEFINE_IDR(mem_cgroup_idr);
4064
4065 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4066 {
4067 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4068 atomic_add(n, &memcg->id.ref);
4069 }
4070
4071 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4072 {
4073 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4074 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4075 idr_remove(&mem_cgroup_idr, memcg->id.id);
4076 memcg->id.id = 0;
4077
4078 /* Memcg ID pins CSS */
4079 css_put(&memcg->css);
4080 }
4081 }
4082
4083 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4084 {
4085 mem_cgroup_id_get_many(memcg, 1);
4086 }
4087
4088 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4089 {
4090 mem_cgroup_id_put_many(memcg, 1);
4091 }
4092
4093 /**
4094 * mem_cgroup_from_id - look up a memcg from a memcg id
4095 * @id: the memcg id to look up
4096 *
4097 * Caller must hold rcu_read_lock().
4098 */
4099 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4100 {
4101 WARN_ON_ONCE(!rcu_read_lock_held());
4102 return idr_find(&mem_cgroup_idr, id);
4103 }
4104
4105 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4106 {
4107 struct mem_cgroup_per_node *pn;
4108 int tmp = node;
4109 /*
4110 * This routine is called against possible nodes.
4111 * But it's BUG to call kmalloc() against offline node.
4112 *
4113 * TODO: this routine can waste much memory for nodes which will
4114 * never be onlined. It's better to use memory hotplug callback
4115 * function.
4116 */
4117 if (!node_state(node, N_NORMAL_MEMORY))
4118 tmp = -1;
4119 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4120 if (!pn)
4121 return 1;
4122
4123 lruvec_init(&pn->lruvec);
4124 pn->usage_in_excess = 0;
4125 pn->on_tree = false;
4126 pn->memcg = memcg;
4127
4128 memcg->nodeinfo[node] = pn;
4129 return 0;
4130 }
4131
4132 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4133 {
4134 kfree(memcg->nodeinfo[node]);
4135 }
4136
4137 static void mem_cgroup_free(struct mem_cgroup *memcg)
4138 {
4139 int node;
4140
4141 memcg_wb_domain_exit(memcg);
4142 for_each_node(node)
4143 free_mem_cgroup_per_node_info(memcg, node);
4144 free_percpu(memcg->stat);
4145 kfree(memcg);
4146 }
4147
4148 static struct mem_cgroup *mem_cgroup_alloc(void)
4149 {
4150 struct mem_cgroup *memcg;
4151 size_t size;
4152 int node;
4153
4154 size = sizeof(struct mem_cgroup);
4155 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4156
4157 memcg = kzalloc(size, GFP_KERNEL);
4158 if (!memcg)
4159 return NULL;
4160
4161 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4162 1, MEM_CGROUP_ID_MAX,
4163 GFP_KERNEL);
4164 if (memcg->id.id < 0)
4165 goto fail;
4166
4167 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4168 if (!memcg->stat)
4169 goto fail;
4170
4171 for_each_node(node)
4172 if (alloc_mem_cgroup_per_node_info(memcg, node))
4173 goto fail;
4174
4175 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4176 goto fail;
4177
4178 INIT_WORK(&memcg->high_work, high_work_func);
4179 memcg->last_scanned_node = MAX_NUMNODES;
4180 INIT_LIST_HEAD(&memcg->oom_notify);
4181 mutex_init(&memcg->thresholds_lock);
4182 spin_lock_init(&memcg->move_lock);
4183 vmpressure_init(&memcg->vmpressure);
4184 INIT_LIST_HEAD(&memcg->event_list);
4185 spin_lock_init(&memcg->event_list_lock);
4186 memcg->socket_pressure = jiffies;
4187 #ifndef CONFIG_SLOB
4188 memcg->kmemcg_id = -1;
4189 #endif
4190 #ifdef CONFIG_CGROUP_WRITEBACK
4191 INIT_LIST_HEAD(&memcg->cgwb_list);
4192 #endif
4193 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4194 return memcg;
4195 fail:
4196 if (memcg->id.id > 0)
4197 idr_remove(&mem_cgroup_idr, memcg->id.id);
4198 mem_cgroup_free(memcg);
4199 return NULL;
4200 }
4201
4202 static struct cgroup_subsys_state * __ref
4203 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4204 {
4205 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4206 struct mem_cgroup *memcg;
4207 long error = -ENOMEM;
4208
4209 memcg = mem_cgroup_alloc();
4210 if (!memcg)
4211 return ERR_PTR(error);
4212
4213 memcg->high = PAGE_COUNTER_MAX;
4214 memcg->soft_limit = PAGE_COUNTER_MAX;
4215 if (parent) {
4216 memcg->swappiness = mem_cgroup_swappiness(parent);
4217 memcg->oom_kill_disable = parent->oom_kill_disable;
4218 }
4219 if (parent && parent->use_hierarchy) {
4220 memcg->use_hierarchy = true;
4221 page_counter_init(&memcg->memory, &parent->memory);
4222 page_counter_init(&memcg->swap, &parent->swap);
4223 page_counter_init(&memcg->memsw, &parent->memsw);
4224 page_counter_init(&memcg->kmem, &parent->kmem);
4225 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4226 } else {
4227 page_counter_init(&memcg->memory, NULL);
4228 page_counter_init(&memcg->swap, NULL);
4229 page_counter_init(&memcg->memsw, NULL);
4230 page_counter_init(&memcg->kmem, NULL);
4231 page_counter_init(&memcg->tcpmem, NULL);
4232 /*
4233 * Deeper hierachy with use_hierarchy == false doesn't make
4234 * much sense so let cgroup subsystem know about this
4235 * unfortunate state in our controller.
4236 */
4237 if (parent != root_mem_cgroup)
4238 memory_cgrp_subsys.broken_hierarchy = true;
4239 }
4240
4241 /* The following stuff does not apply to the root */
4242 if (!parent) {
4243 root_mem_cgroup = memcg;
4244 return &memcg->css;
4245 }
4246
4247 error = memcg_online_kmem(memcg);
4248 if (error)
4249 goto fail;
4250
4251 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4252 static_branch_inc(&memcg_sockets_enabled_key);
4253
4254 return &memcg->css;
4255 fail:
4256 mem_cgroup_free(memcg);
4257 return ERR_PTR(-ENOMEM);
4258 }
4259
4260 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4261 {
4262 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4263
4264 /* Online state pins memcg ID, memcg ID pins CSS */
4265 atomic_set(&memcg->id.ref, 1);
4266 css_get(css);
4267 return 0;
4268 }
4269
4270 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4271 {
4272 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4273 struct mem_cgroup_event *event, *tmp;
4274
4275 /*
4276 * Unregister events and notify userspace.
4277 * Notify userspace about cgroup removing only after rmdir of cgroup
4278 * directory to avoid race between userspace and kernelspace.
4279 */
4280 spin_lock(&memcg->event_list_lock);
4281 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4282 list_del_init(&event->list);
4283 schedule_work(&event->remove);
4284 }
4285 spin_unlock(&memcg->event_list_lock);
4286
4287 memcg_offline_kmem(memcg);
4288 wb_memcg_offline(memcg);
4289
4290 mem_cgroup_id_put(memcg);
4291 }
4292
4293 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4294 {
4295 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4296
4297 invalidate_reclaim_iterators(memcg);
4298 }
4299
4300 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4301 {
4302 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4303
4304 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4305 static_branch_dec(&memcg_sockets_enabled_key);
4306
4307 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4308 static_branch_dec(&memcg_sockets_enabled_key);
4309
4310 vmpressure_cleanup(&memcg->vmpressure);
4311 cancel_work_sync(&memcg->high_work);
4312 mem_cgroup_remove_from_trees(memcg);
4313 memcg_free_kmem(memcg);
4314 mem_cgroup_free(memcg);
4315 }
4316
4317 /**
4318 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4319 * @css: the target css
4320 *
4321 * Reset the states of the mem_cgroup associated with @css. This is
4322 * invoked when the userland requests disabling on the default hierarchy
4323 * but the memcg is pinned through dependency. The memcg should stop
4324 * applying policies and should revert to the vanilla state as it may be
4325 * made visible again.
4326 *
4327 * The current implementation only resets the essential configurations.
4328 * This needs to be expanded to cover all the visible parts.
4329 */
4330 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4331 {
4332 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4333
4334 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4335 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4336 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4337 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4338 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4339 memcg->low = 0;
4340 memcg->high = PAGE_COUNTER_MAX;
4341 memcg->soft_limit = PAGE_COUNTER_MAX;
4342 memcg_wb_domain_size_changed(memcg);
4343 }
4344
4345 #ifdef CONFIG_MMU
4346 /* Handlers for move charge at task migration. */
4347 static int mem_cgroup_do_precharge(unsigned long count)
4348 {
4349 int ret;
4350
4351 /* Try a single bulk charge without reclaim first, kswapd may wake */
4352 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4353 if (!ret) {
4354 mc.precharge += count;
4355 return ret;
4356 }
4357
4358 /* Try charges one by one with reclaim */
4359 while (count--) {
4360 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4361 if (ret)
4362 return ret;
4363 mc.precharge++;
4364 cond_resched();
4365 }
4366 return 0;
4367 }
4368
4369 union mc_target {
4370 struct page *page;
4371 swp_entry_t ent;
4372 };
4373
4374 enum mc_target_type {
4375 MC_TARGET_NONE = 0,
4376 MC_TARGET_PAGE,
4377 MC_TARGET_SWAP,
4378 };
4379
4380 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4381 unsigned long addr, pte_t ptent)
4382 {
4383 struct page *page = vm_normal_page(vma, addr, ptent);
4384
4385 if (!page || !page_mapped(page))
4386 return NULL;
4387 if (PageAnon(page)) {
4388 if (!(mc.flags & MOVE_ANON))
4389 return NULL;
4390 } else {
4391 if (!(mc.flags & MOVE_FILE))
4392 return NULL;
4393 }
4394 if (!get_page_unless_zero(page))
4395 return NULL;
4396
4397 return page;
4398 }
4399
4400 #ifdef CONFIG_SWAP
4401 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4402 pte_t ptent, swp_entry_t *entry)
4403 {
4404 struct page *page = NULL;
4405 swp_entry_t ent = pte_to_swp_entry(ptent);
4406
4407 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4408 return NULL;
4409 /*
4410 * Because lookup_swap_cache() updates some statistics counter,
4411 * we call find_get_page() with swapper_space directly.
4412 */
4413 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4414 if (do_memsw_account())
4415 entry->val = ent.val;
4416
4417 return page;
4418 }
4419 #else
4420 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4421 pte_t ptent, swp_entry_t *entry)
4422 {
4423 return NULL;
4424 }
4425 #endif
4426
4427 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4428 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4429 {
4430 struct page *page = NULL;
4431 struct address_space *mapping;
4432 pgoff_t pgoff;
4433
4434 if (!vma->vm_file) /* anonymous vma */
4435 return NULL;
4436 if (!(mc.flags & MOVE_FILE))
4437 return NULL;
4438
4439 mapping = vma->vm_file->f_mapping;
4440 pgoff = linear_page_index(vma, addr);
4441
4442 /* page is moved even if it's not RSS of this task(page-faulted). */
4443 #ifdef CONFIG_SWAP
4444 /* shmem/tmpfs may report page out on swap: account for that too. */
4445 if (shmem_mapping(mapping)) {
4446 page = find_get_entry(mapping, pgoff);
4447 if (radix_tree_exceptional_entry(page)) {
4448 swp_entry_t swp = radix_to_swp_entry(page);
4449 if (do_memsw_account())
4450 *entry = swp;
4451 page = find_get_page(swap_address_space(swp),
4452 swp_offset(swp));
4453 }
4454 } else
4455 page = find_get_page(mapping, pgoff);
4456 #else
4457 page = find_get_page(mapping, pgoff);
4458 #endif
4459 return page;
4460 }
4461
4462 /**
4463 * mem_cgroup_move_account - move account of the page
4464 * @page: the page
4465 * @compound: charge the page as compound or small page
4466 * @from: mem_cgroup which the page is moved from.
4467 * @to: mem_cgroup which the page is moved to. @from != @to.
4468 *
4469 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4470 *
4471 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4472 * from old cgroup.
4473 */
4474 static int mem_cgroup_move_account(struct page *page,
4475 bool compound,
4476 struct mem_cgroup *from,
4477 struct mem_cgroup *to)
4478 {
4479 unsigned long flags;
4480 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4481 int ret;
4482 bool anon;
4483
4484 VM_BUG_ON(from == to);
4485 VM_BUG_ON_PAGE(PageLRU(page), page);
4486 VM_BUG_ON(compound && !PageTransHuge(page));
4487
4488 /*
4489 * Prevent mem_cgroup_migrate() from looking at
4490 * page->mem_cgroup of its source page while we change it.
4491 */
4492 ret = -EBUSY;
4493 if (!trylock_page(page))
4494 goto out;
4495
4496 ret = -EINVAL;
4497 if (page->mem_cgroup != from)
4498 goto out_unlock;
4499
4500 anon = PageAnon(page);
4501
4502 spin_lock_irqsave(&from->move_lock, flags);
4503
4504 if (!anon && page_mapped(page)) {
4505 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4506 nr_pages);
4507 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4508 nr_pages);
4509 }
4510
4511 /*
4512 * move_lock grabbed above and caller set from->moving_account, so
4513 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4514 * So mapping should be stable for dirty pages.
4515 */
4516 if (!anon && PageDirty(page)) {
4517 struct address_space *mapping = page_mapping(page);
4518
4519 if (mapping_cap_account_dirty(mapping)) {
4520 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4521 nr_pages);
4522 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4523 nr_pages);
4524 }
4525 }
4526
4527 if (PageWriteback(page)) {
4528 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4529 nr_pages);
4530 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4531 nr_pages);
4532 }
4533
4534 /*
4535 * It is safe to change page->mem_cgroup here because the page
4536 * is referenced, charged, and isolated - we can't race with
4537 * uncharging, charging, migration, or LRU putback.
4538 */
4539
4540 /* caller should have done css_get */
4541 page->mem_cgroup = to;
4542 spin_unlock_irqrestore(&from->move_lock, flags);
4543
4544 ret = 0;
4545
4546 local_irq_disable();
4547 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4548 memcg_check_events(to, page);
4549 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4550 memcg_check_events(from, page);
4551 local_irq_enable();
4552 out_unlock:
4553 unlock_page(page);
4554 out:
4555 return ret;
4556 }
4557
4558 /**
4559 * get_mctgt_type - get target type of moving charge
4560 * @vma: the vma the pte to be checked belongs
4561 * @addr: the address corresponding to the pte to be checked
4562 * @ptent: the pte to be checked
4563 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4564 *
4565 * Returns
4566 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4567 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4568 * move charge. if @target is not NULL, the page is stored in target->page
4569 * with extra refcnt got(Callers should handle it).
4570 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4571 * target for charge migration. if @target is not NULL, the entry is stored
4572 * in target->ent.
4573 *
4574 * Called with pte lock held.
4575 */
4576
4577 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4578 unsigned long addr, pte_t ptent, union mc_target *target)
4579 {
4580 struct page *page = NULL;
4581 enum mc_target_type ret = MC_TARGET_NONE;
4582 swp_entry_t ent = { .val = 0 };
4583
4584 if (pte_present(ptent))
4585 page = mc_handle_present_pte(vma, addr, ptent);
4586 else if (is_swap_pte(ptent))
4587 page = mc_handle_swap_pte(vma, ptent, &ent);
4588 else if (pte_none(ptent))
4589 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4590
4591 if (!page && !ent.val)
4592 return ret;
4593 if (page) {
4594 /*
4595 * Do only loose check w/o serialization.
4596 * mem_cgroup_move_account() checks the page is valid or
4597 * not under LRU exclusion.
4598 */
4599 if (page->mem_cgroup == mc.from) {
4600 ret = MC_TARGET_PAGE;
4601 if (target)
4602 target->page = page;
4603 }
4604 if (!ret || !target)
4605 put_page(page);
4606 }
4607 /* There is a swap entry and a page doesn't exist or isn't charged */
4608 if (ent.val && !ret &&
4609 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4610 ret = MC_TARGET_SWAP;
4611 if (target)
4612 target->ent = ent;
4613 }
4614 return ret;
4615 }
4616
4617 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4618 /*
4619 * We don't consider swapping or file mapped pages because THP does not
4620 * support them for now.
4621 * Caller should make sure that pmd_trans_huge(pmd) is true.
4622 */
4623 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4624 unsigned long addr, pmd_t pmd, union mc_target *target)
4625 {
4626 struct page *page = NULL;
4627 enum mc_target_type ret = MC_TARGET_NONE;
4628
4629 page = pmd_page(pmd);
4630 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4631 if (!(mc.flags & MOVE_ANON))
4632 return ret;
4633 if (page->mem_cgroup == mc.from) {
4634 ret = MC_TARGET_PAGE;
4635 if (target) {
4636 get_page(page);
4637 target->page = page;
4638 }
4639 }
4640 return ret;
4641 }
4642 #else
4643 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4644 unsigned long addr, pmd_t pmd, union mc_target *target)
4645 {
4646 return MC_TARGET_NONE;
4647 }
4648 #endif
4649
4650 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4651 unsigned long addr, unsigned long end,
4652 struct mm_walk *walk)
4653 {
4654 struct vm_area_struct *vma = walk->vma;
4655 pte_t *pte;
4656 spinlock_t *ptl;
4657
4658 ptl = pmd_trans_huge_lock(pmd, vma);
4659 if (ptl) {
4660 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4661 mc.precharge += HPAGE_PMD_NR;
4662 spin_unlock(ptl);
4663 return 0;
4664 }
4665
4666 if (pmd_trans_unstable(pmd))
4667 return 0;
4668 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4669 for (; addr != end; pte++, addr += PAGE_SIZE)
4670 if (get_mctgt_type(vma, addr, *pte, NULL))
4671 mc.precharge++; /* increment precharge temporarily */
4672 pte_unmap_unlock(pte - 1, ptl);
4673 cond_resched();
4674
4675 return 0;
4676 }
4677
4678 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4679 {
4680 unsigned long precharge;
4681
4682 struct mm_walk mem_cgroup_count_precharge_walk = {
4683 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4684 .mm = mm,
4685 };
4686 down_read(&mm->mmap_sem);
4687 walk_page_range(0, mm->highest_vm_end,
4688 &mem_cgroup_count_precharge_walk);
4689 up_read(&mm->mmap_sem);
4690
4691 precharge = mc.precharge;
4692 mc.precharge = 0;
4693
4694 return precharge;
4695 }
4696
4697 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4698 {
4699 unsigned long precharge = mem_cgroup_count_precharge(mm);
4700
4701 VM_BUG_ON(mc.moving_task);
4702 mc.moving_task = current;
4703 return mem_cgroup_do_precharge(precharge);
4704 }
4705
4706 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4707 static void __mem_cgroup_clear_mc(void)
4708 {
4709 struct mem_cgroup *from = mc.from;
4710 struct mem_cgroup *to = mc.to;
4711
4712 /* we must uncharge all the leftover precharges from mc.to */
4713 if (mc.precharge) {
4714 cancel_charge(mc.to, mc.precharge);
4715 mc.precharge = 0;
4716 }
4717 /*
4718 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4719 * we must uncharge here.
4720 */
4721 if (mc.moved_charge) {
4722 cancel_charge(mc.from, mc.moved_charge);
4723 mc.moved_charge = 0;
4724 }
4725 /* we must fixup refcnts and charges */
4726 if (mc.moved_swap) {
4727 /* uncharge swap account from the old cgroup */
4728 if (!mem_cgroup_is_root(mc.from))
4729 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4730
4731 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4732
4733 /*
4734 * we charged both to->memory and to->memsw, so we
4735 * should uncharge to->memory.
4736 */
4737 if (!mem_cgroup_is_root(mc.to))
4738 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4739
4740 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4741 css_put_many(&mc.to->css, mc.moved_swap);
4742
4743 mc.moved_swap = 0;
4744 }
4745 memcg_oom_recover(from);
4746 memcg_oom_recover(to);
4747 wake_up_all(&mc.waitq);
4748 }
4749
4750 static void mem_cgroup_clear_mc(void)
4751 {
4752 struct mm_struct *mm = mc.mm;
4753
4754 /*
4755 * we must clear moving_task before waking up waiters at the end of
4756 * task migration.
4757 */
4758 mc.moving_task = NULL;
4759 __mem_cgroup_clear_mc();
4760 spin_lock(&mc.lock);
4761 mc.from = NULL;
4762 mc.to = NULL;
4763 mc.mm = NULL;
4764 spin_unlock(&mc.lock);
4765
4766 mmput(mm);
4767 }
4768
4769 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4770 {
4771 struct cgroup_subsys_state *css;
4772 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4773 struct mem_cgroup *from;
4774 struct task_struct *leader, *p;
4775 struct mm_struct *mm;
4776 unsigned long move_flags;
4777 int ret = 0;
4778
4779 /* charge immigration isn't supported on the default hierarchy */
4780 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4781 return 0;
4782
4783 /*
4784 * Multi-process migrations only happen on the default hierarchy
4785 * where charge immigration is not used. Perform charge
4786 * immigration if @tset contains a leader and whine if there are
4787 * multiple.
4788 */
4789 p = NULL;
4790 cgroup_taskset_for_each_leader(leader, css, tset) {
4791 WARN_ON_ONCE(p);
4792 p = leader;
4793 memcg = mem_cgroup_from_css(css);
4794 }
4795 if (!p)
4796 return 0;
4797
4798 /*
4799 * We are now commited to this value whatever it is. Changes in this
4800 * tunable will only affect upcoming migrations, not the current one.
4801 * So we need to save it, and keep it going.
4802 */
4803 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4804 if (!move_flags)
4805 return 0;
4806
4807 from = mem_cgroup_from_task(p);
4808
4809 VM_BUG_ON(from == memcg);
4810
4811 mm = get_task_mm(p);
4812 if (!mm)
4813 return 0;
4814 /* We move charges only when we move a owner of the mm */
4815 if (mm->owner == p) {
4816 VM_BUG_ON(mc.from);
4817 VM_BUG_ON(mc.to);
4818 VM_BUG_ON(mc.precharge);
4819 VM_BUG_ON(mc.moved_charge);
4820 VM_BUG_ON(mc.moved_swap);
4821
4822 spin_lock(&mc.lock);
4823 mc.mm = mm;
4824 mc.from = from;
4825 mc.to = memcg;
4826 mc.flags = move_flags;
4827 spin_unlock(&mc.lock);
4828 /* We set mc.moving_task later */
4829
4830 ret = mem_cgroup_precharge_mc(mm);
4831 if (ret)
4832 mem_cgroup_clear_mc();
4833 } else {
4834 mmput(mm);
4835 }
4836 return ret;
4837 }
4838
4839 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4840 {
4841 if (mc.to)
4842 mem_cgroup_clear_mc();
4843 }
4844
4845 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4846 unsigned long addr, unsigned long end,
4847 struct mm_walk *walk)
4848 {
4849 int ret = 0;
4850 struct vm_area_struct *vma = walk->vma;
4851 pte_t *pte;
4852 spinlock_t *ptl;
4853 enum mc_target_type target_type;
4854 union mc_target target;
4855 struct page *page;
4856
4857 ptl = pmd_trans_huge_lock(pmd, vma);
4858 if (ptl) {
4859 if (mc.precharge < HPAGE_PMD_NR) {
4860 spin_unlock(ptl);
4861 return 0;
4862 }
4863 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4864 if (target_type == MC_TARGET_PAGE) {
4865 page = target.page;
4866 if (!isolate_lru_page(page)) {
4867 if (!mem_cgroup_move_account(page, true,
4868 mc.from, mc.to)) {
4869 mc.precharge -= HPAGE_PMD_NR;
4870 mc.moved_charge += HPAGE_PMD_NR;
4871 }
4872 putback_lru_page(page);
4873 }
4874 put_page(page);
4875 }
4876 spin_unlock(ptl);
4877 return 0;
4878 }
4879
4880 if (pmd_trans_unstable(pmd))
4881 return 0;
4882 retry:
4883 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4884 for (; addr != end; addr += PAGE_SIZE) {
4885 pte_t ptent = *(pte++);
4886 swp_entry_t ent;
4887
4888 if (!mc.precharge)
4889 break;
4890
4891 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4892 case MC_TARGET_PAGE:
4893 page = target.page;
4894 /*
4895 * We can have a part of the split pmd here. Moving it
4896 * can be done but it would be too convoluted so simply
4897 * ignore such a partial THP and keep it in original
4898 * memcg. There should be somebody mapping the head.
4899 */
4900 if (PageTransCompound(page))
4901 goto put;
4902 if (isolate_lru_page(page))
4903 goto put;
4904 if (!mem_cgroup_move_account(page, false,
4905 mc.from, mc.to)) {
4906 mc.precharge--;
4907 /* we uncharge from mc.from later. */
4908 mc.moved_charge++;
4909 }
4910 putback_lru_page(page);
4911 put: /* get_mctgt_type() gets the page */
4912 put_page(page);
4913 break;
4914 case MC_TARGET_SWAP:
4915 ent = target.ent;
4916 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4917 mc.precharge--;
4918 /* we fixup refcnts and charges later. */
4919 mc.moved_swap++;
4920 }
4921 break;
4922 default:
4923 break;
4924 }
4925 }
4926 pte_unmap_unlock(pte - 1, ptl);
4927 cond_resched();
4928
4929 if (addr != end) {
4930 /*
4931 * We have consumed all precharges we got in can_attach().
4932 * We try charge one by one, but don't do any additional
4933 * charges to mc.to if we have failed in charge once in attach()
4934 * phase.
4935 */
4936 ret = mem_cgroup_do_precharge(1);
4937 if (!ret)
4938 goto retry;
4939 }
4940
4941 return ret;
4942 }
4943
4944 static void mem_cgroup_move_charge(void)
4945 {
4946 struct mm_walk mem_cgroup_move_charge_walk = {
4947 .pmd_entry = mem_cgroup_move_charge_pte_range,
4948 .mm = mc.mm,
4949 };
4950
4951 lru_add_drain_all();
4952 /*
4953 * Signal lock_page_memcg() to take the memcg's move_lock
4954 * while we're moving its pages to another memcg. Then wait
4955 * for already started RCU-only updates to finish.
4956 */
4957 atomic_inc(&mc.from->moving_account);
4958 synchronize_rcu();
4959 retry:
4960 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4961 /*
4962 * Someone who are holding the mmap_sem might be waiting in
4963 * waitq. So we cancel all extra charges, wake up all waiters,
4964 * and retry. Because we cancel precharges, we might not be able
4965 * to move enough charges, but moving charge is a best-effort
4966 * feature anyway, so it wouldn't be a big problem.
4967 */
4968 __mem_cgroup_clear_mc();
4969 cond_resched();
4970 goto retry;
4971 }
4972 /*
4973 * When we have consumed all precharges and failed in doing
4974 * additional charge, the page walk just aborts.
4975 */
4976 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
4977
4978 up_read(&mc.mm->mmap_sem);
4979 atomic_dec(&mc.from->moving_account);
4980 }
4981
4982 static void mem_cgroup_move_task(void)
4983 {
4984 if (mc.to) {
4985 mem_cgroup_move_charge();
4986 mem_cgroup_clear_mc();
4987 }
4988 }
4989 #else /* !CONFIG_MMU */
4990 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4991 {
4992 return 0;
4993 }
4994 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4995 {
4996 }
4997 static void mem_cgroup_move_task(void)
4998 {
4999 }
5000 #endif
5001
5002 /*
5003 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5004 * to verify whether we're attached to the default hierarchy on each mount
5005 * attempt.
5006 */
5007 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5008 {
5009 /*
5010 * use_hierarchy is forced on the default hierarchy. cgroup core
5011 * guarantees that @root doesn't have any children, so turning it
5012 * on for the root memcg is enough.
5013 */
5014 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5015 root_mem_cgroup->use_hierarchy = true;
5016 else
5017 root_mem_cgroup->use_hierarchy = false;
5018 }
5019
5020 static u64 memory_current_read(struct cgroup_subsys_state *css,
5021 struct cftype *cft)
5022 {
5023 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5024
5025 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5026 }
5027
5028 static int memory_low_show(struct seq_file *m, void *v)
5029 {
5030 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5031 unsigned long low = READ_ONCE(memcg->low);
5032
5033 if (low == PAGE_COUNTER_MAX)
5034 seq_puts(m, "max\n");
5035 else
5036 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5037
5038 return 0;
5039 }
5040
5041 static ssize_t memory_low_write(struct kernfs_open_file *of,
5042 char *buf, size_t nbytes, loff_t off)
5043 {
5044 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5045 unsigned long low;
5046 int err;
5047
5048 buf = strstrip(buf);
5049 err = page_counter_memparse(buf, "max", &low);
5050 if (err)
5051 return err;
5052
5053 memcg->low = low;
5054
5055 return nbytes;
5056 }
5057
5058 static int memory_high_show(struct seq_file *m, void *v)
5059 {
5060 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5061 unsigned long high = READ_ONCE(memcg->high);
5062
5063 if (high == PAGE_COUNTER_MAX)
5064 seq_puts(m, "max\n");
5065 else
5066 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5067
5068 return 0;
5069 }
5070
5071 static ssize_t memory_high_write(struct kernfs_open_file *of,
5072 char *buf, size_t nbytes, loff_t off)
5073 {
5074 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5075 unsigned long nr_pages;
5076 unsigned long high;
5077 int err;
5078
5079 buf = strstrip(buf);
5080 err = page_counter_memparse(buf, "max", &high);
5081 if (err)
5082 return err;
5083
5084 memcg->high = high;
5085
5086 nr_pages = page_counter_read(&memcg->memory);
5087 if (nr_pages > high)
5088 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5089 GFP_KERNEL, true);
5090
5091 memcg_wb_domain_size_changed(memcg);
5092 return nbytes;
5093 }
5094
5095 static int memory_max_show(struct seq_file *m, void *v)
5096 {
5097 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5098 unsigned long max = READ_ONCE(memcg->memory.limit);
5099
5100 if (max == PAGE_COUNTER_MAX)
5101 seq_puts(m, "max\n");
5102 else
5103 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5104
5105 return 0;
5106 }
5107
5108 static ssize_t memory_max_write(struct kernfs_open_file *of,
5109 char *buf, size_t nbytes, loff_t off)
5110 {
5111 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5112 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5113 bool drained = false;
5114 unsigned long max;
5115 int err;
5116
5117 buf = strstrip(buf);
5118 err = page_counter_memparse(buf, "max", &max);
5119 if (err)
5120 return err;
5121
5122 xchg(&memcg->memory.limit, max);
5123
5124 for (;;) {
5125 unsigned long nr_pages = page_counter_read(&memcg->memory);
5126
5127 if (nr_pages <= max)
5128 break;
5129
5130 if (signal_pending(current)) {
5131 err = -EINTR;
5132 break;
5133 }
5134
5135 if (!drained) {
5136 drain_all_stock(memcg);
5137 drained = true;
5138 continue;
5139 }
5140
5141 if (nr_reclaims) {
5142 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5143 GFP_KERNEL, true))
5144 nr_reclaims--;
5145 continue;
5146 }
5147
5148 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5149 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5150 break;
5151 }
5152
5153 memcg_wb_domain_size_changed(memcg);
5154 return nbytes;
5155 }
5156
5157 static int memory_events_show(struct seq_file *m, void *v)
5158 {
5159 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5160
5161 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5162 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5163 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5164 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5165
5166 return 0;
5167 }
5168
5169 static int memory_stat_show(struct seq_file *m, void *v)
5170 {
5171 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5172 unsigned long stat[MEMCG_NR_STAT];
5173 unsigned long events[MEMCG_NR_EVENTS];
5174 int i;
5175
5176 /*
5177 * Provide statistics on the state of the memory subsystem as
5178 * well as cumulative event counters that show past behavior.
5179 *
5180 * This list is ordered following a combination of these gradients:
5181 * 1) generic big picture -> specifics and details
5182 * 2) reflecting userspace activity -> reflecting kernel heuristics
5183 *
5184 * Current memory state:
5185 */
5186
5187 tree_stat(memcg, stat);
5188 tree_events(memcg, events);
5189
5190 seq_printf(m, "anon %llu\n",
5191 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5192 seq_printf(m, "file %llu\n",
5193 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5194 seq_printf(m, "kernel_stack %llu\n",
5195 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5196 seq_printf(m, "slab %llu\n",
5197 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5198 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5199 seq_printf(m, "sock %llu\n",
5200 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5201
5202 seq_printf(m, "file_mapped %llu\n",
5203 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5204 seq_printf(m, "file_dirty %llu\n",
5205 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5206 seq_printf(m, "file_writeback %llu\n",
5207 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5208
5209 for (i = 0; i < NR_LRU_LISTS; i++) {
5210 struct mem_cgroup *mi;
5211 unsigned long val = 0;
5212
5213 for_each_mem_cgroup_tree(mi, memcg)
5214 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5215 seq_printf(m, "%s %llu\n",
5216 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5217 }
5218
5219 seq_printf(m, "slab_reclaimable %llu\n",
5220 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5221 seq_printf(m, "slab_unreclaimable %llu\n",
5222 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5223
5224 /* Accumulated memory events */
5225
5226 seq_printf(m, "pgfault %lu\n",
5227 events[MEM_CGROUP_EVENTS_PGFAULT]);
5228 seq_printf(m, "pgmajfault %lu\n",
5229 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5230
5231 return 0;
5232 }
5233
5234 static struct cftype memory_files[] = {
5235 {
5236 .name = "current",
5237 .flags = CFTYPE_NOT_ON_ROOT,
5238 .read_u64 = memory_current_read,
5239 },
5240 {
5241 .name = "low",
5242 .flags = CFTYPE_NOT_ON_ROOT,
5243 .seq_show = memory_low_show,
5244 .write = memory_low_write,
5245 },
5246 {
5247 .name = "high",
5248 .flags = CFTYPE_NOT_ON_ROOT,
5249 .seq_show = memory_high_show,
5250 .write = memory_high_write,
5251 },
5252 {
5253 .name = "max",
5254 .flags = CFTYPE_NOT_ON_ROOT,
5255 .seq_show = memory_max_show,
5256 .write = memory_max_write,
5257 },
5258 {
5259 .name = "events",
5260 .flags = CFTYPE_NOT_ON_ROOT,
5261 .file_offset = offsetof(struct mem_cgroup, events_file),
5262 .seq_show = memory_events_show,
5263 },
5264 {
5265 .name = "stat",
5266 .flags = CFTYPE_NOT_ON_ROOT,
5267 .seq_show = memory_stat_show,
5268 },
5269 { } /* terminate */
5270 };
5271
5272 struct cgroup_subsys memory_cgrp_subsys = {
5273 .css_alloc = mem_cgroup_css_alloc,
5274 .css_online = mem_cgroup_css_online,
5275 .css_offline = mem_cgroup_css_offline,
5276 .css_released = mem_cgroup_css_released,
5277 .css_free = mem_cgroup_css_free,
5278 .css_reset = mem_cgroup_css_reset,
5279 .can_attach = mem_cgroup_can_attach,
5280 .cancel_attach = mem_cgroup_cancel_attach,
5281 .post_attach = mem_cgroup_move_task,
5282 .bind = mem_cgroup_bind,
5283 .dfl_cftypes = memory_files,
5284 .legacy_cftypes = mem_cgroup_legacy_files,
5285 .early_init = 0,
5286 };
5287
5288 /**
5289 * mem_cgroup_low - check if memory consumption is below the normal range
5290 * @root: the highest ancestor to consider
5291 * @memcg: the memory cgroup to check
5292 *
5293 * Returns %true if memory consumption of @memcg, and that of all
5294 * configurable ancestors up to @root, is below the normal range.
5295 */
5296 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5297 {
5298 if (mem_cgroup_disabled())
5299 return false;
5300
5301 /*
5302 * The toplevel group doesn't have a configurable range, so
5303 * it's never low when looked at directly, and it is not
5304 * considered an ancestor when assessing the hierarchy.
5305 */
5306
5307 if (memcg == root_mem_cgroup)
5308 return false;
5309
5310 if (page_counter_read(&memcg->memory) >= memcg->low)
5311 return false;
5312
5313 while (memcg != root) {
5314 memcg = parent_mem_cgroup(memcg);
5315
5316 if (memcg == root_mem_cgroup)
5317 break;
5318
5319 if (page_counter_read(&memcg->memory) >= memcg->low)
5320 return false;
5321 }
5322 return true;
5323 }
5324
5325 /**
5326 * mem_cgroup_try_charge - try charging a page
5327 * @page: page to charge
5328 * @mm: mm context of the victim
5329 * @gfp_mask: reclaim mode
5330 * @memcgp: charged memcg return
5331 * @compound: charge the page as compound or small page
5332 *
5333 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5334 * pages according to @gfp_mask if necessary.
5335 *
5336 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5337 * Otherwise, an error code is returned.
5338 *
5339 * After page->mapping has been set up, the caller must finalize the
5340 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5341 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5342 */
5343 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5344 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5345 bool compound)
5346 {
5347 struct mem_cgroup *memcg = NULL;
5348 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5349 int ret = 0;
5350
5351 if (mem_cgroup_disabled())
5352 goto out;
5353
5354 if (PageSwapCache(page)) {
5355 /*
5356 * Every swap fault against a single page tries to charge the
5357 * page, bail as early as possible. shmem_unuse() encounters
5358 * already charged pages, too. The USED bit is protected by
5359 * the page lock, which serializes swap cache removal, which
5360 * in turn serializes uncharging.
5361 */
5362 VM_BUG_ON_PAGE(!PageLocked(page), page);
5363 if (page->mem_cgroup)
5364 goto out;
5365
5366 if (do_swap_account) {
5367 swp_entry_t ent = { .val = page_private(page), };
5368 unsigned short id = lookup_swap_cgroup_id(ent);
5369
5370 rcu_read_lock();
5371 memcg = mem_cgroup_from_id(id);
5372 if (memcg && !css_tryget_online(&memcg->css))
5373 memcg = NULL;
5374 rcu_read_unlock();
5375 }
5376 }
5377
5378 if (!memcg)
5379 memcg = get_mem_cgroup_from_mm(mm);
5380
5381 ret = try_charge(memcg, gfp_mask, nr_pages);
5382
5383 css_put(&memcg->css);
5384 out:
5385 *memcgp = memcg;
5386 return ret;
5387 }
5388
5389 /**
5390 * mem_cgroup_commit_charge - commit a page charge
5391 * @page: page to charge
5392 * @memcg: memcg to charge the page to
5393 * @lrucare: page might be on LRU already
5394 * @compound: charge the page as compound or small page
5395 *
5396 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5397 * after page->mapping has been set up. This must happen atomically
5398 * as part of the page instantiation, i.e. under the page table lock
5399 * for anonymous pages, under the page lock for page and swap cache.
5400 *
5401 * In addition, the page must not be on the LRU during the commit, to
5402 * prevent racing with task migration. If it might be, use @lrucare.
5403 *
5404 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5405 */
5406 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5407 bool lrucare, bool compound)
5408 {
5409 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5410
5411 VM_BUG_ON_PAGE(!page->mapping, page);
5412 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5413
5414 if (mem_cgroup_disabled())
5415 return;
5416 /*
5417 * Swap faults will attempt to charge the same page multiple
5418 * times. But reuse_swap_page() might have removed the page
5419 * from swapcache already, so we can't check PageSwapCache().
5420 */
5421 if (!memcg)
5422 return;
5423
5424 commit_charge(page, memcg, lrucare);
5425
5426 local_irq_disable();
5427 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5428 memcg_check_events(memcg, page);
5429 local_irq_enable();
5430
5431 if (do_memsw_account() && PageSwapCache(page)) {
5432 swp_entry_t entry = { .val = page_private(page) };
5433 /*
5434 * The swap entry might not get freed for a long time,
5435 * let's not wait for it. The page already received a
5436 * memory+swap charge, drop the swap entry duplicate.
5437 */
5438 mem_cgroup_uncharge_swap(entry);
5439 }
5440 }
5441
5442 /**
5443 * mem_cgroup_cancel_charge - cancel a page charge
5444 * @page: page to charge
5445 * @memcg: memcg to charge the page to
5446 * @compound: charge the page as compound or small page
5447 *
5448 * Cancel a charge transaction started by mem_cgroup_try_charge().
5449 */
5450 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5451 bool compound)
5452 {
5453 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5454
5455 if (mem_cgroup_disabled())
5456 return;
5457 /*
5458 * Swap faults will attempt to charge the same page multiple
5459 * times. But reuse_swap_page() might have removed the page
5460 * from swapcache already, so we can't check PageSwapCache().
5461 */
5462 if (!memcg)
5463 return;
5464
5465 cancel_charge(memcg, nr_pages);
5466 }
5467
5468 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5469 unsigned long nr_anon, unsigned long nr_file,
5470 unsigned long nr_huge, unsigned long nr_kmem,
5471 struct page *dummy_page)
5472 {
5473 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5474 unsigned long flags;
5475
5476 if (!mem_cgroup_is_root(memcg)) {
5477 page_counter_uncharge(&memcg->memory, nr_pages);
5478 if (do_memsw_account())
5479 page_counter_uncharge(&memcg->memsw, nr_pages);
5480 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5481 page_counter_uncharge(&memcg->kmem, nr_kmem);
5482 memcg_oom_recover(memcg);
5483 }
5484
5485 local_irq_save(flags);
5486 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5487 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5488 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5489 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5490 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5491 memcg_check_events(memcg, dummy_page);
5492 local_irq_restore(flags);
5493
5494 if (!mem_cgroup_is_root(memcg))
5495 css_put_many(&memcg->css, nr_pages);
5496 }
5497
5498 static void uncharge_list(struct list_head *page_list)
5499 {
5500 struct mem_cgroup *memcg = NULL;
5501 unsigned long nr_anon = 0;
5502 unsigned long nr_file = 0;
5503 unsigned long nr_huge = 0;
5504 unsigned long nr_kmem = 0;
5505 unsigned long pgpgout = 0;
5506 struct list_head *next;
5507 struct page *page;
5508
5509 /*
5510 * Note that the list can be a single page->lru; hence the
5511 * do-while loop instead of a simple list_for_each_entry().
5512 */
5513 next = page_list->next;
5514 do {
5515 page = list_entry(next, struct page, lru);
5516 next = page->lru.next;
5517
5518 VM_BUG_ON_PAGE(PageLRU(page), page);
5519 VM_BUG_ON_PAGE(page_count(page), page);
5520
5521 if (!page->mem_cgroup)
5522 continue;
5523
5524 /*
5525 * Nobody should be changing or seriously looking at
5526 * page->mem_cgroup at this point, we have fully
5527 * exclusive access to the page.
5528 */
5529
5530 if (memcg != page->mem_cgroup) {
5531 if (memcg) {
5532 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5533 nr_huge, nr_kmem, page);
5534 pgpgout = nr_anon = nr_file =
5535 nr_huge = nr_kmem = 0;
5536 }
5537 memcg = page->mem_cgroup;
5538 }
5539
5540 if (!PageKmemcg(page)) {
5541 unsigned int nr_pages = 1;
5542
5543 if (PageTransHuge(page)) {
5544 nr_pages <<= compound_order(page);
5545 nr_huge += nr_pages;
5546 }
5547 if (PageAnon(page))
5548 nr_anon += nr_pages;
5549 else
5550 nr_file += nr_pages;
5551 pgpgout++;
5552 } else {
5553 nr_kmem += 1 << compound_order(page);
5554 __ClearPageKmemcg(page);
5555 }
5556
5557 page->mem_cgroup = NULL;
5558 } while (next != page_list);
5559
5560 if (memcg)
5561 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5562 nr_huge, nr_kmem, page);
5563 }
5564
5565 /**
5566 * mem_cgroup_uncharge - uncharge a page
5567 * @page: page to uncharge
5568 *
5569 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5570 * mem_cgroup_commit_charge().
5571 */
5572 void mem_cgroup_uncharge(struct page *page)
5573 {
5574 if (mem_cgroup_disabled())
5575 return;
5576
5577 /* Don't touch page->lru of any random page, pre-check: */
5578 if (!page->mem_cgroup)
5579 return;
5580
5581 INIT_LIST_HEAD(&page->lru);
5582 uncharge_list(&page->lru);
5583 }
5584
5585 /**
5586 * mem_cgroup_uncharge_list - uncharge a list of page
5587 * @page_list: list of pages to uncharge
5588 *
5589 * Uncharge a list of pages previously charged with
5590 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5591 */
5592 void mem_cgroup_uncharge_list(struct list_head *page_list)
5593 {
5594 if (mem_cgroup_disabled())
5595 return;
5596
5597 if (!list_empty(page_list))
5598 uncharge_list(page_list);
5599 }
5600
5601 /**
5602 * mem_cgroup_migrate - charge a page's replacement
5603 * @oldpage: currently circulating page
5604 * @newpage: replacement page
5605 *
5606 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5607 * be uncharged upon free.
5608 *
5609 * Both pages must be locked, @newpage->mapping must be set up.
5610 */
5611 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5612 {
5613 struct mem_cgroup *memcg;
5614 unsigned int nr_pages;
5615 bool compound;
5616 unsigned long flags;
5617
5618 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5619 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5620 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5621 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5622 newpage);
5623
5624 if (mem_cgroup_disabled())
5625 return;
5626
5627 /* Page cache replacement: new page already charged? */
5628 if (newpage->mem_cgroup)
5629 return;
5630
5631 /* Swapcache readahead pages can get replaced before being charged */
5632 memcg = oldpage->mem_cgroup;
5633 if (!memcg)
5634 return;
5635
5636 /* Force-charge the new page. The old one will be freed soon */
5637 compound = PageTransHuge(newpage);
5638 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5639
5640 page_counter_charge(&memcg->memory, nr_pages);
5641 if (do_memsw_account())
5642 page_counter_charge(&memcg->memsw, nr_pages);
5643 css_get_many(&memcg->css, nr_pages);
5644
5645 commit_charge(newpage, memcg, false);
5646
5647 local_irq_save(flags);
5648 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5649 memcg_check_events(memcg, newpage);
5650 local_irq_restore(flags);
5651 }
5652
5653 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5654 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5655
5656 void mem_cgroup_sk_alloc(struct sock *sk)
5657 {
5658 struct mem_cgroup *memcg;
5659
5660 if (!mem_cgroup_sockets_enabled)
5661 return;
5662
5663 /*
5664 * Socket cloning can throw us here with sk_memcg already
5665 * filled. It won't however, necessarily happen from
5666 * process context. So the test for root memcg given
5667 * the current task's memcg won't help us in this case.
5668 *
5669 * Respecting the original socket's memcg is a better
5670 * decision in this case.
5671 */
5672 if (sk->sk_memcg) {
5673 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5674 css_get(&sk->sk_memcg->css);
5675 return;
5676 }
5677
5678 rcu_read_lock();
5679 memcg = mem_cgroup_from_task(current);
5680 if (memcg == root_mem_cgroup)
5681 goto out;
5682 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5683 goto out;
5684 if (css_tryget_online(&memcg->css))
5685 sk->sk_memcg = memcg;
5686 out:
5687 rcu_read_unlock();
5688 }
5689
5690 void mem_cgroup_sk_free(struct sock *sk)
5691 {
5692 if (sk->sk_memcg)
5693 css_put(&sk->sk_memcg->css);
5694 }
5695
5696 /**
5697 * mem_cgroup_charge_skmem - charge socket memory
5698 * @memcg: memcg to charge
5699 * @nr_pages: number of pages to charge
5700 *
5701 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5702 * @memcg's configured limit, %false if the charge had to be forced.
5703 */
5704 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5705 {
5706 gfp_t gfp_mask = GFP_KERNEL;
5707
5708 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5709 struct page_counter *fail;
5710
5711 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5712 memcg->tcpmem_pressure = 0;
5713 return true;
5714 }
5715 page_counter_charge(&memcg->tcpmem, nr_pages);
5716 memcg->tcpmem_pressure = 1;
5717 return false;
5718 }
5719
5720 /* Don't block in the packet receive path */
5721 if (in_softirq())
5722 gfp_mask = GFP_NOWAIT;
5723
5724 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5725
5726 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5727 return true;
5728
5729 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5730 return false;
5731 }
5732
5733 /**
5734 * mem_cgroup_uncharge_skmem - uncharge socket memory
5735 * @memcg - memcg to uncharge
5736 * @nr_pages - number of pages to uncharge
5737 */
5738 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5739 {
5740 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5741 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5742 return;
5743 }
5744
5745 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5746
5747 page_counter_uncharge(&memcg->memory, nr_pages);
5748 css_put_many(&memcg->css, nr_pages);
5749 }
5750
5751 static int __init cgroup_memory(char *s)
5752 {
5753 char *token;
5754
5755 while ((token = strsep(&s, ",")) != NULL) {
5756 if (!*token)
5757 continue;
5758 if (!strcmp(token, "nosocket"))
5759 cgroup_memory_nosocket = true;
5760 if (!strcmp(token, "nokmem"))
5761 cgroup_memory_nokmem = true;
5762 }
5763 return 0;
5764 }
5765 __setup("cgroup.memory=", cgroup_memory);
5766
5767 /*
5768 * subsys_initcall() for memory controller.
5769 *
5770 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5771 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5772 * basically everything that doesn't depend on a specific mem_cgroup structure
5773 * should be initialized from here.
5774 */
5775 static int __init mem_cgroup_init(void)
5776 {
5777 int cpu, node;
5778
5779 #ifndef CONFIG_SLOB
5780 /*
5781 * Kmem cache creation is mostly done with the slab_mutex held,
5782 * so use a special workqueue to avoid stalling all worker
5783 * threads in case lots of cgroups are created simultaneously.
5784 */
5785 memcg_kmem_cache_create_wq =
5786 alloc_ordered_workqueue("memcg_kmem_cache_create", 0);
5787 BUG_ON(!memcg_kmem_cache_create_wq);
5788 #endif
5789
5790 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5791 memcg_hotplug_cpu_dead);
5792
5793 for_each_possible_cpu(cpu)
5794 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5795 drain_local_stock);
5796
5797 for_each_node(node) {
5798 struct mem_cgroup_tree_per_node *rtpn;
5799
5800 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5801 node_online(node) ? node : NUMA_NO_NODE);
5802
5803 rtpn->rb_root = RB_ROOT;
5804 spin_lock_init(&rtpn->lock);
5805 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5806 }
5807
5808 return 0;
5809 }
5810 subsys_initcall(mem_cgroup_init);
5811
5812 #ifdef CONFIG_MEMCG_SWAP
5813 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5814 {
5815 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5816 /*
5817 * The root cgroup cannot be destroyed, so it's refcount must
5818 * always be >= 1.
5819 */
5820 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5821 VM_BUG_ON(1);
5822 break;
5823 }
5824 memcg = parent_mem_cgroup(memcg);
5825 if (!memcg)
5826 memcg = root_mem_cgroup;
5827 }
5828 return memcg;
5829 }
5830
5831 /**
5832 * mem_cgroup_swapout - transfer a memsw charge to swap
5833 * @page: page whose memsw charge to transfer
5834 * @entry: swap entry to move the charge to
5835 *
5836 * Transfer the memsw charge of @page to @entry.
5837 */
5838 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5839 {
5840 struct mem_cgroup *memcg, *swap_memcg;
5841 unsigned short oldid;
5842
5843 VM_BUG_ON_PAGE(PageLRU(page), page);
5844 VM_BUG_ON_PAGE(page_count(page), page);
5845
5846 if (!do_memsw_account())
5847 return;
5848
5849 memcg = page->mem_cgroup;
5850
5851 /* Readahead page, never charged */
5852 if (!memcg)
5853 return;
5854
5855 /*
5856 * In case the memcg owning these pages has been offlined and doesn't
5857 * have an ID allocated to it anymore, charge the closest online
5858 * ancestor for the swap instead and transfer the memory+swap charge.
5859 */
5860 swap_memcg = mem_cgroup_id_get_online(memcg);
5861 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5862 VM_BUG_ON_PAGE(oldid, page);
5863 mem_cgroup_swap_statistics(swap_memcg, true);
5864
5865 page->mem_cgroup = NULL;
5866
5867 if (!mem_cgroup_is_root(memcg))
5868 page_counter_uncharge(&memcg->memory, 1);
5869
5870 if (memcg != swap_memcg) {
5871 if (!mem_cgroup_is_root(swap_memcg))
5872 page_counter_charge(&swap_memcg->memsw, 1);
5873 page_counter_uncharge(&memcg->memsw, 1);
5874 }
5875
5876 /*
5877 * Interrupts should be disabled here because the caller holds the
5878 * mapping->tree_lock lock which is taken with interrupts-off. It is
5879 * important here to have the interrupts disabled because it is the
5880 * only synchronisation we have for udpating the per-CPU variables.
5881 */
5882 VM_BUG_ON(!irqs_disabled());
5883 mem_cgroup_charge_statistics(memcg, page, false, -1);
5884 memcg_check_events(memcg, page);
5885
5886 if (!mem_cgroup_is_root(memcg))
5887 css_put(&memcg->css);
5888 }
5889
5890 /*
5891 * mem_cgroup_try_charge_swap - try charging a swap entry
5892 * @page: page being added to swap
5893 * @entry: swap entry to charge
5894 *
5895 * Try to charge @entry to the memcg that @page belongs to.
5896 *
5897 * Returns 0 on success, -ENOMEM on failure.
5898 */
5899 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5900 {
5901 struct mem_cgroup *memcg;
5902 struct page_counter *counter;
5903 unsigned short oldid;
5904
5905 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5906 return 0;
5907
5908 memcg = page->mem_cgroup;
5909
5910 /* Readahead page, never charged */
5911 if (!memcg)
5912 return 0;
5913
5914 memcg = mem_cgroup_id_get_online(memcg);
5915
5916 if (!mem_cgroup_is_root(memcg) &&
5917 !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5918 mem_cgroup_id_put(memcg);
5919 return -ENOMEM;
5920 }
5921
5922 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5923 VM_BUG_ON_PAGE(oldid, page);
5924 mem_cgroup_swap_statistics(memcg, true);
5925
5926 return 0;
5927 }
5928
5929 /**
5930 * mem_cgroup_uncharge_swap - uncharge a swap entry
5931 * @entry: swap entry to uncharge
5932 *
5933 * Drop the swap charge associated with @entry.
5934 */
5935 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5936 {
5937 struct mem_cgroup *memcg;
5938 unsigned short id;
5939
5940 if (!do_swap_account)
5941 return;
5942
5943 id = swap_cgroup_record(entry, 0);
5944 rcu_read_lock();
5945 memcg = mem_cgroup_from_id(id);
5946 if (memcg) {
5947 if (!mem_cgroup_is_root(memcg)) {
5948 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5949 page_counter_uncharge(&memcg->swap, 1);
5950 else
5951 page_counter_uncharge(&memcg->memsw, 1);
5952 }
5953 mem_cgroup_swap_statistics(memcg, false);
5954 mem_cgroup_id_put(memcg);
5955 }
5956 rcu_read_unlock();
5957 }
5958
5959 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5960 {
5961 long nr_swap_pages = get_nr_swap_pages();
5962
5963 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5964 return nr_swap_pages;
5965 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5966 nr_swap_pages = min_t(long, nr_swap_pages,
5967 READ_ONCE(memcg->swap.limit) -
5968 page_counter_read(&memcg->swap));
5969 return nr_swap_pages;
5970 }
5971
5972 bool mem_cgroup_swap_full(struct page *page)
5973 {
5974 struct mem_cgroup *memcg;
5975
5976 VM_BUG_ON_PAGE(!PageLocked(page), page);
5977
5978 if (vm_swap_full())
5979 return true;
5980 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5981 return false;
5982
5983 memcg = page->mem_cgroup;
5984 if (!memcg)
5985 return false;
5986
5987 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5988 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5989 return true;
5990
5991 return false;
5992 }
5993
5994 /* for remember boot option*/
5995 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5996 static int really_do_swap_account __initdata = 1;
5997 #else
5998 static int really_do_swap_account __initdata;
5999 #endif
6000
6001 static int __init enable_swap_account(char *s)
6002 {
6003 if (!strcmp(s, "1"))
6004 really_do_swap_account = 1;
6005 else if (!strcmp(s, "0"))
6006 really_do_swap_account = 0;
6007 return 1;
6008 }
6009 __setup("swapaccount=", enable_swap_account);
6010
6011 static u64 swap_current_read(struct cgroup_subsys_state *css,
6012 struct cftype *cft)
6013 {
6014 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6015
6016 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6017 }
6018
6019 static int swap_max_show(struct seq_file *m, void *v)
6020 {
6021 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6022 unsigned long max = READ_ONCE(memcg->swap.limit);
6023
6024 if (max == PAGE_COUNTER_MAX)
6025 seq_puts(m, "max\n");
6026 else
6027 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6028
6029 return 0;
6030 }
6031
6032 static ssize_t swap_max_write(struct kernfs_open_file *of,
6033 char *buf, size_t nbytes, loff_t off)
6034 {
6035 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6036 unsigned long max;
6037 int err;
6038
6039 buf = strstrip(buf);
6040 err = page_counter_memparse(buf, "max", &max);
6041 if (err)
6042 return err;
6043
6044 mutex_lock(&memcg_limit_mutex);
6045 err = page_counter_limit(&memcg->swap, max);
6046 mutex_unlock(&memcg_limit_mutex);
6047 if (err)
6048 return err;
6049
6050 return nbytes;
6051 }
6052
6053 static struct cftype swap_files[] = {
6054 {
6055 .name = "swap.current",
6056 .flags = CFTYPE_NOT_ON_ROOT,
6057 .read_u64 = swap_current_read,
6058 },
6059 {
6060 .name = "swap.max",
6061 .flags = CFTYPE_NOT_ON_ROOT,
6062 .seq_show = swap_max_show,
6063 .write = swap_max_write,
6064 },
6065 { } /* terminate */
6066 };
6067
6068 static struct cftype memsw_cgroup_files[] = {
6069 {
6070 .name = "memsw.usage_in_bytes",
6071 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6072 .read_u64 = mem_cgroup_read_u64,
6073 },
6074 {
6075 .name = "memsw.max_usage_in_bytes",
6076 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6077 .write = mem_cgroup_reset,
6078 .read_u64 = mem_cgroup_read_u64,
6079 },
6080 {
6081 .name = "memsw.limit_in_bytes",
6082 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6083 .write = mem_cgroup_write,
6084 .read_u64 = mem_cgroup_read_u64,
6085 },
6086 {
6087 .name = "memsw.failcnt",
6088 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6089 .write = mem_cgroup_reset,
6090 .read_u64 = mem_cgroup_read_u64,
6091 },
6092 { }, /* terminate */
6093 };
6094
6095 static int __init mem_cgroup_swap_init(void)
6096 {
6097 if (!mem_cgroup_disabled() && really_do_swap_account) {
6098 do_swap_account = 1;
6099 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6100 swap_files));
6101 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6102 memsw_cgroup_files));
6103 }
6104 return 0;
6105 }
6106 subsys_initcall(mem_cgroup_swap_init);
6107
6108 #endif /* CONFIG_MEMCG_SWAP */