]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/memcontrol.c
memcg: remove NULL check from lookup_page_cgroup() result
[mirror_ubuntu-focal-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/vmscan.h>
56
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES 5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
71
72 #else
73 #define do_swap_account (0)
74 #endif
75
76 /*
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 *
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82 */
83 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85
86 /*
87 * Statistics for memory cgroup.
88 */
89 enum mem_cgroup_stat_index {
90 /*
91 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92 */
93 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
94 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
95 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
96 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
97 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
98 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100 /* incremented at every pagein/pageout */
101 MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
103
104 MEM_CGROUP_STAT_NSTATS,
105 };
106
107 struct mem_cgroup_stat_cpu {
108 s64 count[MEM_CGROUP_STAT_NSTATS];
109 };
110
111 /*
112 * per-zone information in memory controller.
113 */
114 struct mem_cgroup_per_zone {
115 /*
116 * spin_lock to protect the per cgroup LRU
117 */
118 struct list_head lists[NR_LRU_LISTS];
119 unsigned long count[NR_LRU_LISTS];
120
121 struct zone_reclaim_stat reclaim_stat;
122 struct rb_node tree_node; /* RB tree node */
123 unsigned long long usage_in_excess;/* Set to the value by which */
124 /* the soft limit is exceeded*/
125 bool on_tree;
126 struct mem_cgroup *mem; /* Back pointer, we cannot */
127 /* use container_of */
128 };
129 /* Macro for accessing counter */
130 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
131
132 struct mem_cgroup_per_node {
133 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134 };
135
136 struct mem_cgroup_lru_info {
137 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138 };
139
140 /*
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
143 */
144
145 struct mem_cgroup_tree_per_zone {
146 struct rb_root rb_root;
147 spinlock_t lock;
148 };
149
150 struct mem_cgroup_tree_per_node {
151 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152 };
153
154 struct mem_cgroup_tree {
155 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156 };
157
158 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
160 struct mem_cgroup_threshold {
161 struct eventfd_ctx *eventfd;
162 u64 threshold;
163 };
164
165 /* For threshold */
166 struct mem_cgroup_threshold_ary {
167 /* An array index points to threshold just below usage. */
168 int current_threshold;
169 /* Size of entries[] */
170 unsigned int size;
171 /* Array of thresholds */
172 struct mem_cgroup_threshold entries[0];
173 };
174
175 struct mem_cgroup_thresholds {
176 /* Primary thresholds array */
177 struct mem_cgroup_threshold_ary *primary;
178 /*
179 * Spare threshold array.
180 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 * It must be able to store at least primary->size - 1 entries.
182 */
183 struct mem_cgroup_threshold_ary *spare;
184 };
185
186 /* for OOM */
187 struct mem_cgroup_eventfd_list {
188 struct list_head list;
189 struct eventfd_ctx *eventfd;
190 };
191
192 static void mem_cgroup_threshold(struct mem_cgroup *mem);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194
195 /*
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
200 *
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
205 */
206 struct mem_cgroup {
207 struct cgroup_subsys_state css;
208 /*
209 * the counter to account for memory usage
210 */
211 struct res_counter res;
212 /*
213 * the counter to account for mem+swap usage.
214 */
215 struct res_counter memsw;
216 /*
217 * Per cgroup active and inactive list, similar to the
218 * per zone LRU lists.
219 */
220 struct mem_cgroup_lru_info info;
221
222 /*
223 protect against reclaim related member.
224 */
225 spinlock_t reclaim_param_lock;
226
227 /*
228 * While reclaiming in a hierarchy, we cache the last child we
229 * reclaimed from.
230 */
231 int last_scanned_child;
232 /*
233 * Should the accounting and control be hierarchical, per subtree?
234 */
235 bool use_hierarchy;
236 atomic_t oom_lock;
237 atomic_t refcnt;
238
239 unsigned int swappiness;
240 /* OOM-Killer disable */
241 int oom_kill_disable;
242
243 /* set when res.limit == memsw.limit */
244 bool memsw_is_minimum;
245
246 /* protect arrays of thresholds */
247 struct mutex thresholds_lock;
248
249 /* thresholds for memory usage. RCU-protected */
250 struct mem_cgroup_thresholds thresholds;
251
252 /* thresholds for mem+swap usage. RCU-protected */
253 struct mem_cgroup_thresholds memsw_thresholds;
254
255 /* For oom notifier event fd */
256 struct list_head oom_notify;
257
258 /*
259 * Should we move charges of a task when a task is moved into this
260 * mem_cgroup ? And what type of charges should we move ?
261 */
262 unsigned long move_charge_at_immigrate;
263 /*
264 * percpu counter.
265 */
266 struct mem_cgroup_stat_cpu *stat;
267 /*
268 * used when a cpu is offlined or other synchronizations
269 * See mem_cgroup_read_stat().
270 */
271 struct mem_cgroup_stat_cpu nocpu_base;
272 spinlock_t pcp_counter_lock;
273 };
274
275 /* Stuffs for move charges at task migration. */
276 /*
277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278 * left-shifted bitmap of these types.
279 */
280 enum move_type {
281 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
282 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
283 NR_MOVE_TYPE,
284 };
285
286 /* "mc" and its members are protected by cgroup_mutex */
287 static struct move_charge_struct {
288 spinlock_t lock; /* for from, to */
289 struct mem_cgroup *from;
290 struct mem_cgroup *to;
291 unsigned long precharge;
292 unsigned long moved_charge;
293 unsigned long moved_swap;
294 struct task_struct *moving_task; /* a task moving charges */
295 wait_queue_head_t waitq; /* a waitq for other context */
296 } mc = {
297 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
299 };
300
301 static bool move_anon(void)
302 {
303 return test_bit(MOVE_CHARGE_TYPE_ANON,
304 &mc.to->move_charge_at_immigrate);
305 }
306
307 static bool move_file(void)
308 {
309 return test_bit(MOVE_CHARGE_TYPE_FILE,
310 &mc.to->move_charge_at_immigrate);
311 }
312
313 /*
314 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315 * limit reclaim to prevent infinite loops, if they ever occur.
316 */
317 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
318 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
319
320 enum charge_type {
321 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322 MEM_CGROUP_CHARGE_TYPE_MAPPED,
323 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
324 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
325 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
326 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
327 NR_CHARGE_TYPE,
328 };
329
330 /* for encoding cft->private value on file */
331 #define _MEM (0)
332 #define _MEMSWAP (1)
333 #define _OOM_TYPE (2)
334 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
335 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
336 #define MEMFILE_ATTR(val) ((val) & 0xffff)
337 /* Used for OOM nofiier */
338 #define OOM_CONTROL (0)
339
340 /*
341 * Reclaim flags for mem_cgroup_hierarchical_reclaim
342 */
343 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
344 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
345 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
346 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
347 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
348 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
349
350 static void mem_cgroup_get(struct mem_cgroup *mem);
351 static void mem_cgroup_put(struct mem_cgroup *mem);
352 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
353 static void drain_all_stock_async(void);
354
355 static struct mem_cgroup_per_zone *
356 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
357 {
358 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
359 }
360
361 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
362 {
363 return &mem->css;
364 }
365
366 static struct mem_cgroup_per_zone *
367 page_cgroup_zoneinfo(struct page_cgroup *pc)
368 {
369 struct mem_cgroup *mem = pc->mem_cgroup;
370 int nid = page_cgroup_nid(pc);
371 int zid = page_cgroup_zid(pc);
372
373 if (!mem)
374 return NULL;
375
376 return mem_cgroup_zoneinfo(mem, nid, zid);
377 }
378
379 static struct mem_cgroup_tree_per_zone *
380 soft_limit_tree_node_zone(int nid, int zid)
381 {
382 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
383 }
384
385 static struct mem_cgroup_tree_per_zone *
386 soft_limit_tree_from_page(struct page *page)
387 {
388 int nid = page_to_nid(page);
389 int zid = page_zonenum(page);
390
391 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
392 }
393
394 static void
395 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
396 struct mem_cgroup_per_zone *mz,
397 struct mem_cgroup_tree_per_zone *mctz,
398 unsigned long long new_usage_in_excess)
399 {
400 struct rb_node **p = &mctz->rb_root.rb_node;
401 struct rb_node *parent = NULL;
402 struct mem_cgroup_per_zone *mz_node;
403
404 if (mz->on_tree)
405 return;
406
407 mz->usage_in_excess = new_usage_in_excess;
408 if (!mz->usage_in_excess)
409 return;
410 while (*p) {
411 parent = *p;
412 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
413 tree_node);
414 if (mz->usage_in_excess < mz_node->usage_in_excess)
415 p = &(*p)->rb_left;
416 /*
417 * We can't avoid mem cgroups that are over their soft
418 * limit by the same amount
419 */
420 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
421 p = &(*p)->rb_right;
422 }
423 rb_link_node(&mz->tree_node, parent, p);
424 rb_insert_color(&mz->tree_node, &mctz->rb_root);
425 mz->on_tree = true;
426 }
427
428 static void
429 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
430 struct mem_cgroup_per_zone *mz,
431 struct mem_cgroup_tree_per_zone *mctz)
432 {
433 if (!mz->on_tree)
434 return;
435 rb_erase(&mz->tree_node, &mctz->rb_root);
436 mz->on_tree = false;
437 }
438
439 static void
440 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
441 struct mem_cgroup_per_zone *mz,
442 struct mem_cgroup_tree_per_zone *mctz)
443 {
444 spin_lock(&mctz->lock);
445 __mem_cgroup_remove_exceeded(mem, mz, mctz);
446 spin_unlock(&mctz->lock);
447 }
448
449
450 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
451 {
452 unsigned long long excess;
453 struct mem_cgroup_per_zone *mz;
454 struct mem_cgroup_tree_per_zone *mctz;
455 int nid = page_to_nid(page);
456 int zid = page_zonenum(page);
457 mctz = soft_limit_tree_from_page(page);
458
459 /*
460 * Necessary to update all ancestors when hierarchy is used.
461 * because their event counter is not touched.
462 */
463 for (; mem; mem = parent_mem_cgroup(mem)) {
464 mz = mem_cgroup_zoneinfo(mem, nid, zid);
465 excess = res_counter_soft_limit_excess(&mem->res);
466 /*
467 * We have to update the tree if mz is on RB-tree or
468 * mem is over its softlimit.
469 */
470 if (excess || mz->on_tree) {
471 spin_lock(&mctz->lock);
472 /* if on-tree, remove it */
473 if (mz->on_tree)
474 __mem_cgroup_remove_exceeded(mem, mz, mctz);
475 /*
476 * Insert again. mz->usage_in_excess will be updated.
477 * If excess is 0, no tree ops.
478 */
479 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
480 spin_unlock(&mctz->lock);
481 }
482 }
483 }
484
485 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
486 {
487 int node, zone;
488 struct mem_cgroup_per_zone *mz;
489 struct mem_cgroup_tree_per_zone *mctz;
490
491 for_each_node_state(node, N_POSSIBLE) {
492 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
493 mz = mem_cgroup_zoneinfo(mem, node, zone);
494 mctz = soft_limit_tree_node_zone(node, zone);
495 mem_cgroup_remove_exceeded(mem, mz, mctz);
496 }
497 }
498 }
499
500 static struct mem_cgroup_per_zone *
501 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
502 {
503 struct rb_node *rightmost = NULL;
504 struct mem_cgroup_per_zone *mz;
505
506 retry:
507 mz = NULL;
508 rightmost = rb_last(&mctz->rb_root);
509 if (!rightmost)
510 goto done; /* Nothing to reclaim from */
511
512 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
513 /*
514 * Remove the node now but someone else can add it back,
515 * we will to add it back at the end of reclaim to its correct
516 * position in the tree.
517 */
518 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
519 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
520 !css_tryget(&mz->mem->css))
521 goto retry;
522 done:
523 return mz;
524 }
525
526 static struct mem_cgroup_per_zone *
527 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
528 {
529 struct mem_cgroup_per_zone *mz;
530
531 spin_lock(&mctz->lock);
532 mz = __mem_cgroup_largest_soft_limit_node(mctz);
533 spin_unlock(&mctz->lock);
534 return mz;
535 }
536
537 /*
538 * Implementation Note: reading percpu statistics for memcg.
539 *
540 * Both of vmstat[] and percpu_counter has threshold and do periodic
541 * synchronization to implement "quick" read. There are trade-off between
542 * reading cost and precision of value. Then, we may have a chance to implement
543 * a periodic synchronizion of counter in memcg's counter.
544 *
545 * But this _read() function is used for user interface now. The user accounts
546 * memory usage by memory cgroup and he _always_ requires exact value because
547 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
548 * have to visit all online cpus and make sum. So, for now, unnecessary
549 * synchronization is not implemented. (just implemented for cpu hotplug)
550 *
551 * If there are kernel internal actions which can make use of some not-exact
552 * value, and reading all cpu value can be performance bottleneck in some
553 * common workload, threashold and synchonization as vmstat[] should be
554 * implemented.
555 */
556 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
557 enum mem_cgroup_stat_index idx)
558 {
559 int cpu;
560 s64 val = 0;
561
562 get_online_cpus();
563 for_each_online_cpu(cpu)
564 val += per_cpu(mem->stat->count[idx], cpu);
565 #ifdef CONFIG_HOTPLUG_CPU
566 spin_lock(&mem->pcp_counter_lock);
567 val += mem->nocpu_base.count[idx];
568 spin_unlock(&mem->pcp_counter_lock);
569 #endif
570 put_online_cpus();
571 return val;
572 }
573
574 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
575 {
576 s64 ret;
577
578 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
579 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
580 return ret;
581 }
582
583 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
584 bool charge)
585 {
586 int val = (charge) ? 1 : -1;
587 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
588 }
589
590 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
591 bool file, int nr_pages)
592 {
593 preempt_disable();
594
595 if (file)
596 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
597 else
598 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
599
600 /* pagein of a big page is an event. So, ignore page size */
601 if (nr_pages > 0)
602 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
603 else {
604 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
605 nr_pages = -nr_pages; /* for event */
606 }
607
608 __this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
609
610 preempt_enable();
611 }
612
613 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
614 enum lru_list idx)
615 {
616 int nid, zid;
617 struct mem_cgroup_per_zone *mz;
618 u64 total = 0;
619
620 for_each_online_node(nid)
621 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
622 mz = mem_cgroup_zoneinfo(mem, nid, zid);
623 total += MEM_CGROUP_ZSTAT(mz, idx);
624 }
625 return total;
626 }
627
628 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
629 {
630 s64 val;
631
632 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
633
634 return !(val & ((1 << event_mask_shift) - 1));
635 }
636
637 /*
638 * Check events in order.
639 *
640 */
641 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
642 {
643 /* threshold event is triggered in finer grain than soft limit */
644 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
645 mem_cgroup_threshold(mem);
646 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
647 mem_cgroup_update_tree(mem, page);
648 }
649 }
650
651 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
652 {
653 return container_of(cgroup_subsys_state(cont,
654 mem_cgroup_subsys_id), struct mem_cgroup,
655 css);
656 }
657
658 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
659 {
660 /*
661 * mm_update_next_owner() may clear mm->owner to NULL
662 * if it races with swapoff, page migration, etc.
663 * So this can be called with p == NULL.
664 */
665 if (unlikely(!p))
666 return NULL;
667
668 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
669 struct mem_cgroup, css);
670 }
671
672 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
673 {
674 struct mem_cgroup *mem = NULL;
675
676 if (!mm)
677 return NULL;
678 /*
679 * Because we have no locks, mm->owner's may be being moved to other
680 * cgroup. We use css_tryget() here even if this looks
681 * pessimistic (rather than adding locks here).
682 */
683 rcu_read_lock();
684 do {
685 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
686 if (unlikely(!mem))
687 break;
688 } while (!css_tryget(&mem->css));
689 rcu_read_unlock();
690 return mem;
691 }
692
693 /* The caller has to guarantee "mem" exists before calling this */
694 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
695 {
696 struct cgroup_subsys_state *css;
697 int found;
698
699 if (!mem) /* ROOT cgroup has the smallest ID */
700 return root_mem_cgroup; /*css_put/get against root is ignored*/
701 if (!mem->use_hierarchy) {
702 if (css_tryget(&mem->css))
703 return mem;
704 return NULL;
705 }
706 rcu_read_lock();
707 /*
708 * searching a memory cgroup which has the smallest ID under given
709 * ROOT cgroup. (ID >= 1)
710 */
711 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
712 if (css && css_tryget(css))
713 mem = container_of(css, struct mem_cgroup, css);
714 else
715 mem = NULL;
716 rcu_read_unlock();
717 return mem;
718 }
719
720 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
721 struct mem_cgroup *root,
722 bool cond)
723 {
724 int nextid = css_id(&iter->css) + 1;
725 int found;
726 int hierarchy_used;
727 struct cgroup_subsys_state *css;
728
729 hierarchy_used = iter->use_hierarchy;
730
731 css_put(&iter->css);
732 /* If no ROOT, walk all, ignore hierarchy */
733 if (!cond || (root && !hierarchy_used))
734 return NULL;
735
736 if (!root)
737 root = root_mem_cgroup;
738
739 do {
740 iter = NULL;
741 rcu_read_lock();
742
743 css = css_get_next(&mem_cgroup_subsys, nextid,
744 &root->css, &found);
745 if (css && css_tryget(css))
746 iter = container_of(css, struct mem_cgroup, css);
747 rcu_read_unlock();
748 /* If css is NULL, no more cgroups will be found */
749 nextid = found + 1;
750 } while (css && !iter);
751
752 return iter;
753 }
754 /*
755 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
756 * be careful that "break" loop is not allowed. We have reference count.
757 * Instead of that modify "cond" to be false and "continue" to exit the loop.
758 */
759 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
760 for (iter = mem_cgroup_start_loop(root);\
761 iter != NULL;\
762 iter = mem_cgroup_get_next(iter, root, cond))
763
764 #define for_each_mem_cgroup_tree(iter, root) \
765 for_each_mem_cgroup_tree_cond(iter, root, true)
766
767 #define for_each_mem_cgroup_all(iter) \
768 for_each_mem_cgroup_tree_cond(iter, NULL, true)
769
770
771 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
772 {
773 return (mem == root_mem_cgroup);
774 }
775
776 /*
777 * Following LRU functions are allowed to be used without PCG_LOCK.
778 * Operations are called by routine of global LRU independently from memcg.
779 * What we have to take care of here is validness of pc->mem_cgroup.
780 *
781 * Changes to pc->mem_cgroup happens when
782 * 1. charge
783 * 2. moving account
784 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
785 * It is added to LRU before charge.
786 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
787 * When moving account, the page is not on LRU. It's isolated.
788 */
789
790 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
791 {
792 struct page_cgroup *pc;
793 struct mem_cgroup_per_zone *mz;
794
795 if (mem_cgroup_disabled())
796 return;
797 pc = lookup_page_cgroup(page);
798 /* can happen while we handle swapcache. */
799 if (!TestClearPageCgroupAcctLRU(pc))
800 return;
801 VM_BUG_ON(!pc->mem_cgroup);
802 /*
803 * We don't check PCG_USED bit. It's cleared when the "page" is finally
804 * removed from global LRU.
805 */
806 mz = page_cgroup_zoneinfo(pc);
807 /* huge page split is done under lru_lock. so, we have no races. */
808 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
809 if (mem_cgroup_is_root(pc->mem_cgroup))
810 return;
811 VM_BUG_ON(list_empty(&pc->lru));
812 list_del_init(&pc->lru);
813 }
814
815 void mem_cgroup_del_lru(struct page *page)
816 {
817 mem_cgroup_del_lru_list(page, page_lru(page));
818 }
819
820 /*
821 * Writeback is about to end against a page which has been marked for immediate
822 * reclaim. If it still appears to be reclaimable, move it to the tail of the
823 * inactive list.
824 */
825 void mem_cgroup_rotate_reclaimable_page(struct page *page)
826 {
827 struct mem_cgroup_per_zone *mz;
828 struct page_cgroup *pc;
829 enum lru_list lru = page_lru(page);
830
831 if (mem_cgroup_disabled())
832 return;
833
834 pc = lookup_page_cgroup(page);
835 /* unused or root page is not rotated. */
836 if (!PageCgroupUsed(pc))
837 return;
838 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
839 smp_rmb();
840 if (mem_cgroup_is_root(pc->mem_cgroup))
841 return;
842 mz = page_cgroup_zoneinfo(pc);
843 list_move_tail(&pc->lru, &mz->lists[lru]);
844 }
845
846 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
847 {
848 struct mem_cgroup_per_zone *mz;
849 struct page_cgroup *pc;
850
851 if (mem_cgroup_disabled())
852 return;
853
854 pc = lookup_page_cgroup(page);
855 /* unused or root page is not rotated. */
856 if (!PageCgroupUsed(pc))
857 return;
858 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
859 smp_rmb();
860 if (mem_cgroup_is_root(pc->mem_cgroup))
861 return;
862 mz = page_cgroup_zoneinfo(pc);
863 list_move(&pc->lru, &mz->lists[lru]);
864 }
865
866 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
867 {
868 struct page_cgroup *pc;
869 struct mem_cgroup_per_zone *mz;
870
871 if (mem_cgroup_disabled())
872 return;
873 pc = lookup_page_cgroup(page);
874 VM_BUG_ON(PageCgroupAcctLRU(pc));
875 if (!PageCgroupUsed(pc))
876 return;
877 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
878 smp_rmb();
879 mz = page_cgroup_zoneinfo(pc);
880 /* huge page split is done under lru_lock. so, we have no races. */
881 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
882 SetPageCgroupAcctLRU(pc);
883 if (mem_cgroup_is_root(pc->mem_cgroup))
884 return;
885 list_add(&pc->lru, &mz->lists[lru]);
886 }
887
888 /*
889 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
890 * lru because the page may.be reused after it's fully uncharged (because of
891 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
892 * it again. This function is only used to charge SwapCache. It's done under
893 * lock_page and expected that zone->lru_lock is never held.
894 */
895 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
896 {
897 unsigned long flags;
898 struct zone *zone = page_zone(page);
899 struct page_cgroup *pc = lookup_page_cgroup(page);
900
901 spin_lock_irqsave(&zone->lru_lock, flags);
902 /*
903 * Forget old LRU when this page_cgroup is *not* used. This Used bit
904 * is guarded by lock_page() because the page is SwapCache.
905 */
906 if (!PageCgroupUsed(pc))
907 mem_cgroup_del_lru_list(page, page_lru(page));
908 spin_unlock_irqrestore(&zone->lru_lock, flags);
909 }
910
911 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
912 {
913 unsigned long flags;
914 struct zone *zone = page_zone(page);
915 struct page_cgroup *pc = lookup_page_cgroup(page);
916
917 spin_lock_irqsave(&zone->lru_lock, flags);
918 /* link when the page is linked to LRU but page_cgroup isn't */
919 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
920 mem_cgroup_add_lru_list(page, page_lru(page));
921 spin_unlock_irqrestore(&zone->lru_lock, flags);
922 }
923
924
925 void mem_cgroup_move_lists(struct page *page,
926 enum lru_list from, enum lru_list to)
927 {
928 if (mem_cgroup_disabled())
929 return;
930 mem_cgroup_del_lru_list(page, from);
931 mem_cgroup_add_lru_list(page, to);
932 }
933
934 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
935 {
936 int ret;
937 struct mem_cgroup *curr = NULL;
938 struct task_struct *p;
939
940 p = find_lock_task_mm(task);
941 if (!p)
942 return 0;
943 curr = try_get_mem_cgroup_from_mm(p->mm);
944 task_unlock(p);
945 if (!curr)
946 return 0;
947 /*
948 * We should check use_hierarchy of "mem" not "curr". Because checking
949 * use_hierarchy of "curr" here make this function true if hierarchy is
950 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
951 * hierarchy(even if use_hierarchy is disabled in "mem").
952 */
953 if (mem->use_hierarchy)
954 ret = css_is_ancestor(&curr->css, &mem->css);
955 else
956 ret = (curr == mem);
957 css_put(&curr->css);
958 return ret;
959 }
960
961 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
962 {
963 unsigned long active;
964 unsigned long inactive;
965 unsigned long gb;
966 unsigned long inactive_ratio;
967
968 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
969 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
970
971 gb = (inactive + active) >> (30 - PAGE_SHIFT);
972 if (gb)
973 inactive_ratio = int_sqrt(10 * gb);
974 else
975 inactive_ratio = 1;
976
977 if (present_pages) {
978 present_pages[0] = inactive;
979 present_pages[1] = active;
980 }
981
982 return inactive_ratio;
983 }
984
985 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
986 {
987 unsigned long active;
988 unsigned long inactive;
989 unsigned long present_pages[2];
990 unsigned long inactive_ratio;
991
992 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
993
994 inactive = present_pages[0];
995 active = present_pages[1];
996
997 if (inactive * inactive_ratio < active)
998 return 1;
999
1000 return 0;
1001 }
1002
1003 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1004 {
1005 unsigned long active;
1006 unsigned long inactive;
1007
1008 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
1009 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1010
1011 return (active > inactive);
1012 }
1013
1014 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1015 struct zone *zone,
1016 enum lru_list lru)
1017 {
1018 int nid = zone_to_nid(zone);
1019 int zid = zone_idx(zone);
1020 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1021
1022 return MEM_CGROUP_ZSTAT(mz, lru);
1023 }
1024
1025 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1026 struct zone *zone)
1027 {
1028 int nid = zone_to_nid(zone);
1029 int zid = zone_idx(zone);
1030 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1031
1032 return &mz->reclaim_stat;
1033 }
1034
1035 struct zone_reclaim_stat *
1036 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1037 {
1038 struct page_cgroup *pc;
1039 struct mem_cgroup_per_zone *mz;
1040
1041 if (mem_cgroup_disabled())
1042 return NULL;
1043
1044 pc = lookup_page_cgroup(page);
1045 if (!PageCgroupUsed(pc))
1046 return NULL;
1047 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1048 smp_rmb();
1049 mz = page_cgroup_zoneinfo(pc);
1050 if (!mz)
1051 return NULL;
1052
1053 return &mz->reclaim_stat;
1054 }
1055
1056 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1057 struct list_head *dst,
1058 unsigned long *scanned, int order,
1059 int mode, struct zone *z,
1060 struct mem_cgroup *mem_cont,
1061 int active, int file)
1062 {
1063 unsigned long nr_taken = 0;
1064 struct page *page;
1065 unsigned long scan;
1066 LIST_HEAD(pc_list);
1067 struct list_head *src;
1068 struct page_cgroup *pc, *tmp;
1069 int nid = zone_to_nid(z);
1070 int zid = zone_idx(z);
1071 struct mem_cgroup_per_zone *mz;
1072 int lru = LRU_FILE * file + active;
1073 int ret;
1074
1075 BUG_ON(!mem_cont);
1076 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1077 src = &mz->lists[lru];
1078
1079 scan = 0;
1080 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1081 if (scan >= nr_to_scan)
1082 break;
1083
1084 page = pc->page;
1085 if (unlikely(!PageCgroupUsed(pc)))
1086 continue;
1087 if (unlikely(!PageLRU(page)))
1088 continue;
1089
1090 scan++;
1091 ret = __isolate_lru_page(page, mode, file);
1092 switch (ret) {
1093 case 0:
1094 list_move(&page->lru, dst);
1095 mem_cgroup_del_lru(page);
1096 nr_taken += hpage_nr_pages(page);
1097 break;
1098 case -EBUSY:
1099 /* we don't affect global LRU but rotate in our LRU */
1100 mem_cgroup_rotate_lru_list(page, page_lru(page));
1101 break;
1102 default:
1103 break;
1104 }
1105 }
1106
1107 *scanned = scan;
1108
1109 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1110 0, 0, 0, mode);
1111
1112 return nr_taken;
1113 }
1114
1115 #define mem_cgroup_from_res_counter(counter, member) \
1116 container_of(counter, struct mem_cgroup, member)
1117
1118 /**
1119 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1120 * @mem: the memory cgroup
1121 *
1122 * Returns the maximum amount of memory @mem can be charged with, in
1123 * bytes.
1124 */
1125 static unsigned long long mem_cgroup_margin(struct mem_cgroup *mem)
1126 {
1127 unsigned long long margin;
1128
1129 margin = res_counter_margin(&mem->res);
1130 if (do_swap_account)
1131 margin = min(margin, res_counter_margin(&mem->memsw));
1132 return margin;
1133 }
1134
1135 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1136 {
1137 struct cgroup *cgrp = memcg->css.cgroup;
1138 unsigned int swappiness;
1139
1140 /* root ? */
1141 if (cgrp->parent == NULL)
1142 return vm_swappiness;
1143
1144 spin_lock(&memcg->reclaim_param_lock);
1145 swappiness = memcg->swappiness;
1146 spin_unlock(&memcg->reclaim_param_lock);
1147
1148 return swappiness;
1149 }
1150
1151 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1152 {
1153 int cpu;
1154
1155 get_online_cpus();
1156 spin_lock(&mem->pcp_counter_lock);
1157 for_each_online_cpu(cpu)
1158 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1159 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1160 spin_unlock(&mem->pcp_counter_lock);
1161 put_online_cpus();
1162
1163 synchronize_rcu();
1164 }
1165
1166 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1167 {
1168 int cpu;
1169
1170 if (!mem)
1171 return;
1172 get_online_cpus();
1173 spin_lock(&mem->pcp_counter_lock);
1174 for_each_online_cpu(cpu)
1175 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1176 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1177 spin_unlock(&mem->pcp_counter_lock);
1178 put_online_cpus();
1179 }
1180 /*
1181 * 2 routines for checking "mem" is under move_account() or not.
1182 *
1183 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1184 * for avoiding race in accounting. If true,
1185 * pc->mem_cgroup may be overwritten.
1186 *
1187 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1188 * under hierarchy of moving cgroups. This is for
1189 * waiting at hith-memory prressure caused by "move".
1190 */
1191
1192 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1193 {
1194 VM_BUG_ON(!rcu_read_lock_held());
1195 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1196 }
1197
1198 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1199 {
1200 struct mem_cgroup *from;
1201 struct mem_cgroup *to;
1202 bool ret = false;
1203 /*
1204 * Unlike task_move routines, we access mc.to, mc.from not under
1205 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1206 */
1207 spin_lock(&mc.lock);
1208 from = mc.from;
1209 to = mc.to;
1210 if (!from)
1211 goto unlock;
1212 if (from == mem || to == mem
1213 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1214 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1215 ret = true;
1216 unlock:
1217 spin_unlock(&mc.lock);
1218 return ret;
1219 }
1220
1221 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1222 {
1223 if (mc.moving_task && current != mc.moving_task) {
1224 if (mem_cgroup_under_move(mem)) {
1225 DEFINE_WAIT(wait);
1226 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1227 /* moving charge context might have finished. */
1228 if (mc.moving_task)
1229 schedule();
1230 finish_wait(&mc.waitq, &wait);
1231 return true;
1232 }
1233 }
1234 return false;
1235 }
1236
1237 /**
1238 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1239 * @memcg: The memory cgroup that went over limit
1240 * @p: Task that is going to be killed
1241 *
1242 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1243 * enabled
1244 */
1245 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1246 {
1247 struct cgroup *task_cgrp;
1248 struct cgroup *mem_cgrp;
1249 /*
1250 * Need a buffer in BSS, can't rely on allocations. The code relies
1251 * on the assumption that OOM is serialized for memory controller.
1252 * If this assumption is broken, revisit this code.
1253 */
1254 static char memcg_name[PATH_MAX];
1255 int ret;
1256
1257 if (!memcg || !p)
1258 return;
1259
1260
1261 rcu_read_lock();
1262
1263 mem_cgrp = memcg->css.cgroup;
1264 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1265
1266 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1267 if (ret < 0) {
1268 /*
1269 * Unfortunately, we are unable to convert to a useful name
1270 * But we'll still print out the usage information
1271 */
1272 rcu_read_unlock();
1273 goto done;
1274 }
1275 rcu_read_unlock();
1276
1277 printk(KERN_INFO "Task in %s killed", memcg_name);
1278
1279 rcu_read_lock();
1280 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1281 if (ret < 0) {
1282 rcu_read_unlock();
1283 goto done;
1284 }
1285 rcu_read_unlock();
1286
1287 /*
1288 * Continues from above, so we don't need an KERN_ level
1289 */
1290 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1291 done:
1292
1293 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1294 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1295 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1296 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1297 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1298 "failcnt %llu\n",
1299 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1300 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1301 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1302 }
1303
1304 /*
1305 * This function returns the number of memcg under hierarchy tree. Returns
1306 * 1(self count) if no children.
1307 */
1308 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1309 {
1310 int num = 0;
1311 struct mem_cgroup *iter;
1312
1313 for_each_mem_cgroup_tree(iter, mem)
1314 num++;
1315 return num;
1316 }
1317
1318 /*
1319 * Return the memory (and swap, if configured) limit for a memcg.
1320 */
1321 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1322 {
1323 u64 limit;
1324 u64 memsw;
1325
1326 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1327 limit += total_swap_pages << PAGE_SHIFT;
1328
1329 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1330 /*
1331 * If memsw is finite and limits the amount of swap space available
1332 * to this memcg, return that limit.
1333 */
1334 return min(limit, memsw);
1335 }
1336
1337 /*
1338 * Visit the first child (need not be the first child as per the ordering
1339 * of the cgroup list, since we track last_scanned_child) of @mem and use
1340 * that to reclaim free pages from.
1341 */
1342 static struct mem_cgroup *
1343 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1344 {
1345 struct mem_cgroup *ret = NULL;
1346 struct cgroup_subsys_state *css;
1347 int nextid, found;
1348
1349 if (!root_mem->use_hierarchy) {
1350 css_get(&root_mem->css);
1351 ret = root_mem;
1352 }
1353
1354 while (!ret) {
1355 rcu_read_lock();
1356 nextid = root_mem->last_scanned_child + 1;
1357 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1358 &found);
1359 if (css && css_tryget(css))
1360 ret = container_of(css, struct mem_cgroup, css);
1361
1362 rcu_read_unlock();
1363 /* Updates scanning parameter */
1364 spin_lock(&root_mem->reclaim_param_lock);
1365 if (!css) {
1366 /* this means start scan from ID:1 */
1367 root_mem->last_scanned_child = 0;
1368 } else
1369 root_mem->last_scanned_child = found;
1370 spin_unlock(&root_mem->reclaim_param_lock);
1371 }
1372
1373 return ret;
1374 }
1375
1376 /*
1377 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1378 * we reclaimed from, so that we don't end up penalizing one child extensively
1379 * based on its position in the children list.
1380 *
1381 * root_mem is the original ancestor that we've been reclaim from.
1382 *
1383 * We give up and return to the caller when we visit root_mem twice.
1384 * (other groups can be removed while we're walking....)
1385 *
1386 * If shrink==true, for avoiding to free too much, this returns immedieately.
1387 */
1388 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1389 struct zone *zone,
1390 gfp_t gfp_mask,
1391 unsigned long reclaim_options)
1392 {
1393 struct mem_cgroup *victim;
1394 int ret, total = 0;
1395 int loop = 0;
1396 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1397 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1398 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1399 unsigned long excess;
1400
1401 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1402
1403 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1404 if (root_mem->memsw_is_minimum)
1405 noswap = true;
1406
1407 while (1) {
1408 victim = mem_cgroup_select_victim(root_mem);
1409 if (victim == root_mem) {
1410 loop++;
1411 if (loop >= 1)
1412 drain_all_stock_async();
1413 if (loop >= 2) {
1414 /*
1415 * If we have not been able to reclaim
1416 * anything, it might because there are
1417 * no reclaimable pages under this hierarchy
1418 */
1419 if (!check_soft || !total) {
1420 css_put(&victim->css);
1421 break;
1422 }
1423 /*
1424 * We want to do more targetted reclaim.
1425 * excess >> 2 is not to excessive so as to
1426 * reclaim too much, nor too less that we keep
1427 * coming back to reclaim from this cgroup
1428 */
1429 if (total >= (excess >> 2) ||
1430 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1431 css_put(&victim->css);
1432 break;
1433 }
1434 }
1435 }
1436 if (!mem_cgroup_local_usage(victim)) {
1437 /* this cgroup's local usage == 0 */
1438 css_put(&victim->css);
1439 continue;
1440 }
1441 /* we use swappiness of local cgroup */
1442 if (check_soft)
1443 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1444 noswap, get_swappiness(victim), zone);
1445 else
1446 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1447 noswap, get_swappiness(victim));
1448 css_put(&victim->css);
1449 /*
1450 * At shrinking usage, we can't check we should stop here or
1451 * reclaim more. It's depends on callers. last_scanned_child
1452 * will work enough for keeping fairness under tree.
1453 */
1454 if (shrink)
1455 return ret;
1456 total += ret;
1457 if (check_soft) {
1458 if (!res_counter_soft_limit_excess(&root_mem->res))
1459 return total;
1460 } else if (mem_cgroup_margin(root_mem))
1461 return 1 + total;
1462 }
1463 return total;
1464 }
1465
1466 /*
1467 * Check OOM-Killer is already running under our hierarchy.
1468 * If someone is running, return false.
1469 */
1470 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1471 {
1472 int x, lock_count = 0;
1473 struct mem_cgroup *iter;
1474
1475 for_each_mem_cgroup_tree(iter, mem) {
1476 x = atomic_inc_return(&iter->oom_lock);
1477 lock_count = max(x, lock_count);
1478 }
1479
1480 if (lock_count == 1)
1481 return true;
1482 return false;
1483 }
1484
1485 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1486 {
1487 struct mem_cgroup *iter;
1488
1489 /*
1490 * When a new child is created while the hierarchy is under oom,
1491 * mem_cgroup_oom_lock() may not be called. We have to use
1492 * atomic_add_unless() here.
1493 */
1494 for_each_mem_cgroup_tree(iter, mem)
1495 atomic_add_unless(&iter->oom_lock, -1, 0);
1496 return 0;
1497 }
1498
1499
1500 static DEFINE_MUTEX(memcg_oom_mutex);
1501 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1502
1503 struct oom_wait_info {
1504 struct mem_cgroup *mem;
1505 wait_queue_t wait;
1506 };
1507
1508 static int memcg_oom_wake_function(wait_queue_t *wait,
1509 unsigned mode, int sync, void *arg)
1510 {
1511 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1512 struct oom_wait_info *oom_wait_info;
1513
1514 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1515
1516 if (oom_wait_info->mem == wake_mem)
1517 goto wakeup;
1518 /* if no hierarchy, no match */
1519 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1520 return 0;
1521 /*
1522 * Both of oom_wait_info->mem and wake_mem are stable under us.
1523 * Then we can use css_is_ancestor without taking care of RCU.
1524 */
1525 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1526 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1527 return 0;
1528
1529 wakeup:
1530 return autoremove_wake_function(wait, mode, sync, arg);
1531 }
1532
1533 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1534 {
1535 /* for filtering, pass "mem" as argument. */
1536 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1537 }
1538
1539 static void memcg_oom_recover(struct mem_cgroup *mem)
1540 {
1541 if (mem && atomic_read(&mem->oom_lock))
1542 memcg_wakeup_oom(mem);
1543 }
1544
1545 /*
1546 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1547 */
1548 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1549 {
1550 struct oom_wait_info owait;
1551 bool locked, need_to_kill;
1552
1553 owait.mem = mem;
1554 owait.wait.flags = 0;
1555 owait.wait.func = memcg_oom_wake_function;
1556 owait.wait.private = current;
1557 INIT_LIST_HEAD(&owait.wait.task_list);
1558 need_to_kill = true;
1559 /* At first, try to OOM lock hierarchy under mem.*/
1560 mutex_lock(&memcg_oom_mutex);
1561 locked = mem_cgroup_oom_lock(mem);
1562 /*
1563 * Even if signal_pending(), we can't quit charge() loop without
1564 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1565 * under OOM is always welcomed, use TASK_KILLABLE here.
1566 */
1567 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1568 if (!locked || mem->oom_kill_disable)
1569 need_to_kill = false;
1570 if (locked)
1571 mem_cgroup_oom_notify(mem);
1572 mutex_unlock(&memcg_oom_mutex);
1573
1574 if (need_to_kill) {
1575 finish_wait(&memcg_oom_waitq, &owait.wait);
1576 mem_cgroup_out_of_memory(mem, mask);
1577 } else {
1578 schedule();
1579 finish_wait(&memcg_oom_waitq, &owait.wait);
1580 }
1581 mutex_lock(&memcg_oom_mutex);
1582 mem_cgroup_oom_unlock(mem);
1583 memcg_wakeup_oom(mem);
1584 mutex_unlock(&memcg_oom_mutex);
1585
1586 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1587 return false;
1588 /* Give chance to dying process */
1589 schedule_timeout(1);
1590 return true;
1591 }
1592
1593 /*
1594 * Currently used to update mapped file statistics, but the routine can be
1595 * generalized to update other statistics as well.
1596 *
1597 * Notes: Race condition
1598 *
1599 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1600 * it tends to be costly. But considering some conditions, we doesn't need
1601 * to do so _always_.
1602 *
1603 * Considering "charge", lock_page_cgroup() is not required because all
1604 * file-stat operations happen after a page is attached to radix-tree. There
1605 * are no race with "charge".
1606 *
1607 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1608 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1609 * if there are race with "uncharge". Statistics itself is properly handled
1610 * by flags.
1611 *
1612 * Considering "move", this is an only case we see a race. To make the race
1613 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1614 * possibility of race condition. If there is, we take a lock.
1615 */
1616
1617 void mem_cgroup_update_page_stat(struct page *page,
1618 enum mem_cgroup_page_stat_item idx, int val)
1619 {
1620 struct mem_cgroup *mem;
1621 struct page_cgroup *pc = lookup_page_cgroup(page);
1622 bool need_unlock = false;
1623 unsigned long uninitialized_var(flags);
1624
1625 if (unlikely(!pc))
1626 return;
1627
1628 rcu_read_lock();
1629 mem = pc->mem_cgroup;
1630 if (unlikely(!mem || !PageCgroupUsed(pc)))
1631 goto out;
1632 /* pc->mem_cgroup is unstable ? */
1633 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1634 /* take a lock against to access pc->mem_cgroup */
1635 move_lock_page_cgroup(pc, &flags);
1636 need_unlock = true;
1637 mem = pc->mem_cgroup;
1638 if (!mem || !PageCgroupUsed(pc))
1639 goto out;
1640 }
1641
1642 switch (idx) {
1643 case MEMCG_NR_FILE_MAPPED:
1644 if (val > 0)
1645 SetPageCgroupFileMapped(pc);
1646 else if (!page_mapped(page))
1647 ClearPageCgroupFileMapped(pc);
1648 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1649 break;
1650 default:
1651 BUG();
1652 }
1653
1654 this_cpu_add(mem->stat->count[idx], val);
1655
1656 out:
1657 if (unlikely(need_unlock))
1658 move_unlock_page_cgroup(pc, &flags);
1659 rcu_read_unlock();
1660 return;
1661 }
1662 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1663
1664 /*
1665 * size of first charge trial. "32" comes from vmscan.c's magic value.
1666 * TODO: maybe necessary to use big numbers in big irons.
1667 */
1668 #define CHARGE_SIZE (32 * PAGE_SIZE)
1669 struct memcg_stock_pcp {
1670 struct mem_cgroup *cached; /* this never be root cgroup */
1671 int charge;
1672 struct work_struct work;
1673 };
1674 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1675 static atomic_t memcg_drain_count;
1676
1677 /*
1678 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1679 * from local stock and true is returned. If the stock is 0 or charges from a
1680 * cgroup which is not current target, returns false. This stock will be
1681 * refilled.
1682 */
1683 static bool consume_stock(struct mem_cgroup *mem)
1684 {
1685 struct memcg_stock_pcp *stock;
1686 bool ret = true;
1687
1688 stock = &get_cpu_var(memcg_stock);
1689 if (mem == stock->cached && stock->charge)
1690 stock->charge -= PAGE_SIZE;
1691 else /* need to call res_counter_charge */
1692 ret = false;
1693 put_cpu_var(memcg_stock);
1694 return ret;
1695 }
1696
1697 /*
1698 * Returns stocks cached in percpu to res_counter and reset cached information.
1699 */
1700 static void drain_stock(struct memcg_stock_pcp *stock)
1701 {
1702 struct mem_cgroup *old = stock->cached;
1703
1704 if (stock->charge) {
1705 res_counter_uncharge(&old->res, stock->charge);
1706 if (do_swap_account)
1707 res_counter_uncharge(&old->memsw, stock->charge);
1708 }
1709 stock->cached = NULL;
1710 stock->charge = 0;
1711 }
1712
1713 /*
1714 * This must be called under preempt disabled or must be called by
1715 * a thread which is pinned to local cpu.
1716 */
1717 static void drain_local_stock(struct work_struct *dummy)
1718 {
1719 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1720 drain_stock(stock);
1721 }
1722
1723 /*
1724 * Cache charges(val) which is from res_counter, to local per_cpu area.
1725 * This will be consumed by consume_stock() function, later.
1726 */
1727 static void refill_stock(struct mem_cgroup *mem, int val)
1728 {
1729 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1730
1731 if (stock->cached != mem) { /* reset if necessary */
1732 drain_stock(stock);
1733 stock->cached = mem;
1734 }
1735 stock->charge += val;
1736 put_cpu_var(memcg_stock);
1737 }
1738
1739 /*
1740 * Tries to drain stocked charges in other cpus. This function is asynchronous
1741 * and just put a work per cpu for draining localy on each cpu. Caller can
1742 * expects some charges will be back to res_counter later but cannot wait for
1743 * it.
1744 */
1745 static void drain_all_stock_async(void)
1746 {
1747 int cpu;
1748 /* This function is for scheduling "drain" in asynchronous way.
1749 * The result of "drain" is not directly handled by callers. Then,
1750 * if someone is calling drain, we don't have to call drain more.
1751 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1752 * there is a race. We just do loose check here.
1753 */
1754 if (atomic_read(&memcg_drain_count))
1755 return;
1756 /* Notify other cpus that system-wide "drain" is running */
1757 atomic_inc(&memcg_drain_count);
1758 get_online_cpus();
1759 for_each_online_cpu(cpu) {
1760 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1761 schedule_work_on(cpu, &stock->work);
1762 }
1763 put_online_cpus();
1764 atomic_dec(&memcg_drain_count);
1765 /* We don't wait for flush_work */
1766 }
1767
1768 /* This is a synchronous drain interface. */
1769 static void drain_all_stock_sync(void)
1770 {
1771 /* called when force_empty is called */
1772 atomic_inc(&memcg_drain_count);
1773 schedule_on_each_cpu(drain_local_stock);
1774 atomic_dec(&memcg_drain_count);
1775 }
1776
1777 /*
1778 * This function drains percpu counter value from DEAD cpu and
1779 * move it to local cpu. Note that this function can be preempted.
1780 */
1781 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1782 {
1783 int i;
1784
1785 spin_lock(&mem->pcp_counter_lock);
1786 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1787 s64 x = per_cpu(mem->stat->count[i], cpu);
1788
1789 per_cpu(mem->stat->count[i], cpu) = 0;
1790 mem->nocpu_base.count[i] += x;
1791 }
1792 /* need to clear ON_MOVE value, works as a kind of lock. */
1793 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1794 spin_unlock(&mem->pcp_counter_lock);
1795 }
1796
1797 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1798 {
1799 int idx = MEM_CGROUP_ON_MOVE;
1800
1801 spin_lock(&mem->pcp_counter_lock);
1802 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1803 spin_unlock(&mem->pcp_counter_lock);
1804 }
1805
1806 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1807 unsigned long action,
1808 void *hcpu)
1809 {
1810 int cpu = (unsigned long)hcpu;
1811 struct memcg_stock_pcp *stock;
1812 struct mem_cgroup *iter;
1813
1814 if ((action == CPU_ONLINE)) {
1815 for_each_mem_cgroup_all(iter)
1816 synchronize_mem_cgroup_on_move(iter, cpu);
1817 return NOTIFY_OK;
1818 }
1819
1820 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1821 return NOTIFY_OK;
1822
1823 for_each_mem_cgroup_all(iter)
1824 mem_cgroup_drain_pcp_counter(iter, cpu);
1825
1826 stock = &per_cpu(memcg_stock, cpu);
1827 drain_stock(stock);
1828 return NOTIFY_OK;
1829 }
1830
1831
1832 /* See __mem_cgroup_try_charge() for details */
1833 enum {
1834 CHARGE_OK, /* success */
1835 CHARGE_RETRY, /* need to retry but retry is not bad */
1836 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1837 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1838 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1839 };
1840
1841 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1842 int csize, bool oom_check)
1843 {
1844 struct mem_cgroup *mem_over_limit;
1845 struct res_counter *fail_res;
1846 unsigned long flags = 0;
1847 int ret;
1848
1849 ret = res_counter_charge(&mem->res, csize, &fail_res);
1850
1851 if (likely(!ret)) {
1852 if (!do_swap_account)
1853 return CHARGE_OK;
1854 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1855 if (likely(!ret))
1856 return CHARGE_OK;
1857
1858 res_counter_uncharge(&mem->res, csize);
1859 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1860 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1861 } else
1862 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1863 /*
1864 * csize can be either a huge page (HPAGE_SIZE), a batch of
1865 * regular pages (CHARGE_SIZE), or a single regular page
1866 * (PAGE_SIZE).
1867 *
1868 * Never reclaim on behalf of optional batching, retry with a
1869 * single page instead.
1870 */
1871 if (csize == CHARGE_SIZE)
1872 return CHARGE_RETRY;
1873
1874 if (!(gfp_mask & __GFP_WAIT))
1875 return CHARGE_WOULDBLOCK;
1876
1877 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1878 gfp_mask, flags);
1879 if (mem_cgroup_margin(mem_over_limit) >= csize)
1880 return CHARGE_RETRY;
1881 /*
1882 * Even though the limit is exceeded at this point, reclaim
1883 * may have been able to free some pages. Retry the charge
1884 * before killing the task.
1885 *
1886 * Only for regular pages, though: huge pages are rather
1887 * unlikely to succeed so close to the limit, and we fall back
1888 * to regular pages anyway in case of failure.
1889 */
1890 if (csize == PAGE_SIZE && ret)
1891 return CHARGE_RETRY;
1892
1893 /*
1894 * At task move, charge accounts can be doubly counted. So, it's
1895 * better to wait until the end of task_move if something is going on.
1896 */
1897 if (mem_cgroup_wait_acct_move(mem_over_limit))
1898 return CHARGE_RETRY;
1899
1900 /* If we don't need to call oom-killer at el, return immediately */
1901 if (!oom_check)
1902 return CHARGE_NOMEM;
1903 /* check OOM */
1904 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1905 return CHARGE_OOM_DIE;
1906
1907 return CHARGE_RETRY;
1908 }
1909
1910 /*
1911 * Unlike exported interface, "oom" parameter is added. if oom==true,
1912 * oom-killer can be invoked.
1913 */
1914 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1915 gfp_t gfp_mask,
1916 struct mem_cgroup **memcg, bool oom,
1917 int page_size)
1918 {
1919 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1920 struct mem_cgroup *mem = NULL;
1921 int ret;
1922 int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1923
1924 /*
1925 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1926 * in system level. So, allow to go ahead dying process in addition to
1927 * MEMDIE process.
1928 */
1929 if (unlikely(test_thread_flag(TIF_MEMDIE)
1930 || fatal_signal_pending(current)))
1931 goto bypass;
1932
1933 /*
1934 * We always charge the cgroup the mm_struct belongs to.
1935 * The mm_struct's mem_cgroup changes on task migration if the
1936 * thread group leader migrates. It's possible that mm is not
1937 * set, if so charge the init_mm (happens for pagecache usage).
1938 */
1939 if (!*memcg && !mm)
1940 goto bypass;
1941 again:
1942 if (*memcg) { /* css should be a valid one */
1943 mem = *memcg;
1944 VM_BUG_ON(css_is_removed(&mem->css));
1945 if (mem_cgroup_is_root(mem))
1946 goto done;
1947 if (page_size == PAGE_SIZE && consume_stock(mem))
1948 goto done;
1949 css_get(&mem->css);
1950 } else {
1951 struct task_struct *p;
1952
1953 rcu_read_lock();
1954 p = rcu_dereference(mm->owner);
1955 /*
1956 * Because we don't have task_lock(), "p" can exit.
1957 * In that case, "mem" can point to root or p can be NULL with
1958 * race with swapoff. Then, we have small risk of mis-accouning.
1959 * But such kind of mis-account by race always happens because
1960 * we don't have cgroup_mutex(). It's overkill and we allo that
1961 * small race, here.
1962 * (*) swapoff at el will charge against mm-struct not against
1963 * task-struct. So, mm->owner can be NULL.
1964 */
1965 mem = mem_cgroup_from_task(p);
1966 if (!mem || mem_cgroup_is_root(mem)) {
1967 rcu_read_unlock();
1968 goto done;
1969 }
1970 if (page_size == PAGE_SIZE && consume_stock(mem)) {
1971 /*
1972 * It seems dagerous to access memcg without css_get().
1973 * But considering how consume_stok works, it's not
1974 * necessary. If consume_stock success, some charges
1975 * from this memcg are cached on this cpu. So, we
1976 * don't need to call css_get()/css_tryget() before
1977 * calling consume_stock().
1978 */
1979 rcu_read_unlock();
1980 goto done;
1981 }
1982 /* after here, we may be blocked. we need to get refcnt */
1983 if (!css_tryget(&mem->css)) {
1984 rcu_read_unlock();
1985 goto again;
1986 }
1987 rcu_read_unlock();
1988 }
1989
1990 do {
1991 bool oom_check;
1992
1993 /* If killed, bypass charge */
1994 if (fatal_signal_pending(current)) {
1995 css_put(&mem->css);
1996 goto bypass;
1997 }
1998
1999 oom_check = false;
2000 if (oom && !nr_oom_retries) {
2001 oom_check = true;
2002 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2003 }
2004
2005 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
2006
2007 switch (ret) {
2008 case CHARGE_OK:
2009 break;
2010 case CHARGE_RETRY: /* not in OOM situation but retry */
2011 csize = page_size;
2012 css_put(&mem->css);
2013 mem = NULL;
2014 goto again;
2015 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2016 css_put(&mem->css);
2017 goto nomem;
2018 case CHARGE_NOMEM: /* OOM routine works */
2019 if (!oom) {
2020 css_put(&mem->css);
2021 goto nomem;
2022 }
2023 /* If oom, we never return -ENOMEM */
2024 nr_oom_retries--;
2025 break;
2026 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2027 css_put(&mem->css);
2028 goto bypass;
2029 }
2030 } while (ret != CHARGE_OK);
2031
2032 if (csize > page_size)
2033 refill_stock(mem, csize - page_size);
2034 css_put(&mem->css);
2035 done:
2036 *memcg = mem;
2037 return 0;
2038 nomem:
2039 *memcg = NULL;
2040 return -ENOMEM;
2041 bypass:
2042 *memcg = NULL;
2043 return 0;
2044 }
2045
2046 /*
2047 * Somemtimes we have to undo a charge we got by try_charge().
2048 * This function is for that and do uncharge, put css's refcnt.
2049 * gotten by try_charge().
2050 */
2051 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2052 unsigned long count)
2053 {
2054 if (!mem_cgroup_is_root(mem)) {
2055 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2056 if (do_swap_account)
2057 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2058 }
2059 }
2060
2061 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2062 int page_size)
2063 {
2064 __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2065 }
2066
2067 /*
2068 * A helper function to get mem_cgroup from ID. must be called under
2069 * rcu_read_lock(). The caller must check css_is_removed() or some if
2070 * it's concern. (dropping refcnt from swap can be called against removed
2071 * memcg.)
2072 */
2073 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2074 {
2075 struct cgroup_subsys_state *css;
2076
2077 /* ID 0 is unused ID */
2078 if (!id)
2079 return NULL;
2080 css = css_lookup(&mem_cgroup_subsys, id);
2081 if (!css)
2082 return NULL;
2083 return container_of(css, struct mem_cgroup, css);
2084 }
2085
2086 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2087 {
2088 struct mem_cgroup *mem = NULL;
2089 struct page_cgroup *pc;
2090 unsigned short id;
2091 swp_entry_t ent;
2092
2093 VM_BUG_ON(!PageLocked(page));
2094
2095 pc = lookup_page_cgroup(page);
2096 lock_page_cgroup(pc);
2097 if (PageCgroupUsed(pc)) {
2098 mem = pc->mem_cgroup;
2099 if (mem && !css_tryget(&mem->css))
2100 mem = NULL;
2101 } else if (PageSwapCache(page)) {
2102 ent.val = page_private(page);
2103 id = lookup_swap_cgroup(ent);
2104 rcu_read_lock();
2105 mem = mem_cgroup_lookup(id);
2106 if (mem && !css_tryget(&mem->css))
2107 mem = NULL;
2108 rcu_read_unlock();
2109 }
2110 unlock_page_cgroup(pc);
2111 return mem;
2112 }
2113
2114 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2115 struct page_cgroup *pc,
2116 enum charge_type ctype,
2117 int page_size)
2118 {
2119 int nr_pages = page_size >> PAGE_SHIFT;
2120
2121 lock_page_cgroup(pc);
2122 if (unlikely(PageCgroupUsed(pc))) {
2123 unlock_page_cgroup(pc);
2124 mem_cgroup_cancel_charge(mem, page_size);
2125 return;
2126 }
2127 /*
2128 * we don't need page_cgroup_lock about tail pages, becase they are not
2129 * accessed by any other context at this point.
2130 */
2131 pc->mem_cgroup = mem;
2132 /*
2133 * We access a page_cgroup asynchronously without lock_page_cgroup().
2134 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2135 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2136 * before USED bit, we need memory barrier here.
2137 * See mem_cgroup_add_lru_list(), etc.
2138 */
2139 smp_wmb();
2140 switch (ctype) {
2141 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2142 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2143 SetPageCgroupCache(pc);
2144 SetPageCgroupUsed(pc);
2145 break;
2146 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2147 ClearPageCgroupCache(pc);
2148 SetPageCgroupUsed(pc);
2149 break;
2150 default:
2151 break;
2152 }
2153
2154 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2155 unlock_page_cgroup(pc);
2156 /*
2157 * "charge_statistics" updated event counter. Then, check it.
2158 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2159 * if they exceeds softlimit.
2160 */
2161 memcg_check_events(mem, pc->page);
2162 }
2163
2164 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2165
2166 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2167 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2168 /*
2169 * Because tail pages are not marked as "used", set it. We're under
2170 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2171 */
2172 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2173 {
2174 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2175 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2176 unsigned long flags;
2177
2178 if (mem_cgroup_disabled())
2179 return;
2180 /*
2181 * We have no races with charge/uncharge but will have races with
2182 * page state accounting.
2183 */
2184 move_lock_page_cgroup(head_pc, &flags);
2185
2186 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2187 smp_wmb(); /* see __commit_charge() */
2188 if (PageCgroupAcctLRU(head_pc)) {
2189 enum lru_list lru;
2190 struct mem_cgroup_per_zone *mz;
2191
2192 /*
2193 * LRU flags cannot be copied because we need to add tail
2194 *.page to LRU by generic call and our hook will be called.
2195 * We hold lru_lock, then, reduce counter directly.
2196 */
2197 lru = page_lru(head);
2198 mz = page_cgroup_zoneinfo(head_pc);
2199 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2200 }
2201 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2202 move_unlock_page_cgroup(head_pc, &flags);
2203 }
2204 #endif
2205
2206 /**
2207 * __mem_cgroup_move_account - move account of the page
2208 * @pc: page_cgroup of the page.
2209 * @from: mem_cgroup which the page is moved from.
2210 * @to: mem_cgroup which the page is moved to. @from != @to.
2211 * @uncharge: whether we should call uncharge and css_put against @from.
2212 *
2213 * The caller must confirm following.
2214 * - page is not on LRU (isolate_page() is useful.)
2215 * - the pc is locked, used, and ->mem_cgroup points to @from.
2216 *
2217 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2218 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2219 * true, this function does "uncharge" from old cgroup, but it doesn't if
2220 * @uncharge is false, so a caller should do "uncharge".
2221 */
2222
2223 static void __mem_cgroup_move_account(struct page_cgroup *pc,
2224 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge,
2225 int charge_size)
2226 {
2227 int nr_pages = charge_size >> PAGE_SHIFT;
2228
2229 VM_BUG_ON(from == to);
2230 VM_BUG_ON(PageLRU(pc->page));
2231 VM_BUG_ON(!page_is_cgroup_locked(pc));
2232 VM_BUG_ON(!PageCgroupUsed(pc));
2233 VM_BUG_ON(pc->mem_cgroup != from);
2234
2235 if (PageCgroupFileMapped(pc)) {
2236 /* Update mapped_file data for mem_cgroup */
2237 preempt_disable();
2238 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2239 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2240 preempt_enable();
2241 }
2242 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2243 if (uncharge)
2244 /* This is not "cancel", but cancel_charge does all we need. */
2245 mem_cgroup_cancel_charge(from, charge_size);
2246
2247 /* caller should have done css_get */
2248 pc->mem_cgroup = to;
2249 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2250 /*
2251 * We charges against "to" which may not have any tasks. Then, "to"
2252 * can be under rmdir(). But in current implementation, caller of
2253 * this function is just force_empty() and move charge, so it's
2254 * garanteed that "to" is never removed. So, we don't check rmdir
2255 * status here.
2256 */
2257 }
2258
2259 /*
2260 * check whether the @pc is valid for moving account and call
2261 * __mem_cgroup_move_account()
2262 */
2263 static int mem_cgroup_move_account(struct page_cgroup *pc,
2264 struct mem_cgroup *from, struct mem_cgroup *to,
2265 bool uncharge, int charge_size)
2266 {
2267 int ret = -EINVAL;
2268 unsigned long flags;
2269 /*
2270 * The page is isolated from LRU. So, collapse function
2271 * will not handle this page. But page splitting can happen.
2272 * Do this check under compound_page_lock(). The caller should
2273 * hold it.
2274 */
2275 if ((charge_size > PAGE_SIZE) && !PageTransHuge(pc->page))
2276 return -EBUSY;
2277
2278 lock_page_cgroup(pc);
2279 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2280 move_lock_page_cgroup(pc, &flags);
2281 __mem_cgroup_move_account(pc, from, to, uncharge, charge_size);
2282 move_unlock_page_cgroup(pc, &flags);
2283 ret = 0;
2284 }
2285 unlock_page_cgroup(pc);
2286 /*
2287 * check events
2288 */
2289 memcg_check_events(to, pc->page);
2290 memcg_check_events(from, pc->page);
2291 return ret;
2292 }
2293
2294 /*
2295 * move charges to its parent.
2296 */
2297
2298 static int mem_cgroup_move_parent(struct page_cgroup *pc,
2299 struct mem_cgroup *child,
2300 gfp_t gfp_mask)
2301 {
2302 struct page *page = pc->page;
2303 struct cgroup *cg = child->css.cgroup;
2304 struct cgroup *pcg = cg->parent;
2305 struct mem_cgroup *parent;
2306 int page_size = PAGE_SIZE;
2307 unsigned long flags;
2308 int ret;
2309
2310 /* Is ROOT ? */
2311 if (!pcg)
2312 return -EINVAL;
2313
2314 ret = -EBUSY;
2315 if (!get_page_unless_zero(page))
2316 goto out;
2317 if (isolate_lru_page(page))
2318 goto put;
2319
2320 if (PageTransHuge(page))
2321 page_size = HPAGE_SIZE;
2322
2323 parent = mem_cgroup_from_cont(pcg);
2324 ret = __mem_cgroup_try_charge(NULL, gfp_mask,
2325 &parent, false, page_size);
2326 if (ret || !parent)
2327 goto put_back;
2328
2329 if (page_size > PAGE_SIZE)
2330 flags = compound_lock_irqsave(page);
2331
2332 ret = mem_cgroup_move_account(pc, child, parent, true, page_size);
2333 if (ret)
2334 mem_cgroup_cancel_charge(parent, page_size);
2335
2336 if (page_size > PAGE_SIZE)
2337 compound_unlock_irqrestore(page, flags);
2338 put_back:
2339 putback_lru_page(page);
2340 put:
2341 put_page(page);
2342 out:
2343 return ret;
2344 }
2345
2346 /*
2347 * Charge the memory controller for page usage.
2348 * Return
2349 * 0 if the charge was successful
2350 * < 0 if the cgroup is over its limit
2351 */
2352 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2353 gfp_t gfp_mask, enum charge_type ctype)
2354 {
2355 struct mem_cgroup *mem = NULL;
2356 int page_size = PAGE_SIZE;
2357 struct page_cgroup *pc;
2358 bool oom = true;
2359 int ret;
2360
2361 if (PageTransHuge(page)) {
2362 page_size <<= compound_order(page);
2363 VM_BUG_ON(!PageTransHuge(page));
2364 /*
2365 * Never OOM-kill a process for a huge page. The
2366 * fault handler will fall back to regular pages.
2367 */
2368 oom = false;
2369 }
2370
2371 pc = lookup_page_cgroup(page);
2372 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2373
2374 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, oom, page_size);
2375 if (ret || !mem)
2376 return ret;
2377
2378 __mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2379 return 0;
2380 }
2381
2382 int mem_cgroup_newpage_charge(struct page *page,
2383 struct mm_struct *mm, gfp_t gfp_mask)
2384 {
2385 if (mem_cgroup_disabled())
2386 return 0;
2387 /*
2388 * If already mapped, we don't have to account.
2389 * If page cache, page->mapping has address_space.
2390 * But page->mapping may have out-of-use anon_vma pointer,
2391 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2392 * is NULL.
2393 */
2394 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2395 return 0;
2396 if (unlikely(!mm))
2397 mm = &init_mm;
2398 return mem_cgroup_charge_common(page, mm, gfp_mask,
2399 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2400 }
2401
2402 static void
2403 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2404 enum charge_type ctype);
2405
2406 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2407 gfp_t gfp_mask)
2408 {
2409 int ret;
2410
2411 if (mem_cgroup_disabled())
2412 return 0;
2413 if (PageCompound(page))
2414 return 0;
2415 /*
2416 * Corner case handling. This is called from add_to_page_cache()
2417 * in usual. But some FS (shmem) precharges this page before calling it
2418 * and call add_to_page_cache() with GFP_NOWAIT.
2419 *
2420 * For GFP_NOWAIT case, the page may be pre-charged before calling
2421 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2422 * charge twice. (It works but has to pay a bit larger cost.)
2423 * And when the page is SwapCache, it should take swap information
2424 * into account. This is under lock_page() now.
2425 */
2426 if (!(gfp_mask & __GFP_WAIT)) {
2427 struct page_cgroup *pc;
2428
2429 pc = lookup_page_cgroup(page);
2430 if (!pc)
2431 return 0;
2432 lock_page_cgroup(pc);
2433 if (PageCgroupUsed(pc)) {
2434 unlock_page_cgroup(pc);
2435 return 0;
2436 }
2437 unlock_page_cgroup(pc);
2438 }
2439
2440 if (unlikely(!mm))
2441 mm = &init_mm;
2442
2443 if (page_is_file_cache(page))
2444 return mem_cgroup_charge_common(page, mm, gfp_mask,
2445 MEM_CGROUP_CHARGE_TYPE_CACHE);
2446
2447 /* shmem */
2448 if (PageSwapCache(page)) {
2449 struct mem_cgroup *mem;
2450
2451 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2452 if (!ret)
2453 __mem_cgroup_commit_charge_swapin(page, mem,
2454 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2455 } else
2456 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2457 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2458
2459 return ret;
2460 }
2461
2462 /*
2463 * While swap-in, try_charge -> commit or cancel, the page is locked.
2464 * And when try_charge() successfully returns, one refcnt to memcg without
2465 * struct page_cgroup is acquired. This refcnt will be consumed by
2466 * "commit()" or removed by "cancel()"
2467 */
2468 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2469 struct page *page,
2470 gfp_t mask, struct mem_cgroup **ptr)
2471 {
2472 struct mem_cgroup *mem;
2473 int ret;
2474
2475 *ptr = NULL;
2476
2477 if (mem_cgroup_disabled())
2478 return 0;
2479
2480 if (!do_swap_account)
2481 goto charge_cur_mm;
2482 /*
2483 * A racing thread's fault, or swapoff, may have already updated
2484 * the pte, and even removed page from swap cache: in those cases
2485 * do_swap_page()'s pte_same() test will fail; but there's also a
2486 * KSM case which does need to charge the page.
2487 */
2488 if (!PageSwapCache(page))
2489 goto charge_cur_mm;
2490 mem = try_get_mem_cgroup_from_page(page);
2491 if (!mem)
2492 goto charge_cur_mm;
2493 *ptr = mem;
2494 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2495 css_put(&mem->css);
2496 return ret;
2497 charge_cur_mm:
2498 if (unlikely(!mm))
2499 mm = &init_mm;
2500 return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2501 }
2502
2503 static void
2504 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2505 enum charge_type ctype)
2506 {
2507 struct page_cgroup *pc;
2508
2509 if (mem_cgroup_disabled())
2510 return;
2511 if (!ptr)
2512 return;
2513 cgroup_exclude_rmdir(&ptr->css);
2514 pc = lookup_page_cgroup(page);
2515 mem_cgroup_lru_del_before_commit_swapcache(page);
2516 __mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2517 mem_cgroup_lru_add_after_commit_swapcache(page);
2518 /*
2519 * Now swap is on-memory. This means this page may be
2520 * counted both as mem and swap....double count.
2521 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2522 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2523 * may call delete_from_swap_cache() before reach here.
2524 */
2525 if (do_swap_account && PageSwapCache(page)) {
2526 swp_entry_t ent = {.val = page_private(page)};
2527 unsigned short id;
2528 struct mem_cgroup *memcg;
2529
2530 id = swap_cgroup_record(ent, 0);
2531 rcu_read_lock();
2532 memcg = mem_cgroup_lookup(id);
2533 if (memcg) {
2534 /*
2535 * This recorded memcg can be obsolete one. So, avoid
2536 * calling css_tryget
2537 */
2538 if (!mem_cgroup_is_root(memcg))
2539 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2540 mem_cgroup_swap_statistics(memcg, false);
2541 mem_cgroup_put(memcg);
2542 }
2543 rcu_read_unlock();
2544 }
2545 /*
2546 * At swapin, we may charge account against cgroup which has no tasks.
2547 * So, rmdir()->pre_destroy() can be called while we do this charge.
2548 * In that case, we need to call pre_destroy() again. check it here.
2549 */
2550 cgroup_release_and_wakeup_rmdir(&ptr->css);
2551 }
2552
2553 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2554 {
2555 __mem_cgroup_commit_charge_swapin(page, ptr,
2556 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2557 }
2558
2559 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2560 {
2561 if (mem_cgroup_disabled())
2562 return;
2563 if (!mem)
2564 return;
2565 mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2566 }
2567
2568 static void
2569 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2570 int page_size)
2571 {
2572 struct memcg_batch_info *batch = NULL;
2573 bool uncharge_memsw = true;
2574 /* If swapout, usage of swap doesn't decrease */
2575 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2576 uncharge_memsw = false;
2577
2578 batch = &current->memcg_batch;
2579 /*
2580 * In usual, we do css_get() when we remember memcg pointer.
2581 * But in this case, we keep res->usage until end of a series of
2582 * uncharges. Then, it's ok to ignore memcg's refcnt.
2583 */
2584 if (!batch->memcg)
2585 batch->memcg = mem;
2586 /*
2587 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2588 * In those cases, all pages freed continously can be expected to be in
2589 * the same cgroup and we have chance to coalesce uncharges.
2590 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2591 * because we want to do uncharge as soon as possible.
2592 */
2593
2594 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2595 goto direct_uncharge;
2596
2597 if (page_size != PAGE_SIZE)
2598 goto direct_uncharge;
2599
2600 /*
2601 * In typical case, batch->memcg == mem. This means we can
2602 * merge a series of uncharges to an uncharge of res_counter.
2603 * If not, we uncharge res_counter ony by one.
2604 */
2605 if (batch->memcg != mem)
2606 goto direct_uncharge;
2607 /* remember freed charge and uncharge it later */
2608 batch->bytes += PAGE_SIZE;
2609 if (uncharge_memsw)
2610 batch->memsw_bytes += PAGE_SIZE;
2611 return;
2612 direct_uncharge:
2613 res_counter_uncharge(&mem->res, page_size);
2614 if (uncharge_memsw)
2615 res_counter_uncharge(&mem->memsw, page_size);
2616 if (unlikely(batch->memcg != mem))
2617 memcg_oom_recover(mem);
2618 return;
2619 }
2620
2621 /*
2622 * uncharge if !page_mapped(page)
2623 */
2624 static struct mem_cgroup *
2625 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2626 {
2627 int count;
2628 struct page_cgroup *pc;
2629 struct mem_cgroup *mem = NULL;
2630 int page_size = PAGE_SIZE;
2631
2632 if (mem_cgroup_disabled())
2633 return NULL;
2634
2635 if (PageSwapCache(page))
2636 return NULL;
2637
2638 if (PageTransHuge(page)) {
2639 page_size <<= compound_order(page);
2640 VM_BUG_ON(!PageTransHuge(page));
2641 }
2642
2643 count = page_size >> PAGE_SHIFT;
2644 /*
2645 * Check if our page_cgroup is valid
2646 */
2647 pc = lookup_page_cgroup(page);
2648 if (unlikely(!pc || !PageCgroupUsed(pc)))
2649 return NULL;
2650
2651 lock_page_cgroup(pc);
2652
2653 mem = pc->mem_cgroup;
2654
2655 if (!PageCgroupUsed(pc))
2656 goto unlock_out;
2657
2658 switch (ctype) {
2659 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2660 case MEM_CGROUP_CHARGE_TYPE_DROP:
2661 /* See mem_cgroup_prepare_migration() */
2662 if (page_mapped(page) || PageCgroupMigration(pc))
2663 goto unlock_out;
2664 break;
2665 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2666 if (!PageAnon(page)) { /* Shared memory */
2667 if (page->mapping && !page_is_file_cache(page))
2668 goto unlock_out;
2669 } else if (page_mapped(page)) /* Anon */
2670 goto unlock_out;
2671 break;
2672 default:
2673 break;
2674 }
2675
2676 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
2677
2678 ClearPageCgroupUsed(pc);
2679 /*
2680 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2681 * freed from LRU. This is safe because uncharged page is expected not
2682 * to be reused (freed soon). Exception is SwapCache, it's handled by
2683 * special functions.
2684 */
2685
2686 unlock_page_cgroup(pc);
2687 /*
2688 * even after unlock, we have mem->res.usage here and this memcg
2689 * will never be freed.
2690 */
2691 memcg_check_events(mem, page);
2692 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2693 mem_cgroup_swap_statistics(mem, true);
2694 mem_cgroup_get(mem);
2695 }
2696 if (!mem_cgroup_is_root(mem))
2697 __do_uncharge(mem, ctype, page_size);
2698
2699 return mem;
2700
2701 unlock_out:
2702 unlock_page_cgroup(pc);
2703 return NULL;
2704 }
2705
2706 void mem_cgroup_uncharge_page(struct page *page)
2707 {
2708 /* early check. */
2709 if (page_mapped(page))
2710 return;
2711 if (page->mapping && !PageAnon(page))
2712 return;
2713 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2714 }
2715
2716 void mem_cgroup_uncharge_cache_page(struct page *page)
2717 {
2718 VM_BUG_ON(page_mapped(page));
2719 VM_BUG_ON(page->mapping);
2720 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2721 }
2722
2723 /*
2724 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2725 * In that cases, pages are freed continuously and we can expect pages
2726 * are in the same memcg. All these calls itself limits the number of
2727 * pages freed at once, then uncharge_start/end() is called properly.
2728 * This may be called prural(2) times in a context,
2729 */
2730
2731 void mem_cgroup_uncharge_start(void)
2732 {
2733 current->memcg_batch.do_batch++;
2734 /* We can do nest. */
2735 if (current->memcg_batch.do_batch == 1) {
2736 current->memcg_batch.memcg = NULL;
2737 current->memcg_batch.bytes = 0;
2738 current->memcg_batch.memsw_bytes = 0;
2739 }
2740 }
2741
2742 void mem_cgroup_uncharge_end(void)
2743 {
2744 struct memcg_batch_info *batch = &current->memcg_batch;
2745
2746 if (!batch->do_batch)
2747 return;
2748
2749 batch->do_batch--;
2750 if (batch->do_batch) /* If stacked, do nothing. */
2751 return;
2752
2753 if (!batch->memcg)
2754 return;
2755 /*
2756 * This "batch->memcg" is valid without any css_get/put etc...
2757 * bacause we hide charges behind us.
2758 */
2759 if (batch->bytes)
2760 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2761 if (batch->memsw_bytes)
2762 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2763 memcg_oom_recover(batch->memcg);
2764 /* forget this pointer (for sanity check) */
2765 batch->memcg = NULL;
2766 }
2767
2768 #ifdef CONFIG_SWAP
2769 /*
2770 * called after __delete_from_swap_cache() and drop "page" account.
2771 * memcg information is recorded to swap_cgroup of "ent"
2772 */
2773 void
2774 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2775 {
2776 struct mem_cgroup *memcg;
2777 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2778
2779 if (!swapout) /* this was a swap cache but the swap is unused ! */
2780 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2781
2782 memcg = __mem_cgroup_uncharge_common(page, ctype);
2783
2784 /*
2785 * record memcg information, if swapout && memcg != NULL,
2786 * mem_cgroup_get() was called in uncharge().
2787 */
2788 if (do_swap_account && swapout && memcg)
2789 swap_cgroup_record(ent, css_id(&memcg->css));
2790 }
2791 #endif
2792
2793 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2794 /*
2795 * called from swap_entry_free(). remove record in swap_cgroup and
2796 * uncharge "memsw" account.
2797 */
2798 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2799 {
2800 struct mem_cgroup *memcg;
2801 unsigned short id;
2802
2803 if (!do_swap_account)
2804 return;
2805
2806 id = swap_cgroup_record(ent, 0);
2807 rcu_read_lock();
2808 memcg = mem_cgroup_lookup(id);
2809 if (memcg) {
2810 /*
2811 * We uncharge this because swap is freed.
2812 * This memcg can be obsolete one. We avoid calling css_tryget
2813 */
2814 if (!mem_cgroup_is_root(memcg))
2815 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2816 mem_cgroup_swap_statistics(memcg, false);
2817 mem_cgroup_put(memcg);
2818 }
2819 rcu_read_unlock();
2820 }
2821
2822 /**
2823 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2824 * @entry: swap entry to be moved
2825 * @from: mem_cgroup which the entry is moved from
2826 * @to: mem_cgroup which the entry is moved to
2827 * @need_fixup: whether we should fixup res_counters and refcounts.
2828 *
2829 * It succeeds only when the swap_cgroup's record for this entry is the same
2830 * as the mem_cgroup's id of @from.
2831 *
2832 * Returns 0 on success, -EINVAL on failure.
2833 *
2834 * The caller must have charged to @to, IOW, called res_counter_charge() about
2835 * both res and memsw, and called css_get().
2836 */
2837 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2838 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2839 {
2840 unsigned short old_id, new_id;
2841
2842 old_id = css_id(&from->css);
2843 new_id = css_id(&to->css);
2844
2845 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2846 mem_cgroup_swap_statistics(from, false);
2847 mem_cgroup_swap_statistics(to, true);
2848 /*
2849 * This function is only called from task migration context now.
2850 * It postpones res_counter and refcount handling till the end
2851 * of task migration(mem_cgroup_clear_mc()) for performance
2852 * improvement. But we cannot postpone mem_cgroup_get(to)
2853 * because if the process that has been moved to @to does
2854 * swap-in, the refcount of @to might be decreased to 0.
2855 */
2856 mem_cgroup_get(to);
2857 if (need_fixup) {
2858 if (!mem_cgroup_is_root(from))
2859 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2860 mem_cgroup_put(from);
2861 /*
2862 * we charged both to->res and to->memsw, so we should
2863 * uncharge to->res.
2864 */
2865 if (!mem_cgroup_is_root(to))
2866 res_counter_uncharge(&to->res, PAGE_SIZE);
2867 }
2868 return 0;
2869 }
2870 return -EINVAL;
2871 }
2872 #else
2873 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2874 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2875 {
2876 return -EINVAL;
2877 }
2878 #endif
2879
2880 /*
2881 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2882 * page belongs to.
2883 */
2884 int mem_cgroup_prepare_migration(struct page *page,
2885 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
2886 {
2887 struct page_cgroup *pc;
2888 struct mem_cgroup *mem = NULL;
2889 enum charge_type ctype;
2890 int ret = 0;
2891
2892 *ptr = NULL;
2893
2894 VM_BUG_ON(PageTransHuge(page));
2895 if (mem_cgroup_disabled())
2896 return 0;
2897
2898 pc = lookup_page_cgroup(page);
2899 lock_page_cgroup(pc);
2900 if (PageCgroupUsed(pc)) {
2901 mem = pc->mem_cgroup;
2902 css_get(&mem->css);
2903 /*
2904 * At migrating an anonymous page, its mapcount goes down
2905 * to 0 and uncharge() will be called. But, even if it's fully
2906 * unmapped, migration may fail and this page has to be
2907 * charged again. We set MIGRATION flag here and delay uncharge
2908 * until end_migration() is called
2909 *
2910 * Corner Case Thinking
2911 * A)
2912 * When the old page was mapped as Anon and it's unmap-and-freed
2913 * while migration was ongoing.
2914 * If unmap finds the old page, uncharge() of it will be delayed
2915 * until end_migration(). If unmap finds a new page, it's
2916 * uncharged when it make mapcount to be 1->0. If unmap code
2917 * finds swap_migration_entry, the new page will not be mapped
2918 * and end_migration() will find it(mapcount==0).
2919 *
2920 * B)
2921 * When the old page was mapped but migraion fails, the kernel
2922 * remaps it. A charge for it is kept by MIGRATION flag even
2923 * if mapcount goes down to 0. We can do remap successfully
2924 * without charging it again.
2925 *
2926 * C)
2927 * The "old" page is under lock_page() until the end of
2928 * migration, so, the old page itself will not be swapped-out.
2929 * If the new page is swapped out before end_migraton, our
2930 * hook to usual swap-out path will catch the event.
2931 */
2932 if (PageAnon(page))
2933 SetPageCgroupMigration(pc);
2934 }
2935 unlock_page_cgroup(pc);
2936 /*
2937 * If the page is not charged at this point,
2938 * we return here.
2939 */
2940 if (!mem)
2941 return 0;
2942
2943 *ptr = mem;
2944 ret = __mem_cgroup_try_charge(NULL, gfp_mask, ptr, false, PAGE_SIZE);
2945 css_put(&mem->css);/* drop extra refcnt */
2946 if (ret || *ptr == NULL) {
2947 if (PageAnon(page)) {
2948 lock_page_cgroup(pc);
2949 ClearPageCgroupMigration(pc);
2950 unlock_page_cgroup(pc);
2951 /*
2952 * The old page may be fully unmapped while we kept it.
2953 */
2954 mem_cgroup_uncharge_page(page);
2955 }
2956 return -ENOMEM;
2957 }
2958 /*
2959 * We charge new page before it's used/mapped. So, even if unlock_page()
2960 * is called before end_migration, we can catch all events on this new
2961 * page. In the case new page is migrated but not remapped, new page's
2962 * mapcount will be finally 0 and we call uncharge in end_migration().
2963 */
2964 pc = lookup_page_cgroup(newpage);
2965 if (PageAnon(page))
2966 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2967 else if (page_is_file_cache(page))
2968 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2969 else
2970 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2971 __mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2972 return ret;
2973 }
2974
2975 /* remove redundant charge if migration failed*/
2976 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2977 struct page *oldpage, struct page *newpage, bool migration_ok)
2978 {
2979 struct page *used, *unused;
2980 struct page_cgroup *pc;
2981
2982 if (!mem)
2983 return;
2984 /* blocks rmdir() */
2985 cgroup_exclude_rmdir(&mem->css);
2986 if (!migration_ok) {
2987 used = oldpage;
2988 unused = newpage;
2989 } else {
2990 used = newpage;
2991 unused = oldpage;
2992 }
2993 /*
2994 * We disallowed uncharge of pages under migration because mapcount
2995 * of the page goes down to zero, temporarly.
2996 * Clear the flag and check the page should be charged.
2997 */
2998 pc = lookup_page_cgroup(oldpage);
2999 lock_page_cgroup(pc);
3000 ClearPageCgroupMigration(pc);
3001 unlock_page_cgroup(pc);
3002
3003 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3004
3005 /*
3006 * If a page is a file cache, radix-tree replacement is very atomic
3007 * and we can skip this check. When it was an Anon page, its mapcount
3008 * goes down to 0. But because we added MIGRATION flage, it's not
3009 * uncharged yet. There are several case but page->mapcount check
3010 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3011 * check. (see prepare_charge() also)
3012 */
3013 if (PageAnon(used))
3014 mem_cgroup_uncharge_page(used);
3015 /*
3016 * At migration, we may charge account against cgroup which has no
3017 * tasks.
3018 * So, rmdir()->pre_destroy() can be called while we do this charge.
3019 * In that case, we need to call pre_destroy() again. check it here.
3020 */
3021 cgroup_release_and_wakeup_rmdir(&mem->css);
3022 }
3023
3024 /*
3025 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3026 * Calling hierarchical_reclaim is not enough because we should update
3027 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3028 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3029 * not from the memcg which this page would be charged to.
3030 * try_charge_swapin does all of these works properly.
3031 */
3032 int mem_cgroup_shmem_charge_fallback(struct page *page,
3033 struct mm_struct *mm,
3034 gfp_t gfp_mask)
3035 {
3036 struct mem_cgroup *mem;
3037 int ret;
3038
3039 if (mem_cgroup_disabled())
3040 return 0;
3041
3042 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3043 if (!ret)
3044 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3045
3046 return ret;
3047 }
3048
3049 static DEFINE_MUTEX(set_limit_mutex);
3050
3051 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3052 unsigned long long val)
3053 {
3054 int retry_count;
3055 u64 memswlimit, memlimit;
3056 int ret = 0;
3057 int children = mem_cgroup_count_children(memcg);
3058 u64 curusage, oldusage;
3059 int enlarge;
3060
3061 /*
3062 * For keeping hierarchical_reclaim simple, how long we should retry
3063 * is depends on callers. We set our retry-count to be function
3064 * of # of children which we should visit in this loop.
3065 */
3066 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3067
3068 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3069
3070 enlarge = 0;
3071 while (retry_count) {
3072 if (signal_pending(current)) {
3073 ret = -EINTR;
3074 break;
3075 }
3076 /*
3077 * Rather than hide all in some function, I do this in
3078 * open coded manner. You see what this really does.
3079 * We have to guarantee mem->res.limit < mem->memsw.limit.
3080 */
3081 mutex_lock(&set_limit_mutex);
3082 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3083 if (memswlimit < val) {
3084 ret = -EINVAL;
3085 mutex_unlock(&set_limit_mutex);
3086 break;
3087 }
3088
3089 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3090 if (memlimit < val)
3091 enlarge = 1;
3092
3093 ret = res_counter_set_limit(&memcg->res, val);
3094 if (!ret) {
3095 if (memswlimit == val)
3096 memcg->memsw_is_minimum = true;
3097 else
3098 memcg->memsw_is_minimum = false;
3099 }
3100 mutex_unlock(&set_limit_mutex);
3101
3102 if (!ret)
3103 break;
3104
3105 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3106 MEM_CGROUP_RECLAIM_SHRINK);
3107 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3108 /* Usage is reduced ? */
3109 if (curusage >= oldusage)
3110 retry_count--;
3111 else
3112 oldusage = curusage;
3113 }
3114 if (!ret && enlarge)
3115 memcg_oom_recover(memcg);
3116
3117 return ret;
3118 }
3119
3120 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3121 unsigned long long val)
3122 {
3123 int retry_count;
3124 u64 memlimit, memswlimit, oldusage, curusage;
3125 int children = mem_cgroup_count_children(memcg);
3126 int ret = -EBUSY;
3127 int enlarge = 0;
3128
3129 /* see mem_cgroup_resize_res_limit */
3130 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3131 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3132 while (retry_count) {
3133 if (signal_pending(current)) {
3134 ret = -EINTR;
3135 break;
3136 }
3137 /*
3138 * Rather than hide all in some function, I do this in
3139 * open coded manner. You see what this really does.
3140 * We have to guarantee mem->res.limit < mem->memsw.limit.
3141 */
3142 mutex_lock(&set_limit_mutex);
3143 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3144 if (memlimit > val) {
3145 ret = -EINVAL;
3146 mutex_unlock(&set_limit_mutex);
3147 break;
3148 }
3149 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3150 if (memswlimit < val)
3151 enlarge = 1;
3152 ret = res_counter_set_limit(&memcg->memsw, val);
3153 if (!ret) {
3154 if (memlimit == val)
3155 memcg->memsw_is_minimum = true;
3156 else
3157 memcg->memsw_is_minimum = false;
3158 }
3159 mutex_unlock(&set_limit_mutex);
3160
3161 if (!ret)
3162 break;
3163
3164 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3165 MEM_CGROUP_RECLAIM_NOSWAP |
3166 MEM_CGROUP_RECLAIM_SHRINK);
3167 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3168 /* Usage is reduced ? */
3169 if (curusage >= oldusage)
3170 retry_count--;
3171 else
3172 oldusage = curusage;
3173 }
3174 if (!ret && enlarge)
3175 memcg_oom_recover(memcg);
3176 return ret;
3177 }
3178
3179 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3180 gfp_t gfp_mask)
3181 {
3182 unsigned long nr_reclaimed = 0;
3183 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3184 unsigned long reclaimed;
3185 int loop = 0;
3186 struct mem_cgroup_tree_per_zone *mctz;
3187 unsigned long long excess;
3188
3189 if (order > 0)
3190 return 0;
3191
3192 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3193 /*
3194 * This loop can run a while, specially if mem_cgroup's continuously
3195 * keep exceeding their soft limit and putting the system under
3196 * pressure
3197 */
3198 do {
3199 if (next_mz)
3200 mz = next_mz;
3201 else
3202 mz = mem_cgroup_largest_soft_limit_node(mctz);
3203 if (!mz)
3204 break;
3205
3206 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3207 gfp_mask,
3208 MEM_CGROUP_RECLAIM_SOFT);
3209 nr_reclaimed += reclaimed;
3210 spin_lock(&mctz->lock);
3211
3212 /*
3213 * If we failed to reclaim anything from this memory cgroup
3214 * it is time to move on to the next cgroup
3215 */
3216 next_mz = NULL;
3217 if (!reclaimed) {
3218 do {
3219 /*
3220 * Loop until we find yet another one.
3221 *
3222 * By the time we get the soft_limit lock
3223 * again, someone might have aded the
3224 * group back on the RB tree. Iterate to
3225 * make sure we get a different mem.
3226 * mem_cgroup_largest_soft_limit_node returns
3227 * NULL if no other cgroup is present on
3228 * the tree
3229 */
3230 next_mz =
3231 __mem_cgroup_largest_soft_limit_node(mctz);
3232 if (next_mz == mz) {
3233 css_put(&next_mz->mem->css);
3234 next_mz = NULL;
3235 } else /* next_mz == NULL or other memcg */
3236 break;
3237 } while (1);
3238 }
3239 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3240 excess = res_counter_soft_limit_excess(&mz->mem->res);
3241 /*
3242 * One school of thought says that we should not add
3243 * back the node to the tree if reclaim returns 0.
3244 * But our reclaim could return 0, simply because due
3245 * to priority we are exposing a smaller subset of
3246 * memory to reclaim from. Consider this as a longer
3247 * term TODO.
3248 */
3249 /* If excess == 0, no tree ops */
3250 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3251 spin_unlock(&mctz->lock);
3252 css_put(&mz->mem->css);
3253 loop++;
3254 /*
3255 * Could not reclaim anything and there are no more
3256 * mem cgroups to try or we seem to be looping without
3257 * reclaiming anything.
3258 */
3259 if (!nr_reclaimed &&
3260 (next_mz == NULL ||
3261 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3262 break;
3263 } while (!nr_reclaimed);
3264 if (next_mz)
3265 css_put(&next_mz->mem->css);
3266 return nr_reclaimed;
3267 }
3268
3269 /*
3270 * This routine traverse page_cgroup in given list and drop them all.
3271 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3272 */
3273 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3274 int node, int zid, enum lru_list lru)
3275 {
3276 struct zone *zone;
3277 struct mem_cgroup_per_zone *mz;
3278 struct page_cgroup *pc, *busy;
3279 unsigned long flags, loop;
3280 struct list_head *list;
3281 int ret = 0;
3282
3283 zone = &NODE_DATA(node)->node_zones[zid];
3284 mz = mem_cgroup_zoneinfo(mem, node, zid);
3285 list = &mz->lists[lru];
3286
3287 loop = MEM_CGROUP_ZSTAT(mz, lru);
3288 /* give some margin against EBUSY etc...*/
3289 loop += 256;
3290 busy = NULL;
3291 while (loop--) {
3292 ret = 0;
3293 spin_lock_irqsave(&zone->lru_lock, flags);
3294 if (list_empty(list)) {
3295 spin_unlock_irqrestore(&zone->lru_lock, flags);
3296 break;
3297 }
3298 pc = list_entry(list->prev, struct page_cgroup, lru);
3299 if (busy == pc) {
3300 list_move(&pc->lru, list);
3301 busy = NULL;
3302 spin_unlock_irqrestore(&zone->lru_lock, flags);
3303 continue;
3304 }
3305 spin_unlock_irqrestore(&zone->lru_lock, flags);
3306
3307 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3308 if (ret == -ENOMEM)
3309 break;
3310
3311 if (ret == -EBUSY || ret == -EINVAL) {
3312 /* found lock contention or "pc" is obsolete. */
3313 busy = pc;
3314 cond_resched();
3315 } else
3316 busy = NULL;
3317 }
3318
3319 if (!ret && !list_empty(list))
3320 return -EBUSY;
3321 return ret;
3322 }
3323
3324 /*
3325 * make mem_cgroup's charge to be 0 if there is no task.
3326 * This enables deleting this mem_cgroup.
3327 */
3328 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3329 {
3330 int ret;
3331 int node, zid, shrink;
3332 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3333 struct cgroup *cgrp = mem->css.cgroup;
3334
3335 css_get(&mem->css);
3336
3337 shrink = 0;
3338 /* should free all ? */
3339 if (free_all)
3340 goto try_to_free;
3341 move_account:
3342 do {
3343 ret = -EBUSY;
3344 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3345 goto out;
3346 ret = -EINTR;
3347 if (signal_pending(current))
3348 goto out;
3349 /* This is for making all *used* pages to be on LRU. */
3350 lru_add_drain_all();
3351 drain_all_stock_sync();
3352 ret = 0;
3353 mem_cgroup_start_move(mem);
3354 for_each_node_state(node, N_HIGH_MEMORY) {
3355 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3356 enum lru_list l;
3357 for_each_lru(l) {
3358 ret = mem_cgroup_force_empty_list(mem,
3359 node, zid, l);
3360 if (ret)
3361 break;
3362 }
3363 }
3364 if (ret)
3365 break;
3366 }
3367 mem_cgroup_end_move(mem);
3368 memcg_oom_recover(mem);
3369 /* it seems parent cgroup doesn't have enough mem */
3370 if (ret == -ENOMEM)
3371 goto try_to_free;
3372 cond_resched();
3373 /* "ret" should also be checked to ensure all lists are empty. */
3374 } while (mem->res.usage > 0 || ret);
3375 out:
3376 css_put(&mem->css);
3377 return ret;
3378
3379 try_to_free:
3380 /* returns EBUSY if there is a task or if we come here twice. */
3381 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3382 ret = -EBUSY;
3383 goto out;
3384 }
3385 /* we call try-to-free pages for make this cgroup empty */
3386 lru_add_drain_all();
3387 /* try to free all pages in this cgroup */
3388 shrink = 1;
3389 while (nr_retries && mem->res.usage > 0) {
3390 int progress;
3391
3392 if (signal_pending(current)) {
3393 ret = -EINTR;
3394 goto out;
3395 }
3396 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3397 false, get_swappiness(mem));
3398 if (!progress) {
3399 nr_retries--;
3400 /* maybe some writeback is necessary */
3401 congestion_wait(BLK_RW_ASYNC, HZ/10);
3402 }
3403
3404 }
3405 lru_add_drain();
3406 /* try move_account...there may be some *locked* pages. */
3407 goto move_account;
3408 }
3409
3410 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3411 {
3412 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3413 }
3414
3415
3416 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3417 {
3418 return mem_cgroup_from_cont(cont)->use_hierarchy;
3419 }
3420
3421 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3422 u64 val)
3423 {
3424 int retval = 0;
3425 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3426 struct cgroup *parent = cont->parent;
3427 struct mem_cgroup *parent_mem = NULL;
3428
3429 if (parent)
3430 parent_mem = mem_cgroup_from_cont(parent);
3431
3432 cgroup_lock();
3433 /*
3434 * If parent's use_hierarchy is set, we can't make any modifications
3435 * in the child subtrees. If it is unset, then the change can
3436 * occur, provided the current cgroup has no children.
3437 *
3438 * For the root cgroup, parent_mem is NULL, we allow value to be
3439 * set if there are no children.
3440 */
3441 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3442 (val == 1 || val == 0)) {
3443 if (list_empty(&cont->children))
3444 mem->use_hierarchy = val;
3445 else
3446 retval = -EBUSY;
3447 } else
3448 retval = -EINVAL;
3449 cgroup_unlock();
3450
3451 return retval;
3452 }
3453
3454
3455 static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3456 enum mem_cgroup_stat_index idx)
3457 {
3458 struct mem_cgroup *iter;
3459 s64 val = 0;
3460
3461 /* each per cpu's value can be minus.Then, use s64 */
3462 for_each_mem_cgroup_tree(iter, mem)
3463 val += mem_cgroup_read_stat(iter, idx);
3464
3465 if (val < 0) /* race ? */
3466 val = 0;
3467 return val;
3468 }
3469
3470 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3471 {
3472 u64 val;
3473
3474 if (!mem_cgroup_is_root(mem)) {
3475 if (!swap)
3476 return res_counter_read_u64(&mem->res, RES_USAGE);
3477 else
3478 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3479 }
3480
3481 val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3482 val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3483
3484 if (swap)
3485 val += mem_cgroup_get_recursive_idx_stat(mem,
3486 MEM_CGROUP_STAT_SWAPOUT);
3487
3488 return val << PAGE_SHIFT;
3489 }
3490
3491 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3492 {
3493 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3494 u64 val;
3495 int type, name;
3496
3497 type = MEMFILE_TYPE(cft->private);
3498 name = MEMFILE_ATTR(cft->private);
3499 switch (type) {
3500 case _MEM:
3501 if (name == RES_USAGE)
3502 val = mem_cgroup_usage(mem, false);
3503 else
3504 val = res_counter_read_u64(&mem->res, name);
3505 break;
3506 case _MEMSWAP:
3507 if (name == RES_USAGE)
3508 val = mem_cgroup_usage(mem, true);
3509 else
3510 val = res_counter_read_u64(&mem->memsw, name);
3511 break;
3512 default:
3513 BUG();
3514 break;
3515 }
3516 return val;
3517 }
3518 /*
3519 * The user of this function is...
3520 * RES_LIMIT.
3521 */
3522 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3523 const char *buffer)
3524 {
3525 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3526 int type, name;
3527 unsigned long long val;
3528 int ret;
3529
3530 type = MEMFILE_TYPE(cft->private);
3531 name = MEMFILE_ATTR(cft->private);
3532 switch (name) {
3533 case RES_LIMIT:
3534 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3535 ret = -EINVAL;
3536 break;
3537 }
3538 /* This function does all necessary parse...reuse it */
3539 ret = res_counter_memparse_write_strategy(buffer, &val);
3540 if (ret)
3541 break;
3542 if (type == _MEM)
3543 ret = mem_cgroup_resize_limit(memcg, val);
3544 else
3545 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3546 break;
3547 case RES_SOFT_LIMIT:
3548 ret = res_counter_memparse_write_strategy(buffer, &val);
3549 if (ret)
3550 break;
3551 /*
3552 * For memsw, soft limits are hard to implement in terms
3553 * of semantics, for now, we support soft limits for
3554 * control without swap
3555 */
3556 if (type == _MEM)
3557 ret = res_counter_set_soft_limit(&memcg->res, val);
3558 else
3559 ret = -EINVAL;
3560 break;
3561 default:
3562 ret = -EINVAL; /* should be BUG() ? */
3563 break;
3564 }
3565 return ret;
3566 }
3567
3568 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3569 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3570 {
3571 struct cgroup *cgroup;
3572 unsigned long long min_limit, min_memsw_limit, tmp;
3573
3574 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3575 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3576 cgroup = memcg->css.cgroup;
3577 if (!memcg->use_hierarchy)
3578 goto out;
3579
3580 while (cgroup->parent) {
3581 cgroup = cgroup->parent;
3582 memcg = mem_cgroup_from_cont(cgroup);
3583 if (!memcg->use_hierarchy)
3584 break;
3585 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3586 min_limit = min(min_limit, tmp);
3587 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3588 min_memsw_limit = min(min_memsw_limit, tmp);
3589 }
3590 out:
3591 *mem_limit = min_limit;
3592 *memsw_limit = min_memsw_limit;
3593 return;
3594 }
3595
3596 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3597 {
3598 struct mem_cgroup *mem;
3599 int type, name;
3600
3601 mem = mem_cgroup_from_cont(cont);
3602 type = MEMFILE_TYPE(event);
3603 name = MEMFILE_ATTR(event);
3604 switch (name) {
3605 case RES_MAX_USAGE:
3606 if (type == _MEM)
3607 res_counter_reset_max(&mem->res);
3608 else
3609 res_counter_reset_max(&mem->memsw);
3610 break;
3611 case RES_FAILCNT:
3612 if (type == _MEM)
3613 res_counter_reset_failcnt(&mem->res);
3614 else
3615 res_counter_reset_failcnt(&mem->memsw);
3616 break;
3617 }
3618
3619 return 0;
3620 }
3621
3622 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3623 struct cftype *cft)
3624 {
3625 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3626 }
3627
3628 #ifdef CONFIG_MMU
3629 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3630 struct cftype *cft, u64 val)
3631 {
3632 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3633
3634 if (val >= (1 << NR_MOVE_TYPE))
3635 return -EINVAL;
3636 /*
3637 * We check this value several times in both in can_attach() and
3638 * attach(), so we need cgroup lock to prevent this value from being
3639 * inconsistent.
3640 */
3641 cgroup_lock();
3642 mem->move_charge_at_immigrate = val;
3643 cgroup_unlock();
3644
3645 return 0;
3646 }
3647 #else
3648 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3649 struct cftype *cft, u64 val)
3650 {
3651 return -ENOSYS;
3652 }
3653 #endif
3654
3655
3656 /* For read statistics */
3657 enum {
3658 MCS_CACHE,
3659 MCS_RSS,
3660 MCS_FILE_MAPPED,
3661 MCS_PGPGIN,
3662 MCS_PGPGOUT,
3663 MCS_SWAP,
3664 MCS_INACTIVE_ANON,
3665 MCS_ACTIVE_ANON,
3666 MCS_INACTIVE_FILE,
3667 MCS_ACTIVE_FILE,
3668 MCS_UNEVICTABLE,
3669 NR_MCS_STAT,
3670 };
3671
3672 struct mcs_total_stat {
3673 s64 stat[NR_MCS_STAT];
3674 };
3675
3676 struct {
3677 char *local_name;
3678 char *total_name;
3679 } memcg_stat_strings[NR_MCS_STAT] = {
3680 {"cache", "total_cache"},
3681 {"rss", "total_rss"},
3682 {"mapped_file", "total_mapped_file"},
3683 {"pgpgin", "total_pgpgin"},
3684 {"pgpgout", "total_pgpgout"},
3685 {"swap", "total_swap"},
3686 {"inactive_anon", "total_inactive_anon"},
3687 {"active_anon", "total_active_anon"},
3688 {"inactive_file", "total_inactive_file"},
3689 {"active_file", "total_active_file"},
3690 {"unevictable", "total_unevictable"}
3691 };
3692
3693
3694 static void
3695 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3696 {
3697 s64 val;
3698
3699 /* per cpu stat */
3700 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3701 s->stat[MCS_CACHE] += val * PAGE_SIZE;
3702 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3703 s->stat[MCS_RSS] += val * PAGE_SIZE;
3704 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3705 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3706 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3707 s->stat[MCS_PGPGIN] += val;
3708 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3709 s->stat[MCS_PGPGOUT] += val;
3710 if (do_swap_account) {
3711 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3712 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3713 }
3714
3715 /* per zone stat */
3716 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3717 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3718 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3719 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3720 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3721 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3722 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3723 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3724 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3725 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3726 }
3727
3728 static void
3729 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3730 {
3731 struct mem_cgroup *iter;
3732
3733 for_each_mem_cgroup_tree(iter, mem)
3734 mem_cgroup_get_local_stat(iter, s);
3735 }
3736
3737 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3738 struct cgroup_map_cb *cb)
3739 {
3740 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3741 struct mcs_total_stat mystat;
3742 int i;
3743
3744 memset(&mystat, 0, sizeof(mystat));
3745 mem_cgroup_get_local_stat(mem_cont, &mystat);
3746
3747 for (i = 0; i < NR_MCS_STAT; i++) {
3748 if (i == MCS_SWAP && !do_swap_account)
3749 continue;
3750 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3751 }
3752
3753 /* Hierarchical information */
3754 {
3755 unsigned long long limit, memsw_limit;
3756 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3757 cb->fill(cb, "hierarchical_memory_limit", limit);
3758 if (do_swap_account)
3759 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3760 }
3761
3762 memset(&mystat, 0, sizeof(mystat));
3763 mem_cgroup_get_total_stat(mem_cont, &mystat);
3764 for (i = 0; i < NR_MCS_STAT; i++) {
3765 if (i == MCS_SWAP && !do_swap_account)
3766 continue;
3767 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3768 }
3769
3770 #ifdef CONFIG_DEBUG_VM
3771 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3772
3773 {
3774 int nid, zid;
3775 struct mem_cgroup_per_zone *mz;
3776 unsigned long recent_rotated[2] = {0, 0};
3777 unsigned long recent_scanned[2] = {0, 0};
3778
3779 for_each_online_node(nid)
3780 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3781 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3782
3783 recent_rotated[0] +=
3784 mz->reclaim_stat.recent_rotated[0];
3785 recent_rotated[1] +=
3786 mz->reclaim_stat.recent_rotated[1];
3787 recent_scanned[0] +=
3788 mz->reclaim_stat.recent_scanned[0];
3789 recent_scanned[1] +=
3790 mz->reclaim_stat.recent_scanned[1];
3791 }
3792 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3793 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3794 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3795 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3796 }
3797 #endif
3798
3799 return 0;
3800 }
3801
3802 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3803 {
3804 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3805
3806 return get_swappiness(memcg);
3807 }
3808
3809 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3810 u64 val)
3811 {
3812 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3813 struct mem_cgroup *parent;
3814
3815 if (val > 100)
3816 return -EINVAL;
3817
3818 if (cgrp->parent == NULL)
3819 return -EINVAL;
3820
3821 parent = mem_cgroup_from_cont(cgrp->parent);
3822
3823 cgroup_lock();
3824
3825 /* If under hierarchy, only empty-root can set this value */
3826 if ((parent->use_hierarchy) ||
3827 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3828 cgroup_unlock();
3829 return -EINVAL;
3830 }
3831
3832 spin_lock(&memcg->reclaim_param_lock);
3833 memcg->swappiness = val;
3834 spin_unlock(&memcg->reclaim_param_lock);
3835
3836 cgroup_unlock();
3837
3838 return 0;
3839 }
3840
3841 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3842 {
3843 struct mem_cgroup_threshold_ary *t;
3844 u64 usage;
3845 int i;
3846
3847 rcu_read_lock();
3848 if (!swap)
3849 t = rcu_dereference(memcg->thresholds.primary);
3850 else
3851 t = rcu_dereference(memcg->memsw_thresholds.primary);
3852
3853 if (!t)
3854 goto unlock;
3855
3856 usage = mem_cgroup_usage(memcg, swap);
3857
3858 /*
3859 * current_threshold points to threshold just below usage.
3860 * If it's not true, a threshold was crossed after last
3861 * call of __mem_cgroup_threshold().
3862 */
3863 i = t->current_threshold;
3864
3865 /*
3866 * Iterate backward over array of thresholds starting from
3867 * current_threshold and check if a threshold is crossed.
3868 * If none of thresholds below usage is crossed, we read
3869 * only one element of the array here.
3870 */
3871 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3872 eventfd_signal(t->entries[i].eventfd, 1);
3873
3874 /* i = current_threshold + 1 */
3875 i++;
3876
3877 /*
3878 * Iterate forward over array of thresholds starting from
3879 * current_threshold+1 and check if a threshold is crossed.
3880 * If none of thresholds above usage is crossed, we read
3881 * only one element of the array here.
3882 */
3883 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3884 eventfd_signal(t->entries[i].eventfd, 1);
3885
3886 /* Update current_threshold */
3887 t->current_threshold = i - 1;
3888 unlock:
3889 rcu_read_unlock();
3890 }
3891
3892 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3893 {
3894 while (memcg) {
3895 __mem_cgroup_threshold(memcg, false);
3896 if (do_swap_account)
3897 __mem_cgroup_threshold(memcg, true);
3898
3899 memcg = parent_mem_cgroup(memcg);
3900 }
3901 }
3902
3903 static int compare_thresholds(const void *a, const void *b)
3904 {
3905 const struct mem_cgroup_threshold *_a = a;
3906 const struct mem_cgroup_threshold *_b = b;
3907
3908 return _a->threshold - _b->threshold;
3909 }
3910
3911 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3912 {
3913 struct mem_cgroup_eventfd_list *ev;
3914
3915 list_for_each_entry(ev, &mem->oom_notify, list)
3916 eventfd_signal(ev->eventfd, 1);
3917 return 0;
3918 }
3919
3920 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3921 {
3922 struct mem_cgroup *iter;
3923
3924 for_each_mem_cgroup_tree(iter, mem)
3925 mem_cgroup_oom_notify_cb(iter);
3926 }
3927
3928 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3929 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3930 {
3931 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3932 struct mem_cgroup_thresholds *thresholds;
3933 struct mem_cgroup_threshold_ary *new;
3934 int type = MEMFILE_TYPE(cft->private);
3935 u64 threshold, usage;
3936 int i, size, ret;
3937
3938 ret = res_counter_memparse_write_strategy(args, &threshold);
3939 if (ret)
3940 return ret;
3941
3942 mutex_lock(&memcg->thresholds_lock);
3943
3944 if (type == _MEM)
3945 thresholds = &memcg->thresholds;
3946 else if (type == _MEMSWAP)
3947 thresholds = &memcg->memsw_thresholds;
3948 else
3949 BUG();
3950
3951 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3952
3953 /* Check if a threshold crossed before adding a new one */
3954 if (thresholds->primary)
3955 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3956
3957 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3958
3959 /* Allocate memory for new array of thresholds */
3960 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3961 GFP_KERNEL);
3962 if (!new) {
3963 ret = -ENOMEM;
3964 goto unlock;
3965 }
3966 new->size = size;
3967
3968 /* Copy thresholds (if any) to new array */
3969 if (thresholds->primary) {
3970 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3971 sizeof(struct mem_cgroup_threshold));
3972 }
3973
3974 /* Add new threshold */
3975 new->entries[size - 1].eventfd = eventfd;
3976 new->entries[size - 1].threshold = threshold;
3977
3978 /* Sort thresholds. Registering of new threshold isn't time-critical */
3979 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3980 compare_thresholds, NULL);
3981
3982 /* Find current threshold */
3983 new->current_threshold = -1;
3984 for (i = 0; i < size; i++) {
3985 if (new->entries[i].threshold < usage) {
3986 /*
3987 * new->current_threshold will not be used until
3988 * rcu_assign_pointer(), so it's safe to increment
3989 * it here.
3990 */
3991 ++new->current_threshold;
3992 }
3993 }
3994
3995 /* Free old spare buffer and save old primary buffer as spare */
3996 kfree(thresholds->spare);
3997 thresholds->spare = thresholds->primary;
3998
3999 rcu_assign_pointer(thresholds->primary, new);
4000
4001 /* To be sure that nobody uses thresholds */
4002 synchronize_rcu();
4003
4004 unlock:
4005 mutex_unlock(&memcg->thresholds_lock);
4006
4007 return ret;
4008 }
4009
4010 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4011 struct cftype *cft, struct eventfd_ctx *eventfd)
4012 {
4013 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4014 struct mem_cgroup_thresholds *thresholds;
4015 struct mem_cgroup_threshold_ary *new;
4016 int type = MEMFILE_TYPE(cft->private);
4017 u64 usage;
4018 int i, j, size;
4019
4020 mutex_lock(&memcg->thresholds_lock);
4021 if (type == _MEM)
4022 thresholds = &memcg->thresholds;
4023 else if (type == _MEMSWAP)
4024 thresholds = &memcg->memsw_thresholds;
4025 else
4026 BUG();
4027
4028 /*
4029 * Something went wrong if we trying to unregister a threshold
4030 * if we don't have thresholds
4031 */
4032 BUG_ON(!thresholds);
4033
4034 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4035
4036 /* Check if a threshold crossed before removing */
4037 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4038
4039 /* Calculate new number of threshold */
4040 size = 0;
4041 for (i = 0; i < thresholds->primary->size; i++) {
4042 if (thresholds->primary->entries[i].eventfd != eventfd)
4043 size++;
4044 }
4045
4046 new = thresholds->spare;
4047
4048 /* Set thresholds array to NULL if we don't have thresholds */
4049 if (!size) {
4050 kfree(new);
4051 new = NULL;
4052 goto swap_buffers;
4053 }
4054
4055 new->size = size;
4056
4057 /* Copy thresholds and find current threshold */
4058 new->current_threshold = -1;
4059 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4060 if (thresholds->primary->entries[i].eventfd == eventfd)
4061 continue;
4062
4063 new->entries[j] = thresholds->primary->entries[i];
4064 if (new->entries[j].threshold < usage) {
4065 /*
4066 * new->current_threshold will not be used
4067 * until rcu_assign_pointer(), so it's safe to increment
4068 * it here.
4069 */
4070 ++new->current_threshold;
4071 }
4072 j++;
4073 }
4074
4075 swap_buffers:
4076 /* Swap primary and spare array */
4077 thresholds->spare = thresholds->primary;
4078 rcu_assign_pointer(thresholds->primary, new);
4079
4080 /* To be sure that nobody uses thresholds */
4081 synchronize_rcu();
4082
4083 mutex_unlock(&memcg->thresholds_lock);
4084 }
4085
4086 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4087 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4088 {
4089 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4090 struct mem_cgroup_eventfd_list *event;
4091 int type = MEMFILE_TYPE(cft->private);
4092
4093 BUG_ON(type != _OOM_TYPE);
4094 event = kmalloc(sizeof(*event), GFP_KERNEL);
4095 if (!event)
4096 return -ENOMEM;
4097
4098 mutex_lock(&memcg_oom_mutex);
4099
4100 event->eventfd = eventfd;
4101 list_add(&event->list, &memcg->oom_notify);
4102
4103 /* already in OOM ? */
4104 if (atomic_read(&memcg->oom_lock))
4105 eventfd_signal(eventfd, 1);
4106 mutex_unlock(&memcg_oom_mutex);
4107
4108 return 0;
4109 }
4110
4111 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4112 struct cftype *cft, struct eventfd_ctx *eventfd)
4113 {
4114 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4115 struct mem_cgroup_eventfd_list *ev, *tmp;
4116 int type = MEMFILE_TYPE(cft->private);
4117
4118 BUG_ON(type != _OOM_TYPE);
4119
4120 mutex_lock(&memcg_oom_mutex);
4121
4122 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4123 if (ev->eventfd == eventfd) {
4124 list_del(&ev->list);
4125 kfree(ev);
4126 }
4127 }
4128
4129 mutex_unlock(&memcg_oom_mutex);
4130 }
4131
4132 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4133 struct cftype *cft, struct cgroup_map_cb *cb)
4134 {
4135 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4136
4137 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4138
4139 if (atomic_read(&mem->oom_lock))
4140 cb->fill(cb, "under_oom", 1);
4141 else
4142 cb->fill(cb, "under_oom", 0);
4143 return 0;
4144 }
4145
4146 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4147 struct cftype *cft, u64 val)
4148 {
4149 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4150 struct mem_cgroup *parent;
4151
4152 /* cannot set to root cgroup and only 0 and 1 are allowed */
4153 if (!cgrp->parent || !((val == 0) || (val == 1)))
4154 return -EINVAL;
4155
4156 parent = mem_cgroup_from_cont(cgrp->parent);
4157
4158 cgroup_lock();
4159 /* oom-kill-disable is a flag for subhierarchy. */
4160 if ((parent->use_hierarchy) ||
4161 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4162 cgroup_unlock();
4163 return -EINVAL;
4164 }
4165 mem->oom_kill_disable = val;
4166 if (!val)
4167 memcg_oom_recover(mem);
4168 cgroup_unlock();
4169 return 0;
4170 }
4171
4172 static struct cftype mem_cgroup_files[] = {
4173 {
4174 .name = "usage_in_bytes",
4175 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4176 .read_u64 = mem_cgroup_read,
4177 .register_event = mem_cgroup_usage_register_event,
4178 .unregister_event = mem_cgroup_usage_unregister_event,
4179 },
4180 {
4181 .name = "max_usage_in_bytes",
4182 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4183 .trigger = mem_cgroup_reset,
4184 .read_u64 = mem_cgroup_read,
4185 },
4186 {
4187 .name = "limit_in_bytes",
4188 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4189 .write_string = mem_cgroup_write,
4190 .read_u64 = mem_cgroup_read,
4191 },
4192 {
4193 .name = "soft_limit_in_bytes",
4194 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4195 .write_string = mem_cgroup_write,
4196 .read_u64 = mem_cgroup_read,
4197 },
4198 {
4199 .name = "failcnt",
4200 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4201 .trigger = mem_cgroup_reset,
4202 .read_u64 = mem_cgroup_read,
4203 },
4204 {
4205 .name = "stat",
4206 .read_map = mem_control_stat_show,
4207 },
4208 {
4209 .name = "force_empty",
4210 .trigger = mem_cgroup_force_empty_write,
4211 },
4212 {
4213 .name = "use_hierarchy",
4214 .write_u64 = mem_cgroup_hierarchy_write,
4215 .read_u64 = mem_cgroup_hierarchy_read,
4216 },
4217 {
4218 .name = "swappiness",
4219 .read_u64 = mem_cgroup_swappiness_read,
4220 .write_u64 = mem_cgroup_swappiness_write,
4221 },
4222 {
4223 .name = "move_charge_at_immigrate",
4224 .read_u64 = mem_cgroup_move_charge_read,
4225 .write_u64 = mem_cgroup_move_charge_write,
4226 },
4227 {
4228 .name = "oom_control",
4229 .read_map = mem_cgroup_oom_control_read,
4230 .write_u64 = mem_cgroup_oom_control_write,
4231 .register_event = mem_cgroup_oom_register_event,
4232 .unregister_event = mem_cgroup_oom_unregister_event,
4233 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4234 },
4235 };
4236
4237 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4238 static struct cftype memsw_cgroup_files[] = {
4239 {
4240 .name = "memsw.usage_in_bytes",
4241 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4242 .read_u64 = mem_cgroup_read,
4243 .register_event = mem_cgroup_usage_register_event,
4244 .unregister_event = mem_cgroup_usage_unregister_event,
4245 },
4246 {
4247 .name = "memsw.max_usage_in_bytes",
4248 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4249 .trigger = mem_cgroup_reset,
4250 .read_u64 = mem_cgroup_read,
4251 },
4252 {
4253 .name = "memsw.limit_in_bytes",
4254 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4255 .write_string = mem_cgroup_write,
4256 .read_u64 = mem_cgroup_read,
4257 },
4258 {
4259 .name = "memsw.failcnt",
4260 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4261 .trigger = mem_cgroup_reset,
4262 .read_u64 = mem_cgroup_read,
4263 },
4264 };
4265
4266 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4267 {
4268 if (!do_swap_account)
4269 return 0;
4270 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4271 ARRAY_SIZE(memsw_cgroup_files));
4272 };
4273 #else
4274 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4275 {
4276 return 0;
4277 }
4278 #endif
4279
4280 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4281 {
4282 struct mem_cgroup_per_node *pn;
4283 struct mem_cgroup_per_zone *mz;
4284 enum lru_list l;
4285 int zone, tmp = node;
4286 /*
4287 * This routine is called against possible nodes.
4288 * But it's BUG to call kmalloc() against offline node.
4289 *
4290 * TODO: this routine can waste much memory for nodes which will
4291 * never be onlined. It's better to use memory hotplug callback
4292 * function.
4293 */
4294 if (!node_state(node, N_NORMAL_MEMORY))
4295 tmp = -1;
4296 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4297 if (!pn)
4298 return 1;
4299
4300 mem->info.nodeinfo[node] = pn;
4301 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4302 mz = &pn->zoneinfo[zone];
4303 for_each_lru(l)
4304 INIT_LIST_HEAD(&mz->lists[l]);
4305 mz->usage_in_excess = 0;
4306 mz->on_tree = false;
4307 mz->mem = mem;
4308 }
4309 return 0;
4310 }
4311
4312 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4313 {
4314 kfree(mem->info.nodeinfo[node]);
4315 }
4316
4317 static struct mem_cgroup *mem_cgroup_alloc(void)
4318 {
4319 struct mem_cgroup *mem;
4320 int size = sizeof(struct mem_cgroup);
4321
4322 /* Can be very big if MAX_NUMNODES is very big */
4323 if (size < PAGE_SIZE)
4324 mem = kzalloc(size, GFP_KERNEL);
4325 else
4326 mem = vzalloc(size);
4327
4328 if (!mem)
4329 return NULL;
4330
4331 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4332 if (!mem->stat)
4333 goto out_free;
4334 spin_lock_init(&mem->pcp_counter_lock);
4335 return mem;
4336
4337 out_free:
4338 if (size < PAGE_SIZE)
4339 kfree(mem);
4340 else
4341 vfree(mem);
4342 return NULL;
4343 }
4344
4345 /*
4346 * At destroying mem_cgroup, references from swap_cgroup can remain.
4347 * (scanning all at force_empty is too costly...)
4348 *
4349 * Instead of clearing all references at force_empty, we remember
4350 * the number of reference from swap_cgroup and free mem_cgroup when
4351 * it goes down to 0.
4352 *
4353 * Removal of cgroup itself succeeds regardless of refs from swap.
4354 */
4355
4356 static void __mem_cgroup_free(struct mem_cgroup *mem)
4357 {
4358 int node;
4359
4360 mem_cgroup_remove_from_trees(mem);
4361 free_css_id(&mem_cgroup_subsys, &mem->css);
4362
4363 for_each_node_state(node, N_POSSIBLE)
4364 free_mem_cgroup_per_zone_info(mem, node);
4365
4366 free_percpu(mem->stat);
4367 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4368 kfree(mem);
4369 else
4370 vfree(mem);
4371 }
4372
4373 static void mem_cgroup_get(struct mem_cgroup *mem)
4374 {
4375 atomic_inc(&mem->refcnt);
4376 }
4377
4378 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4379 {
4380 if (atomic_sub_and_test(count, &mem->refcnt)) {
4381 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4382 __mem_cgroup_free(mem);
4383 if (parent)
4384 mem_cgroup_put(parent);
4385 }
4386 }
4387
4388 static void mem_cgroup_put(struct mem_cgroup *mem)
4389 {
4390 __mem_cgroup_put(mem, 1);
4391 }
4392
4393 /*
4394 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4395 */
4396 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4397 {
4398 if (!mem->res.parent)
4399 return NULL;
4400 return mem_cgroup_from_res_counter(mem->res.parent, res);
4401 }
4402
4403 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4404 static void __init enable_swap_cgroup(void)
4405 {
4406 if (!mem_cgroup_disabled() && really_do_swap_account)
4407 do_swap_account = 1;
4408 }
4409 #else
4410 static void __init enable_swap_cgroup(void)
4411 {
4412 }
4413 #endif
4414
4415 static int mem_cgroup_soft_limit_tree_init(void)
4416 {
4417 struct mem_cgroup_tree_per_node *rtpn;
4418 struct mem_cgroup_tree_per_zone *rtpz;
4419 int tmp, node, zone;
4420
4421 for_each_node_state(node, N_POSSIBLE) {
4422 tmp = node;
4423 if (!node_state(node, N_NORMAL_MEMORY))
4424 tmp = -1;
4425 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4426 if (!rtpn)
4427 return 1;
4428
4429 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4430
4431 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4432 rtpz = &rtpn->rb_tree_per_zone[zone];
4433 rtpz->rb_root = RB_ROOT;
4434 spin_lock_init(&rtpz->lock);
4435 }
4436 }
4437 return 0;
4438 }
4439
4440 static struct cgroup_subsys_state * __ref
4441 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4442 {
4443 struct mem_cgroup *mem, *parent;
4444 long error = -ENOMEM;
4445 int node;
4446
4447 mem = mem_cgroup_alloc();
4448 if (!mem)
4449 return ERR_PTR(error);
4450
4451 for_each_node_state(node, N_POSSIBLE)
4452 if (alloc_mem_cgroup_per_zone_info(mem, node))
4453 goto free_out;
4454
4455 /* root ? */
4456 if (cont->parent == NULL) {
4457 int cpu;
4458 enable_swap_cgroup();
4459 parent = NULL;
4460 root_mem_cgroup = mem;
4461 if (mem_cgroup_soft_limit_tree_init())
4462 goto free_out;
4463 for_each_possible_cpu(cpu) {
4464 struct memcg_stock_pcp *stock =
4465 &per_cpu(memcg_stock, cpu);
4466 INIT_WORK(&stock->work, drain_local_stock);
4467 }
4468 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4469 } else {
4470 parent = mem_cgroup_from_cont(cont->parent);
4471 mem->use_hierarchy = parent->use_hierarchy;
4472 mem->oom_kill_disable = parent->oom_kill_disable;
4473 }
4474
4475 if (parent && parent->use_hierarchy) {
4476 res_counter_init(&mem->res, &parent->res);
4477 res_counter_init(&mem->memsw, &parent->memsw);
4478 /*
4479 * We increment refcnt of the parent to ensure that we can
4480 * safely access it on res_counter_charge/uncharge.
4481 * This refcnt will be decremented when freeing this
4482 * mem_cgroup(see mem_cgroup_put).
4483 */
4484 mem_cgroup_get(parent);
4485 } else {
4486 res_counter_init(&mem->res, NULL);
4487 res_counter_init(&mem->memsw, NULL);
4488 }
4489 mem->last_scanned_child = 0;
4490 spin_lock_init(&mem->reclaim_param_lock);
4491 INIT_LIST_HEAD(&mem->oom_notify);
4492
4493 if (parent)
4494 mem->swappiness = get_swappiness(parent);
4495 atomic_set(&mem->refcnt, 1);
4496 mem->move_charge_at_immigrate = 0;
4497 mutex_init(&mem->thresholds_lock);
4498 return &mem->css;
4499 free_out:
4500 __mem_cgroup_free(mem);
4501 root_mem_cgroup = NULL;
4502 return ERR_PTR(error);
4503 }
4504
4505 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4506 struct cgroup *cont)
4507 {
4508 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4509
4510 return mem_cgroup_force_empty(mem, false);
4511 }
4512
4513 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4514 struct cgroup *cont)
4515 {
4516 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4517
4518 mem_cgroup_put(mem);
4519 }
4520
4521 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4522 struct cgroup *cont)
4523 {
4524 int ret;
4525
4526 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4527 ARRAY_SIZE(mem_cgroup_files));
4528
4529 if (!ret)
4530 ret = register_memsw_files(cont, ss);
4531 return ret;
4532 }
4533
4534 #ifdef CONFIG_MMU
4535 /* Handlers for move charge at task migration. */
4536 #define PRECHARGE_COUNT_AT_ONCE 256
4537 static int mem_cgroup_do_precharge(unsigned long count)
4538 {
4539 int ret = 0;
4540 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4541 struct mem_cgroup *mem = mc.to;
4542
4543 if (mem_cgroup_is_root(mem)) {
4544 mc.precharge += count;
4545 /* we don't need css_get for root */
4546 return ret;
4547 }
4548 /* try to charge at once */
4549 if (count > 1) {
4550 struct res_counter *dummy;
4551 /*
4552 * "mem" cannot be under rmdir() because we've already checked
4553 * by cgroup_lock_live_cgroup() that it is not removed and we
4554 * are still under the same cgroup_mutex. So we can postpone
4555 * css_get().
4556 */
4557 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4558 goto one_by_one;
4559 if (do_swap_account && res_counter_charge(&mem->memsw,
4560 PAGE_SIZE * count, &dummy)) {
4561 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4562 goto one_by_one;
4563 }
4564 mc.precharge += count;
4565 return ret;
4566 }
4567 one_by_one:
4568 /* fall back to one by one charge */
4569 while (count--) {
4570 if (signal_pending(current)) {
4571 ret = -EINTR;
4572 break;
4573 }
4574 if (!batch_count--) {
4575 batch_count = PRECHARGE_COUNT_AT_ONCE;
4576 cond_resched();
4577 }
4578 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4579 PAGE_SIZE);
4580 if (ret || !mem)
4581 /* mem_cgroup_clear_mc() will do uncharge later */
4582 return -ENOMEM;
4583 mc.precharge++;
4584 }
4585 return ret;
4586 }
4587
4588 /**
4589 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4590 * @vma: the vma the pte to be checked belongs
4591 * @addr: the address corresponding to the pte to be checked
4592 * @ptent: the pte to be checked
4593 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4594 *
4595 * Returns
4596 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4597 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4598 * move charge. if @target is not NULL, the page is stored in target->page
4599 * with extra refcnt got(Callers should handle it).
4600 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4601 * target for charge migration. if @target is not NULL, the entry is stored
4602 * in target->ent.
4603 *
4604 * Called with pte lock held.
4605 */
4606 union mc_target {
4607 struct page *page;
4608 swp_entry_t ent;
4609 };
4610
4611 enum mc_target_type {
4612 MC_TARGET_NONE, /* not used */
4613 MC_TARGET_PAGE,
4614 MC_TARGET_SWAP,
4615 };
4616
4617 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4618 unsigned long addr, pte_t ptent)
4619 {
4620 struct page *page = vm_normal_page(vma, addr, ptent);
4621
4622 if (!page || !page_mapped(page))
4623 return NULL;
4624 if (PageAnon(page)) {
4625 /* we don't move shared anon */
4626 if (!move_anon() || page_mapcount(page) > 2)
4627 return NULL;
4628 } else if (!move_file())
4629 /* we ignore mapcount for file pages */
4630 return NULL;
4631 if (!get_page_unless_zero(page))
4632 return NULL;
4633
4634 return page;
4635 }
4636
4637 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4638 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4639 {
4640 int usage_count;
4641 struct page *page = NULL;
4642 swp_entry_t ent = pte_to_swp_entry(ptent);
4643
4644 if (!move_anon() || non_swap_entry(ent))
4645 return NULL;
4646 usage_count = mem_cgroup_count_swap_user(ent, &page);
4647 if (usage_count > 1) { /* we don't move shared anon */
4648 if (page)
4649 put_page(page);
4650 return NULL;
4651 }
4652 if (do_swap_account)
4653 entry->val = ent.val;
4654
4655 return page;
4656 }
4657
4658 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4659 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4660 {
4661 struct page *page = NULL;
4662 struct inode *inode;
4663 struct address_space *mapping;
4664 pgoff_t pgoff;
4665
4666 if (!vma->vm_file) /* anonymous vma */
4667 return NULL;
4668 if (!move_file())
4669 return NULL;
4670
4671 inode = vma->vm_file->f_path.dentry->d_inode;
4672 mapping = vma->vm_file->f_mapping;
4673 if (pte_none(ptent))
4674 pgoff = linear_page_index(vma, addr);
4675 else /* pte_file(ptent) is true */
4676 pgoff = pte_to_pgoff(ptent);
4677
4678 /* page is moved even if it's not RSS of this task(page-faulted). */
4679 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4680 page = find_get_page(mapping, pgoff);
4681 } else { /* shmem/tmpfs file. we should take account of swap too. */
4682 swp_entry_t ent;
4683 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4684 if (do_swap_account)
4685 entry->val = ent.val;
4686 }
4687
4688 return page;
4689 }
4690
4691 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4692 unsigned long addr, pte_t ptent, union mc_target *target)
4693 {
4694 struct page *page = NULL;
4695 struct page_cgroup *pc;
4696 int ret = 0;
4697 swp_entry_t ent = { .val = 0 };
4698
4699 if (pte_present(ptent))
4700 page = mc_handle_present_pte(vma, addr, ptent);
4701 else if (is_swap_pte(ptent))
4702 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4703 else if (pte_none(ptent) || pte_file(ptent))
4704 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4705
4706 if (!page && !ent.val)
4707 return 0;
4708 if (page) {
4709 pc = lookup_page_cgroup(page);
4710 /*
4711 * Do only loose check w/o page_cgroup lock.
4712 * mem_cgroup_move_account() checks the pc is valid or not under
4713 * the lock.
4714 */
4715 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4716 ret = MC_TARGET_PAGE;
4717 if (target)
4718 target->page = page;
4719 }
4720 if (!ret || !target)
4721 put_page(page);
4722 }
4723 /* There is a swap entry and a page doesn't exist or isn't charged */
4724 if (ent.val && !ret &&
4725 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4726 ret = MC_TARGET_SWAP;
4727 if (target)
4728 target->ent = ent;
4729 }
4730 return ret;
4731 }
4732
4733 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4734 unsigned long addr, unsigned long end,
4735 struct mm_walk *walk)
4736 {
4737 struct vm_area_struct *vma = walk->private;
4738 pte_t *pte;
4739 spinlock_t *ptl;
4740
4741 split_huge_page_pmd(walk->mm, pmd);
4742
4743 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4744 for (; addr != end; pte++, addr += PAGE_SIZE)
4745 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4746 mc.precharge++; /* increment precharge temporarily */
4747 pte_unmap_unlock(pte - 1, ptl);
4748 cond_resched();
4749
4750 return 0;
4751 }
4752
4753 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4754 {
4755 unsigned long precharge;
4756 struct vm_area_struct *vma;
4757
4758 down_read(&mm->mmap_sem);
4759 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4760 struct mm_walk mem_cgroup_count_precharge_walk = {
4761 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4762 .mm = mm,
4763 .private = vma,
4764 };
4765 if (is_vm_hugetlb_page(vma))
4766 continue;
4767 walk_page_range(vma->vm_start, vma->vm_end,
4768 &mem_cgroup_count_precharge_walk);
4769 }
4770 up_read(&mm->mmap_sem);
4771
4772 precharge = mc.precharge;
4773 mc.precharge = 0;
4774
4775 return precharge;
4776 }
4777
4778 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4779 {
4780 unsigned long precharge = mem_cgroup_count_precharge(mm);
4781
4782 VM_BUG_ON(mc.moving_task);
4783 mc.moving_task = current;
4784 return mem_cgroup_do_precharge(precharge);
4785 }
4786
4787 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4788 static void __mem_cgroup_clear_mc(void)
4789 {
4790 struct mem_cgroup *from = mc.from;
4791 struct mem_cgroup *to = mc.to;
4792
4793 /* we must uncharge all the leftover precharges from mc.to */
4794 if (mc.precharge) {
4795 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4796 mc.precharge = 0;
4797 }
4798 /*
4799 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4800 * we must uncharge here.
4801 */
4802 if (mc.moved_charge) {
4803 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4804 mc.moved_charge = 0;
4805 }
4806 /* we must fixup refcnts and charges */
4807 if (mc.moved_swap) {
4808 /* uncharge swap account from the old cgroup */
4809 if (!mem_cgroup_is_root(mc.from))
4810 res_counter_uncharge(&mc.from->memsw,
4811 PAGE_SIZE * mc.moved_swap);
4812 __mem_cgroup_put(mc.from, mc.moved_swap);
4813
4814 if (!mem_cgroup_is_root(mc.to)) {
4815 /*
4816 * we charged both to->res and to->memsw, so we should
4817 * uncharge to->res.
4818 */
4819 res_counter_uncharge(&mc.to->res,
4820 PAGE_SIZE * mc.moved_swap);
4821 }
4822 /* we've already done mem_cgroup_get(mc.to) */
4823 mc.moved_swap = 0;
4824 }
4825 memcg_oom_recover(from);
4826 memcg_oom_recover(to);
4827 wake_up_all(&mc.waitq);
4828 }
4829
4830 static void mem_cgroup_clear_mc(void)
4831 {
4832 struct mem_cgroup *from = mc.from;
4833
4834 /*
4835 * we must clear moving_task before waking up waiters at the end of
4836 * task migration.
4837 */
4838 mc.moving_task = NULL;
4839 __mem_cgroup_clear_mc();
4840 spin_lock(&mc.lock);
4841 mc.from = NULL;
4842 mc.to = NULL;
4843 spin_unlock(&mc.lock);
4844 mem_cgroup_end_move(from);
4845 }
4846
4847 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4848 struct cgroup *cgroup,
4849 struct task_struct *p,
4850 bool threadgroup)
4851 {
4852 int ret = 0;
4853 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4854
4855 if (mem->move_charge_at_immigrate) {
4856 struct mm_struct *mm;
4857 struct mem_cgroup *from = mem_cgroup_from_task(p);
4858
4859 VM_BUG_ON(from == mem);
4860
4861 mm = get_task_mm(p);
4862 if (!mm)
4863 return 0;
4864 /* We move charges only when we move a owner of the mm */
4865 if (mm->owner == p) {
4866 VM_BUG_ON(mc.from);
4867 VM_BUG_ON(mc.to);
4868 VM_BUG_ON(mc.precharge);
4869 VM_BUG_ON(mc.moved_charge);
4870 VM_BUG_ON(mc.moved_swap);
4871 mem_cgroup_start_move(from);
4872 spin_lock(&mc.lock);
4873 mc.from = from;
4874 mc.to = mem;
4875 spin_unlock(&mc.lock);
4876 /* We set mc.moving_task later */
4877
4878 ret = mem_cgroup_precharge_mc(mm);
4879 if (ret)
4880 mem_cgroup_clear_mc();
4881 }
4882 mmput(mm);
4883 }
4884 return ret;
4885 }
4886
4887 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4888 struct cgroup *cgroup,
4889 struct task_struct *p,
4890 bool threadgroup)
4891 {
4892 mem_cgroup_clear_mc();
4893 }
4894
4895 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4896 unsigned long addr, unsigned long end,
4897 struct mm_walk *walk)
4898 {
4899 int ret = 0;
4900 struct vm_area_struct *vma = walk->private;
4901 pte_t *pte;
4902 spinlock_t *ptl;
4903
4904 split_huge_page_pmd(walk->mm, pmd);
4905 retry:
4906 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4907 for (; addr != end; addr += PAGE_SIZE) {
4908 pte_t ptent = *(pte++);
4909 union mc_target target;
4910 int type;
4911 struct page *page;
4912 struct page_cgroup *pc;
4913 swp_entry_t ent;
4914
4915 if (!mc.precharge)
4916 break;
4917
4918 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4919 switch (type) {
4920 case MC_TARGET_PAGE:
4921 page = target.page;
4922 if (isolate_lru_page(page))
4923 goto put;
4924 pc = lookup_page_cgroup(page);
4925 if (!mem_cgroup_move_account(pc,
4926 mc.from, mc.to, false, PAGE_SIZE)) {
4927 mc.precharge--;
4928 /* we uncharge from mc.from later. */
4929 mc.moved_charge++;
4930 }
4931 putback_lru_page(page);
4932 put: /* is_target_pte_for_mc() gets the page */
4933 put_page(page);
4934 break;
4935 case MC_TARGET_SWAP:
4936 ent = target.ent;
4937 if (!mem_cgroup_move_swap_account(ent,
4938 mc.from, mc.to, false)) {
4939 mc.precharge--;
4940 /* we fixup refcnts and charges later. */
4941 mc.moved_swap++;
4942 }
4943 break;
4944 default:
4945 break;
4946 }
4947 }
4948 pte_unmap_unlock(pte - 1, ptl);
4949 cond_resched();
4950
4951 if (addr != end) {
4952 /*
4953 * We have consumed all precharges we got in can_attach().
4954 * We try charge one by one, but don't do any additional
4955 * charges to mc.to if we have failed in charge once in attach()
4956 * phase.
4957 */
4958 ret = mem_cgroup_do_precharge(1);
4959 if (!ret)
4960 goto retry;
4961 }
4962
4963 return ret;
4964 }
4965
4966 static void mem_cgroup_move_charge(struct mm_struct *mm)
4967 {
4968 struct vm_area_struct *vma;
4969
4970 lru_add_drain_all();
4971 retry:
4972 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4973 /*
4974 * Someone who are holding the mmap_sem might be waiting in
4975 * waitq. So we cancel all extra charges, wake up all waiters,
4976 * and retry. Because we cancel precharges, we might not be able
4977 * to move enough charges, but moving charge is a best-effort
4978 * feature anyway, so it wouldn't be a big problem.
4979 */
4980 __mem_cgroup_clear_mc();
4981 cond_resched();
4982 goto retry;
4983 }
4984 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4985 int ret;
4986 struct mm_walk mem_cgroup_move_charge_walk = {
4987 .pmd_entry = mem_cgroup_move_charge_pte_range,
4988 .mm = mm,
4989 .private = vma,
4990 };
4991 if (is_vm_hugetlb_page(vma))
4992 continue;
4993 ret = walk_page_range(vma->vm_start, vma->vm_end,
4994 &mem_cgroup_move_charge_walk);
4995 if (ret)
4996 /*
4997 * means we have consumed all precharges and failed in
4998 * doing additional charge. Just abandon here.
4999 */
5000 break;
5001 }
5002 up_read(&mm->mmap_sem);
5003 }
5004
5005 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5006 struct cgroup *cont,
5007 struct cgroup *old_cont,
5008 struct task_struct *p,
5009 bool threadgroup)
5010 {
5011 struct mm_struct *mm;
5012
5013 if (!mc.to)
5014 /* no need to move charge */
5015 return;
5016
5017 mm = get_task_mm(p);
5018 if (mm) {
5019 mem_cgroup_move_charge(mm);
5020 mmput(mm);
5021 }
5022 mem_cgroup_clear_mc();
5023 }
5024 #else /* !CONFIG_MMU */
5025 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5026 struct cgroup *cgroup,
5027 struct task_struct *p,
5028 bool threadgroup)
5029 {
5030 return 0;
5031 }
5032 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5033 struct cgroup *cgroup,
5034 struct task_struct *p,
5035 bool threadgroup)
5036 {
5037 }
5038 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5039 struct cgroup *cont,
5040 struct cgroup *old_cont,
5041 struct task_struct *p,
5042 bool threadgroup)
5043 {
5044 }
5045 #endif
5046
5047 struct cgroup_subsys mem_cgroup_subsys = {
5048 .name = "memory",
5049 .subsys_id = mem_cgroup_subsys_id,
5050 .create = mem_cgroup_create,
5051 .pre_destroy = mem_cgroup_pre_destroy,
5052 .destroy = mem_cgroup_destroy,
5053 .populate = mem_cgroup_populate,
5054 .can_attach = mem_cgroup_can_attach,
5055 .cancel_attach = mem_cgroup_cancel_attach,
5056 .attach = mem_cgroup_move_task,
5057 .early_init = 0,
5058 .use_id = 1,
5059 };
5060
5061 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5062 static int __init enable_swap_account(char *s)
5063 {
5064 /* consider enabled if no parameter or 1 is given */
5065 if (!(*s) || !strcmp(s, "=1"))
5066 really_do_swap_account = 1;
5067 else if (!strcmp(s, "=0"))
5068 really_do_swap_account = 0;
5069 return 1;
5070 }
5071 __setup("swapaccount", enable_swap_account);
5072
5073 static int __init disable_swap_account(char *s)
5074 {
5075 printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
5076 enable_swap_account("=0");
5077 return 1;
5078 }
5079 __setup("noswapaccount", disable_swap_account);
5080 #endif