]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memcontrol.c
Merge tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <linux/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account 0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
129
130 /*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135 struct mem_cgroup_tree_per_node {
136 struct rb_root rb_root;
137 spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree {
141 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
142 };
143
144 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
145
146 /* for OOM */
147 struct mem_cgroup_eventfd_list {
148 struct list_head list;
149 struct eventfd_ctx *eventfd;
150 };
151
152 /*
153 * cgroup_event represents events which userspace want to receive.
154 */
155 struct mem_cgroup_event {
156 /*
157 * memcg which the event belongs to.
158 */
159 struct mem_cgroup *memcg;
160 /*
161 * eventfd to signal userspace about the event.
162 */
163 struct eventfd_ctx *eventfd;
164 /*
165 * Each of these stored in a list by the cgroup.
166 */
167 struct list_head list;
168 /*
169 * register_event() callback will be used to add new userspace
170 * waiter for changes related to this event. Use eventfd_signal()
171 * on eventfd to send notification to userspace.
172 */
173 int (*register_event)(struct mem_cgroup *memcg,
174 struct eventfd_ctx *eventfd, const char *args);
175 /*
176 * unregister_event() callback will be called when userspace closes
177 * the eventfd or on cgroup removing. This callback must be set,
178 * if you want provide notification functionality.
179 */
180 void (*unregister_event)(struct mem_cgroup *memcg,
181 struct eventfd_ctx *eventfd);
182 /*
183 * All fields below needed to unregister event when
184 * userspace closes eventfd.
185 */
186 poll_table pt;
187 wait_queue_head_t *wqh;
188 wait_queue_t wait;
189 struct work_struct remove;
190 };
191
192 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
194
195 /* Stuffs for move charges at task migration. */
196 /*
197 * Types of charges to be moved.
198 */
199 #define MOVE_ANON 0x1U
200 #define MOVE_FILE 0x2U
201 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
202
203 /* "mc" and its members are protected by cgroup_mutex */
204 static struct move_charge_struct {
205 spinlock_t lock; /* for from, to */
206 struct mm_struct *mm;
207 struct mem_cgroup *from;
208 struct mem_cgroup *to;
209 unsigned long flags;
210 unsigned long precharge;
211 unsigned long moved_charge;
212 unsigned long moved_swap;
213 struct task_struct *moving_task; /* a task moving charges */
214 wait_queue_head_t waitq; /* a waitq for other context */
215 } mc = {
216 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
217 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
218 };
219
220 /*
221 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222 * limit reclaim to prevent infinite loops, if they ever occur.
223 */
224 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
225 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
226
227 enum charge_type {
228 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
229 MEM_CGROUP_CHARGE_TYPE_ANON,
230 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
231 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
232 NR_CHARGE_TYPE,
233 };
234
235 /* for encoding cft->private value on file */
236 enum res_type {
237 _MEM,
238 _MEMSWAP,
239 _OOM_TYPE,
240 _KMEM,
241 _TCP,
242 };
243
244 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
246 #define MEMFILE_ATTR(val) ((val) & 0xffff)
247 /* Used for OOM nofiier */
248 #define OOM_CONTROL (0)
249
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252 {
253 if (!memcg)
254 memcg = root_mem_cgroup;
255 return &memcg->vmpressure;
256 }
257
258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259 {
260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261 }
262
263 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
264 {
265 return (memcg == root_mem_cgroup);
266 }
267
268 #ifndef CONFIG_SLOB
269 /*
270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
271 * The main reason for not using cgroup id for this:
272 * this works better in sparse environments, where we have a lot of memcgs,
273 * but only a few kmem-limited. Or also, if we have, for instance, 200
274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
275 * 200 entry array for that.
276 *
277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
278 * will double each time we have to increase it.
279 */
280 static DEFINE_IDA(memcg_cache_ida);
281 int memcg_nr_cache_ids;
282
283 /* Protects memcg_nr_cache_ids */
284 static DECLARE_RWSEM(memcg_cache_ids_sem);
285
286 void memcg_get_cache_ids(void)
287 {
288 down_read(&memcg_cache_ids_sem);
289 }
290
291 void memcg_put_cache_ids(void)
292 {
293 up_read(&memcg_cache_ids_sem);
294 }
295
296 /*
297 * MIN_SIZE is different than 1, because we would like to avoid going through
298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
299 * cgroups is a reasonable guess. In the future, it could be a parameter or
300 * tunable, but that is strictly not necessary.
301 *
302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303 * this constant directly from cgroup, but it is understandable that this is
304 * better kept as an internal representation in cgroup.c. In any case, the
305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
306 * increase ours as well if it increases.
307 */
308 #define MEMCG_CACHES_MIN_SIZE 4
309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
310
311 /*
312 * A lot of the calls to the cache allocation functions are expected to be
313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314 * conditional to this static branch, we'll have to allow modules that does
315 * kmem_cache_alloc and the such to see this symbol as well
316 */
317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318 EXPORT_SYMBOL(memcg_kmem_enabled_key);
319
320 struct workqueue_struct *memcg_kmem_cache_wq;
321
322 #endif /* !CONFIG_SLOB */
323
324 /**
325 * mem_cgroup_css_from_page - css of the memcg associated with a page
326 * @page: page of interest
327 *
328 * If memcg is bound to the default hierarchy, css of the memcg associated
329 * with @page is returned. The returned css remains associated with @page
330 * until it is released.
331 *
332 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
333 * is returned.
334 */
335 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
336 {
337 struct mem_cgroup *memcg;
338
339 memcg = page->mem_cgroup;
340
341 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
342 memcg = root_mem_cgroup;
343
344 return &memcg->css;
345 }
346
347 /**
348 * page_cgroup_ino - return inode number of the memcg a page is charged to
349 * @page: the page
350 *
351 * Look up the closest online ancestor of the memory cgroup @page is charged to
352 * and return its inode number or 0 if @page is not charged to any cgroup. It
353 * is safe to call this function without holding a reference to @page.
354 *
355 * Note, this function is inherently racy, because there is nothing to prevent
356 * the cgroup inode from getting torn down and potentially reallocated a moment
357 * after page_cgroup_ino() returns, so it only should be used by callers that
358 * do not care (such as procfs interfaces).
359 */
360 ino_t page_cgroup_ino(struct page *page)
361 {
362 struct mem_cgroup *memcg;
363 unsigned long ino = 0;
364
365 rcu_read_lock();
366 memcg = READ_ONCE(page->mem_cgroup);
367 while (memcg && !(memcg->css.flags & CSS_ONLINE))
368 memcg = parent_mem_cgroup(memcg);
369 if (memcg)
370 ino = cgroup_ino(memcg->css.cgroup);
371 rcu_read_unlock();
372 return ino;
373 }
374
375 static struct mem_cgroup_per_node *
376 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
377 {
378 int nid = page_to_nid(page);
379
380 return memcg->nodeinfo[nid];
381 }
382
383 static struct mem_cgroup_tree_per_node *
384 soft_limit_tree_node(int nid)
385 {
386 return soft_limit_tree.rb_tree_per_node[nid];
387 }
388
389 static struct mem_cgroup_tree_per_node *
390 soft_limit_tree_from_page(struct page *page)
391 {
392 int nid = page_to_nid(page);
393
394 return soft_limit_tree.rb_tree_per_node[nid];
395 }
396
397 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
398 struct mem_cgroup_tree_per_node *mctz,
399 unsigned long new_usage_in_excess)
400 {
401 struct rb_node **p = &mctz->rb_root.rb_node;
402 struct rb_node *parent = NULL;
403 struct mem_cgroup_per_node *mz_node;
404
405 if (mz->on_tree)
406 return;
407
408 mz->usage_in_excess = new_usage_in_excess;
409 if (!mz->usage_in_excess)
410 return;
411 while (*p) {
412 parent = *p;
413 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
414 tree_node);
415 if (mz->usage_in_excess < mz_node->usage_in_excess)
416 p = &(*p)->rb_left;
417 /*
418 * We can't avoid mem cgroups that are over their soft
419 * limit by the same amount
420 */
421 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
422 p = &(*p)->rb_right;
423 }
424 rb_link_node(&mz->tree_node, parent, p);
425 rb_insert_color(&mz->tree_node, &mctz->rb_root);
426 mz->on_tree = true;
427 }
428
429 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
430 struct mem_cgroup_tree_per_node *mctz)
431 {
432 if (!mz->on_tree)
433 return;
434 rb_erase(&mz->tree_node, &mctz->rb_root);
435 mz->on_tree = false;
436 }
437
438 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
439 struct mem_cgroup_tree_per_node *mctz)
440 {
441 unsigned long flags;
442
443 spin_lock_irqsave(&mctz->lock, flags);
444 __mem_cgroup_remove_exceeded(mz, mctz);
445 spin_unlock_irqrestore(&mctz->lock, flags);
446 }
447
448 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
449 {
450 unsigned long nr_pages = page_counter_read(&memcg->memory);
451 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
452 unsigned long excess = 0;
453
454 if (nr_pages > soft_limit)
455 excess = nr_pages - soft_limit;
456
457 return excess;
458 }
459
460 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
461 {
462 unsigned long excess;
463 struct mem_cgroup_per_node *mz;
464 struct mem_cgroup_tree_per_node *mctz;
465
466 mctz = soft_limit_tree_from_page(page);
467 /*
468 * Necessary to update all ancestors when hierarchy is used.
469 * because their event counter is not touched.
470 */
471 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
472 mz = mem_cgroup_page_nodeinfo(memcg, page);
473 excess = soft_limit_excess(memcg);
474 /*
475 * We have to update the tree if mz is on RB-tree or
476 * mem is over its softlimit.
477 */
478 if (excess || mz->on_tree) {
479 unsigned long flags;
480
481 spin_lock_irqsave(&mctz->lock, flags);
482 /* if on-tree, remove it */
483 if (mz->on_tree)
484 __mem_cgroup_remove_exceeded(mz, mctz);
485 /*
486 * Insert again. mz->usage_in_excess will be updated.
487 * If excess is 0, no tree ops.
488 */
489 __mem_cgroup_insert_exceeded(mz, mctz, excess);
490 spin_unlock_irqrestore(&mctz->lock, flags);
491 }
492 }
493 }
494
495 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
496 {
497 struct mem_cgroup_tree_per_node *mctz;
498 struct mem_cgroup_per_node *mz;
499 int nid;
500
501 for_each_node(nid) {
502 mz = mem_cgroup_nodeinfo(memcg, nid);
503 mctz = soft_limit_tree_node(nid);
504 mem_cgroup_remove_exceeded(mz, mctz);
505 }
506 }
507
508 static struct mem_cgroup_per_node *
509 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
510 {
511 struct rb_node *rightmost = NULL;
512 struct mem_cgroup_per_node *mz;
513
514 retry:
515 mz = NULL;
516 rightmost = rb_last(&mctz->rb_root);
517 if (!rightmost)
518 goto done; /* Nothing to reclaim from */
519
520 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
521 /*
522 * Remove the node now but someone else can add it back,
523 * we will to add it back at the end of reclaim to its correct
524 * position in the tree.
525 */
526 __mem_cgroup_remove_exceeded(mz, mctz);
527 if (!soft_limit_excess(mz->memcg) ||
528 !css_tryget_online(&mz->memcg->css))
529 goto retry;
530 done:
531 return mz;
532 }
533
534 static struct mem_cgroup_per_node *
535 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
536 {
537 struct mem_cgroup_per_node *mz;
538
539 spin_lock_irq(&mctz->lock);
540 mz = __mem_cgroup_largest_soft_limit_node(mctz);
541 spin_unlock_irq(&mctz->lock);
542 return mz;
543 }
544
545 /*
546 * Return page count for single (non recursive) @memcg.
547 *
548 * Implementation Note: reading percpu statistics for memcg.
549 *
550 * Both of vmstat[] and percpu_counter has threshold and do periodic
551 * synchronization to implement "quick" read. There are trade-off between
552 * reading cost and precision of value. Then, we may have a chance to implement
553 * a periodic synchronization of counter in memcg's counter.
554 *
555 * But this _read() function is used for user interface now. The user accounts
556 * memory usage by memory cgroup and he _always_ requires exact value because
557 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
558 * have to visit all online cpus and make sum. So, for now, unnecessary
559 * synchronization is not implemented. (just implemented for cpu hotplug)
560 *
561 * If there are kernel internal actions which can make use of some not-exact
562 * value, and reading all cpu value can be performance bottleneck in some
563 * common workload, threshold and synchronization as vmstat[] should be
564 * implemented.
565 */
566 static unsigned long
567 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
568 {
569 long val = 0;
570 int cpu;
571
572 /* Per-cpu values can be negative, use a signed accumulator */
573 for_each_possible_cpu(cpu)
574 val += per_cpu(memcg->stat->count[idx], cpu);
575 /*
576 * Summing races with updates, so val may be negative. Avoid exposing
577 * transient negative values.
578 */
579 if (val < 0)
580 val = 0;
581 return val;
582 }
583
584 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
585 enum mem_cgroup_events_index idx)
586 {
587 unsigned long val = 0;
588 int cpu;
589
590 for_each_possible_cpu(cpu)
591 val += per_cpu(memcg->stat->events[idx], cpu);
592 return val;
593 }
594
595 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
596 struct page *page,
597 bool compound, int nr_pages)
598 {
599 /*
600 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
601 * counted as CACHE even if it's on ANON LRU.
602 */
603 if (PageAnon(page))
604 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
605 nr_pages);
606 else
607 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
608 nr_pages);
609
610 if (compound) {
611 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
612 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
613 nr_pages);
614 }
615
616 /* pagein of a big page is an event. So, ignore page size */
617 if (nr_pages > 0)
618 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
619 else {
620 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
621 nr_pages = -nr_pages; /* for event */
622 }
623
624 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
625 }
626
627 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
628 int nid, unsigned int lru_mask)
629 {
630 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
631 unsigned long nr = 0;
632 enum lru_list lru;
633
634 VM_BUG_ON((unsigned)nid >= nr_node_ids);
635
636 for_each_lru(lru) {
637 if (!(BIT(lru) & lru_mask))
638 continue;
639 nr += mem_cgroup_get_lru_size(lruvec, lru);
640 }
641 return nr;
642 }
643
644 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
645 unsigned int lru_mask)
646 {
647 unsigned long nr = 0;
648 int nid;
649
650 for_each_node_state(nid, N_MEMORY)
651 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
652 return nr;
653 }
654
655 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
656 enum mem_cgroup_events_target target)
657 {
658 unsigned long val, next;
659
660 val = __this_cpu_read(memcg->stat->nr_page_events);
661 next = __this_cpu_read(memcg->stat->targets[target]);
662 /* from time_after() in jiffies.h */
663 if ((long)next - (long)val < 0) {
664 switch (target) {
665 case MEM_CGROUP_TARGET_THRESH:
666 next = val + THRESHOLDS_EVENTS_TARGET;
667 break;
668 case MEM_CGROUP_TARGET_SOFTLIMIT:
669 next = val + SOFTLIMIT_EVENTS_TARGET;
670 break;
671 case MEM_CGROUP_TARGET_NUMAINFO:
672 next = val + NUMAINFO_EVENTS_TARGET;
673 break;
674 default:
675 break;
676 }
677 __this_cpu_write(memcg->stat->targets[target], next);
678 return true;
679 }
680 return false;
681 }
682
683 /*
684 * Check events in order.
685 *
686 */
687 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
688 {
689 /* threshold event is triggered in finer grain than soft limit */
690 if (unlikely(mem_cgroup_event_ratelimit(memcg,
691 MEM_CGROUP_TARGET_THRESH))) {
692 bool do_softlimit;
693 bool do_numainfo __maybe_unused;
694
695 do_softlimit = mem_cgroup_event_ratelimit(memcg,
696 MEM_CGROUP_TARGET_SOFTLIMIT);
697 #if MAX_NUMNODES > 1
698 do_numainfo = mem_cgroup_event_ratelimit(memcg,
699 MEM_CGROUP_TARGET_NUMAINFO);
700 #endif
701 mem_cgroup_threshold(memcg);
702 if (unlikely(do_softlimit))
703 mem_cgroup_update_tree(memcg, page);
704 #if MAX_NUMNODES > 1
705 if (unlikely(do_numainfo))
706 atomic_inc(&memcg->numainfo_events);
707 #endif
708 }
709 }
710
711 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
712 {
713 /*
714 * mm_update_next_owner() may clear mm->owner to NULL
715 * if it races with swapoff, page migration, etc.
716 * So this can be called with p == NULL.
717 */
718 if (unlikely(!p))
719 return NULL;
720
721 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
722 }
723 EXPORT_SYMBOL(mem_cgroup_from_task);
724
725 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
726 {
727 struct mem_cgroup *memcg = NULL;
728
729 rcu_read_lock();
730 do {
731 /*
732 * Page cache insertions can happen withou an
733 * actual mm context, e.g. during disk probing
734 * on boot, loopback IO, acct() writes etc.
735 */
736 if (unlikely(!mm))
737 memcg = root_mem_cgroup;
738 else {
739 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
740 if (unlikely(!memcg))
741 memcg = root_mem_cgroup;
742 }
743 } while (!css_tryget_online(&memcg->css));
744 rcu_read_unlock();
745 return memcg;
746 }
747
748 /**
749 * mem_cgroup_iter - iterate over memory cgroup hierarchy
750 * @root: hierarchy root
751 * @prev: previously returned memcg, NULL on first invocation
752 * @reclaim: cookie for shared reclaim walks, NULL for full walks
753 *
754 * Returns references to children of the hierarchy below @root, or
755 * @root itself, or %NULL after a full round-trip.
756 *
757 * Caller must pass the return value in @prev on subsequent
758 * invocations for reference counting, or use mem_cgroup_iter_break()
759 * to cancel a hierarchy walk before the round-trip is complete.
760 *
761 * Reclaimers can specify a zone and a priority level in @reclaim to
762 * divide up the memcgs in the hierarchy among all concurrent
763 * reclaimers operating on the same zone and priority.
764 */
765 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
766 struct mem_cgroup *prev,
767 struct mem_cgroup_reclaim_cookie *reclaim)
768 {
769 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
770 struct cgroup_subsys_state *css = NULL;
771 struct mem_cgroup *memcg = NULL;
772 struct mem_cgroup *pos = NULL;
773
774 if (mem_cgroup_disabled())
775 return NULL;
776
777 if (!root)
778 root = root_mem_cgroup;
779
780 if (prev && !reclaim)
781 pos = prev;
782
783 if (!root->use_hierarchy && root != root_mem_cgroup) {
784 if (prev)
785 goto out;
786 return root;
787 }
788
789 rcu_read_lock();
790
791 if (reclaim) {
792 struct mem_cgroup_per_node *mz;
793
794 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
795 iter = &mz->iter[reclaim->priority];
796
797 if (prev && reclaim->generation != iter->generation)
798 goto out_unlock;
799
800 while (1) {
801 pos = READ_ONCE(iter->position);
802 if (!pos || css_tryget(&pos->css))
803 break;
804 /*
805 * css reference reached zero, so iter->position will
806 * be cleared by ->css_released. However, we should not
807 * rely on this happening soon, because ->css_released
808 * is called from a work queue, and by busy-waiting we
809 * might block it. So we clear iter->position right
810 * away.
811 */
812 (void)cmpxchg(&iter->position, pos, NULL);
813 }
814 }
815
816 if (pos)
817 css = &pos->css;
818
819 for (;;) {
820 css = css_next_descendant_pre(css, &root->css);
821 if (!css) {
822 /*
823 * Reclaimers share the hierarchy walk, and a
824 * new one might jump in right at the end of
825 * the hierarchy - make sure they see at least
826 * one group and restart from the beginning.
827 */
828 if (!prev)
829 continue;
830 break;
831 }
832
833 /*
834 * Verify the css and acquire a reference. The root
835 * is provided by the caller, so we know it's alive
836 * and kicking, and don't take an extra reference.
837 */
838 memcg = mem_cgroup_from_css(css);
839
840 if (css == &root->css)
841 break;
842
843 if (css_tryget(css))
844 break;
845
846 memcg = NULL;
847 }
848
849 if (reclaim) {
850 /*
851 * The position could have already been updated by a competing
852 * thread, so check that the value hasn't changed since we read
853 * it to avoid reclaiming from the same cgroup twice.
854 */
855 (void)cmpxchg(&iter->position, pos, memcg);
856
857 if (pos)
858 css_put(&pos->css);
859
860 if (!memcg)
861 iter->generation++;
862 else if (!prev)
863 reclaim->generation = iter->generation;
864 }
865
866 out_unlock:
867 rcu_read_unlock();
868 out:
869 if (prev && prev != root)
870 css_put(&prev->css);
871
872 return memcg;
873 }
874
875 /**
876 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
877 * @root: hierarchy root
878 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
879 */
880 void mem_cgroup_iter_break(struct mem_cgroup *root,
881 struct mem_cgroup *prev)
882 {
883 if (!root)
884 root = root_mem_cgroup;
885 if (prev && prev != root)
886 css_put(&prev->css);
887 }
888
889 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
890 {
891 struct mem_cgroup *memcg = dead_memcg;
892 struct mem_cgroup_reclaim_iter *iter;
893 struct mem_cgroup_per_node *mz;
894 int nid;
895 int i;
896
897 while ((memcg = parent_mem_cgroup(memcg))) {
898 for_each_node(nid) {
899 mz = mem_cgroup_nodeinfo(memcg, nid);
900 for (i = 0; i <= DEF_PRIORITY; i++) {
901 iter = &mz->iter[i];
902 cmpxchg(&iter->position,
903 dead_memcg, NULL);
904 }
905 }
906 }
907 }
908
909 /*
910 * Iteration constructs for visiting all cgroups (under a tree). If
911 * loops are exited prematurely (break), mem_cgroup_iter_break() must
912 * be used for reference counting.
913 */
914 #define for_each_mem_cgroup_tree(iter, root) \
915 for (iter = mem_cgroup_iter(root, NULL, NULL); \
916 iter != NULL; \
917 iter = mem_cgroup_iter(root, iter, NULL))
918
919 #define for_each_mem_cgroup(iter) \
920 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
921 iter != NULL; \
922 iter = mem_cgroup_iter(NULL, iter, NULL))
923
924 /**
925 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
926 * @memcg: hierarchy root
927 * @fn: function to call for each task
928 * @arg: argument passed to @fn
929 *
930 * This function iterates over tasks attached to @memcg or to any of its
931 * descendants and calls @fn for each task. If @fn returns a non-zero
932 * value, the function breaks the iteration loop and returns the value.
933 * Otherwise, it will iterate over all tasks and return 0.
934 *
935 * This function must not be called for the root memory cgroup.
936 */
937 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
938 int (*fn)(struct task_struct *, void *), void *arg)
939 {
940 struct mem_cgroup *iter;
941 int ret = 0;
942
943 BUG_ON(memcg == root_mem_cgroup);
944
945 for_each_mem_cgroup_tree(iter, memcg) {
946 struct css_task_iter it;
947 struct task_struct *task;
948
949 css_task_iter_start(&iter->css, &it);
950 while (!ret && (task = css_task_iter_next(&it)))
951 ret = fn(task, arg);
952 css_task_iter_end(&it);
953 if (ret) {
954 mem_cgroup_iter_break(memcg, iter);
955 break;
956 }
957 }
958 return ret;
959 }
960
961 /**
962 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
963 * @page: the page
964 * @zone: zone of the page
965 *
966 * This function is only safe when following the LRU page isolation
967 * and putback protocol: the LRU lock must be held, and the page must
968 * either be PageLRU() or the caller must have isolated/allocated it.
969 */
970 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
971 {
972 struct mem_cgroup_per_node *mz;
973 struct mem_cgroup *memcg;
974 struct lruvec *lruvec;
975
976 if (mem_cgroup_disabled()) {
977 lruvec = &pgdat->lruvec;
978 goto out;
979 }
980
981 memcg = page->mem_cgroup;
982 /*
983 * Swapcache readahead pages are added to the LRU - and
984 * possibly migrated - before they are charged.
985 */
986 if (!memcg)
987 memcg = root_mem_cgroup;
988
989 mz = mem_cgroup_page_nodeinfo(memcg, page);
990 lruvec = &mz->lruvec;
991 out:
992 /*
993 * Since a node can be onlined after the mem_cgroup was created,
994 * we have to be prepared to initialize lruvec->zone here;
995 * and if offlined then reonlined, we need to reinitialize it.
996 */
997 if (unlikely(lruvec->pgdat != pgdat))
998 lruvec->pgdat = pgdat;
999 return lruvec;
1000 }
1001
1002 /**
1003 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1004 * @lruvec: mem_cgroup per zone lru vector
1005 * @lru: index of lru list the page is sitting on
1006 * @zid: zone id of the accounted pages
1007 * @nr_pages: positive when adding or negative when removing
1008 *
1009 * This function must be called under lru_lock, just before a page is added
1010 * to or just after a page is removed from an lru list (that ordering being
1011 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1012 */
1013 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1014 int zid, int nr_pages)
1015 {
1016 struct mem_cgroup_per_node *mz;
1017 unsigned long *lru_size;
1018 long size;
1019
1020 if (mem_cgroup_disabled())
1021 return;
1022
1023 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1024 lru_size = &mz->lru_zone_size[zid][lru];
1025
1026 if (nr_pages < 0)
1027 *lru_size += nr_pages;
1028
1029 size = *lru_size;
1030 if (WARN_ONCE(size < 0,
1031 "%s(%p, %d, %d): lru_size %ld\n",
1032 __func__, lruvec, lru, nr_pages, size)) {
1033 VM_BUG_ON(1);
1034 *lru_size = 0;
1035 }
1036
1037 if (nr_pages > 0)
1038 *lru_size += nr_pages;
1039 }
1040
1041 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1042 {
1043 struct mem_cgroup *task_memcg;
1044 struct task_struct *p;
1045 bool ret;
1046
1047 p = find_lock_task_mm(task);
1048 if (p) {
1049 task_memcg = get_mem_cgroup_from_mm(p->mm);
1050 task_unlock(p);
1051 } else {
1052 /*
1053 * All threads may have already detached their mm's, but the oom
1054 * killer still needs to detect if they have already been oom
1055 * killed to prevent needlessly killing additional tasks.
1056 */
1057 rcu_read_lock();
1058 task_memcg = mem_cgroup_from_task(task);
1059 css_get(&task_memcg->css);
1060 rcu_read_unlock();
1061 }
1062 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1063 css_put(&task_memcg->css);
1064 return ret;
1065 }
1066
1067 /**
1068 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1069 * @memcg: the memory cgroup
1070 *
1071 * Returns the maximum amount of memory @mem can be charged with, in
1072 * pages.
1073 */
1074 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1075 {
1076 unsigned long margin = 0;
1077 unsigned long count;
1078 unsigned long limit;
1079
1080 count = page_counter_read(&memcg->memory);
1081 limit = READ_ONCE(memcg->memory.limit);
1082 if (count < limit)
1083 margin = limit - count;
1084
1085 if (do_memsw_account()) {
1086 count = page_counter_read(&memcg->memsw);
1087 limit = READ_ONCE(memcg->memsw.limit);
1088 if (count <= limit)
1089 margin = min(margin, limit - count);
1090 else
1091 margin = 0;
1092 }
1093
1094 return margin;
1095 }
1096
1097 /*
1098 * A routine for checking "mem" is under move_account() or not.
1099 *
1100 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1101 * moving cgroups. This is for waiting at high-memory pressure
1102 * caused by "move".
1103 */
1104 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1105 {
1106 struct mem_cgroup *from;
1107 struct mem_cgroup *to;
1108 bool ret = false;
1109 /*
1110 * Unlike task_move routines, we access mc.to, mc.from not under
1111 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1112 */
1113 spin_lock(&mc.lock);
1114 from = mc.from;
1115 to = mc.to;
1116 if (!from)
1117 goto unlock;
1118
1119 ret = mem_cgroup_is_descendant(from, memcg) ||
1120 mem_cgroup_is_descendant(to, memcg);
1121 unlock:
1122 spin_unlock(&mc.lock);
1123 return ret;
1124 }
1125
1126 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1127 {
1128 if (mc.moving_task && current != mc.moving_task) {
1129 if (mem_cgroup_under_move(memcg)) {
1130 DEFINE_WAIT(wait);
1131 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1132 /* moving charge context might have finished. */
1133 if (mc.moving_task)
1134 schedule();
1135 finish_wait(&mc.waitq, &wait);
1136 return true;
1137 }
1138 }
1139 return false;
1140 }
1141
1142 #define K(x) ((x) << (PAGE_SHIFT-10))
1143 /**
1144 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1145 * @memcg: The memory cgroup that went over limit
1146 * @p: Task that is going to be killed
1147 *
1148 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1149 * enabled
1150 */
1151 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1152 {
1153 struct mem_cgroup *iter;
1154 unsigned int i;
1155
1156 rcu_read_lock();
1157
1158 if (p) {
1159 pr_info("Task in ");
1160 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1161 pr_cont(" killed as a result of limit of ");
1162 } else {
1163 pr_info("Memory limit reached of cgroup ");
1164 }
1165
1166 pr_cont_cgroup_path(memcg->css.cgroup);
1167 pr_cont("\n");
1168
1169 rcu_read_unlock();
1170
1171 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1172 K((u64)page_counter_read(&memcg->memory)),
1173 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1174 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1175 K((u64)page_counter_read(&memcg->memsw)),
1176 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1177 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1178 K((u64)page_counter_read(&memcg->kmem)),
1179 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1180
1181 for_each_mem_cgroup_tree(iter, memcg) {
1182 pr_info("Memory cgroup stats for ");
1183 pr_cont_cgroup_path(iter->css.cgroup);
1184 pr_cont(":");
1185
1186 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1187 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1188 continue;
1189 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1190 K(mem_cgroup_read_stat(iter, i)));
1191 }
1192
1193 for (i = 0; i < NR_LRU_LISTS; i++)
1194 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1195 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1196
1197 pr_cont("\n");
1198 }
1199 }
1200
1201 /*
1202 * This function returns the number of memcg under hierarchy tree. Returns
1203 * 1(self count) if no children.
1204 */
1205 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1206 {
1207 int num = 0;
1208 struct mem_cgroup *iter;
1209
1210 for_each_mem_cgroup_tree(iter, memcg)
1211 num++;
1212 return num;
1213 }
1214
1215 /*
1216 * Return the memory (and swap, if configured) limit for a memcg.
1217 */
1218 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1219 {
1220 unsigned long limit;
1221
1222 limit = memcg->memory.limit;
1223 if (mem_cgroup_swappiness(memcg)) {
1224 unsigned long memsw_limit;
1225 unsigned long swap_limit;
1226
1227 memsw_limit = memcg->memsw.limit;
1228 swap_limit = memcg->swap.limit;
1229 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1230 limit = min(limit + swap_limit, memsw_limit);
1231 }
1232 return limit;
1233 }
1234
1235 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1236 int order)
1237 {
1238 struct oom_control oc = {
1239 .zonelist = NULL,
1240 .nodemask = NULL,
1241 .memcg = memcg,
1242 .gfp_mask = gfp_mask,
1243 .order = order,
1244 };
1245 bool ret;
1246
1247 mutex_lock(&oom_lock);
1248 ret = out_of_memory(&oc);
1249 mutex_unlock(&oom_lock);
1250 return ret;
1251 }
1252
1253 #if MAX_NUMNODES > 1
1254
1255 /**
1256 * test_mem_cgroup_node_reclaimable
1257 * @memcg: the target memcg
1258 * @nid: the node ID to be checked.
1259 * @noswap : specify true here if the user wants flle only information.
1260 *
1261 * This function returns whether the specified memcg contains any
1262 * reclaimable pages on a node. Returns true if there are any reclaimable
1263 * pages in the node.
1264 */
1265 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1266 int nid, bool noswap)
1267 {
1268 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1269 return true;
1270 if (noswap || !total_swap_pages)
1271 return false;
1272 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1273 return true;
1274 return false;
1275
1276 }
1277
1278 /*
1279 * Always updating the nodemask is not very good - even if we have an empty
1280 * list or the wrong list here, we can start from some node and traverse all
1281 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1282 *
1283 */
1284 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1285 {
1286 int nid;
1287 /*
1288 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1289 * pagein/pageout changes since the last update.
1290 */
1291 if (!atomic_read(&memcg->numainfo_events))
1292 return;
1293 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1294 return;
1295
1296 /* make a nodemask where this memcg uses memory from */
1297 memcg->scan_nodes = node_states[N_MEMORY];
1298
1299 for_each_node_mask(nid, node_states[N_MEMORY]) {
1300
1301 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1302 node_clear(nid, memcg->scan_nodes);
1303 }
1304
1305 atomic_set(&memcg->numainfo_events, 0);
1306 atomic_set(&memcg->numainfo_updating, 0);
1307 }
1308
1309 /*
1310 * Selecting a node where we start reclaim from. Because what we need is just
1311 * reducing usage counter, start from anywhere is O,K. Considering
1312 * memory reclaim from current node, there are pros. and cons.
1313 *
1314 * Freeing memory from current node means freeing memory from a node which
1315 * we'll use or we've used. So, it may make LRU bad. And if several threads
1316 * hit limits, it will see a contention on a node. But freeing from remote
1317 * node means more costs for memory reclaim because of memory latency.
1318 *
1319 * Now, we use round-robin. Better algorithm is welcomed.
1320 */
1321 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1322 {
1323 int node;
1324
1325 mem_cgroup_may_update_nodemask(memcg);
1326 node = memcg->last_scanned_node;
1327
1328 node = next_node_in(node, memcg->scan_nodes);
1329 /*
1330 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1331 * last time it really checked all the LRUs due to rate limiting.
1332 * Fallback to the current node in that case for simplicity.
1333 */
1334 if (unlikely(node == MAX_NUMNODES))
1335 node = numa_node_id();
1336
1337 memcg->last_scanned_node = node;
1338 return node;
1339 }
1340 #else
1341 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1342 {
1343 return 0;
1344 }
1345 #endif
1346
1347 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1348 pg_data_t *pgdat,
1349 gfp_t gfp_mask,
1350 unsigned long *total_scanned)
1351 {
1352 struct mem_cgroup *victim = NULL;
1353 int total = 0;
1354 int loop = 0;
1355 unsigned long excess;
1356 unsigned long nr_scanned;
1357 struct mem_cgroup_reclaim_cookie reclaim = {
1358 .pgdat = pgdat,
1359 .priority = 0,
1360 };
1361
1362 excess = soft_limit_excess(root_memcg);
1363
1364 while (1) {
1365 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1366 if (!victim) {
1367 loop++;
1368 if (loop >= 2) {
1369 /*
1370 * If we have not been able to reclaim
1371 * anything, it might because there are
1372 * no reclaimable pages under this hierarchy
1373 */
1374 if (!total)
1375 break;
1376 /*
1377 * We want to do more targeted reclaim.
1378 * excess >> 2 is not to excessive so as to
1379 * reclaim too much, nor too less that we keep
1380 * coming back to reclaim from this cgroup
1381 */
1382 if (total >= (excess >> 2) ||
1383 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1384 break;
1385 }
1386 continue;
1387 }
1388 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1389 pgdat, &nr_scanned);
1390 *total_scanned += nr_scanned;
1391 if (!soft_limit_excess(root_memcg))
1392 break;
1393 }
1394 mem_cgroup_iter_break(root_memcg, victim);
1395 return total;
1396 }
1397
1398 #ifdef CONFIG_LOCKDEP
1399 static struct lockdep_map memcg_oom_lock_dep_map = {
1400 .name = "memcg_oom_lock",
1401 };
1402 #endif
1403
1404 static DEFINE_SPINLOCK(memcg_oom_lock);
1405
1406 /*
1407 * Check OOM-Killer is already running under our hierarchy.
1408 * If someone is running, return false.
1409 */
1410 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1411 {
1412 struct mem_cgroup *iter, *failed = NULL;
1413
1414 spin_lock(&memcg_oom_lock);
1415
1416 for_each_mem_cgroup_tree(iter, memcg) {
1417 if (iter->oom_lock) {
1418 /*
1419 * this subtree of our hierarchy is already locked
1420 * so we cannot give a lock.
1421 */
1422 failed = iter;
1423 mem_cgroup_iter_break(memcg, iter);
1424 break;
1425 } else
1426 iter->oom_lock = true;
1427 }
1428
1429 if (failed) {
1430 /*
1431 * OK, we failed to lock the whole subtree so we have
1432 * to clean up what we set up to the failing subtree
1433 */
1434 for_each_mem_cgroup_tree(iter, memcg) {
1435 if (iter == failed) {
1436 mem_cgroup_iter_break(memcg, iter);
1437 break;
1438 }
1439 iter->oom_lock = false;
1440 }
1441 } else
1442 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1443
1444 spin_unlock(&memcg_oom_lock);
1445
1446 return !failed;
1447 }
1448
1449 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1450 {
1451 struct mem_cgroup *iter;
1452
1453 spin_lock(&memcg_oom_lock);
1454 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1455 for_each_mem_cgroup_tree(iter, memcg)
1456 iter->oom_lock = false;
1457 spin_unlock(&memcg_oom_lock);
1458 }
1459
1460 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1461 {
1462 struct mem_cgroup *iter;
1463
1464 spin_lock(&memcg_oom_lock);
1465 for_each_mem_cgroup_tree(iter, memcg)
1466 iter->under_oom++;
1467 spin_unlock(&memcg_oom_lock);
1468 }
1469
1470 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1471 {
1472 struct mem_cgroup *iter;
1473
1474 /*
1475 * When a new child is created while the hierarchy is under oom,
1476 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1477 */
1478 spin_lock(&memcg_oom_lock);
1479 for_each_mem_cgroup_tree(iter, memcg)
1480 if (iter->under_oom > 0)
1481 iter->under_oom--;
1482 spin_unlock(&memcg_oom_lock);
1483 }
1484
1485 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1486
1487 struct oom_wait_info {
1488 struct mem_cgroup *memcg;
1489 wait_queue_t wait;
1490 };
1491
1492 static int memcg_oom_wake_function(wait_queue_t *wait,
1493 unsigned mode, int sync, void *arg)
1494 {
1495 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1496 struct mem_cgroup *oom_wait_memcg;
1497 struct oom_wait_info *oom_wait_info;
1498
1499 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1500 oom_wait_memcg = oom_wait_info->memcg;
1501
1502 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1503 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1504 return 0;
1505 return autoremove_wake_function(wait, mode, sync, arg);
1506 }
1507
1508 static void memcg_oom_recover(struct mem_cgroup *memcg)
1509 {
1510 /*
1511 * For the following lockless ->under_oom test, the only required
1512 * guarantee is that it must see the state asserted by an OOM when
1513 * this function is called as a result of userland actions
1514 * triggered by the notification of the OOM. This is trivially
1515 * achieved by invoking mem_cgroup_mark_under_oom() before
1516 * triggering notification.
1517 */
1518 if (memcg && memcg->under_oom)
1519 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1520 }
1521
1522 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1523 {
1524 if (!current->memcg_may_oom)
1525 return;
1526 /*
1527 * We are in the middle of the charge context here, so we
1528 * don't want to block when potentially sitting on a callstack
1529 * that holds all kinds of filesystem and mm locks.
1530 *
1531 * Also, the caller may handle a failed allocation gracefully
1532 * (like optional page cache readahead) and so an OOM killer
1533 * invocation might not even be necessary.
1534 *
1535 * That's why we don't do anything here except remember the
1536 * OOM context and then deal with it at the end of the page
1537 * fault when the stack is unwound, the locks are released,
1538 * and when we know whether the fault was overall successful.
1539 */
1540 css_get(&memcg->css);
1541 current->memcg_in_oom = memcg;
1542 current->memcg_oom_gfp_mask = mask;
1543 current->memcg_oom_order = order;
1544 }
1545
1546 /**
1547 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1548 * @handle: actually kill/wait or just clean up the OOM state
1549 *
1550 * This has to be called at the end of a page fault if the memcg OOM
1551 * handler was enabled.
1552 *
1553 * Memcg supports userspace OOM handling where failed allocations must
1554 * sleep on a waitqueue until the userspace task resolves the
1555 * situation. Sleeping directly in the charge context with all kinds
1556 * of locks held is not a good idea, instead we remember an OOM state
1557 * in the task and mem_cgroup_oom_synchronize() has to be called at
1558 * the end of the page fault to complete the OOM handling.
1559 *
1560 * Returns %true if an ongoing memcg OOM situation was detected and
1561 * completed, %false otherwise.
1562 */
1563 bool mem_cgroup_oom_synchronize(bool handle)
1564 {
1565 struct mem_cgroup *memcg = current->memcg_in_oom;
1566 struct oom_wait_info owait;
1567 bool locked;
1568
1569 /* OOM is global, do not handle */
1570 if (!memcg)
1571 return false;
1572
1573 if (!handle)
1574 goto cleanup;
1575
1576 owait.memcg = memcg;
1577 owait.wait.flags = 0;
1578 owait.wait.func = memcg_oom_wake_function;
1579 owait.wait.private = current;
1580 INIT_LIST_HEAD(&owait.wait.task_list);
1581
1582 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1583 mem_cgroup_mark_under_oom(memcg);
1584
1585 locked = mem_cgroup_oom_trylock(memcg);
1586
1587 if (locked)
1588 mem_cgroup_oom_notify(memcg);
1589
1590 if (locked && !memcg->oom_kill_disable) {
1591 mem_cgroup_unmark_under_oom(memcg);
1592 finish_wait(&memcg_oom_waitq, &owait.wait);
1593 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1594 current->memcg_oom_order);
1595 } else {
1596 schedule();
1597 mem_cgroup_unmark_under_oom(memcg);
1598 finish_wait(&memcg_oom_waitq, &owait.wait);
1599 }
1600
1601 if (locked) {
1602 mem_cgroup_oom_unlock(memcg);
1603 /*
1604 * There is no guarantee that an OOM-lock contender
1605 * sees the wakeups triggered by the OOM kill
1606 * uncharges. Wake any sleepers explicitely.
1607 */
1608 memcg_oom_recover(memcg);
1609 }
1610 cleanup:
1611 current->memcg_in_oom = NULL;
1612 css_put(&memcg->css);
1613 return true;
1614 }
1615
1616 /**
1617 * lock_page_memcg - lock a page->mem_cgroup binding
1618 * @page: the page
1619 *
1620 * This function protects unlocked LRU pages from being moved to
1621 * another cgroup and stabilizes their page->mem_cgroup binding.
1622 */
1623 void lock_page_memcg(struct page *page)
1624 {
1625 struct mem_cgroup *memcg;
1626 unsigned long flags;
1627
1628 /*
1629 * The RCU lock is held throughout the transaction. The fast
1630 * path can get away without acquiring the memcg->move_lock
1631 * because page moving starts with an RCU grace period.
1632 */
1633 rcu_read_lock();
1634
1635 if (mem_cgroup_disabled())
1636 return;
1637 again:
1638 memcg = page->mem_cgroup;
1639 if (unlikely(!memcg))
1640 return;
1641
1642 if (atomic_read(&memcg->moving_account) <= 0)
1643 return;
1644
1645 spin_lock_irqsave(&memcg->move_lock, flags);
1646 if (memcg != page->mem_cgroup) {
1647 spin_unlock_irqrestore(&memcg->move_lock, flags);
1648 goto again;
1649 }
1650
1651 /*
1652 * When charge migration first begins, we can have locked and
1653 * unlocked page stat updates happening concurrently. Track
1654 * the task who has the lock for unlock_page_memcg().
1655 */
1656 memcg->move_lock_task = current;
1657 memcg->move_lock_flags = flags;
1658
1659 return;
1660 }
1661 EXPORT_SYMBOL(lock_page_memcg);
1662
1663 /**
1664 * unlock_page_memcg - unlock a page->mem_cgroup binding
1665 * @page: the page
1666 */
1667 void unlock_page_memcg(struct page *page)
1668 {
1669 struct mem_cgroup *memcg = page->mem_cgroup;
1670
1671 if (memcg && memcg->move_lock_task == current) {
1672 unsigned long flags = memcg->move_lock_flags;
1673
1674 memcg->move_lock_task = NULL;
1675 memcg->move_lock_flags = 0;
1676
1677 spin_unlock_irqrestore(&memcg->move_lock, flags);
1678 }
1679
1680 rcu_read_unlock();
1681 }
1682 EXPORT_SYMBOL(unlock_page_memcg);
1683
1684 /*
1685 * size of first charge trial. "32" comes from vmscan.c's magic value.
1686 * TODO: maybe necessary to use big numbers in big irons.
1687 */
1688 #define CHARGE_BATCH 32U
1689 struct memcg_stock_pcp {
1690 struct mem_cgroup *cached; /* this never be root cgroup */
1691 unsigned int nr_pages;
1692 struct work_struct work;
1693 unsigned long flags;
1694 #define FLUSHING_CACHED_CHARGE 0
1695 };
1696 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1697 static DEFINE_MUTEX(percpu_charge_mutex);
1698
1699 /**
1700 * consume_stock: Try to consume stocked charge on this cpu.
1701 * @memcg: memcg to consume from.
1702 * @nr_pages: how many pages to charge.
1703 *
1704 * The charges will only happen if @memcg matches the current cpu's memcg
1705 * stock, and at least @nr_pages are available in that stock. Failure to
1706 * service an allocation will refill the stock.
1707 *
1708 * returns true if successful, false otherwise.
1709 */
1710 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1711 {
1712 struct memcg_stock_pcp *stock;
1713 unsigned long flags;
1714 bool ret = false;
1715
1716 if (nr_pages > CHARGE_BATCH)
1717 return ret;
1718
1719 local_irq_save(flags);
1720
1721 stock = this_cpu_ptr(&memcg_stock);
1722 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1723 stock->nr_pages -= nr_pages;
1724 ret = true;
1725 }
1726
1727 local_irq_restore(flags);
1728
1729 return ret;
1730 }
1731
1732 /*
1733 * Returns stocks cached in percpu and reset cached information.
1734 */
1735 static void drain_stock(struct memcg_stock_pcp *stock)
1736 {
1737 struct mem_cgroup *old = stock->cached;
1738
1739 if (stock->nr_pages) {
1740 page_counter_uncharge(&old->memory, stock->nr_pages);
1741 if (do_memsw_account())
1742 page_counter_uncharge(&old->memsw, stock->nr_pages);
1743 css_put_many(&old->css, stock->nr_pages);
1744 stock->nr_pages = 0;
1745 }
1746 stock->cached = NULL;
1747 }
1748
1749 static void drain_local_stock(struct work_struct *dummy)
1750 {
1751 struct memcg_stock_pcp *stock;
1752 unsigned long flags;
1753
1754 local_irq_save(flags);
1755
1756 stock = this_cpu_ptr(&memcg_stock);
1757 drain_stock(stock);
1758 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1759
1760 local_irq_restore(flags);
1761 }
1762
1763 /*
1764 * Cache charges(val) to local per_cpu area.
1765 * This will be consumed by consume_stock() function, later.
1766 */
1767 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1768 {
1769 struct memcg_stock_pcp *stock;
1770 unsigned long flags;
1771
1772 local_irq_save(flags);
1773
1774 stock = this_cpu_ptr(&memcg_stock);
1775 if (stock->cached != memcg) { /* reset if necessary */
1776 drain_stock(stock);
1777 stock->cached = memcg;
1778 }
1779 stock->nr_pages += nr_pages;
1780
1781 local_irq_restore(flags);
1782 }
1783
1784 /*
1785 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1786 * of the hierarchy under it.
1787 */
1788 static void drain_all_stock(struct mem_cgroup *root_memcg)
1789 {
1790 int cpu, curcpu;
1791
1792 /* If someone's already draining, avoid adding running more workers. */
1793 if (!mutex_trylock(&percpu_charge_mutex))
1794 return;
1795 /* Notify other cpus that system-wide "drain" is running */
1796 get_online_cpus();
1797 curcpu = get_cpu();
1798 for_each_online_cpu(cpu) {
1799 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1800 struct mem_cgroup *memcg;
1801
1802 memcg = stock->cached;
1803 if (!memcg || !stock->nr_pages)
1804 continue;
1805 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1806 continue;
1807 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1808 if (cpu == curcpu)
1809 drain_local_stock(&stock->work);
1810 else
1811 schedule_work_on(cpu, &stock->work);
1812 }
1813 }
1814 put_cpu();
1815 put_online_cpus();
1816 mutex_unlock(&percpu_charge_mutex);
1817 }
1818
1819 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1820 {
1821 struct memcg_stock_pcp *stock;
1822
1823 stock = &per_cpu(memcg_stock, cpu);
1824 drain_stock(stock);
1825 return 0;
1826 }
1827
1828 static void reclaim_high(struct mem_cgroup *memcg,
1829 unsigned int nr_pages,
1830 gfp_t gfp_mask)
1831 {
1832 do {
1833 if (page_counter_read(&memcg->memory) <= memcg->high)
1834 continue;
1835 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1836 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1837 } while ((memcg = parent_mem_cgroup(memcg)));
1838 }
1839
1840 static void high_work_func(struct work_struct *work)
1841 {
1842 struct mem_cgroup *memcg;
1843
1844 memcg = container_of(work, struct mem_cgroup, high_work);
1845 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1846 }
1847
1848 /*
1849 * Scheduled by try_charge() to be executed from the userland return path
1850 * and reclaims memory over the high limit.
1851 */
1852 void mem_cgroup_handle_over_high(void)
1853 {
1854 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1855 struct mem_cgroup *memcg;
1856
1857 if (likely(!nr_pages))
1858 return;
1859
1860 memcg = get_mem_cgroup_from_mm(current->mm);
1861 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1862 css_put(&memcg->css);
1863 current->memcg_nr_pages_over_high = 0;
1864 }
1865
1866 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1867 unsigned int nr_pages)
1868 {
1869 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1870 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1871 struct mem_cgroup *mem_over_limit;
1872 struct page_counter *counter;
1873 unsigned long nr_reclaimed;
1874 bool may_swap = true;
1875 bool drained = false;
1876
1877 if (mem_cgroup_is_root(memcg))
1878 return 0;
1879 retry:
1880 if (consume_stock(memcg, nr_pages))
1881 return 0;
1882
1883 if (!do_memsw_account() ||
1884 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1885 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1886 goto done_restock;
1887 if (do_memsw_account())
1888 page_counter_uncharge(&memcg->memsw, batch);
1889 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1890 } else {
1891 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1892 may_swap = false;
1893 }
1894
1895 if (batch > nr_pages) {
1896 batch = nr_pages;
1897 goto retry;
1898 }
1899
1900 /*
1901 * Unlike in global OOM situations, memcg is not in a physical
1902 * memory shortage. Allow dying and OOM-killed tasks to
1903 * bypass the last charges so that they can exit quickly and
1904 * free their memory.
1905 */
1906 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1907 fatal_signal_pending(current) ||
1908 current->flags & PF_EXITING))
1909 goto force;
1910
1911 /*
1912 * Prevent unbounded recursion when reclaim operations need to
1913 * allocate memory. This might exceed the limits temporarily,
1914 * but we prefer facilitating memory reclaim and getting back
1915 * under the limit over triggering OOM kills in these cases.
1916 */
1917 if (unlikely(current->flags & PF_MEMALLOC))
1918 goto force;
1919
1920 if (unlikely(task_in_memcg_oom(current)))
1921 goto nomem;
1922
1923 if (!gfpflags_allow_blocking(gfp_mask))
1924 goto nomem;
1925
1926 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1927
1928 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1929 gfp_mask, may_swap);
1930
1931 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1932 goto retry;
1933
1934 if (!drained) {
1935 drain_all_stock(mem_over_limit);
1936 drained = true;
1937 goto retry;
1938 }
1939
1940 if (gfp_mask & __GFP_NORETRY)
1941 goto nomem;
1942 /*
1943 * Even though the limit is exceeded at this point, reclaim
1944 * may have been able to free some pages. Retry the charge
1945 * before killing the task.
1946 *
1947 * Only for regular pages, though: huge pages are rather
1948 * unlikely to succeed so close to the limit, and we fall back
1949 * to regular pages anyway in case of failure.
1950 */
1951 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1952 goto retry;
1953 /*
1954 * At task move, charge accounts can be doubly counted. So, it's
1955 * better to wait until the end of task_move if something is going on.
1956 */
1957 if (mem_cgroup_wait_acct_move(mem_over_limit))
1958 goto retry;
1959
1960 if (nr_retries--)
1961 goto retry;
1962
1963 if (gfp_mask & __GFP_NOFAIL)
1964 goto force;
1965
1966 if (fatal_signal_pending(current))
1967 goto force;
1968
1969 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1970
1971 mem_cgroup_oom(mem_over_limit, gfp_mask,
1972 get_order(nr_pages * PAGE_SIZE));
1973 nomem:
1974 if (!(gfp_mask & __GFP_NOFAIL))
1975 return -ENOMEM;
1976 force:
1977 /*
1978 * The allocation either can't fail or will lead to more memory
1979 * being freed very soon. Allow memory usage go over the limit
1980 * temporarily by force charging it.
1981 */
1982 page_counter_charge(&memcg->memory, nr_pages);
1983 if (do_memsw_account())
1984 page_counter_charge(&memcg->memsw, nr_pages);
1985 css_get_many(&memcg->css, nr_pages);
1986
1987 return 0;
1988
1989 done_restock:
1990 css_get_many(&memcg->css, batch);
1991 if (batch > nr_pages)
1992 refill_stock(memcg, batch - nr_pages);
1993
1994 /*
1995 * If the hierarchy is above the normal consumption range, schedule
1996 * reclaim on returning to userland. We can perform reclaim here
1997 * if __GFP_RECLAIM but let's always punt for simplicity and so that
1998 * GFP_KERNEL can consistently be used during reclaim. @memcg is
1999 * not recorded as it most likely matches current's and won't
2000 * change in the meantime. As high limit is checked again before
2001 * reclaim, the cost of mismatch is negligible.
2002 */
2003 do {
2004 if (page_counter_read(&memcg->memory) > memcg->high) {
2005 /* Don't bother a random interrupted task */
2006 if (in_interrupt()) {
2007 schedule_work(&memcg->high_work);
2008 break;
2009 }
2010 current->memcg_nr_pages_over_high += batch;
2011 set_notify_resume(current);
2012 break;
2013 }
2014 } while ((memcg = parent_mem_cgroup(memcg)));
2015
2016 return 0;
2017 }
2018
2019 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2020 {
2021 if (mem_cgroup_is_root(memcg))
2022 return;
2023
2024 page_counter_uncharge(&memcg->memory, nr_pages);
2025 if (do_memsw_account())
2026 page_counter_uncharge(&memcg->memsw, nr_pages);
2027
2028 css_put_many(&memcg->css, nr_pages);
2029 }
2030
2031 static void lock_page_lru(struct page *page, int *isolated)
2032 {
2033 struct zone *zone = page_zone(page);
2034
2035 spin_lock_irq(zone_lru_lock(zone));
2036 if (PageLRU(page)) {
2037 struct lruvec *lruvec;
2038
2039 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2040 ClearPageLRU(page);
2041 del_page_from_lru_list(page, lruvec, page_lru(page));
2042 *isolated = 1;
2043 } else
2044 *isolated = 0;
2045 }
2046
2047 static void unlock_page_lru(struct page *page, int isolated)
2048 {
2049 struct zone *zone = page_zone(page);
2050
2051 if (isolated) {
2052 struct lruvec *lruvec;
2053
2054 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2055 VM_BUG_ON_PAGE(PageLRU(page), page);
2056 SetPageLRU(page);
2057 add_page_to_lru_list(page, lruvec, page_lru(page));
2058 }
2059 spin_unlock_irq(zone_lru_lock(zone));
2060 }
2061
2062 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2063 bool lrucare)
2064 {
2065 int isolated;
2066
2067 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2068
2069 /*
2070 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2071 * may already be on some other mem_cgroup's LRU. Take care of it.
2072 */
2073 if (lrucare)
2074 lock_page_lru(page, &isolated);
2075
2076 /*
2077 * Nobody should be changing or seriously looking at
2078 * page->mem_cgroup at this point:
2079 *
2080 * - the page is uncharged
2081 *
2082 * - the page is off-LRU
2083 *
2084 * - an anonymous fault has exclusive page access, except for
2085 * a locked page table
2086 *
2087 * - a page cache insertion, a swapin fault, or a migration
2088 * have the page locked
2089 */
2090 page->mem_cgroup = memcg;
2091
2092 if (lrucare)
2093 unlock_page_lru(page, isolated);
2094 }
2095
2096 #ifndef CONFIG_SLOB
2097 static int memcg_alloc_cache_id(void)
2098 {
2099 int id, size;
2100 int err;
2101
2102 id = ida_simple_get(&memcg_cache_ida,
2103 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2104 if (id < 0)
2105 return id;
2106
2107 if (id < memcg_nr_cache_ids)
2108 return id;
2109
2110 /*
2111 * There's no space for the new id in memcg_caches arrays,
2112 * so we have to grow them.
2113 */
2114 down_write(&memcg_cache_ids_sem);
2115
2116 size = 2 * (id + 1);
2117 if (size < MEMCG_CACHES_MIN_SIZE)
2118 size = MEMCG_CACHES_MIN_SIZE;
2119 else if (size > MEMCG_CACHES_MAX_SIZE)
2120 size = MEMCG_CACHES_MAX_SIZE;
2121
2122 err = memcg_update_all_caches(size);
2123 if (!err)
2124 err = memcg_update_all_list_lrus(size);
2125 if (!err)
2126 memcg_nr_cache_ids = size;
2127
2128 up_write(&memcg_cache_ids_sem);
2129
2130 if (err) {
2131 ida_simple_remove(&memcg_cache_ida, id);
2132 return err;
2133 }
2134 return id;
2135 }
2136
2137 static void memcg_free_cache_id(int id)
2138 {
2139 ida_simple_remove(&memcg_cache_ida, id);
2140 }
2141
2142 struct memcg_kmem_cache_create_work {
2143 struct mem_cgroup *memcg;
2144 struct kmem_cache *cachep;
2145 struct work_struct work;
2146 };
2147
2148 static void memcg_kmem_cache_create_func(struct work_struct *w)
2149 {
2150 struct memcg_kmem_cache_create_work *cw =
2151 container_of(w, struct memcg_kmem_cache_create_work, work);
2152 struct mem_cgroup *memcg = cw->memcg;
2153 struct kmem_cache *cachep = cw->cachep;
2154
2155 memcg_create_kmem_cache(memcg, cachep);
2156
2157 css_put(&memcg->css);
2158 kfree(cw);
2159 }
2160
2161 /*
2162 * Enqueue the creation of a per-memcg kmem_cache.
2163 */
2164 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2165 struct kmem_cache *cachep)
2166 {
2167 struct memcg_kmem_cache_create_work *cw;
2168
2169 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2170 if (!cw)
2171 return;
2172
2173 css_get(&memcg->css);
2174
2175 cw->memcg = memcg;
2176 cw->cachep = cachep;
2177 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2178
2179 queue_work(memcg_kmem_cache_wq, &cw->work);
2180 }
2181
2182 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2183 struct kmem_cache *cachep)
2184 {
2185 /*
2186 * We need to stop accounting when we kmalloc, because if the
2187 * corresponding kmalloc cache is not yet created, the first allocation
2188 * in __memcg_schedule_kmem_cache_create will recurse.
2189 *
2190 * However, it is better to enclose the whole function. Depending on
2191 * the debugging options enabled, INIT_WORK(), for instance, can
2192 * trigger an allocation. This too, will make us recurse. Because at
2193 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2194 * the safest choice is to do it like this, wrapping the whole function.
2195 */
2196 current->memcg_kmem_skip_account = 1;
2197 __memcg_schedule_kmem_cache_create(memcg, cachep);
2198 current->memcg_kmem_skip_account = 0;
2199 }
2200
2201 static inline bool memcg_kmem_bypass(void)
2202 {
2203 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2204 return true;
2205 return false;
2206 }
2207
2208 /**
2209 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2210 * @cachep: the original global kmem cache
2211 *
2212 * Return the kmem_cache we're supposed to use for a slab allocation.
2213 * We try to use the current memcg's version of the cache.
2214 *
2215 * If the cache does not exist yet, if we are the first user of it, we
2216 * create it asynchronously in a workqueue and let the current allocation
2217 * go through with the original cache.
2218 *
2219 * This function takes a reference to the cache it returns to assure it
2220 * won't get destroyed while we are working with it. Once the caller is
2221 * done with it, memcg_kmem_put_cache() must be called to release the
2222 * reference.
2223 */
2224 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2225 {
2226 struct mem_cgroup *memcg;
2227 struct kmem_cache *memcg_cachep;
2228 int kmemcg_id;
2229
2230 VM_BUG_ON(!is_root_cache(cachep));
2231
2232 if (memcg_kmem_bypass())
2233 return cachep;
2234
2235 if (current->memcg_kmem_skip_account)
2236 return cachep;
2237
2238 memcg = get_mem_cgroup_from_mm(current->mm);
2239 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2240 if (kmemcg_id < 0)
2241 goto out;
2242
2243 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2244 if (likely(memcg_cachep))
2245 return memcg_cachep;
2246
2247 /*
2248 * If we are in a safe context (can wait, and not in interrupt
2249 * context), we could be be predictable and return right away.
2250 * This would guarantee that the allocation being performed
2251 * already belongs in the new cache.
2252 *
2253 * However, there are some clashes that can arrive from locking.
2254 * For instance, because we acquire the slab_mutex while doing
2255 * memcg_create_kmem_cache, this means no further allocation
2256 * could happen with the slab_mutex held. So it's better to
2257 * defer everything.
2258 */
2259 memcg_schedule_kmem_cache_create(memcg, cachep);
2260 out:
2261 css_put(&memcg->css);
2262 return cachep;
2263 }
2264
2265 /**
2266 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2267 * @cachep: the cache returned by memcg_kmem_get_cache
2268 */
2269 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2270 {
2271 if (!is_root_cache(cachep))
2272 css_put(&cachep->memcg_params.memcg->css);
2273 }
2274
2275 /**
2276 * memcg_kmem_charge: charge a kmem page
2277 * @page: page to charge
2278 * @gfp: reclaim mode
2279 * @order: allocation order
2280 * @memcg: memory cgroup to charge
2281 *
2282 * Returns 0 on success, an error code on failure.
2283 */
2284 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2285 struct mem_cgroup *memcg)
2286 {
2287 unsigned int nr_pages = 1 << order;
2288 struct page_counter *counter;
2289 int ret;
2290
2291 ret = try_charge(memcg, gfp, nr_pages);
2292 if (ret)
2293 return ret;
2294
2295 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2296 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2297 cancel_charge(memcg, nr_pages);
2298 return -ENOMEM;
2299 }
2300
2301 page->mem_cgroup = memcg;
2302
2303 return 0;
2304 }
2305
2306 /**
2307 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2308 * @page: page to charge
2309 * @gfp: reclaim mode
2310 * @order: allocation order
2311 *
2312 * Returns 0 on success, an error code on failure.
2313 */
2314 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2315 {
2316 struct mem_cgroup *memcg;
2317 int ret = 0;
2318
2319 if (memcg_kmem_bypass())
2320 return 0;
2321
2322 memcg = get_mem_cgroup_from_mm(current->mm);
2323 if (!mem_cgroup_is_root(memcg)) {
2324 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2325 if (!ret)
2326 __SetPageKmemcg(page);
2327 }
2328 css_put(&memcg->css);
2329 return ret;
2330 }
2331 /**
2332 * memcg_kmem_uncharge: uncharge a kmem page
2333 * @page: page to uncharge
2334 * @order: allocation order
2335 */
2336 void memcg_kmem_uncharge(struct page *page, int order)
2337 {
2338 struct mem_cgroup *memcg = page->mem_cgroup;
2339 unsigned int nr_pages = 1 << order;
2340
2341 if (!memcg)
2342 return;
2343
2344 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2345
2346 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2347 page_counter_uncharge(&memcg->kmem, nr_pages);
2348
2349 page_counter_uncharge(&memcg->memory, nr_pages);
2350 if (do_memsw_account())
2351 page_counter_uncharge(&memcg->memsw, nr_pages);
2352
2353 page->mem_cgroup = NULL;
2354
2355 /* slab pages do not have PageKmemcg flag set */
2356 if (PageKmemcg(page))
2357 __ClearPageKmemcg(page);
2358
2359 css_put_many(&memcg->css, nr_pages);
2360 }
2361 #endif /* !CONFIG_SLOB */
2362
2363 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2364
2365 /*
2366 * Because tail pages are not marked as "used", set it. We're under
2367 * zone_lru_lock and migration entries setup in all page mappings.
2368 */
2369 void mem_cgroup_split_huge_fixup(struct page *head)
2370 {
2371 int i;
2372
2373 if (mem_cgroup_disabled())
2374 return;
2375
2376 for (i = 1; i < HPAGE_PMD_NR; i++)
2377 head[i].mem_cgroup = head->mem_cgroup;
2378
2379 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2380 HPAGE_PMD_NR);
2381 }
2382 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2383
2384 #ifdef CONFIG_MEMCG_SWAP
2385 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2386 bool charge)
2387 {
2388 int val = (charge) ? 1 : -1;
2389 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2390 }
2391
2392 /**
2393 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2394 * @entry: swap entry to be moved
2395 * @from: mem_cgroup which the entry is moved from
2396 * @to: mem_cgroup which the entry is moved to
2397 *
2398 * It succeeds only when the swap_cgroup's record for this entry is the same
2399 * as the mem_cgroup's id of @from.
2400 *
2401 * Returns 0 on success, -EINVAL on failure.
2402 *
2403 * The caller must have charged to @to, IOW, called page_counter_charge() about
2404 * both res and memsw, and called css_get().
2405 */
2406 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2407 struct mem_cgroup *from, struct mem_cgroup *to)
2408 {
2409 unsigned short old_id, new_id;
2410
2411 old_id = mem_cgroup_id(from);
2412 new_id = mem_cgroup_id(to);
2413
2414 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2415 mem_cgroup_swap_statistics(from, false);
2416 mem_cgroup_swap_statistics(to, true);
2417 return 0;
2418 }
2419 return -EINVAL;
2420 }
2421 #else
2422 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2423 struct mem_cgroup *from, struct mem_cgroup *to)
2424 {
2425 return -EINVAL;
2426 }
2427 #endif
2428
2429 static DEFINE_MUTEX(memcg_limit_mutex);
2430
2431 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2432 unsigned long limit)
2433 {
2434 unsigned long curusage;
2435 unsigned long oldusage;
2436 bool enlarge = false;
2437 int retry_count;
2438 int ret;
2439
2440 /*
2441 * For keeping hierarchical_reclaim simple, how long we should retry
2442 * is depends on callers. We set our retry-count to be function
2443 * of # of children which we should visit in this loop.
2444 */
2445 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2446 mem_cgroup_count_children(memcg);
2447
2448 oldusage = page_counter_read(&memcg->memory);
2449
2450 do {
2451 if (signal_pending(current)) {
2452 ret = -EINTR;
2453 break;
2454 }
2455
2456 mutex_lock(&memcg_limit_mutex);
2457 if (limit > memcg->memsw.limit) {
2458 mutex_unlock(&memcg_limit_mutex);
2459 ret = -EINVAL;
2460 break;
2461 }
2462 if (limit > memcg->memory.limit)
2463 enlarge = true;
2464 ret = page_counter_limit(&memcg->memory, limit);
2465 mutex_unlock(&memcg_limit_mutex);
2466
2467 if (!ret)
2468 break;
2469
2470 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2471
2472 curusage = page_counter_read(&memcg->memory);
2473 /* Usage is reduced ? */
2474 if (curusage >= oldusage)
2475 retry_count--;
2476 else
2477 oldusage = curusage;
2478 } while (retry_count);
2479
2480 if (!ret && enlarge)
2481 memcg_oom_recover(memcg);
2482
2483 return ret;
2484 }
2485
2486 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2487 unsigned long limit)
2488 {
2489 unsigned long curusage;
2490 unsigned long oldusage;
2491 bool enlarge = false;
2492 int retry_count;
2493 int ret;
2494
2495 /* see mem_cgroup_resize_res_limit */
2496 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2497 mem_cgroup_count_children(memcg);
2498
2499 oldusage = page_counter_read(&memcg->memsw);
2500
2501 do {
2502 if (signal_pending(current)) {
2503 ret = -EINTR;
2504 break;
2505 }
2506
2507 mutex_lock(&memcg_limit_mutex);
2508 if (limit < memcg->memory.limit) {
2509 mutex_unlock(&memcg_limit_mutex);
2510 ret = -EINVAL;
2511 break;
2512 }
2513 if (limit > memcg->memsw.limit)
2514 enlarge = true;
2515 ret = page_counter_limit(&memcg->memsw, limit);
2516 mutex_unlock(&memcg_limit_mutex);
2517
2518 if (!ret)
2519 break;
2520
2521 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2522
2523 curusage = page_counter_read(&memcg->memsw);
2524 /* Usage is reduced ? */
2525 if (curusage >= oldusage)
2526 retry_count--;
2527 else
2528 oldusage = curusage;
2529 } while (retry_count);
2530
2531 if (!ret && enlarge)
2532 memcg_oom_recover(memcg);
2533
2534 return ret;
2535 }
2536
2537 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2538 gfp_t gfp_mask,
2539 unsigned long *total_scanned)
2540 {
2541 unsigned long nr_reclaimed = 0;
2542 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2543 unsigned long reclaimed;
2544 int loop = 0;
2545 struct mem_cgroup_tree_per_node *mctz;
2546 unsigned long excess;
2547 unsigned long nr_scanned;
2548
2549 if (order > 0)
2550 return 0;
2551
2552 mctz = soft_limit_tree_node(pgdat->node_id);
2553
2554 /*
2555 * Do not even bother to check the largest node if the root
2556 * is empty. Do it lockless to prevent lock bouncing. Races
2557 * are acceptable as soft limit is best effort anyway.
2558 */
2559 if (RB_EMPTY_ROOT(&mctz->rb_root))
2560 return 0;
2561
2562 /*
2563 * This loop can run a while, specially if mem_cgroup's continuously
2564 * keep exceeding their soft limit and putting the system under
2565 * pressure
2566 */
2567 do {
2568 if (next_mz)
2569 mz = next_mz;
2570 else
2571 mz = mem_cgroup_largest_soft_limit_node(mctz);
2572 if (!mz)
2573 break;
2574
2575 nr_scanned = 0;
2576 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2577 gfp_mask, &nr_scanned);
2578 nr_reclaimed += reclaimed;
2579 *total_scanned += nr_scanned;
2580 spin_lock_irq(&mctz->lock);
2581 __mem_cgroup_remove_exceeded(mz, mctz);
2582
2583 /*
2584 * If we failed to reclaim anything from this memory cgroup
2585 * it is time to move on to the next cgroup
2586 */
2587 next_mz = NULL;
2588 if (!reclaimed)
2589 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2590
2591 excess = soft_limit_excess(mz->memcg);
2592 /*
2593 * One school of thought says that we should not add
2594 * back the node to the tree if reclaim returns 0.
2595 * But our reclaim could return 0, simply because due
2596 * to priority we are exposing a smaller subset of
2597 * memory to reclaim from. Consider this as a longer
2598 * term TODO.
2599 */
2600 /* If excess == 0, no tree ops */
2601 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2602 spin_unlock_irq(&mctz->lock);
2603 css_put(&mz->memcg->css);
2604 loop++;
2605 /*
2606 * Could not reclaim anything and there are no more
2607 * mem cgroups to try or we seem to be looping without
2608 * reclaiming anything.
2609 */
2610 if (!nr_reclaimed &&
2611 (next_mz == NULL ||
2612 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2613 break;
2614 } while (!nr_reclaimed);
2615 if (next_mz)
2616 css_put(&next_mz->memcg->css);
2617 return nr_reclaimed;
2618 }
2619
2620 /*
2621 * Test whether @memcg has children, dead or alive. Note that this
2622 * function doesn't care whether @memcg has use_hierarchy enabled and
2623 * returns %true if there are child csses according to the cgroup
2624 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2625 */
2626 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2627 {
2628 bool ret;
2629
2630 rcu_read_lock();
2631 ret = css_next_child(NULL, &memcg->css);
2632 rcu_read_unlock();
2633 return ret;
2634 }
2635
2636 /*
2637 * Reclaims as many pages from the given memcg as possible.
2638 *
2639 * Caller is responsible for holding css reference for memcg.
2640 */
2641 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2642 {
2643 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2644
2645 /* we call try-to-free pages for make this cgroup empty */
2646 lru_add_drain_all();
2647 /* try to free all pages in this cgroup */
2648 while (nr_retries && page_counter_read(&memcg->memory)) {
2649 int progress;
2650
2651 if (signal_pending(current))
2652 return -EINTR;
2653
2654 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2655 GFP_KERNEL, true);
2656 if (!progress) {
2657 nr_retries--;
2658 /* maybe some writeback is necessary */
2659 congestion_wait(BLK_RW_ASYNC, HZ/10);
2660 }
2661
2662 }
2663
2664 return 0;
2665 }
2666
2667 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2668 char *buf, size_t nbytes,
2669 loff_t off)
2670 {
2671 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2672
2673 if (mem_cgroup_is_root(memcg))
2674 return -EINVAL;
2675 return mem_cgroup_force_empty(memcg) ?: nbytes;
2676 }
2677
2678 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2679 struct cftype *cft)
2680 {
2681 return mem_cgroup_from_css(css)->use_hierarchy;
2682 }
2683
2684 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2685 struct cftype *cft, u64 val)
2686 {
2687 int retval = 0;
2688 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2689 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2690
2691 if (memcg->use_hierarchy == val)
2692 return 0;
2693
2694 /*
2695 * If parent's use_hierarchy is set, we can't make any modifications
2696 * in the child subtrees. If it is unset, then the change can
2697 * occur, provided the current cgroup has no children.
2698 *
2699 * For the root cgroup, parent_mem is NULL, we allow value to be
2700 * set if there are no children.
2701 */
2702 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2703 (val == 1 || val == 0)) {
2704 if (!memcg_has_children(memcg))
2705 memcg->use_hierarchy = val;
2706 else
2707 retval = -EBUSY;
2708 } else
2709 retval = -EINVAL;
2710
2711 return retval;
2712 }
2713
2714 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2715 {
2716 struct mem_cgroup *iter;
2717 int i;
2718
2719 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2720
2721 for_each_mem_cgroup_tree(iter, memcg) {
2722 for (i = 0; i < MEMCG_NR_STAT; i++)
2723 stat[i] += mem_cgroup_read_stat(iter, i);
2724 }
2725 }
2726
2727 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2728 {
2729 struct mem_cgroup *iter;
2730 int i;
2731
2732 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2733
2734 for_each_mem_cgroup_tree(iter, memcg) {
2735 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2736 events[i] += mem_cgroup_read_events(iter, i);
2737 }
2738 }
2739
2740 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2741 {
2742 unsigned long val = 0;
2743
2744 if (mem_cgroup_is_root(memcg)) {
2745 struct mem_cgroup *iter;
2746
2747 for_each_mem_cgroup_tree(iter, memcg) {
2748 val += mem_cgroup_read_stat(iter,
2749 MEM_CGROUP_STAT_CACHE);
2750 val += mem_cgroup_read_stat(iter,
2751 MEM_CGROUP_STAT_RSS);
2752 if (swap)
2753 val += mem_cgroup_read_stat(iter,
2754 MEM_CGROUP_STAT_SWAP);
2755 }
2756 } else {
2757 if (!swap)
2758 val = page_counter_read(&memcg->memory);
2759 else
2760 val = page_counter_read(&memcg->memsw);
2761 }
2762 return val;
2763 }
2764
2765 enum {
2766 RES_USAGE,
2767 RES_LIMIT,
2768 RES_MAX_USAGE,
2769 RES_FAILCNT,
2770 RES_SOFT_LIMIT,
2771 };
2772
2773 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2774 struct cftype *cft)
2775 {
2776 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2777 struct page_counter *counter;
2778
2779 switch (MEMFILE_TYPE(cft->private)) {
2780 case _MEM:
2781 counter = &memcg->memory;
2782 break;
2783 case _MEMSWAP:
2784 counter = &memcg->memsw;
2785 break;
2786 case _KMEM:
2787 counter = &memcg->kmem;
2788 break;
2789 case _TCP:
2790 counter = &memcg->tcpmem;
2791 break;
2792 default:
2793 BUG();
2794 }
2795
2796 switch (MEMFILE_ATTR(cft->private)) {
2797 case RES_USAGE:
2798 if (counter == &memcg->memory)
2799 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2800 if (counter == &memcg->memsw)
2801 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2802 return (u64)page_counter_read(counter) * PAGE_SIZE;
2803 case RES_LIMIT:
2804 return (u64)counter->limit * PAGE_SIZE;
2805 case RES_MAX_USAGE:
2806 return (u64)counter->watermark * PAGE_SIZE;
2807 case RES_FAILCNT:
2808 return counter->failcnt;
2809 case RES_SOFT_LIMIT:
2810 return (u64)memcg->soft_limit * PAGE_SIZE;
2811 default:
2812 BUG();
2813 }
2814 }
2815
2816 #ifndef CONFIG_SLOB
2817 static int memcg_online_kmem(struct mem_cgroup *memcg)
2818 {
2819 int memcg_id;
2820
2821 if (cgroup_memory_nokmem)
2822 return 0;
2823
2824 BUG_ON(memcg->kmemcg_id >= 0);
2825 BUG_ON(memcg->kmem_state);
2826
2827 memcg_id = memcg_alloc_cache_id();
2828 if (memcg_id < 0)
2829 return memcg_id;
2830
2831 static_branch_inc(&memcg_kmem_enabled_key);
2832 /*
2833 * A memory cgroup is considered kmem-online as soon as it gets
2834 * kmemcg_id. Setting the id after enabling static branching will
2835 * guarantee no one starts accounting before all call sites are
2836 * patched.
2837 */
2838 memcg->kmemcg_id = memcg_id;
2839 memcg->kmem_state = KMEM_ONLINE;
2840 INIT_LIST_HEAD(&memcg->kmem_caches);
2841
2842 return 0;
2843 }
2844
2845 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2846 {
2847 struct cgroup_subsys_state *css;
2848 struct mem_cgroup *parent, *child;
2849 int kmemcg_id;
2850
2851 if (memcg->kmem_state != KMEM_ONLINE)
2852 return;
2853 /*
2854 * Clear the online state before clearing memcg_caches array
2855 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2856 * guarantees that no cache will be created for this cgroup
2857 * after we are done (see memcg_create_kmem_cache()).
2858 */
2859 memcg->kmem_state = KMEM_ALLOCATED;
2860
2861 memcg_deactivate_kmem_caches(memcg);
2862
2863 kmemcg_id = memcg->kmemcg_id;
2864 BUG_ON(kmemcg_id < 0);
2865
2866 parent = parent_mem_cgroup(memcg);
2867 if (!parent)
2868 parent = root_mem_cgroup;
2869
2870 /*
2871 * Change kmemcg_id of this cgroup and all its descendants to the
2872 * parent's id, and then move all entries from this cgroup's list_lrus
2873 * to ones of the parent. After we have finished, all list_lrus
2874 * corresponding to this cgroup are guaranteed to remain empty. The
2875 * ordering is imposed by list_lru_node->lock taken by
2876 * memcg_drain_all_list_lrus().
2877 */
2878 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2879 css_for_each_descendant_pre(css, &memcg->css) {
2880 child = mem_cgroup_from_css(css);
2881 BUG_ON(child->kmemcg_id != kmemcg_id);
2882 child->kmemcg_id = parent->kmemcg_id;
2883 if (!memcg->use_hierarchy)
2884 break;
2885 }
2886 rcu_read_unlock();
2887
2888 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2889
2890 memcg_free_cache_id(kmemcg_id);
2891 }
2892
2893 static void memcg_free_kmem(struct mem_cgroup *memcg)
2894 {
2895 /* css_alloc() failed, offlining didn't happen */
2896 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2897 memcg_offline_kmem(memcg);
2898
2899 if (memcg->kmem_state == KMEM_ALLOCATED) {
2900 memcg_destroy_kmem_caches(memcg);
2901 static_branch_dec(&memcg_kmem_enabled_key);
2902 WARN_ON(page_counter_read(&memcg->kmem));
2903 }
2904 }
2905 #else
2906 static int memcg_online_kmem(struct mem_cgroup *memcg)
2907 {
2908 return 0;
2909 }
2910 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2911 {
2912 }
2913 static void memcg_free_kmem(struct mem_cgroup *memcg)
2914 {
2915 }
2916 #endif /* !CONFIG_SLOB */
2917
2918 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2919 unsigned long limit)
2920 {
2921 int ret;
2922
2923 mutex_lock(&memcg_limit_mutex);
2924 ret = page_counter_limit(&memcg->kmem, limit);
2925 mutex_unlock(&memcg_limit_mutex);
2926 return ret;
2927 }
2928
2929 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2930 {
2931 int ret;
2932
2933 mutex_lock(&memcg_limit_mutex);
2934
2935 ret = page_counter_limit(&memcg->tcpmem, limit);
2936 if (ret)
2937 goto out;
2938
2939 if (!memcg->tcpmem_active) {
2940 /*
2941 * The active flag needs to be written after the static_key
2942 * update. This is what guarantees that the socket activation
2943 * function is the last one to run. See mem_cgroup_sk_alloc()
2944 * for details, and note that we don't mark any socket as
2945 * belonging to this memcg until that flag is up.
2946 *
2947 * We need to do this, because static_keys will span multiple
2948 * sites, but we can't control their order. If we mark a socket
2949 * as accounted, but the accounting functions are not patched in
2950 * yet, we'll lose accounting.
2951 *
2952 * We never race with the readers in mem_cgroup_sk_alloc(),
2953 * because when this value change, the code to process it is not
2954 * patched in yet.
2955 */
2956 static_branch_inc(&memcg_sockets_enabled_key);
2957 memcg->tcpmem_active = true;
2958 }
2959 out:
2960 mutex_unlock(&memcg_limit_mutex);
2961 return ret;
2962 }
2963
2964 /*
2965 * The user of this function is...
2966 * RES_LIMIT.
2967 */
2968 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2969 char *buf, size_t nbytes, loff_t off)
2970 {
2971 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2972 unsigned long nr_pages;
2973 int ret;
2974
2975 buf = strstrip(buf);
2976 ret = page_counter_memparse(buf, "-1", &nr_pages);
2977 if (ret)
2978 return ret;
2979
2980 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2981 case RES_LIMIT:
2982 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2983 ret = -EINVAL;
2984 break;
2985 }
2986 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2987 case _MEM:
2988 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2989 break;
2990 case _MEMSWAP:
2991 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2992 break;
2993 case _KMEM:
2994 ret = memcg_update_kmem_limit(memcg, nr_pages);
2995 break;
2996 case _TCP:
2997 ret = memcg_update_tcp_limit(memcg, nr_pages);
2998 break;
2999 }
3000 break;
3001 case RES_SOFT_LIMIT:
3002 memcg->soft_limit = nr_pages;
3003 ret = 0;
3004 break;
3005 }
3006 return ret ?: nbytes;
3007 }
3008
3009 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3010 size_t nbytes, loff_t off)
3011 {
3012 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3013 struct page_counter *counter;
3014
3015 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3016 case _MEM:
3017 counter = &memcg->memory;
3018 break;
3019 case _MEMSWAP:
3020 counter = &memcg->memsw;
3021 break;
3022 case _KMEM:
3023 counter = &memcg->kmem;
3024 break;
3025 case _TCP:
3026 counter = &memcg->tcpmem;
3027 break;
3028 default:
3029 BUG();
3030 }
3031
3032 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3033 case RES_MAX_USAGE:
3034 page_counter_reset_watermark(counter);
3035 break;
3036 case RES_FAILCNT:
3037 counter->failcnt = 0;
3038 break;
3039 default:
3040 BUG();
3041 }
3042
3043 return nbytes;
3044 }
3045
3046 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3047 struct cftype *cft)
3048 {
3049 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3050 }
3051
3052 #ifdef CONFIG_MMU
3053 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3054 struct cftype *cft, u64 val)
3055 {
3056 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3057
3058 if (val & ~MOVE_MASK)
3059 return -EINVAL;
3060
3061 /*
3062 * No kind of locking is needed in here, because ->can_attach() will
3063 * check this value once in the beginning of the process, and then carry
3064 * on with stale data. This means that changes to this value will only
3065 * affect task migrations starting after the change.
3066 */
3067 memcg->move_charge_at_immigrate = val;
3068 return 0;
3069 }
3070 #else
3071 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3072 struct cftype *cft, u64 val)
3073 {
3074 return -ENOSYS;
3075 }
3076 #endif
3077
3078 #ifdef CONFIG_NUMA
3079 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3080 {
3081 struct numa_stat {
3082 const char *name;
3083 unsigned int lru_mask;
3084 };
3085
3086 static const struct numa_stat stats[] = {
3087 { "total", LRU_ALL },
3088 { "file", LRU_ALL_FILE },
3089 { "anon", LRU_ALL_ANON },
3090 { "unevictable", BIT(LRU_UNEVICTABLE) },
3091 };
3092 const struct numa_stat *stat;
3093 int nid;
3094 unsigned long nr;
3095 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3096
3097 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3098 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3099 seq_printf(m, "%s=%lu", stat->name, nr);
3100 for_each_node_state(nid, N_MEMORY) {
3101 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3102 stat->lru_mask);
3103 seq_printf(m, " N%d=%lu", nid, nr);
3104 }
3105 seq_putc(m, '\n');
3106 }
3107
3108 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3109 struct mem_cgroup *iter;
3110
3111 nr = 0;
3112 for_each_mem_cgroup_tree(iter, memcg)
3113 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3114 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3115 for_each_node_state(nid, N_MEMORY) {
3116 nr = 0;
3117 for_each_mem_cgroup_tree(iter, memcg)
3118 nr += mem_cgroup_node_nr_lru_pages(
3119 iter, nid, stat->lru_mask);
3120 seq_printf(m, " N%d=%lu", nid, nr);
3121 }
3122 seq_putc(m, '\n');
3123 }
3124
3125 return 0;
3126 }
3127 #endif /* CONFIG_NUMA */
3128
3129 static int memcg_stat_show(struct seq_file *m, void *v)
3130 {
3131 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3132 unsigned long memory, memsw;
3133 struct mem_cgroup *mi;
3134 unsigned int i;
3135
3136 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3137 MEM_CGROUP_STAT_NSTATS);
3138 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3139 MEM_CGROUP_EVENTS_NSTATS);
3140 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3141
3142 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3143 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3144 continue;
3145 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3146 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3147 }
3148
3149 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3150 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3151 mem_cgroup_read_events(memcg, i));
3152
3153 for (i = 0; i < NR_LRU_LISTS; i++)
3154 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3155 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3156
3157 /* Hierarchical information */
3158 memory = memsw = PAGE_COUNTER_MAX;
3159 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3160 memory = min(memory, mi->memory.limit);
3161 memsw = min(memsw, mi->memsw.limit);
3162 }
3163 seq_printf(m, "hierarchical_memory_limit %llu\n",
3164 (u64)memory * PAGE_SIZE);
3165 if (do_memsw_account())
3166 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3167 (u64)memsw * PAGE_SIZE);
3168
3169 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3170 unsigned long long val = 0;
3171
3172 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3173 continue;
3174 for_each_mem_cgroup_tree(mi, memcg)
3175 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3176 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3177 }
3178
3179 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3180 unsigned long long val = 0;
3181
3182 for_each_mem_cgroup_tree(mi, memcg)
3183 val += mem_cgroup_read_events(mi, i);
3184 seq_printf(m, "total_%s %llu\n",
3185 mem_cgroup_events_names[i], val);
3186 }
3187
3188 for (i = 0; i < NR_LRU_LISTS; i++) {
3189 unsigned long long val = 0;
3190
3191 for_each_mem_cgroup_tree(mi, memcg)
3192 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3193 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3194 }
3195
3196 #ifdef CONFIG_DEBUG_VM
3197 {
3198 pg_data_t *pgdat;
3199 struct mem_cgroup_per_node *mz;
3200 struct zone_reclaim_stat *rstat;
3201 unsigned long recent_rotated[2] = {0, 0};
3202 unsigned long recent_scanned[2] = {0, 0};
3203
3204 for_each_online_pgdat(pgdat) {
3205 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3206 rstat = &mz->lruvec.reclaim_stat;
3207
3208 recent_rotated[0] += rstat->recent_rotated[0];
3209 recent_rotated[1] += rstat->recent_rotated[1];
3210 recent_scanned[0] += rstat->recent_scanned[0];
3211 recent_scanned[1] += rstat->recent_scanned[1];
3212 }
3213 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3214 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3215 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3216 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3217 }
3218 #endif
3219
3220 return 0;
3221 }
3222
3223 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3224 struct cftype *cft)
3225 {
3226 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3227
3228 return mem_cgroup_swappiness(memcg);
3229 }
3230
3231 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3232 struct cftype *cft, u64 val)
3233 {
3234 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3235
3236 if (val > 100)
3237 return -EINVAL;
3238
3239 if (css->parent)
3240 memcg->swappiness = val;
3241 else
3242 vm_swappiness = val;
3243
3244 return 0;
3245 }
3246
3247 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3248 {
3249 struct mem_cgroup_threshold_ary *t;
3250 unsigned long usage;
3251 int i;
3252
3253 rcu_read_lock();
3254 if (!swap)
3255 t = rcu_dereference(memcg->thresholds.primary);
3256 else
3257 t = rcu_dereference(memcg->memsw_thresholds.primary);
3258
3259 if (!t)
3260 goto unlock;
3261
3262 usage = mem_cgroup_usage(memcg, swap);
3263
3264 /*
3265 * current_threshold points to threshold just below or equal to usage.
3266 * If it's not true, a threshold was crossed after last
3267 * call of __mem_cgroup_threshold().
3268 */
3269 i = t->current_threshold;
3270
3271 /*
3272 * Iterate backward over array of thresholds starting from
3273 * current_threshold and check if a threshold is crossed.
3274 * If none of thresholds below usage is crossed, we read
3275 * only one element of the array here.
3276 */
3277 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3278 eventfd_signal(t->entries[i].eventfd, 1);
3279
3280 /* i = current_threshold + 1 */
3281 i++;
3282
3283 /*
3284 * Iterate forward over array of thresholds starting from
3285 * current_threshold+1 and check if a threshold is crossed.
3286 * If none of thresholds above usage is crossed, we read
3287 * only one element of the array here.
3288 */
3289 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3290 eventfd_signal(t->entries[i].eventfd, 1);
3291
3292 /* Update current_threshold */
3293 t->current_threshold = i - 1;
3294 unlock:
3295 rcu_read_unlock();
3296 }
3297
3298 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3299 {
3300 while (memcg) {
3301 __mem_cgroup_threshold(memcg, false);
3302 if (do_memsw_account())
3303 __mem_cgroup_threshold(memcg, true);
3304
3305 memcg = parent_mem_cgroup(memcg);
3306 }
3307 }
3308
3309 static int compare_thresholds(const void *a, const void *b)
3310 {
3311 const struct mem_cgroup_threshold *_a = a;
3312 const struct mem_cgroup_threshold *_b = b;
3313
3314 if (_a->threshold > _b->threshold)
3315 return 1;
3316
3317 if (_a->threshold < _b->threshold)
3318 return -1;
3319
3320 return 0;
3321 }
3322
3323 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3324 {
3325 struct mem_cgroup_eventfd_list *ev;
3326
3327 spin_lock(&memcg_oom_lock);
3328
3329 list_for_each_entry(ev, &memcg->oom_notify, list)
3330 eventfd_signal(ev->eventfd, 1);
3331
3332 spin_unlock(&memcg_oom_lock);
3333 return 0;
3334 }
3335
3336 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3337 {
3338 struct mem_cgroup *iter;
3339
3340 for_each_mem_cgroup_tree(iter, memcg)
3341 mem_cgroup_oom_notify_cb(iter);
3342 }
3343
3344 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3345 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3346 {
3347 struct mem_cgroup_thresholds *thresholds;
3348 struct mem_cgroup_threshold_ary *new;
3349 unsigned long threshold;
3350 unsigned long usage;
3351 int i, size, ret;
3352
3353 ret = page_counter_memparse(args, "-1", &threshold);
3354 if (ret)
3355 return ret;
3356
3357 mutex_lock(&memcg->thresholds_lock);
3358
3359 if (type == _MEM) {
3360 thresholds = &memcg->thresholds;
3361 usage = mem_cgroup_usage(memcg, false);
3362 } else if (type == _MEMSWAP) {
3363 thresholds = &memcg->memsw_thresholds;
3364 usage = mem_cgroup_usage(memcg, true);
3365 } else
3366 BUG();
3367
3368 /* Check if a threshold crossed before adding a new one */
3369 if (thresholds->primary)
3370 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3371
3372 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3373
3374 /* Allocate memory for new array of thresholds */
3375 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3376 GFP_KERNEL);
3377 if (!new) {
3378 ret = -ENOMEM;
3379 goto unlock;
3380 }
3381 new->size = size;
3382
3383 /* Copy thresholds (if any) to new array */
3384 if (thresholds->primary) {
3385 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3386 sizeof(struct mem_cgroup_threshold));
3387 }
3388
3389 /* Add new threshold */
3390 new->entries[size - 1].eventfd = eventfd;
3391 new->entries[size - 1].threshold = threshold;
3392
3393 /* Sort thresholds. Registering of new threshold isn't time-critical */
3394 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3395 compare_thresholds, NULL);
3396
3397 /* Find current threshold */
3398 new->current_threshold = -1;
3399 for (i = 0; i < size; i++) {
3400 if (new->entries[i].threshold <= usage) {
3401 /*
3402 * new->current_threshold will not be used until
3403 * rcu_assign_pointer(), so it's safe to increment
3404 * it here.
3405 */
3406 ++new->current_threshold;
3407 } else
3408 break;
3409 }
3410
3411 /* Free old spare buffer and save old primary buffer as spare */
3412 kfree(thresholds->spare);
3413 thresholds->spare = thresholds->primary;
3414
3415 rcu_assign_pointer(thresholds->primary, new);
3416
3417 /* To be sure that nobody uses thresholds */
3418 synchronize_rcu();
3419
3420 unlock:
3421 mutex_unlock(&memcg->thresholds_lock);
3422
3423 return ret;
3424 }
3425
3426 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3427 struct eventfd_ctx *eventfd, const char *args)
3428 {
3429 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3430 }
3431
3432 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3433 struct eventfd_ctx *eventfd, const char *args)
3434 {
3435 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3436 }
3437
3438 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3439 struct eventfd_ctx *eventfd, enum res_type type)
3440 {
3441 struct mem_cgroup_thresholds *thresholds;
3442 struct mem_cgroup_threshold_ary *new;
3443 unsigned long usage;
3444 int i, j, size;
3445
3446 mutex_lock(&memcg->thresholds_lock);
3447
3448 if (type == _MEM) {
3449 thresholds = &memcg->thresholds;
3450 usage = mem_cgroup_usage(memcg, false);
3451 } else if (type == _MEMSWAP) {
3452 thresholds = &memcg->memsw_thresholds;
3453 usage = mem_cgroup_usage(memcg, true);
3454 } else
3455 BUG();
3456
3457 if (!thresholds->primary)
3458 goto unlock;
3459
3460 /* Check if a threshold crossed before removing */
3461 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3462
3463 /* Calculate new number of threshold */
3464 size = 0;
3465 for (i = 0; i < thresholds->primary->size; i++) {
3466 if (thresholds->primary->entries[i].eventfd != eventfd)
3467 size++;
3468 }
3469
3470 new = thresholds->spare;
3471
3472 /* Set thresholds array to NULL if we don't have thresholds */
3473 if (!size) {
3474 kfree(new);
3475 new = NULL;
3476 goto swap_buffers;
3477 }
3478
3479 new->size = size;
3480
3481 /* Copy thresholds and find current threshold */
3482 new->current_threshold = -1;
3483 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3484 if (thresholds->primary->entries[i].eventfd == eventfd)
3485 continue;
3486
3487 new->entries[j] = thresholds->primary->entries[i];
3488 if (new->entries[j].threshold <= usage) {
3489 /*
3490 * new->current_threshold will not be used
3491 * until rcu_assign_pointer(), so it's safe to increment
3492 * it here.
3493 */
3494 ++new->current_threshold;
3495 }
3496 j++;
3497 }
3498
3499 swap_buffers:
3500 /* Swap primary and spare array */
3501 thresholds->spare = thresholds->primary;
3502
3503 rcu_assign_pointer(thresholds->primary, new);
3504
3505 /* To be sure that nobody uses thresholds */
3506 synchronize_rcu();
3507
3508 /* If all events are unregistered, free the spare array */
3509 if (!new) {
3510 kfree(thresholds->spare);
3511 thresholds->spare = NULL;
3512 }
3513 unlock:
3514 mutex_unlock(&memcg->thresholds_lock);
3515 }
3516
3517 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3518 struct eventfd_ctx *eventfd)
3519 {
3520 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3521 }
3522
3523 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3524 struct eventfd_ctx *eventfd)
3525 {
3526 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3527 }
3528
3529 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3530 struct eventfd_ctx *eventfd, const char *args)
3531 {
3532 struct mem_cgroup_eventfd_list *event;
3533
3534 event = kmalloc(sizeof(*event), GFP_KERNEL);
3535 if (!event)
3536 return -ENOMEM;
3537
3538 spin_lock(&memcg_oom_lock);
3539
3540 event->eventfd = eventfd;
3541 list_add(&event->list, &memcg->oom_notify);
3542
3543 /* already in OOM ? */
3544 if (memcg->under_oom)
3545 eventfd_signal(eventfd, 1);
3546 spin_unlock(&memcg_oom_lock);
3547
3548 return 0;
3549 }
3550
3551 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3552 struct eventfd_ctx *eventfd)
3553 {
3554 struct mem_cgroup_eventfd_list *ev, *tmp;
3555
3556 spin_lock(&memcg_oom_lock);
3557
3558 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3559 if (ev->eventfd == eventfd) {
3560 list_del(&ev->list);
3561 kfree(ev);
3562 }
3563 }
3564
3565 spin_unlock(&memcg_oom_lock);
3566 }
3567
3568 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3569 {
3570 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3571
3572 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3573 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3574 return 0;
3575 }
3576
3577 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3578 struct cftype *cft, u64 val)
3579 {
3580 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3581
3582 /* cannot set to root cgroup and only 0 and 1 are allowed */
3583 if (!css->parent || !((val == 0) || (val == 1)))
3584 return -EINVAL;
3585
3586 memcg->oom_kill_disable = val;
3587 if (!val)
3588 memcg_oom_recover(memcg);
3589
3590 return 0;
3591 }
3592
3593 #ifdef CONFIG_CGROUP_WRITEBACK
3594
3595 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3596 {
3597 return &memcg->cgwb_list;
3598 }
3599
3600 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3601 {
3602 return wb_domain_init(&memcg->cgwb_domain, gfp);
3603 }
3604
3605 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3606 {
3607 wb_domain_exit(&memcg->cgwb_domain);
3608 }
3609
3610 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3611 {
3612 wb_domain_size_changed(&memcg->cgwb_domain);
3613 }
3614
3615 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3616 {
3617 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3618
3619 if (!memcg->css.parent)
3620 return NULL;
3621
3622 return &memcg->cgwb_domain;
3623 }
3624
3625 /**
3626 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3627 * @wb: bdi_writeback in question
3628 * @pfilepages: out parameter for number of file pages
3629 * @pheadroom: out parameter for number of allocatable pages according to memcg
3630 * @pdirty: out parameter for number of dirty pages
3631 * @pwriteback: out parameter for number of pages under writeback
3632 *
3633 * Determine the numbers of file, headroom, dirty, and writeback pages in
3634 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3635 * is a bit more involved.
3636 *
3637 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3638 * headroom is calculated as the lowest headroom of itself and the
3639 * ancestors. Note that this doesn't consider the actual amount of
3640 * available memory in the system. The caller should further cap
3641 * *@pheadroom accordingly.
3642 */
3643 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3644 unsigned long *pheadroom, unsigned long *pdirty,
3645 unsigned long *pwriteback)
3646 {
3647 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3648 struct mem_cgroup *parent;
3649
3650 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3651
3652 /* this should eventually include NR_UNSTABLE_NFS */
3653 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3654 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3655 (1 << LRU_ACTIVE_FILE));
3656 *pheadroom = PAGE_COUNTER_MAX;
3657
3658 while ((parent = parent_mem_cgroup(memcg))) {
3659 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3660 unsigned long used = page_counter_read(&memcg->memory);
3661
3662 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3663 memcg = parent;
3664 }
3665 }
3666
3667 #else /* CONFIG_CGROUP_WRITEBACK */
3668
3669 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3670 {
3671 return 0;
3672 }
3673
3674 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3675 {
3676 }
3677
3678 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3679 {
3680 }
3681
3682 #endif /* CONFIG_CGROUP_WRITEBACK */
3683
3684 /*
3685 * DO NOT USE IN NEW FILES.
3686 *
3687 * "cgroup.event_control" implementation.
3688 *
3689 * This is way over-engineered. It tries to support fully configurable
3690 * events for each user. Such level of flexibility is completely
3691 * unnecessary especially in the light of the planned unified hierarchy.
3692 *
3693 * Please deprecate this and replace with something simpler if at all
3694 * possible.
3695 */
3696
3697 /*
3698 * Unregister event and free resources.
3699 *
3700 * Gets called from workqueue.
3701 */
3702 static void memcg_event_remove(struct work_struct *work)
3703 {
3704 struct mem_cgroup_event *event =
3705 container_of(work, struct mem_cgroup_event, remove);
3706 struct mem_cgroup *memcg = event->memcg;
3707
3708 remove_wait_queue(event->wqh, &event->wait);
3709
3710 event->unregister_event(memcg, event->eventfd);
3711
3712 /* Notify userspace the event is going away. */
3713 eventfd_signal(event->eventfd, 1);
3714
3715 eventfd_ctx_put(event->eventfd);
3716 kfree(event);
3717 css_put(&memcg->css);
3718 }
3719
3720 /*
3721 * Gets called on POLLHUP on eventfd when user closes it.
3722 *
3723 * Called with wqh->lock held and interrupts disabled.
3724 */
3725 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3726 int sync, void *key)
3727 {
3728 struct mem_cgroup_event *event =
3729 container_of(wait, struct mem_cgroup_event, wait);
3730 struct mem_cgroup *memcg = event->memcg;
3731 unsigned long flags = (unsigned long)key;
3732
3733 if (flags & POLLHUP) {
3734 /*
3735 * If the event has been detached at cgroup removal, we
3736 * can simply return knowing the other side will cleanup
3737 * for us.
3738 *
3739 * We can't race against event freeing since the other
3740 * side will require wqh->lock via remove_wait_queue(),
3741 * which we hold.
3742 */
3743 spin_lock(&memcg->event_list_lock);
3744 if (!list_empty(&event->list)) {
3745 list_del_init(&event->list);
3746 /*
3747 * We are in atomic context, but cgroup_event_remove()
3748 * may sleep, so we have to call it in workqueue.
3749 */
3750 schedule_work(&event->remove);
3751 }
3752 spin_unlock(&memcg->event_list_lock);
3753 }
3754
3755 return 0;
3756 }
3757
3758 static void memcg_event_ptable_queue_proc(struct file *file,
3759 wait_queue_head_t *wqh, poll_table *pt)
3760 {
3761 struct mem_cgroup_event *event =
3762 container_of(pt, struct mem_cgroup_event, pt);
3763
3764 event->wqh = wqh;
3765 add_wait_queue(wqh, &event->wait);
3766 }
3767
3768 /*
3769 * DO NOT USE IN NEW FILES.
3770 *
3771 * Parse input and register new cgroup event handler.
3772 *
3773 * Input must be in format '<event_fd> <control_fd> <args>'.
3774 * Interpretation of args is defined by control file implementation.
3775 */
3776 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3777 char *buf, size_t nbytes, loff_t off)
3778 {
3779 struct cgroup_subsys_state *css = of_css(of);
3780 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3781 struct mem_cgroup_event *event;
3782 struct cgroup_subsys_state *cfile_css;
3783 unsigned int efd, cfd;
3784 struct fd efile;
3785 struct fd cfile;
3786 const char *name;
3787 char *endp;
3788 int ret;
3789
3790 buf = strstrip(buf);
3791
3792 efd = simple_strtoul(buf, &endp, 10);
3793 if (*endp != ' ')
3794 return -EINVAL;
3795 buf = endp + 1;
3796
3797 cfd = simple_strtoul(buf, &endp, 10);
3798 if ((*endp != ' ') && (*endp != '\0'))
3799 return -EINVAL;
3800 buf = endp + 1;
3801
3802 event = kzalloc(sizeof(*event), GFP_KERNEL);
3803 if (!event)
3804 return -ENOMEM;
3805
3806 event->memcg = memcg;
3807 INIT_LIST_HEAD(&event->list);
3808 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3809 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3810 INIT_WORK(&event->remove, memcg_event_remove);
3811
3812 efile = fdget(efd);
3813 if (!efile.file) {
3814 ret = -EBADF;
3815 goto out_kfree;
3816 }
3817
3818 event->eventfd = eventfd_ctx_fileget(efile.file);
3819 if (IS_ERR(event->eventfd)) {
3820 ret = PTR_ERR(event->eventfd);
3821 goto out_put_efile;
3822 }
3823
3824 cfile = fdget(cfd);
3825 if (!cfile.file) {
3826 ret = -EBADF;
3827 goto out_put_eventfd;
3828 }
3829
3830 /* the process need read permission on control file */
3831 /* AV: shouldn't we check that it's been opened for read instead? */
3832 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3833 if (ret < 0)
3834 goto out_put_cfile;
3835
3836 /*
3837 * Determine the event callbacks and set them in @event. This used
3838 * to be done via struct cftype but cgroup core no longer knows
3839 * about these events. The following is crude but the whole thing
3840 * is for compatibility anyway.
3841 *
3842 * DO NOT ADD NEW FILES.
3843 */
3844 name = cfile.file->f_path.dentry->d_name.name;
3845
3846 if (!strcmp(name, "memory.usage_in_bytes")) {
3847 event->register_event = mem_cgroup_usage_register_event;
3848 event->unregister_event = mem_cgroup_usage_unregister_event;
3849 } else if (!strcmp(name, "memory.oom_control")) {
3850 event->register_event = mem_cgroup_oom_register_event;
3851 event->unregister_event = mem_cgroup_oom_unregister_event;
3852 } else if (!strcmp(name, "memory.pressure_level")) {
3853 event->register_event = vmpressure_register_event;
3854 event->unregister_event = vmpressure_unregister_event;
3855 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3856 event->register_event = memsw_cgroup_usage_register_event;
3857 event->unregister_event = memsw_cgroup_usage_unregister_event;
3858 } else {
3859 ret = -EINVAL;
3860 goto out_put_cfile;
3861 }
3862
3863 /*
3864 * Verify @cfile should belong to @css. Also, remaining events are
3865 * automatically removed on cgroup destruction but the removal is
3866 * asynchronous, so take an extra ref on @css.
3867 */
3868 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3869 &memory_cgrp_subsys);
3870 ret = -EINVAL;
3871 if (IS_ERR(cfile_css))
3872 goto out_put_cfile;
3873 if (cfile_css != css) {
3874 css_put(cfile_css);
3875 goto out_put_cfile;
3876 }
3877
3878 ret = event->register_event(memcg, event->eventfd, buf);
3879 if (ret)
3880 goto out_put_css;
3881
3882 efile.file->f_op->poll(efile.file, &event->pt);
3883
3884 spin_lock(&memcg->event_list_lock);
3885 list_add(&event->list, &memcg->event_list);
3886 spin_unlock(&memcg->event_list_lock);
3887
3888 fdput(cfile);
3889 fdput(efile);
3890
3891 return nbytes;
3892
3893 out_put_css:
3894 css_put(css);
3895 out_put_cfile:
3896 fdput(cfile);
3897 out_put_eventfd:
3898 eventfd_ctx_put(event->eventfd);
3899 out_put_efile:
3900 fdput(efile);
3901 out_kfree:
3902 kfree(event);
3903
3904 return ret;
3905 }
3906
3907 static struct cftype mem_cgroup_legacy_files[] = {
3908 {
3909 .name = "usage_in_bytes",
3910 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3911 .read_u64 = mem_cgroup_read_u64,
3912 },
3913 {
3914 .name = "max_usage_in_bytes",
3915 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3916 .write = mem_cgroup_reset,
3917 .read_u64 = mem_cgroup_read_u64,
3918 },
3919 {
3920 .name = "limit_in_bytes",
3921 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3922 .write = mem_cgroup_write,
3923 .read_u64 = mem_cgroup_read_u64,
3924 },
3925 {
3926 .name = "soft_limit_in_bytes",
3927 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3928 .write = mem_cgroup_write,
3929 .read_u64 = mem_cgroup_read_u64,
3930 },
3931 {
3932 .name = "failcnt",
3933 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3934 .write = mem_cgroup_reset,
3935 .read_u64 = mem_cgroup_read_u64,
3936 },
3937 {
3938 .name = "stat",
3939 .seq_show = memcg_stat_show,
3940 },
3941 {
3942 .name = "force_empty",
3943 .write = mem_cgroup_force_empty_write,
3944 },
3945 {
3946 .name = "use_hierarchy",
3947 .write_u64 = mem_cgroup_hierarchy_write,
3948 .read_u64 = mem_cgroup_hierarchy_read,
3949 },
3950 {
3951 .name = "cgroup.event_control", /* XXX: for compat */
3952 .write = memcg_write_event_control,
3953 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3954 },
3955 {
3956 .name = "swappiness",
3957 .read_u64 = mem_cgroup_swappiness_read,
3958 .write_u64 = mem_cgroup_swappiness_write,
3959 },
3960 {
3961 .name = "move_charge_at_immigrate",
3962 .read_u64 = mem_cgroup_move_charge_read,
3963 .write_u64 = mem_cgroup_move_charge_write,
3964 },
3965 {
3966 .name = "oom_control",
3967 .seq_show = mem_cgroup_oom_control_read,
3968 .write_u64 = mem_cgroup_oom_control_write,
3969 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3970 },
3971 {
3972 .name = "pressure_level",
3973 },
3974 #ifdef CONFIG_NUMA
3975 {
3976 .name = "numa_stat",
3977 .seq_show = memcg_numa_stat_show,
3978 },
3979 #endif
3980 {
3981 .name = "kmem.limit_in_bytes",
3982 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3983 .write = mem_cgroup_write,
3984 .read_u64 = mem_cgroup_read_u64,
3985 },
3986 {
3987 .name = "kmem.usage_in_bytes",
3988 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3989 .read_u64 = mem_cgroup_read_u64,
3990 },
3991 {
3992 .name = "kmem.failcnt",
3993 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3994 .write = mem_cgroup_reset,
3995 .read_u64 = mem_cgroup_read_u64,
3996 },
3997 {
3998 .name = "kmem.max_usage_in_bytes",
3999 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4000 .write = mem_cgroup_reset,
4001 .read_u64 = mem_cgroup_read_u64,
4002 },
4003 #ifdef CONFIG_SLABINFO
4004 {
4005 .name = "kmem.slabinfo",
4006 .seq_start = memcg_slab_start,
4007 .seq_next = memcg_slab_next,
4008 .seq_stop = memcg_slab_stop,
4009 .seq_show = memcg_slab_show,
4010 },
4011 #endif
4012 {
4013 .name = "kmem.tcp.limit_in_bytes",
4014 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4015 .write = mem_cgroup_write,
4016 .read_u64 = mem_cgroup_read_u64,
4017 },
4018 {
4019 .name = "kmem.tcp.usage_in_bytes",
4020 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4021 .read_u64 = mem_cgroup_read_u64,
4022 },
4023 {
4024 .name = "kmem.tcp.failcnt",
4025 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4026 .write = mem_cgroup_reset,
4027 .read_u64 = mem_cgroup_read_u64,
4028 },
4029 {
4030 .name = "kmem.tcp.max_usage_in_bytes",
4031 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4032 .write = mem_cgroup_reset,
4033 .read_u64 = mem_cgroup_read_u64,
4034 },
4035 { }, /* terminate */
4036 };
4037
4038 /*
4039 * Private memory cgroup IDR
4040 *
4041 * Swap-out records and page cache shadow entries need to store memcg
4042 * references in constrained space, so we maintain an ID space that is
4043 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4044 * memory-controlled cgroups to 64k.
4045 *
4046 * However, there usually are many references to the oflline CSS after
4047 * the cgroup has been destroyed, such as page cache or reclaimable
4048 * slab objects, that don't need to hang on to the ID. We want to keep
4049 * those dead CSS from occupying IDs, or we might quickly exhaust the
4050 * relatively small ID space and prevent the creation of new cgroups
4051 * even when there are much fewer than 64k cgroups - possibly none.
4052 *
4053 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4054 * be freed and recycled when it's no longer needed, which is usually
4055 * when the CSS is offlined.
4056 *
4057 * The only exception to that are records of swapped out tmpfs/shmem
4058 * pages that need to be attributed to live ancestors on swapin. But
4059 * those references are manageable from userspace.
4060 */
4061
4062 static DEFINE_IDR(mem_cgroup_idr);
4063
4064 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4065 {
4066 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4067 atomic_add(n, &memcg->id.ref);
4068 }
4069
4070 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4071 {
4072 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4073 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4074 idr_remove(&mem_cgroup_idr, memcg->id.id);
4075 memcg->id.id = 0;
4076
4077 /* Memcg ID pins CSS */
4078 css_put(&memcg->css);
4079 }
4080 }
4081
4082 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4083 {
4084 mem_cgroup_id_get_many(memcg, 1);
4085 }
4086
4087 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4088 {
4089 mem_cgroup_id_put_many(memcg, 1);
4090 }
4091
4092 /**
4093 * mem_cgroup_from_id - look up a memcg from a memcg id
4094 * @id: the memcg id to look up
4095 *
4096 * Caller must hold rcu_read_lock().
4097 */
4098 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4099 {
4100 WARN_ON_ONCE(!rcu_read_lock_held());
4101 return idr_find(&mem_cgroup_idr, id);
4102 }
4103
4104 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4105 {
4106 struct mem_cgroup_per_node *pn;
4107 int tmp = node;
4108 /*
4109 * This routine is called against possible nodes.
4110 * But it's BUG to call kmalloc() against offline node.
4111 *
4112 * TODO: this routine can waste much memory for nodes which will
4113 * never be onlined. It's better to use memory hotplug callback
4114 * function.
4115 */
4116 if (!node_state(node, N_NORMAL_MEMORY))
4117 tmp = -1;
4118 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4119 if (!pn)
4120 return 1;
4121
4122 lruvec_init(&pn->lruvec);
4123 pn->usage_in_excess = 0;
4124 pn->on_tree = false;
4125 pn->memcg = memcg;
4126
4127 memcg->nodeinfo[node] = pn;
4128 return 0;
4129 }
4130
4131 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4132 {
4133 kfree(memcg->nodeinfo[node]);
4134 }
4135
4136 static void mem_cgroup_free(struct mem_cgroup *memcg)
4137 {
4138 int node;
4139
4140 memcg_wb_domain_exit(memcg);
4141 for_each_node(node)
4142 free_mem_cgroup_per_node_info(memcg, node);
4143 free_percpu(memcg->stat);
4144 kfree(memcg);
4145 }
4146
4147 static struct mem_cgroup *mem_cgroup_alloc(void)
4148 {
4149 struct mem_cgroup *memcg;
4150 size_t size;
4151 int node;
4152
4153 size = sizeof(struct mem_cgroup);
4154 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4155
4156 memcg = kzalloc(size, GFP_KERNEL);
4157 if (!memcg)
4158 return NULL;
4159
4160 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4161 1, MEM_CGROUP_ID_MAX,
4162 GFP_KERNEL);
4163 if (memcg->id.id < 0)
4164 goto fail;
4165
4166 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4167 if (!memcg->stat)
4168 goto fail;
4169
4170 for_each_node(node)
4171 if (alloc_mem_cgroup_per_node_info(memcg, node))
4172 goto fail;
4173
4174 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4175 goto fail;
4176
4177 INIT_WORK(&memcg->high_work, high_work_func);
4178 memcg->last_scanned_node = MAX_NUMNODES;
4179 INIT_LIST_HEAD(&memcg->oom_notify);
4180 mutex_init(&memcg->thresholds_lock);
4181 spin_lock_init(&memcg->move_lock);
4182 vmpressure_init(&memcg->vmpressure);
4183 INIT_LIST_HEAD(&memcg->event_list);
4184 spin_lock_init(&memcg->event_list_lock);
4185 memcg->socket_pressure = jiffies;
4186 #ifndef CONFIG_SLOB
4187 memcg->kmemcg_id = -1;
4188 #endif
4189 #ifdef CONFIG_CGROUP_WRITEBACK
4190 INIT_LIST_HEAD(&memcg->cgwb_list);
4191 #endif
4192 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4193 return memcg;
4194 fail:
4195 if (memcg->id.id > 0)
4196 idr_remove(&mem_cgroup_idr, memcg->id.id);
4197 mem_cgroup_free(memcg);
4198 return NULL;
4199 }
4200
4201 static struct cgroup_subsys_state * __ref
4202 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4203 {
4204 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4205 struct mem_cgroup *memcg;
4206 long error = -ENOMEM;
4207
4208 memcg = mem_cgroup_alloc();
4209 if (!memcg)
4210 return ERR_PTR(error);
4211
4212 memcg->high = PAGE_COUNTER_MAX;
4213 memcg->soft_limit = PAGE_COUNTER_MAX;
4214 if (parent) {
4215 memcg->swappiness = mem_cgroup_swappiness(parent);
4216 memcg->oom_kill_disable = parent->oom_kill_disable;
4217 }
4218 if (parent && parent->use_hierarchy) {
4219 memcg->use_hierarchy = true;
4220 page_counter_init(&memcg->memory, &parent->memory);
4221 page_counter_init(&memcg->swap, &parent->swap);
4222 page_counter_init(&memcg->memsw, &parent->memsw);
4223 page_counter_init(&memcg->kmem, &parent->kmem);
4224 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4225 } else {
4226 page_counter_init(&memcg->memory, NULL);
4227 page_counter_init(&memcg->swap, NULL);
4228 page_counter_init(&memcg->memsw, NULL);
4229 page_counter_init(&memcg->kmem, NULL);
4230 page_counter_init(&memcg->tcpmem, NULL);
4231 /*
4232 * Deeper hierachy with use_hierarchy == false doesn't make
4233 * much sense so let cgroup subsystem know about this
4234 * unfortunate state in our controller.
4235 */
4236 if (parent != root_mem_cgroup)
4237 memory_cgrp_subsys.broken_hierarchy = true;
4238 }
4239
4240 /* The following stuff does not apply to the root */
4241 if (!parent) {
4242 root_mem_cgroup = memcg;
4243 return &memcg->css;
4244 }
4245
4246 error = memcg_online_kmem(memcg);
4247 if (error)
4248 goto fail;
4249
4250 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4251 static_branch_inc(&memcg_sockets_enabled_key);
4252
4253 return &memcg->css;
4254 fail:
4255 mem_cgroup_free(memcg);
4256 return ERR_PTR(-ENOMEM);
4257 }
4258
4259 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4260 {
4261 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4262
4263 /* Online state pins memcg ID, memcg ID pins CSS */
4264 atomic_set(&memcg->id.ref, 1);
4265 css_get(css);
4266 return 0;
4267 }
4268
4269 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4270 {
4271 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4272 struct mem_cgroup_event *event, *tmp;
4273
4274 /*
4275 * Unregister events and notify userspace.
4276 * Notify userspace about cgroup removing only after rmdir of cgroup
4277 * directory to avoid race between userspace and kernelspace.
4278 */
4279 spin_lock(&memcg->event_list_lock);
4280 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4281 list_del_init(&event->list);
4282 schedule_work(&event->remove);
4283 }
4284 spin_unlock(&memcg->event_list_lock);
4285
4286 memcg_offline_kmem(memcg);
4287 wb_memcg_offline(memcg);
4288
4289 mem_cgroup_id_put(memcg);
4290 }
4291
4292 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4293 {
4294 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4295
4296 invalidate_reclaim_iterators(memcg);
4297 }
4298
4299 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4300 {
4301 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4302
4303 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4304 static_branch_dec(&memcg_sockets_enabled_key);
4305
4306 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4307 static_branch_dec(&memcg_sockets_enabled_key);
4308
4309 vmpressure_cleanup(&memcg->vmpressure);
4310 cancel_work_sync(&memcg->high_work);
4311 mem_cgroup_remove_from_trees(memcg);
4312 memcg_free_kmem(memcg);
4313 mem_cgroup_free(memcg);
4314 }
4315
4316 /**
4317 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4318 * @css: the target css
4319 *
4320 * Reset the states of the mem_cgroup associated with @css. This is
4321 * invoked when the userland requests disabling on the default hierarchy
4322 * but the memcg is pinned through dependency. The memcg should stop
4323 * applying policies and should revert to the vanilla state as it may be
4324 * made visible again.
4325 *
4326 * The current implementation only resets the essential configurations.
4327 * This needs to be expanded to cover all the visible parts.
4328 */
4329 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4330 {
4331 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4332
4333 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4334 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4335 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4336 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4337 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4338 memcg->low = 0;
4339 memcg->high = PAGE_COUNTER_MAX;
4340 memcg->soft_limit = PAGE_COUNTER_MAX;
4341 memcg_wb_domain_size_changed(memcg);
4342 }
4343
4344 #ifdef CONFIG_MMU
4345 /* Handlers for move charge at task migration. */
4346 static int mem_cgroup_do_precharge(unsigned long count)
4347 {
4348 int ret;
4349
4350 /* Try a single bulk charge without reclaim first, kswapd may wake */
4351 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4352 if (!ret) {
4353 mc.precharge += count;
4354 return ret;
4355 }
4356
4357 /* Try charges one by one with reclaim, but do not retry */
4358 while (count--) {
4359 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4360 if (ret)
4361 return ret;
4362 mc.precharge++;
4363 cond_resched();
4364 }
4365 return 0;
4366 }
4367
4368 union mc_target {
4369 struct page *page;
4370 swp_entry_t ent;
4371 };
4372
4373 enum mc_target_type {
4374 MC_TARGET_NONE = 0,
4375 MC_TARGET_PAGE,
4376 MC_TARGET_SWAP,
4377 };
4378
4379 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4380 unsigned long addr, pte_t ptent)
4381 {
4382 struct page *page = vm_normal_page(vma, addr, ptent);
4383
4384 if (!page || !page_mapped(page))
4385 return NULL;
4386 if (PageAnon(page)) {
4387 if (!(mc.flags & MOVE_ANON))
4388 return NULL;
4389 } else {
4390 if (!(mc.flags & MOVE_FILE))
4391 return NULL;
4392 }
4393 if (!get_page_unless_zero(page))
4394 return NULL;
4395
4396 return page;
4397 }
4398
4399 #ifdef CONFIG_SWAP
4400 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4401 pte_t ptent, swp_entry_t *entry)
4402 {
4403 struct page *page = NULL;
4404 swp_entry_t ent = pte_to_swp_entry(ptent);
4405
4406 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4407 return NULL;
4408 /*
4409 * Because lookup_swap_cache() updates some statistics counter,
4410 * we call find_get_page() with swapper_space directly.
4411 */
4412 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4413 if (do_memsw_account())
4414 entry->val = ent.val;
4415
4416 return page;
4417 }
4418 #else
4419 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4420 pte_t ptent, swp_entry_t *entry)
4421 {
4422 return NULL;
4423 }
4424 #endif
4425
4426 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4427 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4428 {
4429 struct page *page = NULL;
4430 struct address_space *mapping;
4431 pgoff_t pgoff;
4432
4433 if (!vma->vm_file) /* anonymous vma */
4434 return NULL;
4435 if (!(mc.flags & MOVE_FILE))
4436 return NULL;
4437
4438 mapping = vma->vm_file->f_mapping;
4439 pgoff = linear_page_index(vma, addr);
4440
4441 /* page is moved even if it's not RSS of this task(page-faulted). */
4442 #ifdef CONFIG_SWAP
4443 /* shmem/tmpfs may report page out on swap: account for that too. */
4444 if (shmem_mapping(mapping)) {
4445 page = find_get_entry(mapping, pgoff);
4446 if (radix_tree_exceptional_entry(page)) {
4447 swp_entry_t swp = radix_to_swp_entry(page);
4448 if (do_memsw_account())
4449 *entry = swp;
4450 page = find_get_page(swap_address_space(swp),
4451 swp_offset(swp));
4452 }
4453 } else
4454 page = find_get_page(mapping, pgoff);
4455 #else
4456 page = find_get_page(mapping, pgoff);
4457 #endif
4458 return page;
4459 }
4460
4461 /**
4462 * mem_cgroup_move_account - move account of the page
4463 * @page: the page
4464 * @compound: charge the page as compound or small page
4465 * @from: mem_cgroup which the page is moved from.
4466 * @to: mem_cgroup which the page is moved to. @from != @to.
4467 *
4468 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4469 *
4470 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4471 * from old cgroup.
4472 */
4473 static int mem_cgroup_move_account(struct page *page,
4474 bool compound,
4475 struct mem_cgroup *from,
4476 struct mem_cgroup *to)
4477 {
4478 unsigned long flags;
4479 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4480 int ret;
4481 bool anon;
4482
4483 VM_BUG_ON(from == to);
4484 VM_BUG_ON_PAGE(PageLRU(page), page);
4485 VM_BUG_ON(compound && !PageTransHuge(page));
4486
4487 /*
4488 * Prevent mem_cgroup_migrate() from looking at
4489 * page->mem_cgroup of its source page while we change it.
4490 */
4491 ret = -EBUSY;
4492 if (!trylock_page(page))
4493 goto out;
4494
4495 ret = -EINVAL;
4496 if (page->mem_cgroup != from)
4497 goto out_unlock;
4498
4499 anon = PageAnon(page);
4500
4501 spin_lock_irqsave(&from->move_lock, flags);
4502
4503 if (!anon && page_mapped(page)) {
4504 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4505 nr_pages);
4506 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4507 nr_pages);
4508 }
4509
4510 /*
4511 * move_lock grabbed above and caller set from->moving_account, so
4512 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4513 * So mapping should be stable for dirty pages.
4514 */
4515 if (!anon && PageDirty(page)) {
4516 struct address_space *mapping = page_mapping(page);
4517
4518 if (mapping_cap_account_dirty(mapping)) {
4519 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4520 nr_pages);
4521 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4522 nr_pages);
4523 }
4524 }
4525
4526 if (PageWriteback(page)) {
4527 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4528 nr_pages);
4529 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4530 nr_pages);
4531 }
4532
4533 /*
4534 * It is safe to change page->mem_cgroup here because the page
4535 * is referenced, charged, and isolated - we can't race with
4536 * uncharging, charging, migration, or LRU putback.
4537 */
4538
4539 /* caller should have done css_get */
4540 page->mem_cgroup = to;
4541 spin_unlock_irqrestore(&from->move_lock, flags);
4542
4543 ret = 0;
4544
4545 local_irq_disable();
4546 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4547 memcg_check_events(to, page);
4548 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4549 memcg_check_events(from, page);
4550 local_irq_enable();
4551 out_unlock:
4552 unlock_page(page);
4553 out:
4554 return ret;
4555 }
4556
4557 /**
4558 * get_mctgt_type - get target type of moving charge
4559 * @vma: the vma the pte to be checked belongs
4560 * @addr: the address corresponding to the pte to be checked
4561 * @ptent: the pte to be checked
4562 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4563 *
4564 * Returns
4565 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4566 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4567 * move charge. if @target is not NULL, the page is stored in target->page
4568 * with extra refcnt got(Callers should handle it).
4569 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4570 * target for charge migration. if @target is not NULL, the entry is stored
4571 * in target->ent.
4572 *
4573 * Called with pte lock held.
4574 */
4575
4576 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4577 unsigned long addr, pte_t ptent, union mc_target *target)
4578 {
4579 struct page *page = NULL;
4580 enum mc_target_type ret = MC_TARGET_NONE;
4581 swp_entry_t ent = { .val = 0 };
4582
4583 if (pte_present(ptent))
4584 page = mc_handle_present_pte(vma, addr, ptent);
4585 else if (is_swap_pte(ptent))
4586 page = mc_handle_swap_pte(vma, ptent, &ent);
4587 else if (pte_none(ptent))
4588 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4589
4590 if (!page && !ent.val)
4591 return ret;
4592 if (page) {
4593 /*
4594 * Do only loose check w/o serialization.
4595 * mem_cgroup_move_account() checks the page is valid or
4596 * not under LRU exclusion.
4597 */
4598 if (page->mem_cgroup == mc.from) {
4599 ret = MC_TARGET_PAGE;
4600 if (target)
4601 target->page = page;
4602 }
4603 if (!ret || !target)
4604 put_page(page);
4605 }
4606 /* There is a swap entry and a page doesn't exist or isn't charged */
4607 if (ent.val && !ret &&
4608 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4609 ret = MC_TARGET_SWAP;
4610 if (target)
4611 target->ent = ent;
4612 }
4613 return ret;
4614 }
4615
4616 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4617 /*
4618 * We don't consider swapping or file mapped pages because THP does not
4619 * support them for now.
4620 * Caller should make sure that pmd_trans_huge(pmd) is true.
4621 */
4622 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4623 unsigned long addr, pmd_t pmd, union mc_target *target)
4624 {
4625 struct page *page = NULL;
4626 enum mc_target_type ret = MC_TARGET_NONE;
4627
4628 page = pmd_page(pmd);
4629 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4630 if (!(mc.flags & MOVE_ANON))
4631 return ret;
4632 if (page->mem_cgroup == mc.from) {
4633 ret = MC_TARGET_PAGE;
4634 if (target) {
4635 get_page(page);
4636 target->page = page;
4637 }
4638 }
4639 return ret;
4640 }
4641 #else
4642 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4643 unsigned long addr, pmd_t pmd, union mc_target *target)
4644 {
4645 return MC_TARGET_NONE;
4646 }
4647 #endif
4648
4649 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4650 unsigned long addr, unsigned long end,
4651 struct mm_walk *walk)
4652 {
4653 struct vm_area_struct *vma = walk->vma;
4654 pte_t *pte;
4655 spinlock_t *ptl;
4656
4657 ptl = pmd_trans_huge_lock(pmd, vma);
4658 if (ptl) {
4659 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4660 mc.precharge += HPAGE_PMD_NR;
4661 spin_unlock(ptl);
4662 return 0;
4663 }
4664
4665 if (pmd_trans_unstable(pmd))
4666 return 0;
4667 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4668 for (; addr != end; pte++, addr += PAGE_SIZE)
4669 if (get_mctgt_type(vma, addr, *pte, NULL))
4670 mc.precharge++; /* increment precharge temporarily */
4671 pte_unmap_unlock(pte - 1, ptl);
4672 cond_resched();
4673
4674 return 0;
4675 }
4676
4677 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4678 {
4679 unsigned long precharge;
4680
4681 struct mm_walk mem_cgroup_count_precharge_walk = {
4682 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4683 .mm = mm,
4684 };
4685 down_read(&mm->mmap_sem);
4686 walk_page_range(0, mm->highest_vm_end,
4687 &mem_cgroup_count_precharge_walk);
4688 up_read(&mm->mmap_sem);
4689
4690 precharge = mc.precharge;
4691 mc.precharge = 0;
4692
4693 return precharge;
4694 }
4695
4696 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4697 {
4698 unsigned long precharge = mem_cgroup_count_precharge(mm);
4699
4700 VM_BUG_ON(mc.moving_task);
4701 mc.moving_task = current;
4702 return mem_cgroup_do_precharge(precharge);
4703 }
4704
4705 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4706 static void __mem_cgroup_clear_mc(void)
4707 {
4708 struct mem_cgroup *from = mc.from;
4709 struct mem_cgroup *to = mc.to;
4710
4711 /* we must uncharge all the leftover precharges from mc.to */
4712 if (mc.precharge) {
4713 cancel_charge(mc.to, mc.precharge);
4714 mc.precharge = 0;
4715 }
4716 /*
4717 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4718 * we must uncharge here.
4719 */
4720 if (mc.moved_charge) {
4721 cancel_charge(mc.from, mc.moved_charge);
4722 mc.moved_charge = 0;
4723 }
4724 /* we must fixup refcnts and charges */
4725 if (mc.moved_swap) {
4726 /* uncharge swap account from the old cgroup */
4727 if (!mem_cgroup_is_root(mc.from))
4728 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4729
4730 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4731
4732 /*
4733 * we charged both to->memory and to->memsw, so we
4734 * should uncharge to->memory.
4735 */
4736 if (!mem_cgroup_is_root(mc.to))
4737 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4738
4739 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4740 css_put_many(&mc.to->css, mc.moved_swap);
4741
4742 mc.moved_swap = 0;
4743 }
4744 memcg_oom_recover(from);
4745 memcg_oom_recover(to);
4746 wake_up_all(&mc.waitq);
4747 }
4748
4749 static void mem_cgroup_clear_mc(void)
4750 {
4751 struct mm_struct *mm = mc.mm;
4752
4753 /*
4754 * we must clear moving_task before waking up waiters at the end of
4755 * task migration.
4756 */
4757 mc.moving_task = NULL;
4758 __mem_cgroup_clear_mc();
4759 spin_lock(&mc.lock);
4760 mc.from = NULL;
4761 mc.to = NULL;
4762 mc.mm = NULL;
4763 spin_unlock(&mc.lock);
4764
4765 mmput(mm);
4766 }
4767
4768 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4769 {
4770 struct cgroup_subsys_state *css;
4771 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4772 struct mem_cgroup *from;
4773 struct task_struct *leader, *p;
4774 struct mm_struct *mm;
4775 unsigned long move_flags;
4776 int ret = 0;
4777
4778 /* charge immigration isn't supported on the default hierarchy */
4779 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4780 return 0;
4781
4782 /*
4783 * Multi-process migrations only happen on the default hierarchy
4784 * where charge immigration is not used. Perform charge
4785 * immigration if @tset contains a leader and whine if there are
4786 * multiple.
4787 */
4788 p = NULL;
4789 cgroup_taskset_for_each_leader(leader, css, tset) {
4790 WARN_ON_ONCE(p);
4791 p = leader;
4792 memcg = mem_cgroup_from_css(css);
4793 }
4794 if (!p)
4795 return 0;
4796
4797 /*
4798 * We are now commited to this value whatever it is. Changes in this
4799 * tunable will only affect upcoming migrations, not the current one.
4800 * So we need to save it, and keep it going.
4801 */
4802 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4803 if (!move_flags)
4804 return 0;
4805
4806 from = mem_cgroup_from_task(p);
4807
4808 VM_BUG_ON(from == memcg);
4809
4810 mm = get_task_mm(p);
4811 if (!mm)
4812 return 0;
4813 /* We move charges only when we move a owner of the mm */
4814 if (mm->owner == p) {
4815 VM_BUG_ON(mc.from);
4816 VM_BUG_ON(mc.to);
4817 VM_BUG_ON(mc.precharge);
4818 VM_BUG_ON(mc.moved_charge);
4819 VM_BUG_ON(mc.moved_swap);
4820
4821 spin_lock(&mc.lock);
4822 mc.mm = mm;
4823 mc.from = from;
4824 mc.to = memcg;
4825 mc.flags = move_flags;
4826 spin_unlock(&mc.lock);
4827 /* We set mc.moving_task later */
4828
4829 ret = mem_cgroup_precharge_mc(mm);
4830 if (ret)
4831 mem_cgroup_clear_mc();
4832 } else {
4833 mmput(mm);
4834 }
4835 return ret;
4836 }
4837
4838 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4839 {
4840 if (mc.to)
4841 mem_cgroup_clear_mc();
4842 }
4843
4844 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4845 unsigned long addr, unsigned long end,
4846 struct mm_walk *walk)
4847 {
4848 int ret = 0;
4849 struct vm_area_struct *vma = walk->vma;
4850 pte_t *pte;
4851 spinlock_t *ptl;
4852 enum mc_target_type target_type;
4853 union mc_target target;
4854 struct page *page;
4855
4856 ptl = pmd_trans_huge_lock(pmd, vma);
4857 if (ptl) {
4858 if (mc.precharge < HPAGE_PMD_NR) {
4859 spin_unlock(ptl);
4860 return 0;
4861 }
4862 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4863 if (target_type == MC_TARGET_PAGE) {
4864 page = target.page;
4865 if (!isolate_lru_page(page)) {
4866 if (!mem_cgroup_move_account(page, true,
4867 mc.from, mc.to)) {
4868 mc.precharge -= HPAGE_PMD_NR;
4869 mc.moved_charge += HPAGE_PMD_NR;
4870 }
4871 putback_lru_page(page);
4872 }
4873 put_page(page);
4874 }
4875 spin_unlock(ptl);
4876 return 0;
4877 }
4878
4879 if (pmd_trans_unstable(pmd))
4880 return 0;
4881 retry:
4882 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4883 for (; addr != end; addr += PAGE_SIZE) {
4884 pte_t ptent = *(pte++);
4885 swp_entry_t ent;
4886
4887 if (!mc.precharge)
4888 break;
4889
4890 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4891 case MC_TARGET_PAGE:
4892 page = target.page;
4893 /*
4894 * We can have a part of the split pmd here. Moving it
4895 * can be done but it would be too convoluted so simply
4896 * ignore such a partial THP and keep it in original
4897 * memcg. There should be somebody mapping the head.
4898 */
4899 if (PageTransCompound(page))
4900 goto put;
4901 if (isolate_lru_page(page))
4902 goto put;
4903 if (!mem_cgroup_move_account(page, false,
4904 mc.from, mc.to)) {
4905 mc.precharge--;
4906 /* we uncharge from mc.from later. */
4907 mc.moved_charge++;
4908 }
4909 putback_lru_page(page);
4910 put: /* get_mctgt_type() gets the page */
4911 put_page(page);
4912 break;
4913 case MC_TARGET_SWAP:
4914 ent = target.ent;
4915 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4916 mc.precharge--;
4917 /* we fixup refcnts and charges later. */
4918 mc.moved_swap++;
4919 }
4920 break;
4921 default:
4922 break;
4923 }
4924 }
4925 pte_unmap_unlock(pte - 1, ptl);
4926 cond_resched();
4927
4928 if (addr != end) {
4929 /*
4930 * We have consumed all precharges we got in can_attach().
4931 * We try charge one by one, but don't do any additional
4932 * charges to mc.to if we have failed in charge once in attach()
4933 * phase.
4934 */
4935 ret = mem_cgroup_do_precharge(1);
4936 if (!ret)
4937 goto retry;
4938 }
4939
4940 return ret;
4941 }
4942
4943 static void mem_cgroup_move_charge(void)
4944 {
4945 struct mm_walk mem_cgroup_move_charge_walk = {
4946 .pmd_entry = mem_cgroup_move_charge_pte_range,
4947 .mm = mc.mm,
4948 };
4949
4950 lru_add_drain_all();
4951 /*
4952 * Signal lock_page_memcg() to take the memcg's move_lock
4953 * while we're moving its pages to another memcg. Then wait
4954 * for already started RCU-only updates to finish.
4955 */
4956 atomic_inc(&mc.from->moving_account);
4957 synchronize_rcu();
4958 retry:
4959 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4960 /*
4961 * Someone who are holding the mmap_sem might be waiting in
4962 * waitq. So we cancel all extra charges, wake up all waiters,
4963 * and retry. Because we cancel precharges, we might not be able
4964 * to move enough charges, but moving charge is a best-effort
4965 * feature anyway, so it wouldn't be a big problem.
4966 */
4967 __mem_cgroup_clear_mc();
4968 cond_resched();
4969 goto retry;
4970 }
4971 /*
4972 * When we have consumed all precharges and failed in doing
4973 * additional charge, the page walk just aborts.
4974 */
4975 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
4976
4977 up_read(&mc.mm->mmap_sem);
4978 atomic_dec(&mc.from->moving_account);
4979 }
4980
4981 static void mem_cgroup_move_task(void)
4982 {
4983 if (mc.to) {
4984 mem_cgroup_move_charge();
4985 mem_cgroup_clear_mc();
4986 }
4987 }
4988 #else /* !CONFIG_MMU */
4989 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4990 {
4991 return 0;
4992 }
4993 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4994 {
4995 }
4996 static void mem_cgroup_move_task(void)
4997 {
4998 }
4999 #endif
5000
5001 /*
5002 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5003 * to verify whether we're attached to the default hierarchy on each mount
5004 * attempt.
5005 */
5006 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5007 {
5008 /*
5009 * use_hierarchy is forced on the default hierarchy. cgroup core
5010 * guarantees that @root doesn't have any children, so turning it
5011 * on for the root memcg is enough.
5012 */
5013 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5014 root_mem_cgroup->use_hierarchy = true;
5015 else
5016 root_mem_cgroup->use_hierarchy = false;
5017 }
5018
5019 static u64 memory_current_read(struct cgroup_subsys_state *css,
5020 struct cftype *cft)
5021 {
5022 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5023
5024 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5025 }
5026
5027 static int memory_low_show(struct seq_file *m, void *v)
5028 {
5029 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5030 unsigned long low = READ_ONCE(memcg->low);
5031
5032 if (low == PAGE_COUNTER_MAX)
5033 seq_puts(m, "max\n");
5034 else
5035 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5036
5037 return 0;
5038 }
5039
5040 static ssize_t memory_low_write(struct kernfs_open_file *of,
5041 char *buf, size_t nbytes, loff_t off)
5042 {
5043 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5044 unsigned long low;
5045 int err;
5046
5047 buf = strstrip(buf);
5048 err = page_counter_memparse(buf, "max", &low);
5049 if (err)
5050 return err;
5051
5052 memcg->low = low;
5053
5054 return nbytes;
5055 }
5056
5057 static int memory_high_show(struct seq_file *m, void *v)
5058 {
5059 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5060 unsigned long high = READ_ONCE(memcg->high);
5061
5062 if (high == PAGE_COUNTER_MAX)
5063 seq_puts(m, "max\n");
5064 else
5065 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5066
5067 return 0;
5068 }
5069
5070 static ssize_t memory_high_write(struct kernfs_open_file *of,
5071 char *buf, size_t nbytes, loff_t off)
5072 {
5073 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5074 unsigned long nr_pages;
5075 unsigned long high;
5076 int err;
5077
5078 buf = strstrip(buf);
5079 err = page_counter_memparse(buf, "max", &high);
5080 if (err)
5081 return err;
5082
5083 memcg->high = high;
5084
5085 nr_pages = page_counter_read(&memcg->memory);
5086 if (nr_pages > high)
5087 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5088 GFP_KERNEL, true);
5089
5090 memcg_wb_domain_size_changed(memcg);
5091 return nbytes;
5092 }
5093
5094 static int memory_max_show(struct seq_file *m, void *v)
5095 {
5096 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5097 unsigned long max = READ_ONCE(memcg->memory.limit);
5098
5099 if (max == PAGE_COUNTER_MAX)
5100 seq_puts(m, "max\n");
5101 else
5102 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5103
5104 return 0;
5105 }
5106
5107 static ssize_t memory_max_write(struct kernfs_open_file *of,
5108 char *buf, size_t nbytes, loff_t off)
5109 {
5110 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5111 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5112 bool drained = false;
5113 unsigned long max;
5114 int err;
5115
5116 buf = strstrip(buf);
5117 err = page_counter_memparse(buf, "max", &max);
5118 if (err)
5119 return err;
5120
5121 xchg(&memcg->memory.limit, max);
5122
5123 for (;;) {
5124 unsigned long nr_pages = page_counter_read(&memcg->memory);
5125
5126 if (nr_pages <= max)
5127 break;
5128
5129 if (signal_pending(current)) {
5130 err = -EINTR;
5131 break;
5132 }
5133
5134 if (!drained) {
5135 drain_all_stock(memcg);
5136 drained = true;
5137 continue;
5138 }
5139
5140 if (nr_reclaims) {
5141 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5142 GFP_KERNEL, true))
5143 nr_reclaims--;
5144 continue;
5145 }
5146
5147 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5148 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5149 break;
5150 }
5151
5152 memcg_wb_domain_size_changed(memcg);
5153 return nbytes;
5154 }
5155
5156 static int memory_events_show(struct seq_file *m, void *v)
5157 {
5158 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5159
5160 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5161 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5162 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5163 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5164
5165 return 0;
5166 }
5167
5168 static int memory_stat_show(struct seq_file *m, void *v)
5169 {
5170 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5171 unsigned long stat[MEMCG_NR_STAT];
5172 unsigned long events[MEMCG_NR_EVENTS];
5173 int i;
5174
5175 /*
5176 * Provide statistics on the state of the memory subsystem as
5177 * well as cumulative event counters that show past behavior.
5178 *
5179 * This list is ordered following a combination of these gradients:
5180 * 1) generic big picture -> specifics and details
5181 * 2) reflecting userspace activity -> reflecting kernel heuristics
5182 *
5183 * Current memory state:
5184 */
5185
5186 tree_stat(memcg, stat);
5187 tree_events(memcg, events);
5188
5189 seq_printf(m, "anon %llu\n",
5190 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5191 seq_printf(m, "file %llu\n",
5192 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5193 seq_printf(m, "kernel_stack %llu\n",
5194 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5195 seq_printf(m, "slab %llu\n",
5196 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5197 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5198 seq_printf(m, "sock %llu\n",
5199 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5200
5201 seq_printf(m, "file_mapped %llu\n",
5202 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5203 seq_printf(m, "file_dirty %llu\n",
5204 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5205 seq_printf(m, "file_writeback %llu\n",
5206 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5207
5208 for (i = 0; i < NR_LRU_LISTS; i++) {
5209 struct mem_cgroup *mi;
5210 unsigned long val = 0;
5211
5212 for_each_mem_cgroup_tree(mi, memcg)
5213 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5214 seq_printf(m, "%s %llu\n",
5215 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5216 }
5217
5218 seq_printf(m, "slab_reclaimable %llu\n",
5219 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5220 seq_printf(m, "slab_unreclaimable %llu\n",
5221 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5222
5223 /* Accumulated memory events */
5224
5225 seq_printf(m, "pgfault %lu\n",
5226 events[MEM_CGROUP_EVENTS_PGFAULT]);
5227 seq_printf(m, "pgmajfault %lu\n",
5228 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5229
5230 return 0;
5231 }
5232
5233 static struct cftype memory_files[] = {
5234 {
5235 .name = "current",
5236 .flags = CFTYPE_NOT_ON_ROOT,
5237 .read_u64 = memory_current_read,
5238 },
5239 {
5240 .name = "low",
5241 .flags = CFTYPE_NOT_ON_ROOT,
5242 .seq_show = memory_low_show,
5243 .write = memory_low_write,
5244 },
5245 {
5246 .name = "high",
5247 .flags = CFTYPE_NOT_ON_ROOT,
5248 .seq_show = memory_high_show,
5249 .write = memory_high_write,
5250 },
5251 {
5252 .name = "max",
5253 .flags = CFTYPE_NOT_ON_ROOT,
5254 .seq_show = memory_max_show,
5255 .write = memory_max_write,
5256 },
5257 {
5258 .name = "events",
5259 .flags = CFTYPE_NOT_ON_ROOT,
5260 .file_offset = offsetof(struct mem_cgroup, events_file),
5261 .seq_show = memory_events_show,
5262 },
5263 {
5264 .name = "stat",
5265 .flags = CFTYPE_NOT_ON_ROOT,
5266 .seq_show = memory_stat_show,
5267 },
5268 { } /* terminate */
5269 };
5270
5271 struct cgroup_subsys memory_cgrp_subsys = {
5272 .css_alloc = mem_cgroup_css_alloc,
5273 .css_online = mem_cgroup_css_online,
5274 .css_offline = mem_cgroup_css_offline,
5275 .css_released = mem_cgroup_css_released,
5276 .css_free = mem_cgroup_css_free,
5277 .css_reset = mem_cgroup_css_reset,
5278 .can_attach = mem_cgroup_can_attach,
5279 .cancel_attach = mem_cgroup_cancel_attach,
5280 .post_attach = mem_cgroup_move_task,
5281 .bind = mem_cgroup_bind,
5282 .dfl_cftypes = memory_files,
5283 .legacy_cftypes = mem_cgroup_legacy_files,
5284 .early_init = 0,
5285 };
5286
5287 /**
5288 * mem_cgroup_low - check if memory consumption is below the normal range
5289 * @root: the highest ancestor to consider
5290 * @memcg: the memory cgroup to check
5291 *
5292 * Returns %true if memory consumption of @memcg, and that of all
5293 * configurable ancestors up to @root, is below the normal range.
5294 */
5295 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5296 {
5297 if (mem_cgroup_disabled())
5298 return false;
5299
5300 /*
5301 * The toplevel group doesn't have a configurable range, so
5302 * it's never low when looked at directly, and it is not
5303 * considered an ancestor when assessing the hierarchy.
5304 */
5305
5306 if (memcg == root_mem_cgroup)
5307 return false;
5308
5309 if (page_counter_read(&memcg->memory) >= memcg->low)
5310 return false;
5311
5312 while (memcg != root) {
5313 memcg = parent_mem_cgroup(memcg);
5314
5315 if (memcg == root_mem_cgroup)
5316 break;
5317
5318 if (page_counter_read(&memcg->memory) >= memcg->low)
5319 return false;
5320 }
5321 return true;
5322 }
5323
5324 /**
5325 * mem_cgroup_try_charge - try charging a page
5326 * @page: page to charge
5327 * @mm: mm context of the victim
5328 * @gfp_mask: reclaim mode
5329 * @memcgp: charged memcg return
5330 * @compound: charge the page as compound or small page
5331 *
5332 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5333 * pages according to @gfp_mask if necessary.
5334 *
5335 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5336 * Otherwise, an error code is returned.
5337 *
5338 * After page->mapping has been set up, the caller must finalize the
5339 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5340 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5341 */
5342 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5343 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5344 bool compound)
5345 {
5346 struct mem_cgroup *memcg = NULL;
5347 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5348 int ret = 0;
5349
5350 if (mem_cgroup_disabled())
5351 goto out;
5352
5353 if (PageSwapCache(page)) {
5354 /*
5355 * Every swap fault against a single page tries to charge the
5356 * page, bail as early as possible. shmem_unuse() encounters
5357 * already charged pages, too. The USED bit is protected by
5358 * the page lock, which serializes swap cache removal, which
5359 * in turn serializes uncharging.
5360 */
5361 VM_BUG_ON_PAGE(!PageLocked(page), page);
5362 if (page->mem_cgroup)
5363 goto out;
5364
5365 if (do_swap_account) {
5366 swp_entry_t ent = { .val = page_private(page), };
5367 unsigned short id = lookup_swap_cgroup_id(ent);
5368
5369 rcu_read_lock();
5370 memcg = mem_cgroup_from_id(id);
5371 if (memcg && !css_tryget_online(&memcg->css))
5372 memcg = NULL;
5373 rcu_read_unlock();
5374 }
5375 }
5376
5377 if (!memcg)
5378 memcg = get_mem_cgroup_from_mm(mm);
5379
5380 ret = try_charge(memcg, gfp_mask, nr_pages);
5381
5382 css_put(&memcg->css);
5383 out:
5384 *memcgp = memcg;
5385 return ret;
5386 }
5387
5388 /**
5389 * mem_cgroup_commit_charge - commit a page charge
5390 * @page: page to charge
5391 * @memcg: memcg to charge the page to
5392 * @lrucare: page might be on LRU already
5393 * @compound: charge the page as compound or small page
5394 *
5395 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5396 * after page->mapping has been set up. This must happen atomically
5397 * as part of the page instantiation, i.e. under the page table lock
5398 * for anonymous pages, under the page lock for page and swap cache.
5399 *
5400 * In addition, the page must not be on the LRU during the commit, to
5401 * prevent racing with task migration. If it might be, use @lrucare.
5402 *
5403 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5404 */
5405 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5406 bool lrucare, bool compound)
5407 {
5408 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5409
5410 VM_BUG_ON_PAGE(!page->mapping, page);
5411 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5412
5413 if (mem_cgroup_disabled())
5414 return;
5415 /*
5416 * Swap faults will attempt to charge the same page multiple
5417 * times. But reuse_swap_page() might have removed the page
5418 * from swapcache already, so we can't check PageSwapCache().
5419 */
5420 if (!memcg)
5421 return;
5422
5423 commit_charge(page, memcg, lrucare);
5424
5425 local_irq_disable();
5426 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5427 memcg_check_events(memcg, page);
5428 local_irq_enable();
5429
5430 if (do_memsw_account() && PageSwapCache(page)) {
5431 swp_entry_t entry = { .val = page_private(page) };
5432 /*
5433 * The swap entry might not get freed for a long time,
5434 * let's not wait for it. The page already received a
5435 * memory+swap charge, drop the swap entry duplicate.
5436 */
5437 mem_cgroup_uncharge_swap(entry);
5438 }
5439 }
5440
5441 /**
5442 * mem_cgroup_cancel_charge - cancel a page charge
5443 * @page: page to charge
5444 * @memcg: memcg to charge the page to
5445 * @compound: charge the page as compound or small page
5446 *
5447 * Cancel a charge transaction started by mem_cgroup_try_charge().
5448 */
5449 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5450 bool compound)
5451 {
5452 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5453
5454 if (mem_cgroup_disabled())
5455 return;
5456 /*
5457 * Swap faults will attempt to charge the same page multiple
5458 * times. But reuse_swap_page() might have removed the page
5459 * from swapcache already, so we can't check PageSwapCache().
5460 */
5461 if (!memcg)
5462 return;
5463
5464 cancel_charge(memcg, nr_pages);
5465 }
5466
5467 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5468 unsigned long nr_anon, unsigned long nr_file,
5469 unsigned long nr_huge, unsigned long nr_kmem,
5470 struct page *dummy_page)
5471 {
5472 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5473 unsigned long flags;
5474
5475 if (!mem_cgroup_is_root(memcg)) {
5476 page_counter_uncharge(&memcg->memory, nr_pages);
5477 if (do_memsw_account())
5478 page_counter_uncharge(&memcg->memsw, nr_pages);
5479 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5480 page_counter_uncharge(&memcg->kmem, nr_kmem);
5481 memcg_oom_recover(memcg);
5482 }
5483
5484 local_irq_save(flags);
5485 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5486 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5487 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5488 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5489 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5490 memcg_check_events(memcg, dummy_page);
5491 local_irq_restore(flags);
5492
5493 if (!mem_cgroup_is_root(memcg))
5494 css_put_many(&memcg->css, nr_pages);
5495 }
5496
5497 static void uncharge_list(struct list_head *page_list)
5498 {
5499 struct mem_cgroup *memcg = NULL;
5500 unsigned long nr_anon = 0;
5501 unsigned long nr_file = 0;
5502 unsigned long nr_huge = 0;
5503 unsigned long nr_kmem = 0;
5504 unsigned long pgpgout = 0;
5505 struct list_head *next;
5506 struct page *page;
5507
5508 /*
5509 * Note that the list can be a single page->lru; hence the
5510 * do-while loop instead of a simple list_for_each_entry().
5511 */
5512 next = page_list->next;
5513 do {
5514 page = list_entry(next, struct page, lru);
5515 next = page->lru.next;
5516
5517 VM_BUG_ON_PAGE(PageLRU(page), page);
5518 VM_BUG_ON_PAGE(page_count(page), page);
5519
5520 if (!page->mem_cgroup)
5521 continue;
5522
5523 /*
5524 * Nobody should be changing or seriously looking at
5525 * page->mem_cgroup at this point, we have fully
5526 * exclusive access to the page.
5527 */
5528
5529 if (memcg != page->mem_cgroup) {
5530 if (memcg) {
5531 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5532 nr_huge, nr_kmem, page);
5533 pgpgout = nr_anon = nr_file =
5534 nr_huge = nr_kmem = 0;
5535 }
5536 memcg = page->mem_cgroup;
5537 }
5538
5539 if (!PageKmemcg(page)) {
5540 unsigned int nr_pages = 1;
5541
5542 if (PageTransHuge(page)) {
5543 nr_pages <<= compound_order(page);
5544 nr_huge += nr_pages;
5545 }
5546 if (PageAnon(page))
5547 nr_anon += nr_pages;
5548 else
5549 nr_file += nr_pages;
5550 pgpgout++;
5551 } else {
5552 nr_kmem += 1 << compound_order(page);
5553 __ClearPageKmemcg(page);
5554 }
5555
5556 page->mem_cgroup = NULL;
5557 } while (next != page_list);
5558
5559 if (memcg)
5560 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5561 nr_huge, nr_kmem, page);
5562 }
5563
5564 /**
5565 * mem_cgroup_uncharge - uncharge a page
5566 * @page: page to uncharge
5567 *
5568 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5569 * mem_cgroup_commit_charge().
5570 */
5571 void mem_cgroup_uncharge(struct page *page)
5572 {
5573 if (mem_cgroup_disabled())
5574 return;
5575
5576 /* Don't touch page->lru of any random page, pre-check: */
5577 if (!page->mem_cgroup)
5578 return;
5579
5580 INIT_LIST_HEAD(&page->lru);
5581 uncharge_list(&page->lru);
5582 }
5583
5584 /**
5585 * mem_cgroup_uncharge_list - uncharge a list of page
5586 * @page_list: list of pages to uncharge
5587 *
5588 * Uncharge a list of pages previously charged with
5589 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5590 */
5591 void mem_cgroup_uncharge_list(struct list_head *page_list)
5592 {
5593 if (mem_cgroup_disabled())
5594 return;
5595
5596 if (!list_empty(page_list))
5597 uncharge_list(page_list);
5598 }
5599
5600 /**
5601 * mem_cgroup_migrate - charge a page's replacement
5602 * @oldpage: currently circulating page
5603 * @newpage: replacement page
5604 *
5605 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5606 * be uncharged upon free.
5607 *
5608 * Both pages must be locked, @newpage->mapping must be set up.
5609 */
5610 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5611 {
5612 struct mem_cgroup *memcg;
5613 unsigned int nr_pages;
5614 bool compound;
5615 unsigned long flags;
5616
5617 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5618 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5619 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5620 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5621 newpage);
5622
5623 if (mem_cgroup_disabled())
5624 return;
5625
5626 /* Page cache replacement: new page already charged? */
5627 if (newpage->mem_cgroup)
5628 return;
5629
5630 /* Swapcache readahead pages can get replaced before being charged */
5631 memcg = oldpage->mem_cgroup;
5632 if (!memcg)
5633 return;
5634
5635 /* Force-charge the new page. The old one will be freed soon */
5636 compound = PageTransHuge(newpage);
5637 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5638
5639 page_counter_charge(&memcg->memory, nr_pages);
5640 if (do_memsw_account())
5641 page_counter_charge(&memcg->memsw, nr_pages);
5642 css_get_many(&memcg->css, nr_pages);
5643
5644 commit_charge(newpage, memcg, false);
5645
5646 local_irq_save(flags);
5647 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5648 memcg_check_events(memcg, newpage);
5649 local_irq_restore(flags);
5650 }
5651
5652 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5653 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5654
5655 void mem_cgroup_sk_alloc(struct sock *sk)
5656 {
5657 struct mem_cgroup *memcg;
5658
5659 if (!mem_cgroup_sockets_enabled)
5660 return;
5661
5662 /*
5663 * Socket cloning can throw us here with sk_memcg already
5664 * filled. It won't however, necessarily happen from
5665 * process context. So the test for root memcg given
5666 * the current task's memcg won't help us in this case.
5667 *
5668 * Respecting the original socket's memcg is a better
5669 * decision in this case.
5670 */
5671 if (sk->sk_memcg) {
5672 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5673 css_get(&sk->sk_memcg->css);
5674 return;
5675 }
5676
5677 rcu_read_lock();
5678 memcg = mem_cgroup_from_task(current);
5679 if (memcg == root_mem_cgroup)
5680 goto out;
5681 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5682 goto out;
5683 if (css_tryget_online(&memcg->css))
5684 sk->sk_memcg = memcg;
5685 out:
5686 rcu_read_unlock();
5687 }
5688
5689 void mem_cgroup_sk_free(struct sock *sk)
5690 {
5691 if (sk->sk_memcg)
5692 css_put(&sk->sk_memcg->css);
5693 }
5694
5695 /**
5696 * mem_cgroup_charge_skmem - charge socket memory
5697 * @memcg: memcg to charge
5698 * @nr_pages: number of pages to charge
5699 *
5700 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5701 * @memcg's configured limit, %false if the charge had to be forced.
5702 */
5703 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5704 {
5705 gfp_t gfp_mask = GFP_KERNEL;
5706
5707 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5708 struct page_counter *fail;
5709
5710 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5711 memcg->tcpmem_pressure = 0;
5712 return true;
5713 }
5714 page_counter_charge(&memcg->tcpmem, nr_pages);
5715 memcg->tcpmem_pressure = 1;
5716 return false;
5717 }
5718
5719 /* Don't block in the packet receive path */
5720 if (in_softirq())
5721 gfp_mask = GFP_NOWAIT;
5722
5723 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5724
5725 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5726 return true;
5727
5728 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5729 return false;
5730 }
5731
5732 /**
5733 * mem_cgroup_uncharge_skmem - uncharge socket memory
5734 * @memcg - memcg to uncharge
5735 * @nr_pages - number of pages to uncharge
5736 */
5737 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5738 {
5739 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5740 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5741 return;
5742 }
5743
5744 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5745
5746 page_counter_uncharge(&memcg->memory, nr_pages);
5747 css_put_many(&memcg->css, nr_pages);
5748 }
5749
5750 static int __init cgroup_memory(char *s)
5751 {
5752 char *token;
5753
5754 while ((token = strsep(&s, ",")) != NULL) {
5755 if (!*token)
5756 continue;
5757 if (!strcmp(token, "nosocket"))
5758 cgroup_memory_nosocket = true;
5759 if (!strcmp(token, "nokmem"))
5760 cgroup_memory_nokmem = true;
5761 }
5762 return 0;
5763 }
5764 __setup("cgroup.memory=", cgroup_memory);
5765
5766 /*
5767 * subsys_initcall() for memory controller.
5768 *
5769 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5770 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5771 * basically everything that doesn't depend on a specific mem_cgroup structure
5772 * should be initialized from here.
5773 */
5774 static int __init mem_cgroup_init(void)
5775 {
5776 int cpu, node;
5777
5778 #ifndef CONFIG_SLOB
5779 /*
5780 * Kmem cache creation is mostly done with the slab_mutex held,
5781 * so use a workqueue with limited concurrency to avoid stalling
5782 * all worker threads in case lots of cgroups are created and
5783 * destroyed simultaneously.
5784 */
5785 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5786 BUG_ON(!memcg_kmem_cache_wq);
5787 #endif
5788
5789 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5790 memcg_hotplug_cpu_dead);
5791
5792 for_each_possible_cpu(cpu)
5793 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5794 drain_local_stock);
5795
5796 for_each_node(node) {
5797 struct mem_cgroup_tree_per_node *rtpn;
5798
5799 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5800 node_online(node) ? node : NUMA_NO_NODE);
5801
5802 rtpn->rb_root = RB_ROOT;
5803 spin_lock_init(&rtpn->lock);
5804 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5805 }
5806
5807 return 0;
5808 }
5809 subsys_initcall(mem_cgroup_init);
5810
5811 #ifdef CONFIG_MEMCG_SWAP
5812 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5813 {
5814 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5815 /*
5816 * The root cgroup cannot be destroyed, so it's refcount must
5817 * always be >= 1.
5818 */
5819 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5820 VM_BUG_ON(1);
5821 break;
5822 }
5823 memcg = parent_mem_cgroup(memcg);
5824 if (!memcg)
5825 memcg = root_mem_cgroup;
5826 }
5827 return memcg;
5828 }
5829
5830 /**
5831 * mem_cgroup_swapout - transfer a memsw charge to swap
5832 * @page: page whose memsw charge to transfer
5833 * @entry: swap entry to move the charge to
5834 *
5835 * Transfer the memsw charge of @page to @entry.
5836 */
5837 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5838 {
5839 struct mem_cgroup *memcg, *swap_memcg;
5840 unsigned short oldid;
5841
5842 VM_BUG_ON_PAGE(PageLRU(page), page);
5843 VM_BUG_ON_PAGE(page_count(page), page);
5844
5845 if (!do_memsw_account())
5846 return;
5847
5848 memcg = page->mem_cgroup;
5849
5850 /* Readahead page, never charged */
5851 if (!memcg)
5852 return;
5853
5854 /*
5855 * In case the memcg owning these pages has been offlined and doesn't
5856 * have an ID allocated to it anymore, charge the closest online
5857 * ancestor for the swap instead and transfer the memory+swap charge.
5858 */
5859 swap_memcg = mem_cgroup_id_get_online(memcg);
5860 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5861 VM_BUG_ON_PAGE(oldid, page);
5862 mem_cgroup_swap_statistics(swap_memcg, true);
5863
5864 page->mem_cgroup = NULL;
5865
5866 if (!mem_cgroup_is_root(memcg))
5867 page_counter_uncharge(&memcg->memory, 1);
5868
5869 if (memcg != swap_memcg) {
5870 if (!mem_cgroup_is_root(swap_memcg))
5871 page_counter_charge(&swap_memcg->memsw, 1);
5872 page_counter_uncharge(&memcg->memsw, 1);
5873 }
5874
5875 /*
5876 * Interrupts should be disabled here because the caller holds the
5877 * mapping->tree_lock lock which is taken with interrupts-off. It is
5878 * important here to have the interrupts disabled because it is the
5879 * only synchronisation we have for udpating the per-CPU variables.
5880 */
5881 VM_BUG_ON(!irqs_disabled());
5882 mem_cgroup_charge_statistics(memcg, page, false, -1);
5883 memcg_check_events(memcg, page);
5884
5885 if (!mem_cgroup_is_root(memcg))
5886 css_put(&memcg->css);
5887 }
5888
5889 /*
5890 * mem_cgroup_try_charge_swap - try charging a swap entry
5891 * @page: page being added to swap
5892 * @entry: swap entry to charge
5893 *
5894 * Try to charge @entry to the memcg that @page belongs to.
5895 *
5896 * Returns 0 on success, -ENOMEM on failure.
5897 */
5898 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5899 {
5900 struct mem_cgroup *memcg;
5901 struct page_counter *counter;
5902 unsigned short oldid;
5903
5904 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5905 return 0;
5906
5907 memcg = page->mem_cgroup;
5908
5909 /* Readahead page, never charged */
5910 if (!memcg)
5911 return 0;
5912
5913 memcg = mem_cgroup_id_get_online(memcg);
5914
5915 if (!mem_cgroup_is_root(memcg) &&
5916 !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5917 mem_cgroup_id_put(memcg);
5918 return -ENOMEM;
5919 }
5920
5921 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5922 VM_BUG_ON_PAGE(oldid, page);
5923 mem_cgroup_swap_statistics(memcg, true);
5924
5925 return 0;
5926 }
5927
5928 /**
5929 * mem_cgroup_uncharge_swap - uncharge a swap entry
5930 * @entry: swap entry to uncharge
5931 *
5932 * Drop the swap charge associated with @entry.
5933 */
5934 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5935 {
5936 struct mem_cgroup *memcg;
5937 unsigned short id;
5938
5939 if (!do_swap_account)
5940 return;
5941
5942 id = swap_cgroup_record(entry, 0);
5943 rcu_read_lock();
5944 memcg = mem_cgroup_from_id(id);
5945 if (memcg) {
5946 if (!mem_cgroup_is_root(memcg)) {
5947 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5948 page_counter_uncharge(&memcg->swap, 1);
5949 else
5950 page_counter_uncharge(&memcg->memsw, 1);
5951 }
5952 mem_cgroup_swap_statistics(memcg, false);
5953 mem_cgroup_id_put(memcg);
5954 }
5955 rcu_read_unlock();
5956 }
5957
5958 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5959 {
5960 long nr_swap_pages = get_nr_swap_pages();
5961
5962 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5963 return nr_swap_pages;
5964 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5965 nr_swap_pages = min_t(long, nr_swap_pages,
5966 READ_ONCE(memcg->swap.limit) -
5967 page_counter_read(&memcg->swap));
5968 return nr_swap_pages;
5969 }
5970
5971 bool mem_cgroup_swap_full(struct page *page)
5972 {
5973 struct mem_cgroup *memcg;
5974
5975 VM_BUG_ON_PAGE(!PageLocked(page), page);
5976
5977 if (vm_swap_full())
5978 return true;
5979 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5980 return false;
5981
5982 memcg = page->mem_cgroup;
5983 if (!memcg)
5984 return false;
5985
5986 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5987 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5988 return true;
5989
5990 return false;
5991 }
5992
5993 /* for remember boot option*/
5994 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5995 static int really_do_swap_account __initdata = 1;
5996 #else
5997 static int really_do_swap_account __initdata;
5998 #endif
5999
6000 static int __init enable_swap_account(char *s)
6001 {
6002 if (!strcmp(s, "1"))
6003 really_do_swap_account = 1;
6004 else if (!strcmp(s, "0"))
6005 really_do_swap_account = 0;
6006 return 1;
6007 }
6008 __setup("swapaccount=", enable_swap_account);
6009
6010 static u64 swap_current_read(struct cgroup_subsys_state *css,
6011 struct cftype *cft)
6012 {
6013 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6014
6015 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6016 }
6017
6018 static int swap_max_show(struct seq_file *m, void *v)
6019 {
6020 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6021 unsigned long max = READ_ONCE(memcg->swap.limit);
6022
6023 if (max == PAGE_COUNTER_MAX)
6024 seq_puts(m, "max\n");
6025 else
6026 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6027
6028 return 0;
6029 }
6030
6031 static ssize_t swap_max_write(struct kernfs_open_file *of,
6032 char *buf, size_t nbytes, loff_t off)
6033 {
6034 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6035 unsigned long max;
6036 int err;
6037
6038 buf = strstrip(buf);
6039 err = page_counter_memparse(buf, "max", &max);
6040 if (err)
6041 return err;
6042
6043 mutex_lock(&memcg_limit_mutex);
6044 err = page_counter_limit(&memcg->swap, max);
6045 mutex_unlock(&memcg_limit_mutex);
6046 if (err)
6047 return err;
6048
6049 return nbytes;
6050 }
6051
6052 static struct cftype swap_files[] = {
6053 {
6054 .name = "swap.current",
6055 .flags = CFTYPE_NOT_ON_ROOT,
6056 .read_u64 = swap_current_read,
6057 },
6058 {
6059 .name = "swap.max",
6060 .flags = CFTYPE_NOT_ON_ROOT,
6061 .seq_show = swap_max_show,
6062 .write = swap_max_write,
6063 },
6064 { } /* terminate */
6065 };
6066
6067 static struct cftype memsw_cgroup_files[] = {
6068 {
6069 .name = "memsw.usage_in_bytes",
6070 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6071 .read_u64 = mem_cgroup_read_u64,
6072 },
6073 {
6074 .name = "memsw.max_usage_in_bytes",
6075 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6076 .write = mem_cgroup_reset,
6077 .read_u64 = mem_cgroup_read_u64,
6078 },
6079 {
6080 .name = "memsw.limit_in_bytes",
6081 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6082 .write = mem_cgroup_write,
6083 .read_u64 = mem_cgroup_read_u64,
6084 },
6085 {
6086 .name = "memsw.failcnt",
6087 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6088 .write = mem_cgroup_reset,
6089 .read_u64 = mem_cgroup_read_u64,
6090 },
6091 { }, /* terminate */
6092 };
6093
6094 static int __init mem_cgroup_swap_init(void)
6095 {
6096 if (!mem_cgroup_disabled() && really_do_swap_account) {
6097 do_swap_account = 1;
6098 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6099 swap_files));
6100 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6101 memsw_cgroup_files));
6102 }
6103 return 0;
6104 }
6105 subsys_initcall(mem_cgroup_swap_init);
6106
6107 #endif /* CONFIG_MEMCG_SWAP */