]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/memcontrol.c
mm/mempolicy: use NUMA_NO_NODE
[mirror_ubuntu-focal-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include "internal.h"
59 #include <net/sock.h>
60 #include <net/ip.h>
61 #include <net/tcp_memcontrol.h>
62
63 #include <asm/uaccess.h>
64
65 #include <trace/events/vmscan.h>
66
67 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68 EXPORT_SYMBOL(mem_cgroup_subsys);
69
70 #define MEM_CGROUP_RECLAIM_RETRIES 5
71 static struct mem_cgroup *root_mem_cgroup __read_mostly;
72
73 #ifdef CONFIG_MEMCG_SWAP
74 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
75 int do_swap_account __read_mostly;
76
77 /* for remember boot option*/
78 #ifdef CONFIG_MEMCG_SWAP_ENABLED
79 static int really_do_swap_account __initdata = 1;
80 #else
81 static int really_do_swap_account __initdata = 0;
82 #endif
83
84 #else
85 #define do_swap_account 0
86 #endif
87
88
89 static const char * const mem_cgroup_stat_names[] = {
90 "cache",
91 "rss",
92 "rss_huge",
93 "mapped_file",
94 "writeback",
95 "swap",
96 };
97
98 enum mem_cgroup_events_index {
99 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
100 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
101 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
102 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
103 MEM_CGROUP_EVENTS_NSTATS,
104 };
105
106 static const char * const mem_cgroup_events_names[] = {
107 "pgpgin",
108 "pgpgout",
109 "pgfault",
110 "pgmajfault",
111 };
112
113 static const char * const mem_cgroup_lru_names[] = {
114 "inactive_anon",
115 "active_anon",
116 "inactive_file",
117 "active_file",
118 "unevictable",
119 };
120
121 /*
122 * Per memcg event counter is incremented at every pagein/pageout. With THP,
123 * it will be incremated by the number of pages. This counter is used for
124 * for trigger some periodic events. This is straightforward and better
125 * than using jiffies etc. to handle periodic memcg event.
126 */
127 enum mem_cgroup_events_target {
128 MEM_CGROUP_TARGET_THRESH,
129 MEM_CGROUP_TARGET_SOFTLIMIT,
130 MEM_CGROUP_TARGET_NUMAINFO,
131 MEM_CGROUP_NTARGETS,
132 };
133 #define THRESHOLDS_EVENTS_TARGET 128
134 #define SOFTLIMIT_EVENTS_TARGET 1024
135 #define NUMAINFO_EVENTS_TARGET 1024
136
137 struct mem_cgroup_stat_cpu {
138 long count[MEM_CGROUP_STAT_NSTATS];
139 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
140 unsigned long nr_page_events;
141 unsigned long targets[MEM_CGROUP_NTARGETS];
142 };
143
144 struct mem_cgroup_reclaim_iter {
145 /*
146 * last scanned hierarchy member. Valid only if last_dead_count
147 * matches memcg->dead_count of the hierarchy root group.
148 */
149 struct mem_cgroup *last_visited;
150 unsigned long last_dead_count;
151
152 /* scan generation, increased every round-trip */
153 unsigned int generation;
154 };
155
156 /*
157 * per-zone information in memory controller.
158 */
159 struct mem_cgroup_per_zone {
160 struct lruvec lruvec;
161 unsigned long lru_size[NR_LRU_LISTS];
162
163 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
164
165 struct rb_node tree_node; /* RB tree node */
166 unsigned long long usage_in_excess;/* Set to the value by which */
167 /* the soft limit is exceeded*/
168 bool on_tree;
169 struct mem_cgroup *memcg; /* Back pointer, we cannot */
170 /* use container_of */
171 };
172
173 struct mem_cgroup_per_node {
174 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
175 };
176
177 /*
178 * Cgroups above their limits are maintained in a RB-Tree, independent of
179 * their hierarchy representation
180 */
181
182 struct mem_cgroup_tree_per_zone {
183 struct rb_root rb_root;
184 spinlock_t lock;
185 };
186
187 struct mem_cgroup_tree_per_node {
188 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
189 };
190
191 struct mem_cgroup_tree {
192 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
193 };
194
195 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
196
197 struct mem_cgroup_threshold {
198 struct eventfd_ctx *eventfd;
199 u64 threshold;
200 };
201
202 /* For threshold */
203 struct mem_cgroup_threshold_ary {
204 /* An array index points to threshold just below or equal to usage. */
205 int current_threshold;
206 /* Size of entries[] */
207 unsigned int size;
208 /* Array of thresholds */
209 struct mem_cgroup_threshold entries[0];
210 };
211
212 struct mem_cgroup_thresholds {
213 /* Primary thresholds array */
214 struct mem_cgroup_threshold_ary *primary;
215 /*
216 * Spare threshold array.
217 * This is needed to make mem_cgroup_unregister_event() "never fail".
218 * It must be able to store at least primary->size - 1 entries.
219 */
220 struct mem_cgroup_threshold_ary *spare;
221 };
222
223 /* for OOM */
224 struct mem_cgroup_eventfd_list {
225 struct list_head list;
226 struct eventfd_ctx *eventfd;
227 };
228
229 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
230 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
231
232 /*
233 * The memory controller data structure. The memory controller controls both
234 * page cache and RSS per cgroup. We would eventually like to provide
235 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
236 * to help the administrator determine what knobs to tune.
237 *
238 * TODO: Add a water mark for the memory controller. Reclaim will begin when
239 * we hit the water mark. May be even add a low water mark, such that
240 * no reclaim occurs from a cgroup at it's low water mark, this is
241 * a feature that will be implemented much later in the future.
242 */
243 struct mem_cgroup {
244 struct cgroup_subsys_state css;
245 /*
246 * the counter to account for memory usage
247 */
248 struct res_counter res;
249
250 /* vmpressure notifications */
251 struct vmpressure vmpressure;
252
253 /*
254 * the counter to account for mem+swap usage.
255 */
256 struct res_counter memsw;
257
258 /*
259 * the counter to account for kernel memory usage.
260 */
261 struct res_counter kmem;
262 /*
263 * Should the accounting and control be hierarchical, per subtree?
264 */
265 bool use_hierarchy;
266 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
267
268 bool oom_lock;
269 atomic_t under_oom;
270 atomic_t oom_wakeups;
271
272 int swappiness;
273 /* OOM-Killer disable */
274 int oom_kill_disable;
275
276 /* set when res.limit == memsw.limit */
277 bool memsw_is_minimum;
278
279 /* protect arrays of thresholds */
280 struct mutex thresholds_lock;
281
282 /* thresholds for memory usage. RCU-protected */
283 struct mem_cgroup_thresholds thresholds;
284
285 /* thresholds for mem+swap usage. RCU-protected */
286 struct mem_cgroup_thresholds memsw_thresholds;
287
288 /* For oom notifier event fd */
289 struct list_head oom_notify;
290
291 /*
292 * Should we move charges of a task when a task is moved into this
293 * mem_cgroup ? And what type of charges should we move ?
294 */
295 unsigned long move_charge_at_immigrate;
296 /*
297 * set > 0 if pages under this cgroup are moving to other cgroup.
298 */
299 atomic_t moving_account;
300 /* taken only while moving_account > 0 */
301 spinlock_t move_lock;
302 /*
303 * percpu counter.
304 */
305 struct mem_cgroup_stat_cpu __percpu *stat;
306 /*
307 * used when a cpu is offlined or other synchronizations
308 * See mem_cgroup_read_stat().
309 */
310 struct mem_cgroup_stat_cpu nocpu_base;
311 spinlock_t pcp_counter_lock;
312
313 atomic_t dead_count;
314 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
315 struct tcp_memcontrol tcp_mem;
316 #endif
317 #if defined(CONFIG_MEMCG_KMEM)
318 /* analogous to slab_common's slab_caches list. per-memcg */
319 struct list_head memcg_slab_caches;
320 /* Not a spinlock, we can take a lot of time walking the list */
321 struct mutex slab_caches_mutex;
322 /* Index in the kmem_cache->memcg_params->memcg_caches array */
323 int kmemcg_id;
324 #endif
325
326 int last_scanned_node;
327 #if MAX_NUMNODES > 1
328 nodemask_t scan_nodes;
329 atomic_t numainfo_events;
330 atomic_t numainfo_updating;
331 #endif
332
333 struct mem_cgroup_per_node *nodeinfo[0];
334 /* WARNING: nodeinfo must be the last member here */
335 };
336
337 static size_t memcg_size(void)
338 {
339 return sizeof(struct mem_cgroup) +
340 nr_node_ids * sizeof(struct mem_cgroup_per_node);
341 }
342
343 /* internal only representation about the status of kmem accounting. */
344 enum {
345 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
346 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
347 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
348 };
349
350 /* We account when limit is on, but only after call sites are patched */
351 #define KMEM_ACCOUNTED_MASK \
352 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
353
354 #ifdef CONFIG_MEMCG_KMEM
355 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
356 {
357 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
358 }
359
360 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
361 {
362 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
363 }
364
365 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
366 {
367 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
368 }
369
370 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
371 {
372 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
373 }
374
375 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
376 {
377 /*
378 * Our caller must use css_get() first, because memcg_uncharge_kmem()
379 * will call css_put() if it sees the memcg is dead.
380 */
381 smp_wmb();
382 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
383 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
384 }
385
386 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
387 {
388 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
389 &memcg->kmem_account_flags);
390 }
391 #endif
392
393 /* Stuffs for move charges at task migration. */
394 /*
395 * Types of charges to be moved. "move_charge_at_immitgrate" and
396 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
397 */
398 enum move_type {
399 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
400 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
401 NR_MOVE_TYPE,
402 };
403
404 /* "mc" and its members are protected by cgroup_mutex */
405 static struct move_charge_struct {
406 spinlock_t lock; /* for from, to */
407 struct mem_cgroup *from;
408 struct mem_cgroup *to;
409 unsigned long immigrate_flags;
410 unsigned long precharge;
411 unsigned long moved_charge;
412 unsigned long moved_swap;
413 struct task_struct *moving_task; /* a task moving charges */
414 wait_queue_head_t waitq; /* a waitq for other context */
415 } mc = {
416 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
417 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
418 };
419
420 static bool move_anon(void)
421 {
422 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
423 }
424
425 static bool move_file(void)
426 {
427 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
428 }
429
430 /*
431 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
432 * limit reclaim to prevent infinite loops, if they ever occur.
433 */
434 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
435 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
436
437 enum charge_type {
438 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
439 MEM_CGROUP_CHARGE_TYPE_ANON,
440 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
441 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
442 NR_CHARGE_TYPE,
443 };
444
445 /* for encoding cft->private value on file */
446 enum res_type {
447 _MEM,
448 _MEMSWAP,
449 _OOM_TYPE,
450 _KMEM,
451 };
452
453 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
454 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
455 #define MEMFILE_ATTR(val) ((val) & 0xffff)
456 /* Used for OOM nofiier */
457 #define OOM_CONTROL (0)
458
459 /*
460 * Reclaim flags for mem_cgroup_hierarchical_reclaim
461 */
462 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
463 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
464 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
465 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
466
467 /*
468 * The memcg_create_mutex will be held whenever a new cgroup is created.
469 * As a consequence, any change that needs to protect against new child cgroups
470 * appearing has to hold it as well.
471 */
472 static DEFINE_MUTEX(memcg_create_mutex);
473
474 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
475 {
476 return s ? container_of(s, struct mem_cgroup, css) : NULL;
477 }
478
479 /* Some nice accessors for the vmpressure. */
480 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
481 {
482 if (!memcg)
483 memcg = root_mem_cgroup;
484 return &memcg->vmpressure;
485 }
486
487 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
488 {
489 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
490 }
491
492 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
493 {
494 return &mem_cgroup_from_css(css)->vmpressure;
495 }
496
497 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
498 {
499 return (memcg == root_mem_cgroup);
500 }
501
502 /* Writing them here to avoid exposing memcg's inner layout */
503 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
504
505 void sock_update_memcg(struct sock *sk)
506 {
507 if (mem_cgroup_sockets_enabled) {
508 struct mem_cgroup *memcg;
509 struct cg_proto *cg_proto;
510
511 BUG_ON(!sk->sk_prot->proto_cgroup);
512
513 /* Socket cloning can throw us here with sk_cgrp already
514 * filled. It won't however, necessarily happen from
515 * process context. So the test for root memcg given
516 * the current task's memcg won't help us in this case.
517 *
518 * Respecting the original socket's memcg is a better
519 * decision in this case.
520 */
521 if (sk->sk_cgrp) {
522 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
523 css_get(&sk->sk_cgrp->memcg->css);
524 return;
525 }
526
527 rcu_read_lock();
528 memcg = mem_cgroup_from_task(current);
529 cg_proto = sk->sk_prot->proto_cgroup(memcg);
530 if (!mem_cgroup_is_root(memcg) &&
531 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
532 sk->sk_cgrp = cg_proto;
533 }
534 rcu_read_unlock();
535 }
536 }
537 EXPORT_SYMBOL(sock_update_memcg);
538
539 void sock_release_memcg(struct sock *sk)
540 {
541 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
542 struct mem_cgroup *memcg;
543 WARN_ON(!sk->sk_cgrp->memcg);
544 memcg = sk->sk_cgrp->memcg;
545 css_put(&sk->sk_cgrp->memcg->css);
546 }
547 }
548
549 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
550 {
551 if (!memcg || mem_cgroup_is_root(memcg))
552 return NULL;
553
554 return &memcg->tcp_mem.cg_proto;
555 }
556 EXPORT_SYMBOL(tcp_proto_cgroup);
557
558 static void disarm_sock_keys(struct mem_cgroup *memcg)
559 {
560 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
561 return;
562 static_key_slow_dec(&memcg_socket_limit_enabled);
563 }
564 #else
565 static void disarm_sock_keys(struct mem_cgroup *memcg)
566 {
567 }
568 #endif
569
570 #ifdef CONFIG_MEMCG_KMEM
571 /*
572 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
573 * There are two main reasons for not using the css_id for this:
574 * 1) this works better in sparse environments, where we have a lot of memcgs,
575 * but only a few kmem-limited. Or also, if we have, for instance, 200
576 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
577 * 200 entry array for that.
578 *
579 * 2) In order not to violate the cgroup API, we would like to do all memory
580 * allocation in ->create(). At that point, we haven't yet allocated the
581 * css_id. Having a separate index prevents us from messing with the cgroup
582 * core for this
583 *
584 * The current size of the caches array is stored in
585 * memcg_limited_groups_array_size. It will double each time we have to
586 * increase it.
587 */
588 static DEFINE_IDA(kmem_limited_groups);
589 int memcg_limited_groups_array_size;
590
591 /*
592 * MIN_SIZE is different than 1, because we would like to avoid going through
593 * the alloc/free process all the time. In a small machine, 4 kmem-limited
594 * cgroups is a reasonable guess. In the future, it could be a parameter or
595 * tunable, but that is strictly not necessary.
596 *
597 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
598 * this constant directly from cgroup, but it is understandable that this is
599 * better kept as an internal representation in cgroup.c. In any case, the
600 * css_id space is not getting any smaller, and we don't have to necessarily
601 * increase ours as well if it increases.
602 */
603 #define MEMCG_CACHES_MIN_SIZE 4
604 #define MEMCG_CACHES_MAX_SIZE 65535
605
606 /*
607 * A lot of the calls to the cache allocation functions are expected to be
608 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
609 * conditional to this static branch, we'll have to allow modules that does
610 * kmem_cache_alloc and the such to see this symbol as well
611 */
612 struct static_key memcg_kmem_enabled_key;
613 EXPORT_SYMBOL(memcg_kmem_enabled_key);
614
615 static void disarm_kmem_keys(struct mem_cgroup *memcg)
616 {
617 if (memcg_kmem_is_active(memcg)) {
618 static_key_slow_dec(&memcg_kmem_enabled_key);
619 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
620 }
621 /*
622 * This check can't live in kmem destruction function,
623 * since the charges will outlive the cgroup
624 */
625 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
626 }
627 #else
628 static void disarm_kmem_keys(struct mem_cgroup *memcg)
629 {
630 }
631 #endif /* CONFIG_MEMCG_KMEM */
632
633 static void disarm_static_keys(struct mem_cgroup *memcg)
634 {
635 disarm_sock_keys(memcg);
636 disarm_kmem_keys(memcg);
637 }
638
639 static void drain_all_stock_async(struct mem_cgroup *memcg);
640
641 static struct mem_cgroup_per_zone *
642 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
643 {
644 VM_BUG_ON((unsigned)nid >= nr_node_ids);
645 return &memcg->nodeinfo[nid]->zoneinfo[zid];
646 }
647
648 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
649 {
650 return &memcg->css;
651 }
652
653 static struct mem_cgroup_per_zone *
654 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
655 {
656 int nid = page_to_nid(page);
657 int zid = page_zonenum(page);
658
659 return mem_cgroup_zoneinfo(memcg, nid, zid);
660 }
661
662 static struct mem_cgroup_tree_per_zone *
663 soft_limit_tree_node_zone(int nid, int zid)
664 {
665 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
666 }
667
668 static struct mem_cgroup_tree_per_zone *
669 soft_limit_tree_from_page(struct page *page)
670 {
671 int nid = page_to_nid(page);
672 int zid = page_zonenum(page);
673
674 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
675 }
676
677 static void
678 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
679 struct mem_cgroup_per_zone *mz,
680 struct mem_cgroup_tree_per_zone *mctz,
681 unsigned long long new_usage_in_excess)
682 {
683 struct rb_node **p = &mctz->rb_root.rb_node;
684 struct rb_node *parent = NULL;
685 struct mem_cgroup_per_zone *mz_node;
686
687 if (mz->on_tree)
688 return;
689
690 mz->usage_in_excess = new_usage_in_excess;
691 if (!mz->usage_in_excess)
692 return;
693 while (*p) {
694 parent = *p;
695 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
696 tree_node);
697 if (mz->usage_in_excess < mz_node->usage_in_excess)
698 p = &(*p)->rb_left;
699 /*
700 * We can't avoid mem cgroups that are over their soft
701 * limit by the same amount
702 */
703 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
704 p = &(*p)->rb_right;
705 }
706 rb_link_node(&mz->tree_node, parent, p);
707 rb_insert_color(&mz->tree_node, &mctz->rb_root);
708 mz->on_tree = true;
709 }
710
711 static void
712 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
713 struct mem_cgroup_per_zone *mz,
714 struct mem_cgroup_tree_per_zone *mctz)
715 {
716 if (!mz->on_tree)
717 return;
718 rb_erase(&mz->tree_node, &mctz->rb_root);
719 mz->on_tree = false;
720 }
721
722 static void
723 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
724 struct mem_cgroup_per_zone *mz,
725 struct mem_cgroup_tree_per_zone *mctz)
726 {
727 spin_lock(&mctz->lock);
728 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
729 spin_unlock(&mctz->lock);
730 }
731
732
733 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
734 {
735 unsigned long long excess;
736 struct mem_cgroup_per_zone *mz;
737 struct mem_cgroup_tree_per_zone *mctz;
738 int nid = page_to_nid(page);
739 int zid = page_zonenum(page);
740 mctz = soft_limit_tree_from_page(page);
741
742 /*
743 * Necessary to update all ancestors when hierarchy is used.
744 * because their event counter is not touched.
745 */
746 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
747 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
748 excess = res_counter_soft_limit_excess(&memcg->res);
749 /*
750 * We have to update the tree if mz is on RB-tree or
751 * mem is over its softlimit.
752 */
753 if (excess || mz->on_tree) {
754 spin_lock(&mctz->lock);
755 /* if on-tree, remove it */
756 if (mz->on_tree)
757 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
758 /*
759 * Insert again. mz->usage_in_excess will be updated.
760 * If excess is 0, no tree ops.
761 */
762 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
763 spin_unlock(&mctz->lock);
764 }
765 }
766 }
767
768 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
769 {
770 int node, zone;
771 struct mem_cgroup_per_zone *mz;
772 struct mem_cgroup_tree_per_zone *mctz;
773
774 for_each_node(node) {
775 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
776 mz = mem_cgroup_zoneinfo(memcg, node, zone);
777 mctz = soft_limit_tree_node_zone(node, zone);
778 mem_cgroup_remove_exceeded(memcg, mz, mctz);
779 }
780 }
781 }
782
783 static struct mem_cgroup_per_zone *
784 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
785 {
786 struct rb_node *rightmost = NULL;
787 struct mem_cgroup_per_zone *mz;
788
789 retry:
790 mz = NULL;
791 rightmost = rb_last(&mctz->rb_root);
792 if (!rightmost)
793 goto done; /* Nothing to reclaim from */
794
795 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
796 /*
797 * Remove the node now but someone else can add it back,
798 * we will to add it back at the end of reclaim to its correct
799 * position in the tree.
800 */
801 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
802 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
803 !css_tryget(&mz->memcg->css))
804 goto retry;
805 done:
806 return mz;
807 }
808
809 static struct mem_cgroup_per_zone *
810 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
811 {
812 struct mem_cgroup_per_zone *mz;
813
814 spin_lock(&mctz->lock);
815 mz = __mem_cgroup_largest_soft_limit_node(mctz);
816 spin_unlock(&mctz->lock);
817 return mz;
818 }
819
820 /*
821 * Implementation Note: reading percpu statistics for memcg.
822 *
823 * Both of vmstat[] and percpu_counter has threshold and do periodic
824 * synchronization to implement "quick" read. There are trade-off between
825 * reading cost and precision of value. Then, we may have a chance to implement
826 * a periodic synchronizion of counter in memcg's counter.
827 *
828 * But this _read() function is used for user interface now. The user accounts
829 * memory usage by memory cgroup and he _always_ requires exact value because
830 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
831 * have to visit all online cpus and make sum. So, for now, unnecessary
832 * synchronization is not implemented. (just implemented for cpu hotplug)
833 *
834 * If there are kernel internal actions which can make use of some not-exact
835 * value, and reading all cpu value can be performance bottleneck in some
836 * common workload, threashold and synchonization as vmstat[] should be
837 * implemented.
838 */
839 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
840 enum mem_cgroup_stat_index idx)
841 {
842 long val = 0;
843 int cpu;
844
845 get_online_cpus();
846 for_each_online_cpu(cpu)
847 val += per_cpu(memcg->stat->count[idx], cpu);
848 #ifdef CONFIG_HOTPLUG_CPU
849 spin_lock(&memcg->pcp_counter_lock);
850 val += memcg->nocpu_base.count[idx];
851 spin_unlock(&memcg->pcp_counter_lock);
852 #endif
853 put_online_cpus();
854 return val;
855 }
856
857 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
858 bool charge)
859 {
860 int val = (charge) ? 1 : -1;
861 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
862 }
863
864 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
865 enum mem_cgroup_events_index idx)
866 {
867 unsigned long val = 0;
868 int cpu;
869
870 get_online_cpus();
871 for_each_online_cpu(cpu)
872 val += per_cpu(memcg->stat->events[idx], cpu);
873 #ifdef CONFIG_HOTPLUG_CPU
874 spin_lock(&memcg->pcp_counter_lock);
875 val += memcg->nocpu_base.events[idx];
876 spin_unlock(&memcg->pcp_counter_lock);
877 #endif
878 put_online_cpus();
879 return val;
880 }
881
882 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
883 struct page *page,
884 bool anon, int nr_pages)
885 {
886 preempt_disable();
887
888 /*
889 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
890 * counted as CACHE even if it's on ANON LRU.
891 */
892 if (anon)
893 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
894 nr_pages);
895 else
896 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
897 nr_pages);
898
899 if (PageTransHuge(page))
900 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
901 nr_pages);
902
903 /* pagein of a big page is an event. So, ignore page size */
904 if (nr_pages > 0)
905 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
906 else {
907 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
908 nr_pages = -nr_pages; /* for event */
909 }
910
911 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
912
913 preempt_enable();
914 }
915
916 unsigned long
917 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
918 {
919 struct mem_cgroup_per_zone *mz;
920
921 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
922 return mz->lru_size[lru];
923 }
924
925 static unsigned long
926 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
927 unsigned int lru_mask)
928 {
929 struct mem_cgroup_per_zone *mz;
930 enum lru_list lru;
931 unsigned long ret = 0;
932
933 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
934
935 for_each_lru(lru) {
936 if (BIT(lru) & lru_mask)
937 ret += mz->lru_size[lru];
938 }
939 return ret;
940 }
941
942 static unsigned long
943 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
944 int nid, unsigned int lru_mask)
945 {
946 u64 total = 0;
947 int zid;
948
949 for (zid = 0; zid < MAX_NR_ZONES; zid++)
950 total += mem_cgroup_zone_nr_lru_pages(memcg,
951 nid, zid, lru_mask);
952
953 return total;
954 }
955
956 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
957 unsigned int lru_mask)
958 {
959 int nid;
960 u64 total = 0;
961
962 for_each_node_state(nid, N_MEMORY)
963 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
964 return total;
965 }
966
967 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
968 enum mem_cgroup_events_target target)
969 {
970 unsigned long val, next;
971
972 val = __this_cpu_read(memcg->stat->nr_page_events);
973 next = __this_cpu_read(memcg->stat->targets[target]);
974 /* from time_after() in jiffies.h */
975 if ((long)next - (long)val < 0) {
976 switch (target) {
977 case MEM_CGROUP_TARGET_THRESH:
978 next = val + THRESHOLDS_EVENTS_TARGET;
979 break;
980 case MEM_CGROUP_TARGET_SOFTLIMIT:
981 next = val + SOFTLIMIT_EVENTS_TARGET;
982 break;
983 case MEM_CGROUP_TARGET_NUMAINFO:
984 next = val + NUMAINFO_EVENTS_TARGET;
985 break;
986 default:
987 break;
988 }
989 __this_cpu_write(memcg->stat->targets[target], next);
990 return true;
991 }
992 return false;
993 }
994
995 /*
996 * Check events in order.
997 *
998 */
999 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1000 {
1001 preempt_disable();
1002 /* threshold event is triggered in finer grain than soft limit */
1003 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1004 MEM_CGROUP_TARGET_THRESH))) {
1005 bool do_softlimit;
1006 bool do_numainfo __maybe_unused;
1007
1008 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1009 MEM_CGROUP_TARGET_SOFTLIMIT);
1010 #if MAX_NUMNODES > 1
1011 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1012 MEM_CGROUP_TARGET_NUMAINFO);
1013 #endif
1014 preempt_enable();
1015
1016 mem_cgroup_threshold(memcg);
1017 if (unlikely(do_softlimit))
1018 mem_cgroup_update_tree(memcg, page);
1019 #if MAX_NUMNODES > 1
1020 if (unlikely(do_numainfo))
1021 atomic_inc(&memcg->numainfo_events);
1022 #endif
1023 } else
1024 preempt_enable();
1025 }
1026
1027 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1028 {
1029 /*
1030 * mm_update_next_owner() may clear mm->owner to NULL
1031 * if it races with swapoff, page migration, etc.
1032 * So this can be called with p == NULL.
1033 */
1034 if (unlikely(!p))
1035 return NULL;
1036
1037 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1038 }
1039
1040 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1041 {
1042 struct mem_cgroup *memcg = NULL;
1043
1044 if (!mm)
1045 return NULL;
1046 /*
1047 * Because we have no locks, mm->owner's may be being moved to other
1048 * cgroup. We use css_tryget() here even if this looks
1049 * pessimistic (rather than adding locks here).
1050 */
1051 rcu_read_lock();
1052 do {
1053 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1054 if (unlikely(!memcg))
1055 break;
1056 } while (!css_tryget(&memcg->css));
1057 rcu_read_unlock();
1058 return memcg;
1059 }
1060
1061 /*
1062 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1063 * ref. count) or NULL if the whole root's subtree has been visited.
1064 *
1065 * helper function to be used by mem_cgroup_iter
1066 */
1067 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1068 struct mem_cgroup *last_visited)
1069 {
1070 struct cgroup_subsys_state *prev_css, *next_css;
1071
1072 prev_css = last_visited ? &last_visited->css : NULL;
1073 skip_node:
1074 next_css = css_next_descendant_pre(prev_css, &root->css);
1075
1076 /*
1077 * Even if we found a group we have to make sure it is
1078 * alive. css && !memcg means that the groups should be
1079 * skipped and we should continue the tree walk.
1080 * last_visited css is safe to use because it is
1081 * protected by css_get and the tree walk is rcu safe.
1082 */
1083 if (next_css) {
1084 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1085
1086 if (css_tryget(&mem->css))
1087 return mem;
1088 else {
1089 prev_css = next_css;
1090 goto skip_node;
1091 }
1092 }
1093
1094 return NULL;
1095 }
1096
1097 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1098 {
1099 /*
1100 * When a group in the hierarchy below root is destroyed, the
1101 * hierarchy iterator can no longer be trusted since it might
1102 * have pointed to the destroyed group. Invalidate it.
1103 */
1104 atomic_inc(&root->dead_count);
1105 }
1106
1107 static struct mem_cgroup *
1108 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1109 struct mem_cgroup *root,
1110 int *sequence)
1111 {
1112 struct mem_cgroup *position = NULL;
1113 /*
1114 * A cgroup destruction happens in two stages: offlining and
1115 * release. They are separated by a RCU grace period.
1116 *
1117 * If the iterator is valid, we may still race with an
1118 * offlining. The RCU lock ensures the object won't be
1119 * released, tryget will fail if we lost the race.
1120 */
1121 *sequence = atomic_read(&root->dead_count);
1122 if (iter->last_dead_count == *sequence) {
1123 smp_rmb();
1124 position = iter->last_visited;
1125 if (position && !css_tryget(&position->css))
1126 position = NULL;
1127 }
1128 return position;
1129 }
1130
1131 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1132 struct mem_cgroup *last_visited,
1133 struct mem_cgroup *new_position,
1134 int sequence)
1135 {
1136 if (last_visited)
1137 css_put(&last_visited->css);
1138 /*
1139 * We store the sequence count from the time @last_visited was
1140 * loaded successfully instead of rereading it here so that we
1141 * don't lose destruction events in between. We could have
1142 * raced with the destruction of @new_position after all.
1143 */
1144 iter->last_visited = new_position;
1145 smp_wmb();
1146 iter->last_dead_count = sequence;
1147 }
1148
1149 /**
1150 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1151 * @root: hierarchy root
1152 * @prev: previously returned memcg, NULL on first invocation
1153 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1154 *
1155 * Returns references to children of the hierarchy below @root, or
1156 * @root itself, or %NULL after a full round-trip.
1157 *
1158 * Caller must pass the return value in @prev on subsequent
1159 * invocations for reference counting, or use mem_cgroup_iter_break()
1160 * to cancel a hierarchy walk before the round-trip is complete.
1161 *
1162 * Reclaimers can specify a zone and a priority level in @reclaim to
1163 * divide up the memcgs in the hierarchy among all concurrent
1164 * reclaimers operating on the same zone and priority.
1165 */
1166 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1167 struct mem_cgroup *prev,
1168 struct mem_cgroup_reclaim_cookie *reclaim)
1169 {
1170 struct mem_cgroup *memcg = NULL;
1171 struct mem_cgroup *last_visited = NULL;
1172
1173 if (mem_cgroup_disabled())
1174 return NULL;
1175
1176 if (!root)
1177 root = root_mem_cgroup;
1178
1179 if (prev && !reclaim)
1180 last_visited = prev;
1181
1182 if (!root->use_hierarchy && root != root_mem_cgroup) {
1183 if (prev)
1184 goto out_css_put;
1185 return root;
1186 }
1187
1188 rcu_read_lock();
1189 while (!memcg) {
1190 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1191 int uninitialized_var(seq);
1192
1193 if (reclaim) {
1194 int nid = zone_to_nid(reclaim->zone);
1195 int zid = zone_idx(reclaim->zone);
1196 struct mem_cgroup_per_zone *mz;
1197
1198 mz = mem_cgroup_zoneinfo(root, nid, zid);
1199 iter = &mz->reclaim_iter[reclaim->priority];
1200 if (prev && reclaim->generation != iter->generation) {
1201 iter->last_visited = NULL;
1202 goto out_unlock;
1203 }
1204
1205 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1206 }
1207
1208 memcg = __mem_cgroup_iter_next(root, last_visited);
1209
1210 if (reclaim) {
1211 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1212
1213 if (!memcg)
1214 iter->generation++;
1215 else if (!prev && memcg)
1216 reclaim->generation = iter->generation;
1217 }
1218
1219 if (prev && !memcg)
1220 goto out_unlock;
1221 }
1222 out_unlock:
1223 rcu_read_unlock();
1224 out_css_put:
1225 if (prev && prev != root)
1226 css_put(&prev->css);
1227
1228 return memcg;
1229 }
1230
1231 /**
1232 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1233 * @root: hierarchy root
1234 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1235 */
1236 void mem_cgroup_iter_break(struct mem_cgroup *root,
1237 struct mem_cgroup *prev)
1238 {
1239 if (!root)
1240 root = root_mem_cgroup;
1241 if (prev && prev != root)
1242 css_put(&prev->css);
1243 }
1244
1245 /*
1246 * Iteration constructs for visiting all cgroups (under a tree). If
1247 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1248 * be used for reference counting.
1249 */
1250 #define for_each_mem_cgroup_tree(iter, root) \
1251 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1252 iter != NULL; \
1253 iter = mem_cgroup_iter(root, iter, NULL))
1254
1255 #define for_each_mem_cgroup(iter) \
1256 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1257 iter != NULL; \
1258 iter = mem_cgroup_iter(NULL, iter, NULL))
1259
1260 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1261 {
1262 struct mem_cgroup *memcg;
1263
1264 rcu_read_lock();
1265 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1266 if (unlikely(!memcg))
1267 goto out;
1268
1269 switch (idx) {
1270 case PGFAULT:
1271 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1272 break;
1273 case PGMAJFAULT:
1274 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1275 break;
1276 default:
1277 BUG();
1278 }
1279 out:
1280 rcu_read_unlock();
1281 }
1282 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1283
1284 /**
1285 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1286 * @zone: zone of the wanted lruvec
1287 * @memcg: memcg of the wanted lruvec
1288 *
1289 * Returns the lru list vector holding pages for the given @zone and
1290 * @mem. This can be the global zone lruvec, if the memory controller
1291 * is disabled.
1292 */
1293 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1294 struct mem_cgroup *memcg)
1295 {
1296 struct mem_cgroup_per_zone *mz;
1297 struct lruvec *lruvec;
1298
1299 if (mem_cgroup_disabled()) {
1300 lruvec = &zone->lruvec;
1301 goto out;
1302 }
1303
1304 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1305 lruvec = &mz->lruvec;
1306 out:
1307 /*
1308 * Since a node can be onlined after the mem_cgroup was created,
1309 * we have to be prepared to initialize lruvec->zone here;
1310 * and if offlined then reonlined, we need to reinitialize it.
1311 */
1312 if (unlikely(lruvec->zone != zone))
1313 lruvec->zone = zone;
1314 return lruvec;
1315 }
1316
1317 /*
1318 * Following LRU functions are allowed to be used without PCG_LOCK.
1319 * Operations are called by routine of global LRU independently from memcg.
1320 * What we have to take care of here is validness of pc->mem_cgroup.
1321 *
1322 * Changes to pc->mem_cgroup happens when
1323 * 1. charge
1324 * 2. moving account
1325 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1326 * It is added to LRU before charge.
1327 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1328 * When moving account, the page is not on LRU. It's isolated.
1329 */
1330
1331 /**
1332 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1333 * @page: the page
1334 * @zone: zone of the page
1335 */
1336 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1337 {
1338 struct mem_cgroup_per_zone *mz;
1339 struct mem_cgroup *memcg;
1340 struct page_cgroup *pc;
1341 struct lruvec *lruvec;
1342
1343 if (mem_cgroup_disabled()) {
1344 lruvec = &zone->lruvec;
1345 goto out;
1346 }
1347
1348 pc = lookup_page_cgroup(page);
1349 memcg = pc->mem_cgroup;
1350
1351 /*
1352 * Surreptitiously switch any uncharged offlist page to root:
1353 * an uncharged page off lru does nothing to secure
1354 * its former mem_cgroup from sudden removal.
1355 *
1356 * Our caller holds lru_lock, and PageCgroupUsed is updated
1357 * under page_cgroup lock: between them, they make all uses
1358 * of pc->mem_cgroup safe.
1359 */
1360 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1361 pc->mem_cgroup = memcg = root_mem_cgroup;
1362
1363 mz = page_cgroup_zoneinfo(memcg, page);
1364 lruvec = &mz->lruvec;
1365 out:
1366 /*
1367 * Since a node can be onlined after the mem_cgroup was created,
1368 * we have to be prepared to initialize lruvec->zone here;
1369 * and if offlined then reonlined, we need to reinitialize it.
1370 */
1371 if (unlikely(lruvec->zone != zone))
1372 lruvec->zone = zone;
1373 return lruvec;
1374 }
1375
1376 /**
1377 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1378 * @lruvec: mem_cgroup per zone lru vector
1379 * @lru: index of lru list the page is sitting on
1380 * @nr_pages: positive when adding or negative when removing
1381 *
1382 * This function must be called when a page is added to or removed from an
1383 * lru list.
1384 */
1385 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1386 int nr_pages)
1387 {
1388 struct mem_cgroup_per_zone *mz;
1389 unsigned long *lru_size;
1390
1391 if (mem_cgroup_disabled())
1392 return;
1393
1394 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1395 lru_size = mz->lru_size + lru;
1396 *lru_size += nr_pages;
1397 VM_BUG_ON((long)(*lru_size) < 0);
1398 }
1399
1400 /*
1401 * Checks whether given mem is same or in the root_mem_cgroup's
1402 * hierarchy subtree
1403 */
1404 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1405 struct mem_cgroup *memcg)
1406 {
1407 if (root_memcg == memcg)
1408 return true;
1409 if (!root_memcg->use_hierarchy || !memcg)
1410 return false;
1411 return css_is_ancestor(&memcg->css, &root_memcg->css);
1412 }
1413
1414 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1415 struct mem_cgroup *memcg)
1416 {
1417 bool ret;
1418
1419 rcu_read_lock();
1420 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1421 rcu_read_unlock();
1422 return ret;
1423 }
1424
1425 bool task_in_mem_cgroup(struct task_struct *task,
1426 const struct mem_cgroup *memcg)
1427 {
1428 struct mem_cgroup *curr = NULL;
1429 struct task_struct *p;
1430 bool ret;
1431
1432 p = find_lock_task_mm(task);
1433 if (p) {
1434 curr = try_get_mem_cgroup_from_mm(p->mm);
1435 task_unlock(p);
1436 } else {
1437 /*
1438 * All threads may have already detached their mm's, but the oom
1439 * killer still needs to detect if they have already been oom
1440 * killed to prevent needlessly killing additional tasks.
1441 */
1442 rcu_read_lock();
1443 curr = mem_cgroup_from_task(task);
1444 if (curr)
1445 css_get(&curr->css);
1446 rcu_read_unlock();
1447 }
1448 if (!curr)
1449 return false;
1450 /*
1451 * We should check use_hierarchy of "memcg" not "curr". Because checking
1452 * use_hierarchy of "curr" here make this function true if hierarchy is
1453 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1454 * hierarchy(even if use_hierarchy is disabled in "memcg").
1455 */
1456 ret = mem_cgroup_same_or_subtree(memcg, curr);
1457 css_put(&curr->css);
1458 return ret;
1459 }
1460
1461 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1462 {
1463 unsigned long inactive_ratio;
1464 unsigned long inactive;
1465 unsigned long active;
1466 unsigned long gb;
1467
1468 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1469 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1470
1471 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1472 if (gb)
1473 inactive_ratio = int_sqrt(10 * gb);
1474 else
1475 inactive_ratio = 1;
1476
1477 return inactive * inactive_ratio < active;
1478 }
1479
1480 #define mem_cgroup_from_res_counter(counter, member) \
1481 container_of(counter, struct mem_cgroup, member)
1482
1483 /**
1484 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1485 * @memcg: the memory cgroup
1486 *
1487 * Returns the maximum amount of memory @mem can be charged with, in
1488 * pages.
1489 */
1490 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1491 {
1492 unsigned long long margin;
1493
1494 margin = res_counter_margin(&memcg->res);
1495 if (do_swap_account)
1496 margin = min(margin, res_counter_margin(&memcg->memsw));
1497 return margin >> PAGE_SHIFT;
1498 }
1499
1500 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1501 {
1502 /* root ? */
1503 if (!css_parent(&memcg->css))
1504 return vm_swappiness;
1505
1506 return memcg->swappiness;
1507 }
1508
1509 /*
1510 * memcg->moving_account is used for checking possibility that some thread is
1511 * calling move_account(). When a thread on CPU-A starts moving pages under
1512 * a memcg, other threads should check memcg->moving_account under
1513 * rcu_read_lock(), like this:
1514 *
1515 * CPU-A CPU-B
1516 * rcu_read_lock()
1517 * memcg->moving_account+1 if (memcg->mocing_account)
1518 * take heavy locks.
1519 * synchronize_rcu() update something.
1520 * rcu_read_unlock()
1521 * start move here.
1522 */
1523
1524 /* for quick checking without looking up memcg */
1525 atomic_t memcg_moving __read_mostly;
1526
1527 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1528 {
1529 atomic_inc(&memcg_moving);
1530 atomic_inc(&memcg->moving_account);
1531 synchronize_rcu();
1532 }
1533
1534 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1535 {
1536 /*
1537 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1538 * We check NULL in callee rather than caller.
1539 */
1540 if (memcg) {
1541 atomic_dec(&memcg_moving);
1542 atomic_dec(&memcg->moving_account);
1543 }
1544 }
1545
1546 /*
1547 * 2 routines for checking "mem" is under move_account() or not.
1548 *
1549 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1550 * is used for avoiding races in accounting. If true,
1551 * pc->mem_cgroup may be overwritten.
1552 *
1553 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1554 * under hierarchy of moving cgroups. This is for
1555 * waiting at hith-memory prressure caused by "move".
1556 */
1557
1558 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1559 {
1560 VM_BUG_ON(!rcu_read_lock_held());
1561 return atomic_read(&memcg->moving_account) > 0;
1562 }
1563
1564 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1565 {
1566 struct mem_cgroup *from;
1567 struct mem_cgroup *to;
1568 bool ret = false;
1569 /*
1570 * Unlike task_move routines, we access mc.to, mc.from not under
1571 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1572 */
1573 spin_lock(&mc.lock);
1574 from = mc.from;
1575 to = mc.to;
1576 if (!from)
1577 goto unlock;
1578
1579 ret = mem_cgroup_same_or_subtree(memcg, from)
1580 || mem_cgroup_same_or_subtree(memcg, to);
1581 unlock:
1582 spin_unlock(&mc.lock);
1583 return ret;
1584 }
1585
1586 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1587 {
1588 if (mc.moving_task && current != mc.moving_task) {
1589 if (mem_cgroup_under_move(memcg)) {
1590 DEFINE_WAIT(wait);
1591 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1592 /* moving charge context might have finished. */
1593 if (mc.moving_task)
1594 schedule();
1595 finish_wait(&mc.waitq, &wait);
1596 return true;
1597 }
1598 }
1599 return false;
1600 }
1601
1602 /*
1603 * Take this lock when
1604 * - a code tries to modify page's memcg while it's USED.
1605 * - a code tries to modify page state accounting in a memcg.
1606 * see mem_cgroup_stolen(), too.
1607 */
1608 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1609 unsigned long *flags)
1610 {
1611 spin_lock_irqsave(&memcg->move_lock, *flags);
1612 }
1613
1614 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1615 unsigned long *flags)
1616 {
1617 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1618 }
1619
1620 #define K(x) ((x) << (PAGE_SHIFT-10))
1621 /**
1622 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1623 * @memcg: The memory cgroup that went over limit
1624 * @p: Task that is going to be killed
1625 *
1626 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1627 * enabled
1628 */
1629 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1630 {
1631 struct cgroup *task_cgrp;
1632 struct cgroup *mem_cgrp;
1633 /*
1634 * Need a buffer in BSS, can't rely on allocations. The code relies
1635 * on the assumption that OOM is serialized for memory controller.
1636 * If this assumption is broken, revisit this code.
1637 */
1638 static char memcg_name[PATH_MAX];
1639 int ret;
1640 struct mem_cgroup *iter;
1641 unsigned int i;
1642
1643 if (!p)
1644 return;
1645
1646 rcu_read_lock();
1647
1648 mem_cgrp = memcg->css.cgroup;
1649 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1650
1651 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1652 if (ret < 0) {
1653 /*
1654 * Unfortunately, we are unable to convert to a useful name
1655 * But we'll still print out the usage information
1656 */
1657 rcu_read_unlock();
1658 goto done;
1659 }
1660 rcu_read_unlock();
1661
1662 pr_info("Task in %s killed", memcg_name);
1663
1664 rcu_read_lock();
1665 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1666 if (ret < 0) {
1667 rcu_read_unlock();
1668 goto done;
1669 }
1670 rcu_read_unlock();
1671
1672 /*
1673 * Continues from above, so we don't need an KERN_ level
1674 */
1675 pr_cont(" as a result of limit of %s\n", memcg_name);
1676 done:
1677
1678 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1679 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1680 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1681 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1682 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1683 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1684 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1685 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1686 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1687 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1688 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1689 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1690
1691 for_each_mem_cgroup_tree(iter, memcg) {
1692 pr_info("Memory cgroup stats");
1693
1694 rcu_read_lock();
1695 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1696 if (!ret)
1697 pr_cont(" for %s", memcg_name);
1698 rcu_read_unlock();
1699 pr_cont(":");
1700
1701 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1702 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1703 continue;
1704 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1705 K(mem_cgroup_read_stat(iter, i)));
1706 }
1707
1708 for (i = 0; i < NR_LRU_LISTS; i++)
1709 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1710 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1711
1712 pr_cont("\n");
1713 }
1714 }
1715
1716 /*
1717 * This function returns the number of memcg under hierarchy tree. Returns
1718 * 1(self count) if no children.
1719 */
1720 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1721 {
1722 int num = 0;
1723 struct mem_cgroup *iter;
1724
1725 for_each_mem_cgroup_tree(iter, memcg)
1726 num++;
1727 return num;
1728 }
1729
1730 /*
1731 * Return the memory (and swap, if configured) limit for a memcg.
1732 */
1733 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1734 {
1735 u64 limit;
1736
1737 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1738
1739 /*
1740 * Do not consider swap space if we cannot swap due to swappiness
1741 */
1742 if (mem_cgroup_swappiness(memcg)) {
1743 u64 memsw;
1744
1745 limit += total_swap_pages << PAGE_SHIFT;
1746 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1747
1748 /*
1749 * If memsw is finite and limits the amount of swap space
1750 * available to this memcg, return that limit.
1751 */
1752 limit = min(limit, memsw);
1753 }
1754
1755 return limit;
1756 }
1757
1758 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1759 int order)
1760 {
1761 struct mem_cgroup *iter;
1762 unsigned long chosen_points = 0;
1763 unsigned long totalpages;
1764 unsigned int points = 0;
1765 struct task_struct *chosen = NULL;
1766
1767 /*
1768 * If current has a pending SIGKILL or is exiting, then automatically
1769 * select it. The goal is to allow it to allocate so that it may
1770 * quickly exit and free its memory.
1771 */
1772 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1773 set_thread_flag(TIF_MEMDIE);
1774 return;
1775 }
1776
1777 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1778 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1779 for_each_mem_cgroup_tree(iter, memcg) {
1780 struct css_task_iter it;
1781 struct task_struct *task;
1782
1783 css_task_iter_start(&iter->css, &it);
1784 while ((task = css_task_iter_next(&it))) {
1785 switch (oom_scan_process_thread(task, totalpages, NULL,
1786 false)) {
1787 case OOM_SCAN_SELECT:
1788 if (chosen)
1789 put_task_struct(chosen);
1790 chosen = task;
1791 chosen_points = ULONG_MAX;
1792 get_task_struct(chosen);
1793 /* fall through */
1794 case OOM_SCAN_CONTINUE:
1795 continue;
1796 case OOM_SCAN_ABORT:
1797 css_task_iter_end(&it);
1798 mem_cgroup_iter_break(memcg, iter);
1799 if (chosen)
1800 put_task_struct(chosen);
1801 return;
1802 case OOM_SCAN_OK:
1803 break;
1804 };
1805 points = oom_badness(task, memcg, NULL, totalpages);
1806 if (points > chosen_points) {
1807 if (chosen)
1808 put_task_struct(chosen);
1809 chosen = task;
1810 chosen_points = points;
1811 get_task_struct(chosen);
1812 }
1813 }
1814 css_task_iter_end(&it);
1815 }
1816
1817 if (!chosen)
1818 return;
1819 points = chosen_points * 1000 / totalpages;
1820 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1821 NULL, "Memory cgroup out of memory");
1822 }
1823
1824 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1825 gfp_t gfp_mask,
1826 unsigned long flags)
1827 {
1828 unsigned long total = 0;
1829 bool noswap = false;
1830 int loop;
1831
1832 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1833 noswap = true;
1834 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1835 noswap = true;
1836
1837 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1838 if (loop)
1839 drain_all_stock_async(memcg);
1840 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1841 /*
1842 * Allow limit shrinkers, which are triggered directly
1843 * by userspace, to catch signals and stop reclaim
1844 * after minimal progress, regardless of the margin.
1845 */
1846 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1847 break;
1848 if (mem_cgroup_margin(memcg))
1849 break;
1850 /*
1851 * If nothing was reclaimed after two attempts, there
1852 * may be no reclaimable pages in this hierarchy.
1853 */
1854 if (loop && !total)
1855 break;
1856 }
1857 return total;
1858 }
1859
1860 /**
1861 * test_mem_cgroup_node_reclaimable
1862 * @memcg: the target memcg
1863 * @nid: the node ID to be checked.
1864 * @noswap : specify true here if the user wants flle only information.
1865 *
1866 * This function returns whether the specified memcg contains any
1867 * reclaimable pages on a node. Returns true if there are any reclaimable
1868 * pages in the node.
1869 */
1870 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1871 int nid, bool noswap)
1872 {
1873 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1874 return true;
1875 if (noswap || !total_swap_pages)
1876 return false;
1877 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1878 return true;
1879 return false;
1880
1881 }
1882 #if MAX_NUMNODES > 1
1883
1884 /*
1885 * Always updating the nodemask is not very good - even if we have an empty
1886 * list or the wrong list here, we can start from some node and traverse all
1887 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1888 *
1889 */
1890 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1891 {
1892 int nid;
1893 /*
1894 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1895 * pagein/pageout changes since the last update.
1896 */
1897 if (!atomic_read(&memcg->numainfo_events))
1898 return;
1899 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1900 return;
1901
1902 /* make a nodemask where this memcg uses memory from */
1903 memcg->scan_nodes = node_states[N_MEMORY];
1904
1905 for_each_node_mask(nid, node_states[N_MEMORY]) {
1906
1907 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1908 node_clear(nid, memcg->scan_nodes);
1909 }
1910
1911 atomic_set(&memcg->numainfo_events, 0);
1912 atomic_set(&memcg->numainfo_updating, 0);
1913 }
1914
1915 /*
1916 * Selecting a node where we start reclaim from. Because what we need is just
1917 * reducing usage counter, start from anywhere is O,K. Considering
1918 * memory reclaim from current node, there are pros. and cons.
1919 *
1920 * Freeing memory from current node means freeing memory from a node which
1921 * we'll use or we've used. So, it may make LRU bad. And if several threads
1922 * hit limits, it will see a contention on a node. But freeing from remote
1923 * node means more costs for memory reclaim because of memory latency.
1924 *
1925 * Now, we use round-robin. Better algorithm is welcomed.
1926 */
1927 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1928 {
1929 int node;
1930
1931 mem_cgroup_may_update_nodemask(memcg);
1932 node = memcg->last_scanned_node;
1933
1934 node = next_node(node, memcg->scan_nodes);
1935 if (node == MAX_NUMNODES)
1936 node = first_node(memcg->scan_nodes);
1937 /*
1938 * We call this when we hit limit, not when pages are added to LRU.
1939 * No LRU may hold pages because all pages are UNEVICTABLE or
1940 * memcg is too small and all pages are not on LRU. In that case,
1941 * we use curret node.
1942 */
1943 if (unlikely(node == MAX_NUMNODES))
1944 node = numa_node_id();
1945
1946 memcg->last_scanned_node = node;
1947 return node;
1948 }
1949
1950 /*
1951 * Check all nodes whether it contains reclaimable pages or not.
1952 * For quick scan, we make use of scan_nodes. This will allow us to skip
1953 * unused nodes. But scan_nodes is lazily updated and may not cotain
1954 * enough new information. We need to do double check.
1955 */
1956 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1957 {
1958 int nid;
1959
1960 /*
1961 * quick check...making use of scan_node.
1962 * We can skip unused nodes.
1963 */
1964 if (!nodes_empty(memcg->scan_nodes)) {
1965 for (nid = first_node(memcg->scan_nodes);
1966 nid < MAX_NUMNODES;
1967 nid = next_node(nid, memcg->scan_nodes)) {
1968
1969 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1970 return true;
1971 }
1972 }
1973 /*
1974 * Check rest of nodes.
1975 */
1976 for_each_node_state(nid, N_MEMORY) {
1977 if (node_isset(nid, memcg->scan_nodes))
1978 continue;
1979 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1980 return true;
1981 }
1982 return false;
1983 }
1984
1985 #else
1986 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1987 {
1988 return 0;
1989 }
1990
1991 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1992 {
1993 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1994 }
1995 #endif
1996
1997 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1998 struct zone *zone,
1999 gfp_t gfp_mask,
2000 unsigned long *total_scanned)
2001 {
2002 struct mem_cgroup *victim = NULL;
2003 int total = 0;
2004 int loop = 0;
2005 unsigned long excess;
2006 unsigned long nr_scanned;
2007 struct mem_cgroup_reclaim_cookie reclaim = {
2008 .zone = zone,
2009 .priority = 0,
2010 };
2011
2012 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2013
2014 while (1) {
2015 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2016 if (!victim) {
2017 loop++;
2018 if (loop >= 2) {
2019 /*
2020 * If we have not been able to reclaim
2021 * anything, it might because there are
2022 * no reclaimable pages under this hierarchy
2023 */
2024 if (!total)
2025 break;
2026 /*
2027 * We want to do more targeted reclaim.
2028 * excess >> 2 is not to excessive so as to
2029 * reclaim too much, nor too less that we keep
2030 * coming back to reclaim from this cgroup
2031 */
2032 if (total >= (excess >> 2) ||
2033 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2034 break;
2035 }
2036 continue;
2037 }
2038 if (!mem_cgroup_reclaimable(victim, false))
2039 continue;
2040 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2041 zone, &nr_scanned);
2042 *total_scanned += nr_scanned;
2043 if (!res_counter_soft_limit_excess(&root_memcg->res))
2044 break;
2045 }
2046 mem_cgroup_iter_break(root_memcg, victim);
2047 return total;
2048 }
2049
2050 #ifdef CONFIG_LOCKDEP
2051 static struct lockdep_map memcg_oom_lock_dep_map = {
2052 .name = "memcg_oom_lock",
2053 };
2054 #endif
2055
2056 static DEFINE_SPINLOCK(memcg_oom_lock);
2057
2058 /*
2059 * Check OOM-Killer is already running under our hierarchy.
2060 * If someone is running, return false.
2061 */
2062 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2063 {
2064 struct mem_cgroup *iter, *failed = NULL;
2065
2066 spin_lock(&memcg_oom_lock);
2067
2068 for_each_mem_cgroup_tree(iter, memcg) {
2069 if (iter->oom_lock) {
2070 /*
2071 * this subtree of our hierarchy is already locked
2072 * so we cannot give a lock.
2073 */
2074 failed = iter;
2075 mem_cgroup_iter_break(memcg, iter);
2076 break;
2077 } else
2078 iter->oom_lock = true;
2079 }
2080
2081 if (failed) {
2082 /*
2083 * OK, we failed to lock the whole subtree so we have
2084 * to clean up what we set up to the failing subtree
2085 */
2086 for_each_mem_cgroup_tree(iter, memcg) {
2087 if (iter == failed) {
2088 mem_cgroup_iter_break(memcg, iter);
2089 break;
2090 }
2091 iter->oom_lock = false;
2092 }
2093 } else
2094 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2095
2096 spin_unlock(&memcg_oom_lock);
2097
2098 return !failed;
2099 }
2100
2101 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2102 {
2103 struct mem_cgroup *iter;
2104
2105 spin_lock(&memcg_oom_lock);
2106 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2107 for_each_mem_cgroup_tree(iter, memcg)
2108 iter->oom_lock = false;
2109 spin_unlock(&memcg_oom_lock);
2110 }
2111
2112 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2113 {
2114 struct mem_cgroup *iter;
2115
2116 for_each_mem_cgroup_tree(iter, memcg)
2117 atomic_inc(&iter->under_oom);
2118 }
2119
2120 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2121 {
2122 struct mem_cgroup *iter;
2123
2124 /*
2125 * When a new child is created while the hierarchy is under oom,
2126 * mem_cgroup_oom_lock() may not be called. We have to use
2127 * atomic_add_unless() here.
2128 */
2129 for_each_mem_cgroup_tree(iter, memcg)
2130 atomic_add_unless(&iter->under_oom, -1, 0);
2131 }
2132
2133 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2134
2135 struct oom_wait_info {
2136 struct mem_cgroup *memcg;
2137 wait_queue_t wait;
2138 };
2139
2140 static int memcg_oom_wake_function(wait_queue_t *wait,
2141 unsigned mode, int sync, void *arg)
2142 {
2143 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2144 struct mem_cgroup *oom_wait_memcg;
2145 struct oom_wait_info *oom_wait_info;
2146
2147 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2148 oom_wait_memcg = oom_wait_info->memcg;
2149
2150 /*
2151 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2152 * Then we can use css_is_ancestor without taking care of RCU.
2153 */
2154 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2155 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2156 return 0;
2157 return autoremove_wake_function(wait, mode, sync, arg);
2158 }
2159
2160 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2161 {
2162 atomic_inc(&memcg->oom_wakeups);
2163 /* for filtering, pass "memcg" as argument. */
2164 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2165 }
2166
2167 static void memcg_oom_recover(struct mem_cgroup *memcg)
2168 {
2169 if (memcg && atomic_read(&memcg->under_oom))
2170 memcg_wakeup_oom(memcg);
2171 }
2172
2173 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2174 {
2175 if (!current->memcg_oom.may_oom)
2176 return;
2177 /*
2178 * We are in the middle of the charge context here, so we
2179 * don't want to block when potentially sitting on a callstack
2180 * that holds all kinds of filesystem and mm locks.
2181 *
2182 * Also, the caller may handle a failed allocation gracefully
2183 * (like optional page cache readahead) and so an OOM killer
2184 * invocation might not even be necessary.
2185 *
2186 * That's why we don't do anything here except remember the
2187 * OOM context and then deal with it at the end of the page
2188 * fault when the stack is unwound, the locks are released,
2189 * and when we know whether the fault was overall successful.
2190 */
2191 css_get(&memcg->css);
2192 current->memcg_oom.memcg = memcg;
2193 current->memcg_oom.gfp_mask = mask;
2194 current->memcg_oom.order = order;
2195 }
2196
2197 /**
2198 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2199 * @handle: actually kill/wait or just clean up the OOM state
2200 *
2201 * This has to be called at the end of a page fault if the memcg OOM
2202 * handler was enabled.
2203 *
2204 * Memcg supports userspace OOM handling where failed allocations must
2205 * sleep on a waitqueue until the userspace task resolves the
2206 * situation. Sleeping directly in the charge context with all kinds
2207 * of locks held is not a good idea, instead we remember an OOM state
2208 * in the task and mem_cgroup_oom_synchronize() has to be called at
2209 * the end of the page fault to complete the OOM handling.
2210 *
2211 * Returns %true if an ongoing memcg OOM situation was detected and
2212 * completed, %false otherwise.
2213 */
2214 bool mem_cgroup_oom_synchronize(bool handle)
2215 {
2216 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2217 struct oom_wait_info owait;
2218 bool locked;
2219
2220 /* OOM is global, do not handle */
2221 if (!memcg)
2222 return false;
2223
2224 if (!handle)
2225 goto cleanup;
2226
2227 owait.memcg = memcg;
2228 owait.wait.flags = 0;
2229 owait.wait.func = memcg_oom_wake_function;
2230 owait.wait.private = current;
2231 INIT_LIST_HEAD(&owait.wait.task_list);
2232
2233 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2234 mem_cgroup_mark_under_oom(memcg);
2235
2236 locked = mem_cgroup_oom_trylock(memcg);
2237
2238 if (locked)
2239 mem_cgroup_oom_notify(memcg);
2240
2241 if (locked && !memcg->oom_kill_disable) {
2242 mem_cgroup_unmark_under_oom(memcg);
2243 finish_wait(&memcg_oom_waitq, &owait.wait);
2244 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2245 current->memcg_oom.order);
2246 } else {
2247 schedule();
2248 mem_cgroup_unmark_under_oom(memcg);
2249 finish_wait(&memcg_oom_waitq, &owait.wait);
2250 }
2251
2252 if (locked) {
2253 mem_cgroup_oom_unlock(memcg);
2254 /*
2255 * There is no guarantee that an OOM-lock contender
2256 * sees the wakeups triggered by the OOM kill
2257 * uncharges. Wake any sleepers explicitely.
2258 */
2259 memcg_oom_recover(memcg);
2260 }
2261 cleanup:
2262 current->memcg_oom.memcg = NULL;
2263 css_put(&memcg->css);
2264 return true;
2265 }
2266
2267 /*
2268 * Currently used to update mapped file statistics, but the routine can be
2269 * generalized to update other statistics as well.
2270 *
2271 * Notes: Race condition
2272 *
2273 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2274 * it tends to be costly. But considering some conditions, we doesn't need
2275 * to do so _always_.
2276 *
2277 * Considering "charge", lock_page_cgroup() is not required because all
2278 * file-stat operations happen after a page is attached to radix-tree. There
2279 * are no race with "charge".
2280 *
2281 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2282 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2283 * if there are race with "uncharge". Statistics itself is properly handled
2284 * by flags.
2285 *
2286 * Considering "move", this is an only case we see a race. To make the race
2287 * small, we check mm->moving_account and detect there are possibility of race
2288 * If there is, we take a lock.
2289 */
2290
2291 void __mem_cgroup_begin_update_page_stat(struct page *page,
2292 bool *locked, unsigned long *flags)
2293 {
2294 struct mem_cgroup *memcg;
2295 struct page_cgroup *pc;
2296
2297 pc = lookup_page_cgroup(page);
2298 again:
2299 memcg = pc->mem_cgroup;
2300 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2301 return;
2302 /*
2303 * If this memory cgroup is not under account moving, we don't
2304 * need to take move_lock_mem_cgroup(). Because we already hold
2305 * rcu_read_lock(), any calls to move_account will be delayed until
2306 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2307 */
2308 if (!mem_cgroup_stolen(memcg))
2309 return;
2310
2311 move_lock_mem_cgroup(memcg, flags);
2312 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2313 move_unlock_mem_cgroup(memcg, flags);
2314 goto again;
2315 }
2316 *locked = true;
2317 }
2318
2319 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2320 {
2321 struct page_cgroup *pc = lookup_page_cgroup(page);
2322
2323 /*
2324 * It's guaranteed that pc->mem_cgroup never changes while
2325 * lock is held because a routine modifies pc->mem_cgroup
2326 * should take move_lock_mem_cgroup().
2327 */
2328 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2329 }
2330
2331 void mem_cgroup_update_page_stat(struct page *page,
2332 enum mem_cgroup_stat_index idx, int val)
2333 {
2334 struct mem_cgroup *memcg;
2335 struct page_cgroup *pc = lookup_page_cgroup(page);
2336 unsigned long uninitialized_var(flags);
2337
2338 if (mem_cgroup_disabled())
2339 return;
2340
2341 VM_BUG_ON(!rcu_read_lock_held());
2342 memcg = pc->mem_cgroup;
2343 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2344 return;
2345
2346 this_cpu_add(memcg->stat->count[idx], val);
2347 }
2348
2349 /*
2350 * size of first charge trial. "32" comes from vmscan.c's magic value.
2351 * TODO: maybe necessary to use big numbers in big irons.
2352 */
2353 #define CHARGE_BATCH 32U
2354 struct memcg_stock_pcp {
2355 struct mem_cgroup *cached; /* this never be root cgroup */
2356 unsigned int nr_pages;
2357 struct work_struct work;
2358 unsigned long flags;
2359 #define FLUSHING_CACHED_CHARGE 0
2360 };
2361 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2362 static DEFINE_MUTEX(percpu_charge_mutex);
2363
2364 /**
2365 * consume_stock: Try to consume stocked charge on this cpu.
2366 * @memcg: memcg to consume from.
2367 * @nr_pages: how many pages to charge.
2368 *
2369 * The charges will only happen if @memcg matches the current cpu's memcg
2370 * stock, and at least @nr_pages are available in that stock. Failure to
2371 * service an allocation will refill the stock.
2372 *
2373 * returns true if successful, false otherwise.
2374 */
2375 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2376 {
2377 struct memcg_stock_pcp *stock;
2378 bool ret = true;
2379
2380 if (nr_pages > CHARGE_BATCH)
2381 return false;
2382
2383 stock = &get_cpu_var(memcg_stock);
2384 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2385 stock->nr_pages -= nr_pages;
2386 else /* need to call res_counter_charge */
2387 ret = false;
2388 put_cpu_var(memcg_stock);
2389 return ret;
2390 }
2391
2392 /*
2393 * Returns stocks cached in percpu to res_counter and reset cached information.
2394 */
2395 static void drain_stock(struct memcg_stock_pcp *stock)
2396 {
2397 struct mem_cgroup *old = stock->cached;
2398
2399 if (stock->nr_pages) {
2400 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2401
2402 res_counter_uncharge(&old->res, bytes);
2403 if (do_swap_account)
2404 res_counter_uncharge(&old->memsw, bytes);
2405 stock->nr_pages = 0;
2406 }
2407 stock->cached = NULL;
2408 }
2409
2410 /*
2411 * This must be called under preempt disabled or must be called by
2412 * a thread which is pinned to local cpu.
2413 */
2414 static void drain_local_stock(struct work_struct *dummy)
2415 {
2416 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2417 drain_stock(stock);
2418 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2419 }
2420
2421 static void __init memcg_stock_init(void)
2422 {
2423 int cpu;
2424
2425 for_each_possible_cpu(cpu) {
2426 struct memcg_stock_pcp *stock =
2427 &per_cpu(memcg_stock, cpu);
2428 INIT_WORK(&stock->work, drain_local_stock);
2429 }
2430 }
2431
2432 /*
2433 * Cache charges(val) which is from res_counter, to local per_cpu area.
2434 * This will be consumed by consume_stock() function, later.
2435 */
2436 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2437 {
2438 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2439
2440 if (stock->cached != memcg) { /* reset if necessary */
2441 drain_stock(stock);
2442 stock->cached = memcg;
2443 }
2444 stock->nr_pages += nr_pages;
2445 put_cpu_var(memcg_stock);
2446 }
2447
2448 /*
2449 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2450 * of the hierarchy under it. sync flag says whether we should block
2451 * until the work is done.
2452 */
2453 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2454 {
2455 int cpu, curcpu;
2456
2457 /* Notify other cpus that system-wide "drain" is running */
2458 get_online_cpus();
2459 curcpu = get_cpu();
2460 for_each_online_cpu(cpu) {
2461 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2462 struct mem_cgroup *memcg;
2463
2464 memcg = stock->cached;
2465 if (!memcg || !stock->nr_pages)
2466 continue;
2467 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2468 continue;
2469 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2470 if (cpu == curcpu)
2471 drain_local_stock(&stock->work);
2472 else
2473 schedule_work_on(cpu, &stock->work);
2474 }
2475 }
2476 put_cpu();
2477
2478 if (!sync)
2479 goto out;
2480
2481 for_each_online_cpu(cpu) {
2482 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2483 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2484 flush_work(&stock->work);
2485 }
2486 out:
2487 put_online_cpus();
2488 }
2489
2490 /*
2491 * Tries to drain stocked charges in other cpus. This function is asynchronous
2492 * and just put a work per cpu for draining localy on each cpu. Caller can
2493 * expects some charges will be back to res_counter later but cannot wait for
2494 * it.
2495 */
2496 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2497 {
2498 /*
2499 * If someone calls draining, avoid adding more kworker runs.
2500 */
2501 if (!mutex_trylock(&percpu_charge_mutex))
2502 return;
2503 drain_all_stock(root_memcg, false);
2504 mutex_unlock(&percpu_charge_mutex);
2505 }
2506
2507 /* This is a synchronous drain interface. */
2508 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2509 {
2510 /* called when force_empty is called */
2511 mutex_lock(&percpu_charge_mutex);
2512 drain_all_stock(root_memcg, true);
2513 mutex_unlock(&percpu_charge_mutex);
2514 }
2515
2516 /*
2517 * This function drains percpu counter value from DEAD cpu and
2518 * move it to local cpu. Note that this function can be preempted.
2519 */
2520 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2521 {
2522 int i;
2523
2524 spin_lock(&memcg->pcp_counter_lock);
2525 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2526 long x = per_cpu(memcg->stat->count[i], cpu);
2527
2528 per_cpu(memcg->stat->count[i], cpu) = 0;
2529 memcg->nocpu_base.count[i] += x;
2530 }
2531 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2532 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2533
2534 per_cpu(memcg->stat->events[i], cpu) = 0;
2535 memcg->nocpu_base.events[i] += x;
2536 }
2537 spin_unlock(&memcg->pcp_counter_lock);
2538 }
2539
2540 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2541 unsigned long action,
2542 void *hcpu)
2543 {
2544 int cpu = (unsigned long)hcpu;
2545 struct memcg_stock_pcp *stock;
2546 struct mem_cgroup *iter;
2547
2548 if (action == CPU_ONLINE)
2549 return NOTIFY_OK;
2550
2551 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2552 return NOTIFY_OK;
2553
2554 for_each_mem_cgroup(iter)
2555 mem_cgroup_drain_pcp_counter(iter, cpu);
2556
2557 stock = &per_cpu(memcg_stock, cpu);
2558 drain_stock(stock);
2559 return NOTIFY_OK;
2560 }
2561
2562
2563 /* See __mem_cgroup_try_charge() for details */
2564 enum {
2565 CHARGE_OK, /* success */
2566 CHARGE_RETRY, /* need to retry but retry is not bad */
2567 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2568 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2569 };
2570
2571 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2572 unsigned int nr_pages, unsigned int min_pages,
2573 bool invoke_oom)
2574 {
2575 unsigned long csize = nr_pages * PAGE_SIZE;
2576 struct mem_cgroup *mem_over_limit;
2577 struct res_counter *fail_res;
2578 unsigned long flags = 0;
2579 int ret;
2580
2581 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2582
2583 if (likely(!ret)) {
2584 if (!do_swap_account)
2585 return CHARGE_OK;
2586 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2587 if (likely(!ret))
2588 return CHARGE_OK;
2589
2590 res_counter_uncharge(&memcg->res, csize);
2591 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2592 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2593 } else
2594 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2595 /*
2596 * Never reclaim on behalf of optional batching, retry with a
2597 * single page instead.
2598 */
2599 if (nr_pages > min_pages)
2600 return CHARGE_RETRY;
2601
2602 if (!(gfp_mask & __GFP_WAIT))
2603 return CHARGE_WOULDBLOCK;
2604
2605 if (gfp_mask & __GFP_NORETRY)
2606 return CHARGE_NOMEM;
2607
2608 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2609 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2610 return CHARGE_RETRY;
2611 /*
2612 * Even though the limit is exceeded at this point, reclaim
2613 * may have been able to free some pages. Retry the charge
2614 * before killing the task.
2615 *
2616 * Only for regular pages, though: huge pages are rather
2617 * unlikely to succeed so close to the limit, and we fall back
2618 * to regular pages anyway in case of failure.
2619 */
2620 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2621 return CHARGE_RETRY;
2622
2623 /*
2624 * At task move, charge accounts can be doubly counted. So, it's
2625 * better to wait until the end of task_move if something is going on.
2626 */
2627 if (mem_cgroup_wait_acct_move(mem_over_limit))
2628 return CHARGE_RETRY;
2629
2630 if (invoke_oom)
2631 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2632
2633 return CHARGE_NOMEM;
2634 }
2635
2636 /*
2637 * __mem_cgroup_try_charge() does
2638 * 1. detect memcg to be charged against from passed *mm and *ptr,
2639 * 2. update res_counter
2640 * 3. call memory reclaim if necessary.
2641 *
2642 * In some special case, if the task is fatal, fatal_signal_pending() or
2643 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2644 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2645 * as possible without any hazards. 2: all pages should have a valid
2646 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2647 * pointer, that is treated as a charge to root_mem_cgroup.
2648 *
2649 * So __mem_cgroup_try_charge() will return
2650 * 0 ... on success, filling *ptr with a valid memcg pointer.
2651 * -ENOMEM ... charge failure because of resource limits.
2652 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2653 *
2654 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2655 * the oom-killer can be invoked.
2656 */
2657 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2658 gfp_t gfp_mask,
2659 unsigned int nr_pages,
2660 struct mem_cgroup **ptr,
2661 bool oom)
2662 {
2663 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2664 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2665 struct mem_cgroup *memcg = NULL;
2666 int ret;
2667
2668 /*
2669 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2670 * in system level. So, allow to go ahead dying process in addition to
2671 * MEMDIE process.
2672 */
2673 if (unlikely(test_thread_flag(TIF_MEMDIE)
2674 || fatal_signal_pending(current)))
2675 goto bypass;
2676
2677 if (unlikely(task_in_memcg_oom(current)))
2678 goto bypass;
2679
2680 /*
2681 * We always charge the cgroup the mm_struct belongs to.
2682 * The mm_struct's mem_cgroup changes on task migration if the
2683 * thread group leader migrates. It's possible that mm is not
2684 * set, if so charge the root memcg (happens for pagecache usage).
2685 */
2686 if (!*ptr && !mm)
2687 *ptr = root_mem_cgroup;
2688 again:
2689 if (*ptr) { /* css should be a valid one */
2690 memcg = *ptr;
2691 if (mem_cgroup_is_root(memcg))
2692 goto done;
2693 if (consume_stock(memcg, nr_pages))
2694 goto done;
2695 css_get(&memcg->css);
2696 } else {
2697 struct task_struct *p;
2698
2699 rcu_read_lock();
2700 p = rcu_dereference(mm->owner);
2701 /*
2702 * Because we don't have task_lock(), "p" can exit.
2703 * In that case, "memcg" can point to root or p can be NULL with
2704 * race with swapoff. Then, we have small risk of mis-accouning.
2705 * But such kind of mis-account by race always happens because
2706 * we don't have cgroup_mutex(). It's overkill and we allo that
2707 * small race, here.
2708 * (*) swapoff at el will charge against mm-struct not against
2709 * task-struct. So, mm->owner can be NULL.
2710 */
2711 memcg = mem_cgroup_from_task(p);
2712 if (!memcg)
2713 memcg = root_mem_cgroup;
2714 if (mem_cgroup_is_root(memcg)) {
2715 rcu_read_unlock();
2716 goto done;
2717 }
2718 if (consume_stock(memcg, nr_pages)) {
2719 /*
2720 * It seems dagerous to access memcg without css_get().
2721 * But considering how consume_stok works, it's not
2722 * necessary. If consume_stock success, some charges
2723 * from this memcg are cached on this cpu. So, we
2724 * don't need to call css_get()/css_tryget() before
2725 * calling consume_stock().
2726 */
2727 rcu_read_unlock();
2728 goto done;
2729 }
2730 /* after here, we may be blocked. we need to get refcnt */
2731 if (!css_tryget(&memcg->css)) {
2732 rcu_read_unlock();
2733 goto again;
2734 }
2735 rcu_read_unlock();
2736 }
2737
2738 do {
2739 bool invoke_oom = oom && !nr_oom_retries;
2740
2741 /* If killed, bypass charge */
2742 if (fatal_signal_pending(current)) {
2743 css_put(&memcg->css);
2744 goto bypass;
2745 }
2746
2747 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2748 nr_pages, invoke_oom);
2749 switch (ret) {
2750 case CHARGE_OK:
2751 break;
2752 case CHARGE_RETRY: /* not in OOM situation but retry */
2753 batch = nr_pages;
2754 css_put(&memcg->css);
2755 memcg = NULL;
2756 goto again;
2757 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2758 css_put(&memcg->css);
2759 goto nomem;
2760 case CHARGE_NOMEM: /* OOM routine works */
2761 if (!oom || invoke_oom) {
2762 css_put(&memcg->css);
2763 goto nomem;
2764 }
2765 nr_oom_retries--;
2766 break;
2767 }
2768 } while (ret != CHARGE_OK);
2769
2770 if (batch > nr_pages)
2771 refill_stock(memcg, batch - nr_pages);
2772 css_put(&memcg->css);
2773 done:
2774 *ptr = memcg;
2775 return 0;
2776 nomem:
2777 if (!(gfp_mask & __GFP_NOFAIL)) {
2778 *ptr = NULL;
2779 return -ENOMEM;
2780 }
2781 bypass:
2782 *ptr = root_mem_cgroup;
2783 return -EINTR;
2784 }
2785
2786 /*
2787 * Somemtimes we have to undo a charge we got by try_charge().
2788 * This function is for that and do uncharge, put css's refcnt.
2789 * gotten by try_charge().
2790 */
2791 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2792 unsigned int nr_pages)
2793 {
2794 if (!mem_cgroup_is_root(memcg)) {
2795 unsigned long bytes = nr_pages * PAGE_SIZE;
2796
2797 res_counter_uncharge(&memcg->res, bytes);
2798 if (do_swap_account)
2799 res_counter_uncharge(&memcg->memsw, bytes);
2800 }
2801 }
2802
2803 /*
2804 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2805 * This is useful when moving usage to parent cgroup.
2806 */
2807 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2808 unsigned int nr_pages)
2809 {
2810 unsigned long bytes = nr_pages * PAGE_SIZE;
2811
2812 if (mem_cgroup_is_root(memcg))
2813 return;
2814
2815 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2816 if (do_swap_account)
2817 res_counter_uncharge_until(&memcg->memsw,
2818 memcg->memsw.parent, bytes);
2819 }
2820
2821 /*
2822 * A helper function to get mem_cgroup from ID. must be called under
2823 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2824 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2825 * called against removed memcg.)
2826 */
2827 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2828 {
2829 struct cgroup_subsys_state *css;
2830
2831 /* ID 0 is unused ID */
2832 if (!id)
2833 return NULL;
2834 css = css_lookup(&mem_cgroup_subsys, id);
2835 if (!css)
2836 return NULL;
2837 return mem_cgroup_from_css(css);
2838 }
2839
2840 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2841 {
2842 struct mem_cgroup *memcg = NULL;
2843 struct page_cgroup *pc;
2844 unsigned short id;
2845 swp_entry_t ent;
2846
2847 VM_BUG_ON(!PageLocked(page));
2848
2849 pc = lookup_page_cgroup(page);
2850 lock_page_cgroup(pc);
2851 if (PageCgroupUsed(pc)) {
2852 memcg = pc->mem_cgroup;
2853 if (memcg && !css_tryget(&memcg->css))
2854 memcg = NULL;
2855 } else if (PageSwapCache(page)) {
2856 ent.val = page_private(page);
2857 id = lookup_swap_cgroup_id(ent);
2858 rcu_read_lock();
2859 memcg = mem_cgroup_lookup(id);
2860 if (memcg && !css_tryget(&memcg->css))
2861 memcg = NULL;
2862 rcu_read_unlock();
2863 }
2864 unlock_page_cgroup(pc);
2865 return memcg;
2866 }
2867
2868 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2869 struct page *page,
2870 unsigned int nr_pages,
2871 enum charge_type ctype,
2872 bool lrucare)
2873 {
2874 struct page_cgroup *pc = lookup_page_cgroup(page);
2875 struct zone *uninitialized_var(zone);
2876 struct lruvec *lruvec;
2877 bool was_on_lru = false;
2878 bool anon;
2879
2880 lock_page_cgroup(pc);
2881 VM_BUG_ON(PageCgroupUsed(pc));
2882 /*
2883 * we don't need page_cgroup_lock about tail pages, becase they are not
2884 * accessed by any other context at this point.
2885 */
2886
2887 /*
2888 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2889 * may already be on some other mem_cgroup's LRU. Take care of it.
2890 */
2891 if (lrucare) {
2892 zone = page_zone(page);
2893 spin_lock_irq(&zone->lru_lock);
2894 if (PageLRU(page)) {
2895 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2896 ClearPageLRU(page);
2897 del_page_from_lru_list(page, lruvec, page_lru(page));
2898 was_on_lru = true;
2899 }
2900 }
2901
2902 pc->mem_cgroup = memcg;
2903 /*
2904 * We access a page_cgroup asynchronously without lock_page_cgroup().
2905 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2906 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2907 * before USED bit, we need memory barrier here.
2908 * See mem_cgroup_add_lru_list(), etc.
2909 */
2910 smp_wmb();
2911 SetPageCgroupUsed(pc);
2912
2913 if (lrucare) {
2914 if (was_on_lru) {
2915 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2916 VM_BUG_ON(PageLRU(page));
2917 SetPageLRU(page);
2918 add_page_to_lru_list(page, lruvec, page_lru(page));
2919 }
2920 spin_unlock_irq(&zone->lru_lock);
2921 }
2922
2923 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2924 anon = true;
2925 else
2926 anon = false;
2927
2928 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2929 unlock_page_cgroup(pc);
2930
2931 /*
2932 * "charge_statistics" updated event counter. Then, check it.
2933 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2934 * if they exceeds softlimit.
2935 */
2936 memcg_check_events(memcg, page);
2937 }
2938
2939 static DEFINE_MUTEX(set_limit_mutex);
2940
2941 #ifdef CONFIG_MEMCG_KMEM
2942 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2943 {
2944 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2945 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2946 }
2947
2948 /*
2949 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2950 * in the memcg_cache_params struct.
2951 */
2952 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2953 {
2954 struct kmem_cache *cachep;
2955
2956 VM_BUG_ON(p->is_root_cache);
2957 cachep = p->root_cache;
2958 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2959 }
2960
2961 #ifdef CONFIG_SLABINFO
2962 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2963 struct cftype *cft, struct seq_file *m)
2964 {
2965 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2966 struct memcg_cache_params *params;
2967
2968 if (!memcg_can_account_kmem(memcg))
2969 return -EIO;
2970
2971 print_slabinfo_header(m);
2972
2973 mutex_lock(&memcg->slab_caches_mutex);
2974 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2975 cache_show(memcg_params_to_cache(params), m);
2976 mutex_unlock(&memcg->slab_caches_mutex);
2977
2978 return 0;
2979 }
2980 #endif
2981
2982 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2983 {
2984 struct res_counter *fail_res;
2985 struct mem_cgroup *_memcg;
2986 int ret = 0;
2987
2988 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2989 if (ret)
2990 return ret;
2991
2992 _memcg = memcg;
2993 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2994 &_memcg, oom_gfp_allowed(gfp));
2995
2996 if (ret == -EINTR) {
2997 /*
2998 * __mem_cgroup_try_charge() chosed to bypass to root due to
2999 * OOM kill or fatal signal. Since our only options are to
3000 * either fail the allocation or charge it to this cgroup, do
3001 * it as a temporary condition. But we can't fail. From a
3002 * kmem/slab perspective, the cache has already been selected,
3003 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3004 * our minds.
3005 *
3006 * This condition will only trigger if the task entered
3007 * memcg_charge_kmem in a sane state, but was OOM-killed during
3008 * __mem_cgroup_try_charge() above. Tasks that were already
3009 * dying when the allocation triggers should have been already
3010 * directed to the root cgroup in memcontrol.h
3011 */
3012 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3013 if (do_swap_account)
3014 res_counter_charge_nofail(&memcg->memsw, size,
3015 &fail_res);
3016 ret = 0;
3017 } else if (ret)
3018 res_counter_uncharge(&memcg->kmem, size);
3019
3020 return ret;
3021 }
3022
3023 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3024 {
3025 res_counter_uncharge(&memcg->res, size);
3026 if (do_swap_account)
3027 res_counter_uncharge(&memcg->memsw, size);
3028
3029 /* Not down to 0 */
3030 if (res_counter_uncharge(&memcg->kmem, size))
3031 return;
3032
3033 /*
3034 * Releases a reference taken in kmem_cgroup_css_offline in case
3035 * this last uncharge is racing with the offlining code or it is
3036 * outliving the memcg existence.
3037 *
3038 * The memory barrier imposed by test&clear is paired with the
3039 * explicit one in memcg_kmem_mark_dead().
3040 */
3041 if (memcg_kmem_test_and_clear_dead(memcg))
3042 css_put(&memcg->css);
3043 }
3044
3045 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3046 {
3047 if (!memcg)
3048 return;
3049
3050 mutex_lock(&memcg->slab_caches_mutex);
3051 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3052 mutex_unlock(&memcg->slab_caches_mutex);
3053 }
3054
3055 /*
3056 * helper for acessing a memcg's index. It will be used as an index in the
3057 * child cache array in kmem_cache, and also to derive its name. This function
3058 * will return -1 when this is not a kmem-limited memcg.
3059 */
3060 int memcg_cache_id(struct mem_cgroup *memcg)
3061 {
3062 return memcg ? memcg->kmemcg_id : -1;
3063 }
3064
3065 /*
3066 * This ends up being protected by the set_limit mutex, during normal
3067 * operation, because that is its main call site.
3068 *
3069 * But when we create a new cache, we can call this as well if its parent
3070 * is kmem-limited. That will have to hold set_limit_mutex as well.
3071 */
3072 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3073 {
3074 int num, ret;
3075
3076 num = ida_simple_get(&kmem_limited_groups,
3077 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3078 if (num < 0)
3079 return num;
3080 /*
3081 * After this point, kmem_accounted (that we test atomically in
3082 * the beginning of this conditional), is no longer 0. This
3083 * guarantees only one process will set the following boolean
3084 * to true. We don't need test_and_set because we're protected
3085 * by the set_limit_mutex anyway.
3086 */
3087 memcg_kmem_set_activated(memcg);
3088
3089 ret = memcg_update_all_caches(num+1);
3090 if (ret) {
3091 ida_simple_remove(&kmem_limited_groups, num);
3092 memcg_kmem_clear_activated(memcg);
3093 return ret;
3094 }
3095
3096 memcg->kmemcg_id = num;
3097 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3098 mutex_init(&memcg->slab_caches_mutex);
3099 return 0;
3100 }
3101
3102 static size_t memcg_caches_array_size(int num_groups)
3103 {
3104 ssize_t size;
3105 if (num_groups <= 0)
3106 return 0;
3107
3108 size = 2 * num_groups;
3109 if (size < MEMCG_CACHES_MIN_SIZE)
3110 size = MEMCG_CACHES_MIN_SIZE;
3111 else if (size > MEMCG_CACHES_MAX_SIZE)
3112 size = MEMCG_CACHES_MAX_SIZE;
3113
3114 return size;
3115 }
3116
3117 /*
3118 * We should update the current array size iff all caches updates succeed. This
3119 * can only be done from the slab side. The slab mutex needs to be held when
3120 * calling this.
3121 */
3122 void memcg_update_array_size(int num)
3123 {
3124 if (num > memcg_limited_groups_array_size)
3125 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3126 }
3127
3128 static void kmem_cache_destroy_work_func(struct work_struct *w);
3129
3130 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3131 {
3132 struct memcg_cache_params *cur_params = s->memcg_params;
3133
3134 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3135
3136 if (num_groups > memcg_limited_groups_array_size) {
3137 int i;
3138 ssize_t size = memcg_caches_array_size(num_groups);
3139
3140 size *= sizeof(void *);
3141 size += offsetof(struct memcg_cache_params, memcg_caches);
3142
3143 s->memcg_params = kzalloc(size, GFP_KERNEL);
3144 if (!s->memcg_params) {
3145 s->memcg_params = cur_params;
3146 return -ENOMEM;
3147 }
3148
3149 s->memcg_params->is_root_cache = true;
3150
3151 /*
3152 * There is the chance it will be bigger than
3153 * memcg_limited_groups_array_size, if we failed an allocation
3154 * in a cache, in which case all caches updated before it, will
3155 * have a bigger array.
3156 *
3157 * But if that is the case, the data after
3158 * memcg_limited_groups_array_size is certainly unused
3159 */
3160 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3161 if (!cur_params->memcg_caches[i])
3162 continue;
3163 s->memcg_params->memcg_caches[i] =
3164 cur_params->memcg_caches[i];
3165 }
3166
3167 /*
3168 * Ideally, we would wait until all caches succeed, and only
3169 * then free the old one. But this is not worth the extra
3170 * pointer per-cache we'd have to have for this.
3171 *
3172 * It is not a big deal if some caches are left with a size
3173 * bigger than the others. And all updates will reset this
3174 * anyway.
3175 */
3176 kfree(cur_params);
3177 }
3178 return 0;
3179 }
3180
3181 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3182 struct kmem_cache *root_cache)
3183 {
3184 size_t size;
3185
3186 if (!memcg_kmem_enabled())
3187 return 0;
3188
3189 if (!memcg) {
3190 size = offsetof(struct memcg_cache_params, memcg_caches);
3191 size += memcg_limited_groups_array_size * sizeof(void *);
3192 } else
3193 size = sizeof(struct memcg_cache_params);
3194
3195 s->memcg_params = kzalloc(size, GFP_KERNEL);
3196 if (!s->memcg_params)
3197 return -ENOMEM;
3198
3199 if (memcg) {
3200 s->memcg_params->memcg = memcg;
3201 s->memcg_params->root_cache = root_cache;
3202 INIT_WORK(&s->memcg_params->destroy,
3203 kmem_cache_destroy_work_func);
3204 } else
3205 s->memcg_params->is_root_cache = true;
3206
3207 return 0;
3208 }
3209
3210 void memcg_release_cache(struct kmem_cache *s)
3211 {
3212 struct kmem_cache *root;
3213 struct mem_cgroup *memcg;
3214 int id;
3215
3216 /*
3217 * This happens, for instance, when a root cache goes away before we
3218 * add any memcg.
3219 */
3220 if (!s->memcg_params)
3221 return;
3222
3223 if (s->memcg_params->is_root_cache)
3224 goto out;
3225
3226 memcg = s->memcg_params->memcg;
3227 id = memcg_cache_id(memcg);
3228
3229 root = s->memcg_params->root_cache;
3230 root->memcg_params->memcg_caches[id] = NULL;
3231
3232 mutex_lock(&memcg->slab_caches_mutex);
3233 list_del(&s->memcg_params->list);
3234 mutex_unlock(&memcg->slab_caches_mutex);
3235
3236 css_put(&memcg->css);
3237 out:
3238 kfree(s->memcg_params);
3239 }
3240
3241 /*
3242 * During the creation a new cache, we need to disable our accounting mechanism
3243 * altogether. This is true even if we are not creating, but rather just
3244 * enqueing new caches to be created.
3245 *
3246 * This is because that process will trigger allocations; some visible, like
3247 * explicit kmallocs to auxiliary data structures, name strings and internal
3248 * cache structures; some well concealed, like INIT_WORK() that can allocate
3249 * objects during debug.
3250 *
3251 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3252 * to it. This may not be a bounded recursion: since the first cache creation
3253 * failed to complete (waiting on the allocation), we'll just try to create the
3254 * cache again, failing at the same point.
3255 *
3256 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3257 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3258 * inside the following two functions.
3259 */
3260 static inline void memcg_stop_kmem_account(void)
3261 {
3262 VM_BUG_ON(!current->mm);
3263 current->memcg_kmem_skip_account++;
3264 }
3265
3266 static inline void memcg_resume_kmem_account(void)
3267 {
3268 VM_BUG_ON(!current->mm);
3269 current->memcg_kmem_skip_account--;
3270 }
3271
3272 static void kmem_cache_destroy_work_func(struct work_struct *w)
3273 {
3274 struct kmem_cache *cachep;
3275 struct memcg_cache_params *p;
3276
3277 p = container_of(w, struct memcg_cache_params, destroy);
3278
3279 cachep = memcg_params_to_cache(p);
3280
3281 /*
3282 * If we get down to 0 after shrink, we could delete right away.
3283 * However, memcg_release_pages() already puts us back in the workqueue
3284 * in that case. If we proceed deleting, we'll get a dangling
3285 * reference, and removing the object from the workqueue in that case
3286 * is unnecessary complication. We are not a fast path.
3287 *
3288 * Note that this case is fundamentally different from racing with
3289 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3290 * kmem_cache_shrink, not only we would be reinserting a dead cache
3291 * into the queue, but doing so from inside the worker racing to
3292 * destroy it.
3293 *
3294 * So if we aren't down to zero, we'll just schedule a worker and try
3295 * again
3296 */
3297 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3298 kmem_cache_shrink(cachep);
3299 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3300 return;
3301 } else
3302 kmem_cache_destroy(cachep);
3303 }
3304
3305 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3306 {
3307 if (!cachep->memcg_params->dead)
3308 return;
3309
3310 /*
3311 * There are many ways in which we can get here.
3312 *
3313 * We can get to a memory-pressure situation while the delayed work is
3314 * still pending to run. The vmscan shrinkers can then release all
3315 * cache memory and get us to destruction. If this is the case, we'll
3316 * be executed twice, which is a bug (the second time will execute over
3317 * bogus data). In this case, cancelling the work should be fine.
3318 *
3319 * But we can also get here from the worker itself, if
3320 * kmem_cache_shrink is enough to shake all the remaining objects and
3321 * get the page count to 0. In this case, we'll deadlock if we try to
3322 * cancel the work (the worker runs with an internal lock held, which
3323 * is the same lock we would hold for cancel_work_sync().)
3324 *
3325 * Since we can't possibly know who got us here, just refrain from
3326 * running if there is already work pending
3327 */
3328 if (work_pending(&cachep->memcg_params->destroy))
3329 return;
3330 /*
3331 * We have to defer the actual destroying to a workqueue, because
3332 * we might currently be in a context that cannot sleep.
3333 */
3334 schedule_work(&cachep->memcg_params->destroy);
3335 }
3336
3337 /*
3338 * This lock protects updaters, not readers. We want readers to be as fast as
3339 * they can, and they will either see NULL or a valid cache value. Our model
3340 * allow them to see NULL, in which case the root memcg will be selected.
3341 *
3342 * We need this lock because multiple allocations to the same cache from a non
3343 * will span more than one worker. Only one of them can create the cache.
3344 */
3345 static DEFINE_MUTEX(memcg_cache_mutex);
3346
3347 /*
3348 * Called with memcg_cache_mutex held
3349 */
3350 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3351 struct kmem_cache *s)
3352 {
3353 struct kmem_cache *new;
3354 static char *tmp_name = NULL;
3355
3356 lockdep_assert_held(&memcg_cache_mutex);
3357
3358 /*
3359 * kmem_cache_create_memcg duplicates the given name and
3360 * cgroup_name for this name requires RCU context.
3361 * This static temporary buffer is used to prevent from
3362 * pointless shortliving allocation.
3363 */
3364 if (!tmp_name) {
3365 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3366 if (!tmp_name)
3367 return NULL;
3368 }
3369
3370 rcu_read_lock();
3371 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3372 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3373 rcu_read_unlock();
3374
3375 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3376 (s->flags & ~SLAB_PANIC), s->ctor, s);
3377
3378 if (new)
3379 new->allocflags |= __GFP_KMEMCG;
3380
3381 return new;
3382 }
3383
3384 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3385 struct kmem_cache *cachep)
3386 {
3387 struct kmem_cache *new_cachep;
3388 int idx;
3389
3390 BUG_ON(!memcg_can_account_kmem(memcg));
3391
3392 idx = memcg_cache_id(memcg);
3393
3394 mutex_lock(&memcg_cache_mutex);
3395 new_cachep = cachep->memcg_params->memcg_caches[idx];
3396 if (new_cachep) {
3397 css_put(&memcg->css);
3398 goto out;
3399 }
3400
3401 new_cachep = kmem_cache_dup(memcg, cachep);
3402 if (new_cachep == NULL) {
3403 new_cachep = cachep;
3404 css_put(&memcg->css);
3405 goto out;
3406 }
3407
3408 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3409
3410 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3411 /*
3412 * the readers won't lock, make sure everybody sees the updated value,
3413 * so they won't put stuff in the queue again for no reason
3414 */
3415 wmb();
3416 out:
3417 mutex_unlock(&memcg_cache_mutex);
3418 return new_cachep;
3419 }
3420
3421 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3422 {
3423 struct kmem_cache *c;
3424 int i;
3425
3426 if (!s->memcg_params)
3427 return;
3428 if (!s->memcg_params->is_root_cache)
3429 return;
3430
3431 /*
3432 * If the cache is being destroyed, we trust that there is no one else
3433 * requesting objects from it. Even if there are, the sanity checks in
3434 * kmem_cache_destroy should caught this ill-case.
3435 *
3436 * Still, we don't want anyone else freeing memcg_caches under our
3437 * noses, which can happen if a new memcg comes to life. As usual,
3438 * we'll take the set_limit_mutex to protect ourselves against this.
3439 */
3440 mutex_lock(&set_limit_mutex);
3441 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3442 c = s->memcg_params->memcg_caches[i];
3443 if (!c)
3444 continue;
3445
3446 /*
3447 * We will now manually delete the caches, so to avoid races
3448 * we need to cancel all pending destruction workers and
3449 * proceed with destruction ourselves.
3450 *
3451 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3452 * and that could spawn the workers again: it is likely that
3453 * the cache still have active pages until this very moment.
3454 * This would lead us back to mem_cgroup_destroy_cache.
3455 *
3456 * But that will not execute at all if the "dead" flag is not
3457 * set, so flip it down to guarantee we are in control.
3458 */
3459 c->memcg_params->dead = false;
3460 cancel_work_sync(&c->memcg_params->destroy);
3461 kmem_cache_destroy(c);
3462 }
3463 mutex_unlock(&set_limit_mutex);
3464 }
3465
3466 struct create_work {
3467 struct mem_cgroup *memcg;
3468 struct kmem_cache *cachep;
3469 struct work_struct work;
3470 };
3471
3472 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3473 {
3474 struct kmem_cache *cachep;
3475 struct memcg_cache_params *params;
3476
3477 if (!memcg_kmem_is_active(memcg))
3478 return;
3479
3480 mutex_lock(&memcg->slab_caches_mutex);
3481 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3482 cachep = memcg_params_to_cache(params);
3483 cachep->memcg_params->dead = true;
3484 schedule_work(&cachep->memcg_params->destroy);
3485 }
3486 mutex_unlock(&memcg->slab_caches_mutex);
3487 }
3488
3489 static void memcg_create_cache_work_func(struct work_struct *w)
3490 {
3491 struct create_work *cw;
3492
3493 cw = container_of(w, struct create_work, work);
3494 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3495 kfree(cw);
3496 }
3497
3498 /*
3499 * Enqueue the creation of a per-memcg kmem_cache.
3500 */
3501 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3502 struct kmem_cache *cachep)
3503 {
3504 struct create_work *cw;
3505
3506 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3507 if (cw == NULL) {
3508 css_put(&memcg->css);
3509 return;
3510 }
3511
3512 cw->memcg = memcg;
3513 cw->cachep = cachep;
3514
3515 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3516 schedule_work(&cw->work);
3517 }
3518
3519 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3520 struct kmem_cache *cachep)
3521 {
3522 /*
3523 * We need to stop accounting when we kmalloc, because if the
3524 * corresponding kmalloc cache is not yet created, the first allocation
3525 * in __memcg_create_cache_enqueue will recurse.
3526 *
3527 * However, it is better to enclose the whole function. Depending on
3528 * the debugging options enabled, INIT_WORK(), for instance, can
3529 * trigger an allocation. This too, will make us recurse. Because at
3530 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3531 * the safest choice is to do it like this, wrapping the whole function.
3532 */
3533 memcg_stop_kmem_account();
3534 __memcg_create_cache_enqueue(memcg, cachep);
3535 memcg_resume_kmem_account();
3536 }
3537 /*
3538 * Return the kmem_cache we're supposed to use for a slab allocation.
3539 * We try to use the current memcg's version of the cache.
3540 *
3541 * If the cache does not exist yet, if we are the first user of it,
3542 * we either create it immediately, if possible, or create it asynchronously
3543 * in a workqueue.
3544 * In the latter case, we will let the current allocation go through with
3545 * the original cache.
3546 *
3547 * Can't be called in interrupt context or from kernel threads.
3548 * This function needs to be called with rcu_read_lock() held.
3549 */
3550 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3551 gfp_t gfp)
3552 {
3553 struct mem_cgroup *memcg;
3554 int idx;
3555
3556 VM_BUG_ON(!cachep->memcg_params);
3557 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3558
3559 if (!current->mm || current->memcg_kmem_skip_account)
3560 return cachep;
3561
3562 rcu_read_lock();
3563 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3564
3565 if (!memcg_can_account_kmem(memcg))
3566 goto out;
3567
3568 idx = memcg_cache_id(memcg);
3569
3570 /*
3571 * barrier to mare sure we're always seeing the up to date value. The
3572 * code updating memcg_caches will issue a write barrier to match this.
3573 */
3574 read_barrier_depends();
3575 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3576 cachep = cachep->memcg_params->memcg_caches[idx];
3577 goto out;
3578 }
3579
3580 /* The corresponding put will be done in the workqueue. */
3581 if (!css_tryget(&memcg->css))
3582 goto out;
3583 rcu_read_unlock();
3584
3585 /*
3586 * If we are in a safe context (can wait, and not in interrupt
3587 * context), we could be be predictable and return right away.
3588 * This would guarantee that the allocation being performed
3589 * already belongs in the new cache.
3590 *
3591 * However, there are some clashes that can arrive from locking.
3592 * For instance, because we acquire the slab_mutex while doing
3593 * kmem_cache_dup, this means no further allocation could happen
3594 * with the slab_mutex held.
3595 *
3596 * Also, because cache creation issue get_online_cpus(), this
3597 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3598 * that ends up reversed during cpu hotplug. (cpuset allocates
3599 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3600 * better to defer everything.
3601 */
3602 memcg_create_cache_enqueue(memcg, cachep);
3603 return cachep;
3604 out:
3605 rcu_read_unlock();
3606 return cachep;
3607 }
3608 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3609
3610 /*
3611 * We need to verify if the allocation against current->mm->owner's memcg is
3612 * possible for the given order. But the page is not allocated yet, so we'll
3613 * need a further commit step to do the final arrangements.
3614 *
3615 * It is possible for the task to switch cgroups in this mean time, so at
3616 * commit time, we can't rely on task conversion any longer. We'll then use
3617 * the handle argument to return to the caller which cgroup we should commit
3618 * against. We could also return the memcg directly and avoid the pointer
3619 * passing, but a boolean return value gives better semantics considering
3620 * the compiled-out case as well.
3621 *
3622 * Returning true means the allocation is possible.
3623 */
3624 bool
3625 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3626 {
3627 struct mem_cgroup *memcg;
3628 int ret;
3629
3630 *_memcg = NULL;
3631
3632 /*
3633 * Disabling accounting is only relevant for some specific memcg
3634 * internal allocations. Therefore we would initially not have such
3635 * check here, since direct calls to the page allocator that are marked
3636 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3637 * concerned with cache allocations, and by having this test at
3638 * memcg_kmem_get_cache, we are already able to relay the allocation to
3639 * the root cache and bypass the memcg cache altogether.
3640 *
3641 * There is one exception, though: the SLUB allocator does not create
3642 * large order caches, but rather service large kmallocs directly from
3643 * the page allocator. Therefore, the following sequence when backed by
3644 * the SLUB allocator:
3645 *
3646 * memcg_stop_kmem_account();
3647 * kmalloc(<large_number>)
3648 * memcg_resume_kmem_account();
3649 *
3650 * would effectively ignore the fact that we should skip accounting,
3651 * since it will drive us directly to this function without passing
3652 * through the cache selector memcg_kmem_get_cache. Such large
3653 * allocations are extremely rare but can happen, for instance, for the
3654 * cache arrays. We bring this test here.
3655 */
3656 if (!current->mm || current->memcg_kmem_skip_account)
3657 return true;
3658
3659 memcg = try_get_mem_cgroup_from_mm(current->mm);
3660
3661 /*
3662 * very rare case described in mem_cgroup_from_task. Unfortunately there
3663 * isn't much we can do without complicating this too much, and it would
3664 * be gfp-dependent anyway. Just let it go
3665 */
3666 if (unlikely(!memcg))
3667 return true;
3668
3669 if (!memcg_can_account_kmem(memcg)) {
3670 css_put(&memcg->css);
3671 return true;
3672 }
3673
3674 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3675 if (!ret)
3676 *_memcg = memcg;
3677
3678 css_put(&memcg->css);
3679 return (ret == 0);
3680 }
3681
3682 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3683 int order)
3684 {
3685 struct page_cgroup *pc;
3686
3687 VM_BUG_ON(mem_cgroup_is_root(memcg));
3688
3689 /* The page allocation failed. Revert */
3690 if (!page) {
3691 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3692 return;
3693 }
3694
3695 pc = lookup_page_cgroup(page);
3696 lock_page_cgroup(pc);
3697 pc->mem_cgroup = memcg;
3698 SetPageCgroupUsed(pc);
3699 unlock_page_cgroup(pc);
3700 }
3701
3702 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3703 {
3704 struct mem_cgroup *memcg = NULL;
3705 struct page_cgroup *pc;
3706
3707
3708 pc = lookup_page_cgroup(page);
3709 /*
3710 * Fast unlocked return. Theoretically might have changed, have to
3711 * check again after locking.
3712 */
3713 if (!PageCgroupUsed(pc))
3714 return;
3715
3716 lock_page_cgroup(pc);
3717 if (PageCgroupUsed(pc)) {
3718 memcg = pc->mem_cgroup;
3719 ClearPageCgroupUsed(pc);
3720 }
3721 unlock_page_cgroup(pc);
3722
3723 /*
3724 * We trust that only if there is a memcg associated with the page, it
3725 * is a valid allocation
3726 */
3727 if (!memcg)
3728 return;
3729
3730 VM_BUG_ON(mem_cgroup_is_root(memcg));
3731 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3732 }
3733 #else
3734 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3735 {
3736 }
3737 #endif /* CONFIG_MEMCG_KMEM */
3738
3739 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3740
3741 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3742 /*
3743 * Because tail pages are not marked as "used", set it. We're under
3744 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3745 * charge/uncharge will be never happen and move_account() is done under
3746 * compound_lock(), so we don't have to take care of races.
3747 */
3748 void mem_cgroup_split_huge_fixup(struct page *head)
3749 {
3750 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3751 struct page_cgroup *pc;
3752 struct mem_cgroup *memcg;
3753 int i;
3754
3755 if (mem_cgroup_disabled())
3756 return;
3757
3758 memcg = head_pc->mem_cgroup;
3759 for (i = 1; i < HPAGE_PMD_NR; i++) {
3760 pc = head_pc + i;
3761 pc->mem_cgroup = memcg;
3762 smp_wmb();/* see __commit_charge() */
3763 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3764 }
3765 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3766 HPAGE_PMD_NR);
3767 }
3768 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3769
3770 static inline
3771 void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3772 struct mem_cgroup *to,
3773 unsigned int nr_pages,
3774 enum mem_cgroup_stat_index idx)
3775 {
3776 /* Update stat data for mem_cgroup */
3777 preempt_disable();
3778 __this_cpu_sub(from->stat->count[idx], nr_pages);
3779 __this_cpu_add(to->stat->count[idx], nr_pages);
3780 preempt_enable();
3781 }
3782
3783 /**
3784 * mem_cgroup_move_account - move account of the page
3785 * @page: the page
3786 * @nr_pages: number of regular pages (>1 for huge pages)
3787 * @pc: page_cgroup of the page.
3788 * @from: mem_cgroup which the page is moved from.
3789 * @to: mem_cgroup which the page is moved to. @from != @to.
3790 *
3791 * The caller must confirm following.
3792 * - page is not on LRU (isolate_page() is useful.)
3793 * - compound_lock is held when nr_pages > 1
3794 *
3795 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3796 * from old cgroup.
3797 */
3798 static int mem_cgroup_move_account(struct page *page,
3799 unsigned int nr_pages,
3800 struct page_cgroup *pc,
3801 struct mem_cgroup *from,
3802 struct mem_cgroup *to)
3803 {
3804 unsigned long flags;
3805 int ret;
3806 bool anon = PageAnon(page);
3807
3808 VM_BUG_ON(from == to);
3809 VM_BUG_ON(PageLRU(page));
3810 /*
3811 * The page is isolated from LRU. So, collapse function
3812 * will not handle this page. But page splitting can happen.
3813 * Do this check under compound_page_lock(). The caller should
3814 * hold it.
3815 */
3816 ret = -EBUSY;
3817 if (nr_pages > 1 && !PageTransHuge(page))
3818 goto out;
3819
3820 lock_page_cgroup(pc);
3821
3822 ret = -EINVAL;
3823 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3824 goto unlock;
3825
3826 move_lock_mem_cgroup(from, &flags);
3827
3828 if (!anon && page_mapped(page))
3829 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3830 MEM_CGROUP_STAT_FILE_MAPPED);
3831
3832 if (PageWriteback(page))
3833 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3834 MEM_CGROUP_STAT_WRITEBACK);
3835
3836 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3837
3838 /* caller should have done css_get */
3839 pc->mem_cgroup = to;
3840 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3841 move_unlock_mem_cgroup(from, &flags);
3842 ret = 0;
3843 unlock:
3844 unlock_page_cgroup(pc);
3845 /*
3846 * check events
3847 */
3848 memcg_check_events(to, page);
3849 memcg_check_events(from, page);
3850 out:
3851 return ret;
3852 }
3853
3854 /**
3855 * mem_cgroup_move_parent - moves page to the parent group
3856 * @page: the page to move
3857 * @pc: page_cgroup of the page
3858 * @child: page's cgroup
3859 *
3860 * move charges to its parent or the root cgroup if the group has no
3861 * parent (aka use_hierarchy==0).
3862 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3863 * mem_cgroup_move_account fails) the failure is always temporary and
3864 * it signals a race with a page removal/uncharge or migration. In the
3865 * first case the page is on the way out and it will vanish from the LRU
3866 * on the next attempt and the call should be retried later.
3867 * Isolation from the LRU fails only if page has been isolated from
3868 * the LRU since we looked at it and that usually means either global
3869 * reclaim or migration going on. The page will either get back to the
3870 * LRU or vanish.
3871 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3872 * (!PageCgroupUsed) or moved to a different group. The page will
3873 * disappear in the next attempt.
3874 */
3875 static int mem_cgroup_move_parent(struct page *page,
3876 struct page_cgroup *pc,
3877 struct mem_cgroup *child)
3878 {
3879 struct mem_cgroup *parent;
3880 unsigned int nr_pages;
3881 unsigned long uninitialized_var(flags);
3882 int ret;
3883
3884 VM_BUG_ON(mem_cgroup_is_root(child));
3885
3886 ret = -EBUSY;
3887 if (!get_page_unless_zero(page))
3888 goto out;
3889 if (isolate_lru_page(page))
3890 goto put;
3891
3892 nr_pages = hpage_nr_pages(page);
3893
3894 parent = parent_mem_cgroup(child);
3895 /*
3896 * If no parent, move charges to root cgroup.
3897 */
3898 if (!parent)
3899 parent = root_mem_cgroup;
3900
3901 if (nr_pages > 1) {
3902 VM_BUG_ON(!PageTransHuge(page));
3903 flags = compound_lock_irqsave(page);
3904 }
3905
3906 ret = mem_cgroup_move_account(page, nr_pages,
3907 pc, child, parent);
3908 if (!ret)
3909 __mem_cgroup_cancel_local_charge(child, nr_pages);
3910
3911 if (nr_pages > 1)
3912 compound_unlock_irqrestore(page, flags);
3913 putback_lru_page(page);
3914 put:
3915 put_page(page);
3916 out:
3917 return ret;
3918 }
3919
3920 /*
3921 * Charge the memory controller for page usage.
3922 * Return
3923 * 0 if the charge was successful
3924 * < 0 if the cgroup is over its limit
3925 */
3926 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3927 gfp_t gfp_mask, enum charge_type ctype)
3928 {
3929 struct mem_cgroup *memcg = NULL;
3930 unsigned int nr_pages = 1;
3931 bool oom = true;
3932 int ret;
3933
3934 if (PageTransHuge(page)) {
3935 nr_pages <<= compound_order(page);
3936 VM_BUG_ON(!PageTransHuge(page));
3937 /*
3938 * Never OOM-kill a process for a huge page. The
3939 * fault handler will fall back to regular pages.
3940 */
3941 oom = false;
3942 }
3943
3944 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3945 if (ret == -ENOMEM)
3946 return ret;
3947 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3948 return 0;
3949 }
3950
3951 int mem_cgroup_newpage_charge(struct page *page,
3952 struct mm_struct *mm, gfp_t gfp_mask)
3953 {
3954 if (mem_cgroup_disabled())
3955 return 0;
3956 VM_BUG_ON(page_mapped(page));
3957 VM_BUG_ON(page->mapping && !PageAnon(page));
3958 VM_BUG_ON(!mm);
3959 return mem_cgroup_charge_common(page, mm, gfp_mask,
3960 MEM_CGROUP_CHARGE_TYPE_ANON);
3961 }
3962
3963 /*
3964 * While swap-in, try_charge -> commit or cancel, the page is locked.
3965 * And when try_charge() successfully returns, one refcnt to memcg without
3966 * struct page_cgroup is acquired. This refcnt will be consumed by
3967 * "commit()" or removed by "cancel()"
3968 */
3969 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3970 struct page *page,
3971 gfp_t mask,
3972 struct mem_cgroup **memcgp)
3973 {
3974 struct mem_cgroup *memcg;
3975 struct page_cgroup *pc;
3976 int ret;
3977
3978 pc = lookup_page_cgroup(page);
3979 /*
3980 * Every swap fault against a single page tries to charge the
3981 * page, bail as early as possible. shmem_unuse() encounters
3982 * already charged pages, too. The USED bit is protected by
3983 * the page lock, which serializes swap cache removal, which
3984 * in turn serializes uncharging.
3985 */
3986 if (PageCgroupUsed(pc))
3987 return 0;
3988 if (!do_swap_account)
3989 goto charge_cur_mm;
3990 memcg = try_get_mem_cgroup_from_page(page);
3991 if (!memcg)
3992 goto charge_cur_mm;
3993 *memcgp = memcg;
3994 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3995 css_put(&memcg->css);
3996 if (ret == -EINTR)
3997 ret = 0;
3998 return ret;
3999 charge_cur_mm:
4000 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4001 if (ret == -EINTR)
4002 ret = 0;
4003 return ret;
4004 }
4005
4006 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4007 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4008 {
4009 *memcgp = NULL;
4010 if (mem_cgroup_disabled())
4011 return 0;
4012 /*
4013 * A racing thread's fault, or swapoff, may have already
4014 * updated the pte, and even removed page from swap cache: in
4015 * those cases unuse_pte()'s pte_same() test will fail; but
4016 * there's also a KSM case which does need to charge the page.
4017 */
4018 if (!PageSwapCache(page)) {
4019 int ret;
4020
4021 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4022 if (ret == -EINTR)
4023 ret = 0;
4024 return ret;
4025 }
4026 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4027 }
4028
4029 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4030 {
4031 if (mem_cgroup_disabled())
4032 return;
4033 if (!memcg)
4034 return;
4035 __mem_cgroup_cancel_charge(memcg, 1);
4036 }
4037
4038 static void
4039 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4040 enum charge_type ctype)
4041 {
4042 if (mem_cgroup_disabled())
4043 return;
4044 if (!memcg)
4045 return;
4046
4047 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4048 /*
4049 * Now swap is on-memory. This means this page may be
4050 * counted both as mem and swap....double count.
4051 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4052 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4053 * may call delete_from_swap_cache() before reach here.
4054 */
4055 if (do_swap_account && PageSwapCache(page)) {
4056 swp_entry_t ent = {.val = page_private(page)};
4057 mem_cgroup_uncharge_swap(ent);
4058 }
4059 }
4060
4061 void mem_cgroup_commit_charge_swapin(struct page *page,
4062 struct mem_cgroup *memcg)
4063 {
4064 __mem_cgroup_commit_charge_swapin(page, memcg,
4065 MEM_CGROUP_CHARGE_TYPE_ANON);
4066 }
4067
4068 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4069 gfp_t gfp_mask)
4070 {
4071 struct mem_cgroup *memcg = NULL;
4072 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4073 int ret;
4074
4075 if (mem_cgroup_disabled())
4076 return 0;
4077 if (PageCompound(page))
4078 return 0;
4079
4080 if (!PageSwapCache(page))
4081 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4082 else { /* page is swapcache/shmem */
4083 ret = __mem_cgroup_try_charge_swapin(mm, page,
4084 gfp_mask, &memcg);
4085 if (!ret)
4086 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4087 }
4088 return ret;
4089 }
4090
4091 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4092 unsigned int nr_pages,
4093 const enum charge_type ctype)
4094 {
4095 struct memcg_batch_info *batch = NULL;
4096 bool uncharge_memsw = true;
4097
4098 /* If swapout, usage of swap doesn't decrease */
4099 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4100 uncharge_memsw = false;
4101
4102 batch = &current->memcg_batch;
4103 /*
4104 * In usual, we do css_get() when we remember memcg pointer.
4105 * But in this case, we keep res->usage until end of a series of
4106 * uncharges. Then, it's ok to ignore memcg's refcnt.
4107 */
4108 if (!batch->memcg)
4109 batch->memcg = memcg;
4110 /*
4111 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4112 * In those cases, all pages freed continuously can be expected to be in
4113 * the same cgroup and we have chance to coalesce uncharges.
4114 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4115 * because we want to do uncharge as soon as possible.
4116 */
4117
4118 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4119 goto direct_uncharge;
4120
4121 if (nr_pages > 1)
4122 goto direct_uncharge;
4123
4124 /*
4125 * In typical case, batch->memcg == mem. This means we can
4126 * merge a series of uncharges to an uncharge of res_counter.
4127 * If not, we uncharge res_counter ony by one.
4128 */
4129 if (batch->memcg != memcg)
4130 goto direct_uncharge;
4131 /* remember freed charge and uncharge it later */
4132 batch->nr_pages++;
4133 if (uncharge_memsw)
4134 batch->memsw_nr_pages++;
4135 return;
4136 direct_uncharge:
4137 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4138 if (uncharge_memsw)
4139 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4140 if (unlikely(batch->memcg != memcg))
4141 memcg_oom_recover(memcg);
4142 }
4143
4144 /*
4145 * uncharge if !page_mapped(page)
4146 */
4147 static struct mem_cgroup *
4148 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4149 bool end_migration)
4150 {
4151 struct mem_cgroup *memcg = NULL;
4152 unsigned int nr_pages = 1;
4153 struct page_cgroup *pc;
4154 bool anon;
4155
4156 if (mem_cgroup_disabled())
4157 return NULL;
4158
4159 if (PageTransHuge(page)) {
4160 nr_pages <<= compound_order(page);
4161 VM_BUG_ON(!PageTransHuge(page));
4162 }
4163 /*
4164 * Check if our page_cgroup is valid
4165 */
4166 pc = lookup_page_cgroup(page);
4167 if (unlikely(!PageCgroupUsed(pc)))
4168 return NULL;
4169
4170 lock_page_cgroup(pc);
4171
4172 memcg = pc->mem_cgroup;
4173
4174 if (!PageCgroupUsed(pc))
4175 goto unlock_out;
4176
4177 anon = PageAnon(page);
4178
4179 switch (ctype) {
4180 case MEM_CGROUP_CHARGE_TYPE_ANON:
4181 /*
4182 * Generally PageAnon tells if it's the anon statistics to be
4183 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4184 * used before page reached the stage of being marked PageAnon.
4185 */
4186 anon = true;
4187 /* fallthrough */
4188 case MEM_CGROUP_CHARGE_TYPE_DROP:
4189 /* See mem_cgroup_prepare_migration() */
4190 if (page_mapped(page))
4191 goto unlock_out;
4192 /*
4193 * Pages under migration may not be uncharged. But
4194 * end_migration() /must/ be the one uncharging the
4195 * unused post-migration page and so it has to call
4196 * here with the migration bit still set. See the
4197 * res_counter handling below.
4198 */
4199 if (!end_migration && PageCgroupMigration(pc))
4200 goto unlock_out;
4201 break;
4202 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4203 if (!PageAnon(page)) { /* Shared memory */
4204 if (page->mapping && !page_is_file_cache(page))
4205 goto unlock_out;
4206 } else if (page_mapped(page)) /* Anon */
4207 goto unlock_out;
4208 break;
4209 default:
4210 break;
4211 }
4212
4213 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4214
4215 ClearPageCgroupUsed(pc);
4216 /*
4217 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4218 * freed from LRU. This is safe because uncharged page is expected not
4219 * to be reused (freed soon). Exception is SwapCache, it's handled by
4220 * special functions.
4221 */
4222
4223 unlock_page_cgroup(pc);
4224 /*
4225 * even after unlock, we have memcg->res.usage here and this memcg
4226 * will never be freed, so it's safe to call css_get().
4227 */
4228 memcg_check_events(memcg, page);
4229 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4230 mem_cgroup_swap_statistics(memcg, true);
4231 css_get(&memcg->css);
4232 }
4233 /*
4234 * Migration does not charge the res_counter for the
4235 * replacement page, so leave it alone when phasing out the
4236 * page that is unused after the migration.
4237 */
4238 if (!end_migration && !mem_cgroup_is_root(memcg))
4239 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4240
4241 return memcg;
4242
4243 unlock_out:
4244 unlock_page_cgroup(pc);
4245 return NULL;
4246 }
4247
4248 void mem_cgroup_uncharge_page(struct page *page)
4249 {
4250 /* early check. */
4251 if (page_mapped(page))
4252 return;
4253 VM_BUG_ON(page->mapping && !PageAnon(page));
4254 /*
4255 * If the page is in swap cache, uncharge should be deferred
4256 * to the swap path, which also properly accounts swap usage
4257 * and handles memcg lifetime.
4258 *
4259 * Note that this check is not stable and reclaim may add the
4260 * page to swap cache at any time after this. However, if the
4261 * page is not in swap cache by the time page->mapcount hits
4262 * 0, there won't be any page table references to the swap
4263 * slot, and reclaim will free it and not actually write the
4264 * page to disk.
4265 */
4266 if (PageSwapCache(page))
4267 return;
4268 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4269 }
4270
4271 void mem_cgroup_uncharge_cache_page(struct page *page)
4272 {
4273 VM_BUG_ON(page_mapped(page));
4274 VM_BUG_ON(page->mapping);
4275 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4276 }
4277
4278 /*
4279 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4280 * In that cases, pages are freed continuously and we can expect pages
4281 * are in the same memcg. All these calls itself limits the number of
4282 * pages freed at once, then uncharge_start/end() is called properly.
4283 * This may be called prural(2) times in a context,
4284 */
4285
4286 void mem_cgroup_uncharge_start(void)
4287 {
4288 current->memcg_batch.do_batch++;
4289 /* We can do nest. */
4290 if (current->memcg_batch.do_batch == 1) {
4291 current->memcg_batch.memcg = NULL;
4292 current->memcg_batch.nr_pages = 0;
4293 current->memcg_batch.memsw_nr_pages = 0;
4294 }
4295 }
4296
4297 void mem_cgroup_uncharge_end(void)
4298 {
4299 struct memcg_batch_info *batch = &current->memcg_batch;
4300
4301 if (!batch->do_batch)
4302 return;
4303
4304 batch->do_batch--;
4305 if (batch->do_batch) /* If stacked, do nothing. */
4306 return;
4307
4308 if (!batch->memcg)
4309 return;
4310 /*
4311 * This "batch->memcg" is valid without any css_get/put etc...
4312 * bacause we hide charges behind us.
4313 */
4314 if (batch->nr_pages)
4315 res_counter_uncharge(&batch->memcg->res,
4316 batch->nr_pages * PAGE_SIZE);
4317 if (batch->memsw_nr_pages)
4318 res_counter_uncharge(&batch->memcg->memsw,
4319 batch->memsw_nr_pages * PAGE_SIZE);
4320 memcg_oom_recover(batch->memcg);
4321 /* forget this pointer (for sanity check) */
4322 batch->memcg = NULL;
4323 }
4324
4325 #ifdef CONFIG_SWAP
4326 /*
4327 * called after __delete_from_swap_cache() and drop "page" account.
4328 * memcg information is recorded to swap_cgroup of "ent"
4329 */
4330 void
4331 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4332 {
4333 struct mem_cgroup *memcg;
4334 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4335
4336 if (!swapout) /* this was a swap cache but the swap is unused ! */
4337 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4338
4339 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4340
4341 /*
4342 * record memcg information, if swapout && memcg != NULL,
4343 * css_get() was called in uncharge().
4344 */
4345 if (do_swap_account && swapout && memcg)
4346 swap_cgroup_record(ent, css_id(&memcg->css));
4347 }
4348 #endif
4349
4350 #ifdef CONFIG_MEMCG_SWAP
4351 /*
4352 * called from swap_entry_free(). remove record in swap_cgroup and
4353 * uncharge "memsw" account.
4354 */
4355 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4356 {
4357 struct mem_cgroup *memcg;
4358 unsigned short id;
4359
4360 if (!do_swap_account)
4361 return;
4362
4363 id = swap_cgroup_record(ent, 0);
4364 rcu_read_lock();
4365 memcg = mem_cgroup_lookup(id);
4366 if (memcg) {
4367 /*
4368 * We uncharge this because swap is freed.
4369 * This memcg can be obsolete one. We avoid calling css_tryget
4370 */
4371 if (!mem_cgroup_is_root(memcg))
4372 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4373 mem_cgroup_swap_statistics(memcg, false);
4374 css_put(&memcg->css);
4375 }
4376 rcu_read_unlock();
4377 }
4378
4379 /**
4380 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4381 * @entry: swap entry to be moved
4382 * @from: mem_cgroup which the entry is moved from
4383 * @to: mem_cgroup which the entry is moved to
4384 *
4385 * It succeeds only when the swap_cgroup's record for this entry is the same
4386 * as the mem_cgroup's id of @from.
4387 *
4388 * Returns 0 on success, -EINVAL on failure.
4389 *
4390 * The caller must have charged to @to, IOW, called res_counter_charge() about
4391 * both res and memsw, and called css_get().
4392 */
4393 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4394 struct mem_cgroup *from, struct mem_cgroup *to)
4395 {
4396 unsigned short old_id, new_id;
4397
4398 old_id = css_id(&from->css);
4399 new_id = css_id(&to->css);
4400
4401 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4402 mem_cgroup_swap_statistics(from, false);
4403 mem_cgroup_swap_statistics(to, true);
4404 /*
4405 * This function is only called from task migration context now.
4406 * It postpones res_counter and refcount handling till the end
4407 * of task migration(mem_cgroup_clear_mc()) for performance
4408 * improvement. But we cannot postpone css_get(to) because if
4409 * the process that has been moved to @to does swap-in, the
4410 * refcount of @to might be decreased to 0.
4411 *
4412 * We are in attach() phase, so the cgroup is guaranteed to be
4413 * alive, so we can just call css_get().
4414 */
4415 css_get(&to->css);
4416 return 0;
4417 }
4418 return -EINVAL;
4419 }
4420 #else
4421 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4422 struct mem_cgroup *from, struct mem_cgroup *to)
4423 {
4424 return -EINVAL;
4425 }
4426 #endif
4427
4428 /*
4429 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4430 * page belongs to.
4431 */
4432 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4433 struct mem_cgroup **memcgp)
4434 {
4435 struct mem_cgroup *memcg = NULL;
4436 unsigned int nr_pages = 1;
4437 struct page_cgroup *pc;
4438 enum charge_type ctype;
4439
4440 *memcgp = NULL;
4441
4442 if (mem_cgroup_disabled())
4443 return;
4444
4445 if (PageTransHuge(page))
4446 nr_pages <<= compound_order(page);
4447
4448 pc = lookup_page_cgroup(page);
4449 lock_page_cgroup(pc);
4450 if (PageCgroupUsed(pc)) {
4451 memcg = pc->mem_cgroup;
4452 css_get(&memcg->css);
4453 /*
4454 * At migrating an anonymous page, its mapcount goes down
4455 * to 0 and uncharge() will be called. But, even if it's fully
4456 * unmapped, migration may fail and this page has to be
4457 * charged again. We set MIGRATION flag here and delay uncharge
4458 * until end_migration() is called
4459 *
4460 * Corner Case Thinking
4461 * A)
4462 * When the old page was mapped as Anon and it's unmap-and-freed
4463 * while migration was ongoing.
4464 * If unmap finds the old page, uncharge() of it will be delayed
4465 * until end_migration(). If unmap finds a new page, it's
4466 * uncharged when it make mapcount to be 1->0. If unmap code
4467 * finds swap_migration_entry, the new page will not be mapped
4468 * and end_migration() will find it(mapcount==0).
4469 *
4470 * B)
4471 * When the old page was mapped but migraion fails, the kernel
4472 * remaps it. A charge for it is kept by MIGRATION flag even
4473 * if mapcount goes down to 0. We can do remap successfully
4474 * without charging it again.
4475 *
4476 * C)
4477 * The "old" page is under lock_page() until the end of
4478 * migration, so, the old page itself will not be swapped-out.
4479 * If the new page is swapped out before end_migraton, our
4480 * hook to usual swap-out path will catch the event.
4481 */
4482 if (PageAnon(page))
4483 SetPageCgroupMigration(pc);
4484 }
4485 unlock_page_cgroup(pc);
4486 /*
4487 * If the page is not charged at this point,
4488 * we return here.
4489 */
4490 if (!memcg)
4491 return;
4492
4493 *memcgp = memcg;
4494 /*
4495 * We charge new page before it's used/mapped. So, even if unlock_page()
4496 * is called before end_migration, we can catch all events on this new
4497 * page. In the case new page is migrated but not remapped, new page's
4498 * mapcount will be finally 0 and we call uncharge in end_migration().
4499 */
4500 if (PageAnon(page))
4501 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4502 else
4503 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4504 /*
4505 * The page is committed to the memcg, but it's not actually
4506 * charged to the res_counter since we plan on replacing the
4507 * old one and only one page is going to be left afterwards.
4508 */
4509 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4510 }
4511
4512 /* remove redundant charge if migration failed*/
4513 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4514 struct page *oldpage, struct page *newpage, bool migration_ok)
4515 {
4516 struct page *used, *unused;
4517 struct page_cgroup *pc;
4518 bool anon;
4519
4520 if (!memcg)
4521 return;
4522
4523 if (!migration_ok) {
4524 used = oldpage;
4525 unused = newpage;
4526 } else {
4527 used = newpage;
4528 unused = oldpage;
4529 }
4530 anon = PageAnon(used);
4531 __mem_cgroup_uncharge_common(unused,
4532 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4533 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4534 true);
4535 css_put(&memcg->css);
4536 /*
4537 * We disallowed uncharge of pages under migration because mapcount
4538 * of the page goes down to zero, temporarly.
4539 * Clear the flag and check the page should be charged.
4540 */
4541 pc = lookup_page_cgroup(oldpage);
4542 lock_page_cgroup(pc);
4543 ClearPageCgroupMigration(pc);
4544 unlock_page_cgroup(pc);
4545
4546 /*
4547 * If a page is a file cache, radix-tree replacement is very atomic
4548 * and we can skip this check. When it was an Anon page, its mapcount
4549 * goes down to 0. But because we added MIGRATION flage, it's not
4550 * uncharged yet. There are several case but page->mapcount check
4551 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4552 * check. (see prepare_charge() also)
4553 */
4554 if (anon)
4555 mem_cgroup_uncharge_page(used);
4556 }
4557
4558 /*
4559 * At replace page cache, newpage is not under any memcg but it's on
4560 * LRU. So, this function doesn't touch res_counter but handles LRU
4561 * in correct way. Both pages are locked so we cannot race with uncharge.
4562 */
4563 void mem_cgroup_replace_page_cache(struct page *oldpage,
4564 struct page *newpage)
4565 {
4566 struct mem_cgroup *memcg = NULL;
4567 struct page_cgroup *pc;
4568 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4569
4570 if (mem_cgroup_disabled())
4571 return;
4572
4573 pc = lookup_page_cgroup(oldpage);
4574 /* fix accounting on old pages */
4575 lock_page_cgroup(pc);
4576 if (PageCgroupUsed(pc)) {
4577 memcg = pc->mem_cgroup;
4578 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4579 ClearPageCgroupUsed(pc);
4580 }
4581 unlock_page_cgroup(pc);
4582
4583 /*
4584 * When called from shmem_replace_page(), in some cases the
4585 * oldpage has already been charged, and in some cases not.
4586 */
4587 if (!memcg)
4588 return;
4589 /*
4590 * Even if newpage->mapping was NULL before starting replacement,
4591 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4592 * LRU while we overwrite pc->mem_cgroup.
4593 */
4594 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4595 }
4596
4597 #ifdef CONFIG_DEBUG_VM
4598 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4599 {
4600 struct page_cgroup *pc;
4601
4602 pc = lookup_page_cgroup(page);
4603 /*
4604 * Can be NULL while feeding pages into the page allocator for
4605 * the first time, i.e. during boot or memory hotplug;
4606 * or when mem_cgroup_disabled().
4607 */
4608 if (likely(pc) && PageCgroupUsed(pc))
4609 return pc;
4610 return NULL;
4611 }
4612
4613 bool mem_cgroup_bad_page_check(struct page *page)
4614 {
4615 if (mem_cgroup_disabled())
4616 return false;
4617
4618 return lookup_page_cgroup_used(page) != NULL;
4619 }
4620
4621 void mem_cgroup_print_bad_page(struct page *page)
4622 {
4623 struct page_cgroup *pc;
4624
4625 pc = lookup_page_cgroup_used(page);
4626 if (pc) {
4627 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4628 pc, pc->flags, pc->mem_cgroup);
4629 }
4630 }
4631 #endif
4632
4633 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4634 unsigned long long val)
4635 {
4636 int retry_count;
4637 u64 memswlimit, memlimit;
4638 int ret = 0;
4639 int children = mem_cgroup_count_children(memcg);
4640 u64 curusage, oldusage;
4641 int enlarge;
4642
4643 /*
4644 * For keeping hierarchical_reclaim simple, how long we should retry
4645 * is depends on callers. We set our retry-count to be function
4646 * of # of children which we should visit in this loop.
4647 */
4648 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4649
4650 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4651
4652 enlarge = 0;
4653 while (retry_count) {
4654 if (signal_pending(current)) {
4655 ret = -EINTR;
4656 break;
4657 }
4658 /*
4659 * Rather than hide all in some function, I do this in
4660 * open coded manner. You see what this really does.
4661 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4662 */
4663 mutex_lock(&set_limit_mutex);
4664 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4665 if (memswlimit < val) {
4666 ret = -EINVAL;
4667 mutex_unlock(&set_limit_mutex);
4668 break;
4669 }
4670
4671 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4672 if (memlimit < val)
4673 enlarge = 1;
4674
4675 ret = res_counter_set_limit(&memcg->res, val);
4676 if (!ret) {
4677 if (memswlimit == val)
4678 memcg->memsw_is_minimum = true;
4679 else
4680 memcg->memsw_is_minimum = false;
4681 }
4682 mutex_unlock(&set_limit_mutex);
4683
4684 if (!ret)
4685 break;
4686
4687 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4688 MEM_CGROUP_RECLAIM_SHRINK);
4689 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4690 /* Usage is reduced ? */
4691 if (curusage >= oldusage)
4692 retry_count--;
4693 else
4694 oldusage = curusage;
4695 }
4696 if (!ret && enlarge)
4697 memcg_oom_recover(memcg);
4698
4699 return ret;
4700 }
4701
4702 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4703 unsigned long long val)
4704 {
4705 int retry_count;
4706 u64 memlimit, memswlimit, oldusage, curusage;
4707 int children = mem_cgroup_count_children(memcg);
4708 int ret = -EBUSY;
4709 int enlarge = 0;
4710
4711 /* see mem_cgroup_resize_res_limit */
4712 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4713 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4714 while (retry_count) {
4715 if (signal_pending(current)) {
4716 ret = -EINTR;
4717 break;
4718 }
4719 /*
4720 * Rather than hide all in some function, I do this in
4721 * open coded manner. You see what this really does.
4722 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4723 */
4724 mutex_lock(&set_limit_mutex);
4725 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4726 if (memlimit > val) {
4727 ret = -EINVAL;
4728 mutex_unlock(&set_limit_mutex);
4729 break;
4730 }
4731 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4732 if (memswlimit < val)
4733 enlarge = 1;
4734 ret = res_counter_set_limit(&memcg->memsw, val);
4735 if (!ret) {
4736 if (memlimit == val)
4737 memcg->memsw_is_minimum = true;
4738 else
4739 memcg->memsw_is_minimum = false;
4740 }
4741 mutex_unlock(&set_limit_mutex);
4742
4743 if (!ret)
4744 break;
4745
4746 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4747 MEM_CGROUP_RECLAIM_NOSWAP |
4748 MEM_CGROUP_RECLAIM_SHRINK);
4749 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4750 /* Usage is reduced ? */
4751 if (curusage >= oldusage)
4752 retry_count--;
4753 else
4754 oldusage = curusage;
4755 }
4756 if (!ret && enlarge)
4757 memcg_oom_recover(memcg);
4758 return ret;
4759 }
4760
4761 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4762 gfp_t gfp_mask,
4763 unsigned long *total_scanned)
4764 {
4765 unsigned long nr_reclaimed = 0;
4766 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4767 unsigned long reclaimed;
4768 int loop = 0;
4769 struct mem_cgroup_tree_per_zone *mctz;
4770 unsigned long long excess;
4771 unsigned long nr_scanned;
4772
4773 if (order > 0)
4774 return 0;
4775
4776 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4777 /*
4778 * This loop can run a while, specially if mem_cgroup's continuously
4779 * keep exceeding their soft limit and putting the system under
4780 * pressure
4781 */
4782 do {
4783 if (next_mz)
4784 mz = next_mz;
4785 else
4786 mz = mem_cgroup_largest_soft_limit_node(mctz);
4787 if (!mz)
4788 break;
4789
4790 nr_scanned = 0;
4791 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4792 gfp_mask, &nr_scanned);
4793 nr_reclaimed += reclaimed;
4794 *total_scanned += nr_scanned;
4795 spin_lock(&mctz->lock);
4796
4797 /*
4798 * If we failed to reclaim anything from this memory cgroup
4799 * it is time to move on to the next cgroup
4800 */
4801 next_mz = NULL;
4802 if (!reclaimed) {
4803 do {
4804 /*
4805 * Loop until we find yet another one.
4806 *
4807 * By the time we get the soft_limit lock
4808 * again, someone might have aded the
4809 * group back on the RB tree. Iterate to
4810 * make sure we get a different mem.
4811 * mem_cgroup_largest_soft_limit_node returns
4812 * NULL if no other cgroup is present on
4813 * the tree
4814 */
4815 next_mz =
4816 __mem_cgroup_largest_soft_limit_node(mctz);
4817 if (next_mz == mz)
4818 css_put(&next_mz->memcg->css);
4819 else /* next_mz == NULL or other memcg */
4820 break;
4821 } while (1);
4822 }
4823 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4824 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4825 /*
4826 * One school of thought says that we should not add
4827 * back the node to the tree if reclaim returns 0.
4828 * But our reclaim could return 0, simply because due
4829 * to priority we are exposing a smaller subset of
4830 * memory to reclaim from. Consider this as a longer
4831 * term TODO.
4832 */
4833 /* If excess == 0, no tree ops */
4834 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4835 spin_unlock(&mctz->lock);
4836 css_put(&mz->memcg->css);
4837 loop++;
4838 /*
4839 * Could not reclaim anything and there are no more
4840 * mem cgroups to try or we seem to be looping without
4841 * reclaiming anything.
4842 */
4843 if (!nr_reclaimed &&
4844 (next_mz == NULL ||
4845 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4846 break;
4847 } while (!nr_reclaimed);
4848 if (next_mz)
4849 css_put(&next_mz->memcg->css);
4850 return nr_reclaimed;
4851 }
4852
4853 /**
4854 * mem_cgroup_force_empty_list - clears LRU of a group
4855 * @memcg: group to clear
4856 * @node: NUMA node
4857 * @zid: zone id
4858 * @lru: lru to to clear
4859 *
4860 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4861 * reclaim the pages page themselves - pages are moved to the parent (or root)
4862 * group.
4863 */
4864 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4865 int node, int zid, enum lru_list lru)
4866 {
4867 struct lruvec *lruvec;
4868 unsigned long flags;
4869 struct list_head *list;
4870 struct page *busy;
4871 struct zone *zone;
4872
4873 zone = &NODE_DATA(node)->node_zones[zid];
4874 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4875 list = &lruvec->lists[lru];
4876
4877 busy = NULL;
4878 do {
4879 struct page_cgroup *pc;
4880 struct page *page;
4881
4882 spin_lock_irqsave(&zone->lru_lock, flags);
4883 if (list_empty(list)) {
4884 spin_unlock_irqrestore(&zone->lru_lock, flags);
4885 break;
4886 }
4887 page = list_entry(list->prev, struct page, lru);
4888 if (busy == page) {
4889 list_move(&page->lru, list);
4890 busy = NULL;
4891 spin_unlock_irqrestore(&zone->lru_lock, flags);
4892 continue;
4893 }
4894 spin_unlock_irqrestore(&zone->lru_lock, flags);
4895
4896 pc = lookup_page_cgroup(page);
4897
4898 if (mem_cgroup_move_parent(page, pc, memcg)) {
4899 /* found lock contention or "pc" is obsolete. */
4900 busy = page;
4901 cond_resched();
4902 } else
4903 busy = NULL;
4904 } while (!list_empty(list));
4905 }
4906
4907 /*
4908 * make mem_cgroup's charge to be 0 if there is no task by moving
4909 * all the charges and pages to the parent.
4910 * This enables deleting this mem_cgroup.
4911 *
4912 * Caller is responsible for holding css reference on the memcg.
4913 */
4914 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4915 {
4916 int node, zid;
4917 u64 usage;
4918
4919 do {
4920 /* This is for making all *used* pages to be on LRU. */
4921 lru_add_drain_all();
4922 drain_all_stock_sync(memcg);
4923 mem_cgroup_start_move(memcg);
4924 for_each_node_state(node, N_MEMORY) {
4925 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4926 enum lru_list lru;
4927 for_each_lru(lru) {
4928 mem_cgroup_force_empty_list(memcg,
4929 node, zid, lru);
4930 }
4931 }
4932 }
4933 mem_cgroup_end_move(memcg);
4934 memcg_oom_recover(memcg);
4935 cond_resched();
4936
4937 /*
4938 * Kernel memory may not necessarily be trackable to a specific
4939 * process. So they are not migrated, and therefore we can't
4940 * expect their value to drop to 0 here.
4941 * Having res filled up with kmem only is enough.
4942 *
4943 * This is a safety check because mem_cgroup_force_empty_list
4944 * could have raced with mem_cgroup_replace_page_cache callers
4945 * so the lru seemed empty but the page could have been added
4946 * right after the check. RES_USAGE should be safe as we always
4947 * charge before adding to the LRU.
4948 */
4949 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4950 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4951 } while (usage > 0);
4952 }
4953
4954 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4955 {
4956 lockdep_assert_held(&memcg_create_mutex);
4957 /*
4958 * The lock does not prevent addition or deletion to the list
4959 * of children, but it prevents a new child from being
4960 * initialized based on this parent in css_online(), so it's
4961 * enough to decide whether hierarchically inherited
4962 * attributes can still be changed or not.
4963 */
4964 return memcg->use_hierarchy &&
4965 !list_empty(&memcg->css.cgroup->children);
4966 }
4967
4968 /*
4969 * Reclaims as many pages from the given memcg as possible and moves
4970 * the rest to the parent.
4971 *
4972 * Caller is responsible for holding css reference for memcg.
4973 */
4974 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4975 {
4976 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4977 struct cgroup *cgrp = memcg->css.cgroup;
4978
4979 /* returns EBUSY if there is a task or if we come here twice. */
4980 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4981 return -EBUSY;
4982
4983 /* we call try-to-free pages for make this cgroup empty */
4984 lru_add_drain_all();
4985 /* try to free all pages in this cgroup */
4986 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4987 int progress;
4988
4989 if (signal_pending(current))
4990 return -EINTR;
4991
4992 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4993 false);
4994 if (!progress) {
4995 nr_retries--;
4996 /* maybe some writeback is necessary */
4997 congestion_wait(BLK_RW_ASYNC, HZ/10);
4998 }
4999
5000 }
5001 lru_add_drain();
5002 mem_cgroup_reparent_charges(memcg);
5003
5004 return 0;
5005 }
5006
5007 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5008 unsigned int event)
5009 {
5010 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5011
5012 if (mem_cgroup_is_root(memcg))
5013 return -EINVAL;
5014 return mem_cgroup_force_empty(memcg);
5015 }
5016
5017 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5018 struct cftype *cft)
5019 {
5020 return mem_cgroup_from_css(css)->use_hierarchy;
5021 }
5022
5023 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5024 struct cftype *cft, u64 val)
5025 {
5026 int retval = 0;
5027 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5028 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5029
5030 mutex_lock(&memcg_create_mutex);
5031
5032 if (memcg->use_hierarchy == val)
5033 goto out;
5034
5035 /*
5036 * If parent's use_hierarchy is set, we can't make any modifications
5037 * in the child subtrees. If it is unset, then the change can
5038 * occur, provided the current cgroup has no children.
5039 *
5040 * For the root cgroup, parent_mem is NULL, we allow value to be
5041 * set if there are no children.
5042 */
5043 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5044 (val == 1 || val == 0)) {
5045 if (list_empty(&memcg->css.cgroup->children))
5046 memcg->use_hierarchy = val;
5047 else
5048 retval = -EBUSY;
5049 } else
5050 retval = -EINVAL;
5051
5052 out:
5053 mutex_unlock(&memcg_create_mutex);
5054
5055 return retval;
5056 }
5057
5058
5059 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5060 enum mem_cgroup_stat_index idx)
5061 {
5062 struct mem_cgroup *iter;
5063 long val = 0;
5064
5065 /* Per-cpu values can be negative, use a signed accumulator */
5066 for_each_mem_cgroup_tree(iter, memcg)
5067 val += mem_cgroup_read_stat(iter, idx);
5068
5069 if (val < 0) /* race ? */
5070 val = 0;
5071 return val;
5072 }
5073
5074 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5075 {
5076 u64 val;
5077
5078 if (!mem_cgroup_is_root(memcg)) {
5079 if (!swap)
5080 return res_counter_read_u64(&memcg->res, RES_USAGE);
5081 else
5082 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5083 }
5084
5085 /*
5086 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5087 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5088 */
5089 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5090 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5091
5092 if (swap)
5093 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5094
5095 return val << PAGE_SHIFT;
5096 }
5097
5098 static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5099 struct cftype *cft, struct file *file,
5100 char __user *buf, size_t nbytes, loff_t *ppos)
5101 {
5102 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5103 char str[64];
5104 u64 val;
5105 int name, len;
5106 enum res_type type;
5107
5108 type = MEMFILE_TYPE(cft->private);
5109 name = MEMFILE_ATTR(cft->private);
5110
5111 switch (type) {
5112 case _MEM:
5113 if (name == RES_USAGE)
5114 val = mem_cgroup_usage(memcg, false);
5115 else
5116 val = res_counter_read_u64(&memcg->res, name);
5117 break;
5118 case _MEMSWAP:
5119 if (name == RES_USAGE)
5120 val = mem_cgroup_usage(memcg, true);
5121 else
5122 val = res_counter_read_u64(&memcg->memsw, name);
5123 break;
5124 case _KMEM:
5125 val = res_counter_read_u64(&memcg->kmem, name);
5126 break;
5127 default:
5128 BUG();
5129 }
5130
5131 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5132 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5133 }
5134
5135 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5136 {
5137 int ret = -EINVAL;
5138 #ifdef CONFIG_MEMCG_KMEM
5139 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5140 /*
5141 * For simplicity, we won't allow this to be disabled. It also can't
5142 * be changed if the cgroup has children already, or if tasks had
5143 * already joined.
5144 *
5145 * If tasks join before we set the limit, a person looking at
5146 * kmem.usage_in_bytes will have no way to determine when it took
5147 * place, which makes the value quite meaningless.
5148 *
5149 * After it first became limited, changes in the value of the limit are
5150 * of course permitted.
5151 */
5152 mutex_lock(&memcg_create_mutex);
5153 mutex_lock(&set_limit_mutex);
5154 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5155 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5156 ret = -EBUSY;
5157 goto out;
5158 }
5159 ret = res_counter_set_limit(&memcg->kmem, val);
5160 VM_BUG_ON(ret);
5161
5162 ret = memcg_update_cache_sizes(memcg);
5163 if (ret) {
5164 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5165 goto out;
5166 }
5167 static_key_slow_inc(&memcg_kmem_enabled_key);
5168 /*
5169 * setting the active bit after the inc will guarantee no one
5170 * starts accounting before all call sites are patched
5171 */
5172 memcg_kmem_set_active(memcg);
5173 } else
5174 ret = res_counter_set_limit(&memcg->kmem, val);
5175 out:
5176 mutex_unlock(&set_limit_mutex);
5177 mutex_unlock(&memcg_create_mutex);
5178 #endif
5179 return ret;
5180 }
5181
5182 #ifdef CONFIG_MEMCG_KMEM
5183 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5184 {
5185 int ret = 0;
5186 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5187 if (!parent)
5188 goto out;
5189
5190 memcg->kmem_account_flags = parent->kmem_account_flags;
5191 /*
5192 * When that happen, we need to disable the static branch only on those
5193 * memcgs that enabled it. To achieve this, we would be forced to
5194 * complicate the code by keeping track of which memcgs were the ones
5195 * that actually enabled limits, and which ones got it from its
5196 * parents.
5197 *
5198 * It is a lot simpler just to do static_key_slow_inc() on every child
5199 * that is accounted.
5200 */
5201 if (!memcg_kmem_is_active(memcg))
5202 goto out;
5203
5204 /*
5205 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5206 * memcg is active already. If the later initialization fails then the
5207 * cgroup core triggers the cleanup so we do not have to do it here.
5208 */
5209 static_key_slow_inc(&memcg_kmem_enabled_key);
5210
5211 mutex_lock(&set_limit_mutex);
5212 memcg_stop_kmem_account();
5213 ret = memcg_update_cache_sizes(memcg);
5214 memcg_resume_kmem_account();
5215 mutex_unlock(&set_limit_mutex);
5216 out:
5217 return ret;
5218 }
5219 #endif /* CONFIG_MEMCG_KMEM */
5220
5221 /*
5222 * The user of this function is...
5223 * RES_LIMIT.
5224 */
5225 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5226 const char *buffer)
5227 {
5228 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5229 enum res_type type;
5230 int name;
5231 unsigned long long val;
5232 int ret;
5233
5234 type = MEMFILE_TYPE(cft->private);
5235 name = MEMFILE_ATTR(cft->private);
5236
5237 switch (name) {
5238 case RES_LIMIT:
5239 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5240 ret = -EINVAL;
5241 break;
5242 }
5243 /* This function does all necessary parse...reuse it */
5244 ret = res_counter_memparse_write_strategy(buffer, &val);
5245 if (ret)
5246 break;
5247 if (type == _MEM)
5248 ret = mem_cgroup_resize_limit(memcg, val);
5249 else if (type == _MEMSWAP)
5250 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5251 else if (type == _KMEM)
5252 ret = memcg_update_kmem_limit(css, val);
5253 else
5254 return -EINVAL;
5255 break;
5256 case RES_SOFT_LIMIT:
5257 ret = res_counter_memparse_write_strategy(buffer, &val);
5258 if (ret)
5259 break;
5260 /*
5261 * For memsw, soft limits are hard to implement in terms
5262 * of semantics, for now, we support soft limits for
5263 * control without swap
5264 */
5265 if (type == _MEM)
5266 ret = res_counter_set_soft_limit(&memcg->res, val);
5267 else
5268 ret = -EINVAL;
5269 break;
5270 default:
5271 ret = -EINVAL; /* should be BUG() ? */
5272 break;
5273 }
5274 return ret;
5275 }
5276
5277 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5278 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5279 {
5280 unsigned long long min_limit, min_memsw_limit, tmp;
5281
5282 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5283 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5284 if (!memcg->use_hierarchy)
5285 goto out;
5286
5287 while (css_parent(&memcg->css)) {
5288 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5289 if (!memcg->use_hierarchy)
5290 break;
5291 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5292 min_limit = min(min_limit, tmp);
5293 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5294 min_memsw_limit = min(min_memsw_limit, tmp);
5295 }
5296 out:
5297 *mem_limit = min_limit;
5298 *memsw_limit = min_memsw_limit;
5299 }
5300
5301 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5302 {
5303 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5304 int name;
5305 enum res_type type;
5306
5307 type = MEMFILE_TYPE(event);
5308 name = MEMFILE_ATTR(event);
5309
5310 switch (name) {
5311 case RES_MAX_USAGE:
5312 if (type == _MEM)
5313 res_counter_reset_max(&memcg->res);
5314 else if (type == _MEMSWAP)
5315 res_counter_reset_max(&memcg->memsw);
5316 else if (type == _KMEM)
5317 res_counter_reset_max(&memcg->kmem);
5318 else
5319 return -EINVAL;
5320 break;
5321 case RES_FAILCNT:
5322 if (type == _MEM)
5323 res_counter_reset_failcnt(&memcg->res);
5324 else if (type == _MEMSWAP)
5325 res_counter_reset_failcnt(&memcg->memsw);
5326 else if (type == _KMEM)
5327 res_counter_reset_failcnt(&memcg->kmem);
5328 else
5329 return -EINVAL;
5330 break;
5331 }
5332
5333 return 0;
5334 }
5335
5336 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5337 struct cftype *cft)
5338 {
5339 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5340 }
5341
5342 #ifdef CONFIG_MMU
5343 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5344 struct cftype *cft, u64 val)
5345 {
5346 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5347
5348 if (val >= (1 << NR_MOVE_TYPE))
5349 return -EINVAL;
5350
5351 /*
5352 * No kind of locking is needed in here, because ->can_attach() will
5353 * check this value once in the beginning of the process, and then carry
5354 * on with stale data. This means that changes to this value will only
5355 * affect task migrations starting after the change.
5356 */
5357 memcg->move_charge_at_immigrate = val;
5358 return 0;
5359 }
5360 #else
5361 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5362 struct cftype *cft, u64 val)
5363 {
5364 return -ENOSYS;
5365 }
5366 #endif
5367
5368 #ifdef CONFIG_NUMA
5369 static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5370 struct cftype *cft, struct seq_file *m)
5371 {
5372 int nid;
5373 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5374 unsigned long node_nr;
5375 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5376
5377 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5378 seq_printf(m, "total=%lu", total_nr);
5379 for_each_node_state(nid, N_MEMORY) {
5380 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5381 seq_printf(m, " N%d=%lu", nid, node_nr);
5382 }
5383 seq_putc(m, '\n');
5384
5385 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5386 seq_printf(m, "file=%lu", file_nr);
5387 for_each_node_state(nid, N_MEMORY) {
5388 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5389 LRU_ALL_FILE);
5390 seq_printf(m, " N%d=%lu", nid, node_nr);
5391 }
5392 seq_putc(m, '\n');
5393
5394 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5395 seq_printf(m, "anon=%lu", anon_nr);
5396 for_each_node_state(nid, N_MEMORY) {
5397 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5398 LRU_ALL_ANON);
5399 seq_printf(m, " N%d=%lu", nid, node_nr);
5400 }
5401 seq_putc(m, '\n');
5402
5403 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5404 seq_printf(m, "unevictable=%lu", unevictable_nr);
5405 for_each_node_state(nid, N_MEMORY) {
5406 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5407 BIT(LRU_UNEVICTABLE));
5408 seq_printf(m, " N%d=%lu", nid, node_nr);
5409 }
5410 seq_putc(m, '\n');
5411 return 0;
5412 }
5413 #endif /* CONFIG_NUMA */
5414
5415 static inline void mem_cgroup_lru_names_not_uptodate(void)
5416 {
5417 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5418 }
5419
5420 static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5421 struct seq_file *m)
5422 {
5423 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5424 struct mem_cgroup *mi;
5425 unsigned int i;
5426
5427 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5428 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5429 continue;
5430 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5431 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5432 }
5433
5434 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5435 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5436 mem_cgroup_read_events(memcg, i));
5437
5438 for (i = 0; i < NR_LRU_LISTS; i++)
5439 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5440 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5441
5442 /* Hierarchical information */
5443 {
5444 unsigned long long limit, memsw_limit;
5445 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5446 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5447 if (do_swap_account)
5448 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5449 memsw_limit);
5450 }
5451
5452 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5453 long long val = 0;
5454
5455 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5456 continue;
5457 for_each_mem_cgroup_tree(mi, memcg)
5458 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5459 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5460 }
5461
5462 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5463 unsigned long long val = 0;
5464
5465 for_each_mem_cgroup_tree(mi, memcg)
5466 val += mem_cgroup_read_events(mi, i);
5467 seq_printf(m, "total_%s %llu\n",
5468 mem_cgroup_events_names[i], val);
5469 }
5470
5471 for (i = 0; i < NR_LRU_LISTS; i++) {
5472 unsigned long long val = 0;
5473
5474 for_each_mem_cgroup_tree(mi, memcg)
5475 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5476 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5477 }
5478
5479 #ifdef CONFIG_DEBUG_VM
5480 {
5481 int nid, zid;
5482 struct mem_cgroup_per_zone *mz;
5483 struct zone_reclaim_stat *rstat;
5484 unsigned long recent_rotated[2] = {0, 0};
5485 unsigned long recent_scanned[2] = {0, 0};
5486
5487 for_each_online_node(nid)
5488 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5489 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5490 rstat = &mz->lruvec.reclaim_stat;
5491
5492 recent_rotated[0] += rstat->recent_rotated[0];
5493 recent_rotated[1] += rstat->recent_rotated[1];
5494 recent_scanned[0] += rstat->recent_scanned[0];
5495 recent_scanned[1] += rstat->recent_scanned[1];
5496 }
5497 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5498 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5499 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5500 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5501 }
5502 #endif
5503
5504 return 0;
5505 }
5506
5507 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5508 struct cftype *cft)
5509 {
5510 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5511
5512 return mem_cgroup_swappiness(memcg);
5513 }
5514
5515 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5516 struct cftype *cft, u64 val)
5517 {
5518 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5519 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5520
5521 if (val > 100 || !parent)
5522 return -EINVAL;
5523
5524 mutex_lock(&memcg_create_mutex);
5525
5526 /* If under hierarchy, only empty-root can set this value */
5527 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5528 mutex_unlock(&memcg_create_mutex);
5529 return -EINVAL;
5530 }
5531
5532 memcg->swappiness = val;
5533
5534 mutex_unlock(&memcg_create_mutex);
5535
5536 return 0;
5537 }
5538
5539 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5540 {
5541 struct mem_cgroup_threshold_ary *t;
5542 u64 usage;
5543 int i;
5544
5545 rcu_read_lock();
5546 if (!swap)
5547 t = rcu_dereference(memcg->thresholds.primary);
5548 else
5549 t = rcu_dereference(memcg->memsw_thresholds.primary);
5550
5551 if (!t)
5552 goto unlock;
5553
5554 usage = mem_cgroup_usage(memcg, swap);
5555
5556 /*
5557 * current_threshold points to threshold just below or equal to usage.
5558 * If it's not true, a threshold was crossed after last
5559 * call of __mem_cgroup_threshold().
5560 */
5561 i = t->current_threshold;
5562
5563 /*
5564 * Iterate backward over array of thresholds starting from
5565 * current_threshold and check if a threshold is crossed.
5566 * If none of thresholds below usage is crossed, we read
5567 * only one element of the array here.
5568 */
5569 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5570 eventfd_signal(t->entries[i].eventfd, 1);
5571
5572 /* i = current_threshold + 1 */
5573 i++;
5574
5575 /*
5576 * Iterate forward over array of thresholds starting from
5577 * current_threshold+1 and check if a threshold is crossed.
5578 * If none of thresholds above usage is crossed, we read
5579 * only one element of the array here.
5580 */
5581 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5582 eventfd_signal(t->entries[i].eventfd, 1);
5583
5584 /* Update current_threshold */
5585 t->current_threshold = i - 1;
5586 unlock:
5587 rcu_read_unlock();
5588 }
5589
5590 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5591 {
5592 while (memcg) {
5593 __mem_cgroup_threshold(memcg, false);
5594 if (do_swap_account)
5595 __mem_cgroup_threshold(memcg, true);
5596
5597 memcg = parent_mem_cgroup(memcg);
5598 }
5599 }
5600
5601 static int compare_thresholds(const void *a, const void *b)
5602 {
5603 const struct mem_cgroup_threshold *_a = a;
5604 const struct mem_cgroup_threshold *_b = b;
5605
5606 if (_a->threshold > _b->threshold)
5607 return 1;
5608
5609 if (_a->threshold < _b->threshold)
5610 return -1;
5611
5612 return 0;
5613 }
5614
5615 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5616 {
5617 struct mem_cgroup_eventfd_list *ev;
5618
5619 list_for_each_entry(ev, &memcg->oom_notify, list)
5620 eventfd_signal(ev->eventfd, 1);
5621 return 0;
5622 }
5623
5624 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5625 {
5626 struct mem_cgroup *iter;
5627
5628 for_each_mem_cgroup_tree(iter, memcg)
5629 mem_cgroup_oom_notify_cb(iter);
5630 }
5631
5632 static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
5633 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5634 {
5635 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5636 struct mem_cgroup_thresholds *thresholds;
5637 struct mem_cgroup_threshold_ary *new;
5638 enum res_type type = MEMFILE_TYPE(cft->private);
5639 u64 threshold, usage;
5640 int i, size, ret;
5641
5642 ret = res_counter_memparse_write_strategy(args, &threshold);
5643 if (ret)
5644 return ret;
5645
5646 mutex_lock(&memcg->thresholds_lock);
5647
5648 if (type == _MEM)
5649 thresholds = &memcg->thresholds;
5650 else if (type == _MEMSWAP)
5651 thresholds = &memcg->memsw_thresholds;
5652 else
5653 BUG();
5654
5655 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5656
5657 /* Check if a threshold crossed before adding a new one */
5658 if (thresholds->primary)
5659 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5660
5661 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5662
5663 /* Allocate memory for new array of thresholds */
5664 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5665 GFP_KERNEL);
5666 if (!new) {
5667 ret = -ENOMEM;
5668 goto unlock;
5669 }
5670 new->size = size;
5671
5672 /* Copy thresholds (if any) to new array */
5673 if (thresholds->primary) {
5674 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5675 sizeof(struct mem_cgroup_threshold));
5676 }
5677
5678 /* Add new threshold */
5679 new->entries[size - 1].eventfd = eventfd;
5680 new->entries[size - 1].threshold = threshold;
5681
5682 /* Sort thresholds. Registering of new threshold isn't time-critical */
5683 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5684 compare_thresholds, NULL);
5685
5686 /* Find current threshold */
5687 new->current_threshold = -1;
5688 for (i = 0; i < size; i++) {
5689 if (new->entries[i].threshold <= usage) {
5690 /*
5691 * new->current_threshold will not be used until
5692 * rcu_assign_pointer(), so it's safe to increment
5693 * it here.
5694 */
5695 ++new->current_threshold;
5696 } else
5697 break;
5698 }
5699
5700 /* Free old spare buffer and save old primary buffer as spare */
5701 kfree(thresholds->spare);
5702 thresholds->spare = thresholds->primary;
5703
5704 rcu_assign_pointer(thresholds->primary, new);
5705
5706 /* To be sure that nobody uses thresholds */
5707 synchronize_rcu();
5708
5709 unlock:
5710 mutex_unlock(&memcg->thresholds_lock);
5711
5712 return ret;
5713 }
5714
5715 static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
5716 struct cftype *cft, struct eventfd_ctx *eventfd)
5717 {
5718 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5719 struct mem_cgroup_thresholds *thresholds;
5720 struct mem_cgroup_threshold_ary *new;
5721 enum res_type type = MEMFILE_TYPE(cft->private);
5722 u64 usage;
5723 int i, j, size;
5724
5725 mutex_lock(&memcg->thresholds_lock);
5726 if (type == _MEM)
5727 thresholds = &memcg->thresholds;
5728 else if (type == _MEMSWAP)
5729 thresholds = &memcg->memsw_thresholds;
5730 else
5731 BUG();
5732
5733 if (!thresholds->primary)
5734 goto unlock;
5735
5736 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5737
5738 /* Check if a threshold crossed before removing */
5739 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5740
5741 /* Calculate new number of threshold */
5742 size = 0;
5743 for (i = 0; i < thresholds->primary->size; i++) {
5744 if (thresholds->primary->entries[i].eventfd != eventfd)
5745 size++;
5746 }
5747
5748 new = thresholds->spare;
5749
5750 /* Set thresholds array to NULL if we don't have thresholds */
5751 if (!size) {
5752 kfree(new);
5753 new = NULL;
5754 goto swap_buffers;
5755 }
5756
5757 new->size = size;
5758
5759 /* Copy thresholds and find current threshold */
5760 new->current_threshold = -1;
5761 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5762 if (thresholds->primary->entries[i].eventfd == eventfd)
5763 continue;
5764
5765 new->entries[j] = thresholds->primary->entries[i];
5766 if (new->entries[j].threshold <= usage) {
5767 /*
5768 * new->current_threshold will not be used
5769 * until rcu_assign_pointer(), so it's safe to increment
5770 * it here.
5771 */
5772 ++new->current_threshold;
5773 }
5774 j++;
5775 }
5776
5777 swap_buffers:
5778 /* Swap primary and spare array */
5779 thresholds->spare = thresholds->primary;
5780 /* If all events are unregistered, free the spare array */
5781 if (!new) {
5782 kfree(thresholds->spare);
5783 thresholds->spare = NULL;
5784 }
5785
5786 rcu_assign_pointer(thresholds->primary, new);
5787
5788 /* To be sure that nobody uses thresholds */
5789 synchronize_rcu();
5790 unlock:
5791 mutex_unlock(&memcg->thresholds_lock);
5792 }
5793
5794 static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
5795 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5796 {
5797 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5798 struct mem_cgroup_eventfd_list *event;
5799 enum res_type type = MEMFILE_TYPE(cft->private);
5800
5801 BUG_ON(type != _OOM_TYPE);
5802 event = kmalloc(sizeof(*event), GFP_KERNEL);
5803 if (!event)
5804 return -ENOMEM;
5805
5806 spin_lock(&memcg_oom_lock);
5807
5808 event->eventfd = eventfd;
5809 list_add(&event->list, &memcg->oom_notify);
5810
5811 /* already in OOM ? */
5812 if (atomic_read(&memcg->under_oom))
5813 eventfd_signal(eventfd, 1);
5814 spin_unlock(&memcg_oom_lock);
5815
5816 return 0;
5817 }
5818
5819 static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
5820 struct cftype *cft, struct eventfd_ctx *eventfd)
5821 {
5822 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5823 struct mem_cgroup_eventfd_list *ev, *tmp;
5824 enum res_type type = MEMFILE_TYPE(cft->private);
5825
5826 BUG_ON(type != _OOM_TYPE);
5827
5828 spin_lock(&memcg_oom_lock);
5829
5830 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5831 if (ev->eventfd == eventfd) {
5832 list_del(&ev->list);
5833 kfree(ev);
5834 }
5835 }
5836
5837 spin_unlock(&memcg_oom_lock);
5838 }
5839
5840 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5841 struct cftype *cft, struct cgroup_map_cb *cb)
5842 {
5843 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5844
5845 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5846
5847 if (atomic_read(&memcg->under_oom))
5848 cb->fill(cb, "under_oom", 1);
5849 else
5850 cb->fill(cb, "under_oom", 0);
5851 return 0;
5852 }
5853
5854 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5855 struct cftype *cft, u64 val)
5856 {
5857 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5858 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5859
5860 /* cannot set to root cgroup and only 0 and 1 are allowed */
5861 if (!parent || !((val == 0) || (val == 1)))
5862 return -EINVAL;
5863
5864 mutex_lock(&memcg_create_mutex);
5865 /* oom-kill-disable is a flag for subhierarchy. */
5866 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5867 mutex_unlock(&memcg_create_mutex);
5868 return -EINVAL;
5869 }
5870 memcg->oom_kill_disable = val;
5871 if (!val)
5872 memcg_oom_recover(memcg);
5873 mutex_unlock(&memcg_create_mutex);
5874 return 0;
5875 }
5876
5877 #ifdef CONFIG_MEMCG_KMEM
5878 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5879 {
5880 int ret;
5881
5882 memcg->kmemcg_id = -1;
5883 ret = memcg_propagate_kmem(memcg);
5884 if (ret)
5885 return ret;
5886
5887 return mem_cgroup_sockets_init(memcg, ss);
5888 }
5889
5890 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5891 {
5892 mem_cgroup_sockets_destroy(memcg);
5893 }
5894
5895 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5896 {
5897 if (!memcg_kmem_is_active(memcg))
5898 return;
5899
5900 /*
5901 * kmem charges can outlive the cgroup. In the case of slab
5902 * pages, for instance, a page contain objects from various
5903 * processes. As we prevent from taking a reference for every
5904 * such allocation we have to be careful when doing uncharge
5905 * (see memcg_uncharge_kmem) and here during offlining.
5906 *
5907 * The idea is that that only the _last_ uncharge which sees
5908 * the dead memcg will drop the last reference. An additional
5909 * reference is taken here before the group is marked dead
5910 * which is then paired with css_put during uncharge resp. here.
5911 *
5912 * Although this might sound strange as this path is called from
5913 * css_offline() when the referencemight have dropped down to 0
5914 * and shouldn't be incremented anymore (css_tryget would fail)
5915 * we do not have other options because of the kmem allocations
5916 * lifetime.
5917 */
5918 css_get(&memcg->css);
5919
5920 memcg_kmem_mark_dead(memcg);
5921
5922 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5923 return;
5924
5925 if (memcg_kmem_test_and_clear_dead(memcg))
5926 css_put(&memcg->css);
5927 }
5928 #else
5929 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5930 {
5931 return 0;
5932 }
5933
5934 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5935 {
5936 }
5937
5938 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5939 {
5940 }
5941 #endif
5942
5943 static struct cftype mem_cgroup_files[] = {
5944 {
5945 .name = "usage_in_bytes",
5946 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5947 .read = mem_cgroup_read,
5948 .register_event = mem_cgroup_usage_register_event,
5949 .unregister_event = mem_cgroup_usage_unregister_event,
5950 },
5951 {
5952 .name = "max_usage_in_bytes",
5953 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5954 .trigger = mem_cgroup_reset,
5955 .read = mem_cgroup_read,
5956 },
5957 {
5958 .name = "limit_in_bytes",
5959 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5960 .write_string = mem_cgroup_write,
5961 .read = mem_cgroup_read,
5962 },
5963 {
5964 .name = "soft_limit_in_bytes",
5965 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5966 .write_string = mem_cgroup_write,
5967 .read = mem_cgroup_read,
5968 },
5969 {
5970 .name = "failcnt",
5971 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5972 .trigger = mem_cgroup_reset,
5973 .read = mem_cgroup_read,
5974 },
5975 {
5976 .name = "stat",
5977 .read_seq_string = memcg_stat_show,
5978 },
5979 {
5980 .name = "force_empty",
5981 .trigger = mem_cgroup_force_empty_write,
5982 },
5983 {
5984 .name = "use_hierarchy",
5985 .flags = CFTYPE_INSANE,
5986 .write_u64 = mem_cgroup_hierarchy_write,
5987 .read_u64 = mem_cgroup_hierarchy_read,
5988 },
5989 {
5990 .name = "swappiness",
5991 .read_u64 = mem_cgroup_swappiness_read,
5992 .write_u64 = mem_cgroup_swappiness_write,
5993 },
5994 {
5995 .name = "move_charge_at_immigrate",
5996 .read_u64 = mem_cgroup_move_charge_read,
5997 .write_u64 = mem_cgroup_move_charge_write,
5998 },
5999 {
6000 .name = "oom_control",
6001 .read_map = mem_cgroup_oom_control_read,
6002 .write_u64 = mem_cgroup_oom_control_write,
6003 .register_event = mem_cgroup_oom_register_event,
6004 .unregister_event = mem_cgroup_oom_unregister_event,
6005 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6006 },
6007 {
6008 .name = "pressure_level",
6009 .register_event = vmpressure_register_event,
6010 .unregister_event = vmpressure_unregister_event,
6011 },
6012 #ifdef CONFIG_NUMA
6013 {
6014 .name = "numa_stat",
6015 .read_seq_string = memcg_numa_stat_show,
6016 },
6017 #endif
6018 #ifdef CONFIG_MEMCG_KMEM
6019 {
6020 .name = "kmem.limit_in_bytes",
6021 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6022 .write_string = mem_cgroup_write,
6023 .read = mem_cgroup_read,
6024 },
6025 {
6026 .name = "kmem.usage_in_bytes",
6027 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6028 .read = mem_cgroup_read,
6029 },
6030 {
6031 .name = "kmem.failcnt",
6032 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6033 .trigger = mem_cgroup_reset,
6034 .read = mem_cgroup_read,
6035 },
6036 {
6037 .name = "kmem.max_usage_in_bytes",
6038 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6039 .trigger = mem_cgroup_reset,
6040 .read = mem_cgroup_read,
6041 },
6042 #ifdef CONFIG_SLABINFO
6043 {
6044 .name = "kmem.slabinfo",
6045 .read_seq_string = mem_cgroup_slabinfo_read,
6046 },
6047 #endif
6048 #endif
6049 { }, /* terminate */
6050 };
6051
6052 #ifdef CONFIG_MEMCG_SWAP
6053 static struct cftype memsw_cgroup_files[] = {
6054 {
6055 .name = "memsw.usage_in_bytes",
6056 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6057 .read = mem_cgroup_read,
6058 .register_event = mem_cgroup_usage_register_event,
6059 .unregister_event = mem_cgroup_usage_unregister_event,
6060 },
6061 {
6062 .name = "memsw.max_usage_in_bytes",
6063 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6064 .trigger = mem_cgroup_reset,
6065 .read = mem_cgroup_read,
6066 },
6067 {
6068 .name = "memsw.limit_in_bytes",
6069 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6070 .write_string = mem_cgroup_write,
6071 .read = mem_cgroup_read,
6072 },
6073 {
6074 .name = "memsw.failcnt",
6075 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6076 .trigger = mem_cgroup_reset,
6077 .read = mem_cgroup_read,
6078 },
6079 { }, /* terminate */
6080 };
6081 #endif
6082 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6083 {
6084 struct mem_cgroup_per_node *pn;
6085 struct mem_cgroup_per_zone *mz;
6086 int zone, tmp = node;
6087 /*
6088 * This routine is called against possible nodes.
6089 * But it's BUG to call kmalloc() against offline node.
6090 *
6091 * TODO: this routine can waste much memory for nodes which will
6092 * never be onlined. It's better to use memory hotplug callback
6093 * function.
6094 */
6095 if (!node_state(node, N_NORMAL_MEMORY))
6096 tmp = -1;
6097 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6098 if (!pn)
6099 return 1;
6100
6101 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6102 mz = &pn->zoneinfo[zone];
6103 lruvec_init(&mz->lruvec);
6104 mz->usage_in_excess = 0;
6105 mz->on_tree = false;
6106 mz->memcg = memcg;
6107 }
6108 memcg->nodeinfo[node] = pn;
6109 return 0;
6110 }
6111
6112 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6113 {
6114 kfree(memcg->nodeinfo[node]);
6115 }
6116
6117 static struct mem_cgroup *mem_cgroup_alloc(void)
6118 {
6119 struct mem_cgroup *memcg;
6120 size_t size = memcg_size();
6121
6122 /* Can be very big if nr_node_ids is very big */
6123 if (size < PAGE_SIZE)
6124 memcg = kzalloc(size, GFP_KERNEL);
6125 else
6126 memcg = vzalloc(size);
6127
6128 if (!memcg)
6129 return NULL;
6130
6131 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6132 if (!memcg->stat)
6133 goto out_free;
6134 spin_lock_init(&memcg->pcp_counter_lock);
6135 return memcg;
6136
6137 out_free:
6138 if (size < PAGE_SIZE)
6139 kfree(memcg);
6140 else
6141 vfree(memcg);
6142 return NULL;
6143 }
6144
6145 /*
6146 * At destroying mem_cgroup, references from swap_cgroup can remain.
6147 * (scanning all at force_empty is too costly...)
6148 *
6149 * Instead of clearing all references at force_empty, we remember
6150 * the number of reference from swap_cgroup and free mem_cgroup when
6151 * it goes down to 0.
6152 *
6153 * Removal of cgroup itself succeeds regardless of refs from swap.
6154 */
6155
6156 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6157 {
6158 int node;
6159 size_t size = memcg_size();
6160
6161 mem_cgroup_remove_from_trees(memcg);
6162 free_css_id(&mem_cgroup_subsys, &memcg->css);
6163
6164 for_each_node(node)
6165 free_mem_cgroup_per_zone_info(memcg, node);
6166
6167 free_percpu(memcg->stat);
6168
6169 /*
6170 * We need to make sure that (at least for now), the jump label
6171 * destruction code runs outside of the cgroup lock. This is because
6172 * get_online_cpus(), which is called from the static_branch update,
6173 * can't be called inside the cgroup_lock. cpusets are the ones
6174 * enforcing this dependency, so if they ever change, we might as well.
6175 *
6176 * schedule_work() will guarantee this happens. Be careful if you need
6177 * to move this code around, and make sure it is outside
6178 * the cgroup_lock.
6179 */
6180 disarm_static_keys(memcg);
6181 if (size < PAGE_SIZE)
6182 kfree(memcg);
6183 else
6184 vfree(memcg);
6185 }
6186
6187 /*
6188 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6189 */
6190 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6191 {
6192 if (!memcg->res.parent)
6193 return NULL;
6194 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6195 }
6196 EXPORT_SYMBOL(parent_mem_cgroup);
6197
6198 static void __init mem_cgroup_soft_limit_tree_init(void)
6199 {
6200 struct mem_cgroup_tree_per_node *rtpn;
6201 struct mem_cgroup_tree_per_zone *rtpz;
6202 int tmp, node, zone;
6203
6204 for_each_node(node) {
6205 tmp = node;
6206 if (!node_state(node, N_NORMAL_MEMORY))
6207 tmp = -1;
6208 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6209 BUG_ON(!rtpn);
6210
6211 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6212
6213 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6214 rtpz = &rtpn->rb_tree_per_zone[zone];
6215 rtpz->rb_root = RB_ROOT;
6216 spin_lock_init(&rtpz->lock);
6217 }
6218 }
6219 }
6220
6221 static struct cgroup_subsys_state * __ref
6222 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6223 {
6224 struct mem_cgroup *memcg;
6225 long error = -ENOMEM;
6226 int node;
6227
6228 memcg = mem_cgroup_alloc();
6229 if (!memcg)
6230 return ERR_PTR(error);
6231
6232 for_each_node(node)
6233 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6234 goto free_out;
6235
6236 /* root ? */
6237 if (parent_css == NULL) {
6238 root_mem_cgroup = memcg;
6239 res_counter_init(&memcg->res, NULL);
6240 res_counter_init(&memcg->memsw, NULL);
6241 res_counter_init(&memcg->kmem, NULL);
6242 }
6243
6244 memcg->last_scanned_node = MAX_NUMNODES;
6245 INIT_LIST_HEAD(&memcg->oom_notify);
6246 memcg->move_charge_at_immigrate = 0;
6247 mutex_init(&memcg->thresholds_lock);
6248 spin_lock_init(&memcg->move_lock);
6249 vmpressure_init(&memcg->vmpressure);
6250
6251 return &memcg->css;
6252
6253 free_out:
6254 __mem_cgroup_free(memcg);
6255 return ERR_PTR(error);
6256 }
6257
6258 static int
6259 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6260 {
6261 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6262 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6263 int error = 0;
6264
6265 if (!parent)
6266 return 0;
6267
6268 mutex_lock(&memcg_create_mutex);
6269
6270 memcg->use_hierarchy = parent->use_hierarchy;
6271 memcg->oom_kill_disable = parent->oom_kill_disable;
6272 memcg->swappiness = mem_cgroup_swappiness(parent);
6273
6274 if (parent->use_hierarchy) {
6275 res_counter_init(&memcg->res, &parent->res);
6276 res_counter_init(&memcg->memsw, &parent->memsw);
6277 res_counter_init(&memcg->kmem, &parent->kmem);
6278
6279 /*
6280 * No need to take a reference to the parent because cgroup
6281 * core guarantees its existence.
6282 */
6283 } else {
6284 res_counter_init(&memcg->res, NULL);
6285 res_counter_init(&memcg->memsw, NULL);
6286 res_counter_init(&memcg->kmem, NULL);
6287 /*
6288 * Deeper hierachy with use_hierarchy == false doesn't make
6289 * much sense so let cgroup subsystem know about this
6290 * unfortunate state in our controller.
6291 */
6292 if (parent != root_mem_cgroup)
6293 mem_cgroup_subsys.broken_hierarchy = true;
6294 }
6295
6296 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6297 mutex_unlock(&memcg_create_mutex);
6298 return error;
6299 }
6300
6301 /*
6302 * Announce all parents that a group from their hierarchy is gone.
6303 */
6304 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6305 {
6306 struct mem_cgroup *parent = memcg;
6307
6308 while ((parent = parent_mem_cgroup(parent)))
6309 mem_cgroup_iter_invalidate(parent);
6310
6311 /*
6312 * if the root memcg is not hierarchical we have to check it
6313 * explicitely.
6314 */
6315 if (!root_mem_cgroup->use_hierarchy)
6316 mem_cgroup_iter_invalidate(root_mem_cgroup);
6317 }
6318
6319 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6320 {
6321 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6322
6323 kmem_cgroup_css_offline(memcg);
6324
6325 mem_cgroup_invalidate_reclaim_iterators(memcg);
6326 mem_cgroup_reparent_charges(memcg);
6327 mem_cgroup_destroy_all_caches(memcg);
6328 vmpressure_cleanup(&memcg->vmpressure);
6329 }
6330
6331 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6332 {
6333 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6334
6335 memcg_destroy_kmem(memcg);
6336 __mem_cgroup_free(memcg);
6337 }
6338
6339 #ifdef CONFIG_MMU
6340 /* Handlers for move charge at task migration. */
6341 #define PRECHARGE_COUNT_AT_ONCE 256
6342 static int mem_cgroup_do_precharge(unsigned long count)
6343 {
6344 int ret = 0;
6345 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6346 struct mem_cgroup *memcg = mc.to;
6347
6348 if (mem_cgroup_is_root(memcg)) {
6349 mc.precharge += count;
6350 /* we don't need css_get for root */
6351 return ret;
6352 }
6353 /* try to charge at once */
6354 if (count > 1) {
6355 struct res_counter *dummy;
6356 /*
6357 * "memcg" cannot be under rmdir() because we've already checked
6358 * by cgroup_lock_live_cgroup() that it is not removed and we
6359 * are still under the same cgroup_mutex. So we can postpone
6360 * css_get().
6361 */
6362 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6363 goto one_by_one;
6364 if (do_swap_account && res_counter_charge(&memcg->memsw,
6365 PAGE_SIZE * count, &dummy)) {
6366 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6367 goto one_by_one;
6368 }
6369 mc.precharge += count;
6370 return ret;
6371 }
6372 one_by_one:
6373 /* fall back to one by one charge */
6374 while (count--) {
6375 if (signal_pending(current)) {
6376 ret = -EINTR;
6377 break;
6378 }
6379 if (!batch_count--) {
6380 batch_count = PRECHARGE_COUNT_AT_ONCE;
6381 cond_resched();
6382 }
6383 ret = __mem_cgroup_try_charge(NULL,
6384 GFP_KERNEL, 1, &memcg, false);
6385 if (ret)
6386 /* mem_cgroup_clear_mc() will do uncharge later */
6387 return ret;
6388 mc.precharge++;
6389 }
6390 return ret;
6391 }
6392
6393 /**
6394 * get_mctgt_type - get target type of moving charge
6395 * @vma: the vma the pte to be checked belongs
6396 * @addr: the address corresponding to the pte to be checked
6397 * @ptent: the pte to be checked
6398 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6399 *
6400 * Returns
6401 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6402 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6403 * move charge. if @target is not NULL, the page is stored in target->page
6404 * with extra refcnt got(Callers should handle it).
6405 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6406 * target for charge migration. if @target is not NULL, the entry is stored
6407 * in target->ent.
6408 *
6409 * Called with pte lock held.
6410 */
6411 union mc_target {
6412 struct page *page;
6413 swp_entry_t ent;
6414 };
6415
6416 enum mc_target_type {
6417 MC_TARGET_NONE = 0,
6418 MC_TARGET_PAGE,
6419 MC_TARGET_SWAP,
6420 };
6421
6422 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6423 unsigned long addr, pte_t ptent)
6424 {
6425 struct page *page = vm_normal_page(vma, addr, ptent);
6426
6427 if (!page || !page_mapped(page))
6428 return NULL;
6429 if (PageAnon(page)) {
6430 /* we don't move shared anon */
6431 if (!move_anon())
6432 return NULL;
6433 } else if (!move_file())
6434 /* we ignore mapcount for file pages */
6435 return NULL;
6436 if (!get_page_unless_zero(page))
6437 return NULL;
6438
6439 return page;
6440 }
6441
6442 #ifdef CONFIG_SWAP
6443 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6444 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6445 {
6446 struct page *page = NULL;
6447 swp_entry_t ent = pte_to_swp_entry(ptent);
6448
6449 if (!move_anon() || non_swap_entry(ent))
6450 return NULL;
6451 /*
6452 * Because lookup_swap_cache() updates some statistics counter,
6453 * we call find_get_page() with swapper_space directly.
6454 */
6455 page = find_get_page(swap_address_space(ent), ent.val);
6456 if (do_swap_account)
6457 entry->val = ent.val;
6458
6459 return page;
6460 }
6461 #else
6462 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6463 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6464 {
6465 return NULL;
6466 }
6467 #endif
6468
6469 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6470 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6471 {
6472 struct page *page = NULL;
6473 struct address_space *mapping;
6474 pgoff_t pgoff;
6475
6476 if (!vma->vm_file) /* anonymous vma */
6477 return NULL;
6478 if (!move_file())
6479 return NULL;
6480
6481 mapping = vma->vm_file->f_mapping;
6482 if (pte_none(ptent))
6483 pgoff = linear_page_index(vma, addr);
6484 else /* pte_file(ptent) is true */
6485 pgoff = pte_to_pgoff(ptent);
6486
6487 /* page is moved even if it's not RSS of this task(page-faulted). */
6488 page = find_get_page(mapping, pgoff);
6489
6490 #ifdef CONFIG_SWAP
6491 /* shmem/tmpfs may report page out on swap: account for that too. */
6492 if (radix_tree_exceptional_entry(page)) {
6493 swp_entry_t swap = radix_to_swp_entry(page);
6494 if (do_swap_account)
6495 *entry = swap;
6496 page = find_get_page(swap_address_space(swap), swap.val);
6497 }
6498 #endif
6499 return page;
6500 }
6501
6502 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6503 unsigned long addr, pte_t ptent, union mc_target *target)
6504 {
6505 struct page *page = NULL;
6506 struct page_cgroup *pc;
6507 enum mc_target_type ret = MC_TARGET_NONE;
6508 swp_entry_t ent = { .val = 0 };
6509
6510 if (pte_present(ptent))
6511 page = mc_handle_present_pte(vma, addr, ptent);
6512 else if (is_swap_pte(ptent))
6513 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6514 else if (pte_none(ptent) || pte_file(ptent))
6515 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6516
6517 if (!page && !ent.val)
6518 return ret;
6519 if (page) {
6520 pc = lookup_page_cgroup(page);
6521 /*
6522 * Do only loose check w/o page_cgroup lock.
6523 * mem_cgroup_move_account() checks the pc is valid or not under
6524 * the lock.
6525 */
6526 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6527 ret = MC_TARGET_PAGE;
6528 if (target)
6529 target->page = page;
6530 }
6531 if (!ret || !target)
6532 put_page(page);
6533 }
6534 /* There is a swap entry and a page doesn't exist or isn't charged */
6535 if (ent.val && !ret &&
6536 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6537 ret = MC_TARGET_SWAP;
6538 if (target)
6539 target->ent = ent;
6540 }
6541 return ret;
6542 }
6543
6544 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6545 /*
6546 * We don't consider swapping or file mapped pages because THP does not
6547 * support them for now.
6548 * Caller should make sure that pmd_trans_huge(pmd) is true.
6549 */
6550 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6551 unsigned long addr, pmd_t pmd, union mc_target *target)
6552 {
6553 struct page *page = NULL;
6554 struct page_cgroup *pc;
6555 enum mc_target_type ret = MC_TARGET_NONE;
6556
6557 page = pmd_page(pmd);
6558 VM_BUG_ON(!page || !PageHead(page));
6559 if (!move_anon())
6560 return ret;
6561 pc = lookup_page_cgroup(page);
6562 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6563 ret = MC_TARGET_PAGE;
6564 if (target) {
6565 get_page(page);
6566 target->page = page;
6567 }
6568 }
6569 return ret;
6570 }
6571 #else
6572 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6573 unsigned long addr, pmd_t pmd, union mc_target *target)
6574 {
6575 return MC_TARGET_NONE;
6576 }
6577 #endif
6578
6579 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6580 unsigned long addr, unsigned long end,
6581 struct mm_walk *walk)
6582 {
6583 struct vm_area_struct *vma = walk->private;
6584 pte_t *pte;
6585 spinlock_t *ptl;
6586
6587 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6588 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6589 mc.precharge += HPAGE_PMD_NR;
6590 spin_unlock(&vma->vm_mm->page_table_lock);
6591 return 0;
6592 }
6593
6594 if (pmd_trans_unstable(pmd))
6595 return 0;
6596 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6597 for (; addr != end; pte++, addr += PAGE_SIZE)
6598 if (get_mctgt_type(vma, addr, *pte, NULL))
6599 mc.precharge++; /* increment precharge temporarily */
6600 pte_unmap_unlock(pte - 1, ptl);
6601 cond_resched();
6602
6603 return 0;
6604 }
6605
6606 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6607 {
6608 unsigned long precharge;
6609 struct vm_area_struct *vma;
6610
6611 down_read(&mm->mmap_sem);
6612 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6613 struct mm_walk mem_cgroup_count_precharge_walk = {
6614 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6615 .mm = mm,
6616 .private = vma,
6617 };
6618 if (is_vm_hugetlb_page(vma))
6619 continue;
6620 walk_page_range(vma->vm_start, vma->vm_end,
6621 &mem_cgroup_count_precharge_walk);
6622 }
6623 up_read(&mm->mmap_sem);
6624
6625 precharge = mc.precharge;
6626 mc.precharge = 0;
6627
6628 return precharge;
6629 }
6630
6631 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6632 {
6633 unsigned long precharge = mem_cgroup_count_precharge(mm);
6634
6635 VM_BUG_ON(mc.moving_task);
6636 mc.moving_task = current;
6637 return mem_cgroup_do_precharge(precharge);
6638 }
6639
6640 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6641 static void __mem_cgroup_clear_mc(void)
6642 {
6643 struct mem_cgroup *from = mc.from;
6644 struct mem_cgroup *to = mc.to;
6645 int i;
6646
6647 /* we must uncharge all the leftover precharges from mc.to */
6648 if (mc.precharge) {
6649 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6650 mc.precharge = 0;
6651 }
6652 /*
6653 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6654 * we must uncharge here.
6655 */
6656 if (mc.moved_charge) {
6657 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6658 mc.moved_charge = 0;
6659 }
6660 /* we must fixup refcnts and charges */
6661 if (mc.moved_swap) {
6662 /* uncharge swap account from the old cgroup */
6663 if (!mem_cgroup_is_root(mc.from))
6664 res_counter_uncharge(&mc.from->memsw,
6665 PAGE_SIZE * mc.moved_swap);
6666
6667 for (i = 0; i < mc.moved_swap; i++)
6668 css_put(&mc.from->css);
6669
6670 if (!mem_cgroup_is_root(mc.to)) {
6671 /*
6672 * we charged both to->res and to->memsw, so we should
6673 * uncharge to->res.
6674 */
6675 res_counter_uncharge(&mc.to->res,
6676 PAGE_SIZE * mc.moved_swap);
6677 }
6678 /* we've already done css_get(mc.to) */
6679 mc.moved_swap = 0;
6680 }
6681 memcg_oom_recover(from);
6682 memcg_oom_recover(to);
6683 wake_up_all(&mc.waitq);
6684 }
6685
6686 static void mem_cgroup_clear_mc(void)
6687 {
6688 struct mem_cgroup *from = mc.from;
6689
6690 /*
6691 * we must clear moving_task before waking up waiters at the end of
6692 * task migration.
6693 */
6694 mc.moving_task = NULL;
6695 __mem_cgroup_clear_mc();
6696 spin_lock(&mc.lock);
6697 mc.from = NULL;
6698 mc.to = NULL;
6699 spin_unlock(&mc.lock);
6700 mem_cgroup_end_move(from);
6701 }
6702
6703 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6704 struct cgroup_taskset *tset)
6705 {
6706 struct task_struct *p = cgroup_taskset_first(tset);
6707 int ret = 0;
6708 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6709 unsigned long move_charge_at_immigrate;
6710
6711 /*
6712 * We are now commited to this value whatever it is. Changes in this
6713 * tunable will only affect upcoming migrations, not the current one.
6714 * So we need to save it, and keep it going.
6715 */
6716 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6717 if (move_charge_at_immigrate) {
6718 struct mm_struct *mm;
6719 struct mem_cgroup *from = mem_cgroup_from_task(p);
6720
6721 VM_BUG_ON(from == memcg);
6722
6723 mm = get_task_mm(p);
6724 if (!mm)
6725 return 0;
6726 /* We move charges only when we move a owner of the mm */
6727 if (mm->owner == p) {
6728 VM_BUG_ON(mc.from);
6729 VM_BUG_ON(mc.to);
6730 VM_BUG_ON(mc.precharge);
6731 VM_BUG_ON(mc.moved_charge);
6732 VM_BUG_ON(mc.moved_swap);
6733 mem_cgroup_start_move(from);
6734 spin_lock(&mc.lock);
6735 mc.from = from;
6736 mc.to = memcg;
6737 mc.immigrate_flags = move_charge_at_immigrate;
6738 spin_unlock(&mc.lock);
6739 /* We set mc.moving_task later */
6740
6741 ret = mem_cgroup_precharge_mc(mm);
6742 if (ret)
6743 mem_cgroup_clear_mc();
6744 }
6745 mmput(mm);
6746 }
6747 return ret;
6748 }
6749
6750 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6751 struct cgroup_taskset *tset)
6752 {
6753 mem_cgroup_clear_mc();
6754 }
6755
6756 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6757 unsigned long addr, unsigned long end,
6758 struct mm_walk *walk)
6759 {
6760 int ret = 0;
6761 struct vm_area_struct *vma = walk->private;
6762 pte_t *pte;
6763 spinlock_t *ptl;
6764 enum mc_target_type target_type;
6765 union mc_target target;
6766 struct page *page;
6767 struct page_cgroup *pc;
6768
6769 /*
6770 * We don't take compound_lock() here but no race with splitting thp
6771 * happens because:
6772 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6773 * under splitting, which means there's no concurrent thp split,
6774 * - if another thread runs into split_huge_page() just after we
6775 * entered this if-block, the thread must wait for page table lock
6776 * to be unlocked in __split_huge_page_splitting(), where the main
6777 * part of thp split is not executed yet.
6778 */
6779 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6780 if (mc.precharge < HPAGE_PMD_NR) {
6781 spin_unlock(&vma->vm_mm->page_table_lock);
6782 return 0;
6783 }
6784 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6785 if (target_type == MC_TARGET_PAGE) {
6786 page = target.page;
6787 if (!isolate_lru_page(page)) {
6788 pc = lookup_page_cgroup(page);
6789 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6790 pc, mc.from, mc.to)) {
6791 mc.precharge -= HPAGE_PMD_NR;
6792 mc.moved_charge += HPAGE_PMD_NR;
6793 }
6794 putback_lru_page(page);
6795 }
6796 put_page(page);
6797 }
6798 spin_unlock(&vma->vm_mm->page_table_lock);
6799 return 0;
6800 }
6801
6802 if (pmd_trans_unstable(pmd))
6803 return 0;
6804 retry:
6805 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6806 for (; addr != end; addr += PAGE_SIZE) {
6807 pte_t ptent = *(pte++);
6808 swp_entry_t ent;
6809
6810 if (!mc.precharge)
6811 break;
6812
6813 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6814 case MC_TARGET_PAGE:
6815 page = target.page;
6816 if (isolate_lru_page(page))
6817 goto put;
6818 pc = lookup_page_cgroup(page);
6819 if (!mem_cgroup_move_account(page, 1, pc,
6820 mc.from, mc.to)) {
6821 mc.precharge--;
6822 /* we uncharge from mc.from later. */
6823 mc.moved_charge++;
6824 }
6825 putback_lru_page(page);
6826 put: /* get_mctgt_type() gets the page */
6827 put_page(page);
6828 break;
6829 case MC_TARGET_SWAP:
6830 ent = target.ent;
6831 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6832 mc.precharge--;
6833 /* we fixup refcnts and charges later. */
6834 mc.moved_swap++;
6835 }
6836 break;
6837 default:
6838 break;
6839 }
6840 }
6841 pte_unmap_unlock(pte - 1, ptl);
6842 cond_resched();
6843
6844 if (addr != end) {
6845 /*
6846 * We have consumed all precharges we got in can_attach().
6847 * We try charge one by one, but don't do any additional
6848 * charges to mc.to if we have failed in charge once in attach()
6849 * phase.
6850 */
6851 ret = mem_cgroup_do_precharge(1);
6852 if (!ret)
6853 goto retry;
6854 }
6855
6856 return ret;
6857 }
6858
6859 static void mem_cgroup_move_charge(struct mm_struct *mm)
6860 {
6861 struct vm_area_struct *vma;
6862
6863 lru_add_drain_all();
6864 retry:
6865 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6866 /*
6867 * Someone who are holding the mmap_sem might be waiting in
6868 * waitq. So we cancel all extra charges, wake up all waiters,
6869 * and retry. Because we cancel precharges, we might not be able
6870 * to move enough charges, but moving charge is a best-effort
6871 * feature anyway, so it wouldn't be a big problem.
6872 */
6873 __mem_cgroup_clear_mc();
6874 cond_resched();
6875 goto retry;
6876 }
6877 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6878 int ret;
6879 struct mm_walk mem_cgroup_move_charge_walk = {
6880 .pmd_entry = mem_cgroup_move_charge_pte_range,
6881 .mm = mm,
6882 .private = vma,
6883 };
6884 if (is_vm_hugetlb_page(vma))
6885 continue;
6886 ret = walk_page_range(vma->vm_start, vma->vm_end,
6887 &mem_cgroup_move_charge_walk);
6888 if (ret)
6889 /*
6890 * means we have consumed all precharges and failed in
6891 * doing additional charge. Just abandon here.
6892 */
6893 break;
6894 }
6895 up_read(&mm->mmap_sem);
6896 }
6897
6898 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6899 struct cgroup_taskset *tset)
6900 {
6901 struct task_struct *p = cgroup_taskset_first(tset);
6902 struct mm_struct *mm = get_task_mm(p);
6903
6904 if (mm) {
6905 if (mc.to)
6906 mem_cgroup_move_charge(mm);
6907 mmput(mm);
6908 }
6909 if (mc.to)
6910 mem_cgroup_clear_mc();
6911 }
6912 #else /* !CONFIG_MMU */
6913 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6914 struct cgroup_taskset *tset)
6915 {
6916 return 0;
6917 }
6918 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6919 struct cgroup_taskset *tset)
6920 {
6921 }
6922 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6923 struct cgroup_taskset *tset)
6924 {
6925 }
6926 #endif
6927
6928 /*
6929 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6930 * to verify sane_behavior flag on each mount attempt.
6931 */
6932 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6933 {
6934 /*
6935 * use_hierarchy is forced with sane_behavior. cgroup core
6936 * guarantees that @root doesn't have any children, so turning it
6937 * on for the root memcg is enough.
6938 */
6939 if (cgroup_sane_behavior(root_css->cgroup))
6940 mem_cgroup_from_css(root_css)->use_hierarchy = true;
6941 }
6942
6943 struct cgroup_subsys mem_cgroup_subsys = {
6944 .name = "memory",
6945 .subsys_id = mem_cgroup_subsys_id,
6946 .css_alloc = mem_cgroup_css_alloc,
6947 .css_online = mem_cgroup_css_online,
6948 .css_offline = mem_cgroup_css_offline,
6949 .css_free = mem_cgroup_css_free,
6950 .can_attach = mem_cgroup_can_attach,
6951 .cancel_attach = mem_cgroup_cancel_attach,
6952 .attach = mem_cgroup_move_task,
6953 .bind = mem_cgroup_bind,
6954 .base_cftypes = mem_cgroup_files,
6955 .early_init = 0,
6956 .use_id = 1,
6957 };
6958
6959 #ifdef CONFIG_MEMCG_SWAP
6960 static int __init enable_swap_account(char *s)
6961 {
6962 if (!strcmp(s, "1"))
6963 really_do_swap_account = 1;
6964 else if (!strcmp(s, "0"))
6965 really_do_swap_account = 0;
6966 return 1;
6967 }
6968 __setup("swapaccount=", enable_swap_account);
6969
6970 static void __init memsw_file_init(void)
6971 {
6972 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6973 }
6974
6975 static void __init enable_swap_cgroup(void)
6976 {
6977 if (!mem_cgroup_disabled() && really_do_swap_account) {
6978 do_swap_account = 1;
6979 memsw_file_init();
6980 }
6981 }
6982
6983 #else
6984 static void __init enable_swap_cgroup(void)
6985 {
6986 }
6987 #endif
6988
6989 /*
6990 * subsys_initcall() for memory controller.
6991 *
6992 * Some parts like hotcpu_notifier() have to be initialized from this context
6993 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6994 * everything that doesn't depend on a specific mem_cgroup structure should
6995 * be initialized from here.
6996 */
6997 static int __init mem_cgroup_init(void)
6998 {
6999 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7000 enable_swap_cgroup();
7001 mem_cgroup_soft_limit_tree_init();
7002 memcg_stock_init();
7003 return 0;
7004 }
7005 subsys_initcall(mem_cgroup_init);