]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memcontrol.c
Merge tag 'trace-ipi-tracepoints' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64
65 #include <asm/uaccess.h>
66
67 #include <trace/events/vmscan.h>
68
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata;
84 #endif
85
86 #else
87 #define do_swap_account 0
88 #endif
89
90
91 static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
98 };
99
100 enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS,
106 };
107
108 static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113 };
114
115 static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121 };
122
123 /*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129 enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
138
139 struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145
146 struct mem_cgroup_reclaim_iter {
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
151 struct mem_cgroup *last_visited;
152 int last_dead_count;
153
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156 };
157
158 /*
159 * per-zone information in memory controller.
160 */
161 struct mem_cgroup_per_zone {
162 struct lruvec lruvec;
163 unsigned long lru_size[NR_LRU_LISTS];
164
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
172 /* use container_of */
173 };
174
175 struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177 };
178
179 /*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184 struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187 };
188
189 struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191 };
192
193 struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195 };
196
197 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
199 struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202 };
203
204 /* For threshold */
205 struct mem_cgroup_threshold_ary {
206 /* An array index points to threshold just below or equal to usage. */
207 int current_threshold;
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212 };
213
214 struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223 };
224
225 /* for OOM */
226 struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229 };
230
231 /*
232 * cgroup_event represents events which userspace want to receive.
233 */
234 struct mem_cgroup_event {
235 /*
236 * memcg which the event belongs to.
237 */
238 struct mem_cgroup *memcg;
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
252 int (*register_event)(struct mem_cgroup *memcg,
253 struct eventfd_ctx *eventfd, const char *args);
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
259 void (*unregister_event)(struct mem_cgroup *memcg,
260 struct eventfd_ctx *eventfd);
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269 };
270
271 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273
274 /*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
284 */
285 struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
291
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
299
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309
310 bool oom_lock;
311 atomic_t under_oom;
312 atomic_t oom_wakeups;
313
314 int swappiness;
315 /* OOM-Killer disable */
316 int oom_kill_disable;
317
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
325 struct mem_cgroup_thresholds thresholds;
326
327 /* thresholds for mem+swap usage. RCU-protected */
328 struct mem_cgroup_thresholds memsw_thresholds;
329
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
332
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
337 unsigned long move_charge_at_immigrate;
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
344 /*
345 * percpu counter.
346 */
347 struct mem_cgroup_stat_cpu __percpu *stat;
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
354
355 atomic_t dead_count;
356 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357 struct cg_proto tcp_mem;
358 #endif
359 #if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list, but per-memcg;
361 * protected by memcg_slab_mutex */
362 struct list_head memcg_slab_caches;
363 /* Index in the kmem_cache->memcg_params->memcg_caches array */
364 int kmemcg_id;
365 #endif
366
367 int last_scanned_node;
368 #if MAX_NUMNODES > 1
369 nodemask_t scan_nodes;
370 atomic_t numainfo_events;
371 atomic_t numainfo_updating;
372 #endif
373
374 /* List of events which userspace want to receive */
375 struct list_head event_list;
376 spinlock_t event_list_lock;
377
378 struct mem_cgroup_per_node *nodeinfo[0];
379 /* WARNING: nodeinfo must be the last member here */
380 };
381
382 /* internal only representation about the status of kmem accounting. */
383 enum {
384 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
385 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
386 };
387
388 #ifdef CONFIG_MEMCG_KMEM
389 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
390 {
391 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
392 }
393
394 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
395 {
396 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
397 }
398
399 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
400 {
401 /*
402 * Our caller must use css_get() first, because memcg_uncharge_kmem()
403 * will call css_put() if it sees the memcg is dead.
404 */
405 smp_wmb();
406 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
407 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
408 }
409
410 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
411 {
412 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
413 &memcg->kmem_account_flags);
414 }
415 #endif
416
417 /* Stuffs for move charges at task migration. */
418 /*
419 * Types of charges to be moved. "move_charge_at_immitgrate" and
420 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
421 */
422 enum move_type {
423 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
424 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
425 NR_MOVE_TYPE,
426 };
427
428 /* "mc" and its members are protected by cgroup_mutex */
429 static struct move_charge_struct {
430 spinlock_t lock; /* for from, to */
431 struct mem_cgroup *from;
432 struct mem_cgroup *to;
433 unsigned long immigrate_flags;
434 unsigned long precharge;
435 unsigned long moved_charge;
436 unsigned long moved_swap;
437 struct task_struct *moving_task; /* a task moving charges */
438 wait_queue_head_t waitq; /* a waitq for other context */
439 } mc = {
440 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
441 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
442 };
443
444 static bool move_anon(void)
445 {
446 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
447 }
448
449 static bool move_file(void)
450 {
451 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
452 }
453
454 /*
455 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
456 * limit reclaim to prevent infinite loops, if they ever occur.
457 */
458 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
459 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
460
461 enum charge_type {
462 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
463 MEM_CGROUP_CHARGE_TYPE_ANON,
464 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
465 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
466 NR_CHARGE_TYPE,
467 };
468
469 /* for encoding cft->private value on file */
470 enum res_type {
471 _MEM,
472 _MEMSWAP,
473 _OOM_TYPE,
474 _KMEM,
475 };
476
477 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
478 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
479 #define MEMFILE_ATTR(val) ((val) & 0xffff)
480 /* Used for OOM nofiier */
481 #define OOM_CONTROL (0)
482
483 /*
484 * Reclaim flags for mem_cgroup_hierarchical_reclaim
485 */
486 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
487 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
488 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
489 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
490
491 /*
492 * The memcg_create_mutex will be held whenever a new cgroup is created.
493 * As a consequence, any change that needs to protect against new child cgroups
494 * appearing has to hold it as well.
495 */
496 static DEFINE_MUTEX(memcg_create_mutex);
497
498 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
499 {
500 return s ? container_of(s, struct mem_cgroup, css) : NULL;
501 }
502
503 /* Some nice accessors for the vmpressure. */
504 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
505 {
506 if (!memcg)
507 memcg = root_mem_cgroup;
508 return &memcg->vmpressure;
509 }
510
511 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
512 {
513 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
514 }
515
516 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
517 {
518 return (memcg == root_mem_cgroup);
519 }
520
521 /*
522 * We restrict the id in the range of [1, 65535], so it can fit into
523 * an unsigned short.
524 */
525 #define MEM_CGROUP_ID_MAX USHRT_MAX
526
527 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
528 {
529 return memcg->css.id;
530 }
531
532 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
533 {
534 struct cgroup_subsys_state *css;
535
536 css = css_from_id(id, &memory_cgrp_subsys);
537 return mem_cgroup_from_css(css);
538 }
539
540 /* Writing them here to avoid exposing memcg's inner layout */
541 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
542
543 void sock_update_memcg(struct sock *sk)
544 {
545 if (mem_cgroup_sockets_enabled) {
546 struct mem_cgroup *memcg;
547 struct cg_proto *cg_proto;
548
549 BUG_ON(!sk->sk_prot->proto_cgroup);
550
551 /* Socket cloning can throw us here with sk_cgrp already
552 * filled. It won't however, necessarily happen from
553 * process context. So the test for root memcg given
554 * the current task's memcg won't help us in this case.
555 *
556 * Respecting the original socket's memcg is a better
557 * decision in this case.
558 */
559 if (sk->sk_cgrp) {
560 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
561 css_get(&sk->sk_cgrp->memcg->css);
562 return;
563 }
564
565 rcu_read_lock();
566 memcg = mem_cgroup_from_task(current);
567 cg_proto = sk->sk_prot->proto_cgroup(memcg);
568 if (!mem_cgroup_is_root(memcg) &&
569 memcg_proto_active(cg_proto) &&
570 css_tryget_online(&memcg->css)) {
571 sk->sk_cgrp = cg_proto;
572 }
573 rcu_read_unlock();
574 }
575 }
576 EXPORT_SYMBOL(sock_update_memcg);
577
578 void sock_release_memcg(struct sock *sk)
579 {
580 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
581 struct mem_cgroup *memcg;
582 WARN_ON(!sk->sk_cgrp->memcg);
583 memcg = sk->sk_cgrp->memcg;
584 css_put(&sk->sk_cgrp->memcg->css);
585 }
586 }
587
588 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
589 {
590 if (!memcg || mem_cgroup_is_root(memcg))
591 return NULL;
592
593 return &memcg->tcp_mem;
594 }
595 EXPORT_SYMBOL(tcp_proto_cgroup);
596
597 static void disarm_sock_keys(struct mem_cgroup *memcg)
598 {
599 if (!memcg_proto_activated(&memcg->tcp_mem))
600 return;
601 static_key_slow_dec(&memcg_socket_limit_enabled);
602 }
603 #else
604 static void disarm_sock_keys(struct mem_cgroup *memcg)
605 {
606 }
607 #endif
608
609 #ifdef CONFIG_MEMCG_KMEM
610 /*
611 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
612 * The main reason for not using cgroup id for this:
613 * this works better in sparse environments, where we have a lot of memcgs,
614 * but only a few kmem-limited. Or also, if we have, for instance, 200
615 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
616 * 200 entry array for that.
617 *
618 * The current size of the caches array is stored in
619 * memcg_limited_groups_array_size. It will double each time we have to
620 * increase it.
621 */
622 static DEFINE_IDA(kmem_limited_groups);
623 int memcg_limited_groups_array_size;
624
625 /*
626 * MIN_SIZE is different than 1, because we would like to avoid going through
627 * the alloc/free process all the time. In a small machine, 4 kmem-limited
628 * cgroups is a reasonable guess. In the future, it could be a parameter or
629 * tunable, but that is strictly not necessary.
630 *
631 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
632 * this constant directly from cgroup, but it is understandable that this is
633 * better kept as an internal representation in cgroup.c. In any case, the
634 * cgrp_id space is not getting any smaller, and we don't have to necessarily
635 * increase ours as well if it increases.
636 */
637 #define MEMCG_CACHES_MIN_SIZE 4
638 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
639
640 /*
641 * A lot of the calls to the cache allocation functions are expected to be
642 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
643 * conditional to this static branch, we'll have to allow modules that does
644 * kmem_cache_alloc and the such to see this symbol as well
645 */
646 struct static_key memcg_kmem_enabled_key;
647 EXPORT_SYMBOL(memcg_kmem_enabled_key);
648
649 static void disarm_kmem_keys(struct mem_cgroup *memcg)
650 {
651 if (memcg_kmem_is_active(memcg)) {
652 static_key_slow_dec(&memcg_kmem_enabled_key);
653 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
654 }
655 /*
656 * This check can't live in kmem destruction function,
657 * since the charges will outlive the cgroup
658 */
659 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
660 }
661 #else
662 static void disarm_kmem_keys(struct mem_cgroup *memcg)
663 {
664 }
665 #endif /* CONFIG_MEMCG_KMEM */
666
667 static void disarm_static_keys(struct mem_cgroup *memcg)
668 {
669 disarm_sock_keys(memcg);
670 disarm_kmem_keys(memcg);
671 }
672
673 static void drain_all_stock_async(struct mem_cgroup *memcg);
674
675 static struct mem_cgroup_per_zone *
676 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
677 {
678 int nid = zone_to_nid(zone);
679 int zid = zone_idx(zone);
680
681 return &memcg->nodeinfo[nid]->zoneinfo[zid];
682 }
683
684 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
685 {
686 return &memcg->css;
687 }
688
689 static struct mem_cgroup_per_zone *
690 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
691 {
692 int nid = page_to_nid(page);
693 int zid = page_zonenum(page);
694
695 return &memcg->nodeinfo[nid]->zoneinfo[zid];
696 }
697
698 static struct mem_cgroup_tree_per_zone *
699 soft_limit_tree_node_zone(int nid, int zid)
700 {
701 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
702 }
703
704 static struct mem_cgroup_tree_per_zone *
705 soft_limit_tree_from_page(struct page *page)
706 {
707 int nid = page_to_nid(page);
708 int zid = page_zonenum(page);
709
710 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
711 }
712
713 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
714 struct mem_cgroup_tree_per_zone *mctz,
715 unsigned long long new_usage_in_excess)
716 {
717 struct rb_node **p = &mctz->rb_root.rb_node;
718 struct rb_node *parent = NULL;
719 struct mem_cgroup_per_zone *mz_node;
720
721 if (mz->on_tree)
722 return;
723
724 mz->usage_in_excess = new_usage_in_excess;
725 if (!mz->usage_in_excess)
726 return;
727 while (*p) {
728 parent = *p;
729 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
730 tree_node);
731 if (mz->usage_in_excess < mz_node->usage_in_excess)
732 p = &(*p)->rb_left;
733 /*
734 * We can't avoid mem cgroups that are over their soft
735 * limit by the same amount
736 */
737 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
738 p = &(*p)->rb_right;
739 }
740 rb_link_node(&mz->tree_node, parent, p);
741 rb_insert_color(&mz->tree_node, &mctz->rb_root);
742 mz->on_tree = true;
743 }
744
745 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
746 struct mem_cgroup_tree_per_zone *mctz)
747 {
748 if (!mz->on_tree)
749 return;
750 rb_erase(&mz->tree_node, &mctz->rb_root);
751 mz->on_tree = false;
752 }
753
754 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
755 struct mem_cgroup_tree_per_zone *mctz)
756 {
757 unsigned long flags;
758
759 spin_lock_irqsave(&mctz->lock, flags);
760 __mem_cgroup_remove_exceeded(mz, mctz);
761 spin_unlock_irqrestore(&mctz->lock, flags);
762 }
763
764
765 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
766 {
767 unsigned long long excess;
768 struct mem_cgroup_per_zone *mz;
769 struct mem_cgroup_tree_per_zone *mctz;
770
771 mctz = soft_limit_tree_from_page(page);
772 /*
773 * Necessary to update all ancestors when hierarchy is used.
774 * because their event counter is not touched.
775 */
776 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
777 mz = mem_cgroup_page_zoneinfo(memcg, page);
778 excess = res_counter_soft_limit_excess(&memcg->res);
779 /*
780 * We have to update the tree if mz is on RB-tree or
781 * mem is over its softlimit.
782 */
783 if (excess || mz->on_tree) {
784 unsigned long flags;
785
786 spin_lock_irqsave(&mctz->lock, flags);
787 /* if on-tree, remove it */
788 if (mz->on_tree)
789 __mem_cgroup_remove_exceeded(mz, mctz);
790 /*
791 * Insert again. mz->usage_in_excess will be updated.
792 * If excess is 0, no tree ops.
793 */
794 __mem_cgroup_insert_exceeded(mz, mctz, excess);
795 spin_unlock_irqrestore(&mctz->lock, flags);
796 }
797 }
798 }
799
800 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
801 {
802 struct mem_cgroup_tree_per_zone *mctz;
803 struct mem_cgroup_per_zone *mz;
804 int nid, zid;
805
806 for_each_node(nid) {
807 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
808 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
809 mctz = soft_limit_tree_node_zone(nid, zid);
810 mem_cgroup_remove_exceeded(mz, mctz);
811 }
812 }
813 }
814
815 static struct mem_cgroup_per_zone *
816 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
817 {
818 struct rb_node *rightmost = NULL;
819 struct mem_cgroup_per_zone *mz;
820
821 retry:
822 mz = NULL;
823 rightmost = rb_last(&mctz->rb_root);
824 if (!rightmost)
825 goto done; /* Nothing to reclaim from */
826
827 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
828 /*
829 * Remove the node now but someone else can add it back,
830 * we will to add it back at the end of reclaim to its correct
831 * position in the tree.
832 */
833 __mem_cgroup_remove_exceeded(mz, mctz);
834 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
835 !css_tryget_online(&mz->memcg->css))
836 goto retry;
837 done:
838 return mz;
839 }
840
841 static struct mem_cgroup_per_zone *
842 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
843 {
844 struct mem_cgroup_per_zone *mz;
845
846 spin_lock_irq(&mctz->lock);
847 mz = __mem_cgroup_largest_soft_limit_node(mctz);
848 spin_unlock_irq(&mctz->lock);
849 return mz;
850 }
851
852 /*
853 * Implementation Note: reading percpu statistics for memcg.
854 *
855 * Both of vmstat[] and percpu_counter has threshold and do periodic
856 * synchronization to implement "quick" read. There are trade-off between
857 * reading cost and precision of value. Then, we may have a chance to implement
858 * a periodic synchronizion of counter in memcg's counter.
859 *
860 * But this _read() function is used for user interface now. The user accounts
861 * memory usage by memory cgroup and he _always_ requires exact value because
862 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
863 * have to visit all online cpus and make sum. So, for now, unnecessary
864 * synchronization is not implemented. (just implemented for cpu hotplug)
865 *
866 * If there are kernel internal actions which can make use of some not-exact
867 * value, and reading all cpu value can be performance bottleneck in some
868 * common workload, threashold and synchonization as vmstat[] should be
869 * implemented.
870 */
871 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
872 enum mem_cgroup_stat_index idx)
873 {
874 long val = 0;
875 int cpu;
876
877 get_online_cpus();
878 for_each_online_cpu(cpu)
879 val += per_cpu(memcg->stat->count[idx], cpu);
880 #ifdef CONFIG_HOTPLUG_CPU
881 spin_lock(&memcg->pcp_counter_lock);
882 val += memcg->nocpu_base.count[idx];
883 spin_unlock(&memcg->pcp_counter_lock);
884 #endif
885 put_online_cpus();
886 return val;
887 }
888
889 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
890 enum mem_cgroup_events_index idx)
891 {
892 unsigned long val = 0;
893 int cpu;
894
895 get_online_cpus();
896 for_each_online_cpu(cpu)
897 val += per_cpu(memcg->stat->events[idx], cpu);
898 #ifdef CONFIG_HOTPLUG_CPU
899 spin_lock(&memcg->pcp_counter_lock);
900 val += memcg->nocpu_base.events[idx];
901 spin_unlock(&memcg->pcp_counter_lock);
902 #endif
903 put_online_cpus();
904 return val;
905 }
906
907 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
908 struct page *page,
909 int nr_pages)
910 {
911 /*
912 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
913 * counted as CACHE even if it's on ANON LRU.
914 */
915 if (PageAnon(page))
916 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
917 nr_pages);
918 else
919 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
920 nr_pages);
921
922 if (PageTransHuge(page))
923 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
924 nr_pages);
925
926 /* pagein of a big page is an event. So, ignore page size */
927 if (nr_pages > 0)
928 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
929 else {
930 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
931 nr_pages = -nr_pages; /* for event */
932 }
933
934 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
935 }
936
937 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
938 {
939 struct mem_cgroup_per_zone *mz;
940
941 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
942 return mz->lru_size[lru];
943 }
944
945 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
946 int nid,
947 unsigned int lru_mask)
948 {
949 unsigned long nr = 0;
950 int zid;
951
952 VM_BUG_ON((unsigned)nid >= nr_node_ids);
953
954 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
955 struct mem_cgroup_per_zone *mz;
956 enum lru_list lru;
957
958 for_each_lru(lru) {
959 if (!(BIT(lru) & lru_mask))
960 continue;
961 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
962 nr += mz->lru_size[lru];
963 }
964 }
965 return nr;
966 }
967
968 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
969 unsigned int lru_mask)
970 {
971 unsigned long nr = 0;
972 int nid;
973
974 for_each_node_state(nid, N_MEMORY)
975 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
976 return nr;
977 }
978
979 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
980 enum mem_cgroup_events_target target)
981 {
982 unsigned long val, next;
983
984 val = __this_cpu_read(memcg->stat->nr_page_events);
985 next = __this_cpu_read(memcg->stat->targets[target]);
986 /* from time_after() in jiffies.h */
987 if ((long)next - (long)val < 0) {
988 switch (target) {
989 case MEM_CGROUP_TARGET_THRESH:
990 next = val + THRESHOLDS_EVENTS_TARGET;
991 break;
992 case MEM_CGROUP_TARGET_SOFTLIMIT:
993 next = val + SOFTLIMIT_EVENTS_TARGET;
994 break;
995 case MEM_CGROUP_TARGET_NUMAINFO:
996 next = val + NUMAINFO_EVENTS_TARGET;
997 break;
998 default:
999 break;
1000 }
1001 __this_cpu_write(memcg->stat->targets[target], next);
1002 return true;
1003 }
1004 return false;
1005 }
1006
1007 /*
1008 * Check events in order.
1009 *
1010 */
1011 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1012 {
1013 /* threshold event is triggered in finer grain than soft limit */
1014 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1015 MEM_CGROUP_TARGET_THRESH))) {
1016 bool do_softlimit;
1017 bool do_numainfo __maybe_unused;
1018
1019 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1020 MEM_CGROUP_TARGET_SOFTLIMIT);
1021 #if MAX_NUMNODES > 1
1022 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1023 MEM_CGROUP_TARGET_NUMAINFO);
1024 #endif
1025 mem_cgroup_threshold(memcg);
1026 if (unlikely(do_softlimit))
1027 mem_cgroup_update_tree(memcg, page);
1028 #if MAX_NUMNODES > 1
1029 if (unlikely(do_numainfo))
1030 atomic_inc(&memcg->numainfo_events);
1031 #endif
1032 }
1033 }
1034
1035 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1036 {
1037 /*
1038 * mm_update_next_owner() may clear mm->owner to NULL
1039 * if it races with swapoff, page migration, etc.
1040 * So this can be called with p == NULL.
1041 */
1042 if (unlikely(!p))
1043 return NULL;
1044
1045 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1046 }
1047
1048 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1049 {
1050 struct mem_cgroup *memcg = NULL;
1051
1052 rcu_read_lock();
1053 do {
1054 /*
1055 * Page cache insertions can happen withou an
1056 * actual mm context, e.g. during disk probing
1057 * on boot, loopback IO, acct() writes etc.
1058 */
1059 if (unlikely(!mm))
1060 memcg = root_mem_cgroup;
1061 else {
1062 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1063 if (unlikely(!memcg))
1064 memcg = root_mem_cgroup;
1065 }
1066 } while (!css_tryget_online(&memcg->css));
1067 rcu_read_unlock();
1068 return memcg;
1069 }
1070
1071 /*
1072 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1073 * ref. count) or NULL if the whole root's subtree has been visited.
1074 *
1075 * helper function to be used by mem_cgroup_iter
1076 */
1077 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1078 struct mem_cgroup *last_visited)
1079 {
1080 struct cgroup_subsys_state *prev_css, *next_css;
1081
1082 prev_css = last_visited ? &last_visited->css : NULL;
1083 skip_node:
1084 next_css = css_next_descendant_pre(prev_css, &root->css);
1085
1086 /*
1087 * Even if we found a group we have to make sure it is
1088 * alive. css && !memcg means that the groups should be
1089 * skipped and we should continue the tree walk.
1090 * last_visited css is safe to use because it is
1091 * protected by css_get and the tree walk is rcu safe.
1092 *
1093 * We do not take a reference on the root of the tree walk
1094 * because we might race with the root removal when it would
1095 * be the only node in the iterated hierarchy and mem_cgroup_iter
1096 * would end up in an endless loop because it expects that at
1097 * least one valid node will be returned. Root cannot disappear
1098 * because caller of the iterator should hold it already so
1099 * skipping css reference should be safe.
1100 */
1101 if (next_css) {
1102 if ((next_css == &root->css) ||
1103 ((next_css->flags & CSS_ONLINE) &&
1104 css_tryget_online(next_css)))
1105 return mem_cgroup_from_css(next_css);
1106
1107 prev_css = next_css;
1108 goto skip_node;
1109 }
1110
1111 return NULL;
1112 }
1113
1114 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1115 {
1116 /*
1117 * When a group in the hierarchy below root is destroyed, the
1118 * hierarchy iterator can no longer be trusted since it might
1119 * have pointed to the destroyed group. Invalidate it.
1120 */
1121 atomic_inc(&root->dead_count);
1122 }
1123
1124 static struct mem_cgroup *
1125 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1126 struct mem_cgroup *root,
1127 int *sequence)
1128 {
1129 struct mem_cgroup *position = NULL;
1130 /*
1131 * A cgroup destruction happens in two stages: offlining and
1132 * release. They are separated by a RCU grace period.
1133 *
1134 * If the iterator is valid, we may still race with an
1135 * offlining. The RCU lock ensures the object won't be
1136 * released, tryget will fail if we lost the race.
1137 */
1138 *sequence = atomic_read(&root->dead_count);
1139 if (iter->last_dead_count == *sequence) {
1140 smp_rmb();
1141 position = iter->last_visited;
1142
1143 /*
1144 * We cannot take a reference to root because we might race
1145 * with root removal and returning NULL would end up in
1146 * an endless loop on the iterator user level when root
1147 * would be returned all the time.
1148 */
1149 if (position && position != root &&
1150 !css_tryget_online(&position->css))
1151 position = NULL;
1152 }
1153 return position;
1154 }
1155
1156 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1157 struct mem_cgroup *last_visited,
1158 struct mem_cgroup *new_position,
1159 struct mem_cgroup *root,
1160 int sequence)
1161 {
1162 /* root reference counting symmetric to mem_cgroup_iter_load */
1163 if (last_visited && last_visited != root)
1164 css_put(&last_visited->css);
1165 /*
1166 * We store the sequence count from the time @last_visited was
1167 * loaded successfully instead of rereading it here so that we
1168 * don't lose destruction events in between. We could have
1169 * raced with the destruction of @new_position after all.
1170 */
1171 iter->last_visited = new_position;
1172 smp_wmb();
1173 iter->last_dead_count = sequence;
1174 }
1175
1176 /**
1177 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1178 * @root: hierarchy root
1179 * @prev: previously returned memcg, NULL on first invocation
1180 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1181 *
1182 * Returns references to children of the hierarchy below @root, or
1183 * @root itself, or %NULL after a full round-trip.
1184 *
1185 * Caller must pass the return value in @prev on subsequent
1186 * invocations for reference counting, or use mem_cgroup_iter_break()
1187 * to cancel a hierarchy walk before the round-trip is complete.
1188 *
1189 * Reclaimers can specify a zone and a priority level in @reclaim to
1190 * divide up the memcgs in the hierarchy among all concurrent
1191 * reclaimers operating on the same zone and priority.
1192 */
1193 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1194 struct mem_cgroup *prev,
1195 struct mem_cgroup_reclaim_cookie *reclaim)
1196 {
1197 struct mem_cgroup *memcg = NULL;
1198 struct mem_cgroup *last_visited = NULL;
1199
1200 if (mem_cgroup_disabled())
1201 return NULL;
1202
1203 if (!root)
1204 root = root_mem_cgroup;
1205
1206 if (prev && !reclaim)
1207 last_visited = prev;
1208
1209 if (!root->use_hierarchy && root != root_mem_cgroup) {
1210 if (prev)
1211 goto out_css_put;
1212 return root;
1213 }
1214
1215 rcu_read_lock();
1216 while (!memcg) {
1217 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1218 int uninitialized_var(seq);
1219
1220 if (reclaim) {
1221 struct mem_cgroup_per_zone *mz;
1222
1223 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1224 iter = &mz->reclaim_iter[reclaim->priority];
1225 if (prev && reclaim->generation != iter->generation) {
1226 iter->last_visited = NULL;
1227 goto out_unlock;
1228 }
1229
1230 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1231 }
1232
1233 memcg = __mem_cgroup_iter_next(root, last_visited);
1234
1235 if (reclaim) {
1236 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1237 seq);
1238
1239 if (!memcg)
1240 iter->generation++;
1241 else if (!prev && memcg)
1242 reclaim->generation = iter->generation;
1243 }
1244
1245 if (prev && !memcg)
1246 goto out_unlock;
1247 }
1248 out_unlock:
1249 rcu_read_unlock();
1250 out_css_put:
1251 if (prev && prev != root)
1252 css_put(&prev->css);
1253
1254 return memcg;
1255 }
1256
1257 /**
1258 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1259 * @root: hierarchy root
1260 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1261 */
1262 void mem_cgroup_iter_break(struct mem_cgroup *root,
1263 struct mem_cgroup *prev)
1264 {
1265 if (!root)
1266 root = root_mem_cgroup;
1267 if (prev && prev != root)
1268 css_put(&prev->css);
1269 }
1270
1271 /*
1272 * Iteration constructs for visiting all cgroups (under a tree). If
1273 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1274 * be used for reference counting.
1275 */
1276 #define for_each_mem_cgroup_tree(iter, root) \
1277 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1278 iter != NULL; \
1279 iter = mem_cgroup_iter(root, iter, NULL))
1280
1281 #define for_each_mem_cgroup(iter) \
1282 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1283 iter != NULL; \
1284 iter = mem_cgroup_iter(NULL, iter, NULL))
1285
1286 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1287 {
1288 struct mem_cgroup *memcg;
1289
1290 rcu_read_lock();
1291 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1292 if (unlikely(!memcg))
1293 goto out;
1294
1295 switch (idx) {
1296 case PGFAULT:
1297 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1298 break;
1299 case PGMAJFAULT:
1300 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1301 break;
1302 default:
1303 BUG();
1304 }
1305 out:
1306 rcu_read_unlock();
1307 }
1308 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1309
1310 /**
1311 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1312 * @zone: zone of the wanted lruvec
1313 * @memcg: memcg of the wanted lruvec
1314 *
1315 * Returns the lru list vector holding pages for the given @zone and
1316 * @mem. This can be the global zone lruvec, if the memory controller
1317 * is disabled.
1318 */
1319 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1320 struct mem_cgroup *memcg)
1321 {
1322 struct mem_cgroup_per_zone *mz;
1323 struct lruvec *lruvec;
1324
1325 if (mem_cgroup_disabled()) {
1326 lruvec = &zone->lruvec;
1327 goto out;
1328 }
1329
1330 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1331 lruvec = &mz->lruvec;
1332 out:
1333 /*
1334 * Since a node can be onlined after the mem_cgroup was created,
1335 * we have to be prepared to initialize lruvec->zone here;
1336 * and if offlined then reonlined, we need to reinitialize it.
1337 */
1338 if (unlikely(lruvec->zone != zone))
1339 lruvec->zone = zone;
1340 return lruvec;
1341 }
1342
1343 /**
1344 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1345 * @page: the page
1346 * @zone: zone of the page
1347 */
1348 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1349 {
1350 struct mem_cgroup_per_zone *mz;
1351 struct mem_cgroup *memcg;
1352 struct page_cgroup *pc;
1353 struct lruvec *lruvec;
1354
1355 if (mem_cgroup_disabled()) {
1356 lruvec = &zone->lruvec;
1357 goto out;
1358 }
1359
1360 pc = lookup_page_cgroup(page);
1361 memcg = pc->mem_cgroup;
1362
1363 /*
1364 * Surreptitiously switch any uncharged offlist page to root:
1365 * an uncharged page off lru does nothing to secure
1366 * its former mem_cgroup from sudden removal.
1367 *
1368 * Our caller holds lru_lock, and PageCgroupUsed is updated
1369 * under page_cgroup lock: between them, they make all uses
1370 * of pc->mem_cgroup safe.
1371 */
1372 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1373 pc->mem_cgroup = memcg = root_mem_cgroup;
1374
1375 mz = mem_cgroup_page_zoneinfo(memcg, page);
1376 lruvec = &mz->lruvec;
1377 out:
1378 /*
1379 * Since a node can be onlined after the mem_cgroup was created,
1380 * we have to be prepared to initialize lruvec->zone here;
1381 * and if offlined then reonlined, we need to reinitialize it.
1382 */
1383 if (unlikely(lruvec->zone != zone))
1384 lruvec->zone = zone;
1385 return lruvec;
1386 }
1387
1388 /**
1389 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1390 * @lruvec: mem_cgroup per zone lru vector
1391 * @lru: index of lru list the page is sitting on
1392 * @nr_pages: positive when adding or negative when removing
1393 *
1394 * This function must be called when a page is added to or removed from an
1395 * lru list.
1396 */
1397 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1398 int nr_pages)
1399 {
1400 struct mem_cgroup_per_zone *mz;
1401 unsigned long *lru_size;
1402
1403 if (mem_cgroup_disabled())
1404 return;
1405
1406 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1407 lru_size = mz->lru_size + lru;
1408 *lru_size += nr_pages;
1409 VM_BUG_ON((long)(*lru_size) < 0);
1410 }
1411
1412 /*
1413 * Checks whether given mem is same or in the root_mem_cgroup's
1414 * hierarchy subtree
1415 */
1416 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1417 struct mem_cgroup *memcg)
1418 {
1419 if (root_memcg == memcg)
1420 return true;
1421 if (!root_memcg->use_hierarchy || !memcg)
1422 return false;
1423 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1424 }
1425
1426 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1427 struct mem_cgroup *memcg)
1428 {
1429 bool ret;
1430
1431 rcu_read_lock();
1432 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1433 rcu_read_unlock();
1434 return ret;
1435 }
1436
1437 bool task_in_mem_cgroup(struct task_struct *task,
1438 const struct mem_cgroup *memcg)
1439 {
1440 struct mem_cgroup *curr = NULL;
1441 struct task_struct *p;
1442 bool ret;
1443
1444 p = find_lock_task_mm(task);
1445 if (p) {
1446 curr = get_mem_cgroup_from_mm(p->mm);
1447 task_unlock(p);
1448 } else {
1449 /*
1450 * All threads may have already detached their mm's, but the oom
1451 * killer still needs to detect if they have already been oom
1452 * killed to prevent needlessly killing additional tasks.
1453 */
1454 rcu_read_lock();
1455 curr = mem_cgroup_from_task(task);
1456 if (curr)
1457 css_get(&curr->css);
1458 rcu_read_unlock();
1459 }
1460 /*
1461 * We should check use_hierarchy of "memcg" not "curr". Because checking
1462 * use_hierarchy of "curr" here make this function true if hierarchy is
1463 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1464 * hierarchy(even if use_hierarchy is disabled in "memcg").
1465 */
1466 ret = mem_cgroup_same_or_subtree(memcg, curr);
1467 css_put(&curr->css);
1468 return ret;
1469 }
1470
1471 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1472 {
1473 unsigned long inactive_ratio;
1474 unsigned long inactive;
1475 unsigned long active;
1476 unsigned long gb;
1477
1478 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1479 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1480
1481 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1482 if (gb)
1483 inactive_ratio = int_sqrt(10 * gb);
1484 else
1485 inactive_ratio = 1;
1486
1487 return inactive * inactive_ratio < active;
1488 }
1489
1490 #define mem_cgroup_from_res_counter(counter, member) \
1491 container_of(counter, struct mem_cgroup, member)
1492
1493 /**
1494 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1495 * @memcg: the memory cgroup
1496 *
1497 * Returns the maximum amount of memory @mem can be charged with, in
1498 * pages.
1499 */
1500 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1501 {
1502 unsigned long long margin;
1503
1504 margin = res_counter_margin(&memcg->res);
1505 if (do_swap_account)
1506 margin = min(margin, res_counter_margin(&memcg->memsw));
1507 return margin >> PAGE_SHIFT;
1508 }
1509
1510 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1511 {
1512 /* root ? */
1513 if (mem_cgroup_disabled() || !memcg->css.parent)
1514 return vm_swappiness;
1515
1516 return memcg->swappiness;
1517 }
1518
1519 /*
1520 * memcg->moving_account is used for checking possibility that some thread is
1521 * calling move_account(). When a thread on CPU-A starts moving pages under
1522 * a memcg, other threads should check memcg->moving_account under
1523 * rcu_read_lock(), like this:
1524 *
1525 * CPU-A CPU-B
1526 * rcu_read_lock()
1527 * memcg->moving_account+1 if (memcg->mocing_account)
1528 * take heavy locks.
1529 * synchronize_rcu() update something.
1530 * rcu_read_unlock()
1531 * start move here.
1532 */
1533
1534 /* for quick checking without looking up memcg */
1535 atomic_t memcg_moving __read_mostly;
1536
1537 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1538 {
1539 atomic_inc(&memcg_moving);
1540 atomic_inc(&memcg->moving_account);
1541 synchronize_rcu();
1542 }
1543
1544 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1545 {
1546 /*
1547 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1548 * We check NULL in callee rather than caller.
1549 */
1550 if (memcg) {
1551 atomic_dec(&memcg_moving);
1552 atomic_dec(&memcg->moving_account);
1553 }
1554 }
1555
1556 /*
1557 * A routine for checking "mem" is under move_account() or not.
1558 *
1559 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1560 * moving cgroups. This is for waiting at high-memory pressure
1561 * caused by "move".
1562 */
1563 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1564 {
1565 struct mem_cgroup *from;
1566 struct mem_cgroup *to;
1567 bool ret = false;
1568 /*
1569 * Unlike task_move routines, we access mc.to, mc.from not under
1570 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1571 */
1572 spin_lock(&mc.lock);
1573 from = mc.from;
1574 to = mc.to;
1575 if (!from)
1576 goto unlock;
1577
1578 ret = mem_cgroup_same_or_subtree(memcg, from)
1579 || mem_cgroup_same_or_subtree(memcg, to);
1580 unlock:
1581 spin_unlock(&mc.lock);
1582 return ret;
1583 }
1584
1585 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1586 {
1587 if (mc.moving_task && current != mc.moving_task) {
1588 if (mem_cgroup_under_move(memcg)) {
1589 DEFINE_WAIT(wait);
1590 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1591 /* moving charge context might have finished. */
1592 if (mc.moving_task)
1593 schedule();
1594 finish_wait(&mc.waitq, &wait);
1595 return true;
1596 }
1597 }
1598 return false;
1599 }
1600
1601 /*
1602 * Take this lock when
1603 * - a code tries to modify page's memcg while it's USED.
1604 * - a code tries to modify page state accounting in a memcg.
1605 */
1606 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1607 unsigned long *flags)
1608 {
1609 spin_lock_irqsave(&memcg->move_lock, *flags);
1610 }
1611
1612 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1613 unsigned long *flags)
1614 {
1615 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1616 }
1617
1618 #define K(x) ((x) << (PAGE_SHIFT-10))
1619 /**
1620 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1621 * @memcg: The memory cgroup that went over limit
1622 * @p: Task that is going to be killed
1623 *
1624 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1625 * enabled
1626 */
1627 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1628 {
1629 /* oom_info_lock ensures that parallel ooms do not interleave */
1630 static DEFINE_MUTEX(oom_info_lock);
1631 struct mem_cgroup *iter;
1632 unsigned int i;
1633
1634 if (!p)
1635 return;
1636
1637 mutex_lock(&oom_info_lock);
1638 rcu_read_lock();
1639
1640 pr_info("Task in ");
1641 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1642 pr_info(" killed as a result of limit of ");
1643 pr_cont_cgroup_path(memcg->css.cgroup);
1644 pr_info("\n");
1645
1646 rcu_read_unlock();
1647
1648 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1649 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1650 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1651 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1652 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1653 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1654 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1655 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1656 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1657 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1658 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1659 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1660
1661 for_each_mem_cgroup_tree(iter, memcg) {
1662 pr_info("Memory cgroup stats for ");
1663 pr_cont_cgroup_path(iter->css.cgroup);
1664 pr_cont(":");
1665
1666 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1667 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1668 continue;
1669 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1670 K(mem_cgroup_read_stat(iter, i)));
1671 }
1672
1673 for (i = 0; i < NR_LRU_LISTS; i++)
1674 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1675 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1676
1677 pr_cont("\n");
1678 }
1679 mutex_unlock(&oom_info_lock);
1680 }
1681
1682 /*
1683 * This function returns the number of memcg under hierarchy tree. Returns
1684 * 1(self count) if no children.
1685 */
1686 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1687 {
1688 int num = 0;
1689 struct mem_cgroup *iter;
1690
1691 for_each_mem_cgroup_tree(iter, memcg)
1692 num++;
1693 return num;
1694 }
1695
1696 /*
1697 * Return the memory (and swap, if configured) limit for a memcg.
1698 */
1699 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1700 {
1701 u64 limit;
1702
1703 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1704
1705 /*
1706 * Do not consider swap space if we cannot swap due to swappiness
1707 */
1708 if (mem_cgroup_swappiness(memcg)) {
1709 u64 memsw;
1710
1711 limit += total_swap_pages << PAGE_SHIFT;
1712 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1713
1714 /*
1715 * If memsw is finite and limits the amount of swap space
1716 * available to this memcg, return that limit.
1717 */
1718 limit = min(limit, memsw);
1719 }
1720
1721 return limit;
1722 }
1723
1724 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1725 int order)
1726 {
1727 struct mem_cgroup *iter;
1728 unsigned long chosen_points = 0;
1729 unsigned long totalpages;
1730 unsigned int points = 0;
1731 struct task_struct *chosen = NULL;
1732
1733 /*
1734 * If current has a pending SIGKILL or is exiting, then automatically
1735 * select it. The goal is to allow it to allocate so that it may
1736 * quickly exit and free its memory.
1737 */
1738 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1739 set_thread_flag(TIF_MEMDIE);
1740 return;
1741 }
1742
1743 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1744 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1745 for_each_mem_cgroup_tree(iter, memcg) {
1746 struct css_task_iter it;
1747 struct task_struct *task;
1748
1749 css_task_iter_start(&iter->css, &it);
1750 while ((task = css_task_iter_next(&it))) {
1751 switch (oom_scan_process_thread(task, totalpages, NULL,
1752 false)) {
1753 case OOM_SCAN_SELECT:
1754 if (chosen)
1755 put_task_struct(chosen);
1756 chosen = task;
1757 chosen_points = ULONG_MAX;
1758 get_task_struct(chosen);
1759 /* fall through */
1760 case OOM_SCAN_CONTINUE:
1761 continue;
1762 case OOM_SCAN_ABORT:
1763 css_task_iter_end(&it);
1764 mem_cgroup_iter_break(memcg, iter);
1765 if (chosen)
1766 put_task_struct(chosen);
1767 return;
1768 case OOM_SCAN_OK:
1769 break;
1770 };
1771 points = oom_badness(task, memcg, NULL, totalpages);
1772 if (!points || points < chosen_points)
1773 continue;
1774 /* Prefer thread group leaders for display purposes */
1775 if (points == chosen_points &&
1776 thread_group_leader(chosen))
1777 continue;
1778
1779 if (chosen)
1780 put_task_struct(chosen);
1781 chosen = task;
1782 chosen_points = points;
1783 get_task_struct(chosen);
1784 }
1785 css_task_iter_end(&it);
1786 }
1787
1788 if (!chosen)
1789 return;
1790 points = chosen_points * 1000 / totalpages;
1791 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1792 NULL, "Memory cgroup out of memory");
1793 }
1794
1795 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1796 gfp_t gfp_mask,
1797 unsigned long flags)
1798 {
1799 unsigned long total = 0;
1800 bool noswap = false;
1801 int loop;
1802
1803 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1804 noswap = true;
1805 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1806 noswap = true;
1807
1808 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1809 if (loop)
1810 drain_all_stock_async(memcg);
1811 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1812 /*
1813 * Allow limit shrinkers, which are triggered directly
1814 * by userspace, to catch signals and stop reclaim
1815 * after minimal progress, regardless of the margin.
1816 */
1817 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1818 break;
1819 if (mem_cgroup_margin(memcg))
1820 break;
1821 /*
1822 * If nothing was reclaimed after two attempts, there
1823 * may be no reclaimable pages in this hierarchy.
1824 */
1825 if (loop && !total)
1826 break;
1827 }
1828 return total;
1829 }
1830
1831 /**
1832 * test_mem_cgroup_node_reclaimable
1833 * @memcg: the target memcg
1834 * @nid: the node ID to be checked.
1835 * @noswap : specify true here if the user wants flle only information.
1836 *
1837 * This function returns whether the specified memcg contains any
1838 * reclaimable pages on a node. Returns true if there are any reclaimable
1839 * pages in the node.
1840 */
1841 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1842 int nid, bool noswap)
1843 {
1844 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1845 return true;
1846 if (noswap || !total_swap_pages)
1847 return false;
1848 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1849 return true;
1850 return false;
1851
1852 }
1853 #if MAX_NUMNODES > 1
1854
1855 /*
1856 * Always updating the nodemask is not very good - even if we have an empty
1857 * list or the wrong list here, we can start from some node and traverse all
1858 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1859 *
1860 */
1861 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1862 {
1863 int nid;
1864 /*
1865 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1866 * pagein/pageout changes since the last update.
1867 */
1868 if (!atomic_read(&memcg->numainfo_events))
1869 return;
1870 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1871 return;
1872
1873 /* make a nodemask where this memcg uses memory from */
1874 memcg->scan_nodes = node_states[N_MEMORY];
1875
1876 for_each_node_mask(nid, node_states[N_MEMORY]) {
1877
1878 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1879 node_clear(nid, memcg->scan_nodes);
1880 }
1881
1882 atomic_set(&memcg->numainfo_events, 0);
1883 atomic_set(&memcg->numainfo_updating, 0);
1884 }
1885
1886 /*
1887 * Selecting a node where we start reclaim from. Because what we need is just
1888 * reducing usage counter, start from anywhere is O,K. Considering
1889 * memory reclaim from current node, there are pros. and cons.
1890 *
1891 * Freeing memory from current node means freeing memory from a node which
1892 * we'll use or we've used. So, it may make LRU bad. And if several threads
1893 * hit limits, it will see a contention on a node. But freeing from remote
1894 * node means more costs for memory reclaim because of memory latency.
1895 *
1896 * Now, we use round-robin. Better algorithm is welcomed.
1897 */
1898 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1899 {
1900 int node;
1901
1902 mem_cgroup_may_update_nodemask(memcg);
1903 node = memcg->last_scanned_node;
1904
1905 node = next_node(node, memcg->scan_nodes);
1906 if (node == MAX_NUMNODES)
1907 node = first_node(memcg->scan_nodes);
1908 /*
1909 * We call this when we hit limit, not when pages are added to LRU.
1910 * No LRU may hold pages because all pages are UNEVICTABLE or
1911 * memcg is too small and all pages are not on LRU. In that case,
1912 * we use curret node.
1913 */
1914 if (unlikely(node == MAX_NUMNODES))
1915 node = numa_node_id();
1916
1917 memcg->last_scanned_node = node;
1918 return node;
1919 }
1920
1921 /*
1922 * Check all nodes whether it contains reclaimable pages or not.
1923 * For quick scan, we make use of scan_nodes. This will allow us to skip
1924 * unused nodes. But scan_nodes is lazily updated and may not cotain
1925 * enough new information. We need to do double check.
1926 */
1927 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1928 {
1929 int nid;
1930
1931 /*
1932 * quick check...making use of scan_node.
1933 * We can skip unused nodes.
1934 */
1935 if (!nodes_empty(memcg->scan_nodes)) {
1936 for (nid = first_node(memcg->scan_nodes);
1937 nid < MAX_NUMNODES;
1938 nid = next_node(nid, memcg->scan_nodes)) {
1939
1940 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1941 return true;
1942 }
1943 }
1944 /*
1945 * Check rest of nodes.
1946 */
1947 for_each_node_state(nid, N_MEMORY) {
1948 if (node_isset(nid, memcg->scan_nodes))
1949 continue;
1950 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1951 return true;
1952 }
1953 return false;
1954 }
1955
1956 #else
1957 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1958 {
1959 return 0;
1960 }
1961
1962 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1963 {
1964 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1965 }
1966 #endif
1967
1968 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1969 struct zone *zone,
1970 gfp_t gfp_mask,
1971 unsigned long *total_scanned)
1972 {
1973 struct mem_cgroup *victim = NULL;
1974 int total = 0;
1975 int loop = 0;
1976 unsigned long excess;
1977 unsigned long nr_scanned;
1978 struct mem_cgroup_reclaim_cookie reclaim = {
1979 .zone = zone,
1980 .priority = 0,
1981 };
1982
1983 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1984
1985 while (1) {
1986 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1987 if (!victim) {
1988 loop++;
1989 if (loop >= 2) {
1990 /*
1991 * If we have not been able to reclaim
1992 * anything, it might because there are
1993 * no reclaimable pages under this hierarchy
1994 */
1995 if (!total)
1996 break;
1997 /*
1998 * We want to do more targeted reclaim.
1999 * excess >> 2 is not to excessive so as to
2000 * reclaim too much, nor too less that we keep
2001 * coming back to reclaim from this cgroup
2002 */
2003 if (total >= (excess >> 2) ||
2004 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2005 break;
2006 }
2007 continue;
2008 }
2009 if (!mem_cgroup_reclaimable(victim, false))
2010 continue;
2011 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2012 zone, &nr_scanned);
2013 *total_scanned += nr_scanned;
2014 if (!res_counter_soft_limit_excess(&root_memcg->res))
2015 break;
2016 }
2017 mem_cgroup_iter_break(root_memcg, victim);
2018 return total;
2019 }
2020
2021 #ifdef CONFIG_LOCKDEP
2022 static struct lockdep_map memcg_oom_lock_dep_map = {
2023 .name = "memcg_oom_lock",
2024 };
2025 #endif
2026
2027 static DEFINE_SPINLOCK(memcg_oom_lock);
2028
2029 /*
2030 * Check OOM-Killer is already running under our hierarchy.
2031 * If someone is running, return false.
2032 */
2033 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2034 {
2035 struct mem_cgroup *iter, *failed = NULL;
2036
2037 spin_lock(&memcg_oom_lock);
2038
2039 for_each_mem_cgroup_tree(iter, memcg) {
2040 if (iter->oom_lock) {
2041 /*
2042 * this subtree of our hierarchy is already locked
2043 * so we cannot give a lock.
2044 */
2045 failed = iter;
2046 mem_cgroup_iter_break(memcg, iter);
2047 break;
2048 } else
2049 iter->oom_lock = true;
2050 }
2051
2052 if (failed) {
2053 /*
2054 * OK, we failed to lock the whole subtree so we have
2055 * to clean up what we set up to the failing subtree
2056 */
2057 for_each_mem_cgroup_tree(iter, memcg) {
2058 if (iter == failed) {
2059 mem_cgroup_iter_break(memcg, iter);
2060 break;
2061 }
2062 iter->oom_lock = false;
2063 }
2064 } else
2065 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2066
2067 spin_unlock(&memcg_oom_lock);
2068
2069 return !failed;
2070 }
2071
2072 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2073 {
2074 struct mem_cgroup *iter;
2075
2076 spin_lock(&memcg_oom_lock);
2077 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2078 for_each_mem_cgroup_tree(iter, memcg)
2079 iter->oom_lock = false;
2080 spin_unlock(&memcg_oom_lock);
2081 }
2082
2083 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2084 {
2085 struct mem_cgroup *iter;
2086
2087 for_each_mem_cgroup_tree(iter, memcg)
2088 atomic_inc(&iter->under_oom);
2089 }
2090
2091 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2092 {
2093 struct mem_cgroup *iter;
2094
2095 /*
2096 * When a new child is created while the hierarchy is under oom,
2097 * mem_cgroup_oom_lock() may not be called. We have to use
2098 * atomic_add_unless() here.
2099 */
2100 for_each_mem_cgroup_tree(iter, memcg)
2101 atomic_add_unless(&iter->under_oom, -1, 0);
2102 }
2103
2104 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2105
2106 struct oom_wait_info {
2107 struct mem_cgroup *memcg;
2108 wait_queue_t wait;
2109 };
2110
2111 static int memcg_oom_wake_function(wait_queue_t *wait,
2112 unsigned mode, int sync, void *arg)
2113 {
2114 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2115 struct mem_cgroup *oom_wait_memcg;
2116 struct oom_wait_info *oom_wait_info;
2117
2118 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2119 oom_wait_memcg = oom_wait_info->memcg;
2120
2121 /*
2122 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2123 * Then we can use css_is_ancestor without taking care of RCU.
2124 */
2125 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2126 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2127 return 0;
2128 return autoremove_wake_function(wait, mode, sync, arg);
2129 }
2130
2131 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2132 {
2133 atomic_inc(&memcg->oom_wakeups);
2134 /* for filtering, pass "memcg" as argument. */
2135 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2136 }
2137
2138 static void memcg_oom_recover(struct mem_cgroup *memcg)
2139 {
2140 if (memcg && atomic_read(&memcg->under_oom))
2141 memcg_wakeup_oom(memcg);
2142 }
2143
2144 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2145 {
2146 if (!current->memcg_oom.may_oom)
2147 return;
2148 /*
2149 * We are in the middle of the charge context here, so we
2150 * don't want to block when potentially sitting on a callstack
2151 * that holds all kinds of filesystem and mm locks.
2152 *
2153 * Also, the caller may handle a failed allocation gracefully
2154 * (like optional page cache readahead) and so an OOM killer
2155 * invocation might not even be necessary.
2156 *
2157 * That's why we don't do anything here except remember the
2158 * OOM context and then deal with it at the end of the page
2159 * fault when the stack is unwound, the locks are released,
2160 * and when we know whether the fault was overall successful.
2161 */
2162 css_get(&memcg->css);
2163 current->memcg_oom.memcg = memcg;
2164 current->memcg_oom.gfp_mask = mask;
2165 current->memcg_oom.order = order;
2166 }
2167
2168 /**
2169 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2170 * @handle: actually kill/wait or just clean up the OOM state
2171 *
2172 * This has to be called at the end of a page fault if the memcg OOM
2173 * handler was enabled.
2174 *
2175 * Memcg supports userspace OOM handling where failed allocations must
2176 * sleep on a waitqueue until the userspace task resolves the
2177 * situation. Sleeping directly in the charge context with all kinds
2178 * of locks held is not a good idea, instead we remember an OOM state
2179 * in the task and mem_cgroup_oom_synchronize() has to be called at
2180 * the end of the page fault to complete the OOM handling.
2181 *
2182 * Returns %true if an ongoing memcg OOM situation was detected and
2183 * completed, %false otherwise.
2184 */
2185 bool mem_cgroup_oom_synchronize(bool handle)
2186 {
2187 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2188 struct oom_wait_info owait;
2189 bool locked;
2190
2191 /* OOM is global, do not handle */
2192 if (!memcg)
2193 return false;
2194
2195 if (!handle)
2196 goto cleanup;
2197
2198 owait.memcg = memcg;
2199 owait.wait.flags = 0;
2200 owait.wait.func = memcg_oom_wake_function;
2201 owait.wait.private = current;
2202 INIT_LIST_HEAD(&owait.wait.task_list);
2203
2204 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2205 mem_cgroup_mark_under_oom(memcg);
2206
2207 locked = mem_cgroup_oom_trylock(memcg);
2208
2209 if (locked)
2210 mem_cgroup_oom_notify(memcg);
2211
2212 if (locked && !memcg->oom_kill_disable) {
2213 mem_cgroup_unmark_under_oom(memcg);
2214 finish_wait(&memcg_oom_waitq, &owait.wait);
2215 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2216 current->memcg_oom.order);
2217 } else {
2218 schedule();
2219 mem_cgroup_unmark_under_oom(memcg);
2220 finish_wait(&memcg_oom_waitq, &owait.wait);
2221 }
2222
2223 if (locked) {
2224 mem_cgroup_oom_unlock(memcg);
2225 /*
2226 * There is no guarantee that an OOM-lock contender
2227 * sees the wakeups triggered by the OOM kill
2228 * uncharges. Wake any sleepers explicitely.
2229 */
2230 memcg_oom_recover(memcg);
2231 }
2232 cleanup:
2233 current->memcg_oom.memcg = NULL;
2234 css_put(&memcg->css);
2235 return true;
2236 }
2237
2238 /*
2239 * Used to update mapped file or writeback or other statistics.
2240 *
2241 * Notes: Race condition
2242 *
2243 * Charging occurs during page instantiation, while the page is
2244 * unmapped and locked in page migration, or while the page table is
2245 * locked in THP migration. No race is possible.
2246 *
2247 * Uncharge happens to pages with zero references, no race possible.
2248 *
2249 * Charge moving between groups is protected by checking mm->moving
2250 * account and taking the move_lock in the slowpath.
2251 */
2252
2253 void __mem_cgroup_begin_update_page_stat(struct page *page,
2254 bool *locked, unsigned long *flags)
2255 {
2256 struct mem_cgroup *memcg;
2257 struct page_cgroup *pc;
2258
2259 pc = lookup_page_cgroup(page);
2260 again:
2261 memcg = pc->mem_cgroup;
2262 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2263 return;
2264 /*
2265 * If this memory cgroup is not under account moving, we don't
2266 * need to take move_lock_mem_cgroup(). Because we already hold
2267 * rcu_read_lock(), any calls to move_account will be delayed until
2268 * rcu_read_unlock().
2269 */
2270 VM_BUG_ON(!rcu_read_lock_held());
2271 if (atomic_read(&memcg->moving_account) <= 0)
2272 return;
2273
2274 move_lock_mem_cgroup(memcg, flags);
2275 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2276 move_unlock_mem_cgroup(memcg, flags);
2277 goto again;
2278 }
2279 *locked = true;
2280 }
2281
2282 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2283 {
2284 struct page_cgroup *pc = lookup_page_cgroup(page);
2285
2286 /*
2287 * It's guaranteed that pc->mem_cgroup never changes while
2288 * lock is held because a routine modifies pc->mem_cgroup
2289 * should take move_lock_mem_cgroup().
2290 */
2291 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2292 }
2293
2294 void mem_cgroup_update_page_stat(struct page *page,
2295 enum mem_cgroup_stat_index idx, int val)
2296 {
2297 struct mem_cgroup *memcg;
2298 struct page_cgroup *pc = lookup_page_cgroup(page);
2299 unsigned long uninitialized_var(flags);
2300
2301 if (mem_cgroup_disabled())
2302 return;
2303
2304 VM_BUG_ON(!rcu_read_lock_held());
2305 memcg = pc->mem_cgroup;
2306 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2307 return;
2308
2309 this_cpu_add(memcg->stat->count[idx], val);
2310 }
2311
2312 /*
2313 * size of first charge trial. "32" comes from vmscan.c's magic value.
2314 * TODO: maybe necessary to use big numbers in big irons.
2315 */
2316 #define CHARGE_BATCH 32U
2317 struct memcg_stock_pcp {
2318 struct mem_cgroup *cached; /* this never be root cgroup */
2319 unsigned int nr_pages;
2320 struct work_struct work;
2321 unsigned long flags;
2322 #define FLUSHING_CACHED_CHARGE 0
2323 };
2324 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2325 static DEFINE_MUTEX(percpu_charge_mutex);
2326
2327 /**
2328 * consume_stock: Try to consume stocked charge on this cpu.
2329 * @memcg: memcg to consume from.
2330 * @nr_pages: how many pages to charge.
2331 *
2332 * The charges will only happen if @memcg matches the current cpu's memcg
2333 * stock, and at least @nr_pages are available in that stock. Failure to
2334 * service an allocation will refill the stock.
2335 *
2336 * returns true if successful, false otherwise.
2337 */
2338 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2339 {
2340 struct memcg_stock_pcp *stock;
2341 bool ret = true;
2342
2343 if (nr_pages > CHARGE_BATCH)
2344 return false;
2345
2346 stock = &get_cpu_var(memcg_stock);
2347 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2348 stock->nr_pages -= nr_pages;
2349 else /* need to call res_counter_charge */
2350 ret = false;
2351 put_cpu_var(memcg_stock);
2352 return ret;
2353 }
2354
2355 /*
2356 * Returns stocks cached in percpu to res_counter and reset cached information.
2357 */
2358 static void drain_stock(struct memcg_stock_pcp *stock)
2359 {
2360 struct mem_cgroup *old = stock->cached;
2361
2362 if (stock->nr_pages) {
2363 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2364
2365 res_counter_uncharge(&old->res, bytes);
2366 if (do_swap_account)
2367 res_counter_uncharge(&old->memsw, bytes);
2368 stock->nr_pages = 0;
2369 }
2370 stock->cached = NULL;
2371 }
2372
2373 /*
2374 * This must be called under preempt disabled or must be called by
2375 * a thread which is pinned to local cpu.
2376 */
2377 static void drain_local_stock(struct work_struct *dummy)
2378 {
2379 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2380 drain_stock(stock);
2381 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2382 }
2383
2384 static void __init memcg_stock_init(void)
2385 {
2386 int cpu;
2387
2388 for_each_possible_cpu(cpu) {
2389 struct memcg_stock_pcp *stock =
2390 &per_cpu(memcg_stock, cpu);
2391 INIT_WORK(&stock->work, drain_local_stock);
2392 }
2393 }
2394
2395 /*
2396 * Cache charges(val) which is from res_counter, to local per_cpu area.
2397 * This will be consumed by consume_stock() function, later.
2398 */
2399 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2400 {
2401 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2402
2403 if (stock->cached != memcg) { /* reset if necessary */
2404 drain_stock(stock);
2405 stock->cached = memcg;
2406 }
2407 stock->nr_pages += nr_pages;
2408 put_cpu_var(memcg_stock);
2409 }
2410
2411 /*
2412 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2413 * of the hierarchy under it. sync flag says whether we should block
2414 * until the work is done.
2415 */
2416 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2417 {
2418 int cpu, curcpu;
2419
2420 /* Notify other cpus that system-wide "drain" is running */
2421 get_online_cpus();
2422 curcpu = get_cpu();
2423 for_each_online_cpu(cpu) {
2424 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2425 struct mem_cgroup *memcg;
2426
2427 memcg = stock->cached;
2428 if (!memcg || !stock->nr_pages)
2429 continue;
2430 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2431 continue;
2432 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2433 if (cpu == curcpu)
2434 drain_local_stock(&stock->work);
2435 else
2436 schedule_work_on(cpu, &stock->work);
2437 }
2438 }
2439 put_cpu();
2440
2441 if (!sync)
2442 goto out;
2443
2444 for_each_online_cpu(cpu) {
2445 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2446 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2447 flush_work(&stock->work);
2448 }
2449 out:
2450 put_online_cpus();
2451 }
2452
2453 /*
2454 * Tries to drain stocked charges in other cpus. This function is asynchronous
2455 * and just put a work per cpu for draining localy on each cpu. Caller can
2456 * expects some charges will be back to res_counter later but cannot wait for
2457 * it.
2458 */
2459 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2460 {
2461 /*
2462 * If someone calls draining, avoid adding more kworker runs.
2463 */
2464 if (!mutex_trylock(&percpu_charge_mutex))
2465 return;
2466 drain_all_stock(root_memcg, false);
2467 mutex_unlock(&percpu_charge_mutex);
2468 }
2469
2470 /* This is a synchronous drain interface. */
2471 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2472 {
2473 /* called when force_empty is called */
2474 mutex_lock(&percpu_charge_mutex);
2475 drain_all_stock(root_memcg, true);
2476 mutex_unlock(&percpu_charge_mutex);
2477 }
2478
2479 /*
2480 * This function drains percpu counter value from DEAD cpu and
2481 * move it to local cpu. Note that this function can be preempted.
2482 */
2483 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2484 {
2485 int i;
2486
2487 spin_lock(&memcg->pcp_counter_lock);
2488 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2489 long x = per_cpu(memcg->stat->count[i], cpu);
2490
2491 per_cpu(memcg->stat->count[i], cpu) = 0;
2492 memcg->nocpu_base.count[i] += x;
2493 }
2494 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2495 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2496
2497 per_cpu(memcg->stat->events[i], cpu) = 0;
2498 memcg->nocpu_base.events[i] += x;
2499 }
2500 spin_unlock(&memcg->pcp_counter_lock);
2501 }
2502
2503 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2504 unsigned long action,
2505 void *hcpu)
2506 {
2507 int cpu = (unsigned long)hcpu;
2508 struct memcg_stock_pcp *stock;
2509 struct mem_cgroup *iter;
2510
2511 if (action == CPU_ONLINE)
2512 return NOTIFY_OK;
2513
2514 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2515 return NOTIFY_OK;
2516
2517 for_each_mem_cgroup(iter)
2518 mem_cgroup_drain_pcp_counter(iter, cpu);
2519
2520 stock = &per_cpu(memcg_stock, cpu);
2521 drain_stock(stock);
2522 return NOTIFY_OK;
2523 }
2524
2525 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2526 unsigned int nr_pages)
2527 {
2528 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2529 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2530 struct mem_cgroup *mem_over_limit;
2531 struct res_counter *fail_res;
2532 unsigned long nr_reclaimed;
2533 unsigned long flags = 0;
2534 unsigned long long size;
2535 int ret = 0;
2536
2537 retry:
2538 if (consume_stock(memcg, nr_pages))
2539 goto done;
2540
2541 size = batch * PAGE_SIZE;
2542 if (!res_counter_charge(&memcg->res, size, &fail_res)) {
2543 if (!do_swap_account)
2544 goto done_restock;
2545 if (!res_counter_charge(&memcg->memsw, size, &fail_res))
2546 goto done_restock;
2547 res_counter_uncharge(&memcg->res, size);
2548 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2549 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2550 } else
2551 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2552
2553 if (batch > nr_pages) {
2554 batch = nr_pages;
2555 goto retry;
2556 }
2557
2558 /*
2559 * Unlike in global OOM situations, memcg is not in a physical
2560 * memory shortage. Allow dying and OOM-killed tasks to
2561 * bypass the last charges so that they can exit quickly and
2562 * free their memory.
2563 */
2564 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2565 fatal_signal_pending(current) ||
2566 current->flags & PF_EXITING))
2567 goto bypass;
2568
2569 if (unlikely(task_in_memcg_oom(current)))
2570 goto nomem;
2571
2572 if (!(gfp_mask & __GFP_WAIT))
2573 goto nomem;
2574
2575 nr_reclaimed = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2576
2577 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2578 goto retry;
2579
2580 if (gfp_mask & __GFP_NORETRY)
2581 goto nomem;
2582 /*
2583 * Even though the limit is exceeded at this point, reclaim
2584 * may have been able to free some pages. Retry the charge
2585 * before killing the task.
2586 *
2587 * Only for regular pages, though: huge pages are rather
2588 * unlikely to succeed so close to the limit, and we fall back
2589 * to regular pages anyway in case of failure.
2590 */
2591 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2592 goto retry;
2593 /*
2594 * At task move, charge accounts can be doubly counted. So, it's
2595 * better to wait until the end of task_move if something is going on.
2596 */
2597 if (mem_cgroup_wait_acct_move(mem_over_limit))
2598 goto retry;
2599
2600 if (nr_retries--)
2601 goto retry;
2602
2603 if (gfp_mask & __GFP_NOFAIL)
2604 goto bypass;
2605
2606 if (fatal_signal_pending(current))
2607 goto bypass;
2608
2609 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2610 nomem:
2611 if (!(gfp_mask & __GFP_NOFAIL))
2612 return -ENOMEM;
2613 bypass:
2614 memcg = root_mem_cgroup;
2615 ret = -EINTR;
2616 goto retry;
2617
2618 done_restock:
2619 if (batch > nr_pages)
2620 refill_stock(memcg, batch - nr_pages);
2621 done:
2622 return ret;
2623 }
2624
2625 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2626 {
2627 unsigned long bytes = nr_pages * PAGE_SIZE;
2628
2629 res_counter_uncharge(&memcg->res, bytes);
2630 if (do_swap_account)
2631 res_counter_uncharge(&memcg->memsw, bytes);
2632 }
2633
2634 /*
2635 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2636 * This is useful when moving usage to parent cgroup.
2637 */
2638 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2639 unsigned int nr_pages)
2640 {
2641 unsigned long bytes = nr_pages * PAGE_SIZE;
2642
2643 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2644 if (do_swap_account)
2645 res_counter_uncharge_until(&memcg->memsw,
2646 memcg->memsw.parent, bytes);
2647 }
2648
2649 /*
2650 * A helper function to get mem_cgroup from ID. must be called under
2651 * rcu_read_lock(). The caller is responsible for calling
2652 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2653 * refcnt from swap can be called against removed memcg.)
2654 */
2655 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2656 {
2657 /* ID 0 is unused ID */
2658 if (!id)
2659 return NULL;
2660 return mem_cgroup_from_id(id);
2661 }
2662
2663 /*
2664 * try_get_mem_cgroup_from_page - look up page's memcg association
2665 * @page: the page
2666 *
2667 * Look up, get a css reference, and return the memcg that owns @page.
2668 *
2669 * The page must be locked to prevent racing with swap-in and page
2670 * cache charges. If coming from an unlocked page table, the caller
2671 * must ensure the page is on the LRU or this can race with charging.
2672 */
2673 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2674 {
2675 struct mem_cgroup *memcg = NULL;
2676 struct page_cgroup *pc;
2677 unsigned short id;
2678 swp_entry_t ent;
2679
2680 VM_BUG_ON_PAGE(!PageLocked(page), page);
2681
2682 pc = lookup_page_cgroup(page);
2683 if (PageCgroupUsed(pc)) {
2684 memcg = pc->mem_cgroup;
2685 if (memcg && !css_tryget_online(&memcg->css))
2686 memcg = NULL;
2687 } else if (PageSwapCache(page)) {
2688 ent.val = page_private(page);
2689 id = lookup_swap_cgroup_id(ent);
2690 rcu_read_lock();
2691 memcg = mem_cgroup_lookup(id);
2692 if (memcg && !css_tryget_online(&memcg->css))
2693 memcg = NULL;
2694 rcu_read_unlock();
2695 }
2696 return memcg;
2697 }
2698
2699 static void lock_page_lru(struct page *page, int *isolated)
2700 {
2701 struct zone *zone = page_zone(page);
2702
2703 spin_lock_irq(&zone->lru_lock);
2704 if (PageLRU(page)) {
2705 struct lruvec *lruvec;
2706
2707 lruvec = mem_cgroup_page_lruvec(page, zone);
2708 ClearPageLRU(page);
2709 del_page_from_lru_list(page, lruvec, page_lru(page));
2710 *isolated = 1;
2711 } else
2712 *isolated = 0;
2713 }
2714
2715 static void unlock_page_lru(struct page *page, int isolated)
2716 {
2717 struct zone *zone = page_zone(page);
2718
2719 if (isolated) {
2720 struct lruvec *lruvec;
2721
2722 lruvec = mem_cgroup_page_lruvec(page, zone);
2723 VM_BUG_ON_PAGE(PageLRU(page), page);
2724 SetPageLRU(page);
2725 add_page_to_lru_list(page, lruvec, page_lru(page));
2726 }
2727 spin_unlock_irq(&zone->lru_lock);
2728 }
2729
2730 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2731 bool lrucare)
2732 {
2733 struct page_cgroup *pc = lookup_page_cgroup(page);
2734 int isolated;
2735
2736 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2737 /*
2738 * we don't need page_cgroup_lock about tail pages, becase they are not
2739 * accessed by any other context at this point.
2740 */
2741
2742 /*
2743 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2744 * may already be on some other mem_cgroup's LRU. Take care of it.
2745 */
2746 if (lrucare)
2747 lock_page_lru(page, &isolated);
2748
2749 /*
2750 * Nobody should be changing or seriously looking at
2751 * pc->mem_cgroup and pc->flags at this point:
2752 *
2753 * - the page is uncharged
2754 *
2755 * - the page is off-LRU
2756 *
2757 * - an anonymous fault has exclusive page access, except for
2758 * a locked page table
2759 *
2760 * - a page cache insertion, a swapin fault, or a migration
2761 * have the page locked
2762 */
2763 pc->mem_cgroup = memcg;
2764 pc->flags = PCG_USED | PCG_MEM | (do_swap_account ? PCG_MEMSW : 0);
2765
2766 if (lrucare)
2767 unlock_page_lru(page, isolated);
2768 }
2769
2770 static DEFINE_MUTEX(set_limit_mutex);
2771
2772 #ifdef CONFIG_MEMCG_KMEM
2773 /*
2774 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2775 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2776 */
2777 static DEFINE_MUTEX(memcg_slab_mutex);
2778
2779 static DEFINE_MUTEX(activate_kmem_mutex);
2780
2781 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2782 {
2783 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2784 memcg_kmem_is_active(memcg);
2785 }
2786
2787 /*
2788 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2789 * in the memcg_cache_params struct.
2790 */
2791 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2792 {
2793 struct kmem_cache *cachep;
2794
2795 VM_BUG_ON(p->is_root_cache);
2796 cachep = p->root_cache;
2797 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2798 }
2799
2800 #ifdef CONFIG_SLABINFO
2801 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2802 {
2803 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2804 struct memcg_cache_params *params;
2805
2806 if (!memcg_can_account_kmem(memcg))
2807 return -EIO;
2808
2809 print_slabinfo_header(m);
2810
2811 mutex_lock(&memcg_slab_mutex);
2812 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2813 cache_show(memcg_params_to_cache(params), m);
2814 mutex_unlock(&memcg_slab_mutex);
2815
2816 return 0;
2817 }
2818 #endif
2819
2820 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2821 {
2822 struct res_counter *fail_res;
2823 int ret = 0;
2824
2825 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2826 if (ret)
2827 return ret;
2828
2829 ret = try_charge(memcg, gfp, size >> PAGE_SHIFT);
2830 if (ret == -EINTR) {
2831 /*
2832 * try_charge() chose to bypass to root due to OOM kill or
2833 * fatal signal. Since our only options are to either fail
2834 * the allocation or charge it to this cgroup, do it as a
2835 * temporary condition. But we can't fail. From a kmem/slab
2836 * perspective, the cache has already been selected, by
2837 * mem_cgroup_kmem_get_cache(), so it is too late to change
2838 * our minds.
2839 *
2840 * This condition will only trigger if the task entered
2841 * memcg_charge_kmem in a sane state, but was OOM-killed
2842 * during try_charge() above. Tasks that were already dying
2843 * when the allocation triggers should have been already
2844 * directed to the root cgroup in memcontrol.h
2845 */
2846 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2847 if (do_swap_account)
2848 res_counter_charge_nofail(&memcg->memsw, size,
2849 &fail_res);
2850 ret = 0;
2851 } else if (ret)
2852 res_counter_uncharge(&memcg->kmem, size);
2853
2854 return ret;
2855 }
2856
2857 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2858 {
2859 res_counter_uncharge(&memcg->res, size);
2860 if (do_swap_account)
2861 res_counter_uncharge(&memcg->memsw, size);
2862
2863 /* Not down to 0 */
2864 if (res_counter_uncharge(&memcg->kmem, size))
2865 return;
2866
2867 /*
2868 * Releases a reference taken in kmem_cgroup_css_offline in case
2869 * this last uncharge is racing with the offlining code or it is
2870 * outliving the memcg existence.
2871 *
2872 * The memory barrier imposed by test&clear is paired with the
2873 * explicit one in memcg_kmem_mark_dead().
2874 */
2875 if (memcg_kmem_test_and_clear_dead(memcg))
2876 css_put(&memcg->css);
2877 }
2878
2879 /*
2880 * helper for acessing a memcg's index. It will be used as an index in the
2881 * child cache array in kmem_cache, and also to derive its name. This function
2882 * will return -1 when this is not a kmem-limited memcg.
2883 */
2884 int memcg_cache_id(struct mem_cgroup *memcg)
2885 {
2886 return memcg ? memcg->kmemcg_id : -1;
2887 }
2888
2889 static size_t memcg_caches_array_size(int num_groups)
2890 {
2891 ssize_t size;
2892 if (num_groups <= 0)
2893 return 0;
2894
2895 size = 2 * num_groups;
2896 if (size < MEMCG_CACHES_MIN_SIZE)
2897 size = MEMCG_CACHES_MIN_SIZE;
2898 else if (size > MEMCG_CACHES_MAX_SIZE)
2899 size = MEMCG_CACHES_MAX_SIZE;
2900
2901 return size;
2902 }
2903
2904 /*
2905 * We should update the current array size iff all caches updates succeed. This
2906 * can only be done from the slab side. The slab mutex needs to be held when
2907 * calling this.
2908 */
2909 void memcg_update_array_size(int num)
2910 {
2911 if (num > memcg_limited_groups_array_size)
2912 memcg_limited_groups_array_size = memcg_caches_array_size(num);
2913 }
2914
2915 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
2916 {
2917 struct memcg_cache_params *cur_params = s->memcg_params;
2918
2919 VM_BUG_ON(!is_root_cache(s));
2920
2921 if (num_groups > memcg_limited_groups_array_size) {
2922 int i;
2923 struct memcg_cache_params *new_params;
2924 ssize_t size = memcg_caches_array_size(num_groups);
2925
2926 size *= sizeof(void *);
2927 size += offsetof(struct memcg_cache_params, memcg_caches);
2928
2929 new_params = kzalloc(size, GFP_KERNEL);
2930 if (!new_params)
2931 return -ENOMEM;
2932
2933 new_params->is_root_cache = true;
2934
2935 /*
2936 * There is the chance it will be bigger than
2937 * memcg_limited_groups_array_size, if we failed an allocation
2938 * in a cache, in which case all caches updated before it, will
2939 * have a bigger array.
2940 *
2941 * But if that is the case, the data after
2942 * memcg_limited_groups_array_size is certainly unused
2943 */
2944 for (i = 0; i < memcg_limited_groups_array_size; i++) {
2945 if (!cur_params->memcg_caches[i])
2946 continue;
2947 new_params->memcg_caches[i] =
2948 cur_params->memcg_caches[i];
2949 }
2950
2951 /*
2952 * Ideally, we would wait until all caches succeed, and only
2953 * then free the old one. But this is not worth the extra
2954 * pointer per-cache we'd have to have for this.
2955 *
2956 * It is not a big deal if some caches are left with a size
2957 * bigger than the others. And all updates will reset this
2958 * anyway.
2959 */
2960 rcu_assign_pointer(s->memcg_params, new_params);
2961 if (cur_params)
2962 kfree_rcu(cur_params, rcu_head);
2963 }
2964 return 0;
2965 }
2966
2967 int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
2968 struct kmem_cache *root_cache)
2969 {
2970 size_t size;
2971
2972 if (!memcg_kmem_enabled())
2973 return 0;
2974
2975 if (!memcg) {
2976 size = offsetof(struct memcg_cache_params, memcg_caches);
2977 size += memcg_limited_groups_array_size * sizeof(void *);
2978 } else
2979 size = sizeof(struct memcg_cache_params);
2980
2981 s->memcg_params = kzalloc(size, GFP_KERNEL);
2982 if (!s->memcg_params)
2983 return -ENOMEM;
2984
2985 if (memcg) {
2986 s->memcg_params->memcg = memcg;
2987 s->memcg_params->root_cache = root_cache;
2988 css_get(&memcg->css);
2989 } else
2990 s->memcg_params->is_root_cache = true;
2991
2992 return 0;
2993 }
2994
2995 void memcg_free_cache_params(struct kmem_cache *s)
2996 {
2997 if (!s->memcg_params)
2998 return;
2999 if (!s->memcg_params->is_root_cache)
3000 css_put(&s->memcg_params->memcg->css);
3001 kfree(s->memcg_params);
3002 }
3003
3004 static void memcg_register_cache(struct mem_cgroup *memcg,
3005 struct kmem_cache *root_cache)
3006 {
3007 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
3008 memcg_slab_mutex */
3009 struct kmem_cache *cachep;
3010 int id;
3011
3012 lockdep_assert_held(&memcg_slab_mutex);
3013
3014 id = memcg_cache_id(memcg);
3015
3016 /*
3017 * Since per-memcg caches are created asynchronously on first
3018 * allocation (see memcg_kmem_get_cache()), several threads can try to
3019 * create the same cache, but only one of them may succeed.
3020 */
3021 if (cache_from_memcg_idx(root_cache, id))
3022 return;
3023
3024 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
3025 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
3026 /*
3027 * If we could not create a memcg cache, do not complain, because
3028 * that's not critical at all as we can always proceed with the root
3029 * cache.
3030 */
3031 if (!cachep)
3032 return;
3033
3034 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3035
3036 /*
3037 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3038 * barrier here to ensure nobody will see the kmem_cache partially
3039 * initialized.
3040 */
3041 smp_wmb();
3042
3043 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
3044 root_cache->memcg_params->memcg_caches[id] = cachep;
3045 }
3046
3047 static void memcg_unregister_cache(struct kmem_cache *cachep)
3048 {
3049 struct kmem_cache *root_cache;
3050 struct mem_cgroup *memcg;
3051 int id;
3052
3053 lockdep_assert_held(&memcg_slab_mutex);
3054
3055 BUG_ON(is_root_cache(cachep));
3056
3057 root_cache = cachep->memcg_params->root_cache;
3058 memcg = cachep->memcg_params->memcg;
3059 id = memcg_cache_id(memcg);
3060
3061 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
3062 root_cache->memcg_params->memcg_caches[id] = NULL;
3063
3064 list_del(&cachep->memcg_params->list);
3065
3066 kmem_cache_destroy(cachep);
3067 }
3068
3069 /*
3070 * During the creation a new cache, we need to disable our accounting mechanism
3071 * altogether. This is true even if we are not creating, but rather just
3072 * enqueing new caches to be created.
3073 *
3074 * This is because that process will trigger allocations; some visible, like
3075 * explicit kmallocs to auxiliary data structures, name strings and internal
3076 * cache structures; some well concealed, like INIT_WORK() that can allocate
3077 * objects during debug.
3078 *
3079 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3080 * to it. This may not be a bounded recursion: since the first cache creation
3081 * failed to complete (waiting on the allocation), we'll just try to create the
3082 * cache again, failing at the same point.
3083 *
3084 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3085 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3086 * inside the following two functions.
3087 */
3088 static inline void memcg_stop_kmem_account(void)
3089 {
3090 VM_BUG_ON(!current->mm);
3091 current->memcg_kmem_skip_account++;
3092 }
3093
3094 static inline void memcg_resume_kmem_account(void)
3095 {
3096 VM_BUG_ON(!current->mm);
3097 current->memcg_kmem_skip_account--;
3098 }
3099
3100 int __memcg_cleanup_cache_params(struct kmem_cache *s)
3101 {
3102 struct kmem_cache *c;
3103 int i, failed = 0;
3104
3105 mutex_lock(&memcg_slab_mutex);
3106 for_each_memcg_cache_index(i) {
3107 c = cache_from_memcg_idx(s, i);
3108 if (!c)
3109 continue;
3110
3111 memcg_unregister_cache(c);
3112
3113 if (cache_from_memcg_idx(s, i))
3114 failed++;
3115 }
3116 mutex_unlock(&memcg_slab_mutex);
3117 return failed;
3118 }
3119
3120 static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3121 {
3122 struct kmem_cache *cachep;
3123 struct memcg_cache_params *params, *tmp;
3124
3125 if (!memcg_kmem_is_active(memcg))
3126 return;
3127
3128 mutex_lock(&memcg_slab_mutex);
3129 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
3130 cachep = memcg_params_to_cache(params);
3131 kmem_cache_shrink(cachep);
3132 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3133 memcg_unregister_cache(cachep);
3134 }
3135 mutex_unlock(&memcg_slab_mutex);
3136 }
3137
3138 struct memcg_register_cache_work {
3139 struct mem_cgroup *memcg;
3140 struct kmem_cache *cachep;
3141 struct work_struct work;
3142 };
3143
3144 static void memcg_register_cache_func(struct work_struct *w)
3145 {
3146 struct memcg_register_cache_work *cw =
3147 container_of(w, struct memcg_register_cache_work, work);
3148 struct mem_cgroup *memcg = cw->memcg;
3149 struct kmem_cache *cachep = cw->cachep;
3150
3151 mutex_lock(&memcg_slab_mutex);
3152 memcg_register_cache(memcg, cachep);
3153 mutex_unlock(&memcg_slab_mutex);
3154
3155 css_put(&memcg->css);
3156 kfree(cw);
3157 }
3158
3159 /*
3160 * Enqueue the creation of a per-memcg kmem_cache.
3161 */
3162 static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
3163 struct kmem_cache *cachep)
3164 {
3165 struct memcg_register_cache_work *cw;
3166
3167 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
3168 if (cw == NULL) {
3169 css_put(&memcg->css);
3170 return;
3171 }
3172
3173 cw->memcg = memcg;
3174 cw->cachep = cachep;
3175
3176 INIT_WORK(&cw->work, memcg_register_cache_func);
3177 schedule_work(&cw->work);
3178 }
3179
3180 static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
3181 struct kmem_cache *cachep)
3182 {
3183 /*
3184 * We need to stop accounting when we kmalloc, because if the
3185 * corresponding kmalloc cache is not yet created, the first allocation
3186 * in __memcg_schedule_register_cache will recurse.
3187 *
3188 * However, it is better to enclose the whole function. Depending on
3189 * the debugging options enabled, INIT_WORK(), for instance, can
3190 * trigger an allocation. This too, will make us recurse. Because at
3191 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3192 * the safest choice is to do it like this, wrapping the whole function.
3193 */
3194 memcg_stop_kmem_account();
3195 __memcg_schedule_register_cache(memcg, cachep);
3196 memcg_resume_kmem_account();
3197 }
3198
3199 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
3200 {
3201 int res;
3202
3203 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
3204 PAGE_SIZE << order);
3205 if (!res)
3206 atomic_add(1 << order, &cachep->memcg_params->nr_pages);
3207 return res;
3208 }
3209
3210 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
3211 {
3212 memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
3213 atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
3214 }
3215
3216 /*
3217 * Return the kmem_cache we're supposed to use for a slab allocation.
3218 * We try to use the current memcg's version of the cache.
3219 *
3220 * If the cache does not exist yet, if we are the first user of it,
3221 * we either create it immediately, if possible, or create it asynchronously
3222 * in a workqueue.
3223 * In the latter case, we will let the current allocation go through with
3224 * the original cache.
3225 *
3226 * Can't be called in interrupt context or from kernel threads.
3227 * This function needs to be called with rcu_read_lock() held.
3228 */
3229 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3230 gfp_t gfp)
3231 {
3232 struct mem_cgroup *memcg;
3233 struct kmem_cache *memcg_cachep;
3234
3235 VM_BUG_ON(!cachep->memcg_params);
3236 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3237
3238 if (!current->mm || current->memcg_kmem_skip_account)
3239 return cachep;
3240
3241 rcu_read_lock();
3242 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3243
3244 if (!memcg_can_account_kmem(memcg))
3245 goto out;
3246
3247 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3248 if (likely(memcg_cachep)) {
3249 cachep = memcg_cachep;
3250 goto out;
3251 }
3252
3253 /* The corresponding put will be done in the workqueue. */
3254 if (!css_tryget_online(&memcg->css))
3255 goto out;
3256 rcu_read_unlock();
3257
3258 /*
3259 * If we are in a safe context (can wait, and not in interrupt
3260 * context), we could be be predictable and return right away.
3261 * This would guarantee that the allocation being performed
3262 * already belongs in the new cache.
3263 *
3264 * However, there are some clashes that can arrive from locking.
3265 * For instance, because we acquire the slab_mutex while doing
3266 * memcg_create_kmem_cache, this means no further allocation
3267 * could happen with the slab_mutex held. So it's better to
3268 * defer everything.
3269 */
3270 memcg_schedule_register_cache(memcg, cachep);
3271 return cachep;
3272 out:
3273 rcu_read_unlock();
3274 return cachep;
3275 }
3276
3277 /*
3278 * We need to verify if the allocation against current->mm->owner's memcg is
3279 * possible for the given order. But the page is not allocated yet, so we'll
3280 * need a further commit step to do the final arrangements.
3281 *
3282 * It is possible for the task to switch cgroups in this mean time, so at
3283 * commit time, we can't rely on task conversion any longer. We'll then use
3284 * the handle argument to return to the caller which cgroup we should commit
3285 * against. We could also return the memcg directly and avoid the pointer
3286 * passing, but a boolean return value gives better semantics considering
3287 * the compiled-out case as well.
3288 *
3289 * Returning true means the allocation is possible.
3290 */
3291 bool
3292 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3293 {
3294 struct mem_cgroup *memcg;
3295 int ret;
3296
3297 *_memcg = NULL;
3298
3299 /*
3300 * Disabling accounting is only relevant for some specific memcg
3301 * internal allocations. Therefore we would initially not have such
3302 * check here, since direct calls to the page allocator that are
3303 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3304 * outside memcg core. We are mostly concerned with cache allocations,
3305 * and by having this test at memcg_kmem_get_cache, we are already able
3306 * to relay the allocation to the root cache and bypass the memcg cache
3307 * altogether.
3308 *
3309 * There is one exception, though: the SLUB allocator does not create
3310 * large order caches, but rather service large kmallocs directly from
3311 * the page allocator. Therefore, the following sequence when backed by
3312 * the SLUB allocator:
3313 *
3314 * memcg_stop_kmem_account();
3315 * kmalloc(<large_number>)
3316 * memcg_resume_kmem_account();
3317 *
3318 * would effectively ignore the fact that we should skip accounting,
3319 * since it will drive us directly to this function without passing
3320 * through the cache selector memcg_kmem_get_cache. Such large
3321 * allocations are extremely rare but can happen, for instance, for the
3322 * cache arrays. We bring this test here.
3323 */
3324 if (!current->mm || current->memcg_kmem_skip_account)
3325 return true;
3326
3327 memcg = get_mem_cgroup_from_mm(current->mm);
3328
3329 if (!memcg_can_account_kmem(memcg)) {
3330 css_put(&memcg->css);
3331 return true;
3332 }
3333
3334 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3335 if (!ret)
3336 *_memcg = memcg;
3337
3338 css_put(&memcg->css);
3339 return (ret == 0);
3340 }
3341
3342 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3343 int order)
3344 {
3345 struct page_cgroup *pc;
3346
3347 VM_BUG_ON(mem_cgroup_is_root(memcg));
3348
3349 /* The page allocation failed. Revert */
3350 if (!page) {
3351 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3352 return;
3353 }
3354 /*
3355 * The page is freshly allocated and not visible to any
3356 * outside callers yet. Set up pc non-atomically.
3357 */
3358 pc = lookup_page_cgroup(page);
3359 pc->mem_cgroup = memcg;
3360 pc->flags = PCG_USED;
3361 }
3362
3363 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3364 {
3365 struct mem_cgroup *memcg = NULL;
3366 struct page_cgroup *pc;
3367
3368
3369 pc = lookup_page_cgroup(page);
3370 if (!PageCgroupUsed(pc))
3371 return;
3372
3373 memcg = pc->mem_cgroup;
3374 pc->flags = 0;
3375
3376 /*
3377 * We trust that only if there is a memcg associated with the page, it
3378 * is a valid allocation
3379 */
3380 if (!memcg)
3381 return;
3382
3383 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3384 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3385 }
3386 #else
3387 static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3388 {
3389 }
3390 #endif /* CONFIG_MEMCG_KMEM */
3391
3392 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3393
3394 /*
3395 * Because tail pages are not marked as "used", set it. We're under
3396 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3397 * charge/uncharge will be never happen and move_account() is done under
3398 * compound_lock(), so we don't have to take care of races.
3399 */
3400 void mem_cgroup_split_huge_fixup(struct page *head)
3401 {
3402 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3403 struct page_cgroup *pc;
3404 struct mem_cgroup *memcg;
3405 int i;
3406
3407 if (mem_cgroup_disabled())
3408 return;
3409
3410 memcg = head_pc->mem_cgroup;
3411 for (i = 1; i < HPAGE_PMD_NR; i++) {
3412 pc = head_pc + i;
3413 pc->mem_cgroup = memcg;
3414 pc->flags = head_pc->flags;
3415 }
3416 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3417 HPAGE_PMD_NR);
3418 }
3419 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3420
3421 /**
3422 * mem_cgroup_move_account - move account of the page
3423 * @page: the page
3424 * @nr_pages: number of regular pages (>1 for huge pages)
3425 * @pc: page_cgroup of the page.
3426 * @from: mem_cgroup which the page is moved from.
3427 * @to: mem_cgroup which the page is moved to. @from != @to.
3428 *
3429 * The caller must confirm following.
3430 * - page is not on LRU (isolate_page() is useful.)
3431 * - compound_lock is held when nr_pages > 1
3432 *
3433 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3434 * from old cgroup.
3435 */
3436 static int mem_cgroup_move_account(struct page *page,
3437 unsigned int nr_pages,
3438 struct page_cgroup *pc,
3439 struct mem_cgroup *from,
3440 struct mem_cgroup *to)
3441 {
3442 unsigned long flags;
3443 int ret;
3444
3445 VM_BUG_ON(from == to);
3446 VM_BUG_ON_PAGE(PageLRU(page), page);
3447 /*
3448 * The page is isolated from LRU. So, collapse function
3449 * will not handle this page. But page splitting can happen.
3450 * Do this check under compound_page_lock(). The caller should
3451 * hold it.
3452 */
3453 ret = -EBUSY;
3454 if (nr_pages > 1 && !PageTransHuge(page))
3455 goto out;
3456
3457 /*
3458 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3459 * of its source page while we change it: page migration takes
3460 * both pages off the LRU, but page cache replacement doesn't.
3461 */
3462 if (!trylock_page(page))
3463 goto out;
3464
3465 ret = -EINVAL;
3466 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3467 goto out_unlock;
3468
3469 move_lock_mem_cgroup(from, &flags);
3470
3471 if (!PageAnon(page) && page_mapped(page)) {
3472 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3473 nr_pages);
3474 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3475 nr_pages);
3476 }
3477
3478 if (PageWriteback(page)) {
3479 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3480 nr_pages);
3481 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3482 nr_pages);
3483 }
3484
3485 /*
3486 * It is safe to change pc->mem_cgroup here because the page
3487 * is referenced, charged, and isolated - we can't race with
3488 * uncharging, charging, migration, or LRU putback.
3489 */
3490
3491 /* caller should have done css_get */
3492 pc->mem_cgroup = to;
3493 move_unlock_mem_cgroup(from, &flags);
3494 ret = 0;
3495
3496 local_irq_disable();
3497 mem_cgroup_charge_statistics(to, page, nr_pages);
3498 memcg_check_events(to, page);
3499 mem_cgroup_charge_statistics(from, page, -nr_pages);
3500 memcg_check_events(from, page);
3501 local_irq_enable();
3502 out_unlock:
3503 unlock_page(page);
3504 out:
3505 return ret;
3506 }
3507
3508 /**
3509 * mem_cgroup_move_parent - moves page to the parent group
3510 * @page: the page to move
3511 * @pc: page_cgroup of the page
3512 * @child: page's cgroup
3513 *
3514 * move charges to its parent or the root cgroup if the group has no
3515 * parent (aka use_hierarchy==0).
3516 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3517 * mem_cgroup_move_account fails) the failure is always temporary and
3518 * it signals a race with a page removal/uncharge or migration. In the
3519 * first case the page is on the way out and it will vanish from the LRU
3520 * on the next attempt and the call should be retried later.
3521 * Isolation from the LRU fails only if page has been isolated from
3522 * the LRU since we looked at it and that usually means either global
3523 * reclaim or migration going on. The page will either get back to the
3524 * LRU or vanish.
3525 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3526 * (!PageCgroupUsed) or moved to a different group. The page will
3527 * disappear in the next attempt.
3528 */
3529 static int mem_cgroup_move_parent(struct page *page,
3530 struct page_cgroup *pc,
3531 struct mem_cgroup *child)
3532 {
3533 struct mem_cgroup *parent;
3534 unsigned int nr_pages;
3535 unsigned long uninitialized_var(flags);
3536 int ret;
3537
3538 VM_BUG_ON(mem_cgroup_is_root(child));
3539
3540 ret = -EBUSY;
3541 if (!get_page_unless_zero(page))
3542 goto out;
3543 if (isolate_lru_page(page))
3544 goto put;
3545
3546 nr_pages = hpage_nr_pages(page);
3547
3548 parent = parent_mem_cgroup(child);
3549 /*
3550 * If no parent, move charges to root cgroup.
3551 */
3552 if (!parent)
3553 parent = root_mem_cgroup;
3554
3555 if (nr_pages > 1) {
3556 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3557 flags = compound_lock_irqsave(page);
3558 }
3559
3560 ret = mem_cgroup_move_account(page, nr_pages,
3561 pc, child, parent);
3562 if (!ret)
3563 __mem_cgroup_cancel_local_charge(child, nr_pages);
3564
3565 if (nr_pages > 1)
3566 compound_unlock_irqrestore(page, flags);
3567 putback_lru_page(page);
3568 put:
3569 put_page(page);
3570 out:
3571 return ret;
3572 }
3573
3574 #ifdef CONFIG_MEMCG_SWAP
3575 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3576 bool charge)
3577 {
3578 int val = (charge) ? 1 : -1;
3579 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
3580 }
3581
3582 /**
3583 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3584 * @entry: swap entry to be moved
3585 * @from: mem_cgroup which the entry is moved from
3586 * @to: mem_cgroup which the entry is moved to
3587 *
3588 * It succeeds only when the swap_cgroup's record for this entry is the same
3589 * as the mem_cgroup's id of @from.
3590 *
3591 * Returns 0 on success, -EINVAL on failure.
3592 *
3593 * The caller must have charged to @to, IOW, called res_counter_charge() about
3594 * both res and memsw, and called css_get().
3595 */
3596 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3597 struct mem_cgroup *from, struct mem_cgroup *to)
3598 {
3599 unsigned short old_id, new_id;
3600
3601 old_id = mem_cgroup_id(from);
3602 new_id = mem_cgroup_id(to);
3603
3604 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3605 mem_cgroup_swap_statistics(from, false);
3606 mem_cgroup_swap_statistics(to, true);
3607 /*
3608 * This function is only called from task migration context now.
3609 * It postpones res_counter and refcount handling till the end
3610 * of task migration(mem_cgroup_clear_mc()) for performance
3611 * improvement. But we cannot postpone css_get(to) because if
3612 * the process that has been moved to @to does swap-in, the
3613 * refcount of @to might be decreased to 0.
3614 *
3615 * We are in attach() phase, so the cgroup is guaranteed to be
3616 * alive, so we can just call css_get().
3617 */
3618 css_get(&to->css);
3619 return 0;
3620 }
3621 return -EINVAL;
3622 }
3623 #else
3624 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3625 struct mem_cgroup *from, struct mem_cgroup *to)
3626 {
3627 return -EINVAL;
3628 }
3629 #endif
3630
3631 #ifdef CONFIG_DEBUG_VM
3632 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3633 {
3634 struct page_cgroup *pc;
3635
3636 pc = lookup_page_cgroup(page);
3637 /*
3638 * Can be NULL while feeding pages into the page allocator for
3639 * the first time, i.e. during boot or memory hotplug;
3640 * or when mem_cgroup_disabled().
3641 */
3642 if (likely(pc) && PageCgroupUsed(pc))
3643 return pc;
3644 return NULL;
3645 }
3646
3647 bool mem_cgroup_bad_page_check(struct page *page)
3648 {
3649 if (mem_cgroup_disabled())
3650 return false;
3651
3652 return lookup_page_cgroup_used(page) != NULL;
3653 }
3654
3655 void mem_cgroup_print_bad_page(struct page *page)
3656 {
3657 struct page_cgroup *pc;
3658
3659 pc = lookup_page_cgroup_used(page);
3660 if (pc) {
3661 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3662 pc, pc->flags, pc->mem_cgroup);
3663 }
3664 }
3665 #endif
3666
3667 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3668 unsigned long long val)
3669 {
3670 int retry_count;
3671 u64 memswlimit, memlimit;
3672 int ret = 0;
3673 int children = mem_cgroup_count_children(memcg);
3674 u64 curusage, oldusage;
3675 int enlarge;
3676
3677 /*
3678 * For keeping hierarchical_reclaim simple, how long we should retry
3679 * is depends on callers. We set our retry-count to be function
3680 * of # of children which we should visit in this loop.
3681 */
3682 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3683
3684 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3685
3686 enlarge = 0;
3687 while (retry_count) {
3688 if (signal_pending(current)) {
3689 ret = -EINTR;
3690 break;
3691 }
3692 /*
3693 * Rather than hide all in some function, I do this in
3694 * open coded manner. You see what this really does.
3695 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3696 */
3697 mutex_lock(&set_limit_mutex);
3698 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3699 if (memswlimit < val) {
3700 ret = -EINVAL;
3701 mutex_unlock(&set_limit_mutex);
3702 break;
3703 }
3704
3705 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3706 if (memlimit < val)
3707 enlarge = 1;
3708
3709 ret = res_counter_set_limit(&memcg->res, val);
3710 if (!ret) {
3711 if (memswlimit == val)
3712 memcg->memsw_is_minimum = true;
3713 else
3714 memcg->memsw_is_minimum = false;
3715 }
3716 mutex_unlock(&set_limit_mutex);
3717
3718 if (!ret)
3719 break;
3720
3721 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3722 MEM_CGROUP_RECLAIM_SHRINK);
3723 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3724 /* Usage is reduced ? */
3725 if (curusage >= oldusage)
3726 retry_count--;
3727 else
3728 oldusage = curusage;
3729 }
3730 if (!ret && enlarge)
3731 memcg_oom_recover(memcg);
3732
3733 return ret;
3734 }
3735
3736 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3737 unsigned long long val)
3738 {
3739 int retry_count;
3740 u64 memlimit, memswlimit, oldusage, curusage;
3741 int children = mem_cgroup_count_children(memcg);
3742 int ret = -EBUSY;
3743 int enlarge = 0;
3744
3745 /* see mem_cgroup_resize_res_limit */
3746 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3747 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3748 while (retry_count) {
3749 if (signal_pending(current)) {
3750 ret = -EINTR;
3751 break;
3752 }
3753 /*
3754 * Rather than hide all in some function, I do this in
3755 * open coded manner. You see what this really does.
3756 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3757 */
3758 mutex_lock(&set_limit_mutex);
3759 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3760 if (memlimit > val) {
3761 ret = -EINVAL;
3762 mutex_unlock(&set_limit_mutex);
3763 break;
3764 }
3765 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3766 if (memswlimit < val)
3767 enlarge = 1;
3768 ret = res_counter_set_limit(&memcg->memsw, val);
3769 if (!ret) {
3770 if (memlimit == val)
3771 memcg->memsw_is_minimum = true;
3772 else
3773 memcg->memsw_is_minimum = false;
3774 }
3775 mutex_unlock(&set_limit_mutex);
3776
3777 if (!ret)
3778 break;
3779
3780 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3781 MEM_CGROUP_RECLAIM_NOSWAP |
3782 MEM_CGROUP_RECLAIM_SHRINK);
3783 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3784 /* Usage is reduced ? */
3785 if (curusage >= oldusage)
3786 retry_count--;
3787 else
3788 oldusage = curusage;
3789 }
3790 if (!ret && enlarge)
3791 memcg_oom_recover(memcg);
3792 return ret;
3793 }
3794
3795 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3796 gfp_t gfp_mask,
3797 unsigned long *total_scanned)
3798 {
3799 unsigned long nr_reclaimed = 0;
3800 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3801 unsigned long reclaimed;
3802 int loop = 0;
3803 struct mem_cgroup_tree_per_zone *mctz;
3804 unsigned long long excess;
3805 unsigned long nr_scanned;
3806
3807 if (order > 0)
3808 return 0;
3809
3810 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3811 /*
3812 * This loop can run a while, specially if mem_cgroup's continuously
3813 * keep exceeding their soft limit and putting the system under
3814 * pressure
3815 */
3816 do {
3817 if (next_mz)
3818 mz = next_mz;
3819 else
3820 mz = mem_cgroup_largest_soft_limit_node(mctz);
3821 if (!mz)
3822 break;
3823
3824 nr_scanned = 0;
3825 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3826 gfp_mask, &nr_scanned);
3827 nr_reclaimed += reclaimed;
3828 *total_scanned += nr_scanned;
3829 spin_lock_irq(&mctz->lock);
3830
3831 /*
3832 * If we failed to reclaim anything from this memory cgroup
3833 * it is time to move on to the next cgroup
3834 */
3835 next_mz = NULL;
3836 if (!reclaimed) {
3837 do {
3838 /*
3839 * Loop until we find yet another one.
3840 *
3841 * By the time we get the soft_limit lock
3842 * again, someone might have aded the
3843 * group back on the RB tree. Iterate to
3844 * make sure we get a different mem.
3845 * mem_cgroup_largest_soft_limit_node returns
3846 * NULL if no other cgroup is present on
3847 * the tree
3848 */
3849 next_mz =
3850 __mem_cgroup_largest_soft_limit_node(mctz);
3851 if (next_mz == mz)
3852 css_put(&next_mz->memcg->css);
3853 else /* next_mz == NULL or other memcg */
3854 break;
3855 } while (1);
3856 }
3857 __mem_cgroup_remove_exceeded(mz, mctz);
3858 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3859 /*
3860 * One school of thought says that we should not add
3861 * back the node to the tree if reclaim returns 0.
3862 * But our reclaim could return 0, simply because due
3863 * to priority we are exposing a smaller subset of
3864 * memory to reclaim from. Consider this as a longer
3865 * term TODO.
3866 */
3867 /* If excess == 0, no tree ops */
3868 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3869 spin_unlock_irq(&mctz->lock);
3870 css_put(&mz->memcg->css);
3871 loop++;
3872 /*
3873 * Could not reclaim anything and there are no more
3874 * mem cgroups to try or we seem to be looping without
3875 * reclaiming anything.
3876 */
3877 if (!nr_reclaimed &&
3878 (next_mz == NULL ||
3879 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3880 break;
3881 } while (!nr_reclaimed);
3882 if (next_mz)
3883 css_put(&next_mz->memcg->css);
3884 return nr_reclaimed;
3885 }
3886
3887 /**
3888 * mem_cgroup_force_empty_list - clears LRU of a group
3889 * @memcg: group to clear
3890 * @node: NUMA node
3891 * @zid: zone id
3892 * @lru: lru to to clear
3893 *
3894 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
3895 * reclaim the pages page themselves - pages are moved to the parent (or root)
3896 * group.
3897 */
3898 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3899 int node, int zid, enum lru_list lru)
3900 {
3901 struct lruvec *lruvec;
3902 unsigned long flags;
3903 struct list_head *list;
3904 struct page *busy;
3905 struct zone *zone;
3906
3907 zone = &NODE_DATA(node)->node_zones[zid];
3908 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
3909 list = &lruvec->lists[lru];
3910
3911 busy = NULL;
3912 do {
3913 struct page_cgroup *pc;
3914 struct page *page;
3915
3916 spin_lock_irqsave(&zone->lru_lock, flags);
3917 if (list_empty(list)) {
3918 spin_unlock_irqrestore(&zone->lru_lock, flags);
3919 break;
3920 }
3921 page = list_entry(list->prev, struct page, lru);
3922 if (busy == page) {
3923 list_move(&page->lru, list);
3924 busy = NULL;
3925 spin_unlock_irqrestore(&zone->lru_lock, flags);
3926 continue;
3927 }
3928 spin_unlock_irqrestore(&zone->lru_lock, flags);
3929
3930 pc = lookup_page_cgroup(page);
3931
3932 if (mem_cgroup_move_parent(page, pc, memcg)) {
3933 /* found lock contention or "pc" is obsolete. */
3934 busy = page;
3935 } else
3936 busy = NULL;
3937 cond_resched();
3938 } while (!list_empty(list));
3939 }
3940
3941 /*
3942 * make mem_cgroup's charge to be 0 if there is no task by moving
3943 * all the charges and pages to the parent.
3944 * This enables deleting this mem_cgroup.
3945 *
3946 * Caller is responsible for holding css reference on the memcg.
3947 */
3948 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
3949 {
3950 int node, zid;
3951 u64 usage;
3952
3953 do {
3954 /* This is for making all *used* pages to be on LRU. */
3955 lru_add_drain_all();
3956 drain_all_stock_sync(memcg);
3957 mem_cgroup_start_move(memcg);
3958 for_each_node_state(node, N_MEMORY) {
3959 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3960 enum lru_list lru;
3961 for_each_lru(lru) {
3962 mem_cgroup_force_empty_list(memcg,
3963 node, zid, lru);
3964 }
3965 }
3966 }
3967 mem_cgroup_end_move(memcg);
3968 memcg_oom_recover(memcg);
3969 cond_resched();
3970
3971 /*
3972 * Kernel memory may not necessarily be trackable to a specific
3973 * process. So they are not migrated, and therefore we can't
3974 * expect their value to drop to 0 here.
3975 * Having res filled up with kmem only is enough.
3976 *
3977 * This is a safety check because mem_cgroup_force_empty_list
3978 * could have raced with mem_cgroup_replace_page_cache callers
3979 * so the lru seemed empty but the page could have been added
3980 * right after the check. RES_USAGE should be safe as we always
3981 * charge before adding to the LRU.
3982 */
3983 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
3984 res_counter_read_u64(&memcg->kmem, RES_USAGE);
3985 } while (usage > 0);
3986 }
3987
3988 /*
3989 * Test whether @memcg has children, dead or alive. Note that this
3990 * function doesn't care whether @memcg has use_hierarchy enabled and
3991 * returns %true if there are child csses according to the cgroup
3992 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3993 */
3994 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3995 {
3996 bool ret;
3997
3998 /*
3999 * The lock does not prevent addition or deletion of children, but
4000 * it prevents a new child from being initialized based on this
4001 * parent in css_online(), so it's enough to decide whether
4002 * hierarchically inherited attributes can still be changed or not.
4003 */
4004 lockdep_assert_held(&memcg_create_mutex);
4005
4006 rcu_read_lock();
4007 ret = css_next_child(NULL, &memcg->css);
4008 rcu_read_unlock();
4009 return ret;
4010 }
4011
4012 /*
4013 * Reclaims as many pages from the given memcg as possible and moves
4014 * the rest to the parent.
4015 *
4016 * Caller is responsible for holding css reference for memcg.
4017 */
4018 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4019 {
4020 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4021
4022 /* we call try-to-free pages for make this cgroup empty */
4023 lru_add_drain_all();
4024 /* try to free all pages in this cgroup */
4025 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4026 int progress;
4027
4028 if (signal_pending(current))
4029 return -EINTR;
4030
4031 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4032 false);
4033 if (!progress) {
4034 nr_retries--;
4035 /* maybe some writeback is necessary */
4036 congestion_wait(BLK_RW_ASYNC, HZ/10);
4037 }
4038
4039 }
4040
4041 return 0;
4042 }
4043
4044 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
4045 char *buf, size_t nbytes,
4046 loff_t off)
4047 {
4048 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4049
4050 if (mem_cgroup_is_root(memcg))
4051 return -EINVAL;
4052 return mem_cgroup_force_empty(memcg) ?: nbytes;
4053 }
4054
4055 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4056 struct cftype *cft)
4057 {
4058 return mem_cgroup_from_css(css)->use_hierarchy;
4059 }
4060
4061 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4062 struct cftype *cft, u64 val)
4063 {
4064 int retval = 0;
4065 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4066 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
4067
4068 mutex_lock(&memcg_create_mutex);
4069
4070 if (memcg->use_hierarchy == val)
4071 goto out;
4072
4073 /*
4074 * If parent's use_hierarchy is set, we can't make any modifications
4075 * in the child subtrees. If it is unset, then the change can
4076 * occur, provided the current cgroup has no children.
4077 *
4078 * For the root cgroup, parent_mem is NULL, we allow value to be
4079 * set if there are no children.
4080 */
4081 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4082 (val == 1 || val == 0)) {
4083 if (!memcg_has_children(memcg))
4084 memcg->use_hierarchy = val;
4085 else
4086 retval = -EBUSY;
4087 } else
4088 retval = -EINVAL;
4089
4090 out:
4091 mutex_unlock(&memcg_create_mutex);
4092
4093 return retval;
4094 }
4095
4096 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4097 struct cftype *cft)
4098 {
4099 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4100 enum res_type type = MEMFILE_TYPE(cft->private);
4101 int name = MEMFILE_ATTR(cft->private);
4102
4103 switch (type) {
4104 case _MEM:
4105 return res_counter_read_u64(&memcg->res, name);
4106 case _MEMSWAP:
4107 return res_counter_read_u64(&memcg->memsw, name);
4108 case _KMEM:
4109 return res_counter_read_u64(&memcg->kmem, name);
4110 break;
4111 default:
4112 BUG();
4113 }
4114 }
4115
4116 #ifdef CONFIG_MEMCG_KMEM
4117 /* should be called with activate_kmem_mutex held */
4118 static int __memcg_activate_kmem(struct mem_cgroup *memcg,
4119 unsigned long long limit)
4120 {
4121 int err = 0;
4122 int memcg_id;
4123
4124 if (memcg_kmem_is_active(memcg))
4125 return 0;
4126
4127 /*
4128 * We are going to allocate memory for data shared by all memory
4129 * cgroups so let's stop accounting here.
4130 */
4131 memcg_stop_kmem_account();
4132
4133 /*
4134 * For simplicity, we won't allow this to be disabled. It also can't
4135 * be changed if the cgroup has children already, or if tasks had
4136 * already joined.
4137 *
4138 * If tasks join before we set the limit, a person looking at
4139 * kmem.usage_in_bytes will have no way to determine when it took
4140 * place, which makes the value quite meaningless.
4141 *
4142 * After it first became limited, changes in the value of the limit are
4143 * of course permitted.
4144 */
4145 mutex_lock(&memcg_create_mutex);
4146 if (cgroup_has_tasks(memcg->css.cgroup) ||
4147 (memcg->use_hierarchy && memcg_has_children(memcg)))
4148 err = -EBUSY;
4149 mutex_unlock(&memcg_create_mutex);
4150 if (err)
4151 goto out;
4152
4153 memcg_id = ida_simple_get(&kmem_limited_groups,
4154 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
4155 if (memcg_id < 0) {
4156 err = memcg_id;
4157 goto out;
4158 }
4159
4160 /*
4161 * Make sure we have enough space for this cgroup in each root cache's
4162 * memcg_params.
4163 */
4164 mutex_lock(&memcg_slab_mutex);
4165 err = memcg_update_all_caches(memcg_id + 1);
4166 mutex_unlock(&memcg_slab_mutex);
4167 if (err)
4168 goto out_rmid;
4169
4170 memcg->kmemcg_id = memcg_id;
4171 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
4172
4173 /*
4174 * We couldn't have accounted to this cgroup, because it hasn't got the
4175 * active bit set yet, so this should succeed.
4176 */
4177 err = res_counter_set_limit(&memcg->kmem, limit);
4178 VM_BUG_ON(err);
4179
4180 static_key_slow_inc(&memcg_kmem_enabled_key);
4181 /*
4182 * Setting the active bit after enabling static branching will
4183 * guarantee no one starts accounting before all call sites are
4184 * patched.
4185 */
4186 memcg_kmem_set_active(memcg);
4187 out:
4188 memcg_resume_kmem_account();
4189 return err;
4190
4191 out_rmid:
4192 ida_simple_remove(&kmem_limited_groups, memcg_id);
4193 goto out;
4194 }
4195
4196 static int memcg_activate_kmem(struct mem_cgroup *memcg,
4197 unsigned long long limit)
4198 {
4199 int ret;
4200
4201 mutex_lock(&activate_kmem_mutex);
4202 ret = __memcg_activate_kmem(memcg, limit);
4203 mutex_unlock(&activate_kmem_mutex);
4204 return ret;
4205 }
4206
4207 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4208 unsigned long long val)
4209 {
4210 int ret;
4211
4212 if (!memcg_kmem_is_active(memcg))
4213 ret = memcg_activate_kmem(memcg, val);
4214 else
4215 ret = res_counter_set_limit(&memcg->kmem, val);
4216 return ret;
4217 }
4218
4219 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4220 {
4221 int ret = 0;
4222 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4223
4224 if (!parent)
4225 return 0;
4226
4227 mutex_lock(&activate_kmem_mutex);
4228 /*
4229 * If the parent cgroup is not kmem-active now, it cannot be activated
4230 * after this point, because it has at least one child already.
4231 */
4232 if (memcg_kmem_is_active(parent))
4233 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
4234 mutex_unlock(&activate_kmem_mutex);
4235 return ret;
4236 }
4237 #else
4238 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4239 unsigned long long val)
4240 {
4241 return -EINVAL;
4242 }
4243 #endif /* CONFIG_MEMCG_KMEM */
4244
4245 /*
4246 * The user of this function is...
4247 * RES_LIMIT.
4248 */
4249 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4250 char *buf, size_t nbytes, loff_t off)
4251 {
4252 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4253 enum res_type type;
4254 int name;
4255 unsigned long long val;
4256 int ret;
4257
4258 buf = strstrip(buf);
4259 type = MEMFILE_TYPE(of_cft(of)->private);
4260 name = MEMFILE_ATTR(of_cft(of)->private);
4261
4262 switch (name) {
4263 case RES_LIMIT:
4264 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4265 ret = -EINVAL;
4266 break;
4267 }
4268 /* This function does all necessary parse...reuse it */
4269 ret = res_counter_memparse_write_strategy(buf, &val);
4270 if (ret)
4271 break;
4272 if (type == _MEM)
4273 ret = mem_cgroup_resize_limit(memcg, val);
4274 else if (type == _MEMSWAP)
4275 ret = mem_cgroup_resize_memsw_limit(memcg, val);
4276 else if (type == _KMEM)
4277 ret = memcg_update_kmem_limit(memcg, val);
4278 else
4279 return -EINVAL;
4280 break;
4281 case RES_SOFT_LIMIT:
4282 ret = res_counter_memparse_write_strategy(buf, &val);
4283 if (ret)
4284 break;
4285 /*
4286 * For memsw, soft limits are hard to implement in terms
4287 * of semantics, for now, we support soft limits for
4288 * control without swap
4289 */
4290 if (type == _MEM)
4291 ret = res_counter_set_soft_limit(&memcg->res, val);
4292 else
4293 ret = -EINVAL;
4294 break;
4295 default:
4296 ret = -EINVAL; /* should be BUG() ? */
4297 break;
4298 }
4299 return ret ?: nbytes;
4300 }
4301
4302 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4303 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4304 {
4305 unsigned long long min_limit, min_memsw_limit, tmp;
4306
4307 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4308 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4309 if (!memcg->use_hierarchy)
4310 goto out;
4311
4312 while (memcg->css.parent) {
4313 memcg = mem_cgroup_from_css(memcg->css.parent);
4314 if (!memcg->use_hierarchy)
4315 break;
4316 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4317 min_limit = min(min_limit, tmp);
4318 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4319 min_memsw_limit = min(min_memsw_limit, tmp);
4320 }
4321 out:
4322 *mem_limit = min_limit;
4323 *memsw_limit = min_memsw_limit;
4324 }
4325
4326 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4327 size_t nbytes, loff_t off)
4328 {
4329 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4330 int name;
4331 enum res_type type;
4332
4333 type = MEMFILE_TYPE(of_cft(of)->private);
4334 name = MEMFILE_ATTR(of_cft(of)->private);
4335
4336 switch (name) {
4337 case RES_MAX_USAGE:
4338 if (type == _MEM)
4339 res_counter_reset_max(&memcg->res);
4340 else if (type == _MEMSWAP)
4341 res_counter_reset_max(&memcg->memsw);
4342 else if (type == _KMEM)
4343 res_counter_reset_max(&memcg->kmem);
4344 else
4345 return -EINVAL;
4346 break;
4347 case RES_FAILCNT:
4348 if (type == _MEM)
4349 res_counter_reset_failcnt(&memcg->res);
4350 else if (type == _MEMSWAP)
4351 res_counter_reset_failcnt(&memcg->memsw);
4352 else if (type == _KMEM)
4353 res_counter_reset_failcnt(&memcg->kmem);
4354 else
4355 return -EINVAL;
4356 break;
4357 }
4358
4359 return nbytes;
4360 }
4361
4362 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
4363 struct cftype *cft)
4364 {
4365 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
4366 }
4367
4368 #ifdef CONFIG_MMU
4369 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4370 struct cftype *cft, u64 val)
4371 {
4372 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4373
4374 if (val >= (1 << NR_MOVE_TYPE))
4375 return -EINVAL;
4376
4377 /*
4378 * No kind of locking is needed in here, because ->can_attach() will
4379 * check this value once in the beginning of the process, and then carry
4380 * on with stale data. This means that changes to this value will only
4381 * affect task migrations starting after the change.
4382 */
4383 memcg->move_charge_at_immigrate = val;
4384 return 0;
4385 }
4386 #else
4387 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4388 struct cftype *cft, u64 val)
4389 {
4390 return -ENOSYS;
4391 }
4392 #endif
4393
4394 #ifdef CONFIG_NUMA
4395 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4396 {
4397 struct numa_stat {
4398 const char *name;
4399 unsigned int lru_mask;
4400 };
4401
4402 static const struct numa_stat stats[] = {
4403 { "total", LRU_ALL },
4404 { "file", LRU_ALL_FILE },
4405 { "anon", LRU_ALL_ANON },
4406 { "unevictable", BIT(LRU_UNEVICTABLE) },
4407 };
4408 const struct numa_stat *stat;
4409 int nid;
4410 unsigned long nr;
4411 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4412
4413 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4414 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
4415 seq_printf(m, "%s=%lu", stat->name, nr);
4416 for_each_node_state(nid, N_MEMORY) {
4417 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4418 stat->lru_mask);
4419 seq_printf(m, " N%d=%lu", nid, nr);
4420 }
4421 seq_putc(m, '\n');
4422 }
4423
4424 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4425 struct mem_cgroup *iter;
4426
4427 nr = 0;
4428 for_each_mem_cgroup_tree(iter, memcg)
4429 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
4430 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
4431 for_each_node_state(nid, N_MEMORY) {
4432 nr = 0;
4433 for_each_mem_cgroup_tree(iter, memcg)
4434 nr += mem_cgroup_node_nr_lru_pages(
4435 iter, nid, stat->lru_mask);
4436 seq_printf(m, " N%d=%lu", nid, nr);
4437 }
4438 seq_putc(m, '\n');
4439 }
4440
4441 return 0;
4442 }
4443 #endif /* CONFIG_NUMA */
4444
4445 static inline void mem_cgroup_lru_names_not_uptodate(void)
4446 {
4447 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4448 }
4449
4450 static int memcg_stat_show(struct seq_file *m, void *v)
4451 {
4452 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4453 struct mem_cgroup *mi;
4454 unsigned int i;
4455
4456 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4457 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4458 continue;
4459 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4460 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4461 }
4462
4463 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4464 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4465 mem_cgroup_read_events(memcg, i));
4466
4467 for (i = 0; i < NR_LRU_LISTS; i++)
4468 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4469 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4470
4471 /* Hierarchical information */
4472 {
4473 unsigned long long limit, memsw_limit;
4474 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4475 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4476 if (do_swap_account)
4477 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4478 memsw_limit);
4479 }
4480
4481 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4482 long long val = 0;
4483
4484 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4485 continue;
4486 for_each_mem_cgroup_tree(mi, memcg)
4487 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4488 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4489 }
4490
4491 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4492 unsigned long long val = 0;
4493
4494 for_each_mem_cgroup_tree(mi, memcg)
4495 val += mem_cgroup_read_events(mi, i);
4496 seq_printf(m, "total_%s %llu\n",
4497 mem_cgroup_events_names[i], val);
4498 }
4499
4500 for (i = 0; i < NR_LRU_LISTS; i++) {
4501 unsigned long long val = 0;
4502
4503 for_each_mem_cgroup_tree(mi, memcg)
4504 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4505 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4506 }
4507
4508 #ifdef CONFIG_DEBUG_VM
4509 {
4510 int nid, zid;
4511 struct mem_cgroup_per_zone *mz;
4512 struct zone_reclaim_stat *rstat;
4513 unsigned long recent_rotated[2] = {0, 0};
4514 unsigned long recent_scanned[2] = {0, 0};
4515
4516 for_each_online_node(nid)
4517 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4518 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
4519 rstat = &mz->lruvec.reclaim_stat;
4520
4521 recent_rotated[0] += rstat->recent_rotated[0];
4522 recent_rotated[1] += rstat->recent_rotated[1];
4523 recent_scanned[0] += rstat->recent_scanned[0];
4524 recent_scanned[1] += rstat->recent_scanned[1];
4525 }
4526 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4527 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4528 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4529 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4530 }
4531 #endif
4532
4533 return 0;
4534 }
4535
4536 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4537 struct cftype *cft)
4538 {
4539 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4540
4541 return mem_cgroup_swappiness(memcg);
4542 }
4543
4544 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4545 struct cftype *cft, u64 val)
4546 {
4547 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4548
4549 if (val > 100)
4550 return -EINVAL;
4551
4552 if (css->parent)
4553 memcg->swappiness = val;
4554 else
4555 vm_swappiness = val;
4556
4557 return 0;
4558 }
4559
4560 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4561 {
4562 struct mem_cgroup_threshold_ary *t;
4563 u64 usage;
4564 int i;
4565
4566 rcu_read_lock();
4567 if (!swap)
4568 t = rcu_dereference(memcg->thresholds.primary);
4569 else
4570 t = rcu_dereference(memcg->memsw_thresholds.primary);
4571
4572 if (!t)
4573 goto unlock;
4574
4575 if (!swap)
4576 usage = res_counter_read_u64(&memcg->res, RES_USAGE);
4577 else
4578 usage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4579
4580 /*
4581 * current_threshold points to threshold just below or equal to usage.
4582 * If it's not true, a threshold was crossed after last
4583 * call of __mem_cgroup_threshold().
4584 */
4585 i = t->current_threshold;
4586
4587 /*
4588 * Iterate backward over array of thresholds starting from
4589 * current_threshold and check if a threshold is crossed.
4590 * If none of thresholds below usage is crossed, we read
4591 * only one element of the array here.
4592 */
4593 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4594 eventfd_signal(t->entries[i].eventfd, 1);
4595
4596 /* i = current_threshold + 1 */
4597 i++;
4598
4599 /*
4600 * Iterate forward over array of thresholds starting from
4601 * current_threshold+1 and check if a threshold is crossed.
4602 * If none of thresholds above usage is crossed, we read
4603 * only one element of the array here.
4604 */
4605 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4606 eventfd_signal(t->entries[i].eventfd, 1);
4607
4608 /* Update current_threshold */
4609 t->current_threshold = i - 1;
4610 unlock:
4611 rcu_read_unlock();
4612 }
4613
4614 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4615 {
4616 while (memcg) {
4617 __mem_cgroup_threshold(memcg, false);
4618 if (do_swap_account)
4619 __mem_cgroup_threshold(memcg, true);
4620
4621 memcg = parent_mem_cgroup(memcg);
4622 }
4623 }
4624
4625 static int compare_thresholds(const void *a, const void *b)
4626 {
4627 const struct mem_cgroup_threshold *_a = a;
4628 const struct mem_cgroup_threshold *_b = b;
4629
4630 if (_a->threshold > _b->threshold)
4631 return 1;
4632
4633 if (_a->threshold < _b->threshold)
4634 return -1;
4635
4636 return 0;
4637 }
4638
4639 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4640 {
4641 struct mem_cgroup_eventfd_list *ev;
4642
4643 spin_lock(&memcg_oom_lock);
4644
4645 list_for_each_entry(ev, &memcg->oom_notify, list)
4646 eventfd_signal(ev->eventfd, 1);
4647
4648 spin_unlock(&memcg_oom_lock);
4649 return 0;
4650 }
4651
4652 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4653 {
4654 struct mem_cgroup *iter;
4655
4656 for_each_mem_cgroup_tree(iter, memcg)
4657 mem_cgroup_oom_notify_cb(iter);
4658 }
4659
4660 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4661 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4662 {
4663 struct mem_cgroup_thresholds *thresholds;
4664 struct mem_cgroup_threshold_ary *new;
4665 u64 threshold, usage;
4666 int i, size, ret;
4667
4668 ret = res_counter_memparse_write_strategy(args, &threshold);
4669 if (ret)
4670 return ret;
4671
4672 mutex_lock(&memcg->thresholds_lock);
4673
4674 if (type == _MEM) {
4675 thresholds = &memcg->thresholds;
4676 usage = res_counter_read_u64(&memcg->res, RES_USAGE);
4677 } else if (type == _MEMSWAP) {
4678 thresholds = &memcg->memsw_thresholds;
4679 usage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4680 } else
4681 BUG();
4682
4683 /* Check if a threshold crossed before adding a new one */
4684 if (thresholds->primary)
4685 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4686
4687 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4688
4689 /* Allocate memory for new array of thresholds */
4690 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4691 GFP_KERNEL);
4692 if (!new) {
4693 ret = -ENOMEM;
4694 goto unlock;
4695 }
4696 new->size = size;
4697
4698 /* Copy thresholds (if any) to new array */
4699 if (thresholds->primary) {
4700 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4701 sizeof(struct mem_cgroup_threshold));
4702 }
4703
4704 /* Add new threshold */
4705 new->entries[size - 1].eventfd = eventfd;
4706 new->entries[size - 1].threshold = threshold;
4707
4708 /* Sort thresholds. Registering of new threshold isn't time-critical */
4709 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4710 compare_thresholds, NULL);
4711
4712 /* Find current threshold */
4713 new->current_threshold = -1;
4714 for (i = 0; i < size; i++) {
4715 if (new->entries[i].threshold <= usage) {
4716 /*
4717 * new->current_threshold will not be used until
4718 * rcu_assign_pointer(), so it's safe to increment
4719 * it here.
4720 */
4721 ++new->current_threshold;
4722 } else
4723 break;
4724 }
4725
4726 /* Free old spare buffer and save old primary buffer as spare */
4727 kfree(thresholds->spare);
4728 thresholds->spare = thresholds->primary;
4729
4730 rcu_assign_pointer(thresholds->primary, new);
4731
4732 /* To be sure that nobody uses thresholds */
4733 synchronize_rcu();
4734
4735 unlock:
4736 mutex_unlock(&memcg->thresholds_lock);
4737
4738 return ret;
4739 }
4740
4741 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4742 struct eventfd_ctx *eventfd, const char *args)
4743 {
4744 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4745 }
4746
4747 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4748 struct eventfd_ctx *eventfd, const char *args)
4749 {
4750 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4751 }
4752
4753 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4754 struct eventfd_ctx *eventfd, enum res_type type)
4755 {
4756 struct mem_cgroup_thresholds *thresholds;
4757 struct mem_cgroup_threshold_ary *new;
4758 u64 usage;
4759 int i, j, size;
4760
4761 mutex_lock(&memcg->thresholds_lock);
4762
4763 if (type == _MEM) {
4764 thresholds = &memcg->thresholds;
4765 usage = res_counter_read_u64(&memcg->res, RES_USAGE);
4766 } else if (type == _MEMSWAP) {
4767 thresholds = &memcg->memsw_thresholds;
4768 usage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4769 } else
4770 BUG();
4771
4772 if (!thresholds->primary)
4773 goto unlock;
4774
4775 /* Check if a threshold crossed before removing */
4776 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4777
4778 /* Calculate new number of threshold */
4779 size = 0;
4780 for (i = 0; i < thresholds->primary->size; i++) {
4781 if (thresholds->primary->entries[i].eventfd != eventfd)
4782 size++;
4783 }
4784
4785 new = thresholds->spare;
4786
4787 /* Set thresholds array to NULL if we don't have thresholds */
4788 if (!size) {
4789 kfree(new);
4790 new = NULL;
4791 goto swap_buffers;
4792 }
4793
4794 new->size = size;
4795
4796 /* Copy thresholds and find current threshold */
4797 new->current_threshold = -1;
4798 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4799 if (thresholds->primary->entries[i].eventfd == eventfd)
4800 continue;
4801
4802 new->entries[j] = thresholds->primary->entries[i];
4803 if (new->entries[j].threshold <= usage) {
4804 /*
4805 * new->current_threshold will not be used
4806 * until rcu_assign_pointer(), so it's safe to increment
4807 * it here.
4808 */
4809 ++new->current_threshold;
4810 }
4811 j++;
4812 }
4813
4814 swap_buffers:
4815 /* Swap primary and spare array */
4816 thresholds->spare = thresholds->primary;
4817 /* If all events are unregistered, free the spare array */
4818 if (!new) {
4819 kfree(thresholds->spare);
4820 thresholds->spare = NULL;
4821 }
4822
4823 rcu_assign_pointer(thresholds->primary, new);
4824
4825 /* To be sure that nobody uses thresholds */
4826 synchronize_rcu();
4827 unlock:
4828 mutex_unlock(&memcg->thresholds_lock);
4829 }
4830
4831 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4832 struct eventfd_ctx *eventfd)
4833 {
4834 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4835 }
4836
4837 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4838 struct eventfd_ctx *eventfd)
4839 {
4840 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4841 }
4842
4843 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4844 struct eventfd_ctx *eventfd, const char *args)
4845 {
4846 struct mem_cgroup_eventfd_list *event;
4847
4848 event = kmalloc(sizeof(*event), GFP_KERNEL);
4849 if (!event)
4850 return -ENOMEM;
4851
4852 spin_lock(&memcg_oom_lock);
4853
4854 event->eventfd = eventfd;
4855 list_add(&event->list, &memcg->oom_notify);
4856
4857 /* already in OOM ? */
4858 if (atomic_read(&memcg->under_oom))
4859 eventfd_signal(eventfd, 1);
4860 spin_unlock(&memcg_oom_lock);
4861
4862 return 0;
4863 }
4864
4865 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4866 struct eventfd_ctx *eventfd)
4867 {
4868 struct mem_cgroup_eventfd_list *ev, *tmp;
4869
4870 spin_lock(&memcg_oom_lock);
4871
4872 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4873 if (ev->eventfd == eventfd) {
4874 list_del(&ev->list);
4875 kfree(ev);
4876 }
4877 }
4878
4879 spin_unlock(&memcg_oom_lock);
4880 }
4881
4882 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4883 {
4884 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4885
4886 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4887 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4888 return 0;
4889 }
4890
4891 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4892 struct cftype *cft, u64 val)
4893 {
4894 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4895
4896 /* cannot set to root cgroup and only 0 and 1 are allowed */
4897 if (!css->parent || !((val == 0) || (val == 1)))
4898 return -EINVAL;
4899
4900 memcg->oom_kill_disable = val;
4901 if (!val)
4902 memcg_oom_recover(memcg);
4903
4904 return 0;
4905 }
4906
4907 #ifdef CONFIG_MEMCG_KMEM
4908 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4909 {
4910 int ret;
4911
4912 memcg->kmemcg_id = -1;
4913 ret = memcg_propagate_kmem(memcg);
4914 if (ret)
4915 return ret;
4916
4917 return mem_cgroup_sockets_init(memcg, ss);
4918 }
4919
4920 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4921 {
4922 mem_cgroup_sockets_destroy(memcg);
4923 }
4924
4925 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
4926 {
4927 if (!memcg_kmem_is_active(memcg))
4928 return;
4929
4930 /*
4931 * kmem charges can outlive the cgroup. In the case of slab
4932 * pages, for instance, a page contain objects from various
4933 * processes. As we prevent from taking a reference for every
4934 * such allocation we have to be careful when doing uncharge
4935 * (see memcg_uncharge_kmem) and here during offlining.
4936 *
4937 * The idea is that that only the _last_ uncharge which sees
4938 * the dead memcg will drop the last reference. An additional
4939 * reference is taken here before the group is marked dead
4940 * which is then paired with css_put during uncharge resp. here.
4941 *
4942 * Although this might sound strange as this path is called from
4943 * css_offline() when the referencemight have dropped down to 0 and
4944 * shouldn't be incremented anymore (css_tryget_online() would
4945 * fail) we do not have other options because of the kmem
4946 * allocations lifetime.
4947 */
4948 css_get(&memcg->css);
4949
4950 memcg_kmem_mark_dead(memcg);
4951
4952 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
4953 return;
4954
4955 if (memcg_kmem_test_and_clear_dead(memcg))
4956 css_put(&memcg->css);
4957 }
4958 #else
4959 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4960 {
4961 return 0;
4962 }
4963
4964 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4965 {
4966 }
4967
4968 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
4969 {
4970 }
4971 #endif
4972
4973 /*
4974 * DO NOT USE IN NEW FILES.
4975 *
4976 * "cgroup.event_control" implementation.
4977 *
4978 * This is way over-engineered. It tries to support fully configurable
4979 * events for each user. Such level of flexibility is completely
4980 * unnecessary especially in the light of the planned unified hierarchy.
4981 *
4982 * Please deprecate this and replace with something simpler if at all
4983 * possible.
4984 */
4985
4986 /*
4987 * Unregister event and free resources.
4988 *
4989 * Gets called from workqueue.
4990 */
4991 static void memcg_event_remove(struct work_struct *work)
4992 {
4993 struct mem_cgroup_event *event =
4994 container_of(work, struct mem_cgroup_event, remove);
4995 struct mem_cgroup *memcg = event->memcg;
4996
4997 remove_wait_queue(event->wqh, &event->wait);
4998
4999 event->unregister_event(memcg, event->eventfd);
5000
5001 /* Notify userspace the event is going away. */
5002 eventfd_signal(event->eventfd, 1);
5003
5004 eventfd_ctx_put(event->eventfd);
5005 kfree(event);
5006 css_put(&memcg->css);
5007 }
5008
5009 /*
5010 * Gets called on POLLHUP on eventfd when user closes it.
5011 *
5012 * Called with wqh->lock held and interrupts disabled.
5013 */
5014 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
5015 int sync, void *key)
5016 {
5017 struct mem_cgroup_event *event =
5018 container_of(wait, struct mem_cgroup_event, wait);
5019 struct mem_cgroup *memcg = event->memcg;
5020 unsigned long flags = (unsigned long)key;
5021
5022 if (flags & POLLHUP) {
5023 /*
5024 * If the event has been detached at cgroup removal, we
5025 * can simply return knowing the other side will cleanup
5026 * for us.
5027 *
5028 * We can't race against event freeing since the other
5029 * side will require wqh->lock via remove_wait_queue(),
5030 * which we hold.
5031 */
5032 spin_lock(&memcg->event_list_lock);
5033 if (!list_empty(&event->list)) {
5034 list_del_init(&event->list);
5035 /*
5036 * We are in atomic context, but cgroup_event_remove()
5037 * may sleep, so we have to call it in workqueue.
5038 */
5039 schedule_work(&event->remove);
5040 }
5041 spin_unlock(&memcg->event_list_lock);
5042 }
5043
5044 return 0;
5045 }
5046
5047 static void memcg_event_ptable_queue_proc(struct file *file,
5048 wait_queue_head_t *wqh, poll_table *pt)
5049 {
5050 struct mem_cgroup_event *event =
5051 container_of(pt, struct mem_cgroup_event, pt);
5052
5053 event->wqh = wqh;
5054 add_wait_queue(wqh, &event->wait);
5055 }
5056
5057 /*
5058 * DO NOT USE IN NEW FILES.
5059 *
5060 * Parse input and register new cgroup event handler.
5061 *
5062 * Input must be in format '<event_fd> <control_fd> <args>'.
5063 * Interpretation of args is defined by control file implementation.
5064 */
5065 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5066 char *buf, size_t nbytes, loff_t off)
5067 {
5068 struct cgroup_subsys_state *css = of_css(of);
5069 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5070 struct mem_cgroup_event *event;
5071 struct cgroup_subsys_state *cfile_css;
5072 unsigned int efd, cfd;
5073 struct fd efile;
5074 struct fd cfile;
5075 const char *name;
5076 char *endp;
5077 int ret;
5078
5079 buf = strstrip(buf);
5080
5081 efd = simple_strtoul(buf, &endp, 10);
5082 if (*endp != ' ')
5083 return -EINVAL;
5084 buf = endp + 1;
5085
5086 cfd = simple_strtoul(buf, &endp, 10);
5087 if ((*endp != ' ') && (*endp != '\0'))
5088 return -EINVAL;
5089 buf = endp + 1;
5090
5091 event = kzalloc(sizeof(*event), GFP_KERNEL);
5092 if (!event)
5093 return -ENOMEM;
5094
5095 event->memcg = memcg;
5096 INIT_LIST_HEAD(&event->list);
5097 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5098 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5099 INIT_WORK(&event->remove, memcg_event_remove);
5100
5101 efile = fdget(efd);
5102 if (!efile.file) {
5103 ret = -EBADF;
5104 goto out_kfree;
5105 }
5106
5107 event->eventfd = eventfd_ctx_fileget(efile.file);
5108 if (IS_ERR(event->eventfd)) {
5109 ret = PTR_ERR(event->eventfd);
5110 goto out_put_efile;
5111 }
5112
5113 cfile = fdget(cfd);
5114 if (!cfile.file) {
5115 ret = -EBADF;
5116 goto out_put_eventfd;
5117 }
5118
5119 /* the process need read permission on control file */
5120 /* AV: shouldn't we check that it's been opened for read instead? */
5121 ret = inode_permission(file_inode(cfile.file), MAY_READ);
5122 if (ret < 0)
5123 goto out_put_cfile;
5124
5125 /*
5126 * Determine the event callbacks and set them in @event. This used
5127 * to be done via struct cftype but cgroup core no longer knows
5128 * about these events. The following is crude but the whole thing
5129 * is for compatibility anyway.
5130 *
5131 * DO NOT ADD NEW FILES.
5132 */
5133 name = cfile.file->f_dentry->d_name.name;
5134
5135 if (!strcmp(name, "memory.usage_in_bytes")) {
5136 event->register_event = mem_cgroup_usage_register_event;
5137 event->unregister_event = mem_cgroup_usage_unregister_event;
5138 } else if (!strcmp(name, "memory.oom_control")) {
5139 event->register_event = mem_cgroup_oom_register_event;
5140 event->unregister_event = mem_cgroup_oom_unregister_event;
5141 } else if (!strcmp(name, "memory.pressure_level")) {
5142 event->register_event = vmpressure_register_event;
5143 event->unregister_event = vmpressure_unregister_event;
5144 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5145 event->register_event = memsw_cgroup_usage_register_event;
5146 event->unregister_event = memsw_cgroup_usage_unregister_event;
5147 } else {
5148 ret = -EINVAL;
5149 goto out_put_cfile;
5150 }
5151
5152 /*
5153 * Verify @cfile should belong to @css. Also, remaining events are
5154 * automatically removed on cgroup destruction but the removal is
5155 * asynchronous, so take an extra ref on @css.
5156 */
5157 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
5158 &memory_cgrp_subsys);
5159 ret = -EINVAL;
5160 if (IS_ERR(cfile_css))
5161 goto out_put_cfile;
5162 if (cfile_css != css) {
5163 css_put(cfile_css);
5164 goto out_put_cfile;
5165 }
5166
5167 ret = event->register_event(memcg, event->eventfd, buf);
5168 if (ret)
5169 goto out_put_css;
5170
5171 efile.file->f_op->poll(efile.file, &event->pt);
5172
5173 spin_lock(&memcg->event_list_lock);
5174 list_add(&event->list, &memcg->event_list);
5175 spin_unlock(&memcg->event_list_lock);
5176
5177 fdput(cfile);
5178 fdput(efile);
5179
5180 return nbytes;
5181
5182 out_put_css:
5183 css_put(css);
5184 out_put_cfile:
5185 fdput(cfile);
5186 out_put_eventfd:
5187 eventfd_ctx_put(event->eventfd);
5188 out_put_efile:
5189 fdput(efile);
5190 out_kfree:
5191 kfree(event);
5192
5193 return ret;
5194 }
5195
5196 static struct cftype mem_cgroup_files[] = {
5197 {
5198 .name = "usage_in_bytes",
5199 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5200 .read_u64 = mem_cgroup_read_u64,
5201 },
5202 {
5203 .name = "max_usage_in_bytes",
5204 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5205 .write = mem_cgroup_reset,
5206 .read_u64 = mem_cgroup_read_u64,
5207 },
5208 {
5209 .name = "limit_in_bytes",
5210 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5211 .write = mem_cgroup_write,
5212 .read_u64 = mem_cgroup_read_u64,
5213 },
5214 {
5215 .name = "soft_limit_in_bytes",
5216 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5217 .write = mem_cgroup_write,
5218 .read_u64 = mem_cgroup_read_u64,
5219 },
5220 {
5221 .name = "failcnt",
5222 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5223 .write = mem_cgroup_reset,
5224 .read_u64 = mem_cgroup_read_u64,
5225 },
5226 {
5227 .name = "stat",
5228 .seq_show = memcg_stat_show,
5229 },
5230 {
5231 .name = "force_empty",
5232 .write = mem_cgroup_force_empty_write,
5233 },
5234 {
5235 .name = "use_hierarchy",
5236 .write_u64 = mem_cgroup_hierarchy_write,
5237 .read_u64 = mem_cgroup_hierarchy_read,
5238 },
5239 {
5240 .name = "cgroup.event_control", /* XXX: for compat */
5241 .write = memcg_write_event_control,
5242 .flags = CFTYPE_NO_PREFIX,
5243 .mode = S_IWUGO,
5244 },
5245 {
5246 .name = "swappiness",
5247 .read_u64 = mem_cgroup_swappiness_read,
5248 .write_u64 = mem_cgroup_swappiness_write,
5249 },
5250 {
5251 .name = "move_charge_at_immigrate",
5252 .read_u64 = mem_cgroup_move_charge_read,
5253 .write_u64 = mem_cgroup_move_charge_write,
5254 },
5255 {
5256 .name = "oom_control",
5257 .seq_show = mem_cgroup_oom_control_read,
5258 .write_u64 = mem_cgroup_oom_control_write,
5259 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5260 },
5261 {
5262 .name = "pressure_level",
5263 },
5264 #ifdef CONFIG_NUMA
5265 {
5266 .name = "numa_stat",
5267 .seq_show = memcg_numa_stat_show,
5268 },
5269 #endif
5270 #ifdef CONFIG_MEMCG_KMEM
5271 {
5272 .name = "kmem.limit_in_bytes",
5273 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5274 .write = mem_cgroup_write,
5275 .read_u64 = mem_cgroup_read_u64,
5276 },
5277 {
5278 .name = "kmem.usage_in_bytes",
5279 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5280 .read_u64 = mem_cgroup_read_u64,
5281 },
5282 {
5283 .name = "kmem.failcnt",
5284 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5285 .write = mem_cgroup_reset,
5286 .read_u64 = mem_cgroup_read_u64,
5287 },
5288 {
5289 .name = "kmem.max_usage_in_bytes",
5290 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5291 .write = mem_cgroup_reset,
5292 .read_u64 = mem_cgroup_read_u64,
5293 },
5294 #ifdef CONFIG_SLABINFO
5295 {
5296 .name = "kmem.slabinfo",
5297 .seq_show = mem_cgroup_slabinfo_read,
5298 },
5299 #endif
5300 #endif
5301 { }, /* terminate */
5302 };
5303
5304 #ifdef CONFIG_MEMCG_SWAP
5305 static struct cftype memsw_cgroup_files[] = {
5306 {
5307 .name = "memsw.usage_in_bytes",
5308 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5309 .read_u64 = mem_cgroup_read_u64,
5310 },
5311 {
5312 .name = "memsw.max_usage_in_bytes",
5313 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5314 .write = mem_cgroup_reset,
5315 .read_u64 = mem_cgroup_read_u64,
5316 },
5317 {
5318 .name = "memsw.limit_in_bytes",
5319 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5320 .write = mem_cgroup_write,
5321 .read_u64 = mem_cgroup_read_u64,
5322 },
5323 {
5324 .name = "memsw.failcnt",
5325 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5326 .write = mem_cgroup_reset,
5327 .read_u64 = mem_cgroup_read_u64,
5328 },
5329 { }, /* terminate */
5330 };
5331 #endif
5332 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5333 {
5334 struct mem_cgroup_per_node *pn;
5335 struct mem_cgroup_per_zone *mz;
5336 int zone, tmp = node;
5337 /*
5338 * This routine is called against possible nodes.
5339 * But it's BUG to call kmalloc() against offline node.
5340 *
5341 * TODO: this routine can waste much memory for nodes which will
5342 * never be onlined. It's better to use memory hotplug callback
5343 * function.
5344 */
5345 if (!node_state(node, N_NORMAL_MEMORY))
5346 tmp = -1;
5347 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5348 if (!pn)
5349 return 1;
5350
5351 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5352 mz = &pn->zoneinfo[zone];
5353 lruvec_init(&mz->lruvec);
5354 mz->usage_in_excess = 0;
5355 mz->on_tree = false;
5356 mz->memcg = memcg;
5357 }
5358 memcg->nodeinfo[node] = pn;
5359 return 0;
5360 }
5361
5362 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5363 {
5364 kfree(memcg->nodeinfo[node]);
5365 }
5366
5367 static struct mem_cgroup *mem_cgroup_alloc(void)
5368 {
5369 struct mem_cgroup *memcg;
5370 size_t size;
5371
5372 size = sizeof(struct mem_cgroup);
5373 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5374
5375 memcg = kzalloc(size, GFP_KERNEL);
5376 if (!memcg)
5377 return NULL;
5378
5379 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5380 if (!memcg->stat)
5381 goto out_free;
5382 spin_lock_init(&memcg->pcp_counter_lock);
5383 return memcg;
5384
5385 out_free:
5386 kfree(memcg);
5387 return NULL;
5388 }
5389
5390 /*
5391 * At destroying mem_cgroup, references from swap_cgroup can remain.
5392 * (scanning all at force_empty is too costly...)
5393 *
5394 * Instead of clearing all references at force_empty, we remember
5395 * the number of reference from swap_cgroup and free mem_cgroup when
5396 * it goes down to 0.
5397 *
5398 * Removal of cgroup itself succeeds regardless of refs from swap.
5399 */
5400
5401 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5402 {
5403 int node;
5404
5405 mem_cgroup_remove_from_trees(memcg);
5406
5407 for_each_node(node)
5408 free_mem_cgroup_per_zone_info(memcg, node);
5409
5410 free_percpu(memcg->stat);
5411
5412 /*
5413 * We need to make sure that (at least for now), the jump label
5414 * destruction code runs outside of the cgroup lock. This is because
5415 * get_online_cpus(), which is called from the static_branch update,
5416 * can't be called inside the cgroup_lock. cpusets are the ones
5417 * enforcing this dependency, so if they ever change, we might as well.
5418 *
5419 * schedule_work() will guarantee this happens. Be careful if you need
5420 * to move this code around, and make sure it is outside
5421 * the cgroup_lock.
5422 */
5423 disarm_static_keys(memcg);
5424 kfree(memcg);
5425 }
5426
5427 /*
5428 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5429 */
5430 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5431 {
5432 if (!memcg->res.parent)
5433 return NULL;
5434 return mem_cgroup_from_res_counter(memcg->res.parent, res);
5435 }
5436 EXPORT_SYMBOL(parent_mem_cgroup);
5437
5438 static void __init mem_cgroup_soft_limit_tree_init(void)
5439 {
5440 struct mem_cgroup_tree_per_node *rtpn;
5441 struct mem_cgroup_tree_per_zone *rtpz;
5442 int tmp, node, zone;
5443
5444 for_each_node(node) {
5445 tmp = node;
5446 if (!node_state(node, N_NORMAL_MEMORY))
5447 tmp = -1;
5448 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5449 BUG_ON(!rtpn);
5450
5451 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5452
5453 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5454 rtpz = &rtpn->rb_tree_per_zone[zone];
5455 rtpz->rb_root = RB_ROOT;
5456 spin_lock_init(&rtpz->lock);
5457 }
5458 }
5459 }
5460
5461 static struct cgroup_subsys_state * __ref
5462 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5463 {
5464 struct mem_cgroup *memcg;
5465 long error = -ENOMEM;
5466 int node;
5467
5468 memcg = mem_cgroup_alloc();
5469 if (!memcg)
5470 return ERR_PTR(error);
5471
5472 for_each_node(node)
5473 if (alloc_mem_cgroup_per_zone_info(memcg, node))
5474 goto free_out;
5475
5476 /* root ? */
5477 if (parent_css == NULL) {
5478 root_mem_cgroup = memcg;
5479 res_counter_init(&memcg->res, NULL);
5480 res_counter_init(&memcg->memsw, NULL);
5481 res_counter_init(&memcg->kmem, NULL);
5482 }
5483
5484 memcg->last_scanned_node = MAX_NUMNODES;
5485 INIT_LIST_HEAD(&memcg->oom_notify);
5486 memcg->move_charge_at_immigrate = 0;
5487 mutex_init(&memcg->thresholds_lock);
5488 spin_lock_init(&memcg->move_lock);
5489 vmpressure_init(&memcg->vmpressure);
5490 INIT_LIST_HEAD(&memcg->event_list);
5491 spin_lock_init(&memcg->event_list_lock);
5492
5493 return &memcg->css;
5494
5495 free_out:
5496 __mem_cgroup_free(memcg);
5497 return ERR_PTR(error);
5498 }
5499
5500 static int
5501 mem_cgroup_css_online(struct cgroup_subsys_state *css)
5502 {
5503 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5504 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
5505
5506 if (css->id > MEM_CGROUP_ID_MAX)
5507 return -ENOSPC;
5508
5509 if (!parent)
5510 return 0;
5511
5512 mutex_lock(&memcg_create_mutex);
5513
5514 memcg->use_hierarchy = parent->use_hierarchy;
5515 memcg->oom_kill_disable = parent->oom_kill_disable;
5516 memcg->swappiness = mem_cgroup_swappiness(parent);
5517
5518 if (parent->use_hierarchy) {
5519 res_counter_init(&memcg->res, &parent->res);
5520 res_counter_init(&memcg->memsw, &parent->memsw);
5521 res_counter_init(&memcg->kmem, &parent->kmem);
5522
5523 /*
5524 * No need to take a reference to the parent because cgroup
5525 * core guarantees its existence.
5526 */
5527 } else {
5528 res_counter_init(&memcg->res, &root_mem_cgroup->res);
5529 res_counter_init(&memcg->memsw, &root_mem_cgroup->memsw);
5530 res_counter_init(&memcg->kmem, &root_mem_cgroup->kmem);
5531 /*
5532 * Deeper hierachy with use_hierarchy == false doesn't make
5533 * much sense so let cgroup subsystem know about this
5534 * unfortunate state in our controller.
5535 */
5536 if (parent != root_mem_cgroup)
5537 memory_cgrp_subsys.broken_hierarchy = true;
5538 }
5539 mutex_unlock(&memcg_create_mutex);
5540
5541 return memcg_init_kmem(memcg, &memory_cgrp_subsys);
5542 }
5543
5544 /*
5545 * Announce all parents that a group from their hierarchy is gone.
5546 */
5547 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
5548 {
5549 struct mem_cgroup *parent = memcg;
5550
5551 while ((parent = parent_mem_cgroup(parent)))
5552 mem_cgroup_iter_invalidate(parent);
5553
5554 /*
5555 * if the root memcg is not hierarchical we have to check it
5556 * explicitely.
5557 */
5558 if (!root_mem_cgroup->use_hierarchy)
5559 mem_cgroup_iter_invalidate(root_mem_cgroup);
5560 }
5561
5562 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5563 {
5564 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5565 struct mem_cgroup_event *event, *tmp;
5566 struct cgroup_subsys_state *iter;
5567
5568 /*
5569 * Unregister events and notify userspace.
5570 * Notify userspace about cgroup removing only after rmdir of cgroup
5571 * directory to avoid race between userspace and kernelspace.
5572 */
5573 spin_lock(&memcg->event_list_lock);
5574 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5575 list_del_init(&event->list);
5576 schedule_work(&event->remove);
5577 }
5578 spin_unlock(&memcg->event_list_lock);
5579
5580 kmem_cgroup_css_offline(memcg);
5581
5582 mem_cgroup_invalidate_reclaim_iterators(memcg);
5583
5584 /*
5585 * This requires that offlining is serialized. Right now that is
5586 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
5587 */
5588 css_for_each_descendant_post(iter, css)
5589 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
5590
5591 memcg_unregister_all_caches(memcg);
5592 vmpressure_cleanup(&memcg->vmpressure);
5593 }
5594
5595 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5596 {
5597 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5598 /*
5599 * XXX: css_offline() would be where we should reparent all
5600 * memory to prepare the cgroup for destruction. However,
5601 * memcg does not do css_tryget_online() and res_counter charging
5602 * under the same RCU lock region, which means that charging
5603 * could race with offlining. Offlining only happens to
5604 * cgroups with no tasks in them but charges can show up
5605 * without any tasks from the swapin path when the target
5606 * memcg is looked up from the swapout record and not from the
5607 * current task as it usually is. A race like this can leak
5608 * charges and put pages with stale cgroup pointers into
5609 * circulation:
5610 *
5611 * #0 #1
5612 * lookup_swap_cgroup_id()
5613 * rcu_read_lock()
5614 * mem_cgroup_lookup()
5615 * css_tryget_online()
5616 * rcu_read_unlock()
5617 * disable css_tryget_online()
5618 * call_rcu()
5619 * offline_css()
5620 * reparent_charges()
5621 * res_counter_charge()
5622 * css_put()
5623 * css_free()
5624 * pc->mem_cgroup = dead memcg
5625 * add page to lru
5626 *
5627 * The bulk of the charges are still moved in offline_css() to
5628 * avoid pinning a lot of pages in case a long-term reference
5629 * like a swapout record is deferring the css_free() to long
5630 * after offlining. But this makes sure we catch any charges
5631 * made after offlining:
5632 */
5633 mem_cgroup_reparent_charges(memcg);
5634
5635 memcg_destroy_kmem(memcg);
5636 __mem_cgroup_free(memcg);
5637 }
5638
5639 /**
5640 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5641 * @css: the target css
5642 *
5643 * Reset the states of the mem_cgroup associated with @css. This is
5644 * invoked when the userland requests disabling on the default hierarchy
5645 * but the memcg is pinned through dependency. The memcg should stop
5646 * applying policies and should revert to the vanilla state as it may be
5647 * made visible again.
5648 *
5649 * The current implementation only resets the essential configurations.
5650 * This needs to be expanded to cover all the visible parts.
5651 */
5652 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5653 {
5654 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5655
5656 mem_cgroup_resize_limit(memcg, ULLONG_MAX);
5657 mem_cgroup_resize_memsw_limit(memcg, ULLONG_MAX);
5658 memcg_update_kmem_limit(memcg, ULLONG_MAX);
5659 res_counter_set_soft_limit(&memcg->res, ULLONG_MAX);
5660 }
5661
5662 #ifdef CONFIG_MMU
5663 /* Handlers for move charge at task migration. */
5664 static int mem_cgroup_do_precharge(unsigned long count)
5665 {
5666 int ret;
5667
5668 /* Try a single bulk charge without reclaim first */
5669 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
5670 if (!ret) {
5671 mc.precharge += count;
5672 return ret;
5673 }
5674 if (ret == -EINTR) {
5675 cancel_charge(root_mem_cgroup, count);
5676 return ret;
5677 }
5678
5679 /* Try charges one by one with reclaim */
5680 while (count--) {
5681 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
5682 /*
5683 * In case of failure, any residual charges against
5684 * mc.to will be dropped by mem_cgroup_clear_mc()
5685 * later on. However, cancel any charges that are
5686 * bypassed to root right away or they'll be lost.
5687 */
5688 if (ret == -EINTR)
5689 cancel_charge(root_mem_cgroup, 1);
5690 if (ret)
5691 return ret;
5692 mc.precharge++;
5693 cond_resched();
5694 }
5695 return 0;
5696 }
5697
5698 /**
5699 * get_mctgt_type - get target type of moving charge
5700 * @vma: the vma the pte to be checked belongs
5701 * @addr: the address corresponding to the pte to be checked
5702 * @ptent: the pte to be checked
5703 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5704 *
5705 * Returns
5706 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5707 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5708 * move charge. if @target is not NULL, the page is stored in target->page
5709 * with extra refcnt got(Callers should handle it).
5710 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5711 * target for charge migration. if @target is not NULL, the entry is stored
5712 * in target->ent.
5713 *
5714 * Called with pte lock held.
5715 */
5716 union mc_target {
5717 struct page *page;
5718 swp_entry_t ent;
5719 };
5720
5721 enum mc_target_type {
5722 MC_TARGET_NONE = 0,
5723 MC_TARGET_PAGE,
5724 MC_TARGET_SWAP,
5725 };
5726
5727 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5728 unsigned long addr, pte_t ptent)
5729 {
5730 struct page *page = vm_normal_page(vma, addr, ptent);
5731
5732 if (!page || !page_mapped(page))
5733 return NULL;
5734 if (PageAnon(page)) {
5735 /* we don't move shared anon */
5736 if (!move_anon())
5737 return NULL;
5738 } else if (!move_file())
5739 /* we ignore mapcount for file pages */
5740 return NULL;
5741 if (!get_page_unless_zero(page))
5742 return NULL;
5743
5744 return page;
5745 }
5746
5747 #ifdef CONFIG_SWAP
5748 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5749 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5750 {
5751 struct page *page = NULL;
5752 swp_entry_t ent = pte_to_swp_entry(ptent);
5753
5754 if (!move_anon() || non_swap_entry(ent))
5755 return NULL;
5756 /*
5757 * Because lookup_swap_cache() updates some statistics counter,
5758 * we call find_get_page() with swapper_space directly.
5759 */
5760 page = find_get_page(swap_address_space(ent), ent.val);
5761 if (do_swap_account)
5762 entry->val = ent.val;
5763
5764 return page;
5765 }
5766 #else
5767 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5768 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5769 {
5770 return NULL;
5771 }
5772 #endif
5773
5774 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5775 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5776 {
5777 struct page *page = NULL;
5778 struct address_space *mapping;
5779 pgoff_t pgoff;
5780
5781 if (!vma->vm_file) /* anonymous vma */
5782 return NULL;
5783 if (!move_file())
5784 return NULL;
5785
5786 mapping = vma->vm_file->f_mapping;
5787 if (pte_none(ptent))
5788 pgoff = linear_page_index(vma, addr);
5789 else /* pte_file(ptent) is true */
5790 pgoff = pte_to_pgoff(ptent);
5791
5792 /* page is moved even if it's not RSS of this task(page-faulted). */
5793 #ifdef CONFIG_SWAP
5794 /* shmem/tmpfs may report page out on swap: account for that too. */
5795 if (shmem_mapping(mapping)) {
5796 page = find_get_entry(mapping, pgoff);
5797 if (radix_tree_exceptional_entry(page)) {
5798 swp_entry_t swp = radix_to_swp_entry(page);
5799 if (do_swap_account)
5800 *entry = swp;
5801 page = find_get_page(swap_address_space(swp), swp.val);
5802 }
5803 } else
5804 page = find_get_page(mapping, pgoff);
5805 #else
5806 page = find_get_page(mapping, pgoff);
5807 #endif
5808 return page;
5809 }
5810
5811 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5812 unsigned long addr, pte_t ptent, union mc_target *target)
5813 {
5814 struct page *page = NULL;
5815 struct page_cgroup *pc;
5816 enum mc_target_type ret = MC_TARGET_NONE;
5817 swp_entry_t ent = { .val = 0 };
5818
5819 if (pte_present(ptent))
5820 page = mc_handle_present_pte(vma, addr, ptent);
5821 else if (is_swap_pte(ptent))
5822 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5823 else if (pte_none(ptent) || pte_file(ptent))
5824 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5825
5826 if (!page && !ent.val)
5827 return ret;
5828 if (page) {
5829 pc = lookup_page_cgroup(page);
5830 /*
5831 * Do only loose check w/o serialization.
5832 * mem_cgroup_move_account() checks the pc is valid or
5833 * not under LRU exclusion.
5834 */
5835 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5836 ret = MC_TARGET_PAGE;
5837 if (target)
5838 target->page = page;
5839 }
5840 if (!ret || !target)
5841 put_page(page);
5842 }
5843 /* There is a swap entry and a page doesn't exist or isn't charged */
5844 if (ent.val && !ret &&
5845 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5846 ret = MC_TARGET_SWAP;
5847 if (target)
5848 target->ent = ent;
5849 }
5850 return ret;
5851 }
5852
5853 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5854 /*
5855 * We don't consider swapping or file mapped pages because THP does not
5856 * support them for now.
5857 * Caller should make sure that pmd_trans_huge(pmd) is true.
5858 */
5859 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5860 unsigned long addr, pmd_t pmd, union mc_target *target)
5861 {
5862 struct page *page = NULL;
5863 struct page_cgroup *pc;
5864 enum mc_target_type ret = MC_TARGET_NONE;
5865
5866 page = pmd_page(pmd);
5867 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5868 if (!move_anon())
5869 return ret;
5870 pc = lookup_page_cgroup(page);
5871 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5872 ret = MC_TARGET_PAGE;
5873 if (target) {
5874 get_page(page);
5875 target->page = page;
5876 }
5877 }
5878 return ret;
5879 }
5880 #else
5881 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5882 unsigned long addr, pmd_t pmd, union mc_target *target)
5883 {
5884 return MC_TARGET_NONE;
5885 }
5886 #endif
5887
5888 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5889 unsigned long addr, unsigned long end,
5890 struct mm_walk *walk)
5891 {
5892 struct vm_area_struct *vma = walk->private;
5893 pte_t *pte;
5894 spinlock_t *ptl;
5895
5896 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5897 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5898 mc.precharge += HPAGE_PMD_NR;
5899 spin_unlock(ptl);
5900 return 0;
5901 }
5902
5903 if (pmd_trans_unstable(pmd))
5904 return 0;
5905 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5906 for (; addr != end; pte++, addr += PAGE_SIZE)
5907 if (get_mctgt_type(vma, addr, *pte, NULL))
5908 mc.precharge++; /* increment precharge temporarily */
5909 pte_unmap_unlock(pte - 1, ptl);
5910 cond_resched();
5911
5912 return 0;
5913 }
5914
5915 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5916 {
5917 unsigned long precharge;
5918 struct vm_area_struct *vma;
5919
5920 down_read(&mm->mmap_sem);
5921 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5922 struct mm_walk mem_cgroup_count_precharge_walk = {
5923 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5924 .mm = mm,
5925 .private = vma,
5926 };
5927 if (is_vm_hugetlb_page(vma))
5928 continue;
5929 walk_page_range(vma->vm_start, vma->vm_end,
5930 &mem_cgroup_count_precharge_walk);
5931 }
5932 up_read(&mm->mmap_sem);
5933
5934 precharge = mc.precharge;
5935 mc.precharge = 0;
5936
5937 return precharge;
5938 }
5939
5940 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5941 {
5942 unsigned long precharge = mem_cgroup_count_precharge(mm);
5943
5944 VM_BUG_ON(mc.moving_task);
5945 mc.moving_task = current;
5946 return mem_cgroup_do_precharge(precharge);
5947 }
5948
5949 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5950 static void __mem_cgroup_clear_mc(void)
5951 {
5952 struct mem_cgroup *from = mc.from;
5953 struct mem_cgroup *to = mc.to;
5954 int i;
5955
5956 /* we must uncharge all the leftover precharges from mc.to */
5957 if (mc.precharge) {
5958 cancel_charge(mc.to, mc.precharge);
5959 mc.precharge = 0;
5960 }
5961 /*
5962 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5963 * we must uncharge here.
5964 */
5965 if (mc.moved_charge) {
5966 cancel_charge(mc.from, mc.moved_charge);
5967 mc.moved_charge = 0;
5968 }
5969 /* we must fixup refcnts and charges */
5970 if (mc.moved_swap) {
5971 /* uncharge swap account from the old cgroup */
5972 res_counter_uncharge(&mc.from->memsw,
5973 PAGE_SIZE * mc.moved_swap);
5974
5975 for (i = 0; i < mc.moved_swap; i++)
5976 css_put(&mc.from->css);
5977
5978 /*
5979 * we charged both to->res and to->memsw, so we should
5980 * uncharge to->res.
5981 */
5982 res_counter_uncharge(&mc.to->res,
5983 PAGE_SIZE * mc.moved_swap);
5984 /* we've already done css_get(mc.to) */
5985 mc.moved_swap = 0;
5986 }
5987 memcg_oom_recover(from);
5988 memcg_oom_recover(to);
5989 wake_up_all(&mc.waitq);
5990 }
5991
5992 static void mem_cgroup_clear_mc(void)
5993 {
5994 struct mem_cgroup *from = mc.from;
5995
5996 /*
5997 * we must clear moving_task before waking up waiters at the end of
5998 * task migration.
5999 */
6000 mc.moving_task = NULL;
6001 __mem_cgroup_clear_mc();
6002 spin_lock(&mc.lock);
6003 mc.from = NULL;
6004 mc.to = NULL;
6005 spin_unlock(&mc.lock);
6006 mem_cgroup_end_move(from);
6007 }
6008
6009 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6010 struct cgroup_taskset *tset)
6011 {
6012 struct task_struct *p = cgroup_taskset_first(tset);
6013 int ret = 0;
6014 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6015 unsigned long move_charge_at_immigrate;
6016
6017 /*
6018 * We are now commited to this value whatever it is. Changes in this
6019 * tunable will only affect upcoming migrations, not the current one.
6020 * So we need to save it, and keep it going.
6021 */
6022 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6023 if (move_charge_at_immigrate) {
6024 struct mm_struct *mm;
6025 struct mem_cgroup *from = mem_cgroup_from_task(p);
6026
6027 VM_BUG_ON(from == memcg);
6028
6029 mm = get_task_mm(p);
6030 if (!mm)
6031 return 0;
6032 /* We move charges only when we move a owner of the mm */
6033 if (mm->owner == p) {
6034 VM_BUG_ON(mc.from);
6035 VM_BUG_ON(mc.to);
6036 VM_BUG_ON(mc.precharge);
6037 VM_BUG_ON(mc.moved_charge);
6038 VM_BUG_ON(mc.moved_swap);
6039 mem_cgroup_start_move(from);
6040 spin_lock(&mc.lock);
6041 mc.from = from;
6042 mc.to = memcg;
6043 mc.immigrate_flags = move_charge_at_immigrate;
6044 spin_unlock(&mc.lock);
6045 /* We set mc.moving_task later */
6046
6047 ret = mem_cgroup_precharge_mc(mm);
6048 if (ret)
6049 mem_cgroup_clear_mc();
6050 }
6051 mmput(mm);
6052 }
6053 return ret;
6054 }
6055
6056 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6057 struct cgroup_taskset *tset)
6058 {
6059 mem_cgroup_clear_mc();
6060 }
6061
6062 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6063 unsigned long addr, unsigned long end,
6064 struct mm_walk *walk)
6065 {
6066 int ret = 0;
6067 struct vm_area_struct *vma = walk->private;
6068 pte_t *pte;
6069 spinlock_t *ptl;
6070 enum mc_target_type target_type;
6071 union mc_target target;
6072 struct page *page;
6073 struct page_cgroup *pc;
6074
6075 /*
6076 * We don't take compound_lock() here but no race with splitting thp
6077 * happens because:
6078 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6079 * under splitting, which means there's no concurrent thp split,
6080 * - if another thread runs into split_huge_page() just after we
6081 * entered this if-block, the thread must wait for page table lock
6082 * to be unlocked in __split_huge_page_splitting(), where the main
6083 * part of thp split is not executed yet.
6084 */
6085 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6086 if (mc.precharge < HPAGE_PMD_NR) {
6087 spin_unlock(ptl);
6088 return 0;
6089 }
6090 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6091 if (target_type == MC_TARGET_PAGE) {
6092 page = target.page;
6093 if (!isolate_lru_page(page)) {
6094 pc = lookup_page_cgroup(page);
6095 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6096 pc, mc.from, mc.to)) {
6097 mc.precharge -= HPAGE_PMD_NR;
6098 mc.moved_charge += HPAGE_PMD_NR;
6099 }
6100 putback_lru_page(page);
6101 }
6102 put_page(page);
6103 }
6104 spin_unlock(ptl);
6105 return 0;
6106 }
6107
6108 if (pmd_trans_unstable(pmd))
6109 return 0;
6110 retry:
6111 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6112 for (; addr != end; addr += PAGE_SIZE) {
6113 pte_t ptent = *(pte++);
6114 swp_entry_t ent;
6115
6116 if (!mc.precharge)
6117 break;
6118
6119 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6120 case MC_TARGET_PAGE:
6121 page = target.page;
6122 if (isolate_lru_page(page))
6123 goto put;
6124 pc = lookup_page_cgroup(page);
6125 if (!mem_cgroup_move_account(page, 1, pc,
6126 mc.from, mc.to)) {
6127 mc.precharge--;
6128 /* we uncharge from mc.from later. */
6129 mc.moved_charge++;
6130 }
6131 putback_lru_page(page);
6132 put: /* get_mctgt_type() gets the page */
6133 put_page(page);
6134 break;
6135 case MC_TARGET_SWAP:
6136 ent = target.ent;
6137 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6138 mc.precharge--;
6139 /* we fixup refcnts and charges later. */
6140 mc.moved_swap++;
6141 }
6142 break;
6143 default:
6144 break;
6145 }
6146 }
6147 pte_unmap_unlock(pte - 1, ptl);
6148 cond_resched();
6149
6150 if (addr != end) {
6151 /*
6152 * We have consumed all precharges we got in can_attach().
6153 * We try charge one by one, but don't do any additional
6154 * charges to mc.to if we have failed in charge once in attach()
6155 * phase.
6156 */
6157 ret = mem_cgroup_do_precharge(1);
6158 if (!ret)
6159 goto retry;
6160 }
6161
6162 return ret;
6163 }
6164
6165 static void mem_cgroup_move_charge(struct mm_struct *mm)
6166 {
6167 struct vm_area_struct *vma;
6168
6169 lru_add_drain_all();
6170 retry:
6171 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6172 /*
6173 * Someone who are holding the mmap_sem might be waiting in
6174 * waitq. So we cancel all extra charges, wake up all waiters,
6175 * and retry. Because we cancel precharges, we might not be able
6176 * to move enough charges, but moving charge is a best-effort
6177 * feature anyway, so it wouldn't be a big problem.
6178 */
6179 __mem_cgroup_clear_mc();
6180 cond_resched();
6181 goto retry;
6182 }
6183 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6184 int ret;
6185 struct mm_walk mem_cgroup_move_charge_walk = {
6186 .pmd_entry = mem_cgroup_move_charge_pte_range,
6187 .mm = mm,
6188 .private = vma,
6189 };
6190 if (is_vm_hugetlb_page(vma))
6191 continue;
6192 ret = walk_page_range(vma->vm_start, vma->vm_end,
6193 &mem_cgroup_move_charge_walk);
6194 if (ret)
6195 /*
6196 * means we have consumed all precharges and failed in
6197 * doing additional charge. Just abandon here.
6198 */
6199 break;
6200 }
6201 up_read(&mm->mmap_sem);
6202 }
6203
6204 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6205 struct cgroup_taskset *tset)
6206 {
6207 struct task_struct *p = cgroup_taskset_first(tset);
6208 struct mm_struct *mm = get_task_mm(p);
6209
6210 if (mm) {
6211 if (mc.to)
6212 mem_cgroup_move_charge(mm);
6213 mmput(mm);
6214 }
6215 if (mc.to)
6216 mem_cgroup_clear_mc();
6217 }
6218 #else /* !CONFIG_MMU */
6219 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6220 struct cgroup_taskset *tset)
6221 {
6222 return 0;
6223 }
6224 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6225 struct cgroup_taskset *tset)
6226 {
6227 }
6228 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6229 struct cgroup_taskset *tset)
6230 {
6231 }
6232 #endif
6233
6234 /*
6235 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6236 * to verify whether we're attached to the default hierarchy on each mount
6237 * attempt.
6238 */
6239 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6240 {
6241 /*
6242 * use_hierarchy is forced on the default hierarchy. cgroup core
6243 * guarantees that @root doesn't have any children, so turning it
6244 * on for the root memcg is enough.
6245 */
6246 if (cgroup_on_dfl(root_css->cgroup))
6247 mem_cgroup_from_css(root_css)->use_hierarchy = true;
6248 }
6249
6250 struct cgroup_subsys memory_cgrp_subsys = {
6251 .css_alloc = mem_cgroup_css_alloc,
6252 .css_online = mem_cgroup_css_online,
6253 .css_offline = mem_cgroup_css_offline,
6254 .css_free = mem_cgroup_css_free,
6255 .css_reset = mem_cgroup_css_reset,
6256 .can_attach = mem_cgroup_can_attach,
6257 .cancel_attach = mem_cgroup_cancel_attach,
6258 .attach = mem_cgroup_move_task,
6259 .bind = mem_cgroup_bind,
6260 .legacy_cftypes = mem_cgroup_files,
6261 .early_init = 0,
6262 };
6263
6264 #ifdef CONFIG_MEMCG_SWAP
6265 static int __init enable_swap_account(char *s)
6266 {
6267 if (!strcmp(s, "1"))
6268 really_do_swap_account = 1;
6269 else if (!strcmp(s, "0"))
6270 really_do_swap_account = 0;
6271 return 1;
6272 }
6273 __setup("swapaccount=", enable_swap_account);
6274
6275 static void __init memsw_file_init(void)
6276 {
6277 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6278 memsw_cgroup_files));
6279 }
6280
6281 static void __init enable_swap_cgroup(void)
6282 {
6283 if (!mem_cgroup_disabled() && really_do_swap_account) {
6284 do_swap_account = 1;
6285 memsw_file_init();
6286 }
6287 }
6288
6289 #else
6290 static void __init enable_swap_cgroup(void)
6291 {
6292 }
6293 #endif
6294
6295 #ifdef CONFIG_MEMCG_SWAP
6296 /**
6297 * mem_cgroup_swapout - transfer a memsw charge to swap
6298 * @page: page whose memsw charge to transfer
6299 * @entry: swap entry to move the charge to
6300 *
6301 * Transfer the memsw charge of @page to @entry.
6302 */
6303 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6304 {
6305 struct page_cgroup *pc;
6306 unsigned short oldid;
6307
6308 VM_BUG_ON_PAGE(PageLRU(page), page);
6309 VM_BUG_ON_PAGE(page_count(page), page);
6310
6311 if (!do_swap_account)
6312 return;
6313
6314 pc = lookup_page_cgroup(page);
6315
6316 /* Readahead page, never charged */
6317 if (!PageCgroupUsed(pc))
6318 return;
6319
6320 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEMSW), page);
6321
6322 oldid = swap_cgroup_record(entry, mem_cgroup_id(pc->mem_cgroup));
6323 VM_BUG_ON_PAGE(oldid, page);
6324
6325 pc->flags &= ~PCG_MEMSW;
6326 css_get(&pc->mem_cgroup->css);
6327 mem_cgroup_swap_statistics(pc->mem_cgroup, true);
6328 }
6329
6330 /**
6331 * mem_cgroup_uncharge_swap - uncharge a swap entry
6332 * @entry: swap entry to uncharge
6333 *
6334 * Drop the memsw charge associated with @entry.
6335 */
6336 void mem_cgroup_uncharge_swap(swp_entry_t entry)
6337 {
6338 struct mem_cgroup *memcg;
6339 unsigned short id;
6340
6341 if (!do_swap_account)
6342 return;
6343
6344 id = swap_cgroup_record(entry, 0);
6345 rcu_read_lock();
6346 memcg = mem_cgroup_lookup(id);
6347 if (memcg) {
6348 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
6349 mem_cgroup_swap_statistics(memcg, false);
6350 css_put(&memcg->css);
6351 }
6352 rcu_read_unlock();
6353 }
6354 #endif
6355
6356 /**
6357 * mem_cgroup_try_charge - try charging a page
6358 * @page: page to charge
6359 * @mm: mm context of the victim
6360 * @gfp_mask: reclaim mode
6361 * @memcgp: charged memcg return
6362 *
6363 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6364 * pages according to @gfp_mask if necessary.
6365 *
6366 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6367 * Otherwise, an error code is returned.
6368 *
6369 * After page->mapping has been set up, the caller must finalize the
6370 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6371 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6372 */
6373 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6374 gfp_t gfp_mask, struct mem_cgroup **memcgp)
6375 {
6376 struct mem_cgroup *memcg = NULL;
6377 unsigned int nr_pages = 1;
6378 int ret = 0;
6379
6380 if (mem_cgroup_disabled())
6381 goto out;
6382
6383 if (PageSwapCache(page)) {
6384 struct page_cgroup *pc = lookup_page_cgroup(page);
6385 /*
6386 * Every swap fault against a single page tries to charge the
6387 * page, bail as early as possible. shmem_unuse() encounters
6388 * already charged pages, too. The USED bit is protected by
6389 * the page lock, which serializes swap cache removal, which
6390 * in turn serializes uncharging.
6391 */
6392 if (PageCgroupUsed(pc))
6393 goto out;
6394 }
6395
6396 if (PageTransHuge(page)) {
6397 nr_pages <<= compound_order(page);
6398 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6399 }
6400
6401 if (do_swap_account && PageSwapCache(page))
6402 memcg = try_get_mem_cgroup_from_page(page);
6403 if (!memcg)
6404 memcg = get_mem_cgroup_from_mm(mm);
6405
6406 ret = try_charge(memcg, gfp_mask, nr_pages);
6407
6408 css_put(&memcg->css);
6409
6410 if (ret == -EINTR) {
6411 memcg = root_mem_cgroup;
6412 ret = 0;
6413 }
6414 out:
6415 *memcgp = memcg;
6416 return ret;
6417 }
6418
6419 /**
6420 * mem_cgroup_commit_charge - commit a page charge
6421 * @page: page to charge
6422 * @memcg: memcg to charge the page to
6423 * @lrucare: page might be on LRU already
6424 *
6425 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6426 * after page->mapping has been set up. This must happen atomically
6427 * as part of the page instantiation, i.e. under the page table lock
6428 * for anonymous pages, under the page lock for page and swap cache.
6429 *
6430 * In addition, the page must not be on the LRU during the commit, to
6431 * prevent racing with task migration. If it might be, use @lrucare.
6432 *
6433 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6434 */
6435 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6436 bool lrucare)
6437 {
6438 unsigned int nr_pages = 1;
6439
6440 VM_BUG_ON_PAGE(!page->mapping, page);
6441 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6442
6443 if (mem_cgroup_disabled())
6444 return;
6445 /*
6446 * Swap faults will attempt to charge the same page multiple
6447 * times. But reuse_swap_page() might have removed the page
6448 * from swapcache already, so we can't check PageSwapCache().
6449 */
6450 if (!memcg)
6451 return;
6452
6453 commit_charge(page, memcg, lrucare);
6454
6455 if (PageTransHuge(page)) {
6456 nr_pages <<= compound_order(page);
6457 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6458 }
6459
6460 local_irq_disable();
6461 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6462 memcg_check_events(memcg, page);
6463 local_irq_enable();
6464
6465 if (do_swap_account && PageSwapCache(page)) {
6466 swp_entry_t entry = { .val = page_private(page) };
6467 /*
6468 * The swap entry might not get freed for a long time,
6469 * let's not wait for it. The page already received a
6470 * memory+swap charge, drop the swap entry duplicate.
6471 */
6472 mem_cgroup_uncharge_swap(entry);
6473 }
6474 }
6475
6476 /**
6477 * mem_cgroup_cancel_charge - cancel a page charge
6478 * @page: page to charge
6479 * @memcg: memcg to charge the page to
6480 *
6481 * Cancel a charge transaction started by mem_cgroup_try_charge().
6482 */
6483 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
6484 {
6485 unsigned int nr_pages = 1;
6486
6487 if (mem_cgroup_disabled())
6488 return;
6489 /*
6490 * Swap faults will attempt to charge the same page multiple
6491 * times. But reuse_swap_page() might have removed the page
6492 * from swapcache already, so we can't check PageSwapCache().
6493 */
6494 if (!memcg)
6495 return;
6496
6497 if (PageTransHuge(page)) {
6498 nr_pages <<= compound_order(page);
6499 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6500 }
6501
6502 cancel_charge(memcg, nr_pages);
6503 }
6504
6505 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
6506 unsigned long nr_mem, unsigned long nr_memsw,
6507 unsigned long nr_anon, unsigned long nr_file,
6508 unsigned long nr_huge, struct page *dummy_page)
6509 {
6510 unsigned long flags;
6511
6512 if (nr_mem)
6513 res_counter_uncharge(&memcg->res, nr_mem * PAGE_SIZE);
6514 if (nr_memsw)
6515 res_counter_uncharge(&memcg->memsw, nr_memsw * PAGE_SIZE);
6516
6517 memcg_oom_recover(memcg);
6518
6519 local_irq_save(flags);
6520 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
6521 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
6522 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
6523 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
6524 __this_cpu_add(memcg->stat->nr_page_events, nr_anon + nr_file);
6525 memcg_check_events(memcg, dummy_page);
6526 local_irq_restore(flags);
6527 }
6528
6529 static void uncharge_list(struct list_head *page_list)
6530 {
6531 struct mem_cgroup *memcg = NULL;
6532 unsigned long nr_memsw = 0;
6533 unsigned long nr_anon = 0;
6534 unsigned long nr_file = 0;
6535 unsigned long nr_huge = 0;
6536 unsigned long pgpgout = 0;
6537 unsigned long nr_mem = 0;
6538 struct list_head *next;
6539 struct page *page;
6540
6541 next = page_list->next;
6542 do {
6543 unsigned int nr_pages = 1;
6544 struct page_cgroup *pc;
6545
6546 page = list_entry(next, struct page, lru);
6547 next = page->lru.next;
6548
6549 VM_BUG_ON_PAGE(PageLRU(page), page);
6550 VM_BUG_ON_PAGE(page_count(page), page);
6551
6552 pc = lookup_page_cgroup(page);
6553 if (!PageCgroupUsed(pc))
6554 continue;
6555
6556 /*
6557 * Nobody should be changing or seriously looking at
6558 * pc->mem_cgroup and pc->flags at this point, we have
6559 * fully exclusive access to the page.
6560 */
6561
6562 if (memcg != pc->mem_cgroup) {
6563 if (memcg) {
6564 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6565 nr_anon, nr_file, nr_huge, page);
6566 pgpgout = nr_mem = nr_memsw = 0;
6567 nr_anon = nr_file = nr_huge = 0;
6568 }
6569 memcg = pc->mem_cgroup;
6570 }
6571
6572 if (PageTransHuge(page)) {
6573 nr_pages <<= compound_order(page);
6574 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6575 nr_huge += nr_pages;
6576 }
6577
6578 if (PageAnon(page))
6579 nr_anon += nr_pages;
6580 else
6581 nr_file += nr_pages;
6582
6583 if (pc->flags & PCG_MEM)
6584 nr_mem += nr_pages;
6585 if (pc->flags & PCG_MEMSW)
6586 nr_memsw += nr_pages;
6587 pc->flags = 0;
6588
6589 pgpgout++;
6590 } while (next != page_list);
6591
6592 if (memcg)
6593 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6594 nr_anon, nr_file, nr_huge, page);
6595 }
6596
6597 /**
6598 * mem_cgroup_uncharge - uncharge a page
6599 * @page: page to uncharge
6600 *
6601 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6602 * mem_cgroup_commit_charge().
6603 */
6604 void mem_cgroup_uncharge(struct page *page)
6605 {
6606 struct page_cgroup *pc;
6607
6608 if (mem_cgroup_disabled())
6609 return;
6610
6611 /* Don't touch page->lru of any random page, pre-check: */
6612 pc = lookup_page_cgroup(page);
6613 if (!PageCgroupUsed(pc))
6614 return;
6615
6616 INIT_LIST_HEAD(&page->lru);
6617 uncharge_list(&page->lru);
6618 }
6619
6620 /**
6621 * mem_cgroup_uncharge_list - uncharge a list of page
6622 * @page_list: list of pages to uncharge
6623 *
6624 * Uncharge a list of pages previously charged with
6625 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6626 */
6627 void mem_cgroup_uncharge_list(struct list_head *page_list)
6628 {
6629 if (mem_cgroup_disabled())
6630 return;
6631
6632 if (!list_empty(page_list))
6633 uncharge_list(page_list);
6634 }
6635
6636 /**
6637 * mem_cgroup_migrate - migrate a charge to another page
6638 * @oldpage: currently charged page
6639 * @newpage: page to transfer the charge to
6640 * @lrucare: both pages might be on the LRU already
6641 *
6642 * Migrate the charge from @oldpage to @newpage.
6643 *
6644 * Both pages must be locked, @newpage->mapping must be set up.
6645 */
6646 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
6647 bool lrucare)
6648 {
6649 struct page_cgroup *pc;
6650 int isolated;
6651
6652 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6653 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6654 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
6655 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
6656 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6657 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6658 newpage);
6659
6660 if (mem_cgroup_disabled())
6661 return;
6662
6663 /* Page cache replacement: new page already charged? */
6664 pc = lookup_page_cgroup(newpage);
6665 if (PageCgroupUsed(pc))
6666 return;
6667
6668 /* Re-entrant migration: old page already uncharged? */
6669 pc = lookup_page_cgroup(oldpage);
6670 if (!PageCgroupUsed(pc))
6671 return;
6672
6673 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEM), oldpage);
6674 VM_BUG_ON_PAGE(do_swap_account && !(pc->flags & PCG_MEMSW), oldpage);
6675
6676 if (lrucare)
6677 lock_page_lru(oldpage, &isolated);
6678
6679 pc->flags = 0;
6680
6681 if (lrucare)
6682 unlock_page_lru(oldpage, isolated);
6683
6684 commit_charge(newpage, pc->mem_cgroup, lrucare);
6685 }
6686
6687 /*
6688 * subsys_initcall() for memory controller.
6689 *
6690 * Some parts like hotcpu_notifier() have to be initialized from this context
6691 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6692 * everything that doesn't depend on a specific mem_cgroup structure should
6693 * be initialized from here.
6694 */
6695 static int __init mem_cgroup_init(void)
6696 {
6697 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6698 enable_swap_cgroup();
6699 mem_cgroup_soft_limit_tree_init();
6700 memcg_stock_init();
6701 return 0;
6702 }
6703 subsys_initcall(mem_cgroup_init);