]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memcontrol.c
Merge tag 'perf-urgent-2020-04-05' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66
67 #include <linux/uaccess.h>
68
69 #include <trace/events/vmscan.h>
70
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75
76 #define MEM_CGROUP_RECLAIM_RETRIES 5
77
78 /* Socket memory accounting disabled? */
79 static bool cgroup_memory_nosocket;
80
81 /* Kernel memory accounting disabled? */
82 static bool cgroup_memory_nokmem;
83
84 /* Whether the swap controller is active */
85 #ifdef CONFIG_MEMCG_SWAP
86 int do_swap_account __read_mostly;
87 #else
88 #define do_swap_account 0
89 #endif
90
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 #define THRESHOLDS_EVENTS_TARGET 128
102 #define SOFTLIMIT_EVENTS_TARGET 1024
103
104 /*
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
107 */
108
109 struct mem_cgroup_tree_per_node {
110 struct rb_root rb_root;
111 struct rb_node *rb_rightmost;
112 spinlock_t lock;
113 };
114
115 struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117 };
118
119 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120
121 /* for OOM */
122 struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
125 };
126
127 /*
128 * cgroup_event represents events which userspace want to receive.
129 */
130 struct mem_cgroup_event {
131 /*
132 * memcg which the event belongs to.
133 */
134 struct mem_cgroup *memcg;
135 /*
136 * eventfd to signal userspace about the event.
137 */
138 struct eventfd_ctx *eventfd;
139 /*
140 * Each of these stored in a list by the cgroup.
141 */
142 struct list_head list;
143 /*
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
147 */
148 int (*register_event)(struct mem_cgroup *memcg,
149 struct eventfd_ctx *eventfd, const char *args);
150 /*
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
154 */
155 void (*unregister_event)(struct mem_cgroup *memcg,
156 struct eventfd_ctx *eventfd);
157 /*
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
160 */
161 poll_table pt;
162 wait_queue_head_t *wqh;
163 wait_queue_entry_t wait;
164 struct work_struct remove;
165 };
166
167 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169
170 /* Stuffs for move charges at task migration. */
171 /*
172 * Types of charges to be moved.
173 */
174 #define MOVE_ANON 0x1U
175 #define MOVE_FILE 0x2U
176 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
177
178 /* "mc" and its members are protected by cgroup_mutex */
179 static struct move_charge_struct {
180 spinlock_t lock; /* for from, to */
181 struct mm_struct *mm;
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
184 unsigned long flags;
185 unsigned long precharge;
186 unsigned long moved_charge;
187 unsigned long moved_swap;
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
190 } mc = {
191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193 };
194
195 /*
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
198 */
199 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
200 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
201
202 enum charge_type {
203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
204 MEM_CGROUP_CHARGE_TYPE_ANON,
205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
207 NR_CHARGE_TYPE,
208 };
209
210 /* for encoding cft->private value on file */
211 enum res_type {
212 _MEM,
213 _MEMSWAP,
214 _OOM_TYPE,
215 _KMEM,
216 _TCP,
217 };
218
219 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
220 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
221 #define MEMFILE_ATTR(val) ((val) & 0xffff)
222 /* Used for OOM nofiier */
223 #define OOM_CONTROL (0)
224
225 /*
226 * Iteration constructs for visiting all cgroups (under a tree). If
227 * loops are exited prematurely (break), mem_cgroup_iter_break() must
228 * be used for reference counting.
229 */
230 #define for_each_mem_cgroup_tree(iter, root) \
231 for (iter = mem_cgroup_iter(root, NULL, NULL); \
232 iter != NULL; \
233 iter = mem_cgroup_iter(root, iter, NULL))
234
235 #define for_each_mem_cgroup(iter) \
236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
237 iter != NULL; \
238 iter = mem_cgroup_iter(NULL, iter, NULL))
239
240 static inline bool should_force_charge(void)
241 {
242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 (current->flags & PF_EXITING);
244 }
245
246 /* Some nice accessors for the vmpressure. */
247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
248 {
249 if (!memcg)
250 memcg = root_mem_cgroup;
251 return &memcg->vmpressure;
252 }
253
254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
255 {
256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
257 }
258
259 #ifdef CONFIG_MEMCG_KMEM
260 /*
261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
262 * The main reason for not using cgroup id for this:
263 * this works better in sparse environments, where we have a lot of memcgs,
264 * but only a few kmem-limited. Or also, if we have, for instance, 200
265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
266 * 200 entry array for that.
267 *
268 * The current size of the caches array is stored in memcg_nr_cache_ids. It
269 * will double each time we have to increase it.
270 */
271 static DEFINE_IDA(memcg_cache_ida);
272 int memcg_nr_cache_ids;
273
274 /* Protects memcg_nr_cache_ids */
275 static DECLARE_RWSEM(memcg_cache_ids_sem);
276
277 void memcg_get_cache_ids(void)
278 {
279 down_read(&memcg_cache_ids_sem);
280 }
281
282 void memcg_put_cache_ids(void)
283 {
284 up_read(&memcg_cache_ids_sem);
285 }
286
287 /*
288 * MIN_SIZE is different than 1, because we would like to avoid going through
289 * the alloc/free process all the time. In a small machine, 4 kmem-limited
290 * cgroups is a reasonable guess. In the future, it could be a parameter or
291 * tunable, but that is strictly not necessary.
292 *
293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
294 * this constant directly from cgroup, but it is understandable that this is
295 * better kept as an internal representation in cgroup.c. In any case, the
296 * cgrp_id space is not getting any smaller, and we don't have to necessarily
297 * increase ours as well if it increases.
298 */
299 #define MEMCG_CACHES_MIN_SIZE 4
300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
301
302 /*
303 * A lot of the calls to the cache allocation functions are expected to be
304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305 * conditional to this static branch, we'll have to allow modules that does
306 * kmem_cache_alloc and the such to see this symbol as well
307 */
308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
309 EXPORT_SYMBOL(memcg_kmem_enabled_key);
310
311 struct workqueue_struct *memcg_kmem_cache_wq;
312 #endif
313
314 static int memcg_shrinker_map_size;
315 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
316
317 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
318 {
319 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
320 }
321
322 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 int size, int old_size)
324 {
325 struct memcg_shrinker_map *new, *old;
326 int nid;
327
328 lockdep_assert_held(&memcg_shrinker_map_mutex);
329
330 for_each_node(nid) {
331 old = rcu_dereference_protected(
332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 /* Not yet online memcg */
334 if (!old)
335 return 0;
336
337 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
338 if (!new)
339 return -ENOMEM;
340
341 /* Set all old bits, clear all new bits */
342 memset(new->map, (int)0xff, old_size);
343 memset((void *)new->map + old_size, 0, size - old_size);
344
345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
347 }
348
349 return 0;
350 }
351
352 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
353 {
354 struct mem_cgroup_per_node *pn;
355 struct memcg_shrinker_map *map;
356 int nid;
357
358 if (mem_cgroup_is_root(memcg))
359 return;
360
361 for_each_node(nid) {
362 pn = mem_cgroup_nodeinfo(memcg, nid);
363 map = rcu_dereference_protected(pn->shrinker_map, true);
364 if (map)
365 kvfree(map);
366 rcu_assign_pointer(pn->shrinker_map, NULL);
367 }
368 }
369
370 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
371 {
372 struct memcg_shrinker_map *map;
373 int nid, size, ret = 0;
374
375 if (mem_cgroup_is_root(memcg))
376 return 0;
377
378 mutex_lock(&memcg_shrinker_map_mutex);
379 size = memcg_shrinker_map_size;
380 for_each_node(nid) {
381 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
382 if (!map) {
383 memcg_free_shrinker_maps(memcg);
384 ret = -ENOMEM;
385 break;
386 }
387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
388 }
389 mutex_unlock(&memcg_shrinker_map_mutex);
390
391 return ret;
392 }
393
394 int memcg_expand_shrinker_maps(int new_id)
395 {
396 int size, old_size, ret = 0;
397 struct mem_cgroup *memcg;
398
399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 old_size = memcg_shrinker_map_size;
401 if (size <= old_size)
402 return 0;
403
404 mutex_lock(&memcg_shrinker_map_mutex);
405 if (!root_mem_cgroup)
406 goto unlock;
407
408 for_each_mem_cgroup(memcg) {
409 if (mem_cgroup_is_root(memcg))
410 continue;
411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
412 if (ret) {
413 mem_cgroup_iter_break(NULL, memcg);
414 goto unlock;
415 }
416 }
417 unlock:
418 if (!ret)
419 memcg_shrinker_map_size = size;
420 mutex_unlock(&memcg_shrinker_map_mutex);
421 return ret;
422 }
423
424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
425 {
426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 struct memcg_shrinker_map *map;
428
429 rcu_read_lock();
430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 /* Pairs with smp mb in shrink_slab() */
432 smp_mb__before_atomic();
433 set_bit(shrinker_id, map->map);
434 rcu_read_unlock();
435 }
436 }
437
438 /**
439 * mem_cgroup_css_from_page - css of the memcg associated with a page
440 * @page: page of interest
441 *
442 * If memcg is bound to the default hierarchy, css of the memcg associated
443 * with @page is returned. The returned css remains associated with @page
444 * until it is released.
445 *
446 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
447 * is returned.
448 */
449 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
450 {
451 struct mem_cgroup *memcg;
452
453 memcg = page->mem_cgroup;
454
455 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
456 memcg = root_mem_cgroup;
457
458 return &memcg->css;
459 }
460
461 /**
462 * page_cgroup_ino - return inode number of the memcg a page is charged to
463 * @page: the page
464 *
465 * Look up the closest online ancestor of the memory cgroup @page is charged to
466 * and return its inode number or 0 if @page is not charged to any cgroup. It
467 * is safe to call this function without holding a reference to @page.
468 *
469 * Note, this function is inherently racy, because there is nothing to prevent
470 * the cgroup inode from getting torn down and potentially reallocated a moment
471 * after page_cgroup_ino() returns, so it only should be used by callers that
472 * do not care (such as procfs interfaces).
473 */
474 ino_t page_cgroup_ino(struct page *page)
475 {
476 struct mem_cgroup *memcg;
477 unsigned long ino = 0;
478
479 rcu_read_lock();
480 if (PageSlab(page) && !PageTail(page))
481 memcg = memcg_from_slab_page(page);
482 else
483 memcg = READ_ONCE(page->mem_cgroup);
484 while (memcg && !(memcg->css.flags & CSS_ONLINE))
485 memcg = parent_mem_cgroup(memcg);
486 if (memcg)
487 ino = cgroup_ino(memcg->css.cgroup);
488 rcu_read_unlock();
489 return ino;
490 }
491
492 static struct mem_cgroup_per_node *
493 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
494 {
495 int nid = page_to_nid(page);
496
497 return memcg->nodeinfo[nid];
498 }
499
500 static struct mem_cgroup_tree_per_node *
501 soft_limit_tree_node(int nid)
502 {
503 return soft_limit_tree.rb_tree_per_node[nid];
504 }
505
506 static struct mem_cgroup_tree_per_node *
507 soft_limit_tree_from_page(struct page *page)
508 {
509 int nid = page_to_nid(page);
510
511 return soft_limit_tree.rb_tree_per_node[nid];
512 }
513
514 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
515 struct mem_cgroup_tree_per_node *mctz,
516 unsigned long new_usage_in_excess)
517 {
518 struct rb_node **p = &mctz->rb_root.rb_node;
519 struct rb_node *parent = NULL;
520 struct mem_cgroup_per_node *mz_node;
521 bool rightmost = true;
522
523 if (mz->on_tree)
524 return;
525
526 mz->usage_in_excess = new_usage_in_excess;
527 if (!mz->usage_in_excess)
528 return;
529 while (*p) {
530 parent = *p;
531 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
532 tree_node);
533 if (mz->usage_in_excess < mz_node->usage_in_excess) {
534 p = &(*p)->rb_left;
535 rightmost = false;
536 }
537
538 /*
539 * We can't avoid mem cgroups that are over their soft
540 * limit by the same amount
541 */
542 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
543 p = &(*p)->rb_right;
544 }
545
546 if (rightmost)
547 mctz->rb_rightmost = &mz->tree_node;
548
549 rb_link_node(&mz->tree_node, parent, p);
550 rb_insert_color(&mz->tree_node, &mctz->rb_root);
551 mz->on_tree = true;
552 }
553
554 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
555 struct mem_cgroup_tree_per_node *mctz)
556 {
557 if (!mz->on_tree)
558 return;
559
560 if (&mz->tree_node == mctz->rb_rightmost)
561 mctz->rb_rightmost = rb_prev(&mz->tree_node);
562
563 rb_erase(&mz->tree_node, &mctz->rb_root);
564 mz->on_tree = false;
565 }
566
567 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 struct mem_cgroup_tree_per_node *mctz)
569 {
570 unsigned long flags;
571
572 spin_lock_irqsave(&mctz->lock, flags);
573 __mem_cgroup_remove_exceeded(mz, mctz);
574 spin_unlock_irqrestore(&mctz->lock, flags);
575 }
576
577 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
578 {
579 unsigned long nr_pages = page_counter_read(&memcg->memory);
580 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
581 unsigned long excess = 0;
582
583 if (nr_pages > soft_limit)
584 excess = nr_pages - soft_limit;
585
586 return excess;
587 }
588
589 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
590 {
591 unsigned long excess;
592 struct mem_cgroup_per_node *mz;
593 struct mem_cgroup_tree_per_node *mctz;
594
595 mctz = soft_limit_tree_from_page(page);
596 if (!mctz)
597 return;
598 /*
599 * Necessary to update all ancestors when hierarchy is used.
600 * because their event counter is not touched.
601 */
602 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
603 mz = mem_cgroup_page_nodeinfo(memcg, page);
604 excess = soft_limit_excess(memcg);
605 /*
606 * We have to update the tree if mz is on RB-tree or
607 * mem is over its softlimit.
608 */
609 if (excess || mz->on_tree) {
610 unsigned long flags;
611
612 spin_lock_irqsave(&mctz->lock, flags);
613 /* if on-tree, remove it */
614 if (mz->on_tree)
615 __mem_cgroup_remove_exceeded(mz, mctz);
616 /*
617 * Insert again. mz->usage_in_excess will be updated.
618 * If excess is 0, no tree ops.
619 */
620 __mem_cgroup_insert_exceeded(mz, mctz, excess);
621 spin_unlock_irqrestore(&mctz->lock, flags);
622 }
623 }
624 }
625
626 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
627 {
628 struct mem_cgroup_tree_per_node *mctz;
629 struct mem_cgroup_per_node *mz;
630 int nid;
631
632 for_each_node(nid) {
633 mz = mem_cgroup_nodeinfo(memcg, nid);
634 mctz = soft_limit_tree_node(nid);
635 if (mctz)
636 mem_cgroup_remove_exceeded(mz, mctz);
637 }
638 }
639
640 static struct mem_cgroup_per_node *
641 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
642 {
643 struct mem_cgroup_per_node *mz;
644
645 retry:
646 mz = NULL;
647 if (!mctz->rb_rightmost)
648 goto done; /* Nothing to reclaim from */
649
650 mz = rb_entry(mctz->rb_rightmost,
651 struct mem_cgroup_per_node, tree_node);
652 /*
653 * Remove the node now but someone else can add it back,
654 * we will to add it back at the end of reclaim to its correct
655 * position in the tree.
656 */
657 __mem_cgroup_remove_exceeded(mz, mctz);
658 if (!soft_limit_excess(mz->memcg) ||
659 !css_tryget(&mz->memcg->css))
660 goto retry;
661 done:
662 return mz;
663 }
664
665 static struct mem_cgroup_per_node *
666 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
667 {
668 struct mem_cgroup_per_node *mz;
669
670 spin_lock_irq(&mctz->lock);
671 mz = __mem_cgroup_largest_soft_limit_node(mctz);
672 spin_unlock_irq(&mctz->lock);
673 return mz;
674 }
675
676 /**
677 * __mod_memcg_state - update cgroup memory statistics
678 * @memcg: the memory cgroup
679 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
680 * @val: delta to add to the counter, can be negative
681 */
682 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
683 {
684 long x;
685
686 if (mem_cgroup_disabled())
687 return;
688
689 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
690 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
691 struct mem_cgroup *mi;
692
693 /*
694 * Batch local counters to keep them in sync with
695 * the hierarchical ones.
696 */
697 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
698 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
699 atomic_long_add(x, &mi->vmstats[idx]);
700 x = 0;
701 }
702 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
703 }
704
705 static struct mem_cgroup_per_node *
706 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
707 {
708 struct mem_cgroup *parent;
709
710 parent = parent_mem_cgroup(pn->memcg);
711 if (!parent)
712 return NULL;
713 return mem_cgroup_nodeinfo(parent, nid);
714 }
715
716 /**
717 * __mod_lruvec_state - update lruvec memory statistics
718 * @lruvec: the lruvec
719 * @idx: the stat item
720 * @val: delta to add to the counter, can be negative
721 *
722 * The lruvec is the intersection of the NUMA node and a cgroup. This
723 * function updates the all three counters that are affected by a
724 * change of state at this level: per-node, per-cgroup, per-lruvec.
725 */
726 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 int val)
728 {
729 pg_data_t *pgdat = lruvec_pgdat(lruvec);
730 struct mem_cgroup_per_node *pn;
731 struct mem_cgroup *memcg;
732 long x;
733
734 /* Update node */
735 __mod_node_page_state(pgdat, idx, val);
736
737 if (mem_cgroup_disabled())
738 return;
739
740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
741 memcg = pn->memcg;
742
743 /* Update memcg */
744 __mod_memcg_state(memcg, idx, val);
745
746 /* Update lruvec */
747 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
748
749 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
750 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
751 struct mem_cgroup_per_node *pi;
752
753 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
754 atomic_long_add(x, &pi->lruvec_stat[idx]);
755 x = 0;
756 }
757 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
758 }
759
760 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
761 {
762 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
763 struct mem_cgroup *memcg;
764 struct lruvec *lruvec;
765
766 rcu_read_lock();
767 memcg = mem_cgroup_from_obj(p);
768
769 /* Untracked pages have no memcg, no lruvec. Update only the node */
770 if (!memcg || memcg == root_mem_cgroup) {
771 __mod_node_page_state(pgdat, idx, val);
772 } else {
773 lruvec = mem_cgroup_lruvec(memcg, pgdat);
774 __mod_lruvec_state(lruvec, idx, val);
775 }
776 rcu_read_unlock();
777 }
778
779 void mod_memcg_obj_state(void *p, int idx, int val)
780 {
781 struct mem_cgroup *memcg;
782
783 rcu_read_lock();
784 memcg = mem_cgroup_from_obj(p);
785 if (memcg)
786 mod_memcg_state(memcg, idx, val);
787 rcu_read_unlock();
788 }
789
790 /**
791 * __count_memcg_events - account VM events in a cgroup
792 * @memcg: the memory cgroup
793 * @idx: the event item
794 * @count: the number of events that occured
795 */
796 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
797 unsigned long count)
798 {
799 unsigned long x;
800
801 if (mem_cgroup_disabled())
802 return;
803
804 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
805 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
806 struct mem_cgroup *mi;
807
808 /*
809 * Batch local counters to keep them in sync with
810 * the hierarchical ones.
811 */
812 __this_cpu_add(memcg->vmstats_local->events[idx], x);
813 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
814 atomic_long_add(x, &mi->vmevents[idx]);
815 x = 0;
816 }
817 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
818 }
819
820 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
821 {
822 return atomic_long_read(&memcg->vmevents[event]);
823 }
824
825 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
826 {
827 long x = 0;
828 int cpu;
829
830 for_each_possible_cpu(cpu)
831 x += per_cpu(memcg->vmstats_local->events[event], cpu);
832 return x;
833 }
834
835 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
836 struct page *page,
837 bool compound, int nr_pages)
838 {
839 /*
840 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
841 * counted as CACHE even if it's on ANON LRU.
842 */
843 if (PageAnon(page))
844 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
845 else {
846 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
847 if (PageSwapBacked(page))
848 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
849 }
850
851 if (compound) {
852 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
853 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
854 }
855
856 /* pagein of a big page is an event. So, ignore page size */
857 if (nr_pages > 0)
858 __count_memcg_events(memcg, PGPGIN, 1);
859 else {
860 __count_memcg_events(memcg, PGPGOUT, 1);
861 nr_pages = -nr_pages; /* for event */
862 }
863
864 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
865 }
866
867 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
868 enum mem_cgroup_events_target target)
869 {
870 unsigned long val, next;
871
872 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
873 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
874 /* from time_after() in jiffies.h */
875 if ((long)(next - val) < 0) {
876 switch (target) {
877 case MEM_CGROUP_TARGET_THRESH:
878 next = val + THRESHOLDS_EVENTS_TARGET;
879 break;
880 case MEM_CGROUP_TARGET_SOFTLIMIT:
881 next = val + SOFTLIMIT_EVENTS_TARGET;
882 break;
883 default:
884 break;
885 }
886 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
887 return true;
888 }
889 return false;
890 }
891
892 /*
893 * Check events in order.
894 *
895 */
896 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
897 {
898 /* threshold event is triggered in finer grain than soft limit */
899 if (unlikely(mem_cgroup_event_ratelimit(memcg,
900 MEM_CGROUP_TARGET_THRESH))) {
901 bool do_softlimit;
902
903 do_softlimit = mem_cgroup_event_ratelimit(memcg,
904 MEM_CGROUP_TARGET_SOFTLIMIT);
905 mem_cgroup_threshold(memcg);
906 if (unlikely(do_softlimit))
907 mem_cgroup_update_tree(memcg, page);
908 }
909 }
910
911 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
912 {
913 /*
914 * mm_update_next_owner() may clear mm->owner to NULL
915 * if it races with swapoff, page migration, etc.
916 * So this can be called with p == NULL.
917 */
918 if (unlikely(!p))
919 return NULL;
920
921 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
922 }
923 EXPORT_SYMBOL(mem_cgroup_from_task);
924
925 /**
926 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
927 * @mm: mm from which memcg should be extracted. It can be NULL.
928 *
929 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
930 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
931 * returned.
932 */
933 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
934 {
935 struct mem_cgroup *memcg;
936
937 if (mem_cgroup_disabled())
938 return NULL;
939
940 rcu_read_lock();
941 do {
942 /*
943 * Page cache insertions can happen withou an
944 * actual mm context, e.g. during disk probing
945 * on boot, loopback IO, acct() writes etc.
946 */
947 if (unlikely(!mm))
948 memcg = root_mem_cgroup;
949 else {
950 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
951 if (unlikely(!memcg))
952 memcg = root_mem_cgroup;
953 }
954 } while (!css_tryget(&memcg->css));
955 rcu_read_unlock();
956 return memcg;
957 }
958 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
959
960 /**
961 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
962 * @page: page from which memcg should be extracted.
963 *
964 * Obtain a reference on page->memcg and returns it if successful. Otherwise
965 * root_mem_cgroup is returned.
966 */
967 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
968 {
969 struct mem_cgroup *memcg = page->mem_cgroup;
970
971 if (mem_cgroup_disabled())
972 return NULL;
973
974 rcu_read_lock();
975 /* Page should not get uncharged and freed memcg under us. */
976 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
977 memcg = root_mem_cgroup;
978 rcu_read_unlock();
979 return memcg;
980 }
981 EXPORT_SYMBOL(get_mem_cgroup_from_page);
982
983 /**
984 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
985 */
986 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
987 {
988 if (unlikely(current->active_memcg)) {
989 struct mem_cgroup *memcg;
990
991 rcu_read_lock();
992 /* current->active_memcg must hold a ref. */
993 if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
994 memcg = root_mem_cgroup;
995 else
996 memcg = current->active_memcg;
997 rcu_read_unlock();
998 return memcg;
999 }
1000 return get_mem_cgroup_from_mm(current->mm);
1001 }
1002
1003 /**
1004 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1005 * @root: hierarchy root
1006 * @prev: previously returned memcg, NULL on first invocation
1007 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1008 *
1009 * Returns references to children of the hierarchy below @root, or
1010 * @root itself, or %NULL after a full round-trip.
1011 *
1012 * Caller must pass the return value in @prev on subsequent
1013 * invocations for reference counting, or use mem_cgroup_iter_break()
1014 * to cancel a hierarchy walk before the round-trip is complete.
1015 *
1016 * Reclaimers can specify a node and a priority level in @reclaim to
1017 * divide up the memcgs in the hierarchy among all concurrent
1018 * reclaimers operating on the same node and priority.
1019 */
1020 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1021 struct mem_cgroup *prev,
1022 struct mem_cgroup_reclaim_cookie *reclaim)
1023 {
1024 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1025 struct cgroup_subsys_state *css = NULL;
1026 struct mem_cgroup *memcg = NULL;
1027 struct mem_cgroup *pos = NULL;
1028
1029 if (mem_cgroup_disabled())
1030 return NULL;
1031
1032 if (!root)
1033 root = root_mem_cgroup;
1034
1035 if (prev && !reclaim)
1036 pos = prev;
1037
1038 if (!root->use_hierarchy && root != root_mem_cgroup) {
1039 if (prev)
1040 goto out;
1041 return root;
1042 }
1043
1044 rcu_read_lock();
1045
1046 if (reclaim) {
1047 struct mem_cgroup_per_node *mz;
1048
1049 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1050 iter = &mz->iter;
1051
1052 if (prev && reclaim->generation != iter->generation)
1053 goto out_unlock;
1054
1055 while (1) {
1056 pos = READ_ONCE(iter->position);
1057 if (!pos || css_tryget(&pos->css))
1058 break;
1059 /*
1060 * css reference reached zero, so iter->position will
1061 * be cleared by ->css_released. However, we should not
1062 * rely on this happening soon, because ->css_released
1063 * is called from a work queue, and by busy-waiting we
1064 * might block it. So we clear iter->position right
1065 * away.
1066 */
1067 (void)cmpxchg(&iter->position, pos, NULL);
1068 }
1069 }
1070
1071 if (pos)
1072 css = &pos->css;
1073
1074 for (;;) {
1075 css = css_next_descendant_pre(css, &root->css);
1076 if (!css) {
1077 /*
1078 * Reclaimers share the hierarchy walk, and a
1079 * new one might jump in right at the end of
1080 * the hierarchy - make sure they see at least
1081 * one group and restart from the beginning.
1082 */
1083 if (!prev)
1084 continue;
1085 break;
1086 }
1087
1088 /*
1089 * Verify the css and acquire a reference. The root
1090 * is provided by the caller, so we know it's alive
1091 * and kicking, and don't take an extra reference.
1092 */
1093 memcg = mem_cgroup_from_css(css);
1094
1095 if (css == &root->css)
1096 break;
1097
1098 if (css_tryget(css))
1099 break;
1100
1101 memcg = NULL;
1102 }
1103
1104 if (reclaim) {
1105 /*
1106 * The position could have already been updated by a competing
1107 * thread, so check that the value hasn't changed since we read
1108 * it to avoid reclaiming from the same cgroup twice.
1109 */
1110 (void)cmpxchg(&iter->position, pos, memcg);
1111
1112 if (pos)
1113 css_put(&pos->css);
1114
1115 if (!memcg)
1116 iter->generation++;
1117 else if (!prev)
1118 reclaim->generation = iter->generation;
1119 }
1120
1121 out_unlock:
1122 rcu_read_unlock();
1123 out:
1124 if (prev && prev != root)
1125 css_put(&prev->css);
1126
1127 return memcg;
1128 }
1129
1130 /**
1131 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1132 * @root: hierarchy root
1133 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1134 */
1135 void mem_cgroup_iter_break(struct mem_cgroup *root,
1136 struct mem_cgroup *prev)
1137 {
1138 if (!root)
1139 root = root_mem_cgroup;
1140 if (prev && prev != root)
1141 css_put(&prev->css);
1142 }
1143
1144 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1145 struct mem_cgroup *dead_memcg)
1146 {
1147 struct mem_cgroup_reclaim_iter *iter;
1148 struct mem_cgroup_per_node *mz;
1149 int nid;
1150
1151 for_each_node(nid) {
1152 mz = mem_cgroup_nodeinfo(from, nid);
1153 iter = &mz->iter;
1154 cmpxchg(&iter->position, dead_memcg, NULL);
1155 }
1156 }
1157
1158 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1159 {
1160 struct mem_cgroup *memcg = dead_memcg;
1161 struct mem_cgroup *last;
1162
1163 do {
1164 __invalidate_reclaim_iterators(memcg, dead_memcg);
1165 last = memcg;
1166 } while ((memcg = parent_mem_cgroup(memcg)));
1167
1168 /*
1169 * When cgruop1 non-hierarchy mode is used,
1170 * parent_mem_cgroup() does not walk all the way up to the
1171 * cgroup root (root_mem_cgroup). So we have to handle
1172 * dead_memcg from cgroup root separately.
1173 */
1174 if (last != root_mem_cgroup)
1175 __invalidate_reclaim_iterators(root_mem_cgroup,
1176 dead_memcg);
1177 }
1178
1179 /**
1180 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1181 * @memcg: hierarchy root
1182 * @fn: function to call for each task
1183 * @arg: argument passed to @fn
1184 *
1185 * This function iterates over tasks attached to @memcg or to any of its
1186 * descendants and calls @fn for each task. If @fn returns a non-zero
1187 * value, the function breaks the iteration loop and returns the value.
1188 * Otherwise, it will iterate over all tasks and return 0.
1189 *
1190 * This function must not be called for the root memory cgroup.
1191 */
1192 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1193 int (*fn)(struct task_struct *, void *), void *arg)
1194 {
1195 struct mem_cgroup *iter;
1196 int ret = 0;
1197
1198 BUG_ON(memcg == root_mem_cgroup);
1199
1200 for_each_mem_cgroup_tree(iter, memcg) {
1201 struct css_task_iter it;
1202 struct task_struct *task;
1203
1204 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1205 while (!ret && (task = css_task_iter_next(&it)))
1206 ret = fn(task, arg);
1207 css_task_iter_end(&it);
1208 if (ret) {
1209 mem_cgroup_iter_break(memcg, iter);
1210 break;
1211 }
1212 }
1213 return ret;
1214 }
1215
1216 /**
1217 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1218 * @page: the page
1219 * @pgdat: pgdat of the page
1220 *
1221 * This function is only safe when following the LRU page isolation
1222 * and putback protocol: the LRU lock must be held, and the page must
1223 * either be PageLRU() or the caller must have isolated/allocated it.
1224 */
1225 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1226 {
1227 struct mem_cgroup_per_node *mz;
1228 struct mem_cgroup *memcg;
1229 struct lruvec *lruvec;
1230
1231 if (mem_cgroup_disabled()) {
1232 lruvec = &pgdat->__lruvec;
1233 goto out;
1234 }
1235
1236 memcg = page->mem_cgroup;
1237 /*
1238 * Swapcache readahead pages are added to the LRU - and
1239 * possibly migrated - before they are charged.
1240 */
1241 if (!memcg)
1242 memcg = root_mem_cgroup;
1243
1244 mz = mem_cgroup_page_nodeinfo(memcg, page);
1245 lruvec = &mz->lruvec;
1246 out:
1247 /*
1248 * Since a node can be onlined after the mem_cgroup was created,
1249 * we have to be prepared to initialize lruvec->zone here;
1250 * and if offlined then reonlined, we need to reinitialize it.
1251 */
1252 if (unlikely(lruvec->pgdat != pgdat))
1253 lruvec->pgdat = pgdat;
1254 return lruvec;
1255 }
1256
1257 /**
1258 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1259 * @lruvec: mem_cgroup per zone lru vector
1260 * @lru: index of lru list the page is sitting on
1261 * @zid: zone id of the accounted pages
1262 * @nr_pages: positive when adding or negative when removing
1263 *
1264 * This function must be called under lru_lock, just before a page is added
1265 * to or just after a page is removed from an lru list (that ordering being
1266 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1267 */
1268 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1269 int zid, int nr_pages)
1270 {
1271 struct mem_cgroup_per_node *mz;
1272 unsigned long *lru_size;
1273 long size;
1274
1275 if (mem_cgroup_disabled())
1276 return;
1277
1278 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1279 lru_size = &mz->lru_zone_size[zid][lru];
1280
1281 if (nr_pages < 0)
1282 *lru_size += nr_pages;
1283
1284 size = *lru_size;
1285 if (WARN_ONCE(size < 0,
1286 "%s(%p, %d, %d): lru_size %ld\n",
1287 __func__, lruvec, lru, nr_pages, size)) {
1288 VM_BUG_ON(1);
1289 *lru_size = 0;
1290 }
1291
1292 if (nr_pages > 0)
1293 *lru_size += nr_pages;
1294 }
1295
1296 /**
1297 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1298 * @memcg: the memory cgroup
1299 *
1300 * Returns the maximum amount of memory @mem can be charged with, in
1301 * pages.
1302 */
1303 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1304 {
1305 unsigned long margin = 0;
1306 unsigned long count;
1307 unsigned long limit;
1308
1309 count = page_counter_read(&memcg->memory);
1310 limit = READ_ONCE(memcg->memory.max);
1311 if (count < limit)
1312 margin = limit - count;
1313
1314 if (do_memsw_account()) {
1315 count = page_counter_read(&memcg->memsw);
1316 limit = READ_ONCE(memcg->memsw.max);
1317 if (count <= limit)
1318 margin = min(margin, limit - count);
1319 else
1320 margin = 0;
1321 }
1322
1323 return margin;
1324 }
1325
1326 /*
1327 * A routine for checking "mem" is under move_account() or not.
1328 *
1329 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1330 * moving cgroups. This is for waiting at high-memory pressure
1331 * caused by "move".
1332 */
1333 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1334 {
1335 struct mem_cgroup *from;
1336 struct mem_cgroup *to;
1337 bool ret = false;
1338 /*
1339 * Unlike task_move routines, we access mc.to, mc.from not under
1340 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1341 */
1342 spin_lock(&mc.lock);
1343 from = mc.from;
1344 to = mc.to;
1345 if (!from)
1346 goto unlock;
1347
1348 ret = mem_cgroup_is_descendant(from, memcg) ||
1349 mem_cgroup_is_descendant(to, memcg);
1350 unlock:
1351 spin_unlock(&mc.lock);
1352 return ret;
1353 }
1354
1355 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1356 {
1357 if (mc.moving_task && current != mc.moving_task) {
1358 if (mem_cgroup_under_move(memcg)) {
1359 DEFINE_WAIT(wait);
1360 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1361 /* moving charge context might have finished. */
1362 if (mc.moving_task)
1363 schedule();
1364 finish_wait(&mc.waitq, &wait);
1365 return true;
1366 }
1367 }
1368 return false;
1369 }
1370
1371 static char *memory_stat_format(struct mem_cgroup *memcg)
1372 {
1373 struct seq_buf s;
1374 int i;
1375
1376 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1377 if (!s.buffer)
1378 return NULL;
1379
1380 /*
1381 * Provide statistics on the state of the memory subsystem as
1382 * well as cumulative event counters that show past behavior.
1383 *
1384 * This list is ordered following a combination of these gradients:
1385 * 1) generic big picture -> specifics and details
1386 * 2) reflecting userspace activity -> reflecting kernel heuristics
1387 *
1388 * Current memory state:
1389 */
1390
1391 seq_buf_printf(&s, "anon %llu\n",
1392 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1393 PAGE_SIZE);
1394 seq_buf_printf(&s, "file %llu\n",
1395 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1396 PAGE_SIZE);
1397 seq_buf_printf(&s, "kernel_stack %llu\n",
1398 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1399 1024);
1400 seq_buf_printf(&s, "slab %llu\n",
1401 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1402 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1403 PAGE_SIZE);
1404 seq_buf_printf(&s, "sock %llu\n",
1405 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1406 PAGE_SIZE);
1407
1408 seq_buf_printf(&s, "shmem %llu\n",
1409 (u64)memcg_page_state(memcg, NR_SHMEM) *
1410 PAGE_SIZE);
1411 seq_buf_printf(&s, "file_mapped %llu\n",
1412 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1413 PAGE_SIZE);
1414 seq_buf_printf(&s, "file_dirty %llu\n",
1415 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1416 PAGE_SIZE);
1417 seq_buf_printf(&s, "file_writeback %llu\n",
1418 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1419 PAGE_SIZE);
1420
1421 /*
1422 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1423 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1424 * arse because it requires migrating the work out of rmap to a place
1425 * where the page->mem_cgroup is set up and stable.
1426 */
1427 seq_buf_printf(&s, "anon_thp %llu\n",
1428 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1429 PAGE_SIZE);
1430
1431 for (i = 0; i < NR_LRU_LISTS; i++)
1432 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1433 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1434 PAGE_SIZE);
1435
1436 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1437 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1438 PAGE_SIZE);
1439 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1440 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1441 PAGE_SIZE);
1442
1443 /* Accumulated memory events */
1444
1445 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1446 memcg_events(memcg, PGFAULT));
1447 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1448 memcg_events(memcg, PGMAJFAULT));
1449
1450 seq_buf_printf(&s, "workingset_refault %lu\n",
1451 memcg_page_state(memcg, WORKINGSET_REFAULT));
1452 seq_buf_printf(&s, "workingset_activate %lu\n",
1453 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1454 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1455 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1456
1457 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1458 memcg_events(memcg, PGREFILL));
1459 seq_buf_printf(&s, "pgscan %lu\n",
1460 memcg_events(memcg, PGSCAN_KSWAPD) +
1461 memcg_events(memcg, PGSCAN_DIRECT));
1462 seq_buf_printf(&s, "pgsteal %lu\n",
1463 memcg_events(memcg, PGSTEAL_KSWAPD) +
1464 memcg_events(memcg, PGSTEAL_DIRECT));
1465 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1466 memcg_events(memcg, PGACTIVATE));
1467 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1468 memcg_events(memcg, PGDEACTIVATE));
1469 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1470 memcg_events(memcg, PGLAZYFREE));
1471 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1472 memcg_events(memcg, PGLAZYFREED));
1473
1474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1475 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1476 memcg_events(memcg, THP_FAULT_ALLOC));
1477 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1478 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1479 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1480
1481 /* The above should easily fit into one page */
1482 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1483
1484 return s.buffer;
1485 }
1486
1487 #define K(x) ((x) << (PAGE_SHIFT-10))
1488 /**
1489 * mem_cgroup_print_oom_context: Print OOM information relevant to
1490 * memory controller.
1491 * @memcg: The memory cgroup that went over limit
1492 * @p: Task that is going to be killed
1493 *
1494 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1495 * enabled
1496 */
1497 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1498 {
1499 rcu_read_lock();
1500
1501 if (memcg) {
1502 pr_cont(",oom_memcg=");
1503 pr_cont_cgroup_path(memcg->css.cgroup);
1504 } else
1505 pr_cont(",global_oom");
1506 if (p) {
1507 pr_cont(",task_memcg=");
1508 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1509 }
1510 rcu_read_unlock();
1511 }
1512
1513 /**
1514 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1515 * memory controller.
1516 * @memcg: The memory cgroup that went over limit
1517 */
1518 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1519 {
1520 char *buf;
1521
1522 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1523 K((u64)page_counter_read(&memcg->memory)),
1524 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1525 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1526 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1527 K((u64)page_counter_read(&memcg->swap)),
1528 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1529 else {
1530 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1531 K((u64)page_counter_read(&memcg->memsw)),
1532 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1533 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1534 K((u64)page_counter_read(&memcg->kmem)),
1535 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1536 }
1537
1538 pr_info("Memory cgroup stats for ");
1539 pr_cont_cgroup_path(memcg->css.cgroup);
1540 pr_cont(":");
1541 buf = memory_stat_format(memcg);
1542 if (!buf)
1543 return;
1544 pr_info("%s", buf);
1545 kfree(buf);
1546 }
1547
1548 /*
1549 * Return the memory (and swap, if configured) limit for a memcg.
1550 */
1551 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1552 {
1553 unsigned long max;
1554
1555 max = READ_ONCE(memcg->memory.max);
1556 if (mem_cgroup_swappiness(memcg)) {
1557 unsigned long memsw_max;
1558 unsigned long swap_max;
1559
1560 memsw_max = memcg->memsw.max;
1561 swap_max = READ_ONCE(memcg->swap.max);
1562 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1563 max = min(max + swap_max, memsw_max);
1564 }
1565 return max;
1566 }
1567
1568 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1569 {
1570 return page_counter_read(&memcg->memory);
1571 }
1572
1573 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1574 int order)
1575 {
1576 struct oom_control oc = {
1577 .zonelist = NULL,
1578 .nodemask = NULL,
1579 .memcg = memcg,
1580 .gfp_mask = gfp_mask,
1581 .order = order,
1582 };
1583 bool ret;
1584
1585 if (mutex_lock_killable(&oom_lock))
1586 return true;
1587 /*
1588 * A few threads which were not waiting at mutex_lock_killable() can
1589 * fail to bail out. Therefore, check again after holding oom_lock.
1590 */
1591 ret = should_force_charge() || out_of_memory(&oc);
1592 mutex_unlock(&oom_lock);
1593 return ret;
1594 }
1595
1596 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1597 pg_data_t *pgdat,
1598 gfp_t gfp_mask,
1599 unsigned long *total_scanned)
1600 {
1601 struct mem_cgroup *victim = NULL;
1602 int total = 0;
1603 int loop = 0;
1604 unsigned long excess;
1605 unsigned long nr_scanned;
1606 struct mem_cgroup_reclaim_cookie reclaim = {
1607 .pgdat = pgdat,
1608 };
1609
1610 excess = soft_limit_excess(root_memcg);
1611
1612 while (1) {
1613 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1614 if (!victim) {
1615 loop++;
1616 if (loop >= 2) {
1617 /*
1618 * If we have not been able to reclaim
1619 * anything, it might because there are
1620 * no reclaimable pages under this hierarchy
1621 */
1622 if (!total)
1623 break;
1624 /*
1625 * We want to do more targeted reclaim.
1626 * excess >> 2 is not to excessive so as to
1627 * reclaim too much, nor too less that we keep
1628 * coming back to reclaim from this cgroup
1629 */
1630 if (total >= (excess >> 2) ||
1631 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1632 break;
1633 }
1634 continue;
1635 }
1636 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1637 pgdat, &nr_scanned);
1638 *total_scanned += nr_scanned;
1639 if (!soft_limit_excess(root_memcg))
1640 break;
1641 }
1642 mem_cgroup_iter_break(root_memcg, victim);
1643 return total;
1644 }
1645
1646 #ifdef CONFIG_LOCKDEP
1647 static struct lockdep_map memcg_oom_lock_dep_map = {
1648 .name = "memcg_oom_lock",
1649 };
1650 #endif
1651
1652 static DEFINE_SPINLOCK(memcg_oom_lock);
1653
1654 /*
1655 * Check OOM-Killer is already running under our hierarchy.
1656 * If someone is running, return false.
1657 */
1658 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1659 {
1660 struct mem_cgroup *iter, *failed = NULL;
1661
1662 spin_lock(&memcg_oom_lock);
1663
1664 for_each_mem_cgroup_tree(iter, memcg) {
1665 if (iter->oom_lock) {
1666 /*
1667 * this subtree of our hierarchy is already locked
1668 * so we cannot give a lock.
1669 */
1670 failed = iter;
1671 mem_cgroup_iter_break(memcg, iter);
1672 break;
1673 } else
1674 iter->oom_lock = true;
1675 }
1676
1677 if (failed) {
1678 /*
1679 * OK, we failed to lock the whole subtree so we have
1680 * to clean up what we set up to the failing subtree
1681 */
1682 for_each_mem_cgroup_tree(iter, memcg) {
1683 if (iter == failed) {
1684 mem_cgroup_iter_break(memcg, iter);
1685 break;
1686 }
1687 iter->oom_lock = false;
1688 }
1689 } else
1690 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1691
1692 spin_unlock(&memcg_oom_lock);
1693
1694 return !failed;
1695 }
1696
1697 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1698 {
1699 struct mem_cgroup *iter;
1700
1701 spin_lock(&memcg_oom_lock);
1702 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1703 for_each_mem_cgroup_tree(iter, memcg)
1704 iter->oom_lock = false;
1705 spin_unlock(&memcg_oom_lock);
1706 }
1707
1708 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1709 {
1710 struct mem_cgroup *iter;
1711
1712 spin_lock(&memcg_oom_lock);
1713 for_each_mem_cgroup_tree(iter, memcg)
1714 iter->under_oom++;
1715 spin_unlock(&memcg_oom_lock);
1716 }
1717
1718 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1719 {
1720 struct mem_cgroup *iter;
1721
1722 /*
1723 * When a new child is created while the hierarchy is under oom,
1724 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1725 */
1726 spin_lock(&memcg_oom_lock);
1727 for_each_mem_cgroup_tree(iter, memcg)
1728 if (iter->under_oom > 0)
1729 iter->under_oom--;
1730 spin_unlock(&memcg_oom_lock);
1731 }
1732
1733 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1734
1735 struct oom_wait_info {
1736 struct mem_cgroup *memcg;
1737 wait_queue_entry_t wait;
1738 };
1739
1740 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1741 unsigned mode, int sync, void *arg)
1742 {
1743 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1744 struct mem_cgroup *oom_wait_memcg;
1745 struct oom_wait_info *oom_wait_info;
1746
1747 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1748 oom_wait_memcg = oom_wait_info->memcg;
1749
1750 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1751 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1752 return 0;
1753 return autoremove_wake_function(wait, mode, sync, arg);
1754 }
1755
1756 static void memcg_oom_recover(struct mem_cgroup *memcg)
1757 {
1758 /*
1759 * For the following lockless ->under_oom test, the only required
1760 * guarantee is that it must see the state asserted by an OOM when
1761 * this function is called as a result of userland actions
1762 * triggered by the notification of the OOM. This is trivially
1763 * achieved by invoking mem_cgroup_mark_under_oom() before
1764 * triggering notification.
1765 */
1766 if (memcg && memcg->under_oom)
1767 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1768 }
1769
1770 enum oom_status {
1771 OOM_SUCCESS,
1772 OOM_FAILED,
1773 OOM_ASYNC,
1774 OOM_SKIPPED
1775 };
1776
1777 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1778 {
1779 enum oom_status ret;
1780 bool locked;
1781
1782 if (order > PAGE_ALLOC_COSTLY_ORDER)
1783 return OOM_SKIPPED;
1784
1785 memcg_memory_event(memcg, MEMCG_OOM);
1786
1787 /*
1788 * We are in the middle of the charge context here, so we
1789 * don't want to block when potentially sitting on a callstack
1790 * that holds all kinds of filesystem and mm locks.
1791 *
1792 * cgroup1 allows disabling the OOM killer and waiting for outside
1793 * handling until the charge can succeed; remember the context and put
1794 * the task to sleep at the end of the page fault when all locks are
1795 * released.
1796 *
1797 * On the other hand, in-kernel OOM killer allows for an async victim
1798 * memory reclaim (oom_reaper) and that means that we are not solely
1799 * relying on the oom victim to make a forward progress and we can
1800 * invoke the oom killer here.
1801 *
1802 * Please note that mem_cgroup_out_of_memory might fail to find a
1803 * victim and then we have to bail out from the charge path.
1804 */
1805 if (memcg->oom_kill_disable) {
1806 if (!current->in_user_fault)
1807 return OOM_SKIPPED;
1808 css_get(&memcg->css);
1809 current->memcg_in_oom = memcg;
1810 current->memcg_oom_gfp_mask = mask;
1811 current->memcg_oom_order = order;
1812
1813 return OOM_ASYNC;
1814 }
1815
1816 mem_cgroup_mark_under_oom(memcg);
1817
1818 locked = mem_cgroup_oom_trylock(memcg);
1819
1820 if (locked)
1821 mem_cgroup_oom_notify(memcg);
1822
1823 mem_cgroup_unmark_under_oom(memcg);
1824 if (mem_cgroup_out_of_memory(memcg, mask, order))
1825 ret = OOM_SUCCESS;
1826 else
1827 ret = OOM_FAILED;
1828
1829 if (locked)
1830 mem_cgroup_oom_unlock(memcg);
1831
1832 return ret;
1833 }
1834
1835 /**
1836 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1837 * @handle: actually kill/wait or just clean up the OOM state
1838 *
1839 * This has to be called at the end of a page fault if the memcg OOM
1840 * handler was enabled.
1841 *
1842 * Memcg supports userspace OOM handling where failed allocations must
1843 * sleep on a waitqueue until the userspace task resolves the
1844 * situation. Sleeping directly in the charge context with all kinds
1845 * of locks held is not a good idea, instead we remember an OOM state
1846 * in the task and mem_cgroup_oom_synchronize() has to be called at
1847 * the end of the page fault to complete the OOM handling.
1848 *
1849 * Returns %true if an ongoing memcg OOM situation was detected and
1850 * completed, %false otherwise.
1851 */
1852 bool mem_cgroup_oom_synchronize(bool handle)
1853 {
1854 struct mem_cgroup *memcg = current->memcg_in_oom;
1855 struct oom_wait_info owait;
1856 bool locked;
1857
1858 /* OOM is global, do not handle */
1859 if (!memcg)
1860 return false;
1861
1862 if (!handle)
1863 goto cleanup;
1864
1865 owait.memcg = memcg;
1866 owait.wait.flags = 0;
1867 owait.wait.func = memcg_oom_wake_function;
1868 owait.wait.private = current;
1869 INIT_LIST_HEAD(&owait.wait.entry);
1870
1871 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1872 mem_cgroup_mark_under_oom(memcg);
1873
1874 locked = mem_cgroup_oom_trylock(memcg);
1875
1876 if (locked)
1877 mem_cgroup_oom_notify(memcg);
1878
1879 if (locked && !memcg->oom_kill_disable) {
1880 mem_cgroup_unmark_under_oom(memcg);
1881 finish_wait(&memcg_oom_waitq, &owait.wait);
1882 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1883 current->memcg_oom_order);
1884 } else {
1885 schedule();
1886 mem_cgroup_unmark_under_oom(memcg);
1887 finish_wait(&memcg_oom_waitq, &owait.wait);
1888 }
1889
1890 if (locked) {
1891 mem_cgroup_oom_unlock(memcg);
1892 /*
1893 * There is no guarantee that an OOM-lock contender
1894 * sees the wakeups triggered by the OOM kill
1895 * uncharges. Wake any sleepers explicitely.
1896 */
1897 memcg_oom_recover(memcg);
1898 }
1899 cleanup:
1900 current->memcg_in_oom = NULL;
1901 css_put(&memcg->css);
1902 return true;
1903 }
1904
1905 /**
1906 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1907 * @victim: task to be killed by the OOM killer
1908 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1909 *
1910 * Returns a pointer to a memory cgroup, which has to be cleaned up
1911 * by killing all belonging OOM-killable tasks.
1912 *
1913 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1914 */
1915 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1916 struct mem_cgroup *oom_domain)
1917 {
1918 struct mem_cgroup *oom_group = NULL;
1919 struct mem_cgroup *memcg;
1920
1921 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1922 return NULL;
1923
1924 if (!oom_domain)
1925 oom_domain = root_mem_cgroup;
1926
1927 rcu_read_lock();
1928
1929 memcg = mem_cgroup_from_task(victim);
1930 if (memcg == root_mem_cgroup)
1931 goto out;
1932
1933 /*
1934 * If the victim task has been asynchronously moved to a different
1935 * memory cgroup, we might end up killing tasks outside oom_domain.
1936 * In this case it's better to ignore memory.group.oom.
1937 */
1938 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1939 goto out;
1940
1941 /*
1942 * Traverse the memory cgroup hierarchy from the victim task's
1943 * cgroup up to the OOMing cgroup (or root) to find the
1944 * highest-level memory cgroup with oom.group set.
1945 */
1946 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1947 if (memcg->oom_group)
1948 oom_group = memcg;
1949
1950 if (memcg == oom_domain)
1951 break;
1952 }
1953
1954 if (oom_group)
1955 css_get(&oom_group->css);
1956 out:
1957 rcu_read_unlock();
1958
1959 return oom_group;
1960 }
1961
1962 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1963 {
1964 pr_info("Tasks in ");
1965 pr_cont_cgroup_path(memcg->css.cgroup);
1966 pr_cont(" are going to be killed due to memory.oom.group set\n");
1967 }
1968
1969 /**
1970 * lock_page_memcg - lock a page->mem_cgroup binding
1971 * @page: the page
1972 *
1973 * This function protects unlocked LRU pages from being moved to
1974 * another cgroup.
1975 *
1976 * It ensures lifetime of the returned memcg. Caller is responsible
1977 * for the lifetime of the page; __unlock_page_memcg() is available
1978 * when @page might get freed inside the locked section.
1979 */
1980 struct mem_cgroup *lock_page_memcg(struct page *page)
1981 {
1982 struct mem_cgroup *memcg;
1983 unsigned long flags;
1984
1985 /*
1986 * The RCU lock is held throughout the transaction. The fast
1987 * path can get away without acquiring the memcg->move_lock
1988 * because page moving starts with an RCU grace period.
1989 *
1990 * The RCU lock also protects the memcg from being freed when
1991 * the page state that is going to change is the only thing
1992 * preventing the page itself from being freed. E.g. writeback
1993 * doesn't hold a page reference and relies on PG_writeback to
1994 * keep off truncation, migration and so forth.
1995 */
1996 rcu_read_lock();
1997
1998 if (mem_cgroup_disabled())
1999 return NULL;
2000 again:
2001 memcg = page->mem_cgroup;
2002 if (unlikely(!memcg))
2003 return NULL;
2004
2005 if (atomic_read(&memcg->moving_account) <= 0)
2006 return memcg;
2007
2008 spin_lock_irqsave(&memcg->move_lock, flags);
2009 if (memcg != page->mem_cgroup) {
2010 spin_unlock_irqrestore(&memcg->move_lock, flags);
2011 goto again;
2012 }
2013
2014 /*
2015 * When charge migration first begins, we can have locked and
2016 * unlocked page stat updates happening concurrently. Track
2017 * the task who has the lock for unlock_page_memcg().
2018 */
2019 memcg->move_lock_task = current;
2020 memcg->move_lock_flags = flags;
2021
2022 return memcg;
2023 }
2024 EXPORT_SYMBOL(lock_page_memcg);
2025
2026 /**
2027 * __unlock_page_memcg - unlock and unpin a memcg
2028 * @memcg: the memcg
2029 *
2030 * Unlock and unpin a memcg returned by lock_page_memcg().
2031 */
2032 void __unlock_page_memcg(struct mem_cgroup *memcg)
2033 {
2034 if (memcg && memcg->move_lock_task == current) {
2035 unsigned long flags = memcg->move_lock_flags;
2036
2037 memcg->move_lock_task = NULL;
2038 memcg->move_lock_flags = 0;
2039
2040 spin_unlock_irqrestore(&memcg->move_lock, flags);
2041 }
2042
2043 rcu_read_unlock();
2044 }
2045
2046 /**
2047 * unlock_page_memcg - unlock a page->mem_cgroup binding
2048 * @page: the page
2049 */
2050 void unlock_page_memcg(struct page *page)
2051 {
2052 __unlock_page_memcg(page->mem_cgroup);
2053 }
2054 EXPORT_SYMBOL(unlock_page_memcg);
2055
2056 struct memcg_stock_pcp {
2057 struct mem_cgroup *cached; /* this never be root cgroup */
2058 unsigned int nr_pages;
2059 struct work_struct work;
2060 unsigned long flags;
2061 #define FLUSHING_CACHED_CHARGE 0
2062 };
2063 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2064 static DEFINE_MUTEX(percpu_charge_mutex);
2065
2066 /**
2067 * consume_stock: Try to consume stocked charge on this cpu.
2068 * @memcg: memcg to consume from.
2069 * @nr_pages: how many pages to charge.
2070 *
2071 * The charges will only happen if @memcg matches the current cpu's memcg
2072 * stock, and at least @nr_pages are available in that stock. Failure to
2073 * service an allocation will refill the stock.
2074 *
2075 * returns true if successful, false otherwise.
2076 */
2077 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2078 {
2079 struct memcg_stock_pcp *stock;
2080 unsigned long flags;
2081 bool ret = false;
2082
2083 if (nr_pages > MEMCG_CHARGE_BATCH)
2084 return ret;
2085
2086 local_irq_save(flags);
2087
2088 stock = this_cpu_ptr(&memcg_stock);
2089 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2090 stock->nr_pages -= nr_pages;
2091 ret = true;
2092 }
2093
2094 local_irq_restore(flags);
2095
2096 return ret;
2097 }
2098
2099 /*
2100 * Returns stocks cached in percpu and reset cached information.
2101 */
2102 static void drain_stock(struct memcg_stock_pcp *stock)
2103 {
2104 struct mem_cgroup *old = stock->cached;
2105
2106 if (stock->nr_pages) {
2107 page_counter_uncharge(&old->memory, stock->nr_pages);
2108 if (do_memsw_account())
2109 page_counter_uncharge(&old->memsw, stock->nr_pages);
2110 css_put_many(&old->css, stock->nr_pages);
2111 stock->nr_pages = 0;
2112 }
2113 stock->cached = NULL;
2114 }
2115
2116 static void drain_local_stock(struct work_struct *dummy)
2117 {
2118 struct memcg_stock_pcp *stock;
2119 unsigned long flags;
2120
2121 /*
2122 * The only protection from memory hotplug vs. drain_stock races is
2123 * that we always operate on local CPU stock here with IRQ disabled
2124 */
2125 local_irq_save(flags);
2126
2127 stock = this_cpu_ptr(&memcg_stock);
2128 drain_stock(stock);
2129 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2130
2131 local_irq_restore(flags);
2132 }
2133
2134 /*
2135 * Cache charges(val) to local per_cpu area.
2136 * This will be consumed by consume_stock() function, later.
2137 */
2138 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2139 {
2140 struct memcg_stock_pcp *stock;
2141 unsigned long flags;
2142
2143 local_irq_save(flags);
2144
2145 stock = this_cpu_ptr(&memcg_stock);
2146 if (stock->cached != memcg) { /* reset if necessary */
2147 drain_stock(stock);
2148 stock->cached = memcg;
2149 }
2150 stock->nr_pages += nr_pages;
2151
2152 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2153 drain_stock(stock);
2154
2155 local_irq_restore(flags);
2156 }
2157
2158 /*
2159 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2160 * of the hierarchy under it.
2161 */
2162 static void drain_all_stock(struct mem_cgroup *root_memcg)
2163 {
2164 int cpu, curcpu;
2165
2166 /* If someone's already draining, avoid adding running more workers. */
2167 if (!mutex_trylock(&percpu_charge_mutex))
2168 return;
2169 /*
2170 * Notify other cpus that system-wide "drain" is running
2171 * We do not care about races with the cpu hotplug because cpu down
2172 * as well as workers from this path always operate on the local
2173 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2174 */
2175 curcpu = get_cpu();
2176 for_each_online_cpu(cpu) {
2177 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2178 struct mem_cgroup *memcg;
2179 bool flush = false;
2180
2181 rcu_read_lock();
2182 memcg = stock->cached;
2183 if (memcg && stock->nr_pages &&
2184 mem_cgroup_is_descendant(memcg, root_memcg))
2185 flush = true;
2186 rcu_read_unlock();
2187
2188 if (flush &&
2189 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2190 if (cpu == curcpu)
2191 drain_local_stock(&stock->work);
2192 else
2193 schedule_work_on(cpu, &stock->work);
2194 }
2195 }
2196 put_cpu();
2197 mutex_unlock(&percpu_charge_mutex);
2198 }
2199
2200 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2201 {
2202 struct memcg_stock_pcp *stock;
2203 struct mem_cgroup *memcg, *mi;
2204
2205 stock = &per_cpu(memcg_stock, cpu);
2206 drain_stock(stock);
2207
2208 for_each_mem_cgroup(memcg) {
2209 int i;
2210
2211 for (i = 0; i < MEMCG_NR_STAT; i++) {
2212 int nid;
2213 long x;
2214
2215 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2216 if (x)
2217 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2218 atomic_long_add(x, &memcg->vmstats[i]);
2219
2220 if (i >= NR_VM_NODE_STAT_ITEMS)
2221 continue;
2222
2223 for_each_node(nid) {
2224 struct mem_cgroup_per_node *pn;
2225
2226 pn = mem_cgroup_nodeinfo(memcg, nid);
2227 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2228 if (x)
2229 do {
2230 atomic_long_add(x, &pn->lruvec_stat[i]);
2231 } while ((pn = parent_nodeinfo(pn, nid)));
2232 }
2233 }
2234
2235 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2236 long x;
2237
2238 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2239 if (x)
2240 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2241 atomic_long_add(x, &memcg->vmevents[i]);
2242 }
2243 }
2244
2245 return 0;
2246 }
2247
2248 static void reclaim_high(struct mem_cgroup *memcg,
2249 unsigned int nr_pages,
2250 gfp_t gfp_mask)
2251 {
2252 do {
2253 if (page_counter_read(&memcg->memory) <= READ_ONCE(memcg->high))
2254 continue;
2255 memcg_memory_event(memcg, MEMCG_HIGH);
2256 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2257 } while ((memcg = parent_mem_cgroup(memcg)));
2258 }
2259
2260 static void high_work_func(struct work_struct *work)
2261 {
2262 struct mem_cgroup *memcg;
2263
2264 memcg = container_of(work, struct mem_cgroup, high_work);
2265 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2266 }
2267
2268 /*
2269 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2270 * enough to still cause a significant slowdown in most cases, while still
2271 * allowing diagnostics and tracing to proceed without becoming stuck.
2272 */
2273 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2274
2275 /*
2276 * When calculating the delay, we use these either side of the exponentiation to
2277 * maintain precision and scale to a reasonable number of jiffies (see the table
2278 * below.
2279 *
2280 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2281 * overage ratio to a delay.
2282 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2283 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2284 * to produce a reasonable delay curve.
2285 *
2286 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2287 * reasonable delay curve compared to precision-adjusted overage, not
2288 * penalising heavily at first, but still making sure that growth beyond the
2289 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2290 * example, with a high of 100 megabytes:
2291 *
2292 * +-------+------------------------+
2293 * | usage | time to allocate in ms |
2294 * +-------+------------------------+
2295 * | 100M | 0 |
2296 * | 101M | 6 |
2297 * | 102M | 25 |
2298 * | 103M | 57 |
2299 * | 104M | 102 |
2300 * | 105M | 159 |
2301 * | 106M | 230 |
2302 * | 107M | 313 |
2303 * | 108M | 409 |
2304 * | 109M | 518 |
2305 * | 110M | 639 |
2306 * | 111M | 774 |
2307 * | 112M | 921 |
2308 * | 113M | 1081 |
2309 * | 114M | 1254 |
2310 * | 115M | 1439 |
2311 * | 116M | 1638 |
2312 * | 117M | 1849 |
2313 * | 118M | 2000 |
2314 * | 119M | 2000 |
2315 * | 120M | 2000 |
2316 * +-------+------------------------+
2317 */
2318 #define MEMCG_DELAY_PRECISION_SHIFT 20
2319 #define MEMCG_DELAY_SCALING_SHIFT 14
2320
2321 /*
2322 * Get the number of jiffies that we should penalise a mischievous cgroup which
2323 * is exceeding its memory.high by checking both it and its ancestors.
2324 */
2325 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2326 unsigned int nr_pages)
2327 {
2328 unsigned long penalty_jiffies;
2329 u64 max_overage = 0;
2330
2331 do {
2332 unsigned long usage, high;
2333 u64 overage;
2334
2335 usage = page_counter_read(&memcg->memory);
2336 high = READ_ONCE(memcg->high);
2337
2338 /*
2339 * Prevent division by 0 in overage calculation by acting as if
2340 * it was a threshold of 1 page
2341 */
2342 high = max(high, 1UL);
2343
2344 overage = usage - high;
2345 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2346 overage = div64_u64(overage, high);
2347
2348 if (overage > max_overage)
2349 max_overage = overage;
2350 } while ((memcg = parent_mem_cgroup(memcg)) &&
2351 !mem_cgroup_is_root(memcg));
2352
2353 if (!max_overage)
2354 return 0;
2355
2356 /*
2357 * We use overage compared to memory.high to calculate the number of
2358 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2359 * fairly lenient on small overages, and increasingly harsh when the
2360 * memcg in question makes it clear that it has no intention of stopping
2361 * its crazy behaviour, so we exponentially increase the delay based on
2362 * overage amount.
2363 */
2364 penalty_jiffies = max_overage * max_overage * HZ;
2365 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2366 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2367
2368 /*
2369 * Factor in the task's own contribution to the overage, such that four
2370 * N-sized allocations are throttled approximately the same as one
2371 * 4N-sized allocation.
2372 *
2373 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2374 * larger the current charge patch is than that.
2375 */
2376 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2377
2378 /*
2379 * Clamp the max delay per usermode return so as to still keep the
2380 * application moving forwards and also permit diagnostics, albeit
2381 * extremely slowly.
2382 */
2383 return min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2384 }
2385
2386 /*
2387 * Scheduled by try_charge() to be executed from the userland return path
2388 * and reclaims memory over the high limit.
2389 */
2390 void mem_cgroup_handle_over_high(void)
2391 {
2392 unsigned long penalty_jiffies;
2393 unsigned long pflags;
2394 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2395 struct mem_cgroup *memcg;
2396
2397 if (likely(!nr_pages))
2398 return;
2399
2400 memcg = get_mem_cgroup_from_mm(current->mm);
2401 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2402 current->memcg_nr_pages_over_high = 0;
2403
2404 /*
2405 * memory.high is breached and reclaim is unable to keep up. Throttle
2406 * allocators proactively to slow down excessive growth.
2407 */
2408 penalty_jiffies = calculate_high_delay(memcg, nr_pages);
2409
2410 /*
2411 * Don't sleep if the amount of jiffies this memcg owes us is so low
2412 * that it's not even worth doing, in an attempt to be nice to those who
2413 * go only a small amount over their memory.high value and maybe haven't
2414 * been aggressively reclaimed enough yet.
2415 */
2416 if (penalty_jiffies <= HZ / 100)
2417 goto out;
2418
2419 /*
2420 * If we exit early, we're guaranteed to die (since
2421 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2422 * need to account for any ill-begotten jiffies to pay them off later.
2423 */
2424 psi_memstall_enter(&pflags);
2425 schedule_timeout_killable(penalty_jiffies);
2426 psi_memstall_leave(&pflags);
2427
2428 out:
2429 css_put(&memcg->css);
2430 }
2431
2432 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2433 unsigned int nr_pages)
2434 {
2435 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2436 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2437 struct mem_cgroup *mem_over_limit;
2438 struct page_counter *counter;
2439 unsigned long nr_reclaimed;
2440 bool may_swap = true;
2441 bool drained = false;
2442 enum oom_status oom_status;
2443
2444 if (mem_cgroup_is_root(memcg))
2445 return 0;
2446 retry:
2447 if (consume_stock(memcg, nr_pages))
2448 return 0;
2449
2450 if (!do_memsw_account() ||
2451 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2452 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2453 goto done_restock;
2454 if (do_memsw_account())
2455 page_counter_uncharge(&memcg->memsw, batch);
2456 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2457 } else {
2458 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2459 may_swap = false;
2460 }
2461
2462 if (batch > nr_pages) {
2463 batch = nr_pages;
2464 goto retry;
2465 }
2466
2467 /*
2468 * Memcg doesn't have a dedicated reserve for atomic
2469 * allocations. But like the global atomic pool, we need to
2470 * put the burden of reclaim on regular allocation requests
2471 * and let these go through as privileged allocations.
2472 */
2473 if (gfp_mask & __GFP_ATOMIC)
2474 goto force;
2475
2476 /*
2477 * Unlike in global OOM situations, memcg is not in a physical
2478 * memory shortage. Allow dying and OOM-killed tasks to
2479 * bypass the last charges so that they can exit quickly and
2480 * free their memory.
2481 */
2482 if (unlikely(should_force_charge()))
2483 goto force;
2484
2485 /*
2486 * Prevent unbounded recursion when reclaim operations need to
2487 * allocate memory. This might exceed the limits temporarily,
2488 * but we prefer facilitating memory reclaim and getting back
2489 * under the limit over triggering OOM kills in these cases.
2490 */
2491 if (unlikely(current->flags & PF_MEMALLOC))
2492 goto force;
2493
2494 if (unlikely(task_in_memcg_oom(current)))
2495 goto nomem;
2496
2497 if (!gfpflags_allow_blocking(gfp_mask))
2498 goto nomem;
2499
2500 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2501
2502 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2503 gfp_mask, may_swap);
2504
2505 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2506 goto retry;
2507
2508 if (!drained) {
2509 drain_all_stock(mem_over_limit);
2510 drained = true;
2511 goto retry;
2512 }
2513
2514 if (gfp_mask & __GFP_NORETRY)
2515 goto nomem;
2516 /*
2517 * Even though the limit is exceeded at this point, reclaim
2518 * may have been able to free some pages. Retry the charge
2519 * before killing the task.
2520 *
2521 * Only for regular pages, though: huge pages are rather
2522 * unlikely to succeed so close to the limit, and we fall back
2523 * to regular pages anyway in case of failure.
2524 */
2525 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2526 goto retry;
2527 /*
2528 * At task move, charge accounts can be doubly counted. So, it's
2529 * better to wait until the end of task_move if something is going on.
2530 */
2531 if (mem_cgroup_wait_acct_move(mem_over_limit))
2532 goto retry;
2533
2534 if (nr_retries--)
2535 goto retry;
2536
2537 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2538 goto nomem;
2539
2540 if (gfp_mask & __GFP_NOFAIL)
2541 goto force;
2542
2543 if (fatal_signal_pending(current))
2544 goto force;
2545
2546 /*
2547 * keep retrying as long as the memcg oom killer is able to make
2548 * a forward progress or bypass the charge if the oom killer
2549 * couldn't make any progress.
2550 */
2551 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2552 get_order(nr_pages * PAGE_SIZE));
2553 switch (oom_status) {
2554 case OOM_SUCCESS:
2555 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2556 goto retry;
2557 case OOM_FAILED:
2558 goto force;
2559 default:
2560 goto nomem;
2561 }
2562 nomem:
2563 if (!(gfp_mask & __GFP_NOFAIL))
2564 return -ENOMEM;
2565 force:
2566 /*
2567 * The allocation either can't fail or will lead to more memory
2568 * being freed very soon. Allow memory usage go over the limit
2569 * temporarily by force charging it.
2570 */
2571 page_counter_charge(&memcg->memory, nr_pages);
2572 if (do_memsw_account())
2573 page_counter_charge(&memcg->memsw, nr_pages);
2574 css_get_many(&memcg->css, nr_pages);
2575
2576 return 0;
2577
2578 done_restock:
2579 css_get_many(&memcg->css, batch);
2580 if (batch > nr_pages)
2581 refill_stock(memcg, batch - nr_pages);
2582
2583 /*
2584 * If the hierarchy is above the normal consumption range, schedule
2585 * reclaim on returning to userland. We can perform reclaim here
2586 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2587 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2588 * not recorded as it most likely matches current's and won't
2589 * change in the meantime. As high limit is checked again before
2590 * reclaim, the cost of mismatch is negligible.
2591 */
2592 do {
2593 if (page_counter_read(&memcg->memory) > READ_ONCE(memcg->high)) {
2594 /* Don't bother a random interrupted task */
2595 if (in_interrupt()) {
2596 schedule_work(&memcg->high_work);
2597 break;
2598 }
2599 current->memcg_nr_pages_over_high += batch;
2600 set_notify_resume(current);
2601 break;
2602 }
2603 } while ((memcg = parent_mem_cgroup(memcg)));
2604
2605 return 0;
2606 }
2607
2608 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2609 {
2610 if (mem_cgroup_is_root(memcg))
2611 return;
2612
2613 page_counter_uncharge(&memcg->memory, nr_pages);
2614 if (do_memsw_account())
2615 page_counter_uncharge(&memcg->memsw, nr_pages);
2616
2617 css_put_many(&memcg->css, nr_pages);
2618 }
2619
2620 static void lock_page_lru(struct page *page, int *isolated)
2621 {
2622 pg_data_t *pgdat = page_pgdat(page);
2623
2624 spin_lock_irq(&pgdat->lru_lock);
2625 if (PageLRU(page)) {
2626 struct lruvec *lruvec;
2627
2628 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2629 ClearPageLRU(page);
2630 del_page_from_lru_list(page, lruvec, page_lru(page));
2631 *isolated = 1;
2632 } else
2633 *isolated = 0;
2634 }
2635
2636 static void unlock_page_lru(struct page *page, int isolated)
2637 {
2638 pg_data_t *pgdat = page_pgdat(page);
2639
2640 if (isolated) {
2641 struct lruvec *lruvec;
2642
2643 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2644 VM_BUG_ON_PAGE(PageLRU(page), page);
2645 SetPageLRU(page);
2646 add_page_to_lru_list(page, lruvec, page_lru(page));
2647 }
2648 spin_unlock_irq(&pgdat->lru_lock);
2649 }
2650
2651 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2652 bool lrucare)
2653 {
2654 int isolated;
2655
2656 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2657
2658 /*
2659 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2660 * may already be on some other mem_cgroup's LRU. Take care of it.
2661 */
2662 if (lrucare)
2663 lock_page_lru(page, &isolated);
2664
2665 /*
2666 * Nobody should be changing or seriously looking at
2667 * page->mem_cgroup at this point:
2668 *
2669 * - the page is uncharged
2670 *
2671 * - the page is off-LRU
2672 *
2673 * - an anonymous fault has exclusive page access, except for
2674 * a locked page table
2675 *
2676 * - a page cache insertion, a swapin fault, or a migration
2677 * have the page locked
2678 */
2679 page->mem_cgroup = memcg;
2680
2681 if (lrucare)
2682 unlock_page_lru(page, isolated);
2683 }
2684
2685 #ifdef CONFIG_MEMCG_KMEM
2686 /*
2687 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2688 *
2689 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2690 * cgroup_mutex, etc.
2691 */
2692 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2693 {
2694 struct page *page;
2695
2696 if (mem_cgroup_disabled())
2697 return NULL;
2698
2699 page = virt_to_head_page(p);
2700
2701 /*
2702 * Slab pages don't have page->mem_cgroup set because corresponding
2703 * kmem caches can be reparented during the lifetime. That's why
2704 * memcg_from_slab_page() should be used instead.
2705 */
2706 if (PageSlab(page))
2707 return memcg_from_slab_page(page);
2708
2709 /* All other pages use page->mem_cgroup */
2710 return page->mem_cgroup;
2711 }
2712
2713 static int memcg_alloc_cache_id(void)
2714 {
2715 int id, size;
2716 int err;
2717
2718 id = ida_simple_get(&memcg_cache_ida,
2719 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2720 if (id < 0)
2721 return id;
2722
2723 if (id < memcg_nr_cache_ids)
2724 return id;
2725
2726 /*
2727 * There's no space for the new id in memcg_caches arrays,
2728 * so we have to grow them.
2729 */
2730 down_write(&memcg_cache_ids_sem);
2731
2732 size = 2 * (id + 1);
2733 if (size < MEMCG_CACHES_MIN_SIZE)
2734 size = MEMCG_CACHES_MIN_SIZE;
2735 else if (size > MEMCG_CACHES_MAX_SIZE)
2736 size = MEMCG_CACHES_MAX_SIZE;
2737
2738 err = memcg_update_all_caches(size);
2739 if (!err)
2740 err = memcg_update_all_list_lrus(size);
2741 if (!err)
2742 memcg_nr_cache_ids = size;
2743
2744 up_write(&memcg_cache_ids_sem);
2745
2746 if (err) {
2747 ida_simple_remove(&memcg_cache_ida, id);
2748 return err;
2749 }
2750 return id;
2751 }
2752
2753 static void memcg_free_cache_id(int id)
2754 {
2755 ida_simple_remove(&memcg_cache_ida, id);
2756 }
2757
2758 struct memcg_kmem_cache_create_work {
2759 struct mem_cgroup *memcg;
2760 struct kmem_cache *cachep;
2761 struct work_struct work;
2762 };
2763
2764 static void memcg_kmem_cache_create_func(struct work_struct *w)
2765 {
2766 struct memcg_kmem_cache_create_work *cw =
2767 container_of(w, struct memcg_kmem_cache_create_work, work);
2768 struct mem_cgroup *memcg = cw->memcg;
2769 struct kmem_cache *cachep = cw->cachep;
2770
2771 memcg_create_kmem_cache(memcg, cachep);
2772
2773 css_put(&memcg->css);
2774 kfree(cw);
2775 }
2776
2777 /*
2778 * Enqueue the creation of a per-memcg kmem_cache.
2779 */
2780 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2781 struct kmem_cache *cachep)
2782 {
2783 struct memcg_kmem_cache_create_work *cw;
2784
2785 if (!css_tryget_online(&memcg->css))
2786 return;
2787
2788 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2789 if (!cw)
2790 return;
2791
2792 cw->memcg = memcg;
2793 cw->cachep = cachep;
2794 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2795
2796 queue_work(memcg_kmem_cache_wq, &cw->work);
2797 }
2798
2799 static inline bool memcg_kmem_bypass(void)
2800 {
2801 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2802 return true;
2803 return false;
2804 }
2805
2806 /**
2807 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2808 * @cachep: the original global kmem cache
2809 *
2810 * Return the kmem_cache we're supposed to use for a slab allocation.
2811 * We try to use the current memcg's version of the cache.
2812 *
2813 * If the cache does not exist yet, if we are the first user of it, we
2814 * create it asynchronously in a workqueue and let the current allocation
2815 * go through with the original cache.
2816 *
2817 * This function takes a reference to the cache it returns to assure it
2818 * won't get destroyed while we are working with it. Once the caller is
2819 * done with it, memcg_kmem_put_cache() must be called to release the
2820 * reference.
2821 */
2822 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2823 {
2824 struct mem_cgroup *memcg;
2825 struct kmem_cache *memcg_cachep;
2826 struct memcg_cache_array *arr;
2827 int kmemcg_id;
2828
2829 VM_BUG_ON(!is_root_cache(cachep));
2830
2831 if (memcg_kmem_bypass())
2832 return cachep;
2833
2834 rcu_read_lock();
2835
2836 if (unlikely(current->active_memcg))
2837 memcg = current->active_memcg;
2838 else
2839 memcg = mem_cgroup_from_task(current);
2840
2841 if (!memcg || memcg == root_mem_cgroup)
2842 goto out_unlock;
2843
2844 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2845 if (kmemcg_id < 0)
2846 goto out_unlock;
2847
2848 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2849
2850 /*
2851 * Make sure we will access the up-to-date value. The code updating
2852 * memcg_caches issues a write barrier to match the data dependency
2853 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2854 */
2855 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2856
2857 /*
2858 * If we are in a safe context (can wait, and not in interrupt
2859 * context), we could be be predictable and return right away.
2860 * This would guarantee that the allocation being performed
2861 * already belongs in the new cache.
2862 *
2863 * However, there are some clashes that can arrive from locking.
2864 * For instance, because we acquire the slab_mutex while doing
2865 * memcg_create_kmem_cache, this means no further allocation
2866 * could happen with the slab_mutex held. So it's better to
2867 * defer everything.
2868 *
2869 * If the memcg is dying or memcg_cache is about to be released,
2870 * don't bother creating new kmem_caches. Because memcg_cachep
2871 * is ZEROed as the fist step of kmem offlining, we don't need
2872 * percpu_ref_tryget_live() here. css_tryget_online() check in
2873 * memcg_schedule_kmem_cache_create() will prevent us from
2874 * creation of a new kmem_cache.
2875 */
2876 if (unlikely(!memcg_cachep))
2877 memcg_schedule_kmem_cache_create(memcg, cachep);
2878 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2879 cachep = memcg_cachep;
2880 out_unlock:
2881 rcu_read_unlock();
2882 return cachep;
2883 }
2884
2885 /**
2886 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2887 * @cachep: the cache returned by memcg_kmem_get_cache
2888 */
2889 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2890 {
2891 if (!is_root_cache(cachep))
2892 percpu_ref_put(&cachep->memcg_params.refcnt);
2893 }
2894
2895 /**
2896 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
2897 * @memcg: memory cgroup to charge
2898 * @gfp: reclaim mode
2899 * @nr_pages: number of pages to charge
2900 *
2901 * Returns 0 on success, an error code on failure.
2902 */
2903 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
2904 unsigned int nr_pages)
2905 {
2906 struct page_counter *counter;
2907 int ret;
2908
2909 ret = try_charge(memcg, gfp, nr_pages);
2910 if (ret)
2911 return ret;
2912
2913 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2914 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2915
2916 /*
2917 * Enforce __GFP_NOFAIL allocation because callers are not
2918 * prepared to see failures and likely do not have any failure
2919 * handling code.
2920 */
2921 if (gfp & __GFP_NOFAIL) {
2922 page_counter_charge(&memcg->kmem, nr_pages);
2923 return 0;
2924 }
2925 cancel_charge(memcg, nr_pages);
2926 return -ENOMEM;
2927 }
2928 return 0;
2929 }
2930
2931 /**
2932 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
2933 * @memcg: memcg to uncharge
2934 * @nr_pages: number of pages to uncharge
2935 */
2936 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
2937 {
2938 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2939 page_counter_uncharge(&memcg->kmem, nr_pages);
2940
2941 page_counter_uncharge(&memcg->memory, nr_pages);
2942 if (do_memsw_account())
2943 page_counter_uncharge(&memcg->memsw, nr_pages);
2944 }
2945
2946 /**
2947 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2948 * @page: page to charge
2949 * @gfp: reclaim mode
2950 * @order: allocation order
2951 *
2952 * Returns 0 on success, an error code on failure.
2953 */
2954 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2955 {
2956 struct mem_cgroup *memcg;
2957 int ret = 0;
2958
2959 if (memcg_kmem_bypass())
2960 return 0;
2961
2962 memcg = get_mem_cgroup_from_current();
2963 if (!mem_cgroup_is_root(memcg)) {
2964 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
2965 if (!ret) {
2966 page->mem_cgroup = memcg;
2967 __SetPageKmemcg(page);
2968 }
2969 }
2970 css_put(&memcg->css);
2971 return ret;
2972 }
2973
2974 /**
2975 * __memcg_kmem_uncharge_page: uncharge a kmem page
2976 * @page: page to uncharge
2977 * @order: allocation order
2978 */
2979 void __memcg_kmem_uncharge_page(struct page *page, int order)
2980 {
2981 struct mem_cgroup *memcg = page->mem_cgroup;
2982 unsigned int nr_pages = 1 << order;
2983
2984 if (!memcg)
2985 return;
2986
2987 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2988 __memcg_kmem_uncharge(memcg, nr_pages);
2989 page->mem_cgroup = NULL;
2990
2991 /* slab pages do not have PageKmemcg flag set */
2992 if (PageKmemcg(page))
2993 __ClearPageKmemcg(page);
2994
2995 css_put_many(&memcg->css, nr_pages);
2996 }
2997 #endif /* CONFIG_MEMCG_KMEM */
2998
2999 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3000
3001 /*
3002 * Because tail pages are not marked as "used", set it. We're under
3003 * pgdat->lru_lock and migration entries setup in all page mappings.
3004 */
3005 void mem_cgroup_split_huge_fixup(struct page *head)
3006 {
3007 int i;
3008
3009 if (mem_cgroup_disabled())
3010 return;
3011
3012 for (i = 1; i < HPAGE_PMD_NR; i++)
3013 head[i].mem_cgroup = head->mem_cgroup;
3014
3015 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
3016 }
3017 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3018
3019 #ifdef CONFIG_MEMCG_SWAP
3020 /**
3021 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3022 * @entry: swap entry to be moved
3023 * @from: mem_cgroup which the entry is moved from
3024 * @to: mem_cgroup which the entry is moved to
3025 *
3026 * It succeeds only when the swap_cgroup's record for this entry is the same
3027 * as the mem_cgroup's id of @from.
3028 *
3029 * Returns 0 on success, -EINVAL on failure.
3030 *
3031 * The caller must have charged to @to, IOW, called page_counter_charge() about
3032 * both res and memsw, and called css_get().
3033 */
3034 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3035 struct mem_cgroup *from, struct mem_cgroup *to)
3036 {
3037 unsigned short old_id, new_id;
3038
3039 old_id = mem_cgroup_id(from);
3040 new_id = mem_cgroup_id(to);
3041
3042 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3043 mod_memcg_state(from, MEMCG_SWAP, -1);
3044 mod_memcg_state(to, MEMCG_SWAP, 1);
3045 return 0;
3046 }
3047 return -EINVAL;
3048 }
3049 #else
3050 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3051 struct mem_cgroup *from, struct mem_cgroup *to)
3052 {
3053 return -EINVAL;
3054 }
3055 #endif
3056
3057 static DEFINE_MUTEX(memcg_max_mutex);
3058
3059 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3060 unsigned long max, bool memsw)
3061 {
3062 bool enlarge = false;
3063 bool drained = false;
3064 int ret;
3065 bool limits_invariant;
3066 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3067
3068 do {
3069 if (signal_pending(current)) {
3070 ret = -EINTR;
3071 break;
3072 }
3073
3074 mutex_lock(&memcg_max_mutex);
3075 /*
3076 * Make sure that the new limit (memsw or memory limit) doesn't
3077 * break our basic invariant rule memory.max <= memsw.max.
3078 */
3079 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3080 max <= memcg->memsw.max;
3081 if (!limits_invariant) {
3082 mutex_unlock(&memcg_max_mutex);
3083 ret = -EINVAL;
3084 break;
3085 }
3086 if (max > counter->max)
3087 enlarge = true;
3088 ret = page_counter_set_max(counter, max);
3089 mutex_unlock(&memcg_max_mutex);
3090
3091 if (!ret)
3092 break;
3093
3094 if (!drained) {
3095 drain_all_stock(memcg);
3096 drained = true;
3097 continue;
3098 }
3099
3100 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3101 GFP_KERNEL, !memsw)) {
3102 ret = -EBUSY;
3103 break;
3104 }
3105 } while (true);
3106
3107 if (!ret && enlarge)
3108 memcg_oom_recover(memcg);
3109
3110 return ret;
3111 }
3112
3113 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3114 gfp_t gfp_mask,
3115 unsigned long *total_scanned)
3116 {
3117 unsigned long nr_reclaimed = 0;
3118 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3119 unsigned long reclaimed;
3120 int loop = 0;
3121 struct mem_cgroup_tree_per_node *mctz;
3122 unsigned long excess;
3123 unsigned long nr_scanned;
3124
3125 if (order > 0)
3126 return 0;
3127
3128 mctz = soft_limit_tree_node(pgdat->node_id);
3129
3130 /*
3131 * Do not even bother to check the largest node if the root
3132 * is empty. Do it lockless to prevent lock bouncing. Races
3133 * are acceptable as soft limit is best effort anyway.
3134 */
3135 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3136 return 0;
3137
3138 /*
3139 * This loop can run a while, specially if mem_cgroup's continuously
3140 * keep exceeding their soft limit and putting the system under
3141 * pressure
3142 */
3143 do {
3144 if (next_mz)
3145 mz = next_mz;
3146 else
3147 mz = mem_cgroup_largest_soft_limit_node(mctz);
3148 if (!mz)
3149 break;
3150
3151 nr_scanned = 0;
3152 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3153 gfp_mask, &nr_scanned);
3154 nr_reclaimed += reclaimed;
3155 *total_scanned += nr_scanned;
3156 spin_lock_irq(&mctz->lock);
3157 __mem_cgroup_remove_exceeded(mz, mctz);
3158
3159 /*
3160 * If we failed to reclaim anything from this memory cgroup
3161 * it is time to move on to the next cgroup
3162 */
3163 next_mz = NULL;
3164 if (!reclaimed)
3165 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3166
3167 excess = soft_limit_excess(mz->memcg);
3168 /*
3169 * One school of thought says that we should not add
3170 * back the node to the tree if reclaim returns 0.
3171 * But our reclaim could return 0, simply because due
3172 * to priority we are exposing a smaller subset of
3173 * memory to reclaim from. Consider this as a longer
3174 * term TODO.
3175 */
3176 /* If excess == 0, no tree ops */
3177 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3178 spin_unlock_irq(&mctz->lock);
3179 css_put(&mz->memcg->css);
3180 loop++;
3181 /*
3182 * Could not reclaim anything and there are no more
3183 * mem cgroups to try or we seem to be looping without
3184 * reclaiming anything.
3185 */
3186 if (!nr_reclaimed &&
3187 (next_mz == NULL ||
3188 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3189 break;
3190 } while (!nr_reclaimed);
3191 if (next_mz)
3192 css_put(&next_mz->memcg->css);
3193 return nr_reclaimed;
3194 }
3195
3196 /*
3197 * Test whether @memcg has children, dead or alive. Note that this
3198 * function doesn't care whether @memcg has use_hierarchy enabled and
3199 * returns %true if there are child csses according to the cgroup
3200 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3201 */
3202 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3203 {
3204 bool ret;
3205
3206 rcu_read_lock();
3207 ret = css_next_child(NULL, &memcg->css);
3208 rcu_read_unlock();
3209 return ret;
3210 }
3211
3212 /*
3213 * Reclaims as many pages from the given memcg as possible.
3214 *
3215 * Caller is responsible for holding css reference for memcg.
3216 */
3217 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3218 {
3219 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3220
3221 /* we call try-to-free pages for make this cgroup empty */
3222 lru_add_drain_all();
3223
3224 drain_all_stock(memcg);
3225
3226 /* try to free all pages in this cgroup */
3227 while (nr_retries && page_counter_read(&memcg->memory)) {
3228 int progress;
3229
3230 if (signal_pending(current))
3231 return -EINTR;
3232
3233 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3234 GFP_KERNEL, true);
3235 if (!progress) {
3236 nr_retries--;
3237 /* maybe some writeback is necessary */
3238 congestion_wait(BLK_RW_ASYNC, HZ/10);
3239 }
3240
3241 }
3242
3243 return 0;
3244 }
3245
3246 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3247 char *buf, size_t nbytes,
3248 loff_t off)
3249 {
3250 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3251
3252 if (mem_cgroup_is_root(memcg))
3253 return -EINVAL;
3254 return mem_cgroup_force_empty(memcg) ?: nbytes;
3255 }
3256
3257 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3258 struct cftype *cft)
3259 {
3260 return mem_cgroup_from_css(css)->use_hierarchy;
3261 }
3262
3263 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3264 struct cftype *cft, u64 val)
3265 {
3266 int retval = 0;
3267 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3268 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3269
3270 if (memcg->use_hierarchy == val)
3271 return 0;
3272
3273 /*
3274 * If parent's use_hierarchy is set, we can't make any modifications
3275 * in the child subtrees. If it is unset, then the change can
3276 * occur, provided the current cgroup has no children.
3277 *
3278 * For the root cgroup, parent_mem is NULL, we allow value to be
3279 * set if there are no children.
3280 */
3281 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3282 (val == 1 || val == 0)) {
3283 if (!memcg_has_children(memcg))
3284 memcg->use_hierarchy = val;
3285 else
3286 retval = -EBUSY;
3287 } else
3288 retval = -EINVAL;
3289
3290 return retval;
3291 }
3292
3293 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3294 {
3295 unsigned long val;
3296
3297 if (mem_cgroup_is_root(memcg)) {
3298 val = memcg_page_state(memcg, MEMCG_CACHE) +
3299 memcg_page_state(memcg, MEMCG_RSS);
3300 if (swap)
3301 val += memcg_page_state(memcg, MEMCG_SWAP);
3302 } else {
3303 if (!swap)
3304 val = page_counter_read(&memcg->memory);
3305 else
3306 val = page_counter_read(&memcg->memsw);
3307 }
3308 return val;
3309 }
3310
3311 enum {
3312 RES_USAGE,
3313 RES_LIMIT,
3314 RES_MAX_USAGE,
3315 RES_FAILCNT,
3316 RES_SOFT_LIMIT,
3317 };
3318
3319 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3320 struct cftype *cft)
3321 {
3322 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3323 struct page_counter *counter;
3324
3325 switch (MEMFILE_TYPE(cft->private)) {
3326 case _MEM:
3327 counter = &memcg->memory;
3328 break;
3329 case _MEMSWAP:
3330 counter = &memcg->memsw;
3331 break;
3332 case _KMEM:
3333 counter = &memcg->kmem;
3334 break;
3335 case _TCP:
3336 counter = &memcg->tcpmem;
3337 break;
3338 default:
3339 BUG();
3340 }
3341
3342 switch (MEMFILE_ATTR(cft->private)) {
3343 case RES_USAGE:
3344 if (counter == &memcg->memory)
3345 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3346 if (counter == &memcg->memsw)
3347 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3348 return (u64)page_counter_read(counter) * PAGE_SIZE;
3349 case RES_LIMIT:
3350 return (u64)counter->max * PAGE_SIZE;
3351 case RES_MAX_USAGE:
3352 return (u64)counter->watermark * PAGE_SIZE;
3353 case RES_FAILCNT:
3354 return counter->failcnt;
3355 case RES_SOFT_LIMIT:
3356 return (u64)memcg->soft_limit * PAGE_SIZE;
3357 default:
3358 BUG();
3359 }
3360 }
3361
3362 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3363 {
3364 unsigned long stat[MEMCG_NR_STAT] = {0};
3365 struct mem_cgroup *mi;
3366 int node, cpu, i;
3367
3368 for_each_online_cpu(cpu)
3369 for (i = 0; i < MEMCG_NR_STAT; i++)
3370 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3371
3372 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3373 for (i = 0; i < MEMCG_NR_STAT; i++)
3374 atomic_long_add(stat[i], &mi->vmstats[i]);
3375
3376 for_each_node(node) {
3377 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3378 struct mem_cgroup_per_node *pi;
3379
3380 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3381 stat[i] = 0;
3382
3383 for_each_online_cpu(cpu)
3384 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3385 stat[i] += per_cpu(
3386 pn->lruvec_stat_cpu->count[i], cpu);
3387
3388 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3389 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3390 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3391 }
3392 }
3393
3394 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3395 {
3396 unsigned long events[NR_VM_EVENT_ITEMS];
3397 struct mem_cgroup *mi;
3398 int cpu, i;
3399
3400 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3401 events[i] = 0;
3402
3403 for_each_online_cpu(cpu)
3404 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3405 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3406 cpu);
3407
3408 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3409 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3410 atomic_long_add(events[i], &mi->vmevents[i]);
3411 }
3412
3413 #ifdef CONFIG_MEMCG_KMEM
3414 static int memcg_online_kmem(struct mem_cgroup *memcg)
3415 {
3416 int memcg_id;
3417
3418 if (cgroup_memory_nokmem)
3419 return 0;
3420
3421 BUG_ON(memcg->kmemcg_id >= 0);
3422 BUG_ON(memcg->kmem_state);
3423
3424 memcg_id = memcg_alloc_cache_id();
3425 if (memcg_id < 0)
3426 return memcg_id;
3427
3428 static_branch_inc(&memcg_kmem_enabled_key);
3429 /*
3430 * A memory cgroup is considered kmem-online as soon as it gets
3431 * kmemcg_id. Setting the id after enabling static branching will
3432 * guarantee no one starts accounting before all call sites are
3433 * patched.
3434 */
3435 memcg->kmemcg_id = memcg_id;
3436 memcg->kmem_state = KMEM_ONLINE;
3437 INIT_LIST_HEAD(&memcg->kmem_caches);
3438
3439 return 0;
3440 }
3441
3442 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3443 {
3444 struct cgroup_subsys_state *css;
3445 struct mem_cgroup *parent, *child;
3446 int kmemcg_id;
3447
3448 if (memcg->kmem_state != KMEM_ONLINE)
3449 return;
3450 /*
3451 * Clear the online state before clearing memcg_caches array
3452 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3453 * guarantees that no cache will be created for this cgroup
3454 * after we are done (see memcg_create_kmem_cache()).
3455 */
3456 memcg->kmem_state = KMEM_ALLOCATED;
3457
3458 parent = parent_mem_cgroup(memcg);
3459 if (!parent)
3460 parent = root_mem_cgroup;
3461
3462 /*
3463 * Deactivate and reparent kmem_caches.
3464 */
3465 memcg_deactivate_kmem_caches(memcg, parent);
3466
3467 kmemcg_id = memcg->kmemcg_id;
3468 BUG_ON(kmemcg_id < 0);
3469
3470 /*
3471 * Change kmemcg_id of this cgroup and all its descendants to the
3472 * parent's id, and then move all entries from this cgroup's list_lrus
3473 * to ones of the parent. After we have finished, all list_lrus
3474 * corresponding to this cgroup are guaranteed to remain empty. The
3475 * ordering is imposed by list_lru_node->lock taken by
3476 * memcg_drain_all_list_lrus().
3477 */
3478 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3479 css_for_each_descendant_pre(css, &memcg->css) {
3480 child = mem_cgroup_from_css(css);
3481 BUG_ON(child->kmemcg_id != kmemcg_id);
3482 child->kmemcg_id = parent->kmemcg_id;
3483 if (!memcg->use_hierarchy)
3484 break;
3485 }
3486 rcu_read_unlock();
3487
3488 memcg_drain_all_list_lrus(kmemcg_id, parent);
3489
3490 memcg_free_cache_id(kmemcg_id);
3491 }
3492
3493 static void memcg_free_kmem(struct mem_cgroup *memcg)
3494 {
3495 /* css_alloc() failed, offlining didn't happen */
3496 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3497 memcg_offline_kmem(memcg);
3498
3499 if (memcg->kmem_state == KMEM_ALLOCATED) {
3500 WARN_ON(!list_empty(&memcg->kmem_caches));
3501 static_branch_dec(&memcg_kmem_enabled_key);
3502 }
3503 }
3504 #else
3505 static int memcg_online_kmem(struct mem_cgroup *memcg)
3506 {
3507 return 0;
3508 }
3509 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3510 {
3511 }
3512 static void memcg_free_kmem(struct mem_cgroup *memcg)
3513 {
3514 }
3515 #endif /* CONFIG_MEMCG_KMEM */
3516
3517 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3518 unsigned long max)
3519 {
3520 int ret;
3521
3522 mutex_lock(&memcg_max_mutex);
3523 ret = page_counter_set_max(&memcg->kmem, max);
3524 mutex_unlock(&memcg_max_mutex);
3525 return ret;
3526 }
3527
3528 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3529 {
3530 int ret;
3531
3532 mutex_lock(&memcg_max_mutex);
3533
3534 ret = page_counter_set_max(&memcg->tcpmem, max);
3535 if (ret)
3536 goto out;
3537
3538 if (!memcg->tcpmem_active) {
3539 /*
3540 * The active flag needs to be written after the static_key
3541 * update. This is what guarantees that the socket activation
3542 * function is the last one to run. See mem_cgroup_sk_alloc()
3543 * for details, and note that we don't mark any socket as
3544 * belonging to this memcg until that flag is up.
3545 *
3546 * We need to do this, because static_keys will span multiple
3547 * sites, but we can't control their order. If we mark a socket
3548 * as accounted, but the accounting functions are not patched in
3549 * yet, we'll lose accounting.
3550 *
3551 * We never race with the readers in mem_cgroup_sk_alloc(),
3552 * because when this value change, the code to process it is not
3553 * patched in yet.
3554 */
3555 static_branch_inc(&memcg_sockets_enabled_key);
3556 memcg->tcpmem_active = true;
3557 }
3558 out:
3559 mutex_unlock(&memcg_max_mutex);
3560 return ret;
3561 }
3562
3563 /*
3564 * The user of this function is...
3565 * RES_LIMIT.
3566 */
3567 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3568 char *buf, size_t nbytes, loff_t off)
3569 {
3570 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3571 unsigned long nr_pages;
3572 int ret;
3573
3574 buf = strstrip(buf);
3575 ret = page_counter_memparse(buf, "-1", &nr_pages);
3576 if (ret)
3577 return ret;
3578
3579 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3580 case RES_LIMIT:
3581 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3582 ret = -EINVAL;
3583 break;
3584 }
3585 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3586 case _MEM:
3587 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3588 break;
3589 case _MEMSWAP:
3590 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3591 break;
3592 case _KMEM:
3593 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3594 "Please report your usecase to linux-mm@kvack.org if you "
3595 "depend on this functionality.\n");
3596 ret = memcg_update_kmem_max(memcg, nr_pages);
3597 break;
3598 case _TCP:
3599 ret = memcg_update_tcp_max(memcg, nr_pages);
3600 break;
3601 }
3602 break;
3603 case RES_SOFT_LIMIT:
3604 memcg->soft_limit = nr_pages;
3605 ret = 0;
3606 break;
3607 }
3608 return ret ?: nbytes;
3609 }
3610
3611 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3612 size_t nbytes, loff_t off)
3613 {
3614 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3615 struct page_counter *counter;
3616
3617 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3618 case _MEM:
3619 counter = &memcg->memory;
3620 break;
3621 case _MEMSWAP:
3622 counter = &memcg->memsw;
3623 break;
3624 case _KMEM:
3625 counter = &memcg->kmem;
3626 break;
3627 case _TCP:
3628 counter = &memcg->tcpmem;
3629 break;
3630 default:
3631 BUG();
3632 }
3633
3634 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3635 case RES_MAX_USAGE:
3636 page_counter_reset_watermark(counter);
3637 break;
3638 case RES_FAILCNT:
3639 counter->failcnt = 0;
3640 break;
3641 default:
3642 BUG();
3643 }
3644
3645 return nbytes;
3646 }
3647
3648 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3649 struct cftype *cft)
3650 {
3651 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3652 }
3653
3654 #ifdef CONFIG_MMU
3655 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3656 struct cftype *cft, u64 val)
3657 {
3658 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3659
3660 if (val & ~MOVE_MASK)
3661 return -EINVAL;
3662
3663 /*
3664 * No kind of locking is needed in here, because ->can_attach() will
3665 * check this value once in the beginning of the process, and then carry
3666 * on with stale data. This means that changes to this value will only
3667 * affect task migrations starting after the change.
3668 */
3669 memcg->move_charge_at_immigrate = val;
3670 return 0;
3671 }
3672 #else
3673 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3674 struct cftype *cft, u64 val)
3675 {
3676 return -ENOSYS;
3677 }
3678 #endif
3679
3680 #ifdef CONFIG_NUMA
3681
3682 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3683 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3684 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3685
3686 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3687 int nid, unsigned int lru_mask)
3688 {
3689 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3690 unsigned long nr = 0;
3691 enum lru_list lru;
3692
3693 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3694
3695 for_each_lru(lru) {
3696 if (!(BIT(lru) & lru_mask))
3697 continue;
3698 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3699 }
3700 return nr;
3701 }
3702
3703 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3704 unsigned int lru_mask)
3705 {
3706 unsigned long nr = 0;
3707 enum lru_list lru;
3708
3709 for_each_lru(lru) {
3710 if (!(BIT(lru) & lru_mask))
3711 continue;
3712 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3713 }
3714 return nr;
3715 }
3716
3717 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3718 {
3719 struct numa_stat {
3720 const char *name;
3721 unsigned int lru_mask;
3722 };
3723
3724 static const struct numa_stat stats[] = {
3725 { "total", LRU_ALL },
3726 { "file", LRU_ALL_FILE },
3727 { "anon", LRU_ALL_ANON },
3728 { "unevictable", BIT(LRU_UNEVICTABLE) },
3729 };
3730 const struct numa_stat *stat;
3731 int nid;
3732 unsigned long nr;
3733 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3734
3735 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3736 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3737 seq_printf(m, "%s=%lu", stat->name, nr);
3738 for_each_node_state(nid, N_MEMORY) {
3739 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3740 stat->lru_mask);
3741 seq_printf(m, " N%d=%lu", nid, nr);
3742 }
3743 seq_putc(m, '\n');
3744 }
3745
3746 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3747 struct mem_cgroup *iter;
3748
3749 nr = 0;
3750 for_each_mem_cgroup_tree(iter, memcg)
3751 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3752 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3753 for_each_node_state(nid, N_MEMORY) {
3754 nr = 0;
3755 for_each_mem_cgroup_tree(iter, memcg)
3756 nr += mem_cgroup_node_nr_lru_pages(
3757 iter, nid, stat->lru_mask);
3758 seq_printf(m, " N%d=%lu", nid, nr);
3759 }
3760 seq_putc(m, '\n');
3761 }
3762
3763 return 0;
3764 }
3765 #endif /* CONFIG_NUMA */
3766
3767 static const unsigned int memcg1_stats[] = {
3768 MEMCG_CACHE,
3769 MEMCG_RSS,
3770 MEMCG_RSS_HUGE,
3771 NR_SHMEM,
3772 NR_FILE_MAPPED,
3773 NR_FILE_DIRTY,
3774 NR_WRITEBACK,
3775 MEMCG_SWAP,
3776 };
3777
3778 static const char *const memcg1_stat_names[] = {
3779 "cache",
3780 "rss",
3781 "rss_huge",
3782 "shmem",
3783 "mapped_file",
3784 "dirty",
3785 "writeback",
3786 "swap",
3787 };
3788
3789 /* Universal VM events cgroup1 shows, original sort order */
3790 static const unsigned int memcg1_events[] = {
3791 PGPGIN,
3792 PGPGOUT,
3793 PGFAULT,
3794 PGMAJFAULT,
3795 };
3796
3797 static int memcg_stat_show(struct seq_file *m, void *v)
3798 {
3799 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3800 unsigned long memory, memsw;
3801 struct mem_cgroup *mi;
3802 unsigned int i;
3803
3804 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3805
3806 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3807 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3808 continue;
3809 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3810 memcg_page_state_local(memcg, memcg1_stats[i]) *
3811 PAGE_SIZE);
3812 }
3813
3814 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3815 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3816 memcg_events_local(memcg, memcg1_events[i]));
3817
3818 for (i = 0; i < NR_LRU_LISTS; i++)
3819 seq_printf(m, "%s %lu\n", lru_list_name(i),
3820 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3821 PAGE_SIZE);
3822
3823 /* Hierarchical information */
3824 memory = memsw = PAGE_COUNTER_MAX;
3825 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3826 memory = min(memory, READ_ONCE(mi->memory.max));
3827 memsw = min(memsw, READ_ONCE(mi->memsw.max));
3828 }
3829 seq_printf(m, "hierarchical_memory_limit %llu\n",
3830 (u64)memory * PAGE_SIZE);
3831 if (do_memsw_account())
3832 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3833 (u64)memsw * PAGE_SIZE);
3834
3835 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3836 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3837 continue;
3838 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3839 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3840 PAGE_SIZE);
3841 }
3842
3843 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3844 seq_printf(m, "total_%s %llu\n",
3845 vm_event_name(memcg1_events[i]),
3846 (u64)memcg_events(memcg, memcg1_events[i]));
3847
3848 for (i = 0; i < NR_LRU_LISTS; i++)
3849 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3850 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3851 PAGE_SIZE);
3852
3853 #ifdef CONFIG_DEBUG_VM
3854 {
3855 pg_data_t *pgdat;
3856 struct mem_cgroup_per_node *mz;
3857 struct zone_reclaim_stat *rstat;
3858 unsigned long recent_rotated[2] = {0, 0};
3859 unsigned long recent_scanned[2] = {0, 0};
3860
3861 for_each_online_pgdat(pgdat) {
3862 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3863 rstat = &mz->lruvec.reclaim_stat;
3864
3865 recent_rotated[0] += rstat->recent_rotated[0];
3866 recent_rotated[1] += rstat->recent_rotated[1];
3867 recent_scanned[0] += rstat->recent_scanned[0];
3868 recent_scanned[1] += rstat->recent_scanned[1];
3869 }
3870 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3871 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3872 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3873 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3874 }
3875 #endif
3876
3877 return 0;
3878 }
3879
3880 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3881 struct cftype *cft)
3882 {
3883 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3884
3885 return mem_cgroup_swappiness(memcg);
3886 }
3887
3888 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3889 struct cftype *cft, u64 val)
3890 {
3891 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3892
3893 if (val > 100)
3894 return -EINVAL;
3895
3896 if (css->parent)
3897 memcg->swappiness = val;
3898 else
3899 vm_swappiness = val;
3900
3901 return 0;
3902 }
3903
3904 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3905 {
3906 struct mem_cgroup_threshold_ary *t;
3907 unsigned long usage;
3908 int i;
3909
3910 rcu_read_lock();
3911 if (!swap)
3912 t = rcu_dereference(memcg->thresholds.primary);
3913 else
3914 t = rcu_dereference(memcg->memsw_thresholds.primary);
3915
3916 if (!t)
3917 goto unlock;
3918
3919 usage = mem_cgroup_usage(memcg, swap);
3920
3921 /*
3922 * current_threshold points to threshold just below or equal to usage.
3923 * If it's not true, a threshold was crossed after last
3924 * call of __mem_cgroup_threshold().
3925 */
3926 i = t->current_threshold;
3927
3928 /*
3929 * Iterate backward over array of thresholds starting from
3930 * current_threshold and check if a threshold is crossed.
3931 * If none of thresholds below usage is crossed, we read
3932 * only one element of the array here.
3933 */
3934 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3935 eventfd_signal(t->entries[i].eventfd, 1);
3936
3937 /* i = current_threshold + 1 */
3938 i++;
3939
3940 /*
3941 * Iterate forward over array of thresholds starting from
3942 * current_threshold+1 and check if a threshold is crossed.
3943 * If none of thresholds above usage is crossed, we read
3944 * only one element of the array here.
3945 */
3946 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3947 eventfd_signal(t->entries[i].eventfd, 1);
3948
3949 /* Update current_threshold */
3950 t->current_threshold = i - 1;
3951 unlock:
3952 rcu_read_unlock();
3953 }
3954
3955 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3956 {
3957 while (memcg) {
3958 __mem_cgroup_threshold(memcg, false);
3959 if (do_memsw_account())
3960 __mem_cgroup_threshold(memcg, true);
3961
3962 memcg = parent_mem_cgroup(memcg);
3963 }
3964 }
3965
3966 static int compare_thresholds(const void *a, const void *b)
3967 {
3968 const struct mem_cgroup_threshold *_a = a;
3969 const struct mem_cgroup_threshold *_b = b;
3970
3971 if (_a->threshold > _b->threshold)
3972 return 1;
3973
3974 if (_a->threshold < _b->threshold)
3975 return -1;
3976
3977 return 0;
3978 }
3979
3980 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3981 {
3982 struct mem_cgroup_eventfd_list *ev;
3983
3984 spin_lock(&memcg_oom_lock);
3985
3986 list_for_each_entry(ev, &memcg->oom_notify, list)
3987 eventfd_signal(ev->eventfd, 1);
3988
3989 spin_unlock(&memcg_oom_lock);
3990 return 0;
3991 }
3992
3993 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3994 {
3995 struct mem_cgroup *iter;
3996
3997 for_each_mem_cgroup_tree(iter, memcg)
3998 mem_cgroup_oom_notify_cb(iter);
3999 }
4000
4001 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4002 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4003 {
4004 struct mem_cgroup_thresholds *thresholds;
4005 struct mem_cgroup_threshold_ary *new;
4006 unsigned long threshold;
4007 unsigned long usage;
4008 int i, size, ret;
4009
4010 ret = page_counter_memparse(args, "-1", &threshold);
4011 if (ret)
4012 return ret;
4013
4014 mutex_lock(&memcg->thresholds_lock);
4015
4016 if (type == _MEM) {
4017 thresholds = &memcg->thresholds;
4018 usage = mem_cgroup_usage(memcg, false);
4019 } else if (type == _MEMSWAP) {
4020 thresholds = &memcg->memsw_thresholds;
4021 usage = mem_cgroup_usage(memcg, true);
4022 } else
4023 BUG();
4024
4025 /* Check if a threshold crossed before adding a new one */
4026 if (thresholds->primary)
4027 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4028
4029 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4030
4031 /* Allocate memory for new array of thresholds */
4032 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4033 if (!new) {
4034 ret = -ENOMEM;
4035 goto unlock;
4036 }
4037 new->size = size;
4038
4039 /* Copy thresholds (if any) to new array */
4040 if (thresholds->primary) {
4041 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4042 sizeof(struct mem_cgroup_threshold));
4043 }
4044
4045 /* Add new threshold */
4046 new->entries[size - 1].eventfd = eventfd;
4047 new->entries[size - 1].threshold = threshold;
4048
4049 /* Sort thresholds. Registering of new threshold isn't time-critical */
4050 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4051 compare_thresholds, NULL);
4052
4053 /* Find current threshold */
4054 new->current_threshold = -1;
4055 for (i = 0; i < size; i++) {
4056 if (new->entries[i].threshold <= usage) {
4057 /*
4058 * new->current_threshold will not be used until
4059 * rcu_assign_pointer(), so it's safe to increment
4060 * it here.
4061 */
4062 ++new->current_threshold;
4063 } else
4064 break;
4065 }
4066
4067 /* Free old spare buffer and save old primary buffer as spare */
4068 kfree(thresholds->spare);
4069 thresholds->spare = thresholds->primary;
4070
4071 rcu_assign_pointer(thresholds->primary, new);
4072
4073 /* To be sure that nobody uses thresholds */
4074 synchronize_rcu();
4075
4076 unlock:
4077 mutex_unlock(&memcg->thresholds_lock);
4078
4079 return ret;
4080 }
4081
4082 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4083 struct eventfd_ctx *eventfd, const char *args)
4084 {
4085 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4086 }
4087
4088 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4089 struct eventfd_ctx *eventfd, const char *args)
4090 {
4091 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4092 }
4093
4094 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4095 struct eventfd_ctx *eventfd, enum res_type type)
4096 {
4097 struct mem_cgroup_thresholds *thresholds;
4098 struct mem_cgroup_threshold_ary *new;
4099 unsigned long usage;
4100 int i, j, size, entries;
4101
4102 mutex_lock(&memcg->thresholds_lock);
4103
4104 if (type == _MEM) {
4105 thresholds = &memcg->thresholds;
4106 usage = mem_cgroup_usage(memcg, false);
4107 } else if (type == _MEMSWAP) {
4108 thresholds = &memcg->memsw_thresholds;
4109 usage = mem_cgroup_usage(memcg, true);
4110 } else
4111 BUG();
4112
4113 if (!thresholds->primary)
4114 goto unlock;
4115
4116 /* Check if a threshold crossed before removing */
4117 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4118
4119 /* Calculate new number of threshold */
4120 size = entries = 0;
4121 for (i = 0; i < thresholds->primary->size; i++) {
4122 if (thresholds->primary->entries[i].eventfd != eventfd)
4123 size++;
4124 else
4125 entries++;
4126 }
4127
4128 new = thresholds->spare;
4129
4130 /* If no items related to eventfd have been cleared, nothing to do */
4131 if (!entries)
4132 goto unlock;
4133
4134 /* Set thresholds array to NULL if we don't have thresholds */
4135 if (!size) {
4136 kfree(new);
4137 new = NULL;
4138 goto swap_buffers;
4139 }
4140
4141 new->size = size;
4142
4143 /* Copy thresholds and find current threshold */
4144 new->current_threshold = -1;
4145 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4146 if (thresholds->primary->entries[i].eventfd == eventfd)
4147 continue;
4148
4149 new->entries[j] = thresholds->primary->entries[i];
4150 if (new->entries[j].threshold <= usage) {
4151 /*
4152 * new->current_threshold will not be used
4153 * until rcu_assign_pointer(), so it's safe to increment
4154 * it here.
4155 */
4156 ++new->current_threshold;
4157 }
4158 j++;
4159 }
4160
4161 swap_buffers:
4162 /* Swap primary and spare array */
4163 thresholds->spare = thresholds->primary;
4164
4165 rcu_assign_pointer(thresholds->primary, new);
4166
4167 /* To be sure that nobody uses thresholds */
4168 synchronize_rcu();
4169
4170 /* If all events are unregistered, free the spare array */
4171 if (!new) {
4172 kfree(thresholds->spare);
4173 thresholds->spare = NULL;
4174 }
4175 unlock:
4176 mutex_unlock(&memcg->thresholds_lock);
4177 }
4178
4179 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4180 struct eventfd_ctx *eventfd)
4181 {
4182 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4183 }
4184
4185 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4186 struct eventfd_ctx *eventfd)
4187 {
4188 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4189 }
4190
4191 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4192 struct eventfd_ctx *eventfd, const char *args)
4193 {
4194 struct mem_cgroup_eventfd_list *event;
4195
4196 event = kmalloc(sizeof(*event), GFP_KERNEL);
4197 if (!event)
4198 return -ENOMEM;
4199
4200 spin_lock(&memcg_oom_lock);
4201
4202 event->eventfd = eventfd;
4203 list_add(&event->list, &memcg->oom_notify);
4204
4205 /* already in OOM ? */
4206 if (memcg->under_oom)
4207 eventfd_signal(eventfd, 1);
4208 spin_unlock(&memcg_oom_lock);
4209
4210 return 0;
4211 }
4212
4213 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4214 struct eventfd_ctx *eventfd)
4215 {
4216 struct mem_cgroup_eventfd_list *ev, *tmp;
4217
4218 spin_lock(&memcg_oom_lock);
4219
4220 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4221 if (ev->eventfd == eventfd) {
4222 list_del(&ev->list);
4223 kfree(ev);
4224 }
4225 }
4226
4227 spin_unlock(&memcg_oom_lock);
4228 }
4229
4230 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4231 {
4232 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4233
4234 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4235 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4236 seq_printf(sf, "oom_kill %lu\n",
4237 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4238 return 0;
4239 }
4240
4241 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4242 struct cftype *cft, u64 val)
4243 {
4244 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4245
4246 /* cannot set to root cgroup and only 0 and 1 are allowed */
4247 if (!css->parent || !((val == 0) || (val == 1)))
4248 return -EINVAL;
4249
4250 memcg->oom_kill_disable = val;
4251 if (!val)
4252 memcg_oom_recover(memcg);
4253
4254 return 0;
4255 }
4256
4257 #ifdef CONFIG_CGROUP_WRITEBACK
4258
4259 #include <trace/events/writeback.h>
4260
4261 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4262 {
4263 return wb_domain_init(&memcg->cgwb_domain, gfp);
4264 }
4265
4266 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4267 {
4268 wb_domain_exit(&memcg->cgwb_domain);
4269 }
4270
4271 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4272 {
4273 wb_domain_size_changed(&memcg->cgwb_domain);
4274 }
4275
4276 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4277 {
4278 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4279
4280 if (!memcg->css.parent)
4281 return NULL;
4282
4283 return &memcg->cgwb_domain;
4284 }
4285
4286 /*
4287 * idx can be of type enum memcg_stat_item or node_stat_item.
4288 * Keep in sync with memcg_exact_page().
4289 */
4290 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4291 {
4292 long x = atomic_long_read(&memcg->vmstats[idx]);
4293 int cpu;
4294
4295 for_each_online_cpu(cpu)
4296 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4297 if (x < 0)
4298 x = 0;
4299 return x;
4300 }
4301
4302 /**
4303 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4304 * @wb: bdi_writeback in question
4305 * @pfilepages: out parameter for number of file pages
4306 * @pheadroom: out parameter for number of allocatable pages according to memcg
4307 * @pdirty: out parameter for number of dirty pages
4308 * @pwriteback: out parameter for number of pages under writeback
4309 *
4310 * Determine the numbers of file, headroom, dirty, and writeback pages in
4311 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4312 * is a bit more involved.
4313 *
4314 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4315 * headroom is calculated as the lowest headroom of itself and the
4316 * ancestors. Note that this doesn't consider the actual amount of
4317 * available memory in the system. The caller should further cap
4318 * *@pheadroom accordingly.
4319 */
4320 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4321 unsigned long *pheadroom, unsigned long *pdirty,
4322 unsigned long *pwriteback)
4323 {
4324 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4325 struct mem_cgroup *parent;
4326
4327 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4328
4329 /* this should eventually include NR_UNSTABLE_NFS */
4330 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4331 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4332 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4333 *pheadroom = PAGE_COUNTER_MAX;
4334
4335 while ((parent = parent_mem_cgroup(memcg))) {
4336 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4337 READ_ONCE(memcg->high));
4338 unsigned long used = page_counter_read(&memcg->memory);
4339
4340 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4341 memcg = parent;
4342 }
4343 }
4344
4345 /*
4346 * Foreign dirty flushing
4347 *
4348 * There's an inherent mismatch between memcg and writeback. The former
4349 * trackes ownership per-page while the latter per-inode. This was a
4350 * deliberate design decision because honoring per-page ownership in the
4351 * writeback path is complicated, may lead to higher CPU and IO overheads
4352 * and deemed unnecessary given that write-sharing an inode across
4353 * different cgroups isn't a common use-case.
4354 *
4355 * Combined with inode majority-writer ownership switching, this works well
4356 * enough in most cases but there are some pathological cases. For
4357 * example, let's say there are two cgroups A and B which keep writing to
4358 * different but confined parts of the same inode. B owns the inode and
4359 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4360 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4361 * triggering background writeback. A will be slowed down without a way to
4362 * make writeback of the dirty pages happen.
4363 *
4364 * Conditions like the above can lead to a cgroup getting repatedly and
4365 * severely throttled after making some progress after each
4366 * dirty_expire_interval while the underyling IO device is almost
4367 * completely idle.
4368 *
4369 * Solving this problem completely requires matching the ownership tracking
4370 * granularities between memcg and writeback in either direction. However,
4371 * the more egregious behaviors can be avoided by simply remembering the
4372 * most recent foreign dirtying events and initiating remote flushes on
4373 * them when local writeback isn't enough to keep the memory clean enough.
4374 *
4375 * The following two functions implement such mechanism. When a foreign
4376 * page - a page whose memcg and writeback ownerships don't match - is
4377 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4378 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4379 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4380 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4381 * foreign bdi_writebacks which haven't expired. Both the numbers of
4382 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4383 * limited to MEMCG_CGWB_FRN_CNT.
4384 *
4385 * The mechanism only remembers IDs and doesn't hold any object references.
4386 * As being wrong occasionally doesn't matter, updates and accesses to the
4387 * records are lockless and racy.
4388 */
4389 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4390 struct bdi_writeback *wb)
4391 {
4392 struct mem_cgroup *memcg = page->mem_cgroup;
4393 struct memcg_cgwb_frn *frn;
4394 u64 now = get_jiffies_64();
4395 u64 oldest_at = now;
4396 int oldest = -1;
4397 int i;
4398
4399 trace_track_foreign_dirty(page, wb);
4400
4401 /*
4402 * Pick the slot to use. If there is already a slot for @wb, keep
4403 * using it. If not replace the oldest one which isn't being
4404 * written out.
4405 */
4406 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4407 frn = &memcg->cgwb_frn[i];
4408 if (frn->bdi_id == wb->bdi->id &&
4409 frn->memcg_id == wb->memcg_css->id)
4410 break;
4411 if (time_before64(frn->at, oldest_at) &&
4412 atomic_read(&frn->done.cnt) == 1) {
4413 oldest = i;
4414 oldest_at = frn->at;
4415 }
4416 }
4417
4418 if (i < MEMCG_CGWB_FRN_CNT) {
4419 /*
4420 * Re-using an existing one. Update timestamp lazily to
4421 * avoid making the cacheline hot. We want them to be
4422 * reasonably up-to-date and significantly shorter than
4423 * dirty_expire_interval as that's what expires the record.
4424 * Use the shorter of 1s and dirty_expire_interval / 8.
4425 */
4426 unsigned long update_intv =
4427 min_t(unsigned long, HZ,
4428 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4429
4430 if (time_before64(frn->at, now - update_intv))
4431 frn->at = now;
4432 } else if (oldest >= 0) {
4433 /* replace the oldest free one */
4434 frn = &memcg->cgwb_frn[oldest];
4435 frn->bdi_id = wb->bdi->id;
4436 frn->memcg_id = wb->memcg_css->id;
4437 frn->at = now;
4438 }
4439 }
4440
4441 /* issue foreign writeback flushes for recorded foreign dirtying events */
4442 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4443 {
4444 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4445 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4446 u64 now = jiffies_64;
4447 int i;
4448
4449 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4450 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4451
4452 /*
4453 * If the record is older than dirty_expire_interval,
4454 * writeback on it has already started. No need to kick it
4455 * off again. Also, don't start a new one if there's
4456 * already one in flight.
4457 */
4458 if (time_after64(frn->at, now - intv) &&
4459 atomic_read(&frn->done.cnt) == 1) {
4460 frn->at = 0;
4461 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4462 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4463 WB_REASON_FOREIGN_FLUSH,
4464 &frn->done);
4465 }
4466 }
4467 }
4468
4469 #else /* CONFIG_CGROUP_WRITEBACK */
4470
4471 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4472 {
4473 return 0;
4474 }
4475
4476 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4477 {
4478 }
4479
4480 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4481 {
4482 }
4483
4484 #endif /* CONFIG_CGROUP_WRITEBACK */
4485
4486 /*
4487 * DO NOT USE IN NEW FILES.
4488 *
4489 * "cgroup.event_control" implementation.
4490 *
4491 * This is way over-engineered. It tries to support fully configurable
4492 * events for each user. Such level of flexibility is completely
4493 * unnecessary especially in the light of the planned unified hierarchy.
4494 *
4495 * Please deprecate this and replace with something simpler if at all
4496 * possible.
4497 */
4498
4499 /*
4500 * Unregister event and free resources.
4501 *
4502 * Gets called from workqueue.
4503 */
4504 static void memcg_event_remove(struct work_struct *work)
4505 {
4506 struct mem_cgroup_event *event =
4507 container_of(work, struct mem_cgroup_event, remove);
4508 struct mem_cgroup *memcg = event->memcg;
4509
4510 remove_wait_queue(event->wqh, &event->wait);
4511
4512 event->unregister_event(memcg, event->eventfd);
4513
4514 /* Notify userspace the event is going away. */
4515 eventfd_signal(event->eventfd, 1);
4516
4517 eventfd_ctx_put(event->eventfd);
4518 kfree(event);
4519 css_put(&memcg->css);
4520 }
4521
4522 /*
4523 * Gets called on EPOLLHUP on eventfd when user closes it.
4524 *
4525 * Called with wqh->lock held and interrupts disabled.
4526 */
4527 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4528 int sync, void *key)
4529 {
4530 struct mem_cgroup_event *event =
4531 container_of(wait, struct mem_cgroup_event, wait);
4532 struct mem_cgroup *memcg = event->memcg;
4533 __poll_t flags = key_to_poll(key);
4534
4535 if (flags & EPOLLHUP) {
4536 /*
4537 * If the event has been detached at cgroup removal, we
4538 * can simply return knowing the other side will cleanup
4539 * for us.
4540 *
4541 * We can't race against event freeing since the other
4542 * side will require wqh->lock via remove_wait_queue(),
4543 * which we hold.
4544 */
4545 spin_lock(&memcg->event_list_lock);
4546 if (!list_empty(&event->list)) {
4547 list_del_init(&event->list);
4548 /*
4549 * We are in atomic context, but cgroup_event_remove()
4550 * may sleep, so we have to call it in workqueue.
4551 */
4552 schedule_work(&event->remove);
4553 }
4554 spin_unlock(&memcg->event_list_lock);
4555 }
4556
4557 return 0;
4558 }
4559
4560 static void memcg_event_ptable_queue_proc(struct file *file,
4561 wait_queue_head_t *wqh, poll_table *pt)
4562 {
4563 struct mem_cgroup_event *event =
4564 container_of(pt, struct mem_cgroup_event, pt);
4565
4566 event->wqh = wqh;
4567 add_wait_queue(wqh, &event->wait);
4568 }
4569
4570 /*
4571 * DO NOT USE IN NEW FILES.
4572 *
4573 * Parse input and register new cgroup event handler.
4574 *
4575 * Input must be in format '<event_fd> <control_fd> <args>'.
4576 * Interpretation of args is defined by control file implementation.
4577 */
4578 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4579 char *buf, size_t nbytes, loff_t off)
4580 {
4581 struct cgroup_subsys_state *css = of_css(of);
4582 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4583 struct mem_cgroup_event *event;
4584 struct cgroup_subsys_state *cfile_css;
4585 unsigned int efd, cfd;
4586 struct fd efile;
4587 struct fd cfile;
4588 const char *name;
4589 char *endp;
4590 int ret;
4591
4592 buf = strstrip(buf);
4593
4594 efd = simple_strtoul(buf, &endp, 10);
4595 if (*endp != ' ')
4596 return -EINVAL;
4597 buf = endp + 1;
4598
4599 cfd = simple_strtoul(buf, &endp, 10);
4600 if ((*endp != ' ') && (*endp != '\0'))
4601 return -EINVAL;
4602 buf = endp + 1;
4603
4604 event = kzalloc(sizeof(*event), GFP_KERNEL);
4605 if (!event)
4606 return -ENOMEM;
4607
4608 event->memcg = memcg;
4609 INIT_LIST_HEAD(&event->list);
4610 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4611 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4612 INIT_WORK(&event->remove, memcg_event_remove);
4613
4614 efile = fdget(efd);
4615 if (!efile.file) {
4616 ret = -EBADF;
4617 goto out_kfree;
4618 }
4619
4620 event->eventfd = eventfd_ctx_fileget(efile.file);
4621 if (IS_ERR(event->eventfd)) {
4622 ret = PTR_ERR(event->eventfd);
4623 goto out_put_efile;
4624 }
4625
4626 cfile = fdget(cfd);
4627 if (!cfile.file) {
4628 ret = -EBADF;
4629 goto out_put_eventfd;
4630 }
4631
4632 /* the process need read permission on control file */
4633 /* AV: shouldn't we check that it's been opened for read instead? */
4634 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4635 if (ret < 0)
4636 goto out_put_cfile;
4637
4638 /*
4639 * Determine the event callbacks and set them in @event. This used
4640 * to be done via struct cftype but cgroup core no longer knows
4641 * about these events. The following is crude but the whole thing
4642 * is for compatibility anyway.
4643 *
4644 * DO NOT ADD NEW FILES.
4645 */
4646 name = cfile.file->f_path.dentry->d_name.name;
4647
4648 if (!strcmp(name, "memory.usage_in_bytes")) {
4649 event->register_event = mem_cgroup_usage_register_event;
4650 event->unregister_event = mem_cgroup_usage_unregister_event;
4651 } else if (!strcmp(name, "memory.oom_control")) {
4652 event->register_event = mem_cgroup_oom_register_event;
4653 event->unregister_event = mem_cgroup_oom_unregister_event;
4654 } else if (!strcmp(name, "memory.pressure_level")) {
4655 event->register_event = vmpressure_register_event;
4656 event->unregister_event = vmpressure_unregister_event;
4657 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4658 event->register_event = memsw_cgroup_usage_register_event;
4659 event->unregister_event = memsw_cgroup_usage_unregister_event;
4660 } else {
4661 ret = -EINVAL;
4662 goto out_put_cfile;
4663 }
4664
4665 /*
4666 * Verify @cfile should belong to @css. Also, remaining events are
4667 * automatically removed on cgroup destruction but the removal is
4668 * asynchronous, so take an extra ref on @css.
4669 */
4670 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4671 &memory_cgrp_subsys);
4672 ret = -EINVAL;
4673 if (IS_ERR(cfile_css))
4674 goto out_put_cfile;
4675 if (cfile_css != css) {
4676 css_put(cfile_css);
4677 goto out_put_cfile;
4678 }
4679
4680 ret = event->register_event(memcg, event->eventfd, buf);
4681 if (ret)
4682 goto out_put_css;
4683
4684 vfs_poll(efile.file, &event->pt);
4685
4686 spin_lock(&memcg->event_list_lock);
4687 list_add(&event->list, &memcg->event_list);
4688 spin_unlock(&memcg->event_list_lock);
4689
4690 fdput(cfile);
4691 fdput(efile);
4692
4693 return nbytes;
4694
4695 out_put_css:
4696 css_put(css);
4697 out_put_cfile:
4698 fdput(cfile);
4699 out_put_eventfd:
4700 eventfd_ctx_put(event->eventfd);
4701 out_put_efile:
4702 fdput(efile);
4703 out_kfree:
4704 kfree(event);
4705
4706 return ret;
4707 }
4708
4709 static struct cftype mem_cgroup_legacy_files[] = {
4710 {
4711 .name = "usage_in_bytes",
4712 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4713 .read_u64 = mem_cgroup_read_u64,
4714 },
4715 {
4716 .name = "max_usage_in_bytes",
4717 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4718 .write = mem_cgroup_reset,
4719 .read_u64 = mem_cgroup_read_u64,
4720 },
4721 {
4722 .name = "limit_in_bytes",
4723 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4724 .write = mem_cgroup_write,
4725 .read_u64 = mem_cgroup_read_u64,
4726 },
4727 {
4728 .name = "soft_limit_in_bytes",
4729 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4730 .write = mem_cgroup_write,
4731 .read_u64 = mem_cgroup_read_u64,
4732 },
4733 {
4734 .name = "failcnt",
4735 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4736 .write = mem_cgroup_reset,
4737 .read_u64 = mem_cgroup_read_u64,
4738 },
4739 {
4740 .name = "stat",
4741 .seq_show = memcg_stat_show,
4742 },
4743 {
4744 .name = "force_empty",
4745 .write = mem_cgroup_force_empty_write,
4746 },
4747 {
4748 .name = "use_hierarchy",
4749 .write_u64 = mem_cgroup_hierarchy_write,
4750 .read_u64 = mem_cgroup_hierarchy_read,
4751 },
4752 {
4753 .name = "cgroup.event_control", /* XXX: for compat */
4754 .write = memcg_write_event_control,
4755 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4756 },
4757 {
4758 .name = "swappiness",
4759 .read_u64 = mem_cgroup_swappiness_read,
4760 .write_u64 = mem_cgroup_swappiness_write,
4761 },
4762 {
4763 .name = "move_charge_at_immigrate",
4764 .read_u64 = mem_cgroup_move_charge_read,
4765 .write_u64 = mem_cgroup_move_charge_write,
4766 },
4767 {
4768 .name = "oom_control",
4769 .seq_show = mem_cgroup_oom_control_read,
4770 .write_u64 = mem_cgroup_oom_control_write,
4771 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4772 },
4773 {
4774 .name = "pressure_level",
4775 },
4776 #ifdef CONFIG_NUMA
4777 {
4778 .name = "numa_stat",
4779 .seq_show = memcg_numa_stat_show,
4780 },
4781 #endif
4782 {
4783 .name = "kmem.limit_in_bytes",
4784 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4785 .write = mem_cgroup_write,
4786 .read_u64 = mem_cgroup_read_u64,
4787 },
4788 {
4789 .name = "kmem.usage_in_bytes",
4790 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4791 .read_u64 = mem_cgroup_read_u64,
4792 },
4793 {
4794 .name = "kmem.failcnt",
4795 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4796 .write = mem_cgroup_reset,
4797 .read_u64 = mem_cgroup_read_u64,
4798 },
4799 {
4800 .name = "kmem.max_usage_in_bytes",
4801 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4802 .write = mem_cgroup_reset,
4803 .read_u64 = mem_cgroup_read_u64,
4804 },
4805 #if defined(CONFIG_MEMCG_KMEM) && \
4806 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4807 {
4808 .name = "kmem.slabinfo",
4809 .seq_start = memcg_slab_start,
4810 .seq_next = memcg_slab_next,
4811 .seq_stop = memcg_slab_stop,
4812 .seq_show = memcg_slab_show,
4813 },
4814 #endif
4815 {
4816 .name = "kmem.tcp.limit_in_bytes",
4817 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4818 .write = mem_cgroup_write,
4819 .read_u64 = mem_cgroup_read_u64,
4820 },
4821 {
4822 .name = "kmem.tcp.usage_in_bytes",
4823 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4824 .read_u64 = mem_cgroup_read_u64,
4825 },
4826 {
4827 .name = "kmem.tcp.failcnt",
4828 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4829 .write = mem_cgroup_reset,
4830 .read_u64 = mem_cgroup_read_u64,
4831 },
4832 {
4833 .name = "kmem.tcp.max_usage_in_bytes",
4834 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4835 .write = mem_cgroup_reset,
4836 .read_u64 = mem_cgroup_read_u64,
4837 },
4838 { }, /* terminate */
4839 };
4840
4841 /*
4842 * Private memory cgroup IDR
4843 *
4844 * Swap-out records and page cache shadow entries need to store memcg
4845 * references in constrained space, so we maintain an ID space that is
4846 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4847 * memory-controlled cgroups to 64k.
4848 *
4849 * However, there usually are many references to the oflline CSS after
4850 * the cgroup has been destroyed, such as page cache or reclaimable
4851 * slab objects, that don't need to hang on to the ID. We want to keep
4852 * those dead CSS from occupying IDs, or we might quickly exhaust the
4853 * relatively small ID space and prevent the creation of new cgroups
4854 * even when there are much fewer than 64k cgroups - possibly none.
4855 *
4856 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4857 * be freed and recycled when it's no longer needed, which is usually
4858 * when the CSS is offlined.
4859 *
4860 * The only exception to that are records of swapped out tmpfs/shmem
4861 * pages that need to be attributed to live ancestors on swapin. But
4862 * those references are manageable from userspace.
4863 */
4864
4865 static DEFINE_IDR(mem_cgroup_idr);
4866
4867 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4868 {
4869 if (memcg->id.id > 0) {
4870 idr_remove(&mem_cgroup_idr, memcg->id.id);
4871 memcg->id.id = 0;
4872 }
4873 }
4874
4875 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
4876 unsigned int n)
4877 {
4878 refcount_add(n, &memcg->id.ref);
4879 }
4880
4881 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4882 {
4883 if (refcount_sub_and_test(n, &memcg->id.ref)) {
4884 mem_cgroup_id_remove(memcg);
4885
4886 /* Memcg ID pins CSS */
4887 css_put(&memcg->css);
4888 }
4889 }
4890
4891 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4892 {
4893 mem_cgroup_id_put_many(memcg, 1);
4894 }
4895
4896 /**
4897 * mem_cgroup_from_id - look up a memcg from a memcg id
4898 * @id: the memcg id to look up
4899 *
4900 * Caller must hold rcu_read_lock().
4901 */
4902 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4903 {
4904 WARN_ON_ONCE(!rcu_read_lock_held());
4905 return idr_find(&mem_cgroup_idr, id);
4906 }
4907
4908 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4909 {
4910 struct mem_cgroup_per_node *pn;
4911 int tmp = node;
4912 /*
4913 * This routine is called against possible nodes.
4914 * But it's BUG to call kmalloc() against offline node.
4915 *
4916 * TODO: this routine can waste much memory for nodes which will
4917 * never be onlined. It's better to use memory hotplug callback
4918 * function.
4919 */
4920 if (!node_state(node, N_NORMAL_MEMORY))
4921 tmp = -1;
4922 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4923 if (!pn)
4924 return 1;
4925
4926 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4927 if (!pn->lruvec_stat_local) {
4928 kfree(pn);
4929 return 1;
4930 }
4931
4932 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4933 if (!pn->lruvec_stat_cpu) {
4934 free_percpu(pn->lruvec_stat_local);
4935 kfree(pn);
4936 return 1;
4937 }
4938
4939 lruvec_init(&pn->lruvec);
4940 pn->usage_in_excess = 0;
4941 pn->on_tree = false;
4942 pn->memcg = memcg;
4943
4944 memcg->nodeinfo[node] = pn;
4945 return 0;
4946 }
4947
4948 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4949 {
4950 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4951
4952 if (!pn)
4953 return;
4954
4955 free_percpu(pn->lruvec_stat_cpu);
4956 free_percpu(pn->lruvec_stat_local);
4957 kfree(pn);
4958 }
4959
4960 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4961 {
4962 int node;
4963
4964 for_each_node(node)
4965 free_mem_cgroup_per_node_info(memcg, node);
4966 free_percpu(memcg->vmstats_percpu);
4967 free_percpu(memcg->vmstats_local);
4968 kfree(memcg);
4969 }
4970
4971 static void mem_cgroup_free(struct mem_cgroup *memcg)
4972 {
4973 memcg_wb_domain_exit(memcg);
4974 /*
4975 * Flush percpu vmstats and vmevents to guarantee the value correctness
4976 * on parent's and all ancestor levels.
4977 */
4978 memcg_flush_percpu_vmstats(memcg);
4979 memcg_flush_percpu_vmevents(memcg);
4980 __mem_cgroup_free(memcg);
4981 }
4982
4983 static struct mem_cgroup *mem_cgroup_alloc(void)
4984 {
4985 struct mem_cgroup *memcg;
4986 unsigned int size;
4987 int node;
4988 int __maybe_unused i;
4989
4990 size = sizeof(struct mem_cgroup);
4991 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4992
4993 memcg = kzalloc(size, GFP_KERNEL);
4994 if (!memcg)
4995 return NULL;
4996
4997 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4998 1, MEM_CGROUP_ID_MAX,
4999 GFP_KERNEL);
5000 if (memcg->id.id < 0)
5001 goto fail;
5002
5003 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5004 if (!memcg->vmstats_local)
5005 goto fail;
5006
5007 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5008 if (!memcg->vmstats_percpu)
5009 goto fail;
5010
5011 for_each_node(node)
5012 if (alloc_mem_cgroup_per_node_info(memcg, node))
5013 goto fail;
5014
5015 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5016 goto fail;
5017
5018 INIT_WORK(&memcg->high_work, high_work_func);
5019 INIT_LIST_HEAD(&memcg->oom_notify);
5020 mutex_init(&memcg->thresholds_lock);
5021 spin_lock_init(&memcg->move_lock);
5022 vmpressure_init(&memcg->vmpressure);
5023 INIT_LIST_HEAD(&memcg->event_list);
5024 spin_lock_init(&memcg->event_list_lock);
5025 memcg->socket_pressure = jiffies;
5026 #ifdef CONFIG_MEMCG_KMEM
5027 memcg->kmemcg_id = -1;
5028 #endif
5029 #ifdef CONFIG_CGROUP_WRITEBACK
5030 INIT_LIST_HEAD(&memcg->cgwb_list);
5031 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5032 memcg->cgwb_frn[i].done =
5033 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5034 #endif
5035 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5036 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5037 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5038 memcg->deferred_split_queue.split_queue_len = 0;
5039 #endif
5040 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5041 return memcg;
5042 fail:
5043 mem_cgroup_id_remove(memcg);
5044 __mem_cgroup_free(memcg);
5045 return NULL;
5046 }
5047
5048 static struct cgroup_subsys_state * __ref
5049 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5050 {
5051 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5052 struct mem_cgroup *memcg;
5053 long error = -ENOMEM;
5054
5055 memcg = mem_cgroup_alloc();
5056 if (!memcg)
5057 return ERR_PTR(error);
5058
5059 WRITE_ONCE(memcg->high, PAGE_COUNTER_MAX);
5060 memcg->soft_limit = PAGE_COUNTER_MAX;
5061 if (parent) {
5062 memcg->swappiness = mem_cgroup_swappiness(parent);
5063 memcg->oom_kill_disable = parent->oom_kill_disable;
5064 }
5065 if (parent && parent->use_hierarchy) {
5066 memcg->use_hierarchy = true;
5067 page_counter_init(&memcg->memory, &parent->memory);
5068 page_counter_init(&memcg->swap, &parent->swap);
5069 page_counter_init(&memcg->memsw, &parent->memsw);
5070 page_counter_init(&memcg->kmem, &parent->kmem);
5071 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5072 } else {
5073 page_counter_init(&memcg->memory, NULL);
5074 page_counter_init(&memcg->swap, NULL);
5075 page_counter_init(&memcg->memsw, NULL);
5076 page_counter_init(&memcg->kmem, NULL);
5077 page_counter_init(&memcg->tcpmem, NULL);
5078 /*
5079 * Deeper hierachy with use_hierarchy == false doesn't make
5080 * much sense so let cgroup subsystem know about this
5081 * unfortunate state in our controller.
5082 */
5083 if (parent != root_mem_cgroup)
5084 memory_cgrp_subsys.broken_hierarchy = true;
5085 }
5086
5087 /* The following stuff does not apply to the root */
5088 if (!parent) {
5089 #ifdef CONFIG_MEMCG_KMEM
5090 INIT_LIST_HEAD(&memcg->kmem_caches);
5091 #endif
5092 root_mem_cgroup = memcg;
5093 return &memcg->css;
5094 }
5095
5096 error = memcg_online_kmem(memcg);
5097 if (error)
5098 goto fail;
5099
5100 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5101 static_branch_inc(&memcg_sockets_enabled_key);
5102
5103 return &memcg->css;
5104 fail:
5105 mem_cgroup_id_remove(memcg);
5106 mem_cgroup_free(memcg);
5107 return ERR_PTR(-ENOMEM);
5108 }
5109
5110 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5111 {
5112 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5113
5114 /*
5115 * A memcg must be visible for memcg_expand_shrinker_maps()
5116 * by the time the maps are allocated. So, we allocate maps
5117 * here, when for_each_mem_cgroup() can't skip it.
5118 */
5119 if (memcg_alloc_shrinker_maps(memcg)) {
5120 mem_cgroup_id_remove(memcg);
5121 return -ENOMEM;
5122 }
5123
5124 /* Online state pins memcg ID, memcg ID pins CSS */
5125 refcount_set(&memcg->id.ref, 1);
5126 css_get(css);
5127 return 0;
5128 }
5129
5130 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5131 {
5132 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5133 struct mem_cgroup_event *event, *tmp;
5134
5135 /*
5136 * Unregister events and notify userspace.
5137 * Notify userspace about cgroup removing only after rmdir of cgroup
5138 * directory to avoid race between userspace and kernelspace.
5139 */
5140 spin_lock(&memcg->event_list_lock);
5141 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5142 list_del_init(&event->list);
5143 schedule_work(&event->remove);
5144 }
5145 spin_unlock(&memcg->event_list_lock);
5146
5147 page_counter_set_min(&memcg->memory, 0);
5148 page_counter_set_low(&memcg->memory, 0);
5149
5150 memcg_offline_kmem(memcg);
5151 wb_memcg_offline(memcg);
5152
5153 drain_all_stock(memcg);
5154
5155 mem_cgroup_id_put(memcg);
5156 }
5157
5158 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5159 {
5160 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5161
5162 invalidate_reclaim_iterators(memcg);
5163 }
5164
5165 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5166 {
5167 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5168 int __maybe_unused i;
5169
5170 #ifdef CONFIG_CGROUP_WRITEBACK
5171 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5172 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5173 #endif
5174 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5175 static_branch_dec(&memcg_sockets_enabled_key);
5176
5177 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5178 static_branch_dec(&memcg_sockets_enabled_key);
5179
5180 vmpressure_cleanup(&memcg->vmpressure);
5181 cancel_work_sync(&memcg->high_work);
5182 mem_cgroup_remove_from_trees(memcg);
5183 memcg_free_shrinker_maps(memcg);
5184 memcg_free_kmem(memcg);
5185 mem_cgroup_free(memcg);
5186 }
5187
5188 /**
5189 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5190 * @css: the target css
5191 *
5192 * Reset the states of the mem_cgroup associated with @css. This is
5193 * invoked when the userland requests disabling on the default hierarchy
5194 * but the memcg is pinned through dependency. The memcg should stop
5195 * applying policies and should revert to the vanilla state as it may be
5196 * made visible again.
5197 *
5198 * The current implementation only resets the essential configurations.
5199 * This needs to be expanded to cover all the visible parts.
5200 */
5201 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5202 {
5203 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5204
5205 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5206 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5207 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5208 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5209 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5210 page_counter_set_min(&memcg->memory, 0);
5211 page_counter_set_low(&memcg->memory, 0);
5212 WRITE_ONCE(memcg->high, PAGE_COUNTER_MAX);
5213 memcg->soft_limit = PAGE_COUNTER_MAX;
5214 memcg_wb_domain_size_changed(memcg);
5215 }
5216
5217 #ifdef CONFIG_MMU
5218 /* Handlers for move charge at task migration. */
5219 static int mem_cgroup_do_precharge(unsigned long count)
5220 {
5221 int ret;
5222
5223 /* Try a single bulk charge without reclaim first, kswapd may wake */
5224 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5225 if (!ret) {
5226 mc.precharge += count;
5227 return ret;
5228 }
5229
5230 /* Try charges one by one with reclaim, but do not retry */
5231 while (count--) {
5232 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5233 if (ret)
5234 return ret;
5235 mc.precharge++;
5236 cond_resched();
5237 }
5238 return 0;
5239 }
5240
5241 union mc_target {
5242 struct page *page;
5243 swp_entry_t ent;
5244 };
5245
5246 enum mc_target_type {
5247 MC_TARGET_NONE = 0,
5248 MC_TARGET_PAGE,
5249 MC_TARGET_SWAP,
5250 MC_TARGET_DEVICE,
5251 };
5252
5253 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5254 unsigned long addr, pte_t ptent)
5255 {
5256 struct page *page = vm_normal_page(vma, addr, ptent);
5257
5258 if (!page || !page_mapped(page))
5259 return NULL;
5260 if (PageAnon(page)) {
5261 if (!(mc.flags & MOVE_ANON))
5262 return NULL;
5263 } else {
5264 if (!(mc.flags & MOVE_FILE))
5265 return NULL;
5266 }
5267 if (!get_page_unless_zero(page))
5268 return NULL;
5269
5270 return page;
5271 }
5272
5273 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5274 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5275 pte_t ptent, swp_entry_t *entry)
5276 {
5277 struct page *page = NULL;
5278 swp_entry_t ent = pte_to_swp_entry(ptent);
5279
5280 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5281 return NULL;
5282
5283 /*
5284 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5285 * a device and because they are not accessible by CPU they are store
5286 * as special swap entry in the CPU page table.
5287 */
5288 if (is_device_private_entry(ent)) {
5289 page = device_private_entry_to_page(ent);
5290 /*
5291 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5292 * a refcount of 1 when free (unlike normal page)
5293 */
5294 if (!page_ref_add_unless(page, 1, 1))
5295 return NULL;
5296 return page;
5297 }
5298
5299 /*
5300 * Because lookup_swap_cache() updates some statistics counter,
5301 * we call find_get_page() with swapper_space directly.
5302 */
5303 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5304 if (do_memsw_account())
5305 entry->val = ent.val;
5306
5307 return page;
5308 }
5309 #else
5310 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5311 pte_t ptent, swp_entry_t *entry)
5312 {
5313 return NULL;
5314 }
5315 #endif
5316
5317 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5318 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5319 {
5320 struct page *page = NULL;
5321 struct address_space *mapping;
5322 pgoff_t pgoff;
5323
5324 if (!vma->vm_file) /* anonymous vma */
5325 return NULL;
5326 if (!(mc.flags & MOVE_FILE))
5327 return NULL;
5328
5329 mapping = vma->vm_file->f_mapping;
5330 pgoff = linear_page_index(vma, addr);
5331
5332 /* page is moved even if it's not RSS of this task(page-faulted). */
5333 #ifdef CONFIG_SWAP
5334 /* shmem/tmpfs may report page out on swap: account for that too. */
5335 if (shmem_mapping(mapping)) {
5336 page = find_get_entry(mapping, pgoff);
5337 if (xa_is_value(page)) {
5338 swp_entry_t swp = radix_to_swp_entry(page);
5339 if (do_memsw_account())
5340 *entry = swp;
5341 page = find_get_page(swap_address_space(swp),
5342 swp_offset(swp));
5343 }
5344 } else
5345 page = find_get_page(mapping, pgoff);
5346 #else
5347 page = find_get_page(mapping, pgoff);
5348 #endif
5349 return page;
5350 }
5351
5352 /**
5353 * mem_cgroup_move_account - move account of the page
5354 * @page: the page
5355 * @compound: charge the page as compound or small page
5356 * @from: mem_cgroup which the page is moved from.
5357 * @to: mem_cgroup which the page is moved to. @from != @to.
5358 *
5359 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5360 *
5361 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5362 * from old cgroup.
5363 */
5364 static int mem_cgroup_move_account(struct page *page,
5365 bool compound,
5366 struct mem_cgroup *from,
5367 struct mem_cgroup *to)
5368 {
5369 struct lruvec *from_vec, *to_vec;
5370 struct pglist_data *pgdat;
5371 unsigned long flags;
5372 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5373 int ret;
5374 bool anon;
5375
5376 VM_BUG_ON(from == to);
5377 VM_BUG_ON_PAGE(PageLRU(page), page);
5378 VM_BUG_ON(compound && !PageTransHuge(page));
5379
5380 /*
5381 * Prevent mem_cgroup_migrate() from looking at
5382 * page->mem_cgroup of its source page while we change it.
5383 */
5384 ret = -EBUSY;
5385 if (!trylock_page(page))
5386 goto out;
5387
5388 ret = -EINVAL;
5389 if (page->mem_cgroup != from)
5390 goto out_unlock;
5391
5392 anon = PageAnon(page);
5393
5394 pgdat = page_pgdat(page);
5395 from_vec = mem_cgroup_lruvec(from, pgdat);
5396 to_vec = mem_cgroup_lruvec(to, pgdat);
5397
5398 spin_lock_irqsave(&from->move_lock, flags);
5399
5400 if (!anon && page_mapped(page)) {
5401 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5402 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5403 }
5404
5405 /*
5406 * move_lock grabbed above and caller set from->moving_account, so
5407 * mod_memcg_page_state will serialize updates to PageDirty.
5408 * So mapping should be stable for dirty pages.
5409 */
5410 if (!anon && PageDirty(page)) {
5411 struct address_space *mapping = page_mapping(page);
5412
5413 if (mapping_cap_account_dirty(mapping)) {
5414 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5415 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
5416 }
5417 }
5418
5419 if (PageWriteback(page)) {
5420 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5421 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5422 }
5423
5424 /*
5425 * It is safe to change page->mem_cgroup here because the page
5426 * is referenced, charged, and isolated - we can't race with
5427 * uncharging, charging, migration, or LRU putback.
5428 */
5429
5430 /* caller should have done css_get */
5431 page->mem_cgroup = to;
5432
5433 spin_unlock_irqrestore(&from->move_lock, flags);
5434
5435 ret = 0;
5436
5437 local_irq_disable();
5438 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5439 memcg_check_events(to, page);
5440 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5441 memcg_check_events(from, page);
5442 local_irq_enable();
5443 out_unlock:
5444 unlock_page(page);
5445 out:
5446 return ret;
5447 }
5448
5449 /**
5450 * get_mctgt_type - get target type of moving charge
5451 * @vma: the vma the pte to be checked belongs
5452 * @addr: the address corresponding to the pte to be checked
5453 * @ptent: the pte to be checked
5454 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5455 *
5456 * Returns
5457 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5458 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5459 * move charge. if @target is not NULL, the page is stored in target->page
5460 * with extra refcnt got(Callers should handle it).
5461 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5462 * target for charge migration. if @target is not NULL, the entry is stored
5463 * in target->ent.
5464 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5465 * (so ZONE_DEVICE page and thus not on the lru).
5466 * For now we such page is charge like a regular page would be as for all
5467 * intent and purposes it is just special memory taking the place of a
5468 * regular page.
5469 *
5470 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5471 *
5472 * Called with pte lock held.
5473 */
5474
5475 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5476 unsigned long addr, pte_t ptent, union mc_target *target)
5477 {
5478 struct page *page = NULL;
5479 enum mc_target_type ret = MC_TARGET_NONE;
5480 swp_entry_t ent = { .val = 0 };
5481
5482 if (pte_present(ptent))
5483 page = mc_handle_present_pte(vma, addr, ptent);
5484 else if (is_swap_pte(ptent))
5485 page = mc_handle_swap_pte(vma, ptent, &ent);
5486 else if (pte_none(ptent))
5487 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5488
5489 if (!page && !ent.val)
5490 return ret;
5491 if (page) {
5492 /*
5493 * Do only loose check w/o serialization.
5494 * mem_cgroup_move_account() checks the page is valid or
5495 * not under LRU exclusion.
5496 */
5497 if (page->mem_cgroup == mc.from) {
5498 ret = MC_TARGET_PAGE;
5499 if (is_device_private_page(page))
5500 ret = MC_TARGET_DEVICE;
5501 if (target)
5502 target->page = page;
5503 }
5504 if (!ret || !target)
5505 put_page(page);
5506 }
5507 /*
5508 * There is a swap entry and a page doesn't exist or isn't charged.
5509 * But we cannot move a tail-page in a THP.
5510 */
5511 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5512 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5513 ret = MC_TARGET_SWAP;
5514 if (target)
5515 target->ent = ent;
5516 }
5517 return ret;
5518 }
5519
5520 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5521 /*
5522 * We don't consider PMD mapped swapping or file mapped pages because THP does
5523 * not support them for now.
5524 * Caller should make sure that pmd_trans_huge(pmd) is true.
5525 */
5526 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5527 unsigned long addr, pmd_t pmd, union mc_target *target)
5528 {
5529 struct page *page = NULL;
5530 enum mc_target_type ret = MC_TARGET_NONE;
5531
5532 if (unlikely(is_swap_pmd(pmd))) {
5533 VM_BUG_ON(thp_migration_supported() &&
5534 !is_pmd_migration_entry(pmd));
5535 return ret;
5536 }
5537 page = pmd_page(pmd);
5538 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5539 if (!(mc.flags & MOVE_ANON))
5540 return ret;
5541 if (page->mem_cgroup == mc.from) {
5542 ret = MC_TARGET_PAGE;
5543 if (target) {
5544 get_page(page);
5545 target->page = page;
5546 }
5547 }
5548 return ret;
5549 }
5550 #else
5551 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5552 unsigned long addr, pmd_t pmd, union mc_target *target)
5553 {
5554 return MC_TARGET_NONE;
5555 }
5556 #endif
5557
5558 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5559 unsigned long addr, unsigned long end,
5560 struct mm_walk *walk)
5561 {
5562 struct vm_area_struct *vma = walk->vma;
5563 pte_t *pte;
5564 spinlock_t *ptl;
5565
5566 ptl = pmd_trans_huge_lock(pmd, vma);
5567 if (ptl) {
5568 /*
5569 * Note their can not be MC_TARGET_DEVICE for now as we do not
5570 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5571 * this might change.
5572 */
5573 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5574 mc.precharge += HPAGE_PMD_NR;
5575 spin_unlock(ptl);
5576 return 0;
5577 }
5578
5579 if (pmd_trans_unstable(pmd))
5580 return 0;
5581 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5582 for (; addr != end; pte++, addr += PAGE_SIZE)
5583 if (get_mctgt_type(vma, addr, *pte, NULL))
5584 mc.precharge++; /* increment precharge temporarily */
5585 pte_unmap_unlock(pte - 1, ptl);
5586 cond_resched();
5587
5588 return 0;
5589 }
5590
5591 static const struct mm_walk_ops precharge_walk_ops = {
5592 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5593 };
5594
5595 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5596 {
5597 unsigned long precharge;
5598
5599 down_read(&mm->mmap_sem);
5600 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5601 up_read(&mm->mmap_sem);
5602
5603 precharge = mc.precharge;
5604 mc.precharge = 0;
5605
5606 return precharge;
5607 }
5608
5609 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5610 {
5611 unsigned long precharge = mem_cgroup_count_precharge(mm);
5612
5613 VM_BUG_ON(mc.moving_task);
5614 mc.moving_task = current;
5615 return mem_cgroup_do_precharge(precharge);
5616 }
5617
5618 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5619 static void __mem_cgroup_clear_mc(void)
5620 {
5621 struct mem_cgroup *from = mc.from;
5622 struct mem_cgroup *to = mc.to;
5623
5624 /* we must uncharge all the leftover precharges from mc.to */
5625 if (mc.precharge) {
5626 cancel_charge(mc.to, mc.precharge);
5627 mc.precharge = 0;
5628 }
5629 /*
5630 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5631 * we must uncharge here.
5632 */
5633 if (mc.moved_charge) {
5634 cancel_charge(mc.from, mc.moved_charge);
5635 mc.moved_charge = 0;
5636 }
5637 /* we must fixup refcnts and charges */
5638 if (mc.moved_swap) {
5639 /* uncharge swap account from the old cgroup */
5640 if (!mem_cgroup_is_root(mc.from))
5641 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5642
5643 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5644
5645 /*
5646 * we charged both to->memory and to->memsw, so we
5647 * should uncharge to->memory.
5648 */
5649 if (!mem_cgroup_is_root(mc.to))
5650 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5651
5652 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5653 css_put_many(&mc.to->css, mc.moved_swap);
5654
5655 mc.moved_swap = 0;
5656 }
5657 memcg_oom_recover(from);
5658 memcg_oom_recover(to);
5659 wake_up_all(&mc.waitq);
5660 }
5661
5662 static void mem_cgroup_clear_mc(void)
5663 {
5664 struct mm_struct *mm = mc.mm;
5665
5666 /*
5667 * we must clear moving_task before waking up waiters at the end of
5668 * task migration.
5669 */
5670 mc.moving_task = NULL;
5671 __mem_cgroup_clear_mc();
5672 spin_lock(&mc.lock);
5673 mc.from = NULL;
5674 mc.to = NULL;
5675 mc.mm = NULL;
5676 spin_unlock(&mc.lock);
5677
5678 mmput(mm);
5679 }
5680
5681 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5682 {
5683 struct cgroup_subsys_state *css;
5684 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5685 struct mem_cgroup *from;
5686 struct task_struct *leader, *p;
5687 struct mm_struct *mm;
5688 unsigned long move_flags;
5689 int ret = 0;
5690
5691 /* charge immigration isn't supported on the default hierarchy */
5692 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5693 return 0;
5694
5695 /*
5696 * Multi-process migrations only happen on the default hierarchy
5697 * where charge immigration is not used. Perform charge
5698 * immigration if @tset contains a leader and whine if there are
5699 * multiple.
5700 */
5701 p = NULL;
5702 cgroup_taskset_for_each_leader(leader, css, tset) {
5703 WARN_ON_ONCE(p);
5704 p = leader;
5705 memcg = mem_cgroup_from_css(css);
5706 }
5707 if (!p)
5708 return 0;
5709
5710 /*
5711 * We are now commited to this value whatever it is. Changes in this
5712 * tunable will only affect upcoming migrations, not the current one.
5713 * So we need to save it, and keep it going.
5714 */
5715 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5716 if (!move_flags)
5717 return 0;
5718
5719 from = mem_cgroup_from_task(p);
5720
5721 VM_BUG_ON(from == memcg);
5722
5723 mm = get_task_mm(p);
5724 if (!mm)
5725 return 0;
5726 /* We move charges only when we move a owner of the mm */
5727 if (mm->owner == p) {
5728 VM_BUG_ON(mc.from);
5729 VM_BUG_ON(mc.to);
5730 VM_BUG_ON(mc.precharge);
5731 VM_BUG_ON(mc.moved_charge);
5732 VM_BUG_ON(mc.moved_swap);
5733
5734 spin_lock(&mc.lock);
5735 mc.mm = mm;
5736 mc.from = from;
5737 mc.to = memcg;
5738 mc.flags = move_flags;
5739 spin_unlock(&mc.lock);
5740 /* We set mc.moving_task later */
5741
5742 ret = mem_cgroup_precharge_mc(mm);
5743 if (ret)
5744 mem_cgroup_clear_mc();
5745 } else {
5746 mmput(mm);
5747 }
5748 return ret;
5749 }
5750
5751 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5752 {
5753 if (mc.to)
5754 mem_cgroup_clear_mc();
5755 }
5756
5757 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5758 unsigned long addr, unsigned long end,
5759 struct mm_walk *walk)
5760 {
5761 int ret = 0;
5762 struct vm_area_struct *vma = walk->vma;
5763 pte_t *pte;
5764 spinlock_t *ptl;
5765 enum mc_target_type target_type;
5766 union mc_target target;
5767 struct page *page;
5768
5769 ptl = pmd_trans_huge_lock(pmd, vma);
5770 if (ptl) {
5771 if (mc.precharge < HPAGE_PMD_NR) {
5772 spin_unlock(ptl);
5773 return 0;
5774 }
5775 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5776 if (target_type == MC_TARGET_PAGE) {
5777 page = target.page;
5778 if (!isolate_lru_page(page)) {
5779 if (!mem_cgroup_move_account(page, true,
5780 mc.from, mc.to)) {
5781 mc.precharge -= HPAGE_PMD_NR;
5782 mc.moved_charge += HPAGE_PMD_NR;
5783 }
5784 putback_lru_page(page);
5785 }
5786 put_page(page);
5787 } else if (target_type == MC_TARGET_DEVICE) {
5788 page = target.page;
5789 if (!mem_cgroup_move_account(page, true,
5790 mc.from, mc.to)) {
5791 mc.precharge -= HPAGE_PMD_NR;
5792 mc.moved_charge += HPAGE_PMD_NR;
5793 }
5794 put_page(page);
5795 }
5796 spin_unlock(ptl);
5797 return 0;
5798 }
5799
5800 if (pmd_trans_unstable(pmd))
5801 return 0;
5802 retry:
5803 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5804 for (; addr != end; addr += PAGE_SIZE) {
5805 pte_t ptent = *(pte++);
5806 bool device = false;
5807 swp_entry_t ent;
5808
5809 if (!mc.precharge)
5810 break;
5811
5812 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5813 case MC_TARGET_DEVICE:
5814 device = true;
5815 /* fall through */
5816 case MC_TARGET_PAGE:
5817 page = target.page;
5818 /*
5819 * We can have a part of the split pmd here. Moving it
5820 * can be done but it would be too convoluted so simply
5821 * ignore such a partial THP and keep it in original
5822 * memcg. There should be somebody mapping the head.
5823 */
5824 if (PageTransCompound(page))
5825 goto put;
5826 if (!device && isolate_lru_page(page))
5827 goto put;
5828 if (!mem_cgroup_move_account(page, false,
5829 mc.from, mc.to)) {
5830 mc.precharge--;
5831 /* we uncharge from mc.from later. */
5832 mc.moved_charge++;
5833 }
5834 if (!device)
5835 putback_lru_page(page);
5836 put: /* get_mctgt_type() gets the page */
5837 put_page(page);
5838 break;
5839 case MC_TARGET_SWAP:
5840 ent = target.ent;
5841 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5842 mc.precharge--;
5843 /* we fixup refcnts and charges later. */
5844 mc.moved_swap++;
5845 }
5846 break;
5847 default:
5848 break;
5849 }
5850 }
5851 pte_unmap_unlock(pte - 1, ptl);
5852 cond_resched();
5853
5854 if (addr != end) {
5855 /*
5856 * We have consumed all precharges we got in can_attach().
5857 * We try charge one by one, but don't do any additional
5858 * charges to mc.to if we have failed in charge once in attach()
5859 * phase.
5860 */
5861 ret = mem_cgroup_do_precharge(1);
5862 if (!ret)
5863 goto retry;
5864 }
5865
5866 return ret;
5867 }
5868
5869 static const struct mm_walk_ops charge_walk_ops = {
5870 .pmd_entry = mem_cgroup_move_charge_pte_range,
5871 };
5872
5873 static void mem_cgroup_move_charge(void)
5874 {
5875 lru_add_drain_all();
5876 /*
5877 * Signal lock_page_memcg() to take the memcg's move_lock
5878 * while we're moving its pages to another memcg. Then wait
5879 * for already started RCU-only updates to finish.
5880 */
5881 atomic_inc(&mc.from->moving_account);
5882 synchronize_rcu();
5883 retry:
5884 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5885 /*
5886 * Someone who are holding the mmap_sem might be waiting in
5887 * waitq. So we cancel all extra charges, wake up all waiters,
5888 * and retry. Because we cancel precharges, we might not be able
5889 * to move enough charges, but moving charge is a best-effort
5890 * feature anyway, so it wouldn't be a big problem.
5891 */
5892 __mem_cgroup_clear_mc();
5893 cond_resched();
5894 goto retry;
5895 }
5896 /*
5897 * When we have consumed all precharges and failed in doing
5898 * additional charge, the page walk just aborts.
5899 */
5900 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5901 NULL);
5902
5903 up_read(&mc.mm->mmap_sem);
5904 atomic_dec(&mc.from->moving_account);
5905 }
5906
5907 static void mem_cgroup_move_task(void)
5908 {
5909 if (mc.to) {
5910 mem_cgroup_move_charge();
5911 mem_cgroup_clear_mc();
5912 }
5913 }
5914 #else /* !CONFIG_MMU */
5915 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5916 {
5917 return 0;
5918 }
5919 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5920 {
5921 }
5922 static void mem_cgroup_move_task(void)
5923 {
5924 }
5925 #endif
5926
5927 /*
5928 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5929 * to verify whether we're attached to the default hierarchy on each mount
5930 * attempt.
5931 */
5932 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5933 {
5934 /*
5935 * use_hierarchy is forced on the default hierarchy. cgroup core
5936 * guarantees that @root doesn't have any children, so turning it
5937 * on for the root memcg is enough.
5938 */
5939 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5940 root_mem_cgroup->use_hierarchy = true;
5941 else
5942 root_mem_cgroup->use_hierarchy = false;
5943 }
5944
5945 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5946 {
5947 if (value == PAGE_COUNTER_MAX)
5948 seq_puts(m, "max\n");
5949 else
5950 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5951
5952 return 0;
5953 }
5954
5955 static u64 memory_current_read(struct cgroup_subsys_state *css,
5956 struct cftype *cft)
5957 {
5958 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5959
5960 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5961 }
5962
5963 static int memory_min_show(struct seq_file *m, void *v)
5964 {
5965 return seq_puts_memcg_tunable(m,
5966 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5967 }
5968
5969 static ssize_t memory_min_write(struct kernfs_open_file *of,
5970 char *buf, size_t nbytes, loff_t off)
5971 {
5972 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5973 unsigned long min;
5974 int err;
5975
5976 buf = strstrip(buf);
5977 err = page_counter_memparse(buf, "max", &min);
5978 if (err)
5979 return err;
5980
5981 page_counter_set_min(&memcg->memory, min);
5982
5983 return nbytes;
5984 }
5985
5986 static int memory_low_show(struct seq_file *m, void *v)
5987 {
5988 return seq_puts_memcg_tunable(m,
5989 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5990 }
5991
5992 static ssize_t memory_low_write(struct kernfs_open_file *of,
5993 char *buf, size_t nbytes, loff_t off)
5994 {
5995 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5996 unsigned long low;
5997 int err;
5998
5999 buf = strstrip(buf);
6000 err = page_counter_memparse(buf, "max", &low);
6001 if (err)
6002 return err;
6003
6004 page_counter_set_low(&memcg->memory, low);
6005
6006 return nbytes;
6007 }
6008
6009 static int memory_high_show(struct seq_file *m, void *v)
6010 {
6011 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
6012 }
6013
6014 static ssize_t memory_high_write(struct kernfs_open_file *of,
6015 char *buf, size_t nbytes, loff_t off)
6016 {
6017 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6018 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6019 bool drained = false;
6020 unsigned long high;
6021 int err;
6022
6023 buf = strstrip(buf);
6024 err = page_counter_memparse(buf, "max", &high);
6025 if (err)
6026 return err;
6027
6028 WRITE_ONCE(memcg->high, high);
6029
6030 for (;;) {
6031 unsigned long nr_pages = page_counter_read(&memcg->memory);
6032 unsigned long reclaimed;
6033
6034 if (nr_pages <= high)
6035 break;
6036
6037 if (signal_pending(current))
6038 break;
6039
6040 if (!drained) {
6041 drain_all_stock(memcg);
6042 drained = true;
6043 continue;
6044 }
6045
6046 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6047 GFP_KERNEL, true);
6048
6049 if (!reclaimed && !nr_retries--)
6050 break;
6051 }
6052
6053 return nbytes;
6054 }
6055
6056 static int memory_max_show(struct seq_file *m, void *v)
6057 {
6058 return seq_puts_memcg_tunable(m,
6059 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6060 }
6061
6062 static ssize_t memory_max_write(struct kernfs_open_file *of,
6063 char *buf, size_t nbytes, loff_t off)
6064 {
6065 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6066 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6067 bool drained = false;
6068 unsigned long max;
6069 int err;
6070
6071 buf = strstrip(buf);
6072 err = page_counter_memparse(buf, "max", &max);
6073 if (err)
6074 return err;
6075
6076 xchg(&memcg->memory.max, max);
6077
6078 for (;;) {
6079 unsigned long nr_pages = page_counter_read(&memcg->memory);
6080
6081 if (nr_pages <= max)
6082 break;
6083
6084 if (signal_pending(current))
6085 break;
6086
6087 if (!drained) {
6088 drain_all_stock(memcg);
6089 drained = true;
6090 continue;
6091 }
6092
6093 if (nr_reclaims) {
6094 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6095 GFP_KERNEL, true))
6096 nr_reclaims--;
6097 continue;
6098 }
6099
6100 memcg_memory_event(memcg, MEMCG_OOM);
6101 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6102 break;
6103 }
6104
6105 memcg_wb_domain_size_changed(memcg);
6106 return nbytes;
6107 }
6108
6109 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6110 {
6111 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6112 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6113 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6114 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6115 seq_printf(m, "oom_kill %lu\n",
6116 atomic_long_read(&events[MEMCG_OOM_KILL]));
6117 }
6118
6119 static int memory_events_show(struct seq_file *m, void *v)
6120 {
6121 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6122
6123 __memory_events_show(m, memcg->memory_events);
6124 return 0;
6125 }
6126
6127 static int memory_events_local_show(struct seq_file *m, void *v)
6128 {
6129 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6130
6131 __memory_events_show(m, memcg->memory_events_local);
6132 return 0;
6133 }
6134
6135 static int memory_stat_show(struct seq_file *m, void *v)
6136 {
6137 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6138 char *buf;
6139
6140 buf = memory_stat_format(memcg);
6141 if (!buf)
6142 return -ENOMEM;
6143 seq_puts(m, buf);
6144 kfree(buf);
6145 return 0;
6146 }
6147
6148 static int memory_oom_group_show(struct seq_file *m, void *v)
6149 {
6150 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6151
6152 seq_printf(m, "%d\n", memcg->oom_group);
6153
6154 return 0;
6155 }
6156
6157 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6158 char *buf, size_t nbytes, loff_t off)
6159 {
6160 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6161 int ret, oom_group;
6162
6163 buf = strstrip(buf);
6164 if (!buf)
6165 return -EINVAL;
6166
6167 ret = kstrtoint(buf, 0, &oom_group);
6168 if (ret)
6169 return ret;
6170
6171 if (oom_group != 0 && oom_group != 1)
6172 return -EINVAL;
6173
6174 memcg->oom_group = oom_group;
6175
6176 return nbytes;
6177 }
6178
6179 static struct cftype memory_files[] = {
6180 {
6181 .name = "current",
6182 .flags = CFTYPE_NOT_ON_ROOT,
6183 .read_u64 = memory_current_read,
6184 },
6185 {
6186 .name = "min",
6187 .flags = CFTYPE_NOT_ON_ROOT,
6188 .seq_show = memory_min_show,
6189 .write = memory_min_write,
6190 },
6191 {
6192 .name = "low",
6193 .flags = CFTYPE_NOT_ON_ROOT,
6194 .seq_show = memory_low_show,
6195 .write = memory_low_write,
6196 },
6197 {
6198 .name = "high",
6199 .flags = CFTYPE_NOT_ON_ROOT,
6200 .seq_show = memory_high_show,
6201 .write = memory_high_write,
6202 },
6203 {
6204 .name = "max",
6205 .flags = CFTYPE_NOT_ON_ROOT,
6206 .seq_show = memory_max_show,
6207 .write = memory_max_write,
6208 },
6209 {
6210 .name = "events",
6211 .flags = CFTYPE_NOT_ON_ROOT,
6212 .file_offset = offsetof(struct mem_cgroup, events_file),
6213 .seq_show = memory_events_show,
6214 },
6215 {
6216 .name = "events.local",
6217 .flags = CFTYPE_NOT_ON_ROOT,
6218 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6219 .seq_show = memory_events_local_show,
6220 },
6221 {
6222 .name = "stat",
6223 .flags = CFTYPE_NOT_ON_ROOT,
6224 .seq_show = memory_stat_show,
6225 },
6226 {
6227 .name = "oom.group",
6228 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6229 .seq_show = memory_oom_group_show,
6230 .write = memory_oom_group_write,
6231 },
6232 { } /* terminate */
6233 };
6234
6235 struct cgroup_subsys memory_cgrp_subsys = {
6236 .css_alloc = mem_cgroup_css_alloc,
6237 .css_online = mem_cgroup_css_online,
6238 .css_offline = mem_cgroup_css_offline,
6239 .css_released = mem_cgroup_css_released,
6240 .css_free = mem_cgroup_css_free,
6241 .css_reset = mem_cgroup_css_reset,
6242 .can_attach = mem_cgroup_can_attach,
6243 .cancel_attach = mem_cgroup_cancel_attach,
6244 .post_attach = mem_cgroup_move_task,
6245 .bind = mem_cgroup_bind,
6246 .dfl_cftypes = memory_files,
6247 .legacy_cftypes = mem_cgroup_legacy_files,
6248 .early_init = 0,
6249 };
6250
6251 /*
6252 * This function calculates an individual cgroup's effective
6253 * protection which is derived from its own memory.min/low, its
6254 * parent's and siblings' settings, as well as the actual memory
6255 * distribution in the tree.
6256 *
6257 * The following rules apply to the effective protection values:
6258 *
6259 * 1. At the first level of reclaim, effective protection is equal to
6260 * the declared protection in memory.min and memory.low.
6261 *
6262 * 2. To enable safe delegation of the protection configuration, at
6263 * subsequent levels the effective protection is capped to the
6264 * parent's effective protection.
6265 *
6266 * 3. To make complex and dynamic subtrees easier to configure, the
6267 * user is allowed to overcommit the declared protection at a given
6268 * level. If that is the case, the parent's effective protection is
6269 * distributed to the children in proportion to how much protection
6270 * they have declared and how much of it they are utilizing.
6271 *
6272 * This makes distribution proportional, but also work-conserving:
6273 * if one cgroup claims much more protection than it uses memory,
6274 * the unused remainder is available to its siblings.
6275 *
6276 * 4. Conversely, when the declared protection is undercommitted at a
6277 * given level, the distribution of the larger parental protection
6278 * budget is NOT proportional. A cgroup's protection from a sibling
6279 * is capped to its own memory.min/low setting.
6280 *
6281 * 5. However, to allow protecting recursive subtrees from each other
6282 * without having to declare each individual cgroup's fixed share
6283 * of the ancestor's claim to protection, any unutilized -
6284 * "floating" - protection from up the tree is distributed in
6285 * proportion to each cgroup's *usage*. This makes the protection
6286 * neutral wrt sibling cgroups and lets them compete freely over
6287 * the shared parental protection budget, but it protects the
6288 * subtree as a whole from neighboring subtrees.
6289 *
6290 * Note that 4. and 5. are not in conflict: 4. is about protecting
6291 * against immediate siblings whereas 5. is about protecting against
6292 * neighboring subtrees.
6293 */
6294 static unsigned long effective_protection(unsigned long usage,
6295 unsigned long parent_usage,
6296 unsigned long setting,
6297 unsigned long parent_effective,
6298 unsigned long siblings_protected)
6299 {
6300 unsigned long protected;
6301 unsigned long ep;
6302
6303 protected = min(usage, setting);
6304 /*
6305 * If all cgroups at this level combined claim and use more
6306 * protection then what the parent affords them, distribute
6307 * shares in proportion to utilization.
6308 *
6309 * We are using actual utilization rather than the statically
6310 * claimed protection in order to be work-conserving: claimed
6311 * but unused protection is available to siblings that would
6312 * otherwise get a smaller chunk than what they claimed.
6313 */
6314 if (siblings_protected > parent_effective)
6315 return protected * parent_effective / siblings_protected;
6316
6317 /*
6318 * Ok, utilized protection of all children is within what the
6319 * parent affords them, so we know whatever this child claims
6320 * and utilizes is effectively protected.
6321 *
6322 * If there is unprotected usage beyond this value, reclaim
6323 * will apply pressure in proportion to that amount.
6324 *
6325 * If there is unutilized protection, the cgroup will be fully
6326 * shielded from reclaim, but we do return a smaller value for
6327 * protection than what the group could enjoy in theory. This
6328 * is okay. With the overcommit distribution above, effective
6329 * protection is always dependent on how memory is actually
6330 * consumed among the siblings anyway.
6331 */
6332 ep = protected;
6333
6334 /*
6335 * If the children aren't claiming (all of) the protection
6336 * afforded to them by the parent, distribute the remainder in
6337 * proportion to the (unprotected) memory of each cgroup. That
6338 * way, cgroups that aren't explicitly prioritized wrt each
6339 * other compete freely over the allowance, but they are
6340 * collectively protected from neighboring trees.
6341 *
6342 * We're using unprotected memory for the weight so that if
6343 * some cgroups DO claim explicit protection, we don't protect
6344 * the same bytes twice.
6345 */
6346 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6347 return ep;
6348
6349 if (parent_effective > siblings_protected && usage > protected) {
6350 unsigned long unclaimed;
6351
6352 unclaimed = parent_effective - siblings_protected;
6353 unclaimed *= usage - protected;
6354 unclaimed /= parent_usage - siblings_protected;
6355
6356 ep += unclaimed;
6357 }
6358
6359 return ep;
6360 }
6361
6362 /**
6363 * mem_cgroup_protected - check if memory consumption is in the normal range
6364 * @root: the top ancestor of the sub-tree being checked
6365 * @memcg: the memory cgroup to check
6366 *
6367 * WARNING: This function is not stateless! It can only be used as part
6368 * of a top-down tree iteration, not for isolated queries.
6369 *
6370 * Returns one of the following:
6371 * MEMCG_PROT_NONE: cgroup memory is not protected
6372 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6373 * an unprotected supply of reclaimable memory from other cgroups.
6374 * MEMCG_PROT_MIN: cgroup memory is protected
6375 */
6376 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6377 struct mem_cgroup *memcg)
6378 {
6379 unsigned long usage, parent_usage;
6380 struct mem_cgroup *parent;
6381
6382 if (mem_cgroup_disabled())
6383 return MEMCG_PROT_NONE;
6384
6385 if (!root)
6386 root = root_mem_cgroup;
6387 if (memcg == root)
6388 return MEMCG_PROT_NONE;
6389
6390 usage = page_counter_read(&memcg->memory);
6391 if (!usage)
6392 return MEMCG_PROT_NONE;
6393
6394 parent = parent_mem_cgroup(memcg);
6395 /* No parent means a non-hierarchical mode on v1 memcg */
6396 if (!parent)
6397 return MEMCG_PROT_NONE;
6398
6399 if (parent == root) {
6400 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6401 memcg->memory.elow = memcg->memory.low;
6402 goto out;
6403 }
6404
6405 parent_usage = page_counter_read(&parent->memory);
6406
6407 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6408 READ_ONCE(memcg->memory.min),
6409 READ_ONCE(parent->memory.emin),
6410 atomic_long_read(&parent->memory.children_min_usage)));
6411
6412 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6413 memcg->memory.low, READ_ONCE(parent->memory.elow),
6414 atomic_long_read(&parent->memory.children_low_usage)));
6415
6416 out:
6417 if (usage <= memcg->memory.emin)
6418 return MEMCG_PROT_MIN;
6419 else if (usage <= memcg->memory.elow)
6420 return MEMCG_PROT_LOW;
6421 else
6422 return MEMCG_PROT_NONE;
6423 }
6424
6425 /**
6426 * mem_cgroup_try_charge - try charging a page
6427 * @page: page to charge
6428 * @mm: mm context of the victim
6429 * @gfp_mask: reclaim mode
6430 * @memcgp: charged memcg return
6431 * @compound: charge the page as compound or small page
6432 *
6433 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6434 * pages according to @gfp_mask if necessary.
6435 *
6436 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6437 * Otherwise, an error code is returned.
6438 *
6439 * After page->mapping has been set up, the caller must finalize the
6440 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6441 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6442 */
6443 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6444 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6445 bool compound)
6446 {
6447 struct mem_cgroup *memcg = NULL;
6448 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6449 int ret = 0;
6450
6451 if (mem_cgroup_disabled())
6452 goto out;
6453
6454 if (PageSwapCache(page)) {
6455 /*
6456 * Every swap fault against a single page tries to charge the
6457 * page, bail as early as possible. shmem_unuse() encounters
6458 * already charged pages, too. The USED bit is protected by
6459 * the page lock, which serializes swap cache removal, which
6460 * in turn serializes uncharging.
6461 */
6462 VM_BUG_ON_PAGE(!PageLocked(page), page);
6463 if (compound_head(page)->mem_cgroup)
6464 goto out;
6465
6466 if (do_swap_account) {
6467 swp_entry_t ent = { .val = page_private(page), };
6468 unsigned short id = lookup_swap_cgroup_id(ent);
6469
6470 rcu_read_lock();
6471 memcg = mem_cgroup_from_id(id);
6472 if (memcg && !css_tryget_online(&memcg->css))
6473 memcg = NULL;
6474 rcu_read_unlock();
6475 }
6476 }
6477
6478 if (!memcg)
6479 memcg = get_mem_cgroup_from_mm(mm);
6480
6481 ret = try_charge(memcg, gfp_mask, nr_pages);
6482
6483 css_put(&memcg->css);
6484 out:
6485 *memcgp = memcg;
6486 return ret;
6487 }
6488
6489 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6490 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6491 bool compound)
6492 {
6493 struct mem_cgroup *memcg;
6494 int ret;
6495
6496 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6497 memcg = *memcgp;
6498 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6499 return ret;
6500 }
6501
6502 /**
6503 * mem_cgroup_commit_charge - commit a page charge
6504 * @page: page to charge
6505 * @memcg: memcg to charge the page to
6506 * @lrucare: page might be on LRU already
6507 * @compound: charge the page as compound or small page
6508 *
6509 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6510 * after page->mapping has been set up. This must happen atomically
6511 * as part of the page instantiation, i.e. under the page table lock
6512 * for anonymous pages, under the page lock for page and swap cache.
6513 *
6514 * In addition, the page must not be on the LRU during the commit, to
6515 * prevent racing with task migration. If it might be, use @lrucare.
6516 *
6517 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6518 */
6519 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6520 bool lrucare, bool compound)
6521 {
6522 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6523
6524 VM_BUG_ON_PAGE(!page->mapping, page);
6525 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6526
6527 if (mem_cgroup_disabled())
6528 return;
6529 /*
6530 * Swap faults will attempt to charge the same page multiple
6531 * times. But reuse_swap_page() might have removed the page
6532 * from swapcache already, so we can't check PageSwapCache().
6533 */
6534 if (!memcg)
6535 return;
6536
6537 commit_charge(page, memcg, lrucare);
6538
6539 local_irq_disable();
6540 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6541 memcg_check_events(memcg, page);
6542 local_irq_enable();
6543
6544 if (do_memsw_account() && PageSwapCache(page)) {
6545 swp_entry_t entry = { .val = page_private(page) };
6546 /*
6547 * The swap entry might not get freed for a long time,
6548 * let's not wait for it. The page already received a
6549 * memory+swap charge, drop the swap entry duplicate.
6550 */
6551 mem_cgroup_uncharge_swap(entry, nr_pages);
6552 }
6553 }
6554
6555 /**
6556 * mem_cgroup_cancel_charge - cancel a page charge
6557 * @page: page to charge
6558 * @memcg: memcg to charge the page to
6559 * @compound: charge the page as compound or small page
6560 *
6561 * Cancel a charge transaction started by mem_cgroup_try_charge().
6562 */
6563 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6564 bool compound)
6565 {
6566 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6567
6568 if (mem_cgroup_disabled())
6569 return;
6570 /*
6571 * Swap faults will attempt to charge the same page multiple
6572 * times. But reuse_swap_page() might have removed the page
6573 * from swapcache already, so we can't check PageSwapCache().
6574 */
6575 if (!memcg)
6576 return;
6577
6578 cancel_charge(memcg, nr_pages);
6579 }
6580
6581 struct uncharge_gather {
6582 struct mem_cgroup *memcg;
6583 unsigned long pgpgout;
6584 unsigned long nr_anon;
6585 unsigned long nr_file;
6586 unsigned long nr_kmem;
6587 unsigned long nr_huge;
6588 unsigned long nr_shmem;
6589 struct page *dummy_page;
6590 };
6591
6592 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6593 {
6594 memset(ug, 0, sizeof(*ug));
6595 }
6596
6597 static void uncharge_batch(const struct uncharge_gather *ug)
6598 {
6599 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6600 unsigned long flags;
6601
6602 if (!mem_cgroup_is_root(ug->memcg)) {
6603 page_counter_uncharge(&ug->memcg->memory, nr_pages);
6604 if (do_memsw_account())
6605 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6606 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6607 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6608 memcg_oom_recover(ug->memcg);
6609 }
6610
6611 local_irq_save(flags);
6612 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6613 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6614 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6615 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6616 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6617 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6618 memcg_check_events(ug->memcg, ug->dummy_page);
6619 local_irq_restore(flags);
6620
6621 if (!mem_cgroup_is_root(ug->memcg))
6622 css_put_many(&ug->memcg->css, nr_pages);
6623 }
6624
6625 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6626 {
6627 VM_BUG_ON_PAGE(PageLRU(page), page);
6628 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6629 !PageHWPoison(page) , page);
6630
6631 if (!page->mem_cgroup)
6632 return;
6633
6634 /*
6635 * Nobody should be changing or seriously looking at
6636 * page->mem_cgroup at this point, we have fully
6637 * exclusive access to the page.
6638 */
6639
6640 if (ug->memcg != page->mem_cgroup) {
6641 if (ug->memcg) {
6642 uncharge_batch(ug);
6643 uncharge_gather_clear(ug);
6644 }
6645 ug->memcg = page->mem_cgroup;
6646 }
6647
6648 if (!PageKmemcg(page)) {
6649 unsigned int nr_pages = 1;
6650
6651 if (PageTransHuge(page)) {
6652 nr_pages = compound_nr(page);
6653 ug->nr_huge += nr_pages;
6654 }
6655 if (PageAnon(page))
6656 ug->nr_anon += nr_pages;
6657 else {
6658 ug->nr_file += nr_pages;
6659 if (PageSwapBacked(page))
6660 ug->nr_shmem += nr_pages;
6661 }
6662 ug->pgpgout++;
6663 } else {
6664 ug->nr_kmem += compound_nr(page);
6665 __ClearPageKmemcg(page);
6666 }
6667
6668 ug->dummy_page = page;
6669 page->mem_cgroup = NULL;
6670 }
6671
6672 static void uncharge_list(struct list_head *page_list)
6673 {
6674 struct uncharge_gather ug;
6675 struct list_head *next;
6676
6677 uncharge_gather_clear(&ug);
6678
6679 /*
6680 * Note that the list can be a single page->lru; hence the
6681 * do-while loop instead of a simple list_for_each_entry().
6682 */
6683 next = page_list->next;
6684 do {
6685 struct page *page;
6686
6687 page = list_entry(next, struct page, lru);
6688 next = page->lru.next;
6689
6690 uncharge_page(page, &ug);
6691 } while (next != page_list);
6692
6693 if (ug.memcg)
6694 uncharge_batch(&ug);
6695 }
6696
6697 /**
6698 * mem_cgroup_uncharge - uncharge a page
6699 * @page: page to uncharge
6700 *
6701 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6702 * mem_cgroup_commit_charge().
6703 */
6704 void mem_cgroup_uncharge(struct page *page)
6705 {
6706 struct uncharge_gather ug;
6707
6708 if (mem_cgroup_disabled())
6709 return;
6710
6711 /* Don't touch page->lru of any random page, pre-check: */
6712 if (!page->mem_cgroup)
6713 return;
6714
6715 uncharge_gather_clear(&ug);
6716 uncharge_page(page, &ug);
6717 uncharge_batch(&ug);
6718 }
6719
6720 /**
6721 * mem_cgroup_uncharge_list - uncharge a list of page
6722 * @page_list: list of pages to uncharge
6723 *
6724 * Uncharge a list of pages previously charged with
6725 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6726 */
6727 void mem_cgroup_uncharge_list(struct list_head *page_list)
6728 {
6729 if (mem_cgroup_disabled())
6730 return;
6731
6732 if (!list_empty(page_list))
6733 uncharge_list(page_list);
6734 }
6735
6736 /**
6737 * mem_cgroup_migrate - charge a page's replacement
6738 * @oldpage: currently circulating page
6739 * @newpage: replacement page
6740 *
6741 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6742 * be uncharged upon free.
6743 *
6744 * Both pages must be locked, @newpage->mapping must be set up.
6745 */
6746 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6747 {
6748 struct mem_cgroup *memcg;
6749 unsigned int nr_pages;
6750 unsigned long flags;
6751
6752 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6753 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6754 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6755 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6756 newpage);
6757
6758 if (mem_cgroup_disabled())
6759 return;
6760
6761 /* Page cache replacement: new page already charged? */
6762 if (newpage->mem_cgroup)
6763 return;
6764
6765 /* Swapcache readahead pages can get replaced before being charged */
6766 memcg = oldpage->mem_cgroup;
6767 if (!memcg)
6768 return;
6769
6770 /* Force-charge the new page. The old one will be freed soon */
6771 nr_pages = hpage_nr_pages(newpage);
6772
6773 page_counter_charge(&memcg->memory, nr_pages);
6774 if (do_memsw_account())
6775 page_counter_charge(&memcg->memsw, nr_pages);
6776 css_get_many(&memcg->css, nr_pages);
6777
6778 commit_charge(newpage, memcg, false);
6779
6780 local_irq_save(flags);
6781 mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage),
6782 nr_pages);
6783 memcg_check_events(memcg, newpage);
6784 local_irq_restore(flags);
6785 }
6786
6787 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6788 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6789
6790 void mem_cgroup_sk_alloc(struct sock *sk)
6791 {
6792 struct mem_cgroup *memcg;
6793
6794 if (!mem_cgroup_sockets_enabled)
6795 return;
6796
6797 /* Do not associate the sock with unrelated interrupted task's memcg. */
6798 if (in_interrupt())
6799 return;
6800
6801 rcu_read_lock();
6802 memcg = mem_cgroup_from_task(current);
6803 if (memcg == root_mem_cgroup)
6804 goto out;
6805 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6806 goto out;
6807 if (css_tryget(&memcg->css))
6808 sk->sk_memcg = memcg;
6809 out:
6810 rcu_read_unlock();
6811 }
6812
6813 void mem_cgroup_sk_free(struct sock *sk)
6814 {
6815 if (sk->sk_memcg)
6816 css_put(&sk->sk_memcg->css);
6817 }
6818
6819 /**
6820 * mem_cgroup_charge_skmem - charge socket memory
6821 * @memcg: memcg to charge
6822 * @nr_pages: number of pages to charge
6823 *
6824 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6825 * @memcg's configured limit, %false if the charge had to be forced.
6826 */
6827 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6828 {
6829 gfp_t gfp_mask = GFP_KERNEL;
6830
6831 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6832 struct page_counter *fail;
6833
6834 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6835 memcg->tcpmem_pressure = 0;
6836 return true;
6837 }
6838 page_counter_charge(&memcg->tcpmem, nr_pages);
6839 memcg->tcpmem_pressure = 1;
6840 return false;
6841 }
6842
6843 /* Don't block in the packet receive path */
6844 if (in_softirq())
6845 gfp_mask = GFP_NOWAIT;
6846
6847 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6848
6849 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6850 return true;
6851
6852 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6853 return false;
6854 }
6855
6856 /**
6857 * mem_cgroup_uncharge_skmem - uncharge socket memory
6858 * @memcg: memcg to uncharge
6859 * @nr_pages: number of pages to uncharge
6860 */
6861 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6862 {
6863 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6864 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6865 return;
6866 }
6867
6868 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6869
6870 refill_stock(memcg, nr_pages);
6871 }
6872
6873 static int __init cgroup_memory(char *s)
6874 {
6875 char *token;
6876
6877 while ((token = strsep(&s, ",")) != NULL) {
6878 if (!*token)
6879 continue;
6880 if (!strcmp(token, "nosocket"))
6881 cgroup_memory_nosocket = true;
6882 if (!strcmp(token, "nokmem"))
6883 cgroup_memory_nokmem = true;
6884 }
6885 return 0;
6886 }
6887 __setup("cgroup.memory=", cgroup_memory);
6888
6889 /*
6890 * subsys_initcall() for memory controller.
6891 *
6892 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6893 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6894 * basically everything that doesn't depend on a specific mem_cgroup structure
6895 * should be initialized from here.
6896 */
6897 static int __init mem_cgroup_init(void)
6898 {
6899 int cpu, node;
6900
6901 #ifdef CONFIG_MEMCG_KMEM
6902 /*
6903 * Kmem cache creation is mostly done with the slab_mutex held,
6904 * so use a workqueue with limited concurrency to avoid stalling
6905 * all worker threads in case lots of cgroups are created and
6906 * destroyed simultaneously.
6907 */
6908 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6909 BUG_ON(!memcg_kmem_cache_wq);
6910 #endif
6911
6912 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6913 memcg_hotplug_cpu_dead);
6914
6915 for_each_possible_cpu(cpu)
6916 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6917 drain_local_stock);
6918
6919 for_each_node(node) {
6920 struct mem_cgroup_tree_per_node *rtpn;
6921
6922 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6923 node_online(node) ? node : NUMA_NO_NODE);
6924
6925 rtpn->rb_root = RB_ROOT;
6926 rtpn->rb_rightmost = NULL;
6927 spin_lock_init(&rtpn->lock);
6928 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6929 }
6930
6931 return 0;
6932 }
6933 subsys_initcall(mem_cgroup_init);
6934
6935 #ifdef CONFIG_MEMCG_SWAP
6936 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6937 {
6938 while (!refcount_inc_not_zero(&memcg->id.ref)) {
6939 /*
6940 * The root cgroup cannot be destroyed, so it's refcount must
6941 * always be >= 1.
6942 */
6943 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6944 VM_BUG_ON(1);
6945 break;
6946 }
6947 memcg = parent_mem_cgroup(memcg);
6948 if (!memcg)
6949 memcg = root_mem_cgroup;
6950 }
6951 return memcg;
6952 }
6953
6954 /**
6955 * mem_cgroup_swapout - transfer a memsw charge to swap
6956 * @page: page whose memsw charge to transfer
6957 * @entry: swap entry to move the charge to
6958 *
6959 * Transfer the memsw charge of @page to @entry.
6960 */
6961 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6962 {
6963 struct mem_cgroup *memcg, *swap_memcg;
6964 unsigned int nr_entries;
6965 unsigned short oldid;
6966
6967 VM_BUG_ON_PAGE(PageLRU(page), page);
6968 VM_BUG_ON_PAGE(page_count(page), page);
6969
6970 if (!do_memsw_account())
6971 return;
6972
6973 memcg = page->mem_cgroup;
6974
6975 /* Readahead page, never charged */
6976 if (!memcg)
6977 return;
6978
6979 /*
6980 * In case the memcg owning these pages has been offlined and doesn't
6981 * have an ID allocated to it anymore, charge the closest online
6982 * ancestor for the swap instead and transfer the memory+swap charge.
6983 */
6984 swap_memcg = mem_cgroup_id_get_online(memcg);
6985 nr_entries = hpage_nr_pages(page);
6986 /* Get references for the tail pages, too */
6987 if (nr_entries > 1)
6988 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6989 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6990 nr_entries);
6991 VM_BUG_ON_PAGE(oldid, page);
6992 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6993
6994 page->mem_cgroup = NULL;
6995
6996 if (!mem_cgroup_is_root(memcg))
6997 page_counter_uncharge(&memcg->memory, nr_entries);
6998
6999 if (memcg != swap_memcg) {
7000 if (!mem_cgroup_is_root(swap_memcg))
7001 page_counter_charge(&swap_memcg->memsw, nr_entries);
7002 page_counter_uncharge(&memcg->memsw, nr_entries);
7003 }
7004
7005 /*
7006 * Interrupts should be disabled here because the caller holds the
7007 * i_pages lock which is taken with interrupts-off. It is
7008 * important here to have the interrupts disabled because it is the
7009 * only synchronisation we have for updating the per-CPU variables.
7010 */
7011 VM_BUG_ON(!irqs_disabled());
7012 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
7013 -nr_entries);
7014 memcg_check_events(memcg, page);
7015
7016 if (!mem_cgroup_is_root(memcg))
7017 css_put_many(&memcg->css, nr_entries);
7018 }
7019
7020 /**
7021 * mem_cgroup_try_charge_swap - try charging swap space for a page
7022 * @page: page being added to swap
7023 * @entry: swap entry to charge
7024 *
7025 * Try to charge @page's memcg for the swap space at @entry.
7026 *
7027 * Returns 0 on success, -ENOMEM on failure.
7028 */
7029 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7030 {
7031 unsigned int nr_pages = hpage_nr_pages(page);
7032 struct page_counter *counter;
7033 struct mem_cgroup *memcg;
7034 unsigned short oldid;
7035
7036 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
7037 return 0;
7038
7039 memcg = page->mem_cgroup;
7040
7041 /* Readahead page, never charged */
7042 if (!memcg)
7043 return 0;
7044
7045 if (!entry.val) {
7046 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7047 return 0;
7048 }
7049
7050 memcg = mem_cgroup_id_get_online(memcg);
7051
7052 if (!mem_cgroup_is_root(memcg) &&
7053 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7054 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7055 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7056 mem_cgroup_id_put(memcg);
7057 return -ENOMEM;
7058 }
7059
7060 /* Get references for the tail pages, too */
7061 if (nr_pages > 1)
7062 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7063 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7064 VM_BUG_ON_PAGE(oldid, page);
7065 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7066
7067 return 0;
7068 }
7069
7070 /**
7071 * mem_cgroup_uncharge_swap - uncharge swap space
7072 * @entry: swap entry to uncharge
7073 * @nr_pages: the amount of swap space to uncharge
7074 */
7075 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7076 {
7077 struct mem_cgroup *memcg;
7078 unsigned short id;
7079
7080 if (!do_swap_account)
7081 return;
7082
7083 id = swap_cgroup_record(entry, 0, nr_pages);
7084 rcu_read_lock();
7085 memcg = mem_cgroup_from_id(id);
7086 if (memcg) {
7087 if (!mem_cgroup_is_root(memcg)) {
7088 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7089 page_counter_uncharge(&memcg->swap, nr_pages);
7090 else
7091 page_counter_uncharge(&memcg->memsw, nr_pages);
7092 }
7093 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7094 mem_cgroup_id_put_many(memcg, nr_pages);
7095 }
7096 rcu_read_unlock();
7097 }
7098
7099 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7100 {
7101 long nr_swap_pages = get_nr_swap_pages();
7102
7103 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7104 return nr_swap_pages;
7105 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7106 nr_swap_pages = min_t(long, nr_swap_pages,
7107 READ_ONCE(memcg->swap.max) -
7108 page_counter_read(&memcg->swap));
7109 return nr_swap_pages;
7110 }
7111
7112 bool mem_cgroup_swap_full(struct page *page)
7113 {
7114 struct mem_cgroup *memcg;
7115
7116 VM_BUG_ON_PAGE(!PageLocked(page), page);
7117
7118 if (vm_swap_full())
7119 return true;
7120 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7121 return false;
7122
7123 memcg = page->mem_cgroup;
7124 if (!memcg)
7125 return false;
7126
7127 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7128 if (page_counter_read(&memcg->swap) * 2 >=
7129 READ_ONCE(memcg->swap.max))
7130 return true;
7131
7132 return false;
7133 }
7134
7135 /* for remember boot option*/
7136 #ifdef CONFIG_MEMCG_SWAP_ENABLED
7137 static int really_do_swap_account __initdata = 1;
7138 #else
7139 static int really_do_swap_account __initdata;
7140 #endif
7141
7142 static int __init enable_swap_account(char *s)
7143 {
7144 if (!strcmp(s, "1"))
7145 really_do_swap_account = 1;
7146 else if (!strcmp(s, "0"))
7147 really_do_swap_account = 0;
7148 return 1;
7149 }
7150 __setup("swapaccount=", enable_swap_account);
7151
7152 static u64 swap_current_read(struct cgroup_subsys_state *css,
7153 struct cftype *cft)
7154 {
7155 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7156
7157 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7158 }
7159
7160 static int swap_max_show(struct seq_file *m, void *v)
7161 {
7162 return seq_puts_memcg_tunable(m,
7163 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7164 }
7165
7166 static ssize_t swap_max_write(struct kernfs_open_file *of,
7167 char *buf, size_t nbytes, loff_t off)
7168 {
7169 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7170 unsigned long max;
7171 int err;
7172
7173 buf = strstrip(buf);
7174 err = page_counter_memparse(buf, "max", &max);
7175 if (err)
7176 return err;
7177
7178 xchg(&memcg->swap.max, max);
7179
7180 return nbytes;
7181 }
7182
7183 static int swap_events_show(struct seq_file *m, void *v)
7184 {
7185 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7186
7187 seq_printf(m, "max %lu\n",
7188 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7189 seq_printf(m, "fail %lu\n",
7190 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7191
7192 return 0;
7193 }
7194
7195 static struct cftype swap_files[] = {
7196 {
7197 .name = "swap.current",
7198 .flags = CFTYPE_NOT_ON_ROOT,
7199 .read_u64 = swap_current_read,
7200 },
7201 {
7202 .name = "swap.max",
7203 .flags = CFTYPE_NOT_ON_ROOT,
7204 .seq_show = swap_max_show,
7205 .write = swap_max_write,
7206 },
7207 {
7208 .name = "swap.events",
7209 .flags = CFTYPE_NOT_ON_ROOT,
7210 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7211 .seq_show = swap_events_show,
7212 },
7213 { } /* terminate */
7214 };
7215
7216 static struct cftype memsw_cgroup_files[] = {
7217 {
7218 .name = "memsw.usage_in_bytes",
7219 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7220 .read_u64 = mem_cgroup_read_u64,
7221 },
7222 {
7223 .name = "memsw.max_usage_in_bytes",
7224 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7225 .write = mem_cgroup_reset,
7226 .read_u64 = mem_cgroup_read_u64,
7227 },
7228 {
7229 .name = "memsw.limit_in_bytes",
7230 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7231 .write = mem_cgroup_write,
7232 .read_u64 = mem_cgroup_read_u64,
7233 },
7234 {
7235 .name = "memsw.failcnt",
7236 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7237 .write = mem_cgroup_reset,
7238 .read_u64 = mem_cgroup_read_u64,
7239 },
7240 { }, /* terminate */
7241 };
7242
7243 static int __init mem_cgroup_swap_init(void)
7244 {
7245 if (!mem_cgroup_disabled() && really_do_swap_account) {
7246 do_swap_account = 1;
7247 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7248 swap_files));
7249 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7250 memsw_cgroup_files));
7251 }
7252 return 0;
7253 }
7254 subsys_initcall(mem_cgroup_swap_init);
7255
7256 #endif /* CONFIG_MEMCG_SWAP */