]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memcontrol.c
memcg: move charges to root cgroup if use_hierarchy=0
[mirror_ubuntu-bionic-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
55
56 #include <asm/uaccess.h>
57
58 #include <trace/events/vmscan.h>
59
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 static struct mem_cgroup *root_mem_cgroup __read_mostly;
63
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
67
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
74
75 #else
76 #define do_swap_account 0
77 #endif
78
79
80 /*
81 * Statistics for memory cgroup.
82 */
83 enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 MEM_CGROUP_STAT_NSTATS,
93 };
94
95 enum mem_cgroup_events_index {
96 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
97 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
98 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
99 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
100 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
101 MEM_CGROUP_EVENTS_NSTATS,
102 };
103 /*
104 * Per memcg event counter is incremented at every pagein/pageout. With THP,
105 * it will be incremated by the number of pages. This counter is used for
106 * for trigger some periodic events. This is straightforward and better
107 * than using jiffies etc. to handle periodic memcg event.
108 */
109 enum mem_cgroup_events_target {
110 MEM_CGROUP_TARGET_THRESH,
111 MEM_CGROUP_TARGET_SOFTLIMIT,
112 MEM_CGROUP_TARGET_NUMAINFO,
113 MEM_CGROUP_NTARGETS,
114 };
115 #define THRESHOLDS_EVENTS_TARGET 128
116 #define SOFTLIMIT_EVENTS_TARGET 1024
117 #define NUMAINFO_EVENTS_TARGET 1024
118
119 struct mem_cgroup_stat_cpu {
120 long count[MEM_CGROUP_STAT_NSTATS];
121 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
122 unsigned long targets[MEM_CGROUP_NTARGETS];
123 };
124
125 struct mem_cgroup_reclaim_iter {
126 /* css_id of the last scanned hierarchy member */
127 int position;
128 /* scan generation, increased every round-trip */
129 unsigned int generation;
130 };
131
132 /*
133 * per-zone information in memory controller.
134 */
135 struct mem_cgroup_per_zone {
136 struct lruvec lruvec;
137 unsigned long lru_size[NR_LRU_LISTS];
138
139 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
140
141 struct rb_node tree_node; /* RB tree node */
142 unsigned long long usage_in_excess;/* Set to the value by which */
143 /* the soft limit is exceeded*/
144 bool on_tree;
145 struct mem_cgroup *memcg; /* Back pointer, we cannot */
146 /* use container_of */
147 };
148
149 struct mem_cgroup_per_node {
150 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
151 };
152
153 struct mem_cgroup_lru_info {
154 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
155 };
156
157 /*
158 * Cgroups above their limits are maintained in a RB-Tree, independent of
159 * their hierarchy representation
160 */
161
162 struct mem_cgroup_tree_per_zone {
163 struct rb_root rb_root;
164 spinlock_t lock;
165 };
166
167 struct mem_cgroup_tree_per_node {
168 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
169 };
170
171 struct mem_cgroup_tree {
172 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
173 };
174
175 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
176
177 struct mem_cgroup_threshold {
178 struct eventfd_ctx *eventfd;
179 u64 threshold;
180 };
181
182 /* For threshold */
183 struct mem_cgroup_threshold_ary {
184 /* An array index points to threshold just below or equal to usage. */
185 int current_threshold;
186 /* Size of entries[] */
187 unsigned int size;
188 /* Array of thresholds */
189 struct mem_cgroup_threshold entries[0];
190 };
191
192 struct mem_cgroup_thresholds {
193 /* Primary thresholds array */
194 struct mem_cgroup_threshold_ary *primary;
195 /*
196 * Spare threshold array.
197 * This is needed to make mem_cgroup_unregister_event() "never fail".
198 * It must be able to store at least primary->size - 1 entries.
199 */
200 struct mem_cgroup_threshold_ary *spare;
201 };
202
203 /* for OOM */
204 struct mem_cgroup_eventfd_list {
205 struct list_head list;
206 struct eventfd_ctx *eventfd;
207 };
208
209 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
210 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
211
212 /*
213 * The memory controller data structure. The memory controller controls both
214 * page cache and RSS per cgroup. We would eventually like to provide
215 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
216 * to help the administrator determine what knobs to tune.
217 *
218 * TODO: Add a water mark for the memory controller. Reclaim will begin when
219 * we hit the water mark. May be even add a low water mark, such that
220 * no reclaim occurs from a cgroup at it's low water mark, this is
221 * a feature that will be implemented much later in the future.
222 */
223 struct mem_cgroup {
224 struct cgroup_subsys_state css;
225 /*
226 * the counter to account for memory usage
227 */
228 struct res_counter res;
229
230 union {
231 /*
232 * the counter to account for mem+swap usage.
233 */
234 struct res_counter memsw;
235
236 /*
237 * rcu_freeing is used only when freeing struct mem_cgroup,
238 * so put it into a union to avoid wasting more memory.
239 * It must be disjoint from the css field. It could be
240 * in a union with the res field, but res plays a much
241 * larger part in mem_cgroup life than memsw, and might
242 * be of interest, even at time of free, when debugging.
243 * So share rcu_head with the less interesting memsw.
244 */
245 struct rcu_head rcu_freeing;
246 /*
247 * But when using vfree(), that cannot be done at
248 * interrupt time, so we must then queue the work.
249 */
250 struct work_struct work_freeing;
251 };
252
253 /*
254 * Per cgroup active and inactive list, similar to the
255 * per zone LRU lists.
256 */
257 struct mem_cgroup_lru_info info;
258 int last_scanned_node;
259 #if MAX_NUMNODES > 1
260 nodemask_t scan_nodes;
261 atomic_t numainfo_events;
262 atomic_t numainfo_updating;
263 #endif
264 /*
265 * Should the accounting and control be hierarchical, per subtree?
266 */
267 bool use_hierarchy;
268
269 bool oom_lock;
270 atomic_t under_oom;
271
272 atomic_t refcnt;
273
274 int swappiness;
275 /* OOM-Killer disable */
276 int oom_kill_disable;
277
278 /* set when res.limit == memsw.limit */
279 bool memsw_is_minimum;
280
281 /* protect arrays of thresholds */
282 struct mutex thresholds_lock;
283
284 /* thresholds for memory usage. RCU-protected */
285 struct mem_cgroup_thresholds thresholds;
286
287 /* thresholds for mem+swap usage. RCU-protected */
288 struct mem_cgroup_thresholds memsw_thresholds;
289
290 /* For oom notifier event fd */
291 struct list_head oom_notify;
292
293 /*
294 * Should we move charges of a task when a task is moved into this
295 * mem_cgroup ? And what type of charges should we move ?
296 */
297 unsigned long move_charge_at_immigrate;
298 /*
299 * set > 0 if pages under this cgroup are moving to other cgroup.
300 */
301 atomic_t moving_account;
302 /* taken only while moving_account > 0 */
303 spinlock_t move_lock;
304 /*
305 * percpu counter.
306 */
307 struct mem_cgroup_stat_cpu __percpu *stat;
308 /*
309 * used when a cpu is offlined or other synchronizations
310 * See mem_cgroup_read_stat().
311 */
312 struct mem_cgroup_stat_cpu nocpu_base;
313 spinlock_t pcp_counter_lock;
314
315 #ifdef CONFIG_INET
316 struct tcp_memcontrol tcp_mem;
317 #endif
318 };
319
320 /* Stuffs for move charges at task migration. */
321 /*
322 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
323 * left-shifted bitmap of these types.
324 */
325 enum move_type {
326 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
327 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
328 NR_MOVE_TYPE,
329 };
330
331 /* "mc" and its members are protected by cgroup_mutex */
332 static struct move_charge_struct {
333 spinlock_t lock; /* for from, to */
334 struct mem_cgroup *from;
335 struct mem_cgroup *to;
336 unsigned long precharge;
337 unsigned long moved_charge;
338 unsigned long moved_swap;
339 struct task_struct *moving_task; /* a task moving charges */
340 wait_queue_head_t waitq; /* a waitq for other context */
341 } mc = {
342 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
343 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
344 };
345
346 static bool move_anon(void)
347 {
348 return test_bit(MOVE_CHARGE_TYPE_ANON,
349 &mc.to->move_charge_at_immigrate);
350 }
351
352 static bool move_file(void)
353 {
354 return test_bit(MOVE_CHARGE_TYPE_FILE,
355 &mc.to->move_charge_at_immigrate);
356 }
357
358 /*
359 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
360 * limit reclaim to prevent infinite loops, if they ever occur.
361 */
362 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
363 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
364
365 enum charge_type {
366 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
367 MEM_CGROUP_CHARGE_TYPE_MAPPED,
368 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
369 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
370 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
371 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
372 NR_CHARGE_TYPE,
373 };
374
375 /* for encoding cft->private value on file */
376 #define _MEM (0)
377 #define _MEMSWAP (1)
378 #define _OOM_TYPE (2)
379 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
380 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
381 #define MEMFILE_ATTR(val) ((val) & 0xffff)
382 /* Used for OOM nofiier */
383 #define OOM_CONTROL (0)
384
385 /*
386 * Reclaim flags for mem_cgroup_hierarchical_reclaim
387 */
388 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
389 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
390 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
391 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
392
393 static void mem_cgroup_get(struct mem_cgroup *memcg);
394 static void mem_cgroup_put(struct mem_cgroup *memcg);
395
396 /* Writing them here to avoid exposing memcg's inner layout */
397 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
398 #include <net/sock.h>
399 #include <net/ip.h>
400
401 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
402 void sock_update_memcg(struct sock *sk)
403 {
404 if (mem_cgroup_sockets_enabled) {
405 struct mem_cgroup *memcg;
406
407 BUG_ON(!sk->sk_prot->proto_cgroup);
408
409 /* Socket cloning can throw us here with sk_cgrp already
410 * filled. It won't however, necessarily happen from
411 * process context. So the test for root memcg given
412 * the current task's memcg won't help us in this case.
413 *
414 * Respecting the original socket's memcg is a better
415 * decision in this case.
416 */
417 if (sk->sk_cgrp) {
418 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
419 mem_cgroup_get(sk->sk_cgrp->memcg);
420 return;
421 }
422
423 rcu_read_lock();
424 memcg = mem_cgroup_from_task(current);
425 if (!mem_cgroup_is_root(memcg)) {
426 mem_cgroup_get(memcg);
427 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
428 }
429 rcu_read_unlock();
430 }
431 }
432 EXPORT_SYMBOL(sock_update_memcg);
433
434 void sock_release_memcg(struct sock *sk)
435 {
436 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
437 struct mem_cgroup *memcg;
438 WARN_ON(!sk->sk_cgrp->memcg);
439 memcg = sk->sk_cgrp->memcg;
440 mem_cgroup_put(memcg);
441 }
442 }
443
444 #ifdef CONFIG_INET
445 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
446 {
447 if (!memcg || mem_cgroup_is_root(memcg))
448 return NULL;
449
450 return &memcg->tcp_mem.cg_proto;
451 }
452 EXPORT_SYMBOL(tcp_proto_cgroup);
453 #endif /* CONFIG_INET */
454 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
455
456 static void drain_all_stock_async(struct mem_cgroup *memcg);
457
458 static struct mem_cgroup_per_zone *
459 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
460 {
461 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
462 }
463
464 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
465 {
466 return &memcg->css;
467 }
468
469 static struct mem_cgroup_per_zone *
470 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
471 {
472 int nid = page_to_nid(page);
473 int zid = page_zonenum(page);
474
475 return mem_cgroup_zoneinfo(memcg, nid, zid);
476 }
477
478 static struct mem_cgroup_tree_per_zone *
479 soft_limit_tree_node_zone(int nid, int zid)
480 {
481 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
482 }
483
484 static struct mem_cgroup_tree_per_zone *
485 soft_limit_tree_from_page(struct page *page)
486 {
487 int nid = page_to_nid(page);
488 int zid = page_zonenum(page);
489
490 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
491 }
492
493 static void
494 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
495 struct mem_cgroup_per_zone *mz,
496 struct mem_cgroup_tree_per_zone *mctz,
497 unsigned long long new_usage_in_excess)
498 {
499 struct rb_node **p = &mctz->rb_root.rb_node;
500 struct rb_node *parent = NULL;
501 struct mem_cgroup_per_zone *mz_node;
502
503 if (mz->on_tree)
504 return;
505
506 mz->usage_in_excess = new_usage_in_excess;
507 if (!mz->usage_in_excess)
508 return;
509 while (*p) {
510 parent = *p;
511 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
512 tree_node);
513 if (mz->usage_in_excess < mz_node->usage_in_excess)
514 p = &(*p)->rb_left;
515 /*
516 * We can't avoid mem cgroups that are over their soft
517 * limit by the same amount
518 */
519 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
520 p = &(*p)->rb_right;
521 }
522 rb_link_node(&mz->tree_node, parent, p);
523 rb_insert_color(&mz->tree_node, &mctz->rb_root);
524 mz->on_tree = true;
525 }
526
527 static void
528 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
529 struct mem_cgroup_per_zone *mz,
530 struct mem_cgroup_tree_per_zone *mctz)
531 {
532 if (!mz->on_tree)
533 return;
534 rb_erase(&mz->tree_node, &mctz->rb_root);
535 mz->on_tree = false;
536 }
537
538 static void
539 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
540 struct mem_cgroup_per_zone *mz,
541 struct mem_cgroup_tree_per_zone *mctz)
542 {
543 spin_lock(&mctz->lock);
544 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
545 spin_unlock(&mctz->lock);
546 }
547
548
549 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
550 {
551 unsigned long long excess;
552 struct mem_cgroup_per_zone *mz;
553 struct mem_cgroup_tree_per_zone *mctz;
554 int nid = page_to_nid(page);
555 int zid = page_zonenum(page);
556 mctz = soft_limit_tree_from_page(page);
557
558 /*
559 * Necessary to update all ancestors when hierarchy is used.
560 * because their event counter is not touched.
561 */
562 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
563 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
564 excess = res_counter_soft_limit_excess(&memcg->res);
565 /*
566 * We have to update the tree if mz is on RB-tree or
567 * mem is over its softlimit.
568 */
569 if (excess || mz->on_tree) {
570 spin_lock(&mctz->lock);
571 /* if on-tree, remove it */
572 if (mz->on_tree)
573 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
574 /*
575 * Insert again. mz->usage_in_excess will be updated.
576 * If excess is 0, no tree ops.
577 */
578 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
579 spin_unlock(&mctz->lock);
580 }
581 }
582 }
583
584 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
585 {
586 int node, zone;
587 struct mem_cgroup_per_zone *mz;
588 struct mem_cgroup_tree_per_zone *mctz;
589
590 for_each_node(node) {
591 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
592 mz = mem_cgroup_zoneinfo(memcg, node, zone);
593 mctz = soft_limit_tree_node_zone(node, zone);
594 mem_cgroup_remove_exceeded(memcg, mz, mctz);
595 }
596 }
597 }
598
599 static struct mem_cgroup_per_zone *
600 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
601 {
602 struct rb_node *rightmost = NULL;
603 struct mem_cgroup_per_zone *mz;
604
605 retry:
606 mz = NULL;
607 rightmost = rb_last(&mctz->rb_root);
608 if (!rightmost)
609 goto done; /* Nothing to reclaim from */
610
611 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
612 /*
613 * Remove the node now but someone else can add it back,
614 * we will to add it back at the end of reclaim to its correct
615 * position in the tree.
616 */
617 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
618 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
619 !css_tryget(&mz->memcg->css))
620 goto retry;
621 done:
622 return mz;
623 }
624
625 static struct mem_cgroup_per_zone *
626 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
627 {
628 struct mem_cgroup_per_zone *mz;
629
630 spin_lock(&mctz->lock);
631 mz = __mem_cgroup_largest_soft_limit_node(mctz);
632 spin_unlock(&mctz->lock);
633 return mz;
634 }
635
636 /*
637 * Implementation Note: reading percpu statistics for memcg.
638 *
639 * Both of vmstat[] and percpu_counter has threshold and do periodic
640 * synchronization to implement "quick" read. There are trade-off between
641 * reading cost and precision of value. Then, we may have a chance to implement
642 * a periodic synchronizion of counter in memcg's counter.
643 *
644 * But this _read() function is used for user interface now. The user accounts
645 * memory usage by memory cgroup and he _always_ requires exact value because
646 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
647 * have to visit all online cpus and make sum. So, for now, unnecessary
648 * synchronization is not implemented. (just implemented for cpu hotplug)
649 *
650 * If there are kernel internal actions which can make use of some not-exact
651 * value, and reading all cpu value can be performance bottleneck in some
652 * common workload, threashold and synchonization as vmstat[] should be
653 * implemented.
654 */
655 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
656 enum mem_cgroup_stat_index idx)
657 {
658 long val = 0;
659 int cpu;
660
661 get_online_cpus();
662 for_each_online_cpu(cpu)
663 val += per_cpu(memcg->stat->count[idx], cpu);
664 #ifdef CONFIG_HOTPLUG_CPU
665 spin_lock(&memcg->pcp_counter_lock);
666 val += memcg->nocpu_base.count[idx];
667 spin_unlock(&memcg->pcp_counter_lock);
668 #endif
669 put_online_cpus();
670 return val;
671 }
672
673 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
674 bool charge)
675 {
676 int val = (charge) ? 1 : -1;
677 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
678 }
679
680 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
681 enum mem_cgroup_events_index idx)
682 {
683 unsigned long val = 0;
684 int cpu;
685
686 for_each_online_cpu(cpu)
687 val += per_cpu(memcg->stat->events[idx], cpu);
688 #ifdef CONFIG_HOTPLUG_CPU
689 spin_lock(&memcg->pcp_counter_lock);
690 val += memcg->nocpu_base.events[idx];
691 spin_unlock(&memcg->pcp_counter_lock);
692 #endif
693 return val;
694 }
695
696 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
697 bool anon, int nr_pages)
698 {
699 preempt_disable();
700
701 /*
702 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
703 * counted as CACHE even if it's on ANON LRU.
704 */
705 if (anon)
706 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
707 nr_pages);
708 else
709 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
710 nr_pages);
711
712 /* pagein of a big page is an event. So, ignore page size */
713 if (nr_pages > 0)
714 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
715 else {
716 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
717 nr_pages = -nr_pages; /* for event */
718 }
719
720 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
721
722 preempt_enable();
723 }
724
725 unsigned long
726 mem_cgroup_get_lruvec_size(struct lruvec *lruvec, enum lru_list lru)
727 {
728 struct mem_cgroup_per_zone *mz;
729
730 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
731 return mz->lru_size[lru];
732 }
733
734 static unsigned long
735 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
736 unsigned int lru_mask)
737 {
738 struct mem_cgroup_per_zone *mz;
739 enum lru_list lru;
740 unsigned long ret = 0;
741
742 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
743
744 for_each_lru(lru) {
745 if (BIT(lru) & lru_mask)
746 ret += mz->lru_size[lru];
747 }
748 return ret;
749 }
750
751 static unsigned long
752 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
753 int nid, unsigned int lru_mask)
754 {
755 u64 total = 0;
756 int zid;
757
758 for (zid = 0; zid < MAX_NR_ZONES; zid++)
759 total += mem_cgroup_zone_nr_lru_pages(memcg,
760 nid, zid, lru_mask);
761
762 return total;
763 }
764
765 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
766 unsigned int lru_mask)
767 {
768 int nid;
769 u64 total = 0;
770
771 for_each_node_state(nid, N_HIGH_MEMORY)
772 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
773 return total;
774 }
775
776 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
777 enum mem_cgroup_events_target target)
778 {
779 unsigned long val, next;
780
781 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
782 next = __this_cpu_read(memcg->stat->targets[target]);
783 /* from time_after() in jiffies.h */
784 if ((long)next - (long)val < 0) {
785 switch (target) {
786 case MEM_CGROUP_TARGET_THRESH:
787 next = val + THRESHOLDS_EVENTS_TARGET;
788 break;
789 case MEM_CGROUP_TARGET_SOFTLIMIT:
790 next = val + SOFTLIMIT_EVENTS_TARGET;
791 break;
792 case MEM_CGROUP_TARGET_NUMAINFO:
793 next = val + NUMAINFO_EVENTS_TARGET;
794 break;
795 default:
796 break;
797 }
798 __this_cpu_write(memcg->stat->targets[target], next);
799 return true;
800 }
801 return false;
802 }
803
804 /*
805 * Check events in order.
806 *
807 */
808 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
809 {
810 preempt_disable();
811 /* threshold event is triggered in finer grain than soft limit */
812 if (unlikely(mem_cgroup_event_ratelimit(memcg,
813 MEM_CGROUP_TARGET_THRESH))) {
814 bool do_softlimit;
815 bool do_numainfo __maybe_unused;
816
817 do_softlimit = mem_cgroup_event_ratelimit(memcg,
818 MEM_CGROUP_TARGET_SOFTLIMIT);
819 #if MAX_NUMNODES > 1
820 do_numainfo = mem_cgroup_event_ratelimit(memcg,
821 MEM_CGROUP_TARGET_NUMAINFO);
822 #endif
823 preempt_enable();
824
825 mem_cgroup_threshold(memcg);
826 if (unlikely(do_softlimit))
827 mem_cgroup_update_tree(memcg, page);
828 #if MAX_NUMNODES > 1
829 if (unlikely(do_numainfo))
830 atomic_inc(&memcg->numainfo_events);
831 #endif
832 } else
833 preempt_enable();
834 }
835
836 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
837 {
838 return container_of(cgroup_subsys_state(cont,
839 mem_cgroup_subsys_id), struct mem_cgroup,
840 css);
841 }
842
843 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
844 {
845 /*
846 * mm_update_next_owner() may clear mm->owner to NULL
847 * if it races with swapoff, page migration, etc.
848 * So this can be called with p == NULL.
849 */
850 if (unlikely(!p))
851 return NULL;
852
853 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
854 struct mem_cgroup, css);
855 }
856
857 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
858 {
859 struct mem_cgroup *memcg = NULL;
860
861 if (!mm)
862 return NULL;
863 /*
864 * Because we have no locks, mm->owner's may be being moved to other
865 * cgroup. We use css_tryget() here even if this looks
866 * pessimistic (rather than adding locks here).
867 */
868 rcu_read_lock();
869 do {
870 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
871 if (unlikely(!memcg))
872 break;
873 } while (!css_tryget(&memcg->css));
874 rcu_read_unlock();
875 return memcg;
876 }
877
878 /**
879 * mem_cgroup_iter - iterate over memory cgroup hierarchy
880 * @root: hierarchy root
881 * @prev: previously returned memcg, NULL on first invocation
882 * @reclaim: cookie for shared reclaim walks, NULL for full walks
883 *
884 * Returns references to children of the hierarchy below @root, or
885 * @root itself, or %NULL after a full round-trip.
886 *
887 * Caller must pass the return value in @prev on subsequent
888 * invocations for reference counting, or use mem_cgroup_iter_break()
889 * to cancel a hierarchy walk before the round-trip is complete.
890 *
891 * Reclaimers can specify a zone and a priority level in @reclaim to
892 * divide up the memcgs in the hierarchy among all concurrent
893 * reclaimers operating on the same zone and priority.
894 */
895 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
896 struct mem_cgroup *prev,
897 struct mem_cgroup_reclaim_cookie *reclaim)
898 {
899 struct mem_cgroup *memcg = NULL;
900 int id = 0;
901
902 if (mem_cgroup_disabled())
903 return NULL;
904
905 if (!root)
906 root = root_mem_cgroup;
907
908 if (prev && !reclaim)
909 id = css_id(&prev->css);
910
911 if (prev && prev != root)
912 css_put(&prev->css);
913
914 if (!root->use_hierarchy && root != root_mem_cgroup) {
915 if (prev)
916 return NULL;
917 return root;
918 }
919
920 while (!memcg) {
921 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
922 struct cgroup_subsys_state *css;
923
924 if (reclaim) {
925 int nid = zone_to_nid(reclaim->zone);
926 int zid = zone_idx(reclaim->zone);
927 struct mem_cgroup_per_zone *mz;
928
929 mz = mem_cgroup_zoneinfo(root, nid, zid);
930 iter = &mz->reclaim_iter[reclaim->priority];
931 if (prev && reclaim->generation != iter->generation)
932 return NULL;
933 id = iter->position;
934 }
935
936 rcu_read_lock();
937 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
938 if (css) {
939 if (css == &root->css || css_tryget(css))
940 memcg = container_of(css,
941 struct mem_cgroup, css);
942 } else
943 id = 0;
944 rcu_read_unlock();
945
946 if (reclaim) {
947 iter->position = id;
948 if (!css)
949 iter->generation++;
950 else if (!prev && memcg)
951 reclaim->generation = iter->generation;
952 }
953
954 if (prev && !css)
955 return NULL;
956 }
957 return memcg;
958 }
959
960 /**
961 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
962 * @root: hierarchy root
963 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
964 */
965 void mem_cgroup_iter_break(struct mem_cgroup *root,
966 struct mem_cgroup *prev)
967 {
968 if (!root)
969 root = root_mem_cgroup;
970 if (prev && prev != root)
971 css_put(&prev->css);
972 }
973
974 /*
975 * Iteration constructs for visiting all cgroups (under a tree). If
976 * loops are exited prematurely (break), mem_cgroup_iter_break() must
977 * be used for reference counting.
978 */
979 #define for_each_mem_cgroup_tree(iter, root) \
980 for (iter = mem_cgroup_iter(root, NULL, NULL); \
981 iter != NULL; \
982 iter = mem_cgroup_iter(root, iter, NULL))
983
984 #define for_each_mem_cgroup(iter) \
985 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
986 iter != NULL; \
987 iter = mem_cgroup_iter(NULL, iter, NULL))
988
989 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
990 {
991 return (memcg == root_mem_cgroup);
992 }
993
994 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
995 {
996 struct mem_cgroup *memcg;
997
998 if (!mm)
999 return;
1000
1001 rcu_read_lock();
1002 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1003 if (unlikely(!memcg))
1004 goto out;
1005
1006 switch (idx) {
1007 case PGFAULT:
1008 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1009 break;
1010 case PGMAJFAULT:
1011 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1012 break;
1013 default:
1014 BUG();
1015 }
1016 out:
1017 rcu_read_unlock();
1018 }
1019 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1020
1021 /**
1022 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1023 * @zone: zone of the wanted lruvec
1024 * @mem: memcg of the wanted lruvec
1025 *
1026 * Returns the lru list vector holding pages for the given @zone and
1027 * @mem. This can be the global zone lruvec, if the memory controller
1028 * is disabled.
1029 */
1030 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1031 struct mem_cgroup *memcg)
1032 {
1033 struct mem_cgroup_per_zone *mz;
1034
1035 if (mem_cgroup_disabled())
1036 return &zone->lruvec;
1037
1038 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1039 return &mz->lruvec;
1040 }
1041
1042 /*
1043 * Following LRU functions are allowed to be used without PCG_LOCK.
1044 * Operations are called by routine of global LRU independently from memcg.
1045 * What we have to take care of here is validness of pc->mem_cgroup.
1046 *
1047 * Changes to pc->mem_cgroup happens when
1048 * 1. charge
1049 * 2. moving account
1050 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1051 * It is added to LRU before charge.
1052 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1053 * When moving account, the page is not on LRU. It's isolated.
1054 */
1055
1056 /**
1057 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1058 * @zone: zone of the page
1059 * @page: the page
1060 * @lru: current lru
1061 *
1062 * This function accounts for @page being added to @lru, and returns
1063 * the lruvec for the given @zone and the memcg @page is charged to.
1064 *
1065 * The callsite is then responsible for physically linking the page to
1066 * the returned lruvec->lists[@lru].
1067 */
1068 struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1069 enum lru_list lru)
1070 {
1071 struct mem_cgroup_per_zone *mz;
1072 struct mem_cgroup *memcg;
1073 struct page_cgroup *pc;
1074
1075 if (mem_cgroup_disabled())
1076 return &zone->lruvec;
1077
1078 pc = lookup_page_cgroup(page);
1079 memcg = pc->mem_cgroup;
1080
1081 /*
1082 * Surreptitiously switch any uncharged page to root:
1083 * an uncharged page off lru does nothing to secure
1084 * its former mem_cgroup from sudden removal.
1085 *
1086 * Our caller holds lru_lock, and PageCgroupUsed is updated
1087 * under page_cgroup lock: between them, they make all uses
1088 * of pc->mem_cgroup safe.
1089 */
1090 if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1091 pc->mem_cgroup = memcg = root_mem_cgroup;
1092
1093 mz = page_cgroup_zoneinfo(memcg, page);
1094 /* compound_order() is stabilized through lru_lock */
1095 mz->lru_size[lru] += 1 << compound_order(page);
1096 return &mz->lruvec;
1097 }
1098
1099 /**
1100 * mem_cgroup_lru_del_list - account for removing an lru page
1101 * @page: the page
1102 * @lru: target lru
1103 *
1104 * This function accounts for @page being removed from @lru.
1105 *
1106 * The callsite is then responsible for physically unlinking
1107 * @page->lru.
1108 */
1109 void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1110 {
1111 struct mem_cgroup_per_zone *mz;
1112 struct mem_cgroup *memcg;
1113 struct page_cgroup *pc;
1114
1115 if (mem_cgroup_disabled())
1116 return;
1117
1118 pc = lookup_page_cgroup(page);
1119 memcg = pc->mem_cgroup;
1120 VM_BUG_ON(!memcg);
1121 mz = page_cgroup_zoneinfo(memcg, page);
1122 /* huge page split is done under lru_lock. so, we have no races. */
1123 VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
1124 mz->lru_size[lru] -= 1 << compound_order(page);
1125 }
1126
1127 /**
1128 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1129 * @zone: zone of the page
1130 * @page: the page
1131 * @from: current lru
1132 * @to: target lru
1133 *
1134 * This function accounts for @page being moved between the lrus @from
1135 * and @to, and returns the lruvec for the given @zone and the memcg
1136 * @page is charged to.
1137 *
1138 * The callsite is then responsible for physically relinking
1139 * @page->lru to the returned lruvec->lists[@to].
1140 */
1141 struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1142 struct page *page,
1143 enum lru_list from,
1144 enum lru_list to)
1145 {
1146 /* XXX: Optimize this, especially for @from == @to */
1147 mem_cgroup_lru_del_list(page, from);
1148 return mem_cgroup_lru_add_list(zone, page, to);
1149 }
1150
1151 /*
1152 * Checks whether given mem is same or in the root_mem_cgroup's
1153 * hierarchy subtree
1154 */
1155 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1156 struct mem_cgroup *memcg)
1157 {
1158 if (root_memcg == memcg)
1159 return true;
1160 if (!root_memcg->use_hierarchy)
1161 return false;
1162 return css_is_ancestor(&memcg->css, &root_memcg->css);
1163 }
1164
1165 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1166 struct mem_cgroup *memcg)
1167 {
1168 bool ret;
1169
1170 rcu_read_lock();
1171 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1172 rcu_read_unlock();
1173 return ret;
1174 }
1175
1176 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1177 {
1178 int ret;
1179 struct mem_cgroup *curr = NULL;
1180 struct task_struct *p;
1181
1182 p = find_lock_task_mm(task);
1183 if (p) {
1184 curr = try_get_mem_cgroup_from_mm(p->mm);
1185 task_unlock(p);
1186 } else {
1187 /*
1188 * All threads may have already detached their mm's, but the oom
1189 * killer still needs to detect if they have already been oom
1190 * killed to prevent needlessly killing additional tasks.
1191 */
1192 task_lock(task);
1193 curr = mem_cgroup_from_task(task);
1194 if (curr)
1195 css_get(&curr->css);
1196 task_unlock(task);
1197 }
1198 if (!curr)
1199 return 0;
1200 /*
1201 * We should check use_hierarchy of "memcg" not "curr". Because checking
1202 * use_hierarchy of "curr" here make this function true if hierarchy is
1203 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1204 * hierarchy(even if use_hierarchy is disabled in "memcg").
1205 */
1206 ret = mem_cgroup_same_or_subtree(memcg, curr);
1207 css_put(&curr->css);
1208 return ret;
1209 }
1210
1211 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1212 {
1213 unsigned long inactive_ratio;
1214 unsigned long inactive;
1215 unsigned long active;
1216 unsigned long gb;
1217
1218 inactive = mem_cgroup_get_lruvec_size(lruvec, LRU_INACTIVE_ANON);
1219 active = mem_cgroup_get_lruvec_size(lruvec, LRU_ACTIVE_ANON);
1220
1221 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1222 if (gb)
1223 inactive_ratio = int_sqrt(10 * gb);
1224 else
1225 inactive_ratio = 1;
1226
1227 return inactive * inactive_ratio < active;
1228 }
1229
1230 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1231 {
1232 unsigned long active;
1233 unsigned long inactive;
1234
1235 inactive = mem_cgroup_get_lruvec_size(lruvec, LRU_INACTIVE_FILE);
1236 active = mem_cgroup_get_lruvec_size(lruvec, LRU_ACTIVE_FILE);
1237
1238 return (active > inactive);
1239 }
1240
1241 struct zone_reclaim_stat *
1242 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1243 {
1244 struct page_cgroup *pc;
1245 struct mem_cgroup_per_zone *mz;
1246
1247 if (mem_cgroup_disabled())
1248 return NULL;
1249
1250 pc = lookup_page_cgroup(page);
1251 if (!PageCgroupUsed(pc))
1252 return NULL;
1253 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1254 smp_rmb();
1255 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1256 return &mz->lruvec.reclaim_stat;
1257 }
1258
1259 #define mem_cgroup_from_res_counter(counter, member) \
1260 container_of(counter, struct mem_cgroup, member)
1261
1262 /**
1263 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1264 * @mem: the memory cgroup
1265 *
1266 * Returns the maximum amount of memory @mem can be charged with, in
1267 * pages.
1268 */
1269 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1270 {
1271 unsigned long long margin;
1272
1273 margin = res_counter_margin(&memcg->res);
1274 if (do_swap_account)
1275 margin = min(margin, res_counter_margin(&memcg->memsw));
1276 return margin >> PAGE_SHIFT;
1277 }
1278
1279 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1280 {
1281 struct cgroup *cgrp = memcg->css.cgroup;
1282
1283 /* root ? */
1284 if (cgrp->parent == NULL)
1285 return vm_swappiness;
1286
1287 return memcg->swappiness;
1288 }
1289
1290 /*
1291 * memcg->moving_account is used for checking possibility that some thread is
1292 * calling move_account(). When a thread on CPU-A starts moving pages under
1293 * a memcg, other threads should check memcg->moving_account under
1294 * rcu_read_lock(), like this:
1295 *
1296 * CPU-A CPU-B
1297 * rcu_read_lock()
1298 * memcg->moving_account+1 if (memcg->mocing_account)
1299 * take heavy locks.
1300 * synchronize_rcu() update something.
1301 * rcu_read_unlock()
1302 * start move here.
1303 */
1304
1305 /* for quick checking without looking up memcg */
1306 atomic_t memcg_moving __read_mostly;
1307
1308 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1309 {
1310 atomic_inc(&memcg_moving);
1311 atomic_inc(&memcg->moving_account);
1312 synchronize_rcu();
1313 }
1314
1315 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1316 {
1317 /*
1318 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1319 * We check NULL in callee rather than caller.
1320 */
1321 if (memcg) {
1322 atomic_dec(&memcg_moving);
1323 atomic_dec(&memcg->moving_account);
1324 }
1325 }
1326
1327 /*
1328 * 2 routines for checking "mem" is under move_account() or not.
1329 *
1330 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1331 * is used for avoiding races in accounting. If true,
1332 * pc->mem_cgroup may be overwritten.
1333 *
1334 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1335 * under hierarchy of moving cgroups. This is for
1336 * waiting at hith-memory prressure caused by "move".
1337 */
1338
1339 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1340 {
1341 VM_BUG_ON(!rcu_read_lock_held());
1342 return atomic_read(&memcg->moving_account) > 0;
1343 }
1344
1345 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1346 {
1347 struct mem_cgroup *from;
1348 struct mem_cgroup *to;
1349 bool ret = false;
1350 /*
1351 * Unlike task_move routines, we access mc.to, mc.from not under
1352 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1353 */
1354 spin_lock(&mc.lock);
1355 from = mc.from;
1356 to = mc.to;
1357 if (!from)
1358 goto unlock;
1359
1360 ret = mem_cgroup_same_or_subtree(memcg, from)
1361 || mem_cgroup_same_or_subtree(memcg, to);
1362 unlock:
1363 spin_unlock(&mc.lock);
1364 return ret;
1365 }
1366
1367 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1368 {
1369 if (mc.moving_task && current != mc.moving_task) {
1370 if (mem_cgroup_under_move(memcg)) {
1371 DEFINE_WAIT(wait);
1372 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1373 /* moving charge context might have finished. */
1374 if (mc.moving_task)
1375 schedule();
1376 finish_wait(&mc.waitq, &wait);
1377 return true;
1378 }
1379 }
1380 return false;
1381 }
1382
1383 /*
1384 * Take this lock when
1385 * - a code tries to modify page's memcg while it's USED.
1386 * - a code tries to modify page state accounting in a memcg.
1387 * see mem_cgroup_stolen(), too.
1388 */
1389 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1390 unsigned long *flags)
1391 {
1392 spin_lock_irqsave(&memcg->move_lock, *flags);
1393 }
1394
1395 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1396 unsigned long *flags)
1397 {
1398 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1399 }
1400
1401 /**
1402 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1403 * @memcg: The memory cgroup that went over limit
1404 * @p: Task that is going to be killed
1405 *
1406 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1407 * enabled
1408 */
1409 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1410 {
1411 struct cgroup *task_cgrp;
1412 struct cgroup *mem_cgrp;
1413 /*
1414 * Need a buffer in BSS, can't rely on allocations. The code relies
1415 * on the assumption that OOM is serialized for memory controller.
1416 * If this assumption is broken, revisit this code.
1417 */
1418 static char memcg_name[PATH_MAX];
1419 int ret;
1420
1421 if (!memcg || !p)
1422 return;
1423
1424 rcu_read_lock();
1425
1426 mem_cgrp = memcg->css.cgroup;
1427 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1428
1429 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1430 if (ret < 0) {
1431 /*
1432 * Unfortunately, we are unable to convert to a useful name
1433 * But we'll still print out the usage information
1434 */
1435 rcu_read_unlock();
1436 goto done;
1437 }
1438 rcu_read_unlock();
1439
1440 printk(KERN_INFO "Task in %s killed", memcg_name);
1441
1442 rcu_read_lock();
1443 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1444 if (ret < 0) {
1445 rcu_read_unlock();
1446 goto done;
1447 }
1448 rcu_read_unlock();
1449
1450 /*
1451 * Continues from above, so we don't need an KERN_ level
1452 */
1453 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1454 done:
1455
1456 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1457 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1458 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1459 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1460 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1461 "failcnt %llu\n",
1462 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1463 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1464 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1465 }
1466
1467 /*
1468 * This function returns the number of memcg under hierarchy tree. Returns
1469 * 1(self count) if no children.
1470 */
1471 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1472 {
1473 int num = 0;
1474 struct mem_cgroup *iter;
1475
1476 for_each_mem_cgroup_tree(iter, memcg)
1477 num++;
1478 return num;
1479 }
1480
1481 /*
1482 * Return the memory (and swap, if configured) limit for a memcg.
1483 */
1484 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1485 {
1486 u64 limit;
1487 u64 memsw;
1488
1489 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1490 limit += total_swap_pages << PAGE_SHIFT;
1491
1492 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1493 /*
1494 * If memsw is finite and limits the amount of swap space available
1495 * to this memcg, return that limit.
1496 */
1497 return min(limit, memsw);
1498 }
1499
1500 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1501 gfp_t gfp_mask,
1502 unsigned long flags)
1503 {
1504 unsigned long total = 0;
1505 bool noswap = false;
1506 int loop;
1507
1508 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1509 noswap = true;
1510 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1511 noswap = true;
1512
1513 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1514 if (loop)
1515 drain_all_stock_async(memcg);
1516 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1517 /*
1518 * Allow limit shrinkers, which are triggered directly
1519 * by userspace, to catch signals and stop reclaim
1520 * after minimal progress, regardless of the margin.
1521 */
1522 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1523 break;
1524 if (mem_cgroup_margin(memcg))
1525 break;
1526 /*
1527 * If nothing was reclaimed after two attempts, there
1528 * may be no reclaimable pages in this hierarchy.
1529 */
1530 if (loop && !total)
1531 break;
1532 }
1533 return total;
1534 }
1535
1536 /**
1537 * test_mem_cgroup_node_reclaimable
1538 * @mem: the target memcg
1539 * @nid: the node ID to be checked.
1540 * @noswap : specify true here if the user wants flle only information.
1541 *
1542 * This function returns whether the specified memcg contains any
1543 * reclaimable pages on a node. Returns true if there are any reclaimable
1544 * pages in the node.
1545 */
1546 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1547 int nid, bool noswap)
1548 {
1549 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1550 return true;
1551 if (noswap || !total_swap_pages)
1552 return false;
1553 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1554 return true;
1555 return false;
1556
1557 }
1558 #if MAX_NUMNODES > 1
1559
1560 /*
1561 * Always updating the nodemask is not very good - even if we have an empty
1562 * list or the wrong list here, we can start from some node and traverse all
1563 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1564 *
1565 */
1566 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1567 {
1568 int nid;
1569 /*
1570 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1571 * pagein/pageout changes since the last update.
1572 */
1573 if (!atomic_read(&memcg->numainfo_events))
1574 return;
1575 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1576 return;
1577
1578 /* make a nodemask where this memcg uses memory from */
1579 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1580
1581 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1582
1583 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1584 node_clear(nid, memcg->scan_nodes);
1585 }
1586
1587 atomic_set(&memcg->numainfo_events, 0);
1588 atomic_set(&memcg->numainfo_updating, 0);
1589 }
1590
1591 /*
1592 * Selecting a node where we start reclaim from. Because what we need is just
1593 * reducing usage counter, start from anywhere is O,K. Considering
1594 * memory reclaim from current node, there are pros. and cons.
1595 *
1596 * Freeing memory from current node means freeing memory from a node which
1597 * we'll use or we've used. So, it may make LRU bad. And if several threads
1598 * hit limits, it will see a contention on a node. But freeing from remote
1599 * node means more costs for memory reclaim because of memory latency.
1600 *
1601 * Now, we use round-robin. Better algorithm is welcomed.
1602 */
1603 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1604 {
1605 int node;
1606
1607 mem_cgroup_may_update_nodemask(memcg);
1608 node = memcg->last_scanned_node;
1609
1610 node = next_node(node, memcg->scan_nodes);
1611 if (node == MAX_NUMNODES)
1612 node = first_node(memcg->scan_nodes);
1613 /*
1614 * We call this when we hit limit, not when pages are added to LRU.
1615 * No LRU may hold pages because all pages are UNEVICTABLE or
1616 * memcg is too small and all pages are not on LRU. In that case,
1617 * we use curret node.
1618 */
1619 if (unlikely(node == MAX_NUMNODES))
1620 node = numa_node_id();
1621
1622 memcg->last_scanned_node = node;
1623 return node;
1624 }
1625
1626 /*
1627 * Check all nodes whether it contains reclaimable pages or not.
1628 * For quick scan, we make use of scan_nodes. This will allow us to skip
1629 * unused nodes. But scan_nodes is lazily updated and may not cotain
1630 * enough new information. We need to do double check.
1631 */
1632 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1633 {
1634 int nid;
1635
1636 /*
1637 * quick check...making use of scan_node.
1638 * We can skip unused nodes.
1639 */
1640 if (!nodes_empty(memcg->scan_nodes)) {
1641 for (nid = first_node(memcg->scan_nodes);
1642 nid < MAX_NUMNODES;
1643 nid = next_node(nid, memcg->scan_nodes)) {
1644
1645 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1646 return true;
1647 }
1648 }
1649 /*
1650 * Check rest of nodes.
1651 */
1652 for_each_node_state(nid, N_HIGH_MEMORY) {
1653 if (node_isset(nid, memcg->scan_nodes))
1654 continue;
1655 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1656 return true;
1657 }
1658 return false;
1659 }
1660
1661 #else
1662 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1663 {
1664 return 0;
1665 }
1666
1667 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1668 {
1669 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1670 }
1671 #endif
1672
1673 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1674 struct zone *zone,
1675 gfp_t gfp_mask,
1676 unsigned long *total_scanned)
1677 {
1678 struct mem_cgroup *victim = NULL;
1679 int total = 0;
1680 int loop = 0;
1681 unsigned long excess;
1682 unsigned long nr_scanned;
1683 struct mem_cgroup_reclaim_cookie reclaim = {
1684 .zone = zone,
1685 .priority = 0,
1686 };
1687
1688 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1689
1690 while (1) {
1691 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1692 if (!victim) {
1693 loop++;
1694 if (loop >= 2) {
1695 /*
1696 * If we have not been able to reclaim
1697 * anything, it might because there are
1698 * no reclaimable pages under this hierarchy
1699 */
1700 if (!total)
1701 break;
1702 /*
1703 * We want to do more targeted reclaim.
1704 * excess >> 2 is not to excessive so as to
1705 * reclaim too much, nor too less that we keep
1706 * coming back to reclaim from this cgroup
1707 */
1708 if (total >= (excess >> 2) ||
1709 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1710 break;
1711 }
1712 continue;
1713 }
1714 if (!mem_cgroup_reclaimable(victim, false))
1715 continue;
1716 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1717 zone, &nr_scanned);
1718 *total_scanned += nr_scanned;
1719 if (!res_counter_soft_limit_excess(&root_memcg->res))
1720 break;
1721 }
1722 mem_cgroup_iter_break(root_memcg, victim);
1723 return total;
1724 }
1725
1726 /*
1727 * Check OOM-Killer is already running under our hierarchy.
1728 * If someone is running, return false.
1729 * Has to be called with memcg_oom_lock
1730 */
1731 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1732 {
1733 struct mem_cgroup *iter, *failed = NULL;
1734
1735 for_each_mem_cgroup_tree(iter, memcg) {
1736 if (iter->oom_lock) {
1737 /*
1738 * this subtree of our hierarchy is already locked
1739 * so we cannot give a lock.
1740 */
1741 failed = iter;
1742 mem_cgroup_iter_break(memcg, iter);
1743 break;
1744 } else
1745 iter->oom_lock = true;
1746 }
1747
1748 if (!failed)
1749 return true;
1750
1751 /*
1752 * OK, we failed to lock the whole subtree so we have to clean up
1753 * what we set up to the failing subtree
1754 */
1755 for_each_mem_cgroup_tree(iter, memcg) {
1756 if (iter == failed) {
1757 mem_cgroup_iter_break(memcg, iter);
1758 break;
1759 }
1760 iter->oom_lock = false;
1761 }
1762 return false;
1763 }
1764
1765 /*
1766 * Has to be called with memcg_oom_lock
1767 */
1768 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1769 {
1770 struct mem_cgroup *iter;
1771
1772 for_each_mem_cgroup_tree(iter, memcg)
1773 iter->oom_lock = false;
1774 return 0;
1775 }
1776
1777 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1778 {
1779 struct mem_cgroup *iter;
1780
1781 for_each_mem_cgroup_tree(iter, memcg)
1782 atomic_inc(&iter->under_oom);
1783 }
1784
1785 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1786 {
1787 struct mem_cgroup *iter;
1788
1789 /*
1790 * When a new child is created while the hierarchy is under oom,
1791 * mem_cgroup_oom_lock() may not be called. We have to use
1792 * atomic_add_unless() here.
1793 */
1794 for_each_mem_cgroup_tree(iter, memcg)
1795 atomic_add_unless(&iter->under_oom, -1, 0);
1796 }
1797
1798 static DEFINE_SPINLOCK(memcg_oom_lock);
1799 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1800
1801 struct oom_wait_info {
1802 struct mem_cgroup *memcg;
1803 wait_queue_t wait;
1804 };
1805
1806 static int memcg_oom_wake_function(wait_queue_t *wait,
1807 unsigned mode, int sync, void *arg)
1808 {
1809 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1810 struct mem_cgroup *oom_wait_memcg;
1811 struct oom_wait_info *oom_wait_info;
1812
1813 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1814 oom_wait_memcg = oom_wait_info->memcg;
1815
1816 /*
1817 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1818 * Then we can use css_is_ancestor without taking care of RCU.
1819 */
1820 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1821 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1822 return 0;
1823 return autoremove_wake_function(wait, mode, sync, arg);
1824 }
1825
1826 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1827 {
1828 /* for filtering, pass "memcg" as argument. */
1829 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1830 }
1831
1832 static void memcg_oom_recover(struct mem_cgroup *memcg)
1833 {
1834 if (memcg && atomic_read(&memcg->under_oom))
1835 memcg_wakeup_oom(memcg);
1836 }
1837
1838 /*
1839 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1840 */
1841 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1842 int order)
1843 {
1844 struct oom_wait_info owait;
1845 bool locked, need_to_kill;
1846
1847 owait.memcg = memcg;
1848 owait.wait.flags = 0;
1849 owait.wait.func = memcg_oom_wake_function;
1850 owait.wait.private = current;
1851 INIT_LIST_HEAD(&owait.wait.task_list);
1852 need_to_kill = true;
1853 mem_cgroup_mark_under_oom(memcg);
1854
1855 /* At first, try to OOM lock hierarchy under memcg.*/
1856 spin_lock(&memcg_oom_lock);
1857 locked = mem_cgroup_oom_lock(memcg);
1858 /*
1859 * Even if signal_pending(), we can't quit charge() loop without
1860 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1861 * under OOM is always welcomed, use TASK_KILLABLE here.
1862 */
1863 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1864 if (!locked || memcg->oom_kill_disable)
1865 need_to_kill = false;
1866 if (locked)
1867 mem_cgroup_oom_notify(memcg);
1868 spin_unlock(&memcg_oom_lock);
1869
1870 if (need_to_kill) {
1871 finish_wait(&memcg_oom_waitq, &owait.wait);
1872 mem_cgroup_out_of_memory(memcg, mask, order);
1873 } else {
1874 schedule();
1875 finish_wait(&memcg_oom_waitq, &owait.wait);
1876 }
1877 spin_lock(&memcg_oom_lock);
1878 if (locked)
1879 mem_cgroup_oom_unlock(memcg);
1880 memcg_wakeup_oom(memcg);
1881 spin_unlock(&memcg_oom_lock);
1882
1883 mem_cgroup_unmark_under_oom(memcg);
1884
1885 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1886 return false;
1887 /* Give chance to dying process */
1888 schedule_timeout_uninterruptible(1);
1889 return true;
1890 }
1891
1892 /*
1893 * Currently used to update mapped file statistics, but the routine can be
1894 * generalized to update other statistics as well.
1895 *
1896 * Notes: Race condition
1897 *
1898 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1899 * it tends to be costly. But considering some conditions, we doesn't need
1900 * to do so _always_.
1901 *
1902 * Considering "charge", lock_page_cgroup() is not required because all
1903 * file-stat operations happen after a page is attached to radix-tree. There
1904 * are no race with "charge".
1905 *
1906 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1907 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1908 * if there are race with "uncharge". Statistics itself is properly handled
1909 * by flags.
1910 *
1911 * Considering "move", this is an only case we see a race. To make the race
1912 * small, we check mm->moving_account and detect there are possibility of race
1913 * If there is, we take a lock.
1914 */
1915
1916 void __mem_cgroup_begin_update_page_stat(struct page *page,
1917 bool *locked, unsigned long *flags)
1918 {
1919 struct mem_cgroup *memcg;
1920 struct page_cgroup *pc;
1921
1922 pc = lookup_page_cgroup(page);
1923 again:
1924 memcg = pc->mem_cgroup;
1925 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1926 return;
1927 /*
1928 * If this memory cgroup is not under account moving, we don't
1929 * need to take move_lock_page_cgroup(). Because we already hold
1930 * rcu_read_lock(), any calls to move_account will be delayed until
1931 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1932 */
1933 if (!mem_cgroup_stolen(memcg))
1934 return;
1935
1936 move_lock_mem_cgroup(memcg, flags);
1937 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1938 move_unlock_mem_cgroup(memcg, flags);
1939 goto again;
1940 }
1941 *locked = true;
1942 }
1943
1944 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1945 {
1946 struct page_cgroup *pc = lookup_page_cgroup(page);
1947
1948 /*
1949 * It's guaranteed that pc->mem_cgroup never changes while
1950 * lock is held because a routine modifies pc->mem_cgroup
1951 * should take move_lock_page_cgroup().
1952 */
1953 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1954 }
1955
1956 void mem_cgroup_update_page_stat(struct page *page,
1957 enum mem_cgroup_page_stat_item idx, int val)
1958 {
1959 struct mem_cgroup *memcg;
1960 struct page_cgroup *pc = lookup_page_cgroup(page);
1961 unsigned long uninitialized_var(flags);
1962
1963 if (mem_cgroup_disabled())
1964 return;
1965
1966 memcg = pc->mem_cgroup;
1967 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1968 return;
1969
1970 switch (idx) {
1971 case MEMCG_NR_FILE_MAPPED:
1972 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1973 break;
1974 default:
1975 BUG();
1976 }
1977
1978 this_cpu_add(memcg->stat->count[idx], val);
1979 }
1980
1981 /*
1982 * size of first charge trial. "32" comes from vmscan.c's magic value.
1983 * TODO: maybe necessary to use big numbers in big irons.
1984 */
1985 #define CHARGE_BATCH 32U
1986 struct memcg_stock_pcp {
1987 struct mem_cgroup *cached; /* this never be root cgroup */
1988 unsigned int nr_pages;
1989 struct work_struct work;
1990 unsigned long flags;
1991 #define FLUSHING_CACHED_CHARGE 0
1992 };
1993 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1994 static DEFINE_MUTEX(percpu_charge_mutex);
1995
1996 /*
1997 * Try to consume stocked charge on this cpu. If success, one page is consumed
1998 * from local stock and true is returned. If the stock is 0 or charges from a
1999 * cgroup which is not current target, returns false. This stock will be
2000 * refilled.
2001 */
2002 static bool consume_stock(struct mem_cgroup *memcg)
2003 {
2004 struct memcg_stock_pcp *stock;
2005 bool ret = true;
2006
2007 stock = &get_cpu_var(memcg_stock);
2008 if (memcg == stock->cached && stock->nr_pages)
2009 stock->nr_pages--;
2010 else /* need to call res_counter_charge */
2011 ret = false;
2012 put_cpu_var(memcg_stock);
2013 return ret;
2014 }
2015
2016 /*
2017 * Returns stocks cached in percpu to res_counter and reset cached information.
2018 */
2019 static void drain_stock(struct memcg_stock_pcp *stock)
2020 {
2021 struct mem_cgroup *old = stock->cached;
2022
2023 if (stock->nr_pages) {
2024 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2025
2026 res_counter_uncharge(&old->res, bytes);
2027 if (do_swap_account)
2028 res_counter_uncharge(&old->memsw, bytes);
2029 stock->nr_pages = 0;
2030 }
2031 stock->cached = NULL;
2032 }
2033
2034 /*
2035 * This must be called under preempt disabled or must be called by
2036 * a thread which is pinned to local cpu.
2037 */
2038 static void drain_local_stock(struct work_struct *dummy)
2039 {
2040 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2041 drain_stock(stock);
2042 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2043 }
2044
2045 /*
2046 * Cache charges(val) which is from res_counter, to local per_cpu area.
2047 * This will be consumed by consume_stock() function, later.
2048 */
2049 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2050 {
2051 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2052
2053 if (stock->cached != memcg) { /* reset if necessary */
2054 drain_stock(stock);
2055 stock->cached = memcg;
2056 }
2057 stock->nr_pages += nr_pages;
2058 put_cpu_var(memcg_stock);
2059 }
2060
2061 /*
2062 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2063 * of the hierarchy under it. sync flag says whether we should block
2064 * until the work is done.
2065 */
2066 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2067 {
2068 int cpu, curcpu;
2069
2070 /* Notify other cpus that system-wide "drain" is running */
2071 get_online_cpus();
2072 curcpu = get_cpu();
2073 for_each_online_cpu(cpu) {
2074 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2075 struct mem_cgroup *memcg;
2076
2077 memcg = stock->cached;
2078 if (!memcg || !stock->nr_pages)
2079 continue;
2080 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2081 continue;
2082 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2083 if (cpu == curcpu)
2084 drain_local_stock(&stock->work);
2085 else
2086 schedule_work_on(cpu, &stock->work);
2087 }
2088 }
2089 put_cpu();
2090
2091 if (!sync)
2092 goto out;
2093
2094 for_each_online_cpu(cpu) {
2095 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2096 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2097 flush_work(&stock->work);
2098 }
2099 out:
2100 put_online_cpus();
2101 }
2102
2103 /*
2104 * Tries to drain stocked charges in other cpus. This function is asynchronous
2105 * and just put a work per cpu for draining localy on each cpu. Caller can
2106 * expects some charges will be back to res_counter later but cannot wait for
2107 * it.
2108 */
2109 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2110 {
2111 /*
2112 * If someone calls draining, avoid adding more kworker runs.
2113 */
2114 if (!mutex_trylock(&percpu_charge_mutex))
2115 return;
2116 drain_all_stock(root_memcg, false);
2117 mutex_unlock(&percpu_charge_mutex);
2118 }
2119
2120 /* This is a synchronous drain interface. */
2121 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2122 {
2123 /* called when force_empty is called */
2124 mutex_lock(&percpu_charge_mutex);
2125 drain_all_stock(root_memcg, true);
2126 mutex_unlock(&percpu_charge_mutex);
2127 }
2128
2129 /*
2130 * This function drains percpu counter value from DEAD cpu and
2131 * move it to local cpu. Note that this function can be preempted.
2132 */
2133 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2134 {
2135 int i;
2136
2137 spin_lock(&memcg->pcp_counter_lock);
2138 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2139 long x = per_cpu(memcg->stat->count[i], cpu);
2140
2141 per_cpu(memcg->stat->count[i], cpu) = 0;
2142 memcg->nocpu_base.count[i] += x;
2143 }
2144 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2145 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2146
2147 per_cpu(memcg->stat->events[i], cpu) = 0;
2148 memcg->nocpu_base.events[i] += x;
2149 }
2150 spin_unlock(&memcg->pcp_counter_lock);
2151 }
2152
2153 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2154 unsigned long action,
2155 void *hcpu)
2156 {
2157 int cpu = (unsigned long)hcpu;
2158 struct memcg_stock_pcp *stock;
2159 struct mem_cgroup *iter;
2160
2161 if (action == CPU_ONLINE)
2162 return NOTIFY_OK;
2163
2164 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2165 return NOTIFY_OK;
2166
2167 for_each_mem_cgroup(iter)
2168 mem_cgroup_drain_pcp_counter(iter, cpu);
2169
2170 stock = &per_cpu(memcg_stock, cpu);
2171 drain_stock(stock);
2172 return NOTIFY_OK;
2173 }
2174
2175
2176 /* See __mem_cgroup_try_charge() for details */
2177 enum {
2178 CHARGE_OK, /* success */
2179 CHARGE_RETRY, /* need to retry but retry is not bad */
2180 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2181 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2182 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2183 };
2184
2185 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2186 unsigned int nr_pages, bool oom_check)
2187 {
2188 unsigned long csize = nr_pages * PAGE_SIZE;
2189 struct mem_cgroup *mem_over_limit;
2190 struct res_counter *fail_res;
2191 unsigned long flags = 0;
2192 int ret;
2193
2194 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2195
2196 if (likely(!ret)) {
2197 if (!do_swap_account)
2198 return CHARGE_OK;
2199 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2200 if (likely(!ret))
2201 return CHARGE_OK;
2202
2203 res_counter_uncharge(&memcg->res, csize);
2204 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2205 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2206 } else
2207 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2208 /*
2209 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2210 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2211 *
2212 * Never reclaim on behalf of optional batching, retry with a
2213 * single page instead.
2214 */
2215 if (nr_pages == CHARGE_BATCH)
2216 return CHARGE_RETRY;
2217
2218 if (!(gfp_mask & __GFP_WAIT))
2219 return CHARGE_WOULDBLOCK;
2220
2221 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2222 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2223 return CHARGE_RETRY;
2224 /*
2225 * Even though the limit is exceeded at this point, reclaim
2226 * may have been able to free some pages. Retry the charge
2227 * before killing the task.
2228 *
2229 * Only for regular pages, though: huge pages are rather
2230 * unlikely to succeed so close to the limit, and we fall back
2231 * to regular pages anyway in case of failure.
2232 */
2233 if (nr_pages == 1 && ret)
2234 return CHARGE_RETRY;
2235
2236 /*
2237 * At task move, charge accounts can be doubly counted. So, it's
2238 * better to wait until the end of task_move if something is going on.
2239 */
2240 if (mem_cgroup_wait_acct_move(mem_over_limit))
2241 return CHARGE_RETRY;
2242
2243 /* If we don't need to call oom-killer at el, return immediately */
2244 if (!oom_check)
2245 return CHARGE_NOMEM;
2246 /* check OOM */
2247 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2248 return CHARGE_OOM_DIE;
2249
2250 return CHARGE_RETRY;
2251 }
2252
2253 /*
2254 * __mem_cgroup_try_charge() does
2255 * 1. detect memcg to be charged against from passed *mm and *ptr,
2256 * 2. update res_counter
2257 * 3. call memory reclaim if necessary.
2258 *
2259 * In some special case, if the task is fatal, fatal_signal_pending() or
2260 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2261 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2262 * as possible without any hazards. 2: all pages should have a valid
2263 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2264 * pointer, that is treated as a charge to root_mem_cgroup.
2265 *
2266 * So __mem_cgroup_try_charge() will return
2267 * 0 ... on success, filling *ptr with a valid memcg pointer.
2268 * -ENOMEM ... charge failure because of resource limits.
2269 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2270 *
2271 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2272 * the oom-killer can be invoked.
2273 */
2274 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2275 gfp_t gfp_mask,
2276 unsigned int nr_pages,
2277 struct mem_cgroup **ptr,
2278 bool oom)
2279 {
2280 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2281 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2282 struct mem_cgroup *memcg = NULL;
2283 int ret;
2284
2285 /*
2286 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2287 * in system level. So, allow to go ahead dying process in addition to
2288 * MEMDIE process.
2289 */
2290 if (unlikely(test_thread_flag(TIF_MEMDIE)
2291 || fatal_signal_pending(current)))
2292 goto bypass;
2293
2294 /*
2295 * We always charge the cgroup the mm_struct belongs to.
2296 * The mm_struct's mem_cgroup changes on task migration if the
2297 * thread group leader migrates. It's possible that mm is not
2298 * set, if so charge the init_mm (happens for pagecache usage).
2299 */
2300 if (!*ptr && !mm)
2301 *ptr = root_mem_cgroup;
2302 again:
2303 if (*ptr) { /* css should be a valid one */
2304 memcg = *ptr;
2305 VM_BUG_ON(css_is_removed(&memcg->css));
2306 if (mem_cgroup_is_root(memcg))
2307 goto done;
2308 if (nr_pages == 1 && consume_stock(memcg))
2309 goto done;
2310 css_get(&memcg->css);
2311 } else {
2312 struct task_struct *p;
2313
2314 rcu_read_lock();
2315 p = rcu_dereference(mm->owner);
2316 /*
2317 * Because we don't have task_lock(), "p" can exit.
2318 * In that case, "memcg" can point to root or p can be NULL with
2319 * race with swapoff. Then, we have small risk of mis-accouning.
2320 * But such kind of mis-account by race always happens because
2321 * we don't have cgroup_mutex(). It's overkill and we allo that
2322 * small race, here.
2323 * (*) swapoff at el will charge against mm-struct not against
2324 * task-struct. So, mm->owner can be NULL.
2325 */
2326 memcg = mem_cgroup_from_task(p);
2327 if (!memcg)
2328 memcg = root_mem_cgroup;
2329 if (mem_cgroup_is_root(memcg)) {
2330 rcu_read_unlock();
2331 goto done;
2332 }
2333 if (nr_pages == 1 && consume_stock(memcg)) {
2334 /*
2335 * It seems dagerous to access memcg without css_get().
2336 * But considering how consume_stok works, it's not
2337 * necessary. If consume_stock success, some charges
2338 * from this memcg are cached on this cpu. So, we
2339 * don't need to call css_get()/css_tryget() before
2340 * calling consume_stock().
2341 */
2342 rcu_read_unlock();
2343 goto done;
2344 }
2345 /* after here, we may be blocked. we need to get refcnt */
2346 if (!css_tryget(&memcg->css)) {
2347 rcu_read_unlock();
2348 goto again;
2349 }
2350 rcu_read_unlock();
2351 }
2352
2353 do {
2354 bool oom_check;
2355
2356 /* If killed, bypass charge */
2357 if (fatal_signal_pending(current)) {
2358 css_put(&memcg->css);
2359 goto bypass;
2360 }
2361
2362 oom_check = false;
2363 if (oom && !nr_oom_retries) {
2364 oom_check = true;
2365 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2366 }
2367
2368 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2369 switch (ret) {
2370 case CHARGE_OK:
2371 break;
2372 case CHARGE_RETRY: /* not in OOM situation but retry */
2373 batch = nr_pages;
2374 css_put(&memcg->css);
2375 memcg = NULL;
2376 goto again;
2377 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2378 css_put(&memcg->css);
2379 goto nomem;
2380 case CHARGE_NOMEM: /* OOM routine works */
2381 if (!oom) {
2382 css_put(&memcg->css);
2383 goto nomem;
2384 }
2385 /* If oom, we never return -ENOMEM */
2386 nr_oom_retries--;
2387 break;
2388 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2389 css_put(&memcg->css);
2390 goto bypass;
2391 }
2392 } while (ret != CHARGE_OK);
2393
2394 if (batch > nr_pages)
2395 refill_stock(memcg, batch - nr_pages);
2396 css_put(&memcg->css);
2397 done:
2398 *ptr = memcg;
2399 return 0;
2400 nomem:
2401 *ptr = NULL;
2402 return -ENOMEM;
2403 bypass:
2404 *ptr = root_mem_cgroup;
2405 return -EINTR;
2406 }
2407
2408 /*
2409 * Somemtimes we have to undo a charge we got by try_charge().
2410 * This function is for that and do uncharge, put css's refcnt.
2411 * gotten by try_charge().
2412 */
2413 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2414 unsigned int nr_pages)
2415 {
2416 if (!mem_cgroup_is_root(memcg)) {
2417 unsigned long bytes = nr_pages * PAGE_SIZE;
2418
2419 res_counter_uncharge(&memcg->res, bytes);
2420 if (do_swap_account)
2421 res_counter_uncharge(&memcg->memsw, bytes);
2422 }
2423 }
2424
2425 /*
2426 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2427 * This is useful when moving usage to parent cgroup.
2428 */
2429 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2430 unsigned int nr_pages)
2431 {
2432 unsigned long bytes = nr_pages * PAGE_SIZE;
2433
2434 if (mem_cgroup_is_root(memcg))
2435 return;
2436
2437 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2438 if (do_swap_account)
2439 res_counter_uncharge_until(&memcg->memsw,
2440 memcg->memsw.parent, bytes);
2441 }
2442
2443 /*
2444 * A helper function to get mem_cgroup from ID. must be called under
2445 * rcu_read_lock(). The caller must check css_is_removed() or some if
2446 * it's concern. (dropping refcnt from swap can be called against removed
2447 * memcg.)
2448 */
2449 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2450 {
2451 struct cgroup_subsys_state *css;
2452
2453 /* ID 0 is unused ID */
2454 if (!id)
2455 return NULL;
2456 css = css_lookup(&mem_cgroup_subsys, id);
2457 if (!css)
2458 return NULL;
2459 return container_of(css, struct mem_cgroup, css);
2460 }
2461
2462 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2463 {
2464 struct mem_cgroup *memcg = NULL;
2465 struct page_cgroup *pc;
2466 unsigned short id;
2467 swp_entry_t ent;
2468
2469 VM_BUG_ON(!PageLocked(page));
2470
2471 pc = lookup_page_cgroup(page);
2472 lock_page_cgroup(pc);
2473 if (PageCgroupUsed(pc)) {
2474 memcg = pc->mem_cgroup;
2475 if (memcg && !css_tryget(&memcg->css))
2476 memcg = NULL;
2477 } else if (PageSwapCache(page)) {
2478 ent.val = page_private(page);
2479 id = lookup_swap_cgroup_id(ent);
2480 rcu_read_lock();
2481 memcg = mem_cgroup_lookup(id);
2482 if (memcg && !css_tryget(&memcg->css))
2483 memcg = NULL;
2484 rcu_read_unlock();
2485 }
2486 unlock_page_cgroup(pc);
2487 return memcg;
2488 }
2489
2490 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2491 struct page *page,
2492 unsigned int nr_pages,
2493 enum charge_type ctype,
2494 bool lrucare)
2495 {
2496 struct page_cgroup *pc = lookup_page_cgroup(page);
2497 struct zone *uninitialized_var(zone);
2498 bool was_on_lru = false;
2499 bool anon;
2500
2501 lock_page_cgroup(pc);
2502 if (unlikely(PageCgroupUsed(pc))) {
2503 unlock_page_cgroup(pc);
2504 __mem_cgroup_cancel_charge(memcg, nr_pages);
2505 return;
2506 }
2507 /*
2508 * we don't need page_cgroup_lock about tail pages, becase they are not
2509 * accessed by any other context at this point.
2510 */
2511
2512 /*
2513 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2514 * may already be on some other mem_cgroup's LRU. Take care of it.
2515 */
2516 if (lrucare) {
2517 zone = page_zone(page);
2518 spin_lock_irq(&zone->lru_lock);
2519 if (PageLRU(page)) {
2520 ClearPageLRU(page);
2521 del_page_from_lru_list(zone, page, page_lru(page));
2522 was_on_lru = true;
2523 }
2524 }
2525
2526 pc->mem_cgroup = memcg;
2527 /*
2528 * We access a page_cgroup asynchronously without lock_page_cgroup().
2529 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2530 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2531 * before USED bit, we need memory barrier here.
2532 * See mem_cgroup_add_lru_list(), etc.
2533 */
2534 smp_wmb();
2535 SetPageCgroupUsed(pc);
2536
2537 if (lrucare) {
2538 if (was_on_lru) {
2539 VM_BUG_ON(PageLRU(page));
2540 SetPageLRU(page);
2541 add_page_to_lru_list(zone, page, page_lru(page));
2542 }
2543 spin_unlock_irq(&zone->lru_lock);
2544 }
2545
2546 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2547 anon = true;
2548 else
2549 anon = false;
2550
2551 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2552 unlock_page_cgroup(pc);
2553
2554 /*
2555 * "charge_statistics" updated event counter. Then, check it.
2556 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2557 * if they exceeds softlimit.
2558 */
2559 memcg_check_events(memcg, page);
2560 }
2561
2562 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2563
2564 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2565 /*
2566 * Because tail pages are not marked as "used", set it. We're under
2567 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2568 * charge/uncharge will be never happen and move_account() is done under
2569 * compound_lock(), so we don't have to take care of races.
2570 */
2571 void mem_cgroup_split_huge_fixup(struct page *head)
2572 {
2573 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2574 struct page_cgroup *pc;
2575 int i;
2576
2577 if (mem_cgroup_disabled())
2578 return;
2579 for (i = 1; i < HPAGE_PMD_NR; i++) {
2580 pc = head_pc + i;
2581 pc->mem_cgroup = head_pc->mem_cgroup;
2582 smp_wmb();/* see __commit_charge() */
2583 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2584 }
2585 }
2586 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2587
2588 /**
2589 * mem_cgroup_move_account - move account of the page
2590 * @page: the page
2591 * @nr_pages: number of regular pages (>1 for huge pages)
2592 * @pc: page_cgroup of the page.
2593 * @from: mem_cgroup which the page is moved from.
2594 * @to: mem_cgroup which the page is moved to. @from != @to.
2595 * @uncharge: whether we should call uncharge and css_put against @from.
2596 *
2597 * The caller must confirm following.
2598 * - page is not on LRU (isolate_page() is useful.)
2599 * - compound_lock is held when nr_pages > 1
2600 *
2601 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2602 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2603 * true, this function does "uncharge" from old cgroup, but it doesn't if
2604 * @uncharge is false, so a caller should do "uncharge".
2605 */
2606 static int mem_cgroup_move_account(struct page *page,
2607 unsigned int nr_pages,
2608 struct page_cgroup *pc,
2609 struct mem_cgroup *from,
2610 struct mem_cgroup *to,
2611 bool uncharge)
2612 {
2613 unsigned long flags;
2614 int ret;
2615 bool anon = PageAnon(page);
2616
2617 VM_BUG_ON(from == to);
2618 VM_BUG_ON(PageLRU(page));
2619 /*
2620 * The page is isolated from LRU. So, collapse function
2621 * will not handle this page. But page splitting can happen.
2622 * Do this check under compound_page_lock(). The caller should
2623 * hold it.
2624 */
2625 ret = -EBUSY;
2626 if (nr_pages > 1 && !PageTransHuge(page))
2627 goto out;
2628
2629 lock_page_cgroup(pc);
2630
2631 ret = -EINVAL;
2632 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2633 goto unlock;
2634
2635 move_lock_mem_cgroup(from, &flags);
2636
2637 if (!anon && page_mapped(page)) {
2638 /* Update mapped_file data for mem_cgroup */
2639 preempt_disable();
2640 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2641 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2642 preempt_enable();
2643 }
2644 mem_cgroup_charge_statistics(from, anon, -nr_pages);
2645 if (uncharge)
2646 /* This is not "cancel", but cancel_charge does all we need. */
2647 __mem_cgroup_cancel_charge(from, nr_pages);
2648
2649 /* caller should have done css_get */
2650 pc->mem_cgroup = to;
2651 mem_cgroup_charge_statistics(to, anon, nr_pages);
2652 /*
2653 * We charges against "to" which may not have any tasks. Then, "to"
2654 * can be under rmdir(). But in current implementation, caller of
2655 * this function is just force_empty() and move charge, so it's
2656 * guaranteed that "to" is never removed. So, we don't check rmdir
2657 * status here.
2658 */
2659 move_unlock_mem_cgroup(from, &flags);
2660 ret = 0;
2661 unlock:
2662 unlock_page_cgroup(pc);
2663 /*
2664 * check events
2665 */
2666 memcg_check_events(to, page);
2667 memcg_check_events(from, page);
2668 out:
2669 return ret;
2670 }
2671
2672 /*
2673 * move charges to its parent.
2674 */
2675
2676 static int mem_cgroup_move_parent(struct page *page,
2677 struct page_cgroup *pc,
2678 struct mem_cgroup *child,
2679 gfp_t gfp_mask)
2680 {
2681 struct mem_cgroup *parent;
2682 unsigned int nr_pages;
2683 unsigned long uninitialized_var(flags);
2684 int ret;
2685
2686 /* Is ROOT ? */
2687 if (mem_cgroup_is_root(child))
2688 return -EINVAL;
2689
2690 ret = -EBUSY;
2691 if (!get_page_unless_zero(page))
2692 goto out;
2693 if (isolate_lru_page(page))
2694 goto put;
2695
2696 nr_pages = hpage_nr_pages(page);
2697
2698 parent = parent_mem_cgroup(child);
2699 /*
2700 * If no parent, move charges to root cgroup.
2701 */
2702 if (!parent)
2703 parent = root_mem_cgroup;
2704
2705 if (nr_pages > 1)
2706 flags = compound_lock_irqsave(page);
2707
2708 ret = mem_cgroup_move_account(page, nr_pages,
2709 pc, child, parent, false);
2710 if (!ret)
2711 __mem_cgroup_cancel_local_charge(child, nr_pages);
2712
2713 if (nr_pages > 1)
2714 compound_unlock_irqrestore(page, flags);
2715 putback_lru_page(page);
2716 put:
2717 put_page(page);
2718 out:
2719 return ret;
2720 }
2721
2722 /*
2723 * Charge the memory controller for page usage.
2724 * Return
2725 * 0 if the charge was successful
2726 * < 0 if the cgroup is over its limit
2727 */
2728 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2729 gfp_t gfp_mask, enum charge_type ctype)
2730 {
2731 struct mem_cgroup *memcg = NULL;
2732 unsigned int nr_pages = 1;
2733 bool oom = true;
2734 int ret;
2735
2736 if (PageTransHuge(page)) {
2737 nr_pages <<= compound_order(page);
2738 VM_BUG_ON(!PageTransHuge(page));
2739 /*
2740 * Never OOM-kill a process for a huge page. The
2741 * fault handler will fall back to regular pages.
2742 */
2743 oom = false;
2744 }
2745
2746 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2747 if (ret == -ENOMEM)
2748 return ret;
2749 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2750 return 0;
2751 }
2752
2753 int mem_cgroup_newpage_charge(struct page *page,
2754 struct mm_struct *mm, gfp_t gfp_mask)
2755 {
2756 if (mem_cgroup_disabled())
2757 return 0;
2758 VM_BUG_ON(page_mapped(page));
2759 VM_BUG_ON(page->mapping && !PageAnon(page));
2760 VM_BUG_ON(!mm);
2761 return mem_cgroup_charge_common(page, mm, gfp_mask,
2762 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2763 }
2764
2765 static void
2766 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2767 enum charge_type ctype);
2768
2769 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2770 gfp_t gfp_mask)
2771 {
2772 struct mem_cgroup *memcg = NULL;
2773 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2774 int ret;
2775
2776 if (mem_cgroup_disabled())
2777 return 0;
2778 if (PageCompound(page))
2779 return 0;
2780
2781 if (unlikely(!mm))
2782 mm = &init_mm;
2783 if (!page_is_file_cache(page))
2784 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2785
2786 if (!PageSwapCache(page))
2787 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2788 else { /* page is swapcache/shmem */
2789 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2790 if (!ret)
2791 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2792 }
2793 return ret;
2794 }
2795
2796 /*
2797 * While swap-in, try_charge -> commit or cancel, the page is locked.
2798 * And when try_charge() successfully returns, one refcnt to memcg without
2799 * struct page_cgroup is acquired. This refcnt will be consumed by
2800 * "commit()" or removed by "cancel()"
2801 */
2802 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2803 struct page *page,
2804 gfp_t mask, struct mem_cgroup **memcgp)
2805 {
2806 struct mem_cgroup *memcg;
2807 int ret;
2808
2809 *memcgp = NULL;
2810
2811 if (mem_cgroup_disabled())
2812 return 0;
2813
2814 if (!do_swap_account)
2815 goto charge_cur_mm;
2816 /*
2817 * A racing thread's fault, or swapoff, may have already updated
2818 * the pte, and even removed page from swap cache: in those cases
2819 * do_swap_page()'s pte_same() test will fail; but there's also a
2820 * KSM case which does need to charge the page.
2821 */
2822 if (!PageSwapCache(page))
2823 goto charge_cur_mm;
2824 memcg = try_get_mem_cgroup_from_page(page);
2825 if (!memcg)
2826 goto charge_cur_mm;
2827 *memcgp = memcg;
2828 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2829 css_put(&memcg->css);
2830 if (ret == -EINTR)
2831 ret = 0;
2832 return ret;
2833 charge_cur_mm:
2834 if (unlikely(!mm))
2835 mm = &init_mm;
2836 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2837 if (ret == -EINTR)
2838 ret = 0;
2839 return ret;
2840 }
2841
2842 static void
2843 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2844 enum charge_type ctype)
2845 {
2846 if (mem_cgroup_disabled())
2847 return;
2848 if (!memcg)
2849 return;
2850 cgroup_exclude_rmdir(&memcg->css);
2851
2852 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2853 /*
2854 * Now swap is on-memory. This means this page may be
2855 * counted both as mem and swap....double count.
2856 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2857 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2858 * may call delete_from_swap_cache() before reach here.
2859 */
2860 if (do_swap_account && PageSwapCache(page)) {
2861 swp_entry_t ent = {.val = page_private(page)};
2862 mem_cgroup_uncharge_swap(ent);
2863 }
2864 /*
2865 * At swapin, we may charge account against cgroup which has no tasks.
2866 * So, rmdir()->pre_destroy() can be called while we do this charge.
2867 * In that case, we need to call pre_destroy() again. check it here.
2868 */
2869 cgroup_release_and_wakeup_rmdir(&memcg->css);
2870 }
2871
2872 void mem_cgroup_commit_charge_swapin(struct page *page,
2873 struct mem_cgroup *memcg)
2874 {
2875 __mem_cgroup_commit_charge_swapin(page, memcg,
2876 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2877 }
2878
2879 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2880 {
2881 if (mem_cgroup_disabled())
2882 return;
2883 if (!memcg)
2884 return;
2885 __mem_cgroup_cancel_charge(memcg, 1);
2886 }
2887
2888 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2889 unsigned int nr_pages,
2890 const enum charge_type ctype)
2891 {
2892 struct memcg_batch_info *batch = NULL;
2893 bool uncharge_memsw = true;
2894
2895 /* If swapout, usage of swap doesn't decrease */
2896 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2897 uncharge_memsw = false;
2898
2899 batch = &current->memcg_batch;
2900 /*
2901 * In usual, we do css_get() when we remember memcg pointer.
2902 * But in this case, we keep res->usage until end of a series of
2903 * uncharges. Then, it's ok to ignore memcg's refcnt.
2904 */
2905 if (!batch->memcg)
2906 batch->memcg = memcg;
2907 /*
2908 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2909 * In those cases, all pages freed continuously can be expected to be in
2910 * the same cgroup and we have chance to coalesce uncharges.
2911 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2912 * because we want to do uncharge as soon as possible.
2913 */
2914
2915 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2916 goto direct_uncharge;
2917
2918 if (nr_pages > 1)
2919 goto direct_uncharge;
2920
2921 /*
2922 * In typical case, batch->memcg == mem. This means we can
2923 * merge a series of uncharges to an uncharge of res_counter.
2924 * If not, we uncharge res_counter ony by one.
2925 */
2926 if (batch->memcg != memcg)
2927 goto direct_uncharge;
2928 /* remember freed charge and uncharge it later */
2929 batch->nr_pages++;
2930 if (uncharge_memsw)
2931 batch->memsw_nr_pages++;
2932 return;
2933 direct_uncharge:
2934 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2935 if (uncharge_memsw)
2936 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2937 if (unlikely(batch->memcg != memcg))
2938 memcg_oom_recover(memcg);
2939 }
2940
2941 /*
2942 * uncharge if !page_mapped(page)
2943 */
2944 static struct mem_cgroup *
2945 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2946 {
2947 struct mem_cgroup *memcg = NULL;
2948 unsigned int nr_pages = 1;
2949 struct page_cgroup *pc;
2950 bool anon;
2951
2952 if (mem_cgroup_disabled())
2953 return NULL;
2954
2955 if (PageSwapCache(page))
2956 return NULL;
2957
2958 if (PageTransHuge(page)) {
2959 nr_pages <<= compound_order(page);
2960 VM_BUG_ON(!PageTransHuge(page));
2961 }
2962 /*
2963 * Check if our page_cgroup is valid
2964 */
2965 pc = lookup_page_cgroup(page);
2966 if (unlikely(!PageCgroupUsed(pc)))
2967 return NULL;
2968
2969 lock_page_cgroup(pc);
2970
2971 memcg = pc->mem_cgroup;
2972
2973 if (!PageCgroupUsed(pc))
2974 goto unlock_out;
2975
2976 anon = PageAnon(page);
2977
2978 switch (ctype) {
2979 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2980 /*
2981 * Generally PageAnon tells if it's the anon statistics to be
2982 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2983 * used before page reached the stage of being marked PageAnon.
2984 */
2985 anon = true;
2986 /* fallthrough */
2987 case MEM_CGROUP_CHARGE_TYPE_DROP:
2988 /* See mem_cgroup_prepare_migration() */
2989 if (page_mapped(page) || PageCgroupMigration(pc))
2990 goto unlock_out;
2991 break;
2992 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2993 if (!PageAnon(page)) { /* Shared memory */
2994 if (page->mapping && !page_is_file_cache(page))
2995 goto unlock_out;
2996 } else if (page_mapped(page)) /* Anon */
2997 goto unlock_out;
2998 break;
2999 default:
3000 break;
3001 }
3002
3003 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3004
3005 ClearPageCgroupUsed(pc);
3006 /*
3007 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3008 * freed from LRU. This is safe because uncharged page is expected not
3009 * to be reused (freed soon). Exception is SwapCache, it's handled by
3010 * special functions.
3011 */
3012
3013 unlock_page_cgroup(pc);
3014 /*
3015 * even after unlock, we have memcg->res.usage here and this memcg
3016 * will never be freed.
3017 */
3018 memcg_check_events(memcg, page);
3019 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3020 mem_cgroup_swap_statistics(memcg, true);
3021 mem_cgroup_get(memcg);
3022 }
3023 if (!mem_cgroup_is_root(memcg))
3024 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3025
3026 return memcg;
3027
3028 unlock_out:
3029 unlock_page_cgroup(pc);
3030 return NULL;
3031 }
3032
3033 void mem_cgroup_uncharge_page(struct page *page)
3034 {
3035 /* early check. */
3036 if (page_mapped(page))
3037 return;
3038 VM_BUG_ON(page->mapping && !PageAnon(page));
3039 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3040 }
3041
3042 void mem_cgroup_uncharge_cache_page(struct page *page)
3043 {
3044 VM_BUG_ON(page_mapped(page));
3045 VM_BUG_ON(page->mapping);
3046 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3047 }
3048
3049 /*
3050 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3051 * In that cases, pages are freed continuously and we can expect pages
3052 * are in the same memcg. All these calls itself limits the number of
3053 * pages freed at once, then uncharge_start/end() is called properly.
3054 * This may be called prural(2) times in a context,
3055 */
3056
3057 void mem_cgroup_uncharge_start(void)
3058 {
3059 current->memcg_batch.do_batch++;
3060 /* We can do nest. */
3061 if (current->memcg_batch.do_batch == 1) {
3062 current->memcg_batch.memcg = NULL;
3063 current->memcg_batch.nr_pages = 0;
3064 current->memcg_batch.memsw_nr_pages = 0;
3065 }
3066 }
3067
3068 void mem_cgroup_uncharge_end(void)
3069 {
3070 struct memcg_batch_info *batch = &current->memcg_batch;
3071
3072 if (!batch->do_batch)
3073 return;
3074
3075 batch->do_batch--;
3076 if (batch->do_batch) /* If stacked, do nothing. */
3077 return;
3078
3079 if (!batch->memcg)
3080 return;
3081 /*
3082 * This "batch->memcg" is valid without any css_get/put etc...
3083 * bacause we hide charges behind us.
3084 */
3085 if (batch->nr_pages)
3086 res_counter_uncharge(&batch->memcg->res,
3087 batch->nr_pages * PAGE_SIZE);
3088 if (batch->memsw_nr_pages)
3089 res_counter_uncharge(&batch->memcg->memsw,
3090 batch->memsw_nr_pages * PAGE_SIZE);
3091 memcg_oom_recover(batch->memcg);
3092 /* forget this pointer (for sanity check) */
3093 batch->memcg = NULL;
3094 }
3095
3096 #ifdef CONFIG_SWAP
3097 /*
3098 * called after __delete_from_swap_cache() and drop "page" account.
3099 * memcg information is recorded to swap_cgroup of "ent"
3100 */
3101 void
3102 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3103 {
3104 struct mem_cgroup *memcg;
3105 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3106
3107 if (!swapout) /* this was a swap cache but the swap is unused ! */
3108 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3109
3110 memcg = __mem_cgroup_uncharge_common(page, ctype);
3111
3112 /*
3113 * record memcg information, if swapout && memcg != NULL,
3114 * mem_cgroup_get() was called in uncharge().
3115 */
3116 if (do_swap_account && swapout && memcg)
3117 swap_cgroup_record(ent, css_id(&memcg->css));
3118 }
3119 #endif
3120
3121 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3122 /*
3123 * called from swap_entry_free(). remove record in swap_cgroup and
3124 * uncharge "memsw" account.
3125 */
3126 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3127 {
3128 struct mem_cgroup *memcg;
3129 unsigned short id;
3130
3131 if (!do_swap_account)
3132 return;
3133
3134 id = swap_cgroup_record(ent, 0);
3135 rcu_read_lock();
3136 memcg = mem_cgroup_lookup(id);
3137 if (memcg) {
3138 /*
3139 * We uncharge this because swap is freed.
3140 * This memcg can be obsolete one. We avoid calling css_tryget
3141 */
3142 if (!mem_cgroup_is_root(memcg))
3143 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3144 mem_cgroup_swap_statistics(memcg, false);
3145 mem_cgroup_put(memcg);
3146 }
3147 rcu_read_unlock();
3148 }
3149
3150 /**
3151 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3152 * @entry: swap entry to be moved
3153 * @from: mem_cgroup which the entry is moved from
3154 * @to: mem_cgroup which the entry is moved to
3155 *
3156 * It succeeds only when the swap_cgroup's record for this entry is the same
3157 * as the mem_cgroup's id of @from.
3158 *
3159 * Returns 0 on success, -EINVAL on failure.
3160 *
3161 * The caller must have charged to @to, IOW, called res_counter_charge() about
3162 * both res and memsw, and called css_get().
3163 */
3164 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3165 struct mem_cgroup *from, struct mem_cgroup *to)
3166 {
3167 unsigned short old_id, new_id;
3168
3169 old_id = css_id(&from->css);
3170 new_id = css_id(&to->css);
3171
3172 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3173 mem_cgroup_swap_statistics(from, false);
3174 mem_cgroup_swap_statistics(to, true);
3175 /*
3176 * This function is only called from task migration context now.
3177 * It postpones res_counter and refcount handling till the end
3178 * of task migration(mem_cgroup_clear_mc()) for performance
3179 * improvement. But we cannot postpone mem_cgroup_get(to)
3180 * because if the process that has been moved to @to does
3181 * swap-in, the refcount of @to might be decreased to 0.
3182 */
3183 mem_cgroup_get(to);
3184 return 0;
3185 }
3186 return -EINVAL;
3187 }
3188 #else
3189 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3190 struct mem_cgroup *from, struct mem_cgroup *to)
3191 {
3192 return -EINVAL;
3193 }
3194 #endif
3195
3196 /*
3197 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3198 * page belongs to.
3199 */
3200 int mem_cgroup_prepare_migration(struct page *page,
3201 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3202 {
3203 struct mem_cgroup *memcg = NULL;
3204 struct page_cgroup *pc;
3205 enum charge_type ctype;
3206 int ret = 0;
3207
3208 *memcgp = NULL;
3209
3210 VM_BUG_ON(PageTransHuge(page));
3211 if (mem_cgroup_disabled())
3212 return 0;
3213
3214 pc = lookup_page_cgroup(page);
3215 lock_page_cgroup(pc);
3216 if (PageCgroupUsed(pc)) {
3217 memcg = pc->mem_cgroup;
3218 css_get(&memcg->css);
3219 /*
3220 * At migrating an anonymous page, its mapcount goes down
3221 * to 0 and uncharge() will be called. But, even if it's fully
3222 * unmapped, migration may fail and this page has to be
3223 * charged again. We set MIGRATION flag here and delay uncharge
3224 * until end_migration() is called
3225 *
3226 * Corner Case Thinking
3227 * A)
3228 * When the old page was mapped as Anon and it's unmap-and-freed
3229 * while migration was ongoing.
3230 * If unmap finds the old page, uncharge() of it will be delayed
3231 * until end_migration(). If unmap finds a new page, it's
3232 * uncharged when it make mapcount to be 1->0. If unmap code
3233 * finds swap_migration_entry, the new page will not be mapped
3234 * and end_migration() will find it(mapcount==0).
3235 *
3236 * B)
3237 * When the old page was mapped but migraion fails, the kernel
3238 * remaps it. A charge for it is kept by MIGRATION flag even
3239 * if mapcount goes down to 0. We can do remap successfully
3240 * without charging it again.
3241 *
3242 * C)
3243 * The "old" page is under lock_page() until the end of
3244 * migration, so, the old page itself will not be swapped-out.
3245 * If the new page is swapped out before end_migraton, our
3246 * hook to usual swap-out path will catch the event.
3247 */
3248 if (PageAnon(page))
3249 SetPageCgroupMigration(pc);
3250 }
3251 unlock_page_cgroup(pc);
3252 /*
3253 * If the page is not charged at this point,
3254 * we return here.
3255 */
3256 if (!memcg)
3257 return 0;
3258
3259 *memcgp = memcg;
3260 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3261 css_put(&memcg->css);/* drop extra refcnt */
3262 if (ret) {
3263 if (PageAnon(page)) {
3264 lock_page_cgroup(pc);
3265 ClearPageCgroupMigration(pc);
3266 unlock_page_cgroup(pc);
3267 /*
3268 * The old page may be fully unmapped while we kept it.
3269 */
3270 mem_cgroup_uncharge_page(page);
3271 }
3272 /* we'll need to revisit this error code (we have -EINTR) */
3273 return -ENOMEM;
3274 }
3275 /*
3276 * We charge new page before it's used/mapped. So, even if unlock_page()
3277 * is called before end_migration, we can catch all events on this new
3278 * page. In the case new page is migrated but not remapped, new page's
3279 * mapcount will be finally 0 and we call uncharge in end_migration().
3280 */
3281 if (PageAnon(page))
3282 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3283 else if (page_is_file_cache(page))
3284 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3285 else
3286 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3287 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3288 return ret;
3289 }
3290
3291 /* remove redundant charge if migration failed*/
3292 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3293 struct page *oldpage, struct page *newpage, bool migration_ok)
3294 {
3295 struct page *used, *unused;
3296 struct page_cgroup *pc;
3297 bool anon;
3298
3299 if (!memcg)
3300 return;
3301 /* blocks rmdir() */
3302 cgroup_exclude_rmdir(&memcg->css);
3303 if (!migration_ok) {
3304 used = oldpage;
3305 unused = newpage;
3306 } else {
3307 used = newpage;
3308 unused = oldpage;
3309 }
3310 /*
3311 * We disallowed uncharge of pages under migration because mapcount
3312 * of the page goes down to zero, temporarly.
3313 * Clear the flag and check the page should be charged.
3314 */
3315 pc = lookup_page_cgroup(oldpage);
3316 lock_page_cgroup(pc);
3317 ClearPageCgroupMigration(pc);
3318 unlock_page_cgroup(pc);
3319 anon = PageAnon(used);
3320 __mem_cgroup_uncharge_common(unused,
3321 anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
3322 : MEM_CGROUP_CHARGE_TYPE_CACHE);
3323
3324 /*
3325 * If a page is a file cache, radix-tree replacement is very atomic
3326 * and we can skip this check. When it was an Anon page, its mapcount
3327 * goes down to 0. But because we added MIGRATION flage, it's not
3328 * uncharged yet. There are several case but page->mapcount check
3329 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3330 * check. (see prepare_charge() also)
3331 */
3332 if (anon)
3333 mem_cgroup_uncharge_page(used);
3334 /*
3335 * At migration, we may charge account against cgroup which has no
3336 * tasks.
3337 * So, rmdir()->pre_destroy() can be called while we do this charge.
3338 * In that case, we need to call pre_destroy() again. check it here.
3339 */
3340 cgroup_release_and_wakeup_rmdir(&memcg->css);
3341 }
3342
3343 /*
3344 * At replace page cache, newpage is not under any memcg but it's on
3345 * LRU. So, this function doesn't touch res_counter but handles LRU
3346 * in correct way. Both pages are locked so we cannot race with uncharge.
3347 */
3348 void mem_cgroup_replace_page_cache(struct page *oldpage,
3349 struct page *newpage)
3350 {
3351 struct mem_cgroup *memcg = NULL;
3352 struct page_cgroup *pc;
3353 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3354
3355 if (mem_cgroup_disabled())
3356 return;
3357
3358 pc = lookup_page_cgroup(oldpage);
3359 /* fix accounting on old pages */
3360 lock_page_cgroup(pc);
3361 if (PageCgroupUsed(pc)) {
3362 memcg = pc->mem_cgroup;
3363 mem_cgroup_charge_statistics(memcg, false, -1);
3364 ClearPageCgroupUsed(pc);
3365 }
3366 unlock_page_cgroup(pc);
3367
3368 /*
3369 * When called from shmem_replace_page(), in some cases the
3370 * oldpage has already been charged, and in some cases not.
3371 */
3372 if (!memcg)
3373 return;
3374
3375 if (PageSwapBacked(oldpage))
3376 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3377
3378 /*
3379 * Even if newpage->mapping was NULL before starting replacement,
3380 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3381 * LRU while we overwrite pc->mem_cgroup.
3382 */
3383 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3384 }
3385
3386 #ifdef CONFIG_DEBUG_VM
3387 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3388 {
3389 struct page_cgroup *pc;
3390
3391 pc = lookup_page_cgroup(page);
3392 /*
3393 * Can be NULL while feeding pages into the page allocator for
3394 * the first time, i.e. during boot or memory hotplug;
3395 * or when mem_cgroup_disabled().
3396 */
3397 if (likely(pc) && PageCgroupUsed(pc))
3398 return pc;
3399 return NULL;
3400 }
3401
3402 bool mem_cgroup_bad_page_check(struct page *page)
3403 {
3404 if (mem_cgroup_disabled())
3405 return false;
3406
3407 return lookup_page_cgroup_used(page) != NULL;
3408 }
3409
3410 void mem_cgroup_print_bad_page(struct page *page)
3411 {
3412 struct page_cgroup *pc;
3413
3414 pc = lookup_page_cgroup_used(page);
3415 if (pc) {
3416 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3417 pc, pc->flags, pc->mem_cgroup);
3418 }
3419 }
3420 #endif
3421
3422 static DEFINE_MUTEX(set_limit_mutex);
3423
3424 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3425 unsigned long long val)
3426 {
3427 int retry_count;
3428 u64 memswlimit, memlimit;
3429 int ret = 0;
3430 int children = mem_cgroup_count_children(memcg);
3431 u64 curusage, oldusage;
3432 int enlarge;
3433
3434 /*
3435 * For keeping hierarchical_reclaim simple, how long we should retry
3436 * is depends on callers. We set our retry-count to be function
3437 * of # of children which we should visit in this loop.
3438 */
3439 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3440
3441 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3442
3443 enlarge = 0;
3444 while (retry_count) {
3445 if (signal_pending(current)) {
3446 ret = -EINTR;
3447 break;
3448 }
3449 /*
3450 * Rather than hide all in some function, I do this in
3451 * open coded manner. You see what this really does.
3452 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3453 */
3454 mutex_lock(&set_limit_mutex);
3455 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3456 if (memswlimit < val) {
3457 ret = -EINVAL;
3458 mutex_unlock(&set_limit_mutex);
3459 break;
3460 }
3461
3462 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3463 if (memlimit < val)
3464 enlarge = 1;
3465
3466 ret = res_counter_set_limit(&memcg->res, val);
3467 if (!ret) {
3468 if (memswlimit == val)
3469 memcg->memsw_is_minimum = true;
3470 else
3471 memcg->memsw_is_minimum = false;
3472 }
3473 mutex_unlock(&set_limit_mutex);
3474
3475 if (!ret)
3476 break;
3477
3478 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3479 MEM_CGROUP_RECLAIM_SHRINK);
3480 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3481 /* Usage is reduced ? */
3482 if (curusage >= oldusage)
3483 retry_count--;
3484 else
3485 oldusage = curusage;
3486 }
3487 if (!ret && enlarge)
3488 memcg_oom_recover(memcg);
3489
3490 return ret;
3491 }
3492
3493 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3494 unsigned long long val)
3495 {
3496 int retry_count;
3497 u64 memlimit, memswlimit, oldusage, curusage;
3498 int children = mem_cgroup_count_children(memcg);
3499 int ret = -EBUSY;
3500 int enlarge = 0;
3501
3502 /* see mem_cgroup_resize_res_limit */
3503 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3504 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3505 while (retry_count) {
3506 if (signal_pending(current)) {
3507 ret = -EINTR;
3508 break;
3509 }
3510 /*
3511 * Rather than hide all in some function, I do this in
3512 * open coded manner. You see what this really does.
3513 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3514 */
3515 mutex_lock(&set_limit_mutex);
3516 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3517 if (memlimit > val) {
3518 ret = -EINVAL;
3519 mutex_unlock(&set_limit_mutex);
3520 break;
3521 }
3522 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3523 if (memswlimit < val)
3524 enlarge = 1;
3525 ret = res_counter_set_limit(&memcg->memsw, val);
3526 if (!ret) {
3527 if (memlimit == val)
3528 memcg->memsw_is_minimum = true;
3529 else
3530 memcg->memsw_is_minimum = false;
3531 }
3532 mutex_unlock(&set_limit_mutex);
3533
3534 if (!ret)
3535 break;
3536
3537 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3538 MEM_CGROUP_RECLAIM_NOSWAP |
3539 MEM_CGROUP_RECLAIM_SHRINK);
3540 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3541 /* Usage is reduced ? */
3542 if (curusage >= oldusage)
3543 retry_count--;
3544 else
3545 oldusage = curusage;
3546 }
3547 if (!ret && enlarge)
3548 memcg_oom_recover(memcg);
3549 return ret;
3550 }
3551
3552 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3553 gfp_t gfp_mask,
3554 unsigned long *total_scanned)
3555 {
3556 unsigned long nr_reclaimed = 0;
3557 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3558 unsigned long reclaimed;
3559 int loop = 0;
3560 struct mem_cgroup_tree_per_zone *mctz;
3561 unsigned long long excess;
3562 unsigned long nr_scanned;
3563
3564 if (order > 0)
3565 return 0;
3566
3567 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3568 /*
3569 * This loop can run a while, specially if mem_cgroup's continuously
3570 * keep exceeding their soft limit and putting the system under
3571 * pressure
3572 */
3573 do {
3574 if (next_mz)
3575 mz = next_mz;
3576 else
3577 mz = mem_cgroup_largest_soft_limit_node(mctz);
3578 if (!mz)
3579 break;
3580
3581 nr_scanned = 0;
3582 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3583 gfp_mask, &nr_scanned);
3584 nr_reclaimed += reclaimed;
3585 *total_scanned += nr_scanned;
3586 spin_lock(&mctz->lock);
3587
3588 /*
3589 * If we failed to reclaim anything from this memory cgroup
3590 * it is time to move on to the next cgroup
3591 */
3592 next_mz = NULL;
3593 if (!reclaimed) {
3594 do {
3595 /*
3596 * Loop until we find yet another one.
3597 *
3598 * By the time we get the soft_limit lock
3599 * again, someone might have aded the
3600 * group back on the RB tree. Iterate to
3601 * make sure we get a different mem.
3602 * mem_cgroup_largest_soft_limit_node returns
3603 * NULL if no other cgroup is present on
3604 * the tree
3605 */
3606 next_mz =
3607 __mem_cgroup_largest_soft_limit_node(mctz);
3608 if (next_mz == mz)
3609 css_put(&next_mz->memcg->css);
3610 else /* next_mz == NULL or other memcg */
3611 break;
3612 } while (1);
3613 }
3614 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3615 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3616 /*
3617 * One school of thought says that we should not add
3618 * back the node to the tree if reclaim returns 0.
3619 * But our reclaim could return 0, simply because due
3620 * to priority we are exposing a smaller subset of
3621 * memory to reclaim from. Consider this as a longer
3622 * term TODO.
3623 */
3624 /* If excess == 0, no tree ops */
3625 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3626 spin_unlock(&mctz->lock);
3627 css_put(&mz->memcg->css);
3628 loop++;
3629 /*
3630 * Could not reclaim anything and there are no more
3631 * mem cgroups to try or we seem to be looping without
3632 * reclaiming anything.
3633 */
3634 if (!nr_reclaimed &&
3635 (next_mz == NULL ||
3636 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3637 break;
3638 } while (!nr_reclaimed);
3639 if (next_mz)
3640 css_put(&next_mz->memcg->css);
3641 return nr_reclaimed;
3642 }
3643
3644 /*
3645 * This routine traverse page_cgroup in given list and drop them all.
3646 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3647 */
3648 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3649 int node, int zid, enum lru_list lru)
3650 {
3651 struct mem_cgroup_per_zone *mz;
3652 unsigned long flags, loop;
3653 struct list_head *list;
3654 struct page *busy;
3655 struct zone *zone;
3656 int ret = 0;
3657
3658 zone = &NODE_DATA(node)->node_zones[zid];
3659 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3660 list = &mz->lruvec.lists[lru];
3661
3662 loop = mz->lru_size[lru];
3663 /* give some margin against EBUSY etc...*/
3664 loop += 256;
3665 busy = NULL;
3666 while (loop--) {
3667 struct page_cgroup *pc;
3668 struct page *page;
3669
3670 ret = 0;
3671 spin_lock_irqsave(&zone->lru_lock, flags);
3672 if (list_empty(list)) {
3673 spin_unlock_irqrestore(&zone->lru_lock, flags);
3674 break;
3675 }
3676 page = list_entry(list->prev, struct page, lru);
3677 if (busy == page) {
3678 list_move(&page->lru, list);
3679 busy = NULL;
3680 spin_unlock_irqrestore(&zone->lru_lock, flags);
3681 continue;
3682 }
3683 spin_unlock_irqrestore(&zone->lru_lock, flags);
3684
3685 pc = lookup_page_cgroup(page);
3686
3687 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3688 if (ret == -ENOMEM || ret == -EINTR)
3689 break;
3690
3691 if (ret == -EBUSY || ret == -EINVAL) {
3692 /* found lock contention or "pc" is obsolete. */
3693 busy = page;
3694 cond_resched();
3695 } else
3696 busy = NULL;
3697 }
3698
3699 if (!ret && !list_empty(list))
3700 return -EBUSY;
3701 return ret;
3702 }
3703
3704 /*
3705 * make mem_cgroup's charge to be 0 if there is no task.
3706 * This enables deleting this mem_cgroup.
3707 */
3708 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3709 {
3710 int ret;
3711 int node, zid, shrink;
3712 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3713 struct cgroup *cgrp = memcg->css.cgroup;
3714
3715 css_get(&memcg->css);
3716
3717 shrink = 0;
3718 /* should free all ? */
3719 if (free_all)
3720 goto try_to_free;
3721 move_account:
3722 do {
3723 ret = -EBUSY;
3724 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3725 goto out;
3726 ret = -EINTR;
3727 if (signal_pending(current))
3728 goto out;
3729 /* This is for making all *used* pages to be on LRU. */
3730 lru_add_drain_all();
3731 drain_all_stock_sync(memcg);
3732 ret = 0;
3733 mem_cgroup_start_move(memcg);
3734 for_each_node_state(node, N_HIGH_MEMORY) {
3735 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3736 enum lru_list lru;
3737 for_each_lru(lru) {
3738 ret = mem_cgroup_force_empty_list(memcg,
3739 node, zid, lru);
3740 if (ret)
3741 break;
3742 }
3743 }
3744 if (ret)
3745 break;
3746 }
3747 mem_cgroup_end_move(memcg);
3748 memcg_oom_recover(memcg);
3749 /* it seems parent cgroup doesn't have enough mem */
3750 if (ret == -ENOMEM)
3751 goto try_to_free;
3752 cond_resched();
3753 /* "ret" should also be checked to ensure all lists are empty. */
3754 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3755 out:
3756 css_put(&memcg->css);
3757 return ret;
3758
3759 try_to_free:
3760 /* returns EBUSY if there is a task or if we come here twice. */
3761 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3762 ret = -EBUSY;
3763 goto out;
3764 }
3765 /* we call try-to-free pages for make this cgroup empty */
3766 lru_add_drain_all();
3767 /* try to free all pages in this cgroup */
3768 shrink = 1;
3769 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3770 int progress;
3771
3772 if (signal_pending(current)) {
3773 ret = -EINTR;
3774 goto out;
3775 }
3776 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3777 false);
3778 if (!progress) {
3779 nr_retries--;
3780 /* maybe some writeback is necessary */
3781 congestion_wait(BLK_RW_ASYNC, HZ/10);
3782 }
3783
3784 }
3785 lru_add_drain();
3786 /* try move_account...there may be some *locked* pages. */
3787 goto move_account;
3788 }
3789
3790 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3791 {
3792 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3793 }
3794
3795
3796 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3797 {
3798 return mem_cgroup_from_cont(cont)->use_hierarchy;
3799 }
3800
3801 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3802 u64 val)
3803 {
3804 int retval = 0;
3805 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3806 struct cgroup *parent = cont->parent;
3807 struct mem_cgroup *parent_memcg = NULL;
3808
3809 if (parent)
3810 parent_memcg = mem_cgroup_from_cont(parent);
3811
3812 cgroup_lock();
3813 /*
3814 * If parent's use_hierarchy is set, we can't make any modifications
3815 * in the child subtrees. If it is unset, then the change can
3816 * occur, provided the current cgroup has no children.
3817 *
3818 * For the root cgroup, parent_mem is NULL, we allow value to be
3819 * set if there are no children.
3820 */
3821 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3822 (val == 1 || val == 0)) {
3823 if (list_empty(&cont->children))
3824 memcg->use_hierarchy = val;
3825 else
3826 retval = -EBUSY;
3827 } else
3828 retval = -EINVAL;
3829 cgroup_unlock();
3830
3831 return retval;
3832 }
3833
3834
3835 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3836 enum mem_cgroup_stat_index idx)
3837 {
3838 struct mem_cgroup *iter;
3839 long val = 0;
3840
3841 /* Per-cpu values can be negative, use a signed accumulator */
3842 for_each_mem_cgroup_tree(iter, memcg)
3843 val += mem_cgroup_read_stat(iter, idx);
3844
3845 if (val < 0) /* race ? */
3846 val = 0;
3847 return val;
3848 }
3849
3850 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3851 {
3852 u64 val;
3853
3854 if (!mem_cgroup_is_root(memcg)) {
3855 if (!swap)
3856 return res_counter_read_u64(&memcg->res, RES_USAGE);
3857 else
3858 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3859 }
3860
3861 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3862 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3863
3864 if (swap)
3865 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3866
3867 return val << PAGE_SHIFT;
3868 }
3869
3870 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3871 struct file *file, char __user *buf,
3872 size_t nbytes, loff_t *ppos)
3873 {
3874 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3875 char str[64];
3876 u64 val;
3877 int type, name, len;
3878
3879 type = MEMFILE_TYPE(cft->private);
3880 name = MEMFILE_ATTR(cft->private);
3881
3882 if (!do_swap_account && type == _MEMSWAP)
3883 return -EOPNOTSUPP;
3884
3885 switch (type) {
3886 case _MEM:
3887 if (name == RES_USAGE)
3888 val = mem_cgroup_usage(memcg, false);
3889 else
3890 val = res_counter_read_u64(&memcg->res, name);
3891 break;
3892 case _MEMSWAP:
3893 if (name == RES_USAGE)
3894 val = mem_cgroup_usage(memcg, true);
3895 else
3896 val = res_counter_read_u64(&memcg->memsw, name);
3897 break;
3898 default:
3899 BUG();
3900 }
3901
3902 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3903 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3904 }
3905 /*
3906 * The user of this function is...
3907 * RES_LIMIT.
3908 */
3909 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3910 const char *buffer)
3911 {
3912 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3913 int type, name;
3914 unsigned long long val;
3915 int ret;
3916
3917 type = MEMFILE_TYPE(cft->private);
3918 name = MEMFILE_ATTR(cft->private);
3919
3920 if (!do_swap_account && type == _MEMSWAP)
3921 return -EOPNOTSUPP;
3922
3923 switch (name) {
3924 case RES_LIMIT:
3925 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3926 ret = -EINVAL;
3927 break;
3928 }
3929 /* This function does all necessary parse...reuse it */
3930 ret = res_counter_memparse_write_strategy(buffer, &val);
3931 if (ret)
3932 break;
3933 if (type == _MEM)
3934 ret = mem_cgroup_resize_limit(memcg, val);
3935 else
3936 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3937 break;
3938 case RES_SOFT_LIMIT:
3939 ret = res_counter_memparse_write_strategy(buffer, &val);
3940 if (ret)
3941 break;
3942 /*
3943 * For memsw, soft limits are hard to implement in terms
3944 * of semantics, for now, we support soft limits for
3945 * control without swap
3946 */
3947 if (type == _MEM)
3948 ret = res_counter_set_soft_limit(&memcg->res, val);
3949 else
3950 ret = -EINVAL;
3951 break;
3952 default:
3953 ret = -EINVAL; /* should be BUG() ? */
3954 break;
3955 }
3956 return ret;
3957 }
3958
3959 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3960 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3961 {
3962 struct cgroup *cgroup;
3963 unsigned long long min_limit, min_memsw_limit, tmp;
3964
3965 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3966 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3967 cgroup = memcg->css.cgroup;
3968 if (!memcg->use_hierarchy)
3969 goto out;
3970
3971 while (cgroup->parent) {
3972 cgroup = cgroup->parent;
3973 memcg = mem_cgroup_from_cont(cgroup);
3974 if (!memcg->use_hierarchy)
3975 break;
3976 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3977 min_limit = min(min_limit, tmp);
3978 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3979 min_memsw_limit = min(min_memsw_limit, tmp);
3980 }
3981 out:
3982 *mem_limit = min_limit;
3983 *memsw_limit = min_memsw_limit;
3984 }
3985
3986 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3987 {
3988 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3989 int type, name;
3990
3991 type = MEMFILE_TYPE(event);
3992 name = MEMFILE_ATTR(event);
3993
3994 if (!do_swap_account && type == _MEMSWAP)
3995 return -EOPNOTSUPP;
3996
3997 switch (name) {
3998 case RES_MAX_USAGE:
3999 if (type == _MEM)
4000 res_counter_reset_max(&memcg->res);
4001 else
4002 res_counter_reset_max(&memcg->memsw);
4003 break;
4004 case RES_FAILCNT:
4005 if (type == _MEM)
4006 res_counter_reset_failcnt(&memcg->res);
4007 else
4008 res_counter_reset_failcnt(&memcg->memsw);
4009 break;
4010 }
4011
4012 return 0;
4013 }
4014
4015 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4016 struct cftype *cft)
4017 {
4018 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4019 }
4020
4021 #ifdef CONFIG_MMU
4022 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4023 struct cftype *cft, u64 val)
4024 {
4025 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4026
4027 if (val >= (1 << NR_MOVE_TYPE))
4028 return -EINVAL;
4029 /*
4030 * We check this value several times in both in can_attach() and
4031 * attach(), so we need cgroup lock to prevent this value from being
4032 * inconsistent.
4033 */
4034 cgroup_lock();
4035 memcg->move_charge_at_immigrate = val;
4036 cgroup_unlock();
4037
4038 return 0;
4039 }
4040 #else
4041 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4042 struct cftype *cft, u64 val)
4043 {
4044 return -ENOSYS;
4045 }
4046 #endif
4047
4048
4049 /* For read statistics */
4050 enum {
4051 MCS_CACHE,
4052 MCS_RSS,
4053 MCS_FILE_MAPPED,
4054 MCS_PGPGIN,
4055 MCS_PGPGOUT,
4056 MCS_SWAP,
4057 MCS_PGFAULT,
4058 MCS_PGMAJFAULT,
4059 MCS_INACTIVE_ANON,
4060 MCS_ACTIVE_ANON,
4061 MCS_INACTIVE_FILE,
4062 MCS_ACTIVE_FILE,
4063 MCS_UNEVICTABLE,
4064 NR_MCS_STAT,
4065 };
4066
4067 struct mcs_total_stat {
4068 s64 stat[NR_MCS_STAT];
4069 };
4070
4071 static struct {
4072 char *local_name;
4073 char *total_name;
4074 } memcg_stat_strings[NR_MCS_STAT] = {
4075 {"cache", "total_cache"},
4076 {"rss", "total_rss"},
4077 {"mapped_file", "total_mapped_file"},
4078 {"pgpgin", "total_pgpgin"},
4079 {"pgpgout", "total_pgpgout"},
4080 {"swap", "total_swap"},
4081 {"pgfault", "total_pgfault"},
4082 {"pgmajfault", "total_pgmajfault"},
4083 {"inactive_anon", "total_inactive_anon"},
4084 {"active_anon", "total_active_anon"},
4085 {"inactive_file", "total_inactive_file"},
4086 {"active_file", "total_active_file"},
4087 {"unevictable", "total_unevictable"}
4088 };
4089
4090
4091 static void
4092 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4093 {
4094 s64 val;
4095
4096 /* per cpu stat */
4097 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4098 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4099 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4100 s->stat[MCS_RSS] += val * PAGE_SIZE;
4101 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4102 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4103 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4104 s->stat[MCS_PGPGIN] += val;
4105 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4106 s->stat[MCS_PGPGOUT] += val;
4107 if (do_swap_account) {
4108 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4109 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4110 }
4111 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4112 s->stat[MCS_PGFAULT] += val;
4113 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4114 s->stat[MCS_PGMAJFAULT] += val;
4115
4116 /* per zone stat */
4117 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4118 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4119 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4120 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4121 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4122 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4123 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4124 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4125 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4126 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4127 }
4128
4129 static void
4130 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4131 {
4132 struct mem_cgroup *iter;
4133
4134 for_each_mem_cgroup_tree(iter, memcg)
4135 mem_cgroup_get_local_stat(iter, s);
4136 }
4137
4138 #ifdef CONFIG_NUMA
4139 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4140 {
4141 int nid;
4142 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4143 unsigned long node_nr;
4144 struct cgroup *cont = m->private;
4145 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4146
4147 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4148 seq_printf(m, "total=%lu", total_nr);
4149 for_each_node_state(nid, N_HIGH_MEMORY) {
4150 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4151 seq_printf(m, " N%d=%lu", nid, node_nr);
4152 }
4153 seq_putc(m, '\n');
4154
4155 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4156 seq_printf(m, "file=%lu", file_nr);
4157 for_each_node_state(nid, N_HIGH_MEMORY) {
4158 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4159 LRU_ALL_FILE);
4160 seq_printf(m, " N%d=%lu", nid, node_nr);
4161 }
4162 seq_putc(m, '\n');
4163
4164 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4165 seq_printf(m, "anon=%lu", anon_nr);
4166 for_each_node_state(nid, N_HIGH_MEMORY) {
4167 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4168 LRU_ALL_ANON);
4169 seq_printf(m, " N%d=%lu", nid, node_nr);
4170 }
4171 seq_putc(m, '\n');
4172
4173 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4174 seq_printf(m, "unevictable=%lu", unevictable_nr);
4175 for_each_node_state(nid, N_HIGH_MEMORY) {
4176 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4177 BIT(LRU_UNEVICTABLE));
4178 seq_printf(m, " N%d=%lu", nid, node_nr);
4179 }
4180 seq_putc(m, '\n');
4181 return 0;
4182 }
4183 #endif /* CONFIG_NUMA */
4184
4185 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4186 struct cgroup_map_cb *cb)
4187 {
4188 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4189 struct mcs_total_stat mystat;
4190 int i;
4191
4192 memset(&mystat, 0, sizeof(mystat));
4193 mem_cgroup_get_local_stat(memcg, &mystat);
4194
4195
4196 for (i = 0; i < NR_MCS_STAT; i++) {
4197 if (i == MCS_SWAP && !do_swap_account)
4198 continue;
4199 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4200 }
4201
4202 /* Hierarchical information */
4203 {
4204 unsigned long long limit, memsw_limit;
4205 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4206 cb->fill(cb, "hierarchical_memory_limit", limit);
4207 if (do_swap_account)
4208 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4209 }
4210
4211 memset(&mystat, 0, sizeof(mystat));
4212 mem_cgroup_get_total_stat(memcg, &mystat);
4213 for (i = 0; i < NR_MCS_STAT; i++) {
4214 if (i == MCS_SWAP && !do_swap_account)
4215 continue;
4216 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4217 }
4218
4219 #ifdef CONFIG_DEBUG_VM
4220 {
4221 int nid, zid;
4222 struct mem_cgroup_per_zone *mz;
4223 struct zone_reclaim_stat *rstat;
4224 unsigned long recent_rotated[2] = {0, 0};
4225 unsigned long recent_scanned[2] = {0, 0};
4226
4227 for_each_online_node(nid)
4228 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4229 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4230 rstat = &mz->lruvec.reclaim_stat;
4231
4232 recent_rotated[0] += rstat->recent_rotated[0];
4233 recent_rotated[1] += rstat->recent_rotated[1];
4234 recent_scanned[0] += rstat->recent_scanned[0];
4235 recent_scanned[1] += rstat->recent_scanned[1];
4236 }
4237 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4238 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4239 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4240 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4241 }
4242 #endif
4243
4244 return 0;
4245 }
4246
4247 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4248 {
4249 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4250
4251 return mem_cgroup_swappiness(memcg);
4252 }
4253
4254 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4255 u64 val)
4256 {
4257 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4258 struct mem_cgroup *parent;
4259
4260 if (val > 100)
4261 return -EINVAL;
4262
4263 if (cgrp->parent == NULL)
4264 return -EINVAL;
4265
4266 parent = mem_cgroup_from_cont(cgrp->parent);
4267
4268 cgroup_lock();
4269
4270 /* If under hierarchy, only empty-root can set this value */
4271 if ((parent->use_hierarchy) ||
4272 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4273 cgroup_unlock();
4274 return -EINVAL;
4275 }
4276
4277 memcg->swappiness = val;
4278
4279 cgroup_unlock();
4280
4281 return 0;
4282 }
4283
4284 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4285 {
4286 struct mem_cgroup_threshold_ary *t;
4287 u64 usage;
4288 int i;
4289
4290 rcu_read_lock();
4291 if (!swap)
4292 t = rcu_dereference(memcg->thresholds.primary);
4293 else
4294 t = rcu_dereference(memcg->memsw_thresholds.primary);
4295
4296 if (!t)
4297 goto unlock;
4298
4299 usage = mem_cgroup_usage(memcg, swap);
4300
4301 /*
4302 * current_threshold points to threshold just below or equal to usage.
4303 * If it's not true, a threshold was crossed after last
4304 * call of __mem_cgroup_threshold().
4305 */
4306 i = t->current_threshold;
4307
4308 /*
4309 * Iterate backward over array of thresholds starting from
4310 * current_threshold and check if a threshold is crossed.
4311 * If none of thresholds below usage is crossed, we read
4312 * only one element of the array here.
4313 */
4314 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4315 eventfd_signal(t->entries[i].eventfd, 1);
4316
4317 /* i = current_threshold + 1 */
4318 i++;
4319
4320 /*
4321 * Iterate forward over array of thresholds starting from
4322 * current_threshold+1 and check if a threshold is crossed.
4323 * If none of thresholds above usage is crossed, we read
4324 * only one element of the array here.
4325 */
4326 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4327 eventfd_signal(t->entries[i].eventfd, 1);
4328
4329 /* Update current_threshold */
4330 t->current_threshold = i - 1;
4331 unlock:
4332 rcu_read_unlock();
4333 }
4334
4335 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4336 {
4337 while (memcg) {
4338 __mem_cgroup_threshold(memcg, false);
4339 if (do_swap_account)
4340 __mem_cgroup_threshold(memcg, true);
4341
4342 memcg = parent_mem_cgroup(memcg);
4343 }
4344 }
4345
4346 static int compare_thresholds(const void *a, const void *b)
4347 {
4348 const struct mem_cgroup_threshold *_a = a;
4349 const struct mem_cgroup_threshold *_b = b;
4350
4351 return _a->threshold - _b->threshold;
4352 }
4353
4354 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4355 {
4356 struct mem_cgroup_eventfd_list *ev;
4357
4358 list_for_each_entry(ev, &memcg->oom_notify, list)
4359 eventfd_signal(ev->eventfd, 1);
4360 return 0;
4361 }
4362
4363 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4364 {
4365 struct mem_cgroup *iter;
4366
4367 for_each_mem_cgroup_tree(iter, memcg)
4368 mem_cgroup_oom_notify_cb(iter);
4369 }
4370
4371 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4372 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4373 {
4374 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4375 struct mem_cgroup_thresholds *thresholds;
4376 struct mem_cgroup_threshold_ary *new;
4377 int type = MEMFILE_TYPE(cft->private);
4378 u64 threshold, usage;
4379 int i, size, ret;
4380
4381 ret = res_counter_memparse_write_strategy(args, &threshold);
4382 if (ret)
4383 return ret;
4384
4385 mutex_lock(&memcg->thresholds_lock);
4386
4387 if (type == _MEM)
4388 thresholds = &memcg->thresholds;
4389 else if (type == _MEMSWAP)
4390 thresholds = &memcg->memsw_thresholds;
4391 else
4392 BUG();
4393
4394 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4395
4396 /* Check if a threshold crossed before adding a new one */
4397 if (thresholds->primary)
4398 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4399
4400 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4401
4402 /* Allocate memory for new array of thresholds */
4403 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4404 GFP_KERNEL);
4405 if (!new) {
4406 ret = -ENOMEM;
4407 goto unlock;
4408 }
4409 new->size = size;
4410
4411 /* Copy thresholds (if any) to new array */
4412 if (thresholds->primary) {
4413 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4414 sizeof(struct mem_cgroup_threshold));
4415 }
4416
4417 /* Add new threshold */
4418 new->entries[size - 1].eventfd = eventfd;
4419 new->entries[size - 1].threshold = threshold;
4420
4421 /* Sort thresholds. Registering of new threshold isn't time-critical */
4422 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4423 compare_thresholds, NULL);
4424
4425 /* Find current threshold */
4426 new->current_threshold = -1;
4427 for (i = 0; i < size; i++) {
4428 if (new->entries[i].threshold <= usage) {
4429 /*
4430 * new->current_threshold will not be used until
4431 * rcu_assign_pointer(), so it's safe to increment
4432 * it here.
4433 */
4434 ++new->current_threshold;
4435 } else
4436 break;
4437 }
4438
4439 /* Free old spare buffer and save old primary buffer as spare */
4440 kfree(thresholds->spare);
4441 thresholds->spare = thresholds->primary;
4442
4443 rcu_assign_pointer(thresholds->primary, new);
4444
4445 /* To be sure that nobody uses thresholds */
4446 synchronize_rcu();
4447
4448 unlock:
4449 mutex_unlock(&memcg->thresholds_lock);
4450
4451 return ret;
4452 }
4453
4454 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4455 struct cftype *cft, struct eventfd_ctx *eventfd)
4456 {
4457 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4458 struct mem_cgroup_thresholds *thresholds;
4459 struct mem_cgroup_threshold_ary *new;
4460 int type = MEMFILE_TYPE(cft->private);
4461 u64 usage;
4462 int i, j, size;
4463
4464 mutex_lock(&memcg->thresholds_lock);
4465 if (type == _MEM)
4466 thresholds = &memcg->thresholds;
4467 else if (type == _MEMSWAP)
4468 thresholds = &memcg->memsw_thresholds;
4469 else
4470 BUG();
4471
4472 if (!thresholds->primary)
4473 goto unlock;
4474
4475 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4476
4477 /* Check if a threshold crossed before removing */
4478 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4479
4480 /* Calculate new number of threshold */
4481 size = 0;
4482 for (i = 0; i < thresholds->primary->size; i++) {
4483 if (thresholds->primary->entries[i].eventfd != eventfd)
4484 size++;
4485 }
4486
4487 new = thresholds->spare;
4488
4489 /* Set thresholds array to NULL if we don't have thresholds */
4490 if (!size) {
4491 kfree(new);
4492 new = NULL;
4493 goto swap_buffers;
4494 }
4495
4496 new->size = size;
4497
4498 /* Copy thresholds and find current threshold */
4499 new->current_threshold = -1;
4500 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4501 if (thresholds->primary->entries[i].eventfd == eventfd)
4502 continue;
4503
4504 new->entries[j] = thresholds->primary->entries[i];
4505 if (new->entries[j].threshold <= usage) {
4506 /*
4507 * new->current_threshold will not be used
4508 * until rcu_assign_pointer(), so it's safe to increment
4509 * it here.
4510 */
4511 ++new->current_threshold;
4512 }
4513 j++;
4514 }
4515
4516 swap_buffers:
4517 /* Swap primary and spare array */
4518 thresholds->spare = thresholds->primary;
4519 /* If all events are unregistered, free the spare array */
4520 if (!new) {
4521 kfree(thresholds->spare);
4522 thresholds->spare = NULL;
4523 }
4524
4525 rcu_assign_pointer(thresholds->primary, new);
4526
4527 /* To be sure that nobody uses thresholds */
4528 synchronize_rcu();
4529 unlock:
4530 mutex_unlock(&memcg->thresholds_lock);
4531 }
4532
4533 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4534 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4535 {
4536 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4537 struct mem_cgroup_eventfd_list *event;
4538 int type = MEMFILE_TYPE(cft->private);
4539
4540 BUG_ON(type != _OOM_TYPE);
4541 event = kmalloc(sizeof(*event), GFP_KERNEL);
4542 if (!event)
4543 return -ENOMEM;
4544
4545 spin_lock(&memcg_oom_lock);
4546
4547 event->eventfd = eventfd;
4548 list_add(&event->list, &memcg->oom_notify);
4549
4550 /* already in OOM ? */
4551 if (atomic_read(&memcg->under_oom))
4552 eventfd_signal(eventfd, 1);
4553 spin_unlock(&memcg_oom_lock);
4554
4555 return 0;
4556 }
4557
4558 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4559 struct cftype *cft, struct eventfd_ctx *eventfd)
4560 {
4561 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4562 struct mem_cgroup_eventfd_list *ev, *tmp;
4563 int type = MEMFILE_TYPE(cft->private);
4564
4565 BUG_ON(type != _OOM_TYPE);
4566
4567 spin_lock(&memcg_oom_lock);
4568
4569 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4570 if (ev->eventfd == eventfd) {
4571 list_del(&ev->list);
4572 kfree(ev);
4573 }
4574 }
4575
4576 spin_unlock(&memcg_oom_lock);
4577 }
4578
4579 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4580 struct cftype *cft, struct cgroup_map_cb *cb)
4581 {
4582 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4583
4584 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4585
4586 if (atomic_read(&memcg->under_oom))
4587 cb->fill(cb, "under_oom", 1);
4588 else
4589 cb->fill(cb, "under_oom", 0);
4590 return 0;
4591 }
4592
4593 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4594 struct cftype *cft, u64 val)
4595 {
4596 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4597 struct mem_cgroup *parent;
4598
4599 /* cannot set to root cgroup and only 0 and 1 are allowed */
4600 if (!cgrp->parent || !((val == 0) || (val == 1)))
4601 return -EINVAL;
4602
4603 parent = mem_cgroup_from_cont(cgrp->parent);
4604
4605 cgroup_lock();
4606 /* oom-kill-disable is a flag for subhierarchy. */
4607 if ((parent->use_hierarchy) ||
4608 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4609 cgroup_unlock();
4610 return -EINVAL;
4611 }
4612 memcg->oom_kill_disable = val;
4613 if (!val)
4614 memcg_oom_recover(memcg);
4615 cgroup_unlock();
4616 return 0;
4617 }
4618
4619 #ifdef CONFIG_NUMA
4620 static const struct file_operations mem_control_numa_stat_file_operations = {
4621 .read = seq_read,
4622 .llseek = seq_lseek,
4623 .release = single_release,
4624 };
4625
4626 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4627 {
4628 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4629
4630 file->f_op = &mem_control_numa_stat_file_operations;
4631 return single_open(file, mem_control_numa_stat_show, cont);
4632 }
4633 #endif /* CONFIG_NUMA */
4634
4635 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4636 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4637 {
4638 return mem_cgroup_sockets_init(memcg, ss);
4639 };
4640
4641 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4642 {
4643 mem_cgroup_sockets_destroy(memcg);
4644 }
4645 #else
4646 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4647 {
4648 return 0;
4649 }
4650
4651 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4652 {
4653 }
4654 #endif
4655
4656 static struct cftype mem_cgroup_files[] = {
4657 {
4658 .name = "usage_in_bytes",
4659 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4660 .read = mem_cgroup_read,
4661 .register_event = mem_cgroup_usage_register_event,
4662 .unregister_event = mem_cgroup_usage_unregister_event,
4663 },
4664 {
4665 .name = "max_usage_in_bytes",
4666 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4667 .trigger = mem_cgroup_reset,
4668 .read = mem_cgroup_read,
4669 },
4670 {
4671 .name = "limit_in_bytes",
4672 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4673 .write_string = mem_cgroup_write,
4674 .read = mem_cgroup_read,
4675 },
4676 {
4677 .name = "soft_limit_in_bytes",
4678 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4679 .write_string = mem_cgroup_write,
4680 .read = mem_cgroup_read,
4681 },
4682 {
4683 .name = "failcnt",
4684 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4685 .trigger = mem_cgroup_reset,
4686 .read = mem_cgroup_read,
4687 },
4688 {
4689 .name = "stat",
4690 .read_map = mem_control_stat_show,
4691 },
4692 {
4693 .name = "force_empty",
4694 .trigger = mem_cgroup_force_empty_write,
4695 },
4696 {
4697 .name = "use_hierarchy",
4698 .write_u64 = mem_cgroup_hierarchy_write,
4699 .read_u64 = mem_cgroup_hierarchy_read,
4700 },
4701 {
4702 .name = "swappiness",
4703 .read_u64 = mem_cgroup_swappiness_read,
4704 .write_u64 = mem_cgroup_swappiness_write,
4705 },
4706 {
4707 .name = "move_charge_at_immigrate",
4708 .read_u64 = mem_cgroup_move_charge_read,
4709 .write_u64 = mem_cgroup_move_charge_write,
4710 },
4711 {
4712 .name = "oom_control",
4713 .read_map = mem_cgroup_oom_control_read,
4714 .write_u64 = mem_cgroup_oom_control_write,
4715 .register_event = mem_cgroup_oom_register_event,
4716 .unregister_event = mem_cgroup_oom_unregister_event,
4717 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4718 },
4719 #ifdef CONFIG_NUMA
4720 {
4721 .name = "numa_stat",
4722 .open = mem_control_numa_stat_open,
4723 .mode = S_IRUGO,
4724 },
4725 #endif
4726 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4727 {
4728 .name = "memsw.usage_in_bytes",
4729 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4730 .read = mem_cgroup_read,
4731 .register_event = mem_cgroup_usage_register_event,
4732 .unregister_event = mem_cgroup_usage_unregister_event,
4733 },
4734 {
4735 .name = "memsw.max_usage_in_bytes",
4736 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4737 .trigger = mem_cgroup_reset,
4738 .read = mem_cgroup_read,
4739 },
4740 {
4741 .name = "memsw.limit_in_bytes",
4742 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4743 .write_string = mem_cgroup_write,
4744 .read = mem_cgroup_read,
4745 },
4746 {
4747 .name = "memsw.failcnt",
4748 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4749 .trigger = mem_cgroup_reset,
4750 .read = mem_cgroup_read,
4751 },
4752 #endif
4753 { }, /* terminate */
4754 };
4755
4756 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4757 {
4758 struct mem_cgroup_per_node *pn;
4759 struct mem_cgroup_per_zone *mz;
4760 int zone, tmp = node;
4761 /*
4762 * This routine is called against possible nodes.
4763 * But it's BUG to call kmalloc() against offline node.
4764 *
4765 * TODO: this routine can waste much memory for nodes which will
4766 * never be onlined. It's better to use memory hotplug callback
4767 * function.
4768 */
4769 if (!node_state(node, N_NORMAL_MEMORY))
4770 tmp = -1;
4771 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4772 if (!pn)
4773 return 1;
4774
4775 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4776 mz = &pn->zoneinfo[zone];
4777 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4778 mz->usage_in_excess = 0;
4779 mz->on_tree = false;
4780 mz->memcg = memcg;
4781 }
4782 memcg->info.nodeinfo[node] = pn;
4783 return 0;
4784 }
4785
4786 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4787 {
4788 kfree(memcg->info.nodeinfo[node]);
4789 }
4790
4791 static struct mem_cgroup *mem_cgroup_alloc(void)
4792 {
4793 struct mem_cgroup *memcg;
4794 int size = sizeof(struct mem_cgroup);
4795
4796 /* Can be very big if MAX_NUMNODES is very big */
4797 if (size < PAGE_SIZE)
4798 memcg = kzalloc(size, GFP_KERNEL);
4799 else
4800 memcg = vzalloc(size);
4801
4802 if (!memcg)
4803 return NULL;
4804
4805 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4806 if (!memcg->stat)
4807 goto out_free;
4808 spin_lock_init(&memcg->pcp_counter_lock);
4809 return memcg;
4810
4811 out_free:
4812 if (size < PAGE_SIZE)
4813 kfree(memcg);
4814 else
4815 vfree(memcg);
4816 return NULL;
4817 }
4818
4819 /*
4820 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
4821 * but in process context. The work_freeing structure is overlaid
4822 * on the rcu_freeing structure, which itself is overlaid on memsw.
4823 */
4824 static void vfree_work(struct work_struct *work)
4825 {
4826 struct mem_cgroup *memcg;
4827
4828 memcg = container_of(work, struct mem_cgroup, work_freeing);
4829 vfree(memcg);
4830 }
4831 static void vfree_rcu(struct rcu_head *rcu_head)
4832 {
4833 struct mem_cgroup *memcg;
4834
4835 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4836 INIT_WORK(&memcg->work_freeing, vfree_work);
4837 schedule_work(&memcg->work_freeing);
4838 }
4839
4840 /*
4841 * At destroying mem_cgroup, references from swap_cgroup can remain.
4842 * (scanning all at force_empty is too costly...)
4843 *
4844 * Instead of clearing all references at force_empty, we remember
4845 * the number of reference from swap_cgroup and free mem_cgroup when
4846 * it goes down to 0.
4847 *
4848 * Removal of cgroup itself succeeds regardless of refs from swap.
4849 */
4850
4851 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4852 {
4853 int node;
4854
4855 mem_cgroup_remove_from_trees(memcg);
4856 free_css_id(&mem_cgroup_subsys, &memcg->css);
4857
4858 for_each_node(node)
4859 free_mem_cgroup_per_zone_info(memcg, node);
4860
4861 free_percpu(memcg->stat);
4862 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4863 kfree_rcu(memcg, rcu_freeing);
4864 else
4865 call_rcu(&memcg->rcu_freeing, vfree_rcu);
4866 }
4867
4868 static void mem_cgroup_get(struct mem_cgroup *memcg)
4869 {
4870 atomic_inc(&memcg->refcnt);
4871 }
4872
4873 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4874 {
4875 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4876 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4877 __mem_cgroup_free(memcg);
4878 if (parent)
4879 mem_cgroup_put(parent);
4880 }
4881 }
4882
4883 static void mem_cgroup_put(struct mem_cgroup *memcg)
4884 {
4885 __mem_cgroup_put(memcg, 1);
4886 }
4887
4888 /*
4889 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4890 */
4891 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4892 {
4893 if (!memcg->res.parent)
4894 return NULL;
4895 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4896 }
4897 EXPORT_SYMBOL(parent_mem_cgroup);
4898
4899 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4900 static void __init enable_swap_cgroup(void)
4901 {
4902 if (!mem_cgroup_disabled() && really_do_swap_account)
4903 do_swap_account = 1;
4904 }
4905 #else
4906 static void __init enable_swap_cgroup(void)
4907 {
4908 }
4909 #endif
4910
4911 static int mem_cgroup_soft_limit_tree_init(void)
4912 {
4913 struct mem_cgroup_tree_per_node *rtpn;
4914 struct mem_cgroup_tree_per_zone *rtpz;
4915 int tmp, node, zone;
4916
4917 for_each_node(node) {
4918 tmp = node;
4919 if (!node_state(node, N_NORMAL_MEMORY))
4920 tmp = -1;
4921 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4922 if (!rtpn)
4923 goto err_cleanup;
4924
4925 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4926
4927 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4928 rtpz = &rtpn->rb_tree_per_zone[zone];
4929 rtpz->rb_root = RB_ROOT;
4930 spin_lock_init(&rtpz->lock);
4931 }
4932 }
4933 return 0;
4934
4935 err_cleanup:
4936 for_each_node(node) {
4937 if (!soft_limit_tree.rb_tree_per_node[node])
4938 break;
4939 kfree(soft_limit_tree.rb_tree_per_node[node]);
4940 soft_limit_tree.rb_tree_per_node[node] = NULL;
4941 }
4942 return 1;
4943
4944 }
4945
4946 static struct cgroup_subsys_state * __ref
4947 mem_cgroup_create(struct cgroup *cont)
4948 {
4949 struct mem_cgroup *memcg, *parent;
4950 long error = -ENOMEM;
4951 int node;
4952
4953 memcg = mem_cgroup_alloc();
4954 if (!memcg)
4955 return ERR_PTR(error);
4956
4957 for_each_node(node)
4958 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4959 goto free_out;
4960
4961 /* root ? */
4962 if (cont->parent == NULL) {
4963 int cpu;
4964 enable_swap_cgroup();
4965 parent = NULL;
4966 if (mem_cgroup_soft_limit_tree_init())
4967 goto free_out;
4968 root_mem_cgroup = memcg;
4969 for_each_possible_cpu(cpu) {
4970 struct memcg_stock_pcp *stock =
4971 &per_cpu(memcg_stock, cpu);
4972 INIT_WORK(&stock->work, drain_local_stock);
4973 }
4974 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4975 } else {
4976 parent = mem_cgroup_from_cont(cont->parent);
4977 memcg->use_hierarchy = parent->use_hierarchy;
4978 memcg->oom_kill_disable = parent->oom_kill_disable;
4979 }
4980
4981 if (parent && parent->use_hierarchy) {
4982 res_counter_init(&memcg->res, &parent->res);
4983 res_counter_init(&memcg->memsw, &parent->memsw);
4984 /*
4985 * We increment refcnt of the parent to ensure that we can
4986 * safely access it on res_counter_charge/uncharge.
4987 * This refcnt will be decremented when freeing this
4988 * mem_cgroup(see mem_cgroup_put).
4989 */
4990 mem_cgroup_get(parent);
4991 } else {
4992 res_counter_init(&memcg->res, NULL);
4993 res_counter_init(&memcg->memsw, NULL);
4994 }
4995 memcg->last_scanned_node = MAX_NUMNODES;
4996 INIT_LIST_HEAD(&memcg->oom_notify);
4997
4998 if (parent)
4999 memcg->swappiness = mem_cgroup_swappiness(parent);
5000 atomic_set(&memcg->refcnt, 1);
5001 memcg->move_charge_at_immigrate = 0;
5002 mutex_init(&memcg->thresholds_lock);
5003 spin_lock_init(&memcg->move_lock);
5004
5005 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
5006 if (error) {
5007 /*
5008 * We call put now because our (and parent's) refcnts
5009 * are already in place. mem_cgroup_put() will internally
5010 * call __mem_cgroup_free, so return directly
5011 */
5012 mem_cgroup_put(memcg);
5013 return ERR_PTR(error);
5014 }
5015 return &memcg->css;
5016 free_out:
5017 __mem_cgroup_free(memcg);
5018 return ERR_PTR(error);
5019 }
5020
5021 static int mem_cgroup_pre_destroy(struct cgroup *cont)
5022 {
5023 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5024
5025 return mem_cgroup_force_empty(memcg, false);
5026 }
5027
5028 static void mem_cgroup_destroy(struct cgroup *cont)
5029 {
5030 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5031
5032 kmem_cgroup_destroy(memcg);
5033
5034 mem_cgroup_put(memcg);
5035 }
5036
5037 #ifdef CONFIG_MMU
5038 /* Handlers for move charge at task migration. */
5039 #define PRECHARGE_COUNT_AT_ONCE 256
5040 static int mem_cgroup_do_precharge(unsigned long count)
5041 {
5042 int ret = 0;
5043 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5044 struct mem_cgroup *memcg = mc.to;
5045
5046 if (mem_cgroup_is_root(memcg)) {
5047 mc.precharge += count;
5048 /* we don't need css_get for root */
5049 return ret;
5050 }
5051 /* try to charge at once */
5052 if (count > 1) {
5053 struct res_counter *dummy;
5054 /*
5055 * "memcg" cannot be under rmdir() because we've already checked
5056 * by cgroup_lock_live_cgroup() that it is not removed and we
5057 * are still under the same cgroup_mutex. So we can postpone
5058 * css_get().
5059 */
5060 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5061 goto one_by_one;
5062 if (do_swap_account && res_counter_charge(&memcg->memsw,
5063 PAGE_SIZE * count, &dummy)) {
5064 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5065 goto one_by_one;
5066 }
5067 mc.precharge += count;
5068 return ret;
5069 }
5070 one_by_one:
5071 /* fall back to one by one charge */
5072 while (count--) {
5073 if (signal_pending(current)) {
5074 ret = -EINTR;
5075 break;
5076 }
5077 if (!batch_count--) {
5078 batch_count = PRECHARGE_COUNT_AT_ONCE;
5079 cond_resched();
5080 }
5081 ret = __mem_cgroup_try_charge(NULL,
5082 GFP_KERNEL, 1, &memcg, false);
5083 if (ret)
5084 /* mem_cgroup_clear_mc() will do uncharge later */
5085 return ret;
5086 mc.precharge++;
5087 }
5088 return ret;
5089 }
5090
5091 /**
5092 * get_mctgt_type - get target type of moving charge
5093 * @vma: the vma the pte to be checked belongs
5094 * @addr: the address corresponding to the pte to be checked
5095 * @ptent: the pte to be checked
5096 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5097 *
5098 * Returns
5099 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5100 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5101 * move charge. if @target is not NULL, the page is stored in target->page
5102 * with extra refcnt got(Callers should handle it).
5103 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5104 * target for charge migration. if @target is not NULL, the entry is stored
5105 * in target->ent.
5106 *
5107 * Called with pte lock held.
5108 */
5109 union mc_target {
5110 struct page *page;
5111 swp_entry_t ent;
5112 };
5113
5114 enum mc_target_type {
5115 MC_TARGET_NONE = 0,
5116 MC_TARGET_PAGE,
5117 MC_TARGET_SWAP,
5118 };
5119
5120 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5121 unsigned long addr, pte_t ptent)
5122 {
5123 struct page *page = vm_normal_page(vma, addr, ptent);
5124
5125 if (!page || !page_mapped(page))
5126 return NULL;
5127 if (PageAnon(page)) {
5128 /* we don't move shared anon */
5129 if (!move_anon())
5130 return NULL;
5131 } else if (!move_file())
5132 /* we ignore mapcount for file pages */
5133 return NULL;
5134 if (!get_page_unless_zero(page))
5135 return NULL;
5136
5137 return page;
5138 }
5139
5140 #ifdef CONFIG_SWAP
5141 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5142 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5143 {
5144 struct page *page = NULL;
5145 swp_entry_t ent = pte_to_swp_entry(ptent);
5146
5147 if (!move_anon() || non_swap_entry(ent))
5148 return NULL;
5149 /*
5150 * Because lookup_swap_cache() updates some statistics counter,
5151 * we call find_get_page() with swapper_space directly.
5152 */
5153 page = find_get_page(&swapper_space, ent.val);
5154 if (do_swap_account)
5155 entry->val = ent.val;
5156
5157 return page;
5158 }
5159 #else
5160 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5161 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5162 {
5163 return NULL;
5164 }
5165 #endif
5166
5167 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5168 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5169 {
5170 struct page *page = NULL;
5171 struct address_space *mapping;
5172 pgoff_t pgoff;
5173
5174 if (!vma->vm_file) /* anonymous vma */
5175 return NULL;
5176 if (!move_file())
5177 return NULL;
5178
5179 mapping = vma->vm_file->f_mapping;
5180 if (pte_none(ptent))
5181 pgoff = linear_page_index(vma, addr);
5182 else /* pte_file(ptent) is true */
5183 pgoff = pte_to_pgoff(ptent);
5184
5185 /* page is moved even if it's not RSS of this task(page-faulted). */
5186 page = find_get_page(mapping, pgoff);
5187
5188 #ifdef CONFIG_SWAP
5189 /* shmem/tmpfs may report page out on swap: account for that too. */
5190 if (radix_tree_exceptional_entry(page)) {
5191 swp_entry_t swap = radix_to_swp_entry(page);
5192 if (do_swap_account)
5193 *entry = swap;
5194 page = find_get_page(&swapper_space, swap.val);
5195 }
5196 #endif
5197 return page;
5198 }
5199
5200 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5201 unsigned long addr, pte_t ptent, union mc_target *target)
5202 {
5203 struct page *page = NULL;
5204 struct page_cgroup *pc;
5205 enum mc_target_type ret = MC_TARGET_NONE;
5206 swp_entry_t ent = { .val = 0 };
5207
5208 if (pte_present(ptent))
5209 page = mc_handle_present_pte(vma, addr, ptent);
5210 else if (is_swap_pte(ptent))
5211 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5212 else if (pte_none(ptent) || pte_file(ptent))
5213 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5214
5215 if (!page && !ent.val)
5216 return ret;
5217 if (page) {
5218 pc = lookup_page_cgroup(page);
5219 /*
5220 * Do only loose check w/o page_cgroup lock.
5221 * mem_cgroup_move_account() checks the pc is valid or not under
5222 * the lock.
5223 */
5224 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5225 ret = MC_TARGET_PAGE;
5226 if (target)
5227 target->page = page;
5228 }
5229 if (!ret || !target)
5230 put_page(page);
5231 }
5232 /* There is a swap entry and a page doesn't exist or isn't charged */
5233 if (ent.val && !ret &&
5234 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5235 ret = MC_TARGET_SWAP;
5236 if (target)
5237 target->ent = ent;
5238 }
5239 return ret;
5240 }
5241
5242 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5243 /*
5244 * We don't consider swapping or file mapped pages because THP does not
5245 * support them for now.
5246 * Caller should make sure that pmd_trans_huge(pmd) is true.
5247 */
5248 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5249 unsigned long addr, pmd_t pmd, union mc_target *target)
5250 {
5251 struct page *page = NULL;
5252 struct page_cgroup *pc;
5253 enum mc_target_type ret = MC_TARGET_NONE;
5254
5255 page = pmd_page(pmd);
5256 VM_BUG_ON(!page || !PageHead(page));
5257 if (!move_anon())
5258 return ret;
5259 pc = lookup_page_cgroup(page);
5260 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5261 ret = MC_TARGET_PAGE;
5262 if (target) {
5263 get_page(page);
5264 target->page = page;
5265 }
5266 }
5267 return ret;
5268 }
5269 #else
5270 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5271 unsigned long addr, pmd_t pmd, union mc_target *target)
5272 {
5273 return MC_TARGET_NONE;
5274 }
5275 #endif
5276
5277 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5278 unsigned long addr, unsigned long end,
5279 struct mm_walk *walk)
5280 {
5281 struct vm_area_struct *vma = walk->private;
5282 pte_t *pte;
5283 spinlock_t *ptl;
5284
5285 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5286 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5287 mc.precharge += HPAGE_PMD_NR;
5288 spin_unlock(&vma->vm_mm->page_table_lock);
5289 return 0;
5290 }
5291
5292 if (pmd_trans_unstable(pmd))
5293 return 0;
5294 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5295 for (; addr != end; pte++, addr += PAGE_SIZE)
5296 if (get_mctgt_type(vma, addr, *pte, NULL))
5297 mc.precharge++; /* increment precharge temporarily */
5298 pte_unmap_unlock(pte - 1, ptl);
5299 cond_resched();
5300
5301 return 0;
5302 }
5303
5304 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5305 {
5306 unsigned long precharge;
5307 struct vm_area_struct *vma;
5308
5309 down_read(&mm->mmap_sem);
5310 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5311 struct mm_walk mem_cgroup_count_precharge_walk = {
5312 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5313 .mm = mm,
5314 .private = vma,
5315 };
5316 if (is_vm_hugetlb_page(vma))
5317 continue;
5318 walk_page_range(vma->vm_start, vma->vm_end,
5319 &mem_cgroup_count_precharge_walk);
5320 }
5321 up_read(&mm->mmap_sem);
5322
5323 precharge = mc.precharge;
5324 mc.precharge = 0;
5325
5326 return precharge;
5327 }
5328
5329 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5330 {
5331 unsigned long precharge = mem_cgroup_count_precharge(mm);
5332
5333 VM_BUG_ON(mc.moving_task);
5334 mc.moving_task = current;
5335 return mem_cgroup_do_precharge(precharge);
5336 }
5337
5338 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5339 static void __mem_cgroup_clear_mc(void)
5340 {
5341 struct mem_cgroup *from = mc.from;
5342 struct mem_cgroup *to = mc.to;
5343
5344 /* we must uncharge all the leftover precharges from mc.to */
5345 if (mc.precharge) {
5346 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5347 mc.precharge = 0;
5348 }
5349 /*
5350 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5351 * we must uncharge here.
5352 */
5353 if (mc.moved_charge) {
5354 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5355 mc.moved_charge = 0;
5356 }
5357 /* we must fixup refcnts and charges */
5358 if (mc.moved_swap) {
5359 /* uncharge swap account from the old cgroup */
5360 if (!mem_cgroup_is_root(mc.from))
5361 res_counter_uncharge(&mc.from->memsw,
5362 PAGE_SIZE * mc.moved_swap);
5363 __mem_cgroup_put(mc.from, mc.moved_swap);
5364
5365 if (!mem_cgroup_is_root(mc.to)) {
5366 /*
5367 * we charged both to->res and to->memsw, so we should
5368 * uncharge to->res.
5369 */
5370 res_counter_uncharge(&mc.to->res,
5371 PAGE_SIZE * mc.moved_swap);
5372 }
5373 /* we've already done mem_cgroup_get(mc.to) */
5374 mc.moved_swap = 0;
5375 }
5376 memcg_oom_recover(from);
5377 memcg_oom_recover(to);
5378 wake_up_all(&mc.waitq);
5379 }
5380
5381 static void mem_cgroup_clear_mc(void)
5382 {
5383 struct mem_cgroup *from = mc.from;
5384
5385 /*
5386 * we must clear moving_task before waking up waiters at the end of
5387 * task migration.
5388 */
5389 mc.moving_task = NULL;
5390 __mem_cgroup_clear_mc();
5391 spin_lock(&mc.lock);
5392 mc.from = NULL;
5393 mc.to = NULL;
5394 spin_unlock(&mc.lock);
5395 mem_cgroup_end_move(from);
5396 }
5397
5398 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5399 struct cgroup_taskset *tset)
5400 {
5401 struct task_struct *p = cgroup_taskset_first(tset);
5402 int ret = 0;
5403 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5404
5405 if (memcg->move_charge_at_immigrate) {
5406 struct mm_struct *mm;
5407 struct mem_cgroup *from = mem_cgroup_from_task(p);
5408
5409 VM_BUG_ON(from == memcg);
5410
5411 mm = get_task_mm(p);
5412 if (!mm)
5413 return 0;
5414 /* We move charges only when we move a owner of the mm */
5415 if (mm->owner == p) {
5416 VM_BUG_ON(mc.from);
5417 VM_BUG_ON(mc.to);
5418 VM_BUG_ON(mc.precharge);
5419 VM_BUG_ON(mc.moved_charge);
5420 VM_BUG_ON(mc.moved_swap);
5421 mem_cgroup_start_move(from);
5422 spin_lock(&mc.lock);
5423 mc.from = from;
5424 mc.to = memcg;
5425 spin_unlock(&mc.lock);
5426 /* We set mc.moving_task later */
5427
5428 ret = mem_cgroup_precharge_mc(mm);
5429 if (ret)
5430 mem_cgroup_clear_mc();
5431 }
5432 mmput(mm);
5433 }
5434 return ret;
5435 }
5436
5437 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5438 struct cgroup_taskset *tset)
5439 {
5440 mem_cgroup_clear_mc();
5441 }
5442
5443 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5444 unsigned long addr, unsigned long end,
5445 struct mm_walk *walk)
5446 {
5447 int ret = 0;
5448 struct vm_area_struct *vma = walk->private;
5449 pte_t *pte;
5450 spinlock_t *ptl;
5451 enum mc_target_type target_type;
5452 union mc_target target;
5453 struct page *page;
5454 struct page_cgroup *pc;
5455
5456 /*
5457 * We don't take compound_lock() here but no race with splitting thp
5458 * happens because:
5459 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5460 * under splitting, which means there's no concurrent thp split,
5461 * - if another thread runs into split_huge_page() just after we
5462 * entered this if-block, the thread must wait for page table lock
5463 * to be unlocked in __split_huge_page_splitting(), where the main
5464 * part of thp split is not executed yet.
5465 */
5466 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5467 if (mc.precharge < HPAGE_PMD_NR) {
5468 spin_unlock(&vma->vm_mm->page_table_lock);
5469 return 0;
5470 }
5471 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5472 if (target_type == MC_TARGET_PAGE) {
5473 page = target.page;
5474 if (!isolate_lru_page(page)) {
5475 pc = lookup_page_cgroup(page);
5476 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5477 pc, mc.from, mc.to,
5478 false)) {
5479 mc.precharge -= HPAGE_PMD_NR;
5480 mc.moved_charge += HPAGE_PMD_NR;
5481 }
5482 putback_lru_page(page);
5483 }
5484 put_page(page);
5485 }
5486 spin_unlock(&vma->vm_mm->page_table_lock);
5487 return 0;
5488 }
5489
5490 if (pmd_trans_unstable(pmd))
5491 return 0;
5492 retry:
5493 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5494 for (; addr != end; addr += PAGE_SIZE) {
5495 pte_t ptent = *(pte++);
5496 swp_entry_t ent;
5497
5498 if (!mc.precharge)
5499 break;
5500
5501 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5502 case MC_TARGET_PAGE:
5503 page = target.page;
5504 if (isolate_lru_page(page))
5505 goto put;
5506 pc = lookup_page_cgroup(page);
5507 if (!mem_cgroup_move_account(page, 1, pc,
5508 mc.from, mc.to, false)) {
5509 mc.precharge--;
5510 /* we uncharge from mc.from later. */
5511 mc.moved_charge++;
5512 }
5513 putback_lru_page(page);
5514 put: /* get_mctgt_type() gets the page */
5515 put_page(page);
5516 break;
5517 case MC_TARGET_SWAP:
5518 ent = target.ent;
5519 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5520 mc.precharge--;
5521 /* we fixup refcnts and charges later. */
5522 mc.moved_swap++;
5523 }
5524 break;
5525 default:
5526 break;
5527 }
5528 }
5529 pte_unmap_unlock(pte - 1, ptl);
5530 cond_resched();
5531
5532 if (addr != end) {
5533 /*
5534 * We have consumed all precharges we got in can_attach().
5535 * We try charge one by one, but don't do any additional
5536 * charges to mc.to if we have failed in charge once in attach()
5537 * phase.
5538 */
5539 ret = mem_cgroup_do_precharge(1);
5540 if (!ret)
5541 goto retry;
5542 }
5543
5544 return ret;
5545 }
5546
5547 static void mem_cgroup_move_charge(struct mm_struct *mm)
5548 {
5549 struct vm_area_struct *vma;
5550
5551 lru_add_drain_all();
5552 retry:
5553 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5554 /*
5555 * Someone who are holding the mmap_sem might be waiting in
5556 * waitq. So we cancel all extra charges, wake up all waiters,
5557 * and retry. Because we cancel precharges, we might not be able
5558 * to move enough charges, but moving charge is a best-effort
5559 * feature anyway, so it wouldn't be a big problem.
5560 */
5561 __mem_cgroup_clear_mc();
5562 cond_resched();
5563 goto retry;
5564 }
5565 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5566 int ret;
5567 struct mm_walk mem_cgroup_move_charge_walk = {
5568 .pmd_entry = mem_cgroup_move_charge_pte_range,
5569 .mm = mm,
5570 .private = vma,
5571 };
5572 if (is_vm_hugetlb_page(vma))
5573 continue;
5574 ret = walk_page_range(vma->vm_start, vma->vm_end,
5575 &mem_cgroup_move_charge_walk);
5576 if (ret)
5577 /*
5578 * means we have consumed all precharges and failed in
5579 * doing additional charge. Just abandon here.
5580 */
5581 break;
5582 }
5583 up_read(&mm->mmap_sem);
5584 }
5585
5586 static void mem_cgroup_move_task(struct cgroup *cont,
5587 struct cgroup_taskset *tset)
5588 {
5589 struct task_struct *p = cgroup_taskset_first(tset);
5590 struct mm_struct *mm = get_task_mm(p);
5591
5592 if (mm) {
5593 if (mc.to)
5594 mem_cgroup_move_charge(mm);
5595 mmput(mm);
5596 }
5597 if (mc.to)
5598 mem_cgroup_clear_mc();
5599 }
5600 #else /* !CONFIG_MMU */
5601 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5602 struct cgroup_taskset *tset)
5603 {
5604 return 0;
5605 }
5606 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5607 struct cgroup_taskset *tset)
5608 {
5609 }
5610 static void mem_cgroup_move_task(struct cgroup *cont,
5611 struct cgroup_taskset *tset)
5612 {
5613 }
5614 #endif
5615
5616 struct cgroup_subsys mem_cgroup_subsys = {
5617 .name = "memory",
5618 .subsys_id = mem_cgroup_subsys_id,
5619 .create = mem_cgroup_create,
5620 .pre_destroy = mem_cgroup_pre_destroy,
5621 .destroy = mem_cgroup_destroy,
5622 .can_attach = mem_cgroup_can_attach,
5623 .cancel_attach = mem_cgroup_cancel_attach,
5624 .attach = mem_cgroup_move_task,
5625 .base_cftypes = mem_cgroup_files,
5626 .early_init = 0,
5627 .use_id = 1,
5628 .__DEPRECATED_clear_css_refs = true,
5629 };
5630
5631 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5632 static int __init enable_swap_account(char *s)
5633 {
5634 /* consider enabled if no parameter or 1 is given */
5635 if (!strcmp(s, "1"))
5636 really_do_swap_account = 1;
5637 else if (!strcmp(s, "0"))
5638 really_do_swap_account = 0;
5639 return 1;
5640 }
5641 __setup("swapaccount=", enable_swap_account);
5642
5643 #endif