]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memcontrol.c
Merge tag 'trace-v5.10-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66
67 #include <linux/uaccess.h>
68
69 #include <trace/events/vmscan.h>
70
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75
76 /* Active memory cgroup to use from an interrupt context */
77 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
78
79 /* Socket memory accounting disabled? */
80 static bool cgroup_memory_nosocket;
81
82 /* Kernel memory accounting disabled? */
83 static bool cgroup_memory_nokmem;
84
85 /* Whether the swap controller is active */
86 #ifdef CONFIG_MEMCG_SWAP
87 bool cgroup_memory_noswap __read_mostly;
88 #else
89 #define cgroup_memory_noswap 1
90 #endif
91
92 #ifdef CONFIG_CGROUP_WRITEBACK
93 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
94 #endif
95
96 /* Whether legacy memory+swap accounting is active */
97 static bool do_memsw_account(void)
98 {
99 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
100 }
101
102 #define THRESHOLDS_EVENTS_TARGET 128
103 #define SOFTLIMIT_EVENTS_TARGET 1024
104
105 /*
106 * Cgroups above their limits are maintained in a RB-Tree, independent of
107 * their hierarchy representation
108 */
109
110 struct mem_cgroup_tree_per_node {
111 struct rb_root rb_root;
112 struct rb_node *rb_rightmost;
113 spinlock_t lock;
114 };
115
116 struct mem_cgroup_tree {
117 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
118 };
119
120 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
121
122 /* for OOM */
123 struct mem_cgroup_eventfd_list {
124 struct list_head list;
125 struct eventfd_ctx *eventfd;
126 };
127
128 /*
129 * cgroup_event represents events which userspace want to receive.
130 */
131 struct mem_cgroup_event {
132 /*
133 * memcg which the event belongs to.
134 */
135 struct mem_cgroup *memcg;
136 /*
137 * eventfd to signal userspace about the event.
138 */
139 struct eventfd_ctx *eventfd;
140 /*
141 * Each of these stored in a list by the cgroup.
142 */
143 struct list_head list;
144 /*
145 * register_event() callback will be used to add new userspace
146 * waiter for changes related to this event. Use eventfd_signal()
147 * on eventfd to send notification to userspace.
148 */
149 int (*register_event)(struct mem_cgroup *memcg,
150 struct eventfd_ctx *eventfd, const char *args);
151 /*
152 * unregister_event() callback will be called when userspace closes
153 * the eventfd or on cgroup removing. This callback must be set,
154 * if you want provide notification functionality.
155 */
156 void (*unregister_event)(struct mem_cgroup *memcg,
157 struct eventfd_ctx *eventfd);
158 /*
159 * All fields below needed to unregister event when
160 * userspace closes eventfd.
161 */
162 poll_table pt;
163 wait_queue_head_t *wqh;
164 wait_queue_entry_t wait;
165 struct work_struct remove;
166 };
167
168 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
169 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
170
171 /* Stuffs for move charges at task migration. */
172 /*
173 * Types of charges to be moved.
174 */
175 #define MOVE_ANON 0x1U
176 #define MOVE_FILE 0x2U
177 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
178
179 /* "mc" and its members are protected by cgroup_mutex */
180 static struct move_charge_struct {
181 spinlock_t lock; /* for from, to */
182 struct mm_struct *mm;
183 struct mem_cgroup *from;
184 struct mem_cgroup *to;
185 unsigned long flags;
186 unsigned long precharge;
187 unsigned long moved_charge;
188 unsigned long moved_swap;
189 struct task_struct *moving_task; /* a task moving charges */
190 wait_queue_head_t waitq; /* a waitq for other context */
191 } mc = {
192 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
193 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
194 };
195
196 /*
197 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
198 * limit reclaim to prevent infinite loops, if they ever occur.
199 */
200 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
201 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
202
203 /* for encoding cft->private value on file */
204 enum res_type {
205 _MEM,
206 _MEMSWAP,
207 _OOM_TYPE,
208 _KMEM,
209 _TCP,
210 };
211
212 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
213 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
214 #define MEMFILE_ATTR(val) ((val) & 0xffff)
215 /* Used for OOM nofiier */
216 #define OOM_CONTROL (0)
217
218 /*
219 * Iteration constructs for visiting all cgroups (under a tree). If
220 * loops are exited prematurely (break), mem_cgroup_iter_break() must
221 * be used for reference counting.
222 */
223 #define for_each_mem_cgroup_tree(iter, root) \
224 for (iter = mem_cgroup_iter(root, NULL, NULL); \
225 iter != NULL; \
226 iter = mem_cgroup_iter(root, iter, NULL))
227
228 #define for_each_mem_cgroup(iter) \
229 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(NULL, iter, NULL))
232
233 static inline bool should_force_charge(void)
234 {
235 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 (current->flags & PF_EXITING);
237 }
238
239 /* Some nice accessors for the vmpressure. */
240 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241 {
242 if (!memcg)
243 memcg = root_mem_cgroup;
244 return &memcg->vmpressure;
245 }
246
247 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
248 {
249 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
250 }
251
252 #ifdef CONFIG_MEMCG_KMEM
253 extern spinlock_t css_set_lock;
254
255 static void obj_cgroup_release(struct percpu_ref *ref)
256 {
257 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
258 struct mem_cgroup *memcg;
259 unsigned int nr_bytes;
260 unsigned int nr_pages;
261 unsigned long flags;
262
263 /*
264 * At this point all allocated objects are freed, and
265 * objcg->nr_charged_bytes can't have an arbitrary byte value.
266 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
267 *
268 * The following sequence can lead to it:
269 * 1) CPU0: objcg == stock->cached_objcg
270 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
271 * PAGE_SIZE bytes are charged
272 * 3) CPU1: a process from another memcg is allocating something,
273 * the stock if flushed,
274 * objcg->nr_charged_bytes = PAGE_SIZE - 92
275 * 5) CPU0: we do release this object,
276 * 92 bytes are added to stock->nr_bytes
277 * 6) CPU0: stock is flushed,
278 * 92 bytes are added to objcg->nr_charged_bytes
279 *
280 * In the result, nr_charged_bytes == PAGE_SIZE.
281 * This page will be uncharged in obj_cgroup_release().
282 */
283 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
284 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
285 nr_pages = nr_bytes >> PAGE_SHIFT;
286
287 spin_lock_irqsave(&css_set_lock, flags);
288 memcg = obj_cgroup_memcg(objcg);
289 if (nr_pages)
290 __memcg_kmem_uncharge(memcg, nr_pages);
291 list_del(&objcg->list);
292 mem_cgroup_put(memcg);
293 spin_unlock_irqrestore(&css_set_lock, flags);
294
295 percpu_ref_exit(ref);
296 kfree_rcu(objcg, rcu);
297 }
298
299 static struct obj_cgroup *obj_cgroup_alloc(void)
300 {
301 struct obj_cgroup *objcg;
302 int ret;
303
304 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
305 if (!objcg)
306 return NULL;
307
308 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
309 GFP_KERNEL);
310 if (ret) {
311 kfree(objcg);
312 return NULL;
313 }
314 INIT_LIST_HEAD(&objcg->list);
315 return objcg;
316 }
317
318 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
319 struct mem_cgroup *parent)
320 {
321 struct obj_cgroup *objcg, *iter;
322
323 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
324
325 spin_lock_irq(&css_set_lock);
326
327 /* Move active objcg to the parent's list */
328 xchg(&objcg->memcg, parent);
329 css_get(&parent->css);
330 list_add(&objcg->list, &parent->objcg_list);
331
332 /* Move already reparented objcgs to the parent's list */
333 list_for_each_entry(iter, &memcg->objcg_list, list) {
334 css_get(&parent->css);
335 xchg(&iter->memcg, parent);
336 css_put(&memcg->css);
337 }
338 list_splice(&memcg->objcg_list, &parent->objcg_list);
339
340 spin_unlock_irq(&css_set_lock);
341
342 percpu_ref_kill(&objcg->refcnt);
343 }
344
345 /*
346 * This will be used as a shrinker list's index.
347 * The main reason for not using cgroup id for this:
348 * this works better in sparse environments, where we have a lot of memcgs,
349 * but only a few kmem-limited. Or also, if we have, for instance, 200
350 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
351 * 200 entry array for that.
352 *
353 * The current size of the caches array is stored in memcg_nr_cache_ids. It
354 * will double each time we have to increase it.
355 */
356 static DEFINE_IDA(memcg_cache_ida);
357 int memcg_nr_cache_ids;
358
359 /* Protects memcg_nr_cache_ids */
360 static DECLARE_RWSEM(memcg_cache_ids_sem);
361
362 void memcg_get_cache_ids(void)
363 {
364 down_read(&memcg_cache_ids_sem);
365 }
366
367 void memcg_put_cache_ids(void)
368 {
369 up_read(&memcg_cache_ids_sem);
370 }
371
372 /*
373 * MIN_SIZE is different than 1, because we would like to avoid going through
374 * the alloc/free process all the time. In a small machine, 4 kmem-limited
375 * cgroups is a reasonable guess. In the future, it could be a parameter or
376 * tunable, but that is strictly not necessary.
377 *
378 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
379 * this constant directly from cgroup, but it is understandable that this is
380 * better kept as an internal representation in cgroup.c. In any case, the
381 * cgrp_id space is not getting any smaller, and we don't have to necessarily
382 * increase ours as well if it increases.
383 */
384 #define MEMCG_CACHES_MIN_SIZE 4
385 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
386
387 /*
388 * A lot of the calls to the cache allocation functions are expected to be
389 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
390 * conditional to this static branch, we'll have to allow modules that does
391 * kmem_cache_alloc and the such to see this symbol as well
392 */
393 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
394 EXPORT_SYMBOL(memcg_kmem_enabled_key);
395 #endif
396
397 static int memcg_shrinker_map_size;
398 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
399
400 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
401 {
402 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
403 }
404
405 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
406 int size, int old_size)
407 {
408 struct memcg_shrinker_map *new, *old;
409 int nid;
410
411 lockdep_assert_held(&memcg_shrinker_map_mutex);
412
413 for_each_node(nid) {
414 old = rcu_dereference_protected(
415 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
416 /* Not yet online memcg */
417 if (!old)
418 return 0;
419
420 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
421 if (!new)
422 return -ENOMEM;
423
424 /* Set all old bits, clear all new bits */
425 memset(new->map, (int)0xff, old_size);
426 memset((void *)new->map + old_size, 0, size - old_size);
427
428 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
429 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
430 }
431
432 return 0;
433 }
434
435 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
436 {
437 struct mem_cgroup_per_node *pn;
438 struct memcg_shrinker_map *map;
439 int nid;
440
441 if (mem_cgroup_is_root(memcg))
442 return;
443
444 for_each_node(nid) {
445 pn = mem_cgroup_nodeinfo(memcg, nid);
446 map = rcu_dereference_protected(pn->shrinker_map, true);
447 if (map)
448 kvfree(map);
449 rcu_assign_pointer(pn->shrinker_map, NULL);
450 }
451 }
452
453 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
454 {
455 struct memcg_shrinker_map *map;
456 int nid, size, ret = 0;
457
458 if (mem_cgroup_is_root(memcg))
459 return 0;
460
461 mutex_lock(&memcg_shrinker_map_mutex);
462 size = memcg_shrinker_map_size;
463 for_each_node(nid) {
464 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
465 if (!map) {
466 memcg_free_shrinker_maps(memcg);
467 ret = -ENOMEM;
468 break;
469 }
470 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
471 }
472 mutex_unlock(&memcg_shrinker_map_mutex);
473
474 return ret;
475 }
476
477 int memcg_expand_shrinker_maps(int new_id)
478 {
479 int size, old_size, ret = 0;
480 struct mem_cgroup *memcg;
481
482 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
483 old_size = memcg_shrinker_map_size;
484 if (size <= old_size)
485 return 0;
486
487 mutex_lock(&memcg_shrinker_map_mutex);
488 if (!root_mem_cgroup)
489 goto unlock;
490
491 for_each_mem_cgroup(memcg) {
492 if (mem_cgroup_is_root(memcg))
493 continue;
494 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
495 if (ret) {
496 mem_cgroup_iter_break(NULL, memcg);
497 goto unlock;
498 }
499 }
500 unlock:
501 if (!ret)
502 memcg_shrinker_map_size = size;
503 mutex_unlock(&memcg_shrinker_map_mutex);
504 return ret;
505 }
506
507 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
508 {
509 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
510 struct memcg_shrinker_map *map;
511
512 rcu_read_lock();
513 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
514 /* Pairs with smp mb in shrink_slab() */
515 smp_mb__before_atomic();
516 set_bit(shrinker_id, map->map);
517 rcu_read_unlock();
518 }
519 }
520
521 /**
522 * mem_cgroup_css_from_page - css of the memcg associated with a page
523 * @page: page of interest
524 *
525 * If memcg is bound to the default hierarchy, css of the memcg associated
526 * with @page is returned. The returned css remains associated with @page
527 * until it is released.
528 *
529 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
530 * is returned.
531 */
532 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
533 {
534 struct mem_cgroup *memcg;
535
536 memcg = page->mem_cgroup;
537
538 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
539 memcg = root_mem_cgroup;
540
541 return &memcg->css;
542 }
543
544 /**
545 * page_cgroup_ino - return inode number of the memcg a page is charged to
546 * @page: the page
547 *
548 * Look up the closest online ancestor of the memory cgroup @page is charged to
549 * and return its inode number or 0 if @page is not charged to any cgroup. It
550 * is safe to call this function without holding a reference to @page.
551 *
552 * Note, this function is inherently racy, because there is nothing to prevent
553 * the cgroup inode from getting torn down and potentially reallocated a moment
554 * after page_cgroup_ino() returns, so it only should be used by callers that
555 * do not care (such as procfs interfaces).
556 */
557 ino_t page_cgroup_ino(struct page *page)
558 {
559 struct mem_cgroup *memcg;
560 unsigned long ino = 0;
561
562 rcu_read_lock();
563 memcg = page->mem_cgroup;
564
565 /*
566 * The lowest bit set means that memcg isn't a valid
567 * memcg pointer, but a obj_cgroups pointer.
568 * In this case the page is shared and doesn't belong
569 * to any specific memory cgroup.
570 */
571 if ((unsigned long) memcg & 0x1UL)
572 memcg = NULL;
573
574 while (memcg && !(memcg->css.flags & CSS_ONLINE))
575 memcg = parent_mem_cgroup(memcg);
576 if (memcg)
577 ino = cgroup_ino(memcg->css.cgroup);
578 rcu_read_unlock();
579 return ino;
580 }
581
582 static struct mem_cgroup_per_node *
583 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
584 {
585 int nid = page_to_nid(page);
586
587 return memcg->nodeinfo[nid];
588 }
589
590 static struct mem_cgroup_tree_per_node *
591 soft_limit_tree_node(int nid)
592 {
593 return soft_limit_tree.rb_tree_per_node[nid];
594 }
595
596 static struct mem_cgroup_tree_per_node *
597 soft_limit_tree_from_page(struct page *page)
598 {
599 int nid = page_to_nid(page);
600
601 return soft_limit_tree.rb_tree_per_node[nid];
602 }
603
604 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
605 struct mem_cgroup_tree_per_node *mctz,
606 unsigned long new_usage_in_excess)
607 {
608 struct rb_node **p = &mctz->rb_root.rb_node;
609 struct rb_node *parent = NULL;
610 struct mem_cgroup_per_node *mz_node;
611 bool rightmost = true;
612
613 if (mz->on_tree)
614 return;
615
616 mz->usage_in_excess = new_usage_in_excess;
617 if (!mz->usage_in_excess)
618 return;
619 while (*p) {
620 parent = *p;
621 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
622 tree_node);
623 if (mz->usage_in_excess < mz_node->usage_in_excess) {
624 p = &(*p)->rb_left;
625 rightmost = false;
626 }
627
628 /*
629 * We can't avoid mem cgroups that are over their soft
630 * limit by the same amount
631 */
632 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
633 p = &(*p)->rb_right;
634 }
635
636 if (rightmost)
637 mctz->rb_rightmost = &mz->tree_node;
638
639 rb_link_node(&mz->tree_node, parent, p);
640 rb_insert_color(&mz->tree_node, &mctz->rb_root);
641 mz->on_tree = true;
642 }
643
644 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
645 struct mem_cgroup_tree_per_node *mctz)
646 {
647 if (!mz->on_tree)
648 return;
649
650 if (&mz->tree_node == mctz->rb_rightmost)
651 mctz->rb_rightmost = rb_prev(&mz->tree_node);
652
653 rb_erase(&mz->tree_node, &mctz->rb_root);
654 mz->on_tree = false;
655 }
656
657 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
658 struct mem_cgroup_tree_per_node *mctz)
659 {
660 unsigned long flags;
661
662 spin_lock_irqsave(&mctz->lock, flags);
663 __mem_cgroup_remove_exceeded(mz, mctz);
664 spin_unlock_irqrestore(&mctz->lock, flags);
665 }
666
667 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
668 {
669 unsigned long nr_pages = page_counter_read(&memcg->memory);
670 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
671 unsigned long excess = 0;
672
673 if (nr_pages > soft_limit)
674 excess = nr_pages - soft_limit;
675
676 return excess;
677 }
678
679 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
680 {
681 unsigned long excess;
682 struct mem_cgroup_per_node *mz;
683 struct mem_cgroup_tree_per_node *mctz;
684
685 mctz = soft_limit_tree_from_page(page);
686 if (!mctz)
687 return;
688 /*
689 * Necessary to update all ancestors when hierarchy is used.
690 * because their event counter is not touched.
691 */
692 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
693 mz = mem_cgroup_page_nodeinfo(memcg, page);
694 excess = soft_limit_excess(memcg);
695 /*
696 * We have to update the tree if mz is on RB-tree or
697 * mem is over its softlimit.
698 */
699 if (excess || mz->on_tree) {
700 unsigned long flags;
701
702 spin_lock_irqsave(&mctz->lock, flags);
703 /* if on-tree, remove it */
704 if (mz->on_tree)
705 __mem_cgroup_remove_exceeded(mz, mctz);
706 /*
707 * Insert again. mz->usage_in_excess will be updated.
708 * If excess is 0, no tree ops.
709 */
710 __mem_cgroup_insert_exceeded(mz, mctz, excess);
711 spin_unlock_irqrestore(&mctz->lock, flags);
712 }
713 }
714 }
715
716 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
717 {
718 struct mem_cgroup_tree_per_node *mctz;
719 struct mem_cgroup_per_node *mz;
720 int nid;
721
722 for_each_node(nid) {
723 mz = mem_cgroup_nodeinfo(memcg, nid);
724 mctz = soft_limit_tree_node(nid);
725 if (mctz)
726 mem_cgroup_remove_exceeded(mz, mctz);
727 }
728 }
729
730 static struct mem_cgroup_per_node *
731 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
732 {
733 struct mem_cgroup_per_node *mz;
734
735 retry:
736 mz = NULL;
737 if (!mctz->rb_rightmost)
738 goto done; /* Nothing to reclaim from */
739
740 mz = rb_entry(mctz->rb_rightmost,
741 struct mem_cgroup_per_node, tree_node);
742 /*
743 * Remove the node now but someone else can add it back,
744 * we will to add it back at the end of reclaim to its correct
745 * position in the tree.
746 */
747 __mem_cgroup_remove_exceeded(mz, mctz);
748 if (!soft_limit_excess(mz->memcg) ||
749 !css_tryget(&mz->memcg->css))
750 goto retry;
751 done:
752 return mz;
753 }
754
755 static struct mem_cgroup_per_node *
756 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
757 {
758 struct mem_cgroup_per_node *mz;
759
760 spin_lock_irq(&mctz->lock);
761 mz = __mem_cgroup_largest_soft_limit_node(mctz);
762 spin_unlock_irq(&mctz->lock);
763 return mz;
764 }
765
766 /**
767 * __mod_memcg_state - update cgroup memory statistics
768 * @memcg: the memory cgroup
769 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
770 * @val: delta to add to the counter, can be negative
771 */
772 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
773 {
774 long x, threshold = MEMCG_CHARGE_BATCH;
775
776 if (mem_cgroup_disabled())
777 return;
778
779 if (memcg_stat_item_in_bytes(idx))
780 threshold <<= PAGE_SHIFT;
781
782 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
783 if (unlikely(abs(x) > threshold)) {
784 struct mem_cgroup *mi;
785
786 /*
787 * Batch local counters to keep them in sync with
788 * the hierarchical ones.
789 */
790 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
791 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
792 atomic_long_add(x, &mi->vmstats[idx]);
793 x = 0;
794 }
795 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
796 }
797
798 static struct mem_cgroup_per_node *
799 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
800 {
801 struct mem_cgroup *parent;
802
803 parent = parent_mem_cgroup(pn->memcg);
804 if (!parent)
805 return NULL;
806 return mem_cgroup_nodeinfo(parent, nid);
807 }
808
809 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
810 int val)
811 {
812 struct mem_cgroup_per_node *pn;
813 struct mem_cgroup *memcg;
814 long x, threshold = MEMCG_CHARGE_BATCH;
815
816 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
817 memcg = pn->memcg;
818
819 /* Update memcg */
820 __mod_memcg_state(memcg, idx, val);
821
822 /* Update lruvec */
823 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
824
825 if (vmstat_item_in_bytes(idx))
826 threshold <<= PAGE_SHIFT;
827
828 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
829 if (unlikely(abs(x) > threshold)) {
830 pg_data_t *pgdat = lruvec_pgdat(lruvec);
831 struct mem_cgroup_per_node *pi;
832
833 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
834 atomic_long_add(x, &pi->lruvec_stat[idx]);
835 x = 0;
836 }
837 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
838 }
839
840 /**
841 * __mod_lruvec_state - update lruvec memory statistics
842 * @lruvec: the lruvec
843 * @idx: the stat item
844 * @val: delta to add to the counter, can be negative
845 *
846 * The lruvec is the intersection of the NUMA node and a cgroup. This
847 * function updates the all three counters that are affected by a
848 * change of state at this level: per-node, per-cgroup, per-lruvec.
849 */
850 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
851 int val)
852 {
853 /* Update node */
854 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
855
856 /* Update memcg and lruvec */
857 if (!mem_cgroup_disabled())
858 __mod_memcg_lruvec_state(lruvec, idx, val);
859 }
860
861 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
862 {
863 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
864 struct mem_cgroup *memcg;
865 struct lruvec *lruvec;
866
867 rcu_read_lock();
868 memcg = mem_cgroup_from_obj(p);
869
870 /*
871 * Untracked pages have no memcg, no lruvec. Update only the
872 * node. If we reparent the slab objects to the root memcg,
873 * when we free the slab object, we need to update the per-memcg
874 * vmstats to keep it correct for the root memcg.
875 */
876 if (!memcg) {
877 __mod_node_page_state(pgdat, idx, val);
878 } else {
879 lruvec = mem_cgroup_lruvec(memcg, pgdat);
880 __mod_lruvec_state(lruvec, idx, val);
881 }
882 rcu_read_unlock();
883 }
884
885 void mod_memcg_obj_state(void *p, int idx, int val)
886 {
887 struct mem_cgroup *memcg;
888
889 rcu_read_lock();
890 memcg = mem_cgroup_from_obj(p);
891 if (memcg)
892 mod_memcg_state(memcg, idx, val);
893 rcu_read_unlock();
894 }
895
896 /**
897 * __count_memcg_events - account VM events in a cgroup
898 * @memcg: the memory cgroup
899 * @idx: the event item
900 * @count: the number of events that occured
901 */
902 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
903 unsigned long count)
904 {
905 unsigned long x;
906
907 if (mem_cgroup_disabled())
908 return;
909
910 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
911 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
912 struct mem_cgroup *mi;
913
914 /*
915 * Batch local counters to keep them in sync with
916 * the hierarchical ones.
917 */
918 __this_cpu_add(memcg->vmstats_local->events[idx], x);
919 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
920 atomic_long_add(x, &mi->vmevents[idx]);
921 x = 0;
922 }
923 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
924 }
925
926 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
927 {
928 return atomic_long_read(&memcg->vmevents[event]);
929 }
930
931 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
932 {
933 long x = 0;
934 int cpu;
935
936 for_each_possible_cpu(cpu)
937 x += per_cpu(memcg->vmstats_local->events[event], cpu);
938 return x;
939 }
940
941 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
942 struct page *page,
943 int nr_pages)
944 {
945 /* pagein of a big page is an event. So, ignore page size */
946 if (nr_pages > 0)
947 __count_memcg_events(memcg, PGPGIN, 1);
948 else {
949 __count_memcg_events(memcg, PGPGOUT, 1);
950 nr_pages = -nr_pages; /* for event */
951 }
952
953 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
954 }
955
956 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
957 enum mem_cgroup_events_target target)
958 {
959 unsigned long val, next;
960
961 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
962 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
963 /* from time_after() in jiffies.h */
964 if ((long)(next - val) < 0) {
965 switch (target) {
966 case MEM_CGROUP_TARGET_THRESH:
967 next = val + THRESHOLDS_EVENTS_TARGET;
968 break;
969 case MEM_CGROUP_TARGET_SOFTLIMIT:
970 next = val + SOFTLIMIT_EVENTS_TARGET;
971 break;
972 default:
973 break;
974 }
975 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
976 return true;
977 }
978 return false;
979 }
980
981 /*
982 * Check events in order.
983 *
984 */
985 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
986 {
987 /* threshold event is triggered in finer grain than soft limit */
988 if (unlikely(mem_cgroup_event_ratelimit(memcg,
989 MEM_CGROUP_TARGET_THRESH))) {
990 bool do_softlimit;
991
992 do_softlimit = mem_cgroup_event_ratelimit(memcg,
993 MEM_CGROUP_TARGET_SOFTLIMIT);
994 mem_cgroup_threshold(memcg);
995 if (unlikely(do_softlimit))
996 mem_cgroup_update_tree(memcg, page);
997 }
998 }
999
1000 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1001 {
1002 /*
1003 * mm_update_next_owner() may clear mm->owner to NULL
1004 * if it races with swapoff, page migration, etc.
1005 * So this can be called with p == NULL.
1006 */
1007 if (unlikely(!p))
1008 return NULL;
1009
1010 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1011 }
1012 EXPORT_SYMBOL(mem_cgroup_from_task);
1013
1014 /**
1015 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1016 * @mm: mm from which memcg should be extracted. It can be NULL.
1017 *
1018 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1019 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1020 * returned.
1021 */
1022 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1023 {
1024 struct mem_cgroup *memcg;
1025
1026 if (mem_cgroup_disabled())
1027 return NULL;
1028
1029 rcu_read_lock();
1030 do {
1031 /*
1032 * Page cache insertions can happen withou an
1033 * actual mm context, e.g. during disk probing
1034 * on boot, loopback IO, acct() writes etc.
1035 */
1036 if (unlikely(!mm))
1037 memcg = root_mem_cgroup;
1038 else {
1039 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1040 if (unlikely(!memcg))
1041 memcg = root_mem_cgroup;
1042 }
1043 } while (!css_tryget(&memcg->css));
1044 rcu_read_unlock();
1045 return memcg;
1046 }
1047 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1048
1049 /**
1050 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1051 * @page: page from which memcg should be extracted.
1052 *
1053 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1054 * root_mem_cgroup is returned.
1055 */
1056 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1057 {
1058 struct mem_cgroup *memcg = page->mem_cgroup;
1059
1060 if (mem_cgroup_disabled())
1061 return NULL;
1062
1063 rcu_read_lock();
1064 /* Page should not get uncharged and freed memcg under us. */
1065 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1066 memcg = root_mem_cgroup;
1067 rcu_read_unlock();
1068 return memcg;
1069 }
1070 EXPORT_SYMBOL(get_mem_cgroup_from_page);
1071
1072 static __always_inline struct mem_cgroup *active_memcg(void)
1073 {
1074 if (in_interrupt())
1075 return this_cpu_read(int_active_memcg);
1076 else
1077 return current->active_memcg;
1078 }
1079
1080 static __always_inline struct mem_cgroup *get_active_memcg(void)
1081 {
1082 struct mem_cgroup *memcg;
1083
1084 rcu_read_lock();
1085 memcg = active_memcg();
1086 if (memcg) {
1087 /* current->active_memcg must hold a ref. */
1088 if (WARN_ON_ONCE(!css_tryget(&memcg->css)))
1089 memcg = root_mem_cgroup;
1090 else
1091 memcg = current->active_memcg;
1092 }
1093 rcu_read_unlock();
1094
1095 return memcg;
1096 }
1097
1098 static __always_inline bool memcg_kmem_bypass(void)
1099 {
1100 /* Allow remote memcg charging from any context. */
1101 if (unlikely(active_memcg()))
1102 return false;
1103
1104 /* Memcg to charge can't be determined. */
1105 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1106 return true;
1107
1108 return false;
1109 }
1110
1111 /**
1112 * If active memcg is set, do not fallback to current->mm->memcg.
1113 */
1114 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1115 {
1116 if (memcg_kmem_bypass())
1117 return NULL;
1118
1119 if (unlikely(active_memcg()))
1120 return get_active_memcg();
1121
1122 return get_mem_cgroup_from_mm(current->mm);
1123 }
1124
1125 /**
1126 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1127 * @root: hierarchy root
1128 * @prev: previously returned memcg, NULL on first invocation
1129 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1130 *
1131 * Returns references to children of the hierarchy below @root, or
1132 * @root itself, or %NULL after a full round-trip.
1133 *
1134 * Caller must pass the return value in @prev on subsequent
1135 * invocations for reference counting, or use mem_cgroup_iter_break()
1136 * to cancel a hierarchy walk before the round-trip is complete.
1137 *
1138 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1139 * in the hierarchy among all concurrent reclaimers operating on the
1140 * same node.
1141 */
1142 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1143 struct mem_cgroup *prev,
1144 struct mem_cgroup_reclaim_cookie *reclaim)
1145 {
1146 struct mem_cgroup_reclaim_iter *iter;
1147 struct cgroup_subsys_state *css = NULL;
1148 struct mem_cgroup *memcg = NULL;
1149 struct mem_cgroup *pos = NULL;
1150
1151 if (mem_cgroup_disabled())
1152 return NULL;
1153
1154 if (!root)
1155 root = root_mem_cgroup;
1156
1157 if (prev && !reclaim)
1158 pos = prev;
1159
1160 if (!root->use_hierarchy && root != root_mem_cgroup) {
1161 if (prev)
1162 goto out;
1163 return root;
1164 }
1165
1166 rcu_read_lock();
1167
1168 if (reclaim) {
1169 struct mem_cgroup_per_node *mz;
1170
1171 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1172 iter = &mz->iter;
1173
1174 if (prev && reclaim->generation != iter->generation)
1175 goto out_unlock;
1176
1177 while (1) {
1178 pos = READ_ONCE(iter->position);
1179 if (!pos || css_tryget(&pos->css))
1180 break;
1181 /*
1182 * css reference reached zero, so iter->position will
1183 * be cleared by ->css_released. However, we should not
1184 * rely on this happening soon, because ->css_released
1185 * is called from a work queue, and by busy-waiting we
1186 * might block it. So we clear iter->position right
1187 * away.
1188 */
1189 (void)cmpxchg(&iter->position, pos, NULL);
1190 }
1191 }
1192
1193 if (pos)
1194 css = &pos->css;
1195
1196 for (;;) {
1197 css = css_next_descendant_pre(css, &root->css);
1198 if (!css) {
1199 /*
1200 * Reclaimers share the hierarchy walk, and a
1201 * new one might jump in right at the end of
1202 * the hierarchy - make sure they see at least
1203 * one group and restart from the beginning.
1204 */
1205 if (!prev)
1206 continue;
1207 break;
1208 }
1209
1210 /*
1211 * Verify the css and acquire a reference. The root
1212 * is provided by the caller, so we know it's alive
1213 * and kicking, and don't take an extra reference.
1214 */
1215 memcg = mem_cgroup_from_css(css);
1216
1217 if (css == &root->css)
1218 break;
1219
1220 if (css_tryget(css))
1221 break;
1222
1223 memcg = NULL;
1224 }
1225
1226 if (reclaim) {
1227 /*
1228 * The position could have already been updated by a competing
1229 * thread, so check that the value hasn't changed since we read
1230 * it to avoid reclaiming from the same cgroup twice.
1231 */
1232 (void)cmpxchg(&iter->position, pos, memcg);
1233
1234 if (pos)
1235 css_put(&pos->css);
1236
1237 if (!memcg)
1238 iter->generation++;
1239 else if (!prev)
1240 reclaim->generation = iter->generation;
1241 }
1242
1243 out_unlock:
1244 rcu_read_unlock();
1245 out:
1246 if (prev && prev != root)
1247 css_put(&prev->css);
1248
1249 return memcg;
1250 }
1251
1252 /**
1253 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1254 * @root: hierarchy root
1255 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1256 */
1257 void mem_cgroup_iter_break(struct mem_cgroup *root,
1258 struct mem_cgroup *prev)
1259 {
1260 if (!root)
1261 root = root_mem_cgroup;
1262 if (prev && prev != root)
1263 css_put(&prev->css);
1264 }
1265
1266 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1267 struct mem_cgroup *dead_memcg)
1268 {
1269 struct mem_cgroup_reclaim_iter *iter;
1270 struct mem_cgroup_per_node *mz;
1271 int nid;
1272
1273 for_each_node(nid) {
1274 mz = mem_cgroup_nodeinfo(from, nid);
1275 iter = &mz->iter;
1276 cmpxchg(&iter->position, dead_memcg, NULL);
1277 }
1278 }
1279
1280 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1281 {
1282 struct mem_cgroup *memcg = dead_memcg;
1283 struct mem_cgroup *last;
1284
1285 do {
1286 __invalidate_reclaim_iterators(memcg, dead_memcg);
1287 last = memcg;
1288 } while ((memcg = parent_mem_cgroup(memcg)));
1289
1290 /*
1291 * When cgruop1 non-hierarchy mode is used,
1292 * parent_mem_cgroup() does not walk all the way up to the
1293 * cgroup root (root_mem_cgroup). So we have to handle
1294 * dead_memcg from cgroup root separately.
1295 */
1296 if (last != root_mem_cgroup)
1297 __invalidate_reclaim_iterators(root_mem_cgroup,
1298 dead_memcg);
1299 }
1300
1301 /**
1302 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1303 * @memcg: hierarchy root
1304 * @fn: function to call for each task
1305 * @arg: argument passed to @fn
1306 *
1307 * This function iterates over tasks attached to @memcg or to any of its
1308 * descendants and calls @fn for each task. If @fn returns a non-zero
1309 * value, the function breaks the iteration loop and returns the value.
1310 * Otherwise, it will iterate over all tasks and return 0.
1311 *
1312 * This function must not be called for the root memory cgroup.
1313 */
1314 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1315 int (*fn)(struct task_struct *, void *), void *arg)
1316 {
1317 struct mem_cgroup *iter;
1318 int ret = 0;
1319
1320 BUG_ON(memcg == root_mem_cgroup);
1321
1322 for_each_mem_cgroup_tree(iter, memcg) {
1323 struct css_task_iter it;
1324 struct task_struct *task;
1325
1326 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1327 while (!ret && (task = css_task_iter_next(&it)))
1328 ret = fn(task, arg);
1329 css_task_iter_end(&it);
1330 if (ret) {
1331 mem_cgroup_iter_break(memcg, iter);
1332 break;
1333 }
1334 }
1335 return ret;
1336 }
1337
1338 /**
1339 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1340 * @page: the page
1341 * @pgdat: pgdat of the page
1342 *
1343 * This function relies on page->mem_cgroup being stable - see the
1344 * access rules in commit_charge().
1345 */
1346 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1347 {
1348 struct mem_cgroup_per_node *mz;
1349 struct mem_cgroup *memcg;
1350 struct lruvec *lruvec;
1351
1352 if (mem_cgroup_disabled()) {
1353 lruvec = &pgdat->__lruvec;
1354 goto out;
1355 }
1356
1357 memcg = page->mem_cgroup;
1358 /*
1359 * Swapcache readahead pages are added to the LRU - and
1360 * possibly migrated - before they are charged.
1361 */
1362 if (!memcg)
1363 memcg = root_mem_cgroup;
1364
1365 mz = mem_cgroup_page_nodeinfo(memcg, page);
1366 lruvec = &mz->lruvec;
1367 out:
1368 /*
1369 * Since a node can be onlined after the mem_cgroup was created,
1370 * we have to be prepared to initialize lruvec->zone here;
1371 * and if offlined then reonlined, we need to reinitialize it.
1372 */
1373 if (unlikely(lruvec->pgdat != pgdat))
1374 lruvec->pgdat = pgdat;
1375 return lruvec;
1376 }
1377
1378 /**
1379 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1380 * @lruvec: mem_cgroup per zone lru vector
1381 * @lru: index of lru list the page is sitting on
1382 * @zid: zone id of the accounted pages
1383 * @nr_pages: positive when adding or negative when removing
1384 *
1385 * This function must be called under lru_lock, just before a page is added
1386 * to or just after a page is removed from an lru list (that ordering being
1387 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1388 */
1389 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1390 int zid, int nr_pages)
1391 {
1392 struct mem_cgroup_per_node *mz;
1393 unsigned long *lru_size;
1394 long size;
1395
1396 if (mem_cgroup_disabled())
1397 return;
1398
1399 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1400 lru_size = &mz->lru_zone_size[zid][lru];
1401
1402 if (nr_pages < 0)
1403 *lru_size += nr_pages;
1404
1405 size = *lru_size;
1406 if (WARN_ONCE(size < 0,
1407 "%s(%p, %d, %d): lru_size %ld\n",
1408 __func__, lruvec, lru, nr_pages, size)) {
1409 VM_BUG_ON(1);
1410 *lru_size = 0;
1411 }
1412
1413 if (nr_pages > 0)
1414 *lru_size += nr_pages;
1415 }
1416
1417 /**
1418 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1419 * @memcg: the memory cgroup
1420 *
1421 * Returns the maximum amount of memory @mem can be charged with, in
1422 * pages.
1423 */
1424 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1425 {
1426 unsigned long margin = 0;
1427 unsigned long count;
1428 unsigned long limit;
1429
1430 count = page_counter_read(&memcg->memory);
1431 limit = READ_ONCE(memcg->memory.max);
1432 if (count < limit)
1433 margin = limit - count;
1434
1435 if (do_memsw_account()) {
1436 count = page_counter_read(&memcg->memsw);
1437 limit = READ_ONCE(memcg->memsw.max);
1438 if (count < limit)
1439 margin = min(margin, limit - count);
1440 else
1441 margin = 0;
1442 }
1443
1444 return margin;
1445 }
1446
1447 /*
1448 * A routine for checking "mem" is under move_account() or not.
1449 *
1450 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1451 * moving cgroups. This is for waiting at high-memory pressure
1452 * caused by "move".
1453 */
1454 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1455 {
1456 struct mem_cgroup *from;
1457 struct mem_cgroup *to;
1458 bool ret = false;
1459 /*
1460 * Unlike task_move routines, we access mc.to, mc.from not under
1461 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1462 */
1463 spin_lock(&mc.lock);
1464 from = mc.from;
1465 to = mc.to;
1466 if (!from)
1467 goto unlock;
1468
1469 ret = mem_cgroup_is_descendant(from, memcg) ||
1470 mem_cgroup_is_descendant(to, memcg);
1471 unlock:
1472 spin_unlock(&mc.lock);
1473 return ret;
1474 }
1475
1476 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1477 {
1478 if (mc.moving_task && current != mc.moving_task) {
1479 if (mem_cgroup_under_move(memcg)) {
1480 DEFINE_WAIT(wait);
1481 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1482 /* moving charge context might have finished. */
1483 if (mc.moving_task)
1484 schedule();
1485 finish_wait(&mc.waitq, &wait);
1486 return true;
1487 }
1488 }
1489 return false;
1490 }
1491
1492 struct memory_stat {
1493 const char *name;
1494 unsigned int ratio;
1495 unsigned int idx;
1496 };
1497
1498 static struct memory_stat memory_stats[] = {
1499 { "anon", PAGE_SIZE, NR_ANON_MAPPED },
1500 { "file", PAGE_SIZE, NR_FILE_PAGES },
1501 { "kernel_stack", 1024, NR_KERNEL_STACK_KB },
1502 { "percpu", 1, MEMCG_PERCPU_B },
1503 { "sock", PAGE_SIZE, MEMCG_SOCK },
1504 { "shmem", PAGE_SIZE, NR_SHMEM },
1505 { "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
1506 { "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
1507 { "file_writeback", PAGE_SIZE, NR_WRITEBACK },
1508 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1509 /*
1510 * The ratio will be initialized in memory_stats_init(). Because
1511 * on some architectures, the macro of HPAGE_PMD_SIZE is not
1512 * constant(e.g. powerpc).
1513 */
1514 { "anon_thp", 0, NR_ANON_THPS },
1515 #endif
1516 { "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
1517 { "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
1518 { "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
1519 { "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
1520 { "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
1521
1522 /*
1523 * Note: The slab_reclaimable and slab_unreclaimable must be
1524 * together and slab_reclaimable must be in front.
1525 */
1526 { "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
1527 { "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
1528
1529 /* The memory events */
1530 { "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
1531 { "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
1532 { "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
1533 { "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
1534 { "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
1535 { "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
1536 { "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
1537 };
1538
1539 static int __init memory_stats_init(void)
1540 {
1541 int i;
1542
1543 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1544 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1545 if (memory_stats[i].idx == NR_ANON_THPS)
1546 memory_stats[i].ratio = HPAGE_PMD_SIZE;
1547 #endif
1548 VM_BUG_ON(!memory_stats[i].ratio);
1549 VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
1550 }
1551
1552 return 0;
1553 }
1554 pure_initcall(memory_stats_init);
1555
1556 static char *memory_stat_format(struct mem_cgroup *memcg)
1557 {
1558 struct seq_buf s;
1559 int i;
1560
1561 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1562 if (!s.buffer)
1563 return NULL;
1564
1565 /*
1566 * Provide statistics on the state of the memory subsystem as
1567 * well as cumulative event counters that show past behavior.
1568 *
1569 * This list is ordered following a combination of these gradients:
1570 * 1) generic big picture -> specifics and details
1571 * 2) reflecting userspace activity -> reflecting kernel heuristics
1572 *
1573 * Current memory state:
1574 */
1575
1576 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1577 u64 size;
1578
1579 size = memcg_page_state(memcg, memory_stats[i].idx);
1580 size *= memory_stats[i].ratio;
1581 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1582
1583 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1584 size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1585 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
1586 seq_buf_printf(&s, "slab %llu\n", size);
1587 }
1588 }
1589
1590 /* Accumulated memory events */
1591
1592 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1593 memcg_events(memcg, PGFAULT));
1594 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1595 memcg_events(memcg, PGMAJFAULT));
1596 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1597 memcg_events(memcg, PGREFILL));
1598 seq_buf_printf(&s, "pgscan %lu\n",
1599 memcg_events(memcg, PGSCAN_KSWAPD) +
1600 memcg_events(memcg, PGSCAN_DIRECT));
1601 seq_buf_printf(&s, "pgsteal %lu\n",
1602 memcg_events(memcg, PGSTEAL_KSWAPD) +
1603 memcg_events(memcg, PGSTEAL_DIRECT));
1604 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1605 memcg_events(memcg, PGACTIVATE));
1606 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1607 memcg_events(memcg, PGDEACTIVATE));
1608 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1609 memcg_events(memcg, PGLAZYFREE));
1610 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1611 memcg_events(memcg, PGLAZYFREED));
1612
1613 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1614 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1615 memcg_events(memcg, THP_FAULT_ALLOC));
1616 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1617 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1618 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1619
1620 /* The above should easily fit into one page */
1621 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1622
1623 return s.buffer;
1624 }
1625
1626 #define K(x) ((x) << (PAGE_SHIFT-10))
1627 /**
1628 * mem_cgroup_print_oom_context: Print OOM information relevant to
1629 * memory controller.
1630 * @memcg: The memory cgroup that went over limit
1631 * @p: Task that is going to be killed
1632 *
1633 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1634 * enabled
1635 */
1636 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1637 {
1638 rcu_read_lock();
1639
1640 if (memcg) {
1641 pr_cont(",oom_memcg=");
1642 pr_cont_cgroup_path(memcg->css.cgroup);
1643 } else
1644 pr_cont(",global_oom");
1645 if (p) {
1646 pr_cont(",task_memcg=");
1647 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1648 }
1649 rcu_read_unlock();
1650 }
1651
1652 /**
1653 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1654 * memory controller.
1655 * @memcg: The memory cgroup that went over limit
1656 */
1657 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1658 {
1659 char *buf;
1660
1661 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1662 K((u64)page_counter_read(&memcg->memory)),
1663 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1664 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1665 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1666 K((u64)page_counter_read(&memcg->swap)),
1667 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1668 else {
1669 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1670 K((u64)page_counter_read(&memcg->memsw)),
1671 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1672 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1673 K((u64)page_counter_read(&memcg->kmem)),
1674 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1675 }
1676
1677 pr_info("Memory cgroup stats for ");
1678 pr_cont_cgroup_path(memcg->css.cgroup);
1679 pr_cont(":");
1680 buf = memory_stat_format(memcg);
1681 if (!buf)
1682 return;
1683 pr_info("%s", buf);
1684 kfree(buf);
1685 }
1686
1687 /*
1688 * Return the memory (and swap, if configured) limit for a memcg.
1689 */
1690 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1691 {
1692 unsigned long max = READ_ONCE(memcg->memory.max);
1693
1694 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1695 if (mem_cgroup_swappiness(memcg))
1696 max += min(READ_ONCE(memcg->swap.max),
1697 (unsigned long)total_swap_pages);
1698 } else { /* v1 */
1699 if (mem_cgroup_swappiness(memcg)) {
1700 /* Calculate swap excess capacity from memsw limit */
1701 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1702
1703 max += min(swap, (unsigned long)total_swap_pages);
1704 }
1705 }
1706 return max;
1707 }
1708
1709 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1710 {
1711 return page_counter_read(&memcg->memory);
1712 }
1713
1714 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1715 int order)
1716 {
1717 struct oom_control oc = {
1718 .zonelist = NULL,
1719 .nodemask = NULL,
1720 .memcg = memcg,
1721 .gfp_mask = gfp_mask,
1722 .order = order,
1723 };
1724 bool ret = true;
1725
1726 if (mutex_lock_killable(&oom_lock))
1727 return true;
1728
1729 if (mem_cgroup_margin(memcg) >= (1 << order))
1730 goto unlock;
1731
1732 /*
1733 * A few threads which were not waiting at mutex_lock_killable() can
1734 * fail to bail out. Therefore, check again after holding oom_lock.
1735 */
1736 ret = should_force_charge() || out_of_memory(&oc);
1737
1738 unlock:
1739 mutex_unlock(&oom_lock);
1740 return ret;
1741 }
1742
1743 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1744 pg_data_t *pgdat,
1745 gfp_t gfp_mask,
1746 unsigned long *total_scanned)
1747 {
1748 struct mem_cgroup *victim = NULL;
1749 int total = 0;
1750 int loop = 0;
1751 unsigned long excess;
1752 unsigned long nr_scanned;
1753 struct mem_cgroup_reclaim_cookie reclaim = {
1754 .pgdat = pgdat,
1755 };
1756
1757 excess = soft_limit_excess(root_memcg);
1758
1759 while (1) {
1760 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1761 if (!victim) {
1762 loop++;
1763 if (loop >= 2) {
1764 /*
1765 * If we have not been able to reclaim
1766 * anything, it might because there are
1767 * no reclaimable pages under this hierarchy
1768 */
1769 if (!total)
1770 break;
1771 /*
1772 * We want to do more targeted reclaim.
1773 * excess >> 2 is not to excessive so as to
1774 * reclaim too much, nor too less that we keep
1775 * coming back to reclaim from this cgroup
1776 */
1777 if (total >= (excess >> 2) ||
1778 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1779 break;
1780 }
1781 continue;
1782 }
1783 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1784 pgdat, &nr_scanned);
1785 *total_scanned += nr_scanned;
1786 if (!soft_limit_excess(root_memcg))
1787 break;
1788 }
1789 mem_cgroup_iter_break(root_memcg, victim);
1790 return total;
1791 }
1792
1793 #ifdef CONFIG_LOCKDEP
1794 static struct lockdep_map memcg_oom_lock_dep_map = {
1795 .name = "memcg_oom_lock",
1796 };
1797 #endif
1798
1799 static DEFINE_SPINLOCK(memcg_oom_lock);
1800
1801 /*
1802 * Check OOM-Killer is already running under our hierarchy.
1803 * If someone is running, return false.
1804 */
1805 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1806 {
1807 struct mem_cgroup *iter, *failed = NULL;
1808
1809 spin_lock(&memcg_oom_lock);
1810
1811 for_each_mem_cgroup_tree(iter, memcg) {
1812 if (iter->oom_lock) {
1813 /*
1814 * this subtree of our hierarchy is already locked
1815 * so we cannot give a lock.
1816 */
1817 failed = iter;
1818 mem_cgroup_iter_break(memcg, iter);
1819 break;
1820 } else
1821 iter->oom_lock = true;
1822 }
1823
1824 if (failed) {
1825 /*
1826 * OK, we failed to lock the whole subtree so we have
1827 * to clean up what we set up to the failing subtree
1828 */
1829 for_each_mem_cgroup_tree(iter, memcg) {
1830 if (iter == failed) {
1831 mem_cgroup_iter_break(memcg, iter);
1832 break;
1833 }
1834 iter->oom_lock = false;
1835 }
1836 } else
1837 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1838
1839 spin_unlock(&memcg_oom_lock);
1840
1841 return !failed;
1842 }
1843
1844 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1845 {
1846 struct mem_cgroup *iter;
1847
1848 spin_lock(&memcg_oom_lock);
1849 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1850 for_each_mem_cgroup_tree(iter, memcg)
1851 iter->oom_lock = false;
1852 spin_unlock(&memcg_oom_lock);
1853 }
1854
1855 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1856 {
1857 struct mem_cgroup *iter;
1858
1859 spin_lock(&memcg_oom_lock);
1860 for_each_mem_cgroup_tree(iter, memcg)
1861 iter->under_oom++;
1862 spin_unlock(&memcg_oom_lock);
1863 }
1864
1865 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1866 {
1867 struct mem_cgroup *iter;
1868
1869 /*
1870 * Be careful about under_oom underflows becase a child memcg
1871 * could have been added after mem_cgroup_mark_under_oom.
1872 */
1873 spin_lock(&memcg_oom_lock);
1874 for_each_mem_cgroup_tree(iter, memcg)
1875 if (iter->under_oom > 0)
1876 iter->under_oom--;
1877 spin_unlock(&memcg_oom_lock);
1878 }
1879
1880 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1881
1882 struct oom_wait_info {
1883 struct mem_cgroup *memcg;
1884 wait_queue_entry_t wait;
1885 };
1886
1887 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1888 unsigned mode, int sync, void *arg)
1889 {
1890 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1891 struct mem_cgroup *oom_wait_memcg;
1892 struct oom_wait_info *oom_wait_info;
1893
1894 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1895 oom_wait_memcg = oom_wait_info->memcg;
1896
1897 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1898 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1899 return 0;
1900 return autoremove_wake_function(wait, mode, sync, arg);
1901 }
1902
1903 static void memcg_oom_recover(struct mem_cgroup *memcg)
1904 {
1905 /*
1906 * For the following lockless ->under_oom test, the only required
1907 * guarantee is that it must see the state asserted by an OOM when
1908 * this function is called as a result of userland actions
1909 * triggered by the notification of the OOM. This is trivially
1910 * achieved by invoking mem_cgroup_mark_under_oom() before
1911 * triggering notification.
1912 */
1913 if (memcg && memcg->under_oom)
1914 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1915 }
1916
1917 enum oom_status {
1918 OOM_SUCCESS,
1919 OOM_FAILED,
1920 OOM_ASYNC,
1921 OOM_SKIPPED
1922 };
1923
1924 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1925 {
1926 enum oom_status ret;
1927 bool locked;
1928
1929 if (order > PAGE_ALLOC_COSTLY_ORDER)
1930 return OOM_SKIPPED;
1931
1932 memcg_memory_event(memcg, MEMCG_OOM);
1933
1934 /*
1935 * We are in the middle of the charge context here, so we
1936 * don't want to block when potentially sitting on a callstack
1937 * that holds all kinds of filesystem and mm locks.
1938 *
1939 * cgroup1 allows disabling the OOM killer and waiting for outside
1940 * handling until the charge can succeed; remember the context and put
1941 * the task to sleep at the end of the page fault when all locks are
1942 * released.
1943 *
1944 * On the other hand, in-kernel OOM killer allows for an async victim
1945 * memory reclaim (oom_reaper) and that means that we are not solely
1946 * relying on the oom victim to make a forward progress and we can
1947 * invoke the oom killer here.
1948 *
1949 * Please note that mem_cgroup_out_of_memory might fail to find a
1950 * victim and then we have to bail out from the charge path.
1951 */
1952 if (memcg->oom_kill_disable) {
1953 if (!current->in_user_fault)
1954 return OOM_SKIPPED;
1955 css_get(&memcg->css);
1956 current->memcg_in_oom = memcg;
1957 current->memcg_oom_gfp_mask = mask;
1958 current->memcg_oom_order = order;
1959
1960 return OOM_ASYNC;
1961 }
1962
1963 mem_cgroup_mark_under_oom(memcg);
1964
1965 locked = mem_cgroup_oom_trylock(memcg);
1966
1967 if (locked)
1968 mem_cgroup_oom_notify(memcg);
1969
1970 mem_cgroup_unmark_under_oom(memcg);
1971 if (mem_cgroup_out_of_memory(memcg, mask, order))
1972 ret = OOM_SUCCESS;
1973 else
1974 ret = OOM_FAILED;
1975
1976 if (locked)
1977 mem_cgroup_oom_unlock(memcg);
1978
1979 return ret;
1980 }
1981
1982 /**
1983 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1984 * @handle: actually kill/wait or just clean up the OOM state
1985 *
1986 * This has to be called at the end of a page fault if the memcg OOM
1987 * handler was enabled.
1988 *
1989 * Memcg supports userspace OOM handling where failed allocations must
1990 * sleep on a waitqueue until the userspace task resolves the
1991 * situation. Sleeping directly in the charge context with all kinds
1992 * of locks held is not a good idea, instead we remember an OOM state
1993 * in the task and mem_cgroup_oom_synchronize() has to be called at
1994 * the end of the page fault to complete the OOM handling.
1995 *
1996 * Returns %true if an ongoing memcg OOM situation was detected and
1997 * completed, %false otherwise.
1998 */
1999 bool mem_cgroup_oom_synchronize(bool handle)
2000 {
2001 struct mem_cgroup *memcg = current->memcg_in_oom;
2002 struct oom_wait_info owait;
2003 bool locked;
2004
2005 /* OOM is global, do not handle */
2006 if (!memcg)
2007 return false;
2008
2009 if (!handle)
2010 goto cleanup;
2011
2012 owait.memcg = memcg;
2013 owait.wait.flags = 0;
2014 owait.wait.func = memcg_oom_wake_function;
2015 owait.wait.private = current;
2016 INIT_LIST_HEAD(&owait.wait.entry);
2017
2018 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2019 mem_cgroup_mark_under_oom(memcg);
2020
2021 locked = mem_cgroup_oom_trylock(memcg);
2022
2023 if (locked)
2024 mem_cgroup_oom_notify(memcg);
2025
2026 if (locked && !memcg->oom_kill_disable) {
2027 mem_cgroup_unmark_under_oom(memcg);
2028 finish_wait(&memcg_oom_waitq, &owait.wait);
2029 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2030 current->memcg_oom_order);
2031 } else {
2032 schedule();
2033 mem_cgroup_unmark_under_oom(memcg);
2034 finish_wait(&memcg_oom_waitq, &owait.wait);
2035 }
2036
2037 if (locked) {
2038 mem_cgroup_oom_unlock(memcg);
2039 /*
2040 * There is no guarantee that an OOM-lock contender
2041 * sees the wakeups triggered by the OOM kill
2042 * uncharges. Wake any sleepers explicitely.
2043 */
2044 memcg_oom_recover(memcg);
2045 }
2046 cleanup:
2047 current->memcg_in_oom = NULL;
2048 css_put(&memcg->css);
2049 return true;
2050 }
2051
2052 /**
2053 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2054 * @victim: task to be killed by the OOM killer
2055 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2056 *
2057 * Returns a pointer to a memory cgroup, which has to be cleaned up
2058 * by killing all belonging OOM-killable tasks.
2059 *
2060 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2061 */
2062 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2063 struct mem_cgroup *oom_domain)
2064 {
2065 struct mem_cgroup *oom_group = NULL;
2066 struct mem_cgroup *memcg;
2067
2068 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2069 return NULL;
2070
2071 if (!oom_domain)
2072 oom_domain = root_mem_cgroup;
2073
2074 rcu_read_lock();
2075
2076 memcg = mem_cgroup_from_task(victim);
2077 if (memcg == root_mem_cgroup)
2078 goto out;
2079
2080 /*
2081 * If the victim task has been asynchronously moved to a different
2082 * memory cgroup, we might end up killing tasks outside oom_domain.
2083 * In this case it's better to ignore memory.group.oom.
2084 */
2085 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2086 goto out;
2087
2088 /*
2089 * Traverse the memory cgroup hierarchy from the victim task's
2090 * cgroup up to the OOMing cgroup (or root) to find the
2091 * highest-level memory cgroup with oom.group set.
2092 */
2093 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2094 if (memcg->oom_group)
2095 oom_group = memcg;
2096
2097 if (memcg == oom_domain)
2098 break;
2099 }
2100
2101 if (oom_group)
2102 css_get(&oom_group->css);
2103 out:
2104 rcu_read_unlock();
2105
2106 return oom_group;
2107 }
2108
2109 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2110 {
2111 pr_info("Tasks in ");
2112 pr_cont_cgroup_path(memcg->css.cgroup);
2113 pr_cont(" are going to be killed due to memory.oom.group set\n");
2114 }
2115
2116 /**
2117 * lock_page_memcg - lock a page->mem_cgroup binding
2118 * @page: the page
2119 *
2120 * This function protects unlocked LRU pages from being moved to
2121 * another cgroup.
2122 *
2123 * It ensures lifetime of the returned memcg. Caller is responsible
2124 * for the lifetime of the page; __unlock_page_memcg() is available
2125 * when @page might get freed inside the locked section.
2126 */
2127 struct mem_cgroup *lock_page_memcg(struct page *page)
2128 {
2129 struct page *head = compound_head(page); /* rmap on tail pages */
2130 struct mem_cgroup *memcg;
2131 unsigned long flags;
2132
2133 /*
2134 * The RCU lock is held throughout the transaction. The fast
2135 * path can get away without acquiring the memcg->move_lock
2136 * because page moving starts with an RCU grace period.
2137 *
2138 * The RCU lock also protects the memcg from being freed when
2139 * the page state that is going to change is the only thing
2140 * preventing the page itself from being freed. E.g. writeback
2141 * doesn't hold a page reference and relies on PG_writeback to
2142 * keep off truncation, migration and so forth.
2143 */
2144 rcu_read_lock();
2145
2146 if (mem_cgroup_disabled())
2147 return NULL;
2148 again:
2149 memcg = head->mem_cgroup;
2150 if (unlikely(!memcg))
2151 return NULL;
2152
2153 if (atomic_read(&memcg->moving_account) <= 0)
2154 return memcg;
2155
2156 spin_lock_irqsave(&memcg->move_lock, flags);
2157 if (memcg != head->mem_cgroup) {
2158 spin_unlock_irqrestore(&memcg->move_lock, flags);
2159 goto again;
2160 }
2161
2162 /*
2163 * When charge migration first begins, we can have locked and
2164 * unlocked page stat updates happening concurrently. Track
2165 * the task who has the lock for unlock_page_memcg().
2166 */
2167 memcg->move_lock_task = current;
2168 memcg->move_lock_flags = flags;
2169
2170 return memcg;
2171 }
2172 EXPORT_SYMBOL(lock_page_memcg);
2173
2174 /**
2175 * __unlock_page_memcg - unlock and unpin a memcg
2176 * @memcg: the memcg
2177 *
2178 * Unlock and unpin a memcg returned by lock_page_memcg().
2179 */
2180 void __unlock_page_memcg(struct mem_cgroup *memcg)
2181 {
2182 if (memcg && memcg->move_lock_task == current) {
2183 unsigned long flags = memcg->move_lock_flags;
2184
2185 memcg->move_lock_task = NULL;
2186 memcg->move_lock_flags = 0;
2187
2188 spin_unlock_irqrestore(&memcg->move_lock, flags);
2189 }
2190
2191 rcu_read_unlock();
2192 }
2193
2194 /**
2195 * unlock_page_memcg - unlock a page->mem_cgroup binding
2196 * @page: the page
2197 */
2198 void unlock_page_memcg(struct page *page)
2199 {
2200 struct page *head = compound_head(page);
2201
2202 __unlock_page_memcg(head->mem_cgroup);
2203 }
2204 EXPORT_SYMBOL(unlock_page_memcg);
2205
2206 struct memcg_stock_pcp {
2207 struct mem_cgroup *cached; /* this never be root cgroup */
2208 unsigned int nr_pages;
2209
2210 #ifdef CONFIG_MEMCG_KMEM
2211 struct obj_cgroup *cached_objcg;
2212 unsigned int nr_bytes;
2213 #endif
2214
2215 struct work_struct work;
2216 unsigned long flags;
2217 #define FLUSHING_CACHED_CHARGE 0
2218 };
2219 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2220 static DEFINE_MUTEX(percpu_charge_mutex);
2221
2222 #ifdef CONFIG_MEMCG_KMEM
2223 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2224 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2225 struct mem_cgroup *root_memcg);
2226
2227 #else
2228 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2229 {
2230 }
2231 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2232 struct mem_cgroup *root_memcg)
2233 {
2234 return false;
2235 }
2236 #endif
2237
2238 /**
2239 * consume_stock: Try to consume stocked charge on this cpu.
2240 * @memcg: memcg to consume from.
2241 * @nr_pages: how many pages to charge.
2242 *
2243 * The charges will only happen if @memcg matches the current cpu's memcg
2244 * stock, and at least @nr_pages are available in that stock. Failure to
2245 * service an allocation will refill the stock.
2246 *
2247 * returns true if successful, false otherwise.
2248 */
2249 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2250 {
2251 struct memcg_stock_pcp *stock;
2252 unsigned long flags;
2253 bool ret = false;
2254
2255 if (nr_pages > MEMCG_CHARGE_BATCH)
2256 return ret;
2257
2258 local_irq_save(flags);
2259
2260 stock = this_cpu_ptr(&memcg_stock);
2261 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2262 stock->nr_pages -= nr_pages;
2263 ret = true;
2264 }
2265
2266 local_irq_restore(flags);
2267
2268 return ret;
2269 }
2270
2271 /*
2272 * Returns stocks cached in percpu and reset cached information.
2273 */
2274 static void drain_stock(struct memcg_stock_pcp *stock)
2275 {
2276 struct mem_cgroup *old = stock->cached;
2277
2278 if (!old)
2279 return;
2280
2281 if (stock->nr_pages) {
2282 page_counter_uncharge(&old->memory, stock->nr_pages);
2283 if (do_memsw_account())
2284 page_counter_uncharge(&old->memsw, stock->nr_pages);
2285 stock->nr_pages = 0;
2286 }
2287
2288 css_put(&old->css);
2289 stock->cached = NULL;
2290 }
2291
2292 static void drain_local_stock(struct work_struct *dummy)
2293 {
2294 struct memcg_stock_pcp *stock;
2295 unsigned long flags;
2296
2297 /*
2298 * The only protection from memory hotplug vs. drain_stock races is
2299 * that we always operate on local CPU stock here with IRQ disabled
2300 */
2301 local_irq_save(flags);
2302
2303 stock = this_cpu_ptr(&memcg_stock);
2304 drain_obj_stock(stock);
2305 drain_stock(stock);
2306 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2307
2308 local_irq_restore(flags);
2309 }
2310
2311 /*
2312 * Cache charges(val) to local per_cpu area.
2313 * This will be consumed by consume_stock() function, later.
2314 */
2315 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2316 {
2317 struct memcg_stock_pcp *stock;
2318 unsigned long flags;
2319
2320 local_irq_save(flags);
2321
2322 stock = this_cpu_ptr(&memcg_stock);
2323 if (stock->cached != memcg) { /* reset if necessary */
2324 drain_stock(stock);
2325 css_get(&memcg->css);
2326 stock->cached = memcg;
2327 }
2328 stock->nr_pages += nr_pages;
2329
2330 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2331 drain_stock(stock);
2332
2333 local_irq_restore(flags);
2334 }
2335
2336 /*
2337 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2338 * of the hierarchy under it.
2339 */
2340 static void drain_all_stock(struct mem_cgroup *root_memcg)
2341 {
2342 int cpu, curcpu;
2343
2344 /* If someone's already draining, avoid adding running more workers. */
2345 if (!mutex_trylock(&percpu_charge_mutex))
2346 return;
2347 /*
2348 * Notify other cpus that system-wide "drain" is running
2349 * We do not care about races with the cpu hotplug because cpu down
2350 * as well as workers from this path always operate on the local
2351 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2352 */
2353 curcpu = get_cpu();
2354 for_each_online_cpu(cpu) {
2355 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2356 struct mem_cgroup *memcg;
2357 bool flush = false;
2358
2359 rcu_read_lock();
2360 memcg = stock->cached;
2361 if (memcg && stock->nr_pages &&
2362 mem_cgroup_is_descendant(memcg, root_memcg))
2363 flush = true;
2364 if (obj_stock_flush_required(stock, root_memcg))
2365 flush = true;
2366 rcu_read_unlock();
2367
2368 if (flush &&
2369 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2370 if (cpu == curcpu)
2371 drain_local_stock(&stock->work);
2372 else
2373 schedule_work_on(cpu, &stock->work);
2374 }
2375 }
2376 put_cpu();
2377 mutex_unlock(&percpu_charge_mutex);
2378 }
2379
2380 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2381 {
2382 struct memcg_stock_pcp *stock;
2383 struct mem_cgroup *memcg, *mi;
2384
2385 stock = &per_cpu(memcg_stock, cpu);
2386 drain_stock(stock);
2387
2388 for_each_mem_cgroup(memcg) {
2389 int i;
2390
2391 for (i = 0; i < MEMCG_NR_STAT; i++) {
2392 int nid;
2393 long x;
2394
2395 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2396 if (x)
2397 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2398 atomic_long_add(x, &memcg->vmstats[i]);
2399
2400 if (i >= NR_VM_NODE_STAT_ITEMS)
2401 continue;
2402
2403 for_each_node(nid) {
2404 struct mem_cgroup_per_node *pn;
2405
2406 pn = mem_cgroup_nodeinfo(memcg, nid);
2407 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2408 if (x)
2409 do {
2410 atomic_long_add(x, &pn->lruvec_stat[i]);
2411 } while ((pn = parent_nodeinfo(pn, nid)));
2412 }
2413 }
2414
2415 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2416 long x;
2417
2418 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2419 if (x)
2420 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2421 atomic_long_add(x, &memcg->vmevents[i]);
2422 }
2423 }
2424
2425 return 0;
2426 }
2427
2428 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2429 unsigned int nr_pages,
2430 gfp_t gfp_mask)
2431 {
2432 unsigned long nr_reclaimed = 0;
2433
2434 do {
2435 unsigned long pflags;
2436
2437 if (page_counter_read(&memcg->memory) <=
2438 READ_ONCE(memcg->memory.high))
2439 continue;
2440
2441 memcg_memory_event(memcg, MEMCG_HIGH);
2442
2443 psi_memstall_enter(&pflags);
2444 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2445 gfp_mask, true);
2446 psi_memstall_leave(&pflags);
2447 } while ((memcg = parent_mem_cgroup(memcg)) &&
2448 !mem_cgroup_is_root(memcg));
2449
2450 return nr_reclaimed;
2451 }
2452
2453 static void high_work_func(struct work_struct *work)
2454 {
2455 struct mem_cgroup *memcg;
2456
2457 memcg = container_of(work, struct mem_cgroup, high_work);
2458 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2459 }
2460
2461 /*
2462 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2463 * enough to still cause a significant slowdown in most cases, while still
2464 * allowing diagnostics and tracing to proceed without becoming stuck.
2465 */
2466 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2467
2468 /*
2469 * When calculating the delay, we use these either side of the exponentiation to
2470 * maintain precision and scale to a reasonable number of jiffies (see the table
2471 * below.
2472 *
2473 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2474 * overage ratio to a delay.
2475 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2476 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2477 * to produce a reasonable delay curve.
2478 *
2479 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2480 * reasonable delay curve compared to precision-adjusted overage, not
2481 * penalising heavily at first, but still making sure that growth beyond the
2482 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2483 * example, with a high of 100 megabytes:
2484 *
2485 * +-------+------------------------+
2486 * | usage | time to allocate in ms |
2487 * +-------+------------------------+
2488 * | 100M | 0 |
2489 * | 101M | 6 |
2490 * | 102M | 25 |
2491 * | 103M | 57 |
2492 * | 104M | 102 |
2493 * | 105M | 159 |
2494 * | 106M | 230 |
2495 * | 107M | 313 |
2496 * | 108M | 409 |
2497 * | 109M | 518 |
2498 * | 110M | 639 |
2499 * | 111M | 774 |
2500 * | 112M | 921 |
2501 * | 113M | 1081 |
2502 * | 114M | 1254 |
2503 * | 115M | 1439 |
2504 * | 116M | 1638 |
2505 * | 117M | 1849 |
2506 * | 118M | 2000 |
2507 * | 119M | 2000 |
2508 * | 120M | 2000 |
2509 * +-------+------------------------+
2510 */
2511 #define MEMCG_DELAY_PRECISION_SHIFT 20
2512 #define MEMCG_DELAY_SCALING_SHIFT 14
2513
2514 static u64 calculate_overage(unsigned long usage, unsigned long high)
2515 {
2516 u64 overage;
2517
2518 if (usage <= high)
2519 return 0;
2520
2521 /*
2522 * Prevent division by 0 in overage calculation by acting as if
2523 * it was a threshold of 1 page
2524 */
2525 high = max(high, 1UL);
2526
2527 overage = usage - high;
2528 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2529 return div64_u64(overage, high);
2530 }
2531
2532 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2533 {
2534 u64 overage, max_overage = 0;
2535
2536 do {
2537 overage = calculate_overage(page_counter_read(&memcg->memory),
2538 READ_ONCE(memcg->memory.high));
2539 max_overage = max(overage, max_overage);
2540 } while ((memcg = parent_mem_cgroup(memcg)) &&
2541 !mem_cgroup_is_root(memcg));
2542
2543 return max_overage;
2544 }
2545
2546 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2547 {
2548 u64 overage, max_overage = 0;
2549
2550 do {
2551 overage = calculate_overage(page_counter_read(&memcg->swap),
2552 READ_ONCE(memcg->swap.high));
2553 if (overage)
2554 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2555 max_overage = max(overage, max_overage);
2556 } while ((memcg = parent_mem_cgroup(memcg)) &&
2557 !mem_cgroup_is_root(memcg));
2558
2559 return max_overage;
2560 }
2561
2562 /*
2563 * Get the number of jiffies that we should penalise a mischievous cgroup which
2564 * is exceeding its memory.high by checking both it and its ancestors.
2565 */
2566 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2567 unsigned int nr_pages,
2568 u64 max_overage)
2569 {
2570 unsigned long penalty_jiffies;
2571
2572 if (!max_overage)
2573 return 0;
2574
2575 /*
2576 * We use overage compared to memory.high to calculate the number of
2577 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2578 * fairly lenient on small overages, and increasingly harsh when the
2579 * memcg in question makes it clear that it has no intention of stopping
2580 * its crazy behaviour, so we exponentially increase the delay based on
2581 * overage amount.
2582 */
2583 penalty_jiffies = max_overage * max_overage * HZ;
2584 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2585 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2586
2587 /*
2588 * Factor in the task's own contribution to the overage, such that four
2589 * N-sized allocations are throttled approximately the same as one
2590 * 4N-sized allocation.
2591 *
2592 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2593 * larger the current charge patch is than that.
2594 */
2595 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2596 }
2597
2598 /*
2599 * Scheduled by try_charge() to be executed from the userland return path
2600 * and reclaims memory over the high limit.
2601 */
2602 void mem_cgroup_handle_over_high(void)
2603 {
2604 unsigned long penalty_jiffies;
2605 unsigned long pflags;
2606 unsigned long nr_reclaimed;
2607 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2608 int nr_retries = MAX_RECLAIM_RETRIES;
2609 struct mem_cgroup *memcg;
2610 bool in_retry = false;
2611
2612 if (likely(!nr_pages))
2613 return;
2614
2615 memcg = get_mem_cgroup_from_mm(current->mm);
2616 current->memcg_nr_pages_over_high = 0;
2617
2618 retry_reclaim:
2619 /*
2620 * The allocating task should reclaim at least the batch size, but for
2621 * subsequent retries we only want to do what's necessary to prevent oom
2622 * or breaching resource isolation.
2623 *
2624 * This is distinct from memory.max or page allocator behaviour because
2625 * memory.high is currently batched, whereas memory.max and the page
2626 * allocator run every time an allocation is made.
2627 */
2628 nr_reclaimed = reclaim_high(memcg,
2629 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2630 GFP_KERNEL);
2631
2632 /*
2633 * memory.high is breached and reclaim is unable to keep up. Throttle
2634 * allocators proactively to slow down excessive growth.
2635 */
2636 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2637 mem_find_max_overage(memcg));
2638
2639 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2640 swap_find_max_overage(memcg));
2641
2642 /*
2643 * Clamp the max delay per usermode return so as to still keep the
2644 * application moving forwards and also permit diagnostics, albeit
2645 * extremely slowly.
2646 */
2647 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2648
2649 /*
2650 * Don't sleep if the amount of jiffies this memcg owes us is so low
2651 * that it's not even worth doing, in an attempt to be nice to those who
2652 * go only a small amount over their memory.high value and maybe haven't
2653 * been aggressively reclaimed enough yet.
2654 */
2655 if (penalty_jiffies <= HZ / 100)
2656 goto out;
2657
2658 /*
2659 * If reclaim is making forward progress but we're still over
2660 * memory.high, we want to encourage that rather than doing allocator
2661 * throttling.
2662 */
2663 if (nr_reclaimed || nr_retries--) {
2664 in_retry = true;
2665 goto retry_reclaim;
2666 }
2667
2668 /*
2669 * If we exit early, we're guaranteed to die (since
2670 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2671 * need to account for any ill-begotten jiffies to pay them off later.
2672 */
2673 psi_memstall_enter(&pflags);
2674 schedule_timeout_killable(penalty_jiffies);
2675 psi_memstall_leave(&pflags);
2676
2677 out:
2678 css_put(&memcg->css);
2679 }
2680
2681 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2682 unsigned int nr_pages)
2683 {
2684 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2685 int nr_retries = MAX_RECLAIM_RETRIES;
2686 struct mem_cgroup *mem_over_limit;
2687 struct page_counter *counter;
2688 enum oom_status oom_status;
2689 unsigned long nr_reclaimed;
2690 bool may_swap = true;
2691 bool drained = false;
2692 unsigned long pflags;
2693
2694 if (mem_cgroup_is_root(memcg))
2695 return 0;
2696 retry:
2697 if (consume_stock(memcg, nr_pages))
2698 return 0;
2699
2700 if (!do_memsw_account() ||
2701 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2702 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2703 goto done_restock;
2704 if (do_memsw_account())
2705 page_counter_uncharge(&memcg->memsw, batch);
2706 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2707 } else {
2708 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2709 may_swap = false;
2710 }
2711
2712 if (batch > nr_pages) {
2713 batch = nr_pages;
2714 goto retry;
2715 }
2716
2717 /*
2718 * Memcg doesn't have a dedicated reserve for atomic
2719 * allocations. But like the global atomic pool, we need to
2720 * put the burden of reclaim on regular allocation requests
2721 * and let these go through as privileged allocations.
2722 */
2723 if (gfp_mask & __GFP_ATOMIC)
2724 goto force;
2725
2726 /*
2727 * Unlike in global OOM situations, memcg is not in a physical
2728 * memory shortage. Allow dying and OOM-killed tasks to
2729 * bypass the last charges so that they can exit quickly and
2730 * free their memory.
2731 */
2732 if (unlikely(should_force_charge()))
2733 goto force;
2734
2735 /*
2736 * Prevent unbounded recursion when reclaim operations need to
2737 * allocate memory. This might exceed the limits temporarily,
2738 * but we prefer facilitating memory reclaim and getting back
2739 * under the limit over triggering OOM kills in these cases.
2740 */
2741 if (unlikely(current->flags & PF_MEMALLOC))
2742 goto force;
2743
2744 if (unlikely(task_in_memcg_oom(current)))
2745 goto nomem;
2746
2747 if (!gfpflags_allow_blocking(gfp_mask))
2748 goto nomem;
2749
2750 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2751
2752 psi_memstall_enter(&pflags);
2753 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2754 gfp_mask, may_swap);
2755 psi_memstall_leave(&pflags);
2756
2757 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2758 goto retry;
2759
2760 if (!drained) {
2761 drain_all_stock(mem_over_limit);
2762 drained = true;
2763 goto retry;
2764 }
2765
2766 if (gfp_mask & __GFP_NORETRY)
2767 goto nomem;
2768 /*
2769 * Even though the limit is exceeded at this point, reclaim
2770 * may have been able to free some pages. Retry the charge
2771 * before killing the task.
2772 *
2773 * Only for regular pages, though: huge pages are rather
2774 * unlikely to succeed so close to the limit, and we fall back
2775 * to regular pages anyway in case of failure.
2776 */
2777 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2778 goto retry;
2779 /*
2780 * At task move, charge accounts can be doubly counted. So, it's
2781 * better to wait until the end of task_move if something is going on.
2782 */
2783 if (mem_cgroup_wait_acct_move(mem_over_limit))
2784 goto retry;
2785
2786 if (nr_retries--)
2787 goto retry;
2788
2789 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2790 goto nomem;
2791
2792 if (gfp_mask & __GFP_NOFAIL)
2793 goto force;
2794
2795 if (fatal_signal_pending(current))
2796 goto force;
2797
2798 /*
2799 * keep retrying as long as the memcg oom killer is able to make
2800 * a forward progress or bypass the charge if the oom killer
2801 * couldn't make any progress.
2802 */
2803 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2804 get_order(nr_pages * PAGE_SIZE));
2805 switch (oom_status) {
2806 case OOM_SUCCESS:
2807 nr_retries = MAX_RECLAIM_RETRIES;
2808 goto retry;
2809 case OOM_FAILED:
2810 goto force;
2811 default:
2812 goto nomem;
2813 }
2814 nomem:
2815 if (!(gfp_mask & __GFP_NOFAIL))
2816 return -ENOMEM;
2817 force:
2818 /*
2819 * The allocation either can't fail or will lead to more memory
2820 * being freed very soon. Allow memory usage go over the limit
2821 * temporarily by force charging it.
2822 */
2823 page_counter_charge(&memcg->memory, nr_pages);
2824 if (do_memsw_account())
2825 page_counter_charge(&memcg->memsw, nr_pages);
2826
2827 return 0;
2828
2829 done_restock:
2830 if (batch > nr_pages)
2831 refill_stock(memcg, batch - nr_pages);
2832
2833 /*
2834 * If the hierarchy is above the normal consumption range, schedule
2835 * reclaim on returning to userland. We can perform reclaim here
2836 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2837 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2838 * not recorded as it most likely matches current's and won't
2839 * change in the meantime. As high limit is checked again before
2840 * reclaim, the cost of mismatch is negligible.
2841 */
2842 do {
2843 bool mem_high, swap_high;
2844
2845 mem_high = page_counter_read(&memcg->memory) >
2846 READ_ONCE(memcg->memory.high);
2847 swap_high = page_counter_read(&memcg->swap) >
2848 READ_ONCE(memcg->swap.high);
2849
2850 /* Don't bother a random interrupted task */
2851 if (in_interrupt()) {
2852 if (mem_high) {
2853 schedule_work(&memcg->high_work);
2854 break;
2855 }
2856 continue;
2857 }
2858
2859 if (mem_high || swap_high) {
2860 /*
2861 * The allocating tasks in this cgroup will need to do
2862 * reclaim or be throttled to prevent further growth
2863 * of the memory or swap footprints.
2864 *
2865 * Target some best-effort fairness between the tasks,
2866 * and distribute reclaim work and delay penalties
2867 * based on how much each task is actually allocating.
2868 */
2869 current->memcg_nr_pages_over_high += batch;
2870 set_notify_resume(current);
2871 break;
2872 }
2873 } while ((memcg = parent_mem_cgroup(memcg)));
2874
2875 return 0;
2876 }
2877
2878 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2879 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2880 {
2881 if (mem_cgroup_is_root(memcg))
2882 return;
2883
2884 page_counter_uncharge(&memcg->memory, nr_pages);
2885 if (do_memsw_account())
2886 page_counter_uncharge(&memcg->memsw, nr_pages);
2887 }
2888 #endif
2889
2890 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2891 {
2892 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2893 /*
2894 * Any of the following ensures page->mem_cgroup stability:
2895 *
2896 * - the page lock
2897 * - LRU isolation
2898 * - lock_page_memcg()
2899 * - exclusive reference
2900 */
2901 page->mem_cgroup = memcg;
2902 }
2903
2904 #ifdef CONFIG_MEMCG_KMEM
2905 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2906 gfp_t gfp)
2907 {
2908 unsigned int objects = objs_per_slab_page(s, page);
2909 void *vec;
2910
2911 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2912 page_to_nid(page));
2913 if (!vec)
2914 return -ENOMEM;
2915
2916 if (cmpxchg(&page->obj_cgroups, NULL,
2917 (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
2918 kfree(vec);
2919 else
2920 kmemleak_not_leak(vec);
2921
2922 return 0;
2923 }
2924
2925 /*
2926 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2927 *
2928 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2929 * cgroup_mutex, etc.
2930 */
2931 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2932 {
2933 struct page *page;
2934
2935 if (mem_cgroup_disabled())
2936 return NULL;
2937
2938 page = virt_to_head_page(p);
2939
2940 /*
2941 * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer
2942 * or a pointer to obj_cgroup vector. In the latter case the lowest
2943 * bit of the pointer is set.
2944 * The page->mem_cgroup pointer can be asynchronously changed
2945 * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed
2946 * from a valid memcg pointer to objcg vector or back.
2947 */
2948 if (!page->mem_cgroup)
2949 return NULL;
2950
2951 /*
2952 * Slab objects are accounted individually, not per-page.
2953 * Memcg membership data for each individual object is saved in
2954 * the page->obj_cgroups.
2955 */
2956 if (page_has_obj_cgroups(page)) {
2957 struct obj_cgroup *objcg;
2958 unsigned int off;
2959
2960 off = obj_to_index(page->slab_cache, page, p);
2961 objcg = page_obj_cgroups(page)[off];
2962 if (objcg)
2963 return obj_cgroup_memcg(objcg);
2964
2965 return NULL;
2966 }
2967
2968 /* All other pages use page->mem_cgroup */
2969 return page->mem_cgroup;
2970 }
2971
2972 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2973 {
2974 struct obj_cgroup *objcg = NULL;
2975 struct mem_cgroup *memcg;
2976
2977 if (memcg_kmem_bypass())
2978 return NULL;
2979
2980 rcu_read_lock();
2981 if (unlikely(active_memcg()))
2982 memcg = active_memcg();
2983 else
2984 memcg = mem_cgroup_from_task(current);
2985
2986 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2987 objcg = rcu_dereference(memcg->objcg);
2988 if (objcg && obj_cgroup_tryget(objcg))
2989 break;
2990 }
2991 rcu_read_unlock();
2992
2993 return objcg;
2994 }
2995
2996 static int memcg_alloc_cache_id(void)
2997 {
2998 int id, size;
2999 int err;
3000
3001 id = ida_simple_get(&memcg_cache_ida,
3002 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3003 if (id < 0)
3004 return id;
3005
3006 if (id < memcg_nr_cache_ids)
3007 return id;
3008
3009 /*
3010 * There's no space for the new id in memcg_caches arrays,
3011 * so we have to grow them.
3012 */
3013 down_write(&memcg_cache_ids_sem);
3014
3015 size = 2 * (id + 1);
3016 if (size < MEMCG_CACHES_MIN_SIZE)
3017 size = MEMCG_CACHES_MIN_SIZE;
3018 else if (size > MEMCG_CACHES_MAX_SIZE)
3019 size = MEMCG_CACHES_MAX_SIZE;
3020
3021 err = memcg_update_all_list_lrus(size);
3022 if (!err)
3023 memcg_nr_cache_ids = size;
3024
3025 up_write(&memcg_cache_ids_sem);
3026
3027 if (err) {
3028 ida_simple_remove(&memcg_cache_ida, id);
3029 return err;
3030 }
3031 return id;
3032 }
3033
3034 static void memcg_free_cache_id(int id)
3035 {
3036 ida_simple_remove(&memcg_cache_ida, id);
3037 }
3038
3039 /**
3040 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3041 * @memcg: memory cgroup to charge
3042 * @gfp: reclaim mode
3043 * @nr_pages: number of pages to charge
3044 *
3045 * Returns 0 on success, an error code on failure.
3046 */
3047 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3048 unsigned int nr_pages)
3049 {
3050 struct page_counter *counter;
3051 int ret;
3052
3053 ret = try_charge(memcg, gfp, nr_pages);
3054 if (ret)
3055 return ret;
3056
3057 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3058 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3059
3060 /*
3061 * Enforce __GFP_NOFAIL allocation because callers are not
3062 * prepared to see failures and likely do not have any failure
3063 * handling code.
3064 */
3065 if (gfp & __GFP_NOFAIL) {
3066 page_counter_charge(&memcg->kmem, nr_pages);
3067 return 0;
3068 }
3069 cancel_charge(memcg, nr_pages);
3070 return -ENOMEM;
3071 }
3072 return 0;
3073 }
3074
3075 /**
3076 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3077 * @memcg: memcg to uncharge
3078 * @nr_pages: number of pages to uncharge
3079 */
3080 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3081 {
3082 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3083 page_counter_uncharge(&memcg->kmem, nr_pages);
3084
3085 page_counter_uncharge(&memcg->memory, nr_pages);
3086 if (do_memsw_account())
3087 page_counter_uncharge(&memcg->memsw, nr_pages);
3088 }
3089
3090 /**
3091 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3092 * @page: page to charge
3093 * @gfp: reclaim mode
3094 * @order: allocation order
3095 *
3096 * Returns 0 on success, an error code on failure.
3097 */
3098 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3099 {
3100 struct mem_cgroup *memcg;
3101 int ret = 0;
3102
3103 memcg = get_mem_cgroup_from_current();
3104 if (memcg && !mem_cgroup_is_root(memcg)) {
3105 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3106 if (!ret) {
3107 page->mem_cgroup = memcg;
3108 __SetPageKmemcg(page);
3109 return 0;
3110 }
3111 css_put(&memcg->css);
3112 }
3113 return ret;
3114 }
3115
3116 /**
3117 * __memcg_kmem_uncharge_page: uncharge a kmem page
3118 * @page: page to uncharge
3119 * @order: allocation order
3120 */
3121 void __memcg_kmem_uncharge_page(struct page *page, int order)
3122 {
3123 struct mem_cgroup *memcg = page->mem_cgroup;
3124 unsigned int nr_pages = 1 << order;
3125
3126 if (!memcg)
3127 return;
3128
3129 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3130 __memcg_kmem_uncharge(memcg, nr_pages);
3131 page->mem_cgroup = NULL;
3132 css_put(&memcg->css);
3133
3134 /* slab pages do not have PageKmemcg flag set */
3135 if (PageKmemcg(page))
3136 __ClearPageKmemcg(page);
3137 }
3138
3139 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3140 {
3141 struct memcg_stock_pcp *stock;
3142 unsigned long flags;
3143 bool ret = false;
3144
3145 local_irq_save(flags);
3146
3147 stock = this_cpu_ptr(&memcg_stock);
3148 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3149 stock->nr_bytes -= nr_bytes;
3150 ret = true;
3151 }
3152
3153 local_irq_restore(flags);
3154
3155 return ret;
3156 }
3157
3158 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3159 {
3160 struct obj_cgroup *old = stock->cached_objcg;
3161
3162 if (!old)
3163 return;
3164
3165 if (stock->nr_bytes) {
3166 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3167 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3168
3169 if (nr_pages) {
3170 rcu_read_lock();
3171 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3172 rcu_read_unlock();
3173 }
3174
3175 /*
3176 * The leftover is flushed to the centralized per-memcg value.
3177 * On the next attempt to refill obj stock it will be moved
3178 * to a per-cpu stock (probably, on an other CPU), see
3179 * refill_obj_stock().
3180 *
3181 * How often it's flushed is a trade-off between the memory
3182 * limit enforcement accuracy and potential CPU contention,
3183 * so it might be changed in the future.
3184 */
3185 atomic_add(nr_bytes, &old->nr_charged_bytes);
3186 stock->nr_bytes = 0;
3187 }
3188
3189 obj_cgroup_put(old);
3190 stock->cached_objcg = NULL;
3191 }
3192
3193 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3194 struct mem_cgroup *root_memcg)
3195 {
3196 struct mem_cgroup *memcg;
3197
3198 if (stock->cached_objcg) {
3199 memcg = obj_cgroup_memcg(stock->cached_objcg);
3200 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3201 return true;
3202 }
3203
3204 return false;
3205 }
3206
3207 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3208 {
3209 struct memcg_stock_pcp *stock;
3210 unsigned long flags;
3211
3212 local_irq_save(flags);
3213
3214 stock = this_cpu_ptr(&memcg_stock);
3215 if (stock->cached_objcg != objcg) { /* reset if necessary */
3216 drain_obj_stock(stock);
3217 obj_cgroup_get(objcg);
3218 stock->cached_objcg = objcg;
3219 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3220 }
3221 stock->nr_bytes += nr_bytes;
3222
3223 if (stock->nr_bytes > PAGE_SIZE)
3224 drain_obj_stock(stock);
3225
3226 local_irq_restore(flags);
3227 }
3228
3229 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3230 {
3231 struct mem_cgroup *memcg;
3232 unsigned int nr_pages, nr_bytes;
3233 int ret;
3234
3235 if (consume_obj_stock(objcg, size))
3236 return 0;
3237
3238 /*
3239 * In theory, memcg->nr_charged_bytes can have enough
3240 * pre-charged bytes to satisfy the allocation. However,
3241 * flushing memcg->nr_charged_bytes requires two atomic
3242 * operations, and memcg->nr_charged_bytes can't be big,
3243 * so it's better to ignore it and try grab some new pages.
3244 * memcg->nr_charged_bytes will be flushed in
3245 * refill_obj_stock(), called from this function or
3246 * independently later.
3247 */
3248 rcu_read_lock();
3249 memcg = obj_cgroup_memcg(objcg);
3250 css_get(&memcg->css);
3251 rcu_read_unlock();
3252
3253 nr_pages = size >> PAGE_SHIFT;
3254 nr_bytes = size & (PAGE_SIZE - 1);
3255
3256 if (nr_bytes)
3257 nr_pages += 1;
3258
3259 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3260 if (!ret && nr_bytes)
3261 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3262
3263 css_put(&memcg->css);
3264 return ret;
3265 }
3266
3267 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3268 {
3269 refill_obj_stock(objcg, size);
3270 }
3271
3272 #endif /* CONFIG_MEMCG_KMEM */
3273
3274 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3275
3276 /*
3277 * Because tail pages are not marked as "used", set it. We're under
3278 * pgdat->lru_lock and migration entries setup in all page mappings.
3279 */
3280 void mem_cgroup_split_huge_fixup(struct page *head)
3281 {
3282 struct mem_cgroup *memcg = head->mem_cgroup;
3283 int i;
3284
3285 if (mem_cgroup_disabled())
3286 return;
3287
3288 for (i = 1; i < HPAGE_PMD_NR; i++) {
3289 css_get(&memcg->css);
3290 head[i].mem_cgroup = memcg;
3291 }
3292 }
3293 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3294
3295 #ifdef CONFIG_MEMCG_SWAP
3296 /**
3297 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3298 * @entry: swap entry to be moved
3299 * @from: mem_cgroup which the entry is moved from
3300 * @to: mem_cgroup which the entry is moved to
3301 *
3302 * It succeeds only when the swap_cgroup's record for this entry is the same
3303 * as the mem_cgroup's id of @from.
3304 *
3305 * Returns 0 on success, -EINVAL on failure.
3306 *
3307 * The caller must have charged to @to, IOW, called page_counter_charge() about
3308 * both res and memsw, and called css_get().
3309 */
3310 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3311 struct mem_cgroup *from, struct mem_cgroup *to)
3312 {
3313 unsigned short old_id, new_id;
3314
3315 old_id = mem_cgroup_id(from);
3316 new_id = mem_cgroup_id(to);
3317
3318 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3319 mod_memcg_state(from, MEMCG_SWAP, -1);
3320 mod_memcg_state(to, MEMCG_SWAP, 1);
3321 return 0;
3322 }
3323 return -EINVAL;
3324 }
3325 #else
3326 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3327 struct mem_cgroup *from, struct mem_cgroup *to)
3328 {
3329 return -EINVAL;
3330 }
3331 #endif
3332
3333 static DEFINE_MUTEX(memcg_max_mutex);
3334
3335 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3336 unsigned long max, bool memsw)
3337 {
3338 bool enlarge = false;
3339 bool drained = false;
3340 int ret;
3341 bool limits_invariant;
3342 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3343
3344 do {
3345 if (signal_pending(current)) {
3346 ret = -EINTR;
3347 break;
3348 }
3349
3350 mutex_lock(&memcg_max_mutex);
3351 /*
3352 * Make sure that the new limit (memsw or memory limit) doesn't
3353 * break our basic invariant rule memory.max <= memsw.max.
3354 */
3355 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3356 max <= memcg->memsw.max;
3357 if (!limits_invariant) {
3358 mutex_unlock(&memcg_max_mutex);
3359 ret = -EINVAL;
3360 break;
3361 }
3362 if (max > counter->max)
3363 enlarge = true;
3364 ret = page_counter_set_max(counter, max);
3365 mutex_unlock(&memcg_max_mutex);
3366
3367 if (!ret)
3368 break;
3369
3370 if (!drained) {
3371 drain_all_stock(memcg);
3372 drained = true;
3373 continue;
3374 }
3375
3376 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3377 GFP_KERNEL, !memsw)) {
3378 ret = -EBUSY;
3379 break;
3380 }
3381 } while (true);
3382
3383 if (!ret && enlarge)
3384 memcg_oom_recover(memcg);
3385
3386 return ret;
3387 }
3388
3389 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3390 gfp_t gfp_mask,
3391 unsigned long *total_scanned)
3392 {
3393 unsigned long nr_reclaimed = 0;
3394 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3395 unsigned long reclaimed;
3396 int loop = 0;
3397 struct mem_cgroup_tree_per_node *mctz;
3398 unsigned long excess;
3399 unsigned long nr_scanned;
3400
3401 if (order > 0)
3402 return 0;
3403
3404 mctz = soft_limit_tree_node(pgdat->node_id);
3405
3406 /*
3407 * Do not even bother to check the largest node if the root
3408 * is empty. Do it lockless to prevent lock bouncing. Races
3409 * are acceptable as soft limit is best effort anyway.
3410 */
3411 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3412 return 0;
3413
3414 /*
3415 * This loop can run a while, specially if mem_cgroup's continuously
3416 * keep exceeding their soft limit and putting the system under
3417 * pressure
3418 */
3419 do {
3420 if (next_mz)
3421 mz = next_mz;
3422 else
3423 mz = mem_cgroup_largest_soft_limit_node(mctz);
3424 if (!mz)
3425 break;
3426
3427 nr_scanned = 0;
3428 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3429 gfp_mask, &nr_scanned);
3430 nr_reclaimed += reclaimed;
3431 *total_scanned += nr_scanned;
3432 spin_lock_irq(&mctz->lock);
3433 __mem_cgroup_remove_exceeded(mz, mctz);
3434
3435 /*
3436 * If we failed to reclaim anything from this memory cgroup
3437 * it is time to move on to the next cgroup
3438 */
3439 next_mz = NULL;
3440 if (!reclaimed)
3441 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3442
3443 excess = soft_limit_excess(mz->memcg);
3444 /*
3445 * One school of thought says that we should not add
3446 * back the node to the tree if reclaim returns 0.
3447 * But our reclaim could return 0, simply because due
3448 * to priority we are exposing a smaller subset of
3449 * memory to reclaim from. Consider this as a longer
3450 * term TODO.
3451 */
3452 /* If excess == 0, no tree ops */
3453 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3454 spin_unlock_irq(&mctz->lock);
3455 css_put(&mz->memcg->css);
3456 loop++;
3457 /*
3458 * Could not reclaim anything and there are no more
3459 * mem cgroups to try or we seem to be looping without
3460 * reclaiming anything.
3461 */
3462 if (!nr_reclaimed &&
3463 (next_mz == NULL ||
3464 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3465 break;
3466 } while (!nr_reclaimed);
3467 if (next_mz)
3468 css_put(&next_mz->memcg->css);
3469 return nr_reclaimed;
3470 }
3471
3472 /*
3473 * Test whether @memcg has children, dead or alive. Note that this
3474 * function doesn't care whether @memcg has use_hierarchy enabled and
3475 * returns %true if there are child csses according to the cgroup
3476 * hierarchy. Testing use_hierarchy is the caller's responsibility.
3477 */
3478 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3479 {
3480 bool ret;
3481
3482 rcu_read_lock();
3483 ret = css_next_child(NULL, &memcg->css);
3484 rcu_read_unlock();
3485 return ret;
3486 }
3487
3488 /*
3489 * Reclaims as many pages from the given memcg as possible.
3490 *
3491 * Caller is responsible for holding css reference for memcg.
3492 */
3493 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3494 {
3495 int nr_retries = MAX_RECLAIM_RETRIES;
3496
3497 /* we call try-to-free pages for make this cgroup empty */
3498 lru_add_drain_all();
3499
3500 drain_all_stock(memcg);
3501
3502 /* try to free all pages in this cgroup */
3503 while (nr_retries && page_counter_read(&memcg->memory)) {
3504 int progress;
3505
3506 if (signal_pending(current))
3507 return -EINTR;
3508
3509 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3510 GFP_KERNEL, true);
3511 if (!progress) {
3512 nr_retries--;
3513 /* maybe some writeback is necessary */
3514 congestion_wait(BLK_RW_ASYNC, HZ/10);
3515 }
3516
3517 }
3518
3519 return 0;
3520 }
3521
3522 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3523 char *buf, size_t nbytes,
3524 loff_t off)
3525 {
3526 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3527
3528 if (mem_cgroup_is_root(memcg))
3529 return -EINVAL;
3530 return mem_cgroup_force_empty(memcg) ?: nbytes;
3531 }
3532
3533 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3534 struct cftype *cft)
3535 {
3536 return mem_cgroup_from_css(css)->use_hierarchy;
3537 }
3538
3539 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3540 struct cftype *cft, u64 val)
3541 {
3542 int retval = 0;
3543 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3544 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3545
3546 if (memcg->use_hierarchy == val)
3547 return 0;
3548
3549 /*
3550 * If parent's use_hierarchy is set, we can't make any modifications
3551 * in the child subtrees. If it is unset, then the change can
3552 * occur, provided the current cgroup has no children.
3553 *
3554 * For the root cgroup, parent_mem is NULL, we allow value to be
3555 * set if there are no children.
3556 */
3557 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3558 (val == 1 || val == 0)) {
3559 if (!memcg_has_children(memcg))
3560 memcg->use_hierarchy = val;
3561 else
3562 retval = -EBUSY;
3563 } else
3564 retval = -EINVAL;
3565
3566 return retval;
3567 }
3568
3569 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3570 {
3571 unsigned long val;
3572
3573 if (mem_cgroup_is_root(memcg)) {
3574 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3575 memcg_page_state(memcg, NR_ANON_MAPPED);
3576 if (swap)
3577 val += memcg_page_state(memcg, MEMCG_SWAP);
3578 } else {
3579 if (!swap)
3580 val = page_counter_read(&memcg->memory);
3581 else
3582 val = page_counter_read(&memcg->memsw);
3583 }
3584 return val;
3585 }
3586
3587 enum {
3588 RES_USAGE,
3589 RES_LIMIT,
3590 RES_MAX_USAGE,
3591 RES_FAILCNT,
3592 RES_SOFT_LIMIT,
3593 };
3594
3595 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3596 struct cftype *cft)
3597 {
3598 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3599 struct page_counter *counter;
3600
3601 switch (MEMFILE_TYPE(cft->private)) {
3602 case _MEM:
3603 counter = &memcg->memory;
3604 break;
3605 case _MEMSWAP:
3606 counter = &memcg->memsw;
3607 break;
3608 case _KMEM:
3609 counter = &memcg->kmem;
3610 break;
3611 case _TCP:
3612 counter = &memcg->tcpmem;
3613 break;
3614 default:
3615 BUG();
3616 }
3617
3618 switch (MEMFILE_ATTR(cft->private)) {
3619 case RES_USAGE:
3620 if (counter == &memcg->memory)
3621 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3622 if (counter == &memcg->memsw)
3623 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3624 return (u64)page_counter_read(counter) * PAGE_SIZE;
3625 case RES_LIMIT:
3626 return (u64)counter->max * PAGE_SIZE;
3627 case RES_MAX_USAGE:
3628 return (u64)counter->watermark * PAGE_SIZE;
3629 case RES_FAILCNT:
3630 return counter->failcnt;
3631 case RES_SOFT_LIMIT:
3632 return (u64)memcg->soft_limit * PAGE_SIZE;
3633 default:
3634 BUG();
3635 }
3636 }
3637
3638 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3639 {
3640 unsigned long stat[MEMCG_NR_STAT] = {0};
3641 struct mem_cgroup *mi;
3642 int node, cpu, i;
3643
3644 for_each_online_cpu(cpu)
3645 for (i = 0; i < MEMCG_NR_STAT; i++)
3646 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3647
3648 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3649 for (i = 0; i < MEMCG_NR_STAT; i++)
3650 atomic_long_add(stat[i], &mi->vmstats[i]);
3651
3652 for_each_node(node) {
3653 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3654 struct mem_cgroup_per_node *pi;
3655
3656 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3657 stat[i] = 0;
3658
3659 for_each_online_cpu(cpu)
3660 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3661 stat[i] += per_cpu(
3662 pn->lruvec_stat_cpu->count[i], cpu);
3663
3664 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3665 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3666 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3667 }
3668 }
3669
3670 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3671 {
3672 unsigned long events[NR_VM_EVENT_ITEMS];
3673 struct mem_cgroup *mi;
3674 int cpu, i;
3675
3676 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3677 events[i] = 0;
3678
3679 for_each_online_cpu(cpu)
3680 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3681 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3682 cpu);
3683
3684 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3685 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3686 atomic_long_add(events[i], &mi->vmevents[i]);
3687 }
3688
3689 #ifdef CONFIG_MEMCG_KMEM
3690 static int memcg_online_kmem(struct mem_cgroup *memcg)
3691 {
3692 struct obj_cgroup *objcg;
3693 int memcg_id;
3694
3695 if (cgroup_memory_nokmem)
3696 return 0;
3697
3698 BUG_ON(memcg->kmemcg_id >= 0);
3699 BUG_ON(memcg->kmem_state);
3700
3701 memcg_id = memcg_alloc_cache_id();
3702 if (memcg_id < 0)
3703 return memcg_id;
3704
3705 objcg = obj_cgroup_alloc();
3706 if (!objcg) {
3707 memcg_free_cache_id(memcg_id);
3708 return -ENOMEM;
3709 }
3710 objcg->memcg = memcg;
3711 rcu_assign_pointer(memcg->objcg, objcg);
3712
3713 static_branch_enable(&memcg_kmem_enabled_key);
3714
3715 /*
3716 * A memory cgroup is considered kmem-online as soon as it gets
3717 * kmemcg_id. Setting the id after enabling static branching will
3718 * guarantee no one starts accounting before all call sites are
3719 * patched.
3720 */
3721 memcg->kmemcg_id = memcg_id;
3722 memcg->kmem_state = KMEM_ONLINE;
3723
3724 return 0;
3725 }
3726
3727 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3728 {
3729 struct cgroup_subsys_state *css;
3730 struct mem_cgroup *parent, *child;
3731 int kmemcg_id;
3732
3733 if (memcg->kmem_state != KMEM_ONLINE)
3734 return;
3735
3736 memcg->kmem_state = KMEM_ALLOCATED;
3737
3738 parent = parent_mem_cgroup(memcg);
3739 if (!parent)
3740 parent = root_mem_cgroup;
3741
3742 memcg_reparent_objcgs(memcg, parent);
3743
3744 kmemcg_id = memcg->kmemcg_id;
3745 BUG_ON(kmemcg_id < 0);
3746
3747 /*
3748 * Change kmemcg_id of this cgroup and all its descendants to the
3749 * parent's id, and then move all entries from this cgroup's list_lrus
3750 * to ones of the parent. After we have finished, all list_lrus
3751 * corresponding to this cgroup are guaranteed to remain empty. The
3752 * ordering is imposed by list_lru_node->lock taken by
3753 * memcg_drain_all_list_lrus().
3754 */
3755 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3756 css_for_each_descendant_pre(css, &memcg->css) {
3757 child = mem_cgroup_from_css(css);
3758 BUG_ON(child->kmemcg_id != kmemcg_id);
3759 child->kmemcg_id = parent->kmemcg_id;
3760 if (!memcg->use_hierarchy)
3761 break;
3762 }
3763 rcu_read_unlock();
3764
3765 memcg_drain_all_list_lrus(kmemcg_id, parent);
3766
3767 memcg_free_cache_id(kmemcg_id);
3768 }
3769
3770 static void memcg_free_kmem(struct mem_cgroup *memcg)
3771 {
3772 /* css_alloc() failed, offlining didn't happen */
3773 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3774 memcg_offline_kmem(memcg);
3775 }
3776 #else
3777 static int memcg_online_kmem(struct mem_cgroup *memcg)
3778 {
3779 return 0;
3780 }
3781 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3782 {
3783 }
3784 static void memcg_free_kmem(struct mem_cgroup *memcg)
3785 {
3786 }
3787 #endif /* CONFIG_MEMCG_KMEM */
3788
3789 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3790 unsigned long max)
3791 {
3792 int ret;
3793
3794 mutex_lock(&memcg_max_mutex);
3795 ret = page_counter_set_max(&memcg->kmem, max);
3796 mutex_unlock(&memcg_max_mutex);
3797 return ret;
3798 }
3799
3800 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3801 {
3802 int ret;
3803
3804 mutex_lock(&memcg_max_mutex);
3805
3806 ret = page_counter_set_max(&memcg->tcpmem, max);
3807 if (ret)
3808 goto out;
3809
3810 if (!memcg->tcpmem_active) {
3811 /*
3812 * The active flag needs to be written after the static_key
3813 * update. This is what guarantees that the socket activation
3814 * function is the last one to run. See mem_cgroup_sk_alloc()
3815 * for details, and note that we don't mark any socket as
3816 * belonging to this memcg until that flag is up.
3817 *
3818 * We need to do this, because static_keys will span multiple
3819 * sites, but we can't control their order. If we mark a socket
3820 * as accounted, but the accounting functions are not patched in
3821 * yet, we'll lose accounting.
3822 *
3823 * We never race with the readers in mem_cgroup_sk_alloc(),
3824 * because when this value change, the code to process it is not
3825 * patched in yet.
3826 */
3827 static_branch_inc(&memcg_sockets_enabled_key);
3828 memcg->tcpmem_active = true;
3829 }
3830 out:
3831 mutex_unlock(&memcg_max_mutex);
3832 return ret;
3833 }
3834
3835 /*
3836 * The user of this function is...
3837 * RES_LIMIT.
3838 */
3839 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3840 char *buf, size_t nbytes, loff_t off)
3841 {
3842 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3843 unsigned long nr_pages;
3844 int ret;
3845
3846 buf = strstrip(buf);
3847 ret = page_counter_memparse(buf, "-1", &nr_pages);
3848 if (ret)
3849 return ret;
3850
3851 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3852 case RES_LIMIT:
3853 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3854 ret = -EINVAL;
3855 break;
3856 }
3857 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3858 case _MEM:
3859 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3860 break;
3861 case _MEMSWAP:
3862 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3863 break;
3864 case _KMEM:
3865 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3866 "Please report your usecase to linux-mm@kvack.org if you "
3867 "depend on this functionality.\n");
3868 ret = memcg_update_kmem_max(memcg, nr_pages);
3869 break;
3870 case _TCP:
3871 ret = memcg_update_tcp_max(memcg, nr_pages);
3872 break;
3873 }
3874 break;
3875 case RES_SOFT_LIMIT:
3876 memcg->soft_limit = nr_pages;
3877 ret = 0;
3878 break;
3879 }
3880 return ret ?: nbytes;
3881 }
3882
3883 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3884 size_t nbytes, loff_t off)
3885 {
3886 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3887 struct page_counter *counter;
3888
3889 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3890 case _MEM:
3891 counter = &memcg->memory;
3892 break;
3893 case _MEMSWAP:
3894 counter = &memcg->memsw;
3895 break;
3896 case _KMEM:
3897 counter = &memcg->kmem;
3898 break;
3899 case _TCP:
3900 counter = &memcg->tcpmem;
3901 break;
3902 default:
3903 BUG();
3904 }
3905
3906 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3907 case RES_MAX_USAGE:
3908 page_counter_reset_watermark(counter);
3909 break;
3910 case RES_FAILCNT:
3911 counter->failcnt = 0;
3912 break;
3913 default:
3914 BUG();
3915 }
3916
3917 return nbytes;
3918 }
3919
3920 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3921 struct cftype *cft)
3922 {
3923 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3924 }
3925
3926 #ifdef CONFIG_MMU
3927 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3928 struct cftype *cft, u64 val)
3929 {
3930 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3931
3932 if (val & ~MOVE_MASK)
3933 return -EINVAL;
3934
3935 /*
3936 * No kind of locking is needed in here, because ->can_attach() will
3937 * check this value once in the beginning of the process, and then carry
3938 * on with stale data. This means that changes to this value will only
3939 * affect task migrations starting after the change.
3940 */
3941 memcg->move_charge_at_immigrate = val;
3942 return 0;
3943 }
3944 #else
3945 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3946 struct cftype *cft, u64 val)
3947 {
3948 return -ENOSYS;
3949 }
3950 #endif
3951
3952 #ifdef CONFIG_NUMA
3953
3954 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3955 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3956 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3957
3958 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3959 int nid, unsigned int lru_mask, bool tree)
3960 {
3961 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3962 unsigned long nr = 0;
3963 enum lru_list lru;
3964
3965 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3966
3967 for_each_lru(lru) {
3968 if (!(BIT(lru) & lru_mask))
3969 continue;
3970 if (tree)
3971 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3972 else
3973 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3974 }
3975 return nr;
3976 }
3977
3978 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3979 unsigned int lru_mask,
3980 bool tree)
3981 {
3982 unsigned long nr = 0;
3983 enum lru_list lru;
3984
3985 for_each_lru(lru) {
3986 if (!(BIT(lru) & lru_mask))
3987 continue;
3988 if (tree)
3989 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3990 else
3991 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3992 }
3993 return nr;
3994 }
3995
3996 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3997 {
3998 struct numa_stat {
3999 const char *name;
4000 unsigned int lru_mask;
4001 };
4002
4003 static const struct numa_stat stats[] = {
4004 { "total", LRU_ALL },
4005 { "file", LRU_ALL_FILE },
4006 { "anon", LRU_ALL_ANON },
4007 { "unevictable", BIT(LRU_UNEVICTABLE) },
4008 };
4009 const struct numa_stat *stat;
4010 int nid;
4011 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4012
4013 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4014 seq_printf(m, "%s=%lu", stat->name,
4015 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4016 false));
4017 for_each_node_state(nid, N_MEMORY)
4018 seq_printf(m, " N%d=%lu", nid,
4019 mem_cgroup_node_nr_lru_pages(memcg, nid,
4020 stat->lru_mask, false));
4021 seq_putc(m, '\n');
4022 }
4023
4024 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4025
4026 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4027 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4028 true));
4029 for_each_node_state(nid, N_MEMORY)
4030 seq_printf(m, " N%d=%lu", nid,
4031 mem_cgroup_node_nr_lru_pages(memcg, nid,
4032 stat->lru_mask, true));
4033 seq_putc(m, '\n');
4034 }
4035
4036 return 0;
4037 }
4038 #endif /* CONFIG_NUMA */
4039
4040 static const unsigned int memcg1_stats[] = {
4041 NR_FILE_PAGES,
4042 NR_ANON_MAPPED,
4043 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4044 NR_ANON_THPS,
4045 #endif
4046 NR_SHMEM,
4047 NR_FILE_MAPPED,
4048 NR_FILE_DIRTY,
4049 NR_WRITEBACK,
4050 MEMCG_SWAP,
4051 };
4052
4053 static const char *const memcg1_stat_names[] = {
4054 "cache",
4055 "rss",
4056 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4057 "rss_huge",
4058 #endif
4059 "shmem",
4060 "mapped_file",
4061 "dirty",
4062 "writeback",
4063 "swap",
4064 };
4065
4066 /* Universal VM events cgroup1 shows, original sort order */
4067 static const unsigned int memcg1_events[] = {
4068 PGPGIN,
4069 PGPGOUT,
4070 PGFAULT,
4071 PGMAJFAULT,
4072 };
4073
4074 static int memcg_stat_show(struct seq_file *m, void *v)
4075 {
4076 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4077 unsigned long memory, memsw;
4078 struct mem_cgroup *mi;
4079 unsigned int i;
4080
4081 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4082
4083 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4084 unsigned long nr;
4085
4086 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4087 continue;
4088 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4089 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4090 if (memcg1_stats[i] == NR_ANON_THPS)
4091 nr *= HPAGE_PMD_NR;
4092 #endif
4093 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4094 }
4095
4096 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4097 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4098 memcg_events_local(memcg, memcg1_events[i]));
4099
4100 for (i = 0; i < NR_LRU_LISTS; i++)
4101 seq_printf(m, "%s %lu\n", lru_list_name(i),
4102 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4103 PAGE_SIZE);
4104
4105 /* Hierarchical information */
4106 memory = memsw = PAGE_COUNTER_MAX;
4107 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4108 memory = min(memory, READ_ONCE(mi->memory.max));
4109 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4110 }
4111 seq_printf(m, "hierarchical_memory_limit %llu\n",
4112 (u64)memory * PAGE_SIZE);
4113 if (do_memsw_account())
4114 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4115 (u64)memsw * PAGE_SIZE);
4116
4117 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4118 unsigned long nr;
4119
4120 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4121 continue;
4122 nr = memcg_page_state(memcg, memcg1_stats[i]);
4123 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4124 if (memcg1_stats[i] == NR_ANON_THPS)
4125 nr *= HPAGE_PMD_NR;
4126 #endif
4127 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4128 (u64)nr * PAGE_SIZE);
4129 }
4130
4131 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4132 seq_printf(m, "total_%s %llu\n",
4133 vm_event_name(memcg1_events[i]),
4134 (u64)memcg_events(memcg, memcg1_events[i]));
4135
4136 for (i = 0; i < NR_LRU_LISTS; i++)
4137 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4138 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4139 PAGE_SIZE);
4140
4141 #ifdef CONFIG_DEBUG_VM
4142 {
4143 pg_data_t *pgdat;
4144 struct mem_cgroup_per_node *mz;
4145 unsigned long anon_cost = 0;
4146 unsigned long file_cost = 0;
4147
4148 for_each_online_pgdat(pgdat) {
4149 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4150
4151 anon_cost += mz->lruvec.anon_cost;
4152 file_cost += mz->lruvec.file_cost;
4153 }
4154 seq_printf(m, "anon_cost %lu\n", anon_cost);
4155 seq_printf(m, "file_cost %lu\n", file_cost);
4156 }
4157 #endif
4158
4159 return 0;
4160 }
4161
4162 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4163 struct cftype *cft)
4164 {
4165 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4166
4167 return mem_cgroup_swappiness(memcg);
4168 }
4169
4170 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4171 struct cftype *cft, u64 val)
4172 {
4173 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4174
4175 if (val > 100)
4176 return -EINVAL;
4177
4178 if (css->parent)
4179 memcg->swappiness = val;
4180 else
4181 vm_swappiness = val;
4182
4183 return 0;
4184 }
4185
4186 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4187 {
4188 struct mem_cgroup_threshold_ary *t;
4189 unsigned long usage;
4190 int i;
4191
4192 rcu_read_lock();
4193 if (!swap)
4194 t = rcu_dereference(memcg->thresholds.primary);
4195 else
4196 t = rcu_dereference(memcg->memsw_thresholds.primary);
4197
4198 if (!t)
4199 goto unlock;
4200
4201 usage = mem_cgroup_usage(memcg, swap);
4202
4203 /*
4204 * current_threshold points to threshold just below or equal to usage.
4205 * If it's not true, a threshold was crossed after last
4206 * call of __mem_cgroup_threshold().
4207 */
4208 i = t->current_threshold;
4209
4210 /*
4211 * Iterate backward over array of thresholds starting from
4212 * current_threshold and check if a threshold is crossed.
4213 * If none of thresholds below usage is crossed, we read
4214 * only one element of the array here.
4215 */
4216 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4217 eventfd_signal(t->entries[i].eventfd, 1);
4218
4219 /* i = current_threshold + 1 */
4220 i++;
4221
4222 /*
4223 * Iterate forward over array of thresholds starting from
4224 * current_threshold+1 and check if a threshold is crossed.
4225 * If none of thresholds above usage is crossed, we read
4226 * only one element of the array here.
4227 */
4228 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4229 eventfd_signal(t->entries[i].eventfd, 1);
4230
4231 /* Update current_threshold */
4232 t->current_threshold = i - 1;
4233 unlock:
4234 rcu_read_unlock();
4235 }
4236
4237 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4238 {
4239 while (memcg) {
4240 __mem_cgroup_threshold(memcg, false);
4241 if (do_memsw_account())
4242 __mem_cgroup_threshold(memcg, true);
4243
4244 memcg = parent_mem_cgroup(memcg);
4245 }
4246 }
4247
4248 static int compare_thresholds(const void *a, const void *b)
4249 {
4250 const struct mem_cgroup_threshold *_a = a;
4251 const struct mem_cgroup_threshold *_b = b;
4252
4253 if (_a->threshold > _b->threshold)
4254 return 1;
4255
4256 if (_a->threshold < _b->threshold)
4257 return -1;
4258
4259 return 0;
4260 }
4261
4262 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4263 {
4264 struct mem_cgroup_eventfd_list *ev;
4265
4266 spin_lock(&memcg_oom_lock);
4267
4268 list_for_each_entry(ev, &memcg->oom_notify, list)
4269 eventfd_signal(ev->eventfd, 1);
4270
4271 spin_unlock(&memcg_oom_lock);
4272 return 0;
4273 }
4274
4275 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4276 {
4277 struct mem_cgroup *iter;
4278
4279 for_each_mem_cgroup_tree(iter, memcg)
4280 mem_cgroup_oom_notify_cb(iter);
4281 }
4282
4283 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4284 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4285 {
4286 struct mem_cgroup_thresholds *thresholds;
4287 struct mem_cgroup_threshold_ary *new;
4288 unsigned long threshold;
4289 unsigned long usage;
4290 int i, size, ret;
4291
4292 ret = page_counter_memparse(args, "-1", &threshold);
4293 if (ret)
4294 return ret;
4295
4296 mutex_lock(&memcg->thresholds_lock);
4297
4298 if (type == _MEM) {
4299 thresholds = &memcg->thresholds;
4300 usage = mem_cgroup_usage(memcg, false);
4301 } else if (type == _MEMSWAP) {
4302 thresholds = &memcg->memsw_thresholds;
4303 usage = mem_cgroup_usage(memcg, true);
4304 } else
4305 BUG();
4306
4307 /* Check if a threshold crossed before adding a new one */
4308 if (thresholds->primary)
4309 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4310
4311 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4312
4313 /* Allocate memory for new array of thresholds */
4314 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4315 if (!new) {
4316 ret = -ENOMEM;
4317 goto unlock;
4318 }
4319 new->size = size;
4320
4321 /* Copy thresholds (if any) to new array */
4322 if (thresholds->primary)
4323 memcpy(new->entries, thresholds->primary->entries,
4324 flex_array_size(new, entries, size - 1));
4325
4326 /* Add new threshold */
4327 new->entries[size - 1].eventfd = eventfd;
4328 new->entries[size - 1].threshold = threshold;
4329
4330 /* Sort thresholds. Registering of new threshold isn't time-critical */
4331 sort(new->entries, size, sizeof(*new->entries),
4332 compare_thresholds, NULL);
4333
4334 /* Find current threshold */
4335 new->current_threshold = -1;
4336 for (i = 0; i < size; i++) {
4337 if (new->entries[i].threshold <= usage) {
4338 /*
4339 * new->current_threshold will not be used until
4340 * rcu_assign_pointer(), so it's safe to increment
4341 * it here.
4342 */
4343 ++new->current_threshold;
4344 } else
4345 break;
4346 }
4347
4348 /* Free old spare buffer and save old primary buffer as spare */
4349 kfree(thresholds->spare);
4350 thresholds->spare = thresholds->primary;
4351
4352 rcu_assign_pointer(thresholds->primary, new);
4353
4354 /* To be sure that nobody uses thresholds */
4355 synchronize_rcu();
4356
4357 unlock:
4358 mutex_unlock(&memcg->thresholds_lock);
4359
4360 return ret;
4361 }
4362
4363 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4364 struct eventfd_ctx *eventfd, const char *args)
4365 {
4366 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4367 }
4368
4369 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4370 struct eventfd_ctx *eventfd, const char *args)
4371 {
4372 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4373 }
4374
4375 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4376 struct eventfd_ctx *eventfd, enum res_type type)
4377 {
4378 struct mem_cgroup_thresholds *thresholds;
4379 struct mem_cgroup_threshold_ary *new;
4380 unsigned long usage;
4381 int i, j, size, entries;
4382
4383 mutex_lock(&memcg->thresholds_lock);
4384
4385 if (type == _MEM) {
4386 thresholds = &memcg->thresholds;
4387 usage = mem_cgroup_usage(memcg, false);
4388 } else if (type == _MEMSWAP) {
4389 thresholds = &memcg->memsw_thresholds;
4390 usage = mem_cgroup_usage(memcg, true);
4391 } else
4392 BUG();
4393
4394 if (!thresholds->primary)
4395 goto unlock;
4396
4397 /* Check if a threshold crossed before removing */
4398 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4399
4400 /* Calculate new number of threshold */
4401 size = entries = 0;
4402 for (i = 0; i < thresholds->primary->size; i++) {
4403 if (thresholds->primary->entries[i].eventfd != eventfd)
4404 size++;
4405 else
4406 entries++;
4407 }
4408
4409 new = thresholds->spare;
4410
4411 /* If no items related to eventfd have been cleared, nothing to do */
4412 if (!entries)
4413 goto unlock;
4414
4415 /* Set thresholds array to NULL if we don't have thresholds */
4416 if (!size) {
4417 kfree(new);
4418 new = NULL;
4419 goto swap_buffers;
4420 }
4421
4422 new->size = size;
4423
4424 /* Copy thresholds and find current threshold */
4425 new->current_threshold = -1;
4426 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4427 if (thresholds->primary->entries[i].eventfd == eventfd)
4428 continue;
4429
4430 new->entries[j] = thresholds->primary->entries[i];
4431 if (new->entries[j].threshold <= usage) {
4432 /*
4433 * new->current_threshold will not be used
4434 * until rcu_assign_pointer(), so it's safe to increment
4435 * it here.
4436 */
4437 ++new->current_threshold;
4438 }
4439 j++;
4440 }
4441
4442 swap_buffers:
4443 /* Swap primary and spare array */
4444 thresholds->spare = thresholds->primary;
4445
4446 rcu_assign_pointer(thresholds->primary, new);
4447
4448 /* To be sure that nobody uses thresholds */
4449 synchronize_rcu();
4450
4451 /* If all events are unregistered, free the spare array */
4452 if (!new) {
4453 kfree(thresholds->spare);
4454 thresholds->spare = NULL;
4455 }
4456 unlock:
4457 mutex_unlock(&memcg->thresholds_lock);
4458 }
4459
4460 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4461 struct eventfd_ctx *eventfd)
4462 {
4463 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4464 }
4465
4466 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4467 struct eventfd_ctx *eventfd)
4468 {
4469 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4470 }
4471
4472 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4473 struct eventfd_ctx *eventfd, const char *args)
4474 {
4475 struct mem_cgroup_eventfd_list *event;
4476
4477 event = kmalloc(sizeof(*event), GFP_KERNEL);
4478 if (!event)
4479 return -ENOMEM;
4480
4481 spin_lock(&memcg_oom_lock);
4482
4483 event->eventfd = eventfd;
4484 list_add(&event->list, &memcg->oom_notify);
4485
4486 /* already in OOM ? */
4487 if (memcg->under_oom)
4488 eventfd_signal(eventfd, 1);
4489 spin_unlock(&memcg_oom_lock);
4490
4491 return 0;
4492 }
4493
4494 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4495 struct eventfd_ctx *eventfd)
4496 {
4497 struct mem_cgroup_eventfd_list *ev, *tmp;
4498
4499 spin_lock(&memcg_oom_lock);
4500
4501 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4502 if (ev->eventfd == eventfd) {
4503 list_del(&ev->list);
4504 kfree(ev);
4505 }
4506 }
4507
4508 spin_unlock(&memcg_oom_lock);
4509 }
4510
4511 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4512 {
4513 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4514
4515 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4516 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4517 seq_printf(sf, "oom_kill %lu\n",
4518 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4519 return 0;
4520 }
4521
4522 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4523 struct cftype *cft, u64 val)
4524 {
4525 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4526
4527 /* cannot set to root cgroup and only 0 and 1 are allowed */
4528 if (!css->parent || !((val == 0) || (val == 1)))
4529 return -EINVAL;
4530
4531 memcg->oom_kill_disable = val;
4532 if (!val)
4533 memcg_oom_recover(memcg);
4534
4535 return 0;
4536 }
4537
4538 #ifdef CONFIG_CGROUP_WRITEBACK
4539
4540 #include <trace/events/writeback.h>
4541
4542 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4543 {
4544 return wb_domain_init(&memcg->cgwb_domain, gfp);
4545 }
4546
4547 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4548 {
4549 wb_domain_exit(&memcg->cgwb_domain);
4550 }
4551
4552 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4553 {
4554 wb_domain_size_changed(&memcg->cgwb_domain);
4555 }
4556
4557 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4558 {
4559 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4560
4561 if (!memcg->css.parent)
4562 return NULL;
4563
4564 return &memcg->cgwb_domain;
4565 }
4566
4567 /*
4568 * idx can be of type enum memcg_stat_item or node_stat_item.
4569 * Keep in sync with memcg_exact_page().
4570 */
4571 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4572 {
4573 long x = atomic_long_read(&memcg->vmstats[idx]);
4574 int cpu;
4575
4576 for_each_online_cpu(cpu)
4577 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4578 if (x < 0)
4579 x = 0;
4580 return x;
4581 }
4582
4583 /**
4584 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4585 * @wb: bdi_writeback in question
4586 * @pfilepages: out parameter for number of file pages
4587 * @pheadroom: out parameter for number of allocatable pages according to memcg
4588 * @pdirty: out parameter for number of dirty pages
4589 * @pwriteback: out parameter for number of pages under writeback
4590 *
4591 * Determine the numbers of file, headroom, dirty, and writeback pages in
4592 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4593 * is a bit more involved.
4594 *
4595 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4596 * headroom is calculated as the lowest headroom of itself and the
4597 * ancestors. Note that this doesn't consider the actual amount of
4598 * available memory in the system. The caller should further cap
4599 * *@pheadroom accordingly.
4600 */
4601 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4602 unsigned long *pheadroom, unsigned long *pdirty,
4603 unsigned long *pwriteback)
4604 {
4605 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4606 struct mem_cgroup *parent;
4607
4608 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4609
4610 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4611 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4612 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4613 *pheadroom = PAGE_COUNTER_MAX;
4614
4615 while ((parent = parent_mem_cgroup(memcg))) {
4616 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4617 READ_ONCE(memcg->memory.high));
4618 unsigned long used = page_counter_read(&memcg->memory);
4619
4620 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4621 memcg = parent;
4622 }
4623 }
4624
4625 /*
4626 * Foreign dirty flushing
4627 *
4628 * There's an inherent mismatch between memcg and writeback. The former
4629 * trackes ownership per-page while the latter per-inode. This was a
4630 * deliberate design decision because honoring per-page ownership in the
4631 * writeback path is complicated, may lead to higher CPU and IO overheads
4632 * and deemed unnecessary given that write-sharing an inode across
4633 * different cgroups isn't a common use-case.
4634 *
4635 * Combined with inode majority-writer ownership switching, this works well
4636 * enough in most cases but there are some pathological cases. For
4637 * example, let's say there are two cgroups A and B which keep writing to
4638 * different but confined parts of the same inode. B owns the inode and
4639 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4640 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4641 * triggering background writeback. A will be slowed down without a way to
4642 * make writeback of the dirty pages happen.
4643 *
4644 * Conditions like the above can lead to a cgroup getting repatedly and
4645 * severely throttled after making some progress after each
4646 * dirty_expire_interval while the underyling IO device is almost
4647 * completely idle.
4648 *
4649 * Solving this problem completely requires matching the ownership tracking
4650 * granularities between memcg and writeback in either direction. However,
4651 * the more egregious behaviors can be avoided by simply remembering the
4652 * most recent foreign dirtying events and initiating remote flushes on
4653 * them when local writeback isn't enough to keep the memory clean enough.
4654 *
4655 * The following two functions implement such mechanism. When a foreign
4656 * page - a page whose memcg and writeback ownerships don't match - is
4657 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4658 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4659 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4660 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4661 * foreign bdi_writebacks which haven't expired. Both the numbers of
4662 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4663 * limited to MEMCG_CGWB_FRN_CNT.
4664 *
4665 * The mechanism only remembers IDs and doesn't hold any object references.
4666 * As being wrong occasionally doesn't matter, updates and accesses to the
4667 * records are lockless and racy.
4668 */
4669 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4670 struct bdi_writeback *wb)
4671 {
4672 struct mem_cgroup *memcg = page->mem_cgroup;
4673 struct memcg_cgwb_frn *frn;
4674 u64 now = get_jiffies_64();
4675 u64 oldest_at = now;
4676 int oldest = -1;
4677 int i;
4678
4679 trace_track_foreign_dirty(page, wb);
4680
4681 /*
4682 * Pick the slot to use. If there is already a slot for @wb, keep
4683 * using it. If not replace the oldest one which isn't being
4684 * written out.
4685 */
4686 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4687 frn = &memcg->cgwb_frn[i];
4688 if (frn->bdi_id == wb->bdi->id &&
4689 frn->memcg_id == wb->memcg_css->id)
4690 break;
4691 if (time_before64(frn->at, oldest_at) &&
4692 atomic_read(&frn->done.cnt) == 1) {
4693 oldest = i;
4694 oldest_at = frn->at;
4695 }
4696 }
4697
4698 if (i < MEMCG_CGWB_FRN_CNT) {
4699 /*
4700 * Re-using an existing one. Update timestamp lazily to
4701 * avoid making the cacheline hot. We want them to be
4702 * reasonably up-to-date and significantly shorter than
4703 * dirty_expire_interval as that's what expires the record.
4704 * Use the shorter of 1s and dirty_expire_interval / 8.
4705 */
4706 unsigned long update_intv =
4707 min_t(unsigned long, HZ,
4708 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4709
4710 if (time_before64(frn->at, now - update_intv))
4711 frn->at = now;
4712 } else if (oldest >= 0) {
4713 /* replace the oldest free one */
4714 frn = &memcg->cgwb_frn[oldest];
4715 frn->bdi_id = wb->bdi->id;
4716 frn->memcg_id = wb->memcg_css->id;
4717 frn->at = now;
4718 }
4719 }
4720
4721 /* issue foreign writeback flushes for recorded foreign dirtying events */
4722 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4723 {
4724 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4725 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4726 u64 now = jiffies_64;
4727 int i;
4728
4729 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4730 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4731
4732 /*
4733 * If the record is older than dirty_expire_interval,
4734 * writeback on it has already started. No need to kick it
4735 * off again. Also, don't start a new one if there's
4736 * already one in flight.
4737 */
4738 if (time_after64(frn->at, now - intv) &&
4739 atomic_read(&frn->done.cnt) == 1) {
4740 frn->at = 0;
4741 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4742 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4743 WB_REASON_FOREIGN_FLUSH,
4744 &frn->done);
4745 }
4746 }
4747 }
4748
4749 #else /* CONFIG_CGROUP_WRITEBACK */
4750
4751 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4752 {
4753 return 0;
4754 }
4755
4756 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4757 {
4758 }
4759
4760 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4761 {
4762 }
4763
4764 #endif /* CONFIG_CGROUP_WRITEBACK */
4765
4766 /*
4767 * DO NOT USE IN NEW FILES.
4768 *
4769 * "cgroup.event_control" implementation.
4770 *
4771 * This is way over-engineered. It tries to support fully configurable
4772 * events for each user. Such level of flexibility is completely
4773 * unnecessary especially in the light of the planned unified hierarchy.
4774 *
4775 * Please deprecate this and replace with something simpler if at all
4776 * possible.
4777 */
4778
4779 /*
4780 * Unregister event and free resources.
4781 *
4782 * Gets called from workqueue.
4783 */
4784 static void memcg_event_remove(struct work_struct *work)
4785 {
4786 struct mem_cgroup_event *event =
4787 container_of(work, struct mem_cgroup_event, remove);
4788 struct mem_cgroup *memcg = event->memcg;
4789
4790 remove_wait_queue(event->wqh, &event->wait);
4791
4792 event->unregister_event(memcg, event->eventfd);
4793
4794 /* Notify userspace the event is going away. */
4795 eventfd_signal(event->eventfd, 1);
4796
4797 eventfd_ctx_put(event->eventfd);
4798 kfree(event);
4799 css_put(&memcg->css);
4800 }
4801
4802 /*
4803 * Gets called on EPOLLHUP on eventfd when user closes it.
4804 *
4805 * Called with wqh->lock held and interrupts disabled.
4806 */
4807 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4808 int sync, void *key)
4809 {
4810 struct mem_cgroup_event *event =
4811 container_of(wait, struct mem_cgroup_event, wait);
4812 struct mem_cgroup *memcg = event->memcg;
4813 __poll_t flags = key_to_poll(key);
4814
4815 if (flags & EPOLLHUP) {
4816 /*
4817 * If the event has been detached at cgroup removal, we
4818 * can simply return knowing the other side will cleanup
4819 * for us.
4820 *
4821 * We can't race against event freeing since the other
4822 * side will require wqh->lock via remove_wait_queue(),
4823 * which we hold.
4824 */
4825 spin_lock(&memcg->event_list_lock);
4826 if (!list_empty(&event->list)) {
4827 list_del_init(&event->list);
4828 /*
4829 * We are in atomic context, but cgroup_event_remove()
4830 * may sleep, so we have to call it in workqueue.
4831 */
4832 schedule_work(&event->remove);
4833 }
4834 spin_unlock(&memcg->event_list_lock);
4835 }
4836
4837 return 0;
4838 }
4839
4840 static void memcg_event_ptable_queue_proc(struct file *file,
4841 wait_queue_head_t *wqh, poll_table *pt)
4842 {
4843 struct mem_cgroup_event *event =
4844 container_of(pt, struct mem_cgroup_event, pt);
4845
4846 event->wqh = wqh;
4847 add_wait_queue(wqh, &event->wait);
4848 }
4849
4850 /*
4851 * DO NOT USE IN NEW FILES.
4852 *
4853 * Parse input and register new cgroup event handler.
4854 *
4855 * Input must be in format '<event_fd> <control_fd> <args>'.
4856 * Interpretation of args is defined by control file implementation.
4857 */
4858 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4859 char *buf, size_t nbytes, loff_t off)
4860 {
4861 struct cgroup_subsys_state *css = of_css(of);
4862 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4863 struct mem_cgroup_event *event;
4864 struct cgroup_subsys_state *cfile_css;
4865 unsigned int efd, cfd;
4866 struct fd efile;
4867 struct fd cfile;
4868 const char *name;
4869 char *endp;
4870 int ret;
4871
4872 buf = strstrip(buf);
4873
4874 efd = simple_strtoul(buf, &endp, 10);
4875 if (*endp != ' ')
4876 return -EINVAL;
4877 buf = endp + 1;
4878
4879 cfd = simple_strtoul(buf, &endp, 10);
4880 if ((*endp != ' ') && (*endp != '\0'))
4881 return -EINVAL;
4882 buf = endp + 1;
4883
4884 event = kzalloc(sizeof(*event), GFP_KERNEL);
4885 if (!event)
4886 return -ENOMEM;
4887
4888 event->memcg = memcg;
4889 INIT_LIST_HEAD(&event->list);
4890 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4891 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4892 INIT_WORK(&event->remove, memcg_event_remove);
4893
4894 efile = fdget(efd);
4895 if (!efile.file) {
4896 ret = -EBADF;
4897 goto out_kfree;
4898 }
4899
4900 event->eventfd = eventfd_ctx_fileget(efile.file);
4901 if (IS_ERR(event->eventfd)) {
4902 ret = PTR_ERR(event->eventfd);
4903 goto out_put_efile;
4904 }
4905
4906 cfile = fdget(cfd);
4907 if (!cfile.file) {
4908 ret = -EBADF;
4909 goto out_put_eventfd;
4910 }
4911
4912 /* the process need read permission on control file */
4913 /* AV: shouldn't we check that it's been opened for read instead? */
4914 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4915 if (ret < 0)
4916 goto out_put_cfile;
4917
4918 /*
4919 * Determine the event callbacks and set them in @event. This used
4920 * to be done via struct cftype but cgroup core no longer knows
4921 * about these events. The following is crude but the whole thing
4922 * is for compatibility anyway.
4923 *
4924 * DO NOT ADD NEW FILES.
4925 */
4926 name = cfile.file->f_path.dentry->d_name.name;
4927
4928 if (!strcmp(name, "memory.usage_in_bytes")) {
4929 event->register_event = mem_cgroup_usage_register_event;
4930 event->unregister_event = mem_cgroup_usage_unregister_event;
4931 } else if (!strcmp(name, "memory.oom_control")) {
4932 event->register_event = mem_cgroup_oom_register_event;
4933 event->unregister_event = mem_cgroup_oom_unregister_event;
4934 } else if (!strcmp(name, "memory.pressure_level")) {
4935 event->register_event = vmpressure_register_event;
4936 event->unregister_event = vmpressure_unregister_event;
4937 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4938 event->register_event = memsw_cgroup_usage_register_event;
4939 event->unregister_event = memsw_cgroup_usage_unregister_event;
4940 } else {
4941 ret = -EINVAL;
4942 goto out_put_cfile;
4943 }
4944
4945 /*
4946 * Verify @cfile should belong to @css. Also, remaining events are
4947 * automatically removed on cgroup destruction but the removal is
4948 * asynchronous, so take an extra ref on @css.
4949 */
4950 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4951 &memory_cgrp_subsys);
4952 ret = -EINVAL;
4953 if (IS_ERR(cfile_css))
4954 goto out_put_cfile;
4955 if (cfile_css != css) {
4956 css_put(cfile_css);
4957 goto out_put_cfile;
4958 }
4959
4960 ret = event->register_event(memcg, event->eventfd, buf);
4961 if (ret)
4962 goto out_put_css;
4963
4964 vfs_poll(efile.file, &event->pt);
4965
4966 spin_lock(&memcg->event_list_lock);
4967 list_add(&event->list, &memcg->event_list);
4968 spin_unlock(&memcg->event_list_lock);
4969
4970 fdput(cfile);
4971 fdput(efile);
4972
4973 return nbytes;
4974
4975 out_put_css:
4976 css_put(css);
4977 out_put_cfile:
4978 fdput(cfile);
4979 out_put_eventfd:
4980 eventfd_ctx_put(event->eventfd);
4981 out_put_efile:
4982 fdput(efile);
4983 out_kfree:
4984 kfree(event);
4985
4986 return ret;
4987 }
4988
4989 static struct cftype mem_cgroup_legacy_files[] = {
4990 {
4991 .name = "usage_in_bytes",
4992 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4993 .read_u64 = mem_cgroup_read_u64,
4994 },
4995 {
4996 .name = "max_usage_in_bytes",
4997 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4998 .write = mem_cgroup_reset,
4999 .read_u64 = mem_cgroup_read_u64,
5000 },
5001 {
5002 .name = "limit_in_bytes",
5003 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5004 .write = mem_cgroup_write,
5005 .read_u64 = mem_cgroup_read_u64,
5006 },
5007 {
5008 .name = "soft_limit_in_bytes",
5009 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5010 .write = mem_cgroup_write,
5011 .read_u64 = mem_cgroup_read_u64,
5012 },
5013 {
5014 .name = "failcnt",
5015 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5016 .write = mem_cgroup_reset,
5017 .read_u64 = mem_cgroup_read_u64,
5018 },
5019 {
5020 .name = "stat",
5021 .seq_show = memcg_stat_show,
5022 },
5023 {
5024 .name = "force_empty",
5025 .write = mem_cgroup_force_empty_write,
5026 },
5027 {
5028 .name = "use_hierarchy",
5029 .write_u64 = mem_cgroup_hierarchy_write,
5030 .read_u64 = mem_cgroup_hierarchy_read,
5031 },
5032 {
5033 .name = "cgroup.event_control", /* XXX: for compat */
5034 .write = memcg_write_event_control,
5035 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5036 },
5037 {
5038 .name = "swappiness",
5039 .read_u64 = mem_cgroup_swappiness_read,
5040 .write_u64 = mem_cgroup_swappiness_write,
5041 },
5042 {
5043 .name = "move_charge_at_immigrate",
5044 .read_u64 = mem_cgroup_move_charge_read,
5045 .write_u64 = mem_cgroup_move_charge_write,
5046 },
5047 {
5048 .name = "oom_control",
5049 .seq_show = mem_cgroup_oom_control_read,
5050 .write_u64 = mem_cgroup_oom_control_write,
5051 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5052 },
5053 {
5054 .name = "pressure_level",
5055 },
5056 #ifdef CONFIG_NUMA
5057 {
5058 .name = "numa_stat",
5059 .seq_show = memcg_numa_stat_show,
5060 },
5061 #endif
5062 {
5063 .name = "kmem.limit_in_bytes",
5064 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5065 .write = mem_cgroup_write,
5066 .read_u64 = mem_cgroup_read_u64,
5067 },
5068 {
5069 .name = "kmem.usage_in_bytes",
5070 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5071 .read_u64 = mem_cgroup_read_u64,
5072 },
5073 {
5074 .name = "kmem.failcnt",
5075 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5076 .write = mem_cgroup_reset,
5077 .read_u64 = mem_cgroup_read_u64,
5078 },
5079 {
5080 .name = "kmem.max_usage_in_bytes",
5081 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5082 .write = mem_cgroup_reset,
5083 .read_u64 = mem_cgroup_read_u64,
5084 },
5085 #if defined(CONFIG_MEMCG_KMEM) && \
5086 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5087 {
5088 .name = "kmem.slabinfo",
5089 .seq_show = memcg_slab_show,
5090 },
5091 #endif
5092 {
5093 .name = "kmem.tcp.limit_in_bytes",
5094 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5095 .write = mem_cgroup_write,
5096 .read_u64 = mem_cgroup_read_u64,
5097 },
5098 {
5099 .name = "kmem.tcp.usage_in_bytes",
5100 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5101 .read_u64 = mem_cgroup_read_u64,
5102 },
5103 {
5104 .name = "kmem.tcp.failcnt",
5105 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5106 .write = mem_cgroup_reset,
5107 .read_u64 = mem_cgroup_read_u64,
5108 },
5109 {
5110 .name = "kmem.tcp.max_usage_in_bytes",
5111 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5112 .write = mem_cgroup_reset,
5113 .read_u64 = mem_cgroup_read_u64,
5114 },
5115 { }, /* terminate */
5116 };
5117
5118 /*
5119 * Private memory cgroup IDR
5120 *
5121 * Swap-out records and page cache shadow entries need to store memcg
5122 * references in constrained space, so we maintain an ID space that is
5123 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5124 * memory-controlled cgroups to 64k.
5125 *
5126 * However, there usually are many references to the offline CSS after
5127 * the cgroup has been destroyed, such as page cache or reclaimable
5128 * slab objects, that don't need to hang on to the ID. We want to keep
5129 * those dead CSS from occupying IDs, or we might quickly exhaust the
5130 * relatively small ID space and prevent the creation of new cgroups
5131 * even when there are much fewer than 64k cgroups - possibly none.
5132 *
5133 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5134 * be freed and recycled when it's no longer needed, which is usually
5135 * when the CSS is offlined.
5136 *
5137 * The only exception to that are records of swapped out tmpfs/shmem
5138 * pages that need to be attributed to live ancestors on swapin. But
5139 * those references are manageable from userspace.
5140 */
5141
5142 static DEFINE_IDR(mem_cgroup_idr);
5143
5144 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5145 {
5146 if (memcg->id.id > 0) {
5147 idr_remove(&mem_cgroup_idr, memcg->id.id);
5148 memcg->id.id = 0;
5149 }
5150 }
5151
5152 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5153 unsigned int n)
5154 {
5155 refcount_add(n, &memcg->id.ref);
5156 }
5157
5158 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5159 {
5160 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5161 mem_cgroup_id_remove(memcg);
5162
5163 /* Memcg ID pins CSS */
5164 css_put(&memcg->css);
5165 }
5166 }
5167
5168 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5169 {
5170 mem_cgroup_id_put_many(memcg, 1);
5171 }
5172
5173 /**
5174 * mem_cgroup_from_id - look up a memcg from a memcg id
5175 * @id: the memcg id to look up
5176 *
5177 * Caller must hold rcu_read_lock().
5178 */
5179 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5180 {
5181 WARN_ON_ONCE(!rcu_read_lock_held());
5182 return idr_find(&mem_cgroup_idr, id);
5183 }
5184
5185 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5186 {
5187 struct mem_cgroup_per_node *pn;
5188 int tmp = node;
5189 /*
5190 * This routine is called against possible nodes.
5191 * But it's BUG to call kmalloc() against offline node.
5192 *
5193 * TODO: this routine can waste much memory for nodes which will
5194 * never be onlined. It's better to use memory hotplug callback
5195 * function.
5196 */
5197 if (!node_state(node, N_NORMAL_MEMORY))
5198 tmp = -1;
5199 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5200 if (!pn)
5201 return 1;
5202
5203 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5204 GFP_KERNEL_ACCOUNT);
5205 if (!pn->lruvec_stat_local) {
5206 kfree(pn);
5207 return 1;
5208 }
5209
5210 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5211 GFP_KERNEL_ACCOUNT);
5212 if (!pn->lruvec_stat_cpu) {
5213 free_percpu(pn->lruvec_stat_local);
5214 kfree(pn);
5215 return 1;
5216 }
5217
5218 lruvec_init(&pn->lruvec);
5219 pn->usage_in_excess = 0;
5220 pn->on_tree = false;
5221 pn->memcg = memcg;
5222
5223 memcg->nodeinfo[node] = pn;
5224 return 0;
5225 }
5226
5227 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5228 {
5229 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5230
5231 if (!pn)
5232 return;
5233
5234 free_percpu(pn->lruvec_stat_cpu);
5235 free_percpu(pn->lruvec_stat_local);
5236 kfree(pn);
5237 }
5238
5239 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5240 {
5241 int node;
5242
5243 for_each_node(node)
5244 free_mem_cgroup_per_node_info(memcg, node);
5245 free_percpu(memcg->vmstats_percpu);
5246 free_percpu(memcg->vmstats_local);
5247 kfree(memcg);
5248 }
5249
5250 static void mem_cgroup_free(struct mem_cgroup *memcg)
5251 {
5252 memcg_wb_domain_exit(memcg);
5253 /*
5254 * Flush percpu vmstats and vmevents to guarantee the value correctness
5255 * on parent's and all ancestor levels.
5256 */
5257 memcg_flush_percpu_vmstats(memcg);
5258 memcg_flush_percpu_vmevents(memcg);
5259 __mem_cgroup_free(memcg);
5260 }
5261
5262 static struct mem_cgroup *mem_cgroup_alloc(void)
5263 {
5264 struct mem_cgroup *memcg;
5265 unsigned int size;
5266 int node;
5267 int __maybe_unused i;
5268 long error = -ENOMEM;
5269
5270 size = sizeof(struct mem_cgroup);
5271 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5272
5273 memcg = kzalloc(size, GFP_KERNEL);
5274 if (!memcg)
5275 return ERR_PTR(error);
5276
5277 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5278 1, MEM_CGROUP_ID_MAX,
5279 GFP_KERNEL);
5280 if (memcg->id.id < 0) {
5281 error = memcg->id.id;
5282 goto fail;
5283 }
5284
5285 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5286 GFP_KERNEL_ACCOUNT);
5287 if (!memcg->vmstats_local)
5288 goto fail;
5289
5290 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5291 GFP_KERNEL_ACCOUNT);
5292 if (!memcg->vmstats_percpu)
5293 goto fail;
5294
5295 for_each_node(node)
5296 if (alloc_mem_cgroup_per_node_info(memcg, node))
5297 goto fail;
5298
5299 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5300 goto fail;
5301
5302 INIT_WORK(&memcg->high_work, high_work_func);
5303 INIT_LIST_HEAD(&memcg->oom_notify);
5304 mutex_init(&memcg->thresholds_lock);
5305 spin_lock_init(&memcg->move_lock);
5306 vmpressure_init(&memcg->vmpressure);
5307 INIT_LIST_HEAD(&memcg->event_list);
5308 spin_lock_init(&memcg->event_list_lock);
5309 memcg->socket_pressure = jiffies;
5310 #ifdef CONFIG_MEMCG_KMEM
5311 memcg->kmemcg_id = -1;
5312 INIT_LIST_HEAD(&memcg->objcg_list);
5313 #endif
5314 #ifdef CONFIG_CGROUP_WRITEBACK
5315 INIT_LIST_HEAD(&memcg->cgwb_list);
5316 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5317 memcg->cgwb_frn[i].done =
5318 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5319 #endif
5320 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5321 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5322 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5323 memcg->deferred_split_queue.split_queue_len = 0;
5324 #endif
5325 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5326 return memcg;
5327 fail:
5328 mem_cgroup_id_remove(memcg);
5329 __mem_cgroup_free(memcg);
5330 return ERR_PTR(error);
5331 }
5332
5333 static struct cgroup_subsys_state * __ref
5334 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5335 {
5336 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5337 struct mem_cgroup *memcg, *old_memcg;
5338 long error = -ENOMEM;
5339
5340 old_memcg = set_active_memcg(parent);
5341 memcg = mem_cgroup_alloc();
5342 set_active_memcg(old_memcg);
5343 if (IS_ERR(memcg))
5344 return ERR_CAST(memcg);
5345
5346 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5347 memcg->soft_limit = PAGE_COUNTER_MAX;
5348 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5349 if (parent) {
5350 memcg->swappiness = mem_cgroup_swappiness(parent);
5351 memcg->oom_kill_disable = parent->oom_kill_disable;
5352 }
5353 if (!parent) {
5354 page_counter_init(&memcg->memory, NULL);
5355 page_counter_init(&memcg->swap, NULL);
5356 page_counter_init(&memcg->kmem, NULL);
5357 page_counter_init(&memcg->tcpmem, NULL);
5358 } else if (parent->use_hierarchy) {
5359 memcg->use_hierarchy = true;
5360 page_counter_init(&memcg->memory, &parent->memory);
5361 page_counter_init(&memcg->swap, &parent->swap);
5362 page_counter_init(&memcg->kmem, &parent->kmem);
5363 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5364 } else {
5365 page_counter_init(&memcg->memory, &root_mem_cgroup->memory);
5366 page_counter_init(&memcg->swap, &root_mem_cgroup->swap);
5367 page_counter_init(&memcg->kmem, &root_mem_cgroup->kmem);
5368 page_counter_init(&memcg->tcpmem, &root_mem_cgroup->tcpmem);
5369 /*
5370 * Deeper hierachy with use_hierarchy == false doesn't make
5371 * much sense so let cgroup subsystem know about this
5372 * unfortunate state in our controller.
5373 */
5374 if (parent != root_mem_cgroup)
5375 memory_cgrp_subsys.broken_hierarchy = true;
5376 }
5377
5378 /* The following stuff does not apply to the root */
5379 if (!parent) {
5380 root_mem_cgroup = memcg;
5381 return &memcg->css;
5382 }
5383
5384 error = memcg_online_kmem(memcg);
5385 if (error)
5386 goto fail;
5387
5388 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5389 static_branch_inc(&memcg_sockets_enabled_key);
5390
5391 return &memcg->css;
5392 fail:
5393 mem_cgroup_id_remove(memcg);
5394 mem_cgroup_free(memcg);
5395 return ERR_PTR(error);
5396 }
5397
5398 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5399 {
5400 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5401
5402 /*
5403 * A memcg must be visible for memcg_expand_shrinker_maps()
5404 * by the time the maps are allocated. So, we allocate maps
5405 * here, when for_each_mem_cgroup() can't skip it.
5406 */
5407 if (memcg_alloc_shrinker_maps(memcg)) {
5408 mem_cgroup_id_remove(memcg);
5409 return -ENOMEM;
5410 }
5411
5412 /* Online state pins memcg ID, memcg ID pins CSS */
5413 refcount_set(&memcg->id.ref, 1);
5414 css_get(css);
5415 return 0;
5416 }
5417
5418 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5419 {
5420 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5421 struct mem_cgroup_event *event, *tmp;
5422
5423 /*
5424 * Unregister events and notify userspace.
5425 * Notify userspace about cgroup removing only after rmdir of cgroup
5426 * directory to avoid race between userspace and kernelspace.
5427 */
5428 spin_lock(&memcg->event_list_lock);
5429 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5430 list_del_init(&event->list);
5431 schedule_work(&event->remove);
5432 }
5433 spin_unlock(&memcg->event_list_lock);
5434
5435 page_counter_set_min(&memcg->memory, 0);
5436 page_counter_set_low(&memcg->memory, 0);
5437
5438 memcg_offline_kmem(memcg);
5439 wb_memcg_offline(memcg);
5440
5441 drain_all_stock(memcg);
5442
5443 mem_cgroup_id_put(memcg);
5444 }
5445
5446 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5447 {
5448 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5449
5450 invalidate_reclaim_iterators(memcg);
5451 }
5452
5453 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5454 {
5455 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5456 int __maybe_unused i;
5457
5458 #ifdef CONFIG_CGROUP_WRITEBACK
5459 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5460 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5461 #endif
5462 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5463 static_branch_dec(&memcg_sockets_enabled_key);
5464
5465 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5466 static_branch_dec(&memcg_sockets_enabled_key);
5467
5468 vmpressure_cleanup(&memcg->vmpressure);
5469 cancel_work_sync(&memcg->high_work);
5470 mem_cgroup_remove_from_trees(memcg);
5471 memcg_free_shrinker_maps(memcg);
5472 memcg_free_kmem(memcg);
5473 mem_cgroup_free(memcg);
5474 }
5475
5476 /**
5477 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5478 * @css: the target css
5479 *
5480 * Reset the states of the mem_cgroup associated with @css. This is
5481 * invoked when the userland requests disabling on the default hierarchy
5482 * but the memcg is pinned through dependency. The memcg should stop
5483 * applying policies and should revert to the vanilla state as it may be
5484 * made visible again.
5485 *
5486 * The current implementation only resets the essential configurations.
5487 * This needs to be expanded to cover all the visible parts.
5488 */
5489 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5490 {
5491 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5492
5493 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5494 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5495 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5496 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5497 page_counter_set_min(&memcg->memory, 0);
5498 page_counter_set_low(&memcg->memory, 0);
5499 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5500 memcg->soft_limit = PAGE_COUNTER_MAX;
5501 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5502 memcg_wb_domain_size_changed(memcg);
5503 }
5504
5505 #ifdef CONFIG_MMU
5506 /* Handlers for move charge at task migration. */
5507 static int mem_cgroup_do_precharge(unsigned long count)
5508 {
5509 int ret;
5510
5511 /* Try a single bulk charge without reclaim first, kswapd may wake */
5512 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5513 if (!ret) {
5514 mc.precharge += count;
5515 return ret;
5516 }
5517
5518 /* Try charges one by one with reclaim, but do not retry */
5519 while (count--) {
5520 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5521 if (ret)
5522 return ret;
5523 mc.precharge++;
5524 cond_resched();
5525 }
5526 return 0;
5527 }
5528
5529 union mc_target {
5530 struct page *page;
5531 swp_entry_t ent;
5532 };
5533
5534 enum mc_target_type {
5535 MC_TARGET_NONE = 0,
5536 MC_TARGET_PAGE,
5537 MC_TARGET_SWAP,
5538 MC_TARGET_DEVICE,
5539 };
5540
5541 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5542 unsigned long addr, pte_t ptent)
5543 {
5544 struct page *page = vm_normal_page(vma, addr, ptent);
5545
5546 if (!page || !page_mapped(page))
5547 return NULL;
5548 if (PageAnon(page)) {
5549 if (!(mc.flags & MOVE_ANON))
5550 return NULL;
5551 } else {
5552 if (!(mc.flags & MOVE_FILE))
5553 return NULL;
5554 }
5555 if (!get_page_unless_zero(page))
5556 return NULL;
5557
5558 return page;
5559 }
5560
5561 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5562 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5563 pte_t ptent, swp_entry_t *entry)
5564 {
5565 struct page *page = NULL;
5566 swp_entry_t ent = pte_to_swp_entry(ptent);
5567
5568 if (!(mc.flags & MOVE_ANON))
5569 return NULL;
5570
5571 /*
5572 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5573 * a device and because they are not accessible by CPU they are store
5574 * as special swap entry in the CPU page table.
5575 */
5576 if (is_device_private_entry(ent)) {
5577 page = device_private_entry_to_page(ent);
5578 /*
5579 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5580 * a refcount of 1 when free (unlike normal page)
5581 */
5582 if (!page_ref_add_unless(page, 1, 1))
5583 return NULL;
5584 return page;
5585 }
5586
5587 if (non_swap_entry(ent))
5588 return NULL;
5589
5590 /*
5591 * Because lookup_swap_cache() updates some statistics counter,
5592 * we call find_get_page() with swapper_space directly.
5593 */
5594 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5595 entry->val = ent.val;
5596
5597 return page;
5598 }
5599 #else
5600 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5601 pte_t ptent, swp_entry_t *entry)
5602 {
5603 return NULL;
5604 }
5605 #endif
5606
5607 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5608 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5609 {
5610 if (!vma->vm_file) /* anonymous vma */
5611 return NULL;
5612 if (!(mc.flags & MOVE_FILE))
5613 return NULL;
5614
5615 /* page is moved even if it's not RSS of this task(page-faulted). */
5616 /* shmem/tmpfs may report page out on swap: account for that too. */
5617 return find_get_incore_page(vma->vm_file->f_mapping,
5618 linear_page_index(vma, addr));
5619 }
5620
5621 /**
5622 * mem_cgroup_move_account - move account of the page
5623 * @page: the page
5624 * @compound: charge the page as compound or small page
5625 * @from: mem_cgroup which the page is moved from.
5626 * @to: mem_cgroup which the page is moved to. @from != @to.
5627 *
5628 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5629 *
5630 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5631 * from old cgroup.
5632 */
5633 static int mem_cgroup_move_account(struct page *page,
5634 bool compound,
5635 struct mem_cgroup *from,
5636 struct mem_cgroup *to)
5637 {
5638 struct lruvec *from_vec, *to_vec;
5639 struct pglist_data *pgdat;
5640 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5641 int ret;
5642
5643 VM_BUG_ON(from == to);
5644 VM_BUG_ON_PAGE(PageLRU(page), page);
5645 VM_BUG_ON(compound && !PageTransHuge(page));
5646
5647 /*
5648 * Prevent mem_cgroup_migrate() from looking at
5649 * page->mem_cgroup of its source page while we change it.
5650 */
5651 ret = -EBUSY;
5652 if (!trylock_page(page))
5653 goto out;
5654
5655 ret = -EINVAL;
5656 if (page->mem_cgroup != from)
5657 goto out_unlock;
5658
5659 pgdat = page_pgdat(page);
5660 from_vec = mem_cgroup_lruvec(from, pgdat);
5661 to_vec = mem_cgroup_lruvec(to, pgdat);
5662
5663 lock_page_memcg(page);
5664
5665 if (PageAnon(page)) {
5666 if (page_mapped(page)) {
5667 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5668 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5669 if (PageTransHuge(page)) {
5670 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5671 -nr_pages);
5672 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5673 nr_pages);
5674 }
5675
5676 }
5677 } else {
5678 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5679 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5680
5681 if (PageSwapBacked(page)) {
5682 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5683 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5684 }
5685
5686 if (page_mapped(page)) {
5687 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5688 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5689 }
5690
5691 if (PageDirty(page)) {
5692 struct address_space *mapping = page_mapping(page);
5693
5694 if (mapping_can_writeback(mapping)) {
5695 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5696 -nr_pages);
5697 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5698 nr_pages);
5699 }
5700 }
5701 }
5702
5703 if (PageWriteback(page)) {
5704 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5705 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5706 }
5707
5708 /*
5709 * All state has been migrated, let's switch to the new memcg.
5710 *
5711 * It is safe to change page->mem_cgroup here because the page
5712 * is referenced, charged, isolated, and locked: we can't race
5713 * with (un)charging, migration, LRU putback, or anything else
5714 * that would rely on a stable page->mem_cgroup.
5715 *
5716 * Note that lock_page_memcg is a memcg lock, not a page lock,
5717 * to save space. As soon as we switch page->mem_cgroup to a
5718 * new memcg that isn't locked, the above state can change
5719 * concurrently again. Make sure we're truly done with it.
5720 */
5721 smp_mb();
5722
5723 css_get(&to->css);
5724 css_put(&from->css);
5725
5726 page->mem_cgroup = to;
5727
5728 __unlock_page_memcg(from);
5729
5730 ret = 0;
5731
5732 local_irq_disable();
5733 mem_cgroup_charge_statistics(to, page, nr_pages);
5734 memcg_check_events(to, page);
5735 mem_cgroup_charge_statistics(from, page, -nr_pages);
5736 memcg_check_events(from, page);
5737 local_irq_enable();
5738 out_unlock:
5739 unlock_page(page);
5740 out:
5741 return ret;
5742 }
5743
5744 /**
5745 * get_mctgt_type - get target type of moving charge
5746 * @vma: the vma the pte to be checked belongs
5747 * @addr: the address corresponding to the pte to be checked
5748 * @ptent: the pte to be checked
5749 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5750 *
5751 * Returns
5752 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5753 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5754 * move charge. if @target is not NULL, the page is stored in target->page
5755 * with extra refcnt got(Callers should handle it).
5756 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5757 * target for charge migration. if @target is not NULL, the entry is stored
5758 * in target->ent.
5759 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5760 * (so ZONE_DEVICE page and thus not on the lru).
5761 * For now we such page is charge like a regular page would be as for all
5762 * intent and purposes it is just special memory taking the place of a
5763 * regular page.
5764 *
5765 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5766 *
5767 * Called with pte lock held.
5768 */
5769
5770 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5771 unsigned long addr, pte_t ptent, union mc_target *target)
5772 {
5773 struct page *page = NULL;
5774 enum mc_target_type ret = MC_TARGET_NONE;
5775 swp_entry_t ent = { .val = 0 };
5776
5777 if (pte_present(ptent))
5778 page = mc_handle_present_pte(vma, addr, ptent);
5779 else if (is_swap_pte(ptent))
5780 page = mc_handle_swap_pte(vma, ptent, &ent);
5781 else if (pte_none(ptent))
5782 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5783
5784 if (!page && !ent.val)
5785 return ret;
5786 if (page) {
5787 /*
5788 * Do only loose check w/o serialization.
5789 * mem_cgroup_move_account() checks the page is valid or
5790 * not under LRU exclusion.
5791 */
5792 if (page->mem_cgroup == mc.from) {
5793 ret = MC_TARGET_PAGE;
5794 if (is_device_private_page(page))
5795 ret = MC_TARGET_DEVICE;
5796 if (target)
5797 target->page = page;
5798 }
5799 if (!ret || !target)
5800 put_page(page);
5801 }
5802 /*
5803 * There is a swap entry and a page doesn't exist or isn't charged.
5804 * But we cannot move a tail-page in a THP.
5805 */
5806 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5807 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5808 ret = MC_TARGET_SWAP;
5809 if (target)
5810 target->ent = ent;
5811 }
5812 return ret;
5813 }
5814
5815 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5816 /*
5817 * We don't consider PMD mapped swapping or file mapped pages because THP does
5818 * not support them for now.
5819 * Caller should make sure that pmd_trans_huge(pmd) is true.
5820 */
5821 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5822 unsigned long addr, pmd_t pmd, union mc_target *target)
5823 {
5824 struct page *page = NULL;
5825 enum mc_target_type ret = MC_TARGET_NONE;
5826
5827 if (unlikely(is_swap_pmd(pmd))) {
5828 VM_BUG_ON(thp_migration_supported() &&
5829 !is_pmd_migration_entry(pmd));
5830 return ret;
5831 }
5832 page = pmd_page(pmd);
5833 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5834 if (!(mc.flags & MOVE_ANON))
5835 return ret;
5836 if (page->mem_cgroup == mc.from) {
5837 ret = MC_TARGET_PAGE;
5838 if (target) {
5839 get_page(page);
5840 target->page = page;
5841 }
5842 }
5843 return ret;
5844 }
5845 #else
5846 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5847 unsigned long addr, pmd_t pmd, union mc_target *target)
5848 {
5849 return MC_TARGET_NONE;
5850 }
5851 #endif
5852
5853 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5854 unsigned long addr, unsigned long end,
5855 struct mm_walk *walk)
5856 {
5857 struct vm_area_struct *vma = walk->vma;
5858 pte_t *pte;
5859 spinlock_t *ptl;
5860
5861 ptl = pmd_trans_huge_lock(pmd, vma);
5862 if (ptl) {
5863 /*
5864 * Note their can not be MC_TARGET_DEVICE for now as we do not
5865 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5866 * this might change.
5867 */
5868 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5869 mc.precharge += HPAGE_PMD_NR;
5870 spin_unlock(ptl);
5871 return 0;
5872 }
5873
5874 if (pmd_trans_unstable(pmd))
5875 return 0;
5876 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5877 for (; addr != end; pte++, addr += PAGE_SIZE)
5878 if (get_mctgt_type(vma, addr, *pte, NULL))
5879 mc.precharge++; /* increment precharge temporarily */
5880 pte_unmap_unlock(pte - 1, ptl);
5881 cond_resched();
5882
5883 return 0;
5884 }
5885
5886 static const struct mm_walk_ops precharge_walk_ops = {
5887 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5888 };
5889
5890 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5891 {
5892 unsigned long precharge;
5893
5894 mmap_read_lock(mm);
5895 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5896 mmap_read_unlock(mm);
5897
5898 precharge = mc.precharge;
5899 mc.precharge = 0;
5900
5901 return precharge;
5902 }
5903
5904 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5905 {
5906 unsigned long precharge = mem_cgroup_count_precharge(mm);
5907
5908 VM_BUG_ON(mc.moving_task);
5909 mc.moving_task = current;
5910 return mem_cgroup_do_precharge(precharge);
5911 }
5912
5913 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5914 static void __mem_cgroup_clear_mc(void)
5915 {
5916 struct mem_cgroup *from = mc.from;
5917 struct mem_cgroup *to = mc.to;
5918
5919 /* we must uncharge all the leftover precharges from mc.to */
5920 if (mc.precharge) {
5921 cancel_charge(mc.to, mc.precharge);
5922 mc.precharge = 0;
5923 }
5924 /*
5925 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5926 * we must uncharge here.
5927 */
5928 if (mc.moved_charge) {
5929 cancel_charge(mc.from, mc.moved_charge);
5930 mc.moved_charge = 0;
5931 }
5932 /* we must fixup refcnts and charges */
5933 if (mc.moved_swap) {
5934 /* uncharge swap account from the old cgroup */
5935 if (!mem_cgroup_is_root(mc.from))
5936 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5937
5938 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5939
5940 /*
5941 * we charged both to->memory and to->memsw, so we
5942 * should uncharge to->memory.
5943 */
5944 if (!mem_cgroup_is_root(mc.to))
5945 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5946
5947 mc.moved_swap = 0;
5948 }
5949 memcg_oom_recover(from);
5950 memcg_oom_recover(to);
5951 wake_up_all(&mc.waitq);
5952 }
5953
5954 static void mem_cgroup_clear_mc(void)
5955 {
5956 struct mm_struct *mm = mc.mm;
5957
5958 /*
5959 * we must clear moving_task before waking up waiters at the end of
5960 * task migration.
5961 */
5962 mc.moving_task = NULL;
5963 __mem_cgroup_clear_mc();
5964 spin_lock(&mc.lock);
5965 mc.from = NULL;
5966 mc.to = NULL;
5967 mc.mm = NULL;
5968 spin_unlock(&mc.lock);
5969
5970 mmput(mm);
5971 }
5972
5973 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5974 {
5975 struct cgroup_subsys_state *css;
5976 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5977 struct mem_cgroup *from;
5978 struct task_struct *leader, *p;
5979 struct mm_struct *mm;
5980 unsigned long move_flags;
5981 int ret = 0;
5982
5983 /* charge immigration isn't supported on the default hierarchy */
5984 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5985 return 0;
5986
5987 /*
5988 * Multi-process migrations only happen on the default hierarchy
5989 * where charge immigration is not used. Perform charge
5990 * immigration if @tset contains a leader and whine if there are
5991 * multiple.
5992 */
5993 p = NULL;
5994 cgroup_taskset_for_each_leader(leader, css, tset) {
5995 WARN_ON_ONCE(p);
5996 p = leader;
5997 memcg = mem_cgroup_from_css(css);
5998 }
5999 if (!p)
6000 return 0;
6001
6002 /*
6003 * We are now commited to this value whatever it is. Changes in this
6004 * tunable will only affect upcoming migrations, not the current one.
6005 * So we need to save it, and keep it going.
6006 */
6007 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6008 if (!move_flags)
6009 return 0;
6010
6011 from = mem_cgroup_from_task(p);
6012
6013 VM_BUG_ON(from == memcg);
6014
6015 mm = get_task_mm(p);
6016 if (!mm)
6017 return 0;
6018 /* We move charges only when we move a owner of the mm */
6019 if (mm->owner == p) {
6020 VM_BUG_ON(mc.from);
6021 VM_BUG_ON(mc.to);
6022 VM_BUG_ON(mc.precharge);
6023 VM_BUG_ON(mc.moved_charge);
6024 VM_BUG_ON(mc.moved_swap);
6025
6026 spin_lock(&mc.lock);
6027 mc.mm = mm;
6028 mc.from = from;
6029 mc.to = memcg;
6030 mc.flags = move_flags;
6031 spin_unlock(&mc.lock);
6032 /* We set mc.moving_task later */
6033
6034 ret = mem_cgroup_precharge_mc(mm);
6035 if (ret)
6036 mem_cgroup_clear_mc();
6037 } else {
6038 mmput(mm);
6039 }
6040 return ret;
6041 }
6042
6043 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6044 {
6045 if (mc.to)
6046 mem_cgroup_clear_mc();
6047 }
6048
6049 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6050 unsigned long addr, unsigned long end,
6051 struct mm_walk *walk)
6052 {
6053 int ret = 0;
6054 struct vm_area_struct *vma = walk->vma;
6055 pte_t *pte;
6056 spinlock_t *ptl;
6057 enum mc_target_type target_type;
6058 union mc_target target;
6059 struct page *page;
6060
6061 ptl = pmd_trans_huge_lock(pmd, vma);
6062 if (ptl) {
6063 if (mc.precharge < HPAGE_PMD_NR) {
6064 spin_unlock(ptl);
6065 return 0;
6066 }
6067 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6068 if (target_type == MC_TARGET_PAGE) {
6069 page = target.page;
6070 if (!isolate_lru_page(page)) {
6071 if (!mem_cgroup_move_account(page, true,
6072 mc.from, mc.to)) {
6073 mc.precharge -= HPAGE_PMD_NR;
6074 mc.moved_charge += HPAGE_PMD_NR;
6075 }
6076 putback_lru_page(page);
6077 }
6078 put_page(page);
6079 } else if (target_type == MC_TARGET_DEVICE) {
6080 page = target.page;
6081 if (!mem_cgroup_move_account(page, true,
6082 mc.from, mc.to)) {
6083 mc.precharge -= HPAGE_PMD_NR;
6084 mc.moved_charge += HPAGE_PMD_NR;
6085 }
6086 put_page(page);
6087 }
6088 spin_unlock(ptl);
6089 return 0;
6090 }
6091
6092 if (pmd_trans_unstable(pmd))
6093 return 0;
6094 retry:
6095 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6096 for (; addr != end; addr += PAGE_SIZE) {
6097 pte_t ptent = *(pte++);
6098 bool device = false;
6099 swp_entry_t ent;
6100
6101 if (!mc.precharge)
6102 break;
6103
6104 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6105 case MC_TARGET_DEVICE:
6106 device = true;
6107 fallthrough;
6108 case MC_TARGET_PAGE:
6109 page = target.page;
6110 /*
6111 * We can have a part of the split pmd here. Moving it
6112 * can be done but it would be too convoluted so simply
6113 * ignore such a partial THP and keep it in original
6114 * memcg. There should be somebody mapping the head.
6115 */
6116 if (PageTransCompound(page))
6117 goto put;
6118 if (!device && isolate_lru_page(page))
6119 goto put;
6120 if (!mem_cgroup_move_account(page, false,
6121 mc.from, mc.to)) {
6122 mc.precharge--;
6123 /* we uncharge from mc.from later. */
6124 mc.moved_charge++;
6125 }
6126 if (!device)
6127 putback_lru_page(page);
6128 put: /* get_mctgt_type() gets the page */
6129 put_page(page);
6130 break;
6131 case MC_TARGET_SWAP:
6132 ent = target.ent;
6133 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6134 mc.precharge--;
6135 mem_cgroup_id_get_many(mc.to, 1);
6136 /* we fixup other refcnts and charges later. */
6137 mc.moved_swap++;
6138 }
6139 break;
6140 default:
6141 break;
6142 }
6143 }
6144 pte_unmap_unlock(pte - 1, ptl);
6145 cond_resched();
6146
6147 if (addr != end) {
6148 /*
6149 * We have consumed all precharges we got in can_attach().
6150 * We try charge one by one, but don't do any additional
6151 * charges to mc.to if we have failed in charge once in attach()
6152 * phase.
6153 */
6154 ret = mem_cgroup_do_precharge(1);
6155 if (!ret)
6156 goto retry;
6157 }
6158
6159 return ret;
6160 }
6161
6162 static const struct mm_walk_ops charge_walk_ops = {
6163 .pmd_entry = mem_cgroup_move_charge_pte_range,
6164 };
6165
6166 static void mem_cgroup_move_charge(void)
6167 {
6168 lru_add_drain_all();
6169 /*
6170 * Signal lock_page_memcg() to take the memcg's move_lock
6171 * while we're moving its pages to another memcg. Then wait
6172 * for already started RCU-only updates to finish.
6173 */
6174 atomic_inc(&mc.from->moving_account);
6175 synchronize_rcu();
6176 retry:
6177 if (unlikely(!mmap_read_trylock(mc.mm))) {
6178 /*
6179 * Someone who are holding the mmap_lock might be waiting in
6180 * waitq. So we cancel all extra charges, wake up all waiters,
6181 * and retry. Because we cancel precharges, we might not be able
6182 * to move enough charges, but moving charge is a best-effort
6183 * feature anyway, so it wouldn't be a big problem.
6184 */
6185 __mem_cgroup_clear_mc();
6186 cond_resched();
6187 goto retry;
6188 }
6189 /*
6190 * When we have consumed all precharges and failed in doing
6191 * additional charge, the page walk just aborts.
6192 */
6193 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6194 NULL);
6195
6196 mmap_read_unlock(mc.mm);
6197 atomic_dec(&mc.from->moving_account);
6198 }
6199
6200 static void mem_cgroup_move_task(void)
6201 {
6202 if (mc.to) {
6203 mem_cgroup_move_charge();
6204 mem_cgroup_clear_mc();
6205 }
6206 }
6207 #else /* !CONFIG_MMU */
6208 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6209 {
6210 return 0;
6211 }
6212 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6213 {
6214 }
6215 static void mem_cgroup_move_task(void)
6216 {
6217 }
6218 #endif
6219
6220 /*
6221 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6222 * to verify whether we're attached to the default hierarchy on each mount
6223 * attempt.
6224 */
6225 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6226 {
6227 /*
6228 * use_hierarchy is forced on the default hierarchy. cgroup core
6229 * guarantees that @root doesn't have any children, so turning it
6230 * on for the root memcg is enough.
6231 */
6232 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6233 root_mem_cgroup->use_hierarchy = true;
6234 else
6235 root_mem_cgroup->use_hierarchy = false;
6236 }
6237
6238 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6239 {
6240 if (value == PAGE_COUNTER_MAX)
6241 seq_puts(m, "max\n");
6242 else
6243 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6244
6245 return 0;
6246 }
6247
6248 static u64 memory_current_read(struct cgroup_subsys_state *css,
6249 struct cftype *cft)
6250 {
6251 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6252
6253 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6254 }
6255
6256 static int memory_min_show(struct seq_file *m, void *v)
6257 {
6258 return seq_puts_memcg_tunable(m,
6259 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6260 }
6261
6262 static ssize_t memory_min_write(struct kernfs_open_file *of,
6263 char *buf, size_t nbytes, loff_t off)
6264 {
6265 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6266 unsigned long min;
6267 int err;
6268
6269 buf = strstrip(buf);
6270 err = page_counter_memparse(buf, "max", &min);
6271 if (err)
6272 return err;
6273
6274 page_counter_set_min(&memcg->memory, min);
6275
6276 return nbytes;
6277 }
6278
6279 static int memory_low_show(struct seq_file *m, void *v)
6280 {
6281 return seq_puts_memcg_tunable(m,
6282 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6283 }
6284
6285 static ssize_t memory_low_write(struct kernfs_open_file *of,
6286 char *buf, size_t nbytes, loff_t off)
6287 {
6288 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6289 unsigned long low;
6290 int err;
6291
6292 buf = strstrip(buf);
6293 err = page_counter_memparse(buf, "max", &low);
6294 if (err)
6295 return err;
6296
6297 page_counter_set_low(&memcg->memory, low);
6298
6299 return nbytes;
6300 }
6301
6302 static int memory_high_show(struct seq_file *m, void *v)
6303 {
6304 return seq_puts_memcg_tunable(m,
6305 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6306 }
6307
6308 static ssize_t memory_high_write(struct kernfs_open_file *of,
6309 char *buf, size_t nbytes, loff_t off)
6310 {
6311 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6312 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6313 bool drained = false;
6314 unsigned long high;
6315 int err;
6316
6317 buf = strstrip(buf);
6318 err = page_counter_memparse(buf, "max", &high);
6319 if (err)
6320 return err;
6321
6322 for (;;) {
6323 unsigned long nr_pages = page_counter_read(&memcg->memory);
6324 unsigned long reclaimed;
6325
6326 if (nr_pages <= high)
6327 break;
6328
6329 if (signal_pending(current))
6330 break;
6331
6332 if (!drained) {
6333 drain_all_stock(memcg);
6334 drained = true;
6335 continue;
6336 }
6337
6338 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6339 GFP_KERNEL, true);
6340
6341 if (!reclaimed && !nr_retries--)
6342 break;
6343 }
6344
6345 page_counter_set_high(&memcg->memory, high);
6346
6347 memcg_wb_domain_size_changed(memcg);
6348
6349 return nbytes;
6350 }
6351
6352 static int memory_max_show(struct seq_file *m, void *v)
6353 {
6354 return seq_puts_memcg_tunable(m,
6355 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6356 }
6357
6358 static ssize_t memory_max_write(struct kernfs_open_file *of,
6359 char *buf, size_t nbytes, loff_t off)
6360 {
6361 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6362 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6363 bool drained = false;
6364 unsigned long max;
6365 int err;
6366
6367 buf = strstrip(buf);
6368 err = page_counter_memparse(buf, "max", &max);
6369 if (err)
6370 return err;
6371
6372 xchg(&memcg->memory.max, max);
6373
6374 for (;;) {
6375 unsigned long nr_pages = page_counter_read(&memcg->memory);
6376
6377 if (nr_pages <= max)
6378 break;
6379
6380 if (signal_pending(current))
6381 break;
6382
6383 if (!drained) {
6384 drain_all_stock(memcg);
6385 drained = true;
6386 continue;
6387 }
6388
6389 if (nr_reclaims) {
6390 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6391 GFP_KERNEL, true))
6392 nr_reclaims--;
6393 continue;
6394 }
6395
6396 memcg_memory_event(memcg, MEMCG_OOM);
6397 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6398 break;
6399 }
6400
6401 memcg_wb_domain_size_changed(memcg);
6402 return nbytes;
6403 }
6404
6405 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6406 {
6407 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6408 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6409 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6410 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6411 seq_printf(m, "oom_kill %lu\n",
6412 atomic_long_read(&events[MEMCG_OOM_KILL]));
6413 }
6414
6415 static int memory_events_show(struct seq_file *m, void *v)
6416 {
6417 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6418
6419 __memory_events_show(m, memcg->memory_events);
6420 return 0;
6421 }
6422
6423 static int memory_events_local_show(struct seq_file *m, void *v)
6424 {
6425 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6426
6427 __memory_events_show(m, memcg->memory_events_local);
6428 return 0;
6429 }
6430
6431 static int memory_stat_show(struct seq_file *m, void *v)
6432 {
6433 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6434 char *buf;
6435
6436 buf = memory_stat_format(memcg);
6437 if (!buf)
6438 return -ENOMEM;
6439 seq_puts(m, buf);
6440 kfree(buf);
6441 return 0;
6442 }
6443
6444 #ifdef CONFIG_NUMA
6445 static int memory_numa_stat_show(struct seq_file *m, void *v)
6446 {
6447 int i;
6448 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6449
6450 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6451 int nid;
6452
6453 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6454 continue;
6455
6456 seq_printf(m, "%s", memory_stats[i].name);
6457 for_each_node_state(nid, N_MEMORY) {
6458 u64 size;
6459 struct lruvec *lruvec;
6460
6461 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6462 size = lruvec_page_state(lruvec, memory_stats[i].idx);
6463 size *= memory_stats[i].ratio;
6464 seq_printf(m, " N%d=%llu", nid, size);
6465 }
6466 seq_putc(m, '\n');
6467 }
6468
6469 return 0;
6470 }
6471 #endif
6472
6473 static int memory_oom_group_show(struct seq_file *m, void *v)
6474 {
6475 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6476
6477 seq_printf(m, "%d\n", memcg->oom_group);
6478
6479 return 0;
6480 }
6481
6482 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6483 char *buf, size_t nbytes, loff_t off)
6484 {
6485 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6486 int ret, oom_group;
6487
6488 buf = strstrip(buf);
6489 if (!buf)
6490 return -EINVAL;
6491
6492 ret = kstrtoint(buf, 0, &oom_group);
6493 if (ret)
6494 return ret;
6495
6496 if (oom_group != 0 && oom_group != 1)
6497 return -EINVAL;
6498
6499 memcg->oom_group = oom_group;
6500
6501 return nbytes;
6502 }
6503
6504 static struct cftype memory_files[] = {
6505 {
6506 .name = "current",
6507 .flags = CFTYPE_NOT_ON_ROOT,
6508 .read_u64 = memory_current_read,
6509 },
6510 {
6511 .name = "min",
6512 .flags = CFTYPE_NOT_ON_ROOT,
6513 .seq_show = memory_min_show,
6514 .write = memory_min_write,
6515 },
6516 {
6517 .name = "low",
6518 .flags = CFTYPE_NOT_ON_ROOT,
6519 .seq_show = memory_low_show,
6520 .write = memory_low_write,
6521 },
6522 {
6523 .name = "high",
6524 .flags = CFTYPE_NOT_ON_ROOT,
6525 .seq_show = memory_high_show,
6526 .write = memory_high_write,
6527 },
6528 {
6529 .name = "max",
6530 .flags = CFTYPE_NOT_ON_ROOT,
6531 .seq_show = memory_max_show,
6532 .write = memory_max_write,
6533 },
6534 {
6535 .name = "events",
6536 .flags = CFTYPE_NOT_ON_ROOT,
6537 .file_offset = offsetof(struct mem_cgroup, events_file),
6538 .seq_show = memory_events_show,
6539 },
6540 {
6541 .name = "events.local",
6542 .flags = CFTYPE_NOT_ON_ROOT,
6543 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6544 .seq_show = memory_events_local_show,
6545 },
6546 {
6547 .name = "stat",
6548 .seq_show = memory_stat_show,
6549 },
6550 #ifdef CONFIG_NUMA
6551 {
6552 .name = "numa_stat",
6553 .seq_show = memory_numa_stat_show,
6554 },
6555 #endif
6556 {
6557 .name = "oom.group",
6558 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6559 .seq_show = memory_oom_group_show,
6560 .write = memory_oom_group_write,
6561 },
6562 { } /* terminate */
6563 };
6564
6565 struct cgroup_subsys memory_cgrp_subsys = {
6566 .css_alloc = mem_cgroup_css_alloc,
6567 .css_online = mem_cgroup_css_online,
6568 .css_offline = mem_cgroup_css_offline,
6569 .css_released = mem_cgroup_css_released,
6570 .css_free = mem_cgroup_css_free,
6571 .css_reset = mem_cgroup_css_reset,
6572 .can_attach = mem_cgroup_can_attach,
6573 .cancel_attach = mem_cgroup_cancel_attach,
6574 .post_attach = mem_cgroup_move_task,
6575 .bind = mem_cgroup_bind,
6576 .dfl_cftypes = memory_files,
6577 .legacy_cftypes = mem_cgroup_legacy_files,
6578 .early_init = 0,
6579 };
6580
6581 /*
6582 * This function calculates an individual cgroup's effective
6583 * protection which is derived from its own memory.min/low, its
6584 * parent's and siblings' settings, as well as the actual memory
6585 * distribution in the tree.
6586 *
6587 * The following rules apply to the effective protection values:
6588 *
6589 * 1. At the first level of reclaim, effective protection is equal to
6590 * the declared protection in memory.min and memory.low.
6591 *
6592 * 2. To enable safe delegation of the protection configuration, at
6593 * subsequent levels the effective protection is capped to the
6594 * parent's effective protection.
6595 *
6596 * 3. To make complex and dynamic subtrees easier to configure, the
6597 * user is allowed to overcommit the declared protection at a given
6598 * level. If that is the case, the parent's effective protection is
6599 * distributed to the children in proportion to how much protection
6600 * they have declared and how much of it they are utilizing.
6601 *
6602 * This makes distribution proportional, but also work-conserving:
6603 * if one cgroup claims much more protection than it uses memory,
6604 * the unused remainder is available to its siblings.
6605 *
6606 * 4. Conversely, when the declared protection is undercommitted at a
6607 * given level, the distribution of the larger parental protection
6608 * budget is NOT proportional. A cgroup's protection from a sibling
6609 * is capped to its own memory.min/low setting.
6610 *
6611 * 5. However, to allow protecting recursive subtrees from each other
6612 * without having to declare each individual cgroup's fixed share
6613 * of the ancestor's claim to protection, any unutilized -
6614 * "floating" - protection from up the tree is distributed in
6615 * proportion to each cgroup's *usage*. This makes the protection
6616 * neutral wrt sibling cgroups and lets them compete freely over
6617 * the shared parental protection budget, but it protects the
6618 * subtree as a whole from neighboring subtrees.
6619 *
6620 * Note that 4. and 5. are not in conflict: 4. is about protecting
6621 * against immediate siblings whereas 5. is about protecting against
6622 * neighboring subtrees.
6623 */
6624 static unsigned long effective_protection(unsigned long usage,
6625 unsigned long parent_usage,
6626 unsigned long setting,
6627 unsigned long parent_effective,
6628 unsigned long siblings_protected)
6629 {
6630 unsigned long protected;
6631 unsigned long ep;
6632
6633 protected = min(usage, setting);
6634 /*
6635 * If all cgroups at this level combined claim and use more
6636 * protection then what the parent affords them, distribute
6637 * shares in proportion to utilization.
6638 *
6639 * We are using actual utilization rather than the statically
6640 * claimed protection in order to be work-conserving: claimed
6641 * but unused protection is available to siblings that would
6642 * otherwise get a smaller chunk than what they claimed.
6643 */
6644 if (siblings_protected > parent_effective)
6645 return protected * parent_effective / siblings_protected;
6646
6647 /*
6648 * Ok, utilized protection of all children is within what the
6649 * parent affords them, so we know whatever this child claims
6650 * and utilizes is effectively protected.
6651 *
6652 * If there is unprotected usage beyond this value, reclaim
6653 * will apply pressure in proportion to that amount.
6654 *
6655 * If there is unutilized protection, the cgroup will be fully
6656 * shielded from reclaim, but we do return a smaller value for
6657 * protection than what the group could enjoy in theory. This
6658 * is okay. With the overcommit distribution above, effective
6659 * protection is always dependent on how memory is actually
6660 * consumed among the siblings anyway.
6661 */
6662 ep = protected;
6663
6664 /*
6665 * If the children aren't claiming (all of) the protection
6666 * afforded to them by the parent, distribute the remainder in
6667 * proportion to the (unprotected) memory of each cgroup. That
6668 * way, cgroups that aren't explicitly prioritized wrt each
6669 * other compete freely over the allowance, but they are
6670 * collectively protected from neighboring trees.
6671 *
6672 * We're using unprotected memory for the weight so that if
6673 * some cgroups DO claim explicit protection, we don't protect
6674 * the same bytes twice.
6675 *
6676 * Check both usage and parent_usage against the respective
6677 * protected values. One should imply the other, but they
6678 * aren't read atomically - make sure the division is sane.
6679 */
6680 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6681 return ep;
6682 if (parent_effective > siblings_protected &&
6683 parent_usage > siblings_protected &&
6684 usage > protected) {
6685 unsigned long unclaimed;
6686
6687 unclaimed = parent_effective - siblings_protected;
6688 unclaimed *= usage - protected;
6689 unclaimed /= parent_usage - siblings_protected;
6690
6691 ep += unclaimed;
6692 }
6693
6694 return ep;
6695 }
6696
6697 /**
6698 * mem_cgroup_protected - check if memory consumption is in the normal range
6699 * @root: the top ancestor of the sub-tree being checked
6700 * @memcg: the memory cgroup to check
6701 *
6702 * WARNING: This function is not stateless! It can only be used as part
6703 * of a top-down tree iteration, not for isolated queries.
6704 */
6705 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6706 struct mem_cgroup *memcg)
6707 {
6708 unsigned long usage, parent_usage;
6709 struct mem_cgroup *parent;
6710
6711 if (mem_cgroup_disabled())
6712 return;
6713
6714 if (!root)
6715 root = root_mem_cgroup;
6716
6717 /*
6718 * Effective values of the reclaim targets are ignored so they
6719 * can be stale. Have a look at mem_cgroup_protection for more
6720 * details.
6721 * TODO: calculation should be more robust so that we do not need
6722 * that special casing.
6723 */
6724 if (memcg == root)
6725 return;
6726
6727 usage = page_counter_read(&memcg->memory);
6728 if (!usage)
6729 return;
6730
6731 parent = parent_mem_cgroup(memcg);
6732 /* No parent means a non-hierarchical mode on v1 memcg */
6733 if (!parent)
6734 return;
6735
6736 if (parent == root) {
6737 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6738 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6739 return;
6740 }
6741
6742 parent_usage = page_counter_read(&parent->memory);
6743
6744 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6745 READ_ONCE(memcg->memory.min),
6746 READ_ONCE(parent->memory.emin),
6747 atomic_long_read(&parent->memory.children_min_usage)));
6748
6749 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6750 READ_ONCE(memcg->memory.low),
6751 READ_ONCE(parent->memory.elow),
6752 atomic_long_read(&parent->memory.children_low_usage)));
6753 }
6754
6755 /**
6756 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6757 * @page: page to charge
6758 * @mm: mm context of the victim
6759 * @gfp_mask: reclaim mode
6760 *
6761 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6762 * pages according to @gfp_mask if necessary.
6763 *
6764 * Returns 0 on success. Otherwise, an error code is returned.
6765 */
6766 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6767 {
6768 unsigned int nr_pages = thp_nr_pages(page);
6769 struct mem_cgroup *memcg = NULL;
6770 int ret = 0;
6771
6772 if (mem_cgroup_disabled())
6773 goto out;
6774
6775 if (PageSwapCache(page)) {
6776 swp_entry_t ent = { .val = page_private(page), };
6777 unsigned short id;
6778
6779 /*
6780 * Every swap fault against a single page tries to charge the
6781 * page, bail as early as possible. shmem_unuse() encounters
6782 * already charged pages, too. page->mem_cgroup is protected
6783 * by the page lock, which serializes swap cache removal, which
6784 * in turn serializes uncharging.
6785 */
6786 VM_BUG_ON_PAGE(!PageLocked(page), page);
6787 if (compound_head(page)->mem_cgroup)
6788 goto out;
6789
6790 id = lookup_swap_cgroup_id(ent);
6791 rcu_read_lock();
6792 memcg = mem_cgroup_from_id(id);
6793 if (memcg && !css_tryget_online(&memcg->css))
6794 memcg = NULL;
6795 rcu_read_unlock();
6796 }
6797
6798 if (!memcg)
6799 memcg = get_mem_cgroup_from_mm(mm);
6800
6801 ret = try_charge(memcg, gfp_mask, nr_pages);
6802 if (ret)
6803 goto out_put;
6804
6805 css_get(&memcg->css);
6806 commit_charge(page, memcg);
6807
6808 local_irq_disable();
6809 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6810 memcg_check_events(memcg, page);
6811 local_irq_enable();
6812
6813 if (PageSwapCache(page)) {
6814 swp_entry_t entry = { .val = page_private(page) };
6815 /*
6816 * The swap entry might not get freed for a long time,
6817 * let's not wait for it. The page already received a
6818 * memory+swap charge, drop the swap entry duplicate.
6819 */
6820 mem_cgroup_uncharge_swap(entry, nr_pages);
6821 }
6822
6823 out_put:
6824 css_put(&memcg->css);
6825 out:
6826 return ret;
6827 }
6828
6829 struct uncharge_gather {
6830 struct mem_cgroup *memcg;
6831 unsigned long nr_pages;
6832 unsigned long pgpgout;
6833 unsigned long nr_kmem;
6834 struct page *dummy_page;
6835 };
6836
6837 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6838 {
6839 memset(ug, 0, sizeof(*ug));
6840 }
6841
6842 static void uncharge_batch(const struct uncharge_gather *ug)
6843 {
6844 unsigned long flags;
6845
6846 if (!mem_cgroup_is_root(ug->memcg)) {
6847 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6848 if (do_memsw_account())
6849 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6850 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6851 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6852 memcg_oom_recover(ug->memcg);
6853 }
6854
6855 local_irq_save(flags);
6856 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6857 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6858 memcg_check_events(ug->memcg, ug->dummy_page);
6859 local_irq_restore(flags);
6860
6861 /* drop reference from uncharge_page */
6862 css_put(&ug->memcg->css);
6863 }
6864
6865 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6866 {
6867 unsigned long nr_pages;
6868
6869 VM_BUG_ON_PAGE(PageLRU(page), page);
6870
6871 if (!page->mem_cgroup)
6872 return;
6873
6874 /*
6875 * Nobody should be changing or seriously looking at
6876 * page->mem_cgroup at this point, we have fully
6877 * exclusive access to the page.
6878 */
6879
6880 if (ug->memcg != page->mem_cgroup) {
6881 if (ug->memcg) {
6882 uncharge_batch(ug);
6883 uncharge_gather_clear(ug);
6884 }
6885 ug->memcg = page->mem_cgroup;
6886
6887 /* pairs with css_put in uncharge_batch */
6888 css_get(&ug->memcg->css);
6889 }
6890
6891 nr_pages = compound_nr(page);
6892 ug->nr_pages += nr_pages;
6893
6894 if (!PageKmemcg(page)) {
6895 ug->pgpgout++;
6896 } else {
6897 ug->nr_kmem += nr_pages;
6898 __ClearPageKmemcg(page);
6899 }
6900
6901 ug->dummy_page = page;
6902 page->mem_cgroup = NULL;
6903 css_put(&ug->memcg->css);
6904 }
6905
6906 static void uncharge_list(struct list_head *page_list)
6907 {
6908 struct uncharge_gather ug;
6909 struct list_head *next;
6910
6911 uncharge_gather_clear(&ug);
6912
6913 /*
6914 * Note that the list can be a single page->lru; hence the
6915 * do-while loop instead of a simple list_for_each_entry().
6916 */
6917 next = page_list->next;
6918 do {
6919 struct page *page;
6920
6921 page = list_entry(next, struct page, lru);
6922 next = page->lru.next;
6923
6924 uncharge_page(page, &ug);
6925 } while (next != page_list);
6926
6927 if (ug.memcg)
6928 uncharge_batch(&ug);
6929 }
6930
6931 /**
6932 * mem_cgroup_uncharge - uncharge a page
6933 * @page: page to uncharge
6934 *
6935 * Uncharge a page previously charged with mem_cgroup_charge().
6936 */
6937 void mem_cgroup_uncharge(struct page *page)
6938 {
6939 struct uncharge_gather ug;
6940
6941 if (mem_cgroup_disabled())
6942 return;
6943
6944 /* Don't touch page->lru of any random page, pre-check: */
6945 if (!page->mem_cgroup)
6946 return;
6947
6948 uncharge_gather_clear(&ug);
6949 uncharge_page(page, &ug);
6950 uncharge_batch(&ug);
6951 }
6952
6953 /**
6954 * mem_cgroup_uncharge_list - uncharge a list of page
6955 * @page_list: list of pages to uncharge
6956 *
6957 * Uncharge a list of pages previously charged with
6958 * mem_cgroup_charge().
6959 */
6960 void mem_cgroup_uncharge_list(struct list_head *page_list)
6961 {
6962 if (mem_cgroup_disabled())
6963 return;
6964
6965 if (!list_empty(page_list))
6966 uncharge_list(page_list);
6967 }
6968
6969 /**
6970 * mem_cgroup_migrate - charge a page's replacement
6971 * @oldpage: currently circulating page
6972 * @newpage: replacement page
6973 *
6974 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6975 * be uncharged upon free.
6976 *
6977 * Both pages must be locked, @newpage->mapping must be set up.
6978 */
6979 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6980 {
6981 struct mem_cgroup *memcg;
6982 unsigned int nr_pages;
6983 unsigned long flags;
6984
6985 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6986 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6987 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6988 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6989 newpage);
6990
6991 if (mem_cgroup_disabled())
6992 return;
6993
6994 /* Page cache replacement: new page already charged? */
6995 if (newpage->mem_cgroup)
6996 return;
6997
6998 /* Swapcache readahead pages can get replaced before being charged */
6999 memcg = oldpage->mem_cgroup;
7000 if (!memcg)
7001 return;
7002
7003 /* Force-charge the new page. The old one will be freed soon */
7004 nr_pages = thp_nr_pages(newpage);
7005
7006 page_counter_charge(&memcg->memory, nr_pages);
7007 if (do_memsw_account())
7008 page_counter_charge(&memcg->memsw, nr_pages);
7009
7010 css_get(&memcg->css);
7011 commit_charge(newpage, memcg);
7012
7013 local_irq_save(flags);
7014 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7015 memcg_check_events(memcg, newpage);
7016 local_irq_restore(flags);
7017 }
7018
7019 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7020 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7021
7022 void mem_cgroup_sk_alloc(struct sock *sk)
7023 {
7024 struct mem_cgroup *memcg;
7025
7026 if (!mem_cgroup_sockets_enabled)
7027 return;
7028
7029 /* Do not associate the sock with unrelated interrupted task's memcg. */
7030 if (in_interrupt())
7031 return;
7032
7033 rcu_read_lock();
7034 memcg = mem_cgroup_from_task(current);
7035 if (memcg == root_mem_cgroup)
7036 goto out;
7037 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7038 goto out;
7039 if (css_tryget(&memcg->css))
7040 sk->sk_memcg = memcg;
7041 out:
7042 rcu_read_unlock();
7043 }
7044
7045 void mem_cgroup_sk_free(struct sock *sk)
7046 {
7047 if (sk->sk_memcg)
7048 css_put(&sk->sk_memcg->css);
7049 }
7050
7051 /**
7052 * mem_cgroup_charge_skmem - charge socket memory
7053 * @memcg: memcg to charge
7054 * @nr_pages: number of pages to charge
7055 *
7056 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7057 * @memcg's configured limit, %false if the charge had to be forced.
7058 */
7059 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7060 {
7061 gfp_t gfp_mask = GFP_KERNEL;
7062
7063 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7064 struct page_counter *fail;
7065
7066 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7067 memcg->tcpmem_pressure = 0;
7068 return true;
7069 }
7070 page_counter_charge(&memcg->tcpmem, nr_pages);
7071 memcg->tcpmem_pressure = 1;
7072 return false;
7073 }
7074
7075 /* Don't block in the packet receive path */
7076 if (in_softirq())
7077 gfp_mask = GFP_NOWAIT;
7078
7079 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7080
7081 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7082 return true;
7083
7084 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7085 return false;
7086 }
7087
7088 /**
7089 * mem_cgroup_uncharge_skmem - uncharge socket memory
7090 * @memcg: memcg to uncharge
7091 * @nr_pages: number of pages to uncharge
7092 */
7093 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7094 {
7095 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7096 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7097 return;
7098 }
7099
7100 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7101
7102 refill_stock(memcg, nr_pages);
7103 }
7104
7105 static int __init cgroup_memory(char *s)
7106 {
7107 char *token;
7108
7109 while ((token = strsep(&s, ",")) != NULL) {
7110 if (!*token)
7111 continue;
7112 if (!strcmp(token, "nosocket"))
7113 cgroup_memory_nosocket = true;
7114 if (!strcmp(token, "nokmem"))
7115 cgroup_memory_nokmem = true;
7116 }
7117 return 0;
7118 }
7119 __setup("cgroup.memory=", cgroup_memory);
7120
7121 /*
7122 * subsys_initcall() for memory controller.
7123 *
7124 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7125 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7126 * basically everything that doesn't depend on a specific mem_cgroup structure
7127 * should be initialized from here.
7128 */
7129 static int __init mem_cgroup_init(void)
7130 {
7131 int cpu, node;
7132
7133 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7134 memcg_hotplug_cpu_dead);
7135
7136 for_each_possible_cpu(cpu)
7137 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7138 drain_local_stock);
7139
7140 for_each_node(node) {
7141 struct mem_cgroup_tree_per_node *rtpn;
7142
7143 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7144 node_online(node) ? node : NUMA_NO_NODE);
7145
7146 rtpn->rb_root = RB_ROOT;
7147 rtpn->rb_rightmost = NULL;
7148 spin_lock_init(&rtpn->lock);
7149 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7150 }
7151
7152 return 0;
7153 }
7154 subsys_initcall(mem_cgroup_init);
7155
7156 #ifdef CONFIG_MEMCG_SWAP
7157 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7158 {
7159 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7160 /*
7161 * The root cgroup cannot be destroyed, so it's refcount must
7162 * always be >= 1.
7163 */
7164 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7165 VM_BUG_ON(1);
7166 break;
7167 }
7168 memcg = parent_mem_cgroup(memcg);
7169 if (!memcg)
7170 memcg = root_mem_cgroup;
7171 }
7172 return memcg;
7173 }
7174
7175 /**
7176 * mem_cgroup_swapout - transfer a memsw charge to swap
7177 * @page: page whose memsw charge to transfer
7178 * @entry: swap entry to move the charge to
7179 *
7180 * Transfer the memsw charge of @page to @entry.
7181 */
7182 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7183 {
7184 struct mem_cgroup *memcg, *swap_memcg;
7185 unsigned int nr_entries;
7186 unsigned short oldid;
7187
7188 VM_BUG_ON_PAGE(PageLRU(page), page);
7189 VM_BUG_ON_PAGE(page_count(page), page);
7190
7191 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7192 return;
7193
7194 memcg = page->mem_cgroup;
7195
7196 /* Readahead page, never charged */
7197 if (!memcg)
7198 return;
7199
7200 /*
7201 * In case the memcg owning these pages has been offlined and doesn't
7202 * have an ID allocated to it anymore, charge the closest online
7203 * ancestor for the swap instead and transfer the memory+swap charge.
7204 */
7205 swap_memcg = mem_cgroup_id_get_online(memcg);
7206 nr_entries = thp_nr_pages(page);
7207 /* Get references for the tail pages, too */
7208 if (nr_entries > 1)
7209 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7210 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7211 nr_entries);
7212 VM_BUG_ON_PAGE(oldid, page);
7213 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7214
7215 page->mem_cgroup = NULL;
7216
7217 if (!mem_cgroup_is_root(memcg))
7218 page_counter_uncharge(&memcg->memory, nr_entries);
7219
7220 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7221 if (!mem_cgroup_is_root(swap_memcg))
7222 page_counter_charge(&swap_memcg->memsw, nr_entries);
7223 page_counter_uncharge(&memcg->memsw, nr_entries);
7224 }
7225
7226 /*
7227 * Interrupts should be disabled here because the caller holds the
7228 * i_pages lock which is taken with interrupts-off. It is
7229 * important here to have the interrupts disabled because it is the
7230 * only synchronisation we have for updating the per-CPU variables.
7231 */
7232 VM_BUG_ON(!irqs_disabled());
7233 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7234 memcg_check_events(memcg, page);
7235
7236 css_put(&memcg->css);
7237 }
7238
7239 /**
7240 * mem_cgroup_try_charge_swap - try charging swap space for a page
7241 * @page: page being added to swap
7242 * @entry: swap entry to charge
7243 *
7244 * Try to charge @page's memcg for the swap space at @entry.
7245 *
7246 * Returns 0 on success, -ENOMEM on failure.
7247 */
7248 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7249 {
7250 unsigned int nr_pages = thp_nr_pages(page);
7251 struct page_counter *counter;
7252 struct mem_cgroup *memcg;
7253 unsigned short oldid;
7254
7255 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7256 return 0;
7257
7258 memcg = page->mem_cgroup;
7259
7260 /* Readahead page, never charged */
7261 if (!memcg)
7262 return 0;
7263
7264 if (!entry.val) {
7265 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7266 return 0;
7267 }
7268
7269 memcg = mem_cgroup_id_get_online(memcg);
7270
7271 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7272 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7273 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7274 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7275 mem_cgroup_id_put(memcg);
7276 return -ENOMEM;
7277 }
7278
7279 /* Get references for the tail pages, too */
7280 if (nr_pages > 1)
7281 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7282 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7283 VM_BUG_ON_PAGE(oldid, page);
7284 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7285
7286 return 0;
7287 }
7288
7289 /**
7290 * mem_cgroup_uncharge_swap - uncharge swap space
7291 * @entry: swap entry to uncharge
7292 * @nr_pages: the amount of swap space to uncharge
7293 */
7294 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7295 {
7296 struct mem_cgroup *memcg;
7297 unsigned short id;
7298
7299 id = swap_cgroup_record(entry, 0, nr_pages);
7300 rcu_read_lock();
7301 memcg = mem_cgroup_from_id(id);
7302 if (memcg) {
7303 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7304 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7305 page_counter_uncharge(&memcg->swap, nr_pages);
7306 else
7307 page_counter_uncharge(&memcg->memsw, nr_pages);
7308 }
7309 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7310 mem_cgroup_id_put_many(memcg, nr_pages);
7311 }
7312 rcu_read_unlock();
7313 }
7314
7315 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7316 {
7317 long nr_swap_pages = get_nr_swap_pages();
7318
7319 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7320 return nr_swap_pages;
7321 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7322 nr_swap_pages = min_t(long, nr_swap_pages,
7323 READ_ONCE(memcg->swap.max) -
7324 page_counter_read(&memcg->swap));
7325 return nr_swap_pages;
7326 }
7327
7328 bool mem_cgroup_swap_full(struct page *page)
7329 {
7330 struct mem_cgroup *memcg;
7331
7332 VM_BUG_ON_PAGE(!PageLocked(page), page);
7333
7334 if (vm_swap_full())
7335 return true;
7336 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7337 return false;
7338
7339 memcg = page->mem_cgroup;
7340 if (!memcg)
7341 return false;
7342
7343 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7344 unsigned long usage = page_counter_read(&memcg->swap);
7345
7346 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7347 usage * 2 >= READ_ONCE(memcg->swap.max))
7348 return true;
7349 }
7350
7351 return false;
7352 }
7353
7354 static int __init setup_swap_account(char *s)
7355 {
7356 if (!strcmp(s, "1"))
7357 cgroup_memory_noswap = 0;
7358 else if (!strcmp(s, "0"))
7359 cgroup_memory_noswap = 1;
7360 return 1;
7361 }
7362 __setup("swapaccount=", setup_swap_account);
7363
7364 static u64 swap_current_read(struct cgroup_subsys_state *css,
7365 struct cftype *cft)
7366 {
7367 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7368
7369 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7370 }
7371
7372 static int swap_high_show(struct seq_file *m, void *v)
7373 {
7374 return seq_puts_memcg_tunable(m,
7375 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7376 }
7377
7378 static ssize_t swap_high_write(struct kernfs_open_file *of,
7379 char *buf, size_t nbytes, loff_t off)
7380 {
7381 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7382 unsigned long high;
7383 int err;
7384
7385 buf = strstrip(buf);
7386 err = page_counter_memparse(buf, "max", &high);
7387 if (err)
7388 return err;
7389
7390 page_counter_set_high(&memcg->swap, high);
7391
7392 return nbytes;
7393 }
7394
7395 static int swap_max_show(struct seq_file *m, void *v)
7396 {
7397 return seq_puts_memcg_tunable(m,
7398 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7399 }
7400
7401 static ssize_t swap_max_write(struct kernfs_open_file *of,
7402 char *buf, size_t nbytes, loff_t off)
7403 {
7404 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7405 unsigned long max;
7406 int err;
7407
7408 buf = strstrip(buf);
7409 err = page_counter_memparse(buf, "max", &max);
7410 if (err)
7411 return err;
7412
7413 xchg(&memcg->swap.max, max);
7414
7415 return nbytes;
7416 }
7417
7418 static int swap_events_show(struct seq_file *m, void *v)
7419 {
7420 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7421
7422 seq_printf(m, "high %lu\n",
7423 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7424 seq_printf(m, "max %lu\n",
7425 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7426 seq_printf(m, "fail %lu\n",
7427 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7428
7429 return 0;
7430 }
7431
7432 static struct cftype swap_files[] = {
7433 {
7434 .name = "swap.current",
7435 .flags = CFTYPE_NOT_ON_ROOT,
7436 .read_u64 = swap_current_read,
7437 },
7438 {
7439 .name = "swap.high",
7440 .flags = CFTYPE_NOT_ON_ROOT,
7441 .seq_show = swap_high_show,
7442 .write = swap_high_write,
7443 },
7444 {
7445 .name = "swap.max",
7446 .flags = CFTYPE_NOT_ON_ROOT,
7447 .seq_show = swap_max_show,
7448 .write = swap_max_write,
7449 },
7450 {
7451 .name = "swap.events",
7452 .flags = CFTYPE_NOT_ON_ROOT,
7453 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7454 .seq_show = swap_events_show,
7455 },
7456 { } /* terminate */
7457 };
7458
7459 static struct cftype memsw_files[] = {
7460 {
7461 .name = "memsw.usage_in_bytes",
7462 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7463 .read_u64 = mem_cgroup_read_u64,
7464 },
7465 {
7466 .name = "memsw.max_usage_in_bytes",
7467 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7468 .write = mem_cgroup_reset,
7469 .read_u64 = mem_cgroup_read_u64,
7470 },
7471 {
7472 .name = "memsw.limit_in_bytes",
7473 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7474 .write = mem_cgroup_write,
7475 .read_u64 = mem_cgroup_read_u64,
7476 },
7477 {
7478 .name = "memsw.failcnt",
7479 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7480 .write = mem_cgroup_reset,
7481 .read_u64 = mem_cgroup_read_u64,
7482 },
7483 { }, /* terminate */
7484 };
7485
7486 /*
7487 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7488 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7489 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7490 * boot parameter. This may result in premature OOPS inside
7491 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7492 */
7493 static int __init mem_cgroup_swap_init(void)
7494 {
7495 /* No memory control -> no swap control */
7496 if (mem_cgroup_disabled())
7497 cgroup_memory_noswap = true;
7498
7499 if (cgroup_memory_noswap)
7500 return 0;
7501
7502 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7503 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7504
7505 return 0;
7506 }
7507 core_initcall(mem_cgroup_swap_init);
7508
7509 #endif /* CONFIG_MEMCG_SWAP */