]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memcontrol.c
Merge branch 'linux-3.18' of git://anongit.freedesktop.org/git/nouveau/linux-2.6...
[mirror_ubuntu-bionic-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64
65 #include <asm/uaccess.h>
66
67 #include <trace/events/vmscan.h>
68
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata;
84 #endif
85
86 #else
87 #define do_swap_account 0
88 #endif
89
90
91 static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
98 };
99
100 enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS,
106 };
107
108 static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113 };
114
115 static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121 };
122
123 /*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129 enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
138
139 struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145
146 struct mem_cgroup_reclaim_iter {
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
151 struct mem_cgroup *last_visited;
152 int last_dead_count;
153
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156 };
157
158 /*
159 * per-zone information in memory controller.
160 */
161 struct mem_cgroup_per_zone {
162 struct lruvec lruvec;
163 unsigned long lru_size[NR_LRU_LISTS];
164
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
172 /* use container_of */
173 };
174
175 struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177 };
178
179 /*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184 struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187 };
188
189 struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191 };
192
193 struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195 };
196
197 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
199 struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202 };
203
204 /* For threshold */
205 struct mem_cgroup_threshold_ary {
206 /* An array index points to threshold just below or equal to usage. */
207 int current_threshold;
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212 };
213
214 struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223 };
224
225 /* for OOM */
226 struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229 };
230
231 /*
232 * cgroup_event represents events which userspace want to receive.
233 */
234 struct mem_cgroup_event {
235 /*
236 * memcg which the event belongs to.
237 */
238 struct mem_cgroup *memcg;
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
252 int (*register_event)(struct mem_cgroup *memcg,
253 struct eventfd_ctx *eventfd, const char *args);
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
259 void (*unregister_event)(struct mem_cgroup *memcg,
260 struct eventfd_ctx *eventfd);
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269 };
270
271 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273
274 /*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
284 */
285 struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
291
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
295 /* css_online() has been completed */
296 int initialized;
297
298 /*
299 * the counter to account for mem+swap usage.
300 */
301 struct res_counter memsw;
302
303 /*
304 * the counter to account for kernel memory usage.
305 */
306 struct res_counter kmem;
307 /*
308 * Should the accounting and control be hierarchical, per subtree?
309 */
310 bool use_hierarchy;
311 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
312
313 bool oom_lock;
314 atomic_t under_oom;
315 atomic_t oom_wakeups;
316
317 int swappiness;
318 /* OOM-Killer disable */
319 int oom_kill_disable;
320
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
325 struct mem_cgroup_thresholds thresholds;
326
327 /* thresholds for mem+swap usage. RCU-protected */
328 struct mem_cgroup_thresholds memsw_thresholds;
329
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
332
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
337 unsigned long move_charge_at_immigrate;
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
344 /*
345 * percpu counter.
346 */
347 struct mem_cgroup_stat_cpu __percpu *stat;
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
354
355 atomic_t dead_count;
356 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357 struct cg_proto tcp_mem;
358 #endif
359 #if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list, but per-memcg;
361 * protected by memcg_slab_mutex */
362 struct list_head memcg_slab_caches;
363 /* Index in the kmem_cache->memcg_params->memcg_caches array */
364 int kmemcg_id;
365 #endif
366
367 int last_scanned_node;
368 #if MAX_NUMNODES > 1
369 nodemask_t scan_nodes;
370 atomic_t numainfo_events;
371 atomic_t numainfo_updating;
372 #endif
373
374 /* List of events which userspace want to receive */
375 struct list_head event_list;
376 spinlock_t event_list_lock;
377
378 struct mem_cgroup_per_node *nodeinfo[0];
379 /* WARNING: nodeinfo must be the last member here */
380 };
381
382 /* internal only representation about the status of kmem accounting. */
383 enum {
384 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
385 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
386 };
387
388 #ifdef CONFIG_MEMCG_KMEM
389 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
390 {
391 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
392 }
393
394 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
395 {
396 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
397 }
398
399 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
400 {
401 /*
402 * Our caller must use css_get() first, because memcg_uncharge_kmem()
403 * will call css_put() if it sees the memcg is dead.
404 */
405 smp_wmb();
406 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
407 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
408 }
409
410 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
411 {
412 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
413 &memcg->kmem_account_flags);
414 }
415 #endif
416
417 /* Stuffs for move charges at task migration. */
418 /*
419 * Types of charges to be moved. "move_charge_at_immitgrate" and
420 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
421 */
422 enum move_type {
423 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
424 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
425 NR_MOVE_TYPE,
426 };
427
428 /* "mc" and its members are protected by cgroup_mutex */
429 static struct move_charge_struct {
430 spinlock_t lock; /* for from, to */
431 struct mem_cgroup *from;
432 struct mem_cgroup *to;
433 unsigned long immigrate_flags;
434 unsigned long precharge;
435 unsigned long moved_charge;
436 unsigned long moved_swap;
437 struct task_struct *moving_task; /* a task moving charges */
438 wait_queue_head_t waitq; /* a waitq for other context */
439 } mc = {
440 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
441 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
442 };
443
444 static bool move_anon(void)
445 {
446 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
447 }
448
449 static bool move_file(void)
450 {
451 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
452 }
453
454 /*
455 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
456 * limit reclaim to prevent infinite loops, if they ever occur.
457 */
458 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
459 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
460
461 enum charge_type {
462 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
463 MEM_CGROUP_CHARGE_TYPE_ANON,
464 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
465 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
466 NR_CHARGE_TYPE,
467 };
468
469 /* for encoding cft->private value on file */
470 enum res_type {
471 _MEM,
472 _MEMSWAP,
473 _OOM_TYPE,
474 _KMEM,
475 };
476
477 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
478 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
479 #define MEMFILE_ATTR(val) ((val) & 0xffff)
480 /* Used for OOM nofiier */
481 #define OOM_CONTROL (0)
482
483 /*
484 * The memcg_create_mutex will be held whenever a new cgroup is created.
485 * As a consequence, any change that needs to protect against new child cgroups
486 * appearing has to hold it as well.
487 */
488 static DEFINE_MUTEX(memcg_create_mutex);
489
490 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
491 {
492 return s ? container_of(s, struct mem_cgroup, css) : NULL;
493 }
494
495 /* Some nice accessors for the vmpressure. */
496 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
497 {
498 if (!memcg)
499 memcg = root_mem_cgroup;
500 return &memcg->vmpressure;
501 }
502
503 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
504 {
505 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
506 }
507
508 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
509 {
510 return (memcg == root_mem_cgroup);
511 }
512
513 /*
514 * We restrict the id in the range of [1, 65535], so it can fit into
515 * an unsigned short.
516 */
517 #define MEM_CGROUP_ID_MAX USHRT_MAX
518
519 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
520 {
521 return memcg->css.id;
522 }
523
524 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
525 {
526 struct cgroup_subsys_state *css;
527
528 css = css_from_id(id, &memory_cgrp_subsys);
529 return mem_cgroup_from_css(css);
530 }
531
532 /* Writing them here to avoid exposing memcg's inner layout */
533 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
534
535 void sock_update_memcg(struct sock *sk)
536 {
537 if (mem_cgroup_sockets_enabled) {
538 struct mem_cgroup *memcg;
539 struct cg_proto *cg_proto;
540
541 BUG_ON(!sk->sk_prot->proto_cgroup);
542
543 /* Socket cloning can throw us here with sk_cgrp already
544 * filled. It won't however, necessarily happen from
545 * process context. So the test for root memcg given
546 * the current task's memcg won't help us in this case.
547 *
548 * Respecting the original socket's memcg is a better
549 * decision in this case.
550 */
551 if (sk->sk_cgrp) {
552 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
553 css_get(&sk->sk_cgrp->memcg->css);
554 return;
555 }
556
557 rcu_read_lock();
558 memcg = mem_cgroup_from_task(current);
559 cg_proto = sk->sk_prot->proto_cgroup(memcg);
560 if (!mem_cgroup_is_root(memcg) &&
561 memcg_proto_active(cg_proto) &&
562 css_tryget_online(&memcg->css)) {
563 sk->sk_cgrp = cg_proto;
564 }
565 rcu_read_unlock();
566 }
567 }
568 EXPORT_SYMBOL(sock_update_memcg);
569
570 void sock_release_memcg(struct sock *sk)
571 {
572 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
573 struct mem_cgroup *memcg;
574 WARN_ON(!sk->sk_cgrp->memcg);
575 memcg = sk->sk_cgrp->memcg;
576 css_put(&sk->sk_cgrp->memcg->css);
577 }
578 }
579
580 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
581 {
582 if (!memcg || mem_cgroup_is_root(memcg))
583 return NULL;
584
585 return &memcg->tcp_mem;
586 }
587 EXPORT_SYMBOL(tcp_proto_cgroup);
588
589 static void disarm_sock_keys(struct mem_cgroup *memcg)
590 {
591 if (!memcg_proto_activated(&memcg->tcp_mem))
592 return;
593 static_key_slow_dec(&memcg_socket_limit_enabled);
594 }
595 #else
596 static void disarm_sock_keys(struct mem_cgroup *memcg)
597 {
598 }
599 #endif
600
601 #ifdef CONFIG_MEMCG_KMEM
602 /*
603 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
604 * The main reason for not using cgroup id for this:
605 * this works better in sparse environments, where we have a lot of memcgs,
606 * but only a few kmem-limited. Or also, if we have, for instance, 200
607 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
608 * 200 entry array for that.
609 *
610 * The current size of the caches array is stored in
611 * memcg_limited_groups_array_size. It will double each time we have to
612 * increase it.
613 */
614 static DEFINE_IDA(kmem_limited_groups);
615 int memcg_limited_groups_array_size;
616
617 /*
618 * MIN_SIZE is different than 1, because we would like to avoid going through
619 * the alloc/free process all the time. In a small machine, 4 kmem-limited
620 * cgroups is a reasonable guess. In the future, it could be a parameter or
621 * tunable, but that is strictly not necessary.
622 *
623 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
624 * this constant directly from cgroup, but it is understandable that this is
625 * better kept as an internal representation in cgroup.c. In any case, the
626 * cgrp_id space is not getting any smaller, and we don't have to necessarily
627 * increase ours as well if it increases.
628 */
629 #define MEMCG_CACHES_MIN_SIZE 4
630 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
631
632 /*
633 * A lot of the calls to the cache allocation functions are expected to be
634 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
635 * conditional to this static branch, we'll have to allow modules that does
636 * kmem_cache_alloc and the such to see this symbol as well
637 */
638 struct static_key memcg_kmem_enabled_key;
639 EXPORT_SYMBOL(memcg_kmem_enabled_key);
640
641 static void memcg_free_cache_id(int id);
642
643 static void disarm_kmem_keys(struct mem_cgroup *memcg)
644 {
645 if (memcg_kmem_is_active(memcg)) {
646 static_key_slow_dec(&memcg_kmem_enabled_key);
647 memcg_free_cache_id(memcg->kmemcg_id);
648 }
649 /*
650 * This check can't live in kmem destruction function,
651 * since the charges will outlive the cgroup
652 */
653 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
654 }
655 #else
656 static void disarm_kmem_keys(struct mem_cgroup *memcg)
657 {
658 }
659 #endif /* CONFIG_MEMCG_KMEM */
660
661 static void disarm_static_keys(struct mem_cgroup *memcg)
662 {
663 disarm_sock_keys(memcg);
664 disarm_kmem_keys(memcg);
665 }
666
667 static void drain_all_stock_async(struct mem_cgroup *memcg);
668
669 static struct mem_cgroup_per_zone *
670 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
671 {
672 int nid = zone_to_nid(zone);
673 int zid = zone_idx(zone);
674
675 return &memcg->nodeinfo[nid]->zoneinfo[zid];
676 }
677
678 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
679 {
680 return &memcg->css;
681 }
682
683 static struct mem_cgroup_per_zone *
684 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
685 {
686 int nid = page_to_nid(page);
687 int zid = page_zonenum(page);
688
689 return &memcg->nodeinfo[nid]->zoneinfo[zid];
690 }
691
692 static struct mem_cgroup_tree_per_zone *
693 soft_limit_tree_node_zone(int nid, int zid)
694 {
695 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
696 }
697
698 static struct mem_cgroup_tree_per_zone *
699 soft_limit_tree_from_page(struct page *page)
700 {
701 int nid = page_to_nid(page);
702 int zid = page_zonenum(page);
703
704 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
705 }
706
707 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
708 struct mem_cgroup_tree_per_zone *mctz,
709 unsigned long long new_usage_in_excess)
710 {
711 struct rb_node **p = &mctz->rb_root.rb_node;
712 struct rb_node *parent = NULL;
713 struct mem_cgroup_per_zone *mz_node;
714
715 if (mz->on_tree)
716 return;
717
718 mz->usage_in_excess = new_usage_in_excess;
719 if (!mz->usage_in_excess)
720 return;
721 while (*p) {
722 parent = *p;
723 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
724 tree_node);
725 if (mz->usage_in_excess < mz_node->usage_in_excess)
726 p = &(*p)->rb_left;
727 /*
728 * We can't avoid mem cgroups that are over their soft
729 * limit by the same amount
730 */
731 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
732 p = &(*p)->rb_right;
733 }
734 rb_link_node(&mz->tree_node, parent, p);
735 rb_insert_color(&mz->tree_node, &mctz->rb_root);
736 mz->on_tree = true;
737 }
738
739 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
740 struct mem_cgroup_tree_per_zone *mctz)
741 {
742 if (!mz->on_tree)
743 return;
744 rb_erase(&mz->tree_node, &mctz->rb_root);
745 mz->on_tree = false;
746 }
747
748 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
749 struct mem_cgroup_tree_per_zone *mctz)
750 {
751 unsigned long flags;
752
753 spin_lock_irqsave(&mctz->lock, flags);
754 __mem_cgroup_remove_exceeded(mz, mctz);
755 spin_unlock_irqrestore(&mctz->lock, flags);
756 }
757
758
759 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
760 {
761 unsigned long long excess;
762 struct mem_cgroup_per_zone *mz;
763 struct mem_cgroup_tree_per_zone *mctz;
764
765 mctz = soft_limit_tree_from_page(page);
766 /*
767 * Necessary to update all ancestors when hierarchy is used.
768 * because their event counter is not touched.
769 */
770 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
771 mz = mem_cgroup_page_zoneinfo(memcg, page);
772 excess = res_counter_soft_limit_excess(&memcg->res);
773 /*
774 * We have to update the tree if mz is on RB-tree or
775 * mem is over its softlimit.
776 */
777 if (excess || mz->on_tree) {
778 unsigned long flags;
779
780 spin_lock_irqsave(&mctz->lock, flags);
781 /* if on-tree, remove it */
782 if (mz->on_tree)
783 __mem_cgroup_remove_exceeded(mz, mctz);
784 /*
785 * Insert again. mz->usage_in_excess will be updated.
786 * If excess is 0, no tree ops.
787 */
788 __mem_cgroup_insert_exceeded(mz, mctz, excess);
789 spin_unlock_irqrestore(&mctz->lock, flags);
790 }
791 }
792 }
793
794 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
795 {
796 struct mem_cgroup_tree_per_zone *mctz;
797 struct mem_cgroup_per_zone *mz;
798 int nid, zid;
799
800 for_each_node(nid) {
801 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
802 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
803 mctz = soft_limit_tree_node_zone(nid, zid);
804 mem_cgroup_remove_exceeded(mz, mctz);
805 }
806 }
807 }
808
809 static struct mem_cgroup_per_zone *
810 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
811 {
812 struct rb_node *rightmost = NULL;
813 struct mem_cgroup_per_zone *mz;
814
815 retry:
816 mz = NULL;
817 rightmost = rb_last(&mctz->rb_root);
818 if (!rightmost)
819 goto done; /* Nothing to reclaim from */
820
821 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
822 /*
823 * Remove the node now but someone else can add it back,
824 * we will to add it back at the end of reclaim to its correct
825 * position in the tree.
826 */
827 __mem_cgroup_remove_exceeded(mz, mctz);
828 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
829 !css_tryget_online(&mz->memcg->css))
830 goto retry;
831 done:
832 return mz;
833 }
834
835 static struct mem_cgroup_per_zone *
836 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
837 {
838 struct mem_cgroup_per_zone *mz;
839
840 spin_lock_irq(&mctz->lock);
841 mz = __mem_cgroup_largest_soft_limit_node(mctz);
842 spin_unlock_irq(&mctz->lock);
843 return mz;
844 }
845
846 /*
847 * Implementation Note: reading percpu statistics for memcg.
848 *
849 * Both of vmstat[] and percpu_counter has threshold and do periodic
850 * synchronization to implement "quick" read. There are trade-off between
851 * reading cost and precision of value. Then, we may have a chance to implement
852 * a periodic synchronizion of counter in memcg's counter.
853 *
854 * But this _read() function is used for user interface now. The user accounts
855 * memory usage by memory cgroup and he _always_ requires exact value because
856 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
857 * have to visit all online cpus and make sum. So, for now, unnecessary
858 * synchronization is not implemented. (just implemented for cpu hotplug)
859 *
860 * If there are kernel internal actions which can make use of some not-exact
861 * value, and reading all cpu value can be performance bottleneck in some
862 * common workload, threashold and synchonization as vmstat[] should be
863 * implemented.
864 */
865 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
866 enum mem_cgroup_stat_index idx)
867 {
868 long val = 0;
869 int cpu;
870
871 get_online_cpus();
872 for_each_online_cpu(cpu)
873 val += per_cpu(memcg->stat->count[idx], cpu);
874 #ifdef CONFIG_HOTPLUG_CPU
875 spin_lock(&memcg->pcp_counter_lock);
876 val += memcg->nocpu_base.count[idx];
877 spin_unlock(&memcg->pcp_counter_lock);
878 #endif
879 put_online_cpus();
880 return val;
881 }
882
883 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
884 enum mem_cgroup_events_index idx)
885 {
886 unsigned long val = 0;
887 int cpu;
888
889 get_online_cpus();
890 for_each_online_cpu(cpu)
891 val += per_cpu(memcg->stat->events[idx], cpu);
892 #ifdef CONFIG_HOTPLUG_CPU
893 spin_lock(&memcg->pcp_counter_lock);
894 val += memcg->nocpu_base.events[idx];
895 spin_unlock(&memcg->pcp_counter_lock);
896 #endif
897 put_online_cpus();
898 return val;
899 }
900
901 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
902 struct page *page,
903 int nr_pages)
904 {
905 /*
906 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
907 * counted as CACHE even if it's on ANON LRU.
908 */
909 if (PageAnon(page))
910 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
911 nr_pages);
912 else
913 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
914 nr_pages);
915
916 if (PageTransHuge(page))
917 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
918 nr_pages);
919
920 /* pagein of a big page is an event. So, ignore page size */
921 if (nr_pages > 0)
922 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
923 else {
924 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
925 nr_pages = -nr_pages; /* for event */
926 }
927
928 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
929 }
930
931 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
932 {
933 struct mem_cgroup_per_zone *mz;
934
935 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
936 return mz->lru_size[lru];
937 }
938
939 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
940 int nid,
941 unsigned int lru_mask)
942 {
943 unsigned long nr = 0;
944 int zid;
945
946 VM_BUG_ON((unsigned)nid >= nr_node_ids);
947
948 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
949 struct mem_cgroup_per_zone *mz;
950 enum lru_list lru;
951
952 for_each_lru(lru) {
953 if (!(BIT(lru) & lru_mask))
954 continue;
955 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
956 nr += mz->lru_size[lru];
957 }
958 }
959 return nr;
960 }
961
962 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
963 unsigned int lru_mask)
964 {
965 unsigned long nr = 0;
966 int nid;
967
968 for_each_node_state(nid, N_MEMORY)
969 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
970 return nr;
971 }
972
973 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
974 enum mem_cgroup_events_target target)
975 {
976 unsigned long val, next;
977
978 val = __this_cpu_read(memcg->stat->nr_page_events);
979 next = __this_cpu_read(memcg->stat->targets[target]);
980 /* from time_after() in jiffies.h */
981 if ((long)next - (long)val < 0) {
982 switch (target) {
983 case MEM_CGROUP_TARGET_THRESH:
984 next = val + THRESHOLDS_EVENTS_TARGET;
985 break;
986 case MEM_CGROUP_TARGET_SOFTLIMIT:
987 next = val + SOFTLIMIT_EVENTS_TARGET;
988 break;
989 case MEM_CGROUP_TARGET_NUMAINFO:
990 next = val + NUMAINFO_EVENTS_TARGET;
991 break;
992 default:
993 break;
994 }
995 __this_cpu_write(memcg->stat->targets[target], next);
996 return true;
997 }
998 return false;
999 }
1000
1001 /*
1002 * Check events in order.
1003 *
1004 */
1005 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1006 {
1007 /* threshold event is triggered in finer grain than soft limit */
1008 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1009 MEM_CGROUP_TARGET_THRESH))) {
1010 bool do_softlimit;
1011 bool do_numainfo __maybe_unused;
1012
1013 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1014 MEM_CGROUP_TARGET_SOFTLIMIT);
1015 #if MAX_NUMNODES > 1
1016 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1017 MEM_CGROUP_TARGET_NUMAINFO);
1018 #endif
1019 mem_cgroup_threshold(memcg);
1020 if (unlikely(do_softlimit))
1021 mem_cgroup_update_tree(memcg, page);
1022 #if MAX_NUMNODES > 1
1023 if (unlikely(do_numainfo))
1024 atomic_inc(&memcg->numainfo_events);
1025 #endif
1026 }
1027 }
1028
1029 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1030 {
1031 /*
1032 * mm_update_next_owner() may clear mm->owner to NULL
1033 * if it races with swapoff, page migration, etc.
1034 * So this can be called with p == NULL.
1035 */
1036 if (unlikely(!p))
1037 return NULL;
1038
1039 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1040 }
1041
1042 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1043 {
1044 struct mem_cgroup *memcg = NULL;
1045
1046 rcu_read_lock();
1047 do {
1048 /*
1049 * Page cache insertions can happen withou an
1050 * actual mm context, e.g. during disk probing
1051 * on boot, loopback IO, acct() writes etc.
1052 */
1053 if (unlikely(!mm))
1054 memcg = root_mem_cgroup;
1055 else {
1056 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1057 if (unlikely(!memcg))
1058 memcg = root_mem_cgroup;
1059 }
1060 } while (!css_tryget_online(&memcg->css));
1061 rcu_read_unlock();
1062 return memcg;
1063 }
1064
1065 /*
1066 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1067 * ref. count) or NULL if the whole root's subtree has been visited.
1068 *
1069 * helper function to be used by mem_cgroup_iter
1070 */
1071 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1072 struct mem_cgroup *last_visited)
1073 {
1074 struct cgroup_subsys_state *prev_css, *next_css;
1075
1076 prev_css = last_visited ? &last_visited->css : NULL;
1077 skip_node:
1078 next_css = css_next_descendant_pre(prev_css, &root->css);
1079
1080 /*
1081 * Even if we found a group we have to make sure it is
1082 * alive. css && !memcg means that the groups should be
1083 * skipped and we should continue the tree walk.
1084 * last_visited css is safe to use because it is
1085 * protected by css_get and the tree walk is rcu safe.
1086 *
1087 * We do not take a reference on the root of the tree walk
1088 * because we might race with the root removal when it would
1089 * be the only node in the iterated hierarchy and mem_cgroup_iter
1090 * would end up in an endless loop because it expects that at
1091 * least one valid node will be returned. Root cannot disappear
1092 * because caller of the iterator should hold it already so
1093 * skipping css reference should be safe.
1094 */
1095 if (next_css) {
1096 struct mem_cgroup *memcg = mem_cgroup_from_css(next_css);
1097
1098 if (next_css == &root->css)
1099 return memcg;
1100
1101 if (css_tryget_online(next_css)) {
1102 /*
1103 * Make sure the memcg is initialized:
1104 * mem_cgroup_css_online() orders the the
1105 * initialization against setting the flag.
1106 */
1107 if (smp_load_acquire(&memcg->initialized))
1108 return memcg;
1109 css_put(next_css);
1110 }
1111
1112 prev_css = next_css;
1113 goto skip_node;
1114 }
1115
1116 return NULL;
1117 }
1118
1119 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1120 {
1121 /*
1122 * When a group in the hierarchy below root is destroyed, the
1123 * hierarchy iterator can no longer be trusted since it might
1124 * have pointed to the destroyed group. Invalidate it.
1125 */
1126 atomic_inc(&root->dead_count);
1127 }
1128
1129 static struct mem_cgroup *
1130 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1131 struct mem_cgroup *root,
1132 int *sequence)
1133 {
1134 struct mem_cgroup *position = NULL;
1135 /*
1136 * A cgroup destruction happens in two stages: offlining and
1137 * release. They are separated by a RCU grace period.
1138 *
1139 * If the iterator is valid, we may still race with an
1140 * offlining. The RCU lock ensures the object won't be
1141 * released, tryget will fail if we lost the race.
1142 */
1143 *sequence = atomic_read(&root->dead_count);
1144 if (iter->last_dead_count == *sequence) {
1145 smp_rmb();
1146 position = iter->last_visited;
1147
1148 /*
1149 * We cannot take a reference to root because we might race
1150 * with root removal and returning NULL would end up in
1151 * an endless loop on the iterator user level when root
1152 * would be returned all the time.
1153 */
1154 if (position && position != root &&
1155 !css_tryget_online(&position->css))
1156 position = NULL;
1157 }
1158 return position;
1159 }
1160
1161 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1162 struct mem_cgroup *last_visited,
1163 struct mem_cgroup *new_position,
1164 struct mem_cgroup *root,
1165 int sequence)
1166 {
1167 /* root reference counting symmetric to mem_cgroup_iter_load */
1168 if (last_visited && last_visited != root)
1169 css_put(&last_visited->css);
1170 /*
1171 * We store the sequence count from the time @last_visited was
1172 * loaded successfully instead of rereading it here so that we
1173 * don't lose destruction events in between. We could have
1174 * raced with the destruction of @new_position after all.
1175 */
1176 iter->last_visited = new_position;
1177 smp_wmb();
1178 iter->last_dead_count = sequence;
1179 }
1180
1181 /**
1182 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1183 * @root: hierarchy root
1184 * @prev: previously returned memcg, NULL on first invocation
1185 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1186 *
1187 * Returns references to children of the hierarchy below @root, or
1188 * @root itself, or %NULL after a full round-trip.
1189 *
1190 * Caller must pass the return value in @prev on subsequent
1191 * invocations for reference counting, or use mem_cgroup_iter_break()
1192 * to cancel a hierarchy walk before the round-trip is complete.
1193 *
1194 * Reclaimers can specify a zone and a priority level in @reclaim to
1195 * divide up the memcgs in the hierarchy among all concurrent
1196 * reclaimers operating on the same zone and priority.
1197 */
1198 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1199 struct mem_cgroup *prev,
1200 struct mem_cgroup_reclaim_cookie *reclaim)
1201 {
1202 struct mem_cgroup *memcg = NULL;
1203 struct mem_cgroup *last_visited = NULL;
1204
1205 if (mem_cgroup_disabled())
1206 return NULL;
1207
1208 if (!root)
1209 root = root_mem_cgroup;
1210
1211 if (prev && !reclaim)
1212 last_visited = prev;
1213
1214 if (!root->use_hierarchy && root != root_mem_cgroup) {
1215 if (prev)
1216 goto out_css_put;
1217 return root;
1218 }
1219
1220 rcu_read_lock();
1221 while (!memcg) {
1222 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1223 int uninitialized_var(seq);
1224
1225 if (reclaim) {
1226 struct mem_cgroup_per_zone *mz;
1227
1228 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1229 iter = &mz->reclaim_iter[reclaim->priority];
1230 if (prev && reclaim->generation != iter->generation) {
1231 iter->last_visited = NULL;
1232 goto out_unlock;
1233 }
1234
1235 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1236 }
1237
1238 memcg = __mem_cgroup_iter_next(root, last_visited);
1239
1240 if (reclaim) {
1241 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1242 seq);
1243
1244 if (!memcg)
1245 iter->generation++;
1246 else if (!prev && memcg)
1247 reclaim->generation = iter->generation;
1248 }
1249
1250 if (prev && !memcg)
1251 goto out_unlock;
1252 }
1253 out_unlock:
1254 rcu_read_unlock();
1255 out_css_put:
1256 if (prev && prev != root)
1257 css_put(&prev->css);
1258
1259 return memcg;
1260 }
1261
1262 /**
1263 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1264 * @root: hierarchy root
1265 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1266 */
1267 void mem_cgroup_iter_break(struct mem_cgroup *root,
1268 struct mem_cgroup *prev)
1269 {
1270 if (!root)
1271 root = root_mem_cgroup;
1272 if (prev && prev != root)
1273 css_put(&prev->css);
1274 }
1275
1276 /*
1277 * Iteration constructs for visiting all cgroups (under a tree). If
1278 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1279 * be used for reference counting.
1280 */
1281 #define for_each_mem_cgroup_tree(iter, root) \
1282 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1283 iter != NULL; \
1284 iter = mem_cgroup_iter(root, iter, NULL))
1285
1286 #define for_each_mem_cgroup(iter) \
1287 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1288 iter != NULL; \
1289 iter = mem_cgroup_iter(NULL, iter, NULL))
1290
1291 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1292 {
1293 struct mem_cgroup *memcg;
1294
1295 rcu_read_lock();
1296 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1297 if (unlikely(!memcg))
1298 goto out;
1299
1300 switch (idx) {
1301 case PGFAULT:
1302 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1303 break;
1304 case PGMAJFAULT:
1305 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1306 break;
1307 default:
1308 BUG();
1309 }
1310 out:
1311 rcu_read_unlock();
1312 }
1313 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1314
1315 /**
1316 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1317 * @zone: zone of the wanted lruvec
1318 * @memcg: memcg of the wanted lruvec
1319 *
1320 * Returns the lru list vector holding pages for the given @zone and
1321 * @mem. This can be the global zone lruvec, if the memory controller
1322 * is disabled.
1323 */
1324 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1325 struct mem_cgroup *memcg)
1326 {
1327 struct mem_cgroup_per_zone *mz;
1328 struct lruvec *lruvec;
1329
1330 if (mem_cgroup_disabled()) {
1331 lruvec = &zone->lruvec;
1332 goto out;
1333 }
1334
1335 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1336 lruvec = &mz->lruvec;
1337 out:
1338 /*
1339 * Since a node can be onlined after the mem_cgroup was created,
1340 * we have to be prepared to initialize lruvec->zone here;
1341 * and if offlined then reonlined, we need to reinitialize it.
1342 */
1343 if (unlikely(lruvec->zone != zone))
1344 lruvec->zone = zone;
1345 return lruvec;
1346 }
1347
1348 /**
1349 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1350 * @page: the page
1351 * @zone: zone of the page
1352 */
1353 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1354 {
1355 struct mem_cgroup_per_zone *mz;
1356 struct mem_cgroup *memcg;
1357 struct page_cgroup *pc;
1358 struct lruvec *lruvec;
1359
1360 if (mem_cgroup_disabled()) {
1361 lruvec = &zone->lruvec;
1362 goto out;
1363 }
1364
1365 pc = lookup_page_cgroup(page);
1366 memcg = pc->mem_cgroup;
1367
1368 /*
1369 * Surreptitiously switch any uncharged offlist page to root:
1370 * an uncharged page off lru does nothing to secure
1371 * its former mem_cgroup from sudden removal.
1372 *
1373 * Our caller holds lru_lock, and PageCgroupUsed is updated
1374 * under page_cgroup lock: between them, they make all uses
1375 * of pc->mem_cgroup safe.
1376 */
1377 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1378 pc->mem_cgroup = memcg = root_mem_cgroup;
1379
1380 mz = mem_cgroup_page_zoneinfo(memcg, page);
1381 lruvec = &mz->lruvec;
1382 out:
1383 /*
1384 * Since a node can be onlined after the mem_cgroup was created,
1385 * we have to be prepared to initialize lruvec->zone here;
1386 * and if offlined then reonlined, we need to reinitialize it.
1387 */
1388 if (unlikely(lruvec->zone != zone))
1389 lruvec->zone = zone;
1390 return lruvec;
1391 }
1392
1393 /**
1394 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1395 * @lruvec: mem_cgroup per zone lru vector
1396 * @lru: index of lru list the page is sitting on
1397 * @nr_pages: positive when adding or negative when removing
1398 *
1399 * This function must be called when a page is added to or removed from an
1400 * lru list.
1401 */
1402 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1403 int nr_pages)
1404 {
1405 struct mem_cgroup_per_zone *mz;
1406 unsigned long *lru_size;
1407
1408 if (mem_cgroup_disabled())
1409 return;
1410
1411 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1412 lru_size = mz->lru_size + lru;
1413 *lru_size += nr_pages;
1414 VM_BUG_ON((long)(*lru_size) < 0);
1415 }
1416
1417 /*
1418 * Checks whether given mem is same or in the root_mem_cgroup's
1419 * hierarchy subtree
1420 */
1421 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1422 struct mem_cgroup *memcg)
1423 {
1424 if (root_memcg == memcg)
1425 return true;
1426 if (!root_memcg->use_hierarchy || !memcg)
1427 return false;
1428 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1429 }
1430
1431 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1432 struct mem_cgroup *memcg)
1433 {
1434 bool ret;
1435
1436 rcu_read_lock();
1437 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1438 rcu_read_unlock();
1439 return ret;
1440 }
1441
1442 bool task_in_mem_cgroup(struct task_struct *task,
1443 const struct mem_cgroup *memcg)
1444 {
1445 struct mem_cgroup *curr = NULL;
1446 struct task_struct *p;
1447 bool ret;
1448
1449 p = find_lock_task_mm(task);
1450 if (p) {
1451 curr = get_mem_cgroup_from_mm(p->mm);
1452 task_unlock(p);
1453 } else {
1454 /*
1455 * All threads may have already detached their mm's, but the oom
1456 * killer still needs to detect if they have already been oom
1457 * killed to prevent needlessly killing additional tasks.
1458 */
1459 rcu_read_lock();
1460 curr = mem_cgroup_from_task(task);
1461 if (curr)
1462 css_get(&curr->css);
1463 rcu_read_unlock();
1464 }
1465 /*
1466 * We should check use_hierarchy of "memcg" not "curr". Because checking
1467 * use_hierarchy of "curr" here make this function true if hierarchy is
1468 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1469 * hierarchy(even if use_hierarchy is disabled in "memcg").
1470 */
1471 ret = mem_cgroup_same_or_subtree(memcg, curr);
1472 css_put(&curr->css);
1473 return ret;
1474 }
1475
1476 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1477 {
1478 unsigned long inactive_ratio;
1479 unsigned long inactive;
1480 unsigned long active;
1481 unsigned long gb;
1482
1483 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1484 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1485
1486 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1487 if (gb)
1488 inactive_ratio = int_sqrt(10 * gb);
1489 else
1490 inactive_ratio = 1;
1491
1492 return inactive * inactive_ratio < active;
1493 }
1494
1495 #define mem_cgroup_from_res_counter(counter, member) \
1496 container_of(counter, struct mem_cgroup, member)
1497
1498 /**
1499 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1500 * @memcg: the memory cgroup
1501 *
1502 * Returns the maximum amount of memory @mem can be charged with, in
1503 * pages.
1504 */
1505 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1506 {
1507 unsigned long long margin;
1508
1509 margin = res_counter_margin(&memcg->res);
1510 if (do_swap_account)
1511 margin = min(margin, res_counter_margin(&memcg->memsw));
1512 return margin >> PAGE_SHIFT;
1513 }
1514
1515 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1516 {
1517 /* root ? */
1518 if (mem_cgroup_disabled() || !memcg->css.parent)
1519 return vm_swappiness;
1520
1521 return memcg->swappiness;
1522 }
1523
1524 /*
1525 * memcg->moving_account is used for checking possibility that some thread is
1526 * calling move_account(). When a thread on CPU-A starts moving pages under
1527 * a memcg, other threads should check memcg->moving_account under
1528 * rcu_read_lock(), like this:
1529 *
1530 * CPU-A CPU-B
1531 * rcu_read_lock()
1532 * memcg->moving_account+1 if (memcg->mocing_account)
1533 * take heavy locks.
1534 * synchronize_rcu() update something.
1535 * rcu_read_unlock()
1536 * start move here.
1537 */
1538
1539 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1540 {
1541 atomic_inc(&memcg->moving_account);
1542 synchronize_rcu();
1543 }
1544
1545 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1546 {
1547 /*
1548 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1549 * We check NULL in callee rather than caller.
1550 */
1551 if (memcg)
1552 atomic_dec(&memcg->moving_account);
1553 }
1554
1555 /*
1556 * A routine for checking "mem" is under move_account() or not.
1557 *
1558 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1559 * moving cgroups. This is for waiting at high-memory pressure
1560 * caused by "move".
1561 */
1562 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1563 {
1564 struct mem_cgroup *from;
1565 struct mem_cgroup *to;
1566 bool ret = false;
1567 /*
1568 * Unlike task_move routines, we access mc.to, mc.from not under
1569 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1570 */
1571 spin_lock(&mc.lock);
1572 from = mc.from;
1573 to = mc.to;
1574 if (!from)
1575 goto unlock;
1576
1577 ret = mem_cgroup_same_or_subtree(memcg, from)
1578 || mem_cgroup_same_or_subtree(memcg, to);
1579 unlock:
1580 spin_unlock(&mc.lock);
1581 return ret;
1582 }
1583
1584 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1585 {
1586 if (mc.moving_task && current != mc.moving_task) {
1587 if (mem_cgroup_under_move(memcg)) {
1588 DEFINE_WAIT(wait);
1589 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1590 /* moving charge context might have finished. */
1591 if (mc.moving_task)
1592 schedule();
1593 finish_wait(&mc.waitq, &wait);
1594 return true;
1595 }
1596 }
1597 return false;
1598 }
1599
1600 /*
1601 * Take this lock when
1602 * - a code tries to modify page's memcg while it's USED.
1603 * - a code tries to modify page state accounting in a memcg.
1604 */
1605 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1606 unsigned long *flags)
1607 {
1608 spin_lock_irqsave(&memcg->move_lock, *flags);
1609 }
1610
1611 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1612 unsigned long *flags)
1613 {
1614 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1615 }
1616
1617 #define K(x) ((x) << (PAGE_SHIFT-10))
1618 /**
1619 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1620 * @memcg: The memory cgroup that went over limit
1621 * @p: Task that is going to be killed
1622 *
1623 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1624 * enabled
1625 */
1626 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1627 {
1628 /* oom_info_lock ensures that parallel ooms do not interleave */
1629 static DEFINE_MUTEX(oom_info_lock);
1630 struct mem_cgroup *iter;
1631 unsigned int i;
1632
1633 if (!p)
1634 return;
1635
1636 mutex_lock(&oom_info_lock);
1637 rcu_read_lock();
1638
1639 pr_info("Task in ");
1640 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1641 pr_info(" killed as a result of limit of ");
1642 pr_cont_cgroup_path(memcg->css.cgroup);
1643 pr_info("\n");
1644
1645 rcu_read_unlock();
1646
1647 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1648 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1649 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1650 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1651 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1652 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1653 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1654 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1655 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1656 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1657 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1658 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1659
1660 for_each_mem_cgroup_tree(iter, memcg) {
1661 pr_info("Memory cgroup stats for ");
1662 pr_cont_cgroup_path(iter->css.cgroup);
1663 pr_cont(":");
1664
1665 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1666 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1667 continue;
1668 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1669 K(mem_cgroup_read_stat(iter, i)));
1670 }
1671
1672 for (i = 0; i < NR_LRU_LISTS; i++)
1673 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1674 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1675
1676 pr_cont("\n");
1677 }
1678 mutex_unlock(&oom_info_lock);
1679 }
1680
1681 /*
1682 * This function returns the number of memcg under hierarchy tree. Returns
1683 * 1(self count) if no children.
1684 */
1685 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1686 {
1687 int num = 0;
1688 struct mem_cgroup *iter;
1689
1690 for_each_mem_cgroup_tree(iter, memcg)
1691 num++;
1692 return num;
1693 }
1694
1695 /*
1696 * Return the memory (and swap, if configured) limit for a memcg.
1697 */
1698 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1699 {
1700 u64 limit;
1701
1702 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1703
1704 /*
1705 * Do not consider swap space if we cannot swap due to swappiness
1706 */
1707 if (mem_cgroup_swappiness(memcg)) {
1708 u64 memsw;
1709
1710 limit += total_swap_pages << PAGE_SHIFT;
1711 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1712
1713 /*
1714 * If memsw is finite and limits the amount of swap space
1715 * available to this memcg, return that limit.
1716 */
1717 limit = min(limit, memsw);
1718 }
1719
1720 return limit;
1721 }
1722
1723 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1724 int order)
1725 {
1726 struct mem_cgroup *iter;
1727 unsigned long chosen_points = 0;
1728 unsigned long totalpages;
1729 unsigned int points = 0;
1730 struct task_struct *chosen = NULL;
1731
1732 /*
1733 * If current has a pending SIGKILL or is exiting, then automatically
1734 * select it. The goal is to allow it to allocate so that it may
1735 * quickly exit and free its memory.
1736 */
1737 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1738 set_thread_flag(TIF_MEMDIE);
1739 return;
1740 }
1741
1742 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1743 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1744 for_each_mem_cgroup_tree(iter, memcg) {
1745 struct css_task_iter it;
1746 struct task_struct *task;
1747
1748 css_task_iter_start(&iter->css, &it);
1749 while ((task = css_task_iter_next(&it))) {
1750 switch (oom_scan_process_thread(task, totalpages, NULL,
1751 false)) {
1752 case OOM_SCAN_SELECT:
1753 if (chosen)
1754 put_task_struct(chosen);
1755 chosen = task;
1756 chosen_points = ULONG_MAX;
1757 get_task_struct(chosen);
1758 /* fall through */
1759 case OOM_SCAN_CONTINUE:
1760 continue;
1761 case OOM_SCAN_ABORT:
1762 css_task_iter_end(&it);
1763 mem_cgroup_iter_break(memcg, iter);
1764 if (chosen)
1765 put_task_struct(chosen);
1766 return;
1767 case OOM_SCAN_OK:
1768 break;
1769 };
1770 points = oom_badness(task, memcg, NULL, totalpages);
1771 if (!points || points < chosen_points)
1772 continue;
1773 /* Prefer thread group leaders for display purposes */
1774 if (points == chosen_points &&
1775 thread_group_leader(chosen))
1776 continue;
1777
1778 if (chosen)
1779 put_task_struct(chosen);
1780 chosen = task;
1781 chosen_points = points;
1782 get_task_struct(chosen);
1783 }
1784 css_task_iter_end(&it);
1785 }
1786
1787 if (!chosen)
1788 return;
1789 points = chosen_points * 1000 / totalpages;
1790 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1791 NULL, "Memory cgroup out of memory");
1792 }
1793
1794 /**
1795 * test_mem_cgroup_node_reclaimable
1796 * @memcg: the target memcg
1797 * @nid: the node ID to be checked.
1798 * @noswap : specify true here if the user wants flle only information.
1799 *
1800 * This function returns whether the specified memcg contains any
1801 * reclaimable pages on a node. Returns true if there are any reclaimable
1802 * pages in the node.
1803 */
1804 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1805 int nid, bool noswap)
1806 {
1807 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1808 return true;
1809 if (noswap || !total_swap_pages)
1810 return false;
1811 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1812 return true;
1813 return false;
1814
1815 }
1816 #if MAX_NUMNODES > 1
1817
1818 /*
1819 * Always updating the nodemask is not very good - even if we have an empty
1820 * list or the wrong list here, we can start from some node and traverse all
1821 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1822 *
1823 */
1824 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1825 {
1826 int nid;
1827 /*
1828 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1829 * pagein/pageout changes since the last update.
1830 */
1831 if (!atomic_read(&memcg->numainfo_events))
1832 return;
1833 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1834 return;
1835
1836 /* make a nodemask where this memcg uses memory from */
1837 memcg->scan_nodes = node_states[N_MEMORY];
1838
1839 for_each_node_mask(nid, node_states[N_MEMORY]) {
1840
1841 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1842 node_clear(nid, memcg->scan_nodes);
1843 }
1844
1845 atomic_set(&memcg->numainfo_events, 0);
1846 atomic_set(&memcg->numainfo_updating, 0);
1847 }
1848
1849 /*
1850 * Selecting a node where we start reclaim from. Because what we need is just
1851 * reducing usage counter, start from anywhere is O,K. Considering
1852 * memory reclaim from current node, there are pros. and cons.
1853 *
1854 * Freeing memory from current node means freeing memory from a node which
1855 * we'll use or we've used. So, it may make LRU bad. And if several threads
1856 * hit limits, it will see a contention on a node. But freeing from remote
1857 * node means more costs for memory reclaim because of memory latency.
1858 *
1859 * Now, we use round-robin. Better algorithm is welcomed.
1860 */
1861 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1862 {
1863 int node;
1864
1865 mem_cgroup_may_update_nodemask(memcg);
1866 node = memcg->last_scanned_node;
1867
1868 node = next_node(node, memcg->scan_nodes);
1869 if (node == MAX_NUMNODES)
1870 node = first_node(memcg->scan_nodes);
1871 /*
1872 * We call this when we hit limit, not when pages are added to LRU.
1873 * No LRU may hold pages because all pages are UNEVICTABLE or
1874 * memcg is too small and all pages are not on LRU. In that case,
1875 * we use curret node.
1876 */
1877 if (unlikely(node == MAX_NUMNODES))
1878 node = numa_node_id();
1879
1880 memcg->last_scanned_node = node;
1881 return node;
1882 }
1883
1884 /*
1885 * Check all nodes whether it contains reclaimable pages or not.
1886 * For quick scan, we make use of scan_nodes. This will allow us to skip
1887 * unused nodes. But scan_nodes is lazily updated and may not cotain
1888 * enough new information. We need to do double check.
1889 */
1890 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1891 {
1892 int nid;
1893
1894 /*
1895 * quick check...making use of scan_node.
1896 * We can skip unused nodes.
1897 */
1898 if (!nodes_empty(memcg->scan_nodes)) {
1899 for (nid = first_node(memcg->scan_nodes);
1900 nid < MAX_NUMNODES;
1901 nid = next_node(nid, memcg->scan_nodes)) {
1902
1903 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1904 return true;
1905 }
1906 }
1907 /*
1908 * Check rest of nodes.
1909 */
1910 for_each_node_state(nid, N_MEMORY) {
1911 if (node_isset(nid, memcg->scan_nodes))
1912 continue;
1913 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1914 return true;
1915 }
1916 return false;
1917 }
1918
1919 #else
1920 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1921 {
1922 return 0;
1923 }
1924
1925 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1926 {
1927 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1928 }
1929 #endif
1930
1931 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1932 struct zone *zone,
1933 gfp_t gfp_mask,
1934 unsigned long *total_scanned)
1935 {
1936 struct mem_cgroup *victim = NULL;
1937 int total = 0;
1938 int loop = 0;
1939 unsigned long excess;
1940 unsigned long nr_scanned;
1941 struct mem_cgroup_reclaim_cookie reclaim = {
1942 .zone = zone,
1943 .priority = 0,
1944 };
1945
1946 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1947
1948 while (1) {
1949 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1950 if (!victim) {
1951 loop++;
1952 if (loop >= 2) {
1953 /*
1954 * If we have not been able to reclaim
1955 * anything, it might because there are
1956 * no reclaimable pages under this hierarchy
1957 */
1958 if (!total)
1959 break;
1960 /*
1961 * We want to do more targeted reclaim.
1962 * excess >> 2 is not to excessive so as to
1963 * reclaim too much, nor too less that we keep
1964 * coming back to reclaim from this cgroup
1965 */
1966 if (total >= (excess >> 2) ||
1967 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1968 break;
1969 }
1970 continue;
1971 }
1972 if (!mem_cgroup_reclaimable(victim, false))
1973 continue;
1974 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1975 zone, &nr_scanned);
1976 *total_scanned += nr_scanned;
1977 if (!res_counter_soft_limit_excess(&root_memcg->res))
1978 break;
1979 }
1980 mem_cgroup_iter_break(root_memcg, victim);
1981 return total;
1982 }
1983
1984 #ifdef CONFIG_LOCKDEP
1985 static struct lockdep_map memcg_oom_lock_dep_map = {
1986 .name = "memcg_oom_lock",
1987 };
1988 #endif
1989
1990 static DEFINE_SPINLOCK(memcg_oom_lock);
1991
1992 /*
1993 * Check OOM-Killer is already running under our hierarchy.
1994 * If someone is running, return false.
1995 */
1996 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1997 {
1998 struct mem_cgroup *iter, *failed = NULL;
1999
2000 spin_lock(&memcg_oom_lock);
2001
2002 for_each_mem_cgroup_tree(iter, memcg) {
2003 if (iter->oom_lock) {
2004 /*
2005 * this subtree of our hierarchy is already locked
2006 * so we cannot give a lock.
2007 */
2008 failed = iter;
2009 mem_cgroup_iter_break(memcg, iter);
2010 break;
2011 } else
2012 iter->oom_lock = true;
2013 }
2014
2015 if (failed) {
2016 /*
2017 * OK, we failed to lock the whole subtree so we have
2018 * to clean up what we set up to the failing subtree
2019 */
2020 for_each_mem_cgroup_tree(iter, memcg) {
2021 if (iter == failed) {
2022 mem_cgroup_iter_break(memcg, iter);
2023 break;
2024 }
2025 iter->oom_lock = false;
2026 }
2027 } else
2028 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2029
2030 spin_unlock(&memcg_oom_lock);
2031
2032 return !failed;
2033 }
2034
2035 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2036 {
2037 struct mem_cgroup *iter;
2038
2039 spin_lock(&memcg_oom_lock);
2040 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2041 for_each_mem_cgroup_tree(iter, memcg)
2042 iter->oom_lock = false;
2043 spin_unlock(&memcg_oom_lock);
2044 }
2045
2046 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2047 {
2048 struct mem_cgroup *iter;
2049
2050 for_each_mem_cgroup_tree(iter, memcg)
2051 atomic_inc(&iter->under_oom);
2052 }
2053
2054 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2055 {
2056 struct mem_cgroup *iter;
2057
2058 /*
2059 * When a new child is created while the hierarchy is under oom,
2060 * mem_cgroup_oom_lock() may not be called. We have to use
2061 * atomic_add_unless() here.
2062 */
2063 for_each_mem_cgroup_tree(iter, memcg)
2064 atomic_add_unless(&iter->under_oom, -1, 0);
2065 }
2066
2067 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2068
2069 struct oom_wait_info {
2070 struct mem_cgroup *memcg;
2071 wait_queue_t wait;
2072 };
2073
2074 static int memcg_oom_wake_function(wait_queue_t *wait,
2075 unsigned mode, int sync, void *arg)
2076 {
2077 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2078 struct mem_cgroup *oom_wait_memcg;
2079 struct oom_wait_info *oom_wait_info;
2080
2081 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2082 oom_wait_memcg = oom_wait_info->memcg;
2083
2084 /*
2085 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2086 * Then we can use css_is_ancestor without taking care of RCU.
2087 */
2088 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2089 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2090 return 0;
2091 return autoremove_wake_function(wait, mode, sync, arg);
2092 }
2093
2094 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2095 {
2096 atomic_inc(&memcg->oom_wakeups);
2097 /* for filtering, pass "memcg" as argument. */
2098 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2099 }
2100
2101 static void memcg_oom_recover(struct mem_cgroup *memcg)
2102 {
2103 if (memcg && atomic_read(&memcg->under_oom))
2104 memcg_wakeup_oom(memcg);
2105 }
2106
2107 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2108 {
2109 if (!current->memcg_oom.may_oom)
2110 return;
2111 /*
2112 * We are in the middle of the charge context here, so we
2113 * don't want to block when potentially sitting on a callstack
2114 * that holds all kinds of filesystem and mm locks.
2115 *
2116 * Also, the caller may handle a failed allocation gracefully
2117 * (like optional page cache readahead) and so an OOM killer
2118 * invocation might not even be necessary.
2119 *
2120 * That's why we don't do anything here except remember the
2121 * OOM context and then deal with it at the end of the page
2122 * fault when the stack is unwound, the locks are released,
2123 * and when we know whether the fault was overall successful.
2124 */
2125 css_get(&memcg->css);
2126 current->memcg_oom.memcg = memcg;
2127 current->memcg_oom.gfp_mask = mask;
2128 current->memcg_oom.order = order;
2129 }
2130
2131 /**
2132 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2133 * @handle: actually kill/wait or just clean up the OOM state
2134 *
2135 * This has to be called at the end of a page fault if the memcg OOM
2136 * handler was enabled.
2137 *
2138 * Memcg supports userspace OOM handling where failed allocations must
2139 * sleep on a waitqueue until the userspace task resolves the
2140 * situation. Sleeping directly in the charge context with all kinds
2141 * of locks held is not a good idea, instead we remember an OOM state
2142 * in the task and mem_cgroup_oom_synchronize() has to be called at
2143 * the end of the page fault to complete the OOM handling.
2144 *
2145 * Returns %true if an ongoing memcg OOM situation was detected and
2146 * completed, %false otherwise.
2147 */
2148 bool mem_cgroup_oom_synchronize(bool handle)
2149 {
2150 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2151 struct oom_wait_info owait;
2152 bool locked;
2153
2154 /* OOM is global, do not handle */
2155 if (!memcg)
2156 return false;
2157
2158 if (!handle)
2159 goto cleanup;
2160
2161 owait.memcg = memcg;
2162 owait.wait.flags = 0;
2163 owait.wait.func = memcg_oom_wake_function;
2164 owait.wait.private = current;
2165 INIT_LIST_HEAD(&owait.wait.task_list);
2166
2167 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2168 mem_cgroup_mark_under_oom(memcg);
2169
2170 locked = mem_cgroup_oom_trylock(memcg);
2171
2172 if (locked)
2173 mem_cgroup_oom_notify(memcg);
2174
2175 if (locked && !memcg->oom_kill_disable) {
2176 mem_cgroup_unmark_under_oom(memcg);
2177 finish_wait(&memcg_oom_waitq, &owait.wait);
2178 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2179 current->memcg_oom.order);
2180 } else {
2181 schedule();
2182 mem_cgroup_unmark_under_oom(memcg);
2183 finish_wait(&memcg_oom_waitq, &owait.wait);
2184 }
2185
2186 if (locked) {
2187 mem_cgroup_oom_unlock(memcg);
2188 /*
2189 * There is no guarantee that an OOM-lock contender
2190 * sees the wakeups triggered by the OOM kill
2191 * uncharges. Wake any sleepers explicitely.
2192 */
2193 memcg_oom_recover(memcg);
2194 }
2195 cleanup:
2196 current->memcg_oom.memcg = NULL;
2197 css_put(&memcg->css);
2198 return true;
2199 }
2200
2201 /**
2202 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
2203 * @page: page that is going to change accounted state
2204 * @locked: &memcg->move_lock slowpath was taken
2205 * @flags: IRQ-state flags for &memcg->move_lock
2206 *
2207 * This function must mark the beginning of an accounted page state
2208 * change to prevent double accounting when the page is concurrently
2209 * being moved to another memcg:
2210 *
2211 * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
2212 * if (TestClearPageState(page))
2213 * mem_cgroup_update_page_stat(memcg, state, -1);
2214 * mem_cgroup_end_page_stat(memcg, locked, flags);
2215 *
2216 * The RCU lock is held throughout the transaction. The fast path can
2217 * get away without acquiring the memcg->move_lock (@locked is false)
2218 * because page moving starts with an RCU grace period.
2219 *
2220 * The RCU lock also protects the memcg from being freed when the page
2221 * state that is going to change is the only thing preventing the page
2222 * from being uncharged. E.g. end-writeback clearing PageWriteback(),
2223 * which allows migration to go ahead and uncharge the page before the
2224 * account transaction might be complete.
2225 */
2226 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
2227 bool *locked,
2228 unsigned long *flags)
2229 {
2230 struct mem_cgroup *memcg;
2231 struct page_cgroup *pc;
2232
2233 rcu_read_lock();
2234
2235 if (mem_cgroup_disabled())
2236 return NULL;
2237
2238 pc = lookup_page_cgroup(page);
2239 again:
2240 memcg = pc->mem_cgroup;
2241 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2242 return NULL;
2243
2244 *locked = false;
2245 if (atomic_read(&memcg->moving_account) <= 0)
2246 return memcg;
2247
2248 move_lock_mem_cgroup(memcg, flags);
2249 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2250 move_unlock_mem_cgroup(memcg, flags);
2251 goto again;
2252 }
2253 *locked = true;
2254
2255 return memcg;
2256 }
2257
2258 /**
2259 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2260 * @memcg: the memcg that was accounted against
2261 * @locked: value received from mem_cgroup_begin_page_stat()
2262 * @flags: value received from mem_cgroup_begin_page_stat()
2263 */
2264 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool locked,
2265 unsigned long flags)
2266 {
2267 if (memcg && locked)
2268 move_unlock_mem_cgroup(memcg, &flags);
2269
2270 rcu_read_unlock();
2271 }
2272
2273 /**
2274 * mem_cgroup_update_page_stat - update page state statistics
2275 * @memcg: memcg to account against
2276 * @idx: page state item to account
2277 * @val: number of pages (positive or negative)
2278 *
2279 * See mem_cgroup_begin_page_stat() for locking requirements.
2280 */
2281 void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
2282 enum mem_cgroup_stat_index idx, int val)
2283 {
2284 VM_BUG_ON(!rcu_read_lock_held());
2285
2286 if (memcg)
2287 this_cpu_add(memcg->stat->count[idx], val);
2288 }
2289
2290 /*
2291 * size of first charge trial. "32" comes from vmscan.c's magic value.
2292 * TODO: maybe necessary to use big numbers in big irons.
2293 */
2294 #define CHARGE_BATCH 32U
2295 struct memcg_stock_pcp {
2296 struct mem_cgroup *cached; /* this never be root cgroup */
2297 unsigned int nr_pages;
2298 struct work_struct work;
2299 unsigned long flags;
2300 #define FLUSHING_CACHED_CHARGE 0
2301 };
2302 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2303 static DEFINE_MUTEX(percpu_charge_mutex);
2304
2305 /**
2306 * consume_stock: Try to consume stocked charge on this cpu.
2307 * @memcg: memcg to consume from.
2308 * @nr_pages: how many pages to charge.
2309 *
2310 * The charges will only happen if @memcg matches the current cpu's memcg
2311 * stock, and at least @nr_pages are available in that stock. Failure to
2312 * service an allocation will refill the stock.
2313 *
2314 * returns true if successful, false otherwise.
2315 */
2316 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2317 {
2318 struct memcg_stock_pcp *stock;
2319 bool ret = true;
2320
2321 if (nr_pages > CHARGE_BATCH)
2322 return false;
2323
2324 stock = &get_cpu_var(memcg_stock);
2325 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2326 stock->nr_pages -= nr_pages;
2327 else /* need to call res_counter_charge */
2328 ret = false;
2329 put_cpu_var(memcg_stock);
2330 return ret;
2331 }
2332
2333 /*
2334 * Returns stocks cached in percpu to res_counter and reset cached information.
2335 */
2336 static void drain_stock(struct memcg_stock_pcp *stock)
2337 {
2338 struct mem_cgroup *old = stock->cached;
2339
2340 if (stock->nr_pages) {
2341 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2342
2343 res_counter_uncharge(&old->res, bytes);
2344 if (do_swap_account)
2345 res_counter_uncharge(&old->memsw, bytes);
2346 stock->nr_pages = 0;
2347 }
2348 stock->cached = NULL;
2349 }
2350
2351 /*
2352 * This must be called under preempt disabled or must be called by
2353 * a thread which is pinned to local cpu.
2354 */
2355 static void drain_local_stock(struct work_struct *dummy)
2356 {
2357 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2358 drain_stock(stock);
2359 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2360 }
2361
2362 static void __init memcg_stock_init(void)
2363 {
2364 int cpu;
2365
2366 for_each_possible_cpu(cpu) {
2367 struct memcg_stock_pcp *stock =
2368 &per_cpu(memcg_stock, cpu);
2369 INIT_WORK(&stock->work, drain_local_stock);
2370 }
2371 }
2372
2373 /*
2374 * Cache charges(val) which is from res_counter, to local per_cpu area.
2375 * This will be consumed by consume_stock() function, later.
2376 */
2377 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2378 {
2379 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2380
2381 if (stock->cached != memcg) { /* reset if necessary */
2382 drain_stock(stock);
2383 stock->cached = memcg;
2384 }
2385 stock->nr_pages += nr_pages;
2386 put_cpu_var(memcg_stock);
2387 }
2388
2389 /*
2390 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2391 * of the hierarchy under it. sync flag says whether we should block
2392 * until the work is done.
2393 */
2394 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2395 {
2396 int cpu, curcpu;
2397
2398 /* Notify other cpus that system-wide "drain" is running */
2399 get_online_cpus();
2400 curcpu = get_cpu();
2401 for_each_online_cpu(cpu) {
2402 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2403 struct mem_cgroup *memcg;
2404
2405 memcg = stock->cached;
2406 if (!memcg || !stock->nr_pages)
2407 continue;
2408 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2409 continue;
2410 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2411 if (cpu == curcpu)
2412 drain_local_stock(&stock->work);
2413 else
2414 schedule_work_on(cpu, &stock->work);
2415 }
2416 }
2417 put_cpu();
2418
2419 if (!sync)
2420 goto out;
2421
2422 for_each_online_cpu(cpu) {
2423 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2424 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2425 flush_work(&stock->work);
2426 }
2427 out:
2428 put_online_cpus();
2429 }
2430
2431 /*
2432 * Tries to drain stocked charges in other cpus. This function is asynchronous
2433 * and just put a work per cpu for draining localy on each cpu. Caller can
2434 * expects some charges will be back to res_counter later but cannot wait for
2435 * it.
2436 */
2437 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2438 {
2439 /*
2440 * If someone calls draining, avoid adding more kworker runs.
2441 */
2442 if (!mutex_trylock(&percpu_charge_mutex))
2443 return;
2444 drain_all_stock(root_memcg, false);
2445 mutex_unlock(&percpu_charge_mutex);
2446 }
2447
2448 /* This is a synchronous drain interface. */
2449 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2450 {
2451 /* called when force_empty is called */
2452 mutex_lock(&percpu_charge_mutex);
2453 drain_all_stock(root_memcg, true);
2454 mutex_unlock(&percpu_charge_mutex);
2455 }
2456
2457 /*
2458 * This function drains percpu counter value from DEAD cpu and
2459 * move it to local cpu. Note that this function can be preempted.
2460 */
2461 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2462 {
2463 int i;
2464
2465 spin_lock(&memcg->pcp_counter_lock);
2466 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2467 long x = per_cpu(memcg->stat->count[i], cpu);
2468
2469 per_cpu(memcg->stat->count[i], cpu) = 0;
2470 memcg->nocpu_base.count[i] += x;
2471 }
2472 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2473 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2474
2475 per_cpu(memcg->stat->events[i], cpu) = 0;
2476 memcg->nocpu_base.events[i] += x;
2477 }
2478 spin_unlock(&memcg->pcp_counter_lock);
2479 }
2480
2481 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2482 unsigned long action,
2483 void *hcpu)
2484 {
2485 int cpu = (unsigned long)hcpu;
2486 struct memcg_stock_pcp *stock;
2487 struct mem_cgroup *iter;
2488
2489 if (action == CPU_ONLINE)
2490 return NOTIFY_OK;
2491
2492 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2493 return NOTIFY_OK;
2494
2495 for_each_mem_cgroup(iter)
2496 mem_cgroup_drain_pcp_counter(iter, cpu);
2497
2498 stock = &per_cpu(memcg_stock, cpu);
2499 drain_stock(stock);
2500 return NOTIFY_OK;
2501 }
2502
2503 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2504 unsigned int nr_pages)
2505 {
2506 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2507 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2508 struct mem_cgroup *mem_over_limit;
2509 struct res_counter *fail_res;
2510 unsigned long nr_reclaimed;
2511 unsigned long long size;
2512 bool may_swap = true;
2513 bool drained = false;
2514 int ret = 0;
2515
2516 if (mem_cgroup_is_root(memcg))
2517 goto done;
2518 retry:
2519 if (consume_stock(memcg, nr_pages))
2520 goto done;
2521
2522 size = batch * PAGE_SIZE;
2523 if (!do_swap_account ||
2524 !res_counter_charge(&memcg->memsw, size, &fail_res)) {
2525 if (!res_counter_charge(&memcg->res, size, &fail_res))
2526 goto done_restock;
2527 if (do_swap_account)
2528 res_counter_uncharge(&memcg->memsw, size);
2529 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2530 } else {
2531 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2532 may_swap = false;
2533 }
2534
2535 if (batch > nr_pages) {
2536 batch = nr_pages;
2537 goto retry;
2538 }
2539
2540 /*
2541 * Unlike in global OOM situations, memcg is not in a physical
2542 * memory shortage. Allow dying and OOM-killed tasks to
2543 * bypass the last charges so that they can exit quickly and
2544 * free their memory.
2545 */
2546 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2547 fatal_signal_pending(current) ||
2548 current->flags & PF_EXITING))
2549 goto bypass;
2550
2551 if (unlikely(task_in_memcg_oom(current)))
2552 goto nomem;
2553
2554 if (!(gfp_mask & __GFP_WAIT))
2555 goto nomem;
2556
2557 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2558 gfp_mask, may_swap);
2559
2560 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2561 goto retry;
2562
2563 if (!drained) {
2564 drain_all_stock_async(mem_over_limit);
2565 drained = true;
2566 goto retry;
2567 }
2568
2569 if (gfp_mask & __GFP_NORETRY)
2570 goto nomem;
2571 /*
2572 * Even though the limit is exceeded at this point, reclaim
2573 * may have been able to free some pages. Retry the charge
2574 * before killing the task.
2575 *
2576 * Only for regular pages, though: huge pages are rather
2577 * unlikely to succeed so close to the limit, and we fall back
2578 * to regular pages anyway in case of failure.
2579 */
2580 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2581 goto retry;
2582 /*
2583 * At task move, charge accounts can be doubly counted. So, it's
2584 * better to wait until the end of task_move if something is going on.
2585 */
2586 if (mem_cgroup_wait_acct_move(mem_over_limit))
2587 goto retry;
2588
2589 if (nr_retries--)
2590 goto retry;
2591
2592 if (gfp_mask & __GFP_NOFAIL)
2593 goto bypass;
2594
2595 if (fatal_signal_pending(current))
2596 goto bypass;
2597
2598 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2599 nomem:
2600 if (!(gfp_mask & __GFP_NOFAIL))
2601 return -ENOMEM;
2602 bypass:
2603 return -EINTR;
2604
2605 done_restock:
2606 if (batch > nr_pages)
2607 refill_stock(memcg, batch - nr_pages);
2608 done:
2609 return ret;
2610 }
2611
2612 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2613 {
2614 unsigned long bytes = nr_pages * PAGE_SIZE;
2615
2616 if (mem_cgroup_is_root(memcg))
2617 return;
2618
2619 res_counter_uncharge(&memcg->res, bytes);
2620 if (do_swap_account)
2621 res_counter_uncharge(&memcg->memsw, bytes);
2622 }
2623
2624 /*
2625 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2626 * This is useful when moving usage to parent cgroup.
2627 */
2628 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2629 unsigned int nr_pages)
2630 {
2631 unsigned long bytes = nr_pages * PAGE_SIZE;
2632
2633 if (mem_cgroup_is_root(memcg))
2634 return;
2635
2636 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2637 if (do_swap_account)
2638 res_counter_uncharge_until(&memcg->memsw,
2639 memcg->memsw.parent, bytes);
2640 }
2641
2642 /*
2643 * A helper function to get mem_cgroup from ID. must be called under
2644 * rcu_read_lock(). The caller is responsible for calling
2645 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2646 * refcnt from swap can be called against removed memcg.)
2647 */
2648 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2649 {
2650 /* ID 0 is unused ID */
2651 if (!id)
2652 return NULL;
2653 return mem_cgroup_from_id(id);
2654 }
2655
2656 /*
2657 * try_get_mem_cgroup_from_page - look up page's memcg association
2658 * @page: the page
2659 *
2660 * Look up, get a css reference, and return the memcg that owns @page.
2661 *
2662 * The page must be locked to prevent racing with swap-in and page
2663 * cache charges. If coming from an unlocked page table, the caller
2664 * must ensure the page is on the LRU or this can race with charging.
2665 */
2666 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2667 {
2668 struct mem_cgroup *memcg = NULL;
2669 struct page_cgroup *pc;
2670 unsigned short id;
2671 swp_entry_t ent;
2672
2673 VM_BUG_ON_PAGE(!PageLocked(page), page);
2674
2675 pc = lookup_page_cgroup(page);
2676 if (PageCgroupUsed(pc)) {
2677 memcg = pc->mem_cgroup;
2678 if (memcg && !css_tryget_online(&memcg->css))
2679 memcg = NULL;
2680 } else if (PageSwapCache(page)) {
2681 ent.val = page_private(page);
2682 id = lookup_swap_cgroup_id(ent);
2683 rcu_read_lock();
2684 memcg = mem_cgroup_lookup(id);
2685 if (memcg && !css_tryget_online(&memcg->css))
2686 memcg = NULL;
2687 rcu_read_unlock();
2688 }
2689 return memcg;
2690 }
2691
2692 static void lock_page_lru(struct page *page, int *isolated)
2693 {
2694 struct zone *zone = page_zone(page);
2695
2696 spin_lock_irq(&zone->lru_lock);
2697 if (PageLRU(page)) {
2698 struct lruvec *lruvec;
2699
2700 lruvec = mem_cgroup_page_lruvec(page, zone);
2701 ClearPageLRU(page);
2702 del_page_from_lru_list(page, lruvec, page_lru(page));
2703 *isolated = 1;
2704 } else
2705 *isolated = 0;
2706 }
2707
2708 static void unlock_page_lru(struct page *page, int isolated)
2709 {
2710 struct zone *zone = page_zone(page);
2711
2712 if (isolated) {
2713 struct lruvec *lruvec;
2714
2715 lruvec = mem_cgroup_page_lruvec(page, zone);
2716 VM_BUG_ON_PAGE(PageLRU(page), page);
2717 SetPageLRU(page);
2718 add_page_to_lru_list(page, lruvec, page_lru(page));
2719 }
2720 spin_unlock_irq(&zone->lru_lock);
2721 }
2722
2723 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2724 bool lrucare)
2725 {
2726 struct page_cgroup *pc = lookup_page_cgroup(page);
2727 int isolated;
2728
2729 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2730 /*
2731 * we don't need page_cgroup_lock about tail pages, becase they are not
2732 * accessed by any other context at this point.
2733 */
2734
2735 /*
2736 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2737 * may already be on some other mem_cgroup's LRU. Take care of it.
2738 */
2739 if (lrucare)
2740 lock_page_lru(page, &isolated);
2741
2742 /*
2743 * Nobody should be changing or seriously looking at
2744 * pc->mem_cgroup and pc->flags at this point:
2745 *
2746 * - the page is uncharged
2747 *
2748 * - the page is off-LRU
2749 *
2750 * - an anonymous fault has exclusive page access, except for
2751 * a locked page table
2752 *
2753 * - a page cache insertion, a swapin fault, or a migration
2754 * have the page locked
2755 */
2756 pc->mem_cgroup = memcg;
2757 pc->flags = PCG_USED | PCG_MEM | (do_swap_account ? PCG_MEMSW : 0);
2758
2759 if (lrucare)
2760 unlock_page_lru(page, isolated);
2761 }
2762
2763 static DEFINE_MUTEX(set_limit_mutex);
2764
2765 #ifdef CONFIG_MEMCG_KMEM
2766 /*
2767 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2768 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2769 */
2770 static DEFINE_MUTEX(memcg_slab_mutex);
2771
2772 static DEFINE_MUTEX(activate_kmem_mutex);
2773
2774 /*
2775 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2776 * in the memcg_cache_params struct.
2777 */
2778 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2779 {
2780 struct kmem_cache *cachep;
2781
2782 VM_BUG_ON(p->is_root_cache);
2783 cachep = p->root_cache;
2784 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2785 }
2786
2787 #ifdef CONFIG_SLABINFO
2788 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2789 {
2790 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2791 struct memcg_cache_params *params;
2792
2793 if (!memcg_kmem_is_active(memcg))
2794 return -EIO;
2795
2796 print_slabinfo_header(m);
2797
2798 mutex_lock(&memcg_slab_mutex);
2799 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2800 cache_show(memcg_params_to_cache(params), m);
2801 mutex_unlock(&memcg_slab_mutex);
2802
2803 return 0;
2804 }
2805 #endif
2806
2807 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2808 {
2809 struct res_counter *fail_res;
2810 int ret = 0;
2811
2812 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2813 if (ret)
2814 return ret;
2815
2816 ret = try_charge(memcg, gfp, size >> PAGE_SHIFT);
2817 if (ret == -EINTR) {
2818 /*
2819 * try_charge() chose to bypass to root due to OOM kill or
2820 * fatal signal. Since our only options are to either fail
2821 * the allocation or charge it to this cgroup, do it as a
2822 * temporary condition. But we can't fail. From a kmem/slab
2823 * perspective, the cache has already been selected, by
2824 * mem_cgroup_kmem_get_cache(), so it is too late to change
2825 * our minds.
2826 *
2827 * This condition will only trigger if the task entered
2828 * memcg_charge_kmem in a sane state, but was OOM-killed
2829 * during try_charge() above. Tasks that were already dying
2830 * when the allocation triggers should have been already
2831 * directed to the root cgroup in memcontrol.h
2832 */
2833 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2834 if (do_swap_account)
2835 res_counter_charge_nofail(&memcg->memsw, size,
2836 &fail_res);
2837 ret = 0;
2838 } else if (ret)
2839 res_counter_uncharge(&memcg->kmem, size);
2840
2841 return ret;
2842 }
2843
2844 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2845 {
2846 res_counter_uncharge(&memcg->res, size);
2847 if (do_swap_account)
2848 res_counter_uncharge(&memcg->memsw, size);
2849
2850 /* Not down to 0 */
2851 if (res_counter_uncharge(&memcg->kmem, size))
2852 return;
2853
2854 /*
2855 * Releases a reference taken in kmem_cgroup_css_offline in case
2856 * this last uncharge is racing with the offlining code or it is
2857 * outliving the memcg existence.
2858 *
2859 * The memory barrier imposed by test&clear is paired with the
2860 * explicit one in memcg_kmem_mark_dead().
2861 */
2862 if (memcg_kmem_test_and_clear_dead(memcg))
2863 css_put(&memcg->css);
2864 }
2865
2866 /*
2867 * helper for acessing a memcg's index. It will be used as an index in the
2868 * child cache array in kmem_cache, and also to derive its name. This function
2869 * will return -1 when this is not a kmem-limited memcg.
2870 */
2871 int memcg_cache_id(struct mem_cgroup *memcg)
2872 {
2873 return memcg ? memcg->kmemcg_id : -1;
2874 }
2875
2876 static int memcg_alloc_cache_id(void)
2877 {
2878 int id, size;
2879 int err;
2880
2881 id = ida_simple_get(&kmem_limited_groups,
2882 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2883 if (id < 0)
2884 return id;
2885
2886 if (id < memcg_limited_groups_array_size)
2887 return id;
2888
2889 /*
2890 * There's no space for the new id in memcg_caches arrays,
2891 * so we have to grow them.
2892 */
2893
2894 size = 2 * (id + 1);
2895 if (size < MEMCG_CACHES_MIN_SIZE)
2896 size = MEMCG_CACHES_MIN_SIZE;
2897 else if (size > MEMCG_CACHES_MAX_SIZE)
2898 size = MEMCG_CACHES_MAX_SIZE;
2899
2900 mutex_lock(&memcg_slab_mutex);
2901 err = memcg_update_all_caches(size);
2902 mutex_unlock(&memcg_slab_mutex);
2903
2904 if (err) {
2905 ida_simple_remove(&kmem_limited_groups, id);
2906 return err;
2907 }
2908 return id;
2909 }
2910
2911 static void memcg_free_cache_id(int id)
2912 {
2913 ida_simple_remove(&kmem_limited_groups, id);
2914 }
2915
2916 /*
2917 * We should update the current array size iff all caches updates succeed. This
2918 * can only be done from the slab side. The slab mutex needs to be held when
2919 * calling this.
2920 */
2921 void memcg_update_array_size(int num)
2922 {
2923 memcg_limited_groups_array_size = num;
2924 }
2925
2926 static void memcg_register_cache(struct mem_cgroup *memcg,
2927 struct kmem_cache *root_cache)
2928 {
2929 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2930 memcg_slab_mutex */
2931 struct kmem_cache *cachep;
2932 int id;
2933
2934 lockdep_assert_held(&memcg_slab_mutex);
2935
2936 id = memcg_cache_id(memcg);
2937
2938 /*
2939 * Since per-memcg caches are created asynchronously on first
2940 * allocation (see memcg_kmem_get_cache()), several threads can try to
2941 * create the same cache, but only one of them may succeed.
2942 */
2943 if (cache_from_memcg_idx(root_cache, id))
2944 return;
2945
2946 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
2947 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2948 /*
2949 * If we could not create a memcg cache, do not complain, because
2950 * that's not critical at all as we can always proceed with the root
2951 * cache.
2952 */
2953 if (!cachep)
2954 return;
2955
2956 css_get(&memcg->css);
2957 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2958
2959 /*
2960 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2961 * barrier here to ensure nobody will see the kmem_cache partially
2962 * initialized.
2963 */
2964 smp_wmb();
2965
2966 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2967 root_cache->memcg_params->memcg_caches[id] = cachep;
2968 }
2969
2970 static void memcg_unregister_cache(struct kmem_cache *cachep)
2971 {
2972 struct kmem_cache *root_cache;
2973 struct mem_cgroup *memcg;
2974 int id;
2975
2976 lockdep_assert_held(&memcg_slab_mutex);
2977
2978 BUG_ON(is_root_cache(cachep));
2979
2980 root_cache = cachep->memcg_params->root_cache;
2981 memcg = cachep->memcg_params->memcg;
2982 id = memcg_cache_id(memcg);
2983
2984 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2985 root_cache->memcg_params->memcg_caches[id] = NULL;
2986
2987 list_del(&cachep->memcg_params->list);
2988
2989 kmem_cache_destroy(cachep);
2990
2991 /* drop the reference taken in memcg_register_cache */
2992 css_put(&memcg->css);
2993 }
2994
2995 /*
2996 * During the creation a new cache, we need to disable our accounting mechanism
2997 * altogether. This is true even if we are not creating, but rather just
2998 * enqueing new caches to be created.
2999 *
3000 * This is because that process will trigger allocations; some visible, like
3001 * explicit kmallocs to auxiliary data structures, name strings and internal
3002 * cache structures; some well concealed, like INIT_WORK() that can allocate
3003 * objects during debug.
3004 *
3005 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3006 * to it. This may not be a bounded recursion: since the first cache creation
3007 * failed to complete (waiting on the allocation), we'll just try to create the
3008 * cache again, failing at the same point.
3009 *
3010 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3011 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3012 * inside the following two functions.
3013 */
3014 static inline void memcg_stop_kmem_account(void)
3015 {
3016 VM_BUG_ON(!current->mm);
3017 current->memcg_kmem_skip_account++;
3018 }
3019
3020 static inline void memcg_resume_kmem_account(void)
3021 {
3022 VM_BUG_ON(!current->mm);
3023 current->memcg_kmem_skip_account--;
3024 }
3025
3026 int __memcg_cleanup_cache_params(struct kmem_cache *s)
3027 {
3028 struct kmem_cache *c;
3029 int i, failed = 0;
3030
3031 mutex_lock(&memcg_slab_mutex);
3032 for_each_memcg_cache_index(i) {
3033 c = cache_from_memcg_idx(s, i);
3034 if (!c)
3035 continue;
3036
3037 memcg_unregister_cache(c);
3038
3039 if (cache_from_memcg_idx(s, i))
3040 failed++;
3041 }
3042 mutex_unlock(&memcg_slab_mutex);
3043 return failed;
3044 }
3045
3046 static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3047 {
3048 struct kmem_cache *cachep;
3049 struct memcg_cache_params *params, *tmp;
3050
3051 if (!memcg_kmem_is_active(memcg))
3052 return;
3053
3054 mutex_lock(&memcg_slab_mutex);
3055 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
3056 cachep = memcg_params_to_cache(params);
3057 kmem_cache_shrink(cachep);
3058 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3059 memcg_unregister_cache(cachep);
3060 }
3061 mutex_unlock(&memcg_slab_mutex);
3062 }
3063
3064 struct memcg_register_cache_work {
3065 struct mem_cgroup *memcg;
3066 struct kmem_cache *cachep;
3067 struct work_struct work;
3068 };
3069
3070 static void memcg_register_cache_func(struct work_struct *w)
3071 {
3072 struct memcg_register_cache_work *cw =
3073 container_of(w, struct memcg_register_cache_work, work);
3074 struct mem_cgroup *memcg = cw->memcg;
3075 struct kmem_cache *cachep = cw->cachep;
3076
3077 mutex_lock(&memcg_slab_mutex);
3078 memcg_register_cache(memcg, cachep);
3079 mutex_unlock(&memcg_slab_mutex);
3080
3081 css_put(&memcg->css);
3082 kfree(cw);
3083 }
3084
3085 /*
3086 * Enqueue the creation of a per-memcg kmem_cache.
3087 */
3088 static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
3089 struct kmem_cache *cachep)
3090 {
3091 struct memcg_register_cache_work *cw;
3092
3093 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
3094 if (cw == NULL) {
3095 css_put(&memcg->css);
3096 return;
3097 }
3098
3099 cw->memcg = memcg;
3100 cw->cachep = cachep;
3101
3102 INIT_WORK(&cw->work, memcg_register_cache_func);
3103 schedule_work(&cw->work);
3104 }
3105
3106 static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
3107 struct kmem_cache *cachep)
3108 {
3109 /*
3110 * We need to stop accounting when we kmalloc, because if the
3111 * corresponding kmalloc cache is not yet created, the first allocation
3112 * in __memcg_schedule_register_cache will recurse.
3113 *
3114 * However, it is better to enclose the whole function. Depending on
3115 * the debugging options enabled, INIT_WORK(), for instance, can
3116 * trigger an allocation. This too, will make us recurse. Because at
3117 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3118 * the safest choice is to do it like this, wrapping the whole function.
3119 */
3120 memcg_stop_kmem_account();
3121 __memcg_schedule_register_cache(memcg, cachep);
3122 memcg_resume_kmem_account();
3123 }
3124
3125 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
3126 {
3127 int res;
3128
3129 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
3130 PAGE_SIZE << order);
3131 if (!res)
3132 atomic_add(1 << order, &cachep->memcg_params->nr_pages);
3133 return res;
3134 }
3135
3136 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
3137 {
3138 memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
3139 atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
3140 }
3141
3142 /*
3143 * Return the kmem_cache we're supposed to use for a slab allocation.
3144 * We try to use the current memcg's version of the cache.
3145 *
3146 * If the cache does not exist yet, if we are the first user of it,
3147 * we either create it immediately, if possible, or create it asynchronously
3148 * in a workqueue.
3149 * In the latter case, we will let the current allocation go through with
3150 * the original cache.
3151 *
3152 * Can't be called in interrupt context or from kernel threads.
3153 * This function needs to be called with rcu_read_lock() held.
3154 */
3155 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3156 gfp_t gfp)
3157 {
3158 struct mem_cgroup *memcg;
3159 struct kmem_cache *memcg_cachep;
3160
3161 VM_BUG_ON(!cachep->memcg_params);
3162 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3163
3164 if (!current->mm || current->memcg_kmem_skip_account)
3165 return cachep;
3166
3167 rcu_read_lock();
3168 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3169
3170 if (!memcg_kmem_is_active(memcg))
3171 goto out;
3172
3173 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3174 if (likely(memcg_cachep)) {
3175 cachep = memcg_cachep;
3176 goto out;
3177 }
3178
3179 /* The corresponding put will be done in the workqueue. */
3180 if (!css_tryget_online(&memcg->css))
3181 goto out;
3182 rcu_read_unlock();
3183
3184 /*
3185 * If we are in a safe context (can wait, and not in interrupt
3186 * context), we could be be predictable and return right away.
3187 * This would guarantee that the allocation being performed
3188 * already belongs in the new cache.
3189 *
3190 * However, there are some clashes that can arrive from locking.
3191 * For instance, because we acquire the slab_mutex while doing
3192 * memcg_create_kmem_cache, this means no further allocation
3193 * could happen with the slab_mutex held. So it's better to
3194 * defer everything.
3195 */
3196 memcg_schedule_register_cache(memcg, cachep);
3197 return cachep;
3198 out:
3199 rcu_read_unlock();
3200 return cachep;
3201 }
3202
3203 /*
3204 * We need to verify if the allocation against current->mm->owner's memcg is
3205 * possible for the given order. But the page is not allocated yet, so we'll
3206 * need a further commit step to do the final arrangements.
3207 *
3208 * It is possible for the task to switch cgroups in this mean time, so at
3209 * commit time, we can't rely on task conversion any longer. We'll then use
3210 * the handle argument to return to the caller which cgroup we should commit
3211 * against. We could also return the memcg directly and avoid the pointer
3212 * passing, but a boolean return value gives better semantics considering
3213 * the compiled-out case as well.
3214 *
3215 * Returning true means the allocation is possible.
3216 */
3217 bool
3218 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3219 {
3220 struct mem_cgroup *memcg;
3221 int ret;
3222
3223 *_memcg = NULL;
3224
3225 /*
3226 * Disabling accounting is only relevant for some specific memcg
3227 * internal allocations. Therefore we would initially not have such
3228 * check here, since direct calls to the page allocator that are
3229 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3230 * outside memcg core. We are mostly concerned with cache allocations,
3231 * and by having this test at memcg_kmem_get_cache, we are already able
3232 * to relay the allocation to the root cache and bypass the memcg cache
3233 * altogether.
3234 *
3235 * There is one exception, though: the SLUB allocator does not create
3236 * large order caches, but rather service large kmallocs directly from
3237 * the page allocator. Therefore, the following sequence when backed by
3238 * the SLUB allocator:
3239 *
3240 * memcg_stop_kmem_account();
3241 * kmalloc(<large_number>)
3242 * memcg_resume_kmem_account();
3243 *
3244 * would effectively ignore the fact that we should skip accounting,
3245 * since it will drive us directly to this function without passing
3246 * through the cache selector memcg_kmem_get_cache. Such large
3247 * allocations are extremely rare but can happen, for instance, for the
3248 * cache arrays. We bring this test here.
3249 */
3250 if (!current->mm || current->memcg_kmem_skip_account)
3251 return true;
3252
3253 memcg = get_mem_cgroup_from_mm(current->mm);
3254
3255 if (!memcg_kmem_is_active(memcg)) {
3256 css_put(&memcg->css);
3257 return true;
3258 }
3259
3260 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3261 if (!ret)
3262 *_memcg = memcg;
3263
3264 css_put(&memcg->css);
3265 return (ret == 0);
3266 }
3267
3268 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3269 int order)
3270 {
3271 struct page_cgroup *pc;
3272
3273 VM_BUG_ON(mem_cgroup_is_root(memcg));
3274
3275 /* The page allocation failed. Revert */
3276 if (!page) {
3277 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3278 return;
3279 }
3280 /*
3281 * The page is freshly allocated and not visible to any
3282 * outside callers yet. Set up pc non-atomically.
3283 */
3284 pc = lookup_page_cgroup(page);
3285 pc->mem_cgroup = memcg;
3286 pc->flags = PCG_USED;
3287 }
3288
3289 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3290 {
3291 struct mem_cgroup *memcg = NULL;
3292 struct page_cgroup *pc;
3293
3294
3295 pc = lookup_page_cgroup(page);
3296 if (!PageCgroupUsed(pc))
3297 return;
3298
3299 memcg = pc->mem_cgroup;
3300 pc->flags = 0;
3301
3302 /*
3303 * We trust that only if there is a memcg associated with the page, it
3304 * is a valid allocation
3305 */
3306 if (!memcg)
3307 return;
3308
3309 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3310 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3311 }
3312 #else
3313 static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3314 {
3315 }
3316 #endif /* CONFIG_MEMCG_KMEM */
3317
3318 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3319
3320 /*
3321 * Because tail pages are not marked as "used", set it. We're under
3322 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3323 * charge/uncharge will be never happen and move_account() is done under
3324 * compound_lock(), so we don't have to take care of races.
3325 */
3326 void mem_cgroup_split_huge_fixup(struct page *head)
3327 {
3328 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3329 struct page_cgroup *pc;
3330 struct mem_cgroup *memcg;
3331 int i;
3332
3333 if (mem_cgroup_disabled())
3334 return;
3335
3336 memcg = head_pc->mem_cgroup;
3337 for (i = 1; i < HPAGE_PMD_NR; i++) {
3338 pc = head_pc + i;
3339 pc->mem_cgroup = memcg;
3340 pc->flags = head_pc->flags;
3341 }
3342 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3343 HPAGE_PMD_NR);
3344 }
3345 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3346
3347 /**
3348 * mem_cgroup_move_account - move account of the page
3349 * @page: the page
3350 * @nr_pages: number of regular pages (>1 for huge pages)
3351 * @pc: page_cgroup of the page.
3352 * @from: mem_cgroup which the page is moved from.
3353 * @to: mem_cgroup which the page is moved to. @from != @to.
3354 *
3355 * The caller must confirm following.
3356 * - page is not on LRU (isolate_page() is useful.)
3357 * - compound_lock is held when nr_pages > 1
3358 *
3359 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3360 * from old cgroup.
3361 */
3362 static int mem_cgroup_move_account(struct page *page,
3363 unsigned int nr_pages,
3364 struct page_cgroup *pc,
3365 struct mem_cgroup *from,
3366 struct mem_cgroup *to)
3367 {
3368 unsigned long flags;
3369 int ret;
3370
3371 VM_BUG_ON(from == to);
3372 VM_BUG_ON_PAGE(PageLRU(page), page);
3373 /*
3374 * The page is isolated from LRU. So, collapse function
3375 * will not handle this page. But page splitting can happen.
3376 * Do this check under compound_page_lock(). The caller should
3377 * hold it.
3378 */
3379 ret = -EBUSY;
3380 if (nr_pages > 1 && !PageTransHuge(page))
3381 goto out;
3382
3383 /*
3384 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3385 * of its source page while we change it: page migration takes
3386 * both pages off the LRU, but page cache replacement doesn't.
3387 */
3388 if (!trylock_page(page))
3389 goto out;
3390
3391 ret = -EINVAL;
3392 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3393 goto out_unlock;
3394
3395 move_lock_mem_cgroup(from, &flags);
3396
3397 if (!PageAnon(page) && page_mapped(page)) {
3398 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3399 nr_pages);
3400 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3401 nr_pages);
3402 }
3403
3404 if (PageWriteback(page)) {
3405 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3406 nr_pages);
3407 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3408 nr_pages);
3409 }
3410
3411 /*
3412 * It is safe to change pc->mem_cgroup here because the page
3413 * is referenced, charged, and isolated - we can't race with
3414 * uncharging, charging, migration, or LRU putback.
3415 */
3416
3417 /* caller should have done css_get */
3418 pc->mem_cgroup = to;
3419 move_unlock_mem_cgroup(from, &flags);
3420 ret = 0;
3421
3422 local_irq_disable();
3423 mem_cgroup_charge_statistics(to, page, nr_pages);
3424 memcg_check_events(to, page);
3425 mem_cgroup_charge_statistics(from, page, -nr_pages);
3426 memcg_check_events(from, page);
3427 local_irq_enable();
3428 out_unlock:
3429 unlock_page(page);
3430 out:
3431 return ret;
3432 }
3433
3434 /**
3435 * mem_cgroup_move_parent - moves page to the parent group
3436 * @page: the page to move
3437 * @pc: page_cgroup of the page
3438 * @child: page's cgroup
3439 *
3440 * move charges to its parent or the root cgroup if the group has no
3441 * parent (aka use_hierarchy==0).
3442 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3443 * mem_cgroup_move_account fails) the failure is always temporary and
3444 * it signals a race with a page removal/uncharge or migration. In the
3445 * first case the page is on the way out and it will vanish from the LRU
3446 * on the next attempt and the call should be retried later.
3447 * Isolation from the LRU fails only if page has been isolated from
3448 * the LRU since we looked at it and that usually means either global
3449 * reclaim or migration going on. The page will either get back to the
3450 * LRU or vanish.
3451 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3452 * (!PageCgroupUsed) or moved to a different group. The page will
3453 * disappear in the next attempt.
3454 */
3455 static int mem_cgroup_move_parent(struct page *page,
3456 struct page_cgroup *pc,
3457 struct mem_cgroup *child)
3458 {
3459 struct mem_cgroup *parent;
3460 unsigned int nr_pages;
3461 unsigned long uninitialized_var(flags);
3462 int ret;
3463
3464 VM_BUG_ON(mem_cgroup_is_root(child));
3465
3466 ret = -EBUSY;
3467 if (!get_page_unless_zero(page))
3468 goto out;
3469 if (isolate_lru_page(page))
3470 goto put;
3471
3472 nr_pages = hpage_nr_pages(page);
3473
3474 parent = parent_mem_cgroup(child);
3475 /*
3476 * If no parent, move charges to root cgroup.
3477 */
3478 if (!parent)
3479 parent = root_mem_cgroup;
3480
3481 if (nr_pages > 1) {
3482 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3483 flags = compound_lock_irqsave(page);
3484 }
3485
3486 ret = mem_cgroup_move_account(page, nr_pages,
3487 pc, child, parent);
3488 if (!ret)
3489 __mem_cgroup_cancel_local_charge(child, nr_pages);
3490
3491 if (nr_pages > 1)
3492 compound_unlock_irqrestore(page, flags);
3493 putback_lru_page(page);
3494 put:
3495 put_page(page);
3496 out:
3497 return ret;
3498 }
3499
3500 #ifdef CONFIG_MEMCG_SWAP
3501 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3502 bool charge)
3503 {
3504 int val = (charge) ? 1 : -1;
3505 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
3506 }
3507
3508 /**
3509 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3510 * @entry: swap entry to be moved
3511 * @from: mem_cgroup which the entry is moved from
3512 * @to: mem_cgroup which the entry is moved to
3513 *
3514 * It succeeds only when the swap_cgroup's record for this entry is the same
3515 * as the mem_cgroup's id of @from.
3516 *
3517 * Returns 0 on success, -EINVAL on failure.
3518 *
3519 * The caller must have charged to @to, IOW, called res_counter_charge() about
3520 * both res and memsw, and called css_get().
3521 */
3522 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3523 struct mem_cgroup *from, struct mem_cgroup *to)
3524 {
3525 unsigned short old_id, new_id;
3526
3527 old_id = mem_cgroup_id(from);
3528 new_id = mem_cgroup_id(to);
3529
3530 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3531 mem_cgroup_swap_statistics(from, false);
3532 mem_cgroup_swap_statistics(to, true);
3533 /*
3534 * This function is only called from task migration context now.
3535 * It postpones res_counter and refcount handling till the end
3536 * of task migration(mem_cgroup_clear_mc()) for performance
3537 * improvement. But we cannot postpone css_get(to) because if
3538 * the process that has been moved to @to does swap-in, the
3539 * refcount of @to might be decreased to 0.
3540 *
3541 * We are in attach() phase, so the cgroup is guaranteed to be
3542 * alive, so we can just call css_get().
3543 */
3544 css_get(&to->css);
3545 return 0;
3546 }
3547 return -EINVAL;
3548 }
3549 #else
3550 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3551 struct mem_cgroup *from, struct mem_cgroup *to)
3552 {
3553 return -EINVAL;
3554 }
3555 #endif
3556
3557 #ifdef CONFIG_DEBUG_VM
3558 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3559 {
3560 struct page_cgroup *pc;
3561
3562 pc = lookup_page_cgroup(page);
3563 /*
3564 * Can be NULL while feeding pages into the page allocator for
3565 * the first time, i.e. during boot or memory hotplug;
3566 * or when mem_cgroup_disabled().
3567 */
3568 if (likely(pc) && PageCgroupUsed(pc))
3569 return pc;
3570 return NULL;
3571 }
3572
3573 bool mem_cgroup_bad_page_check(struct page *page)
3574 {
3575 if (mem_cgroup_disabled())
3576 return false;
3577
3578 return lookup_page_cgroup_used(page) != NULL;
3579 }
3580
3581 void mem_cgroup_print_bad_page(struct page *page)
3582 {
3583 struct page_cgroup *pc;
3584
3585 pc = lookup_page_cgroup_used(page);
3586 if (pc) {
3587 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3588 pc, pc->flags, pc->mem_cgroup);
3589 }
3590 }
3591 #endif
3592
3593 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3594 unsigned long long val)
3595 {
3596 int retry_count;
3597 int ret = 0;
3598 int children = mem_cgroup_count_children(memcg);
3599 u64 curusage, oldusage;
3600 int enlarge;
3601
3602 /*
3603 * For keeping hierarchical_reclaim simple, how long we should retry
3604 * is depends on callers. We set our retry-count to be function
3605 * of # of children which we should visit in this loop.
3606 */
3607 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3608
3609 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3610
3611 enlarge = 0;
3612 while (retry_count) {
3613 if (signal_pending(current)) {
3614 ret = -EINTR;
3615 break;
3616 }
3617 /*
3618 * Rather than hide all in some function, I do this in
3619 * open coded manner. You see what this really does.
3620 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3621 */
3622 mutex_lock(&set_limit_mutex);
3623 if (res_counter_read_u64(&memcg->memsw, RES_LIMIT) < val) {
3624 ret = -EINVAL;
3625 mutex_unlock(&set_limit_mutex);
3626 break;
3627 }
3628
3629 if (res_counter_read_u64(&memcg->res, RES_LIMIT) < val)
3630 enlarge = 1;
3631
3632 ret = res_counter_set_limit(&memcg->res, val);
3633 mutex_unlock(&set_limit_mutex);
3634
3635 if (!ret)
3636 break;
3637
3638 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3639
3640 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3641 /* Usage is reduced ? */
3642 if (curusage >= oldusage)
3643 retry_count--;
3644 else
3645 oldusage = curusage;
3646 }
3647 if (!ret && enlarge)
3648 memcg_oom_recover(memcg);
3649
3650 return ret;
3651 }
3652
3653 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3654 unsigned long long val)
3655 {
3656 int retry_count;
3657 u64 oldusage, curusage;
3658 int children = mem_cgroup_count_children(memcg);
3659 int ret = -EBUSY;
3660 int enlarge = 0;
3661
3662 /* see mem_cgroup_resize_res_limit */
3663 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3664 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3665 while (retry_count) {
3666 if (signal_pending(current)) {
3667 ret = -EINTR;
3668 break;
3669 }
3670 /*
3671 * Rather than hide all in some function, I do this in
3672 * open coded manner. You see what this really does.
3673 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3674 */
3675 mutex_lock(&set_limit_mutex);
3676 if (res_counter_read_u64(&memcg->res, RES_LIMIT) > val) {
3677 ret = -EINVAL;
3678 mutex_unlock(&set_limit_mutex);
3679 break;
3680 }
3681 if (res_counter_read_u64(&memcg->memsw, RES_LIMIT) < val)
3682 enlarge = 1;
3683 ret = res_counter_set_limit(&memcg->memsw, val);
3684 mutex_unlock(&set_limit_mutex);
3685
3686 if (!ret)
3687 break;
3688
3689 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3690
3691 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3692 /* Usage is reduced ? */
3693 if (curusage >= oldusage)
3694 retry_count--;
3695 else
3696 oldusage = curusage;
3697 }
3698 if (!ret && enlarge)
3699 memcg_oom_recover(memcg);
3700 return ret;
3701 }
3702
3703 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3704 gfp_t gfp_mask,
3705 unsigned long *total_scanned)
3706 {
3707 unsigned long nr_reclaimed = 0;
3708 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3709 unsigned long reclaimed;
3710 int loop = 0;
3711 struct mem_cgroup_tree_per_zone *mctz;
3712 unsigned long long excess;
3713 unsigned long nr_scanned;
3714
3715 if (order > 0)
3716 return 0;
3717
3718 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3719 /*
3720 * This loop can run a while, specially if mem_cgroup's continuously
3721 * keep exceeding their soft limit and putting the system under
3722 * pressure
3723 */
3724 do {
3725 if (next_mz)
3726 mz = next_mz;
3727 else
3728 mz = mem_cgroup_largest_soft_limit_node(mctz);
3729 if (!mz)
3730 break;
3731
3732 nr_scanned = 0;
3733 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3734 gfp_mask, &nr_scanned);
3735 nr_reclaimed += reclaimed;
3736 *total_scanned += nr_scanned;
3737 spin_lock_irq(&mctz->lock);
3738
3739 /*
3740 * If we failed to reclaim anything from this memory cgroup
3741 * it is time to move on to the next cgroup
3742 */
3743 next_mz = NULL;
3744 if (!reclaimed) {
3745 do {
3746 /*
3747 * Loop until we find yet another one.
3748 *
3749 * By the time we get the soft_limit lock
3750 * again, someone might have aded the
3751 * group back on the RB tree. Iterate to
3752 * make sure we get a different mem.
3753 * mem_cgroup_largest_soft_limit_node returns
3754 * NULL if no other cgroup is present on
3755 * the tree
3756 */
3757 next_mz =
3758 __mem_cgroup_largest_soft_limit_node(mctz);
3759 if (next_mz == mz)
3760 css_put(&next_mz->memcg->css);
3761 else /* next_mz == NULL or other memcg */
3762 break;
3763 } while (1);
3764 }
3765 __mem_cgroup_remove_exceeded(mz, mctz);
3766 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3767 /*
3768 * One school of thought says that we should not add
3769 * back the node to the tree if reclaim returns 0.
3770 * But our reclaim could return 0, simply because due
3771 * to priority we are exposing a smaller subset of
3772 * memory to reclaim from. Consider this as a longer
3773 * term TODO.
3774 */
3775 /* If excess == 0, no tree ops */
3776 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3777 spin_unlock_irq(&mctz->lock);
3778 css_put(&mz->memcg->css);
3779 loop++;
3780 /*
3781 * Could not reclaim anything and there are no more
3782 * mem cgroups to try or we seem to be looping without
3783 * reclaiming anything.
3784 */
3785 if (!nr_reclaimed &&
3786 (next_mz == NULL ||
3787 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3788 break;
3789 } while (!nr_reclaimed);
3790 if (next_mz)
3791 css_put(&next_mz->memcg->css);
3792 return nr_reclaimed;
3793 }
3794
3795 /**
3796 * mem_cgroup_force_empty_list - clears LRU of a group
3797 * @memcg: group to clear
3798 * @node: NUMA node
3799 * @zid: zone id
3800 * @lru: lru to to clear
3801 *
3802 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
3803 * reclaim the pages page themselves - pages are moved to the parent (or root)
3804 * group.
3805 */
3806 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3807 int node, int zid, enum lru_list lru)
3808 {
3809 struct lruvec *lruvec;
3810 unsigned long flags;
3811 struct list_head *list;
3812 struct page *busy;
3813 struct zone *zone;
3814
3815 zone = &NODE_DATA(node)->node_zones[zid];
3816 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
3817 list = &lruvec->lists[lru];
3818
3819 busy = NULL;
3820 do {
3821 struct page_cgroup *pc;
3822 struct page *page;
3823
3824 spin_lock_irqsave(&zone->lru_lock, flags);
3825 if (list_empty(list)) {
3826 spin_unlock_irqrestore(&zone->lru_lock, flags);
3827 break;
3828 }
3829 page = list_entry(list->prev, struct page, lru);
3830 if (busy == page) {
3831 list_move(&page->lru, list);
3832 busy = NULL;
3833 spin_unlock_irqrestore(&zone->lru_lock, flags);
3834 continue;
3835 }
3836 spin_unlock_irqrestore(&zone->lru_lock, flags);
3837
3838 pc = lookup_page_cgroup(page);
3839
3840 if (mem_cgroup_move_parent(page, pc, memcg)) {
3841 /* found lock contention or "pc" is obsolete. */
3842 busy = page;
3843 } else
3844 busy = NULL;
3845 cond_resched();
3846 } while (!list_empty(list));
3847 }
3848
3849 /*
3850 * make mem_cgroup's charge to be 0 if there is no task by moving
3851 * all the charges and pages to the parent.
3852 * This enables deleting this mem_cgroup.
3853 *
3854 * Caller is responsible for holding css reference on the memcg.
3855 */
3856 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
3857 {
3858 int node, zid;
3859 u64 usage;
3860
3861 do {
3862 /* This is for making all *used* pages to be on LRU. */
3863 lru_add_drain_all();
3864 drain_all_stock_sync(memcg);
3865 mem_cgroup_start_move(memcg);
3866 for_each_node_state(node, N_MEMORY) {
3867 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3868 enum lru_list lru;
3869 for_each_lru(lru) {
3870 mem_cgroup_force_empty_list(memcg,
3871 node, zid, lru);
3872 }
3873 }
3874 }
3875 mem_cgroup_end_move(memcg);
3876 memcg_oom_recover(memcg);
3877 cond_resched();
3878
3879 /*
3880 * Kernel memory may not necessarily be trackable to a specific
3881 * process. So they are not migrated, and therefore we can't
3882 * expect their value to drop to 0 here.
3883 * Having res filled up with kmem only is enough.
3884 *
3885 * This is a safety check because mem_cgroup_force_empty_list
3886 * could have raced with mem_cgroup_replace_page_cache callers
3887 * so the lru seemed empty but the page could have been added
3888 * right after the check. RES_USAGE should be safe as we always
3889 * charge before adding to the LRU.
3890 */
3891 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
3892 res_counter_read_u64(&memcg->kmem, RES_USAGE);
3893 } while (usage > 0);
3894 }
3895
3896 /*
3897 * Test whether @memcg has children, dead or alive. Note that this
3898 * function doesn't care whether @memcg has use_hierarchy enabled and
3899 * returns %true if there are child csses according to the cgroup
3900 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3901 */
3902 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3903 {
3904 bool ret;
3905
3906 /*
3907 * The lock does not prevent addition or deletion of children, but
3908 * it prevents a new child from being initialized based on this
3909 * parent in css_online(), so it's enough to decide whether
3910 * hierarchically inherited attributes can still be changed or not.
3911 */
3912 lockdep_assert_held(&memcg_create_mutex);
3913
3914 rcu_read_lock();
3915 ret = css_next_child(NULL, &memcg->css);
3916 rcu_read_unlock();
3917 return ret;
3918 }
3919
3920 /*
3921 * Reclaims as many pages from the given memcg as possible and moves
3922 * the rest to the parent.
3923 *
3924 * Caller is responsible for holding css reference for memcg.
3925 */
3926 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3927 {
3928 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3929
3930 /* we call try-to-free pages for make this cgroup empty */
3931 lru_add_drain_all();
3932 /* try to free all pages in this cgroup */
3933 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3934 int progress;
3935
3936 if (signal_pending(current))
3937 return -EINTR;
3938
3939 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3940 GFP_KERNEL, true);
3941 if (!progress) {
3942 nr_retries--;
3943 /* maybe some writeback is necessary */
3944 congestion_wait(BLK_RW_ASYNC, HZ/10);
3945 }
3946
3947 }
3948
3949 return 0;
3950 }
3951
3952 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3953 char *buf, size_t nbytes,
3954 loff_t off)
3955 {
3956 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3957
3958 if (mem_cgroup_is_root(memcg))
3959 return -EINVAL;
3960 return mem_cgroup_force_empty(memcg) ?: nbytes;
3961 }
3962
3963 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3964 struct cftype *cft)
3965 {
3966 return mem_cgroup_from_css(css)->use_hierarchy;
3967 }
3968
3969 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3970 struct cftype *cft, u64 val)
3971 {
3972 int retval = 0;
3973 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3974 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3975
3976 mutex_lock(&memcg_create_mutex);
3977
3978 if (memcg->use_hierarchy == val)
3979 goto out;
3980
3981 /*
3982 * If parent's use_hierarchy is set, we can't make any modifications
3983 * in the child subtrees. If it is unset, then the change can
3984 * occur, provided the current cgroup has no children.
3985 *
3986 * For the root cgroup, parent_mem is NULL, we allow value to be
3987 * set if there are no children.
3988 */
3989 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3990 (val == 1 || val == 0)) {
3991 if (!memcg_has_children(memcg))
3992 memcg->use_hierarchy = val;
3993 else
3994 retval = -EBUSY;
3995 } else
3996 retval = -EINVAL;
3997
3998 out:
3999 mutex_unlock(&memcg_create_mutex);
4000
4001 return retval;
4002 }
4003
4004 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4005 enum mem_cgroup_stat_index idx)
4006 {
4007 struct mem_cgroup *iter;
4008 long val = 0;
4009
4010 /* Per-cpu values can be negative, use a signed accumulator */
4011 for_each_mem_cgroup_tree(iter, memcg)
4012 val += mem_cgroup_read_stat(iter, idx);
4013
4014 if (val < 0) /* race ? */
4015 val = 0;
4016 return val;
4017 }
4018
4019 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4020 {
4021 u64 val;
4022
4023 if (!mem_cgroup_is_root(memcg)) {
4024 if (!swap)
4025 return res_counter_read_u64(&memcg->res, RES_USAGE);
4026 else
4027 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4028 }
4029
4030 /*
4031 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4032 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4033 */
4034 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4035 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4036
4037 if (swap)
4038 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4039
4040 return val << PAGE_SHIFT;
4041 }
4042
4043
4044 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4045 struct cftype *cft)
4046 {
4047 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4048 enum res_type type = MEMFILE_TYPE(cft->private);
4049 int name = MEMFILE_ATTR(cft->private);
4050
4051 switch (type) {
4052 case _MEM:
4053 if (name == RES_USAGE)
4054 return mem_cgroup_usage(memcg, false);
4055 return res_counter_read_u64(&memcg->res, name);
4056 case _MEMSWAP:
4057 if (name == RES_USAGE)
4058 return mem_cgroup_usage(memcg, true);
4059 return res_counter_read_u64(&memcg->memsw, name);
4060 case _KMEM:
4061 return res_counter_read_u64(&memcg->kmem, name);
4062 break;
4063 default:
4064 BUG();
4065 }
4066 }
4067
4068 #ifdef CONFIG_MEMCG_KMEM
4069 /* should be called with activate_kmem_mutex held */
4070 static int __memcg_activate_kmem(struct mem_cgroup *memcg,
4071 unsigned long long limit)
4072 {
4073 int err = 0;
4074 int memcg_id;
4075
4076 if (memcg_kmem_is_active(memcg))
4077 return 0;
4078
4079 /*
4080 * We are going to allocate memory for data shared by all memory
4081 * cgroups so let's stop accounting here.
4082 */
4083 memcg_stop_kmem_account();
4084
4085 /*
4086 * For simplicity, we won't allow this to be disabled. It also can't
4087 * be changed if the cgroup has children already, or if tasks had
4088 * already joined.
4089 *
4090 * If tasks join before we set the limit, a person looking at
4091 * kmem.usage_in_bytes will have no way to determine when it took
4092 * place, which makes the value quite meaningless.
4093 *
4094 * After it first became limited, changes in the value of the limit are
4095 * of course permitted.
4096 */
4097 mutex_lock(&memcg_create_mutex);
4098 if (cgroup_has_tasks(memcg->css.cgroup) ||
4099 (memcg->use_hierarchy && memcg_has_children(memcg)))
4100 err = -EBUSY;
4101 mutex_unlock(&memcg_create_mutex);
4102 if (err)
4103 goto out;
4104
4105 memcg_id = memcg_alloc_cache_id();
4106 if (memcg_id < 0) {
4107 err = memcg_id;
4108 goto out;
4109 }
4110
4111 memcg->kmemcg_id = memcg_id;
4112 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
4113
4114 /*
4115 * We couldn't have accounted to this cgroup, because it hasn't got the
4116 * active bit set yet, so this should succeed.
4117 */
4118 err = res_counter_set_limit(&memcg->kmem, limit);
4119 VM_BUG_ON(err);
4120
4121 static_key_slow_inc(&memcg_kmem_enabled_key);
4122 /*
4123 * Setting the active bit after enabling static branching will
4124 * guarantee no one starts accounting before all call sites are
4125 * patched.
4126 */
4127 memcg_kmem_set_active(memcg);
4128 out:
4129 memcg_resume_kmem_account();
4130 return err;
4131 }
4132
4133 static int memcg_activate_kmem(struct mem_cgroup *memcg,
4134 unsigned long long limit)
4135 {
4136 int ret;
4137
4138 mutex_lock(&activate_kmem_mutex);
4139 ret = __memcg_activate_kmem(memcg, limit);
4140 mutex_unlock(&activate_kmem_mutex);
4141 return ret;
4142 }
4143
4144 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4145 unsigned long long val)
4146 {
4147 int ret;
4148
4149 if (!memcg_kmem_is_active(memcg))
4150 ret = memcg_activate_kmem(memcg, val);
4151 else
4152 ret = res_counter_set_limit(&memcg->kmem, val);
4153 return ret;
4154 }
4155
4156 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4157 {
4158 int ret = 0;
4159 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4160
4161 if (!parent)
4162 return 0;
4163
4164 mutex_lock(&activate_kmem_mutex);
4165 /*
4166 * If the parent cgroup is not kmem-active now, it cannot be activated
4167 * after this point, because it has at least one child already.
4168 */
4169 if (memcg_kmem_is_active(parent))
4170 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
4171 mutex_unlock(&activate_kmem_mutex);
4172 return ret;
4173 }
4174 #else
4175 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4176 unsigned long long val)
4177 {
4178 return -EINVAL;
4179 }
4180 #endif /* CONFIG_MEMCG_KMEM */
4181
4182 /*
4183 * The user of this function is...
4184 * RES_LIMIT.
4185 */
4186 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4187 char *buf, size_t nbytes, loff_t off)
4188 {
4189 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4190 enum res_type type;
4191 int name;
4192 unsigned long long val;
4193 int ret;
4194
4195 buf = strstrip(buf);
4196 type = MEMFILE_TYPE(of_cft(of)->private);
4197 name = MEMFILE_ATTR(of_cft(of)->private);
4198
4199 switch (name) {
4200 case RES_LIMIT:
4201 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4202 ret = -EINVAL;
4203 break;
4204 }
4205 /* This function does all necessary parse...reuse it */
4206 ret = res_counter_memparse_write_strategy(buf, &val);
4207 if (ret)
4208 break;
4209 if (type == _MEM)
4210 ret = mem_cgroup_resize_limit(memcg, val);
4211 else if (type == _MEMSWAP)
4212 ret = mem_cgroup_resize_memsw_limit(memcg, val);
4213 else if (type == _KMEM)
4214 ret = memcg_update_kmem_limit(memcg, val);
4215 else
4216 return -EINVAL;
4217 break;
4218 case RES_SOFT_LIMIT:
4219 ret = res_counter_memparse_write_strategy(buf, &val);
4220 if (ret)
4221 break;
4222 /*
4223 * For memsw, soft limits are hard to implement in terms
4224 * of semantics, for now, we support soft limits for
4225 * control without swap
4226 */
4227 if (type == _MEM)
4228 ret = res_counter_set_soft_limit(&memcg->res, val);
4229 else
4230 ret = -EINVAL;
4231 break;
4232 default:
4233 ret = -EINVAL; /* should be BUG() ? */
4234 break;
4235 }
4236 return ret ?: nbytes;
4237 }
4238
4239 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4240 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4241 {
4242 unsigned long long min_limit, min_memsw_limit, tmp;
4243
4244 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4245 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4246 if (!memcg->use_hierarchy)
4247 goto out;
4248
4249 while (memcg->css.parent) {
4250 memcg = mem_cgroup_from_css(memcg->css.parent);
4251 if (!memcg->use_hierarchy)
4252 break;
4253 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4254 min_limit = min(min_limit, tmp);
4255 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4256 min_memsw_limit = min(min_memsw_limit, tmp);
4257 }
4258 out:
4259 *mem_limit = min_limit;
4260 *memsw_limit = min_memsw_limit;
4261 }
4262
4263 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4264 size_t nbytes, loff_t off)
4265 {
4266 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4267 int name;
4268 enum res_type type;
4269
4270 type = MEMFILE_TYPE(of_cft(of)->private);
4271 name = MEMFILE_ATTR(of_cft(of)->private);
4272
4273 switch (name) {
4274 case RES_MAX_USAGE:
4275 if (type == _MEM)
4276 res_counter_reset_max(&memcg->res);
4277 else if (type == _MEMSWAP)
4278 res_counter_reset_max(&memcg->memsw);
4279 else if (type == _KMEM)
4280 res_counter_reset_max(&memcg->kmem);
4281 else
4282 return -EINVAL;
4283 break;
4284 case RES_FAILCNT:
4285 if (type == _MEM)
4286 res_counter_reset_failcnt(&memcg->res);
4287 else if (type == _MEMSWAP)
4288 res_counter_reset_failcnt(&memcg->memsw);
4289 else if (type == _KMEM)
4290 res_counter_reset_failcnt(&memcg->kmem);
4291 else
4292 return -EINVAL;
4293 break;
4294 }
4295
4296 return nbytes;
4297 }
4298
4299 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
4300 struct cftype *cft)
4301 {
4302 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
4303 }
4304
4305 #ifdef CONFIG_MMU
4306 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4307 struct cftype *cft, u64 val)
4308 {
4309 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4310
4311 if (val >= (1 << NR_MOVE_TYPE))
4312 return -EINVAL;
4313
4314 /*
4315 * No kind of locking is needed in here, because ->can_attach() will
4316 * check this value once in the beginning of the process, and then carry
4317 * on with stale data. This means that changes to this value will only
4318 * affect task migrations starting after the change.
4319 */
4320 memcg->move_charge_at_immigrate = val;
4321 return 0;
4322 }
4323 #else
4324 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4325 struct cftype *cft, u64 val)
4326 {
4327 return -ENOSYS;
4328 }
4329 #endif
4330
4331 #ifdef CONFIG_NUMA
4332 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4333 {
4334 struct numa_stat {
4335 const char *name;
4336 unsigned int lru_mask;
4337 };
4338
4339 static const struct numa_stat stats[] = {
4340 { "total", LRU_ALL },
4341 { "file", LRU_ALL_FILE },
4342 { "anon", LRU_ALL_ANON },
4343 { "unevictable", BIT(LRU_UNEVICTABLE) },
4344 };
4345 const struct numa_stat *stat;
4346 int nid;
4347 unsigned long nr;
4348 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4349
4350 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4351 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
4352 seq_printf(m, "%s=%lu", stat->name, nr);
4353 for_each_node_state(nid, N_MEMORY) {
4354 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4355 stat->lru_mask);
4356 seq_printf(m, " N%d=%lu", nid, nr);
4357 }
4358 seq_putc(m, '\n');
4359 }
4360
4361 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4362 struct mem_cgroup *iter;
4363
4364 nr = 0;
4365 for_each_mem_cgroup_tree(iter, memcg)
4366 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
4367 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
4368 for_each_node_state(nid, N_MEMORY) {
4369 nr = 0;
4370 for_each_mem_cgroup_tree(iter, memcg)
4371 nr += mem_cgroup_node_nr_lru_pages(
4372 iter, nid, stat->lru_mask);
4373 seq_printf(m, " N%d=%lu", nid, nr);
4374 }
4375 seq_putc(m, '\n');
4376 }
4377
4378 return 0;
4379 }
4380 #endif /* CONFIG_NUMA */
4381
4382 static inline void mem_cgroup_lru_names_not_uptodate(void)
4383 {
4384 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4385 }
4386
4387 static int memcg_stat_show(struct seq_file *m, void *v)
4388 {
4389 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4390 struct mem_cgroup *mi;
4391 unsigned int i;
4392
4393 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4394 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4395 continue;
4396 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4397 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4398 }
4399
4400 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4401 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4402 mem_cgroup_read_events(memcg, i));
4403
4404 for (i = 0; i < NR_LRU_LISTS; i++)
4405 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4406 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4407
4408 /* Hierarchical information */
4409 {
4410 unsigned long long limit, memsw_limit;
4411 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4412 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4413 if (do_swap_account)
4414 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4415 memsw_limit);
4416 }
4417
4418 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4419 long long val = 0;
4420
4421 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4422 continue;
4423 for_each_mem_cgroup_tree(mi, memcg)
4424 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4425 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4426 }
4427
4428 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4429 unsigned long long val = 0;
4430
4431 for_each_mem_cgroup_tree(mi, memcg)
4432 val += mem_cgroup_read_events(mi, i);
4433 seq_printf(m, "total_%s %llu\n",
4434 mem_cgroup_events_names[i], val);
4435 }
4436
4437 for (i = 0; i < NR_LRU_LISTS; i++) {
4438 unsigned long long val = 0;
4439
4440 for_each_mem_cgroup_tree(mi, memcg)
4441 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4442 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4443 }
4444
4445 #ifdef CONFIG_DEBUG_VM
4446 {
4447 int nid, zid;
4448 struct mem_cgroup_per_zone *mz;
4449 struct zone_reclaim_stat *rstat;
4450 unsigned long recent_rotated[2] = {0, 0};
4451 unsigned long recent_scanned[2] = {0, 0};
4452
4453 for_each_online_node(nid)
4454 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4455 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
4456 rstat = &mz->lruvec.reclaim_stat;
4457
4458 recent_rotated[0] += rstat->recent_rotated[0];
4459 recent_rotated[1] += rstat->recent_rotated[1];
4460 recent_scanned[0] += rstat->recent_scanned[0];
4461 recent_scanned[1] += rstat->recent_scanned[1];
4462 }
4463 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4464 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4465 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4466 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4467 }
4468 #endif
4469
4470 return 0;
4471 }
4472
4473 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4474 struct cftype *cft)
4475 {
4476 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4477
4478 return mem_cgroup_swappiness(memcg);
4479 }
4480
4481 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4482 struct cftype *cft, u64 val)
4483 {
4484 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4485
4486 if (val > 100)
4487 return -EINVAL;
4488
4489 if (css->parent)
4490 memcg->swappiness = val;
4491 else
4492 vm_swappiness = val;
4493
4494 return 0;
4495 }
4496
4497 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4498 {
4499 struct mem_cgroup_threshold_ary *t;
4500 u64 usage;
4501 int i;
4502
4503 rcu_read_lock();
4504 if (!swap)
4505 t = rcu_dereference(memcg->thresholds.primary);
4506 else
4507 t = rcu_dereference(memcg->memsw_thresholds.primary);
4508
4509 if (!t)
4510 goto unlock;
4511
4512 usage = mem_cgroup_usage(memcg, swap);
4513
4514 /*
4515 * current_threshold points to threshold just below or equal to usage.
4516 * If it's not true, a threshold was crossed after last
4517 * call of __mem_cgroup_threshold().
4518 */
4519 i = t->current_threshold;
4520
4521 /*
4522 * Iterate backward over array of thresholds starting from
4523 * current_threshold and check if a threshold is crossed.
4524 * If none of thresholds below usage is crossed, we read
4525 * only one element of the array here.
4526 */
4527 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4528 eventfd_signal(t->entries[i].eventfd, 1);
4529
4530 /* i = current_threshold + 1 */
4531 i++;
4532
4533 /*
4534 * Iterate forward over array of thresholds starting from
4535 * current_threshold+1 and check if a threshold is crossed.
4536 * If none of thresholds above usage is crossed, we read
4537 * only one element of the array here.
4538 */
4539 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4540 eventfd_signal(t->entries[i].eventfd, 1);
4541
4542 /* Update current_threshold */
4543 t->current_threshold = i - 1;
4544 unlock:
4545 rcu_read_unlock();
4546 }
4547
4548 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4549 {
4550 while (memcg) {
4551 __mem_cgroup_threshold(memcg, false);
4552 if (do_swap_account)
4553 __mem_cgroup_threshold(memcg, true);
4554
4555 memcg = parent_mem_cgroup(memcg);
4556 }
4557 }
4558
4559 static int compare_thresholds(const void *a, const void *b)
4560 {
4561 const struct mem_cgroup_threshold *_a = a;
4562 const struct mem_cgroup_threshold *_b = b;
4563
4564 if (_a->threshold > _b->threshold)
4565 return 1;
4566
4567 if (_a->threshold < _b->threshold)
4568 return -1;
4569
4570 return 0;
4571 }
4572
4573 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4574 {
4575 struct mem_cgroup_eventfd_list *ev;
4576
4577 spin_lock(&memcg_oom_lock);
4578
4579 list_for_each_entry(ev, &memcg->oom_notify, list)
4580 eventfd_signal(ev->eventfd, 1);
4581
4582 spin_unlock(&memcg_oom_lock);
4583 return 0;
4584 }
4585
4586 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4587 {
4588 struct mem_cgroup *iter;
4589
4590 for_each_mem_cgroup_tree(iter, memcg)
4591 mem_cgroup_oom_notify_cb(iter);
4592 }
4593
4594 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4595 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4596 {
4597 struct mem_cgroup_thresholds *thresholds;
4598 struct mem_cgroup_threshold_ary *new;
4599 u64 threshold, usage;
4600 int i, size, ret;
4601
4602 ret = res_counter_memparse_write_strategy(args, &threshold);
4603 if (ret)
4604 return ret;
4605
4606 mutex_lock(&memcg->thresholds_lock);
4607
4608 if (type == _MEM) {
4609 thresholds = &memcg->thresholds;
4610 usage = mem_cgroup_usage(memcg, false);
4611 } else if (type == _MEMSWAP) {
4612 thresholds = &memcg->memsw_thresholds;
4613 usage = mem_cgroup_usage(memcg, true);
4614 } else
4615 BUG();
4616
4617 /* Check if a threshold crossed before adding a new one */
4618 if (thresholds->primary)
4619 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4620
4621 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4622
4623 /* Allocate memory for new array of thresholds */
4624 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4625 GFP_KERNEL);
4626 if (!new) {
4627 ret = -ENOMEM;
4628 goto unlock;
4629 }
4630 new->size = size;
4631
4632 /* Copy thresholds (if any) to new array */
4633 if (thresholds->primary) {
4634 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4635 sizeof(struct mem_cgroup_threshold));
4636 }
4637
4638 /* Add new threshold */
4639 new->entries[size - 1].eventfd = eventfd;
4640 new->entries[size - 1].threshold = threshold;
4641
4642 /* Sort thresholds. Registering of new threshold isn't time-critical */
4643 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4644 compare_thresholds, NULL);
4645
4646 /* Find current threshold */
4647 new->current_threshold = -1;
4648 for (i = 0; i < size; i++) {
4649 if (new->entries[i].threshold <= usage) {
4650 /*
4651 * new->current_threshold will not be used until
4652 * rcu_assign_pointer(), so it's safe to increment
4653 * it here.
4654 */
4655 ++new->current_threshold;
4656 } else
4657 break;
4658 }
4659
4660 /* Free old spare buffer and save old primary buffer as spare */
4661 kfree(thresholds->spare);
4662 thresholds->spare = thresholds->primary;
4663
4664 rcu_assign_pointer(thresholds->primary, new);
4665
4666 /* To be sure that nobody uses thresholds */
4667 synchronize_rcu();
4668
4669 unlock:
4670 mutex_unlock(&memcg->thresholds_lock);
4671
4672 return ret;
4673 }
4674
4675 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4676 struct eventfd_ctx *eventfd, const char *args)
4677 {
4678 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4679 }
4680
4681 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4682 struct eventfd_ctx *eventfd, const char *args)
4683 {
4684 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4685 }
4686
4687 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4688 struct eventfd_ctx *eventfd, enum res_type type)
4689 {
4690 struct mem_cgroup_thresholds *thresholds;
4691 struct mem_cgroup_threshold_ary *new;
4692 u64 usage;
4693 int i, j, size;
4694
4695 mutex_lock(&memcg->thresholds_lock);
4696
4697 if (type == _MEM) {
4698 thresholds = &memcg->thresholds;
4699 usage = mem_cgroup_usage(memcg, false);
4700 } else if (type == _MEMSWAP) {
4701 thresholds = &memcg->memsw_thresholds;
4702 usage = mem_cgroup_usage(memcg, true);
4703 } else
4704 BUG();
4705
4706 if (!thresholds->primary)
4707 goto unlock;
4708
4709 /* Check if a threshold crossed before removing */
4710 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4711
4712 /* Calculate new number of threshold */
4713 size = 0;
4714 for (i = 0; i < thresholds->primary->size; i++) {
4715 if (thresholds->primary->entries[i].eventfd != eventfd)
4716 size++;
4717 }
4718
4719 new = thresholds->spare;
4720
4721 /* Set thresholds array to NULL if we don't have thresholds */
4722 if (!size) {
4723 kfree(new);
4724 new = NULL;
4725 goto swap_buffers;
4726 }
4727
4728 new->size = size;
4729
4730 /* Copy thresholds and find current threshold */
4731 new->current_threshold = -1;
4732 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4733 if (thresholds->primary->entries[i].eventfd == eventfd)
4734 continue;
4735
4736 new->entries[j] = thresholds->primary->entries[i];
4737 if (new->entries[j].threshold <= usage) {
4738 /*
4739 * new->current_threshold will not be used
4740 * until rcu_assign_pointer(), so it's safe to increment
4741 * it here.
4742 */
4743 ++new->current_threshold;
4744 }
4745 j++;
4746 }
4747
4748 swap_buffers:
4749 /* Swap primary and spare array */
4750 thresholds->spare = thresholds->primary;
4751 /* If all events are unregistered, free the spare array */
4752 if (!new) {
4753 kfree(thresholds->spare);
4754 thresholds->spare = NULL;
4755 }
4756
4757 rcu_assign_pointer(thresholds->primary, new);
4758
4759 /* To be sure that nobody uses thresholds */
4760 synchronize_rcu();
4761 unlock:
4762 mutex_unlock(&memcg->thresholds_lock);
4763 }
4764
4765 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4766 struct eventfd_ctx *eventfd)
4767 {
4768 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4769 }
4770
4771 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4772 struct eventfd_ctx *eventfd)
4773 {
4774 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4775 }
4776
4777 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4778 struct eventfd_ctx *eventfd, const char *args)
4779 {
4780 struct mem_cgroup_eventfd_list *event;
4781
4782 event = kmalloc(sizeof(*event), GFP_KERNEL);
4783 if (!event)
4784 return -ENOMEM;
4785
4786 spin_lock(&memcg_oom_lock);
4787
4788 event->eventfd = eventfd;
4789 list_add(&event->list, &memcg->oom_notify);
4790
4791 /* already in OOM ? */
4792 if (atomic_read(&memcg->under_oom))
4793 eventfd_signal(eventfd, 1);
4794 spin_unlock(&memcg_oom_lock);
4795
4796 return 0;
4797 }
4798
4799 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4800 struct eventfd_ctx *eventfd)
4801 {
4802 struct mem_cgroup_eventfd_list *ev, *tmp;
4803
4804 spin_lock(&memcg_oom_lock);
4805
4806 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4807 if (ev->eventfd == eventfd) {
4808 list_del(&ev->list);
4809 kfree(ev);
4810 }
4811 }
4812
4813 spin_unlock(&memcg_oom_lock);
4814 }
4815
4816 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4817 {
4818 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4819
4820 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4821 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4822 return 0;
4823 }
4824
4825 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4826 struct cftype *cft, u64 val)
4827 {
4828 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4829
4830 /* cannot set to root cgroup and only 0 and 1 are allowed */
4831 if (!css->parent || !((val == 0) || (val == 1)))
4832 return -EINVAL;
4833
4834 memcg->oom_kill_disable = val;
4835 if (!val)
4836 memcg_oom_recover(memcg);
4837
4838 return 0;
4839 }
4840
4841 #ifdef CONFIG_MEMCG_KMEM
4842 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4843 {
4844 int ret;
4845
4846 memcg->kmemcg_id = -1;
4847 ret = memcg_propagate_kmem(memcg);
4848 if (ret)
4849 return ret;
4850
4851 return mem_cgroup_sockets_init(memcg, ss);
4852 }
4853
4854 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4855 {
4856 mem_cgroup_sockets_destroy(memcg);
4857 }
4858
4859 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
4860 {
4861 if (!memcg_kmem_is_active(memcg))
4862 return;
4863
4864 /*
4865 * kmem charges can outlive the cgroup. In the case of slab
4866 * pages, for instance, a page contain objects from various
4867 * processes. As we prevent from taking a reference for every
4868 * such allocation we have to be careful when doing uncharge
4869 * (see memcg_uncharge_kmem) and here during offlining.
4870 *
4871 * The idea is that that only the _last_ uncharge which sees
4872 * the dead memcg will drop the last reference. An additional
4873 * reference is taken here before the group is marked dead
4874 * which is then paired with css_put during uncharge resp. here.
4875 *
4876 * Although this might sound strange as this path is called from
4877 * css_offline() when the referencemight have dropped down to 0 and
4878 * shouldn't be incremented anymore (css_tryget_online() would
4879 * fail) we do not have other options because of the kmem
4880 * allocations lifetime.
4881 */
4882 css_get(&memcg->css);
4883
4884 memcg_kmem_mark_dead(memcg);
4885
4886 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
4887 return;
4888
4889 if (memcg_kmem_test_and_clear_dead(memcg))
4890 css_put(&memcg->css);
4891 }
4892 #else
4893 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4894 {
4895 return 0;
4896 }
4897
4898 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4899 {
4900 }
4901
4902 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
4903 {
4904 }
4905 #endif
4906
4907 /*
4908 * DO NOT USE IN NEW FILES.
4909 *
4910 * "cgroup.event_control" implementation.
4911 *
4912 * This is way over-engineered. It tries to support fully configurable
4913 * events for each user. Such level of flexibility is completely
4914 * unnecessary especially in the light of the planned unified hierarchy.
4915 *
4916 * Please deprecate this and replace with something simpler if at all
4917 * possible.
4918 */
4919
4920 /*
4921 * Unregister event and free resources.
4922 *
4923 * Gets called from workqueue.
4924 */
4925 static void memcg_event_remove(struct work_struct *work)
4926 {
4927 struct mem_cgroup_event *event =
4928 container_of(work, struct mem_cgroup_event, remove);
4929 struct mem_cgroup *memcg = event->memcg;
4930
4931 remove_wait_queue(event->wqh, &event->wait);
4932
4933 event->unregister_event(memcg, event->eventfd);
4934
4935 /* Notify userspace the event is going away. */
4936 eventfd_signal(event->eventfd, 1);
4937
4938 eventfd_ctx_put(event->eventfd);
4939 kfree(event);
4940 css_put(&memcg->css);
4941 }
4942
4943 /*
4944 * Gets called on POLLHUP on eventfd when user closes it.
4945 *
4946 * Called with wqh->lock held and interrupts disabled.
4947 */
4948 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4949 int sync, void *key)
4950 {
4951 struct mem_cgroup_event *event =
4952 container_of(wait, struct mem_cgroup_event, wait);
4953 struct mem_cgroup *memcg = event->memcg;
4954 unsigned long flags = (unsigned long)key;
4955
4956 if (flags & POLLHUP) {
4957 /*
4958 * If the event has been detached at cgroup removal, we
4959 * can simply return knowing the other side will cleanup
4960 * for us.
4961 *
4962 * We can't race against event freeing since the other
4963 * side will require wqh->lock via remove_wait_queue(),
4964 * which we hold.
4965 */
4966 spin_lock(&memcg->event_list_lock);
4967 if (!list_empty(&event->list)) {
4968 list_del_init(&event->list);
4969 /*
4970 * We are in atomic context, but cgroup_event_remove()
4971 * may sleep, so we have to call it in workqueue.
4972 */
4973 schedule_work(&event->remove);
4974 }
4975 spin_unlock(&memcg->event_list_lock);
4976 }
4977
4978 return 0;
4979 }
4980
4981 static void memcg_event_ptable_queue_proc(struct file *file,
4982 wait_queue_head_t *wqh, poll_table *pt)
4983 {
4984 struct mem_cgroup_event *event =
4985 container_of(pt, struct mem_cgroup_event, pt);
4986
4987 event->wqh = wqh;
4988 add_wait_queue(wqh, &event->wait);
4989 }
4990
4991 /*
4992 * DO NOT USE IN NEW FILES.
4993 *
4994 * Parse input and register new cgroup event handler.
4995 *
4996 * Input must be in format '<event_fd> <control_fd> <args>'.
4997 * Interpretation of args is defined by control file implementation.
4998 */
4999 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5000 char *buf, size_t nbytes, loff_t off)
5001 {
5002 struct cgroup_subsys_state *css = of_css(of);
5003 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5004 struct mem_cgroup_event *event;
5005 struct cgroup_subsys_state *cfile_css;
5006 unsigned int efd, cfd;
5007 struct fd efile;
5008 struct fd cfile;
5009 const char *name;
5010 char *endp;
5011 int ret;
5012
5013 buf = strstrip(buf);
5014
5015 efd = simple_strtoul(buf, &endp, 10);
5016 if (*endp != ' ')
5017 return -EINVAL;
5018 buf = endp + 1;
5019
5020 cfd = simple_strtoul(buf, &endp, 10);
5021 if ((*endp != ' ') && (*endp != '\0'))
5022 return -EINVAL;
5023 buf = endp + 1;
5024
5025 event = kzalloc(sizeof(*event), GFP_KERNEL);
5026 if (!event)
5027 return -ENOMEM;
5028
5029 event->memcg = memcg;
5030 INIT_LIST_HEAD(&event->list);
5031 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5032 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5033 INIT_WORK(&event->remove, memcg_event_remove);
5034
5035 efile = fdget(efd);
5036 if (!efile.file) {
5037 ret = -EBADF;
5038 goto out_kfree;
5039 }
5040
5041 event->eventfd = eventfd_ctx_fileget(efile.file);
5042 if (IS_ERR(event->eventfd)) {
5043 ret = PTR_ERR(event->eventfd);
5044 goto out_put_efile;
5045 }
5046
5047 cfile = fdget(cfd);
5048 if (!cfile.file) {
5049 ret = -EBADF;
5050 goto out_put_eventfd;
5051 }
5052
5053 /* the process need read permission on control file */
5054 /* AV: shouldn't we check that it's been opened for read instead? */
5055 ret = inode_permission(file_inode(cfile.file), MAY_READ);
5056 if (ret < 0)
5057 goto out_put_cfile;
5058
5059 /*
5060 * Determine the event callbacks and set them in @event. This used
5061 * to be done via struct cftype but cgroup core no longer knows
5062 * about these events. The following is crude but the whole thing
5063 * is for compatibility anyway.
5064 *
5065 * DO NOT ADD NEW FILES.
5066 */
5067 name = cfile.file->f_dentry->d_name.name;
5068
5069 if (!strcmp(name, "memory.usage_in_bytes")) {
5070 event->register_event = mem_cgroup_usage_register_event;
5071 event->unregister_event = mem_cgroup_usage_unregister_event;
5072 } else if (!strcmp(name, "memory.oom_control")) {
5073 event->register_event = mem_cgroup_oom_register_event;
5074 event->unregister_event = mem_cgroup_oom_unregister_event;
5075 } else if (!strcmp(name, "memory.pressure_level")) {
5076 event->register_event = vmpressure_register_event;
5077 event->unregister_event = vmpressure_unregister_event;
5078 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5079 event->register_event = memsw_cgroup_usage_register_event;
5080 event->unregister_event = memsw_cgroup_usage_unregister_event;
5081 } else {
5082 ret = -EINVAL;
5083 goto out_put_cfile;
5084 }
5085
5086 /*
5087 * Verify @cfile should belong to @css. Also, remaining events are
5088 * automatically removed on cgroup destruction but the removal is
5089 * asynchronous, so take an extra ref on @css.
5090 */
5091 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
5092 &memory_cgrp_subsys);
5093 ret = -EINVAL;
5094 if (IS_ERR(cfile_css))
5095 goto out_put_cfile;
5096 if (cfile_css != css) {
5097 css_put(cfile_css);
5098 goto out_put_cfile;
5099 }
5100
5101 ret = event->register_event(memcg, event->eventfd, buf);
5102 if (ret)
5103 goto out_put_css;
5104
5105 efile.file->f_op->poll(efile.file, &event->pt);
5106
5107 spin_lock(&memcg->event_list_lock);
5108 list_add(&event->list, &memcg->event_list);
5109 spin_unlock(&memcg->event_list_lock);
5110
5111 fdput(cfile);
5112 fdput(efile);
5113
5114 return nbytes;
5115
5116 out_put_css:
5117 css_put(css);
5118 out_put_cfile:
5119 fdput(cfile);
5120 out_put_eventfd:
5121 eventfd_ctx_put(event->eventfd);
5122 out_put_efile:
5123 fdput(efile);
5124 out_kfree:
5125 kfree(event);
5126
5127 return ret;
5128 }
5129
5130 static struct cftype mem_cgroup_files[] = {
5131 {
5132 .name = "usage_in_bytes",
5133 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5134 .read_u64 = mem_cgroup_read_u64,
5135 },
5136 {
5137 .name = "max_usage_in_bytes",
5138 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5139 .write = mem_cgroup_reset,
5140 .read_u64 = mem_cgroup_read_u64,
5141 },
5142 {
5143 .name = "limit_in_bytes",
5144 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5145 .write = mem_cgroup_write,
5146 .read_u64 = mem_cgroup_read_u64,
5147 },
5148 {
5149 .name = "soft_limit_in_bytes",
5150 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5151 .write = mem_cgroup_write,
5152 .read_u64 = mem_cgroup_read_u64,
5153 },
5154 {
5155 .name = "failcnt",
5156 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5157 .write = mem_cgroup_reset,
5158 .read_u64 = mem_cgroup_read_u64,
5159 },
5160 {
5161 .name = "stat",
5162 .seq_show = memcg_stat_show,
5163 },
5164 {
5165 .name = "force_empty",
5166 .write = mem_cgroup_force_empty_write,
5167 },
5168 {
5169 .name = "use_hierarchy",
5170 .write_u64 = mem_cgroup_hierarchy_write,
5171 .read_u64 = mem_cgroup_hierarchy_read,
5172 },
5173 {
5174 .name = "cgroup.event_control", /* XXX: for compat */
5175 .write = memcg_write_event_control,
5176 .flags = CFTYPE_NO_PREFIX,
5177 .mode = S_IWUGO,
5178 },
5179 {
5180 .name = "swappiness",
5181 .read_u64 = mem_cgroup_swappiness_read,
5182 .write_u64 = mem_cgroup_swappiness_write,
5183 },
5184 {
5185 .name = "move_charge_at_immigrate",
5186 .read_u64 = mem_cgroup_move_charge_read,
5187 .write_u64 = mem_cgroup_move_charge_write,
5188 },
5189 {
5190 .name = "oom_control",
5191 .seq_show = mem_cgroup_oom_control_read,
5192 .write_u64 = mem_cgroup_oom_control_write,
5193 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5194 },
5195 {
5196 .name = "pressure_level",
5197 },
5198 #ifdef CONFIG_NUMA
5199 {
5200 .name = "numa_stat",
5201 .seq_show = memcg_numa_stat_show,
5202 },
5203 #endif
5204 #ifdef CONFIG_MEMCG_KMEM
5205 {
5206 .name = "kmem.limit_in_bytes",
5207 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5208 .write = mem_cgroup_write,
5209 .read_u64 = mem_cgroup_read_u64,
5210 },
5211 {
5212 .name = "kmem.usage_in_bytes",
5213 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5214 .read_u64 = mem_cgroup_read_u64,
5215 },
5216 {
5217 .name = "kmem.failcnt",
5218 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5219 .write = mem_cgroup_reset,
5220 .read_u64 = mem_cgroup_read_u64,
5221 },
5222 {
5223 .name = "kmem.max_usage_in_bytes",
5224 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5225 .write = mem_cgroup_reset,
5226 .read_u64 = mem_cgroup_read_u64,
5227 },
5228 #ifdef CONFIG_SLABINFO
5229 {
5230 .name = "kmem.slabinfo",
5231 .seq_show = mem_cgroup_slabinfo_read,
5232 },
5233 #endif
5234 #endif
5235 { }, /* terminate */
5236 };
5237
5238 #ifdef CONFIG_MEMCG_SWAP
5239 static struct cftype memsw_cgroup_files[] = {
5240 {
5241 .name = "memsw.usage_in_bytes",
5242 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5243 .read_u64 = mem_cgroup_read_u64,
5244 },
5245 {
5246 .name = "memsw.max_usage_in_bytes",
5247 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5248 .write = mem_cgroup_reset,
5249 .read_u64 = mem_cgroup_read_u64,
5250 },
5251 {
5252 .name = "memsw.limit_in_bytes",
5253 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5254 .write = mem_cgroup_write,
5255 .read_u64 = mem_cgroup_read_u64,
5256 },
5257 {
5258 .name = "memsw.failcnt",
5259 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5260 .write = mem_cgroup_reset,
5261 .read_u64 = mem_cgroup_read_u64,
5262 },
5263 { }, /* terminate */
5264 };
5265 #endif
5266 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5267 {
5268 struct mem_cgroup_per_node *pn;
5269 struct mem_cgroup_per_zone *mz;
5270 int zone, tmp = node;
5271 /*
5272 * This routine is called against possible nodes.
5273 * But it's BUG to call kmalloc() against offline node.
5274 *
5275 * TODO: this routine can waste much memory for nodes which will
5276 * never be onlined. It's better to use memory hotplug callback
5277 * function.
5278 */
5279 if (!node_state(node, N_NORMAL_MEMORY))
5280 tmp = -1;
5281 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5282 if (!pn)
5283 return 1;
5284
5285 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5286 mz = &pn->zoneinfo[zone];
5287 lruvec_init(&mz->lruvec);
5288 mz->usage_in_excess = 0;
5289 mz->on_tree = false;
5290 mz->memcg = memcg;
5291 }
5292 memcg->nodeinfo[node] = pn;
5293 return 0;
5294 }
5295
5296 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5297 {
5298 kfree(memcg->nodeinfo[node]);
5299 }
5300
5301 static struct mem_cgroup *mem_cgroup_alloc(void)
5302 {
5303 struct mem_cgroup *memcg;
5304 size_t size;
5305
5306 size = sizeof(struct mem_cgroup);
5307 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5308
5309 memcg = kzalloc(size, GFP_KERNEL);
5310 if (!memcg)
5311 return NULL;
5312
5313 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5314 if (!memcg->stat)
5315 goto out_free;
5316 spin_lock_init(&memcg->pcp_counter_lock);
5317 return memcg;
5318
5319 out_free:
5320 kfree(memcg);
5321 return NULL;
5322 }
5323
5324 /*
5325 * At destroying mem_cgroup, references from swap_cgroup can remain.
5326 * (scanning all at force_empty is too costly...)
5327 *
5328 * Instead of clearing all references at force_empty, we remember
5329 * the number of reference from swap_cgroup and free mem_cgroup when
5330 * it goes down to 0.
5331 *
5332 * Removal of cgroup itself succeeds regardless of refs from swap.
5333 */
5334
5335 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5336 {
5337 int node;
5338
5339 mem_cgroup_remove_from_trees(memcg);
5340
5341 for_each_node(node)
5342 free_mem_cgroup_per_zone_info(memcg, node);
5343
5344 free_percpu(memcg->stat);
5345
5346 /*
5347 * We need to make sure that (at least for now), the jump label
5348 * destruction code runs outside of the cgroup lock. This is because
5349 * get_online_cpus(), which is called from the static_branch update,
5350 * can't be called inside the cgroup_lock. cpusets are the ones
5351 * enforcing this dependency, so if they ever change, we might as well.
5352 *
5353 * schedule_work() will guarantee this happens. Be careful if you need
5354 * to move this code around, and make sure it is outside
5355 * the cgroup_lock.
5356 */
5357 disarm_static_keys(memcg);
5358 kfree(memcg);
5359 }
5360
5361 /*
5362 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5363 */
5364 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5365 {
5366 if (!memcg->res.parent)
5367 return NULL;
5368 return mem_cgroup_from_res_counter(memcg->res.parent, res);
5369 }
5370 EXPORT_SYMBOL(parent_mem_cgroup);
5371
5372 static void __init mem_cgroup_soft_limit_tree_init(void)
5373 {
5374 struct mem_cgroup_tree_per_node *rtpn;
5375 struct mem_cgroup_tree_per_zone *rtpz;
5376 int tmp, node, zone;
5377
5378 for_each_node(node) {
5379 tmp = node;
5380 if (!node_state(node, N_NORMAL_MEMORY))
5381 tmp = -1;
5382 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5383 BUG_ON(!rtpn);
5384
5385 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5386
5387 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5388 rtpz = &rtpn->rb_tree_per_zone[zone];
5389 rtpz->rb_root = RB_ROOT;
5390 spin_lock_init(&rtpz->lock);
5391 }
5392 }
5393 }
5394
5395 static struct cgroup_subsys_state * __ref
5396 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5397 {
5398 struct mem_cgroup *memcg;
5399 long error = -ENOMEM;
5400 int node;
5401
5402 memcg = mem_cgroup_alloc();
5403 if (!memcg)
5404 return ERR_PTR(error);
5405
5406 for_each_node(node)
5407 if (alloc_mem_cgroup_per_zone_info(memcg, node))
5408 goto free_out;
5409
5410 /* root ? */
5411 if (parent_css == NULL) {
5412 root_mem_cgroup = memcg;
5413 res_counter_init(&memcg->res, NULL);
5414 res_counter_init(&memcg->memsw, NULL);
5415 res_counter_init(&memcg->kmem, NULL);
5416 }
5417
5418 memcg->last_scanned_node = MAX_NUMNODES;
5419 INIT_LIST_HEAD(&memcg->oom_notify);
5420 memcg->move_charge_at_immigrate = 0;
5421 mutex_init(&memcg->thresholds_lock);
5422 spin_lock_init(&memcg->move_lock);
5423 vmpressure_init(&memcg->vmpressure);
5424 INIT_LIST_HEAD(&memcg->event_list);
5425 spin_lock_init(&memcg->event_list_lock);
5426
5427 return &memcg->css;
5428
5429 free_out:
5430 __mem_cgroup_free(memcg);
5431 return ERR_PTR(error);
5432 }
5433
5434 static int
5435 mem_cgroup_css_online(struct cgroup_subsys_state *css)
5436 {
5437 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5438 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
5439 int ret;
5440
5441 if (css->id > MEM_CGROUP_ID_MAX)
5442 return -ENOSPC;
5443
5444 if (!parent)
5445 return 0;
5446
5447 mutex_lock(&memcg_create_mutex);
5448
5449 memcg->use_hierarchy = parent->use_hierarchy;
5450 memcg->oom_kill_disable = parent->oom_kill_disable;
5451 memcg->swappiness = mem_cgroup_swappiness(parent);
5452
5453 if (parent->use_hierarchy) {
5454 res_counter_init(&memcg->res, &parent->res);
5455 res_counter_init(&memcg->memsw, &parent->memsw);
5456 res_counter_init(&memcg->kmem, &parent->kmem);
5457
5458 /*
5459 * No need to take a reference to the parent because cgroup
5460 * core guarantees its existence.
5461 */
5462 } else {
5463 res_counter_init(&memcg->res, NULL);
5464 res_counter_init(&memcg->memsw, NULL);
5465 res_counter_init(&memcg->kmem, NULL);
5466 /*
5467 * Deeper hierachy with use_hierarchy == false doesn't make
5468 * much sense so let cgroup subsystem know about this
5469 * unfortunate state in our controller.
5470 */
5471 if (parent != root_mem_cgroup)
5472 memory_cgrp_subsys.broken_hierarchy = true;
5473 }
5474 mutex_unlock(&memcg_create_mutex);
5475
5476 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
5477 if (ret)
5478 return ret;
5479
5480 /*
5481 * Make sure the memcg is initialized: mem_cgroup_iter()
5482 * orders reading memcg->initialized against its callers
5483 * reading the memcg members.
5484 */
5485 smp_store_release(&memcg->initialized, 1);
5486
5487 return 0;
5488 }
5489
5490 /*
5491 * Announce all parents that a group from their hierarchy is gone.
5492 */
5493 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
5494 {
5495 struct mem_cgroup *parent = memcg;
5496
5497 while ((parent = parent_mem_cgroup(parent)))
5498 mem_cgroup_iter_invalidate(parent);
5499
5500 /*
5501 * if the root memcg is not hierarchical we have to check it
5502 * explicitely.
5503 */
5504 if (!root_mem_cgroup->use_hierarchy)
5505 mem_cgroup_iter_invalidate(root_mem_cgroup);
5506 }
5507
5508 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5509 {
5510 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5511 struct mem_cgroup_event *event, *tmp;
5512 struct cgroup_subsys_state *iter;
5513
5514 /*
5515 * Unregister events and notify userspace.
5516 * Notify userspace about cgroup removing only after rmdir of cgroup
5517 * directory to avoid race between userspace and kernelspace.
5518 */
5519 spin_lock(&memcg->event_list_lock);
5520 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5521 list_del_init(&event->list);
5522 schedule_work(&event->remove);
5523 }
5524 spin_unlock(&memcg->event_list_lock);
5525
5526 kmem_cgroup_css_offline(memcg);
5527
5528 mem_cgroup_invalidate_reclaim_iterators(memcg);
5529
5530 /*
5531 * This requires that offlining is serialized. Right now that is
5532 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
5533 */
5534 css_for_each_descendant_post(iter, css)
5535 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
5536
5537 memcg_unregister_all_caches(memcg);
5538 vmpressure_cleanup(&memcg->vmpressure);
5539 }
5540
5541 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5542 {
5543 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5544 /*
5545 * XXX: css_offline() would be where we should reparent all
5546 * memory to prepare the cgroup for destruction. However,
5547 * memcg does not do css_tryget_online() and res_counter charging
5548 * under the same RCU lock region, which means that charging
5549 * could race with offlining. Offlining only happens to
5550 * cgroups with no tasks in them but charges can show up
5551 * without any tasks from the swapin path when the target
5552 * memcg is looked up from the swapout record and not from the
5553 * current task as it usually is. A race like this can leak
5554 * charges and put pages with stale cgroup pointers into
5555 * circulation:
5556 *
5557 * #0 #1
5558 * lookup_swap_cgroup_id()
5559 * rcu_read_lock()
5560 * mem_cgroup_lookup()
5561 * css_tryget_online()
5562 * rcu_read_unlock()
5563 * disable css_tryget_online()
5564 * call_rcu()
5565 * offline_css()
5566 * reparent_charges()
5567 * res_counter_charge()
5568 * css_put()
5569 * css_free()
5570 * pc->mem_cgroup = dead memcg
5571 * add page to lru
5572 *
5573 * The bulk of the charges are still moved in offline_css() to
5574 * avoid pinning a lot of pages in case a long-term reference
5575 * like a swapout record is deferring the css_free() to long
5576 * after offlining. But this makes sure we catch any charges
5577 * made after offlining:
5578 */
5579 mem_cgroup_reparent_charges(memcg);
5580
5581 memcg_destroy_kmem(memcg);
5582 __mem_cgroup_free(memcg);
5583 }
5584
5585 /**
5586 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5587 * @css: the target css
5588 *
5589 * Reset the states of the mem_cgroup associated with @css. This is
5590 * invoked when the userland requests disabling on the default hierarchy
5591 * but the memcg is pinned through dependency. The memcg should stop
5592 * applying policies and should revert to the vanilla state as it may be
5593 * made visible again.
5594 *
5595 * The current implementation only resets the essential configurations.
5596 * This needs to be expanded to cover all the visible parts.
5597 */
5598 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5599 {
5600 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5601
5602 mem_cgroup_resize_limit(memcg, ULLONG_MAX);
5603 mem_cgroup_resize_memsw_limit(memcg, ULLONG_MAX);
5604 memcg_update_kmem_limit(memcg, ULLONG_MAX);
5605 res_counter_set_soft_limit(&memcg->res, ULLONG_MAX);
5606 }
5607
5608 #ifdef CONFIG_MMU
5609 /* Handlers for move charge at task migration. */
5610 static int mem_cgroup_do_precharge(unsigned long count)
5611 {
5612 int ret;
5613
5614 /* Try a single bulk charge without reclaim first */
5615 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
5616 if (!ret) {
5617 mc.precharge += count;
5618 return ret;
5619 }
5620 if (ret == -EINTR) {
5621 cancel_charge(root_mem_cgroup, count);
5622 return ret;
5623 }
5624
5625 /* Try charges one by one with reclaim */
5626 while (count--) {
5627 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
5628 /*
5629 * In case of failure, any residual charges against
5630 * mc.to will be dropped by mem_cgroup_clear_mc()
5631 * later on. However, cancel any charges that are
5632 * bypassed to root right away or they'll be lost.
5633 */
5634 if (ret == -EINTR)
5635 cancel_charge(root_mem_cgroup, 1);
5636 if (ret)
5637 return ret;
5638 mc.precharge++;
5639 cond_resched();
5640 }
5641 return 0;
5642 }
5643
5644 /**
5645 * get_mctgt_type - get target type of moving charge
5646 * @vma: the vma the pte to be checked belongs
5647 * @addr: the address corresponding to the pte to be checked
5648 * @ptent: the pte to be checked
5649 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5650 *
5651 * Returns
5652 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5653 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5654 * move charge. if @target is not NULL, the page is stored in target->page
5655 * with extra refcnt got(Callers should handle it).
5656 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5657 * target for charge migration. if @target is not NULL, the entry is stored
5658 * in target->ent.
5659 *
5660 * Called with pte lock held.
5661 */
5662 union mc_target {
5663 struct page *page;
5664 swp_entry_t ent;
5665 };
5666
5667 enum mc_target_type {
5668 MC_TARGET_NONE = 0,
5669 MC_TARGET_PAGE,
5670 MC_TARGET_SWAP,
5671 };
5672
5673 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5674 unsigned long addr, pte_t ptent)
5675 {
5676 struct page *page = vm_normal_page(vma, addr, ptent);
5677
5678 if (!page || !page_mapped(page))
5679 return NULL;
5680 if (PageAnon(page)) {
5681 /* we don't move shared anon */
5682 if (!move_anon())
5683 return NULL;
5684 } else if (!move_file())
5685 /* we ignore mapcount for file pages */
5686 return NULL;
5687 if (!get_page_unless_zero(page))
5688 return NULL;
5689
5690 return page;
5691 }
5692
5693 #ifdef CONFIG_SWAP
5694 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5695 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5696 {
5697 struct page *page = NULL;
5698 swp_entry_t ent = pte_to_swp_entry(ptent);
5699
5700 if (!move_anon() || non_swap_entry(ent))
5701 return NULL;
5702 /*
5703 * Because lookup_swap_cache() updates some statistics counter,
5704 * we call find_get_page() with swapper_space directly.
5705 */
5706 page = find_get_page(swap_address_space(ent), ent.val);
5707 if (do_swap_account)
5708 entry->val = ent.val;
5709
5710 return page;
5711 }
5712 #else
5713 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5714 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5715 {
5716 return NULL;
5717 }
5718 #endif
5719
5720 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5721 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5722 {
5723 struct page *page = NULL;
5724 struct address_space *mapping;
5725 pgoff_t pgoff;
5726
5727 if (!vma->vm_file) /* anonymous vma */
5728 return NULL;
5729 if (!move_file())
5730 return NULL;
5731
5732 mapping = vma->vm_file->f_mapping;
5733 if (pte_none(ptent))
5734 pgoff = linear_page_index(vma, addr);
5735 else /* pte_file(ptent) is true */
5736 pgoff = pte_to_pgoff(ptent);
5737
5738 /* page is moved even if it's not RSS of this task(page-faulted). */
5739 #ifdef CONFIG_SWAP
5740 /* shmem/tmpfs may report page out on swap: account for that too. */
5741 if (shmem_mapping(mapping)) {
5742 page = find_get_entry(mapping, pgoff);
5743 if (radix_tree_exceptional_entry(page)) {
5744 swp_entry_t swp = radix_to_swp_entry(page);
5745 if (do_swap_account)
5746 *entry = swp;
5747 page = find_get_page(swap_address_space(swp), swp.val);
5748 }
5749 } else
5750 page = find_get_page(mapping, pgoff);
5751 #else
5752 page = find_get_page(mapping, pgoff);
5753 #endif
5754 return page;
5755 }
5756
5757 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5758 unsigned long addr, pte_t ptent, union mc_target *target)
5759 {
5760 struct page *page = NULL;
5761 struct page_cgroup *pc;
5762 enum mc_target_type ret = MC_TARGET_NONE;
5763 swp_entry_t ent = { .val = 0 };
5764
5765 if (pte_present(ptent))
5766 page = mc_handle_present_pte(vma, addr, ptent);
5767 else if (is_swap_pte(ptent))
5768 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5769 else if (pte_none(ptent) || pte_file(ptent))
5770 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5771
5772 if (!page && !ent.val)
5773 return ret;
5774 if (page) {
5775 pc = lookup_page_cgroup(page);
5776 /*
5777 * Do only loose check w/o serialization.
5778 * mem_cgroup_move_account() checks the pc is valid or
5779 * not under LRU exclusion.
5780 */
5781 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5782 ret = MC_TARGET_PAGE;
5783 if (target)
5784 target->page = page;
5785 }
5786 if (!ret || !target)
5787 put_page(page);
5788 }
5789 /* There is a swap entry and a page doesn't exist or isn't charged */
5790 if (ent.val && !ret &&
5791 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5792 ret = MC_TARGET_SWAP;
5793 if (target)
5794 target->ent = ent;
5795 }
5796 return ret;
5797 }
5798
5799 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5800 /*
5801 * We don't consider swapping or file mapped pages because THP does not
5802 * support them for now.
5803 * Caller should make sure that pmd_trans_huge(pmd) is true.
5804 */
5805 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5806 unsigned long addr, pmd_t pmd, union mc_target *target)
5807 {
5808 struct page *page = NULL;
5809 struct page_cgroup *pc;
5810 enum mc_target_type ret = MC_TARGET_NONE;
5811
5812 page = pmd_page(pmd);
5813 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5814 if (!move_anon())
5815 return ret;
5816 pc = lookup_page_cgroup(page);
5817 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5818 ret = MC_TARGET_PAGE;
5819 if (target) {
5820 get_page(page);
5821 target->page = page;
5822 }
5823 }
5824 return ret;
5825 }
5826 #else
5827 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5828 unsigned long addr, pmd_t pmd, union mc_target *target)
5829 {
5830 return MC_TARGET_NONE;
5831 }
5832 #endif
5833
5834 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5835 unsigned long addr, unsigned long end,
5836 struct mm_walk *walk)
5837 {
5838 struct vm_area_struct *vma = walk->private;
5839 pte_t *pte;
5840 spinlock_t *ptl;
5841
5842 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5843 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5844 mc.precharge += HPAGE_PMD_NR;
5845 spin_unlock(ptl);
5846 return 0;
5847 }
5848
5849 if (pmd_trans_unstable(pmd))
5850 return 0;
5851 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5852 for (; addr != end; pte++, addr += PAGE_SIZE)
5853 if (get_mctgt_type(vma, addr, *pte, NULL))
5854 mc.precharge++; /* increment precharge temporarily */
5855 pte_unmap_unlock(pte - 1, ptl);
5856 cond_resched();
5857
5858 return 0;
5859 }
5860
5861 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5862 {
5863 unsigned long precharge;
5864 struct vm_area_struct *vma;
5865
5866 down_read(&mm->mmap_sem);
5867 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5868 struct mm_walk mem_cgroup_count_precharge_walk = {
5869 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5870 .mm = mm,
5871 .private = vma,
5872 };
5873 if (is_vm_hugetlb_page(vma))
5874 continue;
5875 walk_page_range(vma->vm_start, vma->vm_end,
5876 &mem_cgroup_count_precharge_walk);
5877 }
5878 up_read(&mm->mmap_sem);
5879
5880 precharge = mc.precharge;
5881 mc.precharge = 0;
5882
5883 return precharge;
5884 }
5885
5886 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5887 {
5888 unsigned long precharge = mem_cgroup_count_precharge(mm);
5889
5890 VM_BUG_ON(mc.moving_task);
5891 mc.moving_task = current;
5892 return mem_cgroup_do_precharge(precharge);
5893 }
5894
5895 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5896 static void __mem_cgroup_clear_mc(void)
5897 {
5898 struct mem_cgroup *from = mc.from;
5899 struct mem_cgroup *to = mc.to;
5900 int i;
5901
5902 /* we must uncharge all the leftover precharges from mc.to */
5903 if (mc.precharge) {
5904 cancel_charge(mc.to, mc.precharge);
5905 mc.precharge = 0;
5906 }
5907 /*
5908 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5909 * we must uncharge here.
5910 */
5911 if (mc.moved_charge) {
5912 cancel_charge(mc.from, mc.moved_charge);
5913 mc.moved_charge = 0;
5914 }
5915 /* we must fixup refcnts and charges */
5916 if (mc.moved_swap) {
5917 /* uncharge swap account from the old cgroup */
5918 if (!mem_cgroup_is_root(mc.from))
5919 res_counter_uncharge(&mc.from->memsw,
5920 PAGE_SIZE * mc.moved_swap);
5921
5922 for (i = 0; i < mc.moved_swap; i++)
5923 css_put(&mc.from->css);
5924
5925 /*
5926 * we charged both to->res and to->memsw, so we should
5927 * uncharge to->res.
5928 */
5929 if (!mem_cgroup_is_root(mc.to))
5930 res_counter_uncharge(&mc.to->res,
5931 PAGE_SIZE * mc.moved_swap);
5932 /* we've already done css_get(mc.to) */
5933 mc.moved_swap = 0;
5934 }
5935 memcg_oom_recover(from);
5936 memcg_oom_recover(to);
5937 wake_up_all(&mc.waitq);
5938 }
5939
5940 static void mem_cgroup_clear_mc(void)
5941 {
5942 struct mem_cgroup *from = mc.from;
5943
5944 /*
5945 * we must clear moving_task before waking up waiters at the end of
5946 * task migration.
5947 */
5948 mc.moving_task = NULL;
5949 __mem_cgroup_clear_mc();
5950 spin_lock(&mc.lock);
5951 mc.from = NULL;
5952 mc.to = NULL;
5953 spin_unlock(&mc.lock);
5954 mem_cgroup_end_move(from);
5955 }
5956
5957 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5958 struct cgroup_taskset *tset)
5959 {
5960 struct task_struct *p = cgroup_taskset_first(tset);
5961 int ret = 0;
5962 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5963 unsigned long move_charge_at_immigrate;
5964
5965 /*
5966 * We are now commited to this value whatever it is. Changes in this
5967 * tunable will only affect upcoming migrations, not the current one.
5968 * So we need to save it, and keep it going.
5969 */
5970 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5971 if (move_charge_at_immigrate) {
5972 struct mm_struct *mm;
5973 struct mem_cgroup *from = mem_cgroup_from_task(p);
5974
5975 VM_BUG_ON(from == memcg);
5976
5977 mm = get_task_mm(p);
5978 if (!mm)
5979 return 0;
5980 /* We move charges only when we move a owner of the mm */
5981 if (mm->owner == p) {
5982 VM_BUG_ON(mc.from);
5983 VM_BUG_ON(mc.to);
5984 VM_BUG_ON(mc.precharge);
5985 VM_BUG_ON(mc.moved_charge);
5986 VM_BUG_ON(mc.moved_swap);
5987 mem_cgroup_start_move(from);
5988 spin_lock(&mc.lock);
5989 mc.from = from;
5990 mc.to = memcg;
5991 mc.immigrate_flags = move_charge_at_immigrate;
5992 spin_unlock(&mc.lock);
5993 /* We set mc.moving_task later */
5994
5995 ret = mem_cgroup_precharge_mc(mm);
5996 if (ret)
5997 mem_cgroup_clear_mc();
5998 }
5999 mmput(mm);
6000 }
6001 return ret;
6002 }
6003
6004 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6005 struct cgroup_taskset *tset)
6006 {
6007 mem_cgroup_clear_mc();
6008 }
6009
6010 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6011 unsigned long addr, unsigned long end,
6012 struct mm_walk *walk)
6013 {
6014 int ret = 0;
6015 struct vm_area_struct *vma = walk->private;
6016 pte_t *pte;
6017 spinlock_t *ptl;
6018 enum mc_target_type target_type;
6019 union mc_target target;
6020 struct page *page;
6021 struct page_cgroup *pc;
6022
6023 /*
6024 * We don't take compound_lock() here but no race with splitting thp
6025 * happens because:
6026 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6027 * under splitting, which means there's no concurrent thp split,
6028 * - if another thread runs into split_huge_page() just after we
6029 * entered this if-block, the thread must wait for page table lock
6030 * to be unlocked in __split_huge_page_splitting(), where the main
6031 * part of thp split is not executed yet.
6032 */
6033 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6034 if (mc.precharge < HPAGE_PMD_NR) {
6035 spin_unlock(ptl);
6036 return 0;
6037 }
6038 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6039 if (target_type == MC_TARGET_PAGE) {
6040 page = target.page;
6041 if (!isolate_lru_page(page)) {
6042 pc = lookup_page_cgroup(page);
6043 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6044 pc, mc.from, mc.to)) {
6045 mc.precharge -= HPAGE_PMD_NR;
6046 mc.moved_charge += HPAGE_PMD_NR;
6047 }
6048 putback_lru_page(page);
6049 }
6050 put_page(page);
6051 }
6052 spin_unlock(ptl);
6053 return 0;
6054 }
6055
6056 if (pmd_trans_unstable(pmd))
6057 return 0;
6058 retry:
6059 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6060 for (; addr != end; addr += PAGE_SIZE) {
6061 pte_t ptent = *(pte++);
6062 swp_entry_t ent;
6063
6064 if (!mc.precharge)
6065 break;
6066
6067 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6068 case MC_TARGET_PAGE:
6069 page = target.page;
6070 if (isolate_lru_page(page))
6071 goto put;
6072 pc = lookup_page_cgroup(page);
6073 if (!mem_cgroup_move_account(page, 1, pc,
6074 mc.from, mc.to)) {
6075 mc.precharge--;
6076 /* we uncharge from mc.from later. */
6077 mc.moved_charge++;
6078 }
6079 putback_lru_page(page);
6080 put: /* get_mctgt_type() gets the page */
6081 put_page(page);
6082 break;
6083 case MC_TARGET_SWAP:
6084 ent = target.ent;
6085 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6086 mc.precharge--;
6087 /* we fixup refcnts and charges later. */
6088 mc.moved_swap++;
6089 }
6090 break;
6091 default:
6092 break;
6093 }
6094 }
6095 pte_unmap_unlock(pte - 1, ptl);
6096 cond_resched();
6097
6098 if (addr != end) {
6099 /*
6100 * We have consumed all precharges we got in can_attach().
6101 * We try charge one by one, but don't do any additional
6102 * charges to mc.to if we have failed in charge once in attach()
6103 * phase.
6104 */
6105 ret = mem_cgroup_do_precharge(1);
6106 if (!ret)
6107 goto retry;
6108 }
6109
6110 return ret;
6111 }
6112
6113 static void mem_cgroup_move_charge(struct mm_struct *mm)
6114 {
6115 struct vm_area_struct *vma;
6116
6117 lru_add_drain_all();
6118 retry:
6119 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6120 /*
6121 * Someone who are holding the mmap_sem might be waiting in
6122 * waitq. So we cancel all extra charges, wake up all waiters,
6123 * and retry. Because we cancel precharges, we might not be able
6124 * to move enough charges, but moving charge is a best-effort
6125 * feature anyway, so it wouldn't be a big problem.
6126 */
6127 __mem_cgroup_clear_mc();
6128 cond_resched();
6129 goto retry;
6130 }
6131 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6132 int ret;
6133 struct mm_walk mem_cgroup_move_charge_walk = {
6134 .pmd_entry = mem_cgroup_move_charge_pte_range,
6135 .mm = mm,
6136 .private = vma,
6137 };
6138 if (is_vm_hugetlb_page(vma))
6139 continue;
6140 ret = walk_page_range(vma->vm_start, vma->vm_end,
6141 &mem_cgroup_move_charge_walk);
6142 if (ret)
6143 /*
6144 * means we have consumed all precharges and failed in
6145 * doing additional charge. Just abandon here.
6146 */
6147 break;
6148 }
6149 up_read(&mm->mmap_sem);
6150 }
6151
6152 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6153 struct cgroup_taskset *tset)
6154 {
6155 struct task_struct *p = cgroup_taskset_first(tset);
6156 struct mm_struct *mm = get_task_mm(p);
6157
6158 if (mm) {
6159 if (mc.to)
6160 mem_cgroup_move_charge(mm);
6161 mmput(mm);
6162 }
6163 if (mc.to)
6164 mem_cgroup_clear_mc();
6165 }
6166 #else /* !CONFIG_MMU */
6167 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6168 struct cgroup_taskset *tset)
6169 {
6170 return 0;
6171 }
6172 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6173 struct cgroup_taskset *tset)
6174 {
6175 }
6176 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6177 struct cgroup_taskset *tset)
6178 {
6179 }
6180 #endif
6181
6182 /*
6183 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6184 * to verify whether we're attached to the default hierarchy on each mount
6185 * attempt.
6186 */
6187 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6188 {
6189 /*
6190 * use_hierarchy is forced on the default hierarchy. cgroup core
6191 * guarantees that @root doesn't have any children, so turning it
6192 * on for the root memcg is enough.
6193 */
6194 if (cgroup_on_dfl(root_css->cgroup))
6195 mem_cgroup_from_css(root_css)->use_hierarchy = true;
6196 }
6197
6198 struct cgroup_subsys memory_cgrp_subsys = {
6199 .css_alloc = mem_cgroup_css_alloc,
6200 .css_online = mem_cgroup_css_online,
6201 .css_offline = mem_cgroup_css_offline,
6202 .css_free = mem_cgroup_css_free,
6203 .css_reset = mem_cgroup_css_reset,
6204 .can_attach = mem_cgroup_can_attach,
6205 .cancel_attach = mem_cgroup_cancel_attach,
6206 .attach = mem_cgroup_move_task,
6207 .bind = mem_cgroup_bind,
6208 .legacy_cftypes = mem_cgroup_files,
6209 .early_init = 0,
6210 };
6211
6212 #ifdef CONFIG_MEMCG_SWAP
6213 static int __init enable_swap_account(char *s)
6214 {
6215 if (!strcmp(s, "1"))
6216 really_do_swap_account = 1;
6217 else if (!strcmp(s, "0"))
6218 really_do_swap_account = 0;
6219 return 1;
6220 }
6221 __setup("swapaccount=", enable_swap_account);
6222
6223 static void __init memsw_file_init(void)
6224 {
6225 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6226 memsw_cgroup_files));
6227 }
6228
6229 static void __init enable_swap_cgroup(void)
6230 {
6231 if (!mem_cgroup_disabled() && really_do_swap_account) {
6232 do_swap_account = 1;
6233 memsw_file_init();
6234 }
6235 }
6236
6237 #else
6238 static void __init enable_swap_cgroup(void)
6239 {
6240 }
6241 #endif
6242
6243 #ifdef CONFIG_MEMCG_SWAP
6244 /**
6245 * mem_cgroup_swapout - transfer a memsw charge to swap
6246 * @page: page whose memsw charge to transfer
6247 * @entry: swap entry to move the charge to
6248 *
6249 * Transfer the memsw charge of @page to @entry.
6250 */
6251 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6252 {
6253 struct page_cgroup *pc;
6254 unsigned short oldid;
6255
6256 VM_BUG_ON_PAGE(PageLRU(page), page);
6257 VM_BUG_ON_PAGE(page_count(page), page);
6258
6259 if (!do_swap_account)
6260 return;
6261
6262 pc = lookup_page_cgroup(page);
6263
6264 /* Readahead page, never charged */
6265 if (!PageCgroupUsed(pc))
6266 return;
6267
6268 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEMSW), page);
6269
6270 oldid = swap_cgroup_record(entry, mem_cgroup_id(pc->mem_cgroup));
6271 VM_BUG_ON_PAGE(oldid, page);
6272
6273 pc->flags &= ~PCG_MEMSW;
6274 css_get(&pc->mem_cgroup->css);
6275 mem_cgroup_swap_statistics(pc->mem_cgroup, true);
6276 }
6277
6278 /**
6279 * mem_cgroup_uncharge_swap - uncharge a swap entry
6280 * @entry: swap entry to uncharge
6281 *
6282 * Drop the memsw charge associated with @entry.
6283 */
6284 void mem_cgroup_uncharge_swap(swp_entry_t entry)
6285 {
6286 struct mem_cgroup *memcg;
6287 unsigned short id;
6288
6289 if (!do_swap_account)
6290 return;
6291
6292 id = swap_cgroup_record(entry, 0);
6293 rcu_read_lock();
6294 memcg = mem_cgroup_lookup(id);
6295 if (memcg) {
6296 if (!mem_cgroup_is_root(memcg))
6297 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
6298 mem_cgroup_swap_statistics(memcg, false);
6299 css_put(&memcg->css);
6300 }
6301 rcu_read_unlock();
6302 }
6303 #endif
6304
6305 /**
6306 * mem_cgroup_try_charge - try charging a page
6307 * @page: page to charge
6308 * @mm: mm context of the victim
6309 * @gfp_mask: reclaim mode
6310 * @memcgp: charged memcg return
6311 *
6312 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6313 * pages according to @gfp_mask if necessary.
6314 *
6315 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6316 * Otherwise, an error code is returned.
6317 *
6318 * After page->mapping has been set up, the caller must finalize the
6319 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6320 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6321 */
6322 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6323 gfp_t gfp_mask, struct mem_cgroup **memcgp)
6324 {
6325 struct mem_cgroup *memcg = NULL;
6326 unsigned int nr_pages = 1;
6327 int ret = 0;
6328
6329 if (mem_cgroup_disabled())
6330 goto out;
6331
6332 if (PageSwapCache(page)) {
6333 struct page_cgroup *pc = lookup_page_cgroup(page);
6334 /*
6335 * Every swap fault against a single page tries to charge the
6336 * page, bail as early as possible. shmem_unuse() encounters
6337 * already charged pages, too. The USED bit is protected by
6338 * the page lock, which serializes swap cache removal, which
6339 * in turn serializes uncharging.
6340 */
6341 if (PageCgroupUsed(pc))
6342 goto out;
6343 }
6344
6345 if (PageTransHuge(page)) {
6346 nr_pages <<= compound_order(page);
6347 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6348 }
6349
6350 if (do_swap_account && PageSwapCache(page))
6351 memcg = try_get_mem_cgroup_from_page(page);
6352 if (!memcg)
6353 memcg = get_mem_cgroup_from_mm(mm);
6354
6355 ret = try_charge(memcg, gfp_mask, nr_pages);
6356
6357 css_put(&memcg->css);
6358
6359 if (ret == -EINTR) {
6360 memcg = root_mem_cgroup;
6361 ret = 0;
6362 }
6363 out:
6364 *memcgp = memcg;
6365 return ret;
6366 }
6367
6368 /**
6369 * mem_cgroup_commit_charge - commit a page charge
6370 * @page: page to charge
6371 * @memcg: memcg to charge the page to
6372 * @lrucare: page might be on LRU already
6373 *
6374 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6375 * after page->mapping has been set up. This must happen atomically
6376 * as part of the page instantiation, i.e. under the page table lock
6377 * for anonymous pages, under the page lock for page and swap cache.
6378 *
6379 * In addition, the page must not be on the LRU during the commit, to
6380 * prevent racing with task migration. If it might be, use @lrucare.
6381 *
6382 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6383 */
6384 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6385 bool lrucare)
6386 {
6387 unsigned int nr_pages = 1;
6388
6389 VM_BUG_ON_PAGE(!page->mapping, page);
6390 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6391
6392 if (mem_cgroup_disabled())
6393 return;
6394 /*
6395 * Swap faults will attempt to charge the same page multiple
6396 * times. But reuse_swap_page() might have removed the page
6397 * from swapcache already, so we can't check PageSwapCache().
6398 */
6399 if (!memcg)
6400 return;
6401
6402 commit_charge(page, memcg, lrucare);
6403
6404 if (PageTransHuge(page)) {
6405 nr_pages <<= compound_order(page);
6406 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6407 }
6408
6409 local_irq_disable();
6410 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6411 memcg_check_events(memcg, page);
6412 local_irq_enable();
6413
6414 if (do_swap_account && PageSwapCache(page)) {
6415 swp_entry_t entry = { .val = page_private(page) };
6416 /*
6417 * The swap entry might not get freed for a long time,
6418 * let's not wait for it. The page already received a
6419 * memory+swap charge, drop the swap entry duplicate.
6420 */
6421 mem_cgroup_uncharge_swap(entry);
6422 }
6423 }
6424
6425 /**
6426 * mem_cgroup_cancel_charge - cancel a page charge
6427 * @page: page to charge
6428 * @memcg: memcg to charge the page to
6429 *
6430 * Cancel a charge transaction started by mem_cgroup_try_charge().
6431 */
6432 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
6433 {
6434 unsigned int nr_pages = 1;
6435
6436 if (mem_cgroup_disabled())
6437 return;
6438 /*
6439 * Swap faults will attempt to charge the same page multiple
6440 * times. But reuse_swap_page() might have removed the page
6441 * from swapcache already, so we can't check PageSwapCache().
6442 */
6443 if (!memcg)
6444 return;
6445
6446 if (PageTransHuge(page)) {
6447 nr_pages <<= compound_order(page);
6448 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6449 }
6450
6451 cancel_charge(memcg, nr_pages);
6452 }
6453
6454 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
6455 unsigned long nr_mem, unsigned long nr_memsw,
6456 unsigned long nr_anon, unsigned long nr_file,
6457 unsigned long nr_huge, struct page *dummy_page)
6458 {
6459 unsigned long flags;
6460
6461 if (!mem_cgroup_is_root(memcg)) {
6462 if (nr_mem)
6463 res_counter_uncharge(&memcg->res,
6464 nr_mem * PAGE_SIZE);
6465 if (nr_memsw)
6466 res_counter_uncharge(&memcg->memsw,
6467 nr_memsw * PAGE_SIZE);
6468 memcg_oom_recover(memcg);
6469 }
6470
6471 local_irq_save(flags);
6472 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
6473 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
6474 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
6475 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
6476 __this_cpu_add(memcg->stat->nr_page_events, nr_anon + nr_file);
6477 memcg_check_events(memcg, dummy_page);
6478 local_irq_restore(flags);
6479 }
6480
6481 static void uncharge_list(struct list_head *page_list)
6482 {
6483 struct mem_cgroup *memcg = NULL;
6484 unsigned long nr_memsw = 0;
6485 unsigned long nr_anon = 0;
6486 unsigned long nr_file = 0;
6487 unsigned long nr_huge = 0;
6488 unsigned long pgpgout = 0;
6489 unsigned long nr_mem = 0;
6490 struct list_head *next;
6491 struct page *page;
6492
6493 next = page_list->next;
6494 do {
6495 unsigned int nr_pages = 1;
6496 struct page_cgroup *pc;
6497
6498 page = list_entry(next, struct page, lru);
6499 next = page->lru.next;
6500
6501 VM_BUG_ON_PAGE(PageLRU(page), page);
6502 VM_BUG_ON_PAGE(page_count(page), page);
6503
6504 pc = lookup_page_cgroup(page);
6505 if (!PageCgroupUsed(pc))
6506 continue;
6507
6508 /*
6509 * Nobody should be changing or seriously looking at
6510 * pc->mem_cgroup and pc->flags at this point, we have
6511 * fully exclusive access to the page.
6512 */
6513
6514 if (memcg != pc->mem_cgroup) {
6515 if (memcg) {
6516 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6517 nr_anon, nr_file, nr_huge, page);
6518 pgpgout = nr_mem = nr_memsw = 0;
6519 nr_anon = nr_file = nr_huge = 0;
6520 }
6521 memcg = pc->mem_cgroup;
6522 }
6523
6524 if (PageTransHuge(page)) {
6525 nr_pages <<= compound_order(page);
6526 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6527 nr_huge += nr_pages;
6528 }
6529
6530 if (PageAnon(page))
6531 nr_anon += nr_pages;
6532 else
6533 nr_file += nr_pages;
6534
6535 if (pc->flags & PCG_MEM)
6536 nr_mem += nr_pages;
6537 if (pc->flags & PCG_MEMSW)
6538 nr_memsw += nr_pages;
6539 pc->flags = 0;
6540
6541 pgpgout++;
6542 } while (next != page_list);
6543
6544 if (memcg)
6545 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6546 nr_anon, nr_file, nr_huge, page);
6547 }
6548
6549 /**
6550 * mem_cgroup_uncharge - uncharge a page
6551 * @page: page to uncharge
6552 *
6553 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6554 * mem_cgroup_commit_charge().
6555 */
6556 void mem_cgroup_uncharge(struct page *page)
6557 {
6558 struct page_cgroup *pc;
6559
6560 if (mem_cgroup_disabled())
6561 return;
6562
6563 /* Don't touch page->lru of any random page, pre-check: */
6564 pc = lookup_page_cgroup(page);
6565 if (!PageCgroupUsed(pc))
6566 return;
6567
6568 INIT_LIST_HEAD(&page->lru);
6569 uncharge_list(&page->lru);
6570 }
6571
6572 /**
6573 * mem_cgroup_uncharge_list - uncharge a list of page
6574 * @page_list: list of pages to uncharge
6575 *
6576 * Uncharge a list of pages previously charged with
6577 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6578 */
6579 void mem_cgroup_uncharge_list(struct list_head *page_list)
6580 {
6581 if (mem_cgroup_disabled())
6582 return;
6583
6584 if (!list_empty(page_list))
6585 uncharge_list(page_list);
6586 }
6587
6588 /**
6589 * mem_cgroup_migrate - migrate a charge to another page
6590 * @oldpage: currently charged page
6591 * @newpage: page to transfer the charge to
6592 * @lrucare: both pages might be on the LRU already
6593 *
6594 * Migrate the charge from @oldpage to @newpage.
6595 *
6596 * Both pages must be locked, @newpage->mapping must be set up.
6597 */
6598 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
6599 bool lrucare)
6600 {
6601 struct page_cgroup *pc;
6602 int isolated;
6603
6604 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6605 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6606 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
6607 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
6608 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6609 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6610 newpage);
6611
6612 if (mem_cgroup_disabled())
6613 return;
6614
6615 /* Page cache replacement: new page already charged? */
6616 pc = lookup_page_cgroup(newpage);
6617 if (PageCgroupUsed(pc))
6618 return;
6619
6620 /* Re-entrant migration: old page already uncharged? */
6621 pc = lookup_page_cgroup(oldpage);
6622 if (!PageCgroupUsed(pc))
6623 return;
6624
6625 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEM), oldpage);
6626 VM_BUG_ON_PAGE(do_swap_account && !(pc->flags & PCG_MEMSW), oldpage);
6627
6628 if (lrucare)
6629 lock_page_lru(oldpage, &isolated);
6630
6631 pc->flags = 0;
6632
6633 if (lrucare)
6634 unlock_page_lru(oldpage, isolated);
6635
6636 commit_charge(newpage, pc->mem_cgroup, lrucare);
6637 }
6638
6639 /*
6640 * subsys_initcall() for memory controller.
6641 *
6642 * Some parts like hotcpu_notifier() have to be initialized from this context
6643 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6644 * everything that doesn't depend on a specific mem_cgroup structure should
6645 * be initialized from here.
6646 */
6647 static int __init mem_cgroup_init(void)
6648 {
6649 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6650 enable_swap_cgroup();
6651 mem_cgroup_soft_limit_tree_init();
6652 memcg_stock_init();
6653 return 0;
6654 }
6655 subsys_initcall(mem_cgroup_init);