]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memcontrol.c
Merge branch 'for-3.14' of git://linux-nfs.org/~bfields/linux
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64
65 #include <asm/uaccess.h>
66
67 #include <trace/events/vmscan.h>
68
69 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
70 EXPORT_SYMBOL(mem_cgroup_subsys);
71
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata = 0;
84 #endif
85
86 #else
87 #define do_swap_account 0
88 #endif
89
90
91 static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
98 };
99
100 enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS,
106 };
107
108 static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113 };
114
115 static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121 };
122
123 /*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129 enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
138
139 struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145
146 struct mem_cgroup_reclaim_iter {
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
151 struct mem_cgroup *last_visited;
152 int last_dead_count;
153
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156 };
157
158 /*
159 * per-zone information in memory controller.
160 */
161 struct mem_cgroup_per_zone {
162 struct lruvec lruvec;
163 unsigned long lru_size[NR_LRU_LISTS];
164
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
172 /* use container_of */
173 };
174
175 struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177 };
178
179 /*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184 struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187 };
188
189 struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191 };
192
193 struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195 };
196
197 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
199 struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202 };
203
204 /* For threshold */
205 struct mem_cgroup_threshold_ary {
206 /* An array index points to threshold just below or equal to usage. */
207 int current_threshold;
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212 };
213
214 struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223 };
224
225 /* for OOM */
226 struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229 };
230
231 /*
232 * cgroup_event represents events which userspace want to receive.
233 */
234 struct mem_cgroup_event {
235 /*
236 * memcg which the event belongs to.
237 */
238 struct mem_cgroup *memcg;
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
252 int (*register_event)(struct mem_cgroup *memcg,
253 struct eventfd_ctx *eventfd, const char *args);
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
259 void (*unregister_event)(struct mem_cgroup *memcg,
260 struct eventfd_ctx *eventfd);
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269 };
270
271 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273
274 /*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
284 */
285 struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
291
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
299
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309
310 bool oom_lock;
311 atomic_t under_oom;
312 atomic_t oom_wakeups;
313
314 int swappiness;
315 /* OOM-Killer disable */
316 int oom_kill_disable;
317
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
325 struct mem_cgroup_thresholds thresholds;
326
327 /* thresholds for mem+swap usage. RCU-protected */
328 struct mem_cgroup_thresholds memsw_thresholds;
329
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
332
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
337 unsigned long move_charge_at_immigrate;
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
344 /*
345 * percpu counter.
346 */
347 struct mem_cgroup_stat_cpu __percpu *stat;
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
354
355 atomic_t dead_count;
356 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357 struct cg_proto tcp_mem;
358 #endif
359 #if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list. per-memcg */
361 struct list_head memcg_slab_caches;
362 /* Not a spinlock, we can take a lot of time walking the list */
363 struct mutex slab_caches_mutex;
364 /* Index in the kmem_cache->memcg_params->memcg_caches array */
365 int kmemcg_id;
366 #endif
367
368 int last_scanned_node;
369 #if MAX_NUMNODES > 1
370 nodemask_t scan_nodes;
371 atomic_t numainfo_events;
372 atomic_t numainfo_updating;
373 #endif
374
375 /* List of events which userspace want to receive */
376 struct list_head event_list;
377 spinlock_t event_list_lock;
378
379 struct mem_cgroup_per_node *nodeinfo[0];
380 /* WARNING: nodeinfo must be the last member here */
381 };
382
383 /* internal only representation about the status of kmem accounting. */
384 enum {
385 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
386 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
387 };
388
389 #ifdef CONFIG_MEMCG_KMEM
390 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
391 {
392 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
393 }
394
395 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
396 {
397 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
398 }
399
400 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
401 {
402 /*
403 * Our caller must use css_get() first, because memcg_uncharge_kmem()
404 * will call css_put() if it sees the memcg is dead.
405 */
406 smp_wmb();
407 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
408 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
409 }
410
411 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
412 {
413 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
414 &memcg->kmem_account_flags);
415 }
416 #endif
417
418 /* Stuffs for move charges at task migration. */
419 /*
420 * Types of charges to be moved. "move_charge_at_immitgrate" and
421 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
422 */
423 enum move_type {
424 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
425 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
426 NR_MOVE_TYPE,
427 };
428
429 /* "mc" and its members are protected by cgroup_mutex */
430 static struct move_charge_struct {
431 spinlock_t lock; /* for from, to */
432 struct mem_cgroup *from;
433 struct mem_cgroup *to;
434 unsigned long immigrate_flags;
435 unsigned long precharge;
436 unsigned long moved_charge;
437 unsigned long moved_swap;
438 struct task_struct *moving_task; /* a task moving charges */
439 wait_queue_head_t waitq; /* a waitq for other context */
440 } mc = {
441 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
442 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
443 };
444
445 static bool move_anon(void)
446 {
447 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
448 }
449
450 static bool move_file(void)
451 {
452 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
453 }
454
455 /*
456 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
457 * limit reclaim to prevent infinite loops, if they ever occur.
458 */
459 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
460 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
461
462 enum charge_type {
463 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
464 MEM_CGROUP_CHARGE_TYPE_ANON,
465 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
466 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
467 NR_CHARGE_TYPE,
468 };
469
470 /* for encoding cft->private value on file */
471 enum res_type {
472 _MEM,
473 _MEMSWAP,
474 _OOM_TYPE,
475 _KMEM,
476 };
477
478 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
479 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
480 #define MEMFILE_ATTR(val) ((val) & 0xffff)
481 /* Used for OOM nofiier */
482 #define OOM_CONTROL (0)
483
484 /*
485 * Reclaim flags for mem_cgroup_hierarchical_reclaim
486 */
487 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
488 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
489 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
490 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
491
492 /*
493 * The memcg_create_mutex will be held whenever a new cgroup is created.
494 * As a consequence, any change that needs to protect against new child cgroups
495 * appearing has to hold it as well.
496 */
497 static DEFINE_MUTEX(memcg_create_mutex);
498
499 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
500 {
501 return s ? container_of(s, struct mem_cgroup, css) : NULL;
502 }
503
504 /* Some nice accessors for the vmpressure. */
505 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
506 {
507 if (!memcg)
508 memcg = root_mem_cgroup;
509 return &memcg->vmpressure;
510 }
511
512 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
513 {
514 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
515 }
516
517 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
518 {
519 return (memcg == root_mem_cgroup);
520 }
521
522 /*
523 * We restrict the id in the range of [1, 65535], so it can fit into
524 * an unsigned short.
525 */
526 #define MEM_CGROUP_ID_MAX USHRT_MAX
527
528 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
529 {
530 /*
531 * The ID of the root cgroup is 0, but memcg treat 0 as an
532 * invalid ID, so we return (cgroup_id + 1).
533 */
534 return memcg->css.cgroup->id + 1;
535 }
536
537 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
538 {
539 struct cgroup_subsys_state *css;
540
541 css = css_from_id(id - 1, &mem_cgroup_subsys);
542 return mem_cgroup_from_css(css);
543 }
544
545 /* Writing them here to avoid exposing memcg's inner layout */
546 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
547
548 void sock_update_memcg(struct sock *sk)
549 {
550 if (mem_cgroup_sockets_enabled) {
551 struct mem_cgroup *memcg;
552 struct cg_proto *cg_proto;
553
554 BUG_ON(!sk->sk_prot->proto_cgroup);
555
556 /* Socket cloning can throw us here with sk_cgrp already
557 * filled. It won't however, necessarily happen from
558 * process context. So the test for root memcg given
559 * the current task's memcg won't help us in this case.
560 *
561 * Respecting the original socket's memcg is a better
562 * decision in this case.
563 */
564 if (sk->sk_cgrp) {
565 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
566 css_get(&sk->sk_cgrp->memcg->css);
567 return;
568 }
569
570 rcu_read_lock();
571 memcg = mem_cgroup_from_task(current);
572 cg_proto = sk->sk_prot->proto_cgroup(memcg);
573 if (!mem_cgroup_is_root(memcg) &&
574 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
575 sk->sk_cgrp = cg_proto;
576 }
577 rcu_read_unlock();
578 }
579 }
580 EXPORT_SYMBOL(sock_update_memcg);
581
582 void sock_release_memcg(struct sock *sk)
583 {
584 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
585 struct mem_cgroup *memcg;
586 WARN_ON(!sk->sk_cgrp->memcg);
587 memcg = sk->sk_cgrp->memcg;
588 css_put(&sk->sk_cgrp->memcg->css);
589 }
590 }
591
592 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
593 {
594 if (!memcg || mem_cgroup_is_root(memcg))
595 return NULL;
596
597 return &memcg->tcp_mem;
598 }
599 EXPORT_SYMBOL(tcp_proto_cgroup);
600
601 static void disarm_sock_keys(struct mem_cgroup *memcg)
602 {
603 if (!memcg_proto_activated(&memcg->tcp_mem))
604 return;
605 static_key_slow_dec(&memcg_socket_limit_enabled);
606 }
607 #else
608 static void disarm_sock_keys(struct mem_cgroup *memcg)
609 {
610 }
611 #endif
612
613 #ifdef CONFIG_MEMCG_KMEM
614 /*
615 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
616 * The main reason for not using cgroup id for this:
617 * this works better in sparse environments, where we have a lot of memcgs,
618 * but only a few kmem-limited. Or also, if we have, for instance, 200
619 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
620 * 200 entry array for that.
621 *
622 * The current size of the caches array is stored in
623 * memcg_limited_groups_array_size. It will double each time we have to
624 * increase it.
625 */
626 static DEFINE_IDA(kmem_limited_groups);
627 int memcg_limited_groups_array_size;
628
629 /*
630 * MIN_SIZE is different than 1, because we would like to avoid going through
631 * the alloc/free process all the time. In a small machine, 4 kmem-limited
632 * cgroups is a reasonable guess. In the future, it could be a parameter or
633 * tunable, but that is strictly not necessary.
634 *
635 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
636 * this constant directly from cgroup, but it is understandable that this is
637 * better kept as an internal representation in cgroup.c. In any case, the
638 * cgrp_id space is not getting any smaller, and we don't have to necessarily
639 * increase ours as well if it increases.
640 */
641 #define MEMCG_CACHES_MIN_SIZE 4
642 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
643
644 /*
645 * A lot of the calls to the cache allocation functions are expected to be
646 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
647 * conditional to this static branch, we'll have to allow modules that does
648 * kmem_cache_alloc and the such to see this symbol as well
649 */
650 struct static_key memcg_kmem_enabled_key;
651 EXPORT_SYMBOL(memcg_kmem_enabled_key);
652
653 static void disarm_kmem_keys(struct mem_cgroup *memcg)
654 {
655 if (memcg_kmem_is_active(memcg)) {
656 static_key_slow_dec(&memcg_kmem_enabled_key);
657 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
658 }
659 /*
660 * This check can't live in kmem destruction function,
661 * since the charges will outlive the cgroup
662 */
663 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
664 }
665 #else
666 static void disarm_kmem_keys(struct mem_cgroup *memcg)
667 {
668 }
669 #endif /* CONFIG_MEMCG_KMEM */
670
671 static void disarm_static_keys(struct mem_cgroup *memcg)
672 {
673 disarm_sock_keys(memcg);
674 disarm_kmem_keys(memcg);
675 }
676
677 static void drain_all_stock_async(struct mem_cgroup *memcg);
678
679 static struct mem_cgroup_per_zone *
680 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
681 {
682 VM_BUG_ON((unsigned)nid >= nr_node_ids);
683 return &memcg->nodeinfo[nid]->zoneinfo[zid];
684 }
685
686 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
687 {
688 return &memcg->css;
689 }
690
691 static struct mem_cgroup_per_zone *
692 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
693 {
694 int nid = page_to_nid(page);
695 int zid = page_zonenum(page);
696
697 return mem_cgroup_zoneinfo(memcg, nid, zid);
698 }
699
700 static struct mem_cgroup_tree_per_zone *
701 soft_limit_tree_node_zone(int nid, int zid)
702 {
703 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
704 }
705
706 static struct mem_cgroup_tree_per_zone *
707 soft_limit_tree_from_page(struct page *page)
708 {
709 int nid = page_to_nid(page);
710 int zid = page_zonenum(page);
711
712 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
713 }
714
715 static void
716 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
717 struct mem_cgroup_per_zone *mz,
718 struct mem_cgroup_tree_per_zone *mctz,
719 unsigned long long new_usage_in_excess)
720 {
721 struct rb_node **p = &mctz->rb_root.rb_node;
722 struct rb_node *parent = NULL;
723 struct mem_cgroup_per_zone *mz_node;
724
725 if (mz->on_tree)
726 return;
727
728 mz->usage_in_excess = new_usage_in_excess;
729 if (!mz->usage_in_excess)
730 return;
731 while (*p) {
732 parent = *p;
733 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
734 tree_node);
735 if (mz->usage_in_excess < mz_node->usage_in_excess)
736 p = &(*p)->rb_left;
737 /*
738 * We can't avoid mem cgroups that are over their soft
739 * limit by the same amount
740 */
741 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
742 p = &(*p)->rb_right;
743 }
744 rb_link_node(&mz->tree_node, parent, p);
745 rb_insert_color(&mz->tree_node, &mctz->rb_root);
746 mz->on_tree = true;
747 }
748
749 static void
750 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
751 struct mem_cgroup_per_zone *mz,
752 struct mem_cgroup_tree_per_zone *mctz)
753 {
754 if (!mz->on_tree)
755 return;
756 rb_erase(&mz->tree_node, &mctz->rb_root);
757 mz->on_tree = false;
758 }
759
760 static void
761 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
762 struct mem_cgroup_per_zone *mz,
763 struct mem_cgroup_tree_per_zone *mctz)
764 {
765 spin_lock(&mctz->lock);
766 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
767 spin_unlock(&mctz->lock);
768 }
769
770
771 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
772 {
773 unsigned long long excess;
774 struct mem_cgroup_per_zone *mz;
775 struct mem_cgroup_tree_per_zone *mctz;
776 int nid = page_to_nid(page);
777 int zid = page_zonenum(page);
778 mctz = soft_limit_tree_from_page(page);
779
780 /*
781 * Necessary to update all ancestors when hierarchy is used.
782 * because their event counter is not touched.
783 */
784 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
785 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
786 excess = res_counter_soft_limit_excess(&memcg->res);
787 /*
788 * We have to update the tree if mz is on RB-tree or
789 * mem is over its softlimit.
790 */
791 if (excess || mz->on_tree) {
792 spin_lock(&mctz->lock);
793 /* if on-tree, remove it */
794 if (mz->on_tree)
795 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
796 /*
797 * Insert again. mz->usage_in_excess will be updated.
798 * If excess is 0, no tree ops.
799 */
800 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
801 spin_unlock(&mctz->lock);
802 }
803 }
804 }
805
806 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
807 {
808 int node, zone;
809 struct mem_cgroup_per_zone *mz;
810 struct mem_cgroup_tree_per_zone *mctz;
811
812 for_each_node(node) {
813 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
814 mz = mem_cgroup_zoneinfo(memcg, node, zone);
815 mctz = soft_limit_tree_node_zone(node, zone);
816 mem_cgroup_remove_exceeded(memcg, mz, mctz);
817 }
818 }
819 }
820
821 static struct mem_cgroup_per_zone *
822 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
823 {
824 struct rb_node *rightmost = NULL;
825 struct mem_cgroup_per_zone *mz;
826
827 retry:
828 mz = NULL;
829 rightmost = rb_last(&mctz->rb_root);
830 if (!rightmost)
831 goto done; /* Nothing to reclaim from */
832
833 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
834 /*
835 * Remove the node now but someone else can add it back,
836 * we will to add it back at the end of reclaim to its correct
837 * position in the tree.
838 */
839 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
840 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
841 !css_tryget(&mz->memcg->css))
842 goto retry;
843 done:
844 return mz;
845 }
846
847 static struct mem_cgroup_per_zone *
848 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
849 {
850 struct mem_cgroup_per_zone *mz;
851
852 spin_lock(&mctz->lock);
853 mz = __mem_cgroup_largest_soft_limit_node(mctz);
854 spin_unlock(&mctz->lock);
855 return mz;
856 }
857
858 /*
859 * Implementation Note: reading percpu statistics for memcg.
860 *
861 * Both of vmstat[] and percpu_counter has threshold and do periodic
862 * synchronization to implement "quick" read. There are trade-off between
863 * reading cost and precision of value. Then, we may have a chance to implement
864 * a periodic synchronizion of counter in memcg's counter.
865 *
866 * But this _read() function is used for user interface now. The user accounts
867 * memory usage by memory cgroup and he _always_ requires exact value because
868 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
869 * have to visit all online cpus and make sum. So, for now, unnecessary
870 * synchronization is not implemented. (just implemented for cpu hotplug)
871 *
872 * If there are kernel internal actions which can make use of some not-exact
873 * value, and reading all cpu value can be performance bottleneck in some
874 * common workload, threashold and synchonization as vmstat[] should be
875 * implemented.
876 */
877 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
878 enum mem_cgroup_stat_index idx)
879 {
880 long val = 0;
881 int cpu;
882
883 get_online_cpus();
884 for_each_online_cpu(cpu)
885 val += per_cpu(memcg->stat->count[idx], cpu);
886 #ifdef CONFIG_HOTPLUG_CPU
887 spin_lock(&memcg->pcp_counter_lock);
888 val += memcg->nocpu_base.count[idx];
889 spin_unlock(&memcg->pcp_counter_lock);
890 #endif
891 put_online_cpus();
892 return val;
893 }
894
895 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
896 bool charge)
897 {
898 int val = (charge) ? 1 : -1;
899 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
900 }
901
902 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
903 enum mem_cgroup_events_index idx)
904 {
905 unsigned long val = 0;
906 int cpu;
907
908 get_online_cpus();
909 for_each_online_cpu(cpu)
910 val += per_cpu(memcg->stat->events[idx], cpu);
911 #ifdef CONFIG_HOTPLUG_CPU
912 spin_lock(&memcg->pcp_counter_lock);
913 val += memcg->nocpu_base.events[idx];
914 spin_unlock(&memcg->pcp_counter_lock);
915 #endif
916 put_online_cpus();
917 return val;
918 }
919
920 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
921 struct page *page,
922 bool anon, int nr_pages)
923 {
924 preempt_disable();
925
926 /*
927 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
928 * counted as CACHE even if it's on ANON LRU.
929 */
930 if (anon)
931 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
932 nr_pages);
933 else
934 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
935 nr_pages);
936
937 if (PageTransHuge(page))
938 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
939 nr_pages);
940
941 /* pagein of a big page is an event. So, ignore page size */
942 if (nr_pages > 0)
943 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
944 else {
945 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
946 nr_pages = -nr_pages; /* for event */
947 }
948
949 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
950
951 preempt_enable();
952 }
953
954 unsigned long
955 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
956 {
957 struct mem_cgroup_per_zone *mz;
958
959 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
960 return mz->lru_size[lru];
961 }
962
963 static unsigned long
964 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
965 unsigned int lru_mask)
966 {
967 struct mem_cgroup_per_zone *mz;
968 enum lru_list lru;
969 unsigned long ret = 0;
970
971 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
972
973 for_each_lru(lru) {
974 if (BIT(lru) & lru_mask)
975 ret += mz->lru_size[lru];
976 }
977 return ret;
978 }
979
980 static unsigned long
981 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
982 int nid, unsigned int lru_mask)
983 {
984 u64 total = 0;
985 int zid;
986
987 for (zid = 0; zid < MAX_NR_ZONES; zid++)
988 total += mem_cgroup_zone_nr_lru_pages(memcg,
989 nid, zid, lru_mask);
990
991 return total;
992 }
993
994 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
995 unsigned int lru_mask)
996 {
997 int nid;
998 u64 total = 0;
999
1000 for_each_node_state(nid, N_MEMORY)
1001 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
1002 return total;
1003 }
1004
1005 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1006 enum mem_cgroup_events_target target)
1007 {
1008 unsigned long val, next;
1009
1010 val = __this_cpu_read(memcg->stat->nr_page_events);
1011 next = __this_cpu_read(memcg->stat->targets[target]);
1012 /* from time_after() in jiffies.h */
1013 if ((long)next - (long)val < 0) {
1014 switch (target) {
1015 case MEM_CGROUP_TARGET_THRESH:
1016 next = val + THRESHOLDS_EVENTS_TARGET;
1017 break;
1018 case MEM_CGROUP_TARGET_SOFTLIMIT:
1019 next = val + SOFTLIMIT_EVENTS_TARGET;
1020 break;
1021 case MEM_CGROUP_TARGET_NUMAINFO:
1022 next = val + NUMAINFO_EVENTS_TARGET;
1023 break;
1024 default:
1025 break;
1026 }
1027 __this_cpu_write(memcg->stat->targets[target], next);
1028 return true;
1029 }
1030 return false;
1031 }
1032
1033 /*
1034 * Check events in order.
1035 *
1036 */
1037 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1038 {
1039 preempt_disable();
1040 /* threshold event is triggered in finer grain than soft limit */
1041 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1042 MEM_CGROUP_TARGET_THRESH))) {
1043 bool do_softlimit;
1044 bool do_numainfo __maybe_unused;
1045
1046 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1047 MEM_CGROUP_TARGET_SOFTLIMIT);
1048 #if MAX_NUMNODES > 1
1049 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1050 MEM_CGROUP_TARGET_NUMAINFO);
1051 #endif
1052 preempt_enable();
1053
1054 mem_cgroup_threshold(memcg);
1055 if (unlikely(do_softlimit))
1056 mem_cgroup_update_tree(memcg, page);
1057 #if MAX_NUMNODES > 1
1058 if (unlikely(do_numainfo))
1059 atomic_inc(&memcg->numainfo_events);
1060 #endif
1061 } else
1062 preempt_enable();
1063 }
1064
1065 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1066 {
1067 /*
1068 * mm_update_next_owner() may clear mm->owner to NULL
1069 * if it races with swapoff, page migration, etc.
1070 * So this can be called with p == NULL.
1071 */
1072 if (unlikely(!p))
1073 return NULL;
1074
1075 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1076 }
1077
1078 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1079 {
1080 struct mem_cgroup *memcg = NULL;
1081
1082 if (!mm)
1083 return NULL;
1084 /*
1085 * Because we have no locks, mm->owner's may be being moved to other
1086 * cgroup. We use css_tryget() here even if this looks
1087 * pessimistic (rather than adding locks here).
1088 */
1089 rcu_read_lock();
1090 do {
1091 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1092 if (unlikely(!memcg))
1093 break;
1094 } while (!css_tryget(&memcg->css));
1095 rcu_read_unlock();
1096 return memcg;
1097 }
1098
1099 /*
1100 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1101 * ref. count) or NULL if the whole root's subtree has been visited.
1102 *
1103 * helper function to be used by mem_cgroup_iter
1104 */
1105 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1106 struct mem_cgroup *last_visited)
1107 {
1108 struct cgroup_subsys_state *prev_css, *next_css;
1109
1110 prev_css = last_visited ? &last_visited->css : NULL;
1111 skip_node:
1112 next_css = css_next_descendant_pre(prev_css, &root->css);
1113
1114 /*
1115 * Even if we found a group we have to make sure it is
1116 * alive. css && !memcg means that the groups should be
1117 * skipped and we should continue the tree walk.
1118 * last_visited css is safe to use because it is
1119 * protected by css_get and the tree walk is rcu safe.
1120 *
1121 * We do not take a reference on the root of the tree walk
1122 * because we might race with the root removal when it would
1123 * be the only node in the iterated hierarchy and mem_cgroup_iter
1124 * would end up in an endless loop because it expects that at
1125 * least one valid node will be returned. Root cannot disappear
1126 * because caller of the iterator should hold it already so
1127 * skipping css reference should be safe.
1128 */
1129 if (next_css) {
1130 if ((next_css->flags & CSS_ONLINE) &&
1131 (next_css == &root->css || css_tryget(next_css)))
1132 return mem_cgroup_from_css(next_css);
1133
1134 prev_css = next_css;
1135 goto skip_node;
1136 }
1137
1138 return NULL;
1139 }
1140
1141 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1142 {
1143 /*
1144 * When a group in the hierarchy below root is destroyed, the
1145 * hierarchy iterator can no longer be trusted since it might
1146 * have pointed to the destroyed group. Invalidate it.
1147 */
1148 atomic_inc(&root->dead_count);
1149 }
1150
1151 static struct mem_cgroup *
1152 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1153 struct mem_cgroup *root,
1154 int *sequence)
1155 {
1156 struct mem_cgroup *position = NULL;
1157 /*
1158 * A cgroup destruction happens in two stages: offlining and
1159 * release. They are separated by a RCU grace period.
1160 *
1161 * If the iterator is valid, we may still race with an
1162 * offlining. The RCU lock ensures the object won't be
1163 * released, tryget will fail if we lost the race.
1164 */
1165 *sequence = atomic_read(&root->dead_count);
1166 if (iter->last_dead_count == *sequence) {
1167 smp_rmb();
1168 position = iter->last_visited;
1169
1170 /*
1171 * We cannot take a reference to root because we might race
1172 * with root removal and returning NULL would end up in
1173 * an endless loop on the iterator user level when root
1174 * would be returned all the time.
1175 */
1176 if (position && position != root &&
1177 !css_tryget(&position->css))
1178 position = NULL;
1179 }
1180 return position;
1181 }
1182
1183 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1184 struct mem_cgroup *last_visited,
1185 struct mem_cgroup *new_position,
1186 struct mem_cgroup *root,
1187 int sequence)
1188 {
1189 /* root reference counting symmetric to mem_cgroup_iter_load */
1190 if (last_visited && last_visited != root)
1191 css_put(&last_visited->css);
1192 /*
1193 * We store the sequence count from the time @last_visited was
1194 * loaded successfully instead of rereading it here so that we
1195 * don't lose destruction events in between. We could have
1196 * raced with the destruction of @new_position after all.
1197 */
1198 iter->last_visited = new_position;
1199 smp_wmb();
1200 iter->last_dead_count = sequence;
1201 }
1202
1203 /**
1204 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1205 * @root: hierarchy root
1206 * @prev: previously returned memcg, NULL on first invocation
1207 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1208 *
1209 * Returns references to children of the hierarchy below @root, or
1210 * @root itself, or %NULL after a full round-trip.
1211 *
1212 * Caller must pass the return value in @prev on subsequent
1213 * invocations for reference counting, or use mem_cgroup_iter_break()
1214 * to cancel a hierarchy walk before the round-trip is complete.
1215 *
1216 * Reclaimers can specify a zone and a priority level in @reclaim to
1217 * divide up the memcgs in the hierarchy among all concurrent
1218 * reclaimers operating on the same zone and priority.
1219 */
1220 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1221 struct mem_cgroup *prev,
1222 struct mem_cgroup_reclaim_cookie *reclaim)
1223 {
1224 struct mem_cgroup *memcg = NULL;
1225 struct mem_cgroup *last_visited = NULL;
1226
1227 if (mem_cgroup_disabled())
1228 return NULL;
1229
1230 if (!root)
1231 root = root_mem_cgroup;
1232
1233 if (prev && !reclaim)
1234 last_visited = prev;
1235
1236 if (!root->use_hierarchy && root != root_mem_cgroup) {
1237 if (prev)
1238 goto out_css_put;
1239 return root;
1240 }
1241
1242 rcu_read_lock();
1243 while (!memcg) {
1244 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1245 int uninitialized_var(seq);
1246
1247 if (reclaim) {
1248 int nid = zone_to_nid(reclaim->zone);
1249 int zid = zone_idx(reclaim->zone);
1250 struct mem_cgroup_per_zone *mz;
1251
1252 mz = mem_cgroup_zoneinfo(root, nid, zid);
1253 iter = &mz->reclaim_iter[reclaim->priority];
1254 if (prev && reclaim->generation != iter->generation) {
1255 iter->last_visited = NULL;
1256 goto out_unlock;
1257 }
1258
1259 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1260 }
1261
1262 memcg = __mem_cgroup_iter_next(root, last_visited);
1263
1264 if (reclaim) {
1265 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1266 seq);
1267
1268 if (!memcg)
1269 iter->generation++;
1270 else if (!prev && memcg)
1271 reclaim->generation = iter->generation;
1272 }
1273
1274 if (prev && !memcg)
1275 goto out_unlock;
1276 }
1277 out_unlock:
1278 rcu_read_unlock();
1279 out_css_put:
1280 if (prev && prev != root)
1281 css_put(&prev->css);
1282
1283 return memcg;
1284 }
1285
1286 /**
1287 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1288 * @root: hierarchy root
1289 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1290 */
1291 void mem_cgroup_iter_break(struct mem_cgroup *root,
1292 struct mem_cgroup *prev)
1293 {
1294 if (!root)
1295 root = root_mem_cgroup;
1296 if (prev && prev != root)
1297 css_put(&prev->css);
1298 }
1299
1300 /*
1301 * Iteration constructs for visiting all cgroups (under a tree). If
1302 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1303 * be used for reference counting.
1304 */
1305 #define for_each_mem_cgroup_tree(iter, root) \
1306 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1307 iter != NULL; \
1308 iter = mem_cgroup_iter(root, iter, NULL))
1309
1310 #define for_each_mem_cgroup(iter) \
1311 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1312 iter != NULL; \
1313 iter = mem_cgroup_iter(NULL, iter, NULL))
1314
1315 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1316 {
1317 struct mem_cgroup *memcg;
1318
1319 rcu_read_lock();
1320 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1321 if (unlikely(!memcg))
1322 goto out;
1323
1324 switch (idx) {
1325 case PGFAULT:
1326 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1327 break;
1328 case PGMAJFAULT:
1329 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1330 break;
1331 default:
1332 BUG();
1333 }
1334 out:
1335 rcu_read_unlock();
1336 }
1337 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1338
1339 /**
1340 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1341 * @zone: zone of the wanted lruvec
1342 * @memcg: memcg of the wanted lruvec
1343 *
1344 * Returns the lru list vector holding pages for the given @zone and
1345 * @mem. This can be the global zone lruvec, if the memory controller
1346 * is disabled.
1347 */
1348 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1349 struct mem_cgroup *memcg)
1350 {
1351 struct mem_cgroup_per_zone *mz;
1352 struct lruvec *lruvec;
1353
1354 if (mem_cgroup_disabled()) {
1355 lruvec = &zone->lruvec;
1356 goto out;
1357 }
1358
1359 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1360 lruvec = &mz->lruvec;
1361 out:
1362 /*
1363 * Since a node can be onlined after the mem_cgroup was created,
1364 * we have to be prepared to initialize lruvec->zone here;
1365 * and if offlined then reonlined, we need to reinitialize it.
1366 */
1367 if (unlikely(lruvec->zone != zone))
1368 lruvec->zone = zone;
1369 return lruvec;
1370 }
1371
1372 /*
1373 * Following LRU functions are allowed to be used without PCG_LOCK.
1374 * Operations are called by routine of global LRU independently from memcg.
1375 * What we have to take care of here is validness of pc->mem_cgroup.
1376 *
1377 * Changes to pc->mem_cgroup happens when
1378 * 1. charge
1379 * 2. moving account
1380 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1381 * It is added to LRU before charge.
1382 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1383 * When moving account, the page is not on LRU. It's isolated.
1384 */
1385
1386 /**
1387 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1388 * @page: the page
1389 * @zone: zone of the page
1390 */
1391 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1392 {
1393 struct mem_cgroup_per_zone *mz;
1394 struct mem_cgroup *memcg;
1395 struct page_cgroup *pc;
1396 struct lruvec *lruvec;
1397
1398 if (mem_cgroup_disabled()) {
1399 lruvec = &zone->lruvec;
1400 goto out;
1401 }
1402
1403 pc = lookup_page_cgroup(page);
1404 memcg = pc->mem_cgroup;
1405
1406 /*
1407 * Surreptitiously switch any uncharged offlist page to root:
1408 * an uncharged page off lru does nothing to secure
1409 * its former mem_cgroup from sudden removal.
1410 *
1411 * Our caller holds lru_lock, and PageCgroupUsed is updated
1412 * under page_cgroup lock: between them, they make all uses
1413 * of pc->mem_cgroup safe.
1414 */
1415 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1416 pc->mem_cgroup = memcg = root_mem_cgroup;
1417
1418 mz = page_cgroup_zoneinfo(memcg, page);
1419 lruvec = &mz->lruvec;
1420 out:
1421 /*
1422 * Since a node can be onlined after the mem_cgroup was created,
1423 * we have to be prepared to initialize lruvec->zone here;
1424 * and if offlined then reonlined, we need to reinitialize it.
1425 */
1426 if (unlikely(lruvec->zone != zone))
1427 lruvec->zone = zone;
1428 return lruvec;
1429 }
1430
1431 /**
1432 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1433 * @lruvec: mem_cgroup per zone lru vector
1434 * @lru: index of lru list the page is sitting on
1435 * @nr_pages: positive when adding or negative when removing
1436 *
1437 * This function must be called when a page is added to or removed from an
1438 * lru list.
1439 */
1440 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1441 int nr_pages)
1442 {
1443 struct mem_cgroup_per_zone *mz;
1444 unsigned long *lru_size;
1445
1446 if (mem_cgroup_disabled())
1447 return;
1448
1449 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1450 lru_size = mz->lru_size + lru;
1451 *lru_size += nr_pages;
1452 VM_BUG_ON((long)(*lru_size) < 0);
1453 }
1454
1455 /*
1456 * Checks whether given mem is same or in the root_mem_cgroup's
1457 * hierarchy subtree
1458 */
1459 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1460 struct mem_cgroup *memcg)
1461 {
1462 if (root_memcg == memcg)
1463 return true;
1464 if (!root_memcg->use_hierarchy || !memcg)
1465 return false;
1466 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1467 }
1468
1469 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1470 struct mem_cgroup *memcg)
1471 {
1472 bool ret;
1473
1474 rcu_read_lock();
1475 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1476 rcu_read_unlock();
1477 return ret;
1478 }
1479
1480 bool task_in_mem_cgroup(struct task_struct *task,
1481 const struct mem_cgroup *memcg)
1482 {
1483 struct mem_cgroup *curr = NULL;
1484 struct task_struct *p;
1485 bool ret;
1486
1487 p = find_lock_task_mm(task);
1488 if (p) {
1489 curr = try_get_mem_cgroup_from_mm(p->mm);
1490 task_unlock(p);
1491 } else {
1492 /*
1493 * All threads may have already detached their mm's, but the oom
1494 * killer still needs to detect if they have already been oom
1495 * killed to prevent needlessly killing additional tasks.
1496 */
1497 rcu_read_lock();
1498 curr = mem_cgroup_from_task(task);
1499 if (curr)
1500 css_get(&curr->css);
1501 rcu_read_unlock();
1502 }
1503 if (!curr)
1504 return false;
1505 /*
1506 * We should check use_hierarchy of "memcg" not "curr". Because checking
1507 * use_hierarchy of "curr" here make this function true if hierarchy is
1508 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1509 * hierarchy(even if use_hierarchy is disabled in "memcg").
1510 */
1511 ret = mem_cgroup_same_or_subtree(memcg, curr);
1512 css_put(&curr->css);
1513 return ret;
1514 }
1515
1516 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1517 {
1518 unsigned long inactive_ratio;
1519 unsigned long inactive;
1520 unsigned long active;
1521 unsigned long gb;
1522
1523 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1524 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1525
1526 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1527 if (gb)
1528 inactive_ratio = int_sqrt(10 * gb);
1529 else
1530 inactive_ratio = 1;
1531
1532 return inactive * inactive_ratio < active;
1533 }
1534
1535 #define mem_cgroup_from_res_counter(counter, member) \
1536 container_of(counter, struct mem_cgroup, member)
1537
1538 /**
1539 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1540 * @memcg: the memory cgroup
1541 *
1542 * Returns the maximum amount of memory @mem can be charged with, in
1543 * pages.
1544 */
1545 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1546 {
1547 unsigned long long margin;
1548
1549 margin = res_counter_margin(&memcg->res);
1550 if (do_swap_account)
1551 margin = min(margin, res_counter_margin(&memcg->memsw));
1552 return margin >> PAGE_SHIFT;
1553 }
1554
1555 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1556 {
1557 /* root ? */
1558 if (!css_parent(&memcg->css))
1559 return vm_swappiness;
1560
1561 return memcg->swappiness;
1562 }
1563
1564 /*
1565 * memcg->moving_account is used for checking possibility that some thread is
1566 * calling move_account(). When a thread on CPU-A starts moving pages under
1567 * a memcg, other threads should check memcg->moving_account under
1568 * rcu_read_lock(), like this:
1569 *
1570 * CPU-A CPU-B
1571 * rcu_read_lock()
1572 * memcg->moving_account+1 if (memcg->mocing_account)
1573 * take heavy locks.
1574 * synchronize_rcu() update something.
1575 * rcu_read_unlock()
1576 * start move here.
1577 */
1578
1579 /* for quick checking without looking up memcg */
1580 atomic_t memcg_moving __read_mostly;
1581
1582 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1583 {
1584 atomic_inc(&memcg_moving);
1585 atomic_inc(&memcg->moving_account);
1586 synchronize_rcu();
1587 }
1588
1589 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1590 {
1591 /*
1592 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1593 * We check NULL in callee rather than caller.
1594 */
1595 if (memcg) {
1596 atomic_dec(&memcg_moving);
1597 atomic_dec(&memcg->moving_account);
1598 }
1599 }
1600
1601 /*
1602 * 2 routines for checking "mem" is under move_account() or not.
1603 *
1604 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1605 * is used for avoiding races in accounting. If true,
1606 * pc->mem_cgroup may be overwritten.
1607 *
1608 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1609 * under hierarchy of moving cgroups. This is for
1610 * waiting at hith-memory prressure caused by "move".
1611 */
1612
1613 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1614 {
1615 VM_BUG_ON(!rcu_read_lock_held());
1616 return atomic_read(&memcg->moving_account) > 0;
1617 }
1618
1619 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1620 {
1621 struct mem_cgroup *from;
1622 struct mem_cgroup *to;
1623 bool ret = false;
1624 /*
1625 * Unlike task_move routines, we access mc.to, mc.from not under
1626 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1627 */
1628 spin_lock(&mc.lock);
1629 from = mc.from;
1630 to = mc.to;
1631 if (!from)
1632 goto unlock;
1633
1634 ret = mem_cgroup_same_or_subtree(memcg, from)
1635 || mem_cgroup_same_or_subtree(memcg, to);
1636 unlock:
1637 spin_unlock(&mc.lock);
1638 return ret;
1639 }
1640
1641 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1642 {
1643 if (mc.moving_task && current != mc.moving_task) {
1644 if (mem_cgroup_under_move(memcg)) {
1645 DEFINE_WAIT(wait);
1646 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1647 /* moving charge context might have finished. */
1648 if (mc.moving_task)
1649 schedule();
1650 finish_wait(&mc.waitq, &wait);
1651 return true;
1652 }
1653 }
1654 return false;
1655 }
1656
1657 /*
1658 * Take this lock when
1659 * - a code tries to modify page's memcg while it's USED.
1660 * - a code tries to modify page state accounting in a memcg.
1661 * see mem_cgroup_stolen(), too.
1662 */
1663 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1664 unsigned long *flags)
1665 {
1666 spin_lock_irqsave(&memcg->move_lock, *flags);
1667 }
1668
1669 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1670 unsigned long *flags)
1671 {
1672 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1673 }
1674
1675 #define K(x) ((x) << (PAGE_SHIFT-10))
1676 /**
1677 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1678 * @memcg: The memory cgroup that went over limit
1679 * @p: Task that is going to be killed
1680 *
1681 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1682 * enabled
1683 */
1684 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1685 {
1686 /*
1687 * protects memcg_name and makes sure that parallel ooms do not
1688 * interleave
1689 */
1690 static DEFINE_SPINLOCK(oom_info_lock);
1691 struct cgroup *task_cgrp;
1692 struct cgroup *mem_cgrp;
1693 static char memcg_name[PATH_MAX];
1694 int ret;
1695 struct mem_cgroup *iter;
1696 unsigned int i;
1697
1698 if (!p)
1699 return;
1700
1701 spin_lock(&oom_info_lock);
1702 rcu_read_lock();
1703
1704 mem_cgrp = memcg->css.cgroup;
1705 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1706
1707 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1708 if (ret < 0) {
1709 /*
1710 * Unfortunately, we are unable to convert to a useful name
1711 * But we'll still print out the usage information
1712 */
1713 rcu_read_unlock();
1714 goto done;
1715 }
1716 rcu_read_unlock();
1717
1718 pr_info("Task in %s killed", memcg_name);
1719
1720 rcu_read_lock();
1721 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1722 if (ret < 0) {
1723 rcu_read_unlock();
1724 goto done;
1725 }
1726 rcu_read_unlock();
1727
1728 /*
1729 * Continues from above, so we don't need an KERN_ level
1730 */
1731 pr_cont(" as a result of limit of %s\n", memcg_name);
1732 done:
1733
1734 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1735 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1736 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1737 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1738 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1739 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1740 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1741 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1742 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1743 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1744 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1745 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1746
1747 for_each_mem_cgroup_tree(iter, memcg) {
1748 pr_info("Memory cgroup stats");
1749
1750 rcu_read_lock();
1751 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1752 if (!ret)
1753 pr_cont(" for %s", memcg_name);
1754 rcu_read_unlock();
1755 pr_cont(":");
1756
1757 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1758 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1759 continue;
1760 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1761 K(mem_cgroup_read_stat(iter, i)));
1762 }
1763
1764 for (i = 0; i < NR_LRU_LISTS; i++)
1765 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1766 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1767
1768 pr_cont("\n");
1769 }
1770 spin_unlock(&oom_info_lock);
1771 }
1772
1773 /*
1774 * This function returns the number of memcg under hierarchy tree. Returns
1775 * 1(self count) if no children.
1776 */
1777 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1778 {
1779 int num = 0;
1780 struct mem_cgroup *iter;
1781
1782 for_each_mem_cgroup_tree(iter, memcg)
1783 num++;
1784 return num;
1785 }
1786
1787 /*
1788 * Return the memory (and swap, if configured) limit for a memcg.
1789 */
1790 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1791 {
1792 u64 limit;
1793
1794 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1795
1796 /*
1797 * Do not consider swap space if we cannot swap due to swappiness
1798 */
1799 if (mem_cgroup_swappiness(memcg)) {
1800 u64 memsw;
1801
1802 limit += total_swap_pages << PAGE_SHIFT;
1803 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1804
1805 /*
1806 * If memsw is finite and limits the amount of swap space
1807 * available to this memcg, return that limit.
1808 */
1809 limit = min(limit, memsw);
1810 }
1811
1812 return limit;
1813 }
1814
1815 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1816 int order)
1817 {
1818 struct mem_cgroup *iter;
1819 unsigned long chosen_points = 0;
1820 unsigned long totalpages;
1821 unsigned int points = 0;
1822 struct task_struct *chosen = NULL;
1823
1824 /*
1825 * If current has a pending SIGKILL or is exiting, then automatically
1826 * select it. The goal is to allow it to allocate so that it may
1827 * quickly exit and free its memory.
1828 */
1829 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1830 set_thread_flag(TIF_MEMDIE);
1831 return;
1832 }
1833
1834 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1835 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1836 for_each_mem_cgroup_tree(iter, memcg) {
1837 struct css_task_iter it;
1838 struct task_struct *task;
1839
1840 css_task_iter_start(&iter->css, &it);
1841 while ((task = css_task_iter_next(&it))) {
1842 switch (oom_scan_process_thread(task, totalpages, NULL,
1843 false)) {
1844 case OOM_SCAN_SELECT:
1845 if (chosen)
1846 put_task_struct(chosen);
1847 chosen = task;
1848 chosen_points = ULONG_MAX;
1849 get_task_struct(chosen);
1850 /* fall through */
1851 case OOM_SCAN_CONTINUE:
1852 continue;
1853 case OOM_SCAN_ABORT:
1854 css_task_iter_end(&it);
1855 mem_cgroup_iter_break(memcg, iter);
1856 if (chosen)
1857 put_task_struct(chosen);
1858 return;
1859 case OOM_SCAN_OK:
1860 break;
1861 };
1862 points = oom_badness(task, memcg, NULL, totalpages);
1863 if (!points || points < chosen_points)
1864 continue;
1865 /* Prefer thread group leaders for display purposes */
1866 if (points == chosen_points &&
1867 thread_group_leader(chosen))
1868 continue;
1869
1870 if (chosen)
1871 put_task_struct(chosen);
1872 chosen = task;
1873 chosen_points = points;
1874 get_task_struct(chosen);
1875 }
1876 css_task_iter_end(&it);
1877 }
1878
1879 if (!chosen)
1880 return;
1881 points = chosen_points * 1000 / totalpages;
1882 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1883 NULL, "Memory cgroup out of memory");
1884 }
1885
1886 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1887 gfp_t gfp_mask,
1888 unsigned long flags)
1889 {
1890 unsigned long total = 0;
1891 bool noswap = false;
1892 int loop;
1893
1894 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1895 noswap = true;
1896 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1897 noswap = true;
1898
1899 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1900 if (loop)
1901 drain_all_stock_async(memcg);
1902 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1903 /*
1904 * Allow limit shrinkers, which are triggered directly
1905 * by userspace, to catch signals and stop reclaim
1906 * after minimal progress, regardless of the margin.
1907 */
1908 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1909 break;
1910 if (mem_cgroup_margin(memcg))
1911 break;
1912 /*
1913 * If nothing was reclaimed after two attempts, there
1914 * may be no reclaimable pages in this hierarchy.
1915 */
1916 if (loop && !total)
1917 break;
1918 }
1919 return total;
1920 }
1921
1922 /**
1923 * test_mem_cgroup_node_reclaimable
1924 * @memcg: the target memcg
1925 * @nid: the node ID to be checked.
1926 * @noswap : specify true here if the user wants flle only information.
1927 *
1928 * This function returns whether the specified memcg contains any
1929 * reclaimable pages on a node. Returns true if there are any reclaimable
1930 * pages in the node.
1931 */
1932 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1933 int nid, bool noswap)
1934 {
1935 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1936 return true;
1937 if (noswap || !total_swap_pages)
1938 return false;
1939 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1940 return true;
1941 return false;
1942
1943 }
1944 #if MAX_NUMNODES > 1
1945
1946 /*
1947 * Always updating the nodemask is not very good - even if we have an empty
1948 * list or the wrong list here, we can start from some node and traverse all
1949 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1950 *
1951 */
1952 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1953 {
1954 int nid;
1955 /*
1956 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1957 * pagein/pageout changes since the last update.
1958 */
1959 if (!atomic_read(&memcg->numainfo_events))
1960 return;
1961 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1962 return;
1963
1964 /* make a nodemask where this memcg uses memory from */
1965 memcg->scan_nodes = node_states[N_MEMORY];
1966
1967 for_each_node_mask(nid, node_states[N_MEMORY]) {
1968
1969 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1970 node_clear(nid, memcg->scan_nodes);
1971 }
1972
1973 atomic_set(&memcg->numainfo_events, 0);
1974 atomic_set(&memcg->numainfo_updating, 0);
1975 }
1976
1977 /*
1978 * Selecting a node where we start reclaim from. Because what we need is just
1979 * reducing usage counter, start from anywhere is O,K. Considering
1980 * memory reclaim from current node, there are pros. and cons.
1981 *
1982 * Freeing memory from current node means freeing memory from a node which
1983 * we'll use or we've used. So, it may make LRU bad. And if several threads
1984 * hit limits, it will see a contention on a node. But freeing from remote
1985 * node means more costs for memory reclaim because of memory latency.
1986 *
1987 * Now, we use round-robin. Better algorithm is welcomed.
1988 */
1989 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1990 {
1991 int node;
1992
1993 mem_cgroup_may_update_nodemask(memcg);
1994 node = memcg->last_scanned_node;
1995
1996 node = next_node(node, memcg->scan_nodes);
1997 if (node == MAX_NUMNODES)
1998 node = first_node(memcg->scan_nodes);
1999 /*
2000 * We call this when we hit limit, not when pages are added to LRU.
2001 * No LRU may hold pages because all pages are UNEVICTABLE or
2002 * memcg is too small and all pages are not on LRU. In that case,
2003 * we use curret node.
2004 */
2005 if (unlikely(node == MAX_NUMNODES))
2006 node = numa_node_id();
2007
2008 memcg->last_scanned_node = node;
2009 return node;
2010 }
2011
2012 /*
2013 * Check all nodes whether it contains reclaimable pages or not.
2014 * For quick scan, we make use of scan_nodes. This will allow us to skip
2015 * unused nodes. But scan_nodes is lazily updated and may not cotain
2016 * enough new information. We need to do double check.
2017 */
2018 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2019 {
2020 int nid;
2021
2022 /*
2023 * quick check...making use of scan_node.
2024 * We can skip unused nodes.
2025 */
2026 if (!nodes_empty(memcg->scan_nodes)) {
2027 for (nid = first_node(memcg->scan_nodes);
2028 nid < MAX_NUMNODES;
2029 nid = next_node(nid, memcg->scan_nodes)) {
2030
2031 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2032 return true;
2033 }
2034 }
2035 /*
2036 * Check rest of nodes.
2037 */
2038 for_each_node_state(nid, N_MEMORY) {
2039 if (node_isset(nid, memcg->scan_nodes))
2040 continue;
2041 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2042 return true;
2043 }
2044 return false;
2045 }
2046
2047 #else
2048 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2049 {
2050 return 0;
2051 }
2052
2053 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2054 {
2055 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2056 }
2057 #endif
2058
2059 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2060 struct zone *zone,
2061 gfp_t gfp_mask,
2062 unsigned long *total_scanned)
2063 {
2064 struct mem_cgroup *victim = NULL;
2065 int total = 0;
2066 int loop = 0;
2067 unsigned long excess;
2068 unsigned long nr_scanned;
2069 struct mem_cgroup_reclaim_cookie reclaim = {
2070 .zone = zone,
2071 .priority = 0,
2072 };
2073
2074 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2075
2076 while (1) {
2077 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2078 if (!victim) {
2079 loop++;
2080 if (loop >= 2) {
2081 /*
2082 * If we have not been able to reclaim
2083 * anything, it might because there are
2084 * no reclaimable pages under this hierarchy
2085 */
2086 if (!total)
2087 break;
2088 /*
2089 * We want to do more targeted reclaim.
2090 * excess >> 2 is not to excessive so as to
2091 * reclaim too much, nor too less that we keep
2092 * coming back to reclaim from this cgroup
2093 */
2094 if (total >= (excess >> 2) ||
2095 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2096 break;
2097 }
2098 continue;
2099 }
2100 if (!mem_cgroup_reclaimable(victim, false))
2101 continue;
2102 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2103 zone, &nr_scanned);
2104 *total_scanned += nr_scanned;
2105 if (!res_counter_soft_limit_excess(&root_memcg->res))
2106 break;
2107 }
2108 mem_cgroup_iter_break(root_memcg, victim);
2109 return total;
2110 }
2111
2112 #ifdef CONFIG_LOCKDEP
2113 static struct lockdep_map memcg_oom_lock_dep_map = {
2114 .name = "memcg_oom_lock",
2115 };
2116 #endif
2117
2118 static DEFINE_SPINLOCK(memcg_oom_lock);
2119
2120 /*
2121 * Check OOM-Killer is already running under our hierarchy.
2122 * If someone is running, return false.
2123 */
2124 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2125 {
2126 struct mem_cgroup *iter, *failed = NULL;
2127
2128 spin_lock(&memcg_oom_lock);
2129
2130 for_each_mem_cgroup_tree(iter, memcg) {
2131 if (iter->oom_lock) {
2132 /*
2133 * this subtree of our hierarchy is already locked
2134 * so we cannot give a lock.
2135 */
2136 failed = iter;
2137 mem_cgroup_iter_break(memcg, iter);
2138 break;
2139 } else
2140 iter->oom_lock = true;
2141 }
2142
2143 if (failed) {
2144 /*
2145 * OK, we failed to lock the whole subtree so we have
2146 * to clean up what we set up to the failing subtree
2147 */
2148 for_each_mem_cgroup_tree(iter, memcg) {
2149 if (iter == failed) {
2150 mem_cgroup_iter_break(memcg, iter);
2151 break;
2152 }
2153 iter->oom_lock = false;
2154 }
2155 } else
2156 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2157
2158 spin_unlock(&memcg_oom_lock);
2159
2160 return !failed;
2161 }
2162
2163 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2164 {
2165 struct mem_cgroup *iter;
2166
2167 spin_lock(&memcg_oom_lock);
2168 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2169 for_each_mem_cgroup_tree(iter, memcg)
2170 iter->oom_lock = false;
2171 spin_unlock(&memcg_oom_lock);
2172 }
2173
2174 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2175 {
2176 struct mem_cgroup *iter;
2177
2178 for_each_mem_cgroup_tree(iter, memcg)
2179 atomic_inc(&iter->under_oom);
2180 }
2181
2182 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2183 {
2184 struct mem_cgroup *iter;
2185
2186 /*
2187 * When a new child is created while the hierarchy is under oom,
2188 * mem_cgroup_oom_lock() may not be called. We have to use
2189 * atomic_add_unless() here.
2190 */
2191 for_each_mem_cgroup_tree(iter, memcg)
2192 atomic_add_unless(&iter->under_oom, -1, 0);
2193 }
2194
2195 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2196
2197 struct oom_wait_info {
2198 struct mem_cgroup *memcg;
2199 wait_queue_t wait;
2200 };
2201
2202 static int memcg_oom_wake_function(wait_queue_t *wait,
2203 unsigned mode, int sync, void *arg)
2204 {
2205 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2206 struct mem_cgroup *oom_wait_memcg;
2207 struct oom_wait_info *oom_wait_info;
2208
2209 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2210 oom_wait_memcg = oom_wait_info->memcg;
2211
2212 /*
2213 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2214 * Then we can use css_is_ancestor without taking care of RCU.
2215 */
2216 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2217 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2218 return 0;
2219 return autoremove_wake_function(wait, mode, sync, arg);
2220 }
2221
2222 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2223 {
2224 atomic_inc(&memcg->oom_wakeups);
2225 /* for filtering, pass "memcg" as argument. */
2226 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2227 }
2228
2229 static void memcg_oom_recover(struct mem_cgroup *memcg)
2230 {
2231 if (memcg && atomic_read(&memcg->under_oom))
2232 memcg_wakeup_oom(memcg);
2233 }
2234
2235 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2236 {
2237 if (!current->memcg_oom.may_oom)
2238 return;
2239 /*
2240 * We are in the middle of the charge context here, so we
2241 * don't want to block when potentially sitting on a callstack
2242 * that holds all kinds of filesystem and mm locks.
2243 *
2244 * Also, the caller may handle a failed allocation gracefully
2245 * (like optional page cache readahead) and so an OOM killer
2246 * invocation might not even be necessary.
2247 *
2248 * That's why we don't do anything here except remember the
2249 * OOM context and then deal with it at the end of the page
2250 * fault when the stack is unwound, the locks are released,
2251 * and when we know whether the fault was overall successful.
2252 */
2253 css_get(&memcg->css);
2254 current->memcg_oom.memcg = memcg;
2255 current->memcg_oom.gfp_mask = mask;
2256 current->memcg_oom.order = order;
2257 }
2258
2259 /**
2260 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2261 * @handle: actually kill/wait or just clean up the OOM state
2262 *
2263 * This has to be called at the end of a page fault if the memcg OOM
2264 * handler was enabled.
2265 *
2266 * Memcg supports userspace OOM handling where failed allocations must
2267 * sleep on a waitqueue until the userspace task resolves the
2268 * situation. Sleeping directly in the charge context with all kinds
2269 * of locks held is not a good idea, instead we remember an OOM state
2270 * in the task and mem_cgroup_oom_synchronize() has to be called at
2271 * the end of the page fault to complete the OOM handling.
2272 *
2273 * Returns %true if an ongoing memcg OOM situation was detected and
2274 * completed, %false otherwise.
2275 */
2276 bool mem_cgroup_oom_synchronize(bool handle)
2277 {
2278 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2279 struct oom_wait_info owait;
2280 bool locked;
2281
2282 /* OOM is global, do not handle */
2283 if (!memcg)
2284 return false;
2285
2286 if (!handle)
2287 goto cleanup;
2288
2289 owait.memcg = memcg;
2290 owait.wait.flags = 0;
2291 owait.wait.func = memcg_oom_wake_function;
2292 owait.wait.private = current;
2293 INIT_LIST_HEAD(&owait.wait.task_list);
2294
2295 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2296 mem_cgroup_mark_under_oom(memcg);
2297
2298 locked = mem_cgroup_oom_trylock(memcg);
2299
2300 if (locked)
2301 mem_cgroup_oom_notify(memcg);
2302
2303 if (locked && !memcg->oom_kill_disable) {
2304 mem_cgroup_unmark_under_oom(memcg);
2305 finish_wait(&memcg_oom_waitq, &owait.wait);
2306 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2307 current->memcg_oom.order);
2308 } else {
2309 schedule();
2310 mem_cgroup_unmark_under_oom(memcg);
2311 finish_wait(&memcg_oom_waitq, &owait.wait);
2312 }
2313
2314 if (locked) {
2315 mem_cgroup_oom_unlock(memcg);
2316 /*
2317 * There is no guarantee that an OOM-lock contender
2318 * sees the wakeups triggered by the OOM kill
2319 * uncharges. Wake any sleepers explicitely.
2320 */
2321 memcg_oom_recover(memcg);
2322 }
2323 cleanup:
2324 current->memcg_oom.memcg = NULL;
2325 css_put(&memcg->css);
2326 return true;
2327 }
2328
2329 /*
2330 * Currently used to update mapped file statistics, but the routine can be
2331 * generalized to update other statistics as well.
2332 *
2333 * Notes: Race condition
2334 *
2335 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2336 * it tends to be costly. But considering some conditions, we doesn't need
2337 * to do so _always_.
2338 *
2339 * Considering "charge", lock_page_cgroup() is not required because all
2340 * file-stat operations happen after a page is attached to radix-tree. There
2341 * are no race with "charge".
2342 *
2343 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2344 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2345 * if there are race with "uncharge". Statistics itself is properly handled
2346 * by flags.
2347 *
2348 * Considering "move", this is an only case we see a race. To make the race
2349 * small, we check mm->moving_account and detect there are possibility of race
2350 * If there is, we take a lock.
2351 */
2352
2353 void __mem_cgroup_begin_update_page_stat(struct page *page,
2354 bool *locked, unsigned long *flags)
2355 {
2356 struct mem_cgroup *memcg;
2357 struct page_cgroup *pc;
2358
2359 pc = lookup_page_cgroup(page);
2360 again:
2361 memcg = pc->mem_cgroup;
2362 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2363 return;
2364 /*
2365 * If this memory cgroup is not under account moving, we don't
2366 * need to take move_lock_mem_cgroup(). Because we already hold
2367 * rcu_read_lock(), any calls to move_account will be delayed until
2368 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2369 */
2370 if (!mem_cgroup_stolen(memcg))
2371 return;
2372
2373 move_lock_mem_cgroup(memcg, flags);
2374 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2375 move_unlock_mem_cgroup(memcg, flags);
2376 goto again;
2377 }
2378 *locked = true;
2379 }
2380
2381 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2382 {
2383 struct page_cgroup *pc = lookup_page_cgroup(page);
2384
2385 /*
2386 * It's guaranteed that pc->mem_cgroup never changes while
2387 * lock is held because a routine modifies pc->mem_cgroup
2388 * should take move_lock_mem_cgroup().
2389 */
2390 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2391 }
2392
2393 void mem_cgroup_update_page_stat(struct page *page,
2394 enum mem_cgroup_stat_index idx, int val)
2395 {
2396 struct mem_cgroup *memcg;
2397 struct page_cgroup *pc = lookup_page_cgroup(page);
2398 unsigned long uninitialized_var(flags);
2399
2400 if (mem_cgroup_disabled())
2401 return;
2402
2403 VM_BUG_ON(!rcu_read_lock_held());
2404 memcg = pc->mem_cgroup;
2405 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2406 return;
2407
2408 this_cpu_add(memcg->stat->count[idx], val);
2409 }
2410
2411 /*
2412 * size of first charge trial. "32" comes from vmscan.c's magic value.
2413 * TODO: maybe necessary to use big numbers in big irons.
2414 */
2415 #define CHARGE_BATCH 32U
2416 struct memcg_stock_pcp {
2417 struct mem_cgroup *cached; /* this never be root cgroup */
2418 unsigned int nr_pages;
2419 struct work_struct work;
2420 unsigned long flags;
2421 #define FLUSHING_CACHED_CHARGE 0
2422 };
2423 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2424 static DEFINE_MUTEX(percpu_charge_mutex);
2425
2426 /**
2427 * consume_stock: Try to consume stocked charge on this cpu.
2428 * @memcg: memcg to consume from.
2429 * @nr_pages: how many pages to charge.
2430 *
2431 * The charges will only happen if @memcg matches the current cpu's memcg
2432 * stock, and at least @nr_pages are available in that stock. Failure to
2433 * service an allocation will refill the stock.
2434 *
2435 * returns true if successful, false otherwise.
2436 */
2437 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2438 {
2439 struct memcg_stock_pcp *stock;
2440 bool ret = true;
2441
2442 if (nr_pages > CHARGE_BATCH)
2443 return false;
2444
2445 stock = &get_cpu_var(memcg_stock);
2446 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2447 stock->nr_pages -= nr_pages;
2448 else /* need to call res_counter_charge */
2449 ret = false;
2450 put_cpu_var(memcg_stock);
2451 return ret;
2452 }
2453
2454 /*
2455 * Returns stocks cached in percpu to res_counter and reset cached information.
2456 */
2457 static void drain_stock(struct memcg_stock_pcp *stock)
2458 {
2459 struct mem_cgroup *old = stock->cached;
2460
2461 if (stock->nr_pages) {
2462 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2463
2464 res_counter_uncharge(&old->res, bytes);
2465 if (do_swap_account)
2466 res_counter_uncharge(&old->memsw, bytes);
2467 stock->nr_pages = 0;
2468 }
2469 stock->cached = NULL;
2470 }
2471
2472 /*
2473 * This must be called under preempt disabled or must be called by
2474 * a thread which is pinned to local cpu.
2475 */
2476 static void drain_local_stock(struct work_struct *dummy)
2477 {
2478 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2479 drain_stock(stock);
2480 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2481 }
2482
2483 static void __init memcg_stock_init(void)
2484 {
2485 int cpu;
2486
2487 for_each_possible_cpu(cpu) {
2488 struct memcg_stock_pcp *stock =
2489 &per_cpu(memcg_stock, cpu);
2490 INIT_WORK(&stock->work, drain_local_stock);
2491 }
2492 }
2493
2494 /*
2495 * Cache charges(val) which is from res_counter, to local per_cpu area.
2496 * This will be consumed by consume_stock() function, later.
2497 */
2498 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2499 {
2500 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2501
2502 if (stock->cached != memcg) { /* reset if necessary */
2503 drain_stock(stock);
2504 stock->cached = memcg;
2505 }
2506 stock->nr_pages += nr_pages;
2507 put_cpu_var(memcg_stock);
2508 }
2509
2510 /*
2511 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2512 * of the hierarchy under it. sync flag says whether we should block
2513 * until the work is done.
2514 */
2515 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2516 {
2517 int cpu, curcpu;
2518
2519 /* Notify other cpus that system-wide "drain" is running */
2520 get_online_cpus();
2521 curcpu = get_cpu();
2522 for_each_online_cpu(cpu) {
2523 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2524 struct mem_cgroup *memcg;
2525
2526 memcg = stock->cached;
2527 if (!memcg || !stock->nr_pages)
2528 continue;
2529 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2530 continue;
2531 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2532 if (cpu == curcpu)
2533 drain_local_stock(&stock->work);
2534 else
2535 schedule_work_on(cpu, &stock->work);
2536 }
2537 }
2538 put_cpu();
2539
2540 if (!sync)
2541 goto out;
2542
2543 for_each_online_cpu(cpu) {
2544 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2545 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2546 flush_work(&stock->work);
2547 }
2548 out:
2549 put_online_cpus();
2550 }
2551
2552 /*
2553 * Tries to drain stocked charges in other cpus. This function is asynchronous
2554 * and just put a work per cpu for draining localy on each cpu. Caller can
2555 * expects some charges will be back to res_counter later but cannot wait for
2556 * it.
2557 */
2558 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2559 {
2560 /*
2561 * If someone calls draining, avoid adding more kworker runs.
2562 */
2563 if (!mutex_trylock(&percpu_charge_mutex))
2564 return;
2565 drain_all_stock(root_memcg, false);
2566 mutex_unlock(&percpu_charge_mutex);
2567 }
2568
2569 /* This is a synchronous drain interface. */
2570 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2571 {
2572 /* called when force_empty is called */
2573 mutex_lock(&percpu_charge_mutex);
2574 drain_all_stock(root_memcg, true);
2575 mutex_unlock(&percpu_charge_mutex);
2576 }
2577
2578 /*
2579 * This function drains percpu counter value from DEAD cpu and
2580 * move it to local cpu. Note that this function can be preempted.
2581 */
2582 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2583 {
2584 int i;
2585
2586 spin_lock(&memcg->pcp_counter_lock);
2587 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2588 long x = per_cpu(memcg->stat->count[i], cpu);
2589
2590 per_cpu(memcg->stat->count[i], cpu) = 0;
2591 memcg->nocpu_base.count[i] += x;
2592 }
2593 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2594 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2595
2596 per_cpu(memcg->stat->events[i], cpu) = 0;
2597 memcg->nocpu_base.events[i] += x;
2598 }
2599 spin_unlock(&memcg->pcp_counter_lock);
2600 }
2601
2602 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2603 unsigned long action,
2604 void *hcpu)
2605 {
2606 int cpu = (unsigned long)hcpu;
2607 struct memcg_stock_pcp *stock;
2608 struct mem_cgroup *iter;
2609
2610 if (action == CPU_ONLINE)
2611 return NOTIFY_OK;
2612
2613 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2614 return NOTIFY_OK;
2615
2616 for_each_mem_cgroup(iter)
2617 mem_cgroup_drain_pcp_counter(iter, cpu);
2618
2619 stock = &per_cpu(memcg_stock, cpu);
2620 drain_stock(stock);
2621 return NOTIFY_OK;
2622 }
2623
2624
2625 /* See __mem_cgroup_try_charge() for details */
2626 enum {
2627 CHARGE_OK, /* success */
2628 CHARGE_RETRY, /* need to retry but retry is not bad */
2629 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2630 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2631 };
2632
2633 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2634 unsigned int nr_pages, unsigned int min_pages,
2635 bool invoke_oom)
2636 {
2637 unsigned long csize = nr_pages * PAGE_SIZE;
2638 struct mem_cgroup *mem_over_limit;
2639 struct res_counter *fail_res;
2640 unsigned long flags = 0;
2641 int ret;
2642
2643 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2644
2645 if (likely(!ret)) {
2646 if (!do_swap_account)
2647 return CHARGE_OK;
2648 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2649 if (likely(!ret))
2650 return CHARGE_OK;
2651
2652 res_counter_uncharge(&memcg->res, csize);
2653 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2654 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2655 } else
2656 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2657 /*
2658 * Never reclaim on behalf of optional batching, retry with a
2659 * single page instead.
2660 */
2661 if (nr_pages > min_pages)
2662 return CHARGE_RETRY;
2663
2664 if (!(gfp_mask & __GFP_WAIT))
2665 return CHARGE_WOULDBLOCK;
2666
2667 if (gfp_mask & __GFP_NORETRY)
2668 return CHARGE_NOMEM;
2669
2670 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2671 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2672 return CHARGE_RETRY;
2673 /*
2674 * Even though the limit is exceeded at this point, reclaim
2675 * may have been able to free some pages. Retry the charge
2676 * before killing the task.
2677 *
2678 * Only for regular pages, though: huge pages are rather
2679 * unlikely to succeed so close to the limit, and we fall back
2680 * to regular pages anyway in case of failure.
2681 */
2682 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2683 return CHARGE_RETRY;
2684
2685 /*
2686 * At task move, charge accounts can be doubly counted. So, it's
2687 * better to wait until the end of task_move if something is going on.
2688 */
2689 if (mem_cgroup_wait_acct_move(mem_over_limit))
2690 return CHARGE_RETRY;
2691
2692 if (invoke_oom)
2693 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2694
2695 return CHARGE_NOMEM;
2696 }
2697
2698 /*
2699 * __mem_cgroup_try_charge() does
2700 * 1. detect memcg to be charged against from passed *mm and *ptr,
2701 * 2. update res_counter
2702 * 3. call memory reclaim if necessary.
2703 *
2704 * In some special case, if the task is fatal, fatal_signal_pending() or
2705 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2706 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2707 * as possible without any hazards. 2: all pages should have a valid
2708 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2709 * pointer, that is treated as a charge to root_mem_cgroup.
2710 *
2711 * So __mem_cgroup_try_charge() will return
2712 * 0 ... on success, filling *ptr with a valid memcg pointer.
2713 * -ENOMEM ... charge failure because of resource limits.
2714 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2715 *
2716 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2717 * the oom-killer can be invoked.
2718 */
2719 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2720 gfp_t gfp_mask,
2721 unsigned int nr_pages,
2722 struct mem_cgroup **ptr,
2723 bool oom)
2724 {
2725 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2726 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2727 struct mem_cgroup *memcg = NULL;
2728 int ret;
2729
2730 /*
2731 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2732 * in system level. So, allow to go ahead dying process in addition to
2733 * MEMDIE process.
2734 */
2735 if (unlikely(test_thread_flag(TIF_MEMDIE)
2736 || fatal_signal_pending(current)))
2737 goto bypass;
2738
2739 if (unlikely(task_in_memcg_oom(current)))
2740 goto nomem;
2741
2742 if (gfp_mask & __GFP_NOFAIL)
2743 oom = false;
2744
2745 /*
2746 * We always charge the cgroup the mm_struct belongs to.
2747 * The mm_struct's mem_cgroup changes on task migration if the
2748 * thread group leader migrates. It's possible that mm is not
2749 * set, if so charge the root memcg (happens for pagecache usage).
2750 */
2751 if (!*ptr && !mm)
2752 *ptr = root_mem_cgroup;
2753 again:
2754 if (*ptr) { /* css should be a valid one */
2755 memcg = *ptr;
2756 if (mem_cgroup_is_root(memcg))
2757 goto done;
2758 if (consume_stock(memcg, nr_pages))
2759 goto done;
2760 css_get(&memcg->css);
2761 } else {
2762 struct task_struct *p;
2763
2764 rcu_read_lock();
2765 p = rcu_dereference(mm->owner);
2766 /*
2767 * Because we don't have task_lock(), "p" can exit.
2768 * In that case, "memcg" can point to root or p can be NULL with
2769 * race with swapoff. Then, we have small risk of mis-accouning.
2770 * But such kind of mis-account by race always happens because
2771 * we don't have cgroup_mutex(). It's overkill and we allo that
2772 * small race, here.
2773 * (*) swapoff at el will charge against mm-struct not against
2774 * task-struct. So, mm->owner can be NULL.
2775 */
2776 memcg = mem_cgroup_from_task(p);
2777 if (!memcg)
2778 memcg = root_mem_cgroup;
2779 if (mem_cgroup_is_root(memcg)) {
2780 rcu_read_unlock();
2781 goto done;
2782 }
2783 if (consume_stock(memcg, nr_pages)) {
2784 /*
2785 * It seems dagerous to access memcg without css_get().
2786 * But considering how consume_stok works, it's not
2787 * necessary. If consume_stock success, some charges
2788 * from this memcg are cached on this cpu. So, we
2789 * don't need to call css_get()/css_tryget() before
2790 * calling consume_stock().
2791 */
2792 rcu_read_unlock();
2793 goto done;
2794 }
2795 /* after here, we may be blocked. we need to get refcnt */
2796 if (!css_tryget(&memcg->css)) {
2797 rcu_read_unlock();
2798 goto again;
2799 }
2800 rcu_read_unlock();
2801 }
2802
2803 do {
2804 bool invoke_oom = oom && !nr_oom_retries;
2805
2806 /* If killed, bypass charge */
2807 if (fatal_signal_pending(current)) {
2808 css_put(&memcg->css);
2809 goto bypass;
2810 }
2811
2812 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2813 nr_pages, invoke_oom);
2814 switch (ret) {
2815 case CHARGE_OK:
2816 break;
2817 case CHARGE_RETRY: /* not in OOM situation but retry */
2818 batch = nr_pages;
2819 css_put(&memcg->css);
2820 memcg = NULL;
2821 goto again;
2822 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2823 css_put(&memcg->css);
2824 goto nomem;
2825 case CHARGE_NOMEM: /* OOM routine works */
2826 if (!oom || invoke_oom) {
2827 css_put(&memcg->css);
2828 goto nomem;
2829 }
2830 nr_oom_retries--;
2831 break;
2832 }
2833 } while (ret != CHARGE_OK);
2834
2835 if (batch > nr_pages)
2836 refill_stock(memcg, batch - nr_pages);
2837 css_put(&memcg->css);
2838 done:
2839 *ptr = memcg;
2840 return 0;
2841 nomem:
2842 if (!(gfp_mask & __GFP_NOFAIL)) {
2843 *ptr = NULL;
2844 return -ENOMEM;
2845 }
2846 bypass:
2847 *ptr = root_mem_cgroup;
2848 return -EINTR;
2849 }
2850
2851 /*
2852 * Somemtimes we have to undo a charge we got by try_charge().
2853 * This function is for that and do uncharge, put css's refcnt.
2854 * gotten by try_charge().
2855 */
2856 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2857 unsigned int nr_pages)
2858 {
2859 if (!mem_cgroup_is_root(memcg)) {
2860 unsigned long bytes = nr_pages * PAGE_SIZE;
2861
2862 res_counter_uncharge(&memcg->res, bytes);
2863 if (do_swap_account)
2864 res_counter_uncharge(&memcg->memsw, bytes);
2865 }
2866 }
2867
2868 /*
2869 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2870 * This is useful when moving usage to parent cgroup.
2871 */
2872 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2873 unsigned int nr_pages)
2874 {
2875 unsigned long bytes = nr_pages * PAGE_SIZE;
2876
2877 if (mem_cgroup_is_root(memcg))
2878 return;
2879
2880 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2881 if (do_swap_account)
2882 res_counter_uncharge_until(&memcg->memsw,
2883 memcg->memsw.parent, bytes);
2884 }
2885
2886 /*
2887 * A helper function to get mem_cgroup from ID. must be called under
2888 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2889 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2890 * called against removed memcg.)
2891 */
2892 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2893 {
2894 /* ID 0 is unused ID */
2895 if (!id)
2896 return NULL;
2897 return mem_cgroup_from_id(id);
2898 }
2899
2900 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2901 {
2902 struct mem_cgroup *memcg = NULL;
2903 struct page_cgroup *pc;
2904 unsigned short id;
2905 swp_entry_t ent;
2906
2907 VM_BUG_ON_PAGE(!PageLocked(page), page);
2908
2909 pc = lookup_page_cgroup(page);
2910 lock_page_cgroup(pc);
2911 if (PageCgroupUsed(pc)) {
2912 memcg = pc->mem_cgroup;
2913 if (memcg && !css_tryget(&memcg->css))
2914 memcg = NULL;
2915 } else if (PageSwapCache(page)) {
2916 ent.val = page_private(page);
2917 id = lookup_swap_cgroup_id(ent);
2918 rcu_read_lock();
2919 memcg = mem_cgroup_lookup(id);
2920 if (memcg && !css_tryget(&memcg->css))
2921 memcg = NULL;
2922 rcu_read_unlock();
2923 }
2924 unlock_page_cgroup(pc);
2925 return memcg;
2926 }
2927
2928 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2929 struct page *page,
2930 unsigned int nr_pages,
2931 enum charge_type ctype,
2932 bool lrucare)
2933 {
2934 struct page_cgroup *pc = lookup_page_cgroup(page);
2935 struct zone *uninitialized_var(zone);
2936 struct lruvec *lruvec;
2937 bool was_on_lru = false;
2938 bool anon;
2939
2940 lock_page_cgroup(pc);
2941 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2942 /*
2943 * we don't need page_cgroup_lock about tail pages, becase they are not
2944 * accessed by any other context at this point.
2945 */
2946
2947 /*
2948 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2949 * may already be on some other mem_cgroup's LRU. Take care of it.
2950 */
2951 if (lrucare) {
2952 zone = page_zone(page);
2953 spin_lock_irq(&zone->lru_lock);
2954 if (PageLRU(page)) {
2955 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2956 ClearPageLRU(page);
2957 del_page_from_lru_list(page, lruvec, page_lru(page));
2958 was_on_lru = true;
2959 }
2960 }
2961
2962 pc->mem_cgroup = memcg;
2963 /*
2964 * We access a page_cgroup asynchronously without lock_page_cgroup().
2965 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2966 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2967 * before USED bit, we need memory barrier here.
2968 * See mem_cgroup_add_lru_list(), etc.
2969 */
2970 smp_wmb();
2971 SetPageCgroupUsed(pc);
2972
2973 if (lrucare) {
2974 if (was_on_lru) {
2975 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2976 VM_BUG_ON_PAGE(PageLRU(page), page);
2977 SetPageLRU(page);
2978 add_page_to_lru_list(page, lruvec, page_lru(page));
2979 }
2980 spin_unlock_irq(&zone->lru_lock);
2981 }
2982
2983 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2984 anon = true;
2985 else
2986 anon = false;
2987
2988 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2989 unlock_page_cgroup(pc);
2990
2991 /*
2992 * "charge_statistics" updated event counter. Then, check it.
2993 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2994 * if they exceeds softlimit.
2995 */
2996 memcg_check_events(memcg, page);
2997 }
2998
2999 static DEFINE_MUTEX(set_limit_mutex);
3000
3001 #ifdef CONFIG_MEMCG_KMEM
3002 static DEFINE_MUTEX(activate_kmem_mutex);
3003
3004 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
3005 {
3006 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
3007 memcg_kmem_is_active(memcg);
3008 }
3009
3010 /*
3011 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
3012 * in the memcg_cache_params struct.
3013 */
3014 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
3015 {
3016 struct kmem_cache *cachep;
3017
3018 VM_BUG_ON(p->is_root_cache);
3019 cachep = p->root_cache;
3020 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
3021 }
3022
3023 #ifdef CONFIG_SLABINFO
3024 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
3025 {
3026 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3027 struct memcg_cache_params *params;
3028
3029 if (!memcg_can_account_kmem(memcg))
3030 return -EIO;
3031
3032 print_slabinfo_header(m);
3033
3034 mutex_lock(&memcg->slab_caches_mutex);
3035 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
3036 cache_show(memcg_params_to_cache(params), m);
3037 mutex_unlock(&memcg->slab_caches_mutex);
3038
3039 return 0;
3040 }
3041 #endif
3042
3043 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3044 {
3045 struct res_counter *fail_res;
3046 struct mem_cgroup *_memcg;
3047 int ret = 0;
3048
3049 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3050 if (ret)
3051 return ret;
3052
3053 _memcg = memcg;
3054 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3055 &_memcg, oom_gfp_allowed(gfp));
3056
3057 if (ret == -EINTR) {
3058 /*
3059 * __mem_cgroup_try_charge() chosed to bypass to root due to
3060 * OOM kill or fatal signal. Since our only options are to
3061 * either fail the allocation or charge it to this cgroup, do
3062 * it as a temporary condition. But we can't fail. From a
3063 * kmem/slab perspective, the cache has already been selected,
3064 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3065 * our minds.
3066 *
3067 * This condition will only trigger if the task entered
3068 * memcg_charge_kmem in a sane state, but was OOM-killed during
3069 * __mem_cgroup_try_charge() above. Tasks that were already
3070 * dying when the allocation triggers should have been already
3071 * directed to the root cgroup in memcontrol.h
3072 */
3073 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3074 if (do_swap_account)
3075 res_counter_charge_nofail(&memcg->memsw, size,
3076 &fail_res);
3077 ret = 0;
3078 } else if (ret)
3079 res_counter_uncharge(&memcg->kmem, size);
3080
3081 return ret;
3082 }
3083
3084 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3085 {
3086 res_counter_uncharge(&memcg->res, size);
3087 if (do_swap_account)
3088 res_counter_uncharge(&memcg->memsw, size);
3089
3090 /* Not down to 0 */
3091 if (res_counter_uncharge(&memcg->kmem, size))
3092 return;
3093
3094 /*
3095 * Releases a reference taken in kmem_cgroup_css_offline in case
3096 * this last uncharge is racing with the offlining code or it is
3097 * outliving the memcg existence.
3098 *
3099 * The memory barrier imposed by test&clear is paired with the
3100 * explicit one in memcg_kmem_mark_dead().
3101 */
3102 if (memcg_kmem_test_and_clear_dead(memcg))
3103 css_put(&memcg->css);
3104 }
3105
3106 /*
3107 * helper for acessing a memcg's index. It will be used as an index in the
3108 * child cache array in kmem_cache, and also to derive its name. This function
3109 * will return -1 when this is not a kmem-limited memcg.
3110 */
3111 int memcg_cache_id(struct mem_cgroup *memcg)
3112 {
3113 return memcg ? memcg->kmemcg_id : -1;
3114 }
3115
3116 static size_t memcg_caches_array_size(int num_groups)
3117 {
3118 ssize_t size;
3119 if (num_groups <= 0)
3120 return 0;
3121
3122 size = 2 * num_groups;
3123 if (size < MEMCG_CACHES_MIN_SIZE)
3124 size = MEMCG_CACHES_MIN_SIZE;
3125 else if (size > MEMCG_CACHES_MAX_SIZE)
3126 size = MEMCG_CACHES_MAX_SIZE;
3127
3128 return size;
3129 }
3130
3131 /*
3132 * We should update the current array size iff all caches updates succeed. This
3133 * can only be done from the slab side. The slab mutex needs to be held when
3134 * calling this.
3135 */
3136 void memcg_update_array_size(int num)
3137 {
3138 if (num > memcg_limited_groups_array_size)
3139 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3140 }
3141
3142 static void kmem_cache_destroy_work_func(struct work_struct *w);
3143
3144 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3145 {
3146 struct memcg_cache_params *cur_params = s->memcg_params;
3147
3148 VM_BUG_ON(!is_root_cache(s));
3149
3150 if (num_groups > memcg_limited_groups_array_size) {
3151 int i;
3152 struct memcg_cache_params *new_params;
3153 ssize_t size = memcg_caches_array_size(num_groups);
3154
3155 size *= sizeof(void *);
3156 size += offsetof(struct memcg_cache_params, memcg_caches);
3157
3158 new_params = kzalloc(size, GFP_KERNEL);
3159 if (!new_params)
3160 return -ENOMEM;
3161
3162 new_params->is_root_cache = true;
3163
3164 /*
3165 * There is the chance it will be bigger than
3166 * memcg_limited_groups_array_size, if we failed an allocation
3167 * in a cache, in which case all caches updated before it, will
3168 * have a bigger array.
3169 *
3170 * But if that is the case, the data after
3171 * memcg_limited_groups_array_size is certainly unused
3172 */
3173 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3174 if (!cur_params->memcg_caches[i])
3175 continue;
3176 new_params->memcg_caches[i] =
3177 cur_params->memcg_caches[i];
3178 }
3179
3180 /*
3181 * Ideally, we would wait until all caches succeed, and only
3182 * then free the old one. But this is not worth the extra
3183 * pointer per-cache we'd have to have for this.
3184 *
3185 * It is not a big deal if some caches are left with a size
3186 * bigger than the others. And all updates will reset this
3187 * anyway.
3188 */
3189 rcu_assign_pointer(s->memcg_params, new_params);
3190 if (cur_params)
3191 kfree_rcu(cur_params, rcu_head);
3192 }
3193 return 0;
3194 }
3195
3196 int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3197 struct kmem_cache *root_cache)
3198 {
3199 size_t size;
3200
3201 if (!memcg_kmem_enabled())
3202 return 0;
3203
3204 if (!memcg) {
3205 size = offsetof(struct memcg_cache_params, memcg_caches);
3206 size += memcg_limited_groups_array_size * sizeof(void *);
3207 } else
3208 size = sizeof(struct memcg_cache_params);
3209
3210 s->memcg_params = kzalloc(size, GFP_KERNEL);
3211 if (!s->memcg_params)
3212 return -ENOMEM;
3213
3214 if (memcg) {
3215 s->memcg_params->memcg = memcg;
3216 s->memcg_params->root_cache = root_cache;
3217 INIT_WORK(&s->memcg_params->destroy,
3218 kmem_cache_destroy_work_func);
3219 } else
3220 s->memcg_params->is_root_cache = true;
3221
3222 return 0;
3223 }
3224
3225 void memcg_free_cache_params(struct kmem_cache *s)
3226 {
3227 kfree(s->memcg_params);
3228 }
3229
3230 void memcg_register_cache(struct kmem_cache *s)
3231 {
3232 struct kmem_cache *root;
3233 struct mem_cgroup *memcg;
3234 int id;
3235
3236 if (is_root_cache(s))
3237 return;
3238
3239 /*
3240 * Holding the slab_mutex assures nobody will touch the memcg_caches
3241 * array while we are modifying it.
3242 */
3243 lockdep_assert_held(&slab_mutex);
3244
3245 root = s->memcg_params->root_cache;
3246 memcg = s->memcg_params->memcg;
3247 id = memcg_cache_id(memcg);
3248
3249 css_get(&memcg->css);
3250
3251
3252 /*
3253 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3254 * barrier here to ensure nobody will see the kmem_cache partially
3255 * initialized.
3256 */
3257 smp_wmb();
3258
3259 /*
3260 * Initialize the pointer to this cache in its parent's memcg_params
3261 * before adding it to the memcg_slab_caches list, otherwise we can
3262 * fail to convert memcg_params_to_cache() while traversing the list.
3263 */
3264 VM_BUG_ON(root->memcg_params->memcg_caches[id]);
3265 root->memcg_params->memcg_caches[id] = s;
3266
3267 mutex_lock(&memcg->slab_caches_mutex);
3268 list_add(&s->memcg_params->list, &memcg->memcg_slab_caches);
3269 mutex_unlock(&memcg->slab_caches_mutex);
3270 }
3271
3272 void memcg_unregister_cache(struct kmem_cache *s)
3273 {
3274 struct kmem_cache *root;
3275 struct mem_cgroup *memcg;
3276 int id;
3277
3278 if (is_root_cache(s))
3279 return;
3280
3281 /*
3282 * Holding the slab_mutex assures nobody will touch the memcg_caches
3283 * array while we are modifying it.
3284 */
3285 lockdep_assert_held(&slab_mutex);
3286
3287 root = s->memcg_params->root_cache;
3288 memcg = s->memcg_params->memcg;
3289 id = memcg_cache_id(memcg);
3290
3291 mutex_lock(&memcg->slab_caches_mutex);
3292 list_del(&s->memcg_params->list);
3293 mutex_unlock(&memcg->slab_caches_mutex);
3294
3295 /*
3296 * Clear the pointer to this cache in its parent's memcg_params only
3297 * after removing it from the memcg_slab_caches list, otherwise we can
3298 * fail to convert memcg_params_to_cache() while traversing the list.
3299 */
3300 VM_BUG_ON(!root->memcg_params->memcg_caches[id]);
3301 root->memcg_params->memcg_caches[id] = NULL;
3302
3303 css_put(&memcg->css);
3304 }
3305
3306 /*
3307 * During the creation a new cache, we need to disable our accounting mechanism
3308 * altogether. This is true even if we are not creating, but rather just
3309 * enqueing new caches to be created.
3310 *
3311 * This is because that process will trigger allocations; some visible, like
3312 * explicit kmallocs to auxiliary data structures, name strings and internal
3313 * cache structures; some well concealed, like INIT_WORK() that can allocate
3314 * objects during debug.
3315 *
3316 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3317 * to it. This may not be a bounded recursion: since the first cache creation
3318 * failed to complete (waiting on the allocation), we'll just try to create the
3319 * cache again, failing at the same point.
3320 *
3321 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3322 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3323 * inside the following two functions.
3324 */
3325 static inline void memcg_stop_kmem_account(void)
3326 {
3327 VM_BUG_ON(!current->mm);
3328 current->memcg_kmem_skip_account++;
3329 }
3330
3331 static inline void memcg_resume_kmem_account(void)
3332 {
3333 VM_BUG_ON(!current->mm);
3334 current->memcg_kmem_skip_account--;
3335 }
3336
3337 static void kmem_cache_destroy_work_func(struct work_struct *w)
3338 {
3339 struct kmem_cache *cachep;
3340 struct memcg_cache_params *p;
3341
3342 p = container_of(w, struct memcg_cache_params, destroy);
3343
3344 cachep = memcg_params_to_cache(p);
3345
3346 /*
3347 * If we get down to 0 after shrink, we could delete right away.
3348 * However, memcg_release_pages() already puts us back in the workqueue
3349 * in that case. If we proceed deleting, we'll get a dangling
3350 * reference, and removing the object from the workqueue in that case
3351 * is unnecessary complication. We are not a fast path.
3352 *
3353 * Note that this case is fundamentally different from racing with
3354 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3355 * kmem_cache_shrink, not only we would be reinserting a dead cache
3356 * into the queue, but doing so from inside the worker racing to
3357 * destroy it.
3358 *
3359 * So if we aren't down to zero, we'll just schedule a worker and try
3360 * again
3361 */
3362 if (atomic_read(&cachep->memcg_params->nr_pages) != 0)
3363 kmem_cache_shrink(cachep);
3364 else
3365 kmem_cache_destroy(cachep);
3366 }
3367
3368 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3369 {
3370 if (!cachep->memcg_params->dead)
3371 return;
3372
3373 /*
3374 * There are many ways in which we can get here.
3375 *
3376 * We can get to a memory-pressure situation while the delayed work is
3377 * still pending to run. The vmscan shrinkers can then release all
3378 * cache memory and get us to destruction. If this is the case, we'll
3379 * be executed twice, which is a bug (the second time will execute over
3380 * bogus data). In this case, cancelling the work should be fine.
3381 *
3382 * But we can also get here from the worker itself, if
3383 * kmem_cache_shrink is enough to shake all the remaining objects and
3384 * get the page count to 0. In this case, we'll deadlock if we try to
3385 * cancel the work (the worker runs with an internal lock held, which
3386 * is the same lock we would hold for cancel_work_sync().)
3387 *
3388 * Since we can't possibly know who got us here, just refrain from
3389 * running if there is already work pending
3390 */
3391 if (work_pending(&cachep->memcg_params->destroy))
3392 return;
3393 /*
3394 * We have to defer the actual destroying to a workqueue, because
3395 * we might currently be in a context that cannot sleep.
3396 */
3397 schedule_work(&cachep->memcg_params->destroy);
3398 }
3399
3400 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3401 struct kmem_cache *s)
3402 {
3403 struct kmem_cache *new;
3404 static char *tmp_name = NULL;
3405 static DEFINE_MUTEX(mutex); /* protects tmp_name */
3406
3407 BUG_ON(!memcg_can_account_kmem(memcg));
3408
3409 mutex_lock(&mutex);
3410 /*
3411 * kmem_cache_create_memcg duplicates the given name and
3412 * cgroup_name for this name requires RCU context.
3413 * This static temporary buffer is used to prevent from
3414 * pointless shortliving allocation.
3415 */
3416 if (!tmp_name) {
3417 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3418 if (!tmp_name)
3419 return NULL;
3420 }
3421
3422 rcu_read_lock();
3423 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3424 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3425 rcu_read_unlock();
3426
3427 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3428 (s->flags & ~SLAB_PANIC), s->ctor, s);
3429
3430 if (new)
3431 new->allocflags |= __GFP_KMEMCG;
3432 else
3433 new = s;
3434
3435 mutex_unlock(&mutex);
3436 return new;
3437 }
3438
3439 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3440 {
3441 struct kmem_cache *c;
3442 int i;
3443
3444 if (!s->memcg_params)
3445 return;
3446 if (!s->memcg_params->is_root_cache)
3447 return;
3448
3449 /*
3450 * If the cache is being destroyed, we trust that there is no one else
3451 * requesting objects from it. Even if there are, the sanity checks in
3452 * kmem_cache_destroy should caught this ill-case.
3453 *
3454 * Still, we don't want anyone else freeing memcg_caches under our
3455 * noses, which can happen if a new memcg comes to life. As usual,
3456 * we'll take the activate_kmem_mutex to protect ourselves against
3457 * this.
3458 */
3459 mutex_lock(&activate_kmem_mutex);
3460 for_each_memcg_cache_index(i) {
3461 c = cache_from_memcg_idx(s, i);
3462 if (!c)
3463 continue;
3464
3465 /*
3466 * We will now manually delete the caches, so to avoid races
3467 * we need to cancel all pending destruction workers and
3468 * proceed with destruction ourselves.
3469 *
3470 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3471 * and that could spawn the workers again: it is likely that
3472 * the cache still have active pages until this very moment.
3473 * This would lead us back to mem_cgroup_destroy_cache.
3474 *
3475 * But that will not execute at all if the "dead" flag is not
3476 * set, so flip it down to guarantee we are in control.
3477 */
3478 c->memcg_params->dead = false;
3479 cancel_work_sync(&c->memcg_params->destroy);
3480 kmem_cache_destroy(c);
3481 }
3482 mutex_unlock(&activate_kmem_mutex);
3483 }
3484
3485 struct create_work {
3486 struct mem_cgroup *memcg;
3487 struct kmem_cache *cachep;
3488 struct work_struct work;
3489 };
3490
3491 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3492 {
3493 struct kmem_cache *cachep;
3494 struct memcg_cache_params *params;
3495
3496 if (!memcg_kmem_is_active(memcg))
3497 return;
3498
3499 mutex_lock(&memcg->slab_caches_mutex);
3500 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3501 cachep = memcg_params_to_cache(params);
3502 cachep->memcg_params->dead = true;
3503 schedule_work(&cachep->memcg_params->destroy);
3504 }
3505 mutex_unlock(&memcg->slab_caches_mutex);
3506 }
3507
3508 static void memcg_create_cache_work_func(struct work_struct *w)
3509 {
3510 struct create_work *cw;
3511
3512 cw = container_of(w, struct create_work, work);
3513 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3514 css_put(&cw->memcg->css);
3515 kfree(cw);
3516 }
3517
3518 /*
3519 * Enqueue the creation of a per-memcg kmem_cache.
3520 */
3521 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3522 struct kmem_cache *cachep)
3523 {
3524 struct create_work *cw;
3525
3526 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3527 if (cw == NULL) {
3528 css_put(&memcg->css);
3529 return;
3530 }
3531
3532 cw->memcg = memcg;
3533 cw->cachep = cachep;
3534
3535 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3536 schedule_work(&cw->work);
3537 }
3538
3539 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3540 struct kmem_cache *cachep)
3541 {
3542 /*
3543 * We need to stop accounting when we kmalloc, because if the
3544 * corresponding kmalloc cache is not yet created, the first allocation
3545 * in __memcg_create_cache_enqueue will recurse.
3546 *
3547 * However, it is better to enclose the whole function. Depending on
3548 * the debugging options enabled, INIT_WORK(), for instance, can
3549 * trigger an allocation. This too, will make us recurse. Because at
3550 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3551 * the safest choice is to do it like this, wrapping the whole function.
3552 */
3553 memcg_stop_kmem_account();
3554 __memcg_create_cache_enqueue(memcg, cachep);
3555 memcg_resume_kmem_account();
3556 }
3557 /*
3558 * Return the kmem_cache we're supposed to use for a slab allocation.
3559 * We try to use the current memcg's version of the cache.
3560 *
3561 * If the cache does not exist yet, if we are the first user of it,
3562 * we either create it immediately, if possible, or create it asynchronously
3563 * in a workqueue.
3564 * In the latter case, we will let the current allocation go through with
3565 * the original cache.
3566 *
3567 * Can't be called in interrupt context or from kernel threads.
3568 * This function needs to be called with rcu_read_lock() held.
3569 */
3570 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3571 gfp_t gfp)
3572 {
3573 struct mem_cgroup *memcg;
3574 struct kmem_cache *memcg_cachep;
3575
3576 VM_BUG_ON(!cachep->memcg_params);
3577 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3578
3579 if (!current->mm || current->memcg_kmem_skip_account)
3580 return cachep;
3581
3582 rcu_read_lock();
3583 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3584
3585 if (!memcg_can_account_kmem(memcg))
3586 goto out;
3587
3588 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3589 if (likely(memcg_cachep)) {
3590 cachep = memcg_cachep;
3591 goto out;
3592 }
3593
3594 /* The corresponding put will be done in the workqueue. */
3595 if (!css_tryget(&memcg->css))
3596 goto out;
3597 rcu_read_unlock();
3598
3599 /*
3600 * If we are in a safe context (can wait, and not in interrupt
3601 * context), we could be be predictable and return right away.
3602 * This would guarantee that the allocation being performed
3603 * already belongs in the new cache.
3604 *
3605 * However, there are some clashes that can arrive from locking.
3606 * For instance, because we acquire the slab_mutex while doing
3607 * kmem_cache_dup, this means no further allocation could happen
3608 * with the slab_mutex held.
3609 *
3610 * Also, because cache creation issue get_online_cpus(), this
3611 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3612 * that ends up reversed during cpu hotplug. (cpuset allocates
3613 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3614 * better to defer everything.
3615 */
3616 memcg_create_cache_enqueue(memcg, cachep);
3617 return cachep;
3618 out:
3619 rcu_read_unlock();
3620 return cachep;
3621 }
3622 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3623
3624 /*
3625 * We need to verify if the allocation against current->mm->owner's memcg is
3626 * possible for the given order. But the page is not allocated yet, so we'll
3627 * need a further commit step to do the final arrangements.
3628 *
3629 * It is possible for the task to switch cgroups in this mean time, so at
3630 * commit time, we can't rely on task conversion any longer. We'll then use
3631 * the handle argument to return to the caller which cgroup we should commit
3632 * against. We could also return the memcg directly and avoid the pointer
3633 * passing, but a boolean return value gives better semantics considering
3634 * the compiled-out case as well.
3635 *
3636 * Returning true means the allocation is possible.
3637 */
3638 bool
3639 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3640 {
3641 struct mem_cgroup *memcg;
3642 int ret;
3643
3644 *_memcg = NULL;
3645
3646 /*
3647 * Disabling accounting is only relevant for some specific memcg
3648 * internal allocations. Therefore we would initially not have such
3649 * check here, since direct calls to the page allocator that are marked
3650 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3651 * concerned with cache allocations, and by having this test at
3652 * memcg_kmem_get_cache, we are already able to relay the allocation to
3653 * the root cache and bypass the memcg cache altogether.
3654 *
3655 * There is one exception, though: the SLUB allocator does not create
3656 * large order caches, but rather service large kmallocs directly from
3657 * the page allocator. Therefore, the following sequence when backed by
3658 * the SLUB allocator:
3659 *
3660 * memcg_stop_kmem_account();
3661 * kmalloc(<large_number>)
3662 * memcg_resume_kmem_account();
3663 *
3664 * would effectively ignore the fact that we should skip accounting,
3665 * since it will drive us directly to this function without passing
3666 * through the cache selector memcg_kmem_get_cache. Such large
3667 * allocations are extremely rare but can happen, for instance, for the
3668 * cache arrays. We bring this test here.
3669 */
3670 if (!current->mm || current->memcg_kmem_skip_account)
3671 return true;
3672
3673 memcg = try_get_mem_cgroup_from_mm(current->mm);
3674
3675 /*
3676 * very rare case described in mem_cgroup_from_task. Unfortunately there
3677 * isn't much we can do without complicating this too much, and it would
3678 * be gfp-dependent anyway. Just let it go
3679 */
3680 if (unlikely(!memcg))
3681 return true;
3682
3683 if (!memcg_can_account_kmem(memcg)) {
3684 css_put(&memcg->css);
3685 return true;
3686 }
3687
3688 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3689 if (!ret)
3690 *_memcg = memcg;
3691
3692 css_put(&memcg->css);
3693 return (ret == 0);
3694 }
3695
3696 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3697 int order)
3698 {
3699 struct page_cgroup *pc;
3700
3701 VM_BUG_ON(mem_cgroup_is_root(memcg));
3702
3703 /* The page allocation failed. Revert */
3704 if (!page) {
3705 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3706 return;
3707 }
3708
3709 pc = lookup_page_cgroup(page);
3710 lock_page_cgroup(pc);
3711 pc->mem_cgroup = memcg;
3712 SetPageCgroupUsed(pc);
3713 unlock_page_cgroup(pc);
3714 }
3715
3716 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3717 {
3718 struct mem_cgroup *memcg = NULL;
3719 struct page_cgroup *pc;
3720
3721
3722 pc = lookup_page_cgroup(page);
3723 /*
3724 * Fast unlocked return. Theoretically might have changed, have to
3725 * check again after locking.
3726 */
3727 if (!PageCgroupUsed(pc))
3728 return;
3729
3730 lock_page_cgroup(pc);
3731 if (PageCgroupUsed(pc)) {
3732 memcg = pc->mem_cgroup;
3733 ClearPageCgroupUsed(pc);
3734 }
3735 unlock_page_cgroup(pc);
3736
3737 /*
3738 * We trust that only if there is a memcg associated with the page, it
3739 * is a valid allocation
3740 */
3741 if (!memcg)
3742 return;
3743
3744 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3745 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3746 }
3747 #else
3748 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3749 {
3750 }
3751 #endif /* CONFIG_MEMCG_KMEM */
3752
3753 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3754
3755 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3756 /*
3757 * Because tail pages are not marked as "used", set it. We're under
3758 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3759 * charge/uncharge will be never happen and move_account() is done under
3760 * compound_lock(), so we don't have to take care of races.
3761 */
3762 void mem_cgroup_split_huge_fixup(struct page *head)
3763 {
3764 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3765 struct page_cgroup *pc;
3766 struct mem_cgroup *memcg;
3767 int i;
3768
3769 if (mem_cgroup_disabled())
3770 return;
3771
3772 memcg = head_pc->mem_cgroup;
3773 for (i = 1; i < HPAGE_PMD_NR; i++) {
3774 pc = head_pc + i;
3775 pc->mem_cgroup = memcg;
3776 smp_wmb();/* see __commit_charge() */
3777 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3778 }
3779 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3780 HPAGE_PMD_NR);
3781 }
3782 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3783
3784 static inline
3785 void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3786 struct mem_cgroup *to,
3787 unsigned int nr_pages,
3788 enum mem_cgroup_stat_index idx)
3789 {
3790 /* Update stat data for mem_cgroup */
3791 preempt_disable();
3792 __this_cpu_sub(from->stat->count[idx], nr_pages);
3793 __this_cpu_add(to->stat->count[idx], nr_pages);
3794 preempt_enable();
3795 }
3796
3797 /**
3798 * mem_cgroup_move_account - move account of the page
3799 * @page: the page
3800 * @nr_pages: number of regular pages (>1 for huge pages)
3801 * @pc: page_cgroup of the page.
3802 * @from: mem_cgroup which the page is moved from.
3803 * @to: mem_cgroup which the page is moved to. @from != @to.
3804 *
3805 * The caller must confirm following.
3806 * - page is not on LRU (isolate_page() is useful.)
3807 * - compound_lock is held when nr_pages > 1
3808 *
3809 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3810 * from old cgroup.
3811 */
3812 static int mem_cgroup_move_account(struct page *page,
3813 unsigned int nr_pages,
3814 struct page_cgroup *pc,
3815 struct mem_cgroup *from,
3816 struct mem_cgroup *to)
3817 {
3818 unsigned long flags;
3819 int ret;
3820 bool anon = PageAnon(page);
3821
3822 VM_BUG_ON(from == to);
3823 VM_BUG_ON_PAGE(PageLRU(page), page);
3824 /*
3825 * The page is isolated from LRU. So, collapse function
3826 * will not handle this page. But page splitting can happen.
3827 * Do this check under compound_page_lock(). The caller should
3828 * hold it.
3829 */
3830 ret = -EBUSY;
3831 if (nr_pages > 1 && !PageTransHuge(page))
3832 goto out;
3833
3834 lock_page_cgroup(pc);
3835
3836 ret = -EINVAL;
3837 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3838 goto unlock;
3839
3840 move_lock_mem_cgroup(from, &flags);
3841
3842 if (!anon && page_mapped(page))
3843 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3844 MEM_CGROUP_STAT_FILE_MAPPED);
3845
3846 if (PageWriteback(page))
3847 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3848 MEM_CGROUP_STAT_WRITEBACK);
3849
3850 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3851
3852 /* caller should have done css_get */
3853 pc->mem_cgroup = to;
3854 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3855 move_unlock_mem_cgroup(from, &flags);
3856 ret = 0;
3857 unlock:
3858 unlock_page_cgroup(pc);
3859 /*
3860 * check events
3861 */
3862 memcg_check_events(to, page);
3863 memcg_check_events(from, page);
3864 out:
3865 return ret;
3866 }
3867
3868 /**
3869 * mem_cgroup_move_parent - moves page to the parent group
3870 * @page: the page to move
3871 * @pc: page_cgroup of the page
3872 * @child: page's cgroup
3873 *
3874 * move charges to its parent or the root cgroup if the group has no
3875 * parent (aka use_hierarchy==0).
3876 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3877 * mem_cgroup_move_account fails) the failure is always temporary and
3878 * it signals a race with a page removal/uncharge or migration. In the
3879 * first case the page is on the way out and it will vanish from the LRU
3880 * on the next attempt and the call should be retried later.
3881 * Isolation from the LRU fails only if page has been isolated from
3882 * the LRU since we looked at it and that usually means either global
3883 * reclaim or migration going on. The page will either get back to the
3884 * LRU or vanish.
3885 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3886 * (!PageCgroupUsed) or moved to a different group. The page will
3887 * disappear in the next attempt.
3888 */
3889 static int mem_cgroup_move_parent(struct page *page,
3890 struct page_cgroup *pc,
3891 struct mem_cgroup *child)
3892 {
3893 struct mem_cgroup *parent;
3894 unsigned int nr_pages;
3895 unsigned long uninitialized_var(flags);
3896 int ret;
3897
3898 VM_BUG_ON(mem_cgroup_is_root(child));
3899
3900 ret = -EBUSY;
3901 if (!get_page_unless_zero(page))
3902 goto out;
3903 if (isolate_lru_page(page))
3904 goto put;
3905
3906 nr_pages = hpage_nr_pages(page);
3907
3908 parent = parent_mem_cgroup(child);
3909 /*
3910 * If no parent, move charges to root cgroup.
3911 */
3912 if (!parent)
3913 parent = root_mem_cgroup;
3914
3915 if (nr_pages > 1) {
3916 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3917 flags = compound_lock_irqsave(page);
3918 }
3919
3920 ret = mem_cgroup_move_account(page, nr_pages,
3921 pc, child, parent);
3922 if (!ret)
3923 __mem_cgroup_cancel_local_charge(child, nr_pages);
3924
3925 if (nr_pages > 1)
3926 compound_unlock_irqrestore(page, flags);
3927 putback_lru_page(page);
3928 put:
3929 put_page(page);
3930 out:
3931 return ret;
3932 }
3933
3934 /*
3935 * Charge the memory controller for page usage.
3936 * Return
3937 * 0 if the charge was successful
3938 * < 0 if the cgroup is over its limit
3939 */
3940 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3941 gfp_t gfp_mask, enum charge_type ctype)
3942 {
3943 struct mem_cgroup *memcg = NULL;
3944 unsigned int nr_pages = 1;
3945 bool oom = true;
3946 int ret;
3947
3948 if (PageTransHuge(page)) {
3949 nr_pages <<= compound_order(page);
3950 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3951 /*
3952 * Never OOM-kill a process for a huge page. The
3953 * fault handler will fall back to regular pages.
3954 */
3955 oom = false;
3956 }
3957
3958 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3959 if (ret == -ENOMEM)
3960 return ret;
3961 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3962 return 0;
3963 }
3964
3965 int mem_cgroup_newpage_charge(struct page *page,
3966 struct mm_struct *mm, gfp_t gfp_mask)
3967 {
3968 if (mem_cgroup_disabled())
3969 return 0;
3970 VM_BUG_ON_PAGE(page_mapped(page), page);
3971 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3972 VM_BUG_ON(!mm);
3973 return mem_cgroup_charge_common(page, mm, gfp_mask,
3974 MEM_CGROUP_CHARGE_TYPE_ANON);
3975 }
3976
3977 /*
3978 * While swap-in, try_charge -> commit or cancel, the page is locked.
3979 * And when try_charge() successfully returns, one refcnt to memcg without
3980 * struct page_cgroup is acquired. This refcnt will be consumed by
3981 * "commit()" or removed by "cancel()"
3982 */
3983 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3984 struct page *page,
3985 gfp_t mask,
3986 struct mem_cgroup **memcgp)
3987 {
3988 struct mem_cgroup *memcg;
3989 struct page_cgroup *pc;
3990 int ret;
3991
3992 pc = lookup_page_cgroup(page);
3993 /*
3994 * Every swap fault against a single page tries to charge the
3995 * page, bail as early as possible. shmem_unuse() encounters
3996 * already charged pages, too. The USED bit is protected by
3997 * the page lock, which serializes swap cache removal, which
3998 * in turn serializes uncharging.
3999 */
4000 if (PageCgroupUsed(pc))
4001 return 0;
4002 if (!do_swap_account)
4003 goto charge_cur_mm;
4004 memcg = try_get_mem_cgroup_from_page(page);
4005 if (!memcg)
4006 goto charge_cur_mm;
4007 *memcgp = memcg;
4008 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4009 css_put(&memcg->css);
4010 if (ret == -EINTR)
4011 ret = 0;
4012 return ret;
4013 charge_cur_mm:
4014 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4015 if (ret == -EINTR)
4016 ret = 0;
4017 return ret;
4018 }
4019
4020 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4021 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4022 {
4023 *memcgp = NULL;
4024 if (mem_cgroup_disabled())
4025 return 0;
4026 /*
4027 * A racing thread's fault, or swapoff, may have already
4028 * updated the pte, and even removed page from swap cache: in
4029 * those cases unuse_pte()'s pte_same() test will fail; but
4030 * there's also a KSM case which does need to charge the page.
4031 */
4032 if (!PageSwapCache(page)) {
4033 int ret;
4034
4035 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4036 if (ret == -EINTR)
4037 ret = 0;
4038 return ret;
4039 }
4040 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4041 }
4042
4043 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4044 {
4045 if (mem_cgroup_disabled())
4046 return;
4047 if (!memcg)
4048 return;
4049 __mem_cgroup_cancel_charge(memcg, 1);
4050 }
4051
4052 static void
4053 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4054 enum charge_type ctype)
4055 {
4056 if (mem_cgroup_disabled())
4057 return;
4058 if (!memcg)
4059 return;
4060
4061 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4062 /*
4063 * Now swap is on-memory. This means this page may be
4064 * counted both as mem and swap....double count.
4065 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4066 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4067 * may call delete_from_swap_cache() before reach here.
4068 */
4069 if (do_swap_account && PageSwapCache(page)) {
4070 swp_entry_t ent = {.val = page_private(page)};
4071 mem_cgroup_uncharge_swap(ent);
4072 }
4073 }
4074
4075 void mem_cgroup_commit_charge_swapin(struct page *page,
4076 struct mem_cgroup *memcg)
4077 {
4078 __mem_cgroup_commit_charge_swapin(page, memcg,
4079 MEM_CGROUP_CHARGE_TYPE_ANON);
4080 }
4081
4082 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4083 gfp_t gfp_mask)
4084 {
4085 struct mem_cgroup *memcg = NULL;
4086 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4087 int ret;
4088
4089 if (mem_cgroup_disabled())
4090 return 0;
4091 if (PageCompound(page))
4092 return 0;
4093
4094 if (!PageSwapCache(page))
4095 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4096 else { /* page is swapcache/shmem */
4097 ret = __mem_cgroup_try_charge_swapin(mm, page,
4098 gfp_mask, &memcg);
4099 if (!ret)
4100 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4101 }
4102 return ret;
4103 }
4104
4105 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4106 unsigned int nr_pages,
4107 const enum charge_type ctype)
4108 {
4109 struct memcg_batch_info *batch = NULL;
4110 bool uncharge_memsw = true;
4111
4112 /* If swapout, usage of swap doesn't decrease */
4113 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4114 uncharge_memsw = false;
4115
4116 batch = &current->memcg_batch;
4117 /*
4118 * In usual, we do css_get() when we remember memcg pointer.
4119 * But in this case, we keep res->usage until end of a series of
4120 * uncharges. Then, it's ok to ignore memcg's refcnt.
4121 */
4122 if (!batch->memcg)
4123 batch->memcg = memcg;
4124 /*
4125 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4126 * In those cases, all pages freed continuously can be expected to be in
4127 * the same cgroup and we have chance to coalesce uncharges.
4128 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4129 * because we want to do uncharge as soon as possible.
4130 */
4131
4132 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4133 goto direct_uncharge;
4134
4135 if (nr_pages > 1)
4136 goto direct_uncharge;
4137
4138 /*
4139 * In typical case, batch->memcg == mem. This means we can
4140 * merge a series of uncharges to an uncharge of res_counter.
4141 * If not, we uncharge res_counter ony by one.
4142 */
4143 if (batch->memcg != memcg)
4144 goto direct_uncharge;
4145 /* remember freed charge and uncharge it later */
4146 batch->nr_pages++;
4147 if (uncharge_memsw)
4148 batch->memsw_nr_pages++;
4149 return;
4150 direct_uncharge:
4151 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4152 if (uncharge_memsw)
4153 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4154 if (unlikely(batch->memcg != memcg))
4155 memcg_oom_recover(memcg);
4156 }
4157
4158 /*
4159 * uncharge if !page_mapped(page)
4160 */
4161 static struct mem_cgroup *
4162 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4163 bool end_migration)
4164 {
4165 struct mem_cgroup *memcg = NULL;
4166 unsigned int nr_pages = 1;
4167 struct page_cgroup *pc;
4168 bool anon;
4169
4170 if (mem_cgroup_disabled())
4171 return NULL;
4172
4173 if (PageTransHuge(page)) {
4174 nr_pages <<= compound_order(page);
4175 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
4176 }
4177 /*
4178 * Check if our page_cgroup is valid
4179 */
4180 pc = lookup_page_cgroup(page);
4181 if (unlikely(!PageCgroupUsed(pc)))
4182 return NULL;
4183
4184 lock_page_cgroup(pc);
4185
4186 memcg = pc->mem_cgroup;
4187
4188 if (!PageCgroupUsed(pc))
4189 goto unlock_out;
4190
4191 anon = PageAnon(page);
4192
4193 switch (ctype) {
4194 case MEM_CGROUP_CHARGE_TYPE_ANON:
4195 /*
4196 * Generally PageAnon tells if it's the anon statistics to be
4197 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4198 * used before page reached the stage of being marked PageAnon.
4199 */
4200 anon = true;
4201 /* fallthrough */
4202 case MEM_CGROUP_CHARGE_TYPE_DROP:
4203 /* See mem_cgroup_prepare_migration() */
4204 if (page_mapped(page))
4205 goto unlock_out;
4206 /*
4207 * Pages under migration may not be uncharged. But
4208 * end_migration() /must/ be the one uncharging the
4209 * unused post-migration page and so it has to call
4210 * here with the migration bit still set. See the
4211 * res_counter handling below.
4212 */
4213 if (!end_migration && PageCgroupMigration(pc))
4214 goto unlock_out;
4215 break;
4216 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4217 if (!PageAnon(page)) { /* Shared memory */
4218 if (page->mapping && !page_is_file_cache(page))
4219 goto unlock_out;
4220 } else if (page_mapped(page)) /* Anon */
4221 goto unlock_out;
4222 break;
4223 default:
4224 break;
4225 }
4226
4227 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4228
4229 ClearPageCgroupUsed(pc);
4230 /*
4231 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4232 * freed from LRU. This is safe because uncharged page is expected not
4233 * to be reused (freed soon). Exception is SwapCache, it's handled by
4234 * special functions.
4235 */
4236
4237 unlock_page_cgroup(pc);
4238 /*
4239 * even after unlock, we have memcg->res.usage here and this memcg
4240 * will never be freed, so it's safe to call css_get().
4241 */
4242 memcg_check_events(memcg, page);
4243 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4244 mem_cgroup_swap_statistics(memcg, true);
4245 css_get(&memcg->css);
4246 }
4247 /*
4248 * Migration does not charge the res_counter for the
4249 * replacement page, so leave it alone when phasing out the
4250 * page that is unused after the migration.
4251 */
4252 if (!end_migration && !mem_cgroup_is_root(memcg))
4253 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4254
4255 return memcg;
4256
4257 unlock_out:
4258 unlock_page_cgroup(pc);
4259 return NULL;
4260 }
4261
4262 void mem_cgroup_uncharge_page(struct page *page)
4263 {
4264 /* early check. */
4265 if (page_mapped(page))
4266 return;
4267 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
4268 /*
4269 * If the page is in swap cache, uncharge should be deferred
4270 * to the swap path, which also properly accounts swap usage
4271 * and handles memcg lifetime.
4272 *
4273 * Note that this check is not stable and reclaim may add the
4274 * page to swap cache at any time after this. However, if the
4275 * page is not in swap cache by the time page->mapcount hits
4276 * 0, there won't be any page table references to the swap
4277 * slot, and reclaim will free it and not actually write the
4278 * page to disk.
4279 */
4280 if (PageSwapCache(page))
4281 return;
4282 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4283 }
4284
4285 void mem_cgroup_uncharge_cache_page(struct page *page)
4286 {
4287 VM_BUG_ON_PAGE(page_mapped(page), page);
4288 VM_BUG_ON_PAGE(page->mapping, page);
4289 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4290 }
4291
4292 /*
4293 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4294 * In that cases, pages are freed continuously and we can expect pages
4295 * are in the same memcg. All these calls itself limits the number of
4296 * pages freed at once, then uncharge_start/end() is called properly.
4297 * This may be called prural(2) times in a context,
4298 */
4299
4300 void mem_cgroup_uncharge_start(void)
4301 {
4302 current->memcg_batch.do_batch++;
4303 /* We can do nest. */
4304 if (current->memcg_batch.do_batch == 1) {
4305 current->memcg_batch.memcg = NULL;
4306 current->memcg_batch.nr_pages = 0;
4307 current->memcg_batch.memsw_nr_pages = 0;
4308 }
4309 }
4310
4311 void mem_cgroup_uncharge_end(void)
4312 {
4313 struct memcg_batch_info *batch = &current->memcg_batch;
4314
4315 if (!batch->do_batch)
4316 return;
4317
4318 batch->do_batch--;
4319 if (batch->do_batch) /* If stacked, do nothing. */
4320 return;
4321
4322 if (!batch->memcg)
4323 return;
4324 /*
4325 * This "batch->memcg" is valid without any css_get/put etc...
4326 * bacause we hide charges behind us.
4327 */
4328 if (batch->nr_pages)
4329 res_counter_uncharge(&batch->memcg->res,
4330 batch->nr_pages * PAGE_SIZE);
4331 if (batch->memsw_nr_pages)
4332 res_counter_uncharge(&batch->memcg->memsw,
4333 batch->memsw_nr_pages * PAGE_SIZE);
4334 memcg_oom_recover(batch->memcg);
4335 /* forget this pointer (for sanity check) */
4336 batch->memcg = NULL;
4337 }
4338
4339 #ifdef CONFIG_SWAP
4340 /*
4341 * called after __delete_from_swap_cache() and drop "page" account.
4342 * memcg information is recorded to swap_cgroup of "ent"
4343 */
4344 void
4345 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4346 {
4347 struct mem_cgroup *memcg;
4348 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4349
4350 if (!swapout) /* this was a swap cache but the swap is unused ! */
4351 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4352
4353 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4354
4355 /*
4356 * record memcg information, if swapout && memcg != NULL,
4357 * css_get() was called in uncharge().
4358 */
4359 if (do_swap_account && swapout && memcg)
4360 swap_cgroup_record(ent, mem_cgroup_id(memcg));
4361 }
4362 #endif
4363
4364 #ifdef CONFIG_MEMCG_SWAP
4365 /*
4366 * called from swap_entry_free(). remove record in swap_cgroup and
4367 * uncharge "memsw" account.
4368 */
4369 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4370 {
4371 struct mem_cgroup *memcg;
4372 unsigned short id;
4373
4374 if (!do_swap_account)
4375 return;
4376
4377 id = swap_cgroup_record(ent, 0);
4378 rcu_read_lock();
4379 memcg = mem_cgroup_lookup(id);
4380 if (memcg) {
4381 /*
4382 * We uncharge this because swap is freed.
4383 * This memcg can be obsolete one. We avoid calling css_tryget
4384 */
4385 if (!mem_cgroup_is_root(memcg))
4386 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4387 mem_cgroup_swap_statistics(memcg, false);
4388 css_put(&memcg->css);
4389 }
4390 rcu_read_unlock();
4391 }
4392
4393 /**
4394 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4395 * @entry: swap entry to be moved
4396 * @from: mem_cgroup which the entry is moved from
4397 * @to: mem_cgroup which the entry is moved to
4398 *
4399 * It succeeds only when the swap_cgroup's record for this entry is the same
4400 * as the mem_cgroup's id of @from.
4401 *
4402 * Returns 0 on success, -EINVAL on failure.
4403 *
4404 * The caller must have charged to @to, IOW, called res_counter_charge() about
4405 * both res and memsw, and called css_get().
4406 */
4407 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4408 struct mem_cgroup *from, struct mem_cgroup *to)
4409 {
4410 unsigned short old_id, new_id;
4411
4412 old_id = mem_cgroup_id(from);
4413 new_id = mem_cgroup_id(to);
4414
4415 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4416 mem_cgroup_swap_statistics(from, false);
4417 mem_cgroup_swap_statistics(to, true);
4418 /*
4419 * This function is only called from task migration context now.
4420 * It postpones res_counter and refcount handling till the end
4421 * of task migration(mem_cgroup_clear_mc()) for performance
4422 * improvement. But we cannot postpone css_get(to) because if
4423 * the process that has been moved to @to does swap-in, the
4424 * refcount of @to might be decreased to 0.
4425 *
4426 * We are in attach() phase, so the cgroup is guaranteed to be
4427 * alive, so we can just call css_get().
4428 */
4429 css_get(&to->css);
4430 return 0;
4431 }
4432 return -EINVAL;
4433 }
4434 #else
4435 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4436 struct mem_cgroup *from, struct mem_cgroup *to)
4437 {
4438 return -EINVAL;
4439 }
4440 #endif
4441
4442 /*
4443 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4444 * page belongs to.
4445 */
4446 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4447 struct mem_cgroup **memcgp)
4448 {
4449 struct mem_cgroup *memcg = NULL;
4450 unsigned int nr_pages = 1;
4451 struct page_cgroup *pc;
4452 enum charge_type ctype;
4453
4454 *memcgp = NULL;
4455
4456 if (mem_cgroup_disabled())
4457 return;
4458
4459 if (PageTransHuge(page))
4460 nr_pages <<= compound_order(page);
4461
4462 pc = lookup_page_cgroup(page);
4463 lock_page_cgroup(pc);
4464 if (PageCgroupUsed(pc)) {
4465 memcg = pc->mem_cgroup;
4466 css_get(&memcg->css);
4467 /*
4468 * At migrating an anonymous page, its mapcount goes down
4469 * to 0 and uncharge() will be called. But, even if it's fully
4470 * unmapped, migration may fail and this page has to be
4471 * charged again. We set MIGRATION flag here and delay uncharge
4472 * until end_migration() is called
4473 *
4474 * Corner Case Thinking
4475 * A)
4476 * When the old page was mapped as Anon and it's unmap-and-freed
4477 * while migration was ongoing.
4478 * If unmap finds the old page, uncharge() of it will be delayed
4479 * until end_migration(). If unmap finds a new page, it's
4480 * uncharged when it make mapcount to be 1->0. If unmap code
4481 * finds swap_migration_entry, the new page will not be mapped
4482 * and end_migration() will find it(mapcount==0).
4483 *
4484 * B)
4485 * When the old page was mapped but migraion fails, the kernel
4486 * remaps it. A charge for it is kept by MIGRATION flag even
4487 * if mapcount goes down to 0. We can do remap successfully
4488 * without charging it again.
4489 *
4490 * C)
4491 * The "old" page is under lock_page() until the end of
4492 * migration, so, the old page itself will not be swapped-out.
4493 * If the new page is swapped out before end_migraton, our
4494 * hook to usual swap-out path will catch the event.
4495 */
4496 if (PageAnon(page))
4497 SetPageCgroupMigration(pc);
4498 }
4499 unlock_page_cgroup(pc);
4500 /*
4501 * If the page is not charged at this point,
4502 * we return here.
4503 */
4504 if (!memcg)
4505 return;
4506
4507 *memcgp = memcg;
4508 /*
4509 * We charge new page before it's used/mapped. So, even if unlock_page()
4510 * is called before end_migration, we can catch all events on this new
4511 * page. In the case new page is migrated but not remapped, new page's
4512 * mapcount will be finally 0 and we call uncharge in end_migration().
4513 */
4514 if (PageAnon(page))
4515 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4516 else
4517 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4518 /*
4519 * The page is committed to the memcg, but it's not actually
4520 * charged to the res_counter since we plan on replacing the
4521 * old one and only one page is going to be left afterwards.
4522 */
4523 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4524 }
4525
4526 /* remove redundant charge if migration failed*/
4527 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4528 struct page *oldpage, struct page *newpage, bool migration_ok)
4529 {
4530 struct page *used, *unused;
4531 struct page_cgroup *pc;
4532 bool anon;
4533
4534 if (!memcg)
4535 return;
4536
4537 if (!migration_ok) {
4538 used = oldpage;
4539 unused = newpage;
4540 } else {
4541 used = newpage;
4542 unused = oldpage;
4543 }
4544 anon = PageAnon(used);
4545 __mem_cgroup_uncharge_common(unused,
4546 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4547 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4548 true);
4549 css_put(&memcg->css);
4550 /*
4551 * We disallowed uncharge of pages under migration because mapcount
4552 * of the page goes down to zero, temporarly.
4553 * Clear the flag and check the page should be charged.
4554 */
4555 pc = lookup_page_cgroup(oldpage);
4556 lock_page_cgroup(pc);
4557 ClearPageCgroupMigration(pc);
4558 unlock_page_cgroup(pc);
4559
4560 /*
4561 * If a page is a file cache, radix-tree replacement is very atomic
4562 * and we can skip this check. When it was an Anon page, its mapcount
4563 * goes down to 0. But because we added MIGRATION flage, it's not
4564 * uncharged yet. There are several case but page->mapcount check
4565 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4566 * check. (see prepare_charge() also)
4567 */
4568 if (anon)
4569 mem_cgroup_uncharge_page(used);
4570 }
4571
4572 /*
4573 * At replace page cache, newpage is not under any memcg but it's on
4574 * LRU. So, this function doesn't touch res_counter but handles LRU
4575 * in correct way. Both pages are locked so we cannot race with uncharge.
4576 */
4577 void mem_cgroup_replace_page_cache(struct page *oldpage,
4578 struct page *newpage)
4579 {
4580 struct mem_cgroup *memcg = NULL;
4581 struct page_cgroup *pc;
4582 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4583
4584 if (mem_cgroup_disabled())
4585 return;
4586
4587 pc = lookup_page_cgroup(oldpage);
4588 /* fix accounting on old pages */
4589 lock_page_cgroup(pc);
4590 if (PageCgroupUsed(pc)) {
4591 memcg = pc->mem_cgroup;
4592 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4593 ClearPageCgroupUsed(pc);
4594 }
4595 unlock_page_cgroup(pc);
4596
4597 /*
4598 * When called from shmem_replace_page(), in some cases the
4599 * oldpage has already been charged, and in some cases not.
4600 */
4601 if (!memcg)
4602 return;
4603 /*
4604 * Even if newpage->mapping was NULL before starting replacement,
4605 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4606 * LRU while we overwrite pc->mem_cgroup.
4607 */
4608 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4609 }
4610
4611 #ifdef CONFIG_DEBUG_VM
4612 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4613 {
4614 struct page_cgroup *pc;
4615
4616 pc = lookup_page_cgroup(page);
4617 /*
4618 * Can be NULL while feeding pages into the page allocator for
4619 * the first time, i.e. during boot or memory hotplug;
4620 * or when mem_cgroup_disabled().
4621 */
4622 if (likely(pc) && PageCgroupUsed(pc))
4623 return pc;
4624 return NULL;
4625 }
4626
4627 bool mem_cgroup_bad_page_check(struct page *page)
4628 {
4629 if (mem_cgroup_disabled())
4630 return false;
4631
4632 return lookup_page_cgroup_used(page) != NULL;
4633 }
4634
4635 void mem_cgroup_print_bad_page(struct page *page)
4636 {
4637 struct page_cgroup *pc;
4638
4639 pc = lookup_page_cgroup_used(page);
4640 if (pc) {
4641 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4642 pc, pc->flags, pc->mem_cgroup);
4643 }
4644 }
4645 #endif
4646
4647 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4648 unsigned long long val)
4649 {
4650 int retry_count;
4651 u64 memswlimit, memlimit;
4652 int ret = 0;
4653 int children = mem_cgroup_count_children(memcg);
4654 u64 curusage, oldusage;
4655 int enlarge;
4656
4657 /*
4658 * For keeping hierarchical_reclaim simple, how long we should retry
4659 * is depends on callers. We set our retry-count to be function
4660 * of # of children which we should visit in this loop.
4661 */
4662 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4663
4664 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4665
4666 enlarge = 0;
4667 while (retry_count) {
4668 if (signal_pending(current)) {
4669 ret = -EINTR;
4670 break;
4671 }
4672 /*
4673 * Rather than hide all in some function, I do this in
4674 * open coded manner. You see what this really does.
4675 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4676 */
4677 mutex_lock(&set_limit_mutex);
4678 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4679 if (memswlimit < val) {
4680 ret = -EINVAL;
4681 mutex_unlock(&set_limit_mutex);
4682 break;
4683 }
4684
4685 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4686 if (memlimit < val)
4687 enlarge = 1;
4688
4689 ret = res_counter_set_limit(&memcg->res, val);
4690 if (!ret) {
4691 if (memswlimit == val)
4692 memcg->memsw_is_minimum = true;
4693 else
4694 memcg->memsw_is_minimum = false;
4695 }
4696 mutex_unlock(&set_limit_mutex);
4697
4698 if (!ret)
4699 break;
4700
4701 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4702 MEM_CGROUP_RECLAIM_SHRINK);
4703 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4704 /* Usage is reduced ? */
4705 if (curusage >= oldusage)
4706 retry_count--;
4707 else
4708 oldusage = curusage;
4709 }
4710 if (!ret && enlarge)
4711 memcg_oom_recover(memcg);
4712
4713 return ret;
4714 }
4715
4716 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4717 unsigned long long val)
4718 {
4719 int retry_count;
4720 u64 memlimit, memswlimit, oldusage, curusage;
4721 int children = mem_cgroup_count_children(memcg);
4722 int ret = -EBUSY;
4723 int enlarge = 0;
4724
4725 /* see mem_cgroup_resize_res_limit */
4726 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4727 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4728 while (retry_count) {
4729 if (signal_pending(current)) {
4730 ret = -EINTR;
4731 break;
4732 }
4733 /*
4734 * Rather than hide all in some function, I do this in
4735 * open coded manner. You see what this really does.
4736 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4737 */
4738 mutex_lock(&set_limit_mutex);
4739 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4740 if (memlimit > val) {
4741 ret = -EINVAL;
4742 mutex_unlock(&set_limit_mutex);
4743 break;
4744 }
4745 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4746 if (memswlimit < val)
4747 enlarge = 1;
4748 ret = res_counter_set_limit(&memcg->memsw, val);
4749 if (!ret) {
4750 if (memlimit == val)
4751 memcg->memsw_is_minimum = true;
4752 else
4753 memcg->memsw_is_minimum = false;
4754 }
4755 mutex_unlock(&set_limit_mutex);
4756
4757 if (!ret)
4758 break;
4759
4760 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4761 MEM_CGROUP_RECLAIM_NOSWAP |
4762 MEM_CGROUP_RECLAIM_SHRINK);
4763 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4764 /* Usage is reduced ? */
4765 if (curusage >= oldusage)
4766 retry_count--;
4767 else
4768 oldusage = curusage;
4769 }
4770 if (!ret && enlarge)
4771 memcg_oom_recover(memcg);
4772 return ret;
4773 }
4774
4775 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4776 gfp_t gfp_mask,
4777 unsigned long *total_scanned)
4778 {
4779 unsigned long nr_reclaimed = 0;
4780 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4781 unsigned long reclaimed;
4782 int loop = 0;
4783 struct mem_cgroup_tree_per_zone *mctz;
4784 unsigned long long excess;
4785 unsigned long nr_scanned;
4786
4787 if (order > 0)
4788 return 0;
4789
4790 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4791 /*
4792 * This loop can run a while, specially if mem_cgroup's continuously
4793 * keep exceeding their soft limit and putting the system under
4794 * pressure
4795 */
4796 do {
4797 if (next_mz)
4798 mz = next_mz;
4799 else
4800 mz = mem_cgroup_largest_soft_limit_node(mctz);
4801 if (!mz)
4802 break;
4803
4804 nr_scanned = 0;
4805 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4806 gfp_mask, &nr_scanned);
4807 nr_reclaimed += reclaimed;
4808 *total_scanned += nr_scanned;
4809 spin_lock(&mctz->lock);
4810
4811 /*
4812 * If we failed to reclaim anything from this memory cgroup
4813 * it is time to move on to the next cgroup
4814 */
4815 next_mz = NULL;
4816 if (!reclaimed) {
4817 do {
4818 /*
4819 * Loop until we find yet another one.
4820 *
4821 * By the time we get the soft_limit lock
4822 * again, someone might have aded the
4823 * group back on the RB tree. Iterate to
4824 * make sure we get a different mem.
4825 * mem_cgroup_largest_soft_limit_node returns
4826 * NULL if no other cgroup is present on
4827 * the tree
4828 */
4829 next_mz =
4830 __mem_cgroup_largest_soft_limit_node(mctz);
4831 if (next_mz == mz)
4832 css_put(&next_mz->memcg->css);
4833 else /* next_mz == NULL or other memcg */
4834 break;
4835 } while (1);
4836 }
4837 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4838 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4839 /*
4840 * One school of thought says that we should not add
4841 * back the node to the tree if reclaim returns 0.
4842 * But our reclaim could return 0, simply because due
4843 * to priority we are exposing a smaller subset of
4844 * memory to reclaim from. Consider this as a longer
4845 * term TODO.
4846 */
4847 /* If excess == 0, no tree ops */
4848 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4849 spin_unlock(&mctz->lock);
4850 css_put(&mz->memcg->css);
4851 loop++;
4852 /*
4853 * Could not reclaim anything and there are no more
4854 * mem cgroups to try or we seem to be looping without
4855 * reclaiming anything.
4856 */
4857 if (!nr_reclaimed &&
4858 (next_mz == NULL ||
4859 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4860 break;
4861 } while (!nr_reclaimed);
4862 if (next_mz)
4863 css_put(&next_mz->memcg->css);
4864 return nr_reclaimed;
4865 }
4866
4867 /**
4868 * mem_cgroup_force_empty_list - clears LRU of a group
4869 * @memcg: group to clear
4870 * @node: NUMA node
4871 * @zid: zone id
4872 * @lru: lru to to clear
4873 *
4874 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4875 * reclaim the pages page themselves - pages are moved to the parent (or root)
4876 * group.
4877 */
4878 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4879 int node, int zid, enum lru_list lru)
4880 {
4881 struct lruvec *lruvec;
4882 unsigned long flags;
4883 struct list_head *list;
4884 struct page *busy;
4885 struct zone *zone;
4886
4887 zone = &NODE_DATA(node)->node_zones[zid];
4888 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4889 list = &lruvec->lists[lru];
4890
4891 busy = NULL;
4892 do {
4893 struct page_cgroup *pc;
4894 struct page *page;
4895
4896 spin_lock_irqsave(&zone->lru_lock, flags);
4897 if (list_empty(list)) {
4898 spin_unlock_irqrestore(&zone->lru_lock, flags);
4899 break;
4900 }
4901 page = list_entry(list->prev, struct page, lru);
4902 if (busy == page) {
4903 list_move(&page->lru, list);
4904 busy = NULL;
4905 spin_unlock_irqrestore(&zone->lru_lock, flags);
4906 continue;
4907 }
4908 spin_unlock_irqrestore(&zone->lru_lock, flags);
4909
4910 pc = lookup_page_cgroup(page);
4911
4912 if (mem_cgroup_move_parent(page, pc, memcg)) {
4913 /* found lock contention or "pc" is obsolete. */
4914 busy = page;
4915 cond_resched();
4916 } else
4917 busy = NULL;
4918 } while (!list_empty(list));
4919 }
4920
4921 /*
4922 * make mem_cgroup's charge to be 0 if there is no task by moving
4923 * all the charges and pages to the parent.
4924 * This enables deleting this mem_cgroup.
4925 *
4926 * Caller is responsible for holding css reference on the memcg.
4927 */
4928 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4929 {
4930 int node, zid;
4931 u64 usage;
4932
4933 do {
4934 /* This is for making all *used* pages to be on LRU. */
4935 lru_add_drain_all();
4936 drain_all_stock_sync(memcg);
4937 mem_cgroup_start_move(memcg);
4938 for_each_node_state(node, N_MEMORY) {
4939 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4940 enum lru_list lru;
4941 for_each_lru(lru) {
4942 mem_cgroup_force_empty_list(memcg,
4943 node, zid, lru);
4944 }
4945 }
4946 }
4947 mem_cgroup_end_move(memcg);
4948 memcg_oom_recover(memcg);
4949 cond_resched();
4950
4951 /*
4952 * Kernel memory may not necessarily be trackable to a specific
4953 * process. So they are not migrated, and therefore we can't
4954 * expect their value to drop to 0 here.
4955 * Having res filled up with kmem only is enough.
4956 *
4957 * This is a safety check because mem_cgroup_force_empty_list
4958 * could have raced with mem_cgroup_replace_page_cache callers
4959 * so the lru seemed empty but the page could have been added
4960 * right after the check. RES_USAGE should be safe as we always
4961 * charge before adding to the LRU.
4962 */
4963 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4964 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4965 } while (usage > 0);
4966 }
4967
4968 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4969 {
4970 lockdep_assert_held(&memcg_create_mutex);
4971 /*
4972 * The lock does not prevent addition or deletion to the list
4973 * of children, but it prevents a new child from being
4974 * initialized based on this parent in css_online(), so it's
4975 * enough to decide whether hierarchically inherited
4976 * attributes can still be changed or not.
4977 */
4978 return memcg->use_hierarchy &&
4979 !list_empty(&memcg->css.cgroup->children);
4980 }
4981
4982 /*
4983 * Reclaims as many pages from the given memcg as possible and moves
4984 * the rest to the parent.
4985 *
4986 * Caller is responsible for holding css reference for memcg.
4987 */
4988 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4989 {
4990 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4991 struct cgroup *cgrp = memcg->css.cgroup;
4992
4993 /* returns EBUSY if there is a task or if we come here twice. */
4994 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4995 return -EBUSY;
4996
4997 /* we call try-to-free pages for make this cgroup empty */
4998 lru_add_drain_all();
4999 /* try to free all pages in this cgroup */
5000 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5001 int progress;
5002
5003 if (signal_pending(current))
5004 return -EINTR;
5005
5006 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5007 false);
5008 if (!progress) {
5009 nr_retries--;
5010 /* maybe some writeback is necessary */
5011 congestion_wait(BLK_RW_ASYNC, HZ/10);
5012 }
5013
5014 }
5015 lru_add_drain();
5016 mem_cgroup_reparent_charges(memcg);
5017
5018 return 0;
5019 }
5020
5021 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5022 unsigned int event)
5023 {
5024 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5025
5026 if (mem_cgroup_is_root(memcg))
5027 return -EINVAL;
5028 return mem_cgroup_force_empty(memcg);
5029 }
5030
5031 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5032 struct cftype *cft)
5033 {
5034 return mem_cgroup_from_css(css)->use_hierarchy;
5035 }
5036
5037 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5038 struct cftype *cft, u64 val)
5039 {
5040 int retval = 0;
5041 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5042 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5043
5044 mutex_lock(&memcg_create_mutex);
5045
5046 if (memcg->use_hierarchy == val)
5047 goto out;
5048
5049 /*
5050 * If parent's use_hierarchy is set, we can't make any modifications
5051 * in the child subtrees. If it is unset, then the change can
5052 * occur, provided the current cgroup has no children.
5053 *
5054 * For the root cgroup, parent_mem is NULL, we allow value to be
5055 * set if there are no children.
5056 */
5057 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5058 (val == 1 || val == 0)) {
5059 if (list_empty(&memcg->css.cgroup->children))
5060 memcg->use_hierarchy = val;
5061 else
5062 retval = -EBUSY;
5063 } else
5064 retval = -EINVAL;
5065
5066 out:
5067 mutex_unlock(&memcg_create_mutex);
5068
5069 return retval;
5070 }
5071
5072
5073 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5074 enum mem_cgroup_stat_index idx)
5075 {
5076 struct mem_cgroup *iter;
5077 long val = 0;
5078
5079 /* Per-cpu values can be negative, use a signed accumulator */
5080 for_each_mem_cgroup_tree(iter, memcg)
5081 val += mem_cgroup_read_stat(iter, idx);
5082
5083 if (val < 0) /* race ? */
5084 val = 0;
5085 return val;
5086 }
5087
5088 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5089 {
5090 u64 val;
5091
5092 if (!mem_cgroup_is_root(memcg)) {
5093 if (!swap)
5094 return res_counter_read_u64(&memcg->res, RES_USAGE);
5095 else
5096 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5097 }
5098
5099 /*
5100 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5101 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5102 */
5103 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5104 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5105
5106 if (swap)
5107 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5108
5109 return val << PAGE_SHIFT;
5110 }
5111
5112 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
5113 struct cftype *cft)
5114 {
5115 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5116 u64 val;
5117 int name;
5118 enum res_type type;
5119
5120 type = MEMFILE_TYPE(cft->private);
5121 name = MEMFILE_ATTR(cft->private);
5122
5123 switch (type) {
5124 case _MEM:
5125 if (name == RES_USAGE)
5126 val = mem_cgroup_usage(memcg, false);
5127 else
5128 val = res_counter_read_u64(&memcg->res, name);
5129 break;
5130 case _MEMSWAP:
5131 if (name == RES_USAGE)
5132 val = mem_cgroup_usage(memcg, true);
5133 else
5134 val = res_counter_read_u64(&memcg->memsw, name);
5135 break;
5136 case _KMEM:
5137 val = res_counter_read_u64(&memcg->kmem, name);
5138 break;
5139 default:
5140 BUG();
5141 }
5142
5143 return val;
5144 }
5145
5146 #ifdef CONFIG_MEMCG_KMEM
5147 /* should be called with activate_kmem_mutex held */
5148 static int __memcg_activate_kmem(struct mem_cgroup *memcg,
5149 unsigned long long limit)
5150 {
5151 int err = 0;
5152 int memcg_id;
5153
5154 if (memcg_kmem_is_active(memcg))
5155 return 0;
5156
5157 /*
5158 * We are going to allocate memory for data shared by all memory
5159 * cgroups so let's stop accounting here.
5160 */
5161 memcg_stop_kmem_account();
5162
5163 /*
5164 * For simplicity, we won't allow this to be disabled. It also can't
5165 * be changed if the cgroup has children already, or if tasks had
5166 * already joined.
5167 *
5168 * If tasks join before we set the limit, a person looking at
5169 * kmem.usage_in_bytes will have no way to determine when it took
5170 * place, which makes the value quite meaningless.
5171 *
5172 * After it first became limited, changes in the value of the limit are
5173 * of course permitted.
5174 */
5175 mutex_lock(&memcg_create_mutex);
5176 if (cgroup_task_count(memcg->css.cgroup) || memcg_has_children(memcg))
5177 err = -EBUSY;
5178 mutex_unlock(&memcg_create_mutex);
5179 if (err)
5180 goto out;
5181
5182 memcg_id = ida_simple_get(&kmem_limited_groups,
5183 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
5184 if (memcg_id < 0) {
5185 err = memcg_id;
5186 goto out;
5187 }
5188
5189 /*
5190 * Make sure we have enough space for this cgroup in each root cache's
5191 * memcg_params.
5192 */
5193 err = memcg_update_all_caches(memcg_id + 1);
5194 if (err)
5195 goto out_rmid;
5196
5197 memcg->kmemcg_id = memcg_id;
5198 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
5199 mutex_init(&memcg->slab_caches_mutex);
5200
5201 /*
5202 * We couldn't have accounted to this cgroup, because it hasn't got the
5203 * active bit set yet, so this should succeed.
5204 */
5205 err = res_counter_set_limit(&memcg->kmem, limit);
5206 VM_BUG_ON(err);
5207
5208 static_key_slow_inc(&memcg_kmem_enabled_key);
5209 /*
5210 * Setting the active bit after enabling static branching will
5211 * guarantee no one starts accounting before all call sites are
5212 * patched.
5213 */
5214 memcg_kmem_set_active(memcg);
5215 out:
5216 memcg_resume_kmem_account();
5217 return err;
5218
5219 out_rmid:
5220 ida_simple_remove(&kmem_limited_groups, memcg_id);
5221 goto out;
5222 }
5223
5224 static int memcg_activate_kmem(struct mem_cgroup *memcg,
5225 unsigned long long limit)
5226 {
5227 int ret;
5228
5229 mutex_lock(&activate_kmem_mutex);
5230 ret = __memcg_activate_kmem(memcg, limit);
5231 mutex_unlock(&activate_kmem_mutex);
5232 return ret;
5233 }
5234
5235 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5236 unsigned long long val)
5237 {
5238 int ret;
5239
5240 if (!memcg_kmem_is_active(memcg))
5241 ret = memcg_activate_kmem(memcg, val);
5242 else
5243 ret = res_counter_set_limit(&memcg->kmem, val);
5244 return ret;
5245 }
5246
5247 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5248 {
5249 int ret = 0;
5250 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5251
5252 if (!parent)
5253 return 0;
5254
5255 mutex_lock(&activate_kmem_mutex);
5256 /*
5257 * If the parent cgroup is not kmem-active now, it cannot be activated
5258 * after this point, because it has at least one child already.
5259 */
5260 if (memcg_kmem_is_active(parent))
5261 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
5262 mutex_unlock(&activate_kmem_mutex);
5263 return ret;
5264 }
5265 #else
5266 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5267 unsigned long long val)
5268 {
5269 return -EINVAL;
5270 }
5271 #endif /* CONFIG_MEMCG_KMEM */
5272
5273 /*
5274 * The user of this function is...
5275 * RES_LIMIT.
5276 */
5277 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5278 const char *buffer)
5279 {
5280 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5281 enum res_type type;
5282 int name;
5283 unsigned long long val;
5284 int ret;
5285
5286 type = MEMFILE_TYPE(cft->private);
5287 name = MEMFILE_ATTR(cft->private);
5288
5289 switch (name) {
5290 case RES_LIMIT:
5291 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5292 ret = -EINVAL;
5293 break;
5294 }
5295 /* This function does all necessary parse...reuse it */
5296 ret = res_counter_memparse_write_strategy(buffer, &val);
5297 if (ret)
5298 break;
5299 if (type == _MEM)
5300 ret = mem_cgroup_resize_limit(memcg, val);
5301 else if (type == _MEMSWAP)
5302 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5303 else if (type == _KMEM)
5304 ret = memcg_update_kmem_limit(memcg, val);
5305 else
5306 return -EINVAL;
5307 break;
5308 case RES_SOFT_LIMIT:
5309 ret = res_counter_memparse_write_strategy(buffer, &val);
5310 if (ret)
5311 break;
5312 /*
5313 * For memsw, soft limits are hard to implement in terms
5314 * of semantics, for now, we support soft limits for
5315 * control without swap
5316 */
5317 if (type == _MEM)
5318 ret = res_counter_set_soft_limit(&memcg->res, val);
5319 else
5320 ret = -EINVAL;
5321 break;
5322 default:
5323 ret = -EINVAL; /* should be BUG() ? */
5324 break;
5325 }
5326 return ret;
5327 }
5328
5329 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5330 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5331 {
5332 unsigned long long min_limit, min_memsw_limit, tmp;
5333
5334 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5335 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5336 if (!memcg->use_hierarchy)
5337 goto out;
5338
5339 while (css_parent(&memcg->css)) {
5340 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5341 if (!memcg->use_hierarchy)
5342 break;
5343 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5344 min_limit = min(min_limit, tmp);
5345 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5346 min_memsw_limit = min(min_memsw_limit, tmp);
5347 }
5348 out:
5349 *mem_limit = min_limit;
5350 *memsw_limit = min_memsw_limit;
5351 }
5352
5353 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5354 {
5355 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5356 int name;
5357 enum res_type type;
5358
5359 type = MEMFILE_TYPE(event);
5360 name = MEMFILE_ATTR(event);
5361
5362 switch (name) {
5363 case RES_MAX_USAGE:
5364 if (type == _MEM)
5365 res_counter_reset_max(&memcg->res);
5366 else if (type == _MEMSWAP)
5367 res_counter_reset_max(&memcg->memsw);
5368 else if (type == _KMEM)
5369 res_counter_reset_max(&memcg->kmem);
5370 else
5371 return -EINVAL;
5372 break;
5373 case RES_FAILCNT:
5374 if (type == _MEM)
5375 res_counter_reset_failcnt(&memcg->res);
5376 else if (type == _MEMSWAP)
5377 res_counter_reset_failcnt(&memcg->memsw);
5378 else if (type == _KMEM)
5379 res_counter_reset_failcnt(&memcg->kmem);
5380 else
5381 return -EINVAL;
5382 break;
5383 }
5384
5385 return 0;
5386 }
5387
5388 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5389 struct cftype *cft)
5390 {
5391 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5392 }
5393
5394 #ifdef CONFIG_MMU
5395 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5396 struct cftype *cft, u64 val)
5397 {
5398 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5399
5400 if (val >= (1 << NR_MOVE_TYPE))
5401 return -EINVAL;
5402
5403 /*
5404 * No kind of locking is needed in here, because ->can_attach() will
5405 * check this value once in the beginning of the process, and then carry
5406 * on with stale data. This means that changes to this value will only
5407 * affect task migrations starting after the change.
5408 */
5409 memcg->move_charge_at_immigrate = val;
5410 return 0;
5411 }
5412 #else
5413 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5414 struct cftype *cft, u64 val)
5415 {
5416 return -ENOSYS;
5417 }
5418 #endif
5419
5420 #ifdef CONFIG_NUMA
5421 static int memcg_numa_stat_show(struct seq_file *m, void *v)
5422 {
5423 struct numa_stat {
5424 const char *name;
5425 unsigned int lru_mask;
5426 };
5427
5428 static const struct numa_stat stats[] = {
5429 { "total", LRU_ALL },
5430 { "file", LRU_ALL_FILE },
5431 { "anon", LRU_ALL_ANON },
5432 { "unevictable", BIT(LRU_UNEVICTABLE) },
5433 };
5434 const struct numa_stat *stat;
5435 int nid;
5436 unsigned long nr;
5437 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5438
5439 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5440 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5441 seq_printf(m, "%s=%lu", stat->name, nr);
5442 for_each_node_state(nid, N_MEMORY) {
5443 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5444 stat->lru_mask);
5445 seq_printf(m, " N%d=%lu", nid, nr);
5446 }
5447 seq_putc(m, '\n');
5448 }
5449
5450 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5451 struct mem_cgroup *iter;
5452
5453 nr = 0;
5454 for_each_mem_cgroup_tree(iter, memcg)
5455 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5456 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5457 for_each_node_state(nid, N_MEMORY) {
5458 nr = 0;
5459 for_each_mem_cgroup_tree(iter, memcg)
5460 nr += mem_cgroup_node_nr_lru_pages(
5461 iter, nid, stat->lru_mask);
5462 seq_printf(m, " N%d=%lu", nid, nr);
5463 }
5464 seq_putc(m, '\n');
5465 }
5466
5467 return 0;
5468 }
5469 #endif /* CONFIG_NUMA */
5470
5471 static inline void mem_cgroup_lru_names_not_uptodate(void)
5472 {
5473 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5474 }
5475
5476 static int memcg_stat_show(struct seq_file *m, void *v)
5477 {
5478 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5479 struct mem_cgroup *mi;
5480 unsigned int i;
5481
5482 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5483 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5484 continue;
5485 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5486 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5487 }
5488
5489 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5490 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5491 mem_cgroup_read_events(memcg, i));
5492
5493 for (i = 0; i < NR_LRU_LISTS; i++)
5494 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5495 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5496
5497 /* Hierarchical information */
5498 {
5499 unsigned long long limit, memsw_limit;
5500 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5501 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5502 if (do_swap_account)
5503 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5504 memsw_limit);
5505 }
5506
5507 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5508 long long val = 0;
5509
5510 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5511 continue;
5512 for_each_mem_cgroup_tree(mi, memcg)
5513 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5514 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5515 }
5516
5517 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5518 unsigned long long val = 0;
5519
5520 for_each_mem_cgroup_tree(mi, memcg)
5521 val += mem_cgroup_read_events(mi, i);
5522 seq_printf(m, "total_%s %llu\n",
5523 mem_cgroup_events_names[i], val);
5524 }
5525
5526 for (i = 0; i < NR_LRU_LISTS; i++) {
5527 unsigned long long val = 0;
5528
5529 for_each_mem_cgroup_tree(mi, memcg)
5530 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5531 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5532 }
5533
5534 #ifdef CONFIG_DEBUG_VM
5535 {
5536 int nid, zid;
5537 struct mem_cgroup_per_zone *mz;
5538 struct zone_reclaim_stat *rstat;
5539 unsigned long recent_rotated[2] = {0, 0};
5540 unsigned long recent_scanned[2] = {0, 0};
5541
5542 for_each_online_node(nid)
5543 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5544 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5545 rstat = &mz->lruvec.reclaim_stat;
5546
5547 recent_rotated[0] += rstat->recent_rotated[0];
5548 recent_rotated[1] += rstat->recent_rotated[1];
5549 recent_scanned[0] += rstat->recent_scanned[0];
5550 recent_scanned[1] += rstat->recent_scanned[1];
5551 }
5552 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5553 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5554 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5555 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5556 }
5557 #endif
5558
5559 return 0;
5560 }
5561
5562 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5563 struct cftype *cft)
5564 {
5565 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5566
5567 return mem_cgroup_swappiness(memcg);
5568 }
5569
5570 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5571 struct cftype *cft, u64 val)
5572 {
5573 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5574 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5575
5576 if (val > 100 || !parent)
5577 return -EINVAL;
5578
5579 mutex_lock(&memcg_create_mutex);
5580
5581 /* If under hierarchy, only empty-root can set this value */
5582 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5583 mutex_unlock(&memcg_create_mutex);
5584 return -EINVAL;
5585 }
5586
5587 memcg->swappiness = val;
5588
5589 mutex_unlock(&memcg_create_mutex);
5590
5591 return 0;
5592 }
5593
5594 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5595 {
5596 struct mem_cgroup_threshold_ary *t;
5597 u64 usage;
5598 int i;
5599
5600 rcu_read_lock();
5601 if (!swap)
5602 t = rcu_dereference(memcg->thresholds.primary);
5603 else
5604 t = rcu_dereference(memcg->memsw_thresholds.primary);
5605
5606 if (!t)
5607 goto unlock;
5608
5609 usage = mem_cgroup_usage(memcg, swap);
5610
5611 /*
5612 * current_threshold points to threshold just below or equal to usage.
5613 * If it's not true, a threshold was crossed after last
5614 * call of __mem_cgroup_threshold().
5615 */
5616 i = t->current_threshold;
5617
5618 /*
5619 * Iterate backward over array of thresholds starting from
5620 * current_threshold and check if a threshold is crossed.
5621 * If none of thresholds below usage is crossed, we read
5622 * only one element of the array here.
5623 */
5624 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5625 eventfd_signal(t->entries[i].eventfd, 1);
5626
5627 /* i = current_threshold + 1 */
5628 i++;
5629
5630 /*
5631 * Iterate forward over array of thresholds starting from
5632 * current_threshold+1 and check if a threshold is crossed.
5633 * If none of thresholds above usage is crossed, we read
5634 * only one element of the array here.
5635 */
5636 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5637 eventfd_signal(t->entries[i].eventfd, 1);
5638
5639 /* Update current_threshold */
5640 t->current_threshold = i - 1;
5641 unlock:
5642 rcu_read_unlock();
5643 }
5644
5645 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5646 {
5647 while (memcg) {
5648 __mem_cgroup_threshold(memcg, false);
5649 if (do_swap_account)
5650 __mem_cgroup_threshold(memcg, true);
5651
5652 memcg = parent_mem_cgroup(memcg);
5653 }
5654 }
5655
5656 static int compare_thresholds(const void *a, const void *b)
5657 {
5658 const struct mem_cgroup_threshold *_a = a;
5659 const struct mem_cgroup_threshold *_b = b;
5660
5661 if (_a->threshold > _b->threshold)
5662 return 1;
5663
5664 if (_a->threshold < _b->threshold)
5665 return -1;
5666
5667 return 0;
5668 }
5669
5670 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5671 {
5672 struct mem_cgroup_eventfd_list *ev;
5673
5674 list_for_each_entry(ev, &memcg->oom_notify, list)
5675 eventfd_signal(ev->eventfd, 1);
5676 return 0;
5677 }
5678
5679 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5680 {
5681 struct mem_cgroup *iter;
5682
5683 for_each_mem_cgroup_tree(iter, memcg)
5684 mem_cgroup_oom_notify_cb(iter);
5685 }
5686
5687 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5688 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5689 {
5690 struct mem_cgroup_thresholds *thresholds;
5691 struct mem_cgroup_threshold_ary *new;
5692 u64 threshold, usage;
5693 int i, size, ret;
5694
5695 ret = res_counter_memparse_write_strategy(args, &threshold);
5696 if (ret)
5697 return ret;
5698
5699 mutex_lock(&memcg->thresholds_lock);
5700
5701 if (type == _MEM)
5702 thresholds = &memcg->thresholds;
5703 else if (type == _MEMSWAP)
5704 thresholds = &memcg->memsw_thresholds;
5705 else
5706 BUG();
5707
5708 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5709
5710 /* Check if a threshold crossed before adding a new one */
5711 if (thresholds->primary)
5712 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5713
5714 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5715
5716 /* Allocate memory for new array of thresholds */
5717 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5718 GFP_KERNEL);
5719 if (!new) {
5720 ret = -ENOMEM;
5721 goto unlock;
5722 }
5723 new->size = size;
5724
5725 /* Copy thresholds (if any) to new array */
5726 if (thresholds->primary) {
5727 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5728 sizeof(struct mem_cgroup_threshold));
5729 }
5730
5731 /* Add new threshold */
5732 new->entries[size - 1].eventfd = eventfd;
5733 new->entries[size - 1].threshold = threshold;
5734
5735 /* Sort thresholds. Registering of new threshold isn't time-critical */
5736 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5737 compare_thresholds, NULL);
5738
5739 /* Find current threshold */
5740 new->current_threshold = -1;
5741 for (i = 0; i < size; i++) {
5742 if (new->entries[i].threshold <= usage) {
5743 /*
5744 * new->current_threshold will not be used until
5745 * rcu_assign_pointer(), so it's safe to increment
5746 * it here.
5747 */
5748 ++new->current_threshold;
5749 } else
5750 break;
5751 }
5752
5753 /* Free old spare buffer and save old primary buffer as spare */
5754 kfree(thresholds->spare);
5755 thresholds->spare = thresholds->primary;
5756
5757 rcu_assign_pointer(thresholds->primary, new);
5758
5759 /* To be sure that nobody uses thresholds */
5760 synchronize_rcu();
5761
5762 unlock:
5763 mutex_unlock(&memcg->thresholds_lock);
5764
5765 return ret;
5766 }
5767
5768 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5769 struct eventfd_ctx *eventfd, const char *args)
5770 {
5771 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
5772 }
5773
5774 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
5775 struct eventfd_ctx *eventfd, const char *args)
5776 {
5777 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
5778 }
5779
5780 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5781 struct eventfd_ctx *eventfd, enum res_type type)
5782 {
5783 struct mem_cgroup_thresholds *thresholds;
5784 struct mem_cgroup_threshold_ary *new;
5785 u64 usage;
5786 int i, j, size;
5787
5788 mutex_lock(&memcg->thresholds_lock);
5789 if (type == _MEM)
5790 thresholds = &memcg->thresholds;
5791 else if (type == _MEMSWAP)
5792 thresholds = &memcg->memsw_thresholds;
5793 else
5794 BUG();
5795
5796 if (!thresholds->primary)
5797 goto unlock;
5798
5799 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5800
5801 /* Check if a threshold crossed before removing */
5802 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5803
5804 /* Calculate new number of threshold */
5805 size = 0;
5806 for (i = 0; i < thresholds->primary->size; i++) {
5807 if (thresholds->primary->entries[i].eventfd != eventfd)
5808 size++;
5809 }
5810
5811 new = thresholds->spare;
5812
5813 /* Set thresholds array to NULL if we don't have thresholds */
5814 if (!size) {
5815 kfree(new);
5816 new = NULL;
5817 goto swap_buffers;
5818 }
5819
5820 new->size = size;
5821
5822 /* Copy thresholds and find current threshold */
5823 new->current_threshold = -1;
5824 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5825 if (thresholds->primary->entries[i].eventfd == eventfd)
5826 continue;
5827
5828 new->entries[j] = thresholds->primary->entries[i];
5829 if (new->entries[j].threshold <= usage) {
5830 /*
5831 * new->current_threshold will not be used
5832 * until rcu_assign_pointer(), so it's safe to increment
5833 * it here.
5834 */
5835 ++new->current_threshold;
5836 }
5837 j++;
5838 }
5839
5840 swap_buffers:
5841 /* Swap primary and spare array */
5842 thresholds->spare = thresholds->primary;
5843 /* If all events are unregistered, free the spare array */
5844 if (!new) {
5845 kfree(thresholds->spare);
5846 thresholds->spare = NULL;
5847 }
5848
5849 rcu_assign_pointer(thresholds->primary, new);
5850
5851 /* To be sure that nobody uses thresholds */
5852 synchronize_rcu();
5853 unlock:
5854 mutex_unlock(&memcg->thresholds_lock);
5855 }
5856
5857 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5858 struct eventfd_ctx *eventfd)
5859 {
5860 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
5861 }
5862
5863 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5864 struct eventfd_ctx *eventfd)
5865 {
5866 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
5867 }
5868
5869 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
5870 struct eventfd_ctx *eventfd, const char *args)
5871 {
5872 struct mem_cgroup_eventfd_list *event;
5873
5874 event = kmalloc(sizeof(*event), GFP_KERNEL);
5875 if (!event)
5876 return -ENOMEM;
5877
5878 spin_lock(&memcg_oom_lock);
5879
5880 event->eventfd = eventfd;
5881 list_add(&event->list, &memcg->oom_notify);
5882
5883 /* already in OOM ? */
5884 if (atomic_read(&memcg->under_oom))
5885 eventfd_signal(eventfd, 1);
5886 spin_unlock(&memcg_oom_lock);
5887
5888 return 0;
5889 }
5890
5891 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
5892 struct eventfd_ctx *eventfd)
5893 {
5894 struct mem_cgroup_eventfd_list *ev, *tmp;
5895
5896 spin_lock(&memcg_oom_lock);
5897
5898 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5899 if (ev->eventfd == eventfd) {
5900 list_del(&ev->list);
5901 kfree(ev);
5902 }
5903 }
5904
5905 spin_unlock(&memcg_oom_lock);
5906 }
5907
5908 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5909 {
5910 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5911
5912 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5913 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5914 return 0;
5915 }
5916
5917 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5918 struct cftype *cft, u64 val)
5919 {
5920 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5921 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5922
5923 /* cannot set to root cgroup and only 0 and 1 are allowed */
5924 if (!parent || !((val == 0) || (val == 1)))
5925 return -EINVAL;
5926
5927 mutex_lock(&memcg_create_mutex);
5928 /* oom-kill-disable is a flag for subhierarchy. */
5929 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5930 mutex_unlock(&memcg_create_mutex);
5931 return -EINVAL;
5932 }
5933 memcg->oom_kill_disable = val;
5934 if (!val)
5935 memcg_oom_recover(memcg);
5936 mutex_unlock(&memcg_create_mutex);
5937 return 0;
5938 }
5939
5940 #ifdef CONFIG_MEMCG_KMEM
5941 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5942 {
5943 int ret;
5944
5945 memcg->kmemcg_id = -1;
5946 ret = memcg_propagate_kmem(memcg);
5947 if (ret)
5948 return ret;
5949
5950 return mem_cgroup_sockets_init(memcg, ss);
5951 }
5952
5953 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5954 {
5955 mem_cgroup_sockets_destroy(memcg);
5956 }
5957
5958 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5959 {
5960 if (!memcg_kmem_is_active(memcg))
5961 return;
5962
5963 /*
5964 * kmem charges can outlive the cgroup. In the case of slab
5965 * pages, for instance, a page contain objects from various
5966 * processes. As we prevent from taking a reference for every
5967 * such allocation we have to be careful when doing uncharge
5968 * (see memcg_uncharge_kmem) and here during offlining.
5969 *
5970 * The idea is that that only the _last_ uncharge which sees
5971 * the dead memcg will drop the last reference. An additional
5972 * reference is taken here before the group is marked dead
5973 * which is then paired with css_put during uncharge resp. here.
5974 *
5975 * Although this might sound strange as this path is called from
5976 * css_offline() when the referencemight have dropped down to 0
5977 * and shouldn't be incremented anymore (css_tryget would fail)
5978 * we do not have other options because of the kmem allocations
5979 * lifetime.
5980 */
5981 css_get(&memcg->css);
5982
5983 memcg_kmem_mark_dead(memcg);
5984
5985 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5986 return;
5987
5988 if (memcg_kmem_test_and_clear_dead(memcg))
5989 css_put(&memcg->css);
5990 }
5991 #else
5992 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5993 {
5994 return 0;
5995 }
5996
5997 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5998 {
5999 }
6000
6001 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
6002 {
6003 }
6004 #endif
6005
6006 /*
6007 * DO NOT USE IN NEW FILES.
6008 *
6009 * "cgroup.event_control" implementation.
6010 *
6011 * This is way over-engineered. It tries to support fully configurable
6012 * events for each user. Such level of flexibility is completely
6013 * unnecessary especially in the light of the planned unified hierarchy.
6014 *
6015 * Please deprecate this and replace with something simpler if at all
6016 * possible.
6017 */
6018
6019 /*
6020 * Unregister event and free resources.
6021 *
6022 * Gets called from workqueue.
6023 */
6024 static void memcg_event_remove(struct work_struct *work)
6025 {
6026 struct mem_cgroup_event *event =
6027 container_of(work, struct mem_cgroup_event, remove);
6028 struct mem_cgroup *memcg = event->memcg;
6029
6030 remove_wait_queue(event->wqh, &event->wait);
6031
6032 event->unregister_event(memcg, event->eventfd);
6033
6034 /* Notify userspace the event is going away. */
6035 eventfd_signal(event->eventfd, 1);
6036
6037 eventfd_ctx_put(event->eventfd);
6038 kfree(event);
6039 css_put(&memcg->css);
6040 }
6041
6042 /*
6043 * Gets called on POLLHUP on eventfd when user closes it.
6044 *
6045 * Called with wqh->lock held and interrupts disabled.
6046 */
6047 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
6048 int sync, void *key)
6049 {
6050 struct mem_cgroup_event *event =
6051 container_of(wait, struct mem_cgroup_event, wait);
6052 struct mem_cgroup *memcg = event->memcg;
6053 unsigned long flags = (unsigned long)key;
6054
6055 if (flags & POLLHUP) {
6056 /*
6057 * If the event has been detached at cgroup removal, we
6058 * can simply return knowing the other side will cleanup
6059 * for us.
6060 *
6061 * We can't race against event freeing since the other
6062 * side will require wqh->lock via remove_wait_queue(),
6063 * which we hold.
6064 */
6065 spin_lock(&memcg->event_list_lock);
6066 if (!list_empty(&event->list)) {
6067 list_del_init(&event->list);
6068 /*
6069 * We are in atomic context, but cgroup_event_remove()
6070 * may sleep, so we have to call it in workqueue.
6071 */
6072 schedule_work(&event->remove);
6073 }
6074 spin_unlock(&memcg->event_list_lock);
6075 }
6076
6077 return 0;
6078 }
6079
6080 static void memcg_event_ptable_queue_proc(struct file *file,
6081 wait_queue_head_t *wqh, poll_table *pt)
6082 {
6083 struct mem_cgroup_event *event =
6084 container_of(pt, struct mem_cgroup_event, pt);
6085
6086 event->wqh = wqh;
6087 add_wait_queue(wqh, &event->wait);
6088 }
6089
6090 /*
6091 * DO NOT USE IN NEW FILES.
6092 *
6093 * Parse input and register new cgroup event handler.
6094 *
6095 * Input must be in format '<event_fd> <control_fd> <args>'.
6096 * Interpretation of args is defined by control file implementation.
6097 */
6098 static int memcg_write_event_control(struct cgroup_subsys_state *css,
6099 struct cftype *cft, const char *buffer)
6100 {
6101 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6102 struct mem_cgroup_event *event;
6103 struct cgroup_subsys_state *cfile_css;
6104 unsigned int efd, cfd;
6105 struct fd efile;
6106 struct fd cfile;
6107 const char *name;
6108 char *endp;
6109 int ret;
6110
6111 efd = simple_strtoul(buffer, &endp, 10);
6112 if (*endp != ' ')
6113 return -EINVAL;
6114 buffer = endp + 1;
6115
6116 cfd = simple_strtoul(buffer, &endp, 10);
6117 if ((*endp != ' ') && (*endp != '\0'))
6118 return -EINVAL;
6119 buffer = endp + 1;
6120
6121 event = kzalloc(sizeof(*event), GFP_KERNEL);
6122 if (!event)
6123 return -ENOMEM;
6124
6125 event->memcg = memcg;
6126 INIT_LIST_HEAD(&event->list);
6127 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
6128 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
6129 INIT_WORK(&event->remove, memcg_event_remove);
6130
6131 efile = fdget(efd);
6132 if (!efile.file) {
6133 ret = -EBADF;
6134 goto out_kfree;
6135 }
6136
6137 event->eventfd = eventfd_ctx_fileget(efile.file);
6138 if (IS_ERR(event->eventfd)) {
6139 ret = PTR_ERR(event->eventfd);
6140 goto out_put_efile;
6141 }
6142
6143 cfile = fdget(cfd);
6144 if (!cfile.file) {
6145 ret = -EBADF;
6146 goto out_put_eventfd;
6147 }
6148
6149 /* the process need read permission on control file */
6150 /* AV: shouldn't we check that it's been opened for read instead? */
6151 ret = inode_permission(file_inode(cfile.file), MAY_READ);
6152 if (ret < 0)
6153 goto out_put_cfile;
6154
6155 /*
6156 * Determine the event callbacks and set them in @event. This used
6157 * to be done via struct cftype but cgroup core no longer knows
6158 * about these events. The following is crude but the whole thing
6159 * is for compatibility anyway.
6160 *
6161 * DO NOT ADD NEW FILES.
6162 */
6163 name = cfile.file->f_dentry->d_name.name;
6164
6165 if (!strcmp(name, "memory.usage_in_bytes")) {
6166 event->register_event = mem_cgroup_usage_register_event;
6167 event->unregister_event = mem_cgroup_usage_unregister_event;
6168 } else if (!strcmp(name, "memory.oom_control")) {
6169 event->register_event = mem_cgroup_oom_register_event;
6170 event->unregister_event = mem_cgroup_oom_unregister_event;
6171 } else if (!strcmp(name, "memory.pressure_level")) {
6172 event->register_event = vmpressure_register_event;
6173 event->unregister_event = vmpressure_unregister_event;
6174 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
6175 event->register_event = memsw_cgroup_usage_register_event;
6176 event->unregister_event = memsw_cgroup_usage_unregister_event;
6177 } else {
6178 ret = -EINVAL;
6179 goto out_put_cfile;
6180 }
6181
6182 /*
6183 * Verify @cfile should belong to @css. Also, remaining events are
6184 * automatically removed on cgroup destruction but the removal is
6185 * asynchronous, so take an extra ref on @css.
6186 */
6187 rcu_read_lock();
6188
6189 ret = -EINVAL;
6190 cfile_css = css_from_dir(cfile.file->f_dentry->d_parent,
6191 &mem_cgroup_subsys);
6192 if (cfile_css == css && css_tryget(css))
6193 ret = 0;
6194
6195 rcu_read_unlock();
6196 if (ret)
6197 goto out_put_cfile;
6198
6199 ret = event->register_event(memcg, event->eventfd, buffer);
6200 if (ret)
6201 goto out_put_css;
6202
6203 efile.file->f_op->poll(efile.file, &event->pt);
6204
6205 spin_lock(&memcg->event_list_lock);
6206 list_add(&event->list, &memcg->event_list);
6207 spin_unlock(&memcg->event_list_lock);
6208
6209 fdput(cfile);
6210 fdput(efile);
6211
6212 return 0;
6213
6214 out_put_css:
6215 css_put(css);
6216 out_put_cfile:
6217 fdput(cfile);
6218 out_put_eventfd:
6219 eventfd_ctx_put(event->eventfd);
6220 out_put_efile:
6221 fdput(efile);
6222 out_kfree:
6223 kfree(event);
6224
6225 return ret;
6226 }
6227
6228 static struct cftype mem_cgroup_files[] = {
6229 {
6230 .name = "usage_in_bytes",
6231 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
6232 .read_u64 = mem_cgroup_read_u64,
6233 },
6234 {
6235 .name = "max_usage_in_bytes",
6236 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6237 .trigger = mem_cgroup_reset,
6238 .read_u64 = mem_cgroup_read_u64,
6239 },
6240 {
6241 .name = "limit_in_bytes",
6242 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6243 .write_string = mem_cgroup_write,
6244 .read_u64 = mem_cgroup_read_u64,
6245 },
6246 {
6247 .name = "soft_limit_in_bytes",
6248 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6249 .write_string = mem_cgroup_write,
6250 .read_u64 = mem_cgroup_read_u64,
6251 },
6252 {
6253 .name = "failcnt",
6254 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6255 .trigger = mem_cgroup_reset,
6256 .read_u64 = mem_cgroup_read_u64,
6257 },
6258 {
6259 .name = "stat",
6260 .seq_show = memcg_stat_show,
6261 },
6262 {
6263 .name = "force_empty",
6264 .trigger = mem_cgroup_force_empty_write,
6265 },
6266 {
6267 .name = "use_hierarchy",
6268 .flags = CFTYPE_INSANE,
6269 .write_u64 = mem_cgroup_hierarchy_write,
6270 .read_u64 = mem_cgroup_hierarchy_read,
6271 },
6272 {
6273 .name = "cgroup.event_control", /* XXX: for compat */
6274 .write_string = memcg_write_event_control,
6275 .flags = CFTYPE_NO_PREFIX,
6276 .mode = S_IWUGO,
6277 },
6278 {
6279 .name = "swappiness",
6280 .read_u64 = mem_cgroup_swappiness_read,
6281 .write_u64 = mem_cgroup_swappiness_write,
6282 },
6283 {
6284 .name = "move_charge_at_immigrate",
6285 .read_u64 = mem_cgroup_move_charge_read,
6286 .write_u64 = mem_cgroup_move_charge_write,
6287 },
6288 {
6289 .name = "oom_control",
6290 .seq_show = mem_cgroup_oom_control_read,
6291 .write_u64 = mem_cgroup_oom_control_write,
6292 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6293 },
6294 {
6295 .name = "pressure_level",
6296 },
6297 #ifdef CONFIG_NUMA
6298 {
6299 .name = "numa_stat",
6300 .seq_show = memcg_numa_stat_show,
6301 },
6302 #endif
6303 #ifdef CONFIG_MEMCG_KMEM
6304 {
6305 .name = "kmem.limit_in_bytes",
6306 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6307 .write_string = mem_cgroup_write,
6308 .read_u64 = mem_cgroup_read_u64,
6309 },
6310 {
6311 .name = "kmem.usage_in_bytes",
6312 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6313 .read_u64 = mem_cgroup_read_u64,
6314 },
6315 {
6316 .name = "kmem.failcnt",
6317 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6318 .trigger = mem_cgroup_reset,
6319 .read_u64 = mem_cgroup_read_u64,
6320 },
6321 {
6322 .name = "kmem.max_usage_in_bytes",
6323 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6324 .trigger = mem_cgroup_reset,
6325 .read_u64 = mem_cgroup_read_u64,
6326 },
6327 #ifdef CONFIG_SLABINFO
6328 {
6329 .name = "kmem.slabinfo",
6330 .seq_show = mem_cgroup_slabinfo_read,
6331 },
6332 #endif
6333 #endif
6334 { }, /* terminate */
6335 };
6336
6337 #ifdef CONFIG_MEMCG_SWAP
6338 static struct cftype memsw_cgroup_files[] = {
6339 {
6340 .name = "memsw.usage_in_bytes",
6341 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6342 .read_u64 = mem_cgroup_read_u64,
6343 },
6344 {
6345 .name = "memsw.max_usage_in_bytes",
6346 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6347 .trigger = mem_cgroup_reset,
6348 .read_u64 = mem_cgroup_read_u64,
6349 },
6350 {
6351 .name = "memsw.limit_in_bytes",
6352 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6353 .write_string = mem_cgroup_write,
6354 .read_u64 = mem_cgroup_read_u64,
6355 },
6356 {
6357 .name = "memsw.failcnt",
6358 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6359 .trigger = mem_cgroup_reset,
6360 .read_u64 = mem_cgroup_read_u64,
6361 },
6362 { }, /* terminate */
6363 };
6364 #endif
6365 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6366 {
6367 struct mem_cgroup_per_node *pn;
6368 struct mem_cgroup_per_zone *mz;
6369 int zone, tmp = node;
6370 /*
6371 * This routine is called against possible nodes.
6372 * But it's BUG to call kmalloc() against offline node.
6373 *
6374 * TODO: this routine can waste much memory for nodes which will
6375 * never be onlined. It's better to use memory hotplug callback
6376 * function.
6377 */
6378 if (!node_state(node, N_NORMAL_MEMORY))
6379 tmp = -1;
6380 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6381 if (!pn)
6382 return 1;
6383
6384 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6385 mz = &pn->zoneinfo[zone];
6386 lruvec_init(&mz->lruvec);
6387 mz->usage_in_excess = 0;
6388 mz->on_tree = false;
6389 mz->memcg = memcg;
6390 }
6391 memcg->nodeinfo[node] = pn;
6392 return 0;
6393 }
6394
6395 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6396 {
6397 kfree(memcg->nodeinfo[node]);
6398 }
6399
6400 static struct mem_cgroup *mem_cgroup_alloc(void)
6401 {
6402 struct mem_cgroup *memcg;
6403 size_t size;
6404
6405 size = sizeof(struct mem_cgroup);
6406 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6407
6408 memcg = kzalloc(size, GFP_KERNEL);
6409 if (!memcg)
6410 return NULL;
6411
6412 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6413 if (!memcg->stat)
6414 goto out_free;
6415 spin_lock_init(&memcg->pcp_counter_lock);
6416 return memcg;
6417
6418 out_free:
6419 kfree(memcg);
6420 return NULL;
6421 }
6422
6423 /*
6424 * At destroying mem_cgroup, references from swap_cgroup can remain.
6425 * (scanning all at force_empty is too costly...)
6426 *
6427 * Instead of clearing all references at force_empty, we remember
6428 * the number of reference from swap_cgroup and free mem_cgroup when
6429 * it goes down to 0.
6430 *
6431 * Removal of cgroup itself succeeds regardless of refs from swap.
6432 */
6433
6434 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6435 {
6436 int node;
6437
6438 mem_cgroup_remove_from_trees(memcg);
6439
6440 for_each_node(node)
6441 free_mem_cgroup_per_zone_info(memcg, node);
6442
6443 free_percpu(memcg->stat);
6444
6445 /*
6446 * We need to make sure that (at least for now), the jump label
6447 * destruction code runs outside of the cgroup lock. This is because
6448 * get_online_cpus(), which is called from the static_branch update,
6449 * can't be called inside the cgroup_lock. cpusets are the ones
6450 * enforcing this dependency, so if they ever change, we might as well.
6451 *
6452 * schedule_work() will guarantee this happens. Be careful if you need
6453 * to move this code around, and make sure it is outside
6454 * the cgroup_lock.
6455 */
6456 disarm_static_keys(memcg);
6457 kfree(memcg);
6458 }
6459
6460 /*
6461 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6462 */
6463 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6464 {
6465 if (!memcg->res.parent)
6466 return NULL;
6467 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6468 }
6469 EXPORT_SYMBOL(parent_mem_cgroup);
6470
6471 static void __init mem_cgroup_soft_limit_tree_init(void)
6472 {
6473 struct mem_cgroup_tree_per_node *rtpn;
6474 struct mem_cgroup_tree_per_zone *rtpz;
6475 int tmp, node, zone;
6476
6477 for_each_node(node) {
6478 tmp = node;
6479 if (!node_state(node, N_NORMAL_MEMORY))
6480 tmp = -1;
6481 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6482 BUG_ON(!rtpn);
6483
6484 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6485
6486 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6487 rtpz = &rtpn->rb_tree_per_zone[zone];
6488 rtpz->rb_root = RB_ROOT;
6489 spin_lock_init(&rtpz->lock);
6490 }
6491 }
6492 }
6493
6494 static struct cgroup_subsys_state * __ref
6495 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6496 {
6497 struct mem_cgroup *memcg;
6498 long error = -ENOMEM;
6499 int node;
6500
6501 memcg = mem_cgroup_alloc();
6502 if (!memcg)
6503 return ERR_PTR(error);
6504
6505 for_each_node(node)
6506 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6507 goto free_out;
6508
6509 /* root ? */
6510 if (parent_css == NULL) {
6511 root_mem_cgroup = memcg;
6512 res_counter_init(&memcg->res, NULL);
6513 res_counter_init(&memcg->memsw, NULL);
6514 res_counter_init(&memcg->kmem, NULL);
6515 }
6516
6517 memcg->last_scanned_node = MAX_NUMNODES;
6518 INIT_LIST_HEAD(&memcg->oom_notify);
6519 memcg->move_charge_at_immigrate = 0;
6520 mutex_init(&memcg->thresholds_lock);
6521 spin_lock_init(&memcg->move_lock);
6522 vmpressure_init(&memcg->vmpressure);
6523 INIT_LIST_HEAD(&memcg->event_list);
6524 spin_lock_init(&memcg->event_list_lock);
6525
6526 return &memcg->css;
6527
6528 free_out:
6529 __mem_cgroup_free(memcg);
6530 return ERR_PTR(error);
6531 }
6532
6533 static int
6534 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6535 {
6536 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6537 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6538
6539 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6540 return -ENOSPC;
6541
6542 if (!parent)
6543 return 0;
6544
6545 mutex_lock(&memcg_create_mutex);
6546
6547 memcg->use_hierarchy = parent->use_hierarchy;
6548 memcg->oom_kill_disable = parent->oom_kill_disable;
6549 memcg->swappiness = mem_cgroup_swappiness(parent);
6550
6551 if (parent->use_hierarchy) {
6552 res_counter_init(&memcg->res, &parent->res);
6553 res_counter_init(&memcg->memsw, &parent->memsw);
6554 res_counter_init(&memcg->kmem, &parent->kmem);
6555
6556 /*
6557 * No need to take a reference to the parent because cgroup
6558 * core guarantees its existence.
6559 */
6560 } else {
6561 res_counter_init(&memcg->res, NULL);
6562 res_counter_init(&memcg->memsw, NULL);
6563 res_counter_init(&memcg->kmem, NULL);
6564 /*
6565 * Deeper hierachy with use_hierarchy == false doesn't make
6566 * much sense so let cgroup subsystem know about this
6567 * unfortunate state in our controller.
6568 */
6569 if (parent != root_mem_cgroup)
6570 mem_cgroup_subsys.broken_hierarchy = true;
6571 }
6572 mutex_unlock(&memcg_create_mutex);
6573
6574 return memcg_init_kmem(memcg, &mem_cgroup_subsys);
6575 }
6576
6577 /*
6578 * Announce all parents that a group from their hierarchy is gone.
6579 */
6580 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6581 {
6582 struct mem_cgroup *parent = memcg;
6583
6584 while ((parent = parent_mem_cgroup(parent)))
6585 mem_cgroup_iter_invalidate(parent);
6586
6587 /*
6588 * if the root memcg is not hierarchical we have to check it
6589 * explicitely.
6590 */
6591 if (!root_mem_cgroup->use_hierarchy)
6592 mem_cgroup_iter_invalidate(root_mem_cgroup);
6593 }
6594
6595 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6596 {
6597 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6598 struct mem_cgroup_event *event, *tmp;
6599
6600 /*
6601 * Unregister events and notify userspace.
6602 * Notify userspace about cgroup removing only after rmdir of cgroup
6603 * directory to avoid race between userspace and kernelspace.
6604 */
6605 spin_lock(&memcg->event_list_lock);
6606 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6607 list_del_init(&event->list);
6608 schedule_work(&event->remove);
6609 }
6610 spin_unlock(&memcg->event_list_lock);
6611
6612 kmem_cgroup_css_offline(memcg);
6613
6614 mem_cgroup_invalidate_reclaim_iterators(memcg);
6615 mem_cgroup_reparent_charges(memcg);
6616 mem_cgroup_destroy_all_caches(memcg);
6617 vmpressure_cleanup(&memcg->vmpressure);
6618 }
6619
6620 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6621 {
6622 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6623 /*
6624 * XXX: css_offline() would be where we should reparent all
6625 * memory to prepare the cgroup for destruction. However,
6626 * memcg does not do css_tryget() and res_counter charging
6627 * under the same RCU lock region, which means that charging
6628 * could race with offlining. Offlining only happens to
6629 * cgroups with no tasks in them but charges can show up
6630 * without any tasks from the swapin path when the target
6631 * memcg is looked up from the swapout record and not from the
6632 * current task as it usually is. A race like this can leak
6633 * charges and put pages with stale cgroup pointers into
6634 * circulation:
6635 *
6636 * #0 #1
6637 * lookup_swap_cgroup_id()
6638 * rcu_read_lock()
6639 * mem_cgroup_lookup()
6640 * css_tryget()
6641 * rcu_read_unlock()
6642 * disable css_tryget()
6643 * call_rcu()
6644 * offline_css()
6645 * reparent_charges()
6646 * res_counter_charge()
6647 * css_put()
6648 * css_free()
6649 * pc->mem_cgroup = dead memcg
6650 * add page to lru
6651 *
6652 * The bulk of the charges are still moved in offline_css() to
6653 * avoid pinning a lot of pages in case a long-term reference
6654 * like a swapout record is deferring the css_free() to long
6655 * after offlining. But this makes sure we catch any charges
6656 * made after offlining:
6657 */
6658 mem_cgroup_reparent_charges(memcg);
6659
6660 memcg_destroy_kmem(memcg);
6661 __mem_cgroup_free(memcg);
6662 }
6663
6664 #ifdef CONFIG_MMU
6665 /* Handlers for move charge at task migration. */
6666 #define PRECHARGE_COUNT_AT_ONCE 256
6667 static int mem_cgroup_do_precharge(unsigned long count)
6668 {
6669 int ret = 0;
6670 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6671 struct mem_cgroup *memcg = mc.to;
6672
6673 if (mem_cgroup_is_root(memcg)) {
6674 mc.precharge += count;
6675 /* we don't need css_get for root */
6676 return ret;
6677 }
6678 /* try to charge at once */
6679 if (count > 1) {
6680 struct res_counter *dummy;
6681 /*
6682 * "memcg" cannot be under rmdir() because we've already checked
6683 * by cgroup_lock_live_cgroup() that it is not removed and we
6684 * are still under the same cgroup_mutex. So we can postpone
6685 * css_get().
6686 */
6687 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6688 goto one_by_one;
6689 if (do_swap_account && res_counter_charge(&memcg->memsw,
6690 PAGE_SIZE * count, &dummy)) {
6691 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6692 goto one_by_one;
6693 }
6694 mc.precharge += count;
6695 return ret;
6696 }
6697 one_by_one:
6698 /* fall back to one by one charge */
6699 while (count--) {
6700 if (signal_pending(current)) {
6701 ret = -EINTR;
6702 break;
6703 }
6704 if (!batch_count--) {
6705 batch_count = PRECHARGE_COUNT_AT_ONCE;
6706 cond_resched();
6707 }
6708 ret = __mem_cgroup_try_charge(NULL,
6709 GFP_KERNEL, 1, &memcg, false);
6710 if (ret)
6711 /* mem_cgroup_clear_mc() will do uncharge later */
6712 return ret;
6713 mc.precharge++;
6714 }
6715 return ret;
6716 }
6717
6718 /**
6719 * get_mctgt_type - get target type of moving charge
6720 * @vma: the vma the pte to be checked belongs
6721 * @addr: the address corresponding to the pte to be checked
6722 * @ptent: the pte to be checked
6723 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6724 *
6725 * Returns
6726 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6727 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6728 * move charge. if @target is not NULL, the page is stored in target->page
6729 * with extra refcnt got(Callers should handle it).
6730 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6731 * target for charge migration. if @target is not NULL, the entry is stored
6732 * in target->ent.
6733 *
6734 * Called with pte lock held.
6735 */
6736 union mc_target {
6737 struct page *page;
6738 swp_entry_t ent;
6739 };
6740
6741 enum mc_target_type {
6742 MC_TARGET_NONE = 0,
6743 MC_TARGET_PAGE,
6744 MC_TARGET_SWAP,
6745 };
6746
6747 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6748 unsigned long addr, pte_t ptent)
6749 {
6750 struct page *page = vm_normal_page(vma, addr, ptent);
6751
6752 if (!page || !page_mapped(page))
6753 return NULL;
6754 if (PageAnon(page)) {
6755 /* we don't move shared anon */
6756 if (!move_anon())
6757 return NULL;
6758 } else if (!move_file())
6759 /* we ignore mapcount for file pages */
6760 return NULL;
6761 if (!get_page_unless_zero(page))
6762 return NULL;
6763
6764 return page;
6765 }
6766
6767 #ifdef CONFIG_SWAP
6768 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6769 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6770 {
6771 struct page *page = NULL;
6772 swp_entry_t ent = pte_to_swp_entry(ptent);
6773
6774 if (!move_anon() || non_swap_entry(ent))
6775 return NULL;
6776 /*
6777 * Because lookup_swap_cache() updates some statistics counter,
6778 * we call find_get_page() with swapper_space directly.
6779 */
6780 page = find_get_page(swap_address_space(ent), ent.val);
6781 if (do_swap_account)
6782 entry->val = ent.val;
6783
6784 return page;
6785 }
6786 #else
6787 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6788 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6789 {
6790 return NULL;
6791 }
6792 #endif
6793
6794 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6795 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6796 {
6797 struct page *page = NULL;
6798 struct address_space *mapping;
6799 pgoff_t pgoff;
6800
6801 if (!vma->vm_file) /* anonymous vma */
6802 return NULL;
6803 if (!move_file())
6804 return NULL;
6805
6806 mapping = vma->vm_file->f_mapping;
6807 if (pte_none(ptent))
6808 pgoff = linear_page_index(vma, addr);
6809 else /* pte_file(ptent) is true */
6810 pgoff = pte_to_pgoff(ptent);
6811
6812 /* page is moved even if it's not RSS of this task(page-faulted). */
6813 page = find_get_page(mapping, pgoff);
6814
6815 #ifdef CONFIG_SWAP
6816 /* shmem/tmpfs may report page out on swap: account for that too. */
6817 if (radix_tree_exceptional_entry(page)) {
6818 swp_entry_t swap = radix_to_swp_entry(page);
6819 if (do_swap_account)
6820 *entry = swap;
6821 page = find_get_page(swap_address_space(swap), swap.val);
6822 }
6823 #endif
6824 return page;
6825 }
6826
6827 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6828 unsigned long addr, pte_t ptent, union mc_target *target)
6829 {
6830 struct page *page = NULL;
6831 struct page_cgroup *pc;
6832 enum mc_target_type ret = MC_TARGET_NONE;
6833 swp_entry_t ent = { .val = 0 };
6834
6835 if (pte_present(ptent))
6836 page = mc_handle_present_pte(vma, addr, ptent);
6837 else if (is_swap_pte(ptent))
6838 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6839 else if (pte_none(ptent) || pte_file(ptent))
6840 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6841
6842 if (!page && !ent.val)
6843 return ret;
6844 if (page) {
6845 pc = lookup_page_cgroup(page);
6846 /*
6847 * Do only loose check w/o page_cgroup lock.
6848 * mem_cgroup_move_account() checks the pc is valid or not under
6849 * the lock.
6850 */
6851 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6852 ret = MC_TARGET_PAGE;
6853 if (target)
6854 target->page = page;
6855 }
6856 if (!ret || !target)
6857 put_page(page);
6858 }
6859 /* There is a swap entry and a page doesn't exist or isn't charged */
6860 if (ent.val && !ret &&
6861 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6862 ret = MC_TARGET_SWAP;
6863 if (target)
6864 target->ent = ent;
6865 }
6866 return ret;
6867 }
6868
6869 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6870 /*
6871 * We don't consider swapping or file mapped pages because THP does not
6872 * support them for now.
6873 * Caller should make sure that pmd_trans_huge(pmd) is true.
6874 */
6875 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6876 unsigned long addr, pmd_t pmd, union mc_target *target)
6877 {
6878 struct page *page = NULL;
6879 struct page_cgroup *pc;
6880 enum mc_target_type ret = MC_TARGET_NONE;
6881
6882 page = pmd_page(pmd);
6883 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6884 if (!move_anon())
6885 return ret;
6886 pc = lookup_page_cgroup(page);
6887 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6888 ret = MC_TARGET_PAGE;
6889 if (target) {
6890 get_page(page);
6891 target->page = page;
6892 }
6893 }
6894 return ret;
6895 }
6896 #else
6897 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6898 unsigned long addr, pmd_t pmd, union mc_target *target)
6899 {
6900 return MC_TARGET_NONE;
6901 }
6902 #endif
6903
6904 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6905 unsigned long addr, unsigned long end,
6906 struct mm_walk *walk)
6907 {
6908 struct vm_area_struct *vma = walk->private;
6909 pte_t *pte;
6910 spinlock_t *ptl;
6911
6912 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6913 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6914 mc.precharge += HPAGE_PMD_NR;
6915 spin_unlock(ptl);
6916 return 0;
6917 }
6918
6919 if (pmd_trans_unstable(pmd))
6920 return 0;
6921 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6922 for (; addr != end; pte++, addr += PAGE_SIZE)
6923 if (get_mctgt_type(vma, addr, *pte, NULL))
6924 mc.precharge++; /* increment precharge temporarily */
6925 pte_unmap_unlock(pte - 1, ptl);
6926 cond_resched();
6927
6928 return 0;
6929 }
6930
6931 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6932 {
6933 unsigned long precharge;
6934 struct vm_area_struct *vma;
6935
6936 down_read(&mm->mmap_sem);
6937 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6938 struct mm_walk mem_cgroup_count_precharge_walk = {
6939 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6940 .mm = mm,
6941 .private = vma,
6942 };
6943 if (is_vm_hugetlb_page(vma))
6944 continue;
6945 walk_page_range(vma->vm_start, vma->vm_end,
6946 &mem_cgroup_count_precharge_walk);
6947 }
6948 up_read(&mm->mmap_sem);
6949
6950 precharge = mc.precharge;
6951 mc.precharge = 0;
6952
6953 return precharge;
6954 }
6955
6956 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6957 {
6958 unsigned long precharge = mem_cgroup_count_precharge(mm);
6959
6960 VM_BUG_ON(mc.moving_task);
6961 mc.moving_task = current;
6962 return mem_cgroup_do_precharge(precharge);
6963 }
6964
6965 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6966 static void __mem_cgroup_clear_mc(void)
6967 {
6968 struct mem_cgroup *from = mc.from;
6969 struct mem_cgroup *to = mc.to;
6970 int i;
6971
6972 /* we must uncharge all the leftover precharges from mc.to */
6973 if (mc.precharge) {
6974 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6975 mc.precharge = 0;
6976 }
6977 /*
6978 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6979 * we must uncharge here.
6980 */
6981 if (mc.moved_charge) {
6982 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6983 mc.moved_charge = 0;
6984 }
6985 /* we must fixup refcnts and charges */
6986 if (mc.moved_swap) {
6987 /* uncharge swap account from the old cgroup */
6988 if (!mem_cgroup_is_root(mc.from))
6989 res_counter_uncharge(&mc.from->memsw,
6990 PAGE_SIZE * mc.moved_swap);
6991
6992 for (i = 0; i < mc.moved_swap; i++)
6993 css_put(&mc.from->css);
6994
6995 if (!mem_cgroup_is_root(mc.to)) {
6996 /*
6997 * we charged both to->res and to->memsw, so we should
6998 * uncharge to->res.
6999 */
7000 res_counter_uncharge(&mc.to->res,
7001 PAGE_SIZE * mc.moved_swap);
7002 }
7003 /* we've already done css_get(mc.to) */
7004 mc.moved_swap = 0;
7005 }
7006 memcg_oom_recover(from);
7007 memcg_oom_recover(to);
7008 wake_up_all(&mc.waitq);
7009 }
7010
7011 static void mem_cgroup_clear_mc(void)
7012 {
7013 struct mem_cgroup *from = mc.from;
7014
7015 /*
7016 * we must clear moving_task before waking up waiters at the end of
7017 * task migration.
7018 */
7019 mc.moving_task = NULL;
7020 __mem_cgroup_clear_mc();
7021 spin_lock(&mc.lock);
7022 mc.from = NULL;
7023 mc.to = NULL;
7024 spin_unlock(&mc.lock);
7025 mem_cgroup_end_move(from);
7026 }
7027
7028 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7029 struct cgroup_taskset *tset)
7030 {
7031 struct task_struct *p = cgroup_taskset_first(tset);
7032 int ret = 0;
7033 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7034 unsigned long move_charge_at_immigrate;
7035
7036 /*
7037 * We are now commited to this value whatever it is. Changes in this
7038 * tunable will only affect upcoming migrations, not the current one.
7039 * So we need to save it, and keep it going.
7040 */
7041 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
7042 if (move_charge_at_immigrate) {
7043 struct mm_struct *mm;
7044 struct mem_cgroup *from = mem_cgroup_from_task(p);
7045
7046 VM_BUG_ON(from == memcg);
7047
7048 mm = get_task_mm(p);
7049 if (!mm)
7050 return 0;
7051 /* We move charges only when we move a owner of the mm */
7052 if (mm->owner == p) {
7053 VM_BUG_ON(mc.from);
7054 VM_BUG_ON(mc.to);
7055 VM_BUG_ON(mc.precharge);
7056 VM_BUG_ON(mc.moved_charge);
7057 VM_BUG_ON(mc.moved_swap);
7058 mem_cgroup_start_move(from);
7059 spin_lock(&mc.lock);
7060 mc.from = from;
7061 mc.to = memcg;
7062 mc.immigrate_flags = move_charge_at_immigrate;
7063 spin_unlock(&mc.lock);
7064 /* We set mc.moving_task later */
7065
7066 ret = mem_cgroup_precharge_mc(mm);
7067 if (ret)
7068 mem_cgroup_clear_mc();
7069 }
7070 mmput(mm);
7071 }
7072 return ret;
7073 }
7074
7075 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7076 struct cgroup_taskset *tset)
7077 {
7078 mem_cgroup_clear_mc();
7079 }
7080
7081 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
7082 unsigned long addr, unsigned long end,
7083 struct mm_walk *walk)
7084 {
7085 int ret = 0;
7086 struct vm_area_struct *vma = walk->private;
7087 pte_t *pte;
7088 spinlock_t *ptl;
7089 enum mc_target_type target_type;
7090 union mc_target target;
7091 struct page *page;
7092 struct page_cgroup *pc;
7093
7094 /*
7095 * We don't take compound_lock() here but no race with splitting thp
7096 * happens because:
7097 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
7098 * under splitting, which means there's no concurrent thp split,
7099 * - if another thread runs into split_huge_page() just after we
7100 * entered this if-block, the thread must wait for page table lock
7101 * to be unlocked in __split_huge_page_splitting(), where the main
7102 * part of thp split is not executed yet.
7103 */
7104 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
7105 if (mc.precharge < HPAGE_PMD_NR) {
7106 spin_unlock(ptl);
7107 return 0;
7108 }
7109 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
7110 if (target_type == MC_TARGET_PAGE) {
7111 page = target.page;
7112 if (!isolate_lru_page(page)) {
7113 pc = lookup_page_cgroup(page);
7114 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
7115 pc, mc.from, mc.to)) {
7116 mc.precharge -= HPAGE_PMD_NR;
7117 mc.moved_charge += HPAGE_PMD_NR;
7118 }
7119 putback_lru_page(page);
7120 }
7121 put_page(page);
7122 }
7123 spin_unlock(ptl);
7124 return 0;
7125 }
7126
7127 if (pmd_trans_unstable(pmd))
7128 return 0;
7129 retry:
7130 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
7131 for (; addr != end; addr += PAGE_SIZE) {
7132 pte_t ptent = *(pte++);
7133 swp_entry_t ent;
7134
7135 if (!mc.precharge)
7136 break;
7137
7138 switch (get_mctgt_type(vma, addr, ptent, &target)) {
7139 case MC_TARGET_PAGE:
7140 page = target.page;
7141 if (isolate_lru_page(page))
7142 goto put;
7143 pc = lookup_page_cgroup(page);
7144 if (!mem_cgroup_move_account(page, 1, pc,
7145 mc.from, mc.to)) {
7146 mc.precharge--;
7147 /* we uncharge from mc.from later. */
7148 mc.moved_charge++;
7149 }
7150 putback_lru_page(page);
7151 put: /* get_mctgt_type() gets the page */
7152 put_page(page);
7153 break;
7154 case MC_TARGET_SWAP:
7155 ent = target.ent;
7156 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
7157 mc.precharge--;
7158 /* we fixup refcnts and charges later. */
7159 mc.moved_swap++;
7160 }
7161 break;
7162 default:
7163 break;
7164 }
7165 }
7166 pte_unmap_unlock(pte - 1, ptl);
7167 cond_resched();
7168
7169 if (addr != end) {
7170 /*
7171 * We have consumed all precharges we got in can_attach().
7172 * We try charge one by one, but don't do any additional
7173 * charges to mc.to if we have failed in charge once in attach()
7174 * phase.
7175 */
7176 ret = mem_cgroup_do_precharge(1);
7177 if (!ret)
7178 goto retry;
7179 }
7180
7181 return ret;
7182 }
7183
7184 static void mem_cgroup_move_charge(struct mm_struct *mm)
7185 {
7186 struct vm_area_struct *vma;
7187
7188 lru_add_drain_all();
7189 retry:
7190 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
7191 /*
7192 * Someone who are holding the mmap_sem might be waiting in
7193 * waitq. So we cancel all extra charges, wake up all waiters,
7194 * and retry. Because we cancel precharges, we might not be able
7195 * to move enough charges, but moving charge is a best-effort
7196 * feature anyway, so it wouldn't be a big problem.
7197 */
7198 __mem_cgroup_clear_mc();
7199 cond_resched();
7200 goto retry;
7201 }
7202 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7203 int ret;
7204 struct mm_walk mem_cgroup_move_charge_walk = {
7205 .pmd_entry = mem_cgroup_move_charge_pte_range,
7206 .mm = mm,
7207 .private = vma,
7208 };
7209 if (is_vm_hugetlb_page(vma))
7210 continue;
7211 ret = walk_page_range(vma->vm_start, vma->vm_end,
7212 &mem_cgroup_move_charge_walk);
7213 if (ret)
7214 /*
7215 * means we have consumed all precharges and failed in
7216 * doing additional charge. Just abandon here.
7217 */
7218 break;
7219 }
7220 up_read(&mm->mmap_sem);
7221 }
7222
7223 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7224 struct cgroup_taskset *tset)
7225 {
7226 struct task_struct *p = cgroup_taskset_first(tset);
7227 struct mm_struct *mm = get_task_mm(p);
7228
7229 if (mm) {
7230 if (mc.to)
7231 mem_cgroup_move_charge(mm);
7232 mmput(mm);
7233 }
7234 if (mc.to)
7235 mem_cgroup_clear_mc();
7236 }
7237 #else /* !CONFIG_MMU */
7238 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7239 struct cgroup_taskset *tset)
7240 {
7241 return 0;
7242 }
7243 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7244 struct cgroup_taskset *tset)
7245 {
7246 }
7247 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7248 struct cgroup_taskset *tset)
7249 {
7250 }
7251 #endif
7252
7253 /*
7254 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7255 * to verify sane_behavior flag on each mount attempt.
7256 */
7257 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7258 {
7259 /*
7260 * use_hierarchy is forced with sane_behavior. cgroup core
7261 * guarantees that @root doesn't have any children, so turning it
7262 * on for the root memcg is enough.
7263 */
7264 if (cgroup_sane_behavior(root_css->cgroup))
7265 mem_cgroup_from_css(root_css)->use_hierarchy = true;
7266 }
7267
7268 struct cgroup_subsys mem_cgroup_subsys = {
7269 .name = "memory",
7270 .subsys_id = mem_cgroup_subsys_id,
7271 .css_alloc = mem_cgroup_css_alloc,
7272 .css_online = mem_cgroup_css_online,
7273 .css_offline = mem_cgroup_css_offline,
7274 .css_free = mem_cgroup_css_free,
7275 .can_attach = mem_cgroup_can_attach,
7276 .cancel_attach = mem_cgroup_cancel_attach,
7277 .attach = mem_cgroup_move_task,
7278 .bind = mem_cgroup_bind,
7279 .base_cftypes = mem_cgroup_files,
7280 .early_init = 0,
7281 };
7282
7283 #ifdef CONFIG_MEMCG_SWAP
7284 static int __init enable_swap_account(char *s)
7285 {
7286 if (!strcmp(s, "1"))
7287 really_do_swap_account = 1;
7288 else if (!strcmp(s, "0"))
7289 really_do_swap_account = 0;
7290 return 1;
7291 }
7292 __setup("swapaccount=", enable_swap_account);
7293
7294 static void __init memsw_file_init(void)
7295 {
7296 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7297 }
7298
7299 static void __init enable_swap_cgroup(void)
7300 {
7301 if (!mem_cgroup_disabled() && really_do_swap_account) {
7302 do_swap_account = 1;
7303 memsw_file_init();
7304 }
7305 }
7306
7307 #else
7308 static void __init enable_swap_cgroup(void)
7309 {
7310 }
7311 #endif
7312
7313 /*
7314 * subsys_initcall() for memory controller.
7315 *
7316 * Some parts like hotcpu_notifier() have to be initialized from this context
7317 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7318 * everything that doesn't depend on a specific mem_cgroup structure should
7319 * be initialized from here.
7320 */
7321 static int __init mem_cgroup_init(void)
7322 {
7323 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7324 enable_swap_cgroup();
7325 mem_cgroup_soft_limit_tree_init();
7326 memcg_stock_init();
7327 return 0;
7328 }
7329 subsys_initcall(mem_cgroup_init);